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ABSTRACT

Nonlinear energy sinks (NESs) offer significant potential for simultaneous broadband
vibration suppression (VS) and energy harvesting (EH) through the use of an essentially
nonlinear spring (ENS). However, realizing an ENS with minimal energy dissipation
remains challenging. A piecewise-linear spring (PLS) provides a structurally simple and
physically interpretable means to approximate nonlinear stiffness with little added friction.
Yet, NESs employing a PLS often require a relatively high initial energy threshold to
trigger targeted energy transfer (TET), resulting in reduced performance under low-level
excitation. Magnetic springs can introduce bi-stable characteristics that enable snap-
through oscillations, thereby lowering the energy threshold. Existing studies, however,
have focused primarily on ungrounded magnetic spring configurations, leaving the

influence of a grounded magnetic spring (GMS) on NES’s performance largely unexplored.

To address this gap, this research integrates a tunable GMS into a piecewise-linear NES
(PLNES) to reduce the energy threshold, thereby facilitating TET activation and enhancing

broadband VS and EH performance. Four interconnected studies are undertaken:

1. Magnetic Spring Modelling — A tunable multi-stable piezoelectric energy
harvester (PEH) is developed by combining a cantilever beam with an adjustable
magnetic assembly capable of achieving mono-, bi-, and tri-stable states. Two
magnetic restoring force models, based on the magnetic single-point and two-point
dipole approaches, are formulated and optimized via a multi-population genetic

algorithm. Parametric sensitivity analyses are conducted for the optimal models.

2. Hybrid Multi-Stable Energy Harvesting — A multi-stable hybrid energy harvester
(MSHEH), integrating a PEH and electromagnetic energy harvester (EMEH), is
proposed and evaluated numerically and experimentally under various stability
states. Optimal load resistances for balanced energy output across configurations

are determined through optimization.



3. PLS Design Methodology — A systematic approach for designing a PLS is
developed, enabling close emulation of a desired ENS using a cantilever beam
constrained by single- or double-stop blocks. The designed PLSs are validated

against the target ENS through both simulation and experiment.

4. Magnetically Enhanced PLNES (MPLNES) — A novel MPLNES is proposed by
integrating a PLNES with a tunable GMS and a grounded EMEH. The GMS
produces a position-dependent restoring force that shifts the NES’s equilibrium,
enabling easier activation of large-amplitude oscillations. Numerical and
experimental results confirm that the MPLNES triggers TET at lower excitation
levels than the corresponding PLNES. A two-objective optimization reveals that
the MPLNES achieves superior trade-offs between VS and EH, sustaining energy
transfer over a wider range of excitation levels compared with the two other NES

designs.
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Chapter 1. Introduction

1.1 Background

1.1.1 Vibration Suppression

Vibration control technologies are widely used in both civil engineering and mechanical
engineering and can be broadly categorized into passive [1], active [2], and semi-active [3]
regimes. Among them, the passive vibration control is the most well-established one due

to its inherent robustness, simplicity, and ease of maintenance.

As a passive vibration control device, a dynamic vibration absorber (DVA) or tuned
mass damper (TMD) consists of a mass and a linear spring. When a one-degree-of-freedom
(DOF) host structure is subjected to a harmonic excitation with a constant frequency, its
steady-state vibration can be suppressed by attaching a DVA whose natural frequency is
tuned to be the exciting frequency. Adding a DVA to a single-DOF system yields a two-
DOF system. The new system has two natural frequencies. One of the shortcomings of the
DVA is a narrow operating band. If the exciting frequency drifts, the system may enter a
new resonance. Adding a linear damper to a DV A can improve its performance robustness,
making it less sensitive to variation of the exciting frequency. In this thesis, a damped DVA
is considered. Hereinafter, TMD is used to refer to a secondary linear mass-spring-damper
system used to suppress the vibration of a primary system. Commonly, the natural
frequency of a TMD is tuned to match the fundamental natural frequency of the primary
system. When the primary structure experiences resonance, the TMD vibrates out of phase
and the damper will effectively dissipate the vibrational energy, thereby reducing the
response of the host structure. Figure 1.1 shows the schematic of a primary system attached

with a TMD. In the figure w,, represents the base excitation, x,, and x, are the

displacement of the primary mass and TMD relative to the base, respectively, m,, k,, and



cp are the mass, stiffness and damping coefficient of the primary system, respectively, m,,

k. and c, are the mass, stiffness and damping coefficient of the TMD, respectively. The
governing equations of the combined system can be derived based on the Newton’s second

law:

m,X,+c,x, +kx,—k,(x,—x,)—c,(x,—X,)=—m,W, (1.1)

mX, +c, (X, —x,)+k, (x,—x,)=—m,W, (1.2)

a

—_—
mp xp + Wp
IL.
c o
—W—
kﬂ
m!T
Xa+Wp
CP
iL
o
fcp _|
Wp
| Base | —_—

Figure 1.1 A primary system attached with a TMD.

The key limitation of a TMD is that its effectiveness is typically confined to a narrow
frequency band, making it less suitable when the host structure is subjected to broadband
or transient excitations [4]. Various approaches have been proposed to address this issue,
such as employing multiple TMDs tuned to respond to different frequency components [5,
6] or incorporating nonlinearity into the system to broaden the operational bandwidth [7,
8]. As a special nonlinear TMD, a nonlinear energy sink (NES) consists of a small mass, a
damper, and an essentially nonlinear spring (ENS). The restoring force of an ENS is a cubic
polynomial. As illustrated in Figure 1.2, there are two main NES configurations:
ungrounded or grounded. In the ungrounded configuration, the NES is connected to the
primary mass through an ENS k,, and a damper c,. The governing equations of the system
with the ungrounded NES can be expressed as:

2



m,X,+c, X, +k,x, —c,(x,—%,)—k,(x, —xp)3 =—m,W, (1.3)
mX, +c, (X, —x, ) +k, (x,—x, ) =—m i, (1.4)

As for the grounded configuration, the NES mass is connected to the ground using an ENS
k,, and damper c, and weakly coupled to the primary mass via a linear spring k,. The

governing equations are given by:

m,X,+c,x,+tk,x, —c,(x,—x,)—k,(x,—x,)=—m

W, (1.5)

P
mi, +c,x, +kx’—c, (X, —x,)—k,(x, —x,)=—m,W, (1.6)

The essential nonlinearity of the NES allows it to engage in 1:1 resonance with the
primary system, thereby facilitating targeted energy transfer (TET), where energy from the
primary system is transferred to the NES in a one-way irreversible fashion [4]. The
ungrounded NES is very efficient in terms of TET, and is commonly used to absorb shock
or periodic excitations, whereas the grounded NES is less efficient in terms of TET due to
the lack of a continuous nonlinecar normal mode under excitation [9]. However, the
grounded NES has the advantage of being less constrained by the mass ratio [10], and such
a configuration is generally used to suppress the transient and steady-state vibration in rotor

systems [11].
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Figure 1.2 Two types of NES: (a) a primary system attached with an ungrounded NES;
(b) a primary system attached with a grounded NES.

1.1.2 Comparison of TMD and NES

To further explore the difference between the TMD and NES, a numerical simulation is
performed to demonstrate the frequency response characteristics of the primary system
with TMD and NES based on Egs. (1.1) - (1.4). The parameter values used in the

simulation are taken from Chapter 5. For the primary system: m, = 0.882 kg, k, =
4.605 x 103 N/m, c,= 0.8604 Ns/m so that fp = \/k,/m,/2m =11.5 Hz and {, =
¢p/(2/myk,) =0.005. For both TMD and NES: m, = 0.9 kg and ¢, = 0.0179 Ns/m.

For the TMD configuration, its natural frequency is tuned to be f, = 11.5 Hz so that k, =
(2nf)mg = 469.89 N/m and {; = c,/(2/mgk,) =0.049 . The ratio § = f,/f, is
referred to as the tuning parameter. Note that in this case, the TMD is designed so that § =
1. For the NES configuration, Using f,,, = 15 Hz and z,, = 0.02 m in Eq. (4.8) yields
k, = 2.6648 x 10° N/m. The excitation is modeled as a sinusoidal acceleration applied to
the base, with a constant amplitude of 4, = 2 m/ s? and a frequency range varying from 5

Hz to 25 Hz. As a baseline, the frequency response of the primary mass without the TMD
4



can be calculated analytically [12]:

Y
X ()| = e . (1.7)
) o)
L -0 | +
mP mP

where w is the frequency of the base excitation. To evaluate the frequency response of the

primary mass with the TMD, Egs. (1.1) and (1.2) can be formulated in the frequency

domain as [12]:
(-&*M + joC+K)X =F (1.8)

where M, C, K, are the mass, damping coefficient and stiffness matrices, respectively,
which can be expressed as:
m 0 c,+c, —c k +k, —k
M=| " ,c=| " “ ‘LK=" “ ¢ (1.9)
0 m, —-c, c, -k, k,
X represents the displacement vector, F is the inertial force vector due to base acceleration.

Then the frequency response can be found by X = HF, where H = (—0?M + joC + K)™1

is the frequency response matrix.

The frequency response of the primary mass with the NES can be obtained through
frequency up-sweep and down-sweep simulations. For this purpose, the base excitation is

varied as follows:
,(t) = A, -sin (27 f,,, t + 2771 ) (1.10)

where fgiqre = 5 Hz (up-sweep) or 25 Hz (down-sweep), r = £0.02 Hz/s is the frequency
changing rate, and the time duration of the simulation is 1000 seconds. As illustrated in
Figure 1.3, the amplitude of the primary mass without the TMD shows a sharp peak around
the natural frequency f,,, and the introduction of the TMD efficiently reduces this peak, but
produces two lower peaks around the new natural frequencies. This indicates that the

efficiency of TMD is limited by a narrow frequency bandwidth. In contrast, the up-sweep



and down-sweep responses of the primary mass with the NES exhibit jump phenomena
around f, due to the nonlinear nature of the coupled system. Although the NES does not
suppress the resonance as sharply as the TMD, it offers more robust performance over a

wider frequency range.

0.04 . . |
—— without TMD

0.03 R [ PTTTPrT T With TMD B
—_ ==-==with NES, up-sweep
E‘; 0.02 - with NES, down-sweep | |
w

0.01 - 7

Py — L v —
5 10 15 20

Frequency (Hz)

Figure 1.3 The frequency responses of the primary mass without TMD, with TMD
and with NES.

To better demonstrate the transient behaviours of TMD and NES, A series of
simulations is conducted by varying the primary system’s natural frequency f, (ranging
from 1 - 40 Hz) and initial velocity V (ranging from 0.05 - 2 m/s?). Egs. (1.1) and (1.2) for
the TMD configuration, and Egs. (1.3) and (1.4) for the NES configuration are numerically
solved using MATLAB ODE 45 function over a time duration of 10 seconds. It should be
mentioned that w,, is set to zero in the simulation. To evaluate the transient performance,

the following index is defined:

D =% (" —x Ydtx100% 111
L=, Ga=%,) ¢ (1.11)

where E; = mpV2 /2 is the initial energy. This index represents the percentage of the initial
energy dissipated by the TMD damper or the NES damper over the time duration 7. As
illustrated in Figure 1.4(a), the performance of the TMD is independent of the initial
velocity, a feature of the linear system. The TMD achieves highest efficiency only when

its natural frequency f, (11.5 Hz) matches the natural frequency f, of the primary system,
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and the performance drops significantly when f; deviates from f,. This indicates that the
effectiveness of the TMD is limited in a narrow frequency band. In contrast, as shown in
Fig. 1.14(b), the performance of the NES is less sensitive to variations in f,,, demonstrating
its robustness. However, amount of the energy dissipated by the NES depends on the initial
velocity. Also, beyond a certain value of f,, a minimum initial energy threshold is required
to trigger TET, making it less efficient under low excitation levels. The above analysis
highlights the distinct characteristics of the TMD and NES. Table 1.1 summarises these
differences, consolidating the underlying principles, frequency-response behaviour,

transient performance, and limitations of the two configurations.

100 100

80 80 -

60 60 -

D
D

40 40 -

20 - 20

40 T
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Figure 1.4 Transient performance D, verse f,, and V: (a) TMD configuration; (b) NES

configuration.



Table 1.1 Comparison of TMD and NES.

TMD NES
Principle Resonate with the primary Uses an essentially nonlinear
structure's natural frequency to spring to enable the Targeted
maximize energy dissipation. Energy Transfer (TET).
Energy flow Reversible energy exchange One-way irreversible energy

transfer [13]

Steady-state

Sharp vibration suppression at

More uniform vibration

performance the tuned frequency. suppression over a broad frequency
range.
Transient Independent of initial energy; ~ Dependent on initial energy; robust
performance high efficiency only when to the variation of f,,.
fp matches the tuned value.
Limitations Narrow bandwidth; sensitive to Less efficient at low level

detuning. excitation.

1.1.3 Realization of ENS in NES

In TMD design, the tuning parameter £ is chosen to be close to 1 or § — 1 so that the
TMD is strongly coupled to the primary system. In contrast, the NES can be considered to
possess a zero natural frequency or w, = 0 so that § = 0. In this sense, the NES is weakly
coupled to the primary system. Achieving an essential nonlinearity in practical
implementation remains a challenge, as any real spring inherently exhibits a certain degree
of linear stiffness [14]. To realize an ENS, a classic approach is to utilize the geometric
nonlinearity [15, 16]. To illustrate this approach, the NES proposed in [16] is used as an
example. As shown in Fig. 1.5, the two linear springs with stiffness k and initial length [
are connected to the NES mass which can slid along the guide rail where P represents the
initial tension in the springs. By considering the force balance in the horizontal direction,

the restoring force of the NES is derived:

2u(P—kl)
NP +u?

8

f=2ku+ (1.12)



which can be further approximated through a Taylor series expansion:

2P  kl-P
f(u)z7u+ g u’ +0(u®) (1.13)

Eq. (1.13) reveals that an ideal ENS is attainable only if P equals to zero. Besides the
mechanical spring type, several other practical implementations have been proposed, such
as cam-roller mechanisms [17, 18], magnetic springs [19, 20], and piecewise linear springs
(PLS) [21, 22]. These studies have shown that by making the tuning parameter as small as
possible or § « 1, a nonlinear oscillator can behave similarly like a true NES, exhibiting
the typical TET behaviour. In this thesis, an NES with a small linear stiffness and large
nonlinear stiffness is referred to as a variant NES. When a variant NES is attached to a

primary system, the tuning parameter is greater than zero or § > 0.

2 springs length [
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.| ~ ] . .
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Figure 1.5 Illustration of achieving ENS through mechanical springs: (a) the
apparatus; (b) the design of ENS [16].

These designs have their pros and cons. For example, the cam-roller system shows an
advantage to customize different stiffness characteristics, while it introduces friction due

to contact between the roller and cam surface. The PLS offer a structurally simple and

9



physically interpretable way to approximate nonlinear stiffness with little added friction.
However, the NES constructed with a PLS still faces challenges in triggering TET at low
excitation levels. The magnetic springs provide another non-contact means of introducing
nonlinearity. But the magnetic forces are sensitive to the alignment, making it challenging
to build an accurate magnetic force model for a complex magnet assembly. More details
about the design, analysis, and application of NESs are summarized in a recent review

paper [23].

1.1.4 Energy Harvesting

In recent decades, there has been growing interest in developing vibration energy
harvester (VEH) to provide a sustainable power source for wearable electronics and
wireless sensor networks. Vibration energy harvesting involves converting ambient
mechanical vibrations into usable electrical energy. There are four main kinds of
conversion mechanisms, namely, electrostatic [24], triboelectric [25], electromagnetic, and
piezoelectric. The first two types are commonly employed in MEMS
(Microelectromechanical Systems) applications, while this thesis focuses primarily on the

latter two types.

An electromagnetic energy harvester (EMEH) is designed based on Faraday’s law. As
illustrated in Figure 1.6(a), an EMEH consists of a magnet suspended by a spring and a
coil fixed on the vibrating body. Under base excitation, the relative motion between the
magnet and the coil causes the magnetic field lines to cut through the coil, inducing an
electric current. The lumped-parameter model of such a single-DOF system is shown in
Figure 1.6(b), where x is the magnet’s displacement relative to the base, k is the stiffness
of the spring, and c,, is the coefficient of inherent mechanical damping in the system, X, is
the transduction factor of the EMEH, E = K,x is the so-called electromotive force (EMF)
of the EMEH, I is the output current of the EMEH, R, and L, are the resistance and
inductance of the coil, respectively, and R, is the resistance of a load resistor connected to
the output of the EMEH. By applying Newton’s second law and Kirchhoff's law, the

governing equations can be derived as:



mx+c X+kx+ f, =—-mw, (1.14)
LC§+(RC+R,6)1:Ktx (1.15)
t

where based on Lenz’s law, f, = K,I represents the back electromotive force. If wL, <
R, + R;, where w is the frequency of vibration, I = K;x/(R. + R;.) from Eq. (1.15).
Then Eq. (1.14) becomes

mx+(c +c,)X+ke=-mw, (1.16)

where ¢, = K?/(R, + R;.) is referred to as the electrical damping coefficient. Eq. (1.16)
indicates that an EMEH with a resistive load is equivalent to an electrical damper. A

comprehensive review of EMEH design and modelling can be found in [26].
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Figure 1.6 Illustration of EMEH: (a) a schematic of EMEH [27]; (b) a lumped-
parameter model of EMEH.

The piezoelectric energy harvester (PEH) has two operation modes, namely, d31 mode
(the external force is perpendicular to the polarization direction) and d33 mode (the stress
has the same direction as the polarization of the material). The classic configuration of PEH

in d31 mode is the cantilevered type. Figure 1.7(a) illustrates a typical cantilevered PEH

11



with a tip mass. Under the base excitation, the tip mass oscillates vertically, causing the
beam and piezoelectric plate to deflect. Through the direct piezoelectric effect of the d31
mode, this mechanical deformation is converted into electrical voltage. The lumped-
parameter model of a single-DOF PEH is shown in Figure 1.7(b), where v, is the voltage
over a load resistor connected to the output of the PEH, 6 is the electromechanical coupling
coefficient. The electromechanical coupling can be modelled using a force-voltage analogy.
The mechanical deformation produces an output current that is proportional to the strain

changing rate [28]. The governing equations of the PEH can be expressed as follows:

mi+c X+kx+0v =—-mw, (1.17)
m j2

CS9 +~2_9¢=0 1.18

v+ 0%= (1.18)

Ip

where C* is the capacitance of the PEH and Ry, is the resistance of the load resistor. With

some derivation [29], Eq. (1.17) can be rewritten as

mi+(c, +c,)x+(k+k)x=—-mw, (1.19)

where c,= Rlpez/[IJr(lepcp)Z] and k,= (a)RZPH)Zcp/[]vL(wRchp)Z] are referred to as the

electric damping coefficient and the electrical stiffness, respectively. Eq. (1.19) shows that
in addition to inducing electrical damping, a PEH with a resistive load adds additional
stiffness to the system. Note that in the case of PEH, c, and k, are frequency dependent.
A more detailed discussion on principles and modelling of PEH can be found in a recent
review paper [30]. To better compare EMEH and PEH, Table 1.2 summarizes their

advantages and disadvantages.



Table 1.2 Summary of advantages and disadvantages of EMEH and PEH.

Energy harvester Advantages Disadvantages
ype
Ease of manufacture. Require magnetic material.
High current output. High electrical damping.
EMEH Suitable for' lovy-frequency Lower energy density.
applications.

Easy to scale up.
Durable over long periods.

Simple structure. Material brittleness may limit
durability.
High energy density. Low current output.
PEH High voltage output. Charge leakage.

Small electric damping.
Easy integration.
Robust with no moving parts.

Moreover, to further increase the energy density of the energy harvesting system, a
hybrid energy harvester (HEH) is proposed. It usually combines two or more energy

harvesting mechanisms. A more detailed literature review on HEH can be found in Chapter

3.
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Figure 1.7 Illustration of PEH: (a) a cantilevered PEH [31]; (b) the lumped-parameter

model of the PEH.
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1.1.5 Simultaneous Vibration Suppression and Energy Harvesting

In the last two decades, researchers have been exploring the use of a same device to
suppress vibration and harvest energy simultaneously. This dual-functional concept has
been particularly explored in the context of large-scale civil engineering structures under
the wind-induced vibration. In the study conducted in [32], a scale-down model was used
to estimate the amount of energy that can be harvested from a 75-story building. The study
found that under the wind load at a wind speed of 13.5 m/s, such a building could yield
more than 85 kW of harvestable power. To corroborate this magnitude, the field
measurements from the TMD installed in Taipei 101 reported a peak energy dissipation of
about 40 kW from a single viscous damper (Figure 1.8) [33]. Nowadays, oil-based viscous
dampers are commonly used in large-scale TMDs. As such viscous dampers simply convert
vibrational energy into thermal energy generated heat imposes stringent thermal design
requirements, including provisions for forced cooling and the use of heat-resistant
components [34]. A dual-functional TMD provides an alternative solution. Once vibration
energy is passively transferred into the TMD, it can be partially converted into electricity
by integrating the TMD with an appropriate VEH. For instance, if the TMD is coupled with
an EMEH, the system is referred to as a TMD-EMEH [35-37], while coupling it with a
PEH yields a TMD-PEH [38, 39]. The harvested energy can be stored in rechargeable
elements (e.g., batteries or supercapacitors) via power-management circuits [40], or used

to power wireless sensor nodes for structural health monitoring [35].
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Figure 1.8 Power dissipated by one of the eight oil-based viscous dampers in the
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TMD of Taipei 101 building under wind-induced vibration [33].

However, as pointed out in Section 1.1.2, the TMD has a narrow operating band and its
VS and EH performances remain limited under broadband or transient excitations.
Introducing essential nonlinearity through an NES can efficiently broaden the operational
bandwidth. Building on this concept, various NES-based VEHs have been proposed,
including NES-EMEH [41, 42] and NES-PEH [43, 44]. Furthermore, an NES integrated
with both PEH and EMEH was proposed in [45], and the parametric studies showed that
adjusting external resistance and coil parameters significantly affects both VS and EH
performance. More detailed literature about the dual-functional NES can be found in the

introduction of Chapter 5.

1.2 Research Gaps and Objectives

As pointed out previously, it is challenging to realize a true ENS without introducing
friction. Any mechanical damping in a dual-functional NES should be kept as low as
possible to maximize harvested energy, yielding a variant NES. A major limitation of the
variant NES designs lies in their inefficiency under low-energy excitation, primarily due
to the relatively high initial energy threshold required to trigger TET. Reducing this
threshold remains particularly challenging. Recent studies have utilized magnetic springs
to create bi-stable nonlinear characteristics in NES to achieve both VS and EH [46, 47].
The snap-through oscillation enables the NES to perform a large-amplitude response under
low-level excitation. However, most of these efforts focus on ungrounded magnetic spring

configurations.

One of the author’s previous works [48] demonstrates that integrating a grounded
magnetic spring (GMS) into a variant NES offers distinct advantages. The GMS applies a
position-dependent magnetic force to a movable magnet attached to the NES mass,
dynamically shifting the equilibrium position of the NES in response to the motion of the
primary system. This unique feature significantly lowers the energy threshold required to

trigger TET, thereby presenting a promising approach to enhancing both VS and EH
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performance.

Nevertheless, to the best of the author’s knowledge, the following research gaps remain

unexplored and warrant further investigation: design a tunable magnetic spring that is

suitable for a grounded NES; design a PLS to emulate a desirable ENS closely; develop a

GMS to enhance the TET performance in terms of both VS and EH in a wide operating

band; incorporate an EMEH into the GMS; overcome new challenges in modeling and

analyzing. To address these gaps, the study intends to accomplish the following four

objectives:

Develop a multi-stable PEH consisting of a cantilever beam and an adjustable
magnetic assembly capable of achieving mono-stable, bi-stable, or tri-stable states
by tuning its geometric parameters. Establish an accurate model for the magnetic
restoring force for such a spring through optimization. Validate the model accuracy

experimentally.

Design a HEH that incorporates both PEH and EMEH in a cantilever beam
configuration. This also serves as a basis for the theoretical modelling and practical

implementation of a suitable energy harvester for a NES system.

Develop a systematic methodology to design a PLS consisting of a cantilever beam
constrained by a pair of single- or double-stop blocks to emulate a desired ENS.

Evaluate the designed PLS numerically and experimentally.

Develop a magnetically enhanced piecewise-linear nonlinear energy sink
(MPLNES) by integrating a GMS into a PLNES and a grounded EMEH. Establish
the modelling and analysis approaches for the MPLNES. Evaluate VS and EH
performances of the MPLNES via numerical simulation and experimental

validation.

1.3 Organization of Thesis

The thesis is presented in an “integrated-article” format and is organized into six



chapters:

Chapter 1. This chapter introduces the background of the research and identifies the
research gaps in the current literature. Then, the research objectives are established to

address these gaps.

Chapter 2. This chapter presents a tunable multi-stable piezoelectric energy harvester
consisting of a cantilever beam and a magnet assembly capable of achieving mono-stable,
bi-stable, and tri-stable configurations. Two analytical models for the magnetic restoring
force are developed using point dipole and two-point dipole approximations, respectively.
Dynamic tests are conducted to validate the models, and a multi-population genetic
algorithm is used to optimize the model parameters. The resulting models are analyzed for
parameter sensitivity and used to map the stability regions of the system. This study
establishes a foundation for accurately modelling compact magnetic assemblies for NES

applications.

Chapter 3. This chapter introduces a multi-stable hybrid energy harvester (MSHEH)
combining a PEH and an EMEH. A modelling method is developed to compute the EMEH
transduction factor and derive the magnetic restoring force using the two-point dipole
model. The system’s performance is evaluated under various configurations including
linear, mono-stable, bi-stable, and tri-stable states, using simulations and experiments.
Pareto optimization is applied to identify optimal load resistances for a balanced energy

output.

Chapter 4. This chapter proposes a systematic design method for a PLS that emulates
an ENS closely. The PLS is realized using a cantilever beam constrained by single or
double stop blocks. A target restoring force is defined based on equivalent stiffness theory,
and optimal stop block parameters are obtained using least squares fitting. Simulations and
experiments are performed to evaluate the force-displacement behavior, potential energy

distribution, and instantaneous frequency variation.

Chapter 5. This chapter presents a magnetically enhanced piecewise-linear nonlinear

energy sink (MPLNES) for achieving both vibration suppression and energy harvesting.



The proposed system includes a small secondary mass, a PLS, a GMS, and a grounded
EMEH. Two-variable mathematical models are developed to describe the nonlinear
restoring force and transduction factor of EMEH. Time response analyses, wavelet spectra,
and frequency-energy plots are used to compare the performance of the MPLNES with that
of a conventional PLNES. A two-objective optimization identifies optimal initial energies
and load resistances for three NES configurations. Experimental validations agree well
with simulations, confirming the effectiveness of the MPLNES for dual-function

applications.

Chapter 6. This chapter summarizes the key insights and conclusions observed in the

research. Then, the future studies are proposed.

In addition, two conference papers and one conference abstract that are related to this
thesis are included as appendices. Appendix A reports the development of a piezoelectric
energy harvester that is integrated with a grounded and tunable multi-stable nonlinear
energy sink, including the system design, modelling, and transient response analysis.
Appendix B addresses identification of the restoring force of a grounded multi-stable NES
with a tunable magnetic spring, where a polynomial model is formulated and linear
regression is applied to determine its coefficients. Appendix C deals with the design and

evaluation of three variant nonlinear energy sinks
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Chapter 2. Validation and Optimization of Two Models for

the Magnetic Restoring Forces Using a Multi-stable

Piezoelectric Energy Harvester

2.1 Introduction

In this century, wireless sensor networks have been playing an important role in
the Internet of Things (IoT). Normally, the wireless sensors are powered by batteries
which are not eco-friendly. It has been much desirable to use vibration energy
harvesters to solve costly battery replacement problem and make wireless sensor
networks autonomous [1]. Ambient vibration can be converted to electricity by four
methods: piezoelectric [2, 3], electromagnetic [4-7], electrostatic [8-10] and
triboelectric [11, 12]. The main advantages of the piezoelectric vibration energy

harvesters (PVEHs) are their large power densities and ease of operation.

A traditional PVEH is a single-degree-of-freedom linear oscillator that performs
efficiently only at resonance [13-15]. To broaden the response frequency bandwidth,
various nonlinear energy harvesters have been proposed [16-19]. According to the
system stability, the nonlinear PVEHs can be classified as mono-stable and multi-
stable, such as bi-stable or tri-stable. The nonlinearity can be realized by introducing
the nonlinear restoring forces to the piezoelectric beam. Applying magnetic forces to
the beam is one of the convenient ways to achieve that. In [20], a PVEH is proposed
that consists of a piezoelectric cantilever beam with a tip magnet, the system is
subjected to an external magnetic field generated by a pair of fixed magnets. Such a
mono-stable energy harvester can exhibit softening or hardening behaviors when the

magnetic interaction is adjusted. By applying different external magnet tuning
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strategies, two kinds of bi-stable energy harvester (BEH) can be achieved: attractive
magnetic force type [21, 22] or repulsive magnetic force type [23-25]. The study in [26]
found that, for a certain range of excitation intensity, the BEH can largely enhance the
power output performance due to its snap-through characteristic. Further, in order to
reduce the potential barrier of BEHs, tri-stable energy harvesters (TEH) have been
proposed by introducing a middle potential well between BEH’s two potential wells.
Based on the configuration of the BEH proposed in [27], TEHs were achieved by tuning
the angular orientations [28, 29] or the spatial positions [30, 31] of the two fixed
magnets. However, the disadvantage of the aforementioned tunable multi-stable
PVEHs is that they need more than one fixed magnet to achieve the tri-stable state.
Thus, installing multiple fixed magnets would take more space, which is undesirable in
realization through a micro-electromechanical system (MEMS). And also, an
asynchronous operation of tuning the angle or position of the fixed magnets will lead

to the asymmetric potential wells for the TEH.

In the dynamic modelling of a tunable multi-stable PVEH, an accurate magnetic
force model is crucial. Generally, the magnetic force between two magnets is
complicated, especially when the separation distance between them is relatively small.
There are several commonly used models for this purpose. The most widely used one
is the so-called equivalent magnetic point dipole approach [32-34] which treats each
magnet as a point dipole at its center. However, this approach has a limitation as it can
offer a reliable prediction only when the distance between the magnets is much greater
than their dimensions. In light of this limitation, a magnetic force modelling method
based on the equivalent magnetizing current theory was proposed [35, 36]. The study
indicates that the magnetizing current model offers better accuracy than the equivalent
magnetic point dipole model. Accordingly, an equivalent magnetic 2-point dipole
approach is proposed in [37], which only counts the magnetizing current on the
permanent magnet’s left and right polarized surfaces and uses two total surface charges

to represent a magnet. It has been proved that the accuracy of the equivalent magnetic

24



2-point dipole model was significantly improved by using the proposed method [22,
37-39]. Currently, such approach is mainly used in the modelling of the magnetic force
between thin cubic permanent magnets, the accuracy of the magnetic force model of

the thick cylinder magnets based on such approach still needs to be examined.

In this study, a new tunable multi-stable piezoelectric energy harvester is proposed.
Different from the existing design which employs multiple fixed magnets to achieve a
tri-stable state, the proposed apparatus consists of a stationary magnet and a cantilever
beam whose free end is attached by an assembly of two cylindrical magnets that can be
moved along the beam and a small cylindrical magnet that is fixed at the beam tip. By
varying the gap between the stationary magnet and the tip magnet, and the distance
between the magnet assembly and the tip magnet, the system can assume three stability
states: tri-stable, bi-stable, and mono-stable, respectively. Modelling the magnetic
restoring forces for a tunable multi-stable energy harvester poses a challenge as a
reliable model should give an accurate prediction over a wide range of the tuning
parameters. For this purpose, the developed apparatus is used to dynamically validate
two commonly used models: the equivalent magnetic point dipole approach and the
equivalent magnetic 2-point dipole approach proposed in [37]. The study shows that
although the second model offers more accurate results than the first model, it still fails
to predict the restoring forces in some cases. A numerical optimization is carried out to
improve the accuracy of both models. The study shows that by using the optimal

parameters, both models can achieve a comparable accuracy.

The rest of the chapter is organized as follows. Section 2 presents the proposed
apparatus. Section 3 derives the magnetic restoring force models based on the
equivalent magnetic point dipole approach and the equivalent magnetic 2-point dipole
approach, respectively. Section 4 validates the two models dynamically. Section 5
conducts a model optimization. Section 6 uses the optimum model for the parametric
sensitivity study and the stability region determination. Finally, Section 7 draws the

main conclusions of the study.
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2.2 Apparatus

Figure 2.1 shows a CAD drawing of the developed apparatus. A cantilever beam
is constructed by connecting a piezoelectric transducer (S128-J1FR-1808YB, Midé) to
a thin stainless-steel plate. One end of the cantilever beam is clamped to a stand that is
fastened to a base, while its other end is fixed with a small cylindrical magnet B and
attached with a holder for an assembly of two identical cylindrical magnets A and C.
The holder for magnets A and C can slide along the beam. A large cylindrical magnet
D is fixed in a stand that can slide along the base. When the cantilever beam is at its
equilibrium position or undeflected, the four magnets situate on the same vertical plane
and magnets B and D are collinear. By sliding the stand for magnet D, the distance
between magnet B and magnet D can be adjusted. By sliding the holder along the beam,
the distance between magnet B and magnets A, C can be varied. Figure 2.2 illustrates
the spatial positions and polarities of the four magnets where m,, mp, m-, mp are the
magnetic moment vectors, 4., By, Cy and 4, B, C denote the center positions of
magnets A, B and C when the beam is undeformed and deformed, respectively, and the
origin of the coordinate system is also located at B, rp, represents a vector from A4 to

D, rpp represents a vector from B to D, and the vector rp,’s projection on the x-y plane

is represented by rp .
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PZT Magnet A Magnet B Magnet C

Magnet D

Figure 2.2 Spatial positions of the magnets.

Figures 2.3 and 2.4 show the front view and top view of Figure 2, respectively, where
d is the distance between magnet D and magnet B when the beam is undeformed, and
h is the distance between magnet A or C and magnet B, / is the length of the cantilever

beam, and w is the distance between the axis of magnet B and that of magnet A or C.
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Figure 2.4 Top view of the apparatus.

2.3 The Restoring Force of the System

The total restoring force f_of the system in the x-direction consists of a restoring
force f, due to the beam’s elasticity, an attractive magnetic force 1, , between magnet
D and magnet B and two repulsive magnetic forces f, , between magnet D and magnet
A, and f, . between magnet D and magnet C. Since magnets A and C are identical and

symmetrical about the central line of the beam, the values of f,,, andf), . are equal.

Then the total restoring force can be expressed as:

fx:fe+fDBx+fDAx+fDCx:kbx+fDBx+2fDAx (2.1)
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where £, is the stiffness of the beam which can be determined experimentally. In what

follows, the analytical restoring forces f,, and f,, will be found using two

approaches.

2.3.1 Equivalent Magnetic Point Dipole Model

Commonly, a pair of magnets is regarded as equivalent magnetic point dipoles by
assuming that the magnet sizes are much smaller than their separation distance [40].
Firstly, the magnetic force between magnet B and magnet D is considered. According

to this approach, the force exerted by magnet B on magnet D is given by:
S5 =V(Bpy-my) (2.2)

where V denotes the vector gradient operator and Bpp is the magnetic flux density

generated by magnet D upon B. Eq. (2.2) can be expanded as:

_ pgmymy

Jos

4’ [ﬁDB(’hB'mD)_SﬁDB(’hD'fDB)(;DB"hB)-{_’hB(’hD'ﬁDB)_l—’hD('hB'fDB)] (2.3)
7y

where mp, mp,, and rgp, are the magnitude of mg, m, and rpp, respectively, n,, m,

and 7, are the unit vector of mp, mp, and rpp, respectively. These unit vectors can be

expressed as:

m, =|sin(a) —cos(p) 0], sir,, =[0 —10], £, =[—sin(B) cos(8) 0]. (2.4)

Substituting the above unit vectors in Eq. (2.3) and the magnetic force in the x-direction

can be obtained in the following form:

Fo = —3’u°m—am’3{sin(ﬂ)[cos(a)—5cos(ﬂ)cos(,b’—a)]+sin(a)cos(ﬂ)}. (2.5)

4rry),

Since the slope of the beam’s tip is relatively small, it is assumed that £ BOB, = a.
Also, it is noted that § can be found from the triangle DRB. Thus, Eq. (2.5) can be
expressed as follows:

29



3u,momyx 5 3 2 2 2 2
_ jﬂl%BlB {1_2y_d_g[_y +(1-2d)y* +(2d1-d* ) y+dl1-(y+d )x }}(2.6)

/ DBx —

where y =1 — v I’ — x2. Similarly, the magnetic force between magnet A and magnet D

in the x-direction can be found as:

_3pmym x| =2y-dy S

T . . [_y3 +(l0 —2d0)y2 +(2d0]0 _dOZ)y+d0210 —(y+d0)x2}} 2.7)
DA"0 DAxy DAxy

where dy =d + h and [, =/ — h. Substituting Egs. (2.6) and (2.7) into Eq. (2.1) yields
the analytical model of the total restoring force. In Egs. (2.6) and (2.7), the magnitudes

of the magnetic moment vectors are determined by:
m, =MV, my,=MV,, m,=MV,, (2.8)

where V4, Vp and Vp are the volume of the magnets A, B and D, respectively, M =
B,./u is the magnetization of magnets A, B and D, where B, =1.46 T is the magnetic

residual flux density and u = 471x10”H/m is the vacuum permeability.

2.3.2 Equivalent Magnetic 2-point Dipole Model

As mentioned in [35], the equivalent magnetic point dipole approach’s accuracy
deteriorates when the separation space between the magnets becomes small. In light of
such limitation, an improved approach was proposed in [37]. In this study, such an
improved approach is named as equivalent magnetic 2-point dipole model as the
approach treats a magnet as a 2-point dipole. In what follows, the magnetic restoring
force of the system is developed using this improved method. Figures 2.5(a) and (b)

show the top view of the apparatus when the beam is deformed.
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Figure 2.5 Top view of positions of magnets of the apparatus: (a) magnet B and D;
(b) magnet A and D.

As shown in Figures 2.5 (a) and (b), the origin of the coordinate system locates at
By, the centers of the magnet A, B, and D are represented by points 4, B and D,
respectively, point 4y and B, depict the positions of the magnets A and B when the
beam is undeformed, /5, /p and I, are the length of magnet B, magnet D and magnet A,

respectively, and / is the distance between magnet A or C and magnet B in y-direction,

['is the length of the cantilever beam, r;s, r;s, 35 and rys are the vectors from Q; to O,
0,, O, and Q,, respectively, and ry¢, 126, 136 and rys are the vectors from O, to O,
0,, O, and Q, respectively, O, and Q,, are the total charges of the left and the right
surfaces of magnet B, respectively, O, and Q, are the total charges of the left and the
right surfaces of magnet A, respectively, O, and O are the total charges of the left and

right surfaces of magnet D, respectively. The total surface charges can be expressed as

31



follow:

Ql = _MSB Qz :MSB Q3 :MSA Q4 = _MSA

O, =-MS,, O,=MS, 29

where Sp, S, and Sp, are the surface area of magnets B, A and D, respectively, and M

is the magnetization of the magnets defined previously.

Similar to the previous section, the magnetic force between magnet B and magnet

D is considered first. Based on the Boit-Savart law, the magnetic force exerted by

magnet B on magnet D is the combination of the magnetic force exerted from O, and

0, to O, and O, which is given in the following equation:

Joz =BO +B,0, (2.10)

where B and B, are the magnetic current density at O, and O, generated by O, and

O, which can be defined as follows:

Ho X, -X, Xs— X,
B = + ,
1 472_[Q5| 5_ 1|3 Q6| 6—)T1|3J
Hy X, - X, X, —X,
B, = + 2.11
2 47z[Q5|X5—X2|3 Q6|X6—X2|3} @1

where Xj, X;, X5 and X, are the position vectors of Q,, O,, O, and O, respectively,
and they can be obtained from Figure 2.5(a):

X, =(x—lisina]i+ l—[l—lijcosa J»
2 2

X2=(x+%sinaji4{l—(l+%)cosa}j, (2.12)

). ).
X :_[d_gjj’ X, :—(d+?Dj]

where i and j are the unit vector on x and y-axis. By substituting Egs. (2.11) and (2.12)
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into Eq. (2.10), the magnetic force between magnet B and magnet D can be obtained.

It should be noted that the total magnetic force between magnet B and magnet D can

be separated into two components: one is in the y-direction f, yi, another one is in the

x-direction f, , i. According to Eq. (2.1), to obtain the total restoring force, only the /),

is considered, which can be expressed as follows:

( I, . ) [ I, . j
x—zsma X—ESIHCZ
fDBx=_& Q1 Qs +Q6

4 N 72

(2.13)

where y,, 7,, 7, and y, can be expressed as follows:

3/2

et ] e
At e ]|
ol ool o]} @

3/2

ol o | o] | am

By following the same process, the magnetic force between magnet A and D in the x-

direction can also be obtained as:
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(x—hsina—l;) (x—hsina—lgj
for=—2220,| 0, +0,
T Vs Ve

(x—hsina+l*‘j (x—hsina+lf‘j
2 2
+ 0

V7 s

(2.18)

+0,| Os

where y., y, 7, and y, can be expressed as follows:

3/2

2
ys{{—{d—%}—(l (l h—— cosa } x— hsina—%sina} sin2a+w2} (2.19)
- 3/2
y6:{{—_d+%}—£l—( cosa }

- ) 3/2
772{{— d—%}—[!—(l h+i } X - hsma+%smaj sin2a+wz} (2.21)
3/2

— 2 2
;/8—{{— d+%}—{l—(l—h+%jcosaj} +(x—hsina+%sina) sin2a+w2} (2.22)

where w is the distance between magnets A and B in the z-direction, which can be

2
x— hsina—%sina} sin2a+w2} (2.20)

observed in Figure 2.3. By substituting Egs. (2.13) and (2.18) into Eq. (2.1), the total

restoring force can be obtained.

2.4 Experimental Validation

With the models established, a natural question arises regarding their accuracy and
reliability. To this end, an experimental model validation is conducted. For simplicity,
hereinafter, the equivalent magnetic point dipole model and 2-point dipole model are
referred to as 1% model and 2" model, respectively. The restoring force surface method
[41] is employed to determine the total restoring forces dynamically. Figures 2.6(a) and

(b) show the experimental setup and the detail of the magnets’ positions, respectively.

34



Figure 2.6(c) shows a schematic of the equivalent lumped parameter model that
represents the experimental setup, where x;, is the base’s displacement and x is the
displacement of the cantilever beam’s tip relative to the base, m represents the total
mass of the assembly of magnets A and C and magnet B, c is the damping coefficient,
and &, represents the stiffness of the combined spring. The lumped parameter model is
commonly employed for multi-stable energy harvesters [35]. The equation of motion
of this setup is given by:

m(X+3%,)+cx+ f.(x)=0 (2.23)

where f (x) denotes the restoring force of the combined spring. Eq. (2.23) can be

rewritten as:

F(x,%)= —m(X+X,) (2.24)
where F(x,X) is the so-called restoring force surface.

As shown in Figure 2.6(a), the apparatus is mounted on a slipping table that is
driven by a shaker (2809, Briiel & Kjar) through a stinger. The shaker is driven by an
amplifier (2718, Briiel & Kjar). Two laser reflex sensors (RF) (CP24MHTSO0,
Wenglor) are used to measure the transverse displacement of the beam’s tip and the
base’s displacement, respectively. A computer equipped with the dSPACE dS1104 data
acquisition board is used to collect sensor data and send voltage signal to the power
amplifier to drive the shaker. The control program is developed by using the MATLAB
Simulink which is interfaced with dSPACE Controldesk Desktop software. The
velocity and acceleration are obtained by numerical differentiation of the measured

displacement signals.
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(©)

Figure 2.6 (a) Photo of the experimental setup; (b) detail of the beam; (c)

schematic of the equivalent lumped parameter model for the experimental setup.

To apply the restoring force method properly, the responses should sufficiently
cover the phase plane. The exciting signal should be persistently strong so that both
intrawell and interwell responses are established. For this purpose, a harmonic signal

with a slowly modulated amplitude is employed
x,(t) = X, cos(0.27t)x cos(2x f,t) (2.25)

where X}, and f,, are the amplitude and exciting frequency, respectively. The general
guidelines for choosing proper values of X}, and f;, are that X}, should be large enough

to achieve interwell responses and f,, should be close to the natural frequency of the

linearized system around the equilibrium position. In the experiment, Xj and f, are

chosen on a case-by-case basis by trial and error. A great number of experiments are

conducted to examine the relationship between the stability states and the tuning
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parameters. For the sake of comparison, the following four configurations are chosen:
Case (1) d=0.0407 m, 4 =0.0187 m; Case (2) d =0.0457 m, h = 0.0162 m; Case (3) d
=0.0517m, A =0.0187 m; Case (4) d = 0.0507 m, 2= 0.0187 m. The purple circles in
Figure 2.7 show the identified restoring force values. As shown in the figures, the
system is transferred from a tri-stable one in Case (1) to a mono-stable one in Case (4).
By using the parameter values given in Table 2.1 in the derived models, the analytical
restoring forces are found. The blue dashed lines and red solid lines in Figure 2.7 show
the restoring force values based on the 1°t model and the 2"¢ model, respectively. It can
be seen that the 1% model fails to predict Cases (1), (3), and (4). On the other hand, the
2" model shows a better agreement with the measured data for Cases (1), (2), and (3)

than the 1% model. But it fails to predict both the magnitude and trend for Case (4).
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Table 2.1 Parameter values of the apparatus [42].

Symbol Description Value
V4, Ve (m?) Volume of magnet A and C 3.21x10°
Vg (m?) Volume of magnet B 3.93x107’
Vp (m?) Volume of magnet D 1.29x107
S4, Sc (m?) End surface area of magnet A and C 3.22x107
Sp (m?) End surface area of magnet B 3.93x107
Sp (m?) End surface area of magnet D 1.29x107
kp, (N/m) Stiffness of the cantilever beam 26.17
[/ (m) Length of the cantilever beam 0.12
m (kg) Mass of the system 0.086
¢ (Ns/m) Damping coefficient 0.0668
O  measured data 1st model -—-——- 2nd model
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Figure 2.7 The total restoring forces of: (a) Case (1); (b) Case (2); (c) Case (3); (d)

Case (4).
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2.5 Model Optimization

As shown in the previous section, although the 2" model gives a better prediction
for the restoring force than the 1% model in Cases (1), (2), and (3), it fails to do so in
Case (4). It is natural to ask a question of whether both models can be improved by
optimization. For this purpose, an optimization based on the multi-population genetic
algorithm (MPGA) [43] is carried out to identify the magnitudes of the magnetic
vectors for the 1% model, and the amounts of the total charges for the 2" model.
Different from the standard genetic algorithm, which only has a single population
group, the MPGA initializes the whole population as multiple population groups to
operate the selection, crossover and mutation independently. Figure 2.8 shows the
flowchart of the MPGA. Note that the flowchart only shows two population groups as
an example. In the beginning, the initial ranges of the parameters, the population size,
the population group number, and the maximum iteration number need to be specified.
After the initialization, the individuals of the first population are randomly generated
within the specified ranges, and they are arranged into different population groups.
Then, the fitness values or objective functions are evaluated. The best individual of
each population group will immigrate to the other population groups and participate in
the respective groups’ selection, crossover, and mutation operation process. The main
purpose of the immigration operator is to prevent the decrease in genetic diversity of a
single population group. After that, the new offspring will be generated and prepared
for the evaluation process in the next iteration. On the other hand, the best individual
of each iteration will always be collected to the quintessence population group. As the
maximum iteration number is reached, the individual in the quintessence population

who has the minimum fitness value will be chosen as the optimum individual.
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Figure 2.8 The flowchart of the MPGA.

The training data of the optimization are chosen from the measured restoring forces
of the three different configurations of the system: Case (5) d = 0.0587 m, 2 = 0.0187
m; Case (6) d =0.0502 m, 2 =0.0162 m; Case (7) d =0.0372 m, 7= 0.0162 m, which
make the system exhibit mono-stable, bi-stable, and tri-stable stability state,
respectively. The main reason for choosing the configuration cases different from Cases
(1) to (4) is to prevent the local minima problem to happen in optimization. In this way,
it will guarantee that the optimized model is able to predict any configuration in the
system’s parameters region. The parameters to be optimized for the 1% model are

chosen to be my, mp, and mp. First, to have a fair comparison, the parameters to be

optimized for the 2"¢ model are chosen to be O ' » Op> and O, where O, = =0, 0, =

05, 0,=-0,,0,=0,, 0, =—0,, O, = 0. The fitness function used in the

optimization for the 1% model is defined as:

40



"1(’”"’”13”"”):\/LNZ&ffm(xf)—fM(x,.»z (2.26)

and the fitness function used in the optimization for the 2" model is defined as

=5 i=1

J,(04,05,0p) \/LNZZ(]FW (xi)_.fjaz(xi))z (2.27)

where f,(x;) is the measured restoring forces that are smoothened by a spline fitting,

f.1(x;) is the analytical restoring forces based on the 15 model, f ,,(x;) is the analytical
restoring forces based on the 2" model, and N = 81 is the number of data. The reasons
for interpolating the measured restoring forces with spline fitting are twofold: to
alleviate the influence of measurement noise and to use the same amount of data in
optimization for all cases that have different numbers of the raw data. The parameter

search ranges for the 1% model are chosenas 0 < my, < 10,0 <mg < land 0 < mp <

30, and the parameter search ranges for the 2"¢ model are chosenas 0 < Q ', =400,0 <

O, <200 and 0 < @, < 1200. For both models, the maximum number of iterations is
set to be 200, and the number of the population group and the size of each group are set

to 100 and 500, respectively.

Table 2.2 lists the optimization results where the differences between the original
values and the optimized values are represented by o. It can be seen that the original
magnitudes of the magnetic vectors are underestimated for m, and mp and
overestimated for mp. And there is a significant difference between the original

magnitude and optimized magnitude for mz. On the other hand, for the 2" model, the

original amounts of the total charges are underestimated for O, and Q, and

overestimated for Q. Accordingly, for both modelling approaches, the effect of

magnet B is underestimated while the effect of magnet D is overestimated, which is the

leading cause of the errors in prediction, as shown in Figure 2.7.
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Table 2.2 The optimization results of the 1% model and 2" model.

2" model with three

1* model % %
independent parameters
Original  Optimize Original  Optimized
d
Magnet . . 42.10
A my,=3.74 m 4=3.802 1.6 0,=147.17  Q,=209.14
Magnet . . 39.38
B mp=0.46 mp=0.803 74.56 0,=5749  0,=80.13
Magnet . . -43.13
b mp=14.95  mp=11.96 -20 0,=5838.71  0,=334.78

Using the optimum parameters, the simulations of the restoring forces for Cases
(1), (2), (3) and (4) are conducted, and the results are shown in Figure 2.9. The blue
dashed lines and red solid lines represent the values of the restoring force based on the
optimized 1% model and the optimized 2" model, respectively. It can be seen that both
optimized models fit the measured values well for all four cases. Table 2.3 gives a
quantitative comparison of the fitness values for the four cases. It can be seen that the
fitness value for the 1% model is drastically reduced and becomes slightly smaller than

the fitness value for the 2" model. Clearly, the proposed optimization significantly

improves the accuracy of the 1°' model.
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Figure 2.9 The total restoring forces for: (a) Case (1); (b) Case (2); (c) Case (3);
(d) Case (4) based on the optimized models.

Table 2.3 The fitness value of Case (I) to (IV) using original and optimized 1° and 2"

model.

Model categories fitness values
Original 1°" model 0.248
Original model

Original 2" model 0.131

Optimized 1*" model 0.104

Optimized 2™ model with three independent

parameters o
Optimized model Optimized 2" model with six independent

parameters 0.0919

Optimized 2™ model with five independent

parameters 0.0917
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The above optimization indicates that both optimum models offer a comparable
accuracy for the prediction of the restoring forces. As the second approach treats a
magnet as a 2-point dipole, it provides more freedom for controlling the model accuracy.

One of the possible ways to further improve the model accuracy is to consider all the
total charges Q,, 0,, 0,, 0,, Os, and O, as independent parameters. A six-parameter
optimization is conducted by using the same parameter ranges and initialization process
mentioned above. Note that the fitness function in Eq. (2.27) now becomes
J20,,0,,0,,0,0,0,). The results are given in Tables 2.3 and 2.4. Table 2.3 shows
that the accuracy model can be further improved if all the total charges are identified.
And as shown in Table.2.4, the almost zero value for the optimum charge Q; warrants

an investigation. A plausible explanation is that, as shown in Figure 2.5, the left surface
of magnets A and C is farthest away from magnet D, which means the effect of this

surface is less critical in the magnetic force model. Thus, an assumption can be made

that the total charge O, can be neglected so that there are five independent parameters

to be optimized. By defining the fitness function as J(0,,0,,0,,05,0,), a five-

parameter optimization is conducted. The results are shown in Tables 2.3 and 2.4 as
well. It can be seen that the fitness values for the 2" models with six and five
independent parameters are almost the same. After conducting simulations for Cases
(1) to (4) based on such two models, the results are shown in Figure 2.10, The red solid
lines and the blue dashed lines in Figure 2.10 represent the values of the restoring force
based on the optimized 2" model with six and five independent parameters,
respectively. It’s found that both two models fit the measured ones well for all four

cases and their predicted values are almost the same. The results validate the

assumption that the total charge Q, of the 2" model can be neglected in the

optimization, and it also proves that the simplified five-parameter optimization can

make the 2" model reach the same accuracy level as the optimum six-parameter model
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does.

Table 2.4 The optimization results of the 2"! model with six or five parameters.

2" model with five
2" model with six
% independent %
independent parameters
parameters
Original  Optimized Original  Optimized
Magnet 0,=147.17 Q;=0.0017 -99.99 | O,=147.17 Q;=0 -100
A 0,=147.17 QZ=227.05 5427 | O,=147.17 QZ=295.67 100.9
Magnet | 0,=5749  0[=13.15 -77.13 | 0,=5749  Q;=11.96 -79.19
B 0,=5749  0;=55.95 2,68 | 0,=5749  Q0,=70.72 | 23.01
Magnet | 95=588.71 Q;=497.74 -15.45 0,=588.71 Q’;=388.73 -33.96
D 0,=588.71 Q2=892.90 51.67 0,=588.71 Q2=698.95 18.72
2nd model with 6 parameters
O measured data .- 2nd model with 5 parameters
z z
= 1 L S’ 1 L
o =
= 2
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= =
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=] =]
R R
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Figure 2.10 The total restoring forces for: (a) Case (1); (b) Case (2); (c) Case (3);
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(d) Case (4) based on the optimized 2" models with six and five independent

parameters.

2.6 The Parametric Sensitivity Study and Stability State Region

The sensitivity study intends to evaluate the model robustness against parametric
variation. For this purpose, each of the three parameters in the optimum 1% model and
the optimum 2" model with three parameters is perturbated by +10%. The error

between the optimum 1% model and perturbated 1% model is defined as:

e, = \/%ﬁm; @)= [’ j=5.6.7 (2.28)

i=1

where jjz ;(x;) and ];f;] (x;) are the restoring forces of the optimum 1 model and the

perturbated 1% model, respectively, N=81 is the number of the data used. The error

between the optimum 2" model and the perturbated 2"¢ model is defined as:

e, = \/%i(f,—iz ()= [ j=567 (2.29)

i=1

where f;':z(xi) and ]5'52 (x;) are the restoring forces of the optimum 2" model and the

perturbated 2" model, respectively. Table 2.5 lists the errors by perturbating one
parameter by 10%. It should be noted that if the parameter is perturbated by -10%, the
errors remain unchanged. Based on the results, several observations can be drawn for
both models. The parameter variation of magnet A and C affects the restoring forces
most significantly. The tri-stable state is most sensitive to the parameter variation while
the mono-stable state is least sensitive to the parameter variation. In addition, based on
the average errors given in the last column of Table 2.5, the 2™ model is slightly more
robust than the 15 model when the parameters of magnets A (C) and B are perturbated,

and both models have equal robustness when the parameter of magnet D is perturbated.

Figures 2.11 and 2.12 shows the restoring forces values based on the optimum
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models and perturbated model. The blue lines represent the restoring forces of the
optimum 1% model or 2™ model, and the red, yellow and purple lines are the restoring
forces of both models when varying the parameters of magnet A, magnet B and magnet
D, respectively. The figures confirm the observations made above. The figures also

show the effect of the parameter variation on the trends of the restoring forces. As

shown in Figures 2.11(a) (b) and 2.12(a) (b), an increase in mp or O, strengthens the
mono-stable or tri-stable state most significantly while an increase of m, or O,
weakens the mono-stable or tri-stable state most significantly. As shown in Figures
2.11(c) and 2.12(c), an increase of m, or O, results in a stronger bi-stable state while
an increase of mp or O, results in a weaker bi-stable state. Such effects are expected as

magnet B is critical for the mono-stable state or tri-stable state while magnets A and C
are critical for the bi-stable state. The opposite effects occur when the parameters are

decreased by 10%.

Table 2.5 Errors for Cases (5), (6) and (7) of the optimized 1% and 2™ models with

detuned parameters

€s €6 €7 z
Parameter
Model Mono- ) . estegteq
S Tri-stable Bi-stable | = ——
stable 3
1.1my, mp, mp, 5.2x107 16.0x10 9.0x10 10.1x107
1 my, 1.1mp, my, 2.0x1072 10.9x1072 3.6x107 5.5x1072
* * * 2 -2 -2 -2
my, mpy,1.1mj, 3.2x10 7.0x10 5.5x10 5.2x10
110, 05,0, | 4.2x107 11.9x107 7.1x107 7.7%10
2 0, 110, 0 1.0x107 6.9x10 2.0x10 3.3x1072
03,0, 110}, | 3.2x107? 7.1x1072 5.2x107 52x107
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Figure 2.11 The total restoring forces of the optimized and perturbated 1% model
for: (a) Case (5); (b) Case (6); (c) Case (7).
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Figure 2.12 The total restoring forces of the optimized and perturbated 2" model
for: (a) Case (5); (b) Case (6); (c) Case (7).

With the optimum models, the so-called stability state region can be generated by
varying the tuning parameters d and h. Figure 2.13 shows such plot by using the
optimum 2™ model with five independent parameters, where S, M and W denote the
strong, medium and weak stability state based on the depth of potential wells,
respectively. The stability state region clearly shows that by tuning d and h, the

proposed apparatus can achieve the tri-stable, bi-stable, and mono-stable stability

states, respectively.
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Figure 2.13 Stability state region.

2.7 Conclusions

In this study, a tunable multi-stable piezoelectric energy harvester has been
developed for applications in an ambient vibration environment with a broad frequency
band. The apparatus can be manually tuned to achieve tri-stable, bi-stable, and mono-
stable stability states. The magnetic restoring forces of the apparatus have been derived
by using two approaches named as 1% model and 2" model, respectively. An
experimental validation of both models has been conducted. It has been found that
although the 2" model is more accurate than the 1%t model, it has its own limitation. A
model optimization has been carried out by using the multi-population genetic
algorithm (MPGA). The magnitudes of the magnetic vectors and the amounts of the
surface charges of the three magnets have been chosen as parameters to be optimized
for the 1 and 2™ model, respectively. The results show that two optimum models can
achieve almost the same level of accuracy. The results also show that the optimum 2™
model has a larger error in predicting the restoring force of the bi-stable state case than
the optimum 1% model. To further improve the accuracy of the 2" model, the six-

parameter optimization has been carried out by assuming that the two surface charges
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of an individual magnet are different. The results show that the accuracy of the 2"

model with six independent parameters can be further improved. The results also show

that the optimum value of O, is almost zero, as the corresponding surface is farthest

away from magnet D. Based on this observation, magnets A and C can be treated as
one point dipole so that the number of independent parameters can be reduced to five
in the optimization. The results show that the optimum 2" model with five parameters
has the highest accuracy among all the three optimum models. With the optimum
models, the parametric sensitivity has been investigated by perturbating each of the
three parameters by £10% . The following observations have been drawn. The
parameter variation of magnet A affects the restoring forces most significantly. The tri-
stable state is most sensitive to the parameter variation, while the mono-stable state is
least sensitive to the parameter variation. In addition, the 2"¢ model is slightly more
robust than the 1% model when the parameters of magnets A and B are perturbated, and
both models have equal robustness when the parameter of magnet D is perturbated.
With the optimum 2" model, the stability state region has been generated to show that

the developed apparatus possesses a large parameter tuning space.
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Chapter 3. Modelling and Evaluation of a Multi-Stable

Hybrid Energy Harvester

3.1 Introduction

A vibration energy harvester (VEH) is a device that converts ambient mechanical
energy into electrical energy. There are various ambient mechanical energies that can
be captured, such as structural vibration [1], machinery vibration [2], and human motion
[3]. The VEH provides a promising solution to a growing demand for self-sustainable
power supply for wearable electronic devices and wireless sensor node networks,
especially when deploying conventional power sources such as power lines or batteries

is inconvenient or impractical [4].

In general, a traditional VEH consists of a linear oscillator that has a narrow
operation frequency bandwidth. Over the last two decades, there has been a growing
interest in enhancing the working bandwidth and energy harvesting efficiency of VEHs
for different environments. Introducing nonlinearity is one of the promising solutions
to broaden the working bandwidth of VEHs. Various nonlinear VEHs have been
proposed [5]. According to the system stability state, the nonlinear VEHs can be
classified as mono-stable and multi-stable, such as bi-stable or tri-stable. A mono-stable
energy harvester reported in [6] consists of a piezoelectric cantilever beam with a tip
magnet subjected to an external magnetic field generated by a pair of fixed magnets.
Such a mono-stable system can exhibit softening or hardening behaviors when the
magnetic interaction is adjusted. The energy harvesting performance of a mono-stable
energy harvester was investigated in [7]. The study showed that the high-branch
oscillation leads to a high energy harvesting efficiency. A bi-stable energy harvester
can be used to improve energy harvesting performance by utilizing the snapping-
through feature. As proved in [8], the inter-well oscillation of a bi-stable energy
harvester can significantly enhance its power output performance. The study reported

in [9] showed that a bi-stable energy harvester with an elastic magnifier can provide
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higher power output and wider working bandwidth. One of the drawbacks of bi-stable
energy harvesters is the requirement of a sufficient excitation level in order to overcome
the barrier of the potential wells. Tri-stable energy harvester was proposed to address
this drawback. Based on the configuration of the bi-stable energy harvester in [8], a tri-
stable energy harvester was achieved by tuning the orientation43s [10] and the positions
[11,12] of the two fixed magnets. Moreover, the performance of an asymmetric tri-
stable energy harvester was investigated in [12]. The studies showed that the proposed
tri-stable energy harvester outperforms the bi-stable energy harvesters under the low-

level excitation in terms of the voltage output.

On the other hand, the concept of hybrid systems has been proposed to enhance
both the energy density and the power output. There are two kinds of hybrid systems:
the first one can convert multiple energy sources such as solar, thermal or vibration into
electricity [13]; the second one can convert a single energy source such as vibration
into electricity through multiple conversion mechanisms [14]. This study considers the
second type. There are three main transduction mechanisms for the VEH, namely
piezoelectric [15], electromagnetic [16], and electrostatic [17]. Each of them has its
own advantages and disadvantages. For example, the piezoelectric energy harvester
(PEH) has high energy density and easy to deploy, the electromagnetic energy harvester
(EMEH) shows the benefits of high current output and ease of maintenance, and the
electrostatic energy harvester has the advantages of compact design and wider working
bandwidth. A VEH combined with two or more transduction mechanisms is referred to
as hybrid energy harvester (HEH), yielding better efficiency and robustness [18,19].
This paper focuses on the HEH consisting of a PEH and an EMEH.

A HEH proposed in [20] consists of a cantilever beam patched with a PEH and
attached with a tip magnet that moves inside a coil placed on the base. The study
provided an approach of coupling the PEH and EMEH to increase the power output. A
power management circuit was designed in [21] to overcome the impedance
mismatching issue of the HEH. The HEHs proposed in [22] and [23] utilized a 2-
degree-freedom structure to improve the power output. To enhance the performance of
the HEH under ultra-low frequency excitation, the frequency up-conversion design of
the HEH was proposed in [24]. In addition, a multi-modal HEH was developed in [25]
to make the system able to operate at four different resonant modes, significantly

56



widening the operation bandwidth. There have been conflicting views on the benefits
of a linear HEH under harmonic excitation. For example, a recent study [26] showed
that under harmonic excitation, an idealized two-port linear HEH with electrical loss
neglected offers little benefit in terms of the maximum output power. On the other hand,
introducing nonlinearity to the HEH has been explored by some researchers. For
example, a mono-stable HEHs proposed in [27,28] showed that the nonlinearity can
significantly boost the energy density and widen the frequency bandwidth. A bi-stable
HEH was proposed in [29] to improve the power output. In the study, an approximate
method was used to simplify the modelling of the coupled system. A bi-stable HEH
developed in [30] used the tunable stiffness design to achieve better adaptability for
various environments. Further, the studies reported in [31,32] showed that the tri-stable
HEH is beneficial for enhancing both operation bandwidth and output power compared

with the mono-stable and bi-stable HEHs.

The above review indicates a need for a nonlinear HEH whose stability states can
be adjusted in order to achieve better adaptability in terms of power output and
frequency bandwidth. To address such a need, based on our previous study [33], a
tunable multi-stable hybrid energy harvester (MSHEH) is proposed in this study.
Different from the existing designs that use two external magnets [34-37], the MSHEH
employs a single external magnet, which makes the magnetic spring more compact and
makes implementation of an EMEH easy. The EMEH is realized by placing one set of
six coils above and one set of six coils below the two moving magnets. With this novel
arrangement, the magnetic flux on both the moving magnets’ upper surface and the
lower surface can be effectively utilized, and the space efficiency of the EMEH can be

improved compared with the existing designs, such as the ones in [29,38,39].

The contributions of the present study lie in four aspects. Firstly, the proposed
MSHEH is novel in terms of stability tuning and the EMEH design. Secondly, a
numerical modelling procedure is developed to determine the transduction factor of the
EMEH. Thirdly, a comparative study is conducted to evaluate the energy harvesting
performances of four different configurations subjected to the frequency sweep
excitation. Fourthly, a Pareto front optimization is conducted to maximize the power
output of both EMEH and PEH under harmonic excitations with various exciting
frequencies. In addition, further optimization is conducted to maximize the
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accumulated harvested energy for both EMEH and PEH under high-level frequency up-

sweep excitation.

3.2 Apparatus and modelling

Figure 3.1(a) shows a solid modelling drawing of the proposed MSHEH. As shown
in the figure, a thin stainless-steel beam is clamped to a platform which is fastened to a
base by using four aluminum extrusions. Each side of the upper end of the beam is
attached by a piezoelectric transducer or PZT (S128-J1FR-1808YB, Mid¢), while its
lower end is fixed with a small cylindrical magnet B and attached with a holder for an
assembly of two identical cylindrical magnets A and C. The holder can be fixed on any
position along the beam by sliding. A large cylindrical magnet D is fixed in a holder
that can slide vertically in a stand on the base. When the cantilever beam is at its
equilibrium position or undeflected, the four magnets are situated on the same vertical
plane, and magnets B and D are collinear. By sliding the holder for magnet D, the
distance between magnet B and magnet D can be adjusted. By sliding the holder for
magnets A and C along the beam, the distance between magnets A, C and magnets B,

D can be adjusted.

To add an EMEH to the system, 12 coils are placed symmetrically between magnets
A and C, i.e., 6 coils above and 6 coils below. Each of the coils is held in a holder that
allows individual adjustment of the coil’s position and orientation. Through adjustment,
the end surfaces of the coils are approximately parallel to the oscillation trajectory of
magnets A and C. Figure 3.1(b) illustrates the spatial positions of the coils, those on the
side of magnet C are labelled as 1 to 6 while those on the side of magnet A are labelled
as 1’ to 6’. Figure 3.1(c) shows the polarities of the four magnets where m, mp, m,
mp, are the magnetic moment vectors, 4, By, Cy and A, B, C represent the center
positions of magnets A, B, and C when the beam at undeformed and deformed states,

respectively. Note that the origin of the coordinate system is fixed at B,,.
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Figure 3.1 (a) Schematic of the MSHEH; Spatial positions of: (b) coils and
magnets A and C; (c) magnets A, B, C and D.

Figures 3.2(a) and (b) show the front view and side view of Figure 3.1(a),
respectively, where d is the distance between magnet B and magnet D when the beam
is undeformed, and / is the distance between magnet B and magnets A, C, / is the length
of the cantilever beam, and d, is the distance between the axis of magnet B and that of
magnets A and C. As shown in Figure 3.2(b), x and z represent the transverse and
longitudinal displacements of the center of magnet B relative to B, respectively. a is

the angle between mp and mp, Since the slope of the beam’s tip is relatively small, it is

assumed that “BOBj~a.
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Figure 3.2 Two-dimensional views of the beam and magnets: (a) front view; (b)

side view.

Figure 3.3 shows a lumped parameter model for the simplified system. In the figure,
m = 0.09 Kg represents the equivalent mass at the tip of the beam, w;, and x are the
displacement of the base and the equivalent mass relative to the base, respectively, ¢,
= 0.0058 N/m which is the mechanical damping coefficient of the system, k,, is the
nonlinear stiffness including the effects of the cantilever beam and the magnetic
interaction. The PEH’s circuit is given on the right side of the figure, where 8 =
8.515x10™ N/V is the electromechanical coefficient of the PEH which is identified by
the experimental method proposed in [40], Ry, is the resistance of a load resistor
connected to the output of the PEH. The EMEH’s circuit is given on the left side of the
figure, where K; 1s the total transduction factor of the EMEH, v,,, is the inductive
voltage or so-called electromotive force (EMF) of the EMEH, R, and L, are resistance
and inductance of one coil, respectively, and R, is the resistance of a load resistor
connected to the output of the EMEH. Note that as the 12 coils are connected in series,

their total resistance and inductance are 12R, and 12L ., respectively.
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Base Wy,

Figure 3.3 Lumped parameter model of the system.

Based on the Newton’s second law and Kirchhoff's current law, the governing

equations of the system can be derived as follows:

mi+c, x+f,+ f, +60v=—mw, (3.1)

¢V +—— =05 =0 (3.2)

Ip
where v, is the voltage over the load resistor of the PEH, ¢, = 50x10” F is the
capacitance of the PEH, f is the total restoring force, f, is the electromagnetic force

caused by the changes in the magnetic flux through the coils. Based on the Lenz's law,

the electromagnetic force can be expressed as follows:
f.=KI (3.3)

where K, = 2 Y% | K, is the total transduction factor with K,; as the transduction factor
for the i™ coil and I is the current in the EMEH’s circuit. Note that the values of the
transduction factors of coils 1 to 6 and coils 1’ to 6’ are equal since they have identical
configurations at the upper and lower sides of magnet C and magnet A, respectively,

and Applying Kirchoff's law to the circuit of the EMEH yields:

dl

12L, z+(12R +R,)=v,, (3.4)
t

coil

By using a multimeter, it is found that R.,; = 0.9 Q. By using an inductance meter,
it is found that L, = 0.454 mH. Since the frequency of vibration considered in this
study does not exceed 20 Hz, the inductive impedance of the coil is negligible compared
with R,.,;. Thus, the current can be written in the following form:
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[=— T (3.5)
12R , +R,

coil

3.3 Determination of the EMEH’s Transduction Factor

Due to the unique design of the EMEH, the determination of its total transduction
factor is not straightforward. In what follows, a numerical method is employed for this

purpose. According to Faraday’s law, the EMF of the EMEH can be expressed as:

v, =2 i61 % =-2 i61 aa;‘;lx (3.6)
where @; is the total magnetic flux through the i’ coil. In fact, the magnetic flux is not
evenly distributed throughout the whole coil due to the complex orientation of the
magnets. Thus, each coil is sliced into n layers and the magnetic flux in the ;™ layer is

assumed to be uniformly distributed and denoted as ¢;;.

As shown in Figure 3.4, the layer closest to magnet A or C is labelled as layer 1,
which means the bottom layer for the upper side coil and the top layer for the lower
side coil are the first layer. Thus, the total magnetic flux in the i coil can be expressed

as:

@, =Ni¢ﬁ (3.7)
naS

where N is the turns of the coil. The magnetic flux in the /™ layer for the i™ coil is given

by
4, =[[(B,; cos B+ B, sin| B iA (3.8)

where B,; and B_;; is the magnetic flux density in the x and z direction at that layer,

respectively, £ is the angle of the coil from the horizontal, and A is th e area of the end

surface of the coil. Substituting Eq. (3.7) into Eq. (3.6) gives:

6 n

0.
v, =—2ﬁzz%x=l<gc (3.9)

niz =
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Figure 3.4 Illustration of coils’ positions and slicing strategy.

According to Eq. (3.9), the transduction factor K;; for each coil can be defined as
follows:

K, _ Ne % (3.10)

n 5 ox

which is a function of the change rate of the magnetic flux with respective to the

displacement x. In this study, a finite element analysis software, COMSOL

Multiphysics is utilized to compute the change rates of the magnetic flux of the six coils

1 to 6 when magnets C and B are oscillating through them. For the sake of simplicity,

the influence of magnet A on the coils 1 to 6 is ignored. The geometry of the model

built in COMSOL is shown in Figure 3.5(a) It should be noted that each of the coils is

modelled as n disks to represent the n layers and meshed individually. As shown in

Figure 3.5(b), D, and h,,; are the diameter and height of the coil, respectively, d, is

the air gap between the end surfaces of magnet C and the coils 2, 5, d, is the lateral
distance between the bottom center of the coils 4, 6 and the center of magnet D. All the
values of the parameters of the coils and magnets used in the simulation are listed in

Tables 3.1 and 3.2, respectively.

In the simulation, the number #n of layers for each coil is set to 12, and magnets B
and C oscillate from x = —0.065 m to x = 0.065 m. In order to simulate the trajectory

of magnets B and C, the displacement of the center of magnets B and C in the z-axis is
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modelled as z(x) which can be derived from the trigonometric relationship in the

triangle OR B, in Figure 2b as follow:

z2(x)=1-~1—x7, (3.11)
and « is the angle of magnets B and C from the horizontal and is approximated as

sin”! (x/7) based on the triangle OR,B,.

Coil 1 Coil 2

™~ /

Coil 3
Magnet C =
Coil 4 —
Magnet e
Coil 6

Magnet D ¥

(2)

Figure 3.5 COMSOL model used to determine K;;: (a) isometric view; (b) front

view.
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Table 3.1 Parameters of the coils.

Symbol Name Coils 1, | Coils 2, | Coils 3,
4 5 6
D,,; (m) | Diameter of the coil 0.029 0.029 0.029
heoir (m) | Hight of the coil 0.015 0.015 0.015
p ) ) —10 0 10
(degree) Angle of the coil from the horizontal
N Turn number 245 245 245
d; (m) Distance from the center of magnet D —0.0353 | O 0.0353
d, (m) Air gap between the magnet C and coils 2, | 0.002 0.002 0.002
5
Table 3.2 Parameters of the magnets.

Symbol Name Magnet A & C | Magnet B Magnet D
Diag (m) Diameter of magnet 254 %107 | 7.94x107 | 2.54x 107
Lylc 1 Ip (m) | Hight of magnets 9.525%107 7.94 %102 | 2.54x 107
B, (T) Residual flux density 1.44 1.28 1.28

Material N50 N42 N42

Figure 3.6 shows the magnetic flux distributions when magnets B and C move from

the farthest left position to the farthest right position. In particular, Figures 3.6(a), b and

c illustrate the situations when magnet C is concentric with coils 1, 2 and 3, respectively.

During the simulation, the change rate of the magnetic flux through each layer of the

coils with the different displacements is recorded.
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Figure 3.6 Magnetic flux distributions of magnets B and C at the different
positions: (a) x = —0.0353 m; (b) x = O m; (¢) x = 0.0353 m.

Based on Eq. (3.10), the transduction factors for all six coils can be computed, and
the results are shown as solid lines in Figure 3.7(a) and (b). Then, these results are
curve-fitted using piecewise functions, which are the sum of three sine functions in the

specific displacement ranges and can be defined as follows:

3
~1)'a .sin(b .(x+c. ™ <x <d™ (i=1,2,3
K, (%) ]Zl:( )'a, sin(b,(x+c,)) ; P ) (3.12)
0 x<d™ & x> d™ (i=1,2,3)
3
-1)asin(b, (x+c, d™" <x <d™ (i=4,5,6
K (x)= ]Zl( )" a,; sin(b,(x+c,)) i o ( ) G.13)
0 x <d™ & x > d™ (i =4,5,6)

where a,; and b,; are the curve-fitting constants for coils 1, 2, 3 and a, b are the

curve-fitting constants for coils 4, 5, 6, ™" and d™* are the equation limits for the ith

min

" coil. The equation limits are d;™" =

coil, ¢; is the coordinate translation for the 7
—0.0706 m, d™" = —0.0690 m, d"™ =d"™* =0, d"" = —0.0353 m, d™" =
—0.0345 m, d™™ = 0.0353 m, d&™ = 0.0345 m, di"™ = d™" = 0, d™™ = 0.0706 m,

dg™ = 0.0690 m. The coordinate translations are ¢; = 0.0353 m,c, = 0.0345m, ¢, =
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cs =0, c3 =—0.0353m, cs, = —0.0345 m, and Table 3.3 lists the obtained curve-
fitting constants. The curve-fitting results are shown in dotted lines in Figures 3.7(a)
and b. Overall, the curve-fitting results agree well with the numerical results. Figure
3.7(c) shows the total transduction factor, which is a strongly nonlinear function of x,

reaching the maximum values around |x| = 0.017 m and |x| = 0.045 m, respectively.

Kli

[ curve-fitting K"
KIZ

e CUTVE-fitting i(n
Kl]

e CUTVE-fitting Kﬂ
KN
curve-fitting K”

KIF
curve-fitting KIS
Klﬁ
curve-fitting Klﬁ

Transduction factors (T.m)
Transduction factors (T.m)

sk . . 5L . . . .
-0.06 -0.04 -0.02 0 002 004 0.06 -0.06 -0.04 -0.02 0 0.02 004 0.06
displacement (m) displacement (m)

(a) (b)

total transduction factor K_(T.m)

-6 . .
-0.06 -0.04 -0.02 0 0.02  0.04 0.06
displacement(m)

(c)

Figure 3.7 Transduction factors of the coils: (a) coil 1, coil 2 and coil 3; (b) coil 4,

coil 5 and coil 6; (c) total transduction factor.

Table 3.3 Curve-fitting constants of Egs. (3.12) and (3.13).

Constants ay,; b, a,» b,> a3 b3
Value -0.94 88.80 -0.29 179.47 -0.06 344.84

Constants aj; by ap b as bz
Value -1.06 99.08 -0.28 207.30 -0.084 376.82

An experiment is carried out to verify the computed transduction factors for the six
coils. To measure the transduction factor value for each coil at different displacements

x, an experimental setup shown in Figure 3.8 is developed according to the verification
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method proposed in [41]. As shown in Figure 3.8(a), the apparatus is placed
horizontally and fixed on the test platform, the six coils on magnet A side are removed,
and the tip of the cantilever beam is connected to the shaker (Model 2025E) through an
adjustable stinger. The shaker is driven by an amplifier (SmartAmp™ 2100E21), and a
vibrometer (Metrolaser 500V) is placed at the left side of the apparatus to measure the
velocity of magnet C, the voltage signals of the coils are collected by the data
acquisition system (Briiel & Kjer PULSE Type 3560) which is controlled by a

computer. As illustrated in Figure 3.8(b), a scale placed at magnet A’s side is used to

control the initial position of each test.

Fl\e(i appaatus ‘Fm\ ‘

Adjustable

“ stinger

Figure 3.8 Experimental setup for verification of transduction factors of coils: (a)

the overview; (b) the detail of the area within the red rectangle in (a).

The principle of the experimental verification is demonstrated in Figure 3.9. The
transduction factor for the coils when magnet C is at a specific position can be treated
as a constant when the magnet is doing a very small oscillation around that position.
Thus, the critical part of the experimental verification is to measure the transduction
factor at an initial position, and then change the initial position to do another
measurement till the position covers the displacement range of the magnet. In this study,
the amplitude and frequency of the oscillation for the magnet are set to be 1 mm and 3
Hz, respectively. As illustrated in Figure 3.9(a), a stinger is inserted into a hole at the
center of the shaker’s head and fastened with the shaker’s head by using a collet. For
each test, the length of the stinger is adjusted to make magnet C reach the desired
positions, And the angle a also needs to be adjusted for each test to guarantee that the
stinger is perpendicular to the end segment of the cantilever beam. The measured open
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circuit voltage of the single coil E; and oscillation velocity x can be treated as two sine
waves as shown in Figure 3.9(b), where i represents the i coil. According to the
Faraday’s law, E; and x will both reach the maximum values when the magnet crosses
the initial position x, and the transduction factor can be obtained by calculating the ratio

of the peak or root mean square (RMS) value of the voltage and that of the velocity.

Since the functions of the transduction factor of coils 3 and 6 are symmetric with
coils 1 and 4, in this case, only the transduction factors of coils 1, 2, 4 and 5 need to be
measured. The range of the initial displacement position x has been chosen from
—0.04 m to 0 m with an interval of 0.005 m. The measurement results are shown in
Figure 2.10. It can be seen that the experimental results (blue stars) are slightly lower
than the original simulation results (red lines). One possible explanation is that in Eq.
(3.10), the coil turn number N is overestimated. In the simulation, all the turns of the
coil have been considered active when calculating the EMF of the coil, but in fact, when
the edge of magnet C has passed the central point of the coils, the magnetic flux change
only happens in the turns located the outside of the coil. In this case, the equivalent turn
number N, for the coils need to be estimated. Based on the obtained experimental
results, an approximate equivalent turns number is found to be 180 through trial and
error. Based on the simulation results for coils 2 and 5, the constants of the curve fitting
functions shown in Egs. (3.12) and (3.13)can be obtained and listed in Table 3.4. As
shown in Figure 3.10, the measured data, the simulation results based on the equivalent

turn number N, (green lines) and the curve fitting functions (black lines) match well.

Cantilever beam

E; x

E; and & both reaching peaks at x

(a) (b)

Figure 3.9 Illustration of (a) the verification experimental setup. (b) the open

circuit voltage of the coil and the velocity of the magnet.
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Figure 3.10 Experimental results of the transduction factors: (a) coil 1; (b) coil 2;

(c) coil 4; (d) coil 5.

Table 3.4 Curve-fitting constants of Egs. (3.12) and (3.13) by using N,.

Constants Ayl b1 Ay b, Ay b3
Value -0.68 87.93 -0.22 177.48 -0.05 343.65

Constants a; b;; ap b, as b3
Value -0.78 99.08 -0.20 207.30 -0.06 376.81

3.4 Determination of the Nonlinear Restoring Force

The total restoring force f of the system in the x-direction consists of an equivalent

force ]; due to the gravity, a restoring force f, due to the beam’s elasticity, an attractive
magnetic force f, . between magnet D and magnet B and two repulsive magnetic

forces: f, , between magnet D and magnet A, and f,, . between magnet D and magnet
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C. Since magnets A and C are identical and symmetrical about the central line of the

beam, the values of /), and f, . are equal. Then the total restoring force can be

expressed as:

S :fg + Sy Sone t Fow + Foe :mg'tan(a)+kbx+fDBx +2fpa (3.14)

where k,=90.1 N/m is the stiffness of the beam which can be determined
experimentally. In what follows, the analytical restoring forces 1, andf,, will be
found using the equivalent magnetic 2-point dipole model proposed in [42]. To have a
better understanding of the magnetic force model, Figures 3.11(a) and (b) show the

front view of the apparatus when the beam is undeformed and deformed.

h

Figure 3.11 Illustration of the equivalent magnetic 2-point dipole model: (a)

magnets A and D; (b) magnets B and D.

As shown in Figures 3.11(a) and b, rs, r,5, 35 and r45 are the vectors from Q. to

g 5,725,135 5 5
0, 0,, O, and Q,, respectively, and (g, 126, 36 and r4 are the vectors from O, to O,
0,, O, and O, respectively, where Q,, i=1,...,6 are the total surface charges of the
magnets defined by:

Q=-MS, Q,=MS, Q,=MS, Q,=-MS,

O = MS, O —MS, (3.15)

D
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where S, = 5.07x10" m2, S = 4.95x10° m? and Sp = 5.07x10* m? are the surface
area of magnets B, A and D, respectively, M= B, /i is the magnetization of magnets A,

B and D, where B,. is the magnetic residual flux density, their values are listed in Table

3.2, and u = 4mnx 10”"H/m is the vacuum permeability.

The magnetic force between magnet B and magnet D is considered first. Based on
the Boit-Savart law, the magnetic force exerted by magnet B on magnet D is the

combination of the magnetic force exerted from Q, and O, to O, and O, which is

given in the following equation:

Y7 r r. T
fDB :Q14_0 Q5 153 +Q6 Qz Qs 253 +Q6 263 (3.16)
7 |l it ‘ 2| i
where rys, rig, 1,5 and r,s can be derived from the are the position vectors of Q,, O,,
Qs and @, respectively. According to Eq.(3.14), to obtain the total restoring force, only

the /., is considered, which can be expressed as follows [33]:

Jowe === {Q{x_l_SlnaJ(QS %]+Q [x+l_51naJ(Q5 %J} (3.17)
4r 2 i " 2 Vs V3

where the expression y,, y,, y, and y, are given in [33]. Further, the magnetic force

between magnet A and D in the x-direction can also be obtained as:

fDsz_ {Q{x hsina —— ](QE’ QGJ+Q{X hsina + J(QE’ %HB.IS)
ar 2N7rs 7 2 )07, 7s

where y., y, 7, and y, are also defined in [33]. By substituting Eqs (3.17) and (3.18)

into Eq.(3.14), the total restoring force can be obtained.

To validate the model, the five different configurations are considered: Case (I) d =
0.0605 m, 2 = 0.0035 m; Case (II) d = 0.0496 m, h = 0.0058 m; Case (III) d = 0.0452
m, 2 = 0.0058 m; Case (IV) d =0.0339 m, 2 =0.0092 m; Case (V) d =0.0330 m, 4 =
0.0079 m. Among them, the first case is the mono-stable configuration, the second and
third cases are the bi-stable configurations. By applying the original values of the total
charges that are listed in the first column of Table 3.5, the simulation results are plotted

as red lines in Figure 3.12. To verify the accuracy of the model, the total restoring forces
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of the system under various configurations are measured by using the restoring force
surface method [33]. The results corresponding to the five chosen cases are plotted as
black dots in Figure 3.12 By comparing the measured data and the simulation results

using the original values of O, to 0, it can be found that the model fails to predict the

magnitudes of Cases III, IV, and V or the bi-stable and tri-stable cases.

To improve the accuracy of the model, a genetic algorithm-based identification
approach proposed in [33] is applied. In this approach, O, to O, are treated as six

independent parameters to be identified by minimizing an objective or fitness function

defined below

1

]1(Q1/Q21Q3/Q4/Q5/Q6) = \/Wii(fjm(xi)_fjg(xf))z (319)

d j=1 i=l
where fjm (x;) is the measured restoring forces that are smoothened by a spline fitting,

/. (x;) is the analytical restoring forces based on Eq.(3.14), and N; = 101 is the number
of training data for each case. According to [33]. Once the six parameters has been
identified, the neglectable parameter (with an almost zero value) can be set to zero, then
an optimization for the five independent parameters can be conducted. All the identified
values of the total charges and their corresponding fitness values are listed in Table 3.5.
As shown in the table, the five-parameter optimization has the lowest fitness value.

With the results, the recalculated restoring forces are plotted as blue lines in Figure 3.12.

In what follows, the optimal values with the five-parameter optimization are used.
By integrating the total restoring forces with respect to x, the potential energies of the
five cases can be found and plotted in Figure 13(a). By varying the tuning parameters
d and h, the stability state region can be generated and plotted in Figure 13(b). This
Figure reveals the tunability of the system. For both the lower limit and upper limit of
the parameter d, the system is a mono-stable one regardless of the value of 4. To have
a bi-stable system, the distance d should be around the middle of the tuning range so
that the repelling force between magnets A, C and magnet D is strong enough. And
keep decrease the parameter d, a tri-stable system can be achieved. Figure 14(a) shows
the potential energies vs. x and d by fixing 4 at 0.02 m where C1, C2 and C3 represent

the crossing points of the line C and the borderline between the strong mono-stable and
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tri-stable; tri-stable and bi-stable, bi-stable and week mono-stable, respectively while

Figure 14(b) shows the potential energies vs. x and 4 by fixing d at 0.035 m, where D1

and D2 represent the crossing points of the line D and the borderline between the

medium mono-stable and tri-stable; tri-stable and bi-stable, respectively. It can be found

that the region for the tri-stable is the narrowest one, which indicates that the tri-stable

system has the highest sensitivity when changing the parameters.

Table 3.5 Values of the total charges on the surfaces of different magnets.

Original values Optimum values Optimum values
(6 parameters) (5 parameters)

Magnet 0, 580.64 1150 642.36

A 0, 580.64 1516.7 903.53
Magnet 0, 50.4 0.16 0

B 0, 50.4 58.83 35.62
Magnet Os 516.12 207.12 353.39

D O 516.12 321.6 577.56

J1 0.3420 0.0786 0.0784

z z
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Figure 3.12 The total restoring forces: (a) Case (I); (b) Case (II); (c) Case (I1I); (d)
Case (IV); (e) Case (V).
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3.5 Evaluation of the Performances of the MSHEH

In this section, the performances of the MSHEH are evaluated under harmonic
frequency sweeping excitation. Both up-sweep and down-sweep excitations are
conducted numerically and experimentally. For this purpose, four different
configurations are considered: linear, mono-stable, bi-stable and tri-stable. The
restoring force of the linear system is defined by setting £, , f, ., /1, to be zero in Eq.
(3.14) while the last three configurations are Case (I), Case (III) and Case (IV) defined
in the previous section. The load resistances for the EMEH and PEH are set to the

optimum values given in red in Table 3.8.
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3.5.1 High-level acceleration

In the simulation, the acceleration amplitude is set to be 1.6 m/s?. The frequency of

the harmonic excitation is varied by

F=f+

where for the up-sweep, f; = 2 Hz and f, = 8 Hz, for the down-sweep, /. = 8 Hz and

fo—/;
o (3.20)

f, =2Hz, and T = 360 second. The initial conditions are set as x(0) = x(0) = 0 for

the linear, mono-stable and tri-stable system, and x(0) = —0.019 m and x(0) = 0 for
the bi-stable system. The numerical simulation is conducted by solving Egs (3.1), (3.2),
(3.4) and (3.9) using the Matlab function ode45. The instant power output is used to
measure the energy harvesting performance of the system, which can be calculated from
the instant voltage over the load resistor and the corresponding load resistance value.
Considering the instant power output results for different configurations may overlap
each other, to better represent all the results, the amplitudes of the instantaneous power
outputs are obtained by picking the upper envelopes of the instant power output signals.

The simulation results are shown in Figure 3.15 where P,,, and }?D are the instantaneous

power of the EMEH and PEH, respectively.

Figure 3.15(a) clearly shows that for the EMEH, the linear and tri-stable
configurations outperform the mono-stable and bi-stable configurations in terms of the
peak output powers. The EMEH with the mono-stable and tri-stable configurations
show obvious hardening behaviors, which leads to a wider effective energy harvesting
bandwidth. With the frequency rising, the bi-stable system first switches between the
intra-well oscillation and chaotic inter-well oscillation at 3.7 Hz and then resumes the
intra-well motion after 4.4 Hz. And owing to its lower potential barriers, the tri-stable
system starts with the periodic inter-well oscillation at 2 Hz and then switches to the
intra-well oscillation at 4.3 Hz. It can be seen that the periodic inter-well motion of the
tri-stable system generates more power compared to the chaotic inter-well motion of
the bi-stable system, and the intra-well motion has the lowest energy harvesting

efficiency among the three motion modes.
As shown in Figure 3.15(b), the trends for the power outputs of the PEH of the four
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configurations are similar to those of the EMEH. In addition, it should be noted that the
value of the instant power output of the EMEH under the mono-stable and tri-stable
configurations are close to each other from 2 Hz to 3.4 Hz. However, the value of the
power output of the PEH under the mono-stable configuration is lower than that under
the tri-stable configuration. The main reason is that the voltage output of the EMEH is
only related to the transduction factor and the velocity of the moving magnets according
to Eq. (3.9). Since both the mono-stable system and tri-stable system perform the large
amplitude oscillation under the low-frequency excitation (lower than 3.4 Hz), the
velocity of the moving magnets of the two systems are close when passing the high-
power output regions (x = + 0.017 m), which explains the similar power output level.
On the other hand, the power output of the PEH mainly depends on the displacement
of the cantilever beam’s tip. The two side potential wells of the tri-stable system lead
to a larger amplitude response at the inter-well oscillation mode than that of the mono-
stable system. Thus, the PEH with the tri-stable configuration shows higher power
output than the PEH with the mono-stable configuration.
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Figure 3.15 The simulation results of the instant power outputs under the frequency

up-sweep excitation with 4 = 1.6 m/s?: (a) the EMEH’s; (b) the PEH’s.

To validate the above simulation, an experiment is conducted. As shown in Figure
3.16, the apparatus is fixed on a slip table that is driven by a shaker (2809, Briiel &
Kjear) through a stinger. The shaker is driven by an amplifier (2718, Briiel & Kjer).
Two laser reflex sensors (CP24MHT80, Wenglor) are used to measure the

displacements of the beam’s tip and the base, respectively. A computer equipped with
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dSPACE dS1104 data acquisition board is used to collect the signals from the laser
sensors and the voltage signals of the EMEH’s load resistor and the PEH’s load resistor,
output the exciting voltage signal to the power amplifier. To control the experiment, a
program is developed by using the MATLAB Simulink which is interfaced with
dSPACE Controldesk Desktop software.

tainless steel beam

>

Stinr connect to
the slip table

Laser sensor

(b)

Figure 3.16 Photos of the experimental setup: (a) the entire system; (b) the
EMEH.

The experimental results are shown in Figure 3.17. It can be seen that the trends of
the results agree with the simulation ones for the higher frequency region. However,
for the lower frequency region, the experimental results for the four systems are lower
than their simulation counterparts. Such discrepancy can be attributed to the limit of the
shaker because 4 Hz exceeds the lower limit of the ideal working range of the shaker,
which causes the actual acceleration of the excitation is much lower than 1.6 m/s’.
Nevertheless, the experiment results indicate that the model used in the simulation is
valid. In what follows, more simulation is carried out to further evaluate the

performance of the MSHEH.
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Figure 3.17 The experimental results of the instant power outputs under the frequency

up-sweep excitation with 4 = 1.6 m/s?: (a) the EMEH’s; (b) the PEH’s.

Figure 3.18 shows the simulation results of the power outputs for the EMEH and
PEH under the frequency down-sweep (8 to 2 Hz) excitation. The overall trends of the
power outputs of the linear, mono-stable and bi-stable configurations are similar to
those from the frequency up-sweep excitation. While the power output of the tri-stable
system is not as high as in the up-sweep test since it mainly performs the intra-well
oscillation. The bi-stable and tri-stable systems start to jump when the frequency
decreases to 4.3 Hz and 3.5 Hz, respectively, which is the situation when the two
systems just overcome the threshold of their local potential well and switch to the
chaotic inter-well oscillation mode. As shown in Figure 3.19, the experimental results

generally agree with the simulation one.
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Figure 3.18 The simulation results of the instant power outputs under the frequency
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down-sweep excitation with 4 = 1.6 m/s?: (a) the EMEH’s; (b) the PEH’s.
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Figure 3.19 The experimental results of the instant power outputs under the frequency

down-sweep excitation 4 = 1.6 m/s?: a the EMEH’s; b the PEH’s.

To better measure the bandwidth of the MSHEH, the accumulated harvested energy
E,,, of the EMEH and the accumulated harvested energy £, of the PEH are defined as:

E, ()= jot P (z)dz (3.21)

E,(t)=| P ()dr (3.22)

where P,,, and P, are the instantaneous power of the EMEH and PEH, respectively.

Figures 3.20(a) and (b) show the total accumulated harvested energy E(¢) = E,,,(¢) +

E,(?) under the frequency up-sweep excitation and down-sweep excitation, respectively.
Note that the relationship between the time t and the frequency f'is defined by Eq.
(3.20) The effective frequency range of energy harvesting can be defined as the region
where the increase rate of E(¢) is equal to or greater than 0.1 J/Hz. The total bandwidth
can be obtained by taking the sum of the frequency range of the up-sweep and down-
sweep tests. For example, the effective energy harvesting bandwidth for the tri-stable
system is 2.36 Hz (ranging from 2 Hz to 4.36 Hz) and 0.1 Hz (ranging from 2 Hz to 2.1

Hz) for the frequency up-sweep and down-sweep excitations, respectively, and the total
bandwidth will be 2.36 Hz. In addition, the total accumulated harvested energy for each

configuration is represented by E,,,(7) under the up-sweep excitation. All the results
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are listed in Table 5, and the results clearly show all three nonlinear configurations
show wider bandwidth compared to the linear one. The tri-stable system has the largest
total bandwidth and total accumulation harvested energy among the four configurations

as it is able to enter the periodic inter-well oscillation mode.
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Figure 3.20 The accumulated harvested energy of the MSHEH under the high-

level excitation: (a) frequency up-sweep excitation; (b) frequency down-sweep

excitation.

Table 3.6 The effective frequency bandwidths of the systems under the high-level

frequency sweep excitation.

Total
Up-sweep frequency Down-sweep frequency
bandwidth  E(7) (J)
range (Hz) range (Hz)

(Hz)
Linear 4.53-5.23 4.54-5.24 0.71 1.78
Mono-stable 2.00-3.73 2-2.88 1.37 1.62
Bi-stable 3.68-4.83 3.48-5.26 1.78 0.72
Tri-stable 1.66-4.36 2.00-2.10 2.36 3.86

3.5.2 Low-level acceleration

To investigate the energy harvesting performances of the system under the
excitation with low-level acceleration, a series of simulations are conducted. In the
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simulation, the acceleration amplitude is set to 0.3 m/s? and the frequency varies from
2 to 8 Hz (up-sweep) and 8 to 2 Hz (down-sweep) in a duration of 360 seconds, and the
same initial conditions as those in the previous section are used. In this time, the bi-
stable and tri-stable will perform the low-amplitude intra-well oscillation at their side

potential wells and middle potential well, respectively.

By following the same procedure discussed previously, E(¢) for the system under
frequency up-sweep and down-sweep excitation can be obtained and shown in Figure
3.21. As the values of E(¢) under low-level excitation are much lower than those under
the high-level excitation, the threshold of increase slop is chosen as 2x107 J/Hz when
the effective frequency range is identified. The effective bandwidth of the system and
the E(T) of the different configurations are both summarized in Table 3.7. The results
indicate that the bi-stable and tri-stable possess a wider efficient energy harvesting
bandwidth, The bi-stable system, in particular, can harvest more energy compared to
other configurations. The higher energy harvesting efficiency is attributed to the high-
power output regions of EMEH located around the equilibrium points of the bi-stable
system (at |[x| = 0.02m). And this can guarantee the high efficiency of energy
harvesting even when the bi-stable system performs the low-amplitude intra-well

oscillation.
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Figure 3.21 The accumulated harvested energy of the MSHEH under the low-level

excitation: (a) frequency up-sweep excitation; (b) frequency down-sweep excitation.

Table 3.7 The effective frequency bandwidths of the systems under low-level
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frequency sweep excitation.

Up-sweep frequency Down-sweep frequency Total bandwidth

E(T) ()

range (Hz) range (Hz) (Hz)
Linear 4.60-5.10 4.62-5.12 0.52 3.82x107
Mono-stable 2.00-2.37 2.00-2.08 0.37 1.69x1072
Bi-stable 3.07-5.34 4.14-5.72 2.65 9.35x1072
Tri-stable 3.07-3.44 2.00-3.66 1.66 1.32x1072

3.6 Pareto Front Optimization

To maximize the power output of the system, it is crucial to determine the optimum
resistance value. Traditionally, this involves applying impedance matching to each
component within a hybrid energy harvester [19]. However, the complex coupling
effect between the PEH and the EMEH warrants further consideration. A traditional
impedance matching may not be sufficient to ensure the optimum overall performance
of the system. The explanation is shown as follows: In this apparatus, the deployment
of a large number of coils results in a significantly high peak value for K,, leading to
substantial electromagnetic damping forces from the EMEH. The force will
significantly impact the dynamics of the system, particularly in multi-stable
configuration cases. Although higher currents in the EMEH can increase its power
output, the resulting large damping force may hinder the system from performing the
inter-well oscillations. In other words, increasing the power output of the EMEH may
scarify the power output of the PEH. Therefore, a proper compromise between the
power output of EMEH and PEH needs to be considered when one chooses the

optimum Ry, and Ry,

In this study, the MATLAB Global Optimization Toolbox based on the genetic
algorithm is employed to solve such a multiple-objective optimization problem. The

average power outputs of the EMEH and PEH are defined as follows:

Pew=1> R (3.23)

rms™ e’

And
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Py ===, (3.24)

respectively, where /., and v, are the root mean square value of the output
current of EMEH and voltage of the PEH, respectively. The search range is from 0.1 Q
to 300 Q for R, and from 0.1 MQ to 5 MQ for Ry,. Since the program is based on the

minimization of the objective functions, the two objective functions are set to —P,,,,.and
—Pp The population size and the maximum number of the generation are set to 500 and
50, respectively, and the same initial conditions as those in Section 5 are used and the

amplitude of the acceleration of the harmonic excitation is set to 2 m/s.

After implementing the optimization program to the four systems under the
excitation with six different frequencies (2.5 Hz, 3 Hz, 3.5 Hz, 4 Hz, 4.5 Hz and 5 Hz),
the best results of the so-called Pareto-front are shown as black dots in Figure 3.22. To
find the best trade-off point, the distance between the origin of the plot and each best
result is evaluated. The point with the shortest distance is considered to have the best
trade-off between —P,,,.and —T’p, shown as red dots in Figure 3.22. Then, the total
power output P, is the sum of —P,,,,.and —P,, corresponding to this point. It is important
to note that the results presented on the Pareto front offer decision support for
configuring the system to meet diverse application requirements. In practical scenarios,
the priority may lean towards either the EMEH or the PEH, dictating that the optimal
point could be selected from either the left or right side of the best trade-off point
identified in this study. Table 3.8 highlights the optimum results Rl*eand RZ,, and the
corresponding P, of the four configurations when reaching the maximum at a different
exciting frequency: 5 Hz (linear); 3 Hz (mono-stable); 3.5 Hz (bi-stable); 3 Hz (tri-
stable). As summarized in [19], the power output of HEH consisting of a PEH and
EMEH generally ranges from 1 4W to 100 mW, Therefore, the power output level for

the proposed apparatus in this study is considered reasonable.
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Figure 3.22 The best Pareto fronts: (a) the linear system excited at 5 Hz; (b) the

mono-stable system excited at 3 Hz; (c) the bi-stable system excited at 3.5 Hz; (d) the

tri-stable system excited at 3 Hz.
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Table 3.8 The optimum load resistance values and total power output for the four

configurations.
Configuration Fre(tg;)ncy Ry, () RZ, MQ) P,,, (mW) P, (mW) P, (mWw)

2.5 82.612 1.49 0.03 0.004 0.03

3 19.25 1.11 0.44 0.04 0.48

Linear 3.5 13.76 0.92 0.10 0.02 0.12

4 44.69 0.77 0.44 0.04 0.48

4.5 49.30 0.74 6.45 0.16 6.61
5 204.18 0.60 47.10 1.54 48.64
2.5 43.00 1.23 10.34 0.23 10.56
3 54.36 1.04 21.36 0.39 21.76

Mono-stable 3.5 24.42 0.93 0.22 0.02 0.24
4 14.92 0.87 0.08 0.01 0.09

4.5 15.26 0.77 0.03 0.01 0.04

5 15.97 0.67 0.02 0.01 0.02

2.5 69.19 1.03 0.54 0.01 0.54

3 256.11 0.73 12.76 0.75 13.51

Bi-stable 35 282.41 1.37 19.07 1.14 20.21
4 43.90 0.79 12.94 0.12 13.06

4.5 123.43 1.23 5.75 0.16 5.90

5 75.73 0.63 6.90 0.06 6.97

2.5 94.56 1.41 17.76 0.55 18.31

3 164.22 1.04 19.09 0.85 19.94

Tri-stable 3.5 54.67 1.58 4.81 0.12 493
4 46.17 2.06 4.35 0.10 4.46

4.5 34.74 0.61 7.26 0.05 7.31

5 19.07 0.62 0.10 0.02 0.11

In the above optimization, the maximum harvested powers of the EMEH and PEH
are chosen as the objective functions and the harmonic excitation with a constant
frequency is considered. The result shows that the linear configuration outperforms the
other three ones, confirming the well-known knowledge that the linear energy harvester
is the best choice if the ambient vibration is harmonic with a fixed frequency. In the
previous frequency sweep excitation simulation, the best compromised values in Table
3.8 were used in order to compare the four configurations based on the benchmark of
the linear configuration. The results have shown that the nonlinear configurations
outperform the linear one in terms of the accumulated harvested energy and the
frequency bandwidth. A natural question arises what the best load resistances are if the

MSHEH is subjected to a frequency sweep excitation and the accumulated harvested
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energies are chosen to be the objective functions.

To answer this question, a further optimization is conducted. The MSHEH 1is
subjected to the high-level frequency up-sweep excitation. The two objectives are set
as —E,,(T) and —E,(T), respectively. By following the same simulation procedure as
outlined for the high-level frequency up-sweep tests in the previous section, £(¢) for
each configuration can be obtained. The setting of the optimization is same as the above,
and the same initial conditions are used as those in Section 5. Considering the
computational cost, the duration of the excitation signal is chosen as 7 = 100 second.
The obtained Pareto fronts for the four configurations are shown in Figure 3.23, where
the best trade-off points are identified by red circles. The optimum resistance values

R;,and R,*p, and the corresponding accumulated harvested energy for the EMEH and

PEH E,,(T) and Ep(T), and total accumulated harvested energy E (7) are listed in

Table 3.9. It can be seen that £ (7)) for nonlinear configurations outperform the linear
configuration. Figure 3.24 compares the E(¢) (solid lines) of the MSHEH with the
optimum load resistances from Table 3.8, referred to as Opt 1 and those (dashed lines)
with the optimum load resistances from Table 3.9, referred to as Opt 2. Several
observations can be made. Here E(T) represents the E(f)s’ value at 8Hz. Firstly, the
E(T)s from the linear configuration remain almost unchanged for both cases. Secondly,
the £(7) from the bi-stable configuration for Opt 2 sees an increase compared with that
for Opt 1. Thirdly, the E(7) from the mono-stable configuration for Opt 2 increases
significantly. Fourthly, the tri-stable configuration for Opt 2 still exhibits the best

performance than the other three.
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Figure 3.23 The best Pareto fronts of the system under the high-level frequency up-

sweep excitation: (a) the linear configuration; (b) the mono-stable configuration; (c)

the bi-stable configuration; (d) the tri-stable configuration.
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Table 3.9 The optimum load resistance values and total power output for the four

configurations.

Configuration R, () R, MQ) E, (D) E,(T)J) E'(T) J)

tri-stable Opt1
== = tri-stable Opt2

._.
tn
‘

—
T

Linear 194.80 0.54 0.24 1.0x107 0.25
Mono-stable  256.86 0.58 0.95 5.0x107 1.00
Bi-stable 66.28 0.91 0.26 0.3x1072 0.26
Tri-stable 258.21 1.09 1.26 7.6x1072 1.34
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Figure 3.24 The total accumulated harvested energy of the MSHEH under the

high-level frequency up-sweep excitation.

3.7 Conclusions

In this study, we present the development and evaluation of a multi-stable hybrid
energy harvester (MSHEH). The system is equipped with both an electromagnetic
energy harvester (EMEH) and a piezoelectric energy harvester (PEH), offering two
tuning variables (2 and d) for selecting the different stability states. A novel
arrangement of coils in the EMEH has been implemented to enhance energy harvesting
efficiency across various oscillation modes. A numerical approach is employed to
determine the transduction factor for the EMEH. The obtained results are validated

experimentally. The magnetic restoring force model is established based on the
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equivalent magnetic 2-point dipole model and validated experimentally. The accuracy
of the model is further improved by the genetic algorithm identification approach. This
refined model was used to map the stability state region. Four different configurations
of the MSHEH, namely linear, mono-stable, bi-stable, and tri-stable, were chosen to
evaluate the energy harvesting performances of the MSHEH through both simulation

and experiment.

In the performance evaluation, the MSHEH’s four configurations are subjected to
frequency up-sweep or down-sweep base excitation with high-level acceleration and
low-level acceleration, respectively. The results revealed that under the high-level
excitation, the mono-stable and multi-stable configurations exhibit a wider working
bandwidth than the linear one. Particularly, owing to the shallower barrier of the
potential wells, the tri-stable system is able to perform the large amplitude periodic
inter-well oscillation, which makes it have the widest frequency bandwidth (2.36 Hz)
and highest total accumulated harvested energy (3.86 J) among the four configurations.
When the system is under low-level excitation, both bi-stable and tri-stable harvesters
perform the low amplitude intra-well oscillation around the side potential wells and the
middle potential well, respectively. The results show the bi-stable system outperforms
the others in terms of effective bandwidth (2.65 Hz) and total accumulated harvested
energy (9.35x 10 J). Due to the high power output regions of the EMEH are located
around the two side equilibriums of the bi-stable configuration, the EMEH's power
output remains sufficiently high, even though the system only performs low amplitude

intra-well oscillations.

In the end, a Pareto front optimization is employed to find the optimum values for
Ry, and Ry, by balancing the power output for the EMEH and PEH when the system is
under harmonic excitation with various frequencies. The results demonstrate that the
value of the optimum R, is higher when the amplitude of the oscillation is larger, and
the values of the optimum R, are inversely proportional to the frequency of the
excitation. In addition, another Pareto optimization is conducted to further improve the
accumulated harvested energy for both EMEH and PEH under the high-level frequency
up-sweep excitation. the results demonstrate that the total accumulated harvested

energies of the nonlinear configurations outperform the linear one.
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Chapter 4. Using a Piecewise-Linear Spring to

Approximate an Essentially Nonlinear Spring: Design

and Validation

4.1 Introduction

An essentially nonlinear spring (ENS) is a hardening spring with a zero stiffness at
its undeformed position. Mathematically, its restoring force can be expressed as an odd-
order polynomial without the first-order term. In particular, the ENS with a cubic
nonlinearity is considered in this study. The ENS has been widely used for vibration
isolation such as quazi-zero stiftness (QZS) isolators [1] and vibration suppression such
as nonlinear energy sink (NES) [2]. In the latter, the unique properties of the ENSs
enable an NES to weakly couple with a primary system so that the 1:1 resonance can
be trigged and the targeted energy transfer (TET) can be established if the excitation
level exceeds a threshold [3]. Additionally, the ENS has also been widely employed in
the construction of nonlinear vibration energy harvesters to overcome the narrow
bandwidth limitation of traditional linear oscillators. This enhancement significantly
improves the robustness and efficiency of vibration energy harvesters in real-world
environments [4]. Various means have been developed to realize an ENS, including
near buckling beam, zero-tension string, cam-roller-spring, magnetic spring, and

piecewise linear spring (PLS), etc.

Mechanical springs are the most common approach to realizing ENS characteristics.
The classic three-spring structure was first proposed in [5]. This design utilizes a
vertical coil spring to provide positive stiffness and two oblique springs to provide
negative stiffness. By carefully balancing the positive stiffness and negative stiffness,
the desired ENS behaviour can be achieved. Various designs were developed based on
such a principle [6]. For example, a design employing two buckled beams as negative

stiffness elements was introduced in [7]. The design in [8-10] utilized multiple pairs of
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oblique springs to enlarge the low-stiffness range of QZS isolators to provide a better
isolation performance under low frequency excitation. In [11, 12], a design that uses
only two springs combined with rigid links to achieve QZS is proposed. In [13], a novel
spring arrangement that combines with an X-shape structure presented to achieve an

even better low frequency vibration isolation performance.

Cam-roller-spring construction provides another approach to realizing ENS. Such
a device usually consists of a spring-supported roller. When the roller moves on a
curved surface, the restoring force of the spring will change in a nonlinear way along
the curved surface. In [14], a typical cam-roller-spring design is proposed and
conducted a systematical analysis of its static and dynamic behaviours. The design
proposed in [15] combined a vertical liner spring with two parallel cam—roller—spring
structures. The study in [16] proposed a customized surface for the cam to enable the
isolator to perform both hardening and softening spring behaviours. A novel design
proposed in [17] allowed the isolator to show essentially nonlinearity in two directions

simultaneously.

Magnetic spring constructions have also been widely studied to achieve ENS
behaviour. These assemblies typically use magnetic attraction or repulsion properties
between magnet poles to generate a negative or positive stiffness spring. The nonlinear
nature of the force between two magnets makes magnetic springs ideal for achieving
ENS characteristics. in [18], a typical design was proposed by allowing a magnet to
move between two fixed magnets in a tube. On the other hand, the magnetic springs
can combine with other components like beam [19, 20], coil springs [21, 22] or wire

rope [23] to make the system more stable.

Each of the aforementioned methods presents both advantages and limitations. For
instance, an ENS realized by a zero-tension string is generally straightforward in design
and tuning. However, it requires a supporting track, which introduces unwanted
friction, and its bulky design can limit its use in compact applications. The cam-roller
spring can precisely achieve complex nonlinearity, but the contact between the cam
surface and the roller can lead to significant friction, reducing overall efficiency. A
magnetic spring offers contactless operation, which prevents wear and tear, but often

requires complex and precise adjustments to achieve the desired nonlinearity. It should
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also be noted that these methods strive to approximate an ideal ENS as any spring
inherently possesses a certain degree of linear stiffness. Another promising approach to
approximate an ENS is to use a PLS. This approach involves dividing the nonlinear
force-displacement relationship into several linear segments, each representing a
different stiffness characteristic. By carefully selecting the breakpoints and slopes of
these segments, it is possible to closely approximate the nonlinear behaviors of the ENS
system while retaining the mathematical simplicity of linear analysis within each
segment. The simplest PLS configuration involves a cantilever beam constrained by a
pair of stop blocks. The study in [24] developed a PLS with tunable piecewise linear
stiffness by using a cantilever beam and a pair of movable single-stop blocks. A PLS
developed in [25] employs a cantilever beam with a pair of double-stop blocks. Based
on such a concept, some designs by using continuous stop blocks were developed [26,

27]. Note that this kind of design no longer belongs to the piecewise linear category.

PLS offers several advantages. For example, the non-smooth nonlinearity of the
PLS has been proven to have a high vibration reduction effect, which brought benefits
when employing PLS in the NES design [28]. Moreover, PLS provides a flexible and
computationally efficient approach for modeling complex nonlinear behaviors, which
facilitates integration with existing analytical methods, such as the harmonic balance
method. This versatility makes PLS design especially valuable in the design and
optimization of mechanical vibration absorbers, energy harvesters, and other systems
where nonlinearities play a critical role. Despite these advantages, existing
implementations of PLS, particularly those employing beams with double-stop blocks
such as the one proposed in [25], often rely on the trial-and-error method to determine
configuration parameters. Few studies provide a systematic design method for PLS
consisting of a cantilever beam with single-stop or double-stop blocks. This study
intends to address this gap. The contributions of the present work lie in four aspects.
First, a systematic design procedure is developed to use a cantilever beam-based PLS
with single- or double-stop blocks to approximate an ENS. To the best of our
knowledge, no such study has been reported. Second, comparative simulations are
conducted to evaluate the performances of the optimum PLSs statically and
dynamically. Such method of evaluation is applicable in similar studies. Third, an

apparatus with a tunable design is developed to validate the simulation results. Fourth,
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the limitation of using a cantilever beam-based PLS to approximate an ENS is revealed,

and the remedy is proposed.

The rest of the Chapter is organized as follows: In Section 2, a design procedure is
presented to find the optimum parameters of a PLS with single- or double-stop blocks
based on a desired ENS. In Section 3, numerical simulations are conducted to evaluate
the behaviors of the designed PLSs. In Section 4, experiments are carried out to validate
the simulation results statically and dynamically. The main conclusions of the study are

given in Section 5.

4.2 Design Procedure

As mentioned in the Introduction, a PLS with low linear stiffness and high nonlinear
stiffness can be achieved by placing a cantilever beam between a pair of single- or
double-stop blocks. In what follows, a procedure is developed to design such a PLS.
For this purpose, an apparatus with four tunable stop-blocks is developed. Figure 4.1(a)
shows a CAD drawing of the developed apparatus. The frame of the apparatus is
constructed by connecting a top block to a base block using four aluminum extrusions.
A stainless steel beam is clamped in the middle of the top block, and its free end is
attached by a pair of magnets acting as an oscillating mass. On each side of the beam,
there are two stop blocks. Each of the four stop blocks is held in place by a holder,
which is attached to a movable bar that can slide up and down. Individual block can be
slid horizontally inside of its holder. The top block, the base block, and the stop blocks
are made of PLA filament through 3D printing.

Figure 4.1(b) illustrates a schematic of the system model, where z denotes the
displacement of the tip mass relative to the base, m is the tip mass, ¢ and £, represent
the damping coefficient and nonlinear stiffness of the steel beam, respectively. Based
on the model, the equation of motion can be derived as follows:

mz+cz+ f, =0 4.1)

where ]; , 18 the piecewise linear restoring force of the PLS which has two distinct forms:

]; ,, for the single-stop configuration and ]; ., for the double-stop configuration.
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Figure 4.1(a) CAD drawing of the proposed apparatus; (b) schematic of the

system model.

Figure 4.2(a) shows the configuration of the PLS with single-stop blocks where /
denotes the length of the beam, / the location of the stop block, and d the gap between
the undeformed beam and the stop block, and z, the critical displacement when the
beam just contacts tip 4. The critical displacement z, divides the piecewise linear
restoring force into two sections: unconstrained and constrained. They have two
incremental piecewise linear stiffness &;; and ky,. Then the restoring force of the PLS

with single-stop blocks within the range of —z,, < z < z,, can be expressed as:

k,(z+z)—k,z, -z, <z<-zZ
fpls (z2)=1k,z —z <z<z, 4.2)
k,(z—z)+k,z, z <z<=z,
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Figure 4.2 Configurations of the PLSs: (a) with single-stop blocks; (b) with

double-stop blocks.

Figure 4.2(b) shows the configuration of the PLS with double-stop blocks where /
denotes the length of the beam, /; and d; are the location and the gap of the first pair
of stop blocks, 4, and d, are the location and the gap of the second pair of stop blocks,
z, the critical displacement when the beam just contacts the first block tip B and z;,
the critical displacement when the beam just contacts the second block tip C. The
piecewise linear restoring force can be separated into three sections: one unconstrained
and two constraineds. They are characterized by three incremental piecewise linear
stiffness k,;, k;» and k3, respectively. Then the restoring force of the PLS with double-

stop blocks within the range of —z,, < z < z,, can be expressed as:

kys(z+24) =kyy (24 = 24) —kpza =2, Sz2<-Z,
kj(z+2z,)—k;z, -z, <z<-z,

fpld (2) =1k, 2z —ZpSzZ5ZzZy, (4.3)
ki (z2=z4) +kyzy Zp<zs2z,,
kys(z=245) + kg (20— 24) + k2 Z<zsz,

As mentioned above, the design objective is to use a PLS to approximate an ENS

with a cubic nonlinearity. Thus, the desired restoring force is defined by:
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fu@)=k2 (4.4)

where £k, is the nonlinear stiffness. The value of &, can be determined based on
applications. In the case of the NES, the maximum displacement z,, of the mass and its
corresponding instantaneous frequency w,, are chosen first. For example, z,, can be
chosen according to the space limit and the beam deformation limit and w,, can be
chosen according to the 1:1 resonance requirement. Then, the concept of the equivalent
stiffness k., [24, 29] is used to relate k, to z, and w,,. Based on this concept, the
equivalent stiffness k,, of a nonlinear spring with an odd-order polynomial restoring

force is related to the instantaneous frequency at z,, by:
k,, = @,m (4.5)

On the other hand, the equivalent stiffness can be estimated by:

) L2 2)

Zm +Zm/2

(4.6)

eq

Substituting Eq. (4.4) into Eq. (4.6) yields:

k,, = %knzi 4.7)

Substituting Eq. (4.5) into the above equation yields:

40’ m
k, = 32’"2 (4.8)

m

Now, based on eq. (4.4), the desired restoring force f, (z) within 0 < z < z,, can be

determined. As defined in Eq. (4.2), there are three parameters kg, ky, z, to be

determined to approximate such a nonlinear force by using the PLS with single-stop

blocks. When the cantilever beam is chosen, &, is specified by the formula &, = 3EIP.
Then the optimum values for &y, and z, can be found by minimizing the following

objective function:
S 2
Jhi52)= D (fu(2) = £,(2) (4.9)
i=1
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where N is the number of discretized terms, z; is the i discretized displacement. With

the found optimum values k:z and z,, the parameters 4 and d can be found in the
following procedure. After the beam contacts the tip 4, the beam can be treated as a
fixed-pinned beam with an overhang [24]. As derived in the Appendix 4A, the stiffness
of such a beam is defined by:
12E1
kK== 4.10
2 (I—h)(4l—-h) (+.10)

The above equation can be expanded into a 3™-order polynomial in terms of 4:

1+ 6Ih* —9I*h +4Al° — liE -0 4.11)

s2

Substituting /, EI and k:z into the above equation yields three roots. The smallest root
should be chosen as /. On the other hand, the force that causes the cantilever beam’s

tip to deflect z, is given by:

f.=—2z, (4.12)

With this force, the deflection of the cantilever beam at / is chosen to be d, i.e.,

_3EI . W@l-h) zZ.h®

d= = 3/—h 4.13
P °  6EI 213( ) ( )

As for the PLS with double-stop blocks, based on the restoring force defined in Eq.
(4.3), there are five parameters k;, z1, kpn» Zp» and ky; to be determined. When the
cantilever beam is chosen, k;; is specified by the formula k;; = 3EI/P. Then, the
optimum values for z,,, k;, z» and k ;3 can be found by minimizing the following

objective function:

N
J(kgys 215 ka35242) = Z(fpld (z)-f.(z ))2 (4.14)
i=1
With the found optimum values k:,z, the smallest root of the following equation should

be chosen to 4;:

12EL (4.15)

d2

—I +6lh* —9Ph+4° —
With the found optimum value z,;; and 4, d; can be found as:
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* g2
d = Z;'l}j (31—h) (4.16)

With the found optimum values k;3, the smallest root of the following equation should

be chosen to be #,:

1+ 61 —91%{4[3 _ 1?1 ] _0 4.17)

d3

To find d,, the fixed-pinned beam with an overhang and the pin at 4, is considered. As

derived in Appendix 4A, the force that causes its tip to deflect Z;:Z is given by

6EI(3ld, —2hz,, —hd,)

fulzg) =
CTERT (B —6lhY + 917k, —4%)

(4.18)

Then d, can be found according to the displacement function along the beam shown in

Eq. (4A.20):

g - 1, (222)[3(}12 —h)ah® +4a’h, —6a’h (I —h)+2(I—h,)h, J +6EId,(3h, —h,)

4.19
2 12EIh, *19)

where @ = [ — h; is introduced to shorten the equation.

4.3 Numerical Simulations

Based on the values of the system’s parameters provided in Table 4.1, the desired

nonlinear restoring force can be derived as:

£.(2)=2.665x10°Z* (4.20)
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Table 4.1 Parameters value of the system.

Symbol Name values

w,, (rad/s) The instantaneous frequency of the NES at z,, 2m(15)=94.26
m (kg) Tip mass 0.09

¢ (Ns/m) Damping coefficient 0.033

z,, (m) Maximum displacement 0.02
EI(Nm?) Transverse rigidity of the cantilever beam 0.158

[ (m) Length of the cantilever beam 0.174

kg (N/m) Ist stiffness of the PLS with single-stop blocks 90.205

k1 (N/m) 1st stiffness of the PLS with double-stop blocks 90.205

To approximate such a force, the nonlinear least squares optimization approach is
employed to determine the other paramters of the PLS. For an optimal PLS with single-
stop blocks, the objective function defined in Eq. (4.9) is minimized to find k;, and z;
while for an optimal PLS with double-stop blocks, the objective function defined by
Eq. (4.14) is minimized to find kj,, z;,, k;3, and z3, k;,. The MATLAB optimization
toolbox is used for the optimization. In the first optimization, the searching ranges of

the parameters are set as 0 < k,, < 1 X 10* N/m and 0 < z, < 0.02 m, the initial guess

of k, and z, are chosen as 1 X 10°> N/m and 0.015 m, respectively.

In the second optimization, the searching ranges of the parameters are set as 0 <
kp, ks <1x10*N/mand 0 < z,, zp < 0.02 m, the initial guess of z,;, k, 2, and
k43 are chosen as 0.005 m, 1 X 10° N/m, 0.015 m and 1 x 10°> N/m, respectively. In
both cases, z; varies from 0 to 0.02 m, and the total data amount N is 100, the tolerance
for the gradient norm is set as 1 X 10°°.

The obtained optimum parameters are listed in Table 4.2. It can be found that the
error obtained for the PLS with single-stop blocks is larger than that for the PLS with
double-stop blocks, indicating that the latter provides a better approximation for the

desired ENS in terms of the restoring force. Figure 4.3 compares the restoring forces of

the three springs. It can be observed that ]; .o as a smoother curve and exhibits a better

fitting to the desired nonlinear force than fp ;- As the configuration of double-stop
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blocks provides one more linear segment to approximate a continuous curve, a better
approximation is expected. On the other hand, the configuration of single-stop blocks
is easier to construct. As any engineering design, there is a trade-off between the
approximation accuracy and construction cost. Additionally, the potential energies P,,,,

P,; and Py, of the three springs can be obtained by taking the integral of f, , j; ;s and
]; 1 OVer z, respectively, The results are shown in Figure 4.4. It can be observed that P,

is lower than P,;,; when the displacement is larger than 0.007 m, which means the PLS

with single-stop blocks is able to have a larger displacement when the excitation is not
high enough to make the PLS move to z,, but beyond a specific threshold. On the other

hand, P, agrees better with P,,, when the deflection increases.

Table 4.2 The optimum parameters of the PLSs with single- or double-stop blocks.

PLS with single-stop block PLS with double-stop block

Symbols values Symbols values

Estimated z;(m) 0.009 Zg1 (m) 0.008
parameters ky, (N/m) 1673.322 k;p (N/m) 985.764

of PLSs 2z, (m) 0.0143
k3 (N/m) 2370.967

Geometry h (m) 0.129 hy 0.116

parameters d (m) 0.006 d; 0.004

of the hy 0.136

blocks d, 0.007

Errors 67.916 7.37
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Figure 4.3 Comparison of the restoring forces of the ENS and the optimum PLS.
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Figure 4.4 Comparison of the potential energies of the three springs.

To compare the dynamic behaviors of the three systems, a numerical simulation is
conducted to obtain the free response of each of them by solving Eq. (4.1) through
MATLAB ODE45 solver. The initial conditions are chosen as (z,z) = (0.02, 0). The
wavelet transform (WT) is applied to the time response. The frequency corresponding
to the maximum WT spectrum value is chosen as the instantaneous frequency (IF) of
the system. Figure 4.5 shows the simulation results where the time responses and the
WT spectra are given on the left and on the right, respectively. It can be observed that
for the system with the ENS, the IF reduces from about 15 Hz to 5 Hz within 10 seconds

smoothly. Two observations can be made. First, the use of the equivalent stiffness to
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determine the value for &, serves the purpose, i.e., @, is about 94.26 rad/s or 15 Hz.
Second, the system with the ENS does not possess a natural frequency or it can respond
to any frequency as long as the initial energy exceeds the required threshold. On the
other hand, the IF transition of both PLS systems is less smooth and not continuous.
For the system with the PLS of single-stop blocks, its IF becomes about 5 Hz after 7
seconds while for the system with the PLS of double-stop blocks, its IF becomes about
5 Hz after 8 seconds. Once again, the PLS with double-stop blocks gives a better
approximation to the ENS.
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Figure 4.5 Simulation results, free response (left) and its WT spectrum (right): (a)
(b) with the ENS; (c) (d) with the PLS of single-stop blocks; (e) (f) with the PLS of
double-stop blocks.

4.4 Experimental Validation

In this section, the restoring forces of the designed PLSs are validated through static

and dynamic experimental tests. In the experimental tests, both single- and double-stop
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blocks configurations are considered. The lower two stop blocks can be removed to

achieve the single-stop block configuration.

4.4.1 Static Experimental Test

Figure 6 shows the experimental setup for measuring the restoring force of the PLS
with double-stop blocks. As depicted in Figure 4.6, the apparatus is mounted on a
slipping table, which is connected to a linear displacement sensor. A force sensor
(RCbenchmark Series 1520) is fastened to an aluminum extrusion stand behind the

apparatus. The force sensor is made to contact the free end of the beam via a steel rod.

Stop blocks

inear displacement sensor

Figure 4.6 Photo of the static experimental setup.

At the beginning of the test, the beam is at its undeformed position. When the
apparatus is manually slid to the right, the beam tip is being blocked by the force sensor,
causing the beam to deform to the left. During this process, the linear displacement
sensor records the displacement of the apparatus which corresponds to the deflection of
the beam at an interval of 0.002 m. By increasing the deflection from 0 to 0.02 m, the
force-displacement curve can be obtained by collecting the force measured by the force

sensor and the deflection measured by the linear displacement sensor. Figure 4.7
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compares the measured restoring forces with the predicted one and the desired one for
the two PLSs. It can be observed that the experimental results show good agreement

with the predicted results, verifying the accuracy of the model statically.
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Figure 4.7 Experimental results of the restoring force of PLSs: (a) with single-stop

blocks; (b) with double-stop blocks.

4.4.2 Dynamic Experimental Test

A dynamic experimental test is conducted to measure the restoring force by using
the restoring force surface method [25]. Figure 4.8(a) shows a photo of the experimental
setup. The apparatus is mounted on a slipping table that is driven by a shaker (2809,
Briiel & Kjar) through a stinger. The shaker is driven by an amplifier (2718, Briiel &
Kjer). Two laser reflex sensors (CP24MHTS80, Wenglor) are used to measure the
transverse displacement of the beam’s tip and the base’s displacement, respectively. A
computer equipped with the dSPACE dS1104 data acquisition board is used to collect
the sensor data and send the exciting signal to the power amplifier to drive the shaker.
A control program is developed by using the MATLAB Simulink which is interfaced
with dSPACE Controldesk Desktop software.

Based on the schematic of the experimental setup shown in Figure. 4.8(b), the

equations of motion of the system is given by:

m(z+y)+cz+ [, =0 (4.21)
where y is the base displacement, z represents the relative displacement between the
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base and the mass at the beam’s tip. Equation (4.21) can be reformulated as:

F(z,z2)= —m(y+%) (4.22)

A 3-dimensional plot of F(z,z) verse z and Z is referred to as the restoring force
surface [28]. After the displacements of the base and the mass are measured by the laser
reflex sensors, their derivatives can be obtained by numerical differentiation. Therefore,
the restoring force surface can be established. It should be noticed that the excitation
signal should be selected to ensure good coverage in the phase plane. In this study, it is

chosen as a harmonic function with a slowly modulated amplitude:

v = Acos(0.0171)-cos(27 fr) (4.23)

where 4 = 0.0013 m is the amplitude of the exciting signal, f, represents the exciting
frequency which is chosen from 6.5 Hz to 9.5 Hz by trial and error. By taking the section

at Z = 0 of the restoring force surface, the restoring force of the PLS can be found as:

j;l(z) = F(z,0).

Stainless steel beam I
-._’ .

Moving base

=]

i

L@ b |y(@)+=()

x 35 - s 2 i

Figure 4.8(a) Photo of the experimental setup for the dynamic experimental test;

(b) schematic of the model for the experimental setup.

Figure 4.9 compares the restoring force determined by the force surface method
with that of the optimum PLS with single- or double-stop blocks. It is noted that the

experimental results are unable to cover the entire range of displacement. The reason
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can be attributed to an insufficient excitation level to provide enough inertial force for
the tip mass to achieve larger displacement. In the experimental testing, though the
shaker is working under its maximum capacity, the maximum displacement of the tip
mass can only reach 0.015 m for the two configurations. Within the range of -0.015 m-
0.015 m, there is a good agreement between the experimental result and the analytical
one. In particular, the experimental restoring force of the PLS with single-stop blocks
is able to demonstrate k;, while the experimental restoring force of the PLS with
double-stop blocks fails to reveal k;;. As shown in Figure. 4.9(b), the maximum
displacement just reaches to z,, which means the beam is not able to touch the lower
pair of stop blocks. This will make the equivalent stiffness of the PLS with double-stop

blocks much lower than the desired one.

To further demonstrate that, two sets of experimental tests are conducted to obtain
the free responses for both two configurations with an initial position z, = 0.015 m,
then based on the time history of free responses, the IF can be found by picking the
peak frequency of the wavelet transform spectra. Figure 4.10 shows the experimental
results of the time history and the corresponding IF. It can be found that the IF starts
from 8.5 Hz and then decreases to 5 Hz within 2 seconds for both two configurations,
the starting frequency is much lower than the desired value of 15 Hz, which further

verifies that the equivalent stiffness is lower than the desired value.
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Figure 4.9 Experimental results of the restoring force of PLSs with z,, = 0.02 m:

(a) with single-stop blocks; (b) with double-stop blocks.

111



=
=
=
2
=

© WT spectra

0.01 B1s ——instantaneous frequency
—_— -
E 210
™ =

(-
0.01 & 5
0.02
0 2 4 6 8 10
time (s)
(@

0.02

0.01 C
= b
= 0 2
N E

g
-0.01 =
-0.02 :
0 2 E} 6 8 10
time (s) time (s)

(© ()

Figure 4.10 Experimental results for the free response and corresponding IF of
PLSs with z,, = 0.02 m: (a) (b)with single-stop blocks; (¢) (d) with double-stop
blocks.

To remedy this problem, one solution is by increasing the excitation level to provide
sufficient inertial force for the tip mass. Specifically, the amplitude of the inertial force
should be equal or greater than the restoring force corresponding to z,,. If it is not
practical to reach a higher excitation level, an alternative approach involves redesigning

the desired nonlinear force with a smaller z,,,.

In this study, due to the limitation imposed by the shaker’s capacity, the latter
approach is chosen. In the new design, z,, is chosen as 0.01 m. By following the
proposed design procedure, the optimum parameters are obtained and listed in Table
4.3. Compared the results in Table 4.2, it is noted that reducing the range of
displacement affects only d in the single-stop blocks configuration and d; and d, in the
double-stop blocks configuration. Using the same excitation condition, the force
surface method is implemented again. Figure 4.11 compares the two results with z,, =
0.01 m. It can be seen that the displacement range of the experiment results are able to

cover the designed range and the experimental values agree well to the analytical ones.

The experiments to get the free response and IF for the two configurations are

conducted again by choosing z, = 0.01 m. The results are shown in Figure 4.12. It can
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be found that the IF begins at 12 Hz and decreases to 5 Hz within 2 seconds for both
configurations. The amplitude of the free response diminishes more rapidly than that in
the simulation, and the difference between the IF transitions of the two configurations
is less pronounced compared to that in the simulation. This discrepancy can be
attributed to the impact caused by the stoppers, which absorb a portion of the kinetic
energy of the PLS. In this case, the damping coefficient of the system with the PLS is
no longer constant. In the future work, it will be important to consider the impact effect
in the theoretical modelling and select proper stopper material to minimize the impact

effect.
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Table 4.3 Estimated results for the parameters of PLSs with single- and double-stop

blocks when z,,, = 0.01 m.

PLS with single-stop block PLS with double-stop block
Estimated Symbols values Symbols values
parameters i i
of PLSs z,(m) 0.005 2, (m) 0.004
Ky (N/m) 1673.322 kg, (N/m) 985.764
Zp(m) 0.007
k3 (N/m) 2370.967
Geometry h (m) 0.129 hy 0.116
parameters
of the d (m) 0.003 d; 0.002
blocks
hy 0.136
d, 0.003
15 T i 15 f
10 - fpls d 10 - rpld
O measured data| O measured data

restoring force (N)
restoring force (N)

- - L -15 I L
-0.01 -0.005 0 0.005 0.01 -0.01 -0.005 0 0.005 0.01

displacement z (m) displacement z (m)
(a) (b)
Figure 4.11 Experimental results of the restoring force of PLSs with z,, = 0.01 m:

(a) with single-stop blocks; (b) with double-stop blocks through the restoring force

surface method.
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4.5 Conclusions

This study has developed a design procedure to use a piecewise linear spring (PLS)
to approximate an essentially nonlinear spring (ENS). The PLS is constructed by
placing a cantilever beam between a pair of single- or double-stop blocks. After the
beam contacts a stop block, it is treated as a fixed-pinned beam with an overhang. Thus,
the configuration of single-stop blocks is defined by two parameters /4 and d while the
configuration of double-stop blocks is defined by four parameters 4,, d;, h, and d,. The
design starts with the determination of the restoring force of the desired ENS using the
equivalent stiffness which quantifies the characteristics of a cubic polynomial roughly.
Then, a least squares optimization is conducted to find the optimum values z, and k;2
for the PLS with single-stop blocks and z;;, ko, z, and k5 for the PLS with double-
stop blocks. The further steps are presented to find h and d with z, and k: > and hy, dy,

. * * * *
hz and dz with Z15 ks2’ Zp and kd3-

A numerical simulation has been conducted to evaluate the performances of the
optimum PLSs statically and dynamically. The results show that the PLS with double-
stop blocks provides a better approximation to the ENS than the PLS with single-stop
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blocks in terms of the restoring force and potential energy. The wavelet transform (WT)
spectra of the free responses reveal that both PLS systems are able to initiate the desired
instantaneous frequency (IF) as the ENS system under the same initial conditions.
However, unlike the system with the ENS, the IF of the system with the PLS settles
down to a constant. The PLS with double-stop blocks provides a longer and smoother

IF transition than the PLS with single-stop blocks.

An experimental apparatus has been developed to validate the designed PLSs. The
apparatus allows to easily configurate into single-stop blocks setup or double-stop
blocks setup. The restoring force of each of the PLSs is measured. The measured values
show a good agreement with its predicted counterpart, validating the accuracy of the
model statically. Further, the restoring force surface method has been employed to
determine the restoring force of the PLS systems dynamically. The results show that
within the achievable range, the measured values agree well with the predicted ones.
However, this achievable range is smaller than the design value z,, due to an insufficient
exciting force. This limitation is also manifested by the smaller range of the IF shown
in the WT spectra of the free responses. A solution has been proposed to address this
issue. To achieve the desired equivalent stiffness, the PLS should be redesigned by
reducing z,, to an appropriate value so that the displacement range can be covered with
the exciting force available. By reducing z,, by half, the PLSs are redesigned, and the
experiments are reconducted. The improved results are obtained, showing that the
measured restoring forces have a wider cover range, and the IFs achieve a larger
transition. It is also noted that the free responses from the experiment decay much faster
than those from the experiment. This may be attributed to the two reasons. First, the
damping may not be constant. Second, the impact effect may not be negligible. Future
studies should explore the impact effects to better understand their influence on the

dynamic response of the PLS system.

Appendix 4A. Fixed Beam with an Overhang

The stiffness equation and curvature function of the fixed-pinned beam with an
overhang are important in the proposed design procedure. Several different expressions

exist in the literature [24] To verify their correctness, a detailed derivation is presented
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below. Figure 4A.1 shows the free body diagram (FBD) of the fixed-pinned beam with
an overhang under a tip load f. As shown in Fig. Ala, three coordinates are used in the
analysis, namely, 0 <y, <h,0 <y, <awherea=17/—h,and 0 <y </ It should be
mentioned that y, and y, are introduced only for the purpose of derivation, y is the same
coordinate used in the paper. As for the displacement, assume that the right direction is

positive. It should be noted that such supports result in an indeterminate beam.
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@) (b)

Figure 4A.1 (a) the FBD of the fixed-pinned beam with an overhang; (b) the FBD
of the beam segment between the fixed end and the pin and the FEB of the beam

segment between the pin and the free end.

From the FBD in Fig. Ala, the sum of the moments at O and the sum of forces

should be zero:

A+Y M =0 ~M,—Rh+f1=0
(4A.1)
—>+Y F=0 R,-R,+f=0
which yields:
M, =f(-h)—R,h (4A.2)

From the FBD of the two beam segments shown in Fig. Alb:
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A+ M, =0 M, =M,+R,y, (4A.3)

A+ M, =0 M, = fy, (4A.4)

For 0 <y, < &, based on the double integration method, Eq. (4A.3) can be rewritten as:

d’z,
y;

EI

=M, +R,y, (4A.5)

where z; represents the displacement at y,. By taking the integration for the above

equation twice yields:

BT vy iR v (4A.6)
dy, 2
1 L
Elz, =5M0y] +8R0y] +Cy, +C, (4A.7)

Similarly for M,, For 0 <y, < a, Eq. (4A.4) results:

EI=2=f, (4A.8)

where z, represents the displacement at y,. By taking the integration for above equation

twice yields:

dz 1
EI=2=—_f>+C (4A.9)
., 2]3/1 +G
Elz, :éfy; +Cy, +C, (4A.10)

To find the expression for C;, C,, C5 and Cj, the following five boundary conditions

are considered:

z,=0 at y,=0

?:0 at y, =0

A

z,=d at y,=h (4A.11)
z,=d at y,=1-h

& &y at y,=h,y,=1-h

dy, dy,
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By substituting the first two conditions into Egs. (4A.7) and (4A.6), respectively, C;
and C, can easily be found to be zeros. Based on the latter three conditions, the

following equations can be derived:

1 1

Eld = EMoh2 +e RI (4A.12)

Eld = % FUA=hy+C,(I—h) +C, (4A.13)
1, o 1.5

Moy, +5 Royl === i =C, (4A.14)

Based on Eqs (4A.13). and (4A.14), C; and C,4 can be given as:
C, = —[Moh +%R0h2 +% fa —h)zj (4A.15)

C, =Eld +% FU=hY +aM h +%aROh2 (4A.16)

Now, the only unknown parameters in the above equations are M, and R,. Based on

Eqgs. (4A.2) and (4A.12), the expression of M, and R, can be found as follows:

1 3IEId 1 Eld
N _ 2BA —3| — _ 4A.17
M, [Zf(l m+=3 )andRO 3[2hf(l )+ h3) ( )

By substituting Eq. (4A.17) into Eq. (4A.7), the relationship between z; and f can be

founded as:

| f(h=1)(h=y)* +2EldBh-y,) |}
AEIR

z,(y) = (4A.18)

By substituting Eq. (4A.17) into Eqgs. (4A.15) and (4A.16) first, and then substituting
C5 and C, into Eq. (4A.10), the relationship between z, and f can be found:

f[3(1—h- Y, )= +4(1=h) h—6(I-h) hy, +2y§h]+6Elar(31—3y2 ~h)
12EIh

z,(y,)=

(4A.19)
Accordingly, the displacement in y coordinate or so-called curvature function can be

found:
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[ f(h=D)(h=y)l* +2EId (3h =) ] y*

3 0<y<h
() = AETh
f[3(y —h)(I=h)h* +4( —h) h—6(1 — k)’ h(l — y) +2(I - y)3h] +6EIld(3y—h)
h<y<l
12E1h
(4A.20)

Then, the relationship between tip displacement z and tip load f'can be found when y =

[

)= 16U —h)’ h+4( — h))Yh+ 6 EId (3] — h) (4A21)
12E1h
or
4 SEI(31d + 21z + hd) (4A22)

h(l—h)> (4] — h)
Since the restoring force of the beam shares the same value with £, the stiffness of the

fixed-pinned beam with an overhang can be found as:

__ 12Br (4A.23)
(I—h)*(4l—h)

References

[1] Z.Ma, R. Zhou, and Q. Yang, "Recent advances in quasi-zero stiffness vibration
isolation systems: an overview and future possibilities," Machines, vol. 10, no.
9, 2022, doi: 10.3390/machines10090813.

[2] X. Geng, H. Ding, J. Ji, K. Wei, X. Jing, and L. Chen, "A state-of-the-art review
on the dynamic design of nonlinear energy sinks," Engineering Structures, vol.
313, 2024, doi: 10.1016/j.engstruct.2024.118228.

[3] A. Vakakis, O. Gendelman, L. Bergman, D. McFarland, G. Kerschen, and Y.
Lee, Nonlinear targeted energy transfer in mechanical and structural systems.
Springer Science & Business Media, 2008.

[4] Y. Jia, "Review of nonlinear vibration energy harvesting: Duffing, bistability,
parametric, stochastic and others," Journal of Intelligent Material Systems and
Structures, vol. 31, no. 7, pp. 921-944, 2020, doi: 10.1177/1045389x20905989.

[5] W. Molyneux, "Supports for vibration isolation," Technical Report ARC/CP-
322, Aeronautical Research Council., 1957. Technical Report ARC/CP-322,
Aeronautical Research Council.

120



[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Alabuzhev, Vibration protection and measuring systems with quasi-zero
stiffness. CRC Press, 1989.

X. Huang, X. Liu, J. Sun, Z. Zhang, and H. Hua, "Vibration isolation
characteristics of a nonlinear isolator using Euler buckled beam as negative

stiffness corrector: A theoretical and experimental study," Journal of Sound and
Vibration, vol. 333, no. 4, pp. 1132-1148, 2014, doi: 10.1016/j.jsv.2013.10.026.

F. Zhao, J. C. Ji, K. Ye, and Q. Luo, "Increase of quasi-zero stiffness region
using two pairs of oblique springs," Mechanical Systems and Signal Processing,
vol. 144, 2020, doi: 10.1016/j.ymssp.2020.106975.

F. Zhao, J. Ji, K. Ye, and Q. Luo, "An innovative quasi-zero stiffness isolator
with three pairs of oblique springs," International Journal of Mechanical
Sciences, vol. 192, 2021, doi: 10.1016/j.ijmecsci.2020.106093.

F. Zhao, J. Ji, Q. Luo, S. Cao, L. Chen, and W. Du, "An improved quasi-zero
stiffness isolator with two pairs of oblique springs to increase isolation
frequency band," Nonlinear Dynamics, vol. 104, pp. 349-365, 2021.

A. D. Shaw, G. Gatti, P. J. P. Gongalves, B. Tang, and M. J. Brennan, "Design
and test of an adjustable quasi-zero stiffness device and its use to suspend
masses on a multi-modal structure," Mechanical Systems and Signal
Processing, vol. 152, 2021, doi: 10.1016/j.ymssp.2020.107354.

G. Gatti, A. D. Shaw, P. J. P. Gongalves, and M. J. Brennan, "On the detailed
design of a quasi-zero stiffness device to assist in the realisation of a

translational Lanchester damper," Mechanical Systems and Signal Processing,
vol. 164, 2022, doi: 10.1016/j.ymssp.2021.108258.

Y. Chai, X. Jing, and X. Chao, "X-shaped mechanism based enhanced tunable
QZS property for passive vibration isolation," International Journal of
Mechanical Sciences, vol. 218, 2022, doi: 10.1016/j.ijmecsci.2022.107077.

J. Zhou, X. Wang, D. Xu, and S. Bishop, "Nonlinear dynamic characteristics of
a quasi-zero stiffness vibration isolator with cam—roller—spring mechanisms,"
Journal of Sound and Vibration, vol. 346, pp. 53-69, 2015, doi:
10.1016/j.jsv.2015.02.005.

X. Wang, J. Zhou, D. Xu, H. Ouyang, and Y. Duan, "Force transmissibility of
a two-stage vibration isolation system with quasi-zero stiffness," Nonlinear
Dynamics, vol. 87, no. 1, pp. 633-646, 2016, doi: 10.1007/s11071-016-3065-x.

D. Zou, G. Liu, Z. Rao, Y. Zi, and W.-H. Liao, "Design of a broadband
piezoelectric energy harvester with piecewise nonlinearity," Smart Materials
and Structures, vol. 30, no. 8, 2021, doi: 10.1088/1361-665X/ac112c.

121



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

K. Ye,J. C.Ji, and T. Brown, "A novel integrated quasi-zero stiffness vibration
isolator for coupled translational and rotational vibrations," Mech Syst Signal
Process, vol. 149, p. 107340, Feb 15 2021, doi: 10.1016/j.ymssp.2020.107340.

B. P. Mann and N. D. Sims, "Energy harvesting from the nonlinear oscillations
of magnetic levitation," Journal of Sound and Vibration, vol. 319, no. 1-2, pp.
515-530, 2009, doi: 10.1016/j.jsv.2008.06.011.

Z. Li, L. Xiong, L. Tang, W. Yang, K. Liu, and B. Mace, "Modeling and
harmonic analysis of energy extracting performance of a piezoelectric nonlinear
energy sink system with AC and DC interface circuits," Mechanical Systems
and Signal Processing, vol. 155, 2021, doi: 10.1016/j.ymssp.2021.107609.

S. C. Stanton, C. C. McGehee, and B. P. Mann, "Reversible hysteresis for
broadband magnetopiezoelastic energy harvesting," Applied Physics Letters,
vol. 95, no. 17, 2009.

S. Wang, W. Xin, Y. Ning, B. Li, and Y. Hu, "Design, experiment, and
improvement of a quasi-zero-stiffness vibration isolation system," Applied
Sciences, vol. 10, no. 7, 2020, doi: 10.3390/app10072273.

X. Liu, H. Ding, X. Geng, K. Wei, S. Lai, and L. Chen, "A magnetic nonlinear
energy sink with quasi-zero stiffness characteristics," Nonlinear Dynamics, vol.
112, no. 8, pp. 5895-5918, 2024, doi: 10.1007/s11071-024-09379-0.

X. Geng, H. Ding, X. Jing, X. Mao, K. Wei, and L. Chen, "Dynamic design of
a magnetic-enhanced nonlinear energy sink," Mechanical Systems and Signal
Processing, vol. 185, 2023, doi: 10.1016/j.ymssp.2022.109813.

X. Shui and S. Wang, "Investigation on a mechanical vibration absorber with

tunable piecewise-linear stiffness," Mechanical Systems and Signal Processing,
vol. 100, pp. 330-343, 2018, doi: 10.1016/j.ymssp.2017.05.046.

X. Li, K. Liu, L. Xiong, and L. Tang, "Development and validation of a
piecewise linear nonlinear energy sink for vibration suppression and energy
harvesting," Journal of Sound and Vibration, vol. 503, 2021, doi:
10.1016/5.jsv.2021.116104.

L. Wang et al., "Uniform stress distribution of bimorph by arc mechanical
stopper for maximum piezoelectric vibration energy harvesting," Energies, vol.
15, no. 9, 2022, doi: 10.3390/en15093268.

Y. Jin, K. Liu, L. Xiong, and L. Tang, "A non-traditional variant nonlinear
energy sink for vibration suppression and energy harvesting," Mechanical
Systems  and  Signal  Processing, vol. 181, 2022, doi:
10.1016/5.ymssp.2022.109479.

122



[28]

[29]

J. Chen, M. Sun, W. Hu, J. Zhang, and Z. Wei, "Performance of non-smooth
nonlinear energy sink with descending stiffness," Nonlinear Dynamics, vol.
100, pp. 255-267, 2020, doi: 10.1007/s11071-020-05528-3.

S. Wang and M. Wiercigroch, "Forced oscillators with non-linear spring: A
simple analytical approach," Chaos, Solitons & Fractals, vol. 41, no. 4, pp.
1784-1790, 2009, doi: 10.1016/j.chaos.2008.07.048.

123



Chapter 5. A Magnetically Enhanced Piecewise-Linear

Nonlinear Energy Sink: Transient Responses

5.1 Introduction

A dynamic vibration absorber (DVA) or Tuned mass damper (TMD) is a widely used
passive device that suppresses structural vibrations by matching their natural frequency to
that of the host system. However, the effectiveness of TMDs is limited to narrow frequency
bands, making them less suitable for broadband or time-varying excitations. Nonlinear
vibration absorbers were proposed for broadband vibration suppression [1]. On the other
hand, over the past two decades, there has been growing interest in developing vibration
energy harvesters (VEHSs) to provide sustainable power sources for wearable electronics
and wireless sensor networks. Traditional VEHs typically employ linear oscillators to
convert ambient vibration energy to electricity through piezoelectric [2], electromagnetic
[3], and electrostatic [4] mechanisms. Similar to TMDs, the effectiveness of traditional
VEHs is confined to narrow frequency bands. To overcome this limitation, nonlinear
oscillators have been incorporated to enable broadband energy harvesting. A

comprehensive review of nonlinear energy harvesting can be found in [5].

Owing to the structural similarities between the TMD and the VEH, researchers have
naturally explored the potential for combining vibration suppression (VS) and energy
harvesting (EH) in a single multifunctional device. In [6], a piezoelectric energy harvester
(PEH) was placed between a linear DVA and its host system to achieve dual purposes of
VS and EH, and its performance was evaluated under various excitation conditions and
electrical loadings. The study reported in [7] investigated the feasibility of using a linear
oscillator simultaneously as a DVA and a VEH under both broadband and single-frequency
excitations. To widen the operational bandwidth, many studies have been conducted on

devices capable of achieving dual functionality [8, 9]. In [10], a comparative study was
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carried out to evaluate the VS and EH performance for linear and nonlinear vibration
absorbers under various excitation conditions. The results reveal that the nonlinear

vibration absorber provides superior broadband performance.

A nonlinear energy sink (NES) is a specific nonlinear vibration absorber consisting of
a small mass, a linear damper, and an essentially nonlinear spring (ENS). Characterized by
essential nonlinearity, the NES exhibits unique dynamic phenomena such as Targeted
Energy Transfer (TET) and Strongly Modulated Response (SMR). With TET, the energy
of the primary system can be transferred irreversibly to the NES through the 1:1 resonance
[11]. NESs can be categorized based on their configuration as either grounded (I) or non-
grounded (II). In configuration I, NES is connected to ground using an ENS and weakly
coupled to the primary mass via a linear spring. In [12], the concept of passive energy
pumping in grounded NESs was first introduced and its dynamics in both two-DOF
systems and semi-infinite chains was analyzed. Later, in [13], a design methodology was
proposed based on nonlinear normal modes (NNMs) of the underlying conservative system
to enhance the TET efficiency of grounded NESs. These foundational works formed the
theoretical basis for many modern grounded NES designs [14, 15]. In configuration II,
NES is connected to the primary mass directly, offering greater design flexibility for
compact systems. The study in [16] used the NNM analysis to examine how essential
stiffness nonlinearities in a non-grounded NES facilitate TET and energy localization under
different system parameters. In [17], the complicated dynamics of a linear primary system
coupled with a lightweight non-grounded NES, revealed that the structure of periodic orbits
of the undamped system greatly influences the damped dynamics. Moreover, the
lightweight NES shows strong resonant interactions with the primary system in a wide
frequency range. There have been some attempts that incorporate a grounded spring into a
non-grounded NES. In [18], a ground-limit spring was used to prevent excessive
displacement of the NES under strong excitations and enhance the robustness of the system.
It was found that if the ground-limit NES parameters are not chosen properly, the VS
performance deteriorates. Response mechanism of NES with an inerter and grounded
spring was investigated in [19]. The study found that the introduction of a grounded spring

reduces the Hopf bifurcation area and the required excitation amplitude. The system
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investigated in [20] consists of an ungrounded NES and a grounded linear spring. The study

focused on the elimination of high-branch response by global parameter optimization.

For the NES design, achieving an essential nonlinearity in practical implementation
remains a challenge, as any real spring inherently exhibits a certain degree of linear
stiffness [21]. To approximate ENS behavior in NES, several practical implementations
have been proposed, including mechanical springs with special configurations [22, 23],
cam-roller mechanisms [24, 25], magnetic springs [26], and piecewise linear springs (PLS)
[18, 27]. These studies have shown that a well-designed spring can make the nonlinear
oscillator behave like a true NES, exhibiting typical TET behavior. As this study employs
the PLS and magnetic spring, the following review will focus on these two types of ENS
implementations. The PLS approximates the nonlinear force—displacement relationship by
dividing it into multiple linear segments with distinct stiffness values. By carefully
selecting the breakpoints and slopes of these segments, the system can mimic the nonlinear
behavior of the ENS while retaining the mathematical simplicity of linear analysis within
each segment [28]. A NES incorporating a PLS is commonly referred to as a piecewise-
linear NES (PLNES). In [29], a PLNES was constructed by constraining a cantilevered
beam by a pair of adjustable stop blocks, where the segment stiffness and transition
displacements can be tuned in real time to optimize energy transfer under varying
excitation conditions. In [30], a PLNES was formed using a cantilever beam constrained
by a pair of double stop blocks, enabling both vibration suppression and broadband energy
harvesting. A segmented NES composed of straight beams with varying gap distances was
proposed in [31] to suppress torsional vibrations of a gear shaft system. The results show
that the proposed PLNES can improve steady-state vibration suppression rates significantly.
A magnetic spring composed of single or multiple permanent magnet pairs, which can also
be used to achieve the essential nonlinear characteristics required for NES. Two main
configurations are employed for different purposes. In the first configuration, the magnetic
interaction becomes dominant at large displacements, sharply increasing stiffness and thus
limiting the NES mass’s motion (e.g., [26, 32, 33]). In the second configuration, the linear
stiffness of the NES is reduced by introducing a negative stiffness to cancel the positive

stiffness from the main spring such as beam [34] or coil spring [32, 35]. Moreover, by
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carefully tuning the magnetic interaction, the NES can exhibit bi-stable [36, 37] or even
tri-stable behaviors [38, 39]. The snap-through motion between different potential wells

efficiently reduces the energy threshold required to trigger the TET in NES.

Recently, the integration of NES into energy harvester systems such as PEH or EMEH
has garnered increasing attention for achieving both VS and EH. In [40], a coupled NES-
PEH system was proposed. Both grounded and non-grounded configurations were
investigated under shock excitation, and system parameters were globally optimized to
maximize both VS and EH performances. The design proposed in [41] integrated a
magnetic plucking frequency-up-conversion PEH into an NES to improve VS and EH
performance in low and broadband frequency ranges. The study reported in [42]
demonstrated that combining a non-grounded NES with an EMEH can induce intentional
high-frequency dynamic instabilities via essential nonlinearities, significantly improving
VS under impulsive excitation. A vibro-impact NES coupled with an EMEH was
investigated in [43]. The analytical study showed that the robustness of TET can be
improved through the combined effects of electric and impact damping. An enhanced tri-
magnet monostable and bistable nonlinear energy sink equipped with an EMEH was
proposed in [44]. The study demonstrated that simultaneous high-efficiency VS and EH
can be achieved through a multi-objective optimization of magnet spacing and load
resistance. In terms of damping enhancement, PEHs and EMEHs each offer distinct
advantages: PEHs typically provide higher energy density and high-voltage, low-current
output, while EMEHs produce higher current, yielding stronger electrical damping that can

further enhance NES-based VS performance.

In our previous study [45], an NES with a tunable grounded magnetic spring (GMS)
was developed for the dual-purpose of VS and EH. The GMS is incorporated with a
cantilevered beam, which can produce mono-stable, bi-stable or tri-stable potential wells
for the NES by tuning the magnet spacings. As the primary system oscillates, the grounded
magnets exert a position-dependent magnetic force on the movable magnet attached to the
NES mass, causing the equilibrium position of the NES to shift dynamically with the

motion of the primary system. This unique feature significantly lowers the energy threshold
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required to trigger TET and simultaneously enhances EH performance.

As point out in [46], a major limitation of conventional NES designs is their
inefficiency under low-energy excitation, primarily due to the relatively high initial energy
threshold required to trigger TET. Reducing this threshold remains particularly challenging,
especially when aiming to design an NES capable of both VS and EH. To overcome this
challenge, this study proposes a magnetically enhanced piecewise-linear nonlinear energy
sink (MPLNES) that integrates a GMS into a conventional PLNES configuration. With the
GMS, an additional nonlinear restoring force is induced so that the equilibrium position of
the NES shifts in response to the motion of the primary mass. This design enhances the
essential nonlinearity and enables the NES to engage more effectively, even under low
initial energy levels. Furthermore, such a grounded configuration facilitates the
incorporation of an EMEH, enabling the simultaneous VS and EH. The novelty of this
work lies in the following key aspects: 1. Unique MPLNES design: to the best of our
knowledge, the proposed MPLNES configuration is original and has not been previously
reported; 2. Grounded EMEH integration: The use of a grounded electromagnetic energy
harvester provides enhanced flexibility in system installation and enables effective mass
distribution; 3. Comprehensive modeling and analysis: By addressing the challenges posed
by the MPLNES’s unique architecture, this study offers new insights into: (1) optimal
emulation of the ENS; (2) modeling of the restoring force and transduction factor that
possess two-variable dependence; (3) performance comparison of the PLNES vs the
MPLNES; (4) trade-off analysis between VS and EH performance for three different

configurations.

The rest of the chapter is organized as follows. Section 2 presents the development and
modelling of the apparatus. Section 3 examines the transient performances of the proposed
system through numerical simulation. Section 4 discussed the trade-off between the VS
and EH performance. Section 5 presents the experimental validation for the numerical

analysis. Section 6 summarizes the main conclusions of the study.
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5.2 MPLNES and Modelling

5.2.1 MPLNES

Figure 5.1(a) shows a schematic diagram of a primary system attached by the proposed
magnetically enhanced piecewise-linear nonlinear energy sink (MPLNES). As shown in
the figure, the primary system consists of a primary block serving as the primary mass, and
two stainless steel beams functioning as the primary spring. The MPLNES consists of a
stainless-steel beam situated between a pair of so-called double-stop blocks (DSBs), acting
as a piece-wise linear spring (PLS). The upper end of the beam is clamped to the primary
block, while its lower end is fixed with a small cylindrical magnet B and attached with a
holder for an assembly of two identical cylindrical magnets A and C. The holder’s position
can be adjusted by sliding along the beam. A large cylindrical magnet D is fixed in a holder
that can slide vertically along two stands fastened the base structure. The three magnets A,
B, and C serve three distinct functions: they act as the NES mass, form a tunable GMS
through interaction with magnet D, and enable an electromagnetic energy harvester
(EMEH) by interacting with four coils. When both the primary beams and the cantilever
beam are undeformed, the four magnets are situated on the same vertical plane, and
magnets B and D are collinear. By sliding the holder for magnet D, the distance d (see Fig.
3) between magnet B and magnet D can be adjusted. By sliding the holder for magnets A
and C along the beam, the distance h (see Fig. 3) between magnets A, C and magnet B can
be adjusted. As discussed in the previous study [37], the tunable feature of the magnet
positions can make the system exhibit mono-stable, bi-stable, and even tri-stable behaviors.

However, the present study primarily focuses on the mono-stable configuration.

Figure 5.1(b) illustrates two deformed positions of the cantilever beam corresponding
to equal displacements of the primary mass along the positive (solid line) and negative
(dotted line) X-axis directions where O’ represents the midpoint of the upper end of the

cantilever beam, x,, and x, denote the displacements of the primary mass and the NES

mass relative to the base, respectively, z = x;, — x, is the relative displacement between
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the primary mass and the NES mass. The figure also depicts the spatial positions and
polarities of the four magnets where m,, mg, m, mp are the magnetic moment vectors,
Ay, By, Cy and 4, B, C denote the center positions of magnets A, B and C when the beam is
undeformed and deformed, respectively. As shown in Fig. 1(c), the EMEH is constructed
by placing two coils 1, 2 below A and two coils 1°, 2’ below C symmetrically about the Y-

Z plane.

|
caniilever beam |

Stainless steel beam

mmm———————
=,

[ NA - [ .

Figure 5.1(a) Schematic of the MPLNES; Spatial positions of: (b) coils and magnets
A and C; (c) magnets A, B, C and D.

Figures 2(a) and (b) show the side view and front view of Fig. 1(c), respectively, where
d is the distance between magnet B and magnet D when the beam is undeformed, d and 4
is the distance between magnet B and magnets A, C, / is the length of the cantilever beam,
and w is the distance between the axis of magnet B and that of magnet A or C. As shown
in Fig. 2(b), when the primary mass displaces by x,, the NES mass displaces by x,, + z
horizontally and § vertically, a is the angle between mp and mp. Since the slope of the
beam’s tip is relatively small, it is assumed that £BO B,~0=sin"! (z/1). Fig. 2(c) shows
the configuration of the DSBs where /; and g, are the location and the gap of the first pair
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of stop blocks, /; and g, are the location and the gap of the second pair of stop blocks.

z

L.

(a) (b) (c)

Figure 5.2 Two-dimensional views of the beam and magnets: (a) side view; (b) front

view; (c) detail of the DSBs.

Figure. 5.3 shows a lumped-parameter model for the combined system where m,,, ¢,
and k,, represent the mass, damping coefficient and stiffness of the primary system,
respectively, m, and c, are the mass and mechanical damping coefficient of the NES,
respectively, k,; represents the nonlinear stiffness of the NES spring and k,,, represents
the nonlinear stiffness of the grounded magnetic spring. Since this study focuses on the
transient response of the system, the base is assumed to be fixed or wj, = 0. The figure also
shows the circuit of the EMEH where K, and E are the total transduction factor and the
electromotive force (EMF) of the EMEH, respectively, R. and L, are the resistance and
inductance of one coil, respectively, and R, is the resistance of a load resistor connected to

the output of the EMEH.
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Figure 5.3 The lumped-parameter model of the combined system.

Based on Newton’s second law, the governing equations of the system can be derived

as follows:
m¥, +c, %, +kx, —f,=0 (5.1)
mX, +cz+ f,+f,+f,=0 (5.2)
where f | is the restoring force of the NES’s spring, f . is the restoring force of the GMS,
/f;, 1s the electromagnetic force caused by the changes in the magnetic flux through the coils.

Based on the Lenz's law, the electromagnetic force can be expressed as follows:

=K1 (5.3)

where [ is the current in the EMEH’s circuit and K, = 2(K;; + K;,) with K;; as the
transduction factor for coil 1 and K;, as the transduction factor for coil 2. Note that owing
to the symmetric arrangement, coils 1 and 1" have identical transduction factors, as do coils
2 and 2'. Since the inductance of the coils is very small and the frequency of vibration
considered in this study does not exceed 20 Hz, the inductive impedance of the coil is

negligible compared with R ,;;. Thus, the current can be approximated as:

_ Kt'xa

4R +R 4

coil

Then substituting Eq. (5.4) into Eq. (5.3) yields the coefficient of electrical damping c,:
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K2
¢, = ——t— (5.5)
4R, +R,

coil

5.2.2 Design of the PLS and GMS

The NES mass is subjected to the two nonlinear restoring forces: f  andf ,. Asf , 1s

due to the beam’s elasticity and constraints imposed by the DSBs, it can be defined by:

kg3(z+Zg2)—kgz(zg2—zgl)—kglzgl -z,5z<-z,
kyo(z+z,)—k,z, —2,Sz<-z,

S =1k,2 —z,Sz5z, (5.6)
ko (z—z,)+k, 2z, z,<z=5z,
kyy(z—z,)+k, (2, —2,) +k, 2, z,<z<z,

where ko , k 1 is the relative

o2, and k3 are three incremental linear stiffnesses,

Ze
displacement when the beam just contacts the tip of the first block and z,, the relative

displacement when the beam just contacts the tip of the second block, z,, is the maximum

relative displacement.

The determination of the parameters in Eq. (5.6) is based on the design procedure
proposed in [28]. The design objective is to use the piecewise linear spring (PLS) to

approximate an essentially nonlinear spring whose restoring force is defined by

fi=kz (5.7)
where the value of k, can be determined based on the instantaneous frequency f;, of the
NES at the maximum displacement z,,. As the design parameters, z,,, can be chosen based
on the space available or the beam deformation limit and f,,, can be chosen based on the
1:1 resonance requirement. In this study, z,, is chosen as 0.02 m and f is selected as 15 Hz
which is slightly higher than the primary system’s natural frequency f, =11.5 Hz. Then,

the concept of the equivalent stiffness &, [29, 47] is used to relate &, to z,, and f :
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8 3z

m

(5.8)

With the desired cubic nonlinear restoring force, the parameters in Eq. (5.6) can be
obtained by applying the least square optimization. Subsequently, the geometric
parameters of the DSBs are determined based on the force-deflection model of a
cantilevered beam with an overhang. All parameters used in this study are directly adopted

from [28] , and are summarized in Appendix 5A, Table 5A.1.

The second restoring force f , consists of an equivalent force fg due to gravity, an

attractive magnetic force f, , between magnet D and magnet B and two repulsive magnetic
forces: f,,, between magnet D and magnet A, and f, . between magnet D and magnet C.

Since magnets A and C are identical and symmetrical about the central line of the beam,

the values of /), and f, . are equal. Then the second nonlinear restoring force can be

expressed as:

o :fg + fone t o T foc :mg'tan(e)"'foﬁx +2f s (5.9)

where tan(0) = z/V1? — z? based on the triangle O RyB, shown in Figure 52(b). In what

follows, the analytical restoring forces f,,, and f, , will be developed using the equivalent

magnetic 2-point dipole model proposed in [48].
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(a) (b)

Figure 5.4 Illustration of the equivalent magnetic 2-point dipole model: (a) magnets A

and D; (b) magnets B and D.

Figure 5.4 shows the front view of the apparatus when the beam is undeformed and
deformed. As shown, the origin of the coordinate system is located at B, the centers of
magnets A, B, and D are represented by points 4, B and D, respectively, point 4y and B,
depict the positions of magnets A/C and B when the beam is undeformed, I, [ and /, are
the lengths of magnets B, D, and A, respectively. In the figure, O, and Q, represent the
total charges on the top and bottom surfaces of magnet B, respectively. Similarly, O, and
0, denote the total charges of magnet A, and O, and O, denote the total charges of magnet
D.

The magnetic force between magnet B and magnet D is considered first. Based on the
Boit-Savart law, the magnetic force exerted by magnet B on magnet D is the combination

of the magnetic force exerted from Q, and Q, to O, and Q,, which is given in the

following equation:
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s Q1“° Q5|r“| |”6| Q2“° Q5|r25| Q6|26| (5.10)

where 1 =4nx10"H/m is the vacuum permeability, ris, Fys, ry5 and rye are the position
vectors as shown in Figure. 5.4, and their amplitudes are defined in Appendix 5B.

According to Eq. (5.9), only the horizontal magnetic forces are considered. Therefore, Eq.

(5.10) yields:
Sope = _t [Ql (xp+z s1nt9j( % Q" ]
4 2 il Tl

Ly o | @
+0, (x +z+2 sm&j( : . ﬂ
2 el Tl

Similarly, the horizontal magnetic force between magnets A and D can be obtained as:

__Hy z— _ta Qs Q6
Son=— pyn {Q{x+ hsin @ j(| | | |]

+Q4( +z=hsin@+ j(|Q5| |Q| H

where the amplitudes of 755, 134, 145 and r,4 are defined in Appendix 5B. By substituting

Egs. (5.11) and (5.12) into Eq. (5.9), f , is obtained. It should be noted that the magnetic

(5.11)

(5.12)

restoring forces fppy and fp 4y are functions of both x,, and z, a unique feature of the GMS.

As mentioned in Introduction, the purpose of introducing the GMS is to enhance the
essential nonlinearity of the NES. Thus, the objective of tuning d and h is to achieve a
quasi-zero stiffness around the position of equilibrium while maintaining an overall mono-
stable system. Based on this principle, a weak mono-stable configuration is sought by

considering the following restoring force:

f;1 :kglz—'_ﬂﬁ(d)haxp) x,=0 (513)

The rationale for setting x, = 0 is to ensure the mono-stability at the position of
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equilibrium. Two key criteria are considered when the optimal tuning parameters are
searched. First, the resulting nonlinear restoring force function f,, must be an odd and
monotonically increasing function with respect to the relative displacement z. Second, to

enhance the essential nonlinearity of the NES, the ratio f = f,/f, should be further

reduced where f; is the natural frequency of the linearized NES.

For the NES that employs only the PLS, f,=5.03 Hz, resulting in = 0.437. For the
NES that employs both the PLS and the GMS, the design target is to achieve f =0.246,
which is substantially lower than the value of the NES with only the PLS. Using the optimal
values of the total magnetic charges obtained in [49] (see Table 3.5 in Chapter 3.4), a
numerical search is conducted by varying d and h within their tuning regions. It is found

that this design target is achieved when d =0.0373 m and # = 0.0148 m.

Figure 5.5(a) shows the restoring force surface of the GMS. As shown, f;,, is
asymmetric about the line x,, = —z (black dashed line). This indicates that the dominant
force in the magnetic force is the repulsive force. To better illustrate the force’s dependence
on both x,, and z, Figure 5.5(b) gives three cross sections of the force surface cut at x,, =
—0.01 m, x, =0 m, and x, = 0.01 m, respectively. When x,, = 0 (red line), fp; is
asymmetric about the point (z, f,2) = (0, 0). When x,, = —0.01 m, f,, shifts upward and
the zero-crossing point moves to z = 0.01 m, indicating that the repulsive force becomes
more dominant. When x,, = 0.01 m, f;,, exhibits the opposite behavior. This asymmetric
behaviour indicates a position-dependent magnetic nonlinearity, where the restoring force
shifts depending on x,,. Figure 5.6(a) shows the total restoring force vs x,, and z. Clearly,
due to the enhancement of the GMS, the total restoring force changes little around the
position of equilibrium, i.e., exhibiting a quazi-zero stiffness characteristic. Figure 5.6(b)
shows the total potential energy vs x,, and z where the circles represent the equilibrium
positions or minimum potential energy points of the MPLNES. These equilibrium positions

can be curve-fitted by a piecewise function z,:
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~0.008 m x, <—0.004 m
z,=142.169x, m ~0.004 m < x, <0.004 m (5.14)

0.008 m x,>0.004 m
xp;ﬂ
—xp=0.01
——xp=-0.01
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001 _g.02 z (m)
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Figure 5.5 Illustration of fy,5: (a) fn2 verse z and x,,; (b) three representative cases of

fn2 verse z.

0.15
0.1

0.05

total restoring force (N)
potential energy (J)

xp (m) -0.01 -p.02 z(m)

(a)

Figure 5.6 Illustration of f,; + f,2: (2) the force surface; (b) the potential energy

surface.

To verify the accuracy of the nonlinear restoring force model, the equilibrium position

of the MPLNES for different x,, are measured experimentally and compared with those

obtained from the numerical model. In the experiment, to overcome challenge of achieving
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a large deformation of the primary spring, an alternative method is employed. As illustrated
in Figure 5.7(a), for each measurement, the primary block is fixed to the base, while magnet
D is moved to a negative position in the x-axis. Such a setup simulates the scenario in
which the primary block moves to a positive position in the x-axis. After the adjustment,
the MPLNES is allowed to settle into its equilibrium position, and the final position of
magnet D and the MPLNES are measured by the laser sensors. The comparison shown in

Figure 5.7(b) indicates that there is a good agreement between the values predicted by the

model and the values measured.
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C o i O*
P i O%
P O%
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L, ¥ b Laser sensors ::g O simulation results
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Magnet DL iy :D 001 *¢ | |_* experimental results
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Figure 5.7 Validation of the equilibrium positions of the MPLNES: (a) the
experimental setup; (b) comparison of the values from the model and the values

measured experimentally.

5.2.3 Determination of the Transduction Factor

Due to the unique design, the transduction factor of the grounded EMEH is a function
of both x;, and x,. In what follows, the numerical method proposed in [49] is extended to
determine the total transduction factor. As pointed out previously, K; = 2(K;; + K;»). To
determine K, coil 1 is sliced into multiple layers. The magnetic flux in each layer is

assumed to be uniformly distributed. Consequently, K;; can be expressed as the rate of
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change of the total magnetic flux within the coil with respect to the displacement x,,:
N, &0,
K,=——) — 5.15
= Z o (5.15)
where 7 is the number of layers, N, is the equivalent turns of the coil, ¢ i is the magnetic
flux in the z direction in the j layer of coil 1, A finite element analysis software COMSOL
Multiphysics is utilized to compute the change rates of the magnetic flux of coil 1 when

magnet A oscillates over it. The detail of the modelling process and the parameters used in

COMSOL is provided in Appendix 5C.

For each simulation run, the value of x,, is selected from the range -0.02 m to 0.02 m
with an increment of 0.005 m. At each fixed x,, value, z varies from -0.04 m to 0.04 m. It
should be noted that the chosen range of x,, extends beyond the actual displacement range

of the primary mass, This extended range is used to better capture the overall trend of K;4

as a function of x,,. During each simulation, the change rate of the magnetic flux through

each layer of the coil with the different x, value is recorded. Then, based on Eq. (5.15), the
transduction factor can be computed. Figure 5.8 illustrates K;; verses x, for various values

of x,. It can be observed that the shapes of the curves remain almost unchanged for
different x,, values. For x, < —0.05m or x, > 0.02 m, the K;; values are almost zero.

And for —0.05m < x; < —0.02 m, each of the curves can be approximated as a sine

function of x, with its amplitude and phase affected by x,,.

To illustrate the K¢, s dependence on x,,, the valley points of the curves are projected
onto the the x,-x, plane, while both the peak and valley points of the curves are projected
onto the x,, — K7 plane. It can be found that the phase shift in x, can be approximated as
Xq — 0.1x,. The amplitude remains around 0.8 T-m with negligible variation for x,, < 0.
However, as x,, increases from 0 m to 0.02 m, the amplitude decreases to approximately

80% of its original value.

Before curve-fitting K;; with an interpretable expression, the accuracy of the numerical

model obtained from the COMSOL simulation is experimentally validated. To this end,
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three cases are considered: x, = —0.02 m, 0 m, and 0.02 m. The corresponding values of
K, are obtained by using the experimental method described in [50]. Similar to the
experimental setup shown in Figure 5.7(a), magnet D and the coils are moving with the
stand in the opposite directions to simulate the movement of the primary block. As shown

in Figure 5.9, overall, the experimental results agree well with the simulation ones.

Phase shifting Amplitude changing
' [ ) 1 xp=-0.02m

xp=-0.015m
xp=-0.01m
xp=-0.005m
xp=0m
| xp=0.005m
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-xp=0.02m

t1
=
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-0.5

transduction factor k_(T.m)
=

0.02

0
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0.05 }
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Figure 5.8 Transduction factor verses x, of coil 1 for different x,,.
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Figure 5.9 Experimental results of the K;; when (a) x, = —0.02 m; (b) x,, = 0 m; (c)

x, = 0.02 m.

141



To derive an interpretable model for K;,, the curves are approximated using a sum of

three sine functions of the form: Z?ﬂ a;jsin (bjxq + ¢;), The curve corresponding to x, =

0 m is used as training data to determine the coefficients a;, bj, and ¢; via the least-squares

optimization. The obtained values are listed in Table 5.1. By incorporating the effects of

phase shift and amplitude modulation induced by x,, the resulting expression for Ky, is

given as follows:

K, (x,,x,)=

By following a

follows:

KtZ(‘xa’xp) =

3
> (1-10x,)a, sin(b,(x, —0.1x,) +¢;) —0.05<x, <0.02,x,>0

J=1

3
> a;sin(b,(x,-0.1x,)+c,) —0.05<x,<0.02,x,<0  (5.16)
J=1

0 otherwise

similar process, the transduction factor for coil 2 can be derived as

3
Z(1+10xp)aj sin(b,(0.1x, —x,)+¢;,) —0.02<x,<0.05,x,<0

Jj=1
3
Zl:a, sin(b,(0.1x, —x,)+¢,)  —0.02<x,<0.05,x,20  (5.17)
i

0 otherwise

Figure 5.10 presents the numerical results of the total transduction factor along with

the fitted surface. Overall, the curve-fitting functions show a good agreement with the

numerical results. These functions will be used in the following simulations for both

PLNES and MPLNES. Applicability of Egs. (5.16) and (5.17) for the PLNES is justified

by the fact that the magnetic flux within the coils is predominantly influenced by magnets

A and C, making the effect of removing magnet D negligible.
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Table 5.1 Curve-fitting constants of Egs. (5.16) and (5.17).

Constants a b, G a b, C2 as bs C3

Value -0.94 88.80 -0.29 179.47 -0.06 34484 -1.06 99.08 -0.28

xp=-0.02m
xp=-0.015m
xp=-0.01m
xp=-0.005m

xp=0m
xp=0.005m
xp=0.01m

xp=0.015m
xp=0.02m

—
I

t

=]
|

0.02

'
—
i

|
(]
|

otal transduction factor k (T.m)

Figure 5.10 Curve fitting surface and the numerical results of the total transduction

factor versus x, for different x,,.

5.3 Numerical Simulation

A numerical simulation is conducted to evaluate the performances of the PLNES and
MPLNES. Note that the PLNES is achieved by removing magnet D so that f,,, = 0. The
parameter values used in the simulation are based on the developed apparatus. For the
primary system, m, = 0.882 kg, k,, = 4.605 X 103 N/m, ¢,= 0.8604 Ns/m. For both
PLNES and MPLNES, m, = 0.09 kg and c,;,, = 0.0179 Ns/m. The damping coefficient
Cam 18 estimated from the small free responses of the PLNES by ensuring that the beam
does not touch the tips of the DSBs. This damping coefficient corresponds to a damping
ratio (. = 0.0065 and a natural frequency f, = 5.05 Hz. The resistance of one coil is

R.oi1 = 0.9 Q. Several load resistances are used in the simulation.
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5.3.1 Transient Performances

The transient performances are evaluated in terms of target energy transfer (TET) and
energy harvesting (EH). The free responses are induced by specifying initial conditions:
for the MPLNES x,(0) = X, x4(0) = z,(X) + X, %,(0) = 0 and %,(0) = 0 and for the
PLNES are x,(0) = X, x4(0) = X, %,(0) = 0 and x,(0) = 0. The governing equations
are numerically solved with the Matlab ODE45 function. To evaluate TET, the percentage
of the instantaneous energy in the NES is defined by:

E,(®)

=— o %100% (5.18)
E,()+E,(1)

where E), is the instantaneous mechanical energy in the primary system defined by

i
E () =—2t+2 (5.19)

and E, is the instantaneous mechanical energy in the NES which is defined by

.2
B i [ fydz+ [ fdz (5.20)

E, =
2

for the MPLNES and for the PLNES f,,, = 0. In the following simulation, two initial
energy levels are considered: X = 3 mm for the low initial energy, X = 7 mm for the
medium-high initial energy level. The load resistor’s resistance R; is set as 120 €, resulting

that the total damping is dominated by the mechanical damping.

Figures. 5.11 and 5.12 shows the simulation results with X = 3 mm. Comparison of
Figures 5.11(a)—(d) with Figures 5.12(a)—(d) reveals that the dynamic behaviours of the
MPLNES and PLNES differ significantly. As shown in Figures 5.11(a) and 5.12(a), the
response of the primary system with the MPLNES decreases quickly, while the response
of the primary system with the PLNES is nearly identical to that without the NES. Figure
5.11(c) further illustrates that the instantaneous energy in the MPLNES rises from zero to

approximately 90% within 1.2 seconds and reaches full energy transfer at 3.4 seconds,
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confirming the fast establishment of TET. In contrast, Figure 5.12(c) shows no clear
indication of TET in the PLNES. Figures 5.11(b) and 5.12(b) illustrate that the MPLNES
performs large amplitude oscillation and exhibits typical nonlinear behaviours, while the
PLNES maintains small, nearly linear oscillations. As a result, the MPLNES generates a

much higher output voltage, as seen in Figures. 5.11(d) and 5.12(d).

Such differences stem from the presence of the GMS in the MPLNES. Even minor
displacements in the primary system shift the MPLNES equilibrium position due to the
influence of the GMS, Consequently, it forces the MPLNES into substantial motion. This
mechanism ensures early engagement with the DSBs and facilitates the activation of
nonlinearity. As a result, the MPLNES exhibits enhanced TET efficiency and high voltage
output, particularly under low initial energy conditions.

3

x 10
.02 1 2
*4 [ - withoutngs| ! ”
2 with MPLNES |
0.01
1§ _ =
= & z < 60 Z
= 0 5= 0 A, B
B i | = 2 40 52
- -0.01 4
'3 2 4 s 2 2 4 6 % 2 4 6 2 2 4 6
(@) time (s) (b) time (s) (©) time (s) (d) time (s)

Figure 5.11 Simulation results with MPLNES and X' = 3.0 mm: (a) x,; (b) xg4; (¢) Dy;
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Figure 5.12 Simulation results with PLNES and X = 3.0 mm: (a) x,; (b) x4; (¢) Dy;
(d) Voue-
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The dominant frequencies of the responses can be revealed by the wavelet transform
(WT) spectra. As shown in Figures 5.13 (a) and (c), the dominant frequency of the
MPLNES mass’s response originates from 6 Hz and then drops to around f,; after 3
seconds, and the dominant frequency of the primary mass’s response is around f,,. This
indicates the initiation of TET, albeit without the full establishment of a 1:1 resonance
condition. In contrast, Figures 5.13 (b) and (d) reveal that the dominant frequencies of the
PLNES and the primary system are mainly around f,, and f,, respectively. This

observation suggests that the PLNES’s nonlinearity is not fully activated when the initial

energy level is low.
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Figure 5.13 WT spectra of the responses with X = 3 mm: (a) x,, with MPLNES; (b)
xp with PLNES x,,; (¢) x,with MPLNES; (d) x, with PLNES.

Figures 5.14-16 present the simulation results with the medium-high initial energy level.
As shown in Figures 5.14(c) and 5.15(c), TET is established in both configurations. The
energy in the MPLNES undergoes three distinct stages: reversible energy exchange (0-2
seconds), irreversible energy exchange (2-4 seconds), and energy localization (4-6
seconds). On the other hand, a significant energy exchange exists between the PLNES and

the primary system at the beginning, evidenced by the nonlinear beat phenomenon, and
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then about 70% of the total energy is localized in the PLNES after 4 seconds.

Figure 5.16 highlights these differences in the frequency domain. As illustrated in
Figures 5.16(a) and (c), the dominant frequency of the MPLNES varies from f, to 6 Hz
during the first stage, then it maintains such a high-frequency oscillation in the second
stage, and after that, it drops to f,; after 4 seconds. In contrast, as shown in Figures 5.16
(b) and (d), the dominant frequency of the PLNES decreases gradually from f, to f,, in 3
seconds. This difference indicates that the MPLNES remains at high frequencies for a

longer duration, allowing more time for the effective establishment of TET.

The unique behaviours of the MPLNES arise from the effect of the GMS, which
prolongs the duration of large-amplitude nonlinear response in the MPLNES. As a result,
the EMEH in the MPLNES is capable of generating higher voltage output during 2-4
seconds than that in the PLNES, as shown in Figures 5.14 (d) and 5.15(d).
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Figure 5.15 Simulation results with PLNES and X = 7.0 mm: (a) x,; (b) x4; (¢) Dy;
(d) Voue-
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Figure 5.16 WT spectra of the responses with X' = 7 mm: (a) x,, with MPLNES; (b)
xp with PLNES; (c) x, with MPLNES ; (d) x, with PLNES.

5.3.2 Nonlinear Normal Mode (NNM) Analysis

To have a better understanding of the dynamics of the system, the NNM analysis is
conducted for both the MPLNES and PLNES configurations. The frequency energy plot
(FEP) is derived using the complexification-averaging technique (CX-A) [51], which
reformulates the nonlinear system in the complex domain and applies an averaging
procedure to approximate periodic solutions. Since the CX-A method requires continuous
and analytically interpretable expressions for the nonlinear restoring forces in the dynamic
model, f,,; and f;,, both are curve-fitted using polynomial functions. f;,; is curve fitted by

an odd third-order polynomial as shown as follows:

fy=hz+k (5.21)
where k; = 85 N/m and k3 = 2.651 X 10° N/m. On the other hand, as f,,, depends on
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both x,, and z, it must be represented by a multivariate polynomial in terms of x,, and z
defined by the following expression:

_ N M
f;12 = Zzbmnzmx; (522)

n=0 m=0
where m and n are the non-negative integer indices, representing the polynomial orders
with respect to z and x,,, respectively. The polynomial coefficients by, are corresponding
to the term z™x,;, with m € (0, M), n € (0, N). To find the optimum values for M and N,

two objective functions should be met:

J=M+N
1 & - ) .
1= 55 L 2P )= (p0) -2

The first objective function /; denotes the maximum polynomial order in z and x,,. The

second objective function J, represents the root mean square error between f,, and f,;,
where p and q represents the position index of z and x,,, respectively. It is clear that the
larger the J; value, the smaller the J, value. However, to simplify the NNM analysis, the
value of J; should be as low as possible. At the same time, J, also should be sufficiently
low to ensure accurate curve fitting. Figure 5.17 presents a heatmap of J, for various
combinations of M and N. The colour intensity indicates the magnitude of J, in a
logarithmic scale, with darker shades corresponding to smaller values. An optimal trade-
off is obtained at (M, N) = (5, 5), where both objectives are satisfactorily reached. The
absence of darker patches in the lower-left corner confirms that no better trade-off exists
for smaller order numbers. By eliminating the terms with negligible coefficients, f,,, can

be expressed as:

2

© (5.24)

5

z 3 5 2 4 3 5
fin= bmxp +b03xp +b05xp +(b10 +b12xp +bl4xp)z+(b21xp +b23xp +b25xp)

2 4 3 3 5 4 2 4
+(b30 +b32xp +b34xp )Z +(b41xp +b43xp +b45xp)z +(b50 +b52x1, +b54xp )Z

where all the coefficient values are given in Table 5.2.
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Table 5.2 Coefficient values in Eq. (5.24).

bOl b03 b05 b10 b12 b14
—-1.953 —9.388
5121 x 101 1.067 x 10° 5.052 x 101 3.428 x 10°
x 108 x 108
b21 b23 b25 b30 b32 b34
—2.910 4167 —3.254 7.204
3.537 x 10° 1.491 x 10°
x 10° x 1012 x 10° x 1012
byq bys bys bs bs; bsy
—1.024 6.917 —1.013 —2.655 5.034 —1.145
x 10° x 1012 x 1016 x 108 x 1012 x 1016

Using the approximate restoring force models, the equations of motion for the

undamped system with the MPLNES can be derived from Egs. (5.1) and (5.2):

mi +kx - f, =0 (5.25)
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majéa T nl T n2 =0 (526)
Based on the CX-A technique, two complex variables are introduced as:
V=X, +jox,.p, =X, + jox, (5.27)

where @ is the dominant fast frequency of the oscillation and j = v—1. Then, the

displacement and acceleration can be obtained accordingly:

wo—v, . . jo .
x, =——L % =y, ——(y,+v, ),
P 210) P l//l 2 (l//l !//1 ) (5 28)
Sl 2T R LT |
N T (v, +v)

where w7 and y; are the complex conjugates of y, and y,, respectively. The slow-

modulated amplitude can be defined as follows:
v (1) =g (e, (1) = g, (e (5.29)

Substituting Eq. (5.29) into Eq. (5.28), then into Eq. (5.25), the first governing equation

can be rewritten as:

. jor _ % —jot
(1 + ja))¢le"m _%(¢leja)t +¢1*e_jwt ) + ¢1e ‘¢1 e

2jw
oot * ¥\ _—jot jcot * —jot jcot —jot 3
(G =g (e g =g rge )
1 2jom, ’ 2jom,
(5.30)
here, only the terms with fast frequency w are retained,

AL J —J

A +7¢1 _%ﬂ +a, (%)(ﬂ - 9,)
(5.31)

k i * *
+ T (BIG [ 4346 616 =661 16, 3667 +314, 1 $,) =0
P
now the polar expression of the ¢, and ¢, are introduced as follows:

¢ = Ae’ ¢, = Be” (5.32)
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where 4 and B are the real amplitude of the slow modulation, a and y represent the real
phases of the modulation. Substituting Eq. (5.32) into Eq. (5.31) and retaining the real part
of the equation yields,

Asin(a) Awsin(ex) N k,(Asin(a) — Bsin(y))

Acos(a) + — Aasin(a) — 5 o
p
- ]‘;3 [(333 sin(y) —34’ sin(ar) —6 4B’ sin()) (5.33)
8w m,

+(64° Bsin(y)+3A4B’ sin(cr —2y) +3 4’ Bsin(2a—y)) | = 0

To impose the stationarity condition, the time derivatives in the modulation equations are
set to zero, enabling the computation of periodic solutions along the backbone branches.
For simplification, a symmetric case is considered by assuming @ =y . Under this

assumption, Eq. (5.33) can be reformulated as follows:

A Ao k(34°-94’B+94B’-3B’) | (4-B)
- — + =

3
20 2 8w m, mep

0 (5.34)

By applying the same procedure to the second governing equation, Eq. (5.26) can be

expressed as:
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1
8m B’

A(5bysA* +6by 4’ +8b,00* )

2

{[_4Bmaa)4 +4k,0* (B — A) +3k,(B - Af]

+_
20

. (A—B)(5b,,4" +6b, A’ +8b,0*)

2

2w
A(A—B)*(35b, A" +40b,, A’ + 48b, ")
- ; (5.35)
16w
LA B)'(35b,,A* +40b, A’ " + 48b,,0*)
16e°
_A(A-B)*(63b,,4"* +70b,, 4’0 +80b,,0")
320°
(A= B)’(63by, A" +70b;, 4’0" +80by,0") || _ 0
320°

The amplitudes 4 and B in Egs. (5.34) and (5.35) are solved for specified w. Then, the

displacement and velocity can be derived as:

X, (t) ~X, cos(a)t) = gcos(a)t), X, (t) ~ —Xp sin(a)t) =—A4 sin(a)t),

(5.36)
B . .
x,(t)= X, cos(wt)=—cos(wt),  x,(t)=—X, sin(er)=-Bsin(wt),
@
As the system is conservative, its total energy can be expressed as follows:
_1 X2 1 X2 5.37
Ec—Emp p+5ma g ( . )

With a triplet of w, 4 and B in Egs. (5.34) and (5.35), the FEP of the system with the
MPLNES can be obtained, and the results are shown as black lines in Figure 5.18. To
derive the FEP for the PLNES, the second square-bracketed term in Eq. (5.35) is removed
since it is derived from f,,. The corresponding results are presented in Figure 5.19. Two
black curves in Figures 5.18 and 5.19 present two primary NNM backbone branches: the

upper one denoted as S11-, originating from f,, is the out-of-phase branch, and the lower

one denoted as S11+, originating from f,, is the in-phase one. Additionally, the turning
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point in S11— represents the energy threshold (ET) that is required to fully activate the 1:1

resonance.

The WT spectra contours of the relative displacement z at four different initial energy
levels are overlaid on the FEPs to highlight the relationship between frequency components
and displacement amplitude. Comparing Figures 5.18(a)-(b) and 5.19(a)-(b) reveal that
when the initial energy is below the ET, the oscillation of the MPLNES tends to follow the
S11+ backbone at the beginning, then follows a subharmonic branch (not shown). In
contrary, the oscillation of the PLNES is mainly limited to its linear stiffness region. By
comparing the two systems, it can be concluded that the MPLNES is able to show more
nonlinearity under low and medium energy levels than the PLNES. As shown in Figures
5.18(c)-(d) and 5.19(c)-(d), when the initial energy exceeds the ET, the oscillations of both
MPLNES and PLNES are attracted to their S11+ backbones, indicating that the desired 1:1
resonance has been established in both systems. Notably, the MPLNES shows immediate
and steady 1:1 resonance compared to the PLNES, resulting in more effective TET from

the primary system to the NES.
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Figure 5.18 FEPs and WT spectra of the relative displacement z with MPLNES: (a)
low initial energy X =3 mm; (b) medium initial energy X = 5.0 mm; (¢) medium-high

initial energy X' = 7.0 mm; (d) high initial energy X = 8.0 mm.

155



Frequency (Hz)
&

=
Frequency (Hz)

W

: g H ‘ 0 ! : ! !
104 107 102 10! 10° 107 10°? 107 10! 10°
(a) ED (b) E(J)

30

Frequency (Hz)
— _— (] 3
B n S th
Frequency (Hz)

h

10 10’ 107 0! s 0 107 1072 107! 10’

© E( @ EW

Figure 5.19 FEPs and WT spectra of the relative displacement z with PLNES: (a) low
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5.4 VS and EH Trade-off Study

As shown in the previous studies [30, 52], the dual objective of maximizing VS and
EH performances cannot be achieved simultaneously. It is imperative to maintain a proper
trade-off between VS and EH. In addition, an investigation on this issue can further
demonstrate the advantages of introducing the GMS. To better evaluate the VS

performance, an index D, is introduced:

D, =D, +D, (5.38)
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where D, represents the percentage of the initial energy dissipated by the mechanical

damping over the time duration 7" defined as:

Cam

D :Ca—ijz'zdtxl()O% (5.39)
E 0

and D, represents the percentage of the initial energy harvested by the load resistor over

the time duration 7" defined as:

Cae

D, = [ &dix100% (5.40)
E 0

Hereafter, D, is referred to as the percentage of the initial energy dissipated by the NES.
Note that as a key feature of the grounded EMEH, D.__ is related to X, instead of Z. A
series of simulations are performed to evaluate D, as a function of X under various R,
values. Figure 5.20 presents the simulation results. As shown, D, sees a dramatic jump

when X = 2 mm for the MPLNES and X = 5 mm for the PLNES, indicating that to activate
the NES engagement, the MPLNES requires a lower initial energy threshold than the
PLNES. The optimal VS performance is achieved at X = 9 mm for the PLNES. Beyond
this point, the performance shows a decreasing trend. In contrast, the MPLNES shows a
more robust VS performance as it can maintain the peak VS performance over a wider

range of initial displacements. Notably, the peak values of D for the two configurations

are comparable.

Additionally, for both MPLNES and PLNES, within the range of R; =30 Q to 120 Q,
lower R; values generally result in improvement of the VS performance. However, a
comparison between the cases of R;=20 Q and 30 Q, reveals a notable exception. When
the initial energy is insufficient to fully activate the 1:1 resonance, the system with the
higher R; shows a better VS performance. This is because an excessively small R; induces
high electrical damping, which causes the NES to settle too quickly and prevents it from
sustaining the dynamics necessary for an efficient TET. When the initial energy is
sufficiently high to fully engage the 1:1 resonance, a lower R; leads to an enhanced VS

performance.
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Figure 5.20 Percentage of the initial energy dissipated by the NES: (a) MPLNES; (b)
PLNES.

To further illustrate the influence of R;, simulations are repeated for both MPLNES and
PLNES under the medium-high initial energy, by employing a lower load resistance value
R; =20 Q. As shown in Figures 5.21(a) and 5.22(a), the oscillation amplitudes of the
primary system in both configurations exhibit a more rapid decay compared to the cases in
Figures 5.14(a) and 5.15(a). Due to high electrical damping, the oscillation of the MPLNES
and PLNES stops early, consequently, the output voltage will also decrease rapidly.

% 10°

- without NES
with MPNES

E L 0
o 40 >
20 =
.02 . : : 0 : : . 4! -
(a) s ztime (s)4 ‘ (bi} ztime (s)4 ° (c)ﬂ 2time (s)‘l ° (d(i 2til'ne (s)4 ’

Figure 5.21 Simulation results with MPLNES and X'=7.0 mm, R; = 20 Q: (a) x,; (b)
Xq; (€) D1; (d) Voue.
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Figure 5.22 Simulation results with PLNES with X'= 7.0 mm, R; = 20 Q: (a) x,; (b)

Xq; (¢) Dy; (d) Voye.

Based on the investigation above, it is evident that the load resistance R, affects both
VS and EH performances. To better evaluate the energy harvesting efficiency, another
index Dj,qq4 is defined as:

2
Dh,aﬁiIledet:i L’zﬁjm x100% (5.41)
E %0 E,| (4R, +R)* %

i coil

which measures the percentage of the energy harvested by the load resistance over the
initial input energy. Comparing Eq. (5.41) and Eq. (5.40) reveals Dj,qq = D¢, R,/
(4R,0i1 + R;), indicating that increasing R; can enhance the power extraction from the load
resistor. However, as mentioned above, a larger R; value generally has an adversely effect
on the VS performance of the system. Evidently, there is a trade-off between VS and EH
when varying R;’s value. To explore this trade-off, a multi-objective optimization is
conducted to search for an optimal balance between VS and EH. For comparison, three
NES configurations are considered, namely, MPLNES, PLNES and MPLNES without
DSBs. It is worth mentioning that the modelling of the last configuration is achieved by
using fn; = kgqzin Egs. (5.1) and (5.2). For the optimization of each configuration, R; and
X are chosen to be the parameters to be optimized. The two objective functions are defined

as follows:

J(R.X) =D, (T) (5.42)
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Jz(RlaX) :Dload(T) (5.43)

where T = 10 s. The MATLAB Global Optimization Toolbox is used to solve this 2-
objective optimization problem. Since the program is based on minimization of the
objective functions, the two objectives are set to —J; and —J,. The search range of the
initial displacement is from X' =1 mm to 3 mm for Case A (low initial energy) and from
X' =3 mm to 5 mm for Case B (medium initial energy), from X'=5 mm to 7 mm for Case
C (medium-high initial energy) and from X'=7 mm to 10 mm for Case D (high initial
energy). The search range of the load resistance is from R; = 1 Q to 150 Q. The population

size and the maximum number of generations are set to 500 and 50, respectively.

Figure 5.23 shows the so-called Pareto front for Case B for each of the three
configurations. The best trade-off points marked as red circles are chosen as the ones that
are closest to the origin of the plots. Table 5.3 summarizes the optimized values of R; and
X for the three configurations. It can be observed that the optimum R; value generally
exhibits a decreasing trend with increasing initial energy levels for all three NES
configurations. This trend reflects a balance between the decay rate of the NES oscillation
and the energy dissipated by the EMEH. An exception is observed in the case of the PLNES,
where the optimum values for R; remains relatively low in Cases A and B, as the system

mainly exhibits linear behaviour under these conditions.

The bar chart shown in Figure 5.24 compares the optimum VS and EH performance of
the three configurations under the different initial energy levels. It clearly demonstrates
that the MPLNES exhibits outstanding VS and EH performance for all four cases. Due to
the higher initial energy threshold required for establishing TET, the PLNES only shows
comparable the VS and EH performance to the MPLNES under Cases C and D. In Case D,
the VS performance of the two NES configurations is nearly identical, which can be
attributed to the full establishment of the 1:1 resonance in both systems. The MPLNES
without DSBs exhibits relatively low J; and J, values in the four cases, indicate that the
TET can not be established even under the large initial energy level. However, it shows
slightly better VS and EH performance than PLNES under Cases A and B due to the effect

of the GMS. Two main observations can be drawn from the comparison. First, the
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introduction of the GMS significantly enhances the VS and EH performance of the PLNES,

particularly under low initial energy conditions. Second, the presence of a PLS between

the primary system and the NES is crucial for enabling efficient engagement of TET.
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Figure 5.23 The Pareto fronts for Case B: (a) MPLNES; (b) PLNES and (c) MPLNES

without DSBs.

Table 5.3 The optimization results for three NES configurations.

MPLNES PLNES MPLNES without DSBs
Ry (Q) X (mm)| R (Q)  X(mm) R () X (m)
Case A 44.66  2.44 2.70 1.40 4.26 2.35
Case B 16.85  3.11 2.11 4.90 3.99 3.05
Case C 13.84  5.56 11.71 6.98 3.48 5.03
Case D 8.50 747 4.85 8.79 2.57 7.00
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Figure 5.24 Comparison of the optimum results for the three configurations under

different initial energy level ranges: (a) J; (b) /5.

5.5 Experimental Verification

An experimental study is conducted to verify the simulation results. Figure 5.25(a)
shows a photo of the experimental setup to test the transient response of the primary system
with the MPLNES. The base structure is fixed to the ground. The four coils are wired in
series and connected to a variable resistor as shown in the bottom left of the figure. On the
right, two laser reflex sensors (CP24MHT80, Wenglor) are used to measure the
displacement of the primary block and the NES’s mass, respectively. A computer equipped
with the dSPACE dS1104 data acquisition board is used to collect the displacement signals
from the laser sensors and the voltage signals of the EMEH’s load resistor. To control the
experiment, a program is developed by using the MATLAB Simulink which is interfaced
with dSPACE Controldesk Desktop software. To have a better view of the MPLNES,
Figure 5.25(b) shows the close-up view of the apparatus. For comparison, the primary
system with the PLNES is also tested experimentally. This configuration is achieved by
removing magnet D. The transient responses of both configurations are tested under the
same load resistance value and initial conditions as those used in the simulation presented

in Section 5.3.
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Figure 5.25 The experimental setup: (a) the entire system; (b) a close-up view of the

MPLNES and magnet D.

Comparison of Figures 5.26-28 with Figures 5.11-13 reveals that overall, the
experimental results agree with the simulation ones, confirming that the MPLNES’s
nonlinearity can is activated under the low initial energy level. However, as a notable
difference, the responses obtained from the experiment decay faster than those from the
simulation. This difference is primarily attributed to the energy loss caused by impacts
between the beam and the DSBs,a dissipation mechanism not accounted for in the
modeling. As a result, the output voltage from the experiment also exhibits a more rapid
decay, suggesting that the actual energy harvested by the EMEH is lower than that

predicted by the simulation.

4 - without NES 0.02 100 2
~——with MPLNES 80 .
= 60 S
3 z
5.«_ = 0
a 40 P
20 -1
4 6 % 2 4 6 2, 2 4 6
(a) time (s) (b) time (s) (c) time (s) (d) time (s)

Figure 5.26 Experimental results with MPLNES and X' = 3.53 mm: (a) x,; (b) xg; (¢)
Dl; (d) Vout-
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Figure 5.27 Experimental results with PLNES and X' = 2.99 mm: (a) x,; (b) xg; (¢)
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Figure 5.28 WT spectra of the experimental responses: (a) x;,, with MPLNES ; (b) x,, with
PLNES x,; (c) x, with MPLNES; (d) x,, with PLNES.

Comparison of Figures 5.29-5.31 with Figures 5.14-5.16 also reveals that the
experimental results follow the general trends predicted in the simulation, confirming that
under the medium-high initial energy, the 1:1 resonance is activated for both systems.
However, due to the additional damping introduced by impact, the responses in the

experiment decay more rapidly than those in the simulations. This suggests that TET exists

for a shorter duration than predicted by the simulation.
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Figure 5.29 Experimental results with MPLNES and X' = 6.87 mm: (a) x,; (b) x4; (¢)
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Figure 5.30 Experimental results with PLNES and X' = 6.93 mm: (a) x; (b) x4; (¢)

Dy; (d) Voue-
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Figure 5.31 WT spectra of the experimental responses: (a) x;,, with MPLNES; (b) x,, with
PLNES; (c) x, with MPLNES; (d) x, with PLNES.

Figures 5.32 and 5.33 show the FEPs and WT spectra for the relative displacement for
the system with the MPLNES and the PLNES, respectively. By comparing them with
Figures 5.18-5.19, it can be found that the experimental results show a good agreement
with the simulation ones when the initial energy is lower than the ET. However, under the
medium-to-high and high initial energy conditions, the oscillation amplitudes of both
MPLNES and PLNES are somewhat lower than the S11+ backbone curves. This
discrepancy can be attributed to the additional damping induced by repeated impacts,

which suppresses the dynamic response of the NESs and prevents a full establishment of

the 1:1 resonance.
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Figure 5.32. FEPs and WT spectra for the experimental relative displacement z with
MPLNES: (a) low initial energy X = 3.53 mm; (b) medium initial energy X = 5.21 mm;
(c)medium-high initial energy X = 6.87 mm and (d) high initial energy X = 8.50 mm.
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Figure 5.33 FEPs and WT spectra for the experimental relative displacement z with
PLNES: (a) low initial energy X =2.99 mm; (b) medium initial energy X = 4.78 mm; (c)
medium-high initial energy X' = 6.93 mm and (d) high initial energy X =8.11 mm.

5.6 Conclusions

In this study, a magnetically enhanced piecewise-linear nonlinear energy sink
(MPLNES) was developed to achieve simultaneous vibration suppression (VS) and energy
harvesting (EH). The MPLNES is connected between the primary system and the ground
through a piecewise-linear spring (PLS) and a grounded magnetic spring (GMS), and
incorporates a grounded electromagnetic energy harvester (EMEH). A detailed design
procedure was established for both the PLS and GMS. For the PLS, the NES frequency at

maximum displacement is tuned to match the natural frequency of the primary system.
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Using the derived two-variable model, the GMS is designed based on two criteria—
maintaining mono-stable behavior and enhancing the essential nonlinearity of the NES—
by appropriately selecting the parameters d and 4. The transduction factor of the EMEH is
determined through COMSOL simulations and expressed as a function of the positions of
both the MPLNES and the primary mass, with experimental results confirming the model’s

accuracy.

In the performance evaluation, a comparative analysis between the MPLNES and a
conventional piecewise-linear nonlinear energy sink (PLNES) was conducted. The
transient behaviors of both configurations were examined through time responses, wavelet
transform spectra, and frequency energy plots under various initial energy levels. The
results show that the MPLNES requires a lower energy threshold to initiate targeted energy
transfer (TET) compared to the PLNES. This advantage arises from the GMS, which
introduces a position-dependent restoring force that dynamically shifts the NES’s
equilibrium position in response to the primary mass motion. This unique feature amplifies
the relative displacement under low initial energy, promoting earlier activation of the

nonlinear regime and thus reducing the TET threshold.

To address the trade-off between VS and EH, a multi-objective optimization was
performed to identify the optimal initial displacements and load resistances for three NES
configurations: the PLNES, the MPLNES, and the MPLNES without double stop blocks
(DSBs). Three key observations emerged from the results: (1) the MPLNES not only
achieves a better balance between VS and EH than the other two configurations but also
maintains robust performance across a wide range of initial energy levels; (2) the optimal
load resistance generally decreases as the initial energy level increases for all three
configurations; and (3) the MPLNES without DSBs is inefficient for both VS and EH under
various initial conditions, highlighting that the hardening effect introduced by the PLS is

essential for sustaining effective TET.

Experimental tests were performed at various initial energy levels, and the results
showed good agreement with numerical predictions. The presence of double stop blocks

introduced impact damping, resulting in additional energy dissipation and slightly faster
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decay compared to the simulations. Nevertheless, the measured transient responses
confirmed that the developed apparatus is capable of achieving efficient VS and EH even

under low initial energy levels.

Appendix SA. Parameters of the apparatus

Table 5.4 The parameters of the PLSs with DSBs.

parameters of PLS Geometry parameters of the blocks
Symbols values Symbols values
kg; (N/m) 90.205 {1 (m) 0.0116
Zg(m) 0.008 g1 (m) 0.004
kg2 (N/m) 985.764 [, (m) 0.136
Zg2 (M) 0.0143 g, (m) 0.007
kg3 (N/m) 2370.967

Appendix 5B.The Amplitudes of the Position Vectors of Magnets

The expressions of the amplitudes of position vectors of magnets shown in Egs. (5.10)

and (5.12) can be defined as follows:

|r15| ={{{d%}[1(1%jcosﬁj} +(xp +z—%sin9j } (5B.1)

|n6|={{{d+lﬂ}[l(lli]cosej} +(xp+z—lisin9j } (5B.2)
2 2 2
|r25|:{{{dZﬂ}(l(l+lijcosﬁj} +(xp+z+lisin¢9j } (5B.3)
2 2 2

170



172

2 2
|r26|H—{d+%’}—(l—[!+%jcos@j} +(xp+z+%3sin6?) } (5B.4)
5 ) 1/2
|l‘35|={{[dlﬂ}[l(lhl—AJCOSHJ} +(x +Z—hSil’lOl—l—ASil’lO{j sin20+w2}
2 2 r 2

(5B.5)

2 ) 1/2
|r |= - d+lﬂ —|I- l—h—li cosd |; +| x +z—hsin¢9—lisin6’ sin® @+ w*
36 2 2 p 2

(5B.6)

2 2
|r |: - d—lﬂ - 1= l—h+li cosf |+ +| x +z—hsin0+l—Asin9 sin’® @+ w?
. 2 2 ? 2

(5B.7)

2 2
|r |: - d+lﬂ - 1- Z—h+l—“ cosf |+ +| x +z—hsin0+l—Asin0 sin® @+ w?
. 2 2 P 2

(5B.8)
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Appendix 5C. Determination of the EMEH’s Transduction Factor
in COMSOL

In this study, a finite element analysis software COMSOL Multiphysics is utilized to
compute the change rates of the magnetic flux of coils 1 and 2 when magnets A and B are
oscillating through them. For the sake of simplicity, the influence of magnet C on the coils
1 and 2 is ignored. The geometry of the model built in COMSOL is shown in Figure 5B.1(a).
It should be noted that each of the coils is modelled as » disks to represent the n layers and
meshed individually. As shown in Figure 5B.1(b), D,,; and A,,; are the diameter and
height of the coil, respectively, d, is the air gap between the end surfaces of magnet C and
the coils 1 and 2, All the values of the parameters of the coils and magnets used in the
simulation are summarized in Tables 3.1 and 3.2, respectively. In the simulation, each coil
is modelled with 12 layers, the x-axis positions of magnets B and C are expressed as x, =
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x, + z , while the z-axis position on is given by 8(z) = [ — VI2 — z2, and 0 is set as the

angle of magnets A and B from the horizontal.

Magnet A
Magnet B l dg
hmix’
CO]I 1 == ‘ | DCOH DCUH
i Z 7
Magnet D ot X
(a) (b)

Figure 5B.1 COMSOL model used to determine K;;: (a) isometric view; (b) side

view.
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Chapter 6 Conclusions and Future Works

6.1 Conclusions

This thesis has systematically addressed the modelling, design, analysis and
experimental validation of a nonlinear energy sink (NES) that is capable of simultaneously
achieving vibration suppression (VS) and energy harvesting (EH). Motivated by the high
initial energy threshold of the existing NES designs, the research focused on integrating a
grounded magnetic spring (GMS) and an energy harvester into a conventional piecewise
linear NES (PLNES). Four interrelated objectives were pursued, each corresponding to a
dedicated study: developing an accurate magnetic force model, comparing the
characteristics of different energy harvesting mechanisms, establishing a systematic design
process for a piecewise linear spring (PLS), and proposing a magnetically enhanced

PLNES.

Firstly, A tunable multi-stable piezoelectric energy harvester (PEH) was developed,
comprising a cantilever beam and an adjustable magnetic assembly capable of achieving
mono-, bi-, and tri-stable states by tuning geometric parameters. Two magnetic restoring
force models (the equivalent magnetic point model as 1** model and the equivalent
magnetic 2-point dipole model as the 2" model) were derived and validated experimentally.
The models were further optimized using a multi-population genetic algorithm (MPGA).
The results show that a five-parameter optimized 2" model achieves the highest accuracy.
Parametric sensitivity analysis revealed that the tri-stable configuration is more sensitive
to parameter variations. The stability state region demonstrates that the developed

apparatus possesses a large parameter tuning space.

Secondly, A multi-stable hybrid energy harvester (MSHEH) combining a PEH and an
electromagnetic energy harvester (EMEH) is developed. The MSHEH incorporates a novel
coil arrangement in the EMEH to enhance power output. The EMEH transduction factor is

calculated numerically and validated experimentally. The magnetic restoring force is
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modelled via a 2-point dipole approach, and the accuracy of the model is further improved
by the genetic algorithm identification approach. This refined model was used to map the
stability state region Performance evaluations under high and low excitation levels
demonstrated configuration-dependent advantages: the tri-stable state achieved the widest
bandwidth (2.36 Hz) and highest total harvested energy (3.86 J) under high excitation,
while the bi-stable state outperformed others in low excitation with an effective bandwidth
of2.65 Hz and 9.35%1072 J accumulated energy, primarily due to the EMEH’s power peaks
near side equilibria. In addition, Pareto front optimization is conducted to determine the
optimal load resistances for both transducers, showing dependence on the amplitude and

frequency of the excitation.

Thirdly, A systematic design procedure for a PLS to emulate an essentially nonlinear
stiffness (ENS) is proposed. The PLS consists of a cantilever beam constrained by either
single- or double-stop blocks (DBSs), which convert the beam into a fixed-pinned type
with an overhang upon contact. The single-stop configuration is defined by two parameters
(h and d), while the double-stop configuration requires four parameters( 4, d, h, and d,).
The process begins with defining the desired ENS restoring force using the equivalent
stiffness concept, which approximates a cubic nonlinearity. A least squares optimization is
then used to obtain the optimal stiffness and switching positions for both PLS types. Finally,
the geometric parameters are derived from the optimized values. Numerical analysis
confirmed that the double-stop configuration provides a closer match to the desired
restoring force and potential energy distribution, and produces smoother, longer
instantaneous frequency (IF) transitions compared to the single-stop configuration.
Experimental validation confirmed the static accuracy of the designed model and
demonstrated dynamic force-displacement agreement within the achievable excitation
range. A redesign with reduced displacement limit improved attainable IF range and
restoring force coverage. Observed discrepancies in decay rates suggested variable

damping and non-negligible impact effects, which warrant further investigation.

Finally, a magnetically enhanced piecewise linear NES (MPLNES) is developed. The
MPLNES integrates a GMS and a grounded EMEH into a conventional PLNES with a
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DBSs. Based on the theoretical foundation built in chapters 2 and 4, the PLS and GMS are
designed to maintain mono-stable behaviour while enhancing the essential nonlinearity of
the NES. COMSOL simulation is used to model the position-dependent EMEH
transduction factor, with experimental verification confirming accuracy. Comparative
studies against a conventional PLNES show that the MPLNES requires a lower energy
threshold to trigger TET, achieving more robust VS and EH performance over varying
excitation levels. This advantage arises from the GMS, which introduces a position-
dependent restoring force that dynamically shifts the NES’s equilibrium position in
response to the primary mass motion. This unique feature amplifies the relative
displacement under low initial energy, promoting earlier activation of the nonlinear regime
and thus reducing the TET threshold. To balance VS and EH performance, a multi-
objective optimization was carried out across three configurations: PLNES, MPLNES, and
MPLNES without DSBs. The results showed that: (1) MPLNES offers the best trade-off
between VS and EH and remains robust over varying energy levels; (2) optimal load
resistance tends to decrease with higher initial energy; and (3) removing DSBs significantly
reduces system efficiency, highlighting the essential role of the PLS-induced hardening
effect. Experimental results matched simulations and confirmed efficient dual-function
operation even at low excitation levels, with impact damping from double stops

contributing to slightly faster decay.

6.2 Recommendations for Future Work

The research objectives set out in this thesis have been successfully achieved. Building

upon these results, several directions for future investigation are proposed:

1. The current modelling for the MPLNES does not explicitly account for impact
dynamics, which may be the reason for the discrepancy between the simulated
responses and the experimental responses in terms of decay rate. Future work could
consider energy dissipation due to impact to improve model accuracy. Additionally,
material selection and structural adjustments could be explored to better control or

utilize impact-induced damping for enhanced energy transfer.
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2. The current analysis for the MPLNES only focuses on transient responses. Future
studies could evaluate its performance under harmonic excitation. Additionally,
More realistic excitations, such as colored noise excitation, could be considered to

provide deeper insight into its practical performance in real-world environments.

3. The proposed MPLNES belongs to the mono-stable nonlinear system. Since the
GMS is tunable, the bi-stable or tri-stable configuration could also be investigated
to explore its potential. Such studies could further elucidate the role of multi-
stability in optimizing performance, enhancing robustness, or enabling adaptive

behaviour under varying excitation conditions.

4. Since the present analysis primarily compares the EH performance of the MPLNES
and PLNES, a basic resistive load is adopted for simplicity. Future work could
incorporate rectifier circuits and energy storage modules to regulate and store
harvested power, enabling direct use by low-power sensors or control electronics.
Application-specific prototypes could be developed and demonstrated in real-world

scenarios, such as building health monitoring.
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Appendices

Appendix A. A Grounded and Tunable Multi-Stable Nonlinear

Energy Sink: Transient Responses

A.1 Introduction

Vibration widely exists in machines and civil structures. Such ambient vibration may
be caused by wind, operation of the machine or human activity. A vibration energy
harvester (VEH) is a device that converts mechanical motion to electricity, which can solve

the battery changing issue for the wireless sensor network.

A traditional VEH consists of a linear oscillator that operates in a narrow frequency
bandwidth. In order to widen the bandwidth, various nonlinear VEHs have been proposed
[1]. According to the system stability, the nonlinear VEHs can be classified as mono-stable
and multi-stable such as bi-stable or tri-stable. A piezoelectric vibration energy harvester
(PVEH) reported in [2] consists of a piezoelectric cantilever beam with a tip magnet
subjected to an external magnetic field generated by a pair of fixed magnets. Such a mono-
stable system can exhibit softening or hardening behaviors when the magnetic interaction
is adjusted. By applying different external magnet tuning strategies, a bi-stable energy
harvester (BEH) can be achieved. As shown in [3], the BEH can enhance the power output
performance. Further, tri-stable energy harvesters (TEHs) have been proposed in order to
reduce the depth of the BEH’s potential wells. Based on the configuration of the BEH in
[3], a TEH was achieved by tuning the angular orientations [4] or the spatial positions [5]
of the fixed magnets. The studies showed that the optimally designed TEHs outperform the

BEHs in terms of the voltage output.

On the other hand, vibration that exists in machines and civil structure is harmful, and

it may cause resonance and even failure of the system. A vibration absorber is a device
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used to suppress the vibration of the primary system. A traditional linear vibration absorber
mainly operates in the narrow frequency bandwidth. The nonlinear energy sink (NES) was
proposed for the purpose of achieving wideband vibration suppression (VS). The NES
consists of a small mass and essential nonlinear spring so that it can be weakly coupled
with the primary system. The NES possesses some unique features such as target energy
transfer (TET) and strongly modulate resonance (SMR) which can significantly enhance
the vibration suppression performance. For the past two decades, various kinds of NES
have been proposed by researchers, such as rotational NES [6], mono-stable NES (MNES)
[7] and multi-stable NES such as bi-stable NES (BNES) [8, 9] and tri-stable NES (TNES)
[10]. The study has shown that the multi-stable NES can achieve highly efficient TET in a

wider band.

Since the 2-degree-of-freedom PVEH and NES share a similar structure, it is much
desirable to achieve VS and energy harvesting (EH) simultaneously by a well-designed
NES. An MNES based PVEH has been proposed in [11]. The apparatus possesses the
characteristics of the 1:1 resonance TET and initial energy dependence. The study shows
a significant VS effect and the broadband voltage output can also be achieved. The study
reported in [12] proposed a PVEH with BNES. The VS and EH performance of the
proposed PVEH is compared with that of a linear absorber under the impact excitation.
Besides, a tuned BNES was proposed in [13] to further improve the VS and EH

performances.

So far, the proposed MNESs and multi-stable NESs that can achieve VS and EH
simultaneously are considered to be ungrounded as the nonlinear spring is connected
between the NES mass and the primary mass. In this study, a grounded PVEH with a
tunable multi-stable NES is proposed. The proposed NES consists of one stationary magnet
and a cantilever beam whose free end is attached by a moveable assembly of two magnets
and one tip magnet. By varying the gap between the stationary magnet and the tip magnet,
and the distance between the magnet assembly and the tip magnet, the NES can assume
three states: mono-stable, bi-stable or tri-stable. The rest of the chapter is organized as

follows: Section 2 presents the proposed apparatus, and derives the electromechanical
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model based on the lumped parameter model of the system, and then the magnetic force
model is derived according to the magnetic dipole approach. Section 3 evaluates the
performance under the transient responses by conducting the numerical simulation. Section

4 draws the main conclusions of the study.

A.2 The Apparatus and Electromechanical Model

Figure A.1(a) shows a CAD drawing of the apparatus developed for this study. The
primary system consists of a top block and base block which are connected by four
stainless-steel beams. The proposed tunable multi-stable NES comprises a cantilever beam
attached with a tip magnet and a movable assembly of 2 magnets. The cantilever beam is
composed of a unimorph piezoelectric transducer (S128-J1FR-1808YB, Mid¢
Corporation) and a stainless-steel beam. One end of the cantilever beam is clamped to the
top block while its other end is attached with a small cylindrical magnet B and a holder for
two identical cylindrical magnets A and C. The holder for magnets A and C can slide along
the beam. A large cylindrical magnet D is fixed in a holder that can slide vertically inside
a stand fastened to the base block. When the primary beams and the cantilever beam are at
their equilibrium position or undeflected, the four magnets are situated on the same vertical
plane and magnets B and D are colinear. By sliding the holder of magnet D, the distance
between magnet B and magnet D can be adjusted. Figure A.1(b) shows the lumped
parameter model of the proposed apparatus, where x and x, represent the displacement of
the primary mass and NES mass, respectively, the magnetic interaction is considered as a
nonlinear spring with the nonlinear stiffness 4,. The equations governing the dynamics of

the system can be represented by:

mi+cx+hkx—(c i+ ku+6v)=0 (A1)

mji, +(cpi+ku+60v)—f, =0 (A.2)
LV

cv+——0u=0 (A.3)

P
1
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where m, ¢, and k are the mass, damping coefficient and stiffness of the primary system,
respectively; m,, ¢, and k, is the mass, damping coefficient and stiffness of the NES
system, respectively; 0 is the electromechanical coupling coefficient of the PEH, f denotes
the nonlinear magnetic force applied to the NES mass, R; is the load resistance, c, is the
capacitance of the PEH, and u = x, — x represents the relative displacement between the

primary mass and the NES mass.

(a) = = _— Plastic mass block (b) L
X

Piezoelectric energy

harvester | 1 L] 1 .
LT ] ko Fe PO 0R
* | | a < a !
|
|
|
I
’

beam

|
Stainless-steel l |
|| ‘ |
e S _— Magnet A L L
| | | X, k %

1
. a g (=1
| .erl-”"H‘L
Magnet C — | = ) | L
| * T | — Stainless-steel ="
—1] | “A~ beam = "
Magnet B — \’_ ) 7
:.u-*’ - ‘-.‘-'5 } _
MagnetD — | Tlo)® g " Base Base

Figure A.1(a) 3D CAD drawing of a primary system attached by a tunable multi-
stable NES, (b) lumped parameter model.

Figure A.2 illustrates two symmetric situations of the deformed cantilever beam as the
primary mass moves identically to the negative or the positive position on X-axis where O’
represents the middle point of the fixed end of the cantilever beam. And the central axis of
the cantilever beam will always be on plane XZ. The figure also depicts the spatial positions
and polarities of the four magnets where m,, mg, m-, mp are the magnetic moment
vectors, A, B, C and D are the center positions of magnets, rp, represents a vector from A
to D, rpp represents a vector from B to D, and vector rp,’s projection on the x-z plane is

represented by rp,,,. Note that the direction of mp is opposite to that of m,, m- and mp,.
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Figure A.2 Spatial positions of the magnets.

The total nonlinear magnetic force f in the x-direction consists of an attractive
magnetic force f,,, between magnet D and magnet B, and two repulsive magnetic forces:
Jp4, Detween magnet D and magnet A and f,, . between magnet D and magnet C. Since

magnets A and C are identical and symmetrical about the central line of the beam, the

values of /), and f,, . are equal. Then the total nonlinear magnetic force can be expressed

as:

S = Sowe T Soue + Soes T ome 2 par- (A4)

Figure A.3(a) shows the side view of Figure A.2 when the cantilever beam is
undeformed, where d is the vertical distance between magnet D and magnet B, / is the gap
between the center of magnet A or C and the center of magnet B, / is the length of the
cantilever beam, and w is the distance between the axis of magnet B and that of magnet A
or C. Figure A.2(b) shows the front view of Figure A.2 when the cantilever beam is
deformed to the right side and the primary mass’s displacement x is positive, where o is
the angle between mp and mp, and f is the supplement of the angle between mp and rpp,
x and z are the transverse and longitudinal displacements of the center of magnet B,

respectively.
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Figure A.3(a) Side view and (b) front view of the apparatus.

In this paper, the magnetic dipole approach [14] is used to determine the magnetic force
between two magnets. Firstly, the magnetic force between magnet D and magnet B is
considered. According to the dipole assumption, the force exerted by magnet D on magnet

B is given by:

Jos = v(BDB 'mB) (A.5)

where Bpjp is the magnetic flux density generated by magnet D upon B. Equation. (A.5)

can be expanded as:
3u,m,m
_ 2" p ™ A N - A - - S (s h - ~ h
fDB - 4 [rDB(mB'mD)_SrDB(mD'rDB)(rDB'm3)+m3 (mD'rDB)+mD(mB'rDB):|(A'6)
47r,,
where mp, mp, and rpp are the magnitude of mp, mp, and rpp, respectively;m, ,m, , and
F,, are the unit vector of mp, mp, and rpp, respectively. These unit vectors can be

expressed as:
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i, = [sin(a) —cos(B) 0], m, =[0 —10],
=[-sin() cos(B) 0].

(A.7)

Substituting the above unit vectors in the dot products of Eq. (A.6) and the magnetic force
in the x-direction can be obtained in the following form:
3 pympmyg

Som =———2-2 {sin(ﬂ’)[cos(a) —5cos(B)cos(f—a)]+sin(a)cos(B)}. (A3)

4rry,

Since the slope of the beam’s tip is relatively small, it is assumed that ZBOB, = a. Also, it
is noted that § can be found from the triangle DRB in Figure A.3(b). The trigonometric

relationship in Eq. (A.8) can be expressed as follows:

sin(a):%; cos() ZI_TZ; (A.9)
. X, z+d
sm(,B):r—, cos(f)=— — (A.10)
DB DB

cos(B—a)=cos(a)cos(f)+sin(a)sin( )
-z z+d N 2 Iz ld+zd+z (A.11)
- l rDB rDB l

7y

wherez =1 —F — 2. Substituting the above expressions into (A.8) yields

5 2
Ayl oy

Fone :_W—DmB{xa (Z—Z)—u(d+z)—i|:—z3 +(1-2d)z° +(2dl—uxa —d2)2+d21—uxad” (A.12)

Similarly, the magnetic force between magnet A and magnet D in the x-direction can be

found as:

Fon =2 OmDmA{x“ (1_2)_u(d+2)_3i[—z3+(l—2d0)22+(2dol—uxa—doz)z+dozl—uxadJ} (A.13)

4
47[rDAl rDA xz rDA,\'z

where dy=d+h. Substituting Egs. (A.12) and (A.13) into Eq. (A.4), then the nonlinear

magnetic force model can be obtained. All the parameters’ values are listed in Table A.1.
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Note that the amplitudes of magnetic moment vectors for magnets A, B, C and D are
obtained by an experimental identification given in [15]. For the sake of comparison, there
are three configurations of the NESs are considered in this study: MNES d=0.0487 m,
h=0.0187 m; BNES d=0.0467 m, h=0.0157 m; TNES d=0.0367 m, h=0.0197 m. The
potential energy of the NES can be obtained by taking the integral of the total restoring

force of the NES f which can be expressed as follows:

[ =k, (x,—x)-f, (A.14)

Note that the total restoring force is related to three factors: the displacement of the primary
system x; the displacement of NES x,; and the magnetic force f,. In other words, the
position of the primary system will affect the potential energy of the NES. Figures A.4(a)
(b) and (c) show the potential energy verse x, of the MNES, BNES and TNES for three
different values of x. It can be observed that the NESs are in symmetrical mono-stable, bi-
stable and tri-stable stability states when x=0, and they become asymmetric mono-stable,
bi-stable and tri-stable systems as the absolute value of x increases to 0.003 m. It should be
mentioned that Figure A.4 only shows the local potential of the grounded NESs. It cannot
tell where the NESs will finally rest according to the local potentials. To get the global
potentials of the grounded NES systems, the equilibrium positions of the primary systems
that they are attached to need to be considered. The primary systems with the grounded
MNES, BNES and TNES will have multiple equilibrium positions due to the changing
elastic forces induced by the NESs. And the equilibrium position of the primary system x,

fulfills the following condition:

kx, =k, (x, —x,) (A.15)

where x,, is the equilibrium position of the NES. Accordingly, the global potential of the
grounded NESs can be determined, which can tell the positions that the primary system

and the NES will finally rest.
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Figure A.4 The potential energy of the different NESs verse x, when varying x: (a)
MNES; (b) BNES; (c)TNES.

A.3 Numerical Simulation

To compare the VS and EH performance of the system with the MNES BNES and
TNES, a series of simulations to get their transient responses is conducted. In the

simulation, the impulsive force ]; (¢) which is applied to the primary system is a half-sine

signal with amplitude 4 and period 7:

Asin (%j , O<t<§
1, ()=

0, t

(A.16)

v
o |

where the period 7=0.3 s. Two initial energy levels are considered in the simulations: the

low initial energy level (4=1.2 N) and high initial energy level (4=8 N). In this case, the
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electromechanical equations of the system Egs. (A.1) - (A.3) can be rewritten as follows:

mi+cx+kx—(ci+ku+6v)=f, @) (A.17)

m 5, +(cai+ku+60v)—f,=0 (A.18)
v

c,v+——06u=0. (A.19)

1

The values of the parameters in the above equations are listed in Table A.1. By solving
Egs. (A.17) - (A.19) with the zero initial condition for the system with the TNES, and the
initial conditions of(x, x, x,, X, v)=(0.003, 0, 0.022, 0, 0) and (0.004, 0, 0.031, 0, 0) for
the systems with the MNES and BNES, respectively, in the period of 20 s using the
MATLAB ODE45 solver, the transient responses of the primary system, NES and load
voltage can be obtained. Besides, the EH performance is evaluated by the accumulated

energy in NES E, which is defined as follows:

E(f)= J't V(1) dt (A.20)

where ¢ is the duration of the simulation, v is the load voltage and R; represents the

resistance of the load resistor.
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Table A.1 Parameters value of the apparatus.

Parameters
symbol
Parameter name value
Hy Vacuum permeability 4nx107
my, Magnitudes of magnetic moment vector of magnet A and C 430
me (H.m/T) '
mp Magnitude of magnetic moment vector of magnet B (H.m/T) 0.83
mp Magnitude of magnetic moment vector of magnet D (H.m/T) 18.00
Distance between the axis of magnet B and magnet A or C
w 0.025
(m)
kg Stiffness of the cantilever beam (N/m) 47.39
/ Length of the cantilever beam (m) 0.12
k Stiffness of the primary system (N/m) 189
m Mass of the primary system(kg) 0.44
my, Mass of the NES (kg) 0.066
c Damping coefficient of the primary system (Ns/m) 0.125
Cq Daping coefficient of the NES (Ns/m) 0.067
Electromechanical coupling coefficient of the piezoelectric .
0 1.88x10°
transducer (N/V)
R, Load resistance (ohm) 5x10°

When the amplitude of the impulsive force 4=1.2 N, the time responses of the
displacements of the primary systems with locked NES, MNES, BNES and TNES, and the
displacements of the MNES, BNES and TNES are shown in Figure A.5. Note that to

conduct the simulation of the system with a locked NES is by solving Eq. (A.17) with the

primary mass equal to m+m,, and setting u and v to zero. Figure A.5 shows that the MNES

performs the snap-through motion between its equilibrium positions initially, and it

dissipates the impulse energy rapidly within 11.8 s to decrease the initial amplitude of the

primary system to 4%. By contrast, it takes 13.24 s and 19.5 s for the systems with the

BNES and TNES to dissipate the initial amplitude to 4%. And it also can be seen that the

BNES and TNES are only oscillating in one of their potential wells.
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Figure A.5 Transient responses of the systems with four different NESs when 4=1.2
N, red dash line and blue solid for the displacement of primary mass with locked and
unlocked NES, green solid line for the NES's displacement: (a) MNES; (b) BNES; (c)

TNES.

Figures A.6(a)-(c) show the wavelet transform (WT) spectra of the displacements of
the primary systems with the MNES, BNES and TNES, and the WT spectra of the
displacements for their corresponding NESs are shown in Figures A.6(d)-(f). It can be seen
in Figures A.6(a) and (d) that the 1:1 internal resonance occurs between the MNES and the
primary system when the MNES performs the snap-through motion at the first 1.5 s. As
shown in Figures A.6(b) and (e), although the 1:1 resonance phenomenon occurs in the
system with the BNES initially. However, the nonlinearity does not activate due to the
BNES only oscillating in the single stability potential well. Figures A.6(c) and (f) show the
primary system and TNES oscillates at their own natural frequencies, which means the

TET does not occur.

192



—
(7]

— —_— —_—
N N N
Z =) )
= 10 - =
=] =] =]
= = =
%] *] %]
= 5 g =
g g g
S L) e
0
time (s) time (s) time (s)
p— — —
N N N
=) = )
o) Sy e
=] 5] o~
= = =
: : :
= = =
g £ g
St St S

time (s) time (s) time (s)

Figure A.6 WT spectra of the transient responses of the systems with four different
NESs when 4=1.2 N, upper plots for the primary displacements and lower plots for the
NES displacements: (a)(d) MNES; (b)(e) BNES; (c)(f) TNES.

Figure A.7 shows the accumulated energy for systems with different NESs under the
low-level impact excitation. It shows that the system with the MNES is the most efficient
in EH. Due to MNES performing the snap-through movement at the beginning, the
accumulated energy of MNES shows a rapid rise initially and then stops at 0.52 mJ. By
contrast, the systems with BNES and TNES are far less efficient in EH with merely 0.06mJ

and 0.04mJ total accumulated energy, respectively.
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Figure A.7 Accumulated energy of the systems with different NESs when 4=1.2 N.

For the case of the system under the high-level impact excitation, The time responses
of the displacements of the primary systems with the locked NES, MNES, BNES and
TNES, and the displacements of the corresponding NESs are shown in Figure A.8. As
shown the system with the MNES, BNES and TNES perform the snap-through motion
initially and then rest in one of their equilibrium positions. The VS effect can be clearly
observed from the transient responses of the three systems. It takes 14.04 s, 9.55 s and
13.58 s to decrease the initial amplitude to 4% for systems with the MNES, BNES and
TNES, respectively. Thus, the system with the BNES is the most efficient in VS among

the three systems.
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Figure A.8 Transient responses of the systems with four different NESs when A=8 N,
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red dash line and blue solid for the displacement of primary mass with locked and
unlocked NES, green solid line for the NES’s displacement: (a) MNES; (b) BNES; (¢)
TNES.

Figures A.9(a)-(c) show the WT spectra of the displacements of the primary systems
with the MNES, BNES and TNES, and the WT spectra of the displacements of their
corresponding NESs are shown in Figures A.9(d)-(f). It can be observed in Figure 5.9 that
the 1:1 resonance has been triggered and the TET has been established between the primary
systems and NESs of the three systems. Taking the system with the BNES for example, it
can be seen in Figures 5.9(b) and (e) that the dominant frequencies of the primary system
and BNES are located around their natural frequencies, which indicates the TET occur.

And such a phenomenon can also be observed in the other two systems.
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Figure A.9 WT spectra of the transient responses of the systems with four different
NESs when 4=8 N, upper plots for the primary systems’ displacements and lower plots
for the NESs’ displacements: (a)(d) MNES; (b)(e) BNES; (¢)(f) TNES.

Figure 5.10 shows the accumulated energy for the systems with different NESs under
the high-level impact excitation. It depicts that the system with the MNES is the most

efficient in EH with 4.55 mJ of total accumulating energy. And the total accumulated
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energy for the systems with the BNES and TNES is 3.97 mJ and 4.45 mJ, respectively. The
arrows A, B and C in Figure 5.10 point out the end of the rapid increase period of the
accumulated energy, which is at 10.37 s, 4.52 s and 6.06 s for the systems with the MNES,
BNES and TNES, respectively. It can be found that the system with the TNES has better
EH performance than the systems with the BNES and MNES at the first 9 s since it has
larger separation distances between its two side potential wells. After that, the system with

the MNES outperforms in EH since it lasts longer to perform in the snap-through

movement.
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Figure A.10 Accumulated energy of the systems with different NESs when 4=8 N.

A.4 Conclusions

In this study, a PVEH with a grounded multi-stable NES has been developed. The NES
can be manually tuned to achieve three different stability states referred to as MNES,
BNES, and TNES, respectively. The electromechanical model of the system is derived
from the lumped parameter model, and the magnetic force model is established based on
the magnetic dipole approach. The simulation is conducted to investigate the VS and EH
performances of the systems with MNES, BNES and TNES under the low and high-level

impact excitation. The results depict that under the low-level impact excitation, the system
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with the MNES has the lowest energy threshold to engage the high-efficiency TET. Thus,
it outperforms in VS among the three systems, and it also has a better performance in EH
due to its low energy threshold to operate in the snap-through oscillation. When the initial
energy level is high enough, the MNES, BNES and TNES can both perform the snap-
through motion initially. In this case, the system with the BNES has better VS performance
among the three systems. On the other hand, the systems with the BNES and TNES perform
better in EH initially since they have larger separation distances between their two side
potential wells. However, the system with the MNES can harvest more energy eventually

because it lasts longer to perform the snap-through motion.
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Appendix B. Identification of The Restoring Force of A Grounded

Nonlinear Energy Sink

B.1 Introduction

With the rapid evolution of Internet of Things (IoT) technology, the demand for a self-
sustaining power source for wireless sensor networks has become increasingly critical. A
vibration energy harvester (VEH) is a viable solution to address this need. Such a device
can scavenge mechanical energy from ambient vibrations and converting it into electricity,
offering a sustainable and efficient alternative to conventional power sources such as

battery and wired power supply.

A traditional VEH consists of a linear oscillator that operates in a narrow frequency
bandwidth. In order to widen the bandwidth, various nonlinear VEHs have been proposed
[1]. According to the system stability, the nonlinear VEHs can be classified as mono-stable
and multi-stable such as bi-stable or tri-stable. A VEH reported in [2] consists of a
piezoelectric cantilever beam with a tip magnet subjected to an external magnetic field
generated by a pair of fixed magnets. Such a mono-stable system can exhibit softening or
hardening behaviors when the magnetic interaction is adjusted. By applying different
external magnet tuning strategies, a bi-stable energy harvester (BEH) can be achieved. As
shown in [3], the BEH can enhance the power output performance. Further, tri-stable
energy harvesters (TEHs) have been proposed in order to reduce the depth of the BEH’s
potential wells. Based on the configuration of the BEH in [3], a TEH was achieved by
tuning the angular orientations [4] or the spatial positions [5] of the fixed magnets. The
studies showed that the optimally designed TEHs outperform the BEHs in terms of the

voltage output.

On the other hand, vibrations present in machinery and civil structures can be
detrimental, potentially leading to resonance and system failure. To counter this, the

concept of a Nonlinear Energy Sink (NES) has been introduced for the purpose of
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achieving wideband vibration suppression (VS) through the target energy transfer (TET)
phenomenon. Various kinds of NES have been proposed by researchers, such as rotational
NES [6], mono-stable NES (MNES) [7] and multi-stable NES such as bi-stable NES
(BNES) [8, 9] and tri-stable NES (TNES) [10]. The study has shown that the multi-stable
NES can achieve highly efficient TET in a wider band. In recent years, a NES is able to
achieving VS and energy harvesting (EH) simultaneously has attracted the attention of
many researchers [11]. An mono-stable NES(MNES) based VEH has been proposed in
[12], the apparatus shows a significant VS effect and the broadband voltage output can also
be achieved. In addition, a VEH with bi-stable NES(BNES) has been proposed in [13], the
study shows the multiple stability bring benefits in both EH and VS performance.

In many cases, the complexity of the restoring force of the NES’s spring makes it
impossible to apply analytical methods such as harmonic balance method. Model
interpretability is a concept employed in machine learning techniques. A polynomial is
considered to be interpretable. It is desirable to use a polynomial to represent the restoring
force of the NES’s spring. Most existing studies have dealt with the identification of a
polynomial of a single variable. The grounded NES under consideration of this study
imposes a challenge as the restoring force of the magnetic spring employed is a function
of two variables. Various approaches have been proposed to identify an interpretable model
for a nonlinear dynamic system, such as nonparametric identification technique [14] and
sparse identification method [15]. This study is focused on the linear regression based
identification. The rest of the paper is organized as follows: Section II presents the
apparatus used in this study, and its dynamic model, and the magnetic force model of the
magnetic spring. Section III investigates the identification of a polynomial model for the
restoring force using free responses of the system. Section IV draws the main conclusions

of the study.

B.2 Apparatus and Modelling

Figure B.1 shows a CAD drawing of the apparatus developed for the study of vibration

suppression and energy harvesting. It consists of a primary system and a grounded NES.
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The primary system is formed by using four stainless-steel beams referred to as primary
beams to connect a primary block and a base block. The grounded NES comprises a
cantilever beam attached with a tip magnet B and a movable assembly of 2 magnets A and
C and a magnet D that is fixed in a holder that can slide vertically inside a stand fastened
to the base block. The upper end of the cantilever beam is clamped to the primary block
and a unimorph piezoelectric energy harvester (PEH) (S128-J1FR-1808YB, Midé
Corporation) is glued to the beam as shown. When the primary beams and the cantilever
beam are at their equilibrium position or undeflected, the four magnets are situated on the
same vertical plane and magnets B and D are colinear. By sliding the holder of magnet D,
the distance between magnet B and magnet D can be adjusted. By sliding the assembly of

magnets A and C along the beam, the distance between A/C and B can be varied.

Primary mass

=
.+ Stainless steal beam

1
~Magnet B
Magnet A,C—t— = 5

Base— |4 R/

A c&‘
2 T*‘*—*—MagnetD

Figure B.11 3D CAD drawing of the apparatus

Figure B.2 shows the lumped parameter model of the apparatus, where x, and x,
represent the displacement of the primary mass and NES mass, respectively, the magnetic
interaction is considered as a nonlinear spring with the nonlinear stiffness 4,. Since the
focus of this study is identification of the nonlinear restoring force, the model does not
include the PEH. Based on the model, the equations of motion governing the system

dynamics are defined as follows:
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m %, +cx, +ke, —(cpi+ku)=0 (B.1)

mi, +(cu+ku)+f,=0 (B.2)

where m,,, ¢, and k, are the mass, damping coefficient and stiffness of the primary system,

respectively; m,, ¢, and k, are the mass, damping coefficient, and stiffness of the NES

system, respectively; /. denotes the nonlinear magnetic force applied to the NES mass, and

U =X, — X, represents the relative displacement between the primary mass and the NES

mass.
/ L/
7 LoL
7 Z
A k " k, My ’_/\/(/\/_¢
VW NN 7
4 [/

|_,xp ‘—J.C“

Figure B.12 Lumped parameter model of the apparatus.

The total nonlinear magnetic force f, in the x-direction consists of an attractive
magnetic force f,,, between magnet D and magnet B, and two repulsive magnetic forces:
Jp4, Detween magnet D and magnet A and f,, . between magnet D and magnet C. Since

magnets A and C are identical and symmetrical about the central line of the beam, the

values of f,, and f,, . are equal. Then, the total nonlinear magnetic force can be expressed

as:

/fn :fDBx +fDAx +fDCx:fDBx +2fDAx' (83)

The magnetic restoring force can be found using the equivalent magnetic 2-point dipole
model proposed in [16]. As shown in Figure B.3, O’ represents the middle point of the fixed
end of the cantilever beam. And O is the central point of the primary mass when it is at the

zero position. the origin of the coordinate system is located at By, the centers of magnet A,
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magnet B, and magnet D are represented by points 4, B and D, respectively, points 4, and
B, depict the positions of magnets A and B when the beam is undeformed, /3, [, and /4 are
the length of magnet B, magnet D and magnet A, respectively, and 4 is the distance
between magnet A/C and magnet B in the z-direction, / is the length of the cantilever beam,

ris,rs, 35 and rys are the vectors from Q. to O, O,, O, and O, respectively, and
Fi6, 726 36 and rye are the vectors from O, to Q,, 0,, O, and Q, respectively, O, and O,
are the total charges of the top and the bottom surfaces of magnet B, respectively, O, and
O, are the total charges of the top and the bottom surfaces of magnet A, respectively, O,
and Q, are the total charges of the top and the bottom surfaces of magnet D, respectively.

The total surface charges can be expressed as follows:

O=-MS, O,=MS, O,=MS, O,=-MS, O,=-MS,, O,=MS, (B4

where S; = 5.07x10* m?, Sz = 4.95x10° m? and Sp, = 5.07x10™ m? are the surface area
of magnets B, A and D, respectively, M= B,./u is the magnetization of magnets A, B and
D, where B, is the magnetic residual flux density, their values are listed in Table B.1, and

u =41x107"H/m is the vacuum permeability.

Figure B.3 Illustration of the equivalent magnetic 2-point dipole model:(a) magnets B

and D; (b) magnets A and D.
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The magnetic force between magnet B and magnet D is considered first. Based on the
Boit-Savart law, the magnetic force exerted by magnet B on magnet D is the combination

of the magnetic force exerted from Q, and Q, to O, and O, which is given in the

following equation:

Uy Hy s Py
Jos Q1 [Q5| | Q6| | J Qz [Qs |r25| +0q |"26| J (B.5)

where rys, r16, r25 and ry can be derived from the are the position vectors of Q,, 0,, O
and O, respectively, According to (A.4), to obtain the total restoring force, only the

is considered, which can be expressed as follows [17]:

Sope = ~f [Ql(x —Esmaj[Qs Q"j+Q2(x +-£ 5 smozj(Q5 Qﬁﬂ (B.6)
o7 Vs Vs

where the sina = u/l, and the expression y,, ,, y, and y, can be found in [17]. Further,

the magnetic force between magnets A and D in the x-direction can also be obtained as:

Jou=- {Q{x —hsina — ]{QS Q6J+Q4(x —hsina+-4 j{QS %ﬂ (B.7)
ar 2)\7s 7 2N\ ¥

where y., y,, 7, and y, are also defined in [17], By substituting (5.11) and (5.12) into (A.4),

the total restoring force can be obtained. All the parameters’ values are listed in Table B.1.
Note that the values of the surface charges are obtained by an experimental identification
method given in [18]. For the sake of comparison, two configurations of the NESs are
considered in this study: case I: d=0.0487 m, 4=0.01 m; case II 4=0.0507 m, #=0.005 m.

And the 3D plot of / versus u and x,, for both cases are shown in Figure B.4.
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Table B.1 Paramters value of the grounded NES.

Parameters

symbel Parameter name value
0, Total charges of the top surfaces of magnet A/C 642.36
o, Total charges of the bottom surfaces of magnet A/C 903.53
0, Total charges of the top surfaces of magnet B 0
0, Total charges of the bottom surfaces of magnet B 35.62
Os Total charges of the top surfaces of magnet D 353.39
O Total charges of the bottom surfaces of magnet D 577.56
kg Stiffness of the cantilever beam (N/m) 90.00

[ Length of the cantilever beam (m) 0.12
kp Stiffness of the primary system (N/m) 1924.40
my, Mass of the primary system(kg) 0.45
m, Mass of the NES (kg) 0.09
Cp Damping coefficient of the primary system (Ns/m) 0.58
Ca Daping coefficient of the NES (Ns/m) 0.0342
/_./\/' 0.04
: 7 0.02
\H /(-0'020 - \.&/./ /_‘0.020
i} 0.05 -0.04 X, (m) i) 0.05 -0.04 X (m)
(@) (b)

Figure B.4 3D plot of the nonlinear restoring force surface of the: (a) case I; (b) case

II.
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B.3 Fundamental of the linear regression method

The complex expression of Egs. (B.6) and (B.7) makes it impossible to apply analytical
methods , such as the harmonic balance method. A common approach to deal with this
issue is to approximate the nonlinear restoring force by using a high order polynomial.
Techniques such as the force surface method [19] or direct force measurement [20] can be
employed to identify the actual nonlinear restoring force, after which the polynomial curve-
fitting can be applied. However, for the system under consideration, the nonlinear restoring
force is influenced by both x,, and u, which makes the traditional methods invalid. As
proposed in [21], the polynomial approximation for an unknown nonlinear restoring force
can be achieved through a linear regression by using the time series of the free responses,
which provides a solution to the current issue. The following develops a suitable

identification procedure.

As this study focuses on the identification of f,, from free responses, (B.2) can be

reformulated as:

gk, ,u,u)y=—(m i, +cu+ku)=f, (B.8)

by assuming that m,, c,, k, are available. After collecting the time series of the free
responses X, and x,, the velocity x, and X, and acceleration X, and ¥,can be obtained by
using numerical differentiation. Then, the known function can be written as a column

vector form:

g(x,(#),u(t),u(t)))
G- g(x, (tz)a”(:tz)a”(tz)) B9)
g(x,(¢,),u(t,),u(t,))

where q is the length of the time series. The right-hand term in (8) is the unknown nonlinear

restoring force f, which can be approximated by a polynomial that can be represented as:
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f,=6¢ (B.10)

where @ is the candidate functions matrix, and £ is the coefficient vector. First, we assume
that the candidate functions are related to only the variable u, and the maximum order of

the polynomial is n. Thus, the candidate function matrix and coefficient vector can be given

as:
L), u® (), (@), - u”(2) ]
Ou) = l,u(lz),u (t3)§” (t4), e U (ts) B11)
_l,u(tq),uz(tq),u3(tq), o u(t,)
and
52[61552753954’ SRRD) §n+]]T (B.12)

respectively. The coefficient vector can be obtained by solving the following equation:

E=0'G (B.13)

where ‘+’ represents the pseudo inverse of the matrix. After obtaining the coefficient vector,

the approximate nonlinear restoring force model can be found.

B.4 Application of the linear regression method

In this study, the time series of the free responses of the system are obtained through a

numerical simulation. By solving Egs. (B.1) and (B.2) with the initial condition of ( x,,

Xps

MATLAB ODEA45 solver, the free responses of the primary system and NES can be

Xq, X, )=(-0.02, 0, -0.02, 0 ) for the system of case I, in the period of 20 s using the

obtained. Then, the known function matrix G is calculated based on the collected data. By
setting the maximum order number n = 7, the candidate function matrix @ can be

formulated, the coefficients vector can be obtained by solving Eq. (B.13).
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To verify the accuracy of the estimated system, two sets of simulations are conducted.
The first one is by using the actual nonlinear restoring force model shown in Eq. (B.3), and
the second one is using the estimated nonlinear restoring force model, with the initial
conditions of ( x,, X,, X4, X, )=(-0.01, 0, -0.017, 0 ) for both two systems in the period of
20 s. Note that the initial conditions used for verification are different from those used to
generate the responses for identification. The two simulation results are compared in Figure
B.5. Additionally, to better estimate the accuracy of the prediction, The error of the

estimated x, and x, can be derived by the following equations:

’

X —X

a a2

pr—poZ
e = £ =

p - ’ *a
1.

where xp, Xg, X, and x, are the time series vectors of x, and x, of the real system and

, (B.14)
X

a

2

estimated system, respectively, and ||m||, denote the second norm of the vector. As shown
in Figure B.5, the estimated force model basically failed to predict the time responses of
the real system, and the errors &, = 0.378, &, = 1.02 are notably big, indicating that using
a polynomial of a single variable to approximate the restoring force cannot result in an

acceptable approximation.
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Figure B.5 Free responses of the Case I system with the real force model and the
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estimated force model by using the single variable in the candidate functions matrix.

To improve the accuracy of identification, both x, and u should be considered when

building the candidate function matrix. One convenient choice for the candidate functions

is a polynomial of the products of x, and u with different orders. As shown in Figure B.4,
when fixing the value of x,, the changing of u will significantly influence the shape of f;,.
However, varying x, does not alter the shape of the curve significantly, but mainly results
in a shift of the curve. This implies that the order of x, should be much lower than that of
u. Assuming the maximum orders of u and x,, are n and m (n > m), respectively. Then,

the modified candidate function matrix can be written in the following form:

0(u,x,)=[6,,0,,0,, ---,0,,] (B.15)

where the matrix’s elements @; (i = 1,2,3 ...n + 1) are given as:

), u T ()X, @), e u T )R

I AT AN AR

ROV (LAY N (A )

and the coefficient vector becomes:

€=[8,6:684 -+ f(nJr])(mH)]T (B.17)

By setting the order numbers n = 7, m = 5 in the modified @ and following the same data
training procedure, the new coefficient vector can be obtained, and the verification results
are shown in Figure B.6. It can be seen that the identified model is capable of accurately
predicting the time responses of the actual system, and the errors &, = 0.0327, ¢, = 0.105

are reduced to an acceptable level.
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Figure B.6 Free responses of the Case I system with the real force model and the

estimated force model by using a modified candidate functions matrix.

The identification of the nonlinear restoring force of case II follows the same procedure
as mentioned in the last section, by using the modified candidate function matrix, and the
initial conditions ( x,, X,, Xg, X, )=(-0.035, 0, -0.035, 0 ) to obtain the training data, then
verified with the initial condition of ( x,, X,, x4, X, )=(-0.015, 0, -0.02, 0 ). As shown in
Figure B.7, there is a huge difference between the free responses of the estimated system
and those of the real system, and the errors &, = 0.739, &, = 1.94 are unacceptably large.
This may be caused by insufficience of the current training data set. To improve the

identification accuracy, the training data much be sufficiently richin the dynamics of case
II.
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Figure B.7 Free responses of the Case II system with the real force model and the

estimated force model trained by one data set.

Based on the identification method proposed in [22], multiple training data sets are

employed to overcome such a problem. To achieve that, multiple sets of simulations with

different initial conditions are conducted and collect the multiple sets of time series of a

free response to assemble of the new known function matrix and candidate functions matrix

as:

and

_g(jéa (1), u(ty),u(t,)) ]

g(%, (th ), u(th ), u(th )
: (B.18)

g(x, (t,),u(t,),u(t,))

| 95, (6, )uii(t,))u(t,,) |
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[ -1 i-1 i-1 m T
u (), u (tll)xp(tll)’ e, U (tll)xp(tll)

”H(th)a u'™ (t]q)xp(th)’ e ul (th)x;n (th)
0,(u,x,) = : (B19)

i-1 i1 i m
u (5, u(4,)x,@t,), e ut ()X, (1)

i—1 i—1 i—1 "
_u/ (trq)7 ul (trq)xp(trq)ﬁ T ul (trq)xpz(trq)_

respectively, where 7 is the number of the training data set used in the identification. In
this study, three different sets of training data are considered, namely, r = I,r =2 and r =
3. The first training data is obtained by the simulation with the initial condition of ( x,,

Xp, Xq, X4 )=(-0.035,0,-0.035,0) , the second one with (x, X, xq

X, )=(-0.02, 0, -0.015, 0 ), and the third one with ( x,, X, x4, X, )=(-0.01, 0, -0.01, 0 ). The
verification results of the estimate system trained with the first two data sets and three data
sets are shown in Figures B.8 and B.9, respectively. and the errors for the three training

conditions are collected in the bar chart shown in Figure B.10. It clearly shows that using

more training data leads to better prediction results.
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Figure B.8 Free responses of the Case II with the real force model and the estimated
force model trained by two data sets.
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Figure B.9 Free responses of the Case II with the real force model and the estimated

force model trained by three data sets.
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Figure B.10 The error of the prediction of the Case II system with identified force

model trained by three different sets of data.
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B.5 Conclusions

In this study, a regression-based identification approach has been proposed to find the
polynomial approximation of the nonlinear restoring force of a grounded MS-NES. Firstly,
the apparatus is introduced briefly, then the dynamic model of the system is derived from
the lumped parameter model, and the magnetic force model is established based on an
equivalent magnetic 2-point dipole approach. Two bis-table configurations have been

chosen to evaluate the approach.

For Case I, the results show that considering a single variable u in the candidate
function matrix is not sufficient to predict the free responses of the real system. To improve
the accuracy, two variables u and x,, are considered when building the candidate function
matrix. By considering the influence of the two variables on the shape of the nonlinear
restoring force, the maximum order number of x,, is chosen much lower than that of w.
And the validation results show that the accuracy of the identified model has been
significantly improved by introducing the modified candidate function matrix. As for Case
I, even by using the modified candidate function matrix, the predictions remain
unsatisfactory. The solution is integrating multiple training data sets which encompass a
broader range of system behaviours, and the results show that more comprehensive training

data sets lead to a more robust and accurate identified model.
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Appendix C. Design and Evaluation of Three Variant Nonlinear

Energy Sinks

Abstract

The traditional nonlinear energy sink (NES) consists of an essentially nonlinear
spring (ENS). In this study, three variant NESs without an ENS are considered, namely
mono-stable NES, bi-stable NES, and tri-stable NES. A method is proposed to design
these variant NESs for the dual purpose of vibration suppression (VS) and energy
harvesting (EH). The proposed method can ensure that the designed variant NES
closely emulates the behaviors of a true NES. The design starts with defining a NES
with a desired ENS using the concept of equivalent stiffness. Then, by forcing the
restoring force of the variant NES at the maximum displacement equal to that of the
desired NES, the key parameters of the variant NES are determined. A numerical
simulation is conducted to compare the variant NESs with the desired NES in terms of
VS under transient responses. The VS performances are evaluated by the targeted
energy transfer, the wavelet transform spectra, and the frequency-energy plots. To
investigate the trade-off issue, two objective functions are defined to measure VS and
EH performances, respectively. Then a two-objective optimization is conducted for the
case of the NES equipped with a piezoelectric energy harvester and the case of the NES
equipped with an electromagnetic energy harvester. The Pareto fronts are generated for

all four NESs to reveal the best NES in terms of VS or EH.
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