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ABSTRACT 

Nonlinear energy sinks (NESs) offer significant potential for simultaneous broadband 

vibration suppression (VS) and energy harvesting (EH) through the use of an essentially 

nonlinear spring (ENS). However, realizing an ENS with minimal energy dissipation 

remains challenging. A piecewise-linear spring (PLS) provides a structurally simple and 

physically interpretable means to approximate nonlinear stiffness with little added friction. 

Yet, NESs employing a PLS often require a relatively high initial energy threshold to 

trigger targeted energy transfer (TET), resulting in reduced performance under low-level 

excitation. Magnetic springs can introduce bi-stable characteristics that enable snap-

through oscillations, thereby lowering the energy threshold. Existing studies, however, 

have focused primarily on ungrounded magnetic spring configurations, leaving the 

influence of a grounded magnetic spring (GMS) on NES’s performance largely unexplored. 

To address this gap, this research integrates a tunable GMS into a piecewise-linear NES 

(PLNES) to reduce the energy threshold, thereby facilitating TET activation and enhancing 

broadband VS and EH performance. Four interconnected studies are undertaken: 

1. Magnetic Spring Modelling – A tunable multi-stable piezoelectric energy 

harvester (PEH) is developed by combining a cantilever beam with an adjustable 

magnetic assembly capable of achieving mono-, bi-, and tri-stable states. Two 

magnetic restoring force models, based on the magnetic single-point and two-point 

dipole approaches, are formulated and optimized via a multi-population genetic 

algorithm. Parametric sensitivity analyses are conducted for the optimal models. 

2. Hybrid Multi-Stable Energy Harvesting – A multi-stable hybrid energy harvester 

(MSHEH), integrating a PEH and electromagnetic energy harvester (EMEH), is 

proposed and evaluated numerically and experimentally under various stability 

states. Optimal load resistances for balanced energy output across configurations 

are determined through optimization. 
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3. PLS Design Methodology – A systematic approach for designing a PLS is 

developed, enabling close emulation of a desired ENS using a cantilever beam 

constrained by single- or double-stop blocks. The designed PLSs are validated 

against the target ENS through both simulation and experiment. 

4. Magnetically Enhanced PLNES (MPLNES) – A novel MPLNES is proposed by 

integrating a PLNES with a tunable GMS and a grounded EMEH. The GMS 

produces a position-dependent restoring force that shifts the NES’s equilibrium, 

enabling easier activation of large-amplitude oscillations. Numerical and 

experimental results confirm that the MPLNES triggers TET at lower excitation 

levels than the corresponding PLNES. A two-objective optimization reveals that 

the MPLNES achieves superior trade-offs between VS and EH, sustaining energy 

transfer over a wider range of excitation levels compared with the two other NES 

designs. 
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Chapter 1. Introduction  

1.1 Background 

1.1.1 Vibration Suppression 

Vibration control technologies are widely used in both civil engineering and mechanical 

engineering and can be broadly categorized into passive [1], active [2], and semi-active [3] 

regimes. Among them, the passive vibration control is the most well-established one due 

to its inherent robustness, simplicity, and ease of maintenance. 

As a passive vibration control device, a dynamic vibration absorber (DVA) or tuned 

mass damper (TMD) consists of a mass and a linear spring. When a one-degree-of-freedom 

(DOF) host structure is subjected to a harmonic excitation with a constant frequency, its 

steady-state vibration can be suppressed by attaching a DVA whose natural frequency is 

tuned to be the exciting frequency. Adding a DVA to a single-DOF system yields a two-

DOF system. The new system has two natural frequencies. One of the shortcomings of the 

DVA is a narrow operating band. If the exciting frequency drifts, the system may enter a 

new resonance. Adding a linear damper to a DVA can improve its performance robustness, 

making it less sensitive to variation of the exciting frequency. In this thesis, a damped DVA 

is considered. Hereinafter, TMD is used to refer to a secondary linear mass-spring-damper 

system used to suppress the vibration of a primary system. Commonly, the natural 

frequency of a TMD is tuned to match the fundamental natural frequency of the primary 

system. When the primary structure experiences resonance, the TMD vibrates out of phase 

and the damper will effectively dissipate the vibrational energy, thereby reducing the 

response of the host structure. Figure 1.1 shows the schematic of a primary system attached 

with a TMD. In the figure 𝑤𝑏  represents the base excitation, 𝑥𝑝  and 𝑥𝑎  are the 

displacement of the primary mass and TMD relative to the base, respectively, 𝑚𝑝, 𝑘𝑝 and 
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𝑐𝑝 are the mass, stiffness and damping coefficient of the primary system, respectively, 𝑚𝑎, 

𝑘𝑎 and 𝑐𝑎 are the mass, stiffness and damping coefficient of the TMD, respectively. The 

governing equations of the combined system can be derived based on the Newton’s second 

law: 

1 ( ) ( )p p p p p a a p a a p p bm x c x k x k x x c x x m w+ + − − − − = −    (1.1) 

 ( ) ( )a a a a p a a p bam x c x x k x x m w+ − + − = −     (1.2) 

 

Figure 1.1 A primary system attached with a TMD. 

The key limitation of a TMD is that its effectiveness is typically confined to a narrow 

frequency band, making it less suitable when the host structure is subjected to broadband 

or transient excitations [4]. Various approaches have been proposed to address this issue, 

such as employing multiple TMDs tuned to respond to different frequency components [5, 

6] or incorporating nonlinearity into the system to broaden the operational bandwidth [7, 

8]. As a special nonlinear TMD, a nonlinear energy sink (NES) consists of a small mass, a 

damper, and an essentially nonlinear spring (ENS). The restoring force of an ENS is a cubic 

polynomial. As illustrated in Figure 1.2, there are two main NES configurations: 

ungrounded or grounded. In the ungrounded configuration, the NES is connected to the 

primary mass through an ENS 𝑘𝑛 and a damper 𝑐𝑎. The governing equations of the system 

with the ungrounded NES can be expressed as: 
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3( ) ( )p a np p p p p a p a p p bm x c x k x c x x k x x m w+ + − − − − = −     (1.3) 

 3( ) ( )a a a a p n a p bam x c x x k x x m w+ − + − = −     (1.4) 

As for the grounded configuration, the NES mass is connected to the ground using an ENS 

𝑘𝑛  and damper 𝑐𝑎  and weakly coupled to the primary mass via a linear spring 𝑘𝑎 . The 

governing equations are given by: 

( ) ( )p p p p p a p a p p bp a am x c x k x c x x k x x m w+ + − − − − = −     (1.5) 

3 ( ) ( )a a a a n a a p a p ba a am x c x k x c x x k x x m w+ + − − − − = −     (1.6) 

The essential nonlinearity of the NES allows it to engage in 1:1 resonance with the 

primary system, thereby facilitating targeted energy transfer (TET), where energy from the 

primary system is transferred to the NES in a one-way irreversible fashion [4]. The 

ungrounded NES is very efficient in terms of TET, and is commonly used to absorb shock 

or periodic excitations, whereas the grounded NES is less efficient in terms of TET due to 

the lack of a continuous nonlinear normal mode under excitation [9]. However, the 

grounded NES has the advantage of being less constrained by the mass ratio [10], and such 

a configuration is generally used to suppress the transient and steady-state vibration in rotor 

systems [11]. 
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Figure 1.2 Two types of NES: (a) a primary system attached with an ungrounded NES; 

(b) a primary system attached with a grounded NES. 

1.1.2 Comparison of TMD and NES 

To further explore the difference between the TMD and NES, a numerical simulation is 

performed to demonstrate the frequency response characteristics of the primary system 

with TMD and NES based on Eqs. (1.1) - (1.4). The parameter values used in the 

simulation are taken from Chapter 5. For the primary system: 𝑚𝑝 = 0.882 kg , 𝑘𝑝 =

4.605 × 103  N/m, cp = 0.8604 Ns/m so that 𝑓𝑃 = √𝑘𝑝/𝑚𝑝/2𝜋 = 11.5 Hz and 𝜁𝑝 =

𝑐𝑝 (2√𝑚𝑝𝑘𝑝) =⁄ 0.005. For both TMD and NES: 𝑚𝑎 = 0.9 kg and 𝑐𝑎 = 0.0179 Ns/m. 

For the TMD configuration, its natural frequency is tuned to be 𝑓𝑎 = 11.5 Hz so that  𝑘𝑎 =

(2𝜋𝑓𝑎)𝑚𝑎 = 469.89 N/m  and 𝜁𝑎 = 𝑐𝑎 (2√𝑚𝑎𝑘𝑎) =⁄ 0.049 . The ratio 𝛽 = 𝑓𝑎 𝑓𝑝⁄  is 

referred to as the tuning parameter. Note that in this case, the TMD is designed so that 𝛽 =

1. For the NES configuration, Using 𝑓𝑚 = 15 Hz and 𝑧𝑚 = 0.02 m in Eq. (4.8) yields 

𝑘𝑛 = 2.6648 × 106 N/m. The excitation is modeled as a sinusoidal acceleration applied to 

the base, with a constant amplitude of 𝐴𝑦 = 2 m/s2 and a frequency range varying from 5 

Hz to 25 Hz. As a baseline, the frequency response of the primary mass without the TMD 
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can be calculated analytically [12]: 
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where 𝜔 is the frequency of the base excitation. To evaluate the frequency response of the 

primary mass with the TMD, Eqs. (1.1) and (1.2) can be formulated in the frequency 

domain as [12]: 

 ( )2 j − + + =M C K X F    (1.8) 

where M, C, K, are the mass, damping coefficient and stiffness matrices, respectively, 

which can be expressed as: 

0
, ,

0

p p a p a a

a a a a

a

a

m c c c k k k

m c c k k

+ − + −     
= = =     

− −     
M C K  (1.9) 

X represents the displacement vector, 𝑭 is the inertial force vector due to base acceleration. 

Then the frequency response can be found by X = HF, where H = (−ω2M + jωC + K)−𝟏 

is the frequency response matrix. 

The frequency response of the primary mass with the NES can be obtained through 

frequency up-sweep and down-sweep simulations. For this purpose, the base excitation is 

varied as follows: 

 ( )2

start
( ) sin 2 2

b y
w t A f t rt =  +    (1.10) 

where 𝑓𝑠𝑡𝑎𝑟𝑡 = 5 Hz (up-sweep) or 25 Hz (down-sweep), 𝑟 = ±0.02 Hz/s is the frequency 

changing rate, and the time duration of the simulation is 1000 seconds. As illustrated in 

Figure 1.3, the amplitude of the primary mass without the TMD shows a sharp peak around 

the natural frequency 𝑓𝑝, and the introduction of the TMD efficiently reduces this peak, but 

produces two lower peaks around the new natural frequencies. This indicates that the 

efficiency of TMD is limited by a narrow frequency bandwidth. In contrast, the up-sweep 



6 

 

and down-sweep responses of the primary mass with the NES exhibit jump phenomena 

around 𝑓𝑝 due to the nonlinear nature of the coupled system. Although the NES does not 

suppress the resonance as sharply as the TMD, it offers more robust performance over a 

wider frequency range. 

 

Figure 1.3 The frequency responses of the primary mass without TMD, with TMD 

and with NES. 

To better demonstrate the transient behaviours of TMD and NES, A series of 

simulations is conducted by varying the primary system’s natural frequency 𝑓𝑝 (ranging 

from 1 - 40 Hz) and initial velocity 𝑉 (ranging from 0.05 - 2 m/𝑠2). Eqs. (1.1) and (1.2) for 

the TMD configuration, and Eqs. (1.3) and (1.4) for the NES configuration are numerically 

solved using MATLAB ODE 45 function over a time duration of 10 seconds. It should be 

mentioned that 𝑤̈𝑏 is set to zero in the simulation. To evaluate the transient performance, 

the following index is defined: 

 
2

0
( ) 100%p

T
a

c a

i

c
D x x dt

E
= −     (1.11) 

where 𝐸𝑖 = 𝑚𝑝𝑉2/2 is the initial energy. This index represents the percentage of the initial 

energy dissipated by the TMD damper or the NES damper over the time duration T. As 

illustrated in Figure 1.4(a), the performance of the TMD is independent of the initial 

velocity, a feature of the linear system. The TMD achieves highest efficiency only when 

its natural frequency 𝑓𝑎 (11.5 Hz) matches the natural frequency 𝑓𝑝 of the primary system, 
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and the performance drops significantly when 𝑓𝑎 deviates from 𝑓𝑝. This indicates that the 

effectiveness of the TMD is limited in a narrow frequency band. In contrast, as shown in 

Fig. 1.14(b), the performance of the NES is less sensitive to variations in 𝑓𝑝, demonstrating 

its robustness. However, amount of the energy dissipated by the NES depends on the initial 

velocity. Also, beyond a certain value of 𝑓𝑝, a minimum initial energy threshold is required 

to trigger TET, making it less efficient under low excitation levels. The above analysis 

highlights the distinct characteristics of the TMD and NES. Table 1.1 summarises these 

differences, consolidating the underlying principles, frequency-response behaviour, 

transient performance, and limitations of the two configurations. 

 

Figure 1.4 Transient performance 𝐷𝑐 verse 𝑓𝑝 and 𝑉: (a) TMD configuration; (b) NES 

configuration. 
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Table 1.1 Comparison of TMD and NES. 

  
TMD NES 

Principle Resonate with the primary 

structure's natural frequency to 

maximize energy dissipation. 

Uses an essentially nonlinear 

spring to enable the Targeted 

Energy Transfer (TET). 

Energy flow Reversible energy exchange One-way irreversible energy 

transfer [13] 

Steady-state 

performance 

Sharp vibration suppression at 

the tuned frequency. 

More uniform vibration 

suppression over a broad frequency 

range. 

Transient 

performance 

Independent of initial energy; 

high efficiency only when 

𝑓𝑝 matches the tuned value. 

Dependent on initial energy; robust 

to the variation of 𝑓𝑝. 

Limitations  Narrow bandwidth; sensitive to 

detuning. 

Less efficient at low level 

excitation. 

1.1.3 Realization of ENS in NES 

In TMD design, the tuning parameter 𝛽 is chosen to be close to 1 or 𝛽 → 1 so that the 

TMD is strongly coupled to the primary system. In contrast, the NES can be considered to 

possess a zero natural frequency or 𝜔𝑎 = 0 so that 𝛽 = 0. In this sense, the NES is weakly 

coupled to the primary system. Achieving an essential nonlinearity in practical 

implementation remains a challenge, as any real spring inherently exhibits a certain degree 

of linear stiffness [14]. To realize an ENS, a classic approach is to utilize the geometric 

nonlinearity [15, 16]. To illustrate this approach, the NES proposed in [16] is used as an 

example. As shown in Fig. 1.5, the two linear springs with stiffness 𝑘 and initial length 𝑙 

are connected to the NES mass which can slid along the guide rail where 𝑃 represents the 

initial tension in the springs. By considering the force balance in the horizontal direction, 

the restoring force of the NES is derived: 

 
2 2

2 ( )
2

u P kl
f ku

l u

−
= +

+
    (1.12) 
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which can be further approximated through a Taylor series expansion: 

 3 5

3

2
( ) ( )

P kl P
f u u u O u

l l

−
 + +    (1.13) 

Eq. (1.13) reveals that an ideal ENS is attainable only if 𝑃 equals to zero. Besides the 

mechanical spring type, several other practical implementations have been proposed, such 

as cam–roller mechanisms [17, 18], magnetic springs [19, 20], and piecewise linear springs 

(PLS) [21, 22]. These studies have shown that by making the tuning parameter as small as 

possible or 𝛽 ≪ 1, a nonlinear oscillator can behave similarly like a true NES, exhibiting 

the typical TET behaviour. In this thesis, an NES with a small linear stiffness and large 

nonlinear stiffness is referred to as a variant NES. When a variant NES is attached to a 

primary system, the tuning parameter is greater than zero or 𝛽 > 0. 

 

Figure 1.5 Illustration of achieving ENS through mechanical springs: (a) the 

apparatus; (b) the design of ENS [16]. 

These designs have their pros and cons. For example, the cam-roller system shows an 

advantage to customize different stiffness characteristics, while it introduces friction due 

to contact between the roller and cam surface. The PLS offer a structurally simple and 
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physically interpretable way to approximate nonlinear stiffness with little added friction. 

However, the NES constructed with a PLS still faces challenges in triggering TET at low 

excitation levels. The magnetic springs provide another non-contact means of introducing 

nonlinearity. But the magnetic forces are sensitive to the alignment, making it challenging 

to build an accurate magnetic force model for a complex magnet assembly. More details 

about the design, analysis, and application of NESs are summarized in a recent review 

paper [23]. 

1.1.4 Energy Harvesting 

In recent decades, there has been growing interest in developing vibration energy 

harvester (VEH) to provide a sustainable power source for wearable electronics and 

wireless sensor networks. Vibration energy harvesting involves converting ambient 

mechanical vibrations into usable electrical energy. There are four main kinds of 

conversion mechanisms, namely, electrostatic [24], triboelectric [25], electromagnetic, and 

piezoelectric. The first two types are commonly employed in MEMS 

(Microelectromechanical Systems) applications, while this thesis focuses primarily on the 

latter two types.  

An electromagnetic energy harvester (EMEH) is designed based on Faraday’s law. As 

illustrated in Figure 1.6(a), an EMEH consists of a magnet suspended by a spring and a 

coil fixed on the vibrating body. Under base excitation, the relative motion between the 

magnet and the coil causes the magnetic field lines to cut through the coil, inducing an 

electric current. The lumped-parameter model of such a single-DOF system is shown in 

Figure 1.6(b), where 𝑥 is the magnet’s displacement relative to the base, 𝑘 is the stiffness 

of the spring, and 𝑐𝑚 is the coefficient of inherent mechanical damping in the system, Kt is 

the transduction factor of the EMEH, 𝐸 = 𝐾𝑡𝑥̇ is the so-called electromotive force (EMF) 

of the EMEH, 𝐼  is the output current of the EMEH, Rc  and Lc  are the resistance and 

inductance of the coil, respectively, and Rle is the resistance of a load resistor connected to 

the output of the EMEH. By applying Newton’s second law and Kirchhoff's law, the 

governing equations can be derived as: 
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 m e b
mx c x kx f mw+ + + = −    (1.14) 

 ( )c c le t

dI
L R R I K x

dt
+ + =    (1.15) 

where based on Lenz’s law, 𝑓𝑒 = 𝐾𝑡𝐼 represents the back electromotive force. If 𝜔𝐿𝑐 ≪

𝑅𝑐 + 𝑅𝑙𝑒  where 𝜔  is the frequency of vibration, 𝐼 ≈ 𝐾𝑡𝑥̇ (𝑅𝑐 + 𝑅𝑙𝑒)⁄  from Eq. (1.15). 

Then Eq. (1.14) becomes 

 m be
mx c c x kx mw+ + + = −( )   (1.16) 

where 𝑐𝑒 = 𝐾𝑡
2 (𝑅𝑐 + 𝑅𝑙𝑒)⁄  is referred to as the electrical damping coefficient. Eq. (1.16) 

indicates that an EMEH with a resistive load is equivalent to an electrical damper. A 

comprehensive review of EMEH design and modelling can be found in [26]. 

 

Figure 1.6 Illustration of EMEH: (a) a schematic of EMEH [27]; (b) a lumped-

parameter model of EMEH. 

The piezoelectric energy harvester (PEH) has two operation modes, namely, d31 mode 

(the external force is perpendicular to the polarization direction) and d33 mode (the stress 

has the same direction as the polarization of the material). The classic configuration of PEH 

in d31 mode is the cantilevered type. Figure 1.7(a) illustrates a typical cantilevered PEH 
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with a tip mass. Under the base excitation, the tip mass oscillates vertically, causing the 

beam and piezoelectric plate to deflect. Through the direct piezoelectric effect of the d31 

mode, this mechanical deformation is converted into electrical voltage. The lumped-

parameter model of a single-DOF PEH is shown in Figure 1.7(b), where vp is the voltage 

over a load resistor connected to the output of the PEH, 𝜃 is the electromechanical coupling 

coefficient. The electromechanical coupling can be modelled using a force-voltage analogy. 

The mechanical deformation produces an output current that is proportional to the strain 

changing rate [28]. The governing equations of the PEH can be expressed as follows: 

 
bpm

mx c x kx v mw+ + + = −    (1.17) 

 
p

p

lp

S
v

C v x
R

+ − = 0    (1.18) 

where 𝐶𝑆 is the capacitance of the PEH and Rlp is the resistance of the load resistor. With 

some derivation [29], Eq. (1.17) can be rewritten as 

 bem e
mx c c x k k x mw+ + + + = −( ) ( )   (1.19) 

where ce= Rlpθ
2 [1+(ωRlpcp)

2
]⁄  and ke= (ωRlpθ)

2
cp [1+(ωRlpcp)

2
]⁄  are referred to as the 

electric damping coefficient and the electrical stiffness, respectively. Eq. (1.19) shows that 

in addition to inducing electrical damping, a PEH with a resistive load adds additional 

stiffness to the system. Note that in the case of PEH, 𝑐𝑒 and 𝑘𝑒 are frequency dependent. 

A more detailed discussion on principles and modelling of PEH can be found in a recent 

review paper [30]. To better compare EMEH and PEH, Table 1.2 summarizes their 

advantages and disadvantages. 
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Table 1.2 Summary of advantages and disadvantages of EMEH and PEH. 

Energy harvester 

type 

Advantages Disadvantages 

EMEH 

Ease of manufacture. Require magnetic material. 

High current output. High electrical damping. 

Suitable for low-frequency 

applications. 

Lower energy density. 

Easy to scale up.  

Durable over long periods.  

PEH  

Simple structure. Material brittleness may limit 

durability. 

High energy density. Low current output. 

High voltage output. Charge leakage. 

Small electric damping.  

Easy integration.  

Robust with no moving parts.  

Moreover, to further increase the energy density of the energy harvesting system, a 

hybrid energy harvester (HEH) is proposed. It usually combines two or more energy 

harvesting mechanisms. A more detailed literature review on HEH can be found in Chapter 

3. 

 

Figure 1.7 Illustration of PEH: (a) a cantilevered PEH [31]; (b) the lumped-parameter 

model of the PEH. 



14 

 

1.1.5 Simultaneous Vibration Suppression and Energy Harvesting  

In the last two decades, researchers have been exploring the use of a same device to 

suppress vibration and harvest energy simultaneously. This dual-functional concept has 

been particularly explored in the context of large-scale civil engineering structures under 

the wind-induced vibration. In the study conducted in [32], a scale-down model was used 

to estimate the amount of energy that can be harvested from a 75-story building. The study 

found that under the wind load at a wind speed of 13.5 m/s, such a building could yield 

more than 85 kW of harvestable power. To corroborate this magnitude, the field 

measurements from the TMD installed in Taipei 101 reported a peak energy dissipation of 

about 40 kW from a single viscous damper (Figure 1.8) [33].  Nowadays, oil-based viscous 

dampers are commonly used in large-scale TMDs. As such viscous dampers simply convert 

vibrational energy into thermal energy generated heat imposes stringent thermal design 

requirements, including provisions for forced cooling and the use of heat-resistant 

components [34]. A dual-functional TMD provides an alternative solution. Once vibration 

energy is passively transferred into the TMD, it can be partially converted into electricity 

by integrating the TMD with an appropriate VEH. For instance, if the TMD is coupled with 

an EMEH, the system is referred to as a TMD-EMEH [35-37], while coupling it with a 

PEH yields a TMD-PEH [38, 39]. The harvested energy can be stored in rechargeable 

elements (e.g., batteries or supercapacitors) via power-management circuits [40], or used 

to power wireless sensor nodes for structural health monitoring [35]. 

 

Figure 1.8 Power dissipated by one of the eight oil-based viscous dampers in the 
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TMD of Taipei 101 building under wind-induced vibration [33]. 

However, as pointed out in Section 1.1.2, the TMD has a narrow operating band and its 

VS and EH performances remain limited under broadband or transient excitations. 

Introducing essential nonlinearity through an NES can efficiently broaden the operational 

bandwidth. Building on this concept, various NES-based VEHs have been proposed, 

including NES-EMEH [41, 42] and NES-PEH [43, 44]. Furthermore, an NES integrated 

with both PEH and EMEH was proposed in [45], and the parametric studies showed that 

adjusting external resistance and coil parameters significantly affects both VS and EH 

performance. More detailed literature about the dual-functional NES can be found in the 

introduction of Chapter 5. 

1.2 Research Gaps and Objectives 

As pointed out previously, it is challenging to realize a true ENS without introducing 

friction. Any mechanical damping in a dual-functional NES should be kept as low as 

possible to maximize harvested energy, yielding a variant NES. A major limitation of the 

variant NES designs lies in their inefficiency under low-energy excitation, primarily due 

to the relatively high initial energy threshold required to trigger TET. Reducing this 

threshold remains particularly challenging. Recent studies have utilized magnetic springs 

to create bi-stable nonlinear characteristics in NES to achieve both VS and EH [46, 47]. 

The snap-through oscillation enables the NES to perform a large-amplitude response under 

low-level excitation. However, most of these efforts focus on ungrounded magnetic spring 

configurations. 

One of the author’s previous works [48] demonstrates that integrating a grounded 

magnetic spring (GMS) into a variant NES offers distinct advantages. The GMS applies a 

position-dependent magnetic force to a movable magnet attached to the NES mass, 

dynamically shifting the equilibrium position of the NES in response to the motion of the 

primary system. This unique feature significantly lowers the energy threshold required to 

trigger TET, thereby presenting a promising approach to enhancing both VS and EH 



16 

 

performance.  

Nevertheless, to the best of the author’s knowledge, the following research gaps remain 

unexplored and warrant further investigation: design a tunable magnetic spring that is 

suitable for a grounded NES; design a PLS to emulate a desirable ENS closely; develop a 

GMS to enhance the TET performance in terms of both VS and EH in a wide operating 

band; incorporate an EMEH into the GMS; overcome new challenges in modeling and 

analyzing. To address these gaps, the study intends to accomplish the following four 

objectives: 

• Develop a multi-stable PEH consisting of a cantilever beam and an adjustable 

magnetic assembly capable of achieving mono-stable, bi-stable, or tri-stable states 

by tuning its geometric parameters. Establish an accurate model for the magnetic 

restoring force for such a spring through optimization. Validate the model accuracy 

experimentally.  

• Design a HEH that incorporates both PEH and EMEH in a cantilever beam 

configuration. This also serves as a basis for the theoretical modelling and practical 

implementation of a suitable energy harvester for a NES system. 

• Develop a systematic methodology to design a PLS consisting of a cantilever beam 

constrained by a pair of single- or double-stop blocks to emulate a desired ENS. 

Evaluate the designed PLS numerically and experimentally. 

• Develop a magnetically enhanced piecewise-linear nonlinear energy sink 

(MPLNES) by integrating a GMS into a PLNES and a grounded EMEH. Establish 

the modelling and analysis approaches for the MPLNES. Evaluate VS and EH 

performances of the MPLNES via numerical simulation and experimental 

validation. 

1.3 Organization of Thesis 

The thesis is presented in an “integrated-article” format and is organized into six 
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chapters: 

Chapter 1. This chapter introduces the background of the research and identifies the 

research gaps in the current literature. Then, the research objectives are established to 

address these gaps.  

Chapter 2. This chapter presents a tunable multi-stable piezoelectric energy harvester 

consisting of a cantilever beam and a magnet assembly capable of achieving mono-stable, 

bi-stable, and tri-stable configurations. Two analytical models for the magnetic restoring 

force are developed using point dipole and two-point dipole approximations, respectively. 

Dynamic tests are conducted to validate the models, and a multi-population genetic 

algorithm is used to optimize the model parameters. The resulting models are analyzed for 

parameter sensitivity and used to map the stability regions of the system. This study 

establishes a foundation for accurately modelling compact magnetic assemblies for NES 

applications. 

Chapter 3. This chapter introduces a multi-stable hybrid energy harvester (MSHEH) 

combining a PEH and an EMEH. A modelling method is developed to compute the EMEH 

transduction factor and derive the magnetic restoring force using the two-point dipole 

model. The system’s performance is evaluated under various configurations including 

linear, mono-stable, bi-stable, and tri-stable states, using simulations and experiments. 

Pareto optimization is applied to identify optimal load resistances for a balanced energy 

output. 

Chapter 4. This chapter proposes a systematic design method for a PLS that emulates 

an ENS closely. The PLS is realized using a cantilever beam constrained by single or 

double stop blocks. A target restoring force is defined based on equivalent stiffness theory, 

and optimal stop block parameters are obtained using least squares fitting. Simulations and 

experiments are performed to evaluate the force-displacement behavior, potential energy 

distribution, and instantaneous frequency variation. 

Chapter 5. This chapter presents a magnetically enhanced piecewise-linear nonlinear 

energy sink (MPLNES) for achieving both vibration suppression and energy harvesting. 
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The proposed system includes a small secondary mass, a PLS, a GMS, and a grounded 

EMEH. Two-variable mathematical models are developed to describe the nonlinear 

restoring force and transduction factor of EMEH. Time response analyses, wavelet spectra, 

and frequency-energy plots are used to compare the performance of the MPLNES with that 

of a conventional PLNES. A two-objective optimization identifies optimal initial energies 

and load resistances for three NES configurations. Experimental validations agree well 

with simulations, confirming the effectiveness of the MPLNES for dual-function 

applications. 

Chapter 6. This chapter summarizes the key insights and conclusions observed in the 

research. Then, the future studies are proposed. 

In addition, two conference papers and one conference abstract that are related to this 

thesis are included as appendices. Appendix A reports the development of a piezoelectric 

energy harvester that is integrated with a grounded and tunable multi-stable nonlinear 

energy sink, including the system design, modelling, and transient response analysis. 

Appendix B addresses identification of the restoring force of a grounded multi-stable NES 

with a tunable magnetic spring, where a polynomial model is formulated and linear 

regression is applied to determine its coefficients. Appendix C deals with the design and 

evaluation of three variant nonlinear energy sinks 
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Chapter 2. Validation and Optimization of Two Models for 

the Magnetic Restoring Forces Using a Multi-stable 

Piezoelectric Energy Harvester 

2.1 Introduction 

In this century, wireless sensor networks have been playing an important role in 

the Internet of Things (IoT). Normally, the wireless sensors are powered by batteries 

which are not eco-friendly. It has been much desirable to use vibration energy 

harvesters to solve costly battery replacement problem and make wireless sensor 

networks autonomous [1]. Ambient vibration can be converted to electricity by four 

methods: piezoelectric [2, 3], electromagnetic [4-7], electrostatic [8-10] and 

triboelectric [11, 12]. The main advantages of the piezoelectric vibration energy 

harvesters (PVEHs) are their large power densities and ease of operation.  

A traditional PVEH is a single-degree-of-freedom linear oscillator that performs 

efficiently only at resonance [13-15]. To broaden the response frequency bandwidth, 

various nonlinear energy harvesters have been proposed [16-19]. According to the 

system stability, the nonlinear PVEHs can be classified as mono-stable and multi-

stable, such as bi-stable or tri-stable. The nonlinearity can be realized by introducing 

the nonlinear restoring forces to the piezoelectric beam. Applying magnetic forces to 

the beam is one of the convenient ways to achieve that. In [20], a PVEH is proposed 

that consists of a piezoelectric cantilever beam with a tip magnet, the system is 

subjected to an external magnetic field generated by a pair of fixed magnets. Such a 

mono-stable energy harvester can exhibit softening or hardening behaviors when the 

magnetic interaction is adjusted. By applying different external magnet tuning 
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strategies, two kinds of bi-stable energy harvester (BEH) can be achieved: attractive 

magnetic force type [21, 22] or repulsive magnetic force type [23-25]. The study in [26] 

found that, for a certain range of excitation intensity, the BEH can largely enhance the 

power output performance due to its snap-through characteristic. Further, in order to 

reduce the potential barrier of BEHs, tri-stable energy harvesters (TEH) have been 

proposed by introducing a middle potential well between BEH’s two potential wells. 

Based on the configuration of the BEH proposed in [27], TEHs were achieved by tuning 

the angular orientations [28, 29] or the spatial positions [30, 31] of the two fixed 

magnets. However, the disadvantage of the aforementioned tunable multi-stable 

PVEHs is that they need more than one fixed magnet to achieve the tri-stable state. 

Thus, installing multiple fixed magnets would take more space, which is undesirable in 

realization through a micro-electromechanical system (MEMS). And also, an 

asynchronous operation of tuning the angle or position of the fixed magnets will lead 

to the asymmetric potential wells for the TEH.  

In the dynamic modelling of a tunable multi-stable PVEH, an accurate magnetic 

force model is crucial. Generally, the magnetic force between two magnets is 

complicated, especially when the separation distance between them is relatively small. 

There are several commonly used models for this purpose. The most widely used one 

is the so-called equivalent magnetic point dipole approach [32-34] which treats each 

magnet as a point dipole at its center. However, this approach has a limitation as it can 

offer a reliable prediction only when the distance between the magnets is much greater 

than their dimensions. In light of this limitation, a magnetic force modelling method 

based on the equivalent magnetizing current theory was proposed [35, 36]. The study 

indicates that the magnetizing current model offers better accuracy than the equivalent 

magnetic point dipole model. Accordingly, an equivalent magnetic 2-point dipole 

approach is proposed in [37], which only counts the magnetizing current on the 

permanent magnet’s left and right polarized surfaces and uses two total surface charges 

to represent a magnet. It has been proved that the accuracy of the equivalent magnetic 
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2-point dipole model was significantly improved by using the proposed method [22, 

37-39]. Currently, such approach is mainly used in the modelling of the magnetic force 

between thin cubic permanent magnets, the accuracy of the magnetic force model of 

the thick cylinder magnets based on such approach still needs to be examined. 

In this study, a new tunable multi-stable piezoelectric energy harvester is proposed. 

Different from the existing design which employs multiple fixed magnets to achieve a 

tri-stable state, the proposed apparatus consists of a stationary magnet and a cantilever 

beam whose free end is attached by an assembly of two cylindrical magnets that can be 

moved along the beam and a small cylindrical magnet that is fixed at the beam tip. By 

varying the gap between the stationary magnet and the tip magnet, and the distance 

between the magnet assembly and the tip magnet, the system can assume three stability 

states: tri-stable, bi-stable, and mono-stable, respectively. Modelling the magnetic 

restoring forces for a tunable multi-stable energy harvester poses a challenge as a 

reliable model should give an accurate prediction over a wide range of the tuning 

parameters. For this purpose, the developed apparatus is used to dynamically validate 

two commonly used models: the equivalent magnetic point dipole approach and the 

equivalent magnetic 2-point dipole approach proposed in [37]. The study shows that 

although the second model offers more accurate results than the first model, it still fails 

to predict the restoring forces in some cases. A numerical optimization is carried out to 

improve the accuracy of both models. The study shows that by using the optimal 

parameters, both models can achieve a comparable accuracy. 

The rest of the chapter is organized as follows. Section 2 presents the proposed 

apparatus. Section 3 derives the magnetic restoring force models based on the 

equivalent magnetic point dipole approach and the equivalent magnetic 2-point dipole 

approach, respectively. Section 4 validates the two models dynamically. Section 5 

conducts a model optimization. Section 6 uses the optimum model for the parametric 

sensitivity study and the stability region determination. Finally, Section 7 draws the 

main conclusions of the study. 
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2.2 Apparatus 

Figure 2.1 shows a CAD drawing of the developed apparatus. A cantilever beam 

is constructed by connecting a piezoelectric transducer (S128-J1FR-1808YB, Midé) to 

a thin stainless-steel plate. One end of the cantilever beam is clamped to a stand that is 

fastened to a base, while its other end is fixed with a small cylindrical magnet B and 

attached with a holder for an assembly of two identical cylindrical magnets A and C. 

The holder for magnets A and C can slide along the beam. A large cylindrical magnet 

D is fixed in a stand that can slide along the base. When the cantilever beam is at its 

equilibrium position or undeflected, the four magnets situate on the same vertical plane 

and magnets B and D are collinear. By sliding the stand for magnet D, the distance 

between magnet B and magnet D can be adjusted. By sliding the holder along the beam, 

the distance between magnet B and magnets A, C can be varied. Figure 2.2  illustrates 

the spatial positions and polarities of the four magnets where mA, mB, mC, mD are the 

magnetic moment vectors, A0 ,  B0 ,  C0  and A, B, C denote the center positions of 

magnets A, B and C when the beam is undeformed and deformed, respectively, and the 

origin of the coordinate system is also located at B0, rDA represents a vector from A to 

D, rDB represents a vector from B to D, and the vector rDA’s projection on the x-y plane 

is represented by rDAxy. 
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Figure 2.1 Schematic of the apparatus. 

 

Figure 2.2 Spatial positions of the magnets. 

Figures 2.3 and 2.4 show the front view and top view of Figure 2, respectively, where 

d is the distance between magnet D and magnet B when the beam is undeformed, and 

ℎ is the distance between magnet A or C and magnet B, l is the length of the cantilever 

beam, and w is the distance between the axis of magnet B and that of magnet A or C.  
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Figure 2.3 Front view of the apparatus. 

 

Figure 2.4 Top view of the apparatus. 

2.3 The Restoring Force of the System 

The total restoring force f
x
 of the system in the x-direction consists of a restoring 

force f
e
 due to the beam’s elasticity, an attractive magnetic force f

DBx
 between magnet 

D and magnet B and two repulsive magnetic forces f
DAx

 between magnet D and magnet 

A, and f
DCx

 between magnet D and magnet C. Since magnets A and C are identical and 

symmetrical about the central line of the beam, the values of f
DAx

 and f
DCx

 are equal. 

Then the total restoring force can be expressed as： 

 2x e DBx DAx DCx b DBx DAxf f f f f k x f f= + + + = + +                              (2.1) 
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where kb is the stiffness of the beam which can be determined experimentally. In what 

follows, the analytical restoring forces f
DBx

 and f
DAx

 will be found using two 

approaches. 

2.3.1 Equivalent Magnetic Point Dipole Model 

Commonly, a pair of magnets is regarded as equivalent magnetic point dipoles by 

assuming that the magnet sizes are much smaller than their separation distance [40]. 

Firstly, the magnetic force between magnet B and magnet D is considered. According 

to this approach, the force exerted by magnet B on magnet D is given by: 

 ( )DB DB B= f B m                                         (2.2) 

where ∇ denotes the vector gradient operator and BDB  is the magnetic flux density 

generated by magnet D upon B. Eq. (2.2) can be expanded as: 

( ) ( )( ) ( ) ( )0

4
ˆ ˆ ˆ ˆ ˆ

3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ5

4

D B
DB DB B D DB D DB DB B B D DB D B DB

DB

m m

r
 −  + =   +f rr m rm r rm m rm m m m  (2.3) 

where mB, mD, and rBD are the magnitude of mB, mD, and rDB, respectively, ˆ
Bm , ˆ

Dm

and D̂Br  are the unit vector of mB, mD, and rDB, respectively. These unit vectors can be 

expressed as: 

     ˆ ˆ ˆsin( ) cos( ) 0  0 1 0  sin( ) cos( ) 0 .BB D Dα β β β= − = − = −m m r， ，          (2.4) 

Substituting the above unit vectors in Eq. (2.3) and the magnetic force in the x-direction 

can be obtained in the following form: 

( ) ( ) ( ) ( ) ( )0

4
sin cos cos cos

3
5 .sin( ) o

4
c sD B

DBx

BD

m m
f

r
− − +  = −        (2.5) 

Since the slope of the beam’s tip is relatively small, it is assumed that ∠BOB0 ≈ α. 

Also, it is noted that 𝛽 can be found from the triangle DR0B. Thus, Eq. (2.5) can be 

expressed as follows: 
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 ( ) ( ) ( ) 3 2 2 2 20

5 2

5

4
2 2 2

3 D B
DBx

DB DB

m m x
f l y d y l d y dl d y d l y d x

lr r
− − −


− + − + − + − +− = (2.6) 

where y = l − √l
2 − x2. Similarly, the magnetic force between magnet A and magnet D 

in the x-direction can be found as: 

( ) ( ) ( ) 3 2 2 2 20 0 0
0 0 0 0 0 0 03 0

0

4

23
2 2

4

5

yD

D A
DAx

DA Axy DAx

m m x l y d
f y l d y d l d y d l y

r
d x

l rr

− −
− − + −


−


+ + − +

 =  


 (2.7) 

where d0 = d + h and l0 = l − h. Substituting Eqs. (2.6) and (2.7) into Eq. (2.1) yields 

the analytical model of the total restoring force. In Eqs. (2.6) and (2.7), the magnitudes 

of the magnetic moment vectors are determined by: 

, , , A A B B D Dm MV m MV m MV= = =                            (2.8) 

where VA, VB and VD are the volume of the magnets A, B and D, respectively, 𝑀 =

Br μ⁄  is the magnetization of magnets A, B and D, where Br = 1.46 T  is the magnetic 

residual flux density and µ = 4π×10
-7

H/m is the vacuum permeability. 

2.3.2 Equivalent Magnetic 2-point Dipole Model 

As mentioned in [35], the equivalent magnetic point dipole approach’s accuracy 

deteriorates when the separation space between the magnets becomes small. In light of 

such limitation, an improved approach was proposed in [37]. In this study, such an 

improved approach is named as equivalent magnetic 2-point dipole model as the 

approach treats a magnet as a 2-point dipole. In what follows, the magnetic restoring 

force of the system is developed using this improved method. Figures 2.5(a) and (b) 

show the top view of the apparatus when the beam is deformed. 
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Figure 2.5 Top view of positions of magnets of the apparatus: (a) magnet B and D; 

(b) magnet A and D. 

As shown in Figures 2.5 (a) and (b), the origin of the coordinate system locates at 

B0 , the centers of the magnet A, B, and D are represented by points A, B and D, 

respectively, point A0 and B0 depict the positions of the magnets A and B when the 

beam is undeformed, lB, lD and lA are the length of magnet B, magnet D and magnet A, 

respectively, and h is the distance between magnet A or C and magnet B in y-direction, 

l is the length of the cantilever beam, r15, r25, r35 and r45 are the vectors from Q
5
 to Q

1
, 

Q
2
, Q

3
 and Q

4
, respectively, and r16, r26, r36  and r46  are the vectors from Q

6
 to Q

1
, 

Q
2
, Q

3
 and Q

4
 respectively, Q

1
 and Q

2
, are the total charges of the left and the right 

surfaces of magnet B, respectively, Q
3
 and Q

4
 are the total charges of the left and the 

right surfaces of magnet A, respectively, Q
5
 and Q

6
 are the total charges of the left and 

right surfaces of magnet D, respectively. The total surface charges can be expressed as 
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follow: 

2 3 41

5 6

           

     

AB B A

D D

Q MS Q MS Q MS Q MS

Q MS Q MS

= − = = = −

= − =
                         (2.9) 

where SB, SA and SD are the surface area of magnets B, A and D, respectively, and M 

is the magnetization of the magnets defined previously. 

Similar to the previous section, the magnetic force between magnet B and magnet 

D is considered first. Based on the Boit-Savart law, the magnetic force exerted by 

magnet B on magnet D is the combination of the magnetic force exerted from Q
1
 and 

Q
2
 to Q

5
 and Q

6
, which is given in the following equation: 

 1 1 2 2DB Q Q= +f B B     (2.10) 

where B1 and B2 are the magnetic current density at Q
1
 and Q

2
 generated by Q

5
 and 

Q
6
 which can be defined as follows: 
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X X X X
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X X X X
B

X X X X
    (2.11) 

where X1, X1, X5
  and X6

  are the position vectors of Q
1
, Q

2
, Q

5
 and Q

6
, respectively, 

and they can be obtained from Figure 2.5(a): 

2

1

5 6

sin cos ,     
2 2

sin cos ,
2 2

,     
2 2

B B

B

D

B

D

l l
x l l

l l
x l l

l l
d d

 

 

    
= − + − −    
    

    
= + + − +    
    

   
= − − = − +   

   

X i j

X i j

X j X j

   (2.12) 

where i and j are the unit vector on x and y-axis. By substituting Eqs. (2.11) and (2.12) 
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into Eq. (2.10), the magnetic force between magnet B and magnet D can be obtained. 

It should be noted that the total magnetic force between magnet B and magnet D can 

be separated into two components: one is in the y-direction f
DBy

j, another one is in the 

x-direction f
DBx

i. According to Eq. (2.1), to obtain the total restoring force, only the f
DBx

 

is considered, which can be expressed as follows: 

0
1 5

1

5

6

2

2 6

3 3

sin sin
2 2

4

sin sin
2 2

B B

DBx

B B

l l
x x

f Q Q Q

l l
x x

Q Q Q

 


 

 



 

     
− −          = − +

 
   

    
+ +         + + 

 
  

   (2.13) 

where γ
1
, γ

2
, γ

3
 and γ

4
 can be expressed as follows: 

2

1

3/
2 2

cos sin
2 2 2

D B Bl l l
d l l x  
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                       (2.14) 
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D B Bl l l
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         
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                       (2.16) 
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cos sin
2 2 2

D B Bl l l
d l l x  

         
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                       (2.17) 

By following the same process, the magnetic force between magnet A and D in the x-

direction can also be obtained as: 
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  (2.18) 

where γ
5
, γ

6
, γ

7
 and γ

8
 can be expressed as follows: 
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 (2.22) 

where w is the distance between magnets A and B in the z-direction, which can be 

observed in Figure 2.3. By substituting Eqs. (2.13) and (2.18) into Eq. (2.1), the total 

restoring force can be obtained.  

2.4 Experimental Validation  

With the models established, a natural question arises regarding their accuracy and 

reliability. To this end, an experimental model validation is conducted. For simplicity, 

hereinafter, the equivalent magnetic point dipole model and 2-point dipole model are 

referred to as 1st model and 2nd model, respectively. The restoring force surface method 

[41] is employed to determine the total restoring forces dynamically. Figures 2.6(a) and 

(b) show the experimental setup and the detail of the magnets’ positions, respectively. 
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Figure 2.6(c) shows a schematic of the equivalent lumped parameter model that 

represents the experimental setup, where xb  is the base’s displacement and 𝑥  is the 

displacement of the cantilever beam’s tip relative to the base, 𝑚 represents the total 

mass of the assembly of magnets A and C and magnet B, 𝑐 is the damping coefficient, 

and kn represents the stiffness of the combined spring. The lumped parameter model is 

commonly employed for multi-stable energy harvesters [35]. The equation of motion 

of this setup is given by: 

  ( ) ( ) 0b xm x x cx f x+ + + =      (2.23) 

where f
𝑥
(x)  denotes the restoring force of the combined spring. Eq. (2.23) can be 

rewritten as: 

 ( ) ( ), = bF x x m x x− +    (2.24) 

where F(x,ẋ) is the so-called restoring force surface. 

As shown in Figure 2.6(a), the apparatus is mounted on a slipping table that is 

driven by a shaker (2809, Brüel & Kjær) through a stinger. The shaker is driven by an 

amplifier (2718, Brüel & Kjær). Two laser reflex sensors (RF) (CP24MHT80, 

Wenglor) are used to measure the transverse displacement of the beam’s tip and the 

base’s displacement, respectively. A computer equipped with the dSPACE dS1104 data 

acquisition board is used to collect sensor data and send voltage signal to the power 

amplifier to drive the shaker. The control program is developed by using the MATLAB 

Simulink which is interfaced with dSPACE Controldesk Desktop software. The 

velocity and acceleration are obtained by numerical differentiation of the measured 

displacement signals.  
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Figure 2.6 (a) Photo of the experimental setup; (b) detail of the beam; (c) 

schematic of the equivalent lumped parameter model for the experimental setup. 

To apply the restoring force method properly, the responses should sufficiently 

cover the phase plane. The exciting signal should be persistently strong so that both 

intrawell and interwell responses are established. For this purpose, a harmonic signal 

with a slowly modulated amplitude is employed 

 ( ) cos(0.2 ) cos(2 )b b nx t X t f t =                                        (2.25) 

where Xb and 𝑓𝑛 are the amplitude and exciting frequency, respectively. The general 

guidelines for choosing proper values of Xb and 𝑓𝑛 are that Xb should be large enough 

to achieve interwell responses and 𝑓𝑛 should be close to the natural frequency of the 

linearized system around the equilibrium position. In the experiment, Xb  and f
n
 are 

chosen on a case-by-case basis by trial and error. A great number of experiments are 

conducted to examine the relationship between the stability states and the tuning 
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parameters. For the sake of comparison, the following four configurations are chosen: 

Case (1) d = 0.0407 m, h = 0.0187 m; Case (2) d = 0.0457 m, h = 0.0162 m; Case (3) d 

= 0.0517 m, h = 0.0187 m; Case (4) d = 0.0507 m, h = 0.0187 m. The purple circles in 

Figure 2.7 show the identified restoring force values. As shown in the figures, the 

system is transferred from a tri-stable one in Case (1) to a mono-stable one in Case (4). 

By using the parameter values given in Table 2.1 in the derived models, the analytical 

restoring forces are found. The blue dashed lines and red solid lines in Figure 2.7 show 

the restoring force values based on the 1st model and the 2nd model, respectively. It can 

be seen that the 1st model fails to predict Cases (1), (3), and (4). On the other hand, the 

2nd model shows a better agreement with the measured data for Cases (1), (2), and (3) 

than the 1st model. But it fails to predict both the magnitude and trend for Case (4). 
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Table 2.1 Parameter values of the apparatus [42]. 

Symbol Description Value 

VA, VC (m3) Volume of magnet A and C 3.21×10-6 

VB (m3) Volume of magnet B 3.93×10-7 

V𝐷 (m3) Volume of magnet D 1.29×10-5 

𝑆A, 𝑆C (m2) End surface area of magnet A and C 3.22×10-5 

𝑆B (m2) End surface area of magnet B 3.93×10-5 

𝑆𝐷 (m2) End surface area of magnet D 1.29×10-5 

kb (N/m) Stiffness of the cantilever beam 26.17 

l (m) Length of the cantilever beam 0.12 

m (kg) Mass of the system 0.086 

c (Ns/m) Damping coefficient  0.0668 

 

Figure 2.7 The total restoring forces of: (a) Case (1); (b) Case (2); (c) Case (3); (d) 

Case (4). 
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2.5 Model Optimization 

As shown in the previous section, although the 2nd model gives a better prediction 

for the restoring force than the 1st model in Cases (1), (2), and (3), it fails to do so in 

Case (4). It is natural to ask a question of whether both models can be improved by 

optimization. For this purpose, an optimization based on the multi-population genetic 

algorithm (MPGA) [43] is carried out to identify the magnitudes of the magnetic 

vectors for the 1st model, and the amounts of the total charges for the 2nd model. 

Different from the standard genetic algorithm, which only has a single population 

group, the MPGA initializes the whole population as multiple population groups to 

operate the selection, crossover and mutation independently. Figure 2.8 shows the 

flowchart of the MPGA. Note that the flowchart only shows two population groups as 

an example. In the beginning, the initial ranges of the parameters, the population size, 

the population group number, and the maximum iteration number need to be specified. 

After the initialization, the individuals of the first population are randomly generated 

within the specified ranges, and they are arranged into different population groups. 

Then, the fitness values or objective functions are evaluated. The best individual of 

each population group will immigrate to the other population groups and participate in 

the respective groups’ selection, crossover, and mutation operation process. The main 

purpose of the immigration operator is to prevent the decrease in genetic diversity of a 

single population group. After that, the new offspring will be generated and prepared 

for the evaluation process in the next iteration. On the other hand, the best individual 

of each iteration will always be collected to the quintessence population group. As the 

maximum iteration number is reached, the individual in the quintessence population 

who has the minimum fitness value will be chosen as the optimum individual.  
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Figure 2.8 The flowchart of the MPGA. 

The training data of the optimization are chosen from the measured restoring forces 

of the three different configurations of the system: Case (5) d = 0.0587 m, h = 0.0187 

m; Case (6) d = 0.0502 m, h = 0.0162 m; Case (7) d = 0.0372 m, h = 0.0162 m, which 

make the system exhibit mono-stable, bi-stable, and tri-stable stability state, 

respectively. The main reason for choosing the configuration cases different from Cases 

(1) to (4) is to prevent the local minima problem to happen in optimization. In this way, 

it will guarantee that the optimized model is able to predict any configuration in the 

system’s parameters region. The parameters to be optimized for the 1st model are 

chosen to be mA, mB, and mD. First, to have a fair comparison, the parameters to be 

optimized for the 2nd model are chosen to be Q
A
, Q

B
, and Q

D
 where Q

1
= −Q

B
, Q

2
=

Q
B

, Q
3

= −Q
A

, Q
4

= Q
A

, Q
5

= −Q
D

, Q
6

= Q
D

. The fitness function used in the 

optimization for the 1st model is defined as: 
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where 𝑓jm(xi) is the measured restoring forces that are smoothened by a spline fitting, 

𝑓a1(xi) is the analytical restoring forces based on the 1st model, 𝑓a2(xi) is the analytical 

restoring forces based on the 2nd model, and 𝑁 = 81 is the number of data. The reasons 

for interpolating the measured restoring forces with spline fitting are twofold: to 

alleviate the influence of measurement noise and to use the same amount of data in 

optimization for all cases that have different numbers of the raw data. The parameter 

search ranges for the 1st model are chosen as 0 ≤ mA ≤ 10, 0 ≤ mB ≤ 1 and 0 ≤ mD ≤

30, and the parameter search ranges for the 2nd model are chosen as 0 ≤ Q
A

≤ 400, 0 ≤

Q
B

≤ 200 and 0 ≤ Q
D

≤ 1200. For both models, the maximum number of iterations is 

set to be 200, and the number of the population group and the size of each group are set 

to 100 and 500, respectively.  

Table 2.2 lists the optimization results where the differences between the original 

values and the optimized values are represented by 𝜎. It can be seen that the original 

magnitudes of the magnetic vectors are underestimated for mA  and mB  and 

overestimated for mD . And there is a significant difference between the original 

magnitude and optimized magnitude for mB. On the other hand, for the 2nd model, the 

original amounts of the total charges are underestimated for Q
B

 and Q
A

 and 

overestimated for  Q
D

. Accordingly, for both modelling approaches, the effect of 

magnet B is underestimated while the effect of magnet D is overestimated, which is the 

leading cause of the errors in prediction, as shown in Figure 2.7. 
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Table 2.2 The optimization results of the 1st model and 2nd model. 

 1st model σ% 
2nd model with three 

independent parameters 
σ% 

 Original Optimize

d 

 Original Optimized  

Magnet 

A 
mA=3.74 mA

* =3.802 1.6 Q
A
=147.17 Q

A
∗ =209.14 

42.10 

Magnet 

B 
mB=0.46 mB

* =0.803 74.56 Q
B
=57.49 Q

B
∗ =80.13 

39.38 

Magnet 

D 
mD=14.95 mD

* =11.96 -20 Q
D

=588.71 Q
D
∗ =334.78 

-43.13 

Using the optimum parameters, the simulations of the restoring forces for Cases 

(1), (2), (3) and (4) are conducted, and the results are shown in Figure 2.9. The blue 

dashed lines and red solid lines represent the values of the restoring force based on the 

optimized 1st model and the optimized 2nd model, respectively. It can be seen that both 

optimized models fit the measured values well for all four cases. Table 2.3 gives a 

quantitative comparison of the fitness values for the four cases. It can be seen that the 

fitness value for the 1st model is drastically reduced and becomes slightly smaller than 

the fitness value for the 2nd model. Clearly, the proposed optimization significantly 

improves the accuracy of the 1st model. 
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Figure 2.9 The total restoring forces for: (a) Case (1); (b) Case (2); (c) Case (3); 

(d) Case (4) based on the optimized models. 

Table 2.3 The fitness value of Case (Ⅰ) to (Ⅳ) using original and optimized 1st and 2nd 

model. 

 Model categories fitness values  

Original model 
Original 1st model 0.248 

Original 2nd model 0.131 

Optimized model 

Optimized 1st model 0.104 

Optimized 2nd model with three independent 

parameters 
0.111 

Optimized 2nd model with six independent 

parameters 0.0919 

Optimized 2nd model with five independent 

parameters 0.0917 
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The above optimization indicates that both optimum models offer a comparable 

accuracy for the prediction of the restoring forces. As the second approach treats a 

magnet as a 2-point dipole, it provides more freedom for controlling the model accuracy. 

One of the possible ways to further improve the model accuracy is to consider all the 

total charges Q
1
, Q

2
, Q

3
, Q

4
, Q

5
, and Q

6
 as independent parameters. A six-parameter 

optimization is conducted by using the same parameter ranges and initialization process 

mentioned above. Note that the fitness function in Eq. (2.27) now becomes 

J2(Q
1
,Q

2
,Q

3
,Q

4
,Q

5
,Q

6
). The results are given in Tables 2.3 and 2.4. Table 2.3 shows 

that the accuracy model can be further improved if all the total charges are identified. 

And as shown in Table.2.4, the almost zero value for the optimum charge Q
3

*
 warrants 

an investigation. A plausible explanation is that, as shown in Figure 2.5, the left surface 

of magnets A and C is farthest away from magnet D, which means the effect of this 

surface is less critical in the magnetic force model. Thus, an assumption can be made 

that the total charge Q
3
 can be neglected so that there are five independent parameters 

to be optimized. By defining the fitness function as J2(Q
1
,Q

2
,Q

4
,Q

5
,Q

6
) , a five-

parameter optimization is conducted. The results are shown in Tables 2.3 and 2.4 as 

well. It can be seen that the fitness values for the 2nd models with six and five 

independent parameters are almost the same. After conducting simulations for Cases 

(1) to (4) based on such two models, the results are shown in Figure 2.10, The red solid 

lines and the blue dashed lines in Figure 2.10 represent the values of the restoring force 

based on the optimized 2nd model with six and five independent parameters, 

respectively. It’s found that both two models fit the measured ones well for all four 

cases and their predicted values are almost the same. The results validate the 

assumption that the total charge Q
3

 of the 2nd model can be neglected in the 

optimization, and it also proves that the simplified five-parameter optimization can 

make the 2nd model reach the same accuracy level as the optimum six-parameter model 
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does. 

Table 2.4 The optimization results of the 2nd model with six or five parameters. 

 
2nd model with six 

independent parameters 
σ% 

2nd model with five 

independent 

parameters 

σ% 

 Original Optimized  Original Optimized  

Magnet 

A 

Q
3
=147.17 Q

3
∗ =0.0017 -99.99 Q

3
=147.17 Q

3
∗ =0 -100 

Q
4
=147.17 Q

4
∗ =227.05 54.27 Q

4
=147.17 Q

4
∗ =295.67 100.9 

Magnet 

B 

Q
1
=57.49 Q

1
∗=13.15 -77.13 Q

1
=57.49 Q

1
∗=11.96 -79.19 

Q
2
=57.49 Q

2
∗ =55.95 -2.68 Q

2
=57.49 Q

2
∗ =70.72 23.01 

Magnet 

D 

Q
5
=588.71 Q

5
∗ =497.74 -15.45 Q

5
=588.71 Q

5
∗ =388.73 -33.96 

Q
6
=588.71 Q

6
∗ =892.90 51.67 Q

6
=588.71 Q

6
∗ =698.95 18.72 

 

Figure 2.10 The total restoring forces for: (a) Case (1); (b) Case (2); (c) Case (3); 
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(d) Case (4) based on the optimized 2nd models with six and five independent 

parameters. 

2.6 The Parametric Sensitivity Study and Stability State Region 

The sensitivity study intends to evaluate the model robustness against parametric 

variation. For this purpose, each of the three parameters in the optimum 1st model and 

the optimum 2nd model with three parameters is perturbated by ±10% . The error 

between the optimum 1st model and perturbated 1st model is defined as: 

 * 2

1 1

1

1
( ( ) ( )) 5,6,7

N
P

j ja j i

i

i ae f x f x j
N =

= − =                         (2.28) 

where f
ja1

 * (𝑥𝑖) and f
ja1

 P (𝑥𝑖) are the restoring forces of the optimum 1st model and the 

perturbated 1st model, respectively, 𝑁=81 is the number of the data used. The error 

between the optimum 2nd model and the perturbated 2nd model is defined as: 

* 2

2 2

1

1
( ( ) ( )) 5,6,7

N
P

j ja j i

i

i ae f x f x j
N =

= − =                            (2.29) 

where f
ja2

 * (𝑥𝑖) and f
ja2

 P (𝑥𝑖) are the restoring forces of the optimum 2nd model and the 

perturbated 2nd model, respectively. Table 2.5 lists the errors by perturbating one 

parameter by 10%. It should be noted that if the parameter is perturbated by -10%, the 

errors remain unchanged. Based on the results, several observations can be drawn for 

both models. The parameter variation of magnet A and C affects the restoring forces 

most significantly. The tri-stable state is most sensitive to the parameter variation while 

the mono-stable state is least sensitive to the parameter variation. In addition, based on 

the average errors given in the last column of Table 2.5, the 2nd model is slightly more 

robust than the 1st model when the parameters of magnets A (C) and B are perturbated, 

and both models have equal robustness when the parameter of magnet D is perturbated. 

Figures 2.11 and 2.12 shows the restoring forces values based on the optimum 
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models and perturbated model. The blue lines represent the restoring forces of the 

optimum 1st model or 2nd model, and the red, yellow and purple lines are the restoring 

forces of both models when varying the parameters of magnet A, magnet B and magnet 

D, respectively. The figures confirm the observations made above. The figures also 

show the effect of the parameter variation on the trends of the restoring forces. As 

shown in Figures 2.11(a) (b) and 2.12(a) (b), an increase in mB or Q
B
 strengthens the 

mono-stable or tri-stable state most significantly while an increase of mA  or Q
A
 

weakens the mono-stable or tri-stable state most significantly. As shown in Figures 

2.11(c) and 2.12(c), an increase of mA or Q
A
 results in a stronger bi-stable state while 

an increase of mB or Q
B
 results in a weaker bi-stable state. Such effects are expected as 

magnet B is critical for the mono-stable state or tri-stable state while magnets A and C 

are critical for the bi-stable state. The opposite effects occur when the parameters are 

decreased by 10%. 

Table 2.5 Errors for Cases (5), (6) and (7) of the optimized 1st and 2nd models with 

detuned parameters 

Model  
Parameter

s 

e5 e𝟔 e𝟕 e̅

=
e5+e6+e7

3
 

Mono-

stable 
Tri-stable Bi-stable 

1 

1.1m𝐴
* , mB

* , mD
*  5.2×10-2 16.0×10-2 9.0×10-2 10.1×10-2 

m𝐴
* , 1.1mB

* , mD
*  2.0×10-2 10.9×10-2 3.6×10-2 5.5×10-2 

m𝐴
* , m

B

*
,1.1mD

*  3.2×10-2 7.0×10-2 5.5×10-2 5.2×10-2 

2 

1.1Q
A
∗ , Q

B
∗ , Q

D
∗  4.2×10-2 11.9×10-2 7.1×10-2 7.7×10-2 

Q
A
∗ , 1.1Q

B
∗ , Q

D
∗  1.0×10-2 6.9×10-2 2.0×10-2 3.3×10-2 

Q
A
∗ , Q

B

∗
, 1.1Q

D
∗  3.2×10-2 7.1×10-2 5.2×10-2 5.2×10-2 
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Figure 2.11 The total restoring forces of the optimized and perturbated 1st model 

for: (a) Case (5); (b) Case (6); (c) Case (7). 

 

Figure 2.12 The total restoring forces of the optimized and perturbated 2nd model 

for: (a) Case (5); (b) Case (6); (c) Case (7). 

With the optimum models, the so-called stability state region can be generated by 

varying the tuning parameters 𝑑  and ℎ . Figure 2.13 shows such plot by using the 

optimum 2nd model with five independent parameters, where S, M and W denote the 

strong, medium and weak stability state based on the depth of potential wells, 

respectively. The stability state region clearly shows that by tuning 𝑑  and ℎ , the 

proposed apparatus can achieve the tri-stable, bi-stable, and mono-stable stability 

states, respectively. 
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Figure 2.13 Stability state region. 

2.7 Conclusions 

In this study, a tunable multi-stable piezoelectric energy harvester has been 

developed for applications in an ambient vibration environment with a broad frequency 

band. The apparatus can be manually tuned to achieve tri-stable, bi-stable, and mono-

stable stability states. The magnetic restoring forces of the apparatus have been derived 

by using two approaches named as 1st model and 2nd model, respectively. An 

experimental validation of both models has been conducted. It has been found that 

although the 2nd model is more accurate than the 1st model, it has its own limitation. A 

model optimization has been carried out by using the multi-population genetic 

algorithm (MPGA). The magnitudes of the magnetic vectors and the amounts of the 

surface charges of the three magnets have been chosen as parameters to be optimized 

for the 1st and 2nd model, respectively. The results show that two optimum models can 

achieve almost the same level of accuracy. The results also show that the optimum 2nd 

model has a larger error in predicting the restoring force of the bi-stable state case than 

the optimum 1st model. To further improve the accuracy of the 2nd model, the six-

parameter optimization has been carried out by assuming that the two surface charges 
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of an individual magnet are different. The results show that the accuracy of the 2nd 

model with six independent parameters can be further improved. The results also show 

that the optimum value of Q
3
 is almost zero, as the corresponding surface is farthest 

away from magnet D. Based on this observation, magnets A and C can be treated as 

one point dipole so that the number of independent parameters can be reduced to five 

in the optimization. The results show that the optimum 2nd model with five parameters 

has the highest accuracy among all the three optimum models. With the optimum 

models, the parametric sensitivity has been investigated by perturbating each of the 

three parameters by ±10% . The following observations have been drawn. The 

parameter variation of magnet A affects the restoring forces most significantly. The tri-

stable state is most sensitive to the parameter variation, while the mono-stable state is 

least sensitive to the parameter variation. In addition, the 2nd model is slightly more 

robust than the 1st model when the parameters of magnets A and B are perturbated, and 

both models have equal robustness when the parameter of magnet D is perturbated. 

With the optimum 2nd model, the stability state region has been generated to show that 

the developed apparatus possesses a large parameter tuning space. 

References 

[1] W. Tian, Z. Ling, W. Yu, and J. Shi, "A review of MEMS scale piezoelectric 

energy harvester," Applied Sciences, vol. 8, no. 4, 2018, doi: 

10.3390/app8040645. 

[2] Q. Lu, F. Scarpa, L. Liu, J. Leng, and Y. Liu, "An E-shape broadband 

piezoelectric energy harvester induced by magnets," Journal of Intelligent 

Material Systems and Structures, vol. 29, no. 11, pp. 2477-2491, 2018, doi: 

10.1177/1045389x18770871. 

[3] M. Derayatifar, R. Sedaghati, S. Chandramohan, M. Packirisamy, and R. Bhat, 

"Dynamic analysis of a functionally graded piezoelectric energy harvester under 

magnetic interaction," Journal of Intelligent Material Systems and Structures, 

vol. 32, no. 9, pp. 986-1000, 2021, doi: 10.1177/1045389x21990886. 



51 

 

[4] C. B. Williams and R. B. Yates, "Analysis of a micro-electric generator for 

microsystems," Sensors and Actuators A: Physical, vol. 52, no. 1, pp. 8-11, 

1996/03/01/ 1996, doi: https://doi.org/10.1016/0924-4247(96)80118-X. 

[5] Y. Pan et al., "Modeling and field-test of a compact electromagnetic energy 

harvester for railroad transportation," Applied Energy, vol. 247, pp. 309-321, 

2019. 

[6] M. A. Halim, H. Cho, and J. Y. Park, "Design and experiment of a human-limb 

driven, frequency up-converted electromagnetic energy harvester," Energy 

Conversion and Management, vol. 106, pp. 393-404, 2015. 

[7] B. Zaghari, E. Rustighi, and M. Ghandchi Tehrani, "Phase dependent nonlinear 

parametrically excited systems," Journal of Vibration and Control, vol. 25, no. 

3, pp. 497-505, 2019, doi: 10.1177/1077546318783566. 

[8] Y. Zhang, T. Wang, A. Luo, Y. Hu, X. Li, and F. Wang, "Micro electrostatic 

energy harvester with both broad bandwidth and high normalized power 

density," Applied energy, vol. 212, pp. 362-371, 2018. 

[9] H. Koga, H. Mitsuya, H. Honma, H. Fujita, H. Toshiyoshi, and G. Hashiguchi, 

"Development of a cantilever-type electrostatic energy harvester and its 

charging characteristics on a highway viaduct," Micromachines, vol. 8, no. 10, 

p. 293, 2017. 

[10] D.-H. Choi, C.-H. Han, H.-D. Kim, and J.-B. Yoon, "Liquid-based electrostatic 

energy harvester with high sensitivity to human physical motion," Smart 

materials and structures, vol. 20, no. 12, p. 125012, 2011. 

[11] P. Wang et al., "An ultra-low-friction triboelectric-electromagnetic hybrid 

nanogenerator for rotation energy harvesting and self-powered wind speed 

sensor," ACS Nano, vol. 12, no. 9, pp. 9433-9440, Sep 25 2018, doi: 

10.1021/acsnano.8b04654. 

[12] K. Tao et al., "Origami-inspired electret-based triboelectric generator for 

biomechanical and ocean wave energy harvesting," Nano Energy, vol. 67, 2020, 

doi: 10.1016/j.nanoen.2019.104197. 

[13] S. Roundy and P. K. Wright, "A piezoelectric vibration based generator for 

wireless electronics," Smart Materials and Structures, vol. 13, no. 5, pp. 1131-

1142, 2004, doi: 10.1088/0964-1726/13/5/018. 

[14] S. Roundy, P. K. Wright, and J. Rabaey, "A study of low level vibrations as a 

power source for wireless sensor nodes," Computer Communications, vol. 26, 

no. 11, pp. 1131-1144, 2003/07/01/ 2003, doi: https://doi.org/10.1016/S0140-

3664(02)00248-7. 



52 

 

[15] S. Yu and S. He, "Accurate free vibration analysis of cantilever piezoelectric 

panel carrying a rigid mass," Journal of Vibration and Control, vol. 19, no. 8, 

pp. 1187-1198, 2013, doi: 10.1177/1077546312444657. 

[16] J. Twiefel and H. Westermann, "Survey on broadband techniques for vibration 

energy harvesting," Journal of Intelligent Material Systems and Structures, vol. 

24, no. 11, pp. 1291-1302, 2013, doi: 10.1177/1045389x13476149. 

[17] Z. Yang, S. Zhou, J. Zu, and D. Inman, "high-performance piezoelectric energy 

harvesters and their applications," Joule, vol. 2, no. 4, pp. 642-697, 2018, doi: 

10.1016/j.joule.2018.03.011. 

[18] R. Ramlan, M. J. Brennan, B. R. Mace, and I. Kovacic, "Potential benefits of a 

non-linear stiffness in an energy harvesting device," Nonlinear Dynamics, vol. 

59, no. 4, pp. 545-558, 2009, doi: 10.1007/s11071-009-9561-5. 

[19] K. Yang, J. Wang, and D. Yurchenko, "A double-beam piezo-magneto-elastic 

wind energy harvester for improving the galloping-based energy harvesting," 

Applied Physics Letters, vol. 115, no. 19, 2019, doi: 10.1063/1.5126476. 

[20] S. C. Stanton, C. C. McGehee, and B. P. Mann, "Reversible hysteresis for 

broadband magnetopiezoelastic energy harvesting," Applied Physics Letters, 

vol. 95, no. 17, 2009, doi: 10.1063/1.3253710. 

[21] H. Fu and E. M. Yeatman, "Rotational energy harvesting using bi-stability and 

frequency up-conversion for low-power sensing applications: Theoretical 

modelling and experimental validation," Mechanical Systems and Signal 

Processing, vol. 125, pp. 229-244, 2019/06/15/ 2019, doi: 

https://doi.org/10.1016/j.ymssp.2018.04.043. 

[22] M. Rezaei, R. Talebitooti, and W.-H. Liao, "Exploiting bi-stable magneto-

piezoelastic absorber for simultaneous energy harvesting and vibration 

mitigation," International Journal of Mechanical Sciences, vol. 207, p. 106618, 

2021/10/01/ 2021, doi: https://doi.org/10.1016/j.ijmecsci.2021.106618. 

[23] Z. Xie, C. A. Kitio Kwuimy, T. Wang, X. Ding, and W. Huang, "Theoretical 

analysis of an impact-bistable piezoelectric energy harvester," The European 

Physical Journal Plus, vol. 134, no. 5, 2019, doi: 10.1140/epjp/i2019-12569-2. 

[24] G. Wang, W.-H. Liao, B. Yang, X. Wang, W. Xu, and X. Li, "Dynamic and 

energetic characteristics of a bistable piezoelectric vibration energy harvester 

with an elastic magnifier," Mechanical Systems and Signal Processing, vol. 

105, pp. 427-446, 2018, doi: 10.1016/j.ymssp.2017.12.025. 

[25] S. Bae and P. Kim, "Load resistance optimization of a broadband bistable 

piezoelectric energy harvester for primary harmonic and subharmonic 

behaviors," Sustainability, vol. 13, no. 5, 2021, doi: 10.3390/su13052865. 



53 

 

[26] S. Zhao and A. Erturk, "On the stochastic excitation of monostable and bistable 

electroelastic power generators: relative advantages and tradeoffs in a physical 

system," Applied Physics Letters, vol. 102, no. 10, 2013, doi: 

10.1063/1.4795296. 

[27] A. Erturk, J. Hoffmann, and D. J. Inman, "A piezomagnetoelastic structure for 

broadband vibration energy harvesting," Applied Physics Letters, vol. 94, no. 

25, 2009, doi: 10.1063/1.3159815. 

[28] S. Zhou, J. Cao, A. Erturk, and J. Lin, "Enhanced broadband piezoelectric 

energy harvesting using rotatable magnets," Applied Physics Letters, vol. 102, 

no. 17, p. 173901, 2013, doi: 10.1063/1.4803445. 

[29] J. Cao, S. Zhou, W. Wang, and J. Lin, "Influence of potential well depth on 

nonlinear tristable energy harvesting," Applied Physics Letters, vol. 106, no. 17, 

p. 173903, 2015, doi: 10.1063/1.4919532. 

[30] L. Haitao, Q. Weiyang, L. Chunbo, D. Wangzheng, and Z. Zhiyong, "Dynamics 

and coherence resonance of tri-stable energy harvesting system," Smart 

Materials and Structures, vol. 25, no. 1, p. 015001, 2016, doi: 10.1088/0964-

1726/25/1/015001. 

[31] G. Wang et al., "Nonlinear magnetic force and dynamic characteristics of a tri-

stable piezoelectric energy harvester," Nonlinear Dynamics, vol. 97, no. 4, pp. 

2371-2397, 2019, doi: 10.1007/s11071-019-05133-z. 

[32] S. C. Stanton, C. C. McGehee, and B. P. Mann, "Nonlinear dynamics for 

broadband energy harvesting: Investigation of a bistable piezoelectric inertial 

generator," Physica D: Nonlinear Phenomena, vol. 239, no. 10, pp. 640-653, 

2010, doi: 10.1016/j.physd.2010.01.019. 

[33] L. Tang and Y. Yang, "A nonlinear piezoelectric energy harvester with 

magnetic oscillator," Applied Physics Letters, vol. 101, no. 9, p. 094102, 2012, 

doi: 10.1063/1.4748794. 

[34] S. Fang, X. Fu, and W.-H. Liao, "Asymmetric plucking bistable energy 

harvester: Modeling and experimental validation," Journal of Sound and 

Vibration, vol. 459, p. 114852, 2019, doi: 10.1016/j.jsv.2019.114852. 

[35] Y. Leng, D. Tan, J. Liu, Y. Zhang, and S. Fan, "Magnetic force analysis and 

performance of a tri-stable piezoelectric energy harvester under random 

excitation," Journal of sound and vibration, vol. 406, pp. 146-160, 2017. 

[36] D. Tan, Y. G. Leng, and Y. J. Gao, "Magnetic force of piezoelectric cantilever 

energy harvesters with external magnetic field," The European Physical 

Journal Special Topics, vol. 224, no. 14, pp. 2839-2853, 2015/11/01 2015, doi: 

10.1140/epjst/e2015-02592-6. 



54 

 

[37] G. Wang, H. Wu, W.-H. Liao, S. Cui, Z. Zhao, and J. Tan, "A modified 

magnetic force model and experimental validation of a tri-stable piezoelectric 

energy harvester," Journal of Intelligent Material Systems and Structures, vol. 

31, no. 7, pp. 967-979, 2020, doi: 10.1177/1045389X2090597. 

[38] Y. Ju, Y. Li, J. Tan, Z. Zhao, and G. Wang, "Transition mechanism and dynamic 

behaviors of a multi-stable piezoelectric energy harvester with magnetic 

interaction," Journal of Sound and Vibration, vol. 501, p. 116074, 2021/06/09/ 

2021, doi: https://doi.org/10.1016/j.jsv.2021.116074. 

[39] Y. Zhang, J. Cao, W. Wang, and W.-H. Liao, "Enhanced modeling of nonlinear 

restoring force in multi-stable energy harvesters," Journal of Sound and 

Vibration, vol. 494, p. 115890, 2021/03/03/ 2021, doi: 

https://doi.org/10.1016/j.jsv.2020.115890. 

[40] K. W. Yung, P. B. Landecker, and D. D. Villani, "An analytic solution for the 

force between two magnetic dipoles," Physical Separation in Science and 

Engineering, vol. 9, no. 1, pp. 39-52, 1998. 

[41] K. Worden, "Data processing and experiment design for the restoring force 

surface method, part I: integration and differentiation of measured time data," 

Mechanical Systems and Signal Processing, vol. 4, no. 4, pp. 295-319, 

1990/07/01/ 1990, doi: https://doi.org/10.1016/0888-3270(90)90010-I. 

[42] H. Li, "A tunable multi-stable piezoelectric vibration energy harvester," 

Mechanical engineering, Lakehead University, published, 2021. [Online]. 

Available: https://knowledgecommons.lakeheadu.ca/handle/2453/4966 

[43] J.-O. Kim and P. Khosla, "A multi-population genetic algorithm and its 

application to design of manipulators," Proceedings of the IEEE/RSJ 

International Conference on Intelligent Robots and Systems, 1992, July 07-10 

Raleigh, NC, USA. 

 



55 

 

Chapter 3. Modelling and Evaluation of a Multi-Stable 

Hybrid Energy Harvester 

3.1 Introduction 

A vibration energy harvester (VEH) is a device that converts ambient mechanical 

energy into electrical energy. There are various ambient mechanical energies that can 

be captured, such as structural vibration [1], machinery vibration [2], and human motion 

[3]. The VEH provides a promising solution to a growing demand for self-sustainable 

power supply for wearable electronic devices and wireless sensor node networks, 

especially when deploying conventional power sources such as power lines or batteries 

is inconvenient or impractical [4]. 

In general, a traditional VEH consists of a linear oscillator that has a narrow 

operation frequency bandwidth. Over the last two decades, there has been a growing 

interest in enhancing the working bandwidth and energy harvesting efficiency of VEHs 

for different environments. Introducing nonlinearity is one of the promising solutions 

to broaden the working bandwidth of VEHs. Various nonlinear VEHs have been 

proposed [5]. According to the system stability state, the nonlinear VEHs can be 

classified as mono-stable and multi-stable, such as bi-stable or tri-stable. A mono-stable 

energy harvester reported in [6] consists of a piezoelectric cantilever beam with a tip 

magnet subjected to an external magnetic field generated by a pair of fixed magnets. 

Such a mono-stable system can exhibit softening or hardening behaviors when the 

magnetic interaction is adjusted. The energy harvesting performance of a mono-stable 

energy harvester was investigated in [7]. The study showed that the high-branch 

oscillation leads to a high energy harvesting efficiency. A bi-stable energy harvester 

can be used to improve energy harvesting performance by utilizing the snapping-

through feature. As proved in [8], the inter-well oscillation of a bi-stable energy 

harvester can significantly enhance its power output performance. The study reported 

in [9] showed that a bi-stable energy harvester with an elastic magnifier can provide 
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higher power output and wider working bandwidth. One of the drawbacks of bi-stable 

energy harvesters is the requirement of a sufficient excitation level in order to overcome 

the barrier of the potential wells. Tri-stable energy harvester was proposed to address 

this drawback. Based on the configuration of the bi-stable energy harvester in [8], a tri-

stable energy harvester was achieved by tuning the orientation43s [10] and the positions 

[11,12] of the two fixed magnets. Moreover, the performance of an asymmetric tri-

stable energy harvester was investigated in [12]. The studies showed that the proposed 

tri-stable energy harvester outperforms the bi-stable energy harvesters under the low-

level excitation in terms of the voltage output. 

On the other hand, the concept of hybrid systems has been proposed to enhance 

both the energy density and the power output. There are two kinds of hybrid systems: 

the first one can convert multiple energy sources such as solar, thermal or vibration into 

electricity [13]; the second one can convert a single energy source such as vibration 

into electricity through multiple conversion mechanisms [14]. This study considers the 

second type. There are three main transduction mechanisms for the VEH, namely 

piezoelectric [15], electromagnetic [16], and electrostatic [17]. Each of them has its 

own advantages and disadvantages. For example, the piezoelectric energy harvester 

(PEH) has high energy density and easy to deploy, the electromagnetic energy harvester 

(EMEH) shows the benefits of high current output and ease of maintenance, and the 

electrostatic energy harvester has the advantages of compact design and wider working 

bandwidth. A VEH combined with two or more transduction mechanisms is referred to 

as hybrid energy harvester (HEH), yielding better efficiency and robustness [18,19]. 

This paper focuses on the HEH consisting of a PEH and an EMEH.  

A HEH proposed in [20] consists of a cantilever beam patched with a PEH and 

attached with a tip magnet that moves inside a coil placed on the base. The study 

provided an approach of coupling the PEH and EMEH to increase the power output. A 

power management circuit was designed in [21] to overcome the impedance 

mismatching issue of the HEH. The HEHs proposed in [22] and [23] utilized a 2-

degree-freedom structure to improve the power output. To enhance the performance of 

the HEH under ultra-low frequency excitation, the frequency up-conversion design of 

the HEH was proposed in [24]. In addition, a multi-modal HEH was developed in [25] 

to make the system able to operate at four different resonant modes, significantly 
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widening the operation bandwidth. There have been conflicting views on the benefits 

of a linear HEH under harmonic excitation. For example, a recent study [26] showed 

that under harmonic excitation, an idealized two-port linear HEH with electrical loss 

neglected offers little benefit in terms of the maximum output power. On the other hand, 

introducing nonlinearity to the HEH has been explored by some researchers. For 

example, a mono-stable HEHs proposed in [27,28] showed that the nonlinearity can 

significantly boost the energy density and widen the frequency bandwidth. A bi-stable 

HEH was proposed in [29] to improve the power output. In the study, an approximate 

method was used to simplify the modelling of the coupled system. A bi-stable HEH 

developed in [30] used the tunable stiffness design to achieve better adaptability for 

various environments. Further, the studies reported in [31,32] showed that the tri-stable 

HEH is beneficial for enhancing both operation bandwidth and output power compared 

with the mono-stable and bi-stable HEHs. 

The above review indicates a need for a nonlinear HEH whose stability states can 

be adjusted in order to achieve better adaptability in terms of power output and 

frequency bandwidth. To address such a need, based on our previous study [33], a 

tunable multi-stable hybrid energy harvester (MSHEH) is proposed in this study. 

Different from the existing designs that use two external magnets [34-37], the MSHEH 

employs a single external magnet, which makes the magnetic spring more compact and 

makes implementation of an EMEH easy. The EMEH is realized by placing one set of 

six coils above and one set of six coils below the two moving magnets. With this novel 

arrangement, the magnetic flux on both the moving magnets’ upper surface and the 

lower surface can be effectively utilized, and the space efficiency of the EMEH can be 

improved compared with the existing designs, such as the ones in [29,38,39].  

The contributions of the present study lie in four aspects. Firstly, the proposed 

MSHEH is novel in terms of stability tuning and the EMEH design. Secondly, a 

numerical modelling procedure is developed to determine the transduction factor of the 

EMEH. Thirdly, a comparative study is conducted to evaluate the energy harvesting 

performances of four different configurations subjected to the frequency sweep 

excitation. Fourthly, a Pareto front optimization is conducted to maximize the power 

output of both EMEH and PEH under harmonic excitations with various exciting 

frequencies. In addition, further optimization is conducted to maximize the 
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accumulated harvested energy for both EMEH and PEH under high-level frequency up-

sweep excitation. 

3.2 Apparatus and modelling 

Figure 3.1(a) shows a solid modelling drawing of the proposed MSHEH. As shown 

in the figure, a thin stainless-steel beam is clamped to a platform which is fastened to a 

base by using four aluminum extrusions. Each side of the upper end of the beam is 

attached by a piezoelectric transducer or PZT (S128-J1FR-1808YB, Midé), while its 

lower end is fixed with a small cylindrical magnet B and attached with a holder for an 

assembly of two identical cylindrical magnets A and C. The holder can be fixed on any 

position along the beam by sliding. A large cylindrical magnet D is fixed in a holder 

that can slide vertically in a stand on the base. When the cantilever beam is at its 

equilibrium position or undeflected, the four magnets are situated on the same vertical 

plane, and magnets B and D are collinear. By sliding the holder for magnet D, the 

distance between magnet B and magnet D can be adjusted. By sliding the holder for 

magnets A and C along the beam, the distance between magnets A, C and magnets B, 

D can be adjusted.  

To add an EMEH to the system, 12 coils are placed symmetrically between magnets 

A and C, i.e., 6 coils above and 6 coils below. Each of the coils is held in a holder that 

allows individual adjustment of the coil’s position and orientation. Through adjustment, 

the end surfaces of the coils are approximately parallel to the oscillation trajectory of 

magnets A and C. Figure 3.1(b) illustrates the spatial positions of the coils, those on the 

side of magnet C are labelled as 1 to 6 while those on the side of magnet A are labelled 

as 1’ to 6’. Figure 3.1(c) shows the polarities of the four magnets where mA, mB, mC, 

mD  are the magnetic moment vectors, A0 ,  B0 ,  C0  and A, B, C represent the center 

positions of magnets A, B, and C when the beam at undeformed and deformed states, 

respectively. Note that the origin of the coordinate system is fixed at B0. 
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Figure 3.1 (a) Schematic of the MSHEH; Spatial positions of: (b) coils and 

magnets A and C; (c) magnets A, B, C and D. 

Figures 3.2(a) and (b) show the front view and side view of Figure 3.1(a), 

respectively, where d is the distance between magnet B and magnet D when the beam 

is undeformed, and h is the distance between magnet B and magnets A, C, l is the length 

of the cantilever beam, and dt is the distance between the axis of magnet B and that of 

magnets A and C. As shown in Figure 3.2(b), x and z  represent the transverse and 

longitudinal displacements of the center of magnet B relative to B0, respectively. α is 

the angle between mB and mD, Since the slope of the beam’s tip is relatively small, it is 

assumed that ∠BOB0≈α. 
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Figure 3.2 Two-dimensional views of the beam and magnets: (a) front view; (b) 

side view. 

Figure 3.3 shows a lumped parameter model for the simplified system. In the figure, 

m = 0.09 Kg represents the equivalent mass at the tip of the beam, wb and 𝑥 are the 

displacement of the base and the equivalent mass relative to the base, respectively, cm 

= 0.0058 N/m which is the mechanical damping coefficient of the system, kn is the 

nonlinear stiffness including the effects of the cantilever beam and the magnetic 

interaction. The PEH’s circuit is given on the right side of the figure, where 𝜃 =

8.515×10
-3

 N/V is the electromechanical coefficient of the PEH which is identified by 

the experimental method proposed in [40], Rlp  is the resistance of a load resistor 

connected to the output of the PEH. The EMEH’s circuit is given on the left side of the 

figure, where Kt  is the total transduction factor of the EMEH, 𝑣𝑒𝑚  is the inductive 

voltage or so-called electromotive force (EMF) of the EMEH, Rc and Lc are resistance 

and inductance of one coil, respectively, and Rle is the resistance of a load resistor 

connected to the output of the EMEH. Note that as the 12 coils are connected in series, 

their total resistance and inductance are 12Rc and 12Lc, respectively. 
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Figure 3.3 Lumped parameter model of the system. 

Based on the Newton’s second law and Kirchhoff's current law, the governing 

equations of the system can be derived as follows: 

 m e n bmx c x f f v mw+ + + + = −    (3.1) 

 0p

lp

v
c v x

R
+ − =    (3.2) 

where vp  is the voltage over the load resistor of the PEH, cp = 50×10
-9

 F is the 

capacitance of the PEH, f
n
 is the total restoring force, f

e
 is the electromagnetic force 

caused by the changes in the magnetic flux through the coils. Based on the Lenz's law, 

the electromagnetic force can be expressed as follows: 

e tf K I=          (3.3) 

where Kt = 2 ∑ Kti
6
i=1  is the total transduction factor with Kti as the transduction factor 

for the ith coil and I is the current in the EMEH’s circuit. Note that the values of the 

transduction factors of coils 1 to 6 and coils 1’ to 6’ are equal since they have identical 

configurations at the upper and lower sides of magnet C and magnet A, respectively, 

and Applying Kirchoff's law to the circuit of the EMEH yields: 

 ( )12 12c coil le em

dI
L R R I v

dt
+ + =    (3.4) 

By using a multimeter, it is found that Rcoil = 0.9 Ω. By using an inductance meter, 

it is found that Lc = 0.454 mH. Since the frequency of vibration considered in this 

study does not exceed 20 Hz, the inductive impedance of the coil is negligible compared 

with Rcoil. Thus, the current can be written in the following form: 
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3.3 Determination of the EMEH’s Transduction Factor 

Due to the unique design of the EMEH, the determination of its total transduction 

factor is not straightforward. In what follows, a numerical method is employed for this 

purpose. According to Faraday’s law, the EMF of the EMEH can be expressed as: 
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where Φi is the total magnetic flux through the ith coil. In fact, the magnetic flux is not 

evenly distributed throughout the whole coil due to the complex orientation of the 

magnets. Thus, each coil is sliced into n layers and the magnetic flux in the jth layer is 

assumed to be uniformly distributed and denoted as 𝜙𝑖𝑗. 

As shown in Figure 3.4, the layer closest to magnet A or C is labelled as layer 1, 

which means the bottom layer for the upper side coil and the top layer for the lower 

side coil are the first layer. Thus, the total magnetic flux in the ith coil can be expressed 

as: 

 
=

 = 
1

i

n

j
j

i

N

n
   (3.7) 

where N is the turns of the coil. The magnetic flux in the jth layer for the ith coil is given 

by 

 ( )  = + cos sin
ij zij xij

A

B B dA    (3.8) 

where Bxij and Bzij is the magnetic flux density in the x and z direction at that layer, 

respectively, β is the angle of the coil from the horizontal, and A is th e area of the end 

surface of the coil. Substituting Eq. (3.7) into Eq. (3.6) gives: 
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Figure 3.4 Illustration of coils’ positions and slicing strategy. 

According to Eq. (3.9), the transduction factor Kti for each coil can be defined as 

follows:  
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t
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n x
   (3.10) 

which is a function of the change rate of the magnetic flux with respective to the 

displacement x. In this study, a finite element analysis software, COMSOL 

Multiphysics is utilized to compute the change rates of the magnetic flux of the six coils 

1 to 6 when magnets C and B are oscillating through them. For the sake of simplicity, 

the influence of magnet A on the coils 1 to 6 is ignored. The geometry of the model 

built in COMSOL is shown in Figure 3.5(a) It should be noted that each of the coils is 

modelled as n disks to represent the n layers and meshed individually. As shown in 

Figure 3.5(b), Dcoil and hcoil are the diameter and height of the coil, respectively, dg is 

the air gap between the end surfaces of magnet C and the coils 2, 5, ds is the lateral 

distance between the bottom center of the coils 4, 6 and the center of magnet D. All the 

values of the parameters of the coils and magnets used in the simulation are listed in 

Tables 3.1 and 3.2, respectively. 

In the simulation, the number n of layers for each coil is set to 12, and magnets B 

and C oscillate from x = −0.065 m to x = 0.065 m. In order to simulate the trajectory 

of magnets B and C, the displacement of the center of magnets B and C in the z-axis is 



64 

 

modelled as z(x)  which can be derived from the trigonometric relationship in the 

triangle OR0B0 in Figure 2b as follow: 

 = − −2 2( ) ,z x l l x    (3.11) 

and α is the angle of magnets B and C from the horizontal and is approximated as 

sin
−1(x/l) based on the triangle OR0B0. 

 

Figure 3.5 COMSOL model used to determine 𝐾𝑡𝑖: (a) isometric view; (b) front 

view. 
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Table 3.1 Parameters of the coils. 

Symbol  Name Coils 1, 

4 

Coils 2, 

5 

Coils 3, 

6 

Dcoil (m) Diameter of the coil 0.029 0.029 0.029 

hcoil (m) Hight of the coil 0.015 0.015 0.015 

β 

(degree) 
Angle of the coil from the horizontal 

−10 0 10 

N Turn number 245 245 245 

ds (m) Distance from the center of magnet D −0.0353 0 0.0353 

dg (m) 
Air gap between the magnet C and coils 2, 

5  

0.002 0.002 0.002 

Table 3.2 Parameters of the magnets. 

Symbol Name Magnet A & C Magnet B Magnet D 

Dmag (m) Diameter of magnet 2.54 × 10-2 7.94 × 10-3 2.54 × 10-2 

lA, l𝐶 , lB, lD (m) Hight of magnets 9.525×10-3 7.94 × 10-3 2.54 × 10-2 

Br (T) Residual flux density 1.44 1.28 1.28 

 Material  N50 N42 N42 

Figure 3.6 shows the magnetic flux distributions when magnets B and C move from 

the farthest left position to the farthest right position. In particular, Figures 3.6(a), b and 

c illustrate the situations when magnet C is concentric with coils 1, 2 and 3, respectively. 

During the simulation, the change rate of the magnetic flux through each layer of the 

coils with the different displacements is recorded.  
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Figure 3.6 Magnetic flux distributions of magnets B and C at the different 

positions: (a) x = −0.0353 m; (b) x = 0 m; (c) x = 0.0353 m. 

Based on Eq. (3.10), the transduction factors for all six coils can be computed, and 

the results are shown as solid lines in Figure 3.7(a) and (b). Then, these results are 

curve-fitted using piecewise functions, which are the sum of three sine functions in the 

specific displacement ranges and can be defined as follows: 

=


− +   =

= 
   =


3

min max

1

min max

( 1) sin( ( ))        ( 1,2,3)
( )

0 & ( 1,2,3)

i

uj uj i i i
j

i i

ti

a b x c d x d i
K x

x d x d i

  (3.12) 

−

=


− +   =

= 
   =


3

1 min max

1

min max

( 1) sin( ( ))          ( 4,5,6)
( )

0 & ( 4,5,6)

l

ti

i

lj j i i i
j

i i

a b x c d x d i
K x

x d x d i

  (3.13) 

where auj  and buj  are the curve-fitting constants for coils 1, 2, 3 and alj , blj  are the 

curve-fitting constants for coils 4, 5, 6, di
 min

 and di
 max

 are the equation limits for the ith 

coil, 𝑐𝑖  is the coordinate translation for the ith coil. The equation limits are d1
 min =

−0.0706  m, d4
 min = −0.0690  m, d1

 max = d4
 max = 0 , d2

 min = −0.0353  m, d5
 min =

−0.0345 m, d2
 max = 0.0353 m, d5

 max = 0.0345 m, d3
 min = d6

 min = 0, d3
 max = 0.0706 m, 

d6
 max = 0.0690 m. The coordinate translations are c1 = 0.0353 m, c4 = 0.0345 m, c2 =
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c5 = 0 , c3 = −0.0353 m, c6 = −0.0345  m, and Table 3.3 lists the obtained curve-

fitting constants. The curve-fitting results are shown in dotted lines in Figures 3.7(a) 

and b. Overall, the curve-fitting results agree well with the numerical results. Figure 

3.7(c) shows the total transduction factor, which is a strongly nonlinear function of x, 

reaching the maximum values around |x| = 0.017 m and |x| = 0.045 m, respectively. 

 

Figure 3.7 Transduction factors of the coils: (a) coil 1, coil 2 and coil 3; (b) coil 4, 

coil 5 and coil 6; (c) total transduction factor. 

Table 3.3 Curve-fitting constants of Eqs. (3.12) and (3.13). 

Constants  au1 bu1 au2 bu2 au3 bu3 

Value -0.94 88.80 -0.29 179.47 -0.06 344.84 

Constants al1 bl1 al2 bl2 al3 bl3 

Value -1.06 99.08 -0.28 207.30 -0.084 376.82 

An experiment is carried out to verify the computed transduction factors for the six 

coils. To measure the transduction factor value for each coil at different displacements 

x, an experimental setup shown in Figure 3.8 is developed according to the verification 
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method proposed in [41]. As shown in Figure 3.8(a), the apparatus is placed 

horizontally and fixed on the test platform, the six coils on magnet A side are removed, 

and the tip of the cantilever beam is connected to the shaker (Model 2025E) through an 

adjustable stinger. The shaker is driven by an amplifier (SmartAmp™ 2100E21), and a 

vibrometer (Metrolaser 500V) is placed at the left side of the apparatus to measure the 

velocity of magnet C, the voltage signals of the coils are collected by the data 

acquisition system (Brüel & Kjær PULSE Type 3560) which is controlled by a 

computer. As illustrated in Figure 3.8(b), a scale placed at magnet A’s side is used to 

control the initial position of each test. 

 

Figure 3.8 Experimental setup for verification of transduction factors of coils: (a) 

the overview; (b) the detail of the area within the red rectangle in (a). 

The principle of the experimental verification is demonstrated in Figure 3.9. The 

transduction factor for the coils when magnet C is at a specific position can be treated 

as a constant when the magnet is doing a very small oscillation around that position. 

Thus, the critical part of the experimental verification is to measure the transduction 

factor at an initial position, and then change the initial position to do another 

measurement till the position covers the displacement range of the magnet. In this study, 

the amplitude and frequency of the oscillation for the magnet are set to be 1 mm and 3 

Hz, respectively. As illustrated in Figure 3.9(a), a stinger is inserted into a hole at the 

center of the shaker’s head and fastened with the shaker’s head by using a collet. For 

each test, the length of the stinger is adjusted to make magnet C reach the desired 

positions, And the angle 𝛼 also needs to be adjusted for each test to guarantee that the 

stinger is perpendicular to the end segment of the cantilever beam. The measured open 
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circuit voltage of the single coil Ei and oscillation velocity ẋ can be treated as two sine 

waves as shown in Figure 3.9(b), where i represents the ith coil. According to the 

Faraday’s law, Ei and ẋ will both reach the maximum values when the magnet crosses 

the initial position x, and the transduction factor can be obtained by calculating the ratio 

of the peak or root mean square (RMS) value of the voltage and that of the velocity. 

Since the functions of the transduction factor of coils 3 and 6 are symmetric with 

coils 1 and 4, in this case, only the transduction factors of coils 1, 2, 4 and 5 need to be 

measured. The range of the initial displacement position x has been chosen from 

−0.04 m to 0 m with an interval of 0.005 m. The measurement results are shown in 

Figure 2.10. It can be seen that the experimental results (blue stars) are slightly lower 

than the original simulation results (red lines). One possible explanation is that in Eq. 

(3.10), the coil turn number 𝑁 is overestimated. In the simulation, all the turns of the 

coil have been considered active when calculating the EMF of the coil, but in fact, when 

the edge of magnet C has passed the central point of the coils, the magnetic flux change 

only happens in the turns located the outside of the coil. In this case, the equivalent turn 

number Ne  for the coils need to be estimated. Based on the obtained experimental 

results, an approximate equivalent turns number is found to be 180 through trial and 

error. Based on the simulation results for coils 2 and 5, the constants of the curve fitting 

functions shown in Eqs. (3.12) and (3.13)can be obtained and listed in Table 3.4. As 

shown in Figure 3.10, the measured data, the simulation results based on the equivalent 

turn number Ne (green lines) and the curve fitting functions (black lines) match well. 

 

Figure 3.9 Illustration of (a) the verification experimental setup. (b) the open 

circuit voltage of the coil and the velocity of the magnet. 
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Figure 3.10 Experimental results of the transduction factors: (a) coil 1; (b) coil 2; 

(c) coil 4; (d) coil 5. 

Table 3.4 Curve-fitting constants of Eqs. (3.12)  and (3.13) by using Ne. 

Constants  𝑎𝑢1 𝑏𝑢1 𝑎𝑢2 𝑏𝑢2 𝑎𝑢3 𝑏𝑢3 

Value -0.68 87.93 -0.22 177.48 -0.05 343.65 

Constants 𝑎𝑙1 𝑏𝑙1 𝑎𝑙2 𝑏𝑙2 𝑎𝑙3 𝑏𝑙3 

Value -0.78 99.08 -0.20 207.30 -0.06 376.81 

3.4 Determination of the Nonlinear Restoring Force 

The total restoring force f
n
 of the system in the x-direction consists of an equivalent 

force f
g
 due to the gravity, a restoring force f

b
 due to the beam’s elasticity, an attractive 

magnetic force f
DBx

 between magnet D and magnet B and two repulsive magnetic 

forces: f
DAx

 between magnet D and magnet A, and f
DCx

 between magnet D and magnet 
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C. Since magnets A and C are identical and symmetrical about the central line of the 

beam, the values of f
DAx

 and f
DCx

 are equal. Then the total restoring force can be 

expressed as： 

 ( )tan 2g b DBx DAx DCx b DBx DAn xf f f f f f mg k x f f= + + + + =  + + +   (3.14) 

where kb =90.1 N/m is the stiffness of the beam which can be determined 

experimentally. In what follows, the analytical restoring forces f
DBx

 and f
DAx

 will be 

found using the equivalent magnetic 2-point dipole model proposed in [42]. To have a 

better understanding of the magnetic force model, Figures 3.11(a) and (b) show the 

front view of the apparatus when the beam is undeformed and deformed. 

 

Figure 3.11 Illustration of the equivalent magnetic 2-point dipole model: (a) 

magnets A and D; (b) magnets B and D. 

As shown in Figures 3.11(a) and b, r15, r25, r35 and r45 are the vectors from Q
5
 to 

Q
1
, Q

2
, Q

3
 and Q

4
, respectively, and r16, r26, r36 and r46 are the vectors from Q

6
 to Q

1
, 

Q
2
, Q

3
 and Q

4
 respectively, where Q

i
, i=1,…,6 are the total surface charges of the 

magnets defined by: 

= − = = = −

= − =

1 2

6

3 4

5

           

     
A

D D

B AB
Q MS Q MS Q MS Q MS

Q MS Q MS
  (3.15) 
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where SA = 5.07×10
-4 m2, SB = 4.95×10

-5 m2 and SD = 5.07×10
-4 m2 are the surface 

area of magnets B, A and D, respectively, M= Br μ⁄  is the magnetization of magnets A, 

B and D, where Br is the magnetic residual flux density, their values are listed in Table 

3.2, and µ = 4π×10
-7

H/m is the vacuum permeability.  

The magnetic force between magnet B and magnet D is considered first. Based on 

the Boit-Savart law, the magnetic force exerted by magnet B on magnet D is the 

combination of the magnetic force exerted from Q
1
 and Q

2
 to Q

5
 and Q

6
, which is 

given in the following equation: 



 



   
   = + + +
   
   

0 15 16 0 25 26
1 5 2 5

15 16

6 63 3 3

26

3

25
4 4DB

Q Q Q Q Q Q
r r r r

f
r r r r

  (3.16) 

where r15, r16, r25
  and r26

  can be derived from the are the position vectors of Q
1
, Q

2
, 

Q
5
 and Q

6
, respectively. According to Eq.(3.14), to obtain the total restoring force, only 

the f
DBx

 is considered, which can be expressed as follows [33]: 


 

   

      
= − − + + + +      

        

0 5 5
1

1 2

6 6
2

3 3

sin sin
4 2 2

B B
DBx

Q Q Q Ql l
f Q x Q x  (3.17) 

where the expression γ
1
, γ

2
, γ

3
 and γ

4
 are given in [33]. Further, the magnetic force 

between magnet A and D in the x-direction can also be obtained as: 


 

   

       
= − − − + + − + +       

        

0
3

5 6

5 6

7 8

5 6
4

sin sin
4 2 2

A
DAx

A
Q Q Q Ql l

f Q x h Q x h (3.18) 

where γ
5
, γ

6
, γ

7
 and γ

8
 are also defined in [33]. By substituting Eqs (3.17) and (3.18) 

into Eq.(3.14), the total restoring force can be obtained. 

To validate the model, the five different configurations are considered: Case (I) d = 

0.0605 m, h = 0.0035 m; Case (II) d = 0.0496 m, h = 0.0058 m; Case (III) d = 0.0452 

m, h = 0.0058 m; Case (IV) d = 0.0339 m, h = 0.0092 m; Case (Ⅴ) d = 0.0330 m, h = 

0.0079 m. Among them, the first case is the mono-stable configuration, the second and 

third cases are the bi-stable configurations. By applying the original values of the total 

charges that are listed in the first column of Table 3.5, the simulation results are plotted 

as red lines in Figure 3.12. To verify the accuracy of the model, the total restoring forces 
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of the system under various configurations are measured by using the restoring force 

surface method [33]. The results corresponding to the five chosen cases are plotted as 

black dots in Figure 3.12 By comparing the measured data and the simulation results 

using the original values of Q
1
 to Q

6
, it can be found that the model fails to predict the 

magnitudes of Cases III, IV, and V or the bi-stable and tri-stable cases.  

To improve the accuracy of the model, a genetic algorithm-based identification 

approach proposed in [33] is applied. In this approach, Q
1
 to Q

6
 are treated as six 

independent parameters to be identified by minimizing an objective or fitness function 

defined below  

5

1 1 2 3 4 5 6
1

2

1

1

5 = =

= −( , , , , , ) ( ( ) ( ))
dN

jm ja
j i

i i

d

J Q Q Q Q Q Q f x f x
N

  (3.19) 

where f
jm

(xi) is the measured restoring forces that are smoothened by a spline fitting, 

f
a
(xi) is the analytical restoring forces based on Eq.(3.14), and Nd = 101 is the number 

of training data for each case. According to [33]. Once the six parameters has been 

identified, the neglectable parameter (with an almost zero value) can be set to zero, then 

an optimization for the five independent parameters can be conducted. All the identified 

values of the total charges and their corresponding fitness values are listed in Table 3.5. 

As shown in the table, the five-parameter optimization has the lowest fitness value. 

With the results, the recalculated restoring forces are plotted as blue lines in Figure 3.12.  

In what follows, the optimal values with the five-parameter optimization are used. 

By integrating the total restoring forces with respect to 𝑥, the potential energies of the 

five cases can be found and plotted in Figure 13(a). By varying the tuning parameters 

d and h, the stability state region can be generated and plotted in Figure 13(b). This 

Figure reveals the tunability of the system. For both the lower limit and upper limit of 

the parameter d, the system is a mono-stable one regardless of the value of h. To have 

a bi-stable system, the distance d should be around the middle of the tuning range so 

that the repelling force between magnets A, C and magnet D is strong enough. And 

keep decrease the parameter d, a tri-stable system can be achieved. Figure 14(a) shows 

the potential energies vs. 𝑥 and d by fixing h at 0.02 m where C1, C2 and C3 represent 

the crossing points of the line C and the borderline between the strong mono-stable and 
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tri-stable; tri-stable and bi-stable, bi-stable and week mono-stable, respectively while 

Figure 14(b) shows the potential energies vs. 𝑥 and h by fixing d at 0.035 m, where D1 

and D2 represent the crossing points of the line D and the borderline between the 

medium mono-stable and tri-stable; tri-stable and bi-stable, respectively. It can be found 

that the region for the tri-stable is the narrowest one, which indicates that the tri-stable 

system has the highest sensitivity when changing the parameters. 

Table 3.5 Values of the total charges on the surfaces of different magnets. 

 

Figure 3.12 The total restoring forces: (a) Case (I); (b) Case (II); (c) Case (III); (d) 

Case (IV); (e) Case (Ⅴ). 

 Original values  Optimum values  

(6 parameters) 

Optimum values  

(5 parameters) 

Magnet 

A 

Q
3
 580.64 1150 642.36 

Q
4
 580.64 1516.7 903.53 

Magnet 

B 

Q
1
 50.4 0.16 0 

Q
2
 50.4 58.83 35.62 

Magnet 

D 

Q
5
 516.12 207.12 353.39 

Q
6
 516.12 321.6 577.56 

J1  0.3420 0.0786 0.0784 
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Figure 3.13 (a) Potential energies of the five cases. (b) Stability state region. 

 

Figure 3.14 Potential energies: (a) varying d and fixing h at 0.002 m; (b) varying h 

and fixing d at 0.035 m. 

3.5 Evaluation of the Performances of the MSHEH 

In this section, the performances of the MSHEH are evaluated under harmonic 

frequency sweeping excitation. Both up-sweep and down-sweep excitations are 

conducted numerically and experimentally. For this purpose, four different 

configurations are considered: linear, mono-stable, bi-stable and tri-stable. The 

restoring force of the linear system is defined by setting f
DBx

, f
DAx

, f
DCx

 to be zero in Eq. 

(3.14) while the last three configurations are Case (I), Case (III) and Case (IV) defined 

in the previous section. The load resistances for the EMEH and PEH are set to the 

optimum values given in red in Table 3.8.  
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3.5.1 High-level acceleration 

In the simulation, the acceleration amplitude is set to be 1.6 m/s2. The frequency of 

the harmonic excitation is varied by 

 
−

= + e i
i

f f
f f t

T
   (3.20) 

where for the up-sweep, f
i

= 2 Hz and f
e

= 8 Hz, for the down-sweep, f
i

= 8 Hz and 

f
e

= 2 Hz, and T = 360 second. The initial conditions are set as 𝑥(0) = 𝑥̇(0) = 0 for 

the linear, mono-stable and tri-stable system, and 𝑥(0) = −0.019 m and ẋ(0) = 0 for 

the bi-stable system. The numerical simulation is conducted by solving Eqs (3.1), (3.2), 

(3.4) and (3.9) using the Matlab function ode45. The instant power output is used to 

measure the energy harvesting performance of the system, which can be calculated from 

the instant voltage over the load resistor and the corresponding load resistance value. 

Considering the instant power output results for different configurations may overlap 

each other, to better represent all the results, the amplitudes of the instantaneous power 

outputs are obtained by picking the upper envelopes of the instant power output signals. 

The simulation results are shown in Figure 3.15 where 𝑃̂em and 𝑃̂p are the instantaneous 

power of the EMEH and PEH, respectively. 

Figure 3.15(a) clearly shows that for the EMEH, the linear and tri-stable 

configurations outperform the mono-stable and bi-stable configurations in terms of the 

peak output powers. The EMEH with the mono-stable and tri-stable configurations 

show obvious hardening behaviors, which leads to a wider effective energy harvesting 

bandwidth. With the frequency rising, the bi-stable system first switches between the 

intra-well oscillation and chaotic inter-well oscillation at 3.7 Hz and then resumes the 

intra-well motion after 4.4 Hz. And owing to its lower potential barriers, the tri-stable 

system starts with the periodic inter-well oscillation at 2 Hz and then switches to the 

intra-well oscillation at 4.3 Hz. It can be seen that the periodic inter-well motion of the 

tri-stable system generates more power compared to the chaotic inter-well motion of 

the bi-stable system, and the intra-well motion has the lowest energy harvesting 

efficiency among the three motion modes. 

As shown in Figure 3.15(b), the trends for the power outputs of the PEH of the four 
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configurations are similar to those of the EMEH. In addition, it should be noted that the 

value of the instant power output of the EMEH under the mono-stable and tri-stable 

configurations are close to each other from 2 Hz to 3.4 Hz. However, the value of the 

power output of the PEH under the mono-stable configuration is lower than that under 

the tri-stable configuration. The main reason is that the voltage output of the EMEH is 

only related to the transduction factor and the velocity of the moving magnets according 

to Eq. (3.9). Since both the mono-stable system and tri-stable system perform the large 

amplitude oscillation under the low-frequency excitation (lower than 3.4 Hz), the 

velocity of the moving magnets of the two systems are close when passing the high-

power output regions (x = ± 0.017 m), which explains the similar power output level. 

On the other hand, the power output of the PEH mainly depends on the displacement 

of the cantilever beam’s tip. The two side potential wells of the tri-stable system lead 

to a larger amplitude response at the inter-well oscillation mode than that of the mono-

stable system. Thus, the PEH with the tri-stable configuration shows higher power 

output than the PEH with the mono-stable configuration.  

Figure 3.15 The simulation results of the instant power outputs under the frequency 

up-sweep excitation with A = 1.6 m/s2: (a) the EMEH’s; (b) the PEH’s. 

To validate the above simulation, an experiment is conducted. As shown in Figure 

3.16, the apparatus is fixed on a slip table that is driven by a shaker (2809, Brüel & 

Kjær) through a stinger. The shaker is driven by an amplifier (2718, Brüel & Kjær). 

Two laser reflex sensors (CP24MHT80, Wenglor) are used to measure the 

displacements of the beam’s tip and the base, respectively. A computer equipped with 
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dSPACE dS1104 data acquisition board is used to collect the signals from the laser 

sensors and the voltage signals of the EMEH’s load resistor and the PEH’s load resistor, 

output the exciting voltage signal to the power amplifier. To control the experiment, a 

program is developed by using the MATLAB Simulink which is interfaced with 

dSPACE Controldesk Desktop software. 

 

Figure 3.16 Photos of the experimental setup: (a) the entire system; (b) the 

EMEH. 

The experimental results are shown in Figure 3.17. It can be seen that the trends of 

the results agree with the simulation ones for the higher frequency region. However, 

for the lower frequency region, the experimental results for the four systems are lower 

than their simulation counterparts. Such discrepancy can be attributed to the limit of the 

shaker because 4 Hz exceeds the lower limit of the ideal working range of the shaker, 

which causes the actual acceleration of the excitation is much lower than 1.6 m/s2. 

Nevertheless, the experiment results indicate that the model used in the simulation is 

valid. In what follows, more simulation is carried out to further evaluate the 

performance of the MSHEH. 
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Figure 3.17 The experimental results of the instant power outputs under the frequency 

up-sweep excitation with A = 1.6 m/s2: (a) the EMEH’s; (b) the PEH’s. 

Figure 3.18 shows the simulation results of the power outputs for the EMEH and 

PEH under the frequency down-sweep (8 to 2 Hz) excitation. The overall trends of the 

power outputs of the linear, mono-stable and bi-stable configurations are similar to 

those from the frequency up-sweep excitation. While the power output of the tri-stable 

system is not as high as in the up-sweep test since it mainly performs the intra-well 

oscillation. The bi-stable and tri-stable systems start to jump when the frequency 

decreases to 4.3 Hz and 3.5 Hz, respectively, which is the situation when the two 

systems just overcome the threshold of their local potential well and switch to the 

chaotic inter-well oscillation mode. As shown in Figure 3.19, the experimental results 

generally agree with the simulation one. 

Figure 3.18 The simulation results of the instant power outputs under the frequency 
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down-sweep excitation with A = 1.6 m/s2: (a) the EMEH’s; (b) the PEH’s. 

Figure 3.19 The experimental results of the instant power outputs under the frequency 

down-sweep excitation A = 1.6 m/s2: a the EMEH’s; b the PEH’s. 

To better measure the bandwidth of the MSHEH, the accumulated harvested energy 

Eem of the EMEH and the accumulated harvested energy Ep of the PEH are defined as: 

  = 0( ) ( )
em em

t

E t P d    (3.21) 

  = 0( ) ( )
t

p p
E t P d    (3.22) 

where Pem and Pp are the instantaneous power of the EMEH and PEH, respectively. 

Figures 3.20(a) and (b) show the total accumulated harvested energy E(t) = Eem(t) +

Ep(t) under the frequency up-sweep excitation and down-sweep excitation, respectively. 

Note that the relationship between the time 𝑡 and the frequency f is defined by Eq. 

(3.20) The effective frequency range of energy harvesting can be defined as the region 

where the increase rate of E(t) is equal to or greater than 0.1 J/Hz. The total bandwidth 

can be obtained by taking the sum of the frequency range of the up-sweep and down-

sweep tests. For example, the effective energy harvesting bandwidth for the tri-stable 

system is 2.36 Hz (ranging from 2 Hz to 4.36 Hz) and 0.1 Hz (ranging from 2 Hz to 2.1 

Hz) for the frequency up-sweep and down-sweep excitations, respectively, and the total 

bandwidth will be 2.36 Hz. In addition, the total accumulated harvested energy for each 

configuration is represented by Eem(T) under the up-sweep excitation. All the results 
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are listed in Table 5, and the results clearly show all three nonlinear configurations 

show wider bandwidth compared to the linear one. The tri-stable system has the largest 

total bandwidth and total accumulation harvested energy among the four configurations 

as it is able to enter the periodic inter-well oscillation mode. 

 

Figure 3.20 The accumulated harvested energy of the MSHEH under the high-

level excitation: (a) frequency up-sweep excitation; (b) frequency down-sweep 

excitation. 

Table 3.6 The effective frequency bandwidths of the systems under the high-level 

frequency sweep excitation. 

 
Up-sweep frequency 

range (Hz) 

Down-sweep frequency 

range (Hz) 

Total 

bandwidth 

(Hz) 

𝑬(T) (J) 

Linear 4.53-5.23 4.54-5.24 0.71 1.78 

Mono-stable 2.00-3.73 2-2.88 1.37 1.62 

Bi-stable 3.68-4.83 3.48-5.26 1.78 0.72 

Tri-stable 1.66-4.36 2.00-2.10 2.36 3.86 

3.5.2 Low-level acceleration 

To investigate the energy harvesting performances of the system under the 

excitation with low-level acceleration, a series of simulations are conducted. In the 
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simulation, the acceleration amplitude is set to 0.3 m/s2 and the frequency varies from 

2 to 8 Hz (up-sweep) and 8 to 2 Hz (down-sweep) in a duration of 360 seconds, and the 

same initial conditions as those in the previous section are used. In this time, the bi-

stable and tri-stable will perform the low-amplitude intra-well oscillation at their side 

potential wells and middle potential well, respectively. 

By following the same procedure discussed previously, E(t) for the system under 

frequency up-sweep and down-sweep excitation can be obtained and shown in Figure 

3.21. As the values of E(t) under low-level excitation are much lower than those under 

the high-level excitation, the threshold of increase slop is chosen as 2×10
-3 J/Hz when 

the effective frequency range is identified. The effective bandwidth of the system and 

the E(T) of the different configurations are both summarized in Table 3.7. The results 

indicate that the bi-stable and tri-stable possess a wider efficient energy harvesting 

bandwidth, The bi-stable system, in particular, can harvest more energy compared to 

other configurations. The higher energy harvesting efficiency is attributed to the high-

power output regions of EMEH located around the equilibrium points of the bi-stable 

system (at |x| = 0.02 m ). And this can guarantee the high efficiency of energy 

harvesting even when the bi-stable system performs the low-amplitude intra-well 

oscillation. 

Figure 3.21 The accumulated harvested energy of the MSHEH under the low-level 

excitation: (a) frequency up-sweep excitation; (b) frequency down-sweep excitation. 

Table 3.7 The effective frequency bandwidths of the systems under low-level 
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frequency sweep excitation. 

 
Up-sweep frequency 

range (Hz) 

Down-sweep frequency 

range (Hz) 

Total bandwidth 

(Hz) 
E(T) (J) 

Linear 4.60-5.10 4.62-5.12 0.52 3.82×10-2 

Mono-stable 2.00-2.37 2.00-2.08 0.37 1.69×10-2 

Bi-stable 3.07-5.34 4.14-5.72 2.65 9.35×10-2 

Tri-stable 3.07-3.44 2.00-3.66 1.66 1.32×10-2 

3.6 Pareto Front Optimization 

To maximize the power output of the system, it is crucial to determine the optimum 

resistance value. Traditionally, this involves applying impedance matching to each 

component within a hybrid energy harvester [19]. However, the complex coupling 

effect between the PEH and the EMEH warrants further consideration. A traditional 

impedance matching may not be sufficient to ensure the optimum overall performance 

of the system. The explanation is shown as follows: In this apparatus, the deployment 

of a large number of coils results in a significantly high peak value for Kt, leading to 

substantial electromagnetic damping forces from the EMEH. The force will 

significantly impact the dynamics of the system, particularly in multi-stable 

configuration cases. Although higher currents in the EMEH can increase its power 

output, the resulting large damping force may hinder the system from performing the 

inter-well oscillations. In other words, increasing the power output of the EMEH may 

scarify the power output of the PEH. Therefore, a proper compromise between the 

power output of EMEH and PEH needs to be considered when one chooses the 

optimum Rle and Rlp.  

In this study, the MATLAB Global Optimization Toolbox based on the genetic 

algorithm is employed to solve such a multiple-objective optimization problem. The 

average power outputs of the EMEH and PEH are defined as follows: 

 = 2 ,
rmm ese l

P I R    (3.23) 

And 
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lp

v
P

R
   (3.24) 

respectively, where Irms  and vrms  are the root mean square value of the output 

current of EMEH and voltage of the PEH, respectively. The search range is from 0.1 Ω 

to 300 Ω for Rle and from 0.1 MΩ to 5 MΩ for Rlp. Since the program is based on the 

minimization of the objective functions, the two objective functions are set to −P̅em.and 

−P̅p The population size and the maximum number of the generation are set to 500 and 

50, respectively, and the same initial conditions as those in Section 5 are used and the 

amplitude of the acceleration of the harmonic excitation is set to 2 m/s2.  

After implementing the optimization program to the four systems under the 

excitation with six different frequencies (2.5 Hz, 3 Hz, 3.5 Hz, 4 Hz, 4.5 Hz and 5 Hz), 

the best results of the so-called Pareto-front are shown as black dots in Figure 3.22. To 

find the best trade-off point, the distance between the origin of the plot and each best 

result is evaluated. The point with the shortest distance is considered to have the best 

trade-off between −P̅em.and −P̅p, shown as red dots in Figure 3.22. Then, the total 

power output P̅t is the sum of −P̅em.and −P̅p corresponding to this point. It is important 

to note that the results presented on the Pareto front offer decision support for 

configuring the system to meet diverse application requirements. In practical scenarios, 

the priority may lean towards either the EMEH or the PEH, dictating that the optimal 

point could be selected from either the left or right side of the best trade-off point 

identified in this study. Table 3.8 highlights the optimum results Rle
* and Rlp

* , and the 

corresponding P̅t of the four configurations when reaching the maximum at a different 

exciting frequency: 5 Hz (linear); 3 Hz (mono-stable); 3.5 Hz (bi-stable); 3 Hz (tri-

stable). As summarized in [19], the power output of HEH consisting of a PEH and 

EMEH generally ranges from 1 μW to 100 mW, Therefore, the power output level for 

the proposed apparatus in this study is considered reasonable. 
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Figure 3.22 The best Pareto fronts: (a) the linear system excited at 5 Hz; (b) the 

mono-stable system excited at 3 Hz; (c) the bi-stable system excited at 3.5 Hz; (d) the 

tri-stable system excited at 3 Hz. 



86 

 

Table 3.8 The optimum load resistance values and total power output for the four 

configurations. 

Configuration 
Frequency 

(Hz) 
Rle
*  (Ω) Rlp

*  (MΩ) P̅em (mW) P̅p (mW) P̅t (mW) 

Linear 

2.5 82.612 1.49 0.03 0.004 0.03 

3 19.25 1.11 0.44 0.04 0.48 

3.5 13.76 0.92 0.10 0.02 0.12 

4 44.69 0.77 0.44 0.04 0.48 

4.5 49.30 0.74 6.45 0.16 6.61 

5 204.18 0.60 47.10 1.54 48.64 

Mono-stable 

2.5 43.00 1.23 10.34 0.23 10.56 

3 54.36 1.04 21.36 0.39 21.76 

3.5 24.42 0.93 0.22 0.02 0.24 

4 14.92 0.87 0.08 0.01 0.09 

4.5 15.26 0.77 0.03 0.01 0.04 

5 15.97 0.67 0.02 0.01 0.02 

Bi-stable 

2.5 69.19 1.03 0.54 0.01 0.54 

3 256.11 0.73 12.76 0.75 13.51 

3.5 282.41 1.37 19.07 1.14 20.21 

4 43.90 0.79 12.94 0.12 13.06 

4.5 123.43 1.23 5.75 0.16 5.90 

5 75.73 0.63 6.90 0.06 6.97 

Tri-stable 

2.5 94.56 1.41 17.76 0.55 18.31 

3 164.22 1.04 19.09 0.85 19.94 

3.5 54.67 1.58 4.81 0.12 4.93 

4 46.17 2.06 4.35 0.10 4.46 

4.5 34.74 0.61 7.26 0.05 7.31 

5 19.07 0.62 0.10 0.02 0.11 

In the above optimization, the maximum harvested powers of the EMEH and PEH 

are chosen as the objective functions and the harmonic excitation with a constant 

frequency is considered. The result shows that the linear configuration outperforms the 

other three ones, confirming the well-known knowledge that the linear energy harvester 

is the best choice if the ambient vibration is harmonic with a fixed frequency. In the 

previous frequency sweep excitation simulation, the best compromised values in Table 

3.8 were used in order to compare the four configurations based on the benchmark of 

the linear configuration. The results have shown that the nonlinear configurations 

outperform the linear one in terms of the accumulated harvested energy and the 

frequency bandwidth. A natural question arises what the best load resistances are if the 

MSHEH is subjected to a frequency sweep excitation and the accumulated harvested 
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energies are chosen to be the objective functions.  

To answer this question, a further optimization is conducted. The MSHEH is 

subjected to the high-level frequency up-sweep excitation. The two objectives are set 

as −Eem(𝑇) and −Ep(𝑇), respectively. By following the same simulation procedure as 

outlined for the high-level frequency up-sweep tests in the previous section, E(t) for 

each configuration can be obtained. The setting of the optimization is same as the above, 

and the same initial conditions are used as those in Section 5. Considering the 

computational cost, the duration of the excitation signal is chosen as T = 100 second. 

The obtained Pareto fronts for the four configurations are shown in Figure 3.23, where 

the best trade-off points are identified by red circles. The optimum resistance values 

Rle
* and Rlp

* , and the corresponding accumulated harvested energy for the EMEH and 

PEH Eem
* (𝑇) and EP

* (T), and total accumulated harvested energy E*(T) are listed in 

Table 3.9. It can be seen that E*(T) for nonlinear configurations outperform the linear 

configuration. Figure 3.24 compares the E(t) (solid lines) of the MSHEH with the 

optimum load resistances from Table 3.8, referred to as Opt 1 and those (dashed lines) 

with the optimum load resistances from Table 3.9, referred to as Opt 2. Several 

observations can be made. Here E(T) represents the E(t)s’ value at 8Hz. Firstly, the 

E(T)s from the linear configuration remain almost unchanged for both cases. Secondly, 

the E(T) from the bi-stable configuration for Opt 2 sees an increase compared with that 

for Opt 1. Thirdly, the E(T) from the mono-stable configuration for Opt 2 increases 

significantly. Fourthly, the tri-stable configuration for Opt 2 still exhibits the best 

performance than the other three. 
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Figure 3.23 The best Pareto fronts of the system under the high-level frequency up-

sweep excitation: (a) the linear configuration; (b) the mono-stable configuration; (c) 

the bi-stable configuration; (d) the tri-stable configuration. 
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Table 3.9 The optimum load resistance values and total power output for the four 

configurations. 

Configuration Rle
*  (Ω) Rlp

*  (MΩ) Eem
* (T) (J) Ep

*(𝐓) (J) E*(T) (J) 

Linear 194.80 0.54 0.24 1.0×10-2 0.25 

Mono-stable 256.86 0.58 0.95 5.0×10-2 1.00 

Bi-stable 66.28 0.91 0.26 0.3×10-2 0.26 

Tri-stable 258.21 1.09 1.26 7.6×10-2 1.34 

 

Figure 3.24 The total accumulated harvested energy of the MSHEH under the 

high-level frequency up-sweep excitation. 

3.7 Conclusions 

In this study, we present the development and evaluation of a multi-stable hybrid 

energy harvester (MSHEH). The system is equipped with both an electromagnetic 

energy harvester (EMEH) and a piezoelectric energy harvester (PEH), offering two 

tuning variables (h and d) for selecting the different stability states. A novel 

arrangement of coils in the EMEH has been implemented to enhance energy harvesting 

efficiency across various oscillation modes. A numerical approach is employed to 

determine the transduction factor for the EMEH. The obtained results are validated 

experimentally. The magnetic restoring force model is established based on the 
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equivalent magnetic 2-point dipole model and validated experimentally. The accuracy 

of the model is further improved by the genetic algorithm identification approach. This 

refined model was used to map the stability state region. Four different configurations 

of the MSHEH, namely linear, mono-stable, bi-stable, and tri-stable, were chosen to 

evaluate the energy harvesting performances of the MSHEH through both simulation 

and experiment. 

In the performance evaluation, the MSHEH’s four configurations are subjected to 

frequency up-sweep or down-sweep base excitation with high-level acceleration and 

low-level acceleration, respectively. The results revealed that under the high-level 

excitation, the mono-stable and multi-stable configurations exhibit a wider working 

bandwidth than the linear one. Particularly, owing to the shallower barrier of the 

potential wells, the tri-stable system is able to perform the large amplitude periodic 

inter-well oscillation, which makes it have the widest frequency bandwidth (2.36 Hz) 

and highest total accumulated harvested energy (3.86 J) among the four configurations. 

When the system is under low-level excitation, both bi-stable and tri-stable harvesters 

perform the low amplitude intra-well oscillation around the side potential wells and the 

middle potential well, respectively. The results show the bi-stable system outperforms 

the others in terms of effective bandwidth (2.65 Hz) and total accumulated harvested 

energy (9.35×10
-2

 J). Due to the high power output regions of the EMEH are located 

around the two side equilibriums of the bi-stable configuration, the EMEH's power 

output remains sufficiently high, even though the system only performs low amplitude 

intra-well oscillations.  

In the end, a Pareto front optimization is employed to find the optimum values for 

Rle and Rlp by balancing the power output for the EMEH and PEH when the system is 

under harmonic excitation with various frequencies. The results demonstrate that the 

value of the optimum Rle is higher when the amplitude of the oscillation is larger, and 

the values of the optimum Rlp  are inversely proportional to the frequency of the 

excitation. In addition, another Pareto optimization is conducted to further improve the 

accumulated harvested energy for both EMEH and PEH under the high-level frequency 

up-sweep excitation. the results demonstrate that the total accumulated harvested 

energies of the nonlinear configurations outperform the linear one.  
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Chapter 4. Using a Piecewise-Linear Spring to 

Approximate an Essentially Nonlinear Spring: Design 

and Validation 

4.1 Introduction 

An essentially nonlinear spring (ENS) is a hardening spring with a zero stiffness at 

its undeformed position. Mathematically, its restoring force can be expressed as an odd-

order polynomial without the first-order term. In particular, the ENS with a cubic 

nonlinearity is considered in this study. The ENS has been widely used for vibration 

isolation such as quazi-zero stiffness (QZS) isolators [1] and vibration suppression such 

as nonlinear energy sink (NES) [2]. In the latter, the unique properties of the ENSs 

enable an NES to weakly couple with a primary system so that the 1:1 resonance can 

be trigged and the targeted energy transfer (TET) can be established if the excitation 

level exceeds a threshold [3]. Additionally, the ENS has also been widely employed in 

the construction of nonlinear vibration energy harvesters to overcome the narrow 

bandwidth limitation of traditional linear oscillators. This enhancement significantly 

improves the robustness and efficiency of vibration energy harvesters in real-world 

environments [4]. Various means have been developed to realize an ENS, including 

near buckling beam, zero-tension string, cam-roller-spring, magnetic spring, and 

piecewise linear spring (PLS), etc. 

Mechanical springs are the most common approach to realizing ENS characteristics. 

The classic three-spring structure was first proposed in [5]. This design utilizes a 

vertical coil spring to provide positive stiffness and two oblique springs to provide 

negative stiffness. By carefully balancing the positive stiffness and negative stiffness, 

the desired ENS behaviour can be achieved. Various designs were developed based on 

such a principle [6]. For example, a design employing two buckled beams as negative 

stiffness elements was introduced in [7]. The design in [8-10] utilized multiple pairs of 
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oblique springs to enlarge the low-stiffness range of QZS isolators to provide a better 

isolation performance under low frequency excitation. In [11, 12], a design that uses 

only two springs combined with rigid links to achieve QZS is proposed. In [13], a novel 

spring arrangement that combines with an X-shape structure presented to achieve an 

even better low frequency vibration isolation performance. 

Cam-roller-spring construction provides another approach to realizing ENS. Such 

a device usually consists of a spring-supported roller. When the roller moves on a 

curved surface, the restoring force of the spring will change in a nonlinear way along 

the curved surface. In [14], a typical cam-roller-spring design is proposed and 

conducted a systematical analysis of its static and dynamic behaviours. The design 

proposed in [15] combined a vertical liner spring with two parallel cam–roller–spring 

structures. The study in [16] proposed a customized surface for the cam to enable the 

isolator to perform both hardening and softening spring behaviours. A novel design 

proposed in [17] allowed the isolator to show essentially nonlinearity in two directions 

simultaneously. 

Magnetic spring constructions have also been widely studied to achieve ENS 

behaviour. These assemblies typically use magnetic attraction or repulsion properties 

between magnet poles to generate a negative or positive stiffness spring. The nonlinear 

nature of the force between two magnets makes magnetic springs ideal for achieving 

ENS characteristics. in [18], a typical design was proposed by allowing a magnet to 

move between two fixed magnets in a tube. On the other hand, the magnetic springs 

can combine with other components like beam [19, 20], coil springs [21, 22] or wire 

rope [23] to make the system more stable. 

Each of the aforementioned methods presents both advantages and limitations. For 

instance, an ENS realized by a zero-tension string is generally straightforward in design 

and tuning. However, it requires a supporting track, which introduces unwanted 

friction, and its bulky design can limit its use in compact applications. The cam-roller 

spring can precisely achieve complex nonlinearity, but the contact between the cam 

surface and the roller can lead to significant friction, reducing overall efficiency. A 

magnetic spring offers contactless operation, which prevents wear and tear, but often 

requires complex and precise adjustments to achieve the desired nonlinearity. It should 
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also be noted that these methods strive to approximate an ideal ENS as any spring 

inherently possesses a certain degree of linear stiffness. Another promising approach to 

approximate an ENS is to use a PLS. This approach involves dividing the nonlinear 

force-displacement relationship into several linear segments, each representing a 

different stiffness characteristic. By carefully selecting the breakpoints and slopes of 

these segments, it is possible to closely approximate the nonlinear behaviors of the ENS 

system while retaining the mathematical simplicity of linear analysis within each 

segment. The simplest PLS configuration involves a cantilever beam constrained by a 

pair of stop blocks. The study in [24] developed a PLS with tunable piecewise linear 

stiffness by using a cantilever beam and a pair of movable single-stop blocks. A PLS 

developed in [25] employs a cantilever beam with a pair of double-stop blocks. Based 

on such a concept, some designs by using continuous stop blocks were developed [26, 

27]. Note that this kind of design no longer belongs to the piecewise linear category. 

PLS offers several advantages. For example, the non-smooth nonlinearity of the 

PLS has been proven to have a high vibration reduction effect, which brought benefits 

when employing PLS in the NES design [28]. Moreover, PLS provides a flexible and 

computationally efficient approach for modeling complex nonlinear behaviors, which 

facilitates integration with existing analytical methods, such as the harmonic balance 

method. This versatility makes PLS design especially valuable in the design and 

optimization of mechanical vibration absorbers, energy harvesters, and other systems 

where nonlinearities play a critical role. Despite these advantages, existing 

implementations of PLS, particularly those employing beams with double-stop blocks 

such as the one proposed in [25], often rely on the trial-and-error method to determine 

configuration parameters. Few studies provide a systematic design method for PLS 

consisting of a cantilever beam with single-stop or double-stop blocks.  This study 

intends to address this gap. The contributions of the present work lie in four aspects. 

First, a systematic design procedure is developed to use a cantilever beam-based PLS 

with single- or double-stop blocks to approximate an ENS. To the best of our 

knowledge, no such study has been reported. Second, comparative simulations are 

conducted to evaluate the performances of the optimum PLSs statically and 

dynamically. Such method of evaluation is applicable in similar studies. Third, an 

apparatus with a tunable design is developed to validate the simulation results. Fourth, 
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the limitation of using a cantilever beam-based PLS to approximate an ENS is revealed, 

and the remedy is proposed. 

The rest of the Chapter is organized as follows: In Section 2, a design procedure is 

presented to find the optimum parameters of a PLS with single- or double-stop blocks 

based on a desired ENS. In Section 3, numerical simulations are conducted to evaluate 

the behaviors of the designed PLSs. In Section 4, experiments are carried out to validate 

the simulation results statically and dynamically. The main conclusions of the study are 

given in Section 5. 

4.2 Design Procedure 

As mentioned in the Introduction, a PLS with low linear stiffness and high nonlinear 

stiffness can be achieved by placing a cantilever beam between a pair of single- or 

double-stop blocks. In what follows, a procedure is developed to design such a PLS. 

For this purpose, an apparatus with four tunable stop-blocks is developed. Figure 4.1(a) 

shows a CAD drawing of the developed apparatus. The frame of the apparatus is 

constructed by connecting a top block to a base block using four aluminum extrusions. 

A stainless steel beam is clamped in the middle of the top block, and its free end is 

attached by a pair of magnets acting as an oscillating mass. On each side of the beam, 

there are two stop blocks. Each of the four stop blocks is held in place by a holder, 

which is attached to a movable bar that can slide up and down. Individual block can be 

slid horizontally inside of its holder. The top block, the base block, and the stop blocks 

are made of PLA filament through 3D printing. 

Figure 4.1(b) illustrates a schematic of the system model, where z  denotes the 

displacement of the tip mass relative to the base, m is the tip mass, c and kn represent 

the damping coefficient and nonlinear stiffness of the steel beam, respectively. Based 

on the model, the equation of motion can be derived as follows: 

 0plmz cz f+ + =     (4.1) 

where f
pl

 is the piecewise linear restoring force of the PLS which has two distinct forms: 

f
pls

 for the single-stop configuration and f
pld

 for the double-stop configuration. 
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Figure 4.1(a) CAD drawing of the proposed apparatus; (b) schematic of the 

system model. 

Figure 4.2(a) shows the configuration of the PLS with single-stop blocks where l 

denotes the length of the beam, h the location of the stop block, and d the gap between 

the undeformed beam and the stop block, and zs the critical displacement when the 

beam just contacts tip A. The critical displacement zs  divides the piecewise linear 

restoring force into two sections: unconstrained and constrained. They have two 

incremental piecewise linear stiffness ks1 and ks2. Then the restoring force of the PLS 

with single-stop blocks within the range of −zm ≤ z ≤ zm can be expressed as: 
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Figure 4.2 Configurations of the PLSs: (a) with single-stop blocks; (b) with 

double-stop blocks. 

Figure 4.2(b) shows the configuration of the PLS with double-stop blocks where l 

denotes the length of the beam, h1 and d1 are the location and the gap of the first pair 

of stop blocks, h2 and d2 are the location and the gap of the second pair of stop blocks, 

zd1 the critical displacement when the beam just contacts the first block tip B and zd2 

the critical displacement when the beam just contacts the second block tip C. The 

piecewise linear restoring force can be separated into three sections: one unconstrained 

and two constraineds. They are characterized by three incremental piecewise linear 

stiffness kd1, kd2 and kd3, respectively. Then the restoring force of the PLS with double-

stop blocks within the range of −zm ≤ z ≤ zm can be expressed as: 
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 (4.3) 

As mentioned above, the design objective is to use a PLS to approximate an ENS 

with a cubic nonlinearity. Thus, the desired restoring force is defined by: 
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3( )en nf z k z=   (4.4) 

where kn  is the nonlinear stiffness. The value of kn can be determined based on 

applications. In the case of the NES, the maximum displacement zm of the mass and its 

corresponding instantaneous frequency ωm  are chosen first. For example, zm  can be 

chosen according to the space limit and the beam deformation limit and ωm can be 

chosen according to the 1:1 resonance requirement. Then, the concept of the equivalent 

stiffness keq  [24, 29] is used to relate kn  to zm  and ωm . Based on this concept, the 

equivalent stiffness keq of a nonlinear spring with an odd-order polynomial restoring 

force is related to the instantaneous frequency at zm by: 

  2

eq m
k m     (4.5) 

On the other hand, the equivalent stiffness can be estimated by: 

 
( ) ( / 2)

2

cp m cp m
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m m
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z z

+
=

+
    (4.6) 

Substituting Eq. (4.4) into Eq. (4.6) yields:  

 23

4
eq n mk k z=     (4.7) 

Substituting Eq. (4.5) into the above equation yields: 
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Now, based on eq. (4.4), the desired restoring force f
en

(z) within 0 ≤ z ≤ zm can be 

determined. As defined in Eq. (4.2), there are three parameters ks1 , ks2 , zs  to be 

determined to approximate such a nonlinear force by using the PLS with single-stop 

blocks. When the cantilever beam is chosen, ks1 is specified by the formula ks1 = 3EI/l
3
. 

Then the optimum values for ks2  and zs  can be found by minimizing the following 

objective function: 
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1
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J k z f z f z
=

= −    (4.9) 
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where N is the number of discretized terms, zi is the ith discretized displacement. With 

the found optimum values ks2
*

 and zs
* , the parameters h  and d  can be found in the 

following procedure. After the beam contacts the tip A, the beam can be treated as a 

fixed-pinned beam with an overhang [24]. As derived in the Appendix 4A, the stiffness 

of such a beam is defined by: 

 *

2 2

12

( ) (4 )
s

EI
k

l h l h
=

− −
   (4.10) 

The above equation can be expanded into a 3rd-order polynomial in terms of h: 

 3 2 2 3

*

2

12
6 9 4 0

s

EI
h lh l h l

k
− + − + − =    (4.11) 

Substituting l, EI and ks2
*

 into the above equation yields three roots. The smallest root 

should be chosen as h. On the other hand, the force that causes the cantilever beam’s 

tip to deflect zs
* is given by: 

 *

3

3
s s

EI
f z

l
=     (4.12) 

With this force, the deflection of the cantilever beam at h is chosen to be d, i.e.,  

 
* 22
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As for the PLS with double-stop blocks, based on the restoring force defined in Eq. 

(4.3), there are five parameters kd1, zd1, kd2, zd2 and kd3 to be determined. When the 

cantilever beam is chosen, kd1  is specified by the formula kd1 = 3EI/l
3
 . Then, the 

optimum values for zd1 , kd2 , zd2  and kd3  can be found by minimizing the following 

objective function: 
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With the found optimum values kd2
*

, the smallest root of the following equation should 

be chosen to h1: 

 3 2 2 3
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2

12
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k
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With the found optimum value zd1
*  and h1, d1 can be found as: 
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With the found optimum values kd3
*

, the smallest root of the following equation should 

be chosen to be h2: 
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To find d2, the fixed-pinned beam with an overhang and the pin at h1 is considered. As 

derived in Appendix 4A, the force that causes its tip to deflect zd2
*  is given by 
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Then d2 can be found according to the displacement function along the beam shown in 

Eq. (4A.20): 

* 2 3 2 3
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d df z h h h a h a h l h l h h EId h h
d
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EIh

 − + − − + − + − = (4.19) 

where a = l − h1 is introduced to shorten the equation. 

4.3 Numerical Simulations 

Based on the values of the system’s parameters provided in Table 4.1, the desired 

nonlinear restoring force can be derived as: 

 6 3( ) 2.665 10enf z z=      (4.20) 
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Table 4.1 Parameters value of the system. 

Symbol  Name values 

ωm (rad/s) The instantaneous frequency of the NES at 𝑧𝑚 2π(15)=94.26 

m (kg) Tip mass 0.09 

c (Ns/m) Damping coefficient 0.033 

zm (m) Maximum displacement 0.02 

EI (N m2) Transverse rigidity of the cantilever beam 0.158 

l (m) Length of the cantilever beam 0.174 

ks1 (N/m) 1st stiffness of the PLS with single-stop blocks 90.205 

kd1 (N/m) 1st stiffness of the PLS with double-stop blocks 90.205 

To approximate such a force, the nonlinear least squares optimization approach is 

employed to determine the other paramters of the PLS. For an optimal PLS with single-

stop blocks, the objective function defined in Eq. (4.9) is minimized to find 𝑘𝑠2
∗  and 𝑧𝑠

∗ 

while for an optimal PLS with double-stop blocks, the objective function defined by 

Eq. (4.14) is minimized to find 𝑘𝑑2
∗ , 𝑧𝑑1

∗ , 𝑘𝑑3
∗ , and 𝑧𝑑2

∗  𝑘𝑠2
∗ . The MATLAB optimization 

toolbox is used for the optimization. In the first optimization, the searching ranges of 

the parameters are set as 0 < ks2 < 1 × 10
4
 N/m and 0 < zs < 0.02 m, the initial guess 

of ks2 and zs are chosen as 1 × 10
3
 N/m and 0.015 m, respectively.  

In the second optimization, the searching ranges of the parameters are set as 0 <

 kd2, kd3 < 1 × 10
4
 N/m and 0 <  zd1, zd2 < 0.02 m, the initial guess of zd1, kd2, zd2, and 

kd3 are chosen as 0.005 m, 1 × 10
3
 N/m, 0.015 m and 1 × 10

3
 N/m, respectively. In 

both cases, zi varies from 0 to 0.02 m, and the total data amount N is 100, the tolerance 

for the gradient norm is set as 1 × 10
-6

. 

The obtained optimum parameters are listed in Table 4.2. It can be found that the 

error obtained for the PLS with single-stop blocks is larger than that for the PLS with 

double-stop blocks, indicating that the latter provides a better approximation for the 

desired ENS in terms of the restoring force. Figure 4.3 compares the restoring forces of 

the three springs. It can be observed that f
pld

 has a smoother curve and exhibits a better 

fitting to the desired nonlinear force than f
pls

. As the configuration of double-stop 
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blocks provides one more linear segment to approximate a continuous curve, a better 

approximation is expected. On the other hand, the configuration of single-stop blocks 

is easier to construct. As any engineering design, there is a trade-off between the 

approximation accuracy and construction cost. Additionally, the potential energies Pen, 

Ppls and Ppld of the three springs can be obtained by taking the integral of f
en

, f
pls

 and 

f
pld

 over z, respectively, The results are shown in Figure 4.4. It can be observed that Ppls 

is lower than Ppld when the displacement is larger than 0.007 m, which means the PLS 

with single-stop blocks is able to have a larger displacement when the excitation is not 

high enough to make the PLS move to zm but beyond a specific threshold. On the other 

hand, Ppld agrees better with Pen when the deflection increases.  

Table 4.2 The optimum parameters of the PLSs with single- or double-stop blocks. 

 PLS with single-stop block PLS with double-stop block 

Estimated 

parameters 

of PLSs 

Symbols values Symbols values 

zs
*(m) 0.009 zd1

* (m) 0.008 

ks2
*

 (N/m) 1673.322 kd2
*

 (N/m) 985.764 

  zd2
* (m) 0.0143 

  kd3
*

 (N/m) 2370.967 

Geometry 

parameters 

of the 

blocks 

h (m) 0.129 h1 0.116 

d (m) 0.006 d1 0.004 

  h2 0.136 

  d2 0.007 

Errors 67.916 7.37 
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Figure 4.3 Comparison of the restoring forces of the ENS and the optimum PLS. 

 

Figure 4.4 Comparison of the potential energies of the three springs. 

To compare the dynamic behaviors of the three systems, a numerical simulation is 

conducted to obtain the free response of each of them by solving Eq. (4.1) through 

MATLAB ODE45 solver. The initial conditions are chosen as (z, ż) = (0.02, 0). The 

wavelet transform (WT) is applied to the time response. The frequency corresponding 

to the maximum WT spectrum value is chosen as the instantaneous frequency (IF) of 

the system. Figure 4.5 shows the simulation results where the time responses and the 

WT spectra are given on the left and on the right, respectively. It can be observed that 

for the system with the ENS, the IF reduces from about 15 Hz to 5 Hz within 10 seconds 

smoothly. Two observations can be made. First, the use of the equivalent stiffness to 
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determine the value for kn serves the purpose, i.e., ωm is about 94.26 rad/s or 15 Hz. 

Second, the system with the ENS does not possess a natural frequency or it can respond 

to any frequency as long as the initial energy exceeds the required threshold. On the 

other hand, the IF transition of both PLS systems is less smooth and not continuous. 

For the system with the PLS of single-stop blocks, its IF becomes about 5 Hz after 7 

seconds while for the system with the PLS of double-stop blocks, its IF becomes about 

5 Hz after 8 seconds. Once again, the PLS with double-stop blocks gives a better 

approximation to the ENS. 

 

Figure 4.5 Simulation results, free response (left) and its WT spectrum (right): (a) 

(b) with the ENS; (c) (d) with the PLS of single-stop blocks; (e) (f) with the PLS of 

double-stop blocks. 

4.4 Experimental Validation 

In this section, the restoring forces of the designed PLSs are validated through static 

and dynamic experimental tests. In the experimental tests, both single- and double-stop 
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blocks configurations are considered. The lower two stop blocks can be removed to 

achieve the single-stop block configuration. 

4.4.1 Static Experimental Test 

Figure 6 shows the experimental setup for measuring the restoring force of the PLS 

with double-stop blocks. As depicted in Figure 4.6, the apparatus is mounted on a 

slipping table, which is connected to a linear displacement sensor. A force sensor 

(RCbenchmark Series 1520) is fastened to an aluminum extrusion stand behind the 

apparatus. The force sensor is made to contact the free end of the beam via a steel rod. 

 

Figure 4.6 Photo of the static experimental setup. 

At the beginning of the test, the beam is at its undeformed position. When the 

apparatus is manually slid to the right, the beam tip is being blocked by the force sensor, 

causing the beam to deform to the left. During this process, the linear displacement 

sensor records the displacement of the apparatus which corresponds to the deflection of 

the beam at an interval of 0.002 m. By increasing the deflection from 0 to 0.02 m, the 

force-displacement curve can be obtained by collecting the force measured by the force 

sensor and the deflection measured by the linear displacement sensor. Figure 4.7 
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compares the measured restoring forces with the predicted one and the desired one for 

the two PLSs. It can be observed that the experimental results show good agreement 

with the predicted results, verifying the accuracy of the model statically. 

 

Figure 4.7 Experimental results of the restoring force of PLSs: (a) with single-stop 

blocks; (b) with double-stop blocks. 

4.4.2 Dynamic Experimental Test 

A dynamic experimental test is conducted to measure the restoring force by using 

the restoring force surface method [25]. Figure 4.8(a) shows a photo of the experimental 

setup. The apparatus is mounted on a slipping table that is driven by a shaker (2809, 

Brüel & Kjær) through a stinger. The shaker is driven by an amplifier (2718, Brüel & 

Kjær). Two laser reflex sensors (CP24MHT80, Wenglor) are used to measure the 

transverse displacement of the beam’s tip and the base’s displacement, respectively. A 

computer equipped with the dSPACE dS1104 data acquisition board is used to collect 

the sensor data and send the exciting signal to the power amplifier to drive the shaker. 

A control program is developed by using the MATLAB Simulink which is interfaced 

with dSPACE Controldesk Desktop software. 

Based on the schematic of the experimental setup shown in Figure. 4.8(b), the 

equations of motion of the system is given by: 

 ( ) 0plm z y cz f+ + + =     (4.21) 

where y is the base displacement, z represents the relative displacement between the 
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base and the mass at the beam’s tip. Equation (4.21) can be reformulated as: 

 ( ) ( ), = F z z m y z− +     (4.22) 

A 3-dimensional plot of 𝐹(z, ż) verse 𝑧 and 𝑧̇ is referred to as the restoring force 

surface [28]. After the displacements of the base and the mass are measured by the laser 

reflex sensors, their derivatives can be obtained by numerical differentiation. Therefore, 

the restoring force surface can be established. It should be noticed that the excitation 

signal should be selected to ensure good coverage in the phase plane. In this study, it is 

chosen as a harmonic function with a slowly modulated amplitude: 

 ( ) ( )cos 0.01 cos 2 ey tftA  =      (4.23) 

where A = 0.0013 m is the amplitude of the exciting signal, f
e
 represents the exciting 

frequency which is chosen from 6.5 Hz to 9.5 Hz by trial and error. By taking the section 

at z ̇= 0 of the restoring force surface, the restoring force of the PLS can be found as: 

f
pl

(z) = F(z,0).  

 

Figure 4.8(a) Photo of the experimental setup for the dynamic experimental test; 

(b) schematic of the model for the experimental setup. 

Figure 4.9 compares the restoring force determined by the force surface method 

with that of the optimum PLS with single- or double-stop blocks. It is noted that the 

experimental results are unable to cover the entire range of displacement. The reason 
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can be attributed to an insufficient excitation level to provide enough inertial force for 

the tip mass to achieve larger displacement. In the experimental testing, though the 

shaker is working under its maximum capacity, the maximum displacement of the tip 

mass can only reach 0.015 m for the two configurations. Within the range of -0.015 m-

0.015 m, there is a good agreement between the experimental result and the analytical 

one. In particular, the experimental restoring force of the PLS with single-stop blocks 

is able to demonstrate ks2  while the experimental restoring force of the PLS with 

double-stop blocks fails to reveal kd3 . As shown in Figure. 4.9(b), the maximum 

displacement just reaches to zd2
* , which means the beam is not able to touch the lower 

pair of stop blocks. This will make the equivalent stiffness of the PLS with double-stop 

blocks much lower than the desired one.  

To further demonstrate that, two sets of experimental tests are conducted to obtain 

the free responses for both two configurations with an initial position 𝑧0 = 0.015 m, 

then based on the time history of free responses, the IF can be found by picking the 

peak frequency of the wavelet transform spectra. Figure 4.10 shows the experimental 

results of the time history and the corresponding IF. It can be found that the IF starts 

from 8.5 Hz and then decreases to 5 Hz within 2 seconds for both two configurations, 

the starting frequency is much lower than the desired value of 15 Hz, which further 

verifies that the equivalent stiffness is lower than the desired value. 

 

Figure 4.9 Experimental results of the restoring force of PLSs with zm = 0.02 m: 

(a) with single-stop blocks; (b) with double-stop blocks. 
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Figure 4.10 Experimental results for the free response and corresponding IF of 

PLSs with zm = 0.02 m: (a) (b)with single-stop blocks; (c) (d) with double-stop 

blocks. 

To remedy this problem, one solution is by increasing the excitation level to provide 

sufficient inertial force for the tip mass. Specifically, the amplitude of the inertial force 

should be equal or greater than the restoring force corresponding to zm. If it is not 

practical to reach a higher excitation level, an alternative approach involves redesigning 

the desired nonlinear force with a smaller zm.  

In this study, due to the limitation imposed by the shaker’s capacity, the latter 

approach is chosen. In the new design, zm  is chosen as 0.01  m. By following the 

proposed design procedure, the optimum parameters are obtained and listed in Table 

4.3. Compared the results in Table 4.2, it is noted that reducing the range of 

displacement affects only d in the single-stop blocks configuration and d1 and d2 in the 

double-stop blocks configuration. Using the same excitation condition, the force 

surface method is implemented again. Figure 4.11 compares the two results with zm =

0.01 m. It can be seen that the displacement range of the experiment results are able to 

cover the designed range and the experimental values agree well to the analytical ones. 

The experiments to get the free response and IF for the two configurations are 

conducted again by choosing z0 = 0.01 m. The results are shown in Figure 4.12. It can 
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be found that the IF begins at 12 Hz and decreases to 5 Hz within 2 seconds for both 

configurations. The amplitude of the free response diminishes more rapidly than that in 

the simulation, and the difference between the IF transitions of the two configurations 

is less pronounced compared to that in the simulation. This discrepancy can be 

attributed to the impact caused by the stoppers, which absorb a portion of the kinetic 

energy of the PLS. In this case, the damping coefficient of the system with the PLS is 

no longer constant. In the future work, it will be important to consider the impact effect 

in the theoretical modelling and select proper stopper material to minimize the impact 

effect. 
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Table 4.3 Estimated results for the parameters of PLSs with single- and double-stop 

blocks when 𝑧𝑚 = 0.01 m. 

 PLS with single-stop block PLS with double-stop block 

Estimated 

parameters 

of PLSs 

Symbols values Symbols values 

zs
*(m) 0.005 zd1

* (m) 0.004 

ks2
*

 (N/m) 1673.322 kd2
*

 (N/m) 985.764 

  zd2
* (m) 0.007 

  kd3
*

 (N/m) 2370.967 

Geometry 

parameters 

of the 

blocks 

h (m) 0.129 h1 0.116 

d (m) 0.003 d1 0.002 

  h2 0.136 

  d2 0.003 

 

Figure 4.11 Experimental results of the restoring force of PLSs with zm = 0.01 m: 

(a) with single-stop blocks; (b) with double-stop blocks through the restoring force 

surface method. 
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Figure 4.12 Experimental results for time history of the free response with z0 =

0.01 m and corresponding instantaneous frequency of PLSs (a) with single-stop 

blocks; (b) with double-stop blocks when zm = 0.01 m. 

4.5 Conclusions 

This study has developed a design procedure to use a piecewise linear spring (PLS) 

to approximate an essentially nonlinear spring (ENS). The PLS is constructed by 

placing a cantilever beam between a pair of single- or double-stop blocks. After the 

beam contacts a stop block, it is treated as a fixed-pinned beam with an overhang. Thus, 

the configuration of single-stop blocks is defined by two parameters h and d while the 

configuration of double-stop blocks is defined by four parameters h1, d1, h2 and d2. The 

design starts with the determination of the restoring force of the desired ENS using the 

equivalent stiffness which quantifies the characteristics of a cubic polynomial roughly. 

Then, a least squares optimization is conducted to find the optimum values zs
* and ks2

*
 

for the PLS with single-stop blocks and zd1
* , ks2

*
, zd2

*  and kd3
*

 for the PLS with double-

stop blocks. The further steps are presented to find ℎ and 𝑑 with zs
* and ks2

*
 and h1, d1, 

h2 and d2 with zd1
* , ks2

*
, zd2

*  and kd3
*

.  

A numerical simulation has been conducted to evaluate the performances of the 

optimum PLSs statically and dynamically. The results show that the PLS with double-

stop blocks provides a better approximation to the ENS than the PLS with single-stop 
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blocks in terms of the restoring force and potential energy. The wavelet transform (WT) 

spectra of the free responses reveal that both PLS systems are able to initiate the desired 

instantaneous frequency (IF) as the ENS system under the same initial conditions. 

However, unlike the system with the ENS, the IF of the system with the PLS settles 

down to a constant. The PLS with double-stop blocks provides a longer and smoother 

IF transition than the PLS with single-stop blocks. 

An experimental apparatus has been developed to validate the designed PLSs. The 

apparatus allows to easily configurate into single-stop blocks setup or double-stop 

blocks setup. The restoring force of each of the PLSs is measured. The measured values 

show a good agreement with its predicted counterpart, validating the accuracy of the 

model statically. Further, the restoring force surface method has been employed to 

determine the restoring force of the PLS systems dynamically. The results show that 

within the achievable range, the measured values agree well with the predicted ones. 

However, this achievable range is smaller than the design value zm due to an insufficient 

exciting force. This limitation is also manifested by the smaller range of the IF shown 

in the WT spectra of the free responses. A solution has been proposed to address this 

issue. To achieve the desired equivalent stiffness, the PLS should be redesigned by 

reducing zm to an appropriate value so that the displacement range can be covered with 

the exciting force available. By reducing zm by half, the PLSs are redesigned, and the 

experiments are reconducted. The improved results are obtained, showing that the 

measured restoring forces have a wider cover range, and the IFs achieve a larger 

transition. It is also noted that the free responses from the experiment decay much faster 

than those from the experiment. This may be attributed to the two reasons. First, the 

damping may not be constant. Second, the impact effect may not be negligible. Future 

studies should explore the impact effects to better understand their influence on the 

dynamic response of the PLS system.  

Appendix 4A. Fixed Beam with an Overhang  

The stiffness equation and curvature function of the fixed-pinned beam with an 

overhang are important in the proposed design procedure. Several different expressions 

exist in the literature [24] To verify their correctness, a detailed derivation is presented 
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below. Figure 4A.1 shows the free body diagram (FBD) of the fixed-pinned beam with 

an overhang under a tip load f. As shown in Fig. A1a, three coordinates are used in the 

analysis, namely, 0 < y
1

≤ h, 0 < y
2

≤ a where a = l − h, and 0 < y ≤ l. It should be 

mentioned that y
1
 and y

2
 are introduced only for the purpose of derivation, y is the same 

coordinate used in the paper. As for the displacement, assume that the right direction is 

positive. It should be noted that such supports result in an indeterminate beam. 

 

Figure 4A.1 (a) the FBD of the fixed-pinned beam with an overhang; (b) the FBD 

of the beam segment between the fixed end and the pin and the FEB of the beam 

segment between the pin and the free end. 

From the FBD in Fig. A1a, the sum of the moments at 𝑂 and the sum of forces 

should be zero:  

0 0

0 0

O A

O A

M M R h fl

F R R f

+ = − − + =

→ + = − + =




   (4A.1) 

which yields: 

 ( )O OM f l h R h= − −    (4A.2) 

From the FBD of the two beam segments shown in Fig. A1b: 
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 1 1 10y O OM M M R y+ = = +    (4A.3) 

 2 22 0yM M fy+ = =    (4A.4) 

For 0 < y
1

≤ h, based on the double integration method, Eq. (4A.3) can be rewritten as: 

 1

2

2

1

1

O O

d z
EI M R y

dy
= +    (4A.5) 

where z1  represents the displacement at y
1
. By taking the integration for the above 

equation twice yields: 

 1
1 1

2

1

1

1

2
O O

dz
EI M y R y C

dy
= + +    (4A.6) 

 2 3

1 1 21 1 1

1 1

2 6
O OEIz M y R y C y C= + + +    (4A.7) 

Similarly for M2, For 0 < y
2

≤ a, Eq. (4A.4) results: 

 22

2

2

2

d z
EI fy

dy
=    (4A.8) 

where z2 represents the displacement at y
2
. By taking the integration for above equation 

twice yields: 

 2

1 3

2

2 1

2

dz
EI fy C

dy
= +    (4A.9) 

 3

2 3 2 42

1

6
EIz fy C y C= + +    (4A.10) 

To find the expression for C1, C2, C3 and C4, the following five boundary conditions 

are considered: 

 

1 1

1
1

1 1

1

2 2

2
2

1

1
1

2

0 0

0 0

,

z at y

dz
at y

dy

z d at y h

z d at y l h

dz dz
at y h y l h

dy dy

= =
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By substituting the first two conditions into Eqs. (4A.7) and (4A.6), respectively, C1 

and C2  can easily be found to be zeros. Based on the latter three conditions, the 

following equations can be derived: 

 2 31 1

2 6
O OEId M h R h= +    (4A.12) 

 3

3 4

1
( ) ( )

6
EId f l h C l h C= − + − +    (4A.13) 

 2 2

1 1 31

1 1

2 2
O OM y R y fy C+ = − −    (4A.14) 

Based on Eqs (4A.13). and (4A.14), C3 and C4 can be given as: 
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3

21 1
( )

2 2
O OC M h R h f l h

 
= − + + − 

 
   (4A.15) 

 2

4

31 1
( )

3 2
O OC EId f l h aM h aR h= + − + +    (4A.16) 

Now, the only unknown parameters in the above equations are MO and RO. Based on 

Eqs. (4A.2) and (4A.12), the expression of MO and RO can be found as follows: 

32

1 3 1
( ) and 3 ( )

2 2
O O

EId EId
M f l h R f l h

h h h

   
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   
   (4A.17) 

By substituting Eq. (4A.17) into Eq. (4A.7), the relationship between z1 and f can be 

founded as: 

2 2

1 1 1

1 1 3

) 2 (3 )
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( )(

4

f h l h y h EId h y y
z y

EIh

 − − +
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   (4A.18) 

By substituting Eq. (4A.17) into Eqs. (4A.15) and (4A.16) first, and then substituting 

𝐶3 and 𝐶4 into Eq. (4A.10), the relationship between z2 and f can be found: 
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 (4A.19) 

Accordingly, the displacement in 𝑦 coordinate or so-called curvature function can be 

found: 
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Then, the relationship between tip displacement z and tip load f can be found when y =

l: 

2 3(3( ) 4( ) ) 6 (3 )
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12

f l h h l h h EId l h
z l

EIh
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=    (4A.21) 

or  
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Since the restoring force of the beam shares the same value with f, the stiffness of the 

fixed-pinned beam with an overhang can be found as: 
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Chapter 5. A Magnetically Enhanced Piecewise-Linear 

Nonlinear Energy Sink: Transient Responses 

5.1 Introduction  

A dynamic vibration absorber (DVA) or Tuned mass damper (TMD) is a widely used 

passive device that suppresses structural vibrations by matching their natural frequency to 

that of the host system. However, the effectiveness of TMDs is limited to narrow frequency 

bands, making them less suitable for broadband or time-varying excitations. Nonlinear 

vibration absorbers were proposed for broadband vibration suppression [1]. On the other 

hand, over the past two decades, there has been growing interest in developing vibration 

energy harvesters (VEHs) to provide sustainable power sources for wearable electronics 

and wireless sensor networks. Traditional VEHs typically employ linear oscillators to 

convert ambient vibration energy to electricity through piezoelectric [2], electromagnetic 

[3], and electrostatic [4] mechanisms. Similar to TMDs, the effectiveness of traditional 

VEHs is confined to narrow frequency bands. To overcome this limitation, nonlinear 

oscillators have been incorporated to enable broadband energy harvesting. A 

comprehensive review of nonlinear energy harvesting can be found in [5]. 

Owing to the structural similarities between the TMD and the VEH, researchers have 

naturally explored the potential for combining vibration suppression (VS) and energy 

harvesting (EH) in a single multifunctional device. In [6], a piezoelectric energy harvester 

(PEH) was placed between a linear DVA and its host system to achieve dual purposes of 

VS and EH, and its performance was evaluated under various excitation conditions and 

electrical loadings. The study reported in [7] investigated the feasibility of using a linear 

oscillator simultaneously as a DVA and a VEH under both broadband and single-frequency 

excitations. To widen the operational bandwidth, many studies have been conducted on 

devices capable of achieving dual functionality [8, 9]. In [10], a comparative study was 
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carried out to evaluate the VS and EH performance for linear and nonlinear vibration 

absorbers under various excitation conditions. The results reveal that the nonlinear 

vibration absorber provides superior broadband performance.  

A nonlinear energy sink (NES) is a specific nonlinear vibration absorber consisting of 

a small mass, a linear damper, and an essentially nonlinear spring (ENS). Characterized by 

essential nonlinearity, the NES exhibits unique dynamic phenomena such as Targeted 

Energy Transfer (TET) and Strongly Modulated Response (SMR). With TET, the energy 

of the primary system can be transferred irreversibly to the NES through the 1:1 resonance 

[11]. NESs can be categorized based on their configuration as either grounded (I) or non-

grounded (II). In configuration I, NES is connected to ground using an ENS and weakly 

coupled to the primary mass via a linear spring. In [12], the concept of passive energy 

pumping in grounded NESs was first introduced and its dynamics in both two-DOF 

systems and semi-infinite chains was analyzed. Later, in [13], a design methodology was 

proposed based on nonlinear normal modes (NNMs) of the underlying conservative system 

to enhance the TET efficiency of grounded NESs. These foundational works formed the 

theoretical basis for many modern grounded NES designs [14, 15]. In configuration II, 

NES is connected to the primary mass directly, offering greater design flexibility for 

compact systems. The study in [16] used the NNM analysis to examine how essential 

stiffness nonlinearities in a non-grounded NES facilitate TET and energy localization under 

different system parameters. In [17], the complicated dynamics of a linear primary system 

coupled with a lightweight non-grounded NES, revealed that the structure of periodic orbits 

of the undamped system greatly influences the damped dynamics. Moreover, the 

lightweight NES shows strong resonant interactions with the primary system in a wide 

frequency range. There have been some attempts that incorporate a grounded spring into a 

non-grounded NES. In [18], a ground-limit spring was used to prevent excessive 

displacement of the NES under strong excitations and enhance the robustness of the system. 

It was found that if the ground-limit NES parameters are not chosen properly, the VS 

performance deteriorates. Response mechanism of NES with an inerter and grounded 

spring was investigated in [19]. The study found that the introduction of a grounded spring 

reduces the Hopf bifurcation area and the required excitation amplitude. The system 
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investigated in [20] consists of an ungrounded NES and a grounded linear spring. The study 

focused on the elimination of high-branch response by global parameter optimization. 

For the NES design, achieving an essential nonlinearity in practical implementation 

remains a challenge, as any real spring inherently exhibits a certain degree of linear 

stiffness [21]. To approximate ENS behavior in NES, several practical implementations 

have been proposed, including mechanical springs with special configurations [22, 23], 

cam-roller mechanisms [24, 25], magnetic springs [26], and piecewise linear springs (PLS) 

[18, 27]. These studies have shown that a well-designed spring can make the nonlinear 

oscillator behave like a true NES, exhibiting typical TET behavior. As this study employs 

the PLS and magnetic spring, the following review will focus on these two types of ENS 

implementations. The PLS approximates the nonlinear force–displacement relationship by 

dividing it into multiple linear segments with distinct stiffness values. By carefully 

selecting the breakpoints and slopes of these segments, the system can mimic the nonlinear 

behavior of the ENS while retaining the mathematical simplicity of linear analysis within 

each segment [28]. A NES incorporating a PLS is commonly referred to as a piecewise-

linear NES (PLNES). In [29], a PLNES was constructed by constraining a cantilevered 

beam by a pair of adjustable stop blocks, where the segment stiffness and transition 

displacements can be tuned in real time to optimize energy transfer under varying 

excitation conditions. In [30], a PLNES was formed using a cantilever beam constrained 

by a pair of double stop blocks, enabling both vibration suppression and broadband energy 

harvesting. A segmented NES composed of straight beams with varying gap distances was 

proposed in [31] to suppress torsional vibrations of a gear shaft system. The results show 

that the proposed PLNES can improve steady-state vibration suppression rates significantly. 

A magnetic spring composed of single or multiple permanent magnet pairs, which can also 

be used to achieve the essential nonlinear characteristics required for NES. Two main 

configurations are employed for different purposes. In the first configuration, the magnetic 

interaction becomes dominant at large displacements, sharply increasing stiffness and thus 

limiting the NES mass’s motion (e.g., [26, 32, 33]). In the second configuration, the linear 

stiffness of the NES is reduced by introducing a negative stiffness to cancel the positive 

stiffness from the main spring such as beam [34] or coil spring [32, 35]. Moreover, by 
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carefully tuning the magnetic interaction, the NES can exhibit bi-stable [36, 37] or even 

tri-stable behaviors [38, 39]. The snap-through motion between different potential wells 

efficiently reduces the energy threshold required to trigger the TET in NES.  

Recently, the integration of NES into energy harvester systems such as PEH or EMEH 

has garnered increasing attention for achieving both VS and EH. In [40], a coupled NES-

PEH system was proposed. Both grounded and non-grounded configurations were 

investigated under shock excitation, and system parameters were globally optimized to 

maximize both VS and EH performances. The design proposed in [41] integrated a 

magnetic plucking frequency-up-conversion PEH into an NES to improve VS and EH 

performance in low and broadband frequency ranges. The study reported in [42] 

demonstrated that combining a non-grounded NES with an EMEH can induce intentional 

high-frequency dynamic instabilities via essential nonlinearities, significantly improving 

VS under impulsive excitation. A vibro-impact NES coupled with an EMEH was 

investigated in [43]. The analytical study showed that the robustness of TET can be 

improved through the combined effects of electric and impact damping. An enhanced tri-

magnet monostable and bistable nonlinear energy sink equipped with an EMEH was 

proposed in [44]. The study demonstrated that simultaneous high-efficiency VS and EH 

can be achieved through a multi-objective optimization of magnet spacing and load 

resistance. In terms of damping enhancement, PEHs and EMEHs each offer distinct 

advantages: PEHs typically provide higher energy density and high-voltage, low-current 

output, while EMEHs produce higher current, yielding stronger electrical damping that can 

further enhance NES-based VS performance. 

In our previous study [45], an NES with a tunable grounded magnetic spring (GMS) 

was developed for the dual-purpose of VS and EH. The GMS is incorporated with a 

cantilevered beam, which can produce mono-stable, bi‐stable or tri‐stable potential wells 

for the NES by tuning the magnet spacings. As the primary system oscillates, the grounded 

magnets exert a position-dependent magnetic force on the movable magnet attached to the 

NES mass, causing the equilibrium position of the NES to shift dynamically with the 

motion of the primary system. This unique feature significantly lowers the energy threshold 
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required to trigger TET and simultaneously enhances EH performance. 

As point out in [46], a major limitation of conventional NES designs is their 

inefficiency under low-energy excitation, primarily due to the relatively high initial energy 

threshold required to trigger TET. Reducing this threshold remains particularly challenging, 

especially when aiming to design an NES capable of both VS and EH. To overcome this 

challenge, this study proposes a magnetically enhanced piecewise-linear nonlinear energy 

sink (MPLNES) that integrates a GMS into a conventional PLNES configuration. With the 

GMS, an additional nonlinear restoring force is induced so that the equilibrium position of 

the NES shifts in response to the motion of the primary mass. This design enhances the 

essential nonlinearity and enables the NES to engage more effectively, even under low 

initial energy levels. Furthermore, such a grounded configuration facilitates the 

incorporation of an EMEH, enabling the simultaneous VS and EH. The novelty of this 

work lies in the following key aspects: 1. Unique MPLNES design: to the best of our 

knowledge, the proposed MPLNES configuration is original and has not been previously 

reported; 2. Grounded EMEH integration: The use of a grounded electromagnetic energy 

harvester provides enhanced flexibility in system installation and enables effective mass 

distribution; 3. Comprehensive modeling and analysis: By addressing the challenges posed 

by the MPLNES’s unique architecture, this study offers new insights into: (1) optimal 

emulation of the ENS; (2) modeling of the restoring force and transduction factor that 

possess two-variable dependence; (3) performance comparison of the PLNES vs the 

MPLNES; (4) trade-off analysis between VS and EH performance for three different 

configurations. 

The rest of the chapter is organized as follows. Section 2 presents the development and 

modelling of the apparatus. Section 3 examines the transient performances of the proposed 

system through numerical simulation. Section 4 discussed the trade-off between the VS 

and EH performance. Section 5 presents the experimental validation for the numerical 

analysis. Section 6 summarizes the main conclusions of the study. 
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5.2 MPLNES and Modelling  

5.2.1 MPLNES 

Figure 5.1(a) shows a schematic diagram of a primary system attached by the proposed 

magnetically enhanced piecewise-linear nonlinear energy sink (MPLNES). As shown in 

the figure, the primary system consists of a primary block serving as the primary mass, and 

two stainless steel beams functioning as the primary spring. The MPLNES consists of a 

stainless-steel beam situated between a pair of so-called double-stop blocks (DSBs), acting 

as a piece-wise linear spring (PLS). The upper end of the beam is clamped to the primary 

block, while its lower end is fixed with a small cylindrical magnet B and attached with a 

holder for an assembly of two identical cylindrical magnets A and C. The holder’s position 

can be adjusted by sliding along the beam. A large cylindrical magnet D is fixed in a holder 

that can slide vertically along two stands fastened the base structure. The three magnets A, 

B, and C serve three distinct functions: they act as the NES mass, form a tunable GMS 

through interaction with magnet D, and enable an electromagnetic energy harvester 

(EMEH) by interacting with four coils. When both the primary beams and the cantilever 

beam are undeformed, the four magnets are situated on the same vertical plane, and 

magnets B and D are collinear. By sliding the holder for magnet D, the distance 𝑑 (see Fig. 

3) between magnet B and magnet D can be adjusted. By sliding the holder for magnets A 

and C along the beam, the distance ℎ (see Fig. 3) between magnets A, C and magnet B can 

be adjusted. As discussed in the previous study [37], the tunable feature of the magnet 

positions can make the system exhibit mono-stable, bi-stable, and even tri-stable behaviors. 

However, the present study primarily focuses on the mono-stable configuration.  

Figure 5.1(b) illustrates two deformed positions of the cantilever beam corresponding 

to equal displacements of the primary mass along the positive (solid line) and negative 

(dotted line) X-axis directions where O' represents the midpoint of the upper end of the 

cantilever beam, 𝑥𝑝 and 𝑥𝑎 denote the displacements of the primary mass and the NES 

mass relative to the base, respectively, 𝑧 = 𝑥𝑝 − 𝑥𝑎 is the relative displacement between 
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the primary mass and the NES mass. The figure also depicts the spatial positions and 

polarities of the four magnets where mA, mB, mC, mD are the magnetic moment vectors, 

A0, B0, C0 and A, B, C denote the center positions of magnets A, B and C when the beam is 

undeformed and deformed, respectively. As shown in Fig. 1(c), the EMEH is constructed 

by placing two coils 1, 2 below A and two coils 1’, 2’ below C symmetrically about the Y-

Z plane. 

 

Figure 5.1(a) Schematic of the MPLNES; Spatial positions of: (b) coils and magnets 

A and C; (c) magnets A, B, C and D. 

Figures 2(a) and (b) show the side view and front view of Fig. 1(c), respectively, where 

d is the distance between magnet B and magnet D when the beam is undeformed, d and h 

is the distance between magnet B and magnets A, C, l is the length of the cantilever beam, 

and w is the distance between the axis of magnet B and that of magnet A or C. As shown 

in Fig. 2(b), when the primary mass displaces by 𝑥𝑝, the NES mass displaces by 𝑥𝑝 + 𝑧 

horizontally and 𝛿  vertically, α is the angle between mB and mD. Since the slope of the 

beam’s tip is relatively small, it is assumed that ∠BO'B0≈θ=sin−1 (𝑧 𝑙⁄ ). Fig. 2(c) shows 

the configuration of the DSBs where l1 and g
1
 are the location and the gap of the first pair 
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of stop blocks, l2 and g
2
 are the location and the gap of the second pair of stop blocks. 

 

Figure 5.2 Two-dimensional views of the beam and magnets: (a) side view; (b) front 

view; (c) detail of the DSBs. 

Figure. 5.3 shows a lumped-parameter model for the combined system where 𝑚𝑝, 𝑐𝑝 

and 𝑘𝑝  represent the mass, damping coefficient and stiffness of the primary system, 

respectively, 𝑚𝑎  and 𝑐𝑎  are the mass and mechanical damping coefficient of the NES, 

respectively, 𝑘𝑛1 represents the nonlinear stiffness of the NES spring and 𝑘𝑛2 represents 

the nonlinear stiffness of the grounded magnetic spring. Since this study focuses on the 

transient response of the system, the base is assumed to be fixed or 𝑤𝑏 = 0. The figure also 

shows the circuit of the EMEH where Kt and E are the total transduction factor and the 

electromotive force (EMF) of the EMEH, respectively, Rc and Lc are the resistance and 

inductance of one coil, respectively, and Rl is the resistance of a load resistor connected to 

the output of the EMEH. 
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Figure 5.3 The lumped-parameter model of the combined system. 

Based on Newton’s second law, the governing equations of the system can be derived 

as follows: 

 
1 1 0p p p p p nm x c x k x f+ + − =     (5.1) 

 
1 2 0a a a e n nm x c z f f f+ + + + =     (5.2) 

where  f
n1

 is the restoring force of the NES’s spring, f
n2

 is the restoring force of the GMS, 

f
e
 is the electromagnetic force caused by the changes in the magnetic flux through the coils. 

Based on the Lenz's law, the electromagnetic force can be expressed as follows: 

 e tf K I=      (5.3) 

where 𝐼  is the current in the EMEH’s circuit and  Kt = 2(𝐾𝑡1 + 𝐾𝑡2) with 𝐾𝑡1  as the 

transduction factor for coil 1 and 𝐾𝑡2 as the transduction factor for coil 2. Note that owing 

to the symmetric arrangement, coils 1 and 1′ have identical transduction factors, as do coils 

2 and 2′. Since the inductance of the coils is very small and the frequency of vibration 

considered in this study does not exceed 20 Hz, the inductive impedance of the coil is 

negligible compared with 𝑅𝑐𝑜𝑖𝑙. Thus, the current can be approximated as: 
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coil l

tK x
I

R R
=

+
    (5.4) 

Then substituting Eq. (5.4) into Eq. (5.3) yields the coefficient of electrical damping 𝑐𝑎𝑒: 
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5.2.2 Design of the PLS and GMS 

The NES mass is subjected to the two nonlinear restoring forces: f
n1

 and f
n2

. As f
n1

 is 

due to the beam’s elasticity and constraints imposed by the DSBs, it can be defined by: 
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  (5.6) 

where kg1 , kg2 , and  kg3  are three incremental linear stiffnesses, zg1 is the relative 

displacement when the beam just contacts the tip of the first block and zg2 the relative 

displacement when the beam just contacts the tip of the second block, zm is the maximum 

relative displacement. 

The determination of the parameters in Eq. (5.6) is based on the design procedure 

proposed in [28]. The design objective is to use the piecewise linear spring (PLS) to 

approximate an essentially nonlinear spring whose restoring force is defined by 

 
3

n nf k z=     (5.7) 

where the value of kn can be determined based on the instantaneous frequency 𝑓𝑚 of the 

NES at the maximum displacement zm. As the design parameters, 𝑧𝑚 can be chosen based 

on the space available or the beam deformation limit and 𝑓𝑚 can be chosen based on the 

1:1 resonance requirement. In this study, zm is chosen as 0.02 m and f
m

 is selected as 15 Hz 

which is slightly higher than the primary system’s natural frequency 𝑓𝑝 =11.5 Hz. Then, 

the concept of the equivalent stiffness keq [29, 47] is used to relate kn to zm and f
m

: 
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With the desired cubic nonlinear restoring force, the parameters in Eq. (5.6) can be 

obtained by applying the least square optimization. Subsequently, the geometric 

parameters of the DSBs are determined based on the force-deflection model of a 

cantilevered beam with an overhang. All parameters used in this study are directly adopted 

from [28] , and are summarized in Appendix 5A, Table 5A.1. 

The second restoring force f
n2

 consists of an equivalent force f
g
 due to gravity, an 

attractive magnetic force f
DBx

 between magnet D and magnet B and two repulsive magnetic 

forces: f
DAx

 between magnet D and magnet A, and f
DCx

 between magnet D and magnet C. 

Since magnets A and C are identical and symmetrical about the central line of the beam, 

the values of f
DAx

 and f
DCx

 are equal. Then the second nonlinear restoring force can be 

expressed as： 

 ( )2 tan 2g DBx DAx DCx DBx DAxnf f f f f mg f f= + + + =  + +    (5.9)  

where tan(𝜃) = 𝑧 √𝑙2 − 𝑧2⁄  based on the triangle O'R0B0 shown in Figure 52(b). In what 

follows, the analytical restoring forces f
DBx

 and f
DAx

 will be developed using the equivalent 

magnetic 2-point dipole model proposed in [48].  
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Figure 5.4 Illustration of the equivalent magnetic 2-point dipole model: (a) magnets A 

and D; (b) magnets B and D. 

Figure 5.4 shows the front view of the apparatus when the beam is undeformed and 

deformed. As shown, the origin of the coordinate system is located at B0, the centers of 

magnets A, B, and D are represented by points A, B and D, respectively, point A0 and B0 

depict the positions of magnets A/C and B when the beam is undeformed, lB, lD and lA are 

the lengths of magnets B, D, and A, respectively. In the figure, Q
1
 and Q

2
 represent the 

total charges on the top and bottom surfaces of magnet B, respectively. Similarly, Q
3
 and 

 Q
4
 denote the total charges of magnet A, and Q

5
 and Q

6
 denote the total charges of magnet 

D.  

The magnetic force between magnet B and magnet D is considered first. Based on the 

Boit-Savart law, the magnetic force exerted by magnet B on magnet D is the combination 

of the magnetic force exerted from Q
1

 and Q
2

 to Q
5

 and Q
6

, which is given in the 

following equation: 
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where µ = 4π×10
-7

H/m is the vacuum permeability, r15, r16, r25
  and r26

  are the position 

vectors as shown in Figure. 5.4, and their amplitudes are defined in Appendix 5B. 

According to Eq. (5.9), only the horizontal magnetic forces are considered. Therefore, Eq. 

(5.10) yields: 
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Similarly, the horizontal magnetic force between magnets A and D can be obtained as: 
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where the amplitudes of r35, r36, r45
  and r46

  are defined in Appendix 5B. By substituting 

Eqs. (5.11) and (5.12) into Eq. (5.9), f
n2

 is obtained. It should be noted that the magnetic 

restoring forces 𝑓𝐷𝐵𝑥 and 𝑓𝐷𝐴𝑥 are functions of both 𝑥𝑝 and 𝑧, a unique feature of the GMS. 

As mentioned in Introduction, the purpose of introducing the GMS is to enhance the 

essential nonlinearity of the NES. Thus, the objective of tuning 𝑑 and ℎ is to achieve a 

quasi-zero stiffness around the position of equilibrium while maintaining an overall mono-

stable system. Based on this principle, a weak mono-stable configuration is sought by 

considering the following restoring force: 

 1 2 0( , , )
pn g n p xf k z f d h x == +    (5.13) 

The rationale for setting 𝑥𝑝 = 0  is to ensure the mono-stability at the position of 
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equilibrium. Two key criteria are considered when the optimal tuning parameters are 

searched. First, the resulting nonlinear restoring force function 𝑓𝑛  must be an odd and 

monotonically increasing function with respect to the relative displacement z. Second, to 

enhance the essential nonlinearity of the NES, the ratio 𝛽 = 𝑓𝑎/𝑓𝑝  should be further 

reduced where 𝑓𝑎 is the natural frequency of the linearized NES.  

For the NES that employs only the PLS, 𝑓𝑎=5.03 Hz, resulting in 𝛽 = 0.437. For the 

NES that employs both the PLS and the GMS, the design target is to achieve 𝛽 =0.246, 

which is substantially lower than the value of the NES with only the PLS. Using the optimal 

values of the total magnetic charges obtained in [49] (see Table 3.5 in Chapter 3.4), a 

numerical search is conducted by varying 𝑑 and ℎ within their tuning regions. It is found 

that this design target is achieved when d = 0.0373 m and h = 0.0148 m. 

Figure 5.5(a) shows the restoring force surface of the GMS. As shown, 𝑓𝑛2  is 

asymmetric about the line 𝑥𝑝 = −𝑧 (black dashed line). This indicates that the dominant 

force in the magnetic force is the repulsive force. To better illustrate the force’s dependence 

on both 𝑥𝑝 and 𝑧, Figure 5.5(b) gives three cross sections of the force surface cut at 𝑥𝑝 =

−0.01  m, 𝑥𝑝 = 0  m, and 𝑥𝑝 = 0.01  m, respectively. When 𝑥𝑝 = 0  (red line), 𝑓𝑛2  is 

asymmetric about the point (𝑧, 𝑓𝑛2) = (0, 0). When 𝑥𝑝 = −0.01 m, 𝑓𝑛2 shifts upward and 

the zero-crossing point moves to 𝑧 = 0.01 m, indicating that the repulsive force becomes 

more dominant. When 𝑥𝑝 = 0.01 m, 𝑓𝑛2 exhibits the opposite behavior. This asymmetric 

behaviour indicates a position-dependent magnetic nonlinearity, where the restoring force 

shifts depending on 𝑥𝑝. Figure 5.6(a) shows the total restoring force vs 𝑥𝑝 and 𝑧. Clearly, 

due to the enhancement of the GMS, the total restoring force changes little around the 

position of equilibrium, i.e., exhibiting a quazi-zero stiffness characteristic. Figure 5.6(b) 

shows the total potential energy vs 𝑥𝑝 and 𝑧 where the circles represent the equilibrium 

positions or minimum potential energy points of the MPLNES. These equilibrium positions 

can be curve-fitted by a piecewise function 𝑧0: 
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Figure 5.5 Illustration of 𝑓𝑛2: (a) 𝑓𝑛2 verse z and 𝑥𝑝; (b) three representative cases of 

𝑓𝑛2 verse z. 

 

Figure 5.6 Illustration of 𝑓𝑛1 + 𝑓𝑛2: (a) the force surface; (b) the potential energy 

surface. 

To verify the accuracy of the nonlinear restoring force model, the equilibrium position 

of the MPLNES for different 𝑥𝑝 are measured experimentally and compared with those 

obtained from the numerical model. In the experiment, to overcome challenge of achieving 
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a large deformation of the primary spring, an alternative method is employed. As illustrated 

in Figure 5.7(a), for each measurement, the primary block is fixed to the base, while magnet 

D is moved to a negative position in the 𝑥-axis. Such a setup simulates the scenario in 

which the primary block moves to a positive position in the 𝑥-axis. After the adjustment, 

the MPLNES is allowed to settle into its equilibrium position, and the final position of 

magnet D and the MPLNES are measured by the laser sensors. The comparison shown in 

Figure 5.7(b) indicates that there is a good agreement between the values predicted by the 

model and the values measured.  

 

Figure 5.7 Validation of the equilibrium positions of the MPLNES: (a) the 

experimental setup; (b) comparison of the values from the model and the values 

measured experimentally. 

5.2.3 Determination of the Transduction Factor  

Due to the unique design, the transduction factor of the grounded EMEH is a function 

of both 𝑥𝑝 and 𝑥𝑎. In what follows, the numerical method proposed in [49] is extended to 

determine the total transduction factor. As pointed out previously, 𝐾𝑡 = 2(𝐾𝑡1 + 𝐾𝑡2). To 

determine 𝐾𝑡1, coil 1 is sliced into multiple layers. The magnetic flux in each layer is 

assumed to be uniformly distributed. Consequently, 𝐾𝑡1 can be expressed as the rate of 
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change of the total magnetic flux within the coil with respect to the displacement 𝑥𝑎: 
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where n is the number of layers, 𝑁𝑒 is the equivalent turns of the coil, ϕ
1j

 is the magnetic 

flux in the z direction in the jth layer of coil 1, A finite element analysis software COMSOL 

Multiphysics is utilized to compute the change rates of the magnetic flux of coil 1 when 

magnet A oscillates over it. The detail of the modelling process and the parameters used in 

COMSOL is provided in Appendix 5C. 

For each simulation run, the value of 𝑥𝑝 is selected from the range -0.02 m to 0.02 m 

with an increment of 0.005 m. At each fixed 𝑥𝑝 value, 𝑧 varies from -0.04 m to 0.04 m. It 

should be noted that the chosen range of 𝑥𝑝 extends beyond the actual displacement range 

of the primary mass, This extended range is used to better capture the overall trend of 𝐾𝑡1 

as a function of 𝑥𝑝. During each simulation, the change rate of the magnetic flux through 

each layer of the coil with the different 𝑥𝑎 value is recorded. Then, based on Eq. (5.15), the 

transduction factor can be computed. Figure 5.8 illustrates 𝐾𝑡1 verses 𝑥𝑎 for various values 

of 𝑥𝑝 . It can be observed that the shapes of the curves remain almost unchanged for 

different 𝑥𝑝  values. For 𝑥𝑎 < −0.05 m or 𝑥𝑎 > 0.02 m, the 𝐾𝑡1 values are almost zero. 

And for −0.05 m ≤ 𝑥𝑎 ≤ −0.02 m, each of the curves can be approximated as a sine 

function of 𝑥𝑎 with its amplitude and phase affected by 𝑥𝑝.   

To illustrate the 𝐾𝑡1’s dependence on 𝑥𝑝, the valley points of the curves are projected 

onto the the 𝑥𝑎-𝑥𝑝 plane, while both the peak and valley points of the curves are projected 

onto the 𝑥𝑝 − 𝐾𝑡1 plane. It can be found that the phase shift in 𝑥𝑎 can be approximated as 

𝑥𝑎 − 0.1𝑥𝑝. The amplitude remains around 0.8 T∙m with negligible variation for 𝑥𝑝 < 0. 

However, as 𝑥𝑝 increases from 0 m to 0.02 m, the amplitude decreases to approximately 

80% of its original value.  

Before curve-fitting 𝐾𝑡1 with an interpretable expression, the accuracy of the numerical 

model obtained from the COMSOL simulation is experimentally validated. To this end, 
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three cases are considered: 𝑥𝑝 = −0.02 m, 0 m, and 0.02 m. The corresponding values of 

𝐾𝑡1  are obtained by using the experimental method described in [50]. Similar to the 

experimental setup shown in Figure 5.7(a), magnet D and the coils are moving with the 

stand in the opposite directions to simulate the movement of the primary block. As shown 

in Figure 5.9, overall, the experimental results agree well with the simulation ones. 

 

Figure 5.8 Transduction factor verses 𝑥𝑎 of coil 1 for different 𝑥𝑝. 

 

Figure 5.9 Experimental results of the 𝐾𝑡1 when (a) 𝑥𝑝 = −0.02 m; (b) 𝑥𝑝 = 0 m; (c) 

𝑥𝑝 = 0.02 m. 
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To derive an interpretable model for 𝐾𝑡1, the curves are approximated using a sum of 

three sine functions of the form: ∑ 𝑎𝑗sin (𝑏𝑗𝑥𝑎 + 𝑐𝑗)3
𝑗=1 , The curve corresponding to 𝑥𝑝 =

0 m is used as training data to determine the coefficients 𝑎𝑗, 𝑏𝑗, and 𝑐𝑗 via the least-squares 

optimization. The obtained values are listed in Table 5.1. By incorporating the effects of 

phase shift and amplitude modulation induced by 𝑥𝑝, the resulting expression for 𝐾𝑡1 is 

given as follows: 
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By following a similar process, the transduction factor for coil 2 can be derived as 

follows: 
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Figure 5.10 presents the numerical results of the total transduction factor along with 

the fitted surface. Overall, the curve-fitting functions show a good agreement with the 

numerical results. These functions will be used in the following simulations for both 

PLNES and MPLNES. Applicability of Eqs. (5.16) and (5.17) for the PLNES is justified 

by the fact that the magnetic flux within the coils is predominantly influenced by magnets 

A and C, making the effect of removing magnet D negligible. 
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Table 5.1 Curve-fitting constants of Eqs. (5.16) and (5.17). 

Constants  
a1 b1 c1 𝑎2 𝑏2 𝑐2 a3 b3 𝑐3 

Value -0.94 88.80 -0.29 179.47 -0.06 344.84 -1.06 99.08 -0.28 

 

Figure 5.10 Curve fitting surface and the numerical results of the total transduction 

factor versus 𝑥𝑎 for different 𝑥𝑝. 

5.3 Numerical Simulation  

A numerical simulation is conducted to evaluate the performances of the PLNES and 

MPLNES. Note that the PLNES is achieved by removing magnet D so that 𝑓𝑛2 = 0. The 

parameter values used in the simulation are based on the developed apparatus. For the 

primary system, 𝑚𝑝 = 0.882 kg , 𝑘𝑝 = 4.605 × 103  N/m, cp = 0.8604 Ns/m. For both 

PLNES and MPLNES, 𝑚𝑎 = 0.09 kg and 𝑐𝑎𝑚 = 0.0179 Ns/m. The damping coefficient 

𝑐𝑎𝑚 is estimated from the small free responses of the PLNES by ensuring that the beam 

does not touch the tips of the DSBs. This damping coefficient corresponds to a damping 

ratio ζ𝑎𝑚= 0.0065 and a natural frequency 𝑓𝑎 = 5.05 Hz. The resistance of one coil is 

𝑅𝑐𝑜𝑖𝑙 = 0.9 Ω. Several load resistances are used in the simulation. 
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5.3.1 Transient Performances 

The transient performances are evaluated in terms of target energy transfer (TET) and 

energy harvesting (EH). The free responses are induced by specifying initial conditions: 

for the MPLNES 𝑥𝑝(0) = 𝑋, 𝑥𝑎(0) = 𝑧0(𝑋) + 𝑋, 𝑥̇𝑝(0) = 0 and 𝑥̇𝑎(0) = 0 and for the 

PLNES are 𝑥𝑝(0) = 𝑋, 𝑥𝑎(0) = 𝑋, 𝑥̇𝑝(0) = 0 and 𝑥̇𝑎(0) = 0. The governing equations 

are numerically solved with the Matlab ODE45 function. To evaluate TET, the percentage 

of the instantaneous energy in the NES is defined by: 
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where 𝐸𝑝 is the instantaneous mechanical energy in the primary system defined by 
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and  𝐸𝑎 is the instantaneous mechanical energy in the NES which is defined by 
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for the MPLNES and for the PLNES 𝑓𝑛2 = 0. In the following simulation, two initial 

energy levels are considered: 𝑋 = 3 mm for the low initial energy, 𝑋 = 7 mm for the 

medium-high initial energy level. The load resistor’s resistance 𝑅𝑙 is set as 120 Ω, resulting 

that the total damping is dominated by the mechanical damping.  

Figures. 5.11 and 5.12 shows the simulation results with 𝑋 = 3 mm. Comparison of 

Figures 5.11(a)–(d) with Figures 5.12(a)–(d) reveals that the dynamic behaviours of the 

MPLNES and PLNES differ significantly. As shown in Figures 5.11(a) and 5.12(a), the 

response of the primary system with the MPLNES decreases quickly, while the response 

of the primary system with the PLNES is nearly identical to that without the NES. Figure 

5.11(c) further illustrates that the instantaneous energy in the MPLNES rises from zero to 

approximately 90% within 1.2 seconds and reaches full energy transfer at 3.4 seconds, 
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confirming the fast establishment of TET. In contrast, Figure 5.12(c) shows no clear 

indication of TET in the PLNES. Figures 5.11(b) and 5.12(b) illustrate that the MPLNES 

performs large amplitude oscillation and exhibits typical nonlinear behaviours, while the 

PLNES maintains small, nearly linear oscillations. As a result, the MPLNES generates a 

much higher output voltage, as seen in Figures. 5.11(d) and 5.12(d). 

Such differences stem from the presence of the GMS in the MPLNES. Even minor 

displacements in the primary system shift the MPLNES equilibrium position due to the 

influence of the GMS, Consequently, it forces the MPLNES into substantial motion. This 

mechanism ensures early engagement with the DSBs and facilitates the activation of 

nonlinearity. As a result, the MPLNES exhibits enhanced TET efficiency and high voltage 

output, particularly under low initial energy conditions.  

 

Figure 5.11 Simulation results with MPLNES and X = 3.0 mm: (a) 𝑥𝑝; (b) 𝑥𝑎; (c) 𝐷1; 

(d) 𝑉𝑜𝑢𝑡. 

 

Figure 5.12 Simulation results with PLNES and X = 3.0 mm: (a) 𝑥𝑝; (b) 𝑥𝑎; (c) 𝐷1; 

(d) 𝑉𝑜𝑢𝑡. 
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The dominant frequencies of the responses can be revealed by the wavelet transform 

(WT) spectra. As shown in Figures 5.13 (a) and (c), the dominant frequency of the 

MPLNES mass’s response originates from 6 Hz and then drops to around 𝑓𝑎1  after 3 

seconds, and the dominant frequency of the primary mass’s response is around 𝑓𝑝. This 

indicates the initiation of TET, albeit without the full establishment of a 1:1 resonance 

condition. In contrast, Figures 5.13 (b) and (d) reveal that the dominant frequencies of the 

PLNES and the primary system are mainly around 𝑓𝑎2  and 𝑓𝑝 , respectively. This 

observation suggests that the PLNES’s nonlinearity is not fully activated when the initial 

energy level is low. 

 

Figure 5.13 WT spectra of the responses with 𝑋 = 3 mm: (a) 𝑥𝑝 with MPLNES; (b) 

𝑥𝑝 with PLNES 𝑥𝑝; (c) 𝑥𝑎with MPLNES; (d) 𝑥𝑎 with PLNES. 

Figures 5.14-16 present the simulation results with the medium-high initial energy level.  

As shown in Figures 5.14(c) and 5.15(c), TET is established in both configurations. The 

energy in the MPLNES undergoes three distinct stages: reversible energy exchange (0-2 

seconds), irreversible energy exchange (2-4 seconds), and energy localization (4-6 

seconds). On the other hand, a significant energy exchange exists between the PLNES and 

the primary system at the beginning, evidenced by the nonlinear beat phenomenon, and 
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then about 70% of the total energy is localized in the PLNES after 4 seconds.  

Figure 5.16 highlights these differences in the frequency domain. As illustrated in 

Figures 5.16(a) and (c), the dominant frequency of the MPLNES varies from 𝑓𝑝 to 6 Hz 

during the first stage, then it maintains such a high-frequency oscillation in the second 

stage, and after that, it drops to 𝑓𝑎1 after 4 seconds. In contrast, as shown in Figures 5.16 

(b) and (d), the dominant frequency of the PLNES decreases gradually from 𝑓𝑝 to 𝑓𝑎2 in 3 

seconds. This difference indicates that the MPLNES remains at high frequencies for a 

longer duration, allowing more time for the effective establishment of TET. 

The unique behaviours of the MPLNES arise from the effect of the GMS, which 

prolongs the duration of large-amplitude nonlinear response in the MPLNES. As a result, 

the EMEH in the MPLNES is capable of generating higher voltage output during 2-4 

seconds than that in the PLNES, as shown in Figures 5.14 (d) and 5.15(d). 

 

Figure 5.14 Simulation results with MPLNES and X = 7.0 mm: (a) 𝑥𝑝; (b) 𝑥𝑎; (c) 𝐷1; 

(d) 𝑉𝑜𝑢𝑡. 

 



148 

 

Figure 5.15 Simulation results with PLNES and X = 7.0 mm: (a) 𝑥𝑝; (b) 𝑥𝑎; (c) 𝐷1; 

(d) 𝑉𝑜𝑢𝑡. 

 

Figure 5.16 WT spectra of the responses with X = 7 mm: (a) 𝑥𝑝 with MPLNES; (b) 

𝑥𝑝 with PLNES; (c) 𝑥𝑎 with MPLNES ; (d) 𝑥𝑎 with PLNES. 

5.3.2 Nonlinear Normal Mode (NNM) Analysis 

To have a better understanding of the dynamics of the system, the NNM analysis is 

conducted for both the MPLNES and PLNES configurations. The frequency energy plot 

(FEP) is derived using the complexification-averaging technique (CX-A) [51], which 

reformulates the nonlinear system in the complex domain and applies an averaging 

procedure to approximate periodic solutions. Since the CX-A method requires continuous 

and analytically interpretable expressions for the nonlinear restoring forces in the dynamic 

model, 𝑓𝑛1 and 𝑓𝑛2 both are curve-fitted using polynomial functions. 𝑓𝑛1 is curve fitted by 

an odd third-order polynomial as shown as follows: 

 
3

1 1 3nf k z k z= +    (5.21) 

where 𝑘1 = 85 N/m and 𝑘3 = 2.651 × 106 N/m. On the other hand, as 𝑓𝑛2 depends on 
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both 𝑥𝑝 and z, it must be represented by a multivariate polynomial in terms of 𝑥𝑝 and 𝑧 

defined by the following expression: 
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where 𝑚 and 𝑛 are the non-negative integer indices, representing the polynomial orders 

with respect to 𝑧 and 𝑥𝑝, respectively. The polynomial coefficients 𝑏𝑚𝑛 are corresponding 

to the term 𝑧𝑚𝑥𝑝
𝑛, with  m ∈ (0, M), n ∈ (0, N). To find the optimum values for M and N, 

two objective functions should be met:  
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   (5.23) 

The first objective function 𝐽1 denotes the maximum polynomial order in 𝑧 and 𝑥𝑝. The 

second objective function 𝐽2 represents the root mean square error between 𝑓𝑛2 and 𝑓𝑛̅2, 

where 𝑝 and 𝑞 represents the position index of 𝑧 and 𝑥𝑝, respectively. It is clear that the 

larger the 𝐽1 value, the smaller the 𝐽2 value. However, to simplify the NNM analysis, the 

value of 𝐽1 should be as low as possible. At the same time, 𝐽2 also should be sufficiently 

low to ensure accurate curve fitting. Figure 5.17 presents a heatmap of 𝐽2  for various 

combinations of 𝑀 and 𝑁. The colour intensity indicates the magnitude of 𝐽2  in a 

logarithmic scale, with darker shades corresponding to smaller values. An optimal trade-

off  is obtained at (𝑀, 𝑁) = (5, 5), where both objectives are satisfactorily reached. The 

absence of darker patches in the lower-left corner confirms that no better trade-off exists 

for smaller order numbers. By eliminating the terms with negligible coefficients, 𝑓𝑛̅2 can 

be expressed as: 
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 (5.24) 

where all the coefficient values are given in Table 5.2. 
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Figure 5.17 Heatmap of 𝐽2 for different M and N. 

Table 5.2 Coefficient values in Eq. (5.24). 

𝑏01  𝑏03  𝑏05  𝑏10  𝑏12  𝑏14  

5.121 × 101 1.067 × 105 
−1.953

× 108 
5.052 × 101 3.428 × 105 

−9.388

× 108 

𝑏21  𝑏23  𝑏25  𝑏30  𝑏32  𝑏34  

3.537 × 105 
−2.910

× 109 

4.167

× 1012 
1.491 × 105 

−3.254

× 109 

7.204

× 1012 

𝑏41  𝑏43  𝑏45  𝑏50  𝑏52  𝑏54  

−1.024

× 109 

6.917

× 1012 

−1.013

× 1016 

−2.655

× 108 

5.034

× 1012 

−1.145

× 1016 

Using the approximate restoring force models, the equations of motion for the 

undamped system with the MPLNES can be derived from Eqs. (5.1) and (5.2): 

 1 0p p p p nm x k x f+ − =        (5.25) 
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 1 2 0a a n nm x f f+ + =     (5.26) 

Based on the CX-A technique, two complex variables are introduced as: 

 1 2,p p a ax j x x j x   = + = +     (5.27) 

where ω is the dominant fast frequency of the oscillation and 𝑗 = √−1 . Then, the 

displacement and acceleration can be obtained accordingly: 
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    (5.28) 

where ψ
1
∗  and ψ

2
∗  are the complex conjugates of ψ

1
 and ψ

2
, respectively. The slow-

modulated amplitude can be defined as follows: 

 1 1 2 2( ) ( ) , ( ) ( )i t i tt t e t t e    = =     (5.29) 

Substituting Eq. (5.29) into Eq. (5.28), then into Eq. (5.25), the first governing equation 

can be rewritten as: 
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here, only the terms with fast frequency ω are retained,  
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now the polar expression of the ϕ
1
 and ϕ

2
 are introduced as follows: 

 21 ,j jAe Be  = =     (5.32) 
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where A and B are the real amplitude of the slow modulation, α and 𝛾 represent the real 

phases of the modulation. Substituting Eq. (5.32) into Eq. (5.31) and retaining the real part 

of the equation yields, 
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 (5.33) 

To impose the stationarity condition, the time derivatives in the modulation equations are 

set to zero, enabling the computation of periodic solutions along the backbone branches. 

For simplification, a symmetric case is considered by assuming 𝛼 = 𝛾 . Under this 

assumption, Eq. (5.33) can be reformulated as follows: 

 
( )3 1

3 2 2 3

3

3 9 9 3 ( )
0

2 2 8 2p p

k A A B AB B k A BA

m

A

m



  

− + − −
− − + =    (5.34) 

By applying the same procedure to the second governing equation, Eq. (5.26) can be 

expressed as: 
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   (5.35) 

The amplitudes A and B in Eqs. (5.34) and (5.35) are solved for specified ω. Then, the 

displacement and velocity can be derived as: 
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  (5.36) 

As the system is conservative, its total energy can be expressed as follows: 

 2 21 1

2 2
ac pp aE m X m X= +     (5.37) 

With a triplet of ω, A and B in Eqs. (5.34) and (5.35), the FEP of the system with the 

MPLNES can be obtained, and the results are shown as black lines in Figure 5.18. To 

derive the FEP for the PLNES, the second square-bracketed term in Eq. (5.35) is removed 

since it is derived from 𝑓𝑛̅2. The corresponding results are presented in Figure 5.19. Two 

black curves in Figures 5.18 and 5.19 present two primary NNM backbone branches: the 

upper one denoted as S11-, originating from 𝑓𝑝, is the out-of-phase branch, and the lower 

one denoted as S11+, originating from 𝑓𝑎, is the in-phase one. Additionally, the turning 
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point in S11− represents the energy threshold (ET) that is required to fully activate the 1:1 

resonance.  

The WT spectra contours of the relative displacement z at four different initial energy 

levels are overlaid on the FEPs to highlight the relationship between frequency components 

and displacement amplitude. Comparing Figures 5.18(a)-(b) and 5.19(a)-(b) reveal that 

when the initial energy is below the ET, the oscillation of the MPLNES tends to follow the 

S11+ backbone at the beginning, then follows a subharmonic branch (not shown). In 

contrary, the oscillation of the PLNES is mainly limited to its linear stiffness region. By 

comparing the two systems, it can be concluded that the MPLNES is able to show more 

nonlinearity under low and medium energy levels than the PLNES. As shown in Figures 

5.18(c)-(d) and 5.19(c)-(d), when the initial energy exceeds the ET, the oscillations of both 

MPLNES and PLNES are attracted to their S11+ backbones, indicating that the desired 1:1 

resonance has been established in both systems. Notably, the MPLNES shows immediate 

and steady 1:1 resonance compared to the PLNES, resulting in more effective TET from 

the primary system to the NES. 
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Figure 5.18 FEPs and WT spectra of the relative displacement z with MPLNES: (a) 

low initial energy X = 3 mm; (b) medium initial energy X = 5.0 mm; (c) medium-high 

initial energy X = 7.0 mm; (d) high initial energy X = 8.0 mm. 
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Figure 5.19 FEPs and WT spectra of the relative displacement z with PLNES: (a) low 

initial energy X = 3 mm; (b) medium initial energy X = 5.0 mm; (c) medium-high initial 

energy X = 7.0 mm; (d) high initial energy X = 8.0 mm. 

5.4 VS and EH Trade-off Study 

As shown in the previous studies [30, 52], the dual objective of maximizing VS and 

EH performances cannot be achieved simultaneously. It is imperative to maintain a proper 

trade-off between VS and EH. In addition, an investigation on this issue can further 

demonstrate the advantages of introducing the GMS. To better evaluate the VS 

performance, an index 𝐷𝑐𝑎
 is introduced: 

 
a am aec ccD D D= +    (5.38) 
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where 𝐷𝑐𝑎𝑚
 represents the percentage of the initial energy dissipated by the mechanical 

damping over the time duration T defined as: 
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and 𝐷𝑐𝑎𝑒
 represents the percentage of the initial energy harvested by the load resistor over 

the time duration T defined as: 
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Hereafter, 𝐷𝑐𝑎
 is referred to as the percentage of the initial energy dissipated by the NES. 

Note that as a key feature of the grounded EMEH, 𝐷𝑐𝑎𝑒
 is related to 𝑥̇𝑎 instead of 𝑧̇. A 

series of simulations are performed to evaluate 𝐷𝑐𝑎
 as a function of 𝑋 under various 𝑅𝑙 

values. Figure 5.20 presents the simulation results. As shown, 𝐷𝑐𝑎
 sees a dramatic jump 

when 𝑋 = 2 mm for the MPLNES and 𝑋 = 5 mm for the PLNES, indicating that to activate 

the NES engagement, the MPLNES requires a lower initial energy threshold than the 

PLNES. The optimal VS performance is achieved at X = 9 mm for the PLNES. Beyond 

this point, the performance shows a decreasing trend. In contrast, the MPLNES shows a 

more robust VS performance as it can maintain the peak VS performance over a wider 

range of initial displacements. Notably, the peak values of 𝐷𝑐𝑎
for the two configurations 

are comparable.  

Additionally, for both MPLNES and PLNES, within the range of 𝑅𝑙 =30 Ω to 120 Ω, 

lower 𝑅𝑙  values generally result in improvement of the VS performance. However, a 

comparison between the cases of 𝑅𝑙=20 Ω and 30 Ω, reveals a notable exception. When 

the initial energy is insufficient to fully activate the 1:1 resonance, the system with the 

higher 𝑅𝑙 shows a better VS performance. This is because an excessively small 𝑅𝑙 induces 

high electrical damping, which causes the NES to settle too quickly and prevents it from 

sustaining the dynamics necessary for an efficient TET. When the initial energy is 

sufficiently high to fully engage the 1:1 resonance, a lower 𝑅𝑙 leads to an enhanced VS 

performance. 
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Figure 5.20 Percentage of the initial energy dissipated by the NES: (a) MPLNES; (b) 

PLNES. 

To further illustrate the influence of 𝑅𝑙, simulations are repeated for both MPLNES and 

PLNES under the medium-high initial energy, by employing a lower load resistance value 

𝑅𝑙 = 20 Ω. As shown in Figures 5.21(a) and 5.22(a), the oscillation amplitudes of the 

primary system in both configurations exhibit a more rapid decay compared to the cases in 

Figures 5.14(a) and 5.15(a). Due to high electrical damping, the oscillation of the MPLNES 

and PLNES stops early, consequently, the output voltage will also decrease rapidly.  

 

Figure 5.21 Simulation results with MPLNES and X = 7.0 mm, 𝑅𝑙 = 20 Ω: (a) 𝑥𝑝; (b) 

𝑥𝑎; (c) 𝐷1; (d) 𝑉𝑜𝑢𝑡. 
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Figure 5.22 Simulation results with PLNES with X = 7.0 mm, 𝑅𝑙 = 20 Ω: (a) 𝑥𝑝; (b) 

𝑥𝑎; (c) 𝐷1; (d) 𝑉𝑜𝑢𝑡. 

Based on the investigation above, it is evident that the load resistance 𝑅𝑙 affects both 

VS and EH performances. To better evaluate the energy harvesting efficiency, another 

index 𝐷𝑙𝑜𝑎𝑑 is defined as: 
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which measures the percentage of the energy harvested by the load resistance over the 

initial input energy. Comparing Eq. (5.41) and Eq. (5.40) reveals 𝐷𝑙𝑜𝑎𝑑 = 𝐷𝑐𝑎𝑒
𝑅𝑙/

(4𝑅𝑐𝑜𝑖𝑙 + 𝑅𝑙), indicating that increasing 𝑅𝑙 can enhance the power extraction from the load 

resistor. However, as mentioned above, a larger 𝑅𝑙 value generally has an adversely effect 

on the VS performance of the system. Evidently, there is a trade-off between VS and EH 

when varying 𝑅𝑙 ’s value. To explore this trade-off, a multi-objective optimization is 

conducted to search for an optimal balance between VS and EH. For comparison, three 

NES configurations are considered, namely, MPLNES, PLNES and MPLNES without 

DSBs. It is worth mentioning that the modelling of the last configuration is achieved by 

using 𝑓𝑛1 = 𝑘𝑔1z in Eqs. (5.1) and (5.2). For the optimization of each configuration, 𝑅𝑙 and 

𝑋 are chosen to be the parameters to be optimized. The two objective functions are defined 

as follows: 

 
1( , ) ( )

al cJ R X D T=    (5.42) 
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 2 ( , ) ( )loadlJ R X D T=    (5.43) 

where 𝑇 = 10 s. The MATLAB Global Optimization Toolbox is used to solve this 2-

objective optimization problem. Since the program is based on minimization of the 

objective functions, the two objectives are set to −𝐽1 and −𝐽2. The search range of the 

initial displacement is from X = 1 mm to 3 mm for Case A (low initial energy) and from 

X = 3 mm to 5 mm for Case B (medium initial energy), from X = 5 mm to 7 mm for Case 

C (medium-high initial energy) and from X = 7 mm to 10 mm for Case D (high initial 

energy). The search range of the load resistance is from Rl = 1 Ω to 150 Ω. The population 

size and the maximum number of generations are set to 500 and 50, respectively.  

Figure 5.23 shows the so-called Pareto front for Case B for each of the three 

configurations. The best trade-off points marked as red circles are chosen as the ones that 

are closest to the origin of the plots. Table 5.3 summarizes the optimized values of 𝑅𝑙 and 

𝑋 for the three configurations. It can be observed that the optimum 𝑅𝑙  value generally 

exhibits a decreasing trend with increasing initial energy levels for all three NES 

configurations. This trend reflects a balance between the decay rate of the NES oscillation 

and the energy dissipated by the EMEH. An exception is observed in the case of the PLNES, 

where the optimum values for 𝑅𝑙 remains relatively low in Cases A and B, as the system 

mainly exhibits linear behaviour under these conditions. 

The bar chart shown in Figure 5.24 compares the optimum VS and EH performance of 

the three configurations under the different initial energy levels. It clearly demonstrates 

that the MPLNES exhibits outstanding VS and EH performance for all four cases. Due to 

the higher initial energy threshold required for establishing TET, the PLNES only shows 

comparable the VS and EH performance to the MPLNES under Cases C and D. In Case D, 

the VS performance of the two NES configurations is nearly identical, which can be 

attributed to the full establishment of the 1:1 resonance in both systems. The MPLNES 

without DSBs exhibits relatively low 𝐽1 and 𝐽2 values in the four cases, indicate that the 

TET can not be established even under the large initial energy level. However, it shows 

slightly better VS and EH performance than PLNES under Cases A and B due to the effect 

of the GMS. Two main observations can be drawn from the comparison. First, the 
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introduction of the GMS significantly enhances the VS and EH performance of the PLNES, 

particularly under low initial energy conditions. Second, the presence of a PLS between 

the primary system and the NES is crucial for enabling efficient engagement of TET. 

 

Figure 5.23 The Pareto fronts for Case B: (a) MPLNES; (b) PLNES and (c) MPLNES 

without DSBs. 

Table 5.3 The optimization results for three NES configurations. 

 MPLNES PLNES MPLNES without DSBs 

 𝑅𝑙  (Ω) 𝑋 (mm) 𝑅𝑙  (Ω) 𝑋 (mm) 𝑅𝑙  (Ω) 𝑋 (m) 

Case A 44.66 2.44 2.70 1.40 4.26 2.35 

Case B 16.85 3.11 2.11 4.90 3.99 3.05 

Case C 13.84 5.56 11.71 6.98 3.48 5.03 

Case D 8.50 7.47 4.85 8.79 2.57 7.00 
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Figure 5.24 Comparison of the optimum results for the three configurations under 

different initial energy level ranges: (a) 𝐽1; (b) 𝐽2. 

5.5 Experimental Verification 

An experimental study is conducted to verify the simulation results. Figure 5.25(a) 

shows a photo of the experimental setup to test the transient response of the primary system 

with the MPLNES. The base structure is fixed to the ground. The four coils are wired in 

series and connected to a variable resistor as shown in the bottom left of the figure. On the 

right, two laser reflex sensors (CP24MHT80, Wenglor) are used to measure the 

displacement of the primary block and the NES’s mass, respectively. A computer equipped 

with the dSPACE dS1104 data acquisition board is used to collect the displacement signals 

from the laser sensors and the voltage signals of the EMEH’s load resistor. To control the 

experiment, a program is developed by using the MATLAB Simulink which is interfaced 

with dSPACE Controldesk Desktop software. To have a better view of the MPLNES, 

Figure 5.25(b) shows the close-up view of the apparatus. For comparison, the primary 

system with the PLNES is also tested experimentally. This configuration is achieved by 

removing magnet D. The transient responses of both configurations are tested under the 

same load resistance value and initial conditions as those used in the simulation presented 

in Section 5.3. 
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Figure 5.25 The experimental setup: (a) the entire system; (b) a close-up view of the 

MPLNES and magnet D. 

Comparison of Figures 5.26-28 with Figures 5.11-13 reveals that overall, the 

experimental results agree with the simulation ones, confirming that the MPLNES’s 

nonlinearity can is activated under the low initial energy level. However, as a notable 

difference, the responses obtained from the experiment decay faster than those from the 

simulation. This difference is primarily attributed to the energy loss caused by impacts 

between the beam and the DSBs,a dissipation mechanism not accounted for in the 

modeling. As a result, the output voltage from the experiment also exhibits a more rapid 

decay, suggesting that the actual energy harvested by the EMEH is lower than that 

predicted by the simulation. 

 

Figure 5.26 Experimental results with MPLNES and X = 3.53 mm: (a) 𝑥𝑝; (b) 𝑥𝑎; (c) 

𝐷1; (d) 𝑉𝑜𝑢𝑡. 
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Figure 5.27 Experimental results with PLNES and X = 2.99 mm: (a) 𝑥𝑝; (b) 𝑥𝑎; (c) 

𝐷1; (d) 𝑉𝑜𝑢𝑡. 

 

Figure 5.28 WT spectra of the experimental responses: (a) 𝑥𝑝 with MPLNES ; (b) 𝑥𝑝 with 

PLNES 𝑥𝑝; (c) 𝑥𝑎 with MPLNES; (d) 𝑥𝑎 with PLNES. 

Comparison of Figures 5.29–5.31 with Figures 5.14–5.16 also reveals that the 

experimental results follow the general trends predicted in the simulation, confirming that 

under the medium-high initial energy, the 1:1 resonance is activated for both systems. 

However, due to the additional damping introduced by impact, the responses in the 

experiment decay more rapidly than those in the simulations. This suggests that TET exists 

for a shorter duration than predicted by the simulation.  
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Figure 5.29 Experimental results with MPLNES and X = 6.87 mm: (a) 𝑥𝑝; (b) 𝑥𝑎; (c) 

𝐷1; (d) 𝑉𝑜𝑢𝑡. 

 

Figure 5.30 Experimental results with PLNES and X = 6.93 mm: (a) 𝑥𝑝; (b) 𝑥𝑎; (c) 

𝐷1; (d) 𝑉𝑜𝑢𝑡. 
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Figure 5.31 WT spectra of the experimental responses: (a) 𝑥𝑝 with MPLNES; (b) 𝑥𝑝 with 

PLNES; (c) 𝑥𝑎 with MPLNES; (d) 𝑥𝑎 with PLNES. 

Figures 5.32 and 5.33 show the FEPs and WT spectra for the relative displacement for 

the system with the MPLNES and the PLNES, respectively. By comparing them with 

Figures 5.18-5.19, it can be found that the experimental results show a good agreement 

with the simulation ones when the initial energy is lower than the ET. However, under the 

medium-to-high and high initial energy conditions, the oscillation amplitudes of both 

MPLNES and PLNES are somewhat lower than the S11+ backbone curves. This 

discrepancy can be attributed to the additional damping induced by repeated impacts, 

which suppresses the dynamic response of the NESs and prevents a full establishment of 

the 1:1 resonance. 
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Figure 5.32. FEPs and WT spectra for the experimental relative displacement z with 

MPLNES: (a) low initial energy X = 3.53 mm; (b) medium initial energy X = 5.21 mm; 

(c)medium-high initial energy X = 6.87 mm and (d) high initial energy X = 8.50 mm. 
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Figure 5.33 FEPs and WT spectra for the experimental relative displacement z with 

PLNES: (a) low initial energy X = 2.99 mm; (b) medium initial energy X = 4.78 mm; (c) 

medium-high initial energy X = 6.93 mm and (d) high initial energy X = 8.11 mm. 

5.6 Conclusions 

In this study, a magnetically enhanced piecewise-linear nonlinear energy sink 

(MPLNES) was developed to achieve simultaneous vibration suppression (VS) and energy 

harvesting (EH). The MPLNES is connected between the primary system and the ground 

through a piecewise-linear spring (PLS) and a grounded magnetic spring (GMS), and 

incorporates a grounded electromagnetic energy harvester (EMEH). A detailed design 

procedure was established for both the PLS and GMS. For the PLS, the NES frequency at 

maximum displacement is tuned to match the natural frequency of the primary system. 
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Using the derived two-variable model, the GMS is designed based on two criteria—

maintaining mono-stable behavior and enhancing the essential nonlinearity of the NES—

by appropriately selecting the parameters d and h. The transduction factor of the EMEH is 

determined through COMSOL simulations and expressed as a function of the positions of 

both the MPLNES and the primary mass, with experimental results confirming the model’s 

accuracy. 

In the performance evaluation, a comparative analysis between the MPLNES and a 

conventional piecewise-linear nonlinear energy sink (PLNES) was conducted. The 

transient behaviors of both configurations were examined through time responses, wavelet 

transform spectra, and frequency energy plots under various initial energy levels. The 

results show that the MPLNES requires a lower energy threshold to initiate targeted energy 

transfer (TET) compared to the PLNES. This advantage arises from the GMS, which 

introduces a position-dependent restoring force that dynamically shifts the NES’s 

equilibrium position in response to the primary mass motion. This unique feature amplifies 

the relative displacement under low initial energy, promoting earlier activation of the 

nonlinear regime and thus reducing the TET threshold. 

To address the trade-off between VS and EH, a multi-objective optimization was 

performed to identify the optimal initial displacements and load resistances for three NES 

configurations: the PLNES, the MPLNES, and the MPLNES without double stop blocks 

(DSBs). Three key observations emerged from the results: (1) the MPLNES not only 

achieves a better balance between VS and EH than the other two configurations but also 

maintains robust performance across a wide range of initial energy levels; (2) the optimal 

load resistance generally decreases as the initial energy level increases for all three 

configurations; and (3) the MPLNES without DSBs is inefficient for both VS and EH under 

various initial conditions, highlighting that the hardening effect introduced by the PLS is 

essential for sustaining effective TET. 

Experimental tests were performed at various initial energy levels, and the results 

showed good agreement with numerical predictions. The presence of double stop blocks 

introduced impact damping, resulting in additional energy dissipation and slightly faster 
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decay compared to the simulations. Nevertheless, the measured transient responses 

confirmed that the developed apparatus is capable of achieving efficient VS and EH even 

under low initial energy levels. 

Appendix 5A. Parameters of the apparatus 

Table 5.4 The parameters of the PLSs with DSBs. 

parameters of PLS Geometry parameters of the blocks 

Symbols values Symbols values 

kg1  (N/m) 90.205 l1 (m) 0.0116 

zg1(m) 0.008 g1 (m) 0.004 

kg2  (N/m) 985.764 l2 (m) 0.136 

zg2 (m) 0.0143 g2 (m) 0.007 

kg3 (N/m) 2370.967   

Appendix 5B. The Amplitudes of the Position Vectors of Magnets 

The expressions of the amplitudes of position vectors of magnets shown in Eqs. (5.10) 

and (5.12) can be defined as follows: 
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Appendix 5C. Determination of the EMEH’s Transduction Factor 

in COMSOL 

In this study, a finite element analysis software COMSOL Multiphysics is utilized to 

compute the change rates of the magnetic flux of coils 1 and 2 when magnets A and B are 

oscillating through them. For the sake of simplicity, the influence of magnet C on the coils 

1 and 2 is ignored. The geometry of the model built in COMSOL is shown in Figure 5B.1(a). 

It should be noted that each of the coils is modelled as n disks to represent the n layers and 

meshed individually. As shown in Figure 5B.1(b), Dcoil  and hcoil  are the diameter and 

height of the coil, respectively, dg is the air gap between the end surfaces of magnet C and 

the coils 1 and 2, All the values of the parameters of the coils and magnets used in the 

simulation are summarized in Tables 3.1 and 3.2, respectively. In the simulation, each coil 

is modelled with 12 layers, the x-axis positions of magnets B and C are expressed as 𝑥𝑎 =
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𝑥𝑝 + z , while the z-axis position on is given by δ(z) = 𝑙 − √𝑙2 − 𝑧2, and θ is set as the 

angle of magnets A and B from the horizontal.  

 

Figure 5B.1 COMSOL model used to determine 𝐾𝑡𝑖: (a) isometric view; (b) side 

view. 
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Chapter 6 Conclusions and Future Works 

6.1 Conclusions  

This thesis has systematically addressed the modelling, design, analysis and 

experimental validation of a nonlinear energy sink (NES) that is capable of simultaneously 

achieving vibration suppression (VS) and energy harvesting (EH). Motivated by the high 

initial energy threshold of the existing NES designs, the research focused on integrating a 

grounded magnetic spring (GMS) and an energy harvester into a conventional piecewise 

linear NES (PLNES). Four interrelated objectives were pursued, each corresponding to a 

dedicated study: developing an accurate magnetic force model, comparing the 

characteristics of different energy harvesting mechanisms, establishing a systematic design 

process for a piecewise linear spring (PLS), and proposing a magnetically enhanced 

PLNES. 

Firstly, A tunable multi-stable piezoelectric energy harvester (PEH) was developed, 

comprising a cantilever beam and an adjustable magnetic assembly capable of achieving 

mono-, bi-, and tri-stable states by tuning geometric parameters. Two magnetic restoring 

force models (the equivalent magnetic point model as 1st model and the equivalent 

magnetic 2-point dipole model as the 2nd model) were derived and validated experimentally. 

The models were further optimized using a multi-population genetic algorithm (MPGA). 

The results show that a five-parameter optimized 2nd model achieves the highest accuracy. 

Parametric sensitivity analysis revealed that the tri-stable configuration is more sensitive 

to parameter variations. The stability state region demonstrates that the developed 

apparatus possesses a large parameter tuning space. 

Secondly, A multi-stable hybrid energy harvester (MSHEH) combining a PEH and an 

electromagnetic energy harvester (EMEH) is developed. The MSHEH incorporates a novel 

coil arrangement in the EMEH to enhance power output. The EMEH transduction factor is 

calculated numerically and validated experimentally. The magnetic restoring force is 
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modelled via a 2-point dipole approach, and the accuracy of the model is further improved 

by the genetic algorithm identification approach. This refined model was used to map the 

stability state region Performance evaluations under high and low excitation levels 

demonstrated configuration-dependent advantages: the tri-stable state achieved the widest 

bandwidth (2.36 Hz) and highest total harvested energy (3.86 J) under high excitation, 

while the bi-stable state outperformed others in low excitation with an effective bandwidth 

of 2.65 Hz and 9.35×10⁻² J accumulated energy, primarily due to the EMEH’s power peaks 

near side equilibria. In addition, Pareto front optimization is conducted to determine the 

optimal load resistances for both transducers, showing dependence on the amplitude and 

frequency of the excitation. 

Thirdly, A systematic design procedure for a PLS to emulate an essentially nonlinear 

stiffness (ENS) is proposed. The PLS consists of a cantilever beam constrained by either 

single- or double-stop blocks (DBSs), which convert the beam into a fixed-pinned type 

with an overhang upon contact. The single-stop configuration is defined by two parameters 

(h and d), while the double-stop configuration requires four parameters( h1, d1, h2 and d2). 

The process begins with defining the desired ENS restoring force using the equivalent 

stiffness concept, which approximates a cubic nonlinearity. A least squares optimization is 

then used to obtain the optimal stiffness and switching positions for both PLS types. Finally, 

the geometric parameters are derived from the optimized values. Numerical analysis 

confirmed that the double-stop configuration provides a closer match to the desired 

restoring force and potential energy distribution, and produces smoother, longer 

instantaneous frequency (IF) transitions compared to the single-stop configuration. 

Experimental validation confirmed the static accuracy of the designed model and 

demonstrated dynamic force-displacement agreement within the achievable excitation 

range. A redesign with reduced displacement limit improved attainable IF range and 

restoring force coverage. Observed discrepancies in decay rates suggested variable 

damping and non-negligible impact effects, which warrant further investigation. 

Finally, a magnetically enhanced piecewise linear NES (MPLNES) is developed. The 

MPLNES integrates a GMS and a grounded EMEH into a conventional PLNES with a 
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DBSs. Based on the theoretical foundation built in chapters 2 and 4, the PLS and GMS are 

designed to maintain mono-stable behaviour while enhancing the essential nonlinearity of 

the NES. COMSOL simulation is used to model the position-dependent EMEH 

transduction factor, with experimental verification confirming accuracy. Comparative 

studies against a conventional PLNES show that the MPLNES requires a lower energy 

threshold to trigger TET, achieving more robust VS and EH performance over varying 

excitation levels. This advantage arises from the GMS, which introduces a position-

dependent restoring force that dynamically shifts the NES’s equilibrium position in 

response to the primary mass motion. This unique feature amplifies the relative 

displacement under low initial energy, promoting earlier activation of the nonlinear regime 

and thus reducing the TET threshold. To balance VS and EH performance, a multi-

objective optimization was carried out across three configurations: PLNES, MPLNES, and 

MPLNES without DSBs. The results showed that: (1) MPLNES offers the best trade-off 

between VS and EH and remains robust over varying energy levels; (2) optimal load 

resistance tends to decrease with higher initial energy; and (3) removing DSBs significantly 

reduces system efficiency, highlighting the essential role of the PLS-induced hardening 

effect. Experimental results matched simulations and confirmed efficient dual-function 

operation even at low excitation levels, with impact damping from double stops 

contributing to slightly faster decay. 

6.2 Recommendations for Future Work 

The research objectives set out in this thesis have been successfully achieved. Building 

upon these results, several directions for future investigation are proposed: 

1. The current modelling for the MPLNES does not explicitly account for impact 

dynamics, which may be the reason for the discrepancy between the simulated 

responses and the experimental responses in terms of decay rate. Future work could 

consider energy dissipation due to impact to improve model accuracy. Additionally, 

material selection and structural adjustments could be explored to better control or 

utilize impact-induced damping for enhanced energy transfer. 
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2. The current analysis for the MPLNES only focuses on transient responses. Future 

studies could evaluate its performance under harmonic excitation. Additionally, 

More realistic excitations, such as colored noise excitation, could be considered to 

provide deeper insight into its practical performance in real-world environments. 

3. The proposed MPLNES belongs to the mono-stable nonlinear system. Since the 

GMS is tunable, the bi-stable or tri-stable configuration could also be investigated 

to explore its potential. Such studies could further elucidate the role of multi-

stability in optimizing performance, enhancing robustness, or enabling adaptive 

behaviour under varying excitation conditions. 

4. Since the present analysis primarily compares the EH performance of the MPLNES 

and PLNES, a basic resistive load is adopted for simplicity. Future work could 

incorporate rectifier circuits and energy storage modules to regulate and store 

harvested power, enabling direct use by low-power sensors or control electronics. 

Application-specific prototypes could be developed and demonstrated in real-world 

scenarios, such as building health monitoring. 
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Appendices 

Appendix A. A Grounded and Tunable Multi-Stable Nonlinear 

Energy Sink: Transient Responses 

A.1 Introduction 

Vibration widely exists in machines and civil structures. Such ambient vibration may 

be caused by wind, operation of the machine or human activity. A vibration energy 

harvester (VEH) is a device that converts mechanical motion to electricity, which can solve 

the battery changing issue for the wireless sensor network.  

A traditional VEH consists of a linear oscillator that operates in a narrow frequency 

bandwidth. In order to widen the bandwidth, various nonlinear VEHs have been proposed 

[1]. According to the system stability, the nonlinear VEHs can be classified as mono-stable 

and multi-stable such as bi-stable or tri-stable. A piezoelectric vibration energy harvester 

(PVEH) reported in [2] consists of a piezoelectric cantilever beam with a tip magnet 

subjected to an external magnetic field generated by a pair of fixed magnets. Such a mono-

stable system can exhibit softening or hardening behaviors when the magnetic interaction 

is adjusted. By applying different external magnet tuning strategies, a bi-stable energy 

harvester (BEH) can be achieved. As shown in [3], the BEH can enhance the power output 

performance. Further, tri-stable energy harvesters (TEHs) have been proposed in order to 

reduce the depth of the BEH’s potential wells. Based on the configuration of the BEH in 

[3], a TEH was achieved by tuning the angular orientations [4] or the spatial positions [5] 

of the fixed magnets. The studies showed that the optimally designed TEHs outperform the 

BEHs in terms of the voltage output.  

On the other hand, vibration that exists in machines and civil structure is harmful, and 

it may cause resonance and even failure of the system. A vibration absorber is a device 
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used to suppress the vibration of the primary system. A traditional linear vibration absorber 

mainly operates in the narrow frequency bandwidth. The nonlinear energy sink (NES) was 

proposed for the purpose of achieving wideband vibration suppression (VS). The NES 

consists of a small mass and essential nonlinear spring so that it can be weakly coupled 

with the primary system. The NES possesses some unique features such as target energy 

transfer (TET) and strongly modulate resonance (SMR) which can significantly enhance 

the vibration suppression performance. For the past two decades, various kinds of NES 

have been proposed by researchers, such as rotational NES [6], mono-stable NES (MNES) 

[7] and multi-stable NES such as bi-stable NES (BNES) [8, 9] and tri-stable NES (TNES) 

[10]. The study has shown that the multi-stable NES can achieve highly efficient TET in a 

wider band. 

Since the 2-degree-of-freedom PVEH and NES share a similar structure, it is much 

desirable to achieve VS and energy harvesting (EH) simultaneously by a well-designed 

NES. An MNES based PVEH has been proposed in [11]. The apparatus possesses the 

characteristics of the 1:1 resonance TET and initial energy dependence. The study shows 

a significant VS effect and the broadband voltage output can also be achieved. The study 

reported in [12] proposed a PVEH with BNES. The VS and EH performance of the 

proposed PVEH is compared with that of a linear absorber under the impact excitation. 

Besides, a tuned BNES was proposed in [13] to further improve the VS and EH 

performances. 

So far, the proposed MNESs and multi-stable NESs that can achieve VS and EH 

simultaneously are considered to be ungrounded as the nonlinear spring is connected 

between the NES mass and the primary mass. In this study, a grounded PVEH with a 

tunable multi-stable NES is proposed. The proposed NES consists of one stationary magnet 

and a cantilever beam whose free end is attached by a moveable assembly of two magnets 

and one tip magnet. By varying the gap between the stationary magnet and the tip magnet, 

and the distance between the magnet assembly and the tip magnet, the NES can assume 

three states: mono-stable, bi-stable or tri-stable. The rest of the chapter is organized as 

follows: Section 2 presents the proposed apparatus, and derives the electromechanical 
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model based on the lumped parameter model of the system, and then the magnetic force 

model is derived according to the magnetic dipole approach. Section 3 evaluates the 

performance under the transient responses by conducting the numerical simulation. Section 

4 draws the main conclusions of the study. 

A.2 The Apparatus and Electromechanical Model 

Figure A.1(a) shows a CAD drawing of the apparatus developed for this study. The 

primary system consists of a top block and base block which are connected by four 

stainless-steel beams. The proposed tunable multi-stable NES comprises a cantilever beam 

attached with a tip magnet and a movable assembly of 2 magnets. The cantilever beam is 

composed of a unimorph piezoelectric transducer (S128-J1FR-1808YB, Midé 

Corporation) and a stainless-steel beam. One end of the cantilever beam is clamped to the 

top block while its other end is attached with a small cylindrical magnet B and a holder for 

two identical cylindrical magnets A and C. The holder for magnets A and C can slide along 

the beam. A large cylindrical magnet D is fixed in a holder that can slide vertically inside 

a stand fastened to the base block. When the primary beams and the cantilever beam are at 

their equilibrium position or undeflected, the four magnets are situated on the same vertical 

plane and magnets B and D are colinear. By sliding the holder of magnet D, the distance 

between magnet B and magnet D can be adjusted. Figure A.1(b) shows the lumped 

parameter model of the proposed apparatus, where x and xa represent the displacement of 

the primary mass and NES mass, respectively, the magnetic interaction is considered as a 

nonlinear spring with the nonlinear stiffness kn. The equations governing the dynamics of 

the system can be represented by:  

 ( ) 0a amx cx kx c u k u v+ + − + + =     (A.1) 

 ( ) 0a a a a nm x c u k u v f+ + + − =     (A.2) 

 0p

l

v
c v u

R
+ − =     (A.3) 
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where 𝑚, c, and k are the mass, damping coefficient and stiffness of the primary system, 

respectively; ma , ca  and ka  is the mass, damping coefficient and stiffness of the NES 

system, respectively; θ is the electromechanical coupling coefficient of the PEH, f
n
 denotes 

the nonlinear magnetic force applied to the NES mass, Rl is the load resistance, cp is the 

capacitance of the PEH, and u = xa − x represents the relative displacement between the 

primary mass and the NES mass.  

 

Figure A.1(a) 3D CAD drawing of a primary system attached by a tunable multi-

stable NES, (b) lumped parameter model. 

Figure A.2 illustrates two symmetric situations of the deformed cantilever beam as the 

primary mass moves identically to the negative or the positive position on X-axis where O' 

represents the middle point of the fixed end of the cantilever beam. And the central axis of 

the cantilever beam will always be on plane XZ. The figure also depicts the spatial positions 

and polarities of the four magnets where  mA , mB , mC , mD  are the magnetic moment 

vectors, A, B, C and D are the center positions of magnets, rDA represents a vector from A 

to D, rDB represents a vector from B to D, and vector rDA’s projection on the x-z plane is 

represented by rDAxz. Note that the direction of mB is opposite to that of mA, mC and mD.  
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Figure A.2 Spatial positions of the magnets. 

The total nonlinear magnetic force f
n

 in the x-direction consists of an attractive 

magnetic force f
DBx

 between magnet D and magnet B, and two repulsive magnetic forces: 

f
DAx

 between magnet D and magnet A and f
DCx

 between magnet D and magnet C. Since 

magnets A and C are identical and symmetrical about the central line of the beam, the 

values of f
DAx

 and f
DCx

 are equal. Then the total nonlinear magnetic force can be expressed 

as： 

 = 2 .DBx DAx D Bn Cx D x DAxf f f f f f= + + +    (A.4) 

Figure A.3(a) shows the side view of Figure A.2 when the cantilever beam is 

undeformed, where d is the vertical distance between magnet D and magnet B, h is the gap 

between the center of magnet A or C and the center of magnet B, l is the length of the 

cantilever beam, and w is the distance between the axis of magnet B and that of magnet A 

or C. Figure A.2(b) shows the front view of Figure A.2 when the cantilever beam is 

deformed to the right side and the primary mass’s displacement x is positive, where α is 

the angle between mB and mD, and β is the supplement of the angle between mD and rDB, 

x  and z  are the transverse and longitudinal displacements of the center of magnet B, 

respectively. 
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Figure A.3(a) Side view and (b) front view of the apparatus. 

In this paper, the magnetic dipole approach [14] is used to determine the magnetic force 

between two magnets. Firstly, the magnetic force between magnet D and magnet B is 

considered. According to the dipole assumption, the force exerted by magnet D on magnet 

B is given by:  

 ( )DB DB B=  f B m    (A.5) 

where BDB is the magnetic flux density generated by magnet D upon B. Equation. (A.5) 

can be expanded as: 

( ) ( )( ) ( ) ( )0

4
ˆ ˆ ˆ

3
ˆˆˆ ˆ ˆ ˆ ˆ ˆ

4
ˆˆ ˆ5D B

DB DB B D DB D DB DB B B D DB D B DB

DB

m

r

m
 −  +=     +r m r m m mf mm r r rmr m  (A.6) 

where mB, mD, and rBD are the magnitude of mB, mD, and rDB, respectively; ˆ
Bm , ˆ

Dm , and 

B̂Dr  are the unit vector of mB , mD , and rDB , respectively. These unit vectors can be 

expressed as: 
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   

 

ˆ ˆsin( ) cos( ) 0  0 1 0  

ˆ sin( ) cos( ) 0 .B

B D

D

α β

β β

= − = −

= −

m m

r

， ，
   (A.7) 

Substituting the above unit vectors in the dot products of Eq. (A.6) and the magnetic force 

in the x-direction can be obtained in the following form: 

( ) ( ) ( ) ( ) ( )0

4
sin cos cos cos

3
5 .sin( ) o

4
c sD B

DBx

BD

m m
f

r
− − +  = −   (A.8) 

Since the slope of the beam’s tip is relatively small, it is assumed that ∠BOB0 ≈ α. Also, it 

is noted that β can be found from the triangle DRB in Figure A.3(b). The trigonometric 

relationship in Eq. (A.8) can be expressed as follows: 

 ( ) ( )sin ; cos  = ;
u l z

l l
 

−
=       (A.9) 

 ( ) ( )sin ; cos ;a

DB DB

x z d

r r
 

+
= = −      (A.10) 

( ) ( ) ( ) ( ) ( )
2 2

cos cos cos sin sin

.
DB D

a a a

B DB

x x x lz ld zd zl z z d

l r r l lr

     − = +

  − − + +− +
= − + = 

 

   (A.11) 

where z = l − √l
2 − u2. Substituting the above expressions into (A.8) yields 

( ) ( ) ( ) ( )3

2

2

5

2 20 53

4
2 2D B

DBx

DB

a a a

DB

m m
f l z u d z z l d z dl ux d z d l ux d

l
x

r r


= − 


− − + − − + − + −


−


− +  (A.12) 

Similarly, the magnetic force between magnet A and magnet D in the x-direction can be 

found as: 

( ) ( )
( ) ( ) 3 2 2 20

04 03 0 0

3

4

5
2 2D A

DAx a

DA DAxz

a

a

DAxz

x l z u d zm m
f z l d z d l ux d z d l ux d

l rr r


=   

− − +
− − + − + + −


− −   (A.13) 

where d0=d+h. Substituting Eqs. (A.12) and (A.13) into Eq. (A.4), then the nonlinear 

magnetic force model can be obtained. All the parameters’ values are listed in Table A.1. 
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Note that the amplitudes of magnetic moment vectors for magnets A, B, C and D are 

obtained by an experimental identification given in [15]. For the sake of comparison, there 

are three configurations of the NESs are considered in this study: MNES d=0.0487 m, 

h=0.0187 m ; BNES d=0.0467 m , h=0.0157 m ; TNES d=0.0367 m , h=0.0197 m . The 

potential energy of the NES can be obtained by taking the integral of the total restoring 

force of the NES f
a
 which can be expressed as follows: 

 ( )a a naf k x x f= − −    (A.14) 

Note that the total restoring force is related to three factors: the displacement of the primary 

system x; the displacement of NES 𝑥𝑎 ; and the magnetic force f
n
. In other words, the 

position of the primary system will affect the potential energy of the NES. Figures A.4(a) 

(b) and (c) show the potential energy verse 𝑥𝑎 of the MNES, BNES and TNES for three 

different values of x. It can be observed that the NESs are in symmetrical mono-stable, bi-

stable and tri-stable stability states when x=0, and they become asymmetric mono-stable, 

bi-stable and tri-stable systems as the absolute value of x increases to 0.003 m. It should be 

mentioned that Figure A.4 only shows the local potential of the grounded NESs. It cannot 

tell where the NESs will finally rest according to the local potentials. To get the global 

potentials of the grounded NES systems, the equilibrium positions of the primary systems 

that they are attached to need to be considered. The primary systems with the grounded 

MNES, BNES and TNES will have multiple equilibrium positions due to the changing 

elastic forces induced by the NESs. And the equilibrium position of the primary system xe 

fulfills the following condition: 

 ( )e a ae ekx k x x= −    (A.15) 

where xae is the equilibrium position of the NES. Accordingly, the global potential of the 

grounded NESs can be determined, which can tell the positions that the primary system 

and the NES will finally rest. 
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Figure A.4 The potential energy of the different NESs verse 𝑥𝑎 when varying 𝑥: (a) 

MNES; (b) BNES; (c)TNES. 

A.3 Numerical Simulation 

To compare the VS and EH performance of the system with the MNES BNES and 

TNES, a series of simulations to get their transient responses is conducted. In the 

simulation, the impulsive force f
p
(t) which is applied to the primary system is a half-sine 

signal with amplitude A and period T: 

 

2
sin ,             0<t<

2
( )

0,                                  t
2

p

t T
A

T
f t

T

  
   = 

 


   (A.16) 

where the period T=0.3 s. Two initial energy levels are considered in the simulations: the 

low initial energy level (A=1.2 N) and high initial energy level (A=8 N). In this case, the 
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electromechanical equations of the system Eqs. (A.1) - (A.3) can be rewritten as follows: 

 ( ) ( )a a pmx cx kx c u k u v f t+ + − + + =     (A.17) 

 ( ) 0a a a a nm x c u k u v f+ + + − =     (A.18) 

 0.p

l

v
c v u

R
+ − =     (A.19) 

The values of the parameters in the above equations are listed in Table A.1. By solving 

Eqs. (A.17) - (A.19) with the zero initial condition for the system with the TNES, and the 

initial conditions of(x,  ẋ,  xa,  ẋa,  v)=(0.003, 0, 0.022, 0, 0) and (0.004, 0, 0.031, 0, 0) for 

the systems with the MNES and BNES, respectively, in the period of 20 s using the 

MATLAB ODE45 solver, the transient responses of the primary system, NES and load 

voltage can be obtained. Besides, the EH performance is evaluated by the accumulated 

energy in NES E, which is defined as follows: 

 ( )
( )

0

2
t

l

v t
E t dt

R
=      (A.20) 

where t is the duration of the simulation, v is the load voltage and Rl  represents the 

resistance of the load resistor. 
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Table A.1 Parameters value of the apparatus. 

symbol 
Parameters 

Parameter name value 

μ
0
 Vacuum permeability 4π×10-7 

mA, 

mC 

Magnitudes of magnetic moment vector of magnet A and C 

(H.m/T) 
4.30 

mB Magnitude of magnetic moment vector of magnet B (H.m/T) 0.83 

mD Magnitude of magnetic moment vector of magnet D (H.m/T) 18.00 

w 
Distance between the axis of magnet B and magnet A or C 

(m) 
0.025 

k𝑎 Stiffness of the cantilever beam (N/m) 47.39 

l Length of the cantilever beam (m) 0.12 

k Stiffness of the primary system (N/m) 189 

m Mass of the primary system(kg) 0.44 

ma Mass of the NES (kg) 0.066 

c Damping coefficient of the primary system (Ns/m) 0.125 

ca Daping coefficient of the NES (Ns/m) 0.067 

θ 
Electromechanical coupling coefficient of the piezoelectric 

transducer (N/V) 
1.88×10-4 

Rl Load resistance (ohm) 5×106 

When the amplitude of the impulsive force A=1.2 N , the time responses of the 

displacements of the primary systems with locked NES, MNES, BNES and TNES, and the 

displacements of the MNES, BNES and TNES are shown in Figure A.5. Note that to 

conduct the simulation of the system with a locked NES is by solving Eq. (A.17) with the 

primary mass equal to m+ma, and setting u and v to zero. Figure A.5 shows that the MNES 

performs the snap-through motion between its equilibrium positions initially, and it 

dissipates the impulse energy rapidly within 11.8 s to decrease the initial amplitude of the 

primary system to 4%. By contrast, it takes 13.24 s and 19.5 s for the systems with the 

BNES and TNES to dissipate the initial amplitude to 4%. And it also can be seen that the 

BNES and TNES are only oscillating in one of their potential wells. 
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Figure A.5 Transient responses of the systems with four different NESs when A=1.2 

N, red dash line and blue solid for the displacement of primary mass with locked and 

unlocked NES, green solid line for the NES's displacement: (a) MNES; (b) BNES; (c) 

TNES. 

Figures A.6(a)-(c) show the wavelet transform (WT) spectra of the displacements of 

the primary systems with the MNES, BNES and TNES, and the WT spectra of the 

displacements for their corresponding NESs are shown in Figures A.6(d)-(f). It can be seen 

in Figures A.6(a) and (d) that the 1:1 internal resonance occurs between the MNES and the 

primary system when the MNES performs the snap-through motion at the first 1.5 s. As 

shown in Figures A.6(b) and (e), although the 1:1 resonance phenomenon occurs in the 

system with the BNES initially. However, the nonlinearity does not activate due to the 

BNES only oscillating in the single stability potential well. Figures A.6(c) and (f) show the 

primary system and TNES oscillates at their own natural frequencies, which means the 

TET does not occur. 
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Figure A.6 WT spectra of the transient responses of the systems with four different 

NESs when A=1.2 N, upper plots for the primary displacements and lower plots for the 

NES displacements: (a)(d) MNES; (b)(e) BNES; (c)(f) TNES. 

Figure A.7 shows the accumulated energy for systems with different NESs under the 

low-level impact excitation. It shows that the system with the MNES is the most efficient 

in EH. Due to MNES performing the snap-through movement at the beginning, the 

accumulated energy of MNES shows a rapid rise initially and then stops at 0.52 mJ. By 

contrast, the systems with BNES and TNES are far less efficient in EH with merely 0.06mJ 

and 0.04mJ total accumulated energy, respectively.  



194 

 

 

Figure A.7 Accumulated energy of the systems with different NESs when A=1.2 N. 

For the case of the system under the high-level impact excitation, The time responses 

of the displacements of the primary systems with the locked NES, MNES, BNES and 

TNES, and the displacements of the corresponding NESs are shown in Figure A.8. As 

shown the system with the MNES, BNES and TNES perform the snap-through motion 

initially and then rest in one of their equilibrium positions. The VS effect can be clearly 

observed from the transient responses of the three systems. It takes 14.04 s, 9.55 s and 

13.58 s to decrease the initial amplitude to 4% for systems with the MNES, BNES and 

TNES, respectively. Thus, the system with the BNES is the most efficient in VS among 

the three systems. 

 

Figure A.8 Transient responses of the systems with four different NESs when A=8 N, 
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red dash line and blue solid for the displacement of primary mass with locked and 

unlocked NES, green solid line for the NES’s displacement: (a) MNES; (b) BNES; (c) 

TNES. 

Figures A.9(a)-(c) show the WT spectra of the displacements of the primary systems 

with the MNES, BNES and TNES, and the WT spectra of the displacements of their 

corresponding NESs are shown in Figures A.9(d)-(f). It can be observed in Figure 5.9 that 

the 1:1 resonance has been triggered and the TET has been established between the primary 

systems and NESs of the three systems. Taking the system with the BNES for example, it 

can be seen in Figures 5.9(b) and (e) that the dominant frequencies of the primary system 

and BNES are located around their natural frequencies, which indicates the TET occur. 

And such a phenomenon can also be observed in the other two systems. 

 

Figure A.9 WT spectra of the transient responses of the systems with four different 

NESs when A=8 N, upper plots for the primary systems’ displacements and lower plots 

for the NESs’ displacements: (a)(d) MNES; (b)(e) BNES; (c)(f) TNES. 

Figure 5.10 shows the accumulated energy for the systems with different NESs under 

the high-level impact excitation. It depicts that the system with the MNES is the most 

efficient in EH with 4.55 mJ of total accumulating energy. And the total accumulated 
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energy for the systems with the BNES and TNES is 3.97 mJ and 4.45 mJ, respectively. The 

arrows A, B and C in Figure 5.10 point out the end of the rapid increase period of the 

accumulated energy, which is at 10.37 s, 4.52 s and 6.06 s for the systems with the MNES, 

BNES and TNES, respectively. It can be found that the system with the TNES has better 

EH performance than the systems with the BNES and MNES at the first 9 s since it has 

larger separation distances between its two side potential wells. After that, the system with 

the MNES outperforms in EH since it lasts longer to perform in the snap-through 

movement. 

 

Figure A.10 Accumulated energy of the systems with different NESs when A=8 N. 

A.4 Conclusions 

In this study, a PVEH with a grounded multi-stable NES has been developed. The NES 

can be manually tuned to achieve three different stability states referred to as MNES, 

BNES, and TNES, respectively. The electromechanical model of the system is derived 

from the lumped parameter model, and the magnetic force model is established based on 

the magnetic dipole approach. The simulation is conducted to investigate the VS and EH 

performances of the systems with MNES, BNES and TNES under the low and high-level 

impact excitation. The results depict that under the low-level impact excitation, the system 
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with the MNES has the lowest energy threshold to engage the high-efficiency TET. Thus, 

it outperforms in VS among the three systems, and it also has a better performance in EH 

due to its low energy threshold to operate in the snap-through oscillation. When the initial 

energy level is high enough, the MNES, BNES and TNES can both perform the snap-

through motion initially. In this case, the system with the BNES has better VS performance 

among the three systems. On the other hand, the systems with the BNES and TNES perform 

better in EH initially since they have larger separation distances between their two side 

potential wells. However, the system with the MNES can harvest more energy eventually 

because it lasts longer to perform the snap-through motion. 
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Appendix B. Identification of The Restoring Force of A Grounded 

Nonlinear Energy Sink 

B.1 Introduction 

With the rapid evolution of Internet of Things (IoT) technology, the demand for a self-

sustaining power source for wireless sensor networks has become increasingly critical. A 

vibration energy harvester (VEH) is a viable solution to address this need. Such a device 

can scavenge mechanical energy from ambient vibrations and converting it into electricity, 

offering a sustainable and efficient alternative to conventional power sources such as 

battery and wired power supply.  

A traditional VEH consists of a linear oscillator that operates in a narrow frequency 

bandwidth. In order to widen the bandwidth, various nonlinear VEHs have been proposed 

[1]. According to the system stability, the nonlinear VEHs can be classified as mono-stable 

and multi-stable such as bi-stable or tri-stable. A VEH reported in [2] consists of a 

piezoelectric cantilever beam with a tip magnet subjected to an external magnetic field 

generated by a pair of fixed magnets. Such a mono-stable system can exhibit softening or 

hardening behaviors when the magnetic interaction is adjusted. By applying different 

external magnet tuning strategies, a bi-stable energy harvester (BEH) can be achieved. As 

shown in [3], the BEH can enhance the power output performance. Further, tri-stable 

energy harvesters (TEHs) have been proposed in order to reduce the depth of the BEH’s 

potential wells. Based on the configuration of the BEH in [3], a TEH was achieved by 

tuning the angular orientations [4] or the spatial positions [5] of the fixed magnets. The 

studies showed that the optimally designed TEHs outperform the BEHs in terms of the 

voltage output.  

On the other hand, vibrations present in machinery and civil structures can be 

detrimental, potentially leading to resonance and system failure. To counter this, the 

concept of a Nonlinear Energy Sink (NES) has been introduced for the purpose of 
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achieving wideband vibration suppression (VS) through the target energy transfer (TET) 

phenomenon. Various kinds of NES have been proposed by researchers, such as rotational 

NES [6], mono-stable NES (MNES) [7] and multi-stable NES such as bi-stable NES 

(BNES) [8, 9] and tri-stable NES (TNES) [10]. The study has shown that the multi-stable 

NES can achieve highly efficient TET in a wider band. In recent years, a NES is able to 

achieving VS and energy harvesting (EH) simultaneously has attracted the attention of 

many researchers [11]. An mono-stable NES(MNES) based VEH has been proposed in 

[12], the apparatus shows a significant VS effect and the broadband voltage output can also 

be achieved. In addition, a VEH with bi-stable NES(BNES) has been proposed in [13], the 

study shows the multiple stability bring benefits in both EH and VS performance. 

In many cases, the complexity of the restoring force of the NES’s spring makes it 

impossible to apply analytical methods such as harmonic balance method. Model 

interpretability is a concept employed in machine learning techniques. A polynomial is 

considered to be interpretable. It is desirable to use a polynomial to represent the restoring 

force of the NES’s spring. Most existing studies have dealt with the identification of a 

polynomial of a single variable. The grounded NES under consideration of this study 

imposes a challenge as the restoring force of the magnetic spring employed is a function 

of two variables. Various approaches have been proposed to identify an interpretable model 

for a nonlinear dynamic system, such as nonparametric identification technique [14] and 

sparse identification method [15]. This study is focused on the linear regression based 

identification. The rest of the paper is organized as follows: Section II presents the 

apparatus used in this study, and its dynamic model, and the magnetic force model of the 

magnetic spring. Section III investigates the identification of a polynomial model for the 

restoring force using free responses of the system. Section IV draws the main conclusions 

of the study. 

B.2 Apparatus and Modelling 

Figure B.1 shows a CAD drawing of the apparatus developed for the study of vibration 

suppression and energy harvesting. It consists of a primary system and a grounded NES. 
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The primary system is formed by using four stainless-steel beams referred to as primary 

beams to connect a primary block and a base block. The grounded NES comprises a 

cantilever beam attached with a tip magnet B and a movable assembly of 2 magnets A and 

C and a magnet D that is fixed in a holder that can slide vertically inside a stand fastened 

to the base block. The upper end of the cantilever beam is clamped to the primary block 

and a unimorph piezoelectric energy harvester (PEH) (S128-J1FR-1808YB, Midé 

Corporation) is glued to the beam as shown. When the primary beams and the cantilever 

beam are at their equilibrium position or undeflected, the four magnets are situated on the 

same vertical plane and magnets B and D are colinear. By sliding the holder of magnet D, 

the distance between magnet B and magnet D can be adjusted. By sliding the assembly of 

magnets A and C along the beam, the distance between A/C and B can be varied.  

 

Figure B.11 3D CAD drawing of the apparatus 

Figure B.2 shows the lumped parameter model of the apparatus, where xp  and xa 

represent the displacement of the primary mass and NES mass, respectively, the magnetic 

interaction is considered as a nonlinear spring with the nonlinear stiffness kn. Since the 

focus of this study is identification of the nonlinear restoring force, the model does not 

include the PEH. Based on the model, the equations of motion governing the system 

dynamics are defined as follows: 



202 

 

 ( ) 0p p p p a am x cx kx c u k u+ + − + =     (B.1) 

 ( ) 0a a a a nm x c u k u f+ + + =     (B.2) 

where mp, cp and kp are the mass, damping coefficient and stiffness of the primary system, 

respectively; ma , ca  and ka  are the mass, damping coefficient, and stiffness of the NES 

system, respectively; f
n
 denotes the nonlinear magnetic force applied to the NES mass, and 

u = xa − x
𝑝
 represents the relative displacement between the primary mass and the NES 

mass.  

 

Figure B.12 Lumped parameter model of the apparatus. 

The total nonlinear magnetic force f
n

 in the x-direction consists of an attractive 

magnetic force f
DBx

 between magnet D and magnet B, and two repulsive magnetic forces: 

f
DAx

 between magnet D and magnet A and f
DCx

 between magnet D and magnet C. Since 

magnets A and C are identical and symmetrical about the central line of the beam, the 

values of f
DAx

 and f
DCx

 are equal. Then, the total nonlinear magnetic force can be expressed 

as： 

 = 2 .DBx DAx D Bn Cx D x DAxf f f f f f= + + +     (B.3) 

The magnetic restoring force can be found using the equivalent magnetic 2-point dipole 

model proposed in [16]. As shown in Figure B.3, O' represents the middle point of the fixed 

end of the cantilever beam. And O is the central point of the primary mass when it is at the 

zero position. the origin of the coordinate system is located at B0, the centers of magnet A, 
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magnet B, and magnet D are represented by points A, B and D, respectively, points A0 and 

B0 depict the positions of magnets A and B when the beam is undeformed, lB, lD and lA are 

the length of magnet B, magnet D and magnet A, respectively, and h  is the distance 

between magnet A/C and magnet B in the z-direction, l is the length of the cantilever beam, 

r15, r25, r35  and r45  are the vectors from Q
5

 to Q
1
, Q

2
, Q

3
 and Q

4
, respectively, and 

r16, r26, r36 and r46 are the vectors from Q
6
 to Q

1
, Q

2
, Q

3
 and Q

4
 respectively, Q

1
 and Q

2
 

are the total charges of the top and the bottom surfaces of magnet B, respectively, Q
3
 and 

 Q
4
 are the total charges of the top and the bottom surfaces of magnet A, respectively, Q

5
 

and Q
6
 are the total charges of the top and the bottom surfaces of magnet D, respectively. 

The total surface charges can be expressed as follows: 

2 3 41 5 6                 AB B A D DQ MS Q MS Q MS Q MS Q MS Q MS= − = = = − = − =  (B.4) 

where SA = 5.07×10
-4 m2, SB = 4.95×10

-5 m2 and SD = 5.07×10
-4 m2 are the surface area 

of magnets B, A and D, respectively, M= Br μ⁄  is the magnetization of magnets A, B and 

D, where Br is the magnetic residual flux density, their values are listed in Table B.1, and 

µ = 4π×10
-7

H/m is the vacuum permeability.  

 

Figure B.3 Illustration of the equivalent magnetic 2-point dipole model:(a) magnets B 

and D; (b) magnets A and D. 
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The magnetic force between magnet B and magnet D is considered first. Based on the 

Boit-Savart law, the magnetic force exerted by magnet B on magnet D is the combination 

of the magnetic force exerted from Q
1

 and Q
2

 to Q
5

 and Q
6

, which is given in the 

following equation: 

0 15 16 0 25 2
6

2

63 3 3 3

6
1 5 2 5

15 16 25 6
4 4

DB Q Q Q Q Q Q
 

    
=  +  +  + 

   
   

r r r r
f

r r r r
    (B.5) 

where r15, r16, r25
  and r26

  can be derived from the are the position vectors of Q
1
, Q

2
, Q

5
 

and Q
6
, respectively, According to (A.4), to obtain the total restoring force, only the f

DBx
 

is considered, which can be expressed as follows [17]: 

1
6 6

2
5

2 3

0

3

5

1

sin sin
4 2 2

B B
DBx a a

Q Q Q Ql l
f Q x Q x


 

   

      
= − − + + + +       

       

   (B.6) 

where the sin 𝛼 = 𝑢/𝑙, and the expression γ
1
, γ

2
, γ

3
 and γ

4
 can be found in [17]. Further, 

the magnetic force between magnets A and D in the x-direction can also be obtained as: 

3

5 6

0 5 6 5 6

8

4

7

sin sin
4 2 2

DAx a a
A A

Q Q Q Ql l
f Q x h Q x h


 

   

       
= − − − + + − + +       

       

   (B.7) 

where γ
5
, γ

6
, γ

7
 and γ

8
 are also defined in [17], By substituting (5.11) and (5.12) into (A.4), 

the total restoring force can be obtained. All the parameters’ values are listed in Table B.1. 

Note that the values of the surface charges are obtained by an experimental identification 

method given in [18]. For the sake of comparison, two configurations of the NESs are 

considered in this study: case Ⅰ: d=0.0487 m, h=0.01 m; case Ⅱ d=0.0507 m, h=0.005 m. 

And the 3D plot of f
n
 versus 𝑢 and 𝑥𝑝 for both cases are shown in Figure B.4. 
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Table B.1 Paramters value of the grounded NES. 

symbol 
Parameters 

Parameter name value 

Q
3
 Total charges of the top surfaces of magnet A/C 642.36 

Q
4
 Total charges of the bottom surfaces of magnet A/C 903.53 

Q
1
 Total charges of the top surfaces of magnet B 0 

Q
2
 Total charges of the bottom surfaces of magnet B 35.62 

Q
5
 Total charges of the top surfaces of magnet D 353.39 

Q
6
 Total charges of the bottom surfaces of magnet D 577.56 

k𝑎 Stiffness of the cantilever beam (N/m) 90.00 

l Length of the cantilever beam (m) 0.12 

k𝑝 Stiffness of the primary system (N/m) 1924.40 

m𝑝 Mass of the primary system(kg) 0.45 

ma Mass of the NES (kg) 0.09 

c𝑝 Damping coefficient of the primary system (Ns/m) 0.58 

ca Daping coefficient of the NES (Ns/m) 0.0342 

 

 

Figure B.4 3D plot of the nonlinear restoring force surface of the: (a) case I; (b) case 

II. 
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B.3 Fundamental of the linear regression method 

The complex expression of Eqs. (B.6) and (B.7) makes it impossible to apply analytical 

methods , such as the harmonic balance method. A common approach to deal with this 

issue is to approximate the nonlinear restoring force by using a high order polynomial. 

Techniques such as the force surface method [19] or direct force measurement [20] can be 

employed to identify the actual nonlinear restoring force, after which the polynomial curve-

fitting can be applied. However, for the system under consideration, the nonlinear restoring 

force is influenced by both 𝑥𝑝  and 𝑢, which makes the traditional methods invalid. As 

proposed in [21], the polynomial approximation for an unknown nonlinear restoring force 

can be achieved through a linear regression by using the time series of the free responses, 

which provides a solution to the current issue. The following develops a suitable 

identification procedure. 

As this study focuses on the identification of 𝑓𝑛  from free responses, (B.2) can be 

reformulated as: 

 ( , , ) ( )a a a na ag x u u m x c u k u f= − + + =     (B.8) 

by assuming that 𝑚𝑎 , 𝑐𝑎 , 𝑘𝑎  are available. After collecting the time series of the free 

responses 𝑥𝑝 and 𝑥𝑎, the velocity 𝑥̇𝑎 and 𝑥̇𝑝, and acceleration 𝑥̈𝑎 and 𝑥̈𝑝can be obtained by 

using numerical differentiation. Then, the known function can be written as a column 

vector form: 

 
2 2

1 1 1

2

( ( ), ( ), ( ))

( ( ), ( ), ( ))

( ( ), ( ), ( ))

a

a

a q q q

g x t u t u t

g x t u t u t

g x t u t u t

 
 
 =
 
 
  

G     (B.9) 

where 𝑞 is the length of the time series. The right-hand term in (8) is the unknown nonlinear 

restoring force f
n
, which can be approximated by a polynomial that can be represented as: 
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 nf =Θξ    (B.10) 

where 𝜣 is the candidate functions matrix, and ξ is the coefficient vector. First, we assume 

that the candidate functions are related to only the variable 𝑢, and the maximum order of 

the polynomial is 𝑛. Thus, the candidate function matrix and coefficient vector can be given 

as: 

 

2 3

1 1

2

1 1

2 3 4 5

3

2 3

1, ( ), ( ), ( ), , ( )

1, ( ), ( ), ( ), , ( )
( )

1, ( ), ( ), ( ), , ( )q q q

n

n

n

q

u t u t u t u t

u t u t u t u t
u

u t u t u t u t

 
 
 

=  
 
  

Θ     (B.11) 

and  

 
T

2 31 14[ , , , , , ]n     +=ξ     (B.12) 

respectively. The coefficient vector can be obtained by solving the following equation: 

 
+=ξ Θ G     (B.13) 

where ‘+’ represents the pseudo inverse of the matrix. After obtaining the coefficient vector, 

the approximate nonlinear restoring force model can be found. 

B.4 Application of the linear regression method 

In this study, the time series of the free responses of the system are obtained through a 

numerical simulation. By solving Eqs. (B.1) and (B.2) with the initial condition of ( xp, 

ẋp, x𝑎, ẋa )=(-0.02, 0, -0.02, 0 ) for the system of case I, in the period of 20 s using the 

MATLAB ODE45 solver, the free responses of the primary system and NES can be 

obtained. Then, the known function matrix G is calculated based on the collected data. By 

setting the maximum order number 𝑛 = 7 , the candidate function matrix Θ  can be 

formulated, the coefficients vector can be obtained by solving Eq. (B.13).  
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To verify the accuracy of the estimated system, two sets of simulations are conducted. 

The first one is by using the actual nonlinear restoring force model shown in Eq. (B.3), and 

the second one is using the estimated nonlinear restoring force model, with the initial 

conditions of ( xp, ẋp, x𝑎, ẋa )=(-0.01, 0, -0.017, 0 ) for both two systems in the period of 

20 s. Note that the initial conditions used for verification are different from those used to 

generate the responses for identification. The two simulation results are compared in Figure 

B.5. Additionally, to better estimate the accuracy of the prediction, The error of the 

estimated  xp and  xa can be derived by the following equations: 

 
2 2

2 2

,p a 
− −

= =
a

' '

p p a

' '

p a

x x x x

x x
    (B.14) 

where 𝒙𝒑
′ , 𝒙𝒂

′ , 𝒙𝒑 and 𝒙𝒂 are the time series vectors of  xp and  xa of the real system and 

estimated system, respectively, and ‖∎‖2 denote the second norm of the vector. As shown 

in Figure B.5, the estimated force model basically failed to predict the time responses of 

the real system, and the errors 𝜀𝑝 = 0.378, 𝜀𝑎 = 1.02 are notably big, indicating that using 

a polynomial of a single variable to approximate the restoring force cannot result in an 

acceptable approximation. 

 

Figure B.5 Free responses of the Case Ⅰ system with the real force model and the 
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estimated force model by using the single variable in the candidate functions matrix. 

To improve the accuracy of identification, both  xp and 𝑢 should be considered when 

building the candidate function matrix. One convenient choice for the candidate functions 

is a polynomial of the products of  xp and 𝑢 with different orders. As shown in Figure B.4, 

when fixing the value of  xp, the changing of 𝑢 will significantly influence the shape of 𝑓𝑛. 

However, varying  xp does not alter the shape of the curve significantly, but mainly results 

in a shift of the curve. This implies that the order of  xp should be much lower than that of 

𝑢. Assuming the maximum orders of 𝑢 and 𝑥𝑝 are 𝑛 and 𝑚 (𝑛 > 𝑚), respectively. Then, 

the modified candidate function matrix can be written in the following form: 

  2 3 11( , ) , , , , p nu x +=Θ Θ Θ Θ Θ     (B.15) 

where the matrix’s elements 𝜣𝑖 (𝑖 = 1,2,3 … 𝑛 + 1) are given as: 
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and the coefficient vector becomes: 

 (

T

121 4 )( 1)3[ , , , , , ]n m     + +=ξ     (B.17) 

By setting the order numbers 𝑛 = 7, 𝑚 = 5 in the modified 𝜣 and following the same data 

training procedure, the new coefficient vector can be obtained, and the verification results 

are shown in Figure B.6. It can be seen that the identified model is capable of accurately 

predicting the time responses of the actual system, and the errors 𝜀𝑝 = 0.0327, 𝜀𝑎 = 0.105 

are reduced to an acceptable level.  
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Figure B.6 Free responses of the Case Ⅰ system with the real force model and the 

estimated force model by using a modified candidate functions matrix. 

The identification of the nonlinear restoring force of case II follows the same procedure 

as mentioned in the last section, by using the modified candidate function matrix, and the 

initial conditions ( xp, ẋp,  x𝑎, ẋa )=(-0.035, 0, -0.035, 0 ) to obtain the training data, then 

verified with the initial condition of ( xp, ẋp, x𝑎, ẋa )=(-0.015, 0, -0.02, 0 ). As shown in 

Figure B.7, there is a huge difference between the free responses of the estimated system 

and those of the real system, and the errors 𝜀𝑝 = 0.739, 𝜀𝑎 = 1.94 are unacceptably large. 

This may be caused by insufficience of the current training data set. To improve the 

identification accuracy, the training data much be sufficiently richin the dynamics of case 

II.  
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Figure B.7 Free responses of the Case Ⅱ system with the real force model and the 

estimated force model trained by one data set. 

Based on the identification method proposed in [22], multiple training data sets are 

employed to overcome such a problem. To achieve that, multiple sets of simulations with 

different initial conditions are conducted and collect the multiple sets of time series of a 

free response to assemble of the new known function matrix and candidate functions matrix 

as: 
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and 
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respectively, where 𝑟 is the number of the training data set used in the identification. In 

this study, three different sets of training data are considered, namely, 𝑟 = 1, 𝑟 = 2 and 𝑟 =

3. The first training data is obtained by the simulation with the initial condition of ( xp, 

ẋp, x𝑎, ẋa )=(-0.035, 0, -0.035, 0 ) , the second one with ( xp, ẋp,  x𝑎, 

ẋa )=(-0.02, 0, -0.015, 0 ), and the third one with ( xp, ẋp, x𝑎, ẋa )=(-0.01, 0, -0.01, 0 ). The 

verification results of the estimate system trained with the first two data sets and three data 

sets are shown in Figures B.8 and B.9, respectively. and the errors for the three training 

conditions are collected in the bar chart shown in Figure B.10. It clearly shows that using 

more training data leads to better prediction results. 

 

Figure B.8 Free responses of the Case Ⅱ with the real force model and the estimated 

force model trained by two data sets. 



213 

 

 

Figure B.9 Free responses of the Case Ⅱ with the real force model and the estimated 

force model trained by three data sets. 

 

Figure B.10 The error of the prediction of the Case Ⅱ system with identified force 

model trained by three different sets of data. 
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B.5 Conclusions 

In this study, a regression-based identification approach has been proposed to find the 

polynomial approximation of the nonlinear restoring force of a grounded MS-NES. Firstly, 

the apparatus is introduced briefly, then the dynamic model of the system is derived from 

the lumped parameter model, and the magnetic force model is established based on an 

equivalent magnetic 2-point dipole approach. Two bis-table configurations have been 

chosen to evaluate the approach.  

For Case Ⅰ, the results show that considering a single variable 𝑢  in the candidate 

function matrix is not sufficient to predict the free responses of the real system. To improve 

the accuracy, two variables 𝑢 and 𝑥𝑝 are considered when building the candidate function 

matrix. By considering the influence of the two variables on the shape of the nonlinear 

restoring force, the maximum order number of 𝑥𝑝 is chosen much lower than that of 𝑢. 

And the validation results show that the accuracy of the identified model has been 

significantly improved by introducing the modified candidate function matrix. As for Case 

Ⅱ, even by using the modified candidate function matrix, the predictions remain 

unsatisfactory. The solution is integrating multiple training data sets which encompass a 

broader range of system behaviours, and the results show that more comprehensive training 

data sets lead to a more robust and accurate identified model. 
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Appendix C. Design and Evaluation of Three Variant Nonlinear 

Energy Sinks 

Abstract 

The traditional nonlinear energy sink (NES) consists of an essentially nonlinear 

spring (ENS). In this study, three variant NESs without an ENS are considered, namely 

mono-stable NES, bi-stable NES, and tri-stable NES. A method is proposed to design 

these variant NESs for the dual purpose of vibration suppression (VS) and energy 

harvesting (EH). The proposed method can ensure that the designed variant NES 

closely emulates the behaviors of a true NES. The design starts with defining a NES 

with a desired ENS using the concept of equivalent stiffness. Then, by forcing the 

restoring force of the variant NES at the maximum displacement equal to that of the 

desired NES, the key parameters of the variant NES are determined. A numerical 

simulation is conducted to compare the variant NESs with the desired NES in terms of 

VS under transient responses. The VS performances are evaluated by the targeted 

energy transfer, the wavelet transform spectra, and the frequency-energy plots. To 

investigate the trade-off issue, two objective functions are defined to measure VS and 

EH performances, respectively. Then a two-objective optimization is conducted for the 

case of the NES equipped with a piezoelectric energy harvester and the case of the NES 

equipped with an electromagnetic energy harvester. The Pareto fronts are generated for 

all four NESs to reveal the best NES in terms of VS or EH. 


