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Abstract

V
isible Light Communication (VLC) is an emerging wireless technology that employs

light-emitting diodes (LEDs) or lasers to transmit data over the visible light spec-

trum. Due to its inherent advantages, such as license-free spectrum, high data rates, low

power consumption, and enhanced security, VLC has attracted significant attention for a

broad range of applications, including indoor wireless networking, vehicular communica-

tions, underwater communications, smart lighting, and indoor positioning systems. Addi-

tionally, VLC is immune to electromagnetic interference, making it particularly suitable

for environments where radio-frequency systems are undesirable or restricted.

Despite these advantages, VLC systems face several challenges, including limited cov-

erage range, susceptibility to interference from ambient light sources, and performance

degradation under mobility. One of the most critical challenges arises from noise, which

may originate from the inherent properties of light and hardware components. In partic-

ular, signal-dependent shot noise (SDSN) and relative intensity noise (RIN) significantly

degrade the accuracy of channel estimation and localization in practical VLC systems.

In the first part of this thesis, we focus on channel estimation in the presence of SDSN,

proposing a neural-network-augmented estimation framework that integrates with tradi-

tional estimators such as least squares (LS) and maximum likelihood estimation (MLE). We

develop a complete mathematical framework enabling analytical mean-square-error (MSE)

derivations and fair benchmarking. Simulations show that, under SDSN, the proposed

method consistently outperforms LS while remaining competitive when SDSN is absent.

In the second part, we extend to visible light positioning (VLP) under SDSN. For a
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SISO VLC system, we study range estimation using the extended Kalman filter (EKF),

MLE, and nonlinear least squares (NLS), and establish Bayesian Cramér–Rao lower bounds

(BCRLBs). Monte Carlo results confirm the analysis and demonstrate EKF’s superior

accuracy.

Finally, we address 2D localization and tracking for dynamic targets in a multiple-

input single-output (MISO) VLC configuration. Accounting for both SDSN and RIN, we

derive a closed-form 2D-BCRLB and show that EKF’s recursive updates yield superior

real-time tracking compared to static measurement-based methods. We further show that

increasing the number of light sources improves spatial diversity, and that RIN has a more

pronounced adverse effect on tracking accuracy than SDSN. Overall, this thesis provides a

noise-aware framework that bridges traditional estimation with machine learning for robust

VLC channel estimation and localization.
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Chapter 1

Introduction

1.1 Background and Motivation

The recent explosive growth in the number of devices connected to mobile networks,

along with the accelerated development of online applications and services, has in-

tensified the demand for widespread connectivity and high capacity. As a result, radio

frequency (RF) communications are increasingly challenged in meeting these demands,

and visible light communication (VLC) has been introduced as a complementary technol-

ogy to help address them [6]. VLC exploits visible light for both illumination and data

transmission. It utilizes the wide, untapped, free, and unlicensed electromagnetic (EM)

spectrum from 375 nm to 782 nm [6].

VLC systems offer several fundamental advantages over RF-based systems. First, vis-

ible light does not interfere with RF signals, making it suitable for interference-sensitive

environments such as hospitals, mines, and aircraft cabins [7]. Second, unlike RF signals

that penetrate walls, visible light is spatially confined, providing enhanced physical-layer

1



security and reducing vulnerability to external eavesdropping [7]. Third, VLC benefits

from the ubiquity of light-emitting diodes (LEDs), which have replaced traditional lamps

in indoor illumination due to their energy efficiency, long operational lifetime, and envi-

ronmental robustness. Importantly, LEDs support fast on–off modulation at rates imper-

ceptible to the human eye, as standardized in IEEE 802.15.7 [8], enabling them to serve

a dual role in both illumination and data communication at low additional cost. These

features position VLC as a transformative technology capable of alleviating the spectrum

scarcity crisis while simultaneously supporting high-speed data links and pervasive indoor

connectivity.

Beyond communication, VLC has attracted significant attention for its potential in

indoor localization and tracking. The ability to accurately determine the position and

orientation of objects within indoor environments underpins a wide array of applications,

including navigation in shopping malls and airports, asset tracking in smart factories,

patient monitoring in healthcare facilities, augmented and virtual reality services, and

emergency response in hazardous environments [9,10]. Unlike outdoor environments, where

the global positioning system (GPS) provides reliable localization, indoor settings present

unique challenges such as signal blockage, multipath propagation, and attenuation through

walls, which render GPS ineffective. Consequently, a variety of indoor positioning systems

(IPS) have been developed to fill this gap.

RF-based IPS technologies such as Wi-Fi, blacktooth low energy (BLE), ultra-wideband

(UWB), and radio frequency identification (RFID) have been widely explored over the past

two decades. Wi-Fi and BLE exploit received signal strength (RSS) indicators for location

estimation, benefiting from the ubiquity of these technologies in consumer devices. How-

ever, RSS measurements are notoriously sensitive to multipath interference, shadowing, and

environmental variability, which severely limit accuracy [11]. UWB systems provide supe-

2



rior accuracy at the centimeter level due to their wide bandwidth and precise time-of-flight

measurements, yet their reliance on specialized and costly infrastructure hinders scalability

to large deployments [12]. RFID-based solutions are effective in scenarios requiring tagged-

object tracking but demand dense reader infrastructures, restricting their flexibility and

applicability to broader indoor localization tasks [13]. Moreover, all RF-based IPS tech-

nologies are vulnerable to electromagnetic interference ectromagnetic interference (EMI),

which poses a significant limitation in environments where many wireless devices coexist.

In contrast, visible light positioning (VLP), built on VLC principles, has emerged as

an attractive alternative for indoor localization. VLP systems repurpose light-emitting

diode (LED) luminaires as signal transmitters, exploiting their widespread deployment in

illumination infrastructure. Position information can be derived from parameters such

as RSS, time-of-arrival (ToA), angle-of-arrival (AoA) [14]. A key advantage of VLP lies

in its cost-effectiveness: off-the-shelf photodetectors (PDs) or even smartphone cameras

can be used as receivers without the need for specialized hardware. Furthermore, the

propagation of visible light is more deterministic compared to RF, reducing the impact

of multipath reflections and enhancing localization stability. Immunity to EMI, inherent

spatial confinement for security, and dual-use with existing lighting systems make VLP

particularly compelling for mission-critical applications such as hospitals, aircraft cabins,

and industrial automation, where reliability and safety are paramount [15].

Despite these advantages, VLP is not without its challenges. The performance of VLP

systems is strongly affected by noise in optical channels, particularly SDSN and RIN. Unlike

conventional additive white Gaussian noise (AWGN), SDSN originates from the quantum

nature of photon arrivals at the detector, which follow a Poisson process [16,17]. Since the

variance of SDSN scales with the received optical power, noise levels dynamically change

with user mobility, illumination variations, or LED dimming. This makes localization accu-
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racy highly dependent on environmental conditions. Where, RIN arises from fluctuations

in the intensity of light emitted by the light sources used in VLC systems. Its variance

is directly proportional to the square of the transmission signal power. These variations,

often due to the inherent properties of the light source or environmental factors, introduce

additional noise into the communication channel [18], [19] In addition, real-world indoor

environments present obstacles such as line-of-sight (LoS) dependence, signal blockage by

objects or human bodies, and reflections from walls or furniture, which further compli-

cate channel estimation [20]. These factors significantly degrade the reliability of both

localization and tracking, highlighting the importance of robust estimation and tracking

algorithms.

To overcome limitations in VLC and VLP, advanced estimation techniques are required,

especially to address challenges arising from signal-dependent noise sources and imperfect

hardware. Recursive estimators such as the Extended Kalman filter (EKF) and particle

filter (PF) have shown potential for improving robustness under dynamic conditions by

exploiting motion dynamics and feedback mechanisms. More recently, machine learning

approaches have been explored to adaptively model non-linearities and capture complex

noise distributions. However, the integration of these methods into VLP and VLC channel

estimation systems remains an open research problem, particularly under such realistic

impairments.

In summary, VLC and its extension to VLP provide a highly promising solution to the

limitations of RF-based wireless communication and indoor localization systems. VLC ex-

ploits the vast unlicensed visible spectrum to deliver high-speed data, while VLP leverages

the same infrastructure to enable accurate and secure indoor positioning . Nevertheless,

the unique impairments of VLC systems, particularly signal-dependent noise and environ-

mental uncertainties, pose significant challenges for reliable localization and tracking and
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channel estimation. This thesis is motivated by the need to develop advanced frameworks

for channel estimation, noise characterization, localization and tracking in VLC-based sys-

tems with the aim of bridging the gap between theoretical models and real-world indoor

positioning applications.

1.2 Thesis Contributions

The main contributions of our work can be outlined as follows: This dissertation presents

novel contributions to the channel estimation, localization, and tracking of VLC systems

under progressively realistic noise conditions. The research advances in three stages: (i)

channel estimation under SDSN, (ii) range estimation under SDSN noise, and (iii) local-

ization and tracking of moving objects under the joint effect of SDSN and RIN.

1.2.1 Channel Estimation under Signal-Dependent Shot Noise

The first part of this dissertation addresses channel estimation in VLC systems in the

presence of SDSN, which arises from the quantum nature of light and strongly impacts

estimation accuracy. The main contributions are:

1. Machine Learning-Based Estimator: A lightweight shallow neural network (NN) esti-

mator is proposed to enhance least squares (LS) and maximum likelihood estimation

(MLE). By capturing the nonlinear effects of SDSN, the model effectively mitigates

noise-induced errors and improves channel estimation accuracy.

2. Polynomial Representation and Closed-Form MSE: A polynomial representation of

the trained network is derived, enabling analytical interpretation of its operation.
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Additionally, we present a closed-form expression for the estimator’s mean square

error (MSE), providing theoretical benchmarks without extensive simulations.

3. Computational Efficiency: The proposed estimator achieves competitive accuracy

compared to multi-layer perceptions (MLPS) while requiring significantly lower com-

putational resources, making it suitable for real-time VLC estimation tasks.

1.2.2 Range Estimation under Signal-Dependent Shot Noise

The second part of this dissertation revisits range estimation between a transmitter and a

photodetector (PD) receiver in the presence of SDSN. The contributions include:

1. Estimation Framework: We formulate the range estimation problem under SDSN,

applying both recursive and non-recursive approaches for systematic evaluation.

2. Non-Recursive Estimators: MLE and nonlinear least squares (NLS) methods are

implemented. For NLS, a closed-form MSE expression is derived using parameter

transformation, providing theoretical accuracy benchmarks.

3. Recursive Estimator: The EKF is employed as a recursive estimator that integrates

prediction and measurement updates. A detailed comparison with non-recursive

techniques demonstrates the benefits of recursive filtering under SDSN noise.

4. Impact of the Receiver Plane’s Tilting Angle : We investigate the effectiveness of

the EKF in mitigating the impact of SDSN in VLP range estimation.

5. Derive the bayesian cramér–Rao lower Bound (BCRLB): We derive and analyze the

BCRLB, providing insightful discussions on the impact of SDSN on the BCRLB.
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1.2.3 Localization and Tracking of Moving Objects under SDSN

and RIN

The final part of this dissertation extends the analysis to localization and tracking in VLC

systems when both SDSN and RIN are present. The main contributions are:

1. Systematic Study of joint SDSN and RIN: We present the first systematic analysis

of the combined effects of SDSN and RIN on VLC localization and tracking accuracy.

The distinct and joint impacts of these noise sources are examined in detail.

2. Closed-Form 2D-BCRLB Derivation: A closed-form BCRLB is derived for VLC sys-

tems under both SDSN and RIN. This provides the fundamental theoretical bench-

mark for achievable accuracy in realistic conditions.

3. EKF-Based Tracking of Moving Objects: We implement an EKF framework to track

a moving PD receiver under combined SDSN and RIN. To the best of our knowledge,

this is the first application of EKF in this setting. Results confirm that EKF robustly

balances prediction and noisy measurements, outperforming traditional estimators.

4. Impact of Transmitter Density in multiple-input single-output (MISO)- VLC Systems:

The effect of increasing transmitter density in MISO VLC systems is investigated.

Higher density improves measurement diversity and enhances localization accuracy,

particularly in overlapping coverage regions.

5. Comparison with Benchmark Estimation Techniques: We compare the performance of

our proposed position tracking and estimation approach with established techniques

such as recursive Levenberg–Marquard (RLM) and PF. The results show that EKF

outperforms RLM in terms of position error bounds and estimation reliability. While
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Figure 1.1: Summary of thesis outlines and contributions.

PF achieves performance close to EKF, EKF offers significantly lower computational

complexity and is better suited for Gaussian noise models such as the one considered

in our work.

Thesis Organization

This dissertation is organized into six chapters, each building upon the previous to develop

a comprehensive framework for estimation, localization, and tracking in VLC systems under

realistic noise conditions. A summary of the thesis organization and contributions can be
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found in Fig. 1.1. The structure of the dissertation is detailed as follows:

• Chapter 2 introduces the fundamentals of VLC systems and their application to

indoor positioning. It then provides a broad overview of VLP techniques in compar-

ison with traditional RF approaches. The main focus of this chapter is a literature

review of prior studies on channel estimation and localization, with particular atten-

tion to works that analyze system performance under signal-dependent noise. This

review highlights the challenges, limitations, and research gaps that motivate the

contributions of this dissertation.

• Chapter 3 presents a simple yet novel machine learning-based estimator to address

the challenges posed by SDSN. A mathematical framework for the proposed esti-

mator is developed, including a polynomial representation that enables closed-form

computation of its MSE. The system model is introduced in this chapter, and the

study is concluded with simulation results that validate the estimator’s performance,

followed by a critical discussion.

• Chapter 4 introduces the proposed VLC-based range estimation framework. The

system architecture, estimation techniques, evaluation benchmarks, and algorithmic

designs are described in detail. Both recursive and non-recursive approaches are

implemented, including MLE, NLS, and the EKF. A closed-form MSE expression for

NLS is also derived, offering a theoretical reference for performance evaluation. This

chapter begins with the system model and ends with simulation-based comparisons of

the proposed techniques, accompanied by a comprehensive discussion of their relative

performance.

• Chapter 5 focuses on position estimation and tracking in indoor MISO-VLC systems

with multiple light sources. An EKF is developed for real-time tracking and bench-
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marked against alternative methods, including a geometric approach, RLM method,

and PF. Results demonstrate that EKF achieves the lowest MSE, while PF offers

comparable accuracy at a higher computational cost, and RLM and geometric meth-

ods show reduced robustness. The chapter also analyzes the impact of transmitter

density, showing that increased light sources enhance spatial diversity and improve

accuracy. The effects of SDSN and relative intensity noise RIN are further investi-

gated, revealing that RIN degrades performance more severely than SDSN. Finally,

the 2D-BCRLB is derived, providing a theoretical benchmark. The system model

is detailed at the outset, and the chapter concludes with simulation results and a

discussion synthesizing the effects of noise and transmitter density on localization

accuracy.

• Chapter 6 concludes the dissertation by consolidating the main findings and high-

lighting the key contributions of this research. This chapter outlines the limitations

and future research directions, the chapter positions this work as a foundation for

continued advancements in VLC-based localization and estimation.

1.3 List of Publications
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Chapter 2

Preliminaries and Literature Review

This chapter provides a general overview of the VLC system. In addition, it introduces

the fundamentals of estimation theory and commonly used estimation techniques.

Benchmark of estimation methods such as the Cramér-Rao Lower Bound (CRLB) and

recursive estimation techniques like the Kalman filter (KF) are also discussed. In addition,

we introduce VLP techniques, highlighting their unique characteristics, key differences, and

the challenges faced in real-world applications. The chapter concludes with a literature

review presented in the final subsection.

2.1 Wireless Communication Technologies

Currently, most existing wireless technologies rely on RF communication. However, there

is growing consensus that the RF spectrum alone will not be sufficient to meet future

connectivity demands, primarily due to overcrowding and rising costs associated with RF

spectrum usage [21]. In contrast, the optical spectrum remains largely untapped, unregu-
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Figure 2.1: The electromagnetic spectrum [1].

lated, and abundantly available. As illustrated in Fig. 2.1, the optical spectrum comprises

infrared (IR), visible light, ultraviolet (UV), X-rays, and gamma rays. Optical fiber com-

munication already exploits this spectrum to deliver high data rates. Consequently, for

last-mile connectivity and mobile access, it is a natural progression to extend the use of op-

tical signals from guided media (fiber optics) to free-space optical communication [22], [1].

This shift has gained significant interest in optical wireless communication (OWC) tech-

nologies from both academia and industry. Historically, OWC using IR was employed in

second-generation (2G) mobile devices to provide short-range, high-speed digital communi-

cation [23]. Looking ahead, OWC is anticipated to play a key role in supporting the goals
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and requirements of sixth-generation (6G) communication systems [24]. OWC includes

a variety of technologies that can address diverse application scenarios. These include

VLC, free-space optical (FSO) communication, light fidelity (LiFi), and optical camera

communicationo (OCC) also known as image-sensor-based communication [23].

2.2 Visible Light Communication Origins and Stan-

dardization

VLC has a long and interesting history, beginning in the 1880s, when Alexander Graham

Bell developed the photophone, an early device that used modulated sunlight to transmit

speech wirelessly for several hundred meters [25]. Coincidentally, this invention predates

the emergence of radio-based speech transmission. The modern concept of VLC re-emerged

in 1998 with the commercialization of white-light LEDs [26]. Later on, researchers demon-

strated the use of white LEDs to transmit audio signals wirelessly, marking one of the

earliest practical implementations of contemporary VLC [26]. Research in VLC has accel-

erated due to its numerous advantages, including high achievable data rates, low deploy-

ment costs, scalability, and immunity to electromagnetic interference (EMI). As can be seen

in Fig. 2.1, the visible light spectrum ranges from approximately 380 to 750 nanometers,

equivalent to frequencies between 430 and 790 Terahertz (THz). Radio waves, however,

have a broader range, from 1 millimetre to 100 kilometres, covering frequencies between

3 kHz to 300 GHz [27].

Global standardization efforts have played a crucial role in the development of VLC

technologies. Initial proposals were made in Japan: in 2007, Japan electronics and infor-

mation technology industries association (JEITA) introduced a Visible Light ID System,
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followed by the visible light communications consortium (VLCC) in 2008, which published

its own specification. However, these early standards lacked essential features such as

flicker mitigation and dimming support [8]. The initial international full-comprehensive

VLC standard was published by the IEEE 802.15 Working Group in 2011 under the ti-

tle IEEE 802.15.7. This standard defines three physical (PHY) layers to accommodate

different application scenarios as follows [8]:

• PHY I: Designed for outdoor applications, offering data rates from 11.67 to 266.6

kbps using On–Off keying (OOK) and variable pulse position modulation (VPPM).

• PHY II: Designed for indoor environments, providing support for data rates from

1.25 to 96 Mbps.

• PHY III: Optimized for high-speed communication based on multi-color LEDs and

color shift keying (CSK) to meet data rate requirements from 12 Mbps to 96 Mbps.

To address emerging applications and limitations of IEEE 802.15.7, two extensions were

proposed as follows

• IEEE 802.15.7m (2018): Focuses on OCC using LED transmitters and camera-based

receivers. This standard is particularly useful for applications like indoor navigation

and augmented reality.

• IEEE 802.15.13 (2023): Targets high-speed, high-reliability industrial applications.

It supports data rates up to 2.91 Gbps using advanced modulation schemes such as

Pulse amplitude modulation (PAM) and orthogonal frequency division multiplexing

(OFDM).
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Simultaneously, the IEEE 802.11 Working Group, responsible for Wi-Fi standards, ini-

tiated efforts in 2018 to integrate VLC into existing wireless networks. This led to the

development of IEEE 802.11bb, which enables VLC operation in the 380–1000 nm wave-

length range, encompassing visible and near-infrared light. The standard builds on existing

MAC layer functionality, with enhancements for hybrid coordination function (HCF), co-

existence with overlapping basic service sets (OBSS), and advanced power management.

IEEE 802.11bb mandates a minimum throughput of 10 Mbps and ensures interoperabil-

ity with existing Wi-Fi infrastructure [28]. To facilitate standardized evaluation, IEEE

802.11bb introduced reference channel models based on accelerated ray tracing simula-

tions. These models were validated through experimentation and made publicly available

along with a MATLAB® graphical user interface (GUI), facilitating collaborative research

and development. The comparison between the key IEEE VLC-related standards can

be found in Table 2.1. This table highlights the major differences in publication dates,

targeted use cases, achievable data rates, and modulation techniques [28]. These stan-

dards collectively provide a comprehensive foundation for future VLC applications across

consumer, industrial, and hybrid wireless networks, offering new possibilities for secure,

high-speed communication.

2.2.1 The Physical Layer in Visible Light Communication

The physical layer in VLC systems differs significantly from that of conventional RF com-

munication systems. VLC employs intensity modulation (IM) with direct detection (DD),

which requires the transmitted signal to be both real-valued and positive (unipolar) [29].

As a result, standard RF modulation schemes, typically bipolar and complex-valued, must

be adapted to meet VLC’s unipolar signal constraints [26]. The unique characteristics of
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Table 2.1: Comparison of Key VLC Standards

Standard Published Primary Use
Case

Data Rate Modulation
Techniques

IEEE 802.15.7 2011 Indoor/outdoor
VLC, smart
lighting

11.67 kbps to
96 Mbps

OOK,
VPPM,
CSK

IEEE 802.15.7m 2018 Optical Camera
Communication
(OCC)

from kbps to
few Mbps

Intensity
modulation
with camera
reception

IEEE 802.15.13 2023 High-speed in-
dustrial VLC

Up to 2.19
Gbps

PAM,
OFDM,
advanced
modulation

IEEE 802.11bb 2023 Wi-Fi-
compatible
VLC

≥10 Mbps to
10 Gbps

CSK, OFDM,
MAC-layer
optimized

visible light, such as its propagation behavior and susceptibility to various types of noise,

influence key aspects of the VLC system. These include path loss, channel modeling, noise

sources, modulation techniques, and coding strategies.

Fig. 2.2 shows the physical layer block diagram of the IEEE VLC model. At the

transmitter, the input bitstream is channel-encoded with redundancy (e.g., parity bits)

to support error correction against path loss and optical noise. Forward Error Correction

(FEC) codes such as Reed–Solomon (RS) and convolutional codes (CC) are commonly

used, depending on environmental conditions like indoor/outdoor settings, data rate re-

quirements, and frame length [30]. To prevent flickering caused by long sequences of 1s or

0s (which result in DC imbalance), the output of the channel encoder is passed through

a run-length limited (RLL) line encoder. This ensures DC balance and supports clock

recovery by maintaining a more uniform distribution of 1s and 0s.
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Figure 2.2: IEEE general model for VLC physical layer [2].

After line encoding, modulation is performed. Unlike RF systems, where signals are

typically bipolar and may carry phase information, VLC receivers, based on PDs, are

sensitive only to signal amplitude. Therefore, the modulated signals must be converted

to real and positive values. This is achieved by adding a DC bias to shift the signal into

the unipolar range, and by ensuring all subcarriers are modulated at frequencies above

the flicker fusion threshold to remain imperceptible to the human eye [30]. The IEEE

VLC standard supports a range of modulation schemes suited for different applications.

These include OOK, VPPM, CSK, mirror pulse modulation (MPM), frequency shift keying

(FSK), and phase shift keying (PSK) mong these OOK is the simplest, where logical bits

are represented by switching the LED on or off, where ’1’ corresponds to high-intensity

light, and ’0’ to low-intensity light [2].
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2.3 Noise in Visible Light Communication System

Noise is a fundamental limiting factor in the performance of VLC networks. It can substan-

tially degrade the efficiency, accuracy, and reliability of these systems by interfering with

signal detection, reducing data integrity, and increasing the probability of transmission

errors. The impact of noise is particularly pronounced in environments with fluctuating

illumination levels, where a combination of internal and external noise sources can affect

signal quality [24]. In VLC systems, noise sources are generally classified into two main cat-

egories: independent noise and dependent noise, based on whether the noise characteristics

vary with the transmitted optical signal [24].

Independent Noise: Independent noise encompasses all types of noise whose magnitude

and statistical properties remain unaffected by the signal level. Common contributors to

this category include ambient light interference, such as sunlight or illumination from LED

sources, dark current noise inherent to PDs, and thermal noise arising due to the intrinsic

properties of electronic components [31]. Among these, thermal noise, also referred to as

Johnson-Nyquist noise, is often the most dominant. It is generated by the random motion

of electrons in a conductor due to temperature and is present regardless of signal presence.

This type of noise is typically modeled as AWGN and is mathematically described as: [20]

n ∼ N (0, σ2
n), (2.1)

where σ2
n denotes the variance of the noise. Since it is spectrally flat and statistically

independent of the signal, its impact on system design can be estimated and mitigated

through filtering and circuit optimization.
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Dependent Noise: Dependent noise, in contrast, is intrinsically linked to the magni-

tude of the input signal. Its intensity fluctuates proportionally with the signal strength,

making it significantly more complex to model and manage. This type of noise is especially

challenging in applications that require high dynamic range or operate in low signal-to-

noise ratio (SNR) conditions. One of the most critical sources of dependent noise in VLC

systems is SDSN, which originates from the quantum nature of light and the random ar-

rival of photons at the PD. As optical power increases, the mean arrival rate of photons

increases, but so does the variance in the number of photons detected, leading to fluctu-

ations that manifest as noise. This dependence makes SDSN a fundamental performance

limiter, particularly in scenarios involving high-speed data transmission or weak optical

signals.

Because of its impact on signal fidelity, SDSN requires careful modeling and mitigation.

Strategies include adaptive signal processing, threshold optimization, and hardware-level

enhancements. Given its importance in practical VLC system design, SDSN is explored in

greater depth in the following subsections.

2.3.1 Background and Origin of Shot Noise

Shot noise, also known as Poisson noise or quantum noise, arises due to the discrete and

random nature of particle flow, such as electrons or photons, within physical systems. It

was first introduced by Walter Schottky in 1918 while studying vacuum tubes. Schottky

observed that the electrical current was not continuous, but rather fluctuated due to the

individual arrival of electrons in packets or “shots”. These fluctuations could not be ex-

plained using classical physics alone. His observations were later supported by John B.

Johnson and Harry Nyquist, who identified similar behavior in other electronic systems.

20



Shot noise has since become an important concept in the fields of quantum mechanics,

solid-state physics, semiconductor devices, and optical communications. Its applications

span from studying the behavior of quantum systems to evaluating performance in commu-

nication channels. One notable application is VLC systems, where shot noise plays a major

role in limiting the receiver sensitivity and defining system performance [32]. The magni-

tude of shot noise is signal-dependent and increases with the square root of the average

current or light intensity. It is particularly significant in low-light conditions or high-speed

applications, where precise detection of photons is required. Shot noise is a fundamental

noise limit and is independent of temperature, making it distinct from thermal noise. It

also arises in non-electronic domains, such as photon emission, granular flow, and even

biological processes.

Furthermore, SDSN is more dominant in systems where the signal power is low and

the signal is comprised of discrete particle arrivals, which is often the case in VLC systems

operating in indoor environments with reflections and varying illumination levels. The

importance of understanding shot noise in these systems is heightened as the performance

of modern VLC systems relies heavily on precise signal interpretation. Finally, in practical

VLC deployments, ambient light sources such as sunlight or artificial LEDs can cause

unpredictable changes in the photon arrival rate, which increases the randomness in the

received signal and exacerbates shot noise effects. Therefore, even though VLC offers high

data rates and secure transmission, its performance can be significantly constrained by noise

sources like SDSN. System designers must take this into account when designing receivers

and signal processing algorithms, especially for applications such as indoor localization,

motion tracking, and Internet of things (IoT) connectivity [32].
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2.3.2 Mathematical Modeling of Signal-Dependent Shot Noise

SDSN is mathematically modeled using a Poisson process. In this process, the events (e.g.,

electron or photon arrivals) occur randomly, independently, and with a constant average

rate. The key property of the Poisson process is that the mean and variance are equal. This

randomness translates to variations in the received signal, impacting system performance.

The probability of observing k arrivals in time t is given by the Poisson distribution:

Pr(N = k) =
(λt)ke−λt

k!
, (2.2)

where λ is the expected number of arrivals per unit time. This expression shows the discrete

nature of shot noise, with E[N ] = Var[N ] = λt, where E[.] and Var[.] are the expectation

and variance operators, respectively.

In terms of current, the root mean square value of shot noise is given by:

Ish =
√

2qIf, (2.3)

where q is the electron charge (C), I is the average photocurrent (A), and f is the system

bandwidth (Hz). This relationship highlights that the shot noise increases with the square

root of the signal. When the number of events is large (as in VLC systems), the Poisson

distribution can be approximated by a Gaussian distribution due to the Central Limit

Theorem. Thus, the SDSN can be represented as a Gaussian distribution:

SDSN ∼ N (0, σ2
ds), (2.4)
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where the variance σ2
ds is defined as:

σ2
ds = ζ2σ2, with ζ2 =

σ2
ds

σ2
n

, (2.5)

This expression illustrates how the signal-dependent component scales with the signal

variance. The Gaussian approximation simplifies the modeling and enables the use of signal

processing tools that assume normality. To better understand the nature of SDSN, one can

also consider practical analogies. For instance, if one imagines an hourglass where grains of

sand fall randomly through the neck, the arrival time of each grain is unpredictable. This

randomness closely resembles the arrival of photons or electrons at a detector in a VLC

system. While the average rate of arrival may be constant, the fluctuations from moment

to moment generate noise [33].

In VLC systems, SDSN significantly affects overall system design and performance.

One of the most critical issues introduced by SDSN is the reduction in the SNR. The ran-

dom nature of SDSN causes fluctuations in the detected signal, which lowers the clarity

and reliability of the transmission. As a result, bit error rate (BER) tends to increase,

particularly in low-light or high-speed communication scenarios where tolerance for noise

is minimal [34]. The SDSN also imposes a fundamental constraint on the minimum de-

tectable power of the receiver. Because the magnitude of shot noise increases with the

signal intensity, VLC systems must strike a balance between increasing throughput and

minimizing the noise floor. Additionally, components such as optical transmitters, ampli-

fier circuits, and PDs contribute to the total noise within the system, and their influence

can exacerbate the effects of SDSN. These cumulative noise contributions complicate the

development of reliable VLC protocols and demand robust design strategies [35].
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2.3.3 Background and Origin of Relative Intensity Noise

In semiconductor lasers, the optical output power is not perfectly stable but instead ex-

hibits random fluctuations over time. These fluctuations are collectively referred to as RIN.

Hence RIN is defined as the ratio of the mean-square fluctuation in the laser output power

to the square of the average output power. It is one of the key noise sources that directly

impacts the SNR in optical communication systems, especially those using intensity mod-

ulation formats. In practice, RIN degrades the achievable system sensitivity and limits

transmission performance. The dominant source of RIN in semiconductor lasers is spon-

taneous emission. When a laser operates above its threshold, most photons are generated

by stimulated emission, which produces coherent photons with identical phase, direction,

and frequency. However, a small fraction of photons always originates from spontaneous

emission. These photons have random properties (wavelength, phase, polarization, and

direction) and, when coupled into the lasing mode, interfere with the stimulated photons.

This interference leads to random fluctuations in the output intensity.

At the receiver side, in a direct-detection system, the PD current is proportional to

the square of the incident optical field. Consequently, the coexistence of stimulated and

spontaneous emission produces a beat signal, where optical frequency components interfere

with one another. This beating process manifests as electrical noise at the output of the

detector, as illustrated in Fig. 2.3. Thus, RIN effectively characterizes the contribution

of laser intensity fluctuations to the detected electrical noise relative to the average signal

power.

Formally, RIN is expressed in terms of the power spectral density (PSD) of the intensity

noise as

RIN(ω) =
SP (ω)

P 2
opt

, (2.6)
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Figure 2.3: Illustration of laser intensity noise as an interference (beat) between stimulated
and spontaneous emissions. [3].

where SP (ω) denotes the PSD of the power fluctuations at angular frequency ω, and

Popt represents the average optical output power. RIN is therefore a normalized quantity

and is typically expressed in units of Hz−1 or dB/Hz [3]. Alternatively, in time-domain

representation, RIN may be written as

RIN =
⟨∆P 2⟩
⟨P0⟩2

, (2.7)

where ⟨∆P 2⟩ is the mean-square fluctuation of the optical power, and ⟨P0⟩ is the average

optical power. Figure 2.4 contrasts the ideal and practical cases of laser output intensity.

In the ideal case, when the laser is biased with a stable DC current and all external factors

(temperature, reflections, etc.) are constant, the output power remains fixed. In reality,

the output exhibits random fluctuations due to RIN, resulting in noisy deviations around

the mean value.

25



Figure 2.4: (a) Ideal laser output with constant DC bias. (b) Practical laser output showing
random fluctuations due to RIN [4].

2.4 Visible Light Positioning Algorithms

VLP algorithms play a central role in determining the position of a receiver in indoor

VLC systems. These algorithms leverage different properties of light propagation and

signal characteristics to infer spatial location. VLP algorithms can be broadly categorized

into classes as shown in Fig. 2.5. In the following subsections, each technique is briefly

described.

2.4.1 Proximity-Based Positioning

Proximity is the simplest form of VLP. The receiver estimates its position by identifying

the closest visible LED transmitter, which continuously broadcasts a unique identifier (ID).

The receiver matches the ID to a known location stored in a database. In environments with

overlapping signals, the receiver typically selects the transmitter with the highest received

signal strength RSS. Although this method offers limited accuracy, it is low-cost and easy

to implement. Enhancements such as time-division multiplexing (TDM) and camera-based

LED-ID detection can help resolve conflicts in multi-signal environments [10].
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Figure 2.5: Key visible light positioning (VLP) algorithms.

2.4.2 Time of Arrival and Time Difference of Arrival

ToA and dime Difference of arrival (TDoA) methods determine location based on the

propagation time of optical signals. ToA calculates absolute signal travel time, while TDoA

uses the difference in arrival times between multiple transmitters. These techniques can

achieve high positioning accuracy but require nanosecond-level synchronization and high-

speed ADCs. Advanced solutions include convolution neural network (CNN)-based phase

difference estimation and particle filtering to improve resilience against synchronization

errors and multipath effects. However, their adoption in VLC systems is limited due to

hardware complexity [10].

ToA-Based Trilateration

Trilateration is a fundamental geometric technique used in ToA-based positioning sys-

tems. In a VLP context, the receiver’s position is estimated by calculating its distances

from multiple known LED transmitters based on the signal’s time of arrival. Assuming the

coordinates of the receiver are denoted by (x, y, z) and the coordinates of n LED trans-

mitters are given by (xi, yi, zi) for i = 1, 2, ..., n, the time it takes for the signal to travel

from the i-th transmitter to the receiver is τi. Since light travels at a constant speed c, the
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Figure 2.6: Illustration of trilateration technique in 2D space.

distance between the transmitter and receiver can be modeled as:

di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 = c · τi. (2.8)

This equation forms the basis of the trilateration method. In a two dimensions (2D) en-

vironment, each distance measurement describes a circle centered at the respective LED

transmitter. The intersection point of at least three such circles corresponds to the re-

ceiver’s estimated location as shown in Fig. 2.6. Similarly, in three dimensions (3D) space,

each distance measurement forms a sphere, and the intersection of at least four spheres is

used to localize the receiver.

This method requires high precision in measuring the arrival time τi for each signal.

Any error in time synchronization or environmental interference can significantly affect the

accuracy of the distance estimation and, consequently, the position calculation. There-

fore, ToA-based trilateration methods are highly sensitive to time resolution and are often

supported by signal processing techniques or hybrid methods to improve robustness.

28



2.4.3 Angle of Arrival

AoA techniques estimate the receiver’s location by analyzing the angles at which signals

arrive from different transmitters. Using geometric triangulation, the receiver’s position is

obtained from the intersection of angle vectors. A minimum of two LEDs is required for 2D

localization and three for 3D. AoA methods can achieve high accuracy but are sensitive to

device orientation and alignment. To address this, specialized detectors such as quadrant

PDs and complementary PDs have been developed [31].

2.4.4 Received Signal Strength and Relative Received Signal Strength

RSS-based positioning estimates distance based on signal attenuation over space, often

modeled using the Lambertian radiation model. It is one of the most widely used tech-

niques due to its simplicity and low hardware requirements. However, RSS-based methods

are highly sensitive to environmental changes, noise, and reflections. Signal filtering tech-

niques (e.g., KF, particle filters) and machine learning-based models have been proposed

to improve robustness and accuracy.

2.4.5 Fingerprinting

Fingerprinting is a data-driven localization technique that consists of two phases: offline

and online. In the offline phase, a database of signal characteristics (e.g., RSS vectors,

channel impulse response (CIR), extinction ratios) is collected at known locations. In the

online phase, the receiver’s current signal measurement is compared with the database to

estimate its location. Matching methods include k-nearest neighbors (KNN), weighted kNN

(WKNN), Bayesian inference, and machine learning algorithms such as random forests,
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extreme learning machines (ELMS), and deep neural networks (DNNs). Fingerprinting

provides high accuracy in complex indoor environments but requires significant calibration

and is sensitive to environmental dynamics [36].

2.4.6 Image Sensing

Image sensing techniques use camera-equipped devices to capture visual information from

LEDs. Features such as light intensity distributions, LED IDs, or geometric arrangements

are extracted from images and used to estimate position. This method can achieve very

high positioning accuracy, often in the centimeter range. However, it is sensitive to ambient

lighting, motion blur, and processing latency. Algorithms like Light Print and Fisher

discriminant analysis have been proposed to enhance performance in such scenarios [36].

2.4.7 Hybrid Algorithms

Hybrid approaches combine two or more of the aforementioned techniques to improve lo-

calization performance. For instance, combining RSS with AoA mitigates the limitations

of each individual method. Other examples include TDoA-fingerprinting fusion and image-

RSS integration. Although hybrid methods can significantly improve accuracy and robust-

ness, they typically require more complex system design and computational resources.

2.5 Introduction to Estimation Theory

This section presents the foundational theoretical concepts used in this work, with a fo-

cus on estimating unknown deterministic parameters from noisy measurements, a central
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theme in classical estimation theory. We provide an overview of the MLE, LS, NLS, and

KF estimators, and discuss the benchmark performance limits defined by the CRLB and

BCRLB.

2.5.1 The Mathematical Estimation Problem

Let x denote an observation vector of length L. The estimation of an unknown parameter

β is feasible only if the data x depend on β. In practice, the data are modeled as random,

described by probability density function (PDF) that itself is a function of β. The stronger

the dependence of the PDF on β, the more accurately the parameter can be estimated.

Conversely, if the PDF has little or no sensitivity to β, accurate estimation becomes unlikely

[37]. In classical estimation theory, β is considered a deterministic but unknown quantity.

In contrast, Bayesian estimation treats β as a random variable. Regardless of the approach,

the estimator is a random variable whose performance is best characterized through its

statistical properties.

Because classical estimation strives to identify optimal or near-optimal estimators for

unknown deterministic parameters, various optimality criteria have been introduced. The

MSE is one natural metric, measuring the average squared deviation between the estima-

tor and the true value. However, MSE typically involves the bias of the estimator, and

minimizing it directly can lead to impractical solutions. Hence, a common strategy is to

first enforce zero bias and then seek an estimator that minimizes the variance, known as

the Minimum Variance Unbiased (MUV) estimator [37].
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2.5.2 Cramér-Rao Lower Bound

The CRLB provides a lower limit on the variance of any unbiased estimator, serving as

a fundamental benchmark in estimation theory. It sets a standard against which the

performance of any unbiased estimator can be compared. If an estimator reaches this

bound for all values of the unknown parameter, it is deemed the MUV estimator.

For a scalar parameter β, the CRLB is expressed as:

var(β̂) ≥ CRLB(β) =
1

J(β)
, (2.9)

provided that the regularity condition

E
{
∂ln p(x, β)

∂β

}
= 0, ∀β, (2.10)

is satisfied, where the derivative is evaluated at the true value of β. Here, J(β) is the

Fisher information, given as:

J(β) = −E
{
∂2ln p(x, β)

∂β2

}
. (2.11)

Transformation of Parameters: When the parameter of interest is a function of

another variable (e.g., β = g(µ)), the CRLB for µ can be derived from that of β as:

J(µ) =

(
∂β

∂µ

)2

J(β). (2.12)

Extension to Vector Parameters: For a vector parameter β = [β1, β2 . . . , βp]
T, the
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Fisher Information Matrix (FIM) is a p× p matrix with elements defined by:

[J(β)]ij = −E
{
∂2ln p(x;β)

∂βi∂βj

}
. (2.13)

The CRLB for βi is then given by

CRLB(β9) = [J(β)]−1
i,i . (2.14)

Furthermore, if β = g(µ), where µ is an r-dimensional parameter, their FIMs relate via

the Jacobian matrix T ∈ Rr×p:

J(µ) = TJ(β)TT, (2.15)

with

T =
∂βT

∂µ
=



∂β1

∂µ1

∂β2

∂µ1
· · · ∂βp

∂µ1

∂β1

∂µ2

∂β2

∂µ2
· · · ∂βp

∂µ2

...
... . . . ...

∂β1

∂µr

∂β2

∂µr
· · · ∂βp

∂µr


. (2.16)

For Gaussian observations where x ∼ CN (φ(β),C(β)) implying that both the mean and

covariance depend on β, FIM can be computed as [37]:

[J(β)]ij = ℜ

{[
∂φ(β)

∂βi

]H

C−1(β)

[
∂φ(β)

∂βj

]}
+ tr

[
C−1(β)

∂C(β)

∂βi

C−1(β)
∂C(β)

∂βj

]
.

(2.17)

The corresponding derivatives are defined for the mean and covariance functions.
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2.5.3 Bayesian Cramér–Rao Lower Bound (BCRLB)

The BCRLB extends the classical CRLB to dynamic systems where prior knowledge about

parameter evolution is available. It incorporates both measurement information and prior

information, making it suitable for recursive estimation and tracking [38], [39].

Scalar parameter: For a scalar parameter βt evolving in time, the Bayesian Fisher

information is given as

J (B)(βt) = J (O)(βt) + J (I)(βt), (2.18)

where J (O) comes from the measurement model and J (I) comes from the prior (dynamic)

model. The BCRLB states that

var(β̂t) ≥
(
J (B)(βt)

)−1
. (2.19)

Vector parameter: For a vector parameter βt ∈ Rp, the Bayesian Fisher information

matrix (BFIM) is

J(B)(βt) = J(O)(βt) + J(I)(βt), (2.20)

Recursive form: The BFIM evolves recursively as

J(B)[t] = J(O)[t] +G22[t]−G21[t]
(
J(B)[t− 1] +G11[t]

)−1
G12[t]. (2.21)
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Definition of Gij[t]: The Gij[t] blocks are defined as

Gij[t] = E
[
− ∂2 log p(β[t] | β[t− 1])

∂β[t+ i− 2] ∂β[t+ j − 2]T

]
, i, j ∈ {1, 2}. (2.22)

2.5.4 Maximum Likelihood Estimator

Since a MUV estimator is not always available, alternative estimation techniques become

necessary. The MLE approach is widely adopted due to its practical advantages in complex

estimation problems. It is well-known that the MLE estimator is asymptotically optimal,

becoming unbiased and efficient (i.e., attaining the CRLB) as the number of observations

increases.

For a scalar deterministic parameter β, the MLE estimate, denoted by β̂, is the value

that maximizes the likelihood function P (x; β). One typically finds β̂ by solving:

∂ ln p(x; β)

∂β
= 0, (2.23)

which may yield a closed-form solution or, alternatively, require numerical methods such

as grid search or iterative maximization [37]. In the case where β is a vector, we take the

partial derivative of each element within the vector individually.

2.5.5 Least Squares Estimator

The LS method offers an alternative approach that focuses on minimizing the discrepancy

between the observed data and the model predictions. Unlike methods that rely on sta-

tistical descriptions of noise, the LS estimator is derived by directly minimizing the sum

of the squared differences between the measured values and the predicted (or noiseless)
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signal:

β̂LS = argmin
β

L∑
i=1

(xi − φi(β))
2 . (2.24)

Here, φi(β) represents the model’s prediction corresponding to the ith observation. The LS

approach is particularly attractive due to its simplicity and minimal dependence on prob-

abilistic assumptions regarding the noise. However, it should be noted that LS estimators

are generally suboptimal; they do not necessarily attain the CRLB.

2.5.6 Nonlinear Least Squares Estimator

In many practical scenarios, the relationship between the observations and the parameter

is nonlinear. The NLS estimator extends the LS approach to such cases by addressing the

minimization of a nonlinear cost function:

β̂NLLS = argmin
β

L∑
i=1

(xi − φi(β))
2 . (2.25)

In this formulation, the function φi(β) is nonlinear in β. Due to the inherent nonlinearity,

closed-form solutions are rarely available, and iterative numerical methods such as the

Gauss-Newton or Levenberg-Marquardt algorithms are employed to obtain the solution.

Despite their increased computational complexity, NLS methods are effective in providing

accurate estimates in complex models, especially when initial parameter guesses are close

to the true values and the noise levels are moderate [38], [37].
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2.5.7 Kalman Filter for State Estimation

KF are widely used to estimate system states in linear dynamic systems represented in

state-space form. The process model describes the evolution of the system state from time

step k − 1 to time step k as:

xk = Fxk−1 +Buk−1 + wk−1, (2.26)

where F is the state transition matrix, xk−1 is the previous state vector, B is the control-

input matrix, uk−1 is the control vector, and wk−1 is the process noise, assumed to be zero-

mean Gaussian with covariance Q, i.e., wk−1 ∼ N (0, Q). The corresponding measurement

model that links the state to the observed measurements is given by:

zk = Hxk + vk. (2.27)

Here, zk is the measurement vector, H is the measurement matrix, and vk is the measure-

ment noise, also assumed to be zero-mean Gaussian with covariance R, i.e., vk ∼ N (0, R).

This model establishes the relationship between the current state and the observed mea-

surements.

The Kalman Filter aims to estimate the state xk at time k, given the initial estimate

x0, the sequence of measurements z1, z2, . . . , zk, and the system matrices F , B, H, Q, and

R. In most applications, these matrices are assumed to be time-invariant. Although Q and

R are theoretically based on noise statistics, in practice, they are often treated as tuning

parameters to optimize filter performance [40].
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Kalman Filter Algorithm:

The KF consists of two main stages: prediction and update. These are also referred to as

propagation and correction in some literature. The algorithm proceeds as follows:

Prediction Step

x̂−
k = F x̂+

k−1 +Buk−1 (2.28)

P−
k = FP+

k−1F
T +Q, (2.29)

Update Step

yk = zk −Hx̂−
k , (2.30)

Kk = P−
k HT (HP−

k HT +R)−1, (2.31)

x̂+
k = x̂−

k +Kkyk, (2.32)

P+
k = (I −KkH)P−

k . (2.33)

In the above-listed equations, the hat notation , i.e., x̂ indicates an estimate of a variable.

Superscript minus (–) represents the predicted (prior) estimate, and superscript plus (+)

represents the updated (posterior) estimate. Pk denotes the error covariance matrix, and

Kk is the Kalman gain, which determines the weight given to the new measurement.

Finally, it is worth mentioning that the KF provides an optimal recursive solution to

the linear quadratic estimation problem under the assumption of Gaussian noise, and it is

highly effective in a wide range of applications, including localization, tracking, and sensor

fusion in VLC systems [41].
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2.5.8 Extended Kalman Filter

In real-world systems, many process and measurement models exhibit nonlinear behavior,

which violates the assumptions of the standard KF. When either the state transition or

the measurement function,or both, are nonlinear, the KF must be extended to handle

such cases. The EKF addresses this by linearizing the nonlinear functions using first-order

Taylor series expansions [37]. The nonlinear system can be described as follows:

s[t] = a(s[t−1]) + Bu[t−1], (2.34)

x[t] = h(s[t]) + w[t]. (2.35)

Here, a(·) is a nonlinear function describing the system dynamics, h(·) is a nonlinear

function mapping states to measurements, and w[t] is the measurement noise.

To apply EKF, we linearize a(s[t−1]) around the previous state estimate ŝ[t−1|t−1]

and h(s[t]) around the predicted state ŝ[t|t−1] using first-order Taylor expansion:

a(s[t−1]) ≈ a(ŝ[t−1|t−1]) + A[t−1](s[t−1]− ŝ[t−1|t−1]), (2.36)

h(s[t]) ≈ h(ŝ[t|t−1]) +H[t](s[t]− ŝ[t|t−1]). (2.37)

The Jacobian matrices are defined as:

A[t−1] =
∂a

∂s[t−1]

∣∣∣∣
s[t−1]=ŝ[t−1|t−1]

and H[t] =
∂h

∂s[t]

∣∣∣∣
s[t]=ŝ[t|t−1]

. (2.38)
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Using the linearized approximations, the system becomes:

s[t] = A[t−1]s[t−1] + Bu[t−1] + (a(ŝ[t−1|t−1])− A[t−1]ŝ[t−1|t−1]) , (2.39)

x[t] = H[t]s[t] + w[t] + (h(ŝ[t|t−1])−H[t]ŝ[t|t−1]) . (2.40)

The EKF then proceeds with the following steps:

Prediction:

ŝ[t|t−1] = a(ŝ[t−1|t−1]) (2.41)

N [t|t−1] = A[t−1]N [t−1|t−1]A[t−1]T +BQBT , (2.42)

Update:

K[t] = N [t|t−1]H[t]T
(
C[t] +H[t]N [t|t−1]H[t]T

)−1 (2.43)

ŝ[t|t] = ŝ[t|t−1] +K[t] (x[t]− h(ŝ[t|t−1])) (2.44)

N [t|t] = (I −K[t]H[t])N [t|t−1]. (2.45)

The EKF is widely used in nonlinear tracking and estimation problems such as robot

localization, navigation, and nonlinear signal processing in VLC applications.

2.5.9 Neural Network Fundamentals

An artificial neural network (ANN) can be regarded as a non-linear mapping from an input

space to an output space, parameterized by weights and biases. Under mild assumptions,

neural networks are universal function approximators and can represent any smooth func-
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Figure 2.7: Neural network architecture consisting of an input layer, hidden layers, and an
output layer [5].

tion to arbitrary accuracy as the number of neurons increases. They also serve as powerful

channel estimators, complementing traditional estimation techniques in wireless communi-

cation systems [42], [43]. A typical neural network consists of an input layer, one or more

hidden layers, and an output layer, as illustrated in Fig. 2.7. .

Neuron Model: Each neuron receives an input vector x = [x1, x2, . . . , xn]
T and produces

an output by computing a weighted summation of its inputs, adding a bias term, and

applying a nonlinear activation function. Mathematically, the operation of a single neuron

can be expressed as

y = f
(
wTx+ b

)
, (2.46)

where w = [w1, w2, . . . , wn]
T is the weight vector, b is the bias, and f(·) is the activation

function.
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Layer Representation: Extending this formulation to a full layer of m neurons, the

outputs can be written in vector form as

y = f(Wx+ b), (2.47)

where W ∈ Rm×n is the weight matrix, b ∈ Rm is the bias vector, and f(·) is applied

element-wise. Thus, a neural network can be viewed as a composition of such layers.

Activation Functions: The activation function introduces nonlinearity, which is essen-

tial for approximating complex mappings. Common choices include:

- Sigmoid:

f(x) =
1

1 + e−x
, (2.48)

which maps real values to (0, 1), often used for probabilistic binary classification.

- Hyperbolic tangent (tanh):

f(x) = tanh(x) =
ex − e−x

ex + e−x
, (2.49)

which maps to (−1, 1) and is zero-centered.

- Rectified linear unit (ReLU):

f(x) = max(0, x), (2.50)

widely used in deep networks for efficiency and gradient stability.
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- Softmax (for multi-class classification):

Softmax(zj) =
ezj∑K
k=1 e

zk
, j = 1, . . . , K, (2.51)

which normalizes the output vector into a probability distribution across K classes.

Training Objective: Given training data {(xi, yi)}Ni=1, the network prediction is ob-

tained by sequentially applying (2.46) and (2.47) across all layers, yielding ŷi = fW,b(xi).

The discrepancy between the predicted outputs ŷi and the true targets yi is measured using

a loss function. For regression, the most common choice is the mean squared error (MSE):

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 . (2.52)

The training problem is therefore formulated as minimizing this cost with respect to the

network parameters [43]:

min
W,b

1

N

N∑
i=1

(yi − fW,b(xi))
2 . (2.53)

Summary: Equations (2.46) and (2.47) describe the forward propagation of signals

through neurons and layers. The choice of activation function controls the nonlinearity

applied at each stage. Finally, the optimization objective (2.53) drives the learning pro-

cess by adjusting the weights and biases to minimize the cost function, such as MSE in

regression or cross-entropy in classification [43].
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2.6 Literature Review and Research Gap

VLC and VLP systems have attracted growing attention due to their potential to pro-

vide high-capacity communication and high-accuracy indoor localization. However, system

performance is strongly affected by signal dependent noise whose variance scales with the

received optical power. While early studies often ignored SDSN, some recent works have

increasingly incorporated its impact on channel estimation and localization performance.

More recently, RIN has also been investigated in VLC systems, though only from a channel

estimation perspective.

In [44], the authors provided one of the earliest theoretical analyses of VLP accuracy

under both thermal noise and SDSN. They derived the CRLB and showed that ignoring

SDSN leads to overly optimistic accuracy predictions. Their results revealed that SDSN

dominates performance at high RSS and low SNR, significantly degrading positioning ac-

curacy. A precise LoS channel model for VLC introduced SDSN was proposed in [45].

They derived closed-form CRLB and MLE range estimator. Their work highlighted the

harmful effect of SDSN and suggested the need for more robust approaches toward practical

performance.

The study in [46] investigated VLC distance estimation under SDSN and imperfect

synchronization. Using ToA-based CRLB analysis for synchronous, asynchronous, and

bi-directional protocols, they showed that SDSN degrades accuracy, while the proposed bi-

directional synchronization improves performance significantly. Authors in [35] investigated

single-input single-output (SISO) VLC systems in the presence of SDSN. They derived the

CRLB for channel estimation error and proposed LS and MLE estimators. Furthermore,

they designed optimal and sub-optimal receivers and derived BER expressions, showing

that SDSN, severely degrades system reliability. Authors in [20] introduced a SISO VLC
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Table 2.2: Comparison of key SDSN/RIN works in VLC/VLP and their limitations.

Reference SDSN RIN Chan./Loc./Track Contributions and Gaps

Liu et al. (2020) [44] ✓ ✗ ✗/ ✓/ ✗ Derived CRLB under SDSN for range estimation.
Amini et al. (2021) [45] ✓ ✗ ✓/ ✓/ ✗ Proposed MLE-based range estimation; accuracy

bounds derived for range estimation under SDSN
Cheema et al. (2021) [46] ✓ ✗ ✗/ ✓/ ✗ Investigated synchronization errors under SDSN;

introduced bi-directional protocol in the case of
distance estimation.

Yaseen et al. (2021) [35] ✓ ✗ ✓/ ✗/ ✗ LS/MLE estimators with SDSN addressed chan-
nel estimation only.

Yaseen et al. (2023) [20] ✓ ✗ ✓/ ✗/ ✗ LS/MLE/MAP/LMMS estimators with SDSN ad-
dressed random channel estimation .

Yaseen et al. (2025) [18] ✓ ✓ ✓/ ✗/ ✗ First joint SDSN+RIN analysis in the case of VLC
channel estimation.

Comparison Insight – – – Existing works mainly derive CRLBs or focus on
simplified SDSN/RIN models. Channel estima-
tion is partly studied without making other esti-
mation methods suitable for dependent noise, but
localization and tracking in realistic noise condi-
tions (SDSN+RIN+thermal) remain largely un-
explored, motivating our proposed unified frame-
work.

system under statistical random channel conditions and SDSN, and applied MLE, LS,least

minimum mean square error (LMMSE), maximum a posteriori (MAP), and minimum mean

square error (MMSE) estimators for channel estimation. They further demonstrated, via

Monte Carlo simulations, that the presence of the SDSN significantly increases the MSE

of the system, thereby degrading estimation performance.

More recently, in [18], they extended the analysis to laser diod (LD)-based VLC systems

under the joint impact of SDSN and RIN. They derived CRLB, and analyzed LS and MLE

estimators in the presence of both noise sources. This study represents the first compre-

hensive analysis of SDSN and RIN jointly, but it remained limited to channel estimation.
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2.6.1 Research Gap

As highlighted in Table 2.2, a number of recent studies have started to incorporate the

effect of SDSN and, more recently, RIN into VLC/VLP analyses. These works represent an

important step forward compared to earlier models that ignored dependent noise altogether.

However, their scope remains narrow and several critical issues are unresolved.

First, most contributions remain focused on channel estimation or distance estimation,

while the more practical tasks of localization and tracking under dependent noise have not

been addressed. Second, although SDSN and RIN have each been studied individually,

there has been no comprehensive treatment of their joint effect on system performance,

especially for localization and tracking in dynamic environments. Third, while analytical

bounds such as the CRLB have been derived, prior studies have not advanced estimation

techniques that actively overcome dependent noise effect, such as recursive Bayesian filters

like EKF or machine-learning–based estimators. Fourth, there is a lack of benchmark

comparisons between these recursive/nonlinear methods and classical estimators under

SDSN and RIN.

Fifth, existing analyses are usually limited to a single type of light source, without

a generalized model that accounts for LEDs, LDs, or arrays, and without studying how

geometry and transmitter–receiver distance in systems affect performance under SDSN

and RIN. Finally, none of the previous studies have examined how dependent noise shapes

Bayesian bounds (e.g., BCRLB) in dynamic system settings or provided design rules that

translate theory into reliable real-world VLC/VLP deployments. These open issues define

the research gap and motivate the development of new frameworks that combine robust

estimation techniques with realistic noise modeling to enhance end-to-end VLC/VLP per-

formance, as proposed in the following chapters.
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Chapter 3

A Novel Machine Learning Algorithm

with Mathematical Modeling for

Channel Estimation in VLC Systems

3.1 Introduction

In VLC systems, SDSN significantly degrades the accuracy of channel estimation, as its

variance scales with the received optical power and cannot be effectively mitigated by tra-

ditional linear estimators such as LS. To address this challenge, this chapter introduces

a simple yet novel machine learning–based estimator that explicitly accounts for the im-

pact of signal-dependent noise. The proposed approach is innovative because it combines

traditional estimation principles with the flexibility of neural network modeling, thereby

capturing the non-linear behavior introduced by dependent noise. A rigorous mathematical

framework is developed to characterize the estimator and compute its MSE, providing the-
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oretical insight into its performance. Simulation results demonstrate that, in the presence

of SDSN, the proposed estimator consistently outperforms the conventional LS method.

Even in the ideal case without SDSN, the proposed algorithm remains slightly more efficient

and accurate, confirming its robustness and broader applicability.

3.1.1 Related Work

Recent studies have explored machine learning for improving VLC channel estimation.

Deep learning has shown effectiveness in enhancing accuracy and robustness. For in-

stance, [47] proposed a Deep learning neural network (DNN)-based approach using a

complex-valued neural network (CVNN) for multiple-input multiple-output (MIMO) DC-

biased optical orthogonal frequency division multiplexing (DCO-OFDM) VLC systems.

Their method employs a CVNN, which is specifically designed to process complex num-

bers directly. Similarly, the study in [48] introduced a flexible denoising convolutional

neural network (FFDNet) for massive MIMO (m-MIMO) (m-MIMO) VLC channel es-

timation, while another work [49] proposed a deep residual convolutional blind denois-

ing network (ResCBNet) to enhance estimation accuracy in indoor m-MIMO VLC sys-

tems.ResCBNet,trained with asymmetric and reconstruction loss functions, exhibits strong

generalization capabilities and effectively handles complex noise environments. Further-

more, Authors in [50] applied machine learning to vehicular visible light communication

(VVLC) channel modeling to improve path loss and channel frequency response (CRF)

prediction beyond deterministic and stochastic methods. They compared multilayer per-

ceptron (MLP)-NN,radial basis function (Rbf)-NN, and Random Forest using features such

as distance, ambient light, and turbulence. Their results show Random Forest performs

robustly with limited data, while MLP-NNs achieve better generalization for complex CRF
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modeling.

However, despite the advancements in machine learning-based VLC channel estima-

tion, existing approaches do not consider the impact of SDSN or explore less complex

machine learning models. The dependence on highly complex Neural networks (NN) ar-

chitectures results in significant computational overhead, limiting their practicality for

real-time deployment in resource-constrained environments. Traditional LS estimation is a

computationally efficient method for VLC channel estimation that requires no prior chan-

nel knowledge [21, 51, 52], but its performance degrades under SDSN. In this work, we

enhance LS accuracy by integrating machine learning techniques, providing a more robust

and efficient solution for VLC systems. To the author’s best knowledge, no work in the

literature has considered using machine learning to enhance the traditional LS estimation

method to be used in the indoor VLC channel with the existence of the SDSN. Further-

more, no study has presented a mathematical framework for a machine learning network

to estimate the channel in a VLC system, with or without considering SDSN.

3.2 System and Channel Models

This chapter presents a SISO-VLC downlink transmission model with an LED transmitter

and a user within a circular coverage area, focusing on the LoS link between the transmitter

and PD [53]. The model assumes static user positioning and includes both downlink and

uplink transmission. In indoor environments, the LoS signal typically has a 7 dB advantage

over the strongest non-line-of-sight (NLoS) component [54,55] and references therein.

In the system model, the received signal at the PD is given by:

y = hx+
√
hxnds + n, (3.1)
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where x is the transmitted (pilot) signal, n ∼ N (0, σ2
n) is the thermal noise, and

√
hxnds

represents the sdsn with nds ∼ N (0, σ2
ds). SDSN is modeled as nds ∼ N (0, σ2

nζ
2), where

ζ2 =
σ2
ds

σ2
n

is the shot noise scaling factor, typically ranging from 1 to 10. The power of

SDSN is proportional to both the input power x and the channel gain h, unlike thermal

noise, which is independent of these factors [56, 57].

The channel gain h, representing the transmission link between the LED transmitter

and the PD receiver, is modeled as described in [58, 59] and references therein:

h =
Apdη(m+ 1)

2πD2
cosm(Θ)Ts(Ψ)g(Ψ) cos(Ψ), (3.2)

where Ψ denotes the angle of incidence relative to the surface normal of the PD, and

Θ is the angle of irradiance with respect to the transmitter’s surface normal. In this

equation, Ts(Ψ) represents the gain of the receiver’s optical filter, and g(Ψ) = n2

sin2(ΦFOV)

is the gain of the optical concentrator. The gain g(Ψ) depends on the refractive index n

of the concentrator and the field of view (FOV) angle ΦFOV. Note that g(θrx) = 0 when

θrx > ΦFOV. Additionally, it Apd represents the detection area of the PD, and η denotes

the average responsivity of the receiver. The Euclidean distance between the transmitter

and the receiver, D, is D =
√
L2 + r2, where L is the vertical distance from the LED to

the PD surface and r is the horizontal distance from the center of the LED cell to the

PD, as illustrated in Fig. 5.1. Finally, the Lambertian emission order m is expressed as

m = −1
log2(cos(Φ1/2))

, where Φ1/2 denotes the semi-angle of the LED’s emission.
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3.3 Channel Estimation

Traditional RF-based communication methods, such as LS, MLE, MAP,MMSE and LMMSE

estimators, can also be applied to VLC systems. However, VLC channels possess unique

characteristics, such as positive and real signal requirements and the impact of SDSN [51],

[60], which can limit the effectiveness of these techniques. Advanced methods like MAP

and LMMSE require prior statistical information about the channel, which is often un-

available in practical VLC systems, particularly in large m-MIMO scenarios. Additionally,

optimal methods such as MMSE rely on long pilot sequences, further increasing com-

putational complexity and reducing practicality [51], [61]. This work addresses channel

estimation in VLC systems by integrating an NN with the conventional LS estimator. The

neural network mitigates SDSN-related performance degradation in LS estimation. After

training, polynomial regression approximates the NN output, enabling a closed-form MSE

calculation. This provides an efficient and accurate solution for VLC channel estimation.

We assume that the number of pilot symbols is denoted by N , and the LED transmits

a pilot vector x = [x1, x2, . . . , xN ]
T , where [.]T represents the transpose operation. As a

result, the received signal vector y = [y1, y2, . . . , yN ]
T can be expressed as:

y = hx+
√

h diag(x)nds + n, (3.3)

where diag(x) is a N × N diagonal matrix containing the elements of the transmitted

signal vector x along the main diagonal. The vectors n = [n1, n2, . . . , nN ]
T , nds =

[nds1, nds2, . . . , ndsN]
T represent independent noise components. The entries of n are in-

dependent and identically distributed (i.i.d.) random variables, following n ∼ N (0, σ2
nIN),

where IN is the identity matrix of size N . Similarly, the entries of nds follow nds ∼

N (0, ζ2σ2
nIN), where ζ2 represents the scaling factor for the SDSN. Finally, an important
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Figure 3.1: The SISO VLC system and channel models.

characteristic of VLC. systems is that the transmitted signal must be both positive and

real. Therefore, all pilot symbols must satisfy the condition xi > 0, ∀i ∈ {1, 2, . . . , N}.

3.3.1 Least Squares Estimator

LS is a low-complexity estimator that does not need prior information. The estimated ĥ

using the LS estimator can be expressed as:

ĥLS =
xTy

∥x∥2
. (3.4)

To derive the MSE of the LS estimator, we first substitute (3.3) into (3.4). This allows us

to express the ;sls estimator of the channel gain, h, as:

ĥLS =
xTy

∥x∥2
= h+

xT

∥x∥2
√

h diag(x)nds +
xT

∥x∥2
n. (3.5)
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The error of the LS estimator can be expressed as:

ϵLS = ĥLS − h =
xT

∥x∥2
(√

h diag(x)nds + n
)
. (3.6)

From (6), we can deduce that the error is a Gaussian random variable with zero mean and

variance σ2
ϵLS

, i.e., ϵLS ∼ N (0, σ2
ϵLS

). Therefore, the MSE of the LS estimator is simply the

variance of the error, which can be expressed as:

MSELS = σ2
ϵLS

=
σ2
n

∑N
i=1 x

2
i (1 + ζ2hxi)(∑N
i=1 x

2
i

)2 . (3.7)

Assuming, without loss of generality, that the transmitted pilots xi = p for all i, the MSE

can then be written as [62]:

MSELS = σ2
ϵLS

=
σ2
n(1 + ζ2hp)

Np2
. (3.8)

It is worth mentioning that in the absence of the SDSN, i.e., ζ2 = 0, the MSE is inversely

proportional to p2 while, in the presence of the SDSN, the MSE is inversely proportional to

p, indicating the harmful effect of the SDSN. Furthermore, increasing the number of pilots,

N , will improve the estimation performance, and the presence or absence of the SDSN has

no relation impact on the number of pilots.

3.3.2 Integrated Machine Learning and Least Squares Estimator

The proposed method begins by estimating the channel gain through a straightforward

traditional estimator, such as the LS estimator, or another common approach like the MLE.

In this work, the LS estimator is applied initially. The output from the LS estimation is
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then refined and improved by passing it through NN.

Consider a feed-forward NN consisting of a single hidden layer with Nh neurons and a

single output layer with one neuron. The output layer uses a linear activation function,

while the hidden layer utilizes a nonlinear activation function. The hidden layer’s output

for each training sample is computed as:

yh = Λ(1)(W ĥLS + b). (3.9)

where Λ(1) represents the hidden layer’s activation function, W = [w1, . . . , wk, . . . wNh
]T is

the weight matrix of dimensions Nh × 1, and b = [b1, . . . , bk, . . . bNh
]T is the bias vector of

size Nh × 1. Next, the output layer generates the final output for each input as ĥNN =

Λ(2)(V yh + β), where Λ(2) serves as the activation function of the output layer, V =

[v1, . . . , vk, . . . vNh
] is the weight matrix of dimensions 1×Nh, and β is the scalar bias for

the output layer.

In the training process of the ANN model, the set of parameters Γ
∆
= {W ,V , b, β} is

adapted to achieve the optimum Γopt that minimizes the cost function, which is the MSE

between the output of the ANN and the real value of the channel gain; i.e., h therefore,

the optimum set of parameters of the ANN model can be optimized as:

Γopt = min
Γ

E
{(

h− ĥNN

)2}
. (3.10)

It is worth mentioning that the model’s weights and biases are adjusted iteratively with

each training sample. Considering M training samples, the optimal parameter Γopt is

averaged over all samples, allowing for continuous refinement and improved accuracy.
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3.4 Comprehensive Mathematical Framework and MSE

Analysis

In this section, we analyze the neural network by examining its layers at the neuron level

to derive an equivalent polynomial form. Using a Taylor series expansion, we approximate

the network’s behavior and derive a closed-form expression for the theoretical MSE of the

estimated channel output, ĥNN, during the testing phase. This approach utilizes the fixed

weights and biases from the training phase, enabling precise MSE performance assessment

under the trained model parameters. As previously mentioned, we consider a feed-forward

neural network with a single hidden layer containing Nh neurons and an output layer with

a single neuron [63].

The output of the kth neuron in the hidden layer, given that the activation function for

the hidden layer is tanh, is:1

yk = tanh(uk) = tanh
(
wkĥLS + bk

)
=

euk − e−uk

euk + e−uk
, (3.11)

where uk = wkĥLS+ bk, wk and bk are the weights and bias at the kth neuron in the hidden

layer, respectively. The output of the NN, ĥNN is a linear combination of the activations

of the hidden neurons multiplied by linear weights of the output layer vk plus the output

layer bias β [64]. It can be expressed as:

ĥNN =

Nh∑
k=1

vkyk + β =

Nh∑
k=1

vk tanh
(
wkĥLS + bk

)
+ β. (3.12)

To find an approximate equivalent to the NN we use the Taylor expansion series.The
1The generalization to any activation function or additional hidden layers is straightforward.
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Taylor expansion is particularly suitable in this context because it provides a systematic

and mathematically rigorous method to approximate nonlinear functions with polynomials.

3.4.1 Taylor Series Approximation of tanh(uk)

The tanh function can be approximated by its Taylor series expansion around uk = 0. The

Taylor expansion of tanh(uk) can be obtained as:

tanh(uk) =
∞∑
n=0

dntanh(0)

dun
k

un
k

n!
, (3.13)

where dntanh(0)
dun

k
represents the nth derivative of tanh(uk) evaluated around uk = 0 and n

represents the order of Taylor expansion. Using this series for the activation function, the

output of the network can be rewritten as:

ĥNN =

Nh∑
k=1

vk

∞∑
n=0

dntanh(0)

dun
k

un
k

n!
+ β. (3.14)

Therefore, the MSE of ĥNN at the testing phase after training is calculated as MSENN =

E
{(

h− ĥNN

)2}
. After some mathematical manipulations, the MSE can be expressed as:

MSENN =E[h2]− E

[
2h

(
Nh∑
k=1

vk

∞∑
n=0

dntanh(0)

dun
k

(wkĥLS + bk)
n

n!
+ β

)]

+ E

( Nh∑
k=1

vk

∞∑
n=0

dntanh(0)

dun
k

(wkĥLS + bk)
n

n!
+ β

)2
 , (3.15)

where (wkĥLS + bk)
n the term can be represented by a polynomial as (wkĥLS + bk)

n =∑n
j=0

(
n
j

)
(wkĥLS)

(n−j)bjk. After applying the expectation and performing the necessary cal-
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culations on (3.15), the closed-form expression for MSENN can be calculated as

MSENN = h2 − 2h

(
Nh∑
k=1

∞∑
n=0

n∑
j=0

dntanh(0)

dun
k

vk
n!

(
n

j

)
(wk)

(n−j)E
[
(ĥLS)

(n−j)
]
bjk + β

)

+

Nh∑
k=1

Nh∑
k′=1

∞∑
n=0

n∑
j=0

∞∑
n′=0

n′∑
j′=0

dntanh(0)

dun
k

vk
n!

(
n

j

)
(wk)

(n−j)bjk
dn

′
tanh(0)

dun′
k′

vk′

n′!

(
n′

j′

)
(wk′)

(n′−j′)bj
′

k′

× E
[
(ĥLS)

(n′−j′)(ĥLS)
(n−j)

]
+ 2β

Nh∑
k=1

∞∑
n=0

n∑
j=0

dntanh(0)

dun
k

vk
n!

(
n

j

)
(wk)

(n−j)E
[
(ĥLS)

(n−j)
]
bjk + β2.

(3.16)

where the binomial function is defined as
(
a
s

)
= a!

s!(a−s)!
, and since ĥLS is a Gaussian ran-

dom variable with mean h and variance σ2
ϵLS

, i.e., ĥLS ∼ N (h, σ2
ϵLS

), its nth moment, i.e.,

E
[
(ĥLS)

n
]
, can be found in many references, e.g., [65]. It is worth mentioning that, as we

will see in Section 3.5, it is sufficient to use only the first two terms of the infinite series

represented in (3.16). In fact, the first two terms will provide an accuracy of more than

99%.

A second remark is that we can see from equations (3.16) that the final MSE depends

on the value of h as well as the weights and biases of the trained NN. Finally, to apply our

proposed integrated estimation technique, the steps in Algorithm 1 should be followed. It

is beneficial to note that for multiple test samples, the average MSENN should be computed

across all samples to assess overall performance. Moreover, our algorithm can be applied

to enhance other estimation methods such as MLE, LMMSE, and MMSE; however, this

increases complexity due to their need for more statistical information.
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Algorithm 1 Integrated Machine Learning and Least Squares Estimator

Phase 1: Data Preparation
1) Generate the training data, we consider an indoor area of size 4m × 4m, and divide
it into small blocks of 4 cm × 4 cm. We then calculate the true channel for each block,
assuming PD in this block. After adding noise, we estimate ĥLS for each block from the
received signal. This forms the training dataset, where ĥLS is the input, and the true
channel h serves as the output.
2) Normalize the generated data and divide it into training (80%) and testing (20%) (The
proposed algorithm can be directly applied to similar datasets.)

Phase 2: Neural Network Training and Testing
1) Initialize all NN state weights and biases.
2) Use ĥLS as input to the NN with the true channel values h as targets from the generated
dataset.
3) Train the NN with stochastic gradient descent (SGD) to minimize the MSE between h
and ĥLNN, using the cost function in (3.10) averaged over all training samples.
4) Update the NN’s weights and biases to minimize the MSE.
5) Save the trained model with optimized weights and biases for testing.

3.5 Simulation Results and Discussion

This section presents a numerical analysis of SISO-VLC systems, examining the impact

of SDSN on channel estimation between the transmitter and the PD. We assess the LS

estimator and its hybrid integration with an NN through both simulations and analytical

evaluations. Furthermore, to generalize our proposed algorithm, we investigate how the

NN enhances the performance of the ;smle (which is a direct extension to the presented

approach). Furthermore, we compare the effectiveness of the proposed LS-shallow NN

with the LS-MLP NN. The MLP, commonly used in channel estimation, features two

hidden layers or more to analyze the impact of deeper architectures. The simulations,

conducted in MATLAB, involve approximately 106 repeated Monte Carlo iterations per

figure. The system parameters are set as follows: a field of view ϕFOV=70◦ , transmission

distance L = 2m, and a responsivity factor η = 0.4A/W. For the NN parameters, refer to
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Figure 3.2: Comparison of the LS estimator and the integrated LS-NN estimator at different
values of ζ2.

Table 3.1.

In Fig. 3.2, the average MSENN and, MSELS for all testing samples, the corresponding

estimated channels ĥNN and ĥLS, are plotted against the transmitted power at thermal

noise varince σ2
n = 0.1. From this figure, we observe that as the SDSN scaling factor ζ2

increases, the MSE rises across all estimation methods. However, the proposed NN-based

algorithm effectively reduces the MSE, particularly at higher ζ2 values, outperforming

the LS estimator. Additionally, at lower transmitted power levels, the NN-based method

shows superior performance. Even in the absence of SDSN, it slightly outperforms the LS

estimator, highlighting its robustness in handling material imperfections.

Fig. 3.3 compares the MSE from the NN estimation using the full tanh activation

function and its Taylor expansion with the theoretical mathematical expression of the

MSE at ζ2 = 5. The results demonstrate that the MSE obtained using the NN agrees with
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Table 3.1: The Parameters Of The NN.

Parameters Values
Size of the training data 8000
Size of the validation data 2000
Number of epochs 100
Number of hidden layers 1
Learning rate 0.001
Number of hidden layer neurons (Nh) 10
Loss function MSE
Activation function tanh

the theoretical MSE from (3.16), making it applicable for practical use. Additionally, you

can see from the figure that when the σ2
n increases, the MSE increases in all techniques.

Furthermore, the figure shows that, although the analytical expression for the MSE involves

an infinite series, using only the first two terms yields highly accurate results. This trend

also holds true for other activation functions.

Fig. 3.4 illustrates that the proposed algorithm, utilizing a shallow NN, enhances the

MLE performance at different ζ2 values when σ2
n = 0.1. This figure demonstrates that in-

corporating NN improves estimation accuracy in the presence of SDSN noise. Additionally,

increasing the SDSN scaling factor leads to a higher MSE, while the NN further enhances

estimation performance. The MLE estimator in the presence of SDSN is more complex

to find, as described in [62]. Moreover, it requires knowledge of the likelihood function of

the received signal, making it computationally demanding. In contrast, the LS estimator

is less complex and mathematically tractable.

Fig. 3.5 presents a performance comparison of LS estimation, LS-NN, and LS-MLP

across different values of σ2
n for ζ2 = 10. The results indicate that both LS-NN and LS-

MLP consistently outperform LS alone at any σ2
n. The MLP model comprises two hidden
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Figure 3.3: Comparison of NN simulation MSE with analytical MSE across varying terms
in the Taylor expansion at different values of σ2

n.

layers with 10 neurons each. However, the performance improvement of LS-NN and LS-

MLP remains closely similar. Therefore, given the problem constraints, a single-layer NN

is sufficient, avoiding unnecessary complexity in the neural network.

3.6 Conclusion

This chapter introduced the first integrated technique that combines LS estimation with

an NN to estimate the channel in VLC under SDSN. A closed-form MSE expression was

derived and validated against simulations, showing close alignment. The proposed ap-

proach improves accuracy under SDSN while maintaining low complexity. Once trained,

the MSENN rule can be applied directly, offering a practical framework for future VLC

systems. Moreover, the method can be directly extended to estimate the range between
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Figure 3.4: Comparison of MLE and integrated MLE-NN estimator at different values of
ζ2.

the transmitter and receiver, as the relation between range and channel can be calculated

from eq.3.2 .

3.7 Publications Resulted from This Chapter

S. H. ElFar, S. Ikki, and M. Yassen, “A Novel Machine Learning Algorithm for Chan-

nel Estimation in VLC Systems,” IEEE Wireless Communications Letters, vol. 14, no. 7,

pp. 2084–2088, Jul. 2025.
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Figure 3.5: Comparison of LS, LS-NN, and LS-MLP at different values of σ2
n.
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Chapter 4

Insights into Visible Light Positioning:

Range Estimation and Bayesian

Cramér-Rao Lower Bound Analysis

4.1 Introduction

This chapter explores range estimation in VLP systems under SDSN. A SISO VLC setup

is considered, and three estimation methods MLE, NLS, and the EKF are examined. The

BCRLB is derived to evaluate the theoretical limits of estimation performance. Simulation

results show that the EKF outperforms the other techniques, particularly at high SDSN

levels, and closely approaches the BCRLB under favorable conditions. The study also

investigates the effect of receiver tilting and system parameters such as transmitted power

and number of pilot signals, offering practical insights for designing accurate and robust

indoor VLP systems.
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4.1.1 Related Work

Using VLP derives positions from RSS measured by smartphone image sensors or dedicated

PDs viewing modulated luminaires, offering a precise and economical indoor method with

strong immunity to RF interference and reduced multipath relative to RF systems [66].

Despite numerous studies addressing thermal noise in VLP systems, there remains

a significant gap in research on the adverse impact of SDSN and strategies to mitigate

its effects for improved estimation. Therefore, this work employs recursive estimation

techniques, particularly the EKF, to enhance estimation robustness under SDSN.

The KF is a recursive estimator designed to estimate the state of a linear system [67],

and it has been widely applied in VLP to improve target estimation accuracy. For recursive

estimators, the BCRLB serves as a natural benchmark since it incorporates prior stochastic

information [68]. However, because many positioning systems are inherently nonlinear, the

KF often fails to meet its optimality conditions. To address this issue, nonlinear extensions

such as the EKF have been developed and successfully applied in VLP systems [69].

4.2 System Model

In our system setup, an LED is affixed to the ceiling at a predetermined height. We employ

a SISO VLP system for range detection. The LED is responsible for covering a specific

circular area with radius Y , as depicted in Fig.4.1 and the received signal at the PD can

be written as [62], [70]

r = hx+
√
hxnds + n, (4.1)

where x, is the transmitted pilot (known) signal, n is the signal-independent thermal noise,

n ∼ N (0, σ2
n), and

√
hxnds denotes the SDSN, where nds ∼ N (0, σ2

ds). We represent the
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SDSN in terms of thermal noise as nds ∼ N (0, σ2
nζ

2), where ζ2 = σ2
ds/σ

2
n, is the shot noise

scaling factor that indicates the strength of the SDSN compared to the thermal noise.

In the context of the term ζ2, it’s important to highlight that this parameter can be

set within a practical range, typically spanning from 1 to 10, by configuring the receiver’s

parameters [56, 62]. In general, shot noise typically follows a Poisson distribution. Nev-

ertheless, as the number of received photons increases significantly, it converges towards

a Gaussian distribution. This behavior is related to the high-intensity nature of light in

VLC systems [71,72] . The channel gain h between the LED and the user can be expressed

h =
Apdη(m+ 1)

2πd2
cosm(ϕtx)Ts(θrx)g(θrx) cos(θrx), (4.2)

where several key parameters and relationships are incorporated in the above equation: ϕtx

represents the angle of irradiance, θrx signifies the angle of incidence surface, Ts(θrx) stands

for the gain associated with the receiver’s optical filter, g(θrx) = n2

sin2(ϕFOV)
describes the

gain of the optical concentrator, which relies on the refractive index n of the concentrator

and the field of view (FoV) angle, i.e., ϕFOV. It’s important to note that g(θrx) = 0 when

θrx > ϕFOV . Additionally, Apd denotes the detection area of the photodetector, and η

represents the average responsivity of the receiver. Furthermore, m = −1
log2(cos(Φ1/2))

is the

Lambertian radiation order and is determined by the LED emission semi-angle Φ1/2 where

the receiver and transmitter face each other cos(ϕtx) = cos(θrx).

Even more, we delve into scenarios where the receiver plane is not parallel to the

transmitter plane, specifically addressing cases where the receiver is inclined at an angle γ

[73], as illustrated in Fig. 4.1. In this general case, where there is a tilting angle, the channel

equation changes as cos(θrx) = cos(ϕtxt −γ) = Lt

d
cos γ+ yt

d
sin γ [74], where cos(ϕtxt) =

Lt

d
,

ϕtxt is the angle of irradiation in case of having a tilting angle, d is the Euclidean distance
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from the transmitter to the receiver, which can be calculated as d =
√
L2
t + y2t , where

Lt corresponds to the vertical distance from the LED to the PD surface and yt is the

horizontal distance from the center of the cell to the PD at any tilting angle value. Note

that Lt = L − L0 = L − β sin γ, yt = y − y0 = y − β(1 − cos γ), where L and y are the

vertical and horizontal distances at γ = 0 respectively, β is the PD length and L0 and y0

are the change in vertical and horizontal distances due to the presence of the tilting angle,

as illustrated in Fig. 4.1, see [73] and the references therein. Hence, the received signal in

(4.1) can be rewritten as

r = cxd−αx+
√
cxd−αnds + n, (4.3)

where α = m+ 3 and

c =
Apdη(m+ 1)

2π
Ts(θrxt)g(θrxt)Ltm (Lt cos γ + yt sin γ) . (4.4)

It’s worth noting that the distortion variance is directly influenced by the distance be-

tween the transmitter and the receiver. This sets the additive distortion term apart from

conventional receiver noise, which remains independent of distance.

4.3 Range estimation Techniques

In this section, we set out to estimate the range between the transmitter and the PD, which

we label d. Our methodology incorporates two distinct estimation approaches. Initially, we

apply a non-recursive approach using MLE and NLS estimators to determine an estimate

of the distance.

Subsequently, we introduce the EKF as a recursive approach to estimate the same

distance parameter. Unlike the MLE and NLS estimators, the EKF brings a dynamic
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Figure 4.1: Visible light positioning system model.

analysis into play, allowing the adjustment of the estimate over time through its iterative

equations [37].

4.3.1 Maximum Likelihood Estimator

The MLE estimator identifies unknown parameters by maximizing their likelihood function,

as represented in their PDF [41]. We assume that the vertical distance (height) is a known

quantity. Then, the vector of received signals, denoted by r = [r1, r2, . . . , rN ]
T , where (.)T

represents the transpose operator, can be written as

r = cxd−α +
√
cd−αz⊙ nds + n. (4.5)
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Let N be the number of pilot symbols and x = [x1, x2, · · · , xN ]
T be the transmitted

pilots’ vector, and z = [
√
x1,

√
x2, · · · ,

√
xN ]

T and ⊙ is the Hadamard product operator

and n = [n1, n2, . . . , nN ]
T is the thermal noise vector, and nds = [nds1, nds2, . . . , ndsN ]

T

represents SDSN vector. The elements of n are independent and identically distributed

(i.i.d) random variables, i.e., n ∼ N (0, σ2
nIN) where IN is the identity matrix of size N .

The same for nds, all the elements are i.i.d, so nds ∼ N (0, ζ2σ2
nIN). It’s important to note

that all pilot symbols should hold positive values, i.e., xi > 0, where i ∈ {1, 2, · · · , N}.

The first step in deriving the MLE estimator for our problem involves formulating the PDF

for the initially received signal, which can be expressed as

f(r|d) =
N∏
i=1

1√
2πσ2

s

exp

(
−(ri − cxid

−α)2

2σ2
s

)
. (4.6)

The range estimation can be calculated by solving for ∂
∂d

ln f(r|d) = 0 as follows

∂

∂d
ln f(r|d) =

N∑
i=1

−1

2σ2
s

∂σ2
s

∂d
−

N∑
i=1

xicαd
−α−1 (ri − cxid

−α)

σ2
s

+
N∑
i=1

1

2
(ri − cxid

−α)2(σ2
s)

−2∂σ
2
s

∂d
= 0,

(4.7)

where σ2
s = σ2

n + σ2
ds, recalling that σ2

ds = xicd
−αζ2σ2

n, therefore, ∂σ2
s

∂d
= −xicαd

−α−1ζ2σ2
n.

It can be seen that finding a closed-form solution for the roots of the given equation d̂ML

manually is virtually impossible. However, numerical methods and software tools such

as MATLAB can easily compute the solution for d̂ML. Analytically studying the MSE,

specifically the distance error of the MLE estimation, proves to be exceedingly challenging.

Therefore, we rely on the simulation results presented later in the numerical section.

69



4.3.2 Nonlinear Least Squares

NLS problems arise when the received signal model cannot be expressed linearly in terms

of the parameter we need to estimate like the relation between r and d as shown in (4.5).

To simplify the NLS problems, we transform the parameters to linearize the problem [75].

By substituting cd−α with g and solving it as a linear least squares problem. The least-

squares estimator ĝLS minimizes the sum of the squared differences between the observed

and predicted values [37]. Therefore, the least squares estimator can be calculated using

(4.5) as

ĝLS = argmin
g

∥r − xg∥2 = xTr

∥x∥2
. (4.8)

From (4.5), ĝLS can be written as

ĝLS =
xTx

∥x∥2
g +

xT

∥x∥2
√
gz⊙ nds +

xT

∥x∥2
n. (4.9)

The performance of the LS estimator can be evaluated by determining the MSE, which is

equivalent to the estimation error variance. After some mathematical manipulations, the

MSE of the estimator can be given as

σ2
ĝLS

=
σ2
n

∑N
i=1 (1 + σ2

gds)

∥x∥2
, (4.10)

where σ2
gds = xigζ

2. From (4.8), the estimated range d̂Ls can be written as

d̂LS =

(
xTr

c∥x∥2

)−1
α

. (4.11)
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The MSE of the range estimator can be given as

σ2
d̂LS

=

(
∂d

∂g

)2

σ2
ĝLS

, (4.12)

therefore If we assume the pilots are identical xi = p, then the MSE can be simplified to

σ2
d̂LS

=
d2α+2σ2

n + pcdα+2ζ2σ2
n

Np2c2α2
. (4.13)

From (4.13), we observe that the MSE of the NLS estimator increases with rising SDSN,

a trend that will be explained in detail in the Simulation Results and Discussion section.

4.3.3 Extended Kalman Filter

To improve the precision of our range estimation over time, an initial estimation of d can be

achieved using an MLE estimator or assumed, followed by refinement through the applica-

tion of EKF sequences. This process incorporates the assumption that the range follows a

dynamic model influenced by time and is subject to uncertainty noise. The computational

complexity of EKF is higher than that of the MLE and NLS because EKF is a recursive

method that depends on multiple iterations, each involving numerous mathematical cal-

culations to update the state estimates. However, EKF is effective in reducing the impact

of measurement noise, specially, SDSN in our case, through its recursive process and, the

computational complexity is explained in detail in [76–78]. The current range estimation

d[t] at time t can be determined by a linear transformation of its previous state d[t − 1]

with added uncertainty noise u[t] where t ≥ 0 and is mathematically represented by

d[t] = d[t− 1] + u[t]. (4.14)
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Furthermore, the dynamic behavior of the range is characterized by a Gaussian transition

model, while the uncertainty noise is treated as a stochastic Gaussian process [41], [79].

Thus, u(t) follows the Gaussian distribution with zero mean and variance σ2
u, i.e., u[t] ∼

N(0, σ2
u). Moreover, the conditional probability of f(d[t]|d[t− 1]) ∼ N(d[t− 1], σ2

u), when

we assume samples are indepentent. Additionally, the measurement or observation vector

r[t] with dimension N × 1 in (4.5), can be expressed as

r[t] = e(d[t]) + ns[t], (4.15)

where e(d[t]) = cxd[t]−α and ns[t] =
√
cd[t]−αz⊙nds[t] +n[t]. It is worth mentioning that

e(d[t]) represents the nonlinear equation modeling the relationship between the received

vector and distance. Additionally, ns[t] indicates the aggregate noise from thermal noise

and shot noise, modeled as Gaussian with ns[t] ∼ N (0,R), where R = σ2
sIN .

When addressing the non-linear relationship between the received vector and the dis-

tance between the transmitter and receiver, we employ the EKF for its ability to man-

age non-linearity effectively [37]. The EKF method involves approximating the nonlinear

e(d[t]) function through a Taylor series expansion, specifically linearizing it at the point

of the current estimate. This process allows the filter to update its state estimates by

effectively handling the non-linearity of the system by linearizing e(d[t]) around d̂[t|t− 1]

as follows.

e(d[t]) ≈ e(d̂[t|t− 1]) +
∂e

∂d[t]

∣∣∣∣
d[t]=d̂[t|t−1]

(d[t]− d̂[t|t− 1]). (4.16)

We assume that the relationship between the received vector and range can be linearized,

under the condition that noise is absent. This allows us to disregard the linearization

effects of dependent noise. However, the influence of dependent noise is considered within

the context of the covariance of measurement noise.
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This approach enables a simplified linear analysis while ensuring that the complexities

introduced by noise dependencies are accounted for in the uncertainty quantification of the

measurements. Therefore, the measurement vector after linearization can be written as

r[t] = s[t]d[t] + ns[t] +
(
e(d̂[t|t− 1])− s[t]d̂[t|t− 1]

)
, (4.17)

where

s[t] =
∂e

∂d[t]

∣∣∣∣
d[t]=d̂[t|t−1]

. (4.18)

The following set of equations delineates the recursive sequence of steps necessary for the

effective implementation of EKF [41]:

d̂[t|t− 1] = d̂[t− 1|t− 1], (4.19a)

v[t|t− 1] = v[t− 1|t− 1] + σ2
u, (4.19b)

k[t] = v[t|t− 1]sT[t]
(
R[t] + s[t]v[t|t− 1]sT [t]

)−1
, (4.19c)

d̂[t|t] = d̂[t|t− 1] + k[t](r[t]− e(d̂[t|t− 1])), (4.19d)

v[t|t] = (1− k[t]s[t])v[t|t− 1], (4.19e)

where the Kalman gain k[t] with dimension 1 × N , v[t] is the minimum prediction MSE

with dimension 1×1. The initial value d̂[−1|−1] is set to d0, which can either be estimated

from the MLE estimator or assumed. Through iterations, its effect diminishes. Moreover,

the initial value of v = [−1| − 1] = σ2
u.
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4.4 Theoretical Bounds: Bayesian Cramér-Rao Lower

Bound

In this section, we derive BCRLB, which represents the highest level of accuracy attainable

in estimating the range d[t] by any estimation techniques/algorithms. Initially, we derive

the Fisher Information for the measurements JM(d[t]) as

JM(d[t]) = −E
{

∂2

∂d2[t]
ln f(r[t]

∣∣d[t])} , (4.20)

where E is the expectation operator. Without loss of generality, and assuming that all the

transmitted symbols are identical xi = p and, after tedious mathematical manipulation,

the Fisher Information can be expressed as

JM(d[t]) =
Np2c2ζ4α2(d[t])−2α−2

2 (1 + ζ2cp(d[t])−α)2
+

Np2c2α2(d[t])−2α−2

σ2
n + σ2

nζ
2c(d[t])−αp

. (4.21)

Subsequently, we obtain the Bayesian information JBd([t]) by amalgamating the insights

derived from measurement data with prior knowledge as follows

JBd([t]) = JM(d[t])︸ ︷︷ ︸
Measurements

+ q22[t]− q21[t]
[
JB(d[t− 1]) + q11[t]

]−1
q12[t]︸ ︷︷ ︸

Priori-Information

. (4.22)
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After detailed mathematical manipulations as discussed in [80], the quantities q11[t], q12[t],

q21[t], and q22[t] can be derived and obtained as follows

q11[t] = E
{
−∂2 ln f(d[t]|d[t− 1]

∂d2[t− 1]

}
=

1

σ2
u

, (4.23a)

q21[t] = E
{
−∂2 ln f(d[t]|d[t− 1]

∂d[t− 1]d[t]

}
=

−1

σ2
u

, (4.23b)

q12[t] = E
{
−∂2 ln f(d[t]|d[t− 1]

∂d[t]d[t− 1]

}
=

−1

σ2
u

, (4.23c)

q22[t] = E
{
−∂2 ln f(d[t]|d[t− 1]

∂d2[t]

}
=

1

σ2
u

, (4.23d)

where JB(d[t− 1]) is the Bayesian Fisher information at the previous time. Furthermore,

the BCRLB(d[t]) of the estimation of d[t] at the tth sample is given by BCRLB(d[t]) =

1/JBd([t]).

In considering the effect of SDSN on the BCRLB, several key insights can be derived:

• Remark 1: The value of the measurement Fisher information J(M)d([t]) increases as

the number of pilots N increases, as shown in (4.21). This implies a reduction in

BCRLB when N increases.

• Remark 2: As ζ tends towards zero, indicating no SDSN, (4.21) can be expressed as

lim
ζ→0

1/JM(d[t]) =
σ2
n

Np2c2α2d[t]−2α−2
. (4.24)

This shows that when ζ = 0, the BCRLB increases as the thermal noise σ2
n increases.

However, increasing the number of pilots and transmitted power will decrease the

BCRLB.

• Remark 3: From (4.21), it’s evident that JM(d[t]) depends on the parameter we look
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to estimate, d[t]. Therefore, BCRLB depends on d[t], with lower BCRLB when d[t]

is closer to the LED.

• Remark 4: At very high transmitted power, i.e., p → ∞, JM(d[t]) is reduced to

lim
p→∞

1/JM(d[t]) =
ζ2σ2

n

Npcα2d[t]−α−2
. (4.25)

It can be observed from (4.25) that BCRLB doesn’t saturate at a high power level.

Additionally, it is worth mentioning that BCRLB → 0, when p → ∞.

• Remark 5: It can be noticed from (4.24) that in the absence of SDSN, BCRLB is

proportional to 1/p2, while in the presence of SDSN in (4.25), it is proportional to

1/p. Therefore, SDSN mitigates the improvement in BCRLB that can be received

by increasing the transmitted power p.

• Remark 6: The estimated range d̂ without SDSN can be calculated using the MLE

estimator by substituting ζ = 0 in (4.7), and thus it can be written as

d̂−α =
1

c

N∑
i=1

ri
xi

. (4.26)

This result is widely acknowledged in the literature, affirming the validity of our

work.

4.5 Simulation Results and Discussion

This section presents the numerical performance of SISO-VLP systems under SDSN for

range estimation between the transmitter and PD using MLE, NLS, and EKF techniques.
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Figure 4.2: Comparing the distance error of ML, NLS, and EKF estimators and
√

BCRLB
at different ζ2 values.

Simulations are conducted in MATLAB, with results derived from approximately 106

Monte Carlo iterations per figure. Furtermore, the simulation parameters are given as

ϕFOV = 70◦, L = 3m, Apd = 0.1m2, Ts(θrx) = 1, g(θrx) = 1 and η = 0.4 A/Watt. Adition-

ally, we assume σ2
n = 10−2, σ2

u = 10−3 and γ = 0 unless otherwise specified.

In Fig. 4.2, the root mean square error (RMSE) for the estimated distance d̂ is plotted

against the transmitted power from the source. This Figure illustrates the impact of SDSN

on MLE, NLS, and EKF estimation methods, as well as the(
√
BCRLB). When the SDSN

noise variance ζ2 increases, the RMSE for all estimation methods rises accordingly. Notably,

the
√
BCRLB values also increase with increasing ζ2, consistent with the inverse of (4.21).

Furthermore, the EKF demonstrates superior performance in terms of error reduction

compared to the MLE and NLS estimators, particularly at high ζ2 values. Moreover,

when ζ2 = 0, The RMSE of the estimator decreases with increasing power to align with

77



0 1 2 3 4 5 6 7 8 9 10

10
-2

Figure 4.3:
√
BCRLB and distance error of the ML, NLS, and EKF estimators at different

numbers of pilots for ζ2 = 1.
√
BCRLB. At high power levels, when ζ2 = 0, the variance of the NLS estimator becomes

equal to the BCRLB This behavior is consistent with (4.13) and (4.24). It is important to

note that from this figure, the EKF has a higher time complexity compared to the other

estimators because it is a recursive technique. However, it offers better performance at

high SDSN values, effectively mitigating the noise. For small signal-dependent noise values

and to reduce complexity, the NLS or MLE estimators can be used, as they provide RMSE

values close to those of the EKF.

Fig.4.3 discusses the effect of increasing the number of pilots N on the performance of

MLE, NLS, EKFestimators and
√
BCRLB, where the value of ζ2 = 1. The figure clearly

shows that as the number of pilots grows, the error in distance estimation decreases, which

is compatible with the mathematical results. From this figure, we can see that at high

power and a large number of pilots EKF RMSE and
√
BCRLB become the same, which
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Figure 4.4: The impact of tilting angle on the RMSE of the EKF estimator for ζ2 = 1 and
different valus of uncertainty noise variance σ2

u.

is not the case in MLE and NLS estimators. This finding can be explained by the fact

that EKF tracks the range of a sequence of time iterations and these prior measurements

enhance the performance of EKF.

Fig.4.4 examines the impact of the receiver’s tilting angle and uncertainty noise on

the performance of the EKF estimator at ζ2 = 1, though this analysis is applicable for

any value of ζ. The figure demonstrates that as the tilting angle of the receiver rises, the

error of the estimated distance also rises. Similarly, when the uncertainty noise variance

σ2
u grows, the distance error also grows. This rise in error due to the tilting angle occurs

because the receiver plane does not face the transmitter, reducing the performance of the

estimation and decreasing the amount of received signal, consistently with (4.3) and (4.4).
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4.6 Conclusion

This chapter focuses on estimating the range of a user from a light source within a SISO

framework, addressing the influence of SDSN. To achieve this, EKF, MLE, and NLS Es-

timator techniques were utilized. Simulations show that EKF outperforms MLE and NLS

estimation. When the SDSN noise level approaches zero, the outcomes of all estimators

converge, becoming the same at higher power settings.

Additionally, we derived the BCRLB in the presence of SDSN to benchmark the per-

formance of our estimators. The results indicate that the BCRLB value decreases as the

number of pilot symbols and transmitted power increases. Furthermore, at lower SDSN

values, the BCRLB and EKF estimates converge, becoming closely aligned.

As a potential future direction, the range estimation problem can be extended by

studying the impact of random receiver orientation. Incorporating orientation uncertainty

would more closely reflect realistic deployment scenarios, where the photodetector may not

always be perfectly aligned with the transmitter, and could reveal additional challenges for

estimator design.

4.7 Publications Resulted from This Chapter

• S. H. ElFar et al., "Insights into Visible Light Positioning: Range Tracking and

Bayesian Cramér-Rao Lower Bound Analysis," IEEE Communications Letters, vol.

28, no. 9, pp. 2056-2060, Sept. 2024.

• M. Yaseen, S. H. ElFar, and S. Ikki, "Machine Learning-Based Channel Estimation

in Visible Light Communication," IEEE MECOM conference, pp. 263-267, 2024.
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Chapter 5

Tracking and Positioning Dynamic

Targets in VLC: Signal Dependent

Noises and Bayesian Bound Analysis

5.1 Introduction

This chapter investigates the problem of position estimation and tracking in indoor VLC

systems under a MISO configuration. The study specifically addresses the impact of SDSN

and RIN, which significantly degrade localization accuracy in practical VLC scenarios. To

establish a theoretical performance benchmark, a novel closed-form BCRLB is derived for

2D position estimation. The proposed EKF demonstrates superior localization accuracy by

effectively accounting for motion dynamics through its recursive updates, unlike estimation

methods that rely solely on noisy distance measurements. Our findings show that increas-

ing the number of light sources improves spatial diversity, thereby enhancing positioning
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precision. Furthermore, analysis indicates that RIN has a more pronounced negative effect

on tracking accuracy than SDSN. The EKF’s performance is validated against the proposed

BCRLB, confirming its suitability for real-time and reliable indoor localization. Overall,

this work provides meaningful insights into the design of robust and efficient VLC-based

positioning systems.

5.1.1 Related Work

In VLP systems, several algorithms have been developed, each with distinct advantages

and limitations. Proximity-based methods are simple and low-cost but offer limited accu-

racy. ToA, TDoA, and AoA techniques provide higher accuracy but require multiple LEDs,

time synchronization, and complex hardware. Fingerprinting and image-sensing methods

deliver high accuracy with fewer LEDs but suffer from poor portability and slower re-

sponse. Hybrid methods improve robustness by combining techniques, but increase system

complexity. In this work, we adopt the RSS-based approach due to its simplicity and low

cost. However, since it relies on the channel model, we implement recursive estimation

techniques to achieve robust positioning accuracy in localization and tracking [81], [10].

The authors in [82] presented and validated an AoA-based VLP system using a specific

type of receiver, a quadrant solar cell (QSC). To enhance localization accuracy, they inte-

grated third-orderridge regression machine learning (RRML) with the QSC. Experimental

results demonstrated that the root-mean-square (RMS) of the average position error was

reduced from 7.2177 cm to 3.2025 cm using third-order regression and further improved to

3.0881 cm with the proposed third-order RRML. This approach highlights the potential

of combining AoA techniques with machine learning; however, it also relies on special-

ized hardware, which may limit system generalizability and increase implementation cost.
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While in [83], the AoA estimators with PDs were used to accurately determine beacon

LED positions in VLP systems, improving localization accuracy by mitigating errors from

imprecise LED placements. AoA algorithms determine the receiver’s position by utilizing

the estimated signals’ arrival angles from multiple light sources. Consequently, these algo-

rithms are susceptible to the accuracy of the estimated angles, which can greatly influence

their overall accuracy.

Authors in [84] present a VLP system combining a passive time of flight (ToF) camera

with field- programmable gate array (FPGA) modulated LEDs, using AoA and TDoA

algorithms for accurate indoor localization. In [85], a ToA-based system is proposed for

smartphone positioning using modulated LEDs and acoustic signals. Both studies focus on

experimental setups and do not provide analytical performance models or consider SDSN

or RIN. Similarly, [86] applied a ToA scheme for user localization and synchronization in

a periodic asymmetric ranging network, where a primary anchor node transmitted signals

and secondary nodes received them.

To address the limitations and complexity of AoA and ToA techniques, the RSS method

has been proposed and is widely utilized. This approach estimates the user’s location

based on the power of the received signal, as RSS is considered a straightforward and

efficient localization technique. In [87], authors used a VLP implementation to estimate

the position of a vehicle in a room using the RSS scheme and fixed LED-based light

transmitters. In [88], the authors proposed a camera-assisted RSS algorithm for VLP

systems to improve the accuracy of the positioning of the user. Moreover, in [89], an

iterative least squares algorithm is introduced for static indoor VLP based on RSS, with

consideration of SDSN. Nonetheless, the framework does not include the impact of RIN, nor

does it address dynamic VLP scenarios involving time-varying receiver positions. Although

many studies in the literature have studied the localization of a user using VLP, no work
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has considered studying the effect of the joint presence of SDSN and RIN.

Recently, a number of studies have applied the EKF to enhance VLP. For instance,

[90] proposes an EKF-based solution for PD-based VLP, where the measurement model

incorporates Lambertian emission characteristics and geometric constraints. Similarly, [91]

improves RSS-based localization by combining temporal averaging with Kalman filtering to

reduce measurement variability. In [92], a fusion framework integrates VLP measurements

with inertial navigation using EKF to maintain continuous tracking even in the presence of

LED signal blockage and multipath effects. More recently, [93] introduces a joint position

and orientation estimation scheme that fuses angle and distance information from multiple

LEDs within an EKF framework, achieving improved accuracy in dynamic environments.

Despite their contributions, these studies do not consider the effect of signal-dependent

noise, such as SDSN and RIN, which are inherent in optical wireless systems and can

substantially impact tracking performance. Furthermore, none of these works provides a

mathematical benchmark like the BCRLB, which is essential for evaluating the theoretical

accuracy limits of estimators, especially in recursive systems such as those relying on EKF.

A rigorous theoretical framework, such as the CRLB, is essential for analyzing and

optimizing tracking performance in VLP systems. This framework provides a benchmark

to assess the limits of accuracy and guide the development of more effective positioning

techniques. A closed-form CRLB for the user location and orientation of NLoS propagation

on the RSS-based VLP was derived in [94]. While in [95], the CRLB of the positioning

error of a hybrid RF-VLC and positioning system using the RSS measurement method for

positioning was derived. In [96], the authors derived the CRLB for the integrated visible

light positioning and communication (VLPC) system using an RSS-based 3D positioning

scheme. To the best of the authors’ knowledge, there is no work in the literature that

considers the derivation of the BCRLB for location error in the presence of SDSN and RIN
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Figure 5.1: Visible light positioning system model

in a VLP system.

5.2 System And Channel Model

We consider an indoor MISO VLP system consisting of M light sources fixed on a room’s

ceiling, serving a single user equipped with a PD, as shown in Fig. 5.1. We assume that

the user moves with a known velocity v. Each light source transmits a visible light signal

to the PD. The transmitted signal from each source is denoted as x, and, without loss of

generality, we assume that all sources transmit with the same power, thus x = p > 0 [97].
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The received signal vector r = [r1, r2, · · · , ri, · · · , rM ]T can be expressed as:

r = hx︸︷︷︸
Signal

+
√

x diag(h) nds︸ ︷︷ ︸
SDSN

+ x diag(h) nR︸ ︷︷ ︸
RIN

+ n︸︷︷︸
Thermal Noise

, (5.1)

where M is the number of transmitted light sources, diag(h) is an M ×M diagonal matrix

with the elements of the channel gain vector h = [h1, h2, · · · , hi, · · · , hM ]T on the main

diagonal. The noise terms are as follows: n = [n1, n2 · · · , ni, · · · , nM ]T , is the thermal

noise and SDSN vector is nds = [nds1, nds2, · · · , ndsi, · · · , ndsM ]T and finally RIN nR =

[nR1 , nR2 , · · · , nRi
, · · · , nRM

]T [98], [99].

The elements of n are independent and identically distributed Gaussian random vari-

ables, i.e., n ∼ N (0, σ2
nIM). Similarly, we have nds ∼ N (0, σ2

dsIM) and nR ∼ N (0, σ2
RIM).

The channel gain hi between the ith light source and the user can be expressed as [18]:

hi =
Apdiηi(mi + 1)

2πd2i
cosmi (ϕtxi

)Ts(θrxi
)g(θrxi

) cos(θrxi
), (5.2)

where di is the Euclidean distance from the transmitter light source to the receiver, which

can be calculated as di =
√

L2 + z2i , where L corresponds to the vertical distance from

the ith light source to the PD surface, and zi is the horizontal distance from the center

of the light source cell to the PD, as illustrated in Fig.5.2, and ϕtxi
represents the angle

of irradiance. It’s worth mentioning that cos(ϕtxi
) = cos(θrxi

) = L
di

, in the case when

the receiver is oriented upwards and the transmitter is directed downwards, θrxi
signifies

the angle of incidence surface, Ts(θrxi
) stands for the gain associated with the receiver’s

optical filter, g(θrxi
) = n2

i /sin
2(ϕFOVi

) describes the gain of the optical concentrator, which

relies on the refractive index ni of the concentrator and the FoV angle, i.e., ϕFOVi
. It’s

important to note that g(θrxi
) = 0 when θrxi

> ϕFOVi
[53], [100]. Additionally, Apdi denotes
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the detection area of the PD and η represents the average responsivity of the receiver and

finally mi =
−1

log2(cos(Φi1/2
))

is the Lambertian radiation order and is determined by the light

source emission semi-angle Φi1/2 .

Hence, the received signal vector can be rewritten as

r = (c⊙ β)p+
√

diag(c⊙ β)pnds + diag(c⊙ β)pnR + n, (5.3)

where β = [d−α
1 , d−α

2 , · · · , d−α
i , · · · , d−α

M ]T , ⊙ is the Hadamard product operator Assuming

a constant c = [c1, c2, · · · , ci, · · · , cM ]T , calculated as

ci =
Apdiηi(mi + 1)

2π
Lmi+1Ts(θrxi

)g(θrxi
), (5.4)

where α = m+3. It’s worth noting that the distortion variance is directly influenced by the

distance between the transmitter and the receiver. This sets the additive distortion term

apart from conventional receiver noise, which remains independent of distance. It is worth

mentioning that in the ideal case, the received signal can be written as r = (c⊙ β)p+ n.

5.3 PD Transition Model and Bayesian Cramér-Rao Lower

Bound

In this section, we consider a PD moving in a 2D x-y plane. Since the PD’s position

changes over time, all measurements become time-dependent. We also present a closed-

form expression for the BCRLB, which serves as a fundamental performance benchmark

for position estimation under dynamic conditions. Because the estimation depends on the

PD’s motion over time, the BCRLB must be updated recursively as the PD’s position
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Figure 5.2: Visible light communication channel model

changes.

To derive the BCRLB, we first determine the Fisher information matrix (FIM) of the

estimated distances, referred to as the distance Fisher information matrix (DFIM). Using

the DFIM, we determined the FIM for the PD’s position, denoted as the position Fisher

information matrix (PFIM). Finally, with the PFIM in hand and incorporating the PD’s

dynamic motion, we are ultimately able to compute the time-varying BCRLB. To the best

of the authors’ knowledge, the previous bounds have not been determined, even for the

ideal case, i.e., without SDSN and RIN.
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5.3.1 PD Transition Model

In this subsection, we outline the mathematical model for the motion of PD within an

indoor environment illuminated by multiple light source transmitters. While the PD moves,

its position may experience slight deviations from the ideal path due to interactions with

environmental obstacles and objects. The PD collects distance measurements from the

light source transmitters at uniform intervals of ∆ seconds, and these measurements are

utilized to model and analyze its dynamic position over time [101], [102].

For the 2D motion model, the position of the PD at the t-th sample can be expressed

as: P[t] = [x[t] , y[t]]T ∈ R2. Therefore, the transition model governing the motion of the

PD can be written as:

P[t] = P[t− 1] + q[t] + u[t], (5.5)

where q[t] denotes the control input associated with motion under time-varying velocity,

defined as: q[t] = ∆v[t−1]+ 1
2
a∆2, with v[t] = [vx[t], vy[t]]

T representing the velocity of the

PD in the 2D x− y plane and a = [ax, ay]
T denoting the acceleration [103]. The term u[t]

captures random perturbations in the motion due to unexpected environmental factors.

The process noise u[t] is modeled as a Gaussian random vector with zero mean and

covariance matrix Q, such that:

u[t] ∼ N (0,Q). (5.6)

For simplicity, assume that Q =
[
σ2
x , σ2

y

]T , where σ2
x and σ2

y denote the variances of the

noise along the x and y axes, respectively. For any two samples t ̸= t′, the process noise

vectors u[t] and u[t′] are independent, ensuring that:

E[u[t] u⊤[t′]] = 0 for t ̸= t′. (5.7)
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This independence implies that u[t] is a vector of additive white Gaussian noise [104], [79].

Because the noise vectors are independent across time, the position sequence P [t] forms a

Markov chain. As a result, this Markov property can be formulated as:

p(P [t] | P [0 : t− 1]) = p(P [t] | P [t− 1]), (5.8)

indicating that the conditional probability of the PD’s position at time t depends only on

its immediate previous state at time t− 1. By leveraging the Gaussian nature of u[t], this

conditional probability distribution is given by:

p(P [t] | P [t− 1]) ∼ N (P [t− 1] + q[t],Q). (5.9)

In terms of the initial conditions, the initial state of the position P[−1] is independent of

u[t] and follows a Gaussian distribution:

P[−1] ∼ N (P0 + q0,Q0). (5.10)

Here, P0, Q0, and q0 can be selected arbitrarily or derived from prior knowledge. These

initial values are then provided as inputs to the EKF, as we will describe in the subsequent

section. As the number of samples increases, the effect of the initial conditions becomes

negligible [36, 105].

5.3.2 Distance Fisher Information Matrix (DFIM)

To establish a fundamental benchmark for dynamic position estimation, first, we derive

DFIM based on the received signal, denoted as J
(O)
d [t]. The DFIM quantifies the relation-

ship between the information contained in the received signal and the distances between
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the transmitting light source and the PD receiver. The matrix can be expressed as follows:

J
(O)
d [t] = −E

[
∂2

∂d[t]∂d[t]T
ln f(r[t]|d[t])

]
, (5.11)

where E[·] is the expectation operator and r[t] is a M -dimensional Gaussian random vector

with mean vector µ[t] = (c ⊙ β[t]) p, where c and β[t] are system-specific parameters,

and covariance matrix Σs[t] = diag [σ2
s1[t], . . . , σ

2
si[t], . . . , σ

2
sM [t]], where each variance term

is σ2
si[t] = σ2

ni
+ σ2

dsi
ci pi di[t]

−α + σ2
Ri

c2i p
2
i di[t]

−2α, representing the variance of the i-th

observation, it follows that: r[t] ∼ N (µ[t],Σs[t]).

The probability density function (PDF) of r[t] conditioned on d[t] can be depicted as:

f(r[t] | d[t]) = 1

(2π)
M
2 |Σs[t]|1/2

exp
(
−1

2
(r[t]− µ[t])TΣs[t]

−1(r[t]− µ[t])
)
. (5.12)

Therefore, the DFIM (J
(O)
d [t]) is an M×M matrix, and each element in it can be computed

as:

J(O)
d [t](i,j) =

∂µ[t]T

∂di[t]
Σs[t]

−1 ∂µ[t]

∂dj[t]
+ 1

2
tr

(
Σs[t]

−1∂Σs[t]

∂di[t]
Σs[t]

−1∂Σs[t]

∂dj[t]

)
. (5.13)

where tr(.) is the trace operator, and the derivatives of the mean and covariance matrix

are given as follows:

∂µ[t]

∂di[t]
=
[
0, . . . ,−pαcidi[t]

−(α+1), . . . , 0
]⊤

, (5.14)

∂Σs[t]

∂di[t]
= diag

[
0, . . . ,

(
− ασ2

dsi
cipidi[t]

−(α+1) − 2ασ2
Ri
c2i p

2
i di[t]

−2(α+1)
)
, . . . , 0

]
, (5.15)

Σs[t]
−1 = diag

[
1

σ2
s1[t]

, . . . ,
1

σ2
si[t]

, . . . ,
1

σ2
sM [t]

]
. (5.16)
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Finally, after subsisting the derived expressions and the inverse covariance matrix

Σs[t]
−1 into (5.13), then carrying out the necessary summations and algebraic manipu-

lations, we obtain the full expression of each element of DFIM (J(O)
d [t]i,j). It is worth

mentioning that this matrix is diagonal due to the statistical independence between the

estimated distances, and its elements can be calculated as:

J(O)
d [t](i,i) =

p2c2iα
2di[t]

−2(α+1)

σ2
si[t]

+ 1
2

(
− σ2

dsicipαdi[t]
−(α+1) − 2σ2

Ric
2
i p

2αdi[t]
−(2α+1)

)2
σ4
si[t]

. (5.17)

The following remarks provide a deeper understanding of how noise and various parameters

in (5.17) influence the calculation of the DFIM.

Remark 1: As the distance di[t] increases, the value of J(O)
d [t](i,i) decreases, resulting in a

reduction of the corresponding diagonal element of the DFIM. Therefore, a reduction in

the element of DFIM corresponds to an increase in the variance of the distance estimation

error. This means that the accuracy of the estimated distance decreases as the PD moves

farther away from the light source.

Remark 2: When σ2
Ri = 0 and σ2

dsi = 0, i.e., ideal case, for all estimated distances, the

value of the corresponding diagonal elements of DFIM increases proportionally to the

square of the transmitted power, as given by J(O)
d [t](i,i) =

p2c2iα
2di[t]

−2(α+1)

σ2
ni

. In this scenario,

the dominant noise source is thermal noise, which is independent of the transmitted signal’s

power. Therefore, increase in transmitted power can lead to higher estimation accuracy.

Remark 3: In (5.17), the expression for J(O)
d [t](i,i) under the condition σ2

Ri → ∞ simplifies

to , limσ2
Ri→∞ J(O)

d [t](i,i) = 2α2di[t]
−2 This indicates that, in the presence of high RIN,

J(O)
d [t](i,i) primarily depends on the distance between the transmitter and receiver and the

material of the receiver. The influence of transmitted power becomes negligible, leading to

a saturation level as the power increases.
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Remark 4: In this scenario, taking the limit as power p tends to infinity: limp→∞ J(O)
d [t](i,i) =

α2di[t]
−2
(

1
σ2
Ri

+ 2
)
. if this happens to all measured distances in DFIM. This implies that

the diagonal elements of DFIM reach a saturation level where its value depends on both

σ−2
Ri and the distance. Even with unlimited power, the impact of σ2

Ri remains significant. As

σ2
Ri grows large, the system settles at this saturation point, rendering any further increase

in power inconsequential.

Remark 5: In (5.17), when σ2
dsi → ∞, the expression for J(O)

d [t](i,i) simplifies to

limσ2
dsi→∞ J(O)

d [t](i,i) =
1
2
α2di[t]

−2. This indicates that in cases dominated by σ2
dsi if we apply

the same condition to all distances, the diagonal elements of DFIM become dependent on

the distance and fabrication material of the receiver only.

Remark 6: In (5.17), when σ2
Ri → 0 , and p → ∞ the expression for J(O)

d [t](i,i) is simplified to

J(O)
d [t](i,i) =

pciα
2di[t]

−(α+2)

σ2
dsi

+ 1
2
α2di[t]

−2. This result demonstrates that in the absence of σ2
Ri

and as p → ∞, the value of the corresponding diagonal elements of DFIM increases linearly

with p. Additionally, in the same equation when σ2
dsi → 0, and p → ∞ the expression for

J(O)
d [t](i,i) is simplified to J(O)

d [t](i,i) = α2di[t]
−2(2+ 1

σ2
Ri
).This result demonstrates that in the

absence of σ2
dsi and as p → ∞, the value of the corresponding diagonal elements of DFIM

reaches an instant saturation level, and increasing power does not affect them. However, as

discussed in Remark 2, when both σ2
Ri → 0 and σ2

dsi → 0, the diagonal elements of DFIM

increase proportionally with p2.

5.3.3 Position Fisher Information Matrix (PFIM)

Since our goal is to estimate the position of a dynamic PD we have derived a PFIM. This

calculation is carried out by utilizing the DFIM and the known relationship between the

measured distances and the x-y coordinates of the target. Specifically, each measured
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distance is related to the target’s position by di[t] =
√

(x[t]− xi)2 + (y[t]− yi)2. The

PFIM of the target position, denoted as JP
(O)[t], has dimensions 2× 2. To bridge the gap

between the DFIM and the PFIM, we introduce the Jacobian matrix T[t] ∈ R2×M , which

captures how variations in the target’s x-y coordinates affect the measured distances and

is defined as:

J
(O)
P [t] = T[t]J

(O)
d [t]T[t]T , (5.18)

T[t] =
∂dT [t]

∂P[t]
=

∂d1[t]
∂x[t]

· · · ∂di[t]
∂x[t]

· · · ∂dM [t]
∂x[t]

∂d1[t]
∂y[t]

· · · ∂di[t]
∂y[t]

· · · ∂dM [t]
∂y[t]

 , (5.19)

where the partial derivatives with respect to x and y are given by:

∂di[t]

∂x[t]
=

(x[t]− xi)√
(x[t]− xi)2 + (y[t]− yi)2

, (5.20)

∂di[t]

∂y[t]
=

(y[t]− yi)√
(x[t]− xi)2 + (y[t]− yi)2

. (5.21)

After that substitute values of T[t], J(O)
d [t] in (5.18) the PFIM of location J

(O)
P [t] can be

expressed

J
(O)
P [t] =


M∑
i=1

J(O)
d [t](i,i)

(x− xi)
2

(x− xi)2 + (y − yi)2

M∑
i=1

J(O)
d [t](i,i)

(x− xi)(y − yi)

(x− xi)2 + (y − yi)2

M∑
i=1

J(O)
d [t](i,i)

(x− xi)(y − yi)

(x− xi)2 + (y − yi)2

M∑
i=1

J(O)
d [t](i,i)

(y − yi)
2

(x− xi)2 + (y − yi)2

 .

(5.22)

Remark 7: PFIM in (5.22) depends on the number of light sources, M . As the number

of light sources increases, more terms are added to the summation, increasing the PFIM

and, consequently, decreasing the CRLB of the estimated position. This implies that

increasing M improves the accuracy of position estimation. It is worth mentioning that the
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minimum number of light sources is three; otherwise, the PFIM becomes singular, making

it impossible to determine the CRLB matrix. In other words, the position estimation

cannot be performed.

5.3.4 Bayesian Cramér-Rao Lower Bound (BCRLB)

The recursive or BCRLB is a theoretical performance limit on the accuracy of parameter

estimates in dynamic, time-varying systems. Unlike the classical CRLB, which assumes

fixed parameters and independent measurements, the BCRLB incorporates prior informa-

tion and evolves as new measurements become available [40].

The Bayesian Fisher information matrix (BFIM) for the PD position tracking process,

denoted as J
(B)
P [t], is computed by combining the contributions from the measurement

model in (5.18) and the prior information from dynamic motion in (5.5) can be calculated

recursively as:

JP
(B)[t] = J

(O)
P [t]︸ ︷︷ ︸

Measurements

+ JP
(I)[t]︸ ︷︷ ︸

Priori Information

. (5.23)

And after extract JP
(I) Priori part it can be expressed as:

J
(B)
P [t] = J

(O)
P [t]︸ ︷︷ ︸

Measurements

+
(
G22[t]−G21[t]

[
J
(B)
P [t− 1] +G11[t]

]−1
G12[t]

)
︸ ︷︷ ︸

Prior information

, (5.24)

where J
(I)
P [t], quantifies the amount of useful information available for the tracking process

based on the PD transition model. The G[t] matrices are related to JP
(I)[t] and are formally

defined as:

Gij[t] = E
(
− ∂2 log p(P[t] | P[t− 1])

∂P[t+ i− 2]∂P[t+ j − 2]T

)
, (5.25)

where i, j = 1, 2. Here, p(P[t] | P[t−1]) is the conditional probability of P[t] given P[t−1].

95



after detailed mathematical calculations, the quantities G11[t], G12[t], G21[t], and G22[t]

can be derived and obtained as described in Appendix section. Hence G[t] are expressed

as [68]:

G11[t] ∈ R2×2 = Q−1, (5.26a)

G12[t] ∈ R2×2 = −Q−1, (5.26b)

G21[t] ∈ R2×2 = −Q−1, (5.26c)

G22[t] ∈ R2×2 = Q−1. (5.26d)

Finally, the BCRLB for the position at the t-th sample is determined by calculating the

inverse of the BFIM as defined in (5.23). Consequently, the Position error bound (PEB)

which serves as a benchmark for the variance of the position estimation error at the time

sample at the t-th sample is computed as follows:

PEB[t] =
√[

J
(B)
P [t]

]−1

(1,1)
+
[
J
(B)
P [t]

]−1

(2,2)
. (5.27)

Remark 8: As indicated by (5.24), the BFIM is affected by the process noise. When the

process noise increases, the BFIM decreases which leads to an increase in the BCRLB. It

is worth mentioning that as the measurements become less noisy, the contribution of the

prior information decreases, and vice versa.

5.4 Position Estimation and Tracking

This section focuses on estimating and tracking the PD target’s position in a MISO sys-

tem featuring M transmitter light sources and a single PD receiver. It explores how the
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measured distances from the light sources contribute to estimating the PD’s location using

various methods. Furthermore, this section describes how the EKF can track and estimate

the PD location under varying noise conditions.

5.4.1 Distance Estimation

To determine the PD position, it is first necessary to estimate the distances between light

sources and PD and we consider these distances as our measurements. At the t-th time

sample, the true distances vector is defined as:

d[t] = [d1[t], d2[t], . . . , dM [t] ]T . (5.28)

To obtain the estimated distance from the r[t], this work adopts the MLE framework to

estimate the distances, explicitly considering the impact of noise and the effect of signal-

dependent noises during the estimation process. The estimation is obtained by maximizing

the following cost function [77]:

d̂[t] = argmax
d[t]

ln f(r[t] | d[t]), (5.29)

where the log-likelihood function from (5.12) is expressed as:

ln f(r[t] | d[t]) = −M

2
ln(2π)− 1

2
ln
∣∣Σs[t]

∣∣− 1

2

(
r[t]− µ[t]

)⊤
Σ−1

s [t]
(
r[t]− µ[t]

)
. (5.30)

To estimate each an individual distance di[t], the log-likelihood function is maximized by

solving:
∂ ln f(r[t] | d[t])

∂di[t]
= 0. (5.31)
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Due to the complexity of the resulting equations, finding a closed-form solution for d̂i[t] is

typically infeasible. Instead, numerical methods and computational tools, such as MAT-

LAB, are employed to compute the solution efficiently.

5.4.2 Measurements Model

After estimating the distances we can assume the observation vector, Γ̂[t], consists of the

estimated distances:

Γ̂[t] =
[
d̂1[t], . . . d̂i[t], . . . , d̂M [t]

]⊤
. (5.32)

The estimated distance vector Γ̂[t] inherently contains noise and serves as an approximation

of the true distance-vector Γ[t]. The relationship between the estimated and true values is

described as:

Γ̂[t] = Γ[t] +w[t], (5.33)

where w[t] ∈ RM×1 is the measurement noise vector at the t-th sample, with a covariance

matrix C[t] , which quantifies the uncertainty in the estimation. Under a MLE framework,

the variance of the estimation error for di[t] typically approaches the CRLB. Thus, the

CRLB serves as a valuable benchmark for evaluating how accurately di[t] can be used to

estimate position [104], [39]. Therefore, the covariance matrix C[t] can be expressed as:

C[t] =
(
J
(O)
d [t]

)−1
,C[t] ∈ RM×M , (5.34)

where J
(O)
d [t] is the DFIM, as derived in (5.17). Therefore, Γ̂[t] can be expressed as:

Γ̂[t] ∼ CN
(
Γ[t],C[t]

)
. (5.35)
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The estimated values, Γ̂[t], are dependent on the postion state vector P[t] through a

functional relationship:

Γ̂[t] = f(P[t]) +w[t], (5.36)

where f(P[t]) represents the mapping function that relates the postion vector P[t] to the

true distances Γ[t] [106]. This model highlights how the underlying signal parameters

influence the measurements. The estimation accuracy depends on the signal quality and the

statistical properties of the noise vector w[t], both of which directly impact the subsequent

tracking Processes [104].

5.4.3 Extended Kalman Filter (EKF)

Kalman filter is a widely used tool for sequentially estimating the states of dynamic systems

under uncertainty. It is an optimal MMSE estimator when both the system dynamics and

observation models are linear, and the noise is Gaussian. However, many real-world systems

exhibit nonlinearities in the relationship between the state vector and the observations,

making the standard Kalman filter inapplicable [80]. To address this, the EKF extends the

Kalman filter framework to nonlinear systems by linearizing the nonlinear models around

the current state estimate using a first-order Taylor expansion [107]. This linearization

enables the EKF to approximate the estimation process for nonlinear systems, albeit with

some loss in optimality.

In the tracking problem, the location vector P[t], representing the position of the sys-

tem, evolves dynamically over time and is subject to process noise. The observations Γ̂[t]

depend nonlinearly on P[t], where f(P[t]) ∈ RM×1. The EKF addresses this by approx-

imating the nonlinear observation function f(P[t]) with its first-order Taylor expansion

around the current estimate P̂[t|t − 1]. The Jacobian matrix of this linearized model,
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denoted by F[t], is computed as [40], [80]:

F[t] ∈ RM×2 =
∂f(P[t])

∂P[t]

∣∣∣∣
P[t]=P̂[t|t−1]

. (5.37)

The function f(P[t]) is defined as:

f(P[t]) =



√
(x[t]− x1)2 + (y[t]− y1)2

...√
(x[t]− xi)2 + (y[t]− yi)2

...√
(x[t]− xM)2 + (y[t]− yM)2


. (5.38)

The derivative with respect to x[t] is:

∂fi(P[t])

∂x[t]
=

x[t]− xi√
(x[t]− xi)2 + (y[t]− yi)2

. (5.39)

Similarly, the derivative with respect to y[t] is:

∂fi(P[t])

∂y[t]
=

y[t]− yi√
(x[t]− xi)2 + (y[t]− yi)2

. (5.40)

Consequently, the linearized version of the measurements equation in (5.36) can be given

as:

Γ̂[t] = F[t]P[t] + w[t]︸︷︷︸
measurement error

+
(
f
(
P̂[t|t− 1]

)
− F[t]P̂[t|t− 1]

)
︸ ︷︷ ︸

linearization error

. (5.41)

The EKF operates recursively through prediction and correction steps to refine the state

estimate P̂[t|t]. In the prediction step, the state is forecasted using the previous estimate
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as [79]:

P̂[t|t− 1] = P̂[t− 1|t− 1] + q[t|t− 1], (5.42)

and the error covariance matrix is updated as:

E[t|t− 1] = E[t− 1|t− 1] +Q, (5.43)

where Q is the process noise covariance matrix. In the correction step, the Kalman gain

K[t] is computed as:

K[t] = E[t|t− 1]F⊤[t]
(
C[t] + F[t]E[t|t− 1]F⊤[t]

)−1
. (5.44)

Finally, the updated state estimate is:

P̂[t|t] = P̂[t|t− 1] +K[t]
(
Γ̂[t]− f(P̂[t|t− 1])

)
, (5.45)

and the error covariance is revised as:

E[t|t] = (I−K[t]F[t])E[t|t− 1]. (5.46)

In this context, the tracking process begins by initializing Equations (5.42) and (5.43)

with P̂[−1| − 1] = P0 and E[−1| − 1]= Q0. Here, (5.42) corresponds to the prediction

step, formulated based on the transition model given in (5.5), while (5.43) calculates the

minimum prediction MSE matrix, E ∈ R2×2. Additionally, equation (5.44) determines the

Kalman gain matrix K[t] ∈ R2×M based on the measurement error matrix C[t], which

quantifies the uncertainties in the measurement process and is defined in (5.34). Subse-

quently, the correction step in (5.45) refines the prediction P̂[t | t − 1] from (5.42) by
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Figure 5.3: RMSE comparison for the EKF, M -Only, RLM, PF, and the PEB from BCRLB
as in (5.27) under Q = [0.001, 0.001] and Q = [0.01, 0.01], with noise variances σ2

n = 0.1,
σ2
ds = 0.1, and σ2

R = 0.001.

incorporating the current measurements, Γ̂[t]. This correction step aims to produce a

more accurate estimate of the position vector, P̂[t|t]. The output, P̂[t | t], represents the

tracker’s result for the t-th sample, which depends on all the information from the initial

sample up to the t-th sample. The minimum MSE matrix for the updated state is given in

(5.46). The updated P̂[t|t] and E[t|t] are then re-fed as prior values for the next prediction

step in (5.42),(5.43) [53], [69].

5.5 Simulation Results and Discussion

Simulations were conducted using MATLAB to evaluate the performance of the MISO-

VLP system under the joint effects of SDSN and RIN. Approximately 106 Monte Carlo
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Figure 5.4: Compare RMSE over time for EKF at different values of acceleration under
Q = [0.001, 0.001] and with noise variances σ2

n = 0.1, σ2
ds = 0.1, and σ2

R = 0.001.

iterations were performed to ensure statistical reliability. In each simulation run, six light

sources were positioned within a 4m × 4m room. The placement was constrained to

guarantee that, at every time step, the receiver remained within the FoV of at least three

light sources. This ensures robust signal reception and enables accurate trilateration.

All light sources were configured with identical physical and optical parameters, includ-

ing a FoV angle of ϕFOV = 70◦, vertical separation L = 3m, active detection area Apd =

1 cm2, and optical filter gain Ts(θrx) = 1. The noise variances were defined as σ2
x = 10−3,

σ2
y = 10−3, σ2

R = 10−3, σ2
ds = 10−1, and σ2

n = 10−1.,Finally, without loosing the genrality,

and to illustrate a representative scenario, six fixed light sources configuration was also

analyzed with coordinates located at [1, 1, 3] , [2, 1, 3] , [3, 1, 3] , [1, 3, 3] , [2, 3, 3] , [3, 3, 3].

However, we would like to emphasize that our analysis is valid for any light source po-

sitions. The PD was initialized at P0 = [2, 2, 0] meters in a two-dimensional plane and
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Figure 5.5: Compare RMSE of EKF and at different values of acceleration under Q =
[0.001, 0.001] and with noise variances σ2

n = 0.1, σ2
ds = 0.1, and σ2

R = 0.001 in two cases
toward light sources and away from them.

moved with a velocity limited to 1m/s along both x-axis and y-axis. Pilot signals were

transmitted at regular intervals of ∆ = 0.01 seconds and a = [0, 0]. These are the default

parameters unless stated otherwise.

In this work, we propose the use of the EKF for real-time tracking of a moving PD

in VLP systems. The EKF integrates a dynamic motion model with nonlinear distance-

based measurements to recursively estimate the PD’s position in the presence of SDSN and

RIN . In Fig. 5.3, we present a comparative RMSE analysis of four estimation techniques,

including our proposed EKF-based localization method, to evaluate their performance in

a VLP environment. The Measurement-Only (M -only) method estimates the PD position

using geometric relationships derived from noisy distance measurements, typically solved

through trilateration or numerical techniques, as described in detail in [4, 108] and the
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Figure 5.6: RMSE comparison for the EKF and the PEB from BCRLB as in (5.27) for
varying numbers of light sources (M = 3, 4, 5), with noise variances σ2

n = 0.01, σ2
ds = 0.05,

and σ2
R = 0.001.

references therein. The RLM algorithm applies a nonlinear least-squares optimization

for real-time tracking, but lacks explicit modeling of system dynamics and process noise,

limiting its robustness in dynamic scenarios and described in detail in [109–111] and the

references therein. The PF uses a sampling-based Bayesian approach that is robust to

nonlinearities and non-Gaussian noise but is computationally intensive, especially as the

number of particles increases, and is described in detail in [101], [112], and the references

therein. Our proposed EKF method combines both motion and measurement models in

a recursive framework, offering a favorable balance between accuracy and computational

complexity.

Moreover, the results in Fig. 5.3 show that the RMSE curves of the EKF and PF

estimators (with the number of particles set to 100) are closely matched and consistently
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Figure 5.7: RMSE comparison for the EKF and the PEB from BCRLB as in (5.27) under
varying thermal noise variances, with σ2

ds = 0 and σ2
R = 0.

outperform those of the RLM and M -only methods. Additionally, when varying the process

noise covariance Q, the RMSE of both M -only and RLM (with a damping factor set to

0.01) remains unchanged, as expected, since these methods do not model motion dynamics

and are therefore insensitive to process noise. In this figure, the PD moves with linear

velocity with the acceleration vector is defined as a = [0.1, 0.1] m/s2.

In contrast, the RMSE for EKF and PF increases with larger Q, along with a corre-

sponding rise in the PEB calculated fromBCRLB. This behavior highlights their sensitivity

to process uncertainty and reflects their reliance on accurate dynamic modeling. These find-

ings align with the theoretical prediction in (5.24), where a higher process noise variance

reduces the BFIM, resulting in an increased BCRLB and thereby validating the simulation

results.
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Figure 5.8: RMSE comparison for the EKF and the PEB from the BCRLB as in (5.27)
under varying RIN and SDSN noise variances, with σ2

n = 0.01.

In Fig. 5.4, we assume that the PD moves with a velocity that changes linearly over time

at accelaration, corresponding to different acceleration values, a = [0, 0], a = [0.05, 0.05]

and a = [0.1, 0.1]. The transmitted optical power is fixed at p = 10 Watts. As observed

from the figure, the RMSE initially decreases for the EKF estimator across all acceleration

levels. This trend suggests that the relative distance between the PD and the light sources

decreases during the early stages of motion, indicating that the PD is generally moving

toward the light source cluster. However, after a certain point, the RMSE begins to

increase. This behavior occurs because, although the PD may be approaching some light

sources, it is simultaneously moving farther away from others, thereby increasing the total

relative distance from the entire set of light sources. In multi-source localization scenarios,

proximity to a single light source does not necessarily guarantee improved accuracy, as

estimation performance depends on the relative geometry and cumulative distances to all
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Figure 5.9: Position tracking comparison between the EKF trajectory and the true trajec-
tory in the ideal case with σ2

R = σ2
ds = 0 and σ2

n = 0.1.

transmitters. Furthermore, the figure shows that higher acceleration leads to earlier shifts

in the RMSE trend compared to lower acceleration. This observation highlights the role of

acceleration in modulating the motion dynamics of the PD and its impact on localization

performance.

Fig. 5.5 illustrates the RMSE performance of the EKF for a PD localizing under three

light sources positioned at coordinates [1, 1, 3], [2, 1, 3] and [3, 1, 3]. The PD is initialized

at [2, 2, 0] and moves linearly along the y-axis under two different acceleration magnitudes:
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Figure 5.10: Position tracking comparison between the EKF trajectory and the true tra-
jectory in the case of no RIN noise and the presence of SDSN noise with σ2

ds = 0.1 and
σ2
n = 0.1.

a = [0, 0.05]m/s2 and a = [0, 0.1]m/s2. The motion is examined in two cases: the PD

moving toward the light sources and moving away from them. In both cases, the RMSE

behavior is strongly influenced by the distance between the PD and the light sources. When

the PD moves toward the light sources, the RMSE is lower than when it moves away from

them. This is due to the inverse dependence of signal strength on distance, which directly

affects measurement quality and aligns with the (5.22) and Remark 1. Furthermore, the

effect of acceleration magnitude is notable. In the scenario where the PD accelerates toward
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Figure 5.11: Position tracking comparison between the EKF trajectory and the true tra-
jectory in the case of no SDSN noise and the presence of RIN noise with σ2

R = 0.1 and
thermal noise with σ2

n = 0.1.

the light sources, the higher magnitude a = [0, 0.1],m/s2 results in a faster reduction

in RMSE. Conversely, when the PD accelerates away from the light sources, the same

magnitude leads to a more rapid increase in RMSE compared to the lower acceleration

a = [0, 0.05]m/s2.

Fig. 5.6 illustrates the impact of the number of light sources on the RMSE of location

estimation where σ2
n = 0.01 , σ2

ds = 0.05 and σ2
R = 0.001 .The results demonstrate that

increasing the number of light sources improves the accuracy of the location estimation,
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reducing the RMSE in both the M-only approach and the EKF. Additionally, the EKF

performance approaches the PEB that calculated from the BCRLB as the number of light

sources increases. This improvement is consistent with the theoretical relationship de-

scribed in (5.22), which highlights the dependency of the PFIM on the number of light

sources, M . As M increases, the value of the PFIM, J(O)
P [t], increases, leading to a reduc-

tion in the BCRLB. This result confirms that incorporating more light sources enhances

the precision of position estimation by providing greater spatial diversity and improving

system observability.

Fig. 5.7 illustrates the performance of the EKF in location estimation under the scenario

where σ2
n is non-zero, σ2

ds = 0, σ2
R = 0, and v(t) = [0, 0]. In this case, the only source

of error from measurements is thermal noise with variance σ2
n. The results demonstrate

that, in the absence of SDSN and RIN, the EKF acts as the optimal estimator, with its

RMSE of EKF closely aligning with the PEB derived for the BCRLB. Furthermore, the

figure highlights that as the value of σ2
n increases, the RMSE also rises, which is consistent

with the theoretical results presented in (5.17) and Remark 2. This confirms the expected

dependency of estimation accuracy on noise levels. The performance comparison of the

EKF and the BCRLB is presented in Fig. 5.8. In Fig.5.8 (a), we consider the case where

σ2
R = 0, σ2

n = 0.01, and σ2
ds varies. It can be observed that the presence of SDSN prevents

the EKF and the PEB from the BCRLB from becoming identical, unlike the results shown

in Fig. 5.7. As the value of σ2
ds increases, both the RMSE and the PEB of the BCRLB

increase, leading to a degradation in estimation performance.

In Fig. 5.8 (b), the scenario is reversed: σ2
ds = 0, while σ2

R varies, with σ2
n set to 0.01,

similar to Fig 5.8 (a). The RMSE is larger when σ2
R is present compared to when σ2

ds is

the dominating noise. Additionally, the RMSE and PEB from the BCRLB saturate at

specific values, which does not occur in the case of SDSN, as shown in Fig. 5.8 (a). This
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behavior is consistent with the theoretical results derived in (5.17) and Remark 6. As

show in (5.17), σ2
s includes σ2

R multiplied by p2 and σ2
ds multiplied by p. Consequently,

increasing the RIN worsens the estimation accuracy more significantly than SDSN. This is

further demonstrated in Fig. 5.8, where even though the values of σ2
ds are larger than σ2

R,

the RMSE does not reach saturation in the case of SDSN.

Fig. 5.9 shows the trajectory of the PD target location along the x- and y-axes in (a)

and (b) sub-figures in sequence and in the 2D plane in the (c) sub-figure for σ2
ds = 0,

σ2
n = 0.1, and σ2

R = 0. As observed with σ2
R = 0 and σ2

ds = 0, the EKF accurately tracks

the moving target. However, in the presence of thermal noise (σ2
n > 0), the EKF learns to

compensate for the thermal noise effect over time, as it is independent of the transmitted

power. This aligns with the findings in Fig. 5.7.

In Fig. 5.10, we analyze the scenario where σ2
ds = 0.1, σ2

n = 0.1 , and σ2
R = 0. The results

indicate that the presence of SDSN noise significantly degrades the tracking accuracy of

the EKF, and we can see that in x-y axes tracking in subfigures (a), (b), and 2D Plane in

subfigure (c). This degradation stems from imperfections in the transmitter and receiver

materials, which introduce signal-dependent noise that adversely affects the efficiency of

the tracking process. As described in (5.41), the measurement noise variance is directly

influenced by the variance of SDSN, leading to reduced estimation performance.

In Fig. 5.11, we analyze the impact of RIN noise on tracking accuracy. The results

demonstrate that RIN noise significantly degrades the precision of target tracking. As

explained in (5.41), the variance of RIN noise increases with the quadratic transmitted

power, severely impairing the EKF’s ability to track the target’s position accurately. This

emphasizes the EKF’s sensitivity to power-dependent noise sources such as RIN and SDSN,

further highlighting the challenges these noise types pose in maintaining tracking efficiency.

We can see the RIN effect in the x−axis in Fig. 5.11 (a), in the y−axis in Fig. 5.11 (b),
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and in the x− y plane in Fig. 5.11 (c).

5.6 Conclusion

In this chapter, we investigated position estimation and tracking in indoor VLC systems

using a MISO-VLC setup with multiple light sources as transmitters. An EKF was applied

for real-time position tracking, and its performance was compared against several alterna-

tive techniques. These included a measurement-only approach based on solving geometric

equations from noisy distances, the RLM method, and a PF. The results demonstrated

that the EKF achieves significantly lower RMSE in estimated positions. While PF offers

similar accuracy, it incurs higher computational complexity, and RLM and mesumenrt only

show less robustness due to its sensitivity to nonlinearity and lack of state propagation.

Additionally, we evaluated the impact of increasing the number of light sources on lo-

calization accuracy. Our findings indicate that as the number of light sources increases and

the target remains within their effective coverage, the spatial diversity improves, leading

to enhanced estimation precision. We further investigated the effects of signal-dependent

noise sources, specifically RIN and SDSN. The results showed that higher levels of RIN

degrade both tracking and estimation performance more severely than SDSN. To estab-

lish a theoretical performance benchmark, we derived a closed-form BCRLB. The analysis

revealed that the BCRLB is influenced by SDSN, RIN, and process noise, validating the

EKF’s effectiveness against this theoretical bound and confirming its suitability for dy-

namic VLC-based localization systems. It is worth noting that the current work assumes

LoS propagation. In practice, NLoS components may arise, e.g., due to reflections, po-

tentially impacting the estimator’s accuracy. Therefore, extending the proposed VLP and

tracking framework to account for NLoS conditions in conjunction with signal-dependent
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noise represents an important direction for future research.

5.7 Publications Resulted from This Chapter

Sara ElFar, Maysa Yaseen and Salama Ikki, "Tracking and Positioning Dynamic Targets

in VLC: Signal Dependent Noises and Bayesian Bound Analysis," IEEE Transactions on

Communications , Accepted, 2025.
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Chapter 6

Conclusions and Future Work

This thesis has presented a comprehensive study of channel estimation, range estimation,

localization, and tracking in visible light systems under the influence of signal-dependent

noise sources. A set of novel estimation approaches and recursive techniques was intro-

duced, supported by closed-form theoretical analyses and benchmark evaluations such as

the closed-form expressions of the MSE and the BCRLB. The findings demonstrate that

the proposed frameworks are well-suited for scenarios dominated by signal-dependent noise.

The contributions of this thesis can be summarized by chapter as follows:

Chapter 3 : Channel Estimation

We proposed a novel channel estimation framework that integrates the conventional LS es-

timator with a NN. This hybrid LS–NN estimator was designed to mitigate the degradation

of LS in the presence of SDSN. A closed-form MSE expression for the integrated estimator

was derived using theoretical analysis and validated through simulations. Results showed

strong alignment between analysis and simulations, confirming that once the NN weights
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and biases are determined, the MSENN rule can be applied directly. This contribution

provides the first step toward combining traditional estimation with machine learning for

robust channel estimation in VLC systems.

In this chapter, we further study the case of employing a MLP as the neural network

structure. By varying the number of hidden layers, we investigate how the network com-

plexity influences estimation accuracy. From the semi-analytical mathematical analysis,

we gain insights into the role of neural network weights and biases in correcting the errors

introduced by the LS estimator. To evaluate the performance of the proposed framework,

we also integrate the MLE with the NN, thereby enhancing estimation robustness under

different noise conditions. Various training techniques are applied to demonstrate the effi-

ciency of the proposed algorithm and to highlight the improvement achieved by the hybrid

estimation scheme compared to conventional approaches.

Chapter 4: Range Estimation

We investigated range estimation in a SISO VLC system under the influence of SDSN. To

address this problem, both non-recursive and recursive estimation methods were applied.

For the non-recursive case, we considered MLE and NLS, where a closed-form expression

for the MSE of NLS was derived using parameter transformation. In parallel, we examined

a recursive estimation method based on the EKF, which served as a dynamic benchmark

against the non-recursive approaches.

Simulation results demonstrated that estimation errors increase as the severity of SDSN

grows, yet the EKF consistently provided superior accuracy and robustness compared to

its non-recursive counterparts. We further analyzed the impact of receiver plane tilting

and confirmed the high sensitivity of estimation accuracy to receiver orientation. Finally,
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we derived BCRLB, which established a theoretical benchmark and was found to closely

align with the observed simulation results, reinforcing the validity of the proposed analysis.

Chapter 5 : Localization and Tracking

We extended the analysis to position estimation and tracking in MISO VLC systems. An

EKF was applied for dynamic tracking and evaluated against several alternative tech-

niques. Measurement-only localization was performed using noisy geometric equations,

while recursive approaches such as the RLM algorithm and PF were also investigated.

Among these methods, the EKF achieved the best balance between accuracy and compu-

tational complexity. Although PF offered comparable accuracy, it required considerably

higher computational cost. In contrast, the RLM and measurement-only techniques were

found to be less robust, mainly due to their sensitivity to nonlinearities and lack of state

propagation.

We further examined the impact of increasing the number of light sources, which re-

vealed that a higher source density improves spatial diversity and enhances localization

precision. Importantly, this thesis is the first to systematically analyze the combined ef-

fects SDSN and glsrin on localization performance. The results demonstrated that RIN

causes more severe degradation than SDSN. To provide a theoretical benchmark, we de-

rived a closed-form BCRLB that incorporates both SDSN and RIN, and showed that the

EKF closely approaches this bound in dynamic tracking scenarios.
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6.1 Limitations and Future Research Directions

This thesis has provided new insights into channel estimation, range estimation, localiza-

tion, and tracking in visible light systems under signal-dependent noise. While several

important challenges have been addressed, some aspects were beyond the scope of this

study and naturally point to future research opportunities.

One such aspect is the restriction to LoS scenarios and relatively static channel mod-

els. In practice, NLoS conditions, time-varying channels, and user mobility play a signifi-

cant role. Extending the analysis to incorporate these effects, possibly through advanced

time-series methods such as recurrent neural networks (RNN) and Autoregressive neural

networks (ARNNs), will yield more realistic system models.

Another promising direction lies in expanding the role of machine learning. This work

focused primarily on integrating neural networks with classical estimators, but further ad-

vances can be achieved through meta-learning and federated learning. These approaches

would enable estimators to quickly adapt to new environments and allow distributed de-

vices to collaborate without central data collection, aligning well with the vision of edge

intelligence in future wireless systems.

Future research can also extend beyond the indoor scenarios studied here. Outdoor

VLC, vehicular communication, and underwater VLC are emerging fields where the tech-

niques developed in this thesis could be adapted to address new propagation challenges

such as scattering, Doppler shifts, and weather-induced fading.

Hybridization with other technologies offers another rich area for exploration. Coopera-

tive localization frameworks that fuse VLC with RF-based systems (e.g., Wi-Fi, mmWave,

or 5G/6G) can improve coverage and reliability. Similarly, moving from 2D to 3D localiza-

tion will be essential for deployment in complex real-world environments such as airports,
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hospitals, and shopping malls.

Finally, while this thesis has primarily analyzed SDSN and RIN, practical deployments

must also contend with other impairments such as ambient light interference, LED flicker,

and cross-channel disruptions. Incorporating these effects into estimation and tracking

frameworks represents an important step toward fully practical systems.

In summary, the contributions of this thesis lay the foundation for robust estimation

under signal-dependent noise. Future research that expands the scope to dynamic envi-

ronments, advanced learning paradigms, hybrid system designs, and broader application

scenarios will further advance VLC-based localization and tracking toward real-world adop-

tion.
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Appendix: Derivation of the Prior

Information FIM

This appendix provides the detailed derivation of the prior information FIM, denoted as

JP
(I) The prior information about the PD transition is modeled statistically as Gaussian

in (5.5). The log function of the Gaussian PDF can be expressed as:

log p(P[t] | P[t− 1]) = A− 1

2
log |Q| − 1

2
(P[t]− (P[t− 1] + q[t]))T Q−1 (P[t]− (P[t− 1] + q[t])) ,

(1)

where A is a constant, and Q is a matrix representing process noise. The first derivatives

of the log-likelihood with respect to P[t] and P[t− 1] are:

∂ log p(P[t]|P[t− 1])

∂P[t]
= −(Q)−1 (P[t]− (P[t− 1] + q[t])) , (2)

and ∂ log p(P[t] | P[t− 1])

∂P[t− 1]
= (Q)−1 (P[t]− (P[t− 1] + q[t])) . (3)
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The second derivatives of the log-likelihood are:

∂2 log p(P[t] | P[t− 1])

∂P[t]∂P[t]T
= −(Q)−1, (4)

∂2 log p(P[t] | P[t− 1])

∂P[t− 1]∂P[t− 1]T
= −(Q)−1, (5)

∂2 log p(P[t] | P[t− 1])

∂P[t]∂P[t− 1]T
= (Q)−1, (6)

∂2 log p(P[t] | P[t− 1])

∂P[t− 1]∂P[t]T
= (Q)−1. (7)

Using these derivatives, the components of the Fisher information matrix (G[t]) are defined

as follows:

G11[t] = E
(
−∂2 log p(P[t] | P[t− 1])

∂P[t− 1]∂P[t− 1]T

)
= (Q)−1, (8a)

G12[t] = E
(
−∂2 log p(P[t] | P[t− 1])

∂P[t− 1]∂P[t]T

)
= −(Q)−1, (8b)

G21[t] = E
(
−∂2 log p(P[t] | P[t− 1])

∂P[t]∂P[t− 1]T

)
= −(Q)−1, (8c)

G22[t] = E
(
−∂2 log p(P[t] | P[t− 1])

∂P[t]∂P[t]T

)
= (Q)−1. (8d)

which concludes the proof.
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