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Abstract 
 
Musselwhite Mine is located on the south shore of Opapimiskan Lake, approximately 
480 km north of Thunder Bay. Hosted in the  ~2.8Ga North Caribou Lake greenstone belt 
of the North Caribou Terrane, Superior Province, Musselwhite is currently classified as a 
shear hosted orogenic gold deposit. The deposit is hosted in an iron formation within a 
volcanic pile of intermediate to felsic metavolcanic rocks, metabasalts and komatiitic 
metabasalts and has been metamorphosed to amphibolite grade. 

 
Twenty biotite and 30 quartz samples have been analyzed for δ15N, δ18O and δD from 
Musselwhite Mine as well as 12 biotite samples from the granitoid rocks surrounding the 
North Caribou Lake Greenstone Belt. Nitrogen isotopes in biotite from Musselwhite 
Mine are characterized by a δ15N range from -1.3 to 11.1 per mil. Oxygen and hydrogen 
isotopes of biotite samples from the mine range from +7.1 to +10.1 per mil for δ18O and -
55 to -100 per mil for δD.  
 
Oxygen isotope signatures from quartz samples from Musselwhite range from +12.4 to 
+17.1 per mil. Values for the silicate facies iron formation and mineralized zones are 
consistent with previous work by Otto (2002) and indicate fluid compositions that fall 
within both the magmatic and metamorphic range.  
 
Biotite samples from granites and metasedimentary rocks adjacent to the deposit have a 
δ15N range of -6.9 to +6.1 per mil. Oxygen and hydrogen isotopic ranges for the granitoid 
plutonic rocks are +2.0 to +4.0 per mil and -59 to -80 per mil respectively; values are 
typical of felsic plutonic rocks. 

 
The δ15N, δ18O and δD stable isotopic data generated for Musselwhite Mine suggest that 
magmatic fluids played a role in the formation of the deposit. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 
 

The Musselwhite mine is located approximately 480 km north of Thunder Bay on 

the southern shores of Opapimiskan Lake in the North Caribou Lake greenstone belt. The 

mine is classified as an orogenic gold deposit (Otto, 2002; Blower and Kiernan, 2003), 

producing an average 2500 tonnes of ore per day and with proven and probable mineral 

reserves of approximately 1.98 million ounces (Goldcorp, 2008). 

  Extensive research has been previously undertaken at the Musselwhite Mine in an 

effort to understand the formation of the gold deposit in relation to its host rocks. Limited 

accessibility, sparse outcrop, and the short field season have resulted in much of the 

research taking place underground at the mine scale. Although the stratigraphy of the 

mine has been extensively characterized (Wells, 1995; Otto, 2002; Moran, 2008), the 

relationship of the mine geology to the regional geology is not well understood.  

 

1.2 Scope 
 

This project was designed to expand on preliminary isotopic research undertaken 

at the mine (Otto, 2002) and uses nitrogen, oxygen and hydrogen isotopes in biotite in 

addition to oxygen isotopes of quartz to better characterize the nature of the fluids in the 

alteration zones of the deposit and, if possible, to discern if there is a characteristic 

isotopic signature associated with gold mineralization. Regional isotopic work was 

undertaken in order to compare and contrast the isotopic signatures at the mine scale with 

those at the regional scale. Samples were also collected and whole-rock geochemistry 
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was undertaken and examined at the regional scale to gain a better understanding of the 

nature of the regional rocks of the North Caribou Lake greenstone belt.  

 

1.3 Exploration History 

The Musselwhite property was discovered in 1962 by Allan and Harold 

Musselwhite who were exploring at the time for Kenpat Mines, Inc.. At the same time, 

Rio Tinto discovered Au mineralization near Pasemon River, west of Zeemal Lake 

(Breaks et al., 1989). From 1962-1967 Kenpat Mines Inc. undertook geological mapping, 

trenching, a ground magnetometer survey and drilled eight holes (Breaks et al., 1989). 

The property was re-staked in 1973 by the Musselwhite brothers after Kenpat let the 

claim go (Breaks et al., 1989). A joint venture in 1974-75 comprised of Dome 

Exploration Ltd., Canadian Nickel Co., and Esso Minerals Canada explored the property 

further and drilled another 16 holes (Breaks et al., 1989). Then, in 1976, an extensive 

drilling program was carried out by another joint venture group (consisting of Mineral 

Deposit Inventory Record, Geoscience Data Centre, and the Ontario Geological Survey ; 

OGS). The greenstone belt was re-mapped from 1984-1986 by the OGS (Breaks et al., 

1984; Breaks et al., 1985; Breaks et al., 1986; Breaks et al., 2001). The mine began 

official production on April 1,1997 (Otto, 2002; Moran, 2008). In 2002, the property was 

jointly owned by Placer Dome, Inc. and TVX Gold Ltd. (Pollard et al., 2002). Placer 

Dome was 68% owner and operator and Kinross Gold Corporation held a 32% interest in 

the mine in 2003 (Kiernan and Blower, 2003). In 2006, Barrick Gold Corp., after taking 

over Placer Dome, Inc. sold its stake in Musselwhite to Goldcorp Inc. 

(http://www.mining-technology.com/projects/musselwhite/). At the end of 2007 
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Goldcorp Inc. bought Kinross Gold Corporation’s share (Goldcorp, 2008). At the time of 

publication of this thesis Goldcorp has 100% ownership of Musselwhite Mine. 

 

1.4 Regional Geology 

The Superior Province is the largest Archean craton in the world, covering much 

of Northern Ontario, Northern Quebec, and extending into Manitoba and Minnesota (Fig. 

1.1). The craton ranges in age from 3.2 to 2.5 Ga (Thurston et al., 1991). It is bounded to 

the southeast by the 1.1 Ga Grenville Province, to the northwest by the Trans Hudson 

Orogen, and it is overlain on its northern and western borders by Paleozoic sediments 

around Hudson and James Bay and in Manitoba (Fig. 1.1). The Superior Province is 

thought to represent a series of accreted continental fragments that amalgamated to form 

the craton (Card, 1990). Card and Cisielski (1986) subdivided the Superior Province into 

nineteen different subprovinces on the basis of age, rock type and known tectonic 

boundaries. More recent work by Stott et al. (2007) has further refined the tectonic 

divisions and has divided the Superior Province into a series of domains and terranes 

based on recent aeromagnetic surveying, Nd-Sm isotopic and other geochronological 

evidence (Fig. 1.1).  

The Sachigo, Uchi and Berens River subprovinces have been reclassified as the 

North Caribou Terrane, the Uchi Domain, the Island Lake Domain and the Oxford-Stull 

Domain (Fig. 1.1; Stott et al., 2007). The Musselwhite mine is situated on the 

northeastern margin of the North Caribou Terrane (Fig 1.1). The age of supracrustal 

rocks and batholiths that make up the North Caribou Terrane range from 3.0 to 2.8 Ga 
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(Stott et al., 1997) with accompanying younger plutonism as other terranes accreted 

(Rayner and Stott, 2005). 

The Musselwhite mine is located in the North Caribou Lake greenstone belt 

(NCLGB), which lies within the North Caribou Terrane, the largest of the terranes found 

in the Sachigo Superterrane of the Superior Province (Stott et al., 2007). The North 

Caribou Lake greenstone belt has been divided into eight different units, four of which 

occur in the vicinity of the Musselwhite mine. They are: the North Rim metavolcanic 

rocks (NRV), South Rim metavolcanic rocks (SRV), Opapimiskan Lake metavolcanic 

rocks (OLV), and the Eyapamikama Lake metasedimentary rocks (ELS; Fig. 1.2; Breaks 

et al., 2001). 

The North Caribou Lake greenstone belt has been metamorphosed to greenschist 

facies in the north, and amphibolite facies in the south (Breaks et al., 2001). The 

relationships between the North Caribou Lake batholith and the isograds of the NCLGB 

suggest that the North Caribou Lake batholith was likely emplaced after the metamorphic 

grades were imposed, implying peak metamorphic temperatures prior to 2875 Ga (Breaks 

et al., 2001). 

 

1.5 Assemblages in the vicinity of Musselwhite Mine  

1.5.1 North Rim Metavolcanic Unit (NRV) 

The rocks of the North Rim metavolcanic unit are dominantly tholeiitic pillowed 

flows that are moderately to highly deformed with selvages characterized by hornblende 

with occasional garnet in some locations (Breaks et al., 2001). Vesicles in the rock are 

filled with quartz and/or carbonate. Pillows with >10% amygdules are quite common in 



 5 

the unit and their presence suggests a shallow subaqueous environment (Breaks et al., 

2001). Rare banded iron formation, ultramafic and carbonate rock suites are found 

Figure 1.1: Map of the Superior Province, showing the various tectonic terranes and the 
location of the Musselwhite mine. After Card and Ciesielski (1986) and Stott et al. 
(2007).  
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Figure 1.2: Map of the assemblages in the southern portion of the North Caribou Lake 
greenstone belt in the vicinity of Musselwhite Mine. After Breaks et al. (1986).  
 

within this unit (Breaks et al., 2001). Some felsic-intermediate metavolcanic rocks found 

in the vicinity of Hatch Lake are locally garnetiferous (Breaks et al., 1985). 

Geochemistry of the mafic metavolcanic rocks at Musselwhite indicate that both 

the OLV and the NRV are part of the “Basement Basalts” that underlie the iron formation 

(Hollings, 1996; Fig.1.3). An increase in MgO content in the rocks of the NRV near the 

contact with the OLV suggests that the NRV and OLV may be coeval (Breaks et al., 

2001). The rocks of the NRV cannot be traced south of Opapimiskan Lake; either 

because the unit is truncated by a major shear zone that marks the boundary between the 

greenstone belt and the adjacent Island Lake Terrane, or because this particular packet of 

rocks pinches out (Breaks et al., 2001). This suggests that the rocks of the NRV truncate 
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somewhere within the domain of Opapimiskan Lake but exactly where this occurs is hard 

to define due to poor exposure and the heavily sheared nature of the rocks. Breaks et al. 

(2001) documented the NRV unit as contiguous with the ELS to the north and south, and 

that the unit intercalates at Castor-Pollux lakes (Breaks et al., 2001). However, recent 

mapping south of Akow Lake indicates that large areas of rock identified as 

metasedimentary are actually sheared basalts and consequently the ELS may not be 

continuous through this area (John Biczok, personal communication, 2007). 

 
Figure 1.3 Stratigraphic cross section of the Geology of the North Caribou Lake 
greenstone belt. Courtesy of Musselwhite. Ages are from Klipfel (2002). 
 

1.5.2 South Rim Metavolcanic unit (SRV) 

The rocks of the South Rim Metavolcanic unit are characterized by mafic to felsic 

metavolcanic units. The SRV unit is bounded on the East by the North Caribou Lake 



 8 

Batholith and stratigraphically overlies the Musselwhite BIF (Fig. 1.2). Mafic units 

within the SRV are characterized by pillowed flows intercalated with massive flows, and 

indicate a subaqueous setting. They possess a mineral assemblage of hornblende-

actinolite, plagioclase, epidote and chlorite, indicative of greenschist-amphibolite facies 

metamorphism (Breaks et al., 2001). Relict subophitic textures are visible in low-grade 

mafic metavolcanic rocks as laths of plagioclase in a chiefly hornblende matrix (Breaks 

et al., 2001). Subhedral plagioclase phenocrysts comprise up to 5% of some pillows and 

tend to be concentrated towards pillow centres (Breaks et al., 1985). Some pillows have 

chloritic selvages up to 1 cm thick and interpillow spaces are filled by a hyaloclastite 

assemblage of quartz + plagioclase + epidote (Breaks et al., 1985). The SRV hosts 

numerous quartz + plagioclase + epidote + tourmaline + sulphide veins, concordant with 

the dominant phase of foliation in the rocks (Breaks et al., 1985). The geochemistry of 

the mafic rocks are characterised by flat REE curves indicative of MORB –like rocks and 

lack any Nb–anomaly, suggesting that they have not been crustally contaminated 

(Hollings, 1996). The tholeiites of the SRV have a geochemical signature comparable to 

Ontong Java and other oceanic plateau basalts (Hollings and Kerrich, 1998). Felsic rocks 

comprise only approximately 1% of this unit; they occur as lapilli tuffs, tuff breccia, and 

some felsic flows (Breaks et al., 2001). Recent drilling at Musselwhite Mine indicates 

these felsic units are more abundant in the vicinity of Opapimiskan Lake (John Biczok, 

personal communication, 2008).  The felsic rocks show LREE enriched curves indicative 

of arc settings with pronounced Nb and Ti anomalies (Hollings and Kerrich, 1998). U-Pb 

dating of zircons from the felsic portions of the unit have yielded an age of 2973± 2.2 Ma 

(Klipfel, 2002). Xenoliths of this unit are found in the NCLB, demonstrating that the 
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batholith postdates the volcanic rocks (Breaks et al., 2001). The relationship between the 

SRV and the OLV is poorly understood, as the contact lies beneath Opapimiskan Lake, 

and is heavily sheared (Breaks et al., 2001).  

 

1.5.3 Opapimiskan Lake Metavolcanic unit (OLV) 

The OLV is comprised of a series of mafic and ultramafic metavolcanic rocks. 

Primary relict textures include pillows, pillow breccia, flow top breccia and varioles. The 

rocks consist of massive, pillowed and variolitic flows with narrow (3-5 mm) selvages on 

the pillows (Breaks et al., 2001). The mineral assemblage is dominated by actinolite with 

minor plagioclase and chlorite (Breaks et al., 2001). This mineral assemblage correlates 

with the greenschist facies of metamorphism. The metamorphic assemblage has been 

overprinted by a strong D2 fabric and has been extensively sheared (Breaks et al., 2001). 

Some rare spinifex/polysuture textures are seen in the rocks on the Pipestone River 

(Breaks et al., 2001). It is likely that the other ultramafic units (such as the Lundmark 

Lake unit in the southern portion of the greenstone belt; Fig. 1.2) correlate with the OLV, 

although contacts cannot be observed (Breaks et al., 2001). The majority of known 

banded iron formation (BIF) in this greenstone belt is contained within this unit and 

consists primarily of silicate and oxide facies type, with the BIF underlying Opapimiskan 

Lake being the primary BIF in the unit, though a minor BIF occurs east of Graff Lake 

(Breaks et al., 2001). If the rocks of the Keeyask Lake Metavolanic (found in the northern 

portion of the NCLGB; not shown on maps) and OLV are coeval, then the thin 

metasedimentary cover that overlies the Northern Iron Formation that hosts the 

Musselwhite deposit is part of the ELS (Breaks et al., 2001). 
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The trace element geochemistry of the rocks of the OLV reveals that the unit is 

made up of a suite of Munro-type (Al-depleted) komatiites, high magnesian basalts and a 

few intermediate rocks (Hollings and Kerrich, 1998). Hollings (1996) notes that some 

units within the OLV that have been designated as metasedimentary rocks are 

geochemically identical to the mafic metatholeiites and proposed that these are actually 

tuffs. Lower and Basement basalts at Musselwhite Mine, have very similar trace element 

patterns, which suggest they are both part of the OLV (Hollings, 1995; Fig. 1.3). 

Negative Ti and Nb anomalies within the Basement basalts suggest contamination by 

more felsic crust; the calc-alkaline samples that contain anomalous Ti have a 

corresponding V spike that indicates possible spinel accumulation (Hollings, 1995). 

Ultramafic units have flat HREE on a primitive-mantle normalised diagram characteristic 

of Al-depleted komatiites, but are too siliceous to be classified as komatiites and also 

have LREE-enriched patterns (Hollings, 1995). The high LREE and silica contents are 

interpreted to be the result of contamination of komatiitic melts by an intermediate source 

(Hollings and Kerrich, 1998) It is thought that the Keeyask Lake metasedimentary rocks 

or the rocks of Agutua Arm unit are the most likely contaminants (Hollings and Kerrich, 

1998). Zr vs. Y plots show two suites in the OLV rocks at Musselwhite: calc-alkaline 

rocks and tholeiitic metabasalts (Hollings, 1995). The tholeiitic samples display generally 

flat REE curves (Hollings, 1995). The geochemistry of the high magnesian meta-

tholeiites indicates that they are not derived directly from komatiites, but are rather 

derived from a mixing of komatiitic, plume-derived material with mantle material 

(Hollings and Kerrich, 1998). The setting of these rocks is interpreted to be that of a 

mantle plume rising near or under continental crust, allowing for contamination of the 
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plume with tonalitic material from the underside of the continent (Hollings and Kerrich, 

1998). Mixing of mantle material and material from the edges of the plume is thought to 

be the most likely source of the material from which the magnesian basalts of the OLV 

were derived (Hollings and Kerrich, 1998).  

 

1.5.4 Eyapamikama Lake Metasedimentary Unit (ELS) 

Breaks et al. (2001) grouped all metasedimentary rocks within the North Caribou 

Lake greenstone belt into a single unit. In the area east of the Musselwhite deposit, the 

unit is comprised of thinly bedded metawacke, plagioclase arenite, biotite-chlorite 

metapelite, and amphibole-rich metawacke (Breaks et al., 2001). Further to the southest, 

the metasedimentary rocks at Heaton Lake are comprised of quartz wacke, quartz arenite 

and immature, poorly sorted conglomerate, wacke and mudstone (Breaks et al., 2001). 

All arenite suites are very pure and contain accessory heavy minerals (Breaks et al., 

2001). 

 

1.5.5 Felsic Intrusive Rocks 

The North Caribou Lake Batholith is a massive, medium-grained, equigranular to 

hypidiomorphic granite to granodiorite trondhjemite (Breaks et al., 2001). It has a 

deformed contact with the rocks of the greenstone belt (Breaks et al., 2001). The 

composition of the batholith varies and has, as a result, a variety of accessory minerals 

including titanite, apatite, epidote and zircon, as well as iron and titanium oxides (Breaks 

et al., 2001). 
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The Schade Lake complex lies on the north side of the NCL greenstone belt 

between Atikomik Lake and Karl Lake. The complex is comprised of highly deformed 

hornblende-biotite tonalite, biotite trondhjemite, biotite granite, and biotite-hornblende-

quartz diorite with scattered amphibolite enclaves; accessory minerals include muscovite, 

chlorite, epidote, and titanite (Breaks et al., 2001). A protomylonitic zone up to 30m wide 

(the Dinnick Lake Fault) bounding the greenstone belt signifies a major shear zone 

(Breaks et al., 2001). 

 

Small stocks of pegmatitic trondhjemite, granite, granodiorite also cross cut the 

greenstone belt; accessory minerals include fluorite, green muscovite, and tourmaline 

(Breaks et al., 2001).  

 

1.6 Age of the North Caribou Lake greenstone belt 

Absolute ages for the NCLGB range from ~3.0 to 2.4 Ga (Klipfel, 2002). The 

oldest rocks of the NCLGB come from the northeastern portion of the belt. The 

Weagamow Batholith on the northwest edge of the belt has yielded an age of 2990 +/-1.8 

Ma (de Kemp, 1987). Ages of the mafic and felsic volcanic rocks of the belt show that 

they were formed shortly after the Weagamow batholith. Klipfel (2002) reports a zircon 

age of 2973 +/- 2.2 Ma for felsic units at the mine, which are interpreted to be the felsic 

units of the SRV. A rhyolite tuff from the west shore of Opapimiskan Lake has yielded 

an age of 2981.9 +/-0.8 Ma (Davis and Stott, 2001). An age of 2920 +/- 4.7 Ma is 

reported for the mafic volcanic rocks at Musselwhite, which are identified geochemically 

with the SRV (Klipfel, 2002).  
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Material inherited by the metasedimentary units of the North Caribou Lake 

greenstone belt give a very uniform age of around 2980 Ma (de Kemp, 1987; Davis and 

Stott, 2001; Kilpfel, 2002). One age from arenites of the Zeemal-Heaton portion of the 

ELS gives an inherited age of 2853 +/- 1 Ma, indicating that the arenites in the southwest 

portion of the Eyapamikama Lake metasedimentary unit are likely much younger than 

and are, at least in part, made of reworked material from the older, more poorly sorted 

portions of the unit. The overwhelmingly dominant age of ~2980 Ma suggests that the 

metasedimentary units for the whole belt came from one or a few similarly aged sources. 

The only units so far identified that could have provided such ages are the felsic 

metavolcanic rocks of the Agutua Arm and the felsic portion of the South Rim 

metavolcanic unit. The younger age of the stratigraphically lower mafic units of the SRV 

create a potential issue with current interpretations, as currently the felsic units of the 

SRV are interpreted to be a continuation of arc-type magmatism. Zircons from the NCL 

batholith yield ages of 2869 +/- 3.6 and 2864+/-1 Ma (de Kemp, 1987; Davis and Stott, 

2001). Ages of the batholith to the southwest of Opapimiskan Lake range from 2729.4 

+/- 7.1 to 2725.8 +/- 3.2Ma (Klipfel, 2002).  

The absolute age of mineralisation of the gold of the Musselwhite deposit is of 

much interest, as understanding timing of emplacement is key to model selection. Several 

ages have been derived from different materials found at Musselwhite. Pb/Pb modeling 

of galena samples from the West Anticline Zone at Musselwhite Mine give a 

crystallization age of 2.894-2.895 Ga (Hall and Rigg, 1986). Sm-Nd dating of whole rock 

and garnets of biotite-garnet schist interpreted to be associated with Au mineralisation 

yield a much younger age of around ~2.69 Ga with an age of 2690 +/-9 Ma preferred at 
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the mine (Maas, unpublished data, 2006). Late-stage, inclusion-free growth is seen on the 

edges of many garnets in the rocks of the Musselwhite mine (Otto, 2002). The 

morphology of the garnets strongly suggests that multiple episodes of garnet growth have 

occurred throughout the deposit and raises questions about Sm-Nd age dating of 

mineralisation. If the garnets have undergone multiple growth stages, then the Sm-Nd age 

likely represents a composite age.  U-Pb dating of the NRV gave an age of 2932 Ma 

(Davis in Hollings and Kerrich, 1999). Klipfel (2002) measured Ar-Ar ages of biotite, 

grunerite and amphibole from both regional batholiths and mine samples in an attempt to 

determine an age for mineralization, and reported an age range of ~2.66 to 2.44 Ga. 

Klipfel (2002) interpreted the much younger Ar-Ar ages as a late stage thermal resetting 

event. 

 

1.7 Metamorphism 

Regional metamorphism of the North Caribou Lake greenstone belt is of the 

Abukuma type and ranges from lower greenschist to low-mid amphibolite facies (Breaks 

et al., 2001). A general trend of increasing metamorphic grade from the northwest to 

southeast is seen (Breaks et al., 2001). In addition, a trend of northward-increasing 

metamorphic grade is seen in the northwestern portion of the greenstone belt (Breaks et 

al., 2001). A relict contact metamorphic aureole, represented by chlorite overprinted by 

amphibolite, is seen adjacent to the North Caribou Lake Batholith (Breaks et al., 2001). A 

maximum metamorphic grade of amphibolite facies has been established by the presence 

of garnet, staurolite, andalusite, grunerite, and cordierite in various rocks across the belt 

(Breaks et al., 2001).  



 15 

Peak metamorphic conditions were estimated by Breaks et al. (2001) using the 

chlorite-garnet-muscovite-staurolite-biotite-quartz isograd of Froese and Gasparinni 

(1975) and the staurolite-muscovite-quartz-Al2SiO5-biotite isograd of Hoschek (1969). 

Peak metamorphic conditions using these isograds give a peak temperature-pressure 

estimation of 400 to 500 °C and 3kbar or less (Breaks et al., 2001). This estimate is 

comparable to the estimate of 500–550 °C and 3kbar made by Hall and Rigg (1986) using 

garnet-biotite and arsenopyrite-iron sulphide geothermometry. Geobarometry completed 

by Otto (2002) using the garnet-hornblende-plagioclase-quartz geobarometer of Kohn 

and Spear (1990) and the quartz-biotite-plagioclase-garnet geobarometer of Hoisch 

(1990) gave considerably higher peak pressures of 6.3-9.4 kbar. These values are very 

high, and are generally not held as accurate due to their inconsistency with other data. 

Garnet-biotite and garnet-hornblende geothermometry by Otto (2002) yielded peak 

temperatures of 550-650 °C, which is comparable to the estimates of earlier work. Otto 

(2002) also determined the peak temperatures for retrograde chlorite at Musselwhite mine 

to be 210-250 °C. 

 

1.8 Structural geology 

There have been four phases of deformation documented in the North Caribou 

Lake greenstone belt (Hall and Rigg, 1986). The earliest (D1) phase is characterised by 

tight to isoclinal asymmetrical folds (Breaks et al., 2001) and is interpreted as part of a 

regional-scale nappe (Wells, 1995).  Later stages of deformation have obscured the 

original orientation of F1 folds and S1 foliations have been either obliterated or rotated 

parallel to S2 (Breaks et al., 2001).  
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The second deformation event (D2) is the dominant deformation event in the 

North Caribou Lake greenstone belt and represents the major tectonic event (Breaks et 

al., 2001). Folds plunge shallowly to the northwest; these folds are very tight in some 

areas of the Musselwhite property (such as the West Anticline zone and the T-antiform) 

(Wells, 1995).  S2 foliation is a moderately to strongly developed planar fabric (Breaks et 

al., 2001) with a strike of 120° and dips steeply southwest to subvertical (Hall and Rigg, 

1986). Folds are closed to open asymmetrical, disharmonious and cylindrical with near 

vertical axial planes (Breaks et al., 2001). Boudinage of iron formation, attenuation of 

fold limbs and thickening of fold hinges accompanied deformation (Hall and Rigg, 1986; 

Breaks et al., 2001). Significant flattening and stretching occurred on fold limbs; this 

extensive flattening may be responsible for the creation of some of the rocks that are 

interpreted as mylonites (Wells, 1995). Brittle-ductile features such as bookshelf slipping, 

boudinage and flattening of the competent beds of the NIF are considered to be a late D2 

feature (Wells, 1995). Shear zones are thought to be coeval with folding and are 

interpreted as forming during the late stages of the D2 event and possibly extending into 

D3 (Wells, 1995). Most importantly, the pyrrhotite mineralization and associated quartz 

flooding which also hosts the gold occurs within D2 structures (Wells, 1995). Gold 

emplacement is interpreted to have occurred during transition between brittle and ductile 

shearing (Wells, 1995). 

 

The D3 event marks a period of inhomogeneous strain (Breaks et al., 2001). The 

D3 event is a relatively weak event, seen as gentle warping of D2 fold axes and 
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crenulation cleavage within metavolcanic rocks (Wells, 1995). Macroscopic F3 folds are 

suggested by reversals in lineation trends in some areas (Breaks et al., 2001). 

 

The final stage of deformation (D4) is characterized by narrow, subvertical, 

northwest striking chloritized shear zones that crosscut all previous structural fabrics 

(Hall and Rigg, 1986). These faults and veins cross cut gold mineralization at the 

Musselwhite mine creating barren quartz-carbonate veins (Otto, 2004).  

 

1.9 Geology of the Musselwhite Property  

The Musselwhite gold deposit lies within the metavolcanic rocks of the OLV. 

Exposure on the surface is very poor, as a result of glacial till deposits (Breaks et al, 

2001). Because of the poor exposure, most of the information has been gathered from 

drill core, with supplementation from surface mapping and mapping within the mine.  

 

The stratigraphy of the Musselwhite mine consists of a pair of iron formations, the 

upper called the Northern Iron Formation (NIF) and the lower called the Southern Iron 

Formation (SIF) that are surrounded by a dominantly mafic-ultramafic volcanic pile (Fig. 

1.3). The SIF is separated from the NIF by a series of mafic-ultramafic and intermediate 

metavolcanic rocks (Fig. 1.3). All units have been metamorphosed to amphibolite facies 

and have been sheared to some degree, making interpretation difficult. The units are of 

relatively uniform thickness at the mine scale, but vary considerably at smaller scales 

(Blower and Kiernan, 2003). This localized variation is due to the reaction of the units to 

folding and shearing during the different episodes of deformation. 
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The hanging wall rocks are dominantly a felsic to mafic volcaniclastic pile, 

consisting of felsic ash-tuff to coarse polymictic volcaniclastic rocks overlying a series of 

basaltic flows (Blower and Kiernan, 2003). These rocks are split into two main units by 

their composition (felsic or mafic). Felsic metavolcanic rocks comprise the uppermost 

unit of rocks that host the Musselwhite deposit. They consist of a pile of intrusive and 

extrusive rocks of dacitic to rhyolitic composition (Blower and Kiernan, 2003). The rocks 

are comprised of highly siliceous units with massive to finely schistose bands to quartz 

rich bands (Wells, 1995). The typical mineral assemblage is quartz + muscovite + 

plagioclase + minor biotite with quartz flooding; the geochemistry of these units is 

comparable to those of felsic tuff with about 73% SiO2 (Wells, 1995). The unit is 

frequently separated from the underlying thoeliitic metabasalt by either a thin garnet-

grunerite horizon or garnet-biotite schist that grades upwards into the felsic volcanics 

(John Biczok, personal communication, 2008).  

The rocks of the tholeiitic metabasalt unit consist of fine-to-medium-grained, 

massive to foliated rocks with a composition of hornblende-plagioclase-quartz (Wells, 

1995). Schist seen in the mine ramp area has a mineral assemblage of ~75% actinolite, 

~15% plagioclase and ~10% quartz (Wells, 1995). The tholeiitic metabasalts have a trace 

element geochemical signature of plateaux basalts (Hollings and Kerrich, 1999). 

A significant apparent sedimentary or felsic tuff component occurs in small lenses 

within this unit that locally generates mineral assemblages that look like the silicate-

dominant iron formation (Wells, 1995). Hollings et al. (1996) reported that the felsic 

metavolcanic unit correlates with the South Rim Metavolcanic unit, whereas the tholeiitic 
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metabasalt unit is comprised of the rocks of the North Rim Metavolcanic and 

Opapimiskan Lake Metavolcanic units.  

The NIF is typically found below these two hanging wall rock units (Fig. 1.3; 

Blower and Kiernan, 2003). The “footwall mafics” lie between the NIF and the SIF, and 

are mafic/ultramafic in composition; they consist primarily of pillowed komatiitic basalts 

(Hollings, 1996; Kiernan and Blower, 2003). Trace element geochemistry on this unit 

shows that the lower basalts are comprised of Munro-type komatiites, high magnesian 

basalts and a few intermediate rocks (Hollings and Kerrich, 1998). The geochemistry of 

the high magnesian basalts indicate that they are derived from a mixing of komatiitic, 

plume-derived material with mantle material (Hollings and Kerrich, 1998). The NIF is 

further divided into a series of units (Fig. 1.4). The four major continuous units are: 4F –  

biotite-garnet schist, 4EA – the garnet-amphibole-grunerite-chert iron formation, 4B – 

grunerite-chert-magnetite iron formation, and 4H –  pyrrhotite meta-argillite ( Fig. 1.4; 

Blower and Kiernan, 2003). Contacts appear to be gradational between units suggesting 

contemporaneous deposition (Blower and Kiernan, 2003).  

The SIF underlies the basement basalts and is dominated by chert-magnetite iron 

formation with minor carbonate visible in some portions of the formation (Fig. 1.3; 

Wells, 1995; Blower and Kiernan, 2003). The rocks that underlie the SIF are tholeiitic in 

composition (Blower and Kiernan, 2003). Some pegmatite dykes are found in the vicinity 

of the mine, but a link between these and mineralization has not been observed (Blower 

and Kiernan, 2003). 
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1.10 Mineralisation 

Gold is found as microscopic flakes of native gold, and is associated with pyrrhotite and 

has been found trapped within garnets and in garnet fractures within the 4EA unit (Otto, 

2002). The gold is somewhat stratiform with the 4EA unit, but is not stratabound, and 

seems to be chiefly associated with shearing. Quartz flooding, biotite-garnet, chlorite-

grunerite-carbonate, and chlorite-pyrrhotite flooded areas, veins, and veinlets are 

commonly associated with gold mineralization (Otto, 2002; Blower and Kiernan, 2003). 

A possible remobilization or later stage introduction of gold as electrum and gold 

tellurides associated with tellurides has been found in a unique Po-dolomite-calcite vein 

within a narrow shear zone cutting basalts of the PQ fold limb a short distance west of the 

NIF. The mineralogy and textures of this vein are very different in character from the 

majority of the Musselwhite ore bodies (Liferovich, 2007). Blower and Kiernan (2003) 

classified Musselwhite Mine as an iron-formation-hosted gold deposit, placing it in the 

same category with Homestake, Minas Gerais, and Lupin. Otto (2002) classified the 

deposit as a hypozonal Archean orogenic lode gold deposit.  
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Figure 1.4: Simplified schematic section of the units of the Northern Iron Formation. 
Courtesy of Musselwhite. 
 

1.11 Previous research on gold  

The currently accepted model for Musselwhite Mine is that of  an orogenic gold 

deposit (Otto, 2002). This term is used currently as a catch-all for most Archean 

greenstone deposits, regardless of gold occurrence, size, host rock and accompanying 

alteration suite. In an effort to remedy this, the Archean gold deposits have been divided 

using various different criteria. A common division is the host rock for the gold 

mineralization; in this division, Musselwhite falls under the sub-type of iron-formation-

hosted (Blower and Kiernan, 2003). The economic significance of iron-formation hosted 

gold deposits is sufficient to have some researchers place them into separate class from 
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the quartz-carbonate-vein-hosted gold deposits (Poulsen, 1995). However, this is simply 

a distinction based on host rock type as opposed to a truly unique type of mineralization. 

Groves et al. (1998) proposed the terms epizonal, mesozonal, and hypozonal in an 

attempt to classify orogenic deposits in terms of genetic location as opposed to host rock. 

Examples of gold mineralization associated with orogenic processes are found throughout 

the geological record, but are especially prevalent in the Archean. Gold mineralization in 

the Archean is believed to be associated with major scale transtensions across cratons 

(Colvine, 1989). In general, all orogenic gold deposits are found associated with the 

stresses of accretion/mountain building (Kerrich, 1989). Gold mineralization tends to 

occur late in the tectonic events, when ductile deformation gives way to brittle 

deformation (Kerrich, 1989). Anastamosing shear zones are created during this time. 

Fluids find conduits along the fractures formed and precipitate minerals including native 

gold (Sibson, 1988; Groves et al, 1998). Pressure and temperature data has a range from 

180 - 700°C and  ~1-5 kbar (Groves et al., 1998). Gold is deposited in veins or in 

sulphide altered wall rock (Colvine, 1989). Quartz flooding/veining and calcite/carbonate 

veining/flooding is commonly associated with gold mineralization. An unusual suite of 

minerals is associated with orogenic gold mineralization: arsenopyrite, rutile, scheelite, 

tourmaline, molybdenite, stibnite and native bismuth are found as accessory minerals to 

gold mineralization (Kerrich and Cassidy, 1994; Wood et al., 1986). More unusual are 

the low concentrations of copper, zinc, and lead in orogenic gold deposits, as the 

concentrations of these elements in the presumed source rocks is considerably greater 

than that of gold. Another common feature of Archean orogenic gold deposits is the 

presence of felsic, frequently alkalic, intrusions (Kerrich, 1989). These intrusions are 
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presumably emplaced during orogenesis, and take advantage of the same paths created by 

both brittle and ductile faulting as did the gold-bearing fluids. These intrusions tend to be 

syn- to post kinematic with regards to gold mineralization (Kerrich, 1989).  

 

The source of the gold is of great interest to both the scientific community and 

industry, and has been debated for decades. Currently, two views are popularly held: 

either it is fluid exhaled from a magmatic body (magmatic theory; i.e., Wood et al., 1986; 

Burrows and Spooner, 1987) or it comes from the surrounding rocks that host the deposit 

(metamorphic theory; i.e., Fyfe and Kerrich, 1982; Kerrich and Cassidy, 1994; Jia, 2001). 

Those supporting a magmatic-derived fluid model contend that the gold mineralization is 

derived from the various intrusive rocks frequently associated with these deposits. Those 

in favour of metamorphic origins argue that concentrations of gold in granitic rocks are 

very low (somewhere on the order of 1 ppb), so to manage to concentrate gold in the 

amounts seen in the average producing gold deposit requires considerable enrichment 

(Fyfe and Kerrich, 1982). At those concentrations one would need to leach roughly 

100km3 of rock in order to produce a 10 million gram gold deposit at a grade of 5-10 g/t 

(Fyfe and Kerrich, 1982). Thus, it is argued that the alkalic stocks associated with gold 

deposits are too small to be the source of the gold and unless the stocks in question are 

anomalously rich in gold, and that gold is for some reason very efficiently removed from 

such a stock, it is far more likely that the source fluids are derived from metamorphic 

processes (Kerrich, 1989). However, there is some evidence that the production of 

adakitic melts under certain conditions can produce very high gold concentrations in 

these melts (Mungall, 2002). It must also be noted that depletion of several hundred cubic 
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kilometers of rock and transport to the site of gold and accessory elements (B, Bi, Hg, W, 

etc.), while avoiding removal of other more common commodities such as lead or zinc 

and loss of complexing agents to fluid-rock interaction using only metamorphic fluids is 

a very complex problem in and of itself. 

In an attempt to resolve the issue of origins of auriferous fluids, researchers have 

conducted a variety of geochemical studies. Among these are isotopic studies, hoping to 

discern the source of fluids that transported the gold. δ18O isotopic data calculated for 

waters in shear zones in these gold deposits tend to be well-constrained, and most have 

values that sit within the area of overlap between magmatic and metamorphic waters 

(Wood et al., 1986; Burrows and Spooner, 1987; Kerrich and Cassidy, 1994). Because of 

the overlap in oxygen isotopic range for magmatic and metamorphic fluids (see Fig 3.1 in 

Chapter 3), the geochemistry of these deposits is used by both sides in an effort to 

support their arguments and to cast doubt on the other. Magmatic-fluid theory supporters 

base their arguments on the fact that the δ13C values preclude metamorphic degassing 

(Burrows et al., 1986). In contrast, those in favour of metamorphic origins argue that the 

δ13C values are not unique to magmatic fluids and that some of the values reported for 

lode gold deposits sit outside the accepted range for hydrothermal fluids of magmatic 

origin (King and Kerrich, 1989).  Because of the abundance of oxygen in the crust, and 

the large area of overlap between the isotopic fields of primary magmatic and 

metamorphic waters, other isotopes have been used to try to resolve this ambiguity. Of 

the traditionally studied stable isotopes, nitrogen shows the most promise of giving some 

resolve to the issue. 
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Approximately 98% of nitrogen contained on Earth is found in crystalline rocks 

(Sharp, 2007). The two major speciations of nitrogen within the earth are as N2 in fluid 

phases and also as ammonia (NH4
+). The ammonia species substitutes for K+ in small 

concentrations in potassic minerals. Studies undertaken on diamonds have revealed that 

the mantle has a δ15N signature of approximately -5‰ (Sharp, 2007). Fluid inclusions 

found in basalts give a signature of -5 to +5 ‰(Sharp, 2007). Gases retrieved from 

volcanic activity in island arc systems have a negative δ15N signature (Sano et al., 2001; 

Fischer et al., 2002 in: Sharp, 2007). Felsic plutonic signatures vary, but are essentially 

identical to those of basalts. 

The δ15N signature in sedimentary rocks can be lowered somewhat during 

diagenesis as a result of the incorporation of organic detritus, depending on the trophic 

level of the organisms (Sharp, 2007); organic material also contains high concentrations 

of nitrogen relative to the sediments, so the presence of organic detritus also raises the 

total N concentration of these rocks (Orberger et al., 2005; Kroos et al., 2006). As rocks 

are buried, nitrogen is lost from the rocks to the fluid phase, with the lighter isotope 14N 

escaping preferentially (Haendel et al., 1986). The result is a progressive decrease in 

overall N concentration and an increase in δ15N signature during prograde 

metamorphism.  

Because of the difference in isotopic signature between magmatic, meta-igneous 

and metasedimentary rocks, it becomes possible to use nitrogen to determine the source 

of fluids creating alteration within a particular deposit.  
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1.12 Methods 
 
1.12.1  Sample Preparation 
 

From the sixty samples taken from mine core and thirty-eight regional hand 

samples a total of thirty-five samples were selected for processing and analysis. Samples 

were photographed, crushed using a tungsten carbide steel mortar and pestle to a size of 

approximately 0.5 cm, and further crushed using an agate rotary mill for ~20 second 

intervals. In order to eliminate contamination between samples, the mill, mortar and 

pestle were cleaned first with water, then with acetone to remove residue before each 

sample was crushed. The samples were then sieved and the  #100 - #200 size fraction of 

each sample was taken for further processing. Biotite was separated from other minerals 

using a Frantz mineral separator and, when required, by use of heavy liquid separation 

using methylene iodide and tetrabromoethane. Samples were then checked using XRD to 

ensure that the samples were ~98% pure or better. The samples were cleaned with 30% 

hydrogen peroxide to dissolve any organic material left from processing and then sent for 

analysis.  

Thirty quartz samples were also separated from the crushed samples via Frantz 

magnetic separation. These samples were bleached in 0.5 M HCl solution for two days to 

destroy any iron-bearing constituent minerals. The cleaned samples were then analyzed 

via XRD to ensure purity and cleaned with 30% H2O2 to remove any organic compounds 

accumulated due to processing. 

Four sets of quartz-magnetite pairs were also selected from the Musselwhite mine 

site in an effort to constrain peak metamorphic temperature. Suitable samples of visually 

“pristine” oxide iron formation (i.e. few to no additional silicates) were selected from 
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core. These were then processed using the method of Valaas (2004): samples were cut 

into a thick section to help constrain the mineral pairs spatially. The thick section was 

then crushed and sieved, and quartz and magnetite were hand picked from the resulting 

size fractions. Magnetite was removed using a hand magnet. Quartz was hand picked, and 

any quartz grains with magnetite inclusions were removed using a Frantz magnetic 

separator. Both were analysed by XRD to ensure purity before being sent for analysis. 

 
1.12.2 Isotopic Analysis 

Nitrogen isotopic signatures were analysed using a Costech Elemental Analyzer coupled 

to a Thermo Finnigan Delta XP Mass Spectrometer. Around 80 mg of sample was loaded 

in a tin bucket, then pyrolized at 800°C. Oxygen samples were collected as carbon 

dioxide via a bromine pentafluoride extraction line using the process of Clayton and 

Mayeda (1963) and then analyzed using a Finnigan Mat 252 Mass spectrometer. The 

hydrogen isotopic data was collected using a Thermo Finnigan TCEA coupled to a 

Thermo Finnigan Delta XP CF-MS using. Analyses were carried out by staff at Queen’s 

Facility for Isotope Research. Standards used were Nair for nitrogen, whtxtl for oxygen 

(an in-house standard with a known composition relative to VSMOW) and VSMOW for 

hydrogen. Errors are 1‰ for nitrogen, 0.2‰ for oxygen and 5‰ for hydrogen. 

 

1.12.3 SEM analysis 

After petrographic analysis, nine thin sections were selected, carbon coated and then 

examined using the JEOL JSM 5900 LV scanning electron microscope (SEM) detector 

resolution of 133 eV in the Lakehead University Instrumentation Lab (LUIL). Fe, Mg, Ti, 

K, Na, Ca, Al, and Si were used for silicate identification and estimation of biotite 
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compositions. Spectra were analysed using LINK ISIS software. Spectra were acquired 

using a 50 second analysis period (live time) and an accelerating voltage of 20 keV and a 

beam current of 0.465 nA. Elements were reported as oxides, with total iron being 

reported as FeO. Standardization was carried out on silicate and oxide standards. FeO 

was standardized on hornblende (Mn-Hor), periclase for MgO, orthoclase for K2O, 

ilmenite was used for TiO2, jadeite for Na2O, wollastonite for CaO, corundum for Al2O3, 

pyroxene for SiO2 .  

 

1.12.4 Whole Rock analysis 

Whole rock analyses were provided courtesy of Musselwhite Mine. Analyses were 

performed by Activation Laboratories Inc. using lithium metaborate/tetraborate fusion of 

samples coupled with ICP-MS. Detection limits for elements analysed are found in Table 

1.1. Eu determinations are semiquantitative in samples having extremely high Ba 

concentrations (greater than 1%) and data may be semiquantitative for chalcophile 

elements (Ag, As, Bi, Co, Cu, Mo, Ni, Pb, Sb, Sn, W and Zn) (Actlabs, 2008 

http://www.actlabs.com/gg_rock_litho_can.htm). 
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Table 1.1: Detection limit of elements analysed by Activation Laboratories Inc. 

oxide limit element Limit (ppm) element 
Limit 
(ppm) 

SiO2 0.01% As 5 Sb 2 
Al2O3 0.01% Ba 3 Se 1 
Fe2O3 0.01% Bi 4 Sn 5 
CaO 0.01% Ce 10 Sr 2 
MgO 0.01% Cr 20 Ta 10 
Na2O 0.01% Cu 10 Th 2 
K2O 0.01% Ga 1 U 4 
Cr2O3 0.01% La 1 W 10 
TiO2 0.01% Mo 2 Y 2 
MnO 0.01% Nb 2 Zr 5 
P2O5 0.01% Ni 5 Zn 10 
SrO 0.01% Pb 2 V 5 
BaO 0.01% Rb 2     
LOI 0.01%         
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CHAPTER 2 – PETROGRAPHY 
 

2.1 Introduction  

Biotite can be found throughout all units at the Musselwhite mine, both 

metasedimentary and metavolcanic. However, in certain units, such as the oxide facies 

iron formation, these bands are very small and only occur as a very minor phase so it is 

generally ignored or overlooked in generalized descriptions of these units. This chapter 

will describe the biotiferous units found at the Musselwhite Mine, and compare and 

contrast their occurrence and associated mineral assemblages. 

 

2.2 Previous work  

A number of petrological studies have been undertaken on the rocks at the mine. 

A previous study of the rocks by Wells (1995) helped define the units and alteration 

assemblages. Otto (2002) completed a brief characterization of the rocks, their mineral 

assemblages and relationships to aid geothermometry calculations. Additional 

petrographic work was carried out by Moran (2008) in order to characterize the various 

sedimentary units in an effort to develop a better depositional model of the rocks that host 

the Musselwhite deposit. 

 

2.2.1 Garnet-biotite schist (4F) 

The study by Otto (2002) characterized the 4F unit by the presence of garnet, 

biotite and quartz with occasional showings of staurolite and grunerite. Garnets in this 

unit have inclusion rich cores and inclusion free rims, indicative of two distinct 

generations of growth (Otto, 2002). Both biotite and garnet have grown along the S2 
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foliation (Otto, 2002). The 4F layer is intermittent and frequently forms “pods” within the 

tholeiitic metabasalt unit, with or without the accompanying unit and is interpreted to be 

a ferruginous pelitic metasedimentary rock. Breaks et al. (2001) postulated that the 4F 

unit might possibly correlate with the ELS. 

 

2.2.2 Silicate Facies Iron Formation (4EA) 

The 4EA unit is characterized by the mineral assemblage quartz-grunerite-garnet 

(Wells, 1995; Otto, 2002). It has been classified as a silicate-dominant iron formation 

(Moran, 2008). Five types of bands have been observed: 1) iron-rich mineral bands that 

are dominated by grunerite-cummingtonite, garnet, and magnetite, 2) hornblende-rich 

bands containing hornblende, garnet, plagioclase and quartz as well as minor grunerite, 

magnetite, ilmenite, and pyrrhotite, 3) biotite-rich bands with associated garnet and 

quartz, 4) calc-silicate bands containing calcite, clinopyroxene, plagioclase and 

hornblende and 5) quartz bands with some minor grunerite-cummingtonite intergrowths 

(Otto, 2002). Hornblende in this unit has dark green-blue pleochroism and is mostly 

ferro-tschermakitic in composition (Otto, 2002). The grunerite-cummingtonite is coarser 

in this unit than the underlying 4B, and garnets are rich in grunerite inclusions, and have 

irregular edges that are intergrown with surrounding grunerite (Otto, 2002). Ga. nets in 

the iron–rich bands are frequently rotated and contain inclusions of grunerite and ilmenite 

(Otto, 2002). Some minor retrograde chlorite is seen in this unit (Otto, 2002). Most of the 

gold is hosted within this unit, although it has been noted that gold mineralization is 

merely stratiform, not stratabound (Hall and Rigg, 1986). Garnet-biotite, albite and 



 32 

carbonate alteration as well as quartz flooding is commonly associated with Au 

mineralization within this unit (Kiernan and Blower, 2003). 

 

2.2.3 Oxide-facies Iron Formation (4B) 

The 4B unit is characterized by finely laminated layers composed of quartz, 

magnetite and grunerite. Some garnet and local biotite-amphibole alteration is present. 

Otto (2002) identified three compositional layers within the 4B unit: 1) bands comprised 

of Fe-rich magnetite, prismatic grunerite-cummingtonite with associated minor biotite 

and hornblende; magnetite and grunerite are often internally layered 2) quartz bands and 

3) garnet-rich layers with prismatic grunerite-cummingtonite, biotite, hornblende and 

quartz. Garnets in the latter layers have resorbed rims and frequently contain inclusions 

of fibrous grunerite (Otto, 2002). Minor plagioclase, hornblende and calcite are also 

present in this unit (Otto, 2002). 

 

2.3 Mine Petrography 

Biotite-rich units are found within the metavolcanic rocks. Biotite in these units is 

generally medium to fine-grained, with dark brown to green pleochroism. A significant 

amount of quartz is associated with the biotite. Some samples display large 

porphyroblasts of hornblende with biotite inclusions (Plate 2.1a). The contact between 

biotite-rich units and the adjacent units is typically sharp. 

Petrographic examination of samples taken from the 4F unit reveals that the unit 

contains a significant proportion of quartz and/or plagioclase. The content  
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Plate 2.1: Textures of biotiferous units at Musselwhite. a) hornblende crystals with 
biotite inclusions from biotiferous units in metavolcanic rocks (E358108, XPL) b) typical 
“4F” biotite-garnet schist (E354043, XPL) c) grunerite mantling of quartz flooding in 
biotiferous portion of silicate-dominant iron formation(E354026, XPL) d) pyrrhotite 
mineralization on margins of quartz flooding (E354013, PPL) e) large, equant garnets in 
the silicate-dominant iron formation (E354016, PPL) f) elongated garnet in silicate-facies 
iron formation (E354024, PPL). 
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ranges from sample to sample –quartz and feldspar grains comprise anywhere from less 

than 5% to up to 60% of the rock. The grains of plagioclase are quite small, irregularly 

shaped and are randomly oriented. Quartz grains are approximately the same size as 

plagioclase grains, and occur as equant to anhedral grains. Biotite defines foliation except 

in the presence of garnet, where it grows around the perimeters of garnets. Garnet grains 

in the unit are typically small (approximately 0.5-1 mm) and euhedral to subhedral (Plate 

2.1b). Larger garnet grains have inclusion-rich cores and clear, inclusion-free rims, 

whereas the smaller garnet grains are generally inclusion-free, suggesting they are also 

late stage. The biotite itself is medium to coarse grained and frequently a dark red-brown, 

possibly indicating high titanium contents. 

The biotite-rich portions of the silicate-dominant iron formation unit have a wide 

variety of textures. Biotite is typically reddish brown to green pleochroic, medium-

grained to coarse grained, and generally lies along foliation, although there are typically 

some laths that deviate from foliation especially in the presence of garnet. When found in 

the vicinity of garnet, the biotite is often truncated by garnet indicating consumption of 

biotite during garnet growth, and some inclusions of biotite are seen within garnet. 

Biotite becomes finer grained approaching quartz flooding, and is typically replaced by 

grunerite adjacent to the quartz veins (Plate 2.1c). Pyrrhotite is found on the margins of 

quartz-grunerite bands associated with grunerite, hornblende, biotite, magnetite and 

garnet (Plate 2.1d).  
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Plate 2.2: Textures of biotiferous units of the silicate-dominant iron formation (4EA 
unit). a) irregular aggregates of garnet with accompanying grunerite and biotite 
mineralization (E354013, PPL) b) hornblende inclusions in garnet (E354039, XPL) c) 
ilmeno-magnetite and pyrrhotite inclusions in garnet (E358103, REFL) d) prismatic 
grunerite inclusions in garnet (E354013, XPL) e) snowball texture in garnet with 
inclusion free rim (E358103, PPL) f) pinching of quartz vein by garnet (E354013, PPL). 
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Garnet is frequently associated with the biotite and range in morphology from 

large, equant specimens (Plate 2.1e) to elongated specimens (Plate 2.1f) to highly 

irregular aggregates (these are typically associated with grunerite or biotite; Plate 2.2a). 

Garnets may or may not have recrystallized edges. Mineral inclusions within garnet 

include quartz, biotite, hornblende, prismatic grunerite, ilmenite, magnetite, and 

pyrrhotite (Plate 2.2b-d). Snowball textures of these inclusions in some garnet grains 

show that these garnet grains have frequently been rotated; however, these inclusions are 

generally not found in the garnets’ outer rims (Plate 2.2e). Quartz flooding and massive 

quartz veinlets frequently have pinched textures in the presence of garnet (Plate 2.2f). 

 

Biotiferous bands of the oxide-dominant BIF are comprised of many minerals 

including coarse-grained quartz, calcite, prismatic and fibrous grunerite, hornblende, 

biotite, and pyrrhotite. Mineral inclusions in garnet are varied but include quartz, calcite, 

hornblende, grunerite (both of the fibrous and prismatic variety), ilmenite-magnetite, 

pyrrhotite and biotite (Plate 2.3a-c). Prismatic grunerite and hornblende are included 

within garnet and also form a rim around some garnet grains along with accessory calcite 

and chlorite. Magnetite and pyrrhotite are common inclusions in garnet, but only rarely 

found occurring together. Biotite and calcite inclusions are found filling fractures in 

garnet. Sample E354040 has massive pyrrhotite veinlets with accessory chlorite, quartz, 

biotite and grunerite inclusions. Some garnet in the biotite-rich units appear to 

pseudomorph a tabular mineral, possibly plagioclase (Plate 2.3d). Garnet growth is highly 

irregular, forming anywhere from subhedral to irregular anhedral “shards” within these  
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Plate 2.3: Textures found in biotiferous units of the oxide-dominant iron formation 
(4B unit). a) hornblende (green) and grunerite (colourless) inclsions in  garnet (E354020, 
PPL) b) pyrrhotite and ilmeno-magnetite inclusions in garnet (E35040, REFL) c) coarse-
grained grunerite inclusions and fine-grained biotite inclusions in garnet (E354018, XPL) 
d) garnet pseudomorph of tabular mineral (E354010, PPL) e) shards of garnet (E354010, 
PPL) f) habit of biotite (green) growth around garnet – note lack of foliation (E354018, 
PPL). 
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units (Plate 2.3e), and may sometimes possess euhedral, flat, late-stage growth faces, 

which generally do not contain inclusions. Garnet grains frequently have an elongated 

morphology in finer grained, foliated units. Random orientation of biotite growth is 

common around garnets (Plate 2.3f). 

2.4 Regional Petrography 

2.4.1 Mafic metavolcanic rocks 

Samples from the north of the Musselwhite mine, from the North Shore of 

Opapimiskan Lake, are deep green in hand sample and contain approximately 25-50% 

fine grained quartz. This is mixed with 50-70% hornblende, and other minerals such as 

calcite, plagioclase, biotite and grunerite. Grains of pyrrhotite are also present (Plate 

2.4a). Hornblende varies texturally, from very coarse grained, poikiloblastic crystals 

(Plate 2.4b) to very fine-grained, irregular masses (Plate 2.4c). 

Sample E438516 was collected from a mafic metavolcanic unit on the NE margin 

of the NCLGB (Fig. 2.1). The hand sample is very green, yet contains approximately 

30% quartz and another 20% plagioclase feldspar. The remainder of this rock is 

comprised of hornblende and pyroxene in varying amounts. Mineral grains in this rock 

are equant and approximately of equal size (Plate 2.4d). The high quartz content suggests 

an additional input of quartz into the rock.  
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Plate 2.4: Regional rocks of the North Caribou Lake greenstone belt. a) pyrrhotite 
mineralization in mafic metavolcanic rocks from the north shore of Opapimiskan Lake 
(E438501, REFL) b) showing coarse-grained aggregates and poikiloblastic hornblende 
and pyroxene with interstitial quartz (E438506, XPL) c) fine-grained aggregates  of 
hornblende in mafic metavolcanic rock  (E438506, PPL) d) mix of hornblende, 
plagioclase and quartz (E438516 , XPL) e) showing porphyritic texture with feldspar 
phenocrysts (E438531, XPL) f) brittle fracturing of quartz in granitoids (E438508, XN). 
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Figure 2.1: map of the North Caribou Lake greenstone belt showing the locations of 
samples. Triangles = mafic samples, circles = felsic samples, squares = metasedimentary 
samples.  
 

2.4.2 Granitoid rocks 

The felsic plutonic rocks of the North Caribou Lake greenstone belt are typical 

Archean granitoids. The granitoids vary in texture and grain size, with quartz and finer 

grained feldspars forming the bulk of the matrix. Accessory minerals vary from sample to 

sample over very short distances. Minor mineral phases include biotite, muscovite, 

zircon, hornblende, titanite and baddelyite as well as some minor opaque phases. A few 

of the plutons are porphyritic, with large feldspar phenocrysts up to 1-2 cm long (Plate 

2.4e). Samples from plutonic material adjacent to the greenstone belts display strain 

textures such as brittle fracturing of quartz and feldspar (Plate 2.4f), deformed growth of 
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micas in “wavy” morphologies (Plate 2.5a), and recrystallization textures in quartz. 

Biotite in some samples has been partially replaced by chlorite (Plate 2.5b). 

 

2.4.3 Metasedimentary Rocks 

Sample E438532 comes from the southern portion of the Eyapamikama Lake 

Metasedimentary unit (Fig. 2.1). The rock is composed chiefly of quartz, feldspar and 

biotite, most of which is fine-grained to very fine-grained with a few larger crystals. 

Some larger grains are apparent at low power magnification. These larger crystals have 

very blurry edges, yet are distinct from the fine-grained matrix (Plate 2.5c). Biotite in the 

rock occurs in small, oriented aggregates and throughout the rock in very fine-grained, 

randomly oriented laths (Plate 2.5d). A few grains of sulphide, possibly pyrite, are 

located within the rocks. The grains are approximately 0.5 – 1mm long and are euhedral 

to anhedral in morphology. Rinds of oxide (likely magnetite) are found on the sulphide, 

and the sole euhedral grain has inclusions of rutile (Plate 2.5e). Coarse-grained quartz-

hornblende-calcite alteration of the rock occurs as medium grained, equant crystals of 

biotite-free quartz, feather-textured actinolite, hornblende crystals and calcite infilling. 

Rutile-magnetite and biotite are found on the periphery of a veinlet of this alteration.  
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Plate 2.5: Regional rocks in and surrounding the North Caribou Lake greenstone 
belt. a) wavy growth of mica in fractured feldspar (E438513, XPL) b) biotite (green) 
being progressively replaced by chlorite (blue; E438515, XPL) c) clast with blurred 
edges (E438532, XPL) d) fine-grained interstitial biotite in metasedimentary rock 
(E438532, XPL) e) rutile (brown) inclusions in pyrite grain (E438532, PPL) f) shear 
planes and grain size reduction in quartz-rich metasedimentary rock (E438520, PPL). 
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The sample taken from the ELS to the north of Akow Lake (Fig 2.1) is quartz 

rich, with a few bands that are primarily amphibole. Grain size reduction and slip planes 

are evident within the rock (Plate 2.5f).  

 

2.5 Discussion 

The granitoid rocks surrounding the North Caribou Lake greenstone belt appear to 

be typical Archean felsic plutonic rocks (Plate 2.4e,f; Plate 2.5a,b). The alteration of 

biotite to chlorite indicates that fluids have permeated the felsic plutonic rocks, likely 

aided by brittle deformation of the rocks. The presence of ductile and brittle deformation 

features in the plutonic rocks to the south of Musselwhite reveals that the pluton had 

already been emplaced before the onset of ductile and brittle deformation in the North 

Caribou Lake greenstone belt, and thus likely predate mineralization of the Musselwhite 

Mine. The age of this complex at around 2730 Ma could possibly set an upper limit for 

the onset of brittle deformation in the North Caribou Lake greenstone belt.  

 

The mafic metavolcanic samples of the North Caribou Lake greenstone belt show 

a range of alteration styles. Sample E438516, taken from an area that is defined as the 

edge of the North Caribou Terrane (the Dinnick Lake shear zone; Fig 2.1; Breaks et al., 

2001) is most likely a composite of what was originally mafic metavolcanic material with 

more felsic material – though whether the felsic material came from a sedimentary or an 

igneous source is impossible to tell. It is possible that the additional quartz is the result of 

quartz flooding in the rocks within and immediately adjacent to the shear zone. The lack 
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of brittle features in this sample could indicate the center of the shear zone, where strain 

was more uniform.  

One sample taken from the north shore of Opapimiskan Lake contains 20% 

biotite. This could be another pocket of pelitic metasedimentary rock in the mafic 

metavolcanic sequence, but the sheared texture of the rocks and the presence of massive, 

fine-grained quartz flooding, quartz and calcite veining and pyrrhotite indicates that 

biotite is more likely the product of alteration in sheared material.  

The mineral association of biotite-grunerite-garnet-quartz-pyrrhotite 

mineralization is present in all units of the NIF. This assemblage is not restricted to the 

iron formation itself, but both underlies and caps the deposit and is present in the mafic 

metavolcanic rocks. The small, discrete bands of aluminous silicate minerals within the 

iron formation have been previously attributed to the presence of an increasing clastic 

component in the iron formation (Moran, 2008) and have been interpreted as pelitic 

lamellae that have undergone straightforward dehydration metamorphism. Moran (2008) 

also noted that the geochemistry of the biotite garnet schist (which is considered to be the 

most clastic-rich unit apart from the garnet quartzite unit) indicated only 20-40% of the 

unit was detrital. If this is true, then the overwhelming majority of the biotite seen at the 

Musselwhite mine is hydrothermal rather than detrital in origin (or, at the least, has been 

altered sufficiently that very little of it reflects the original detrital signature).  

The habit of garnet and grunerite samples associated with mineralized areas is 

markedly different than that found in non-mineralized areas, with mineralized samples 

containing coarse-grained grunerite and irregular very coarse-grained garnet frequently 

intergrown with one another on the edges of the main quartz veins and accompanying 
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pyrrhotite mineralization (Plate 2.3c). The change in character of mineralization suggests 

fluid transport closely associated with gold mineralization. This could explain why 

mineralization was once thought to be stratabound within the 4ea unit, as subtle 

differences in the character of the mineral assemblages would be indistinguishable at 

hand sample scale.  

 
The extreme difficulty in visually distinguishing between biotiferous units 

occurring in the various portions of the NIF and the adjacent metavolcanic rocks and the 

difficulty in determining origin based on petrology alone makes it very difficult to visibly 

establish an associated alteration assemblage for gold mineralization at the Musselwhite 

mine. While characterisation via petrographic microscope may be a viable way of 

determining a mineralisation assemblage, it would be a very time consuming method. 

Mineral geochemistry is a possible solution to what cannot be readily determined visibly. 
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CHAPTER 3: STABLE ISOTOPE GEOCHEMISTRY 
 
3.1 Introduction 

Stable isotopes are regularly used to investigate the origin of fluids that form mineral 

deposits, especially Archean orogenic gold deposits (e.g., Burrows et al., 1986; Golding 

and Wilson, 1987; Bierlein et al., 2005; Stemler et al., 2006). Often several isotopic 

species are used in order to gain a better understanding of the nature of fluids that have 

interacted with the minerals of the deposit. Oxygen and hydrogen isotopes have been 

frequently analysed in the past in order to estimate the original composition (and by 

extension, origin) of the fluids involved in the formation of the mineralisation (Golding 

and Wilson, 1987). Nitrogen has more recently come to the forefront in the investigation 

of gold-bearing fluids (Jia and Kerrich, 2001). 

There has been, and still exists today, a debate regarding the source of fluids that 

transported gold in Archean orogenic gold deposits (Hodgson, 1993). Of the two major 

theories held in favour today, one maintains that the fluids were the product of 

devolatilisation of nearby felsic intrusions, the other argues for metamorphic fluids being 

the transport mechanism (Hodgson, 1993). Both use isotopes to support their respective 

cases.  

Historically, oxygen has been considered the most useful isotope to examine in 

rocks. Its abundance in rocks makes it easy to acquire a measurable signature in small 

quantities. It is sensitive to changes in temperature, and can be used to estimate the 

temperature of formation of many different minerals, thus making it possible to estimate 

the temperature of formation of accessory minerals associated with gold mineralisation. 

Oxygen was among the first isotopes used to attempt to characterize fluids in gold 

deposits, especially considering the association of gold with quartz veins (Kerrich and 
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Cassidy, 1994; Poulsen, 1995; Vallance et al., 2003). The major issue with using oxygen 

to determine the source of auriferous fluids in orogenic gold deposits is the large window 

of overlap between metamorphic and magmatic fluid sources (Fig. 3.1). Many gold 

deposits fall in and around this window of overlap  (Kerrich and Cassidy, 1994; Jia and 

Kerrich, 2000; Pitcairn et al., 2005). 

 

Figure 3.1: Graph of oxygen and hydrogen isotopes of fluids for different rock types and 
measured waters measured relative to VSMOW. After Taylor, 1974. Shaded field 
represents the field for orogenic gold fluids from Kerrich and Cassidy, 1994. 
 

Because of its abundance and sensitivity to temperature changes, the primary 

isotopic signature of oxygen is very susceptible to overprinting by later fluids and events. 

Even the process of cooling, if slow enough, may permit isotopic re-equilibration at a 

lower temperature, destroying the original signature (Garlick and Epstein, 1967). Much 

effort has been made to establish the temperature at which point no more significant 
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fractionation will occur due to cooling of the rock for commonly studied silicate and 

oxide minerals (Sharp, 2007). As the Musselwhite gold deposit has undergone syn and 

post-emplacement metamorphism (indicated by gold trapped in garnet), and possibly 

experienced multiple phases of prograde metamorphism, there is considerable potential 

for resetting of the isotopic signature. However, if the fluid events have happened post-

peak metamorphism, it may be possible to estimate the original oxygen isotopic signature 

of fluids that accompanied mineralisation of orogenic gold deposits.  

 

Hydrogen isotopic data has been collected on hydrous minerals, such as chlorite, 

biotite, muscovite, amphiboles and whole rock samples in an effort to better constrain the 

isotopic signature of plutons and their interactions with surrounding rocks and fluids 

(e.g., Turi and Talylor, 1970; O’Neil and Chappell, 1977; O’Neil et al., 1977; Nabelek et 

al., 1983; Harford and Sparks, 2001) and also the interactions of meteoric and magmatic 

fluids in the creation of hypabyssal mineral deposits (Harris et al., 2005). Suzuoki and 

Epstein (1976) proposed that because of its sensitivity to temperature, yet comparatively 

low concentrations in rocks, hydrogen isotopes could potentially be used as a 

thermometer in the same way as oxygen had been. However, it was found that hydrogen 

fractionation is not solely a function of temperature and fluid compositions, but also is 

controlled in part by composition of the mineral, especially in mafic minerals where site 

substitution is common (Suzuoki and Epstein, 1976).  

 

Recently, geochemists have attempted to use nitrogen to determine the source for 

fluids of orogenic gold deposits (Jia, 2001; Jia and Kerrich, 2001; Pitcairn et al., 2005). 

Historically, nitrogen has been ignored in rocks, largely because concentrations of 
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nitrogen in rocks are very low, and only recently have techniques been developed that 

allow for measurement of nitrogen isotopes in rocks. Nitrogen has an advantage over 

oxygen, as it is not as susceptible to overprinting or homogenization, due to its lesser 

abundance in rocks. In holocrystalline rocks, nitrogen is found replacing potassium as 

ammonium ions in potassium feldspar, biotite, muscovite, and interstitally in quartz 

(Honma and Itihara, 1981). Concentrations in these minerals ranges from a few ppb to 

more than 10000 ppm, depending on the mineral and conditions to which the mineral has 

been exposed, with sedimentary rocks having generally higher concentrations than 

metamorphic or igneous rocks (Handel et al., 1986; Jia and Kerrich, 2000; Pitcairn et al., 

2005). Nitrogen can also be absorbed into clay minerals and found in organic material in 

sediments and soils (Sharp, 2007). As sediments undergo diagenesis and metamorphism, 

nitrogen is progressively lost from the crystal lattice with increasing temperature, the 

lighter isotope being lost preferentially (Haendel et al., 1986). Jia and Kerrich (2001) 

demonstrated that in metavolcanic rocks, nitrogen fractionates with increasing 

metamorphic grade, and gives isotopic signatures that are distinct from the signature of 

magmatic plutons.  

 

3.2 Previous work 

Previous isotope studies of the Musselwhite Mine (Otto, 2002) primarily focused 

on the stable isotope geochemistry of quartz-carbonate alteration and pyrrhotite 

mineralisation associated with gold mineralisation. Oxygen isotopic data from quartz 

veins yielded δ18O values of 12.1 to 13.4 ‰ (Otto, 2002). Isotopic signatures of fluids 

derived from quartz fall on the edge of the metamorphic-magmatic overlap range for 

waters (Fig. 3.1; Otto, 2002). Carbon and oxygen isotopes of carbonate alteration related 
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to gold mineralisation showed ranges of -4.5 to -0.6 ‰ and +10.7 to +11.9 ‰, 

respectively (Otto, 2002). Sulphur isotopic data of pyrrhotite collected from all units of 

the Northern Iron Formation range between +1.9 and +22‰, with the majority falling 

below +5 ‰, and were determined to be magmatic in origin (Otto, 2002).  

 

This study aims to compliment and add to the previous body of research in 

existence and to reveal further insights as to the nature of the fluids that have generated 

gold mineralisation at the Musselwhite mine. 

 

3.3 Regional isotopic geochemistry 

Locations of regional samples are shown in Fig. 3.2. Regional nitrogen signatures 

of biotite from the rocks yield values of – 6.9 to 5.1 ‰ (Table 3.1). When the nitrogen 

isotopic signature is plotted against nitrogen concentrations, all but one of the samples 

plot in the same approximate area as the granite domain defined by Jia and Kerrich 

(2000; Fig. 3.3). The majority of the granitoids are characterized by nitrogen 

concentrations that are lower than those of Jia and Kerrich (2000; Fig. 3.3). Hydrogen 

isotopic signatures for the regional samples give values between -59 and -80 ‰ and 

oxygen isotopic signatures range of biotite for the regional samples range from +2.0 to 

+5.1 ‰.  
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Table 3.1: N, O, and D compositions of biotite from regional samples. See Fig. 3.2 for 
location of samples. *Italicized samples are duplicates of samples. 

 
 

Figure 3.2: Locations of regional samples in the North Caribou Lake greenstone belt.  
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Figure 3.3: Nitrogen results of the regional biotite samples for the North Caribou Lake 
greenstone belt. Filled hexagons = graniotoid samples, blank hexagon = metasedimentary 
sample. Metasedimentary fields taken from Haendel et al (1986), metaigneous fields are 
from Jia and Kerrich (2000). 
 

3.4 Mine results 

Locations of samples can be found in Figure 3.4.The nitrogen signature of biotites 

from the 11700 N section of the Musselwhite Mine yield values from -1.3 to +11.1 ‰ 

and have nitrogen concentrations of 10 ppm to around 150 ppm (Table 3.2; Fig. 3.5). 

Hydrogen isotopic data for the mine biotites ranges from -55 to -100 per mil, with and 

average δD of -86 per mil (see Table 3.2). Oxygen isotopic values for biotite are between 

+7.1 and +8.9 per mil.  
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Table 3.2: Table of isotopic data of samples from the Musselwhite mine. Unit names are 
based on mine terminology: 4f - biotite-garnet schist, 4ea –silicate facies IF, 4b – oxide 
facies IF, 2 – mafic metavolcanic rocks, 2t – altered metavolcanic rock, 6 – 
metasedimentary rocks. *Italicized samples represent reruns and duplicates. 
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Figure 3.4: Locations of samples of the 11700N section of the Musselwhite Mine. 
Modified from files provided by Musselwhite Mine. Shear zones are marked with dashed 
lines. 
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Figure 3.5: nitrogen versus δ15N plot for the different units of the Musselwhite Mine. 
Shaded field represents regional granitoids. Metasedimentary fields after Haendel et al., 
1986; metaigneous fields after Jia and Kerrich (2000). 
 

Quartz samples collected from the mine give δ18O values between +12.1 and 

+17.1 per mil (Table 3.2). When plotted spatially, lighter isotopic signatures coincide 

with shear zones, whereas slightly heavier quartz isotopes are associated with the oxide 

facies iron formation and biotite-garnet schist (Fig. 3.6).  
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Figure 3.6: Oxygen isotopes of quartz of the Musselwhite Mine. Modified from files 
from the database of the Musselwhite Mine. 
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3.5 Discussion 

3.5.1 Regional biotite 

Oxygen and hydrogen isotopic values of the granitic plutons surrounding the 

North Caribou Lake greenstone belt are comparable to the isotopic values of Phanerozoic 

igneous plutonic rocks (e.g., Turi and Talylor, 1971; Taylor, 1974; O’Neil and Chappell, 

1977; O’Neil et al., 1977). The nitrogen isotopic signatures for the plutonic rocks 

bounding the North Caribou Lake greenstone belt also fall within the isotopic range for 

felsic igneous plutonic rocks as defined by Jia and Kerrich, (2000). It should be noted 

that the nitrogen concentration in biotite of the felsic plutonic rocks of the North Caribou 

Lake greenstone belt are lower than those reported by Jia and Kerrich (2000). 

Considering that only a handful of studies have been conducted on the nitrogen 

concentrations of felsic plutonic rocks, and that the field defined by Jia and Kerriich 

(2000) has a flat base (indicative of the minimum detection limit), then the values for the 

felsic plutonic rocks surrounding the NCLGB are likely reasonable for granitic samples.  

Sample E438515 has an extremely high nitrogen concentration compared to all 

samples, and especially for an igneous rock. This sample comes from the Dinnick Lake 

fault that marks the border between the North Caribou Terrane and the adjacent Island 

Lake Domain. Pitcairn et al (2005) reports samples with anomalously high N 

concentrations coming from a major shear zone (Hyde-Macraes Shear Zone) and attribute 

the high signature to N addition in the shear zone. Perhaps then the high N in sample 

E438515 can be explained by N addition to the rock  during emplacement in the Dinnick 

Lake Shear Zone. 

The metasedimentary sample E438532 is unusual geochemically for a 

metasedimentary rock, in that its O, H and N isotope compositions are identical to 
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igneous rocks rather than those of a metasedimentary rock. It does possess the highest O 

isotopic signature of all the regional rocks. A possible explanation for the signatures 

found in this sample is that the metasedimentary rock was altered by juvenile magmatic 

waters from a nearby pluton (such as E438536) or even underlying felsic pluton (e.g., 

Turi and Taylor, 1971). 

 

3.5.2 Mine H2O modeling 

Temperatures of H2O for the mine were initially estimated using the quartz-biotite 

thermometer of Bottinga & Javoy (1975) and the isotopic data for quartz and biotite at 

Musselwhite Mine. The estimated temperatures range from 343-622 °C. The 

temperatures calculated from these were used in all isotopic calculations of formation 

waters. Calculations were made using the online calculator of Beaudoin and Therrien 

(2008). Both sets of H2O δ18O calculations are presented in Table 3.3 for comparison. 

Temperatures can only be considered valid if equilibrium between quartz and biotite can 

be confirmed. Petrography seems to indicate that the quartz and biotite are in equilibrium 

in samples. 
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Table 3.3: Calculation of waters from quartz-biotite pairs of Musselwhite Mine.  

 
 

3.5.3 Quartz-Magnetite thermometry  

Confirmation of temperatures of regional metamorphic conditions independent of 

mineralized zones was attempted by use of quartz-magnetite thermometry of 

hydrothermally undisturbed iron formation. Oxygen isotope results for quartz and 

magnetite pairs are shown in Table 3.4.Temperatures were calculated using the equations 

of Bottinga and Javoy (1975) with the assumption that equilibrium was achieved and that 

the quartz magnetite pairs were not part of any alteration phase. The δ18O values of 

quartz-magnetite pairs from undisturbed oxide iron formation gave an estimated 

temperature of 455-561 °C. These temperatures agree with the earlier estimates of peak 
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metamorphic temperatures made by Hall and Rigg (1986), Breaks et al. (2001), and Otto 

(2002). 

 

Table 3.4: calculated temperatures of quartz-magnetite pairs of Musselwhite Mine. 

 
 

3.5.4 Isotopes of Musselwhite Mine 

When plotting nitrogen isotope compositions versus nitrogen concentrations of 

biotite, the majority of samples from Musselwhite Mine fall between the field for granites 

and the upper amphibolite metasedimentary domain (Fig. 3.5). A distinct positive trend 

can be seen in the majority of samples. This positive trend is the opposite of what is 

expected in regional prograde metamorphic settings. Haendel et al. (1986) found that 

with increasing metamorphic grade, δ15N is preferentially lost from sedimentary material 

into the fluid phase. A similar trend is seen in the work done by Jia (2006; Fig. 3.7). A 

positive trend in nitrogen concentration and δ15N has been documented where 

magmatically derived fluids have interacted with metamorphic rocks (Bebout et al., 1999; 

Fig. 3.7). 
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Figure 3.7: N concentration vs. δ15N plot, showing the positive trend of a) biotite from 
the aureole of the Skiddaw intrusion from Bebout et al. (1999) b) biotites from 
Musselwhite. The negative trends are 1) Haendel et al. (1986; fields shown in dashed 
lines) 2) N signature shift during progressive metamorphism of the Cooma complex from 
Jia (2006) 3) N signature shift with increasing metamorphic grade of rocks distal to the 
Skiddaw intrusion from Bebout et al. (1999). 

 

A small population of mine samples clusters away from the main trend between 

the fields for granites and greenschist facies metasedimentary rocks (see Fig. 3.5). These 

points correspond with the stratigraphic top of the deposit, and are garnet-biotite schists 

with a detrital component. Because of their position in mine stratigraphy and 

petrography, these data points are interpreted to be the least altered, original 

metasedimentary signature of the schist that caps the Northern Iron Formation. It is also 

of interest to see that not all the samples of biotite-garnet schist unit fall within this 
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population, indicating different sources for biotites within the unit. Moran (2008) also 

identified some biotite-garnet schist samples as having undergone significant 

metasomatism. It is then likely that the different isotopic populations represent these two 

different types of biotite. 

The oxygen signatures of biotite from Musselwhite Mine are low when compared 

with typical metamorphosed pelitic rocks (e.g., Turi and Talylor, 1971; O’Neil and 

Chappell, 1977; O’Neil et al., 1977; Sharp, 2007). The isotopic signature of the quartz 

samples from the iron formation averages around 13.9‰ These values are comparable to 

those found in the ca. 3 Ga Fig Tree Formation by Perry (1967) where the anomalously 

low signatures are attributed to a lower isotopic signature of ocean waters. It is possible 

then that the low oxygen signatures of biotite samples at Musselwhite could be explained 

as a reflection of low oxygen isotopes of the Archean atmosphere and oceans.  

It is interesting to note that the heaviest quartz oxygen isotopes correlate to the 

capping biotite-garnet schist and oxide-facies iron formation, whereas the light oxygen 

isotopic signature of the silicate-dominant iron formation is lower than either of these, 

and is in the same range as quartz from veins associated with gold (Otto, 2002). The 

lighter isotopic signatures of quartz in the silicate-dominant iron formation may then be 

an indication that the same fluids that created the quartz veins associated with gold also 

were responsible for the mineral assemblage of this unit. 

The two samples (E354010 and E358110) that have the highest δD values and 

among the lowest δ15N values are located below the iron formation (Table. 3.2, Fig. 3.8). 

These isotopic signatures are markedly different than the rest of the biotite. The 

signatures of these two samples are very close to those of igneous signatures. Thus it is 

likely that biotite found adjacent to the basement metavolcanic rocks reflect the isotopic 
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characteristics of the basement basalts. It is also interesting to note that this is not the case 

for the metasedimentary package found on top of the Northern Iron formation. This could 

mean that the biotite located at the base of the Northern Iron Formation has interacted or 

crystallized from magmatically derived hydrothermal fluids, rather than being 

metasedimentary in origin. 

 
Fig 3.8:  Plot of N concentration vs. δD of biotite samples and stratigraphy from 
Musselwhite. The two samples from the basement basalts are shown in white.  

 

Hydrogen isotopic signatures display scatter between samples of the same unit, as 

seen in Table 3.2, indicating that the biotite forming fluids were not derived from a 

single, homogenized source as one would expect from metamorphic or meteoric fluids as 

the large fluid reservoirs of both would effectively homogenize all δD values (Taylor, 

1974). The wide range of δD for the mine indicates that isotopic equilibration between 

biotite and fluids appears to have happened post-peak metamorphism, otherwise the δD 

signature would have most likely been homogenized. The δD values below -91 per mil 

for biotite for the mine fall outside the previously estimated values for biotite produced 
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by metamorphic fluids alone (Taylor, 1974). Biotite for metamorphic rocks with δD 

signatures below this value are interpreted to be the result of interaction of magmatic 

fluids and metamorphic rocks from adjacent plutons during contact metamorphism 

(Taylor, 1974). However, this is not the sole possible case to explain a light isotopic 

signature. The low hydrogen values of the deposit can be caused by other factors: 1) 

organic matter may have imparted a light isotopic signature, as organic processes favour 

lighter isotopes (Sharp, 2007), 2) high iron content in the biotite will favour isotopically 

light hydroxyl ions (Suzuoki and Epstein, 1976), 3) meteoric fluids (Taylor, 1974), 4) 

degassing of magmatic fluids at shallow levels will impart a light δD to minerals (Taylor 

et al., 1983; Harris et al., 2005). There is debate about when the onset of life occurred on 

earth and the role of bacteria in certain kinds of ore deposits, such as iron formations 

(Pinti et al., 1991; D’Hondt et al., 2004; Hoffman and Bolhar, 2007). Because of the 

uncertainty surrounding the onset of life in the Archean, it is possible that bacteria may 

have had influence on the rocks at Musselwhite mine, and that the light hydrogen isotope 

signature could have come from organic detritus. Stromatolites have been identified in 

the ca. 3 Ga Steep Rock platform in the Western Wabigoon domain (Kusky and 

Hudleston, 1999), establishing that bacteria have been around since at least 3.0 Ga. Given 

that the age of the North Caribou Lake greenstone belt is around 2.9 Ga, it is entirely 

possible that organic matter has played a role in the isotopic signatures of the rocks of the 

Musselwhite Mine. However, if the light hydrogen signature had come from organic 

matter, it would have imparted a corresponding light nitrogen signature upon the deposit, 

as light isotopes are favoured due to the kinetic nature of biologic processes (Sharp, 

2007). However, this isotopic range overlaps with the isotopic range for igneous rocks 

(Sharp, 2007). The presence of organic matter would also increase the nitrogen 
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concentration of the rocks considerably, as the amount of nitrogen contained in organic 

matter is typically higher than that contained in igneous or sedimentary rocks free of 

organic matter (Junium and Arthur, 2007). Nitrogen concentrations in biotites within the 

deposit are quite low, when compared to the data of organic-bearing sedimentary rocks 

(e.g., Orberger et al., 2005). Moreover, higher nitrogen concentrations in biotite do not 

generally correlate with the light hydrogen isotopic signature (Fig. 3.8). It should be 

noted that there are a few points in the Musselwhite mine that show very good correlation 

between nitrogen concentration and hydrogen isotopic signature. It is possible that for 

these few samples organic matter did have influence on the isotopic signature. However, 

the lack of correlation between N concentration and δD for the majority of biotite 

samples rules out metamorphism of an organic-rich predecessor as the origin of the light 

δD signature for most biotite samples at Musselwhite Mine.  

Meteoric waters will impart a negative hydrogen signature to hydrous minerals 

(Taylor 1974). However, they also have a corresponding light oxygen isotopic signature, 

due to fractionation effects on precipitated water (Craig, 1961; Sharp, 2007). The heavy 

oxygen signatures of biotite rules out meteoric waters, especially in the midst of an 

orogeny, where the altitude effect would impart a light isotopic signature to the meteoric 

waters (Sharp, 2007).  

Fluids exsolved from a pluton which was isotopically light in H or from 

hypozonal degassing are possible sources of the lighter isotopic signatures (Taylor et al., 

1983; Harris et al, 2005). The estimated depth at peak metamorphism was around 9 km 

depth (Hall and Rigg, 1986). Since isotopic signatures for the mine indicate Au 

emplacement occurred post-peak metamorphism, the 9 km depth represents a maximum 

depth, and Au emplacement likely occurred at a shallower depth. Moreover, there is no 
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current evidence in the regional data for an isotopically light δD felsic pluton .Thus, it 

seems far more likely that the lightest hydrogen isotopic signatures found at Musselwhite 

are a result of hypabyssal degassing of fluids of magmatic origin during uplift. However, 

another possible explanation for the light hydrogen signature is due to selection of 

isotopically light hydrogen because of the presence of high amounts of iron within the 

biotite structure (Suzuoki and Epstein, 1976). As the Au deposit formed within an iron 

formation, it is reasonable to assume that biotite formed in and around the Northern Iron 

Formation would have a much higher iron content than those of surrounding rocks, and 

that this in turn would cause fractionation of light hydrogen of the biotite at Musselwhite 

mine.  

The nitrogen, oxygen and hydrogen isotopic signatures of Musselwhite Mine all 

indicate that there has been influence of magmatic fluids in the rocks. There even seems 

to be some broad correlation with lower isotopes correlating with shear zones. 

Investigation of the relationship, if any, between biotite mineral chemistry and isotopic 

signature is the subject of the next chapter. 
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CHAPTER 4: WHOLE ROCK & MINERAL GEOCHEMISTRY 
 

4.1 Introduction 

In an effort to better comprehend the geological setting around Musselwhite 

Mine, sampling was done in the surrounding region (Fig. 4.1). Whole rock geochemistry 

analyses were provided courtesy of Musselwhite Mine. In addition, fourteen samples 

(nine mine samples and five regional samples) were selected for SEM-EDS analysis. 

SEM-EDS data was collected on mine biotite samples that form a cross section of the PQ 

Deeps (Fig. 4.2).  

Figure 4.1: Map of the North Caribou Lake greenstone belt, showing locations of 
samples. Circles = felsic rocks, squares = metasedimentary rocks, triangles = mafic rocks. 
Samples in bold had biotite composition analysed on SEM. After Breaks et al. (1986). 
 



 68 

 
Figure 4.2: Cross section of the 11700N section of the Musselwhite Mine, showing 
samples on which mineral chemistry analyses were performed. Modified from files 
provided by Musselwhite Mine. 

 

SEM-EDS data was collected in order to investigate the origin of the light 

hydrogen isotopic signature seen in the rocks at Musselwhite Mine and to help resolve 

some of the issues regarding the origins of the minerals themselves. The study undertaken 

here looks at the major element composition of biotite from the mine and from regional 

samples.  
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4.2 Previous studies 

Previous workers have collected SEM and microprobe data on the minerals 

comprising the rocks of the Musselwhite deposit. Otto (2002) analyzed a variety of 

minerals including garnet, chlorite, hornblende, plagioclase and biotite in order to 

calculate temperatures of formation and to estimate the peak metamorphic temperatures. 

Moran (2008) expanded on this initial study and classified the various rock types 

according to whole rock and SEM data from thin sections and whole rock geochemistry. 

 

4.3 Whole rock geochemistry 

Whole rock geochemistry of the rocks of the North Caribou Lake greenstone belt 

and surrounding batholiths was analysed. Data for these analyses were provided courtesy 

of Musselwhite and can be found in Appendix B. 

When plotted in terms of their total alkali vs. silica, the regional samples are 

essentially bimodal in population: they are either felsic or mafic, with the 

metasedimentary samples plotting with the felsic samples (Fig. 4.3). 
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Figure 4.3: TAS diagram of the rocks of the North Caribou Lake greenstone belt and 
surrounding granitoids rocks.  Open hexagons = mafic rocks, filled hexagons = felsic 
rocks, stars = metasedimentary rocks. After Wilson (1989). 
 

 The mafic rocks sampled in the North Caribou Lake greenstone belt plot almost 

exclusively in high-Mg tholeiite field (Fig. 4.4). The two points that plot as komatiitic 

basalts are E438504 and E438505. 

When the granitic rocks found surrounding and within the North Caribou Lake 

greenstone belt are plotted in terms of their alkali components, the vast majority plot in 

the realm of trondhjemite-tonalite-granodiorite (TTG) field with only a few granites (Fig. 

4.5). 
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Figure 4.4: FTAM diagram of the mafic rocks of the North Caribou Lake greenstone belt. 
After Jensen (1976).  

 

 
Figure 4.5: Alkali normalized plot of the granitic rocks found within and surrounding the 
North Caribou Lake greenstone belt. After Barker (1979). 
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4.4 SEM Data 

4.4.2 Regional mineral chemistry 

 Five samples: four granitoids and one sedimentary sample were analysed by 

SEM-EDS. Analsyes can be found in appendix B. Biotites in these rocks are very 

uniform in composition and generally cluster (Fig. 4.6 a-d). The exception is sample 

E438509, which has a wider spread of silica and alumina content in biotite relative to the 

others (Fig. 4.6a). The metasedimentary sample E438532 has decidedly higher silica and 

MgO than the granitoids (Fig. 4.6c); however, it has the same alumina content as the 

granitoids (Fig 4.6a,b). Titanium contents of biotite are constant irrespective of other 

constituents (Fig. 4.6d). 

 
Figure 4.6: Oxide-oxide plots of biotites from plutonic rocks surrounding the NCLGB. 
Triangles, circles squares, diamonds = granitoids rocks, pentagons = metasedimentary 
rock. 
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4.4.2 Mine mineral chemistry 

Results for the mine biotite compositions are reported in Appendix C. Data points 

for each sample are averages of biotite analyses at each spot taken. Additional biotite 

values for Musselwhite Mine were taken from the data of Moran (2008) and Otto (2002) 

for comparison. Error on measurement is approximately 1%. 

 When the data is plotted in terms of its Y site vs. total aluminum content, two 

distinct populations of biotite are seen to coexist; the majority of the samples cluster 

around and above the (Mg, Fe)5 line whereas a small subset have higher Altot and consist 

of the mafic and felsic metavolcanic rocks (Fig. 4.7). Biotite compositions are mostly 

iron rich end members, but variance is seen (Fig 4.8). 

 
Figure 4.7: Plot showing Y site versus total aluminum content for the samples from 
Musselwhite. Triangles = felsic metavolcanic samples, circles = biotite-garnet schist, 
squares = mafic metavolcanic samples, diamonds = oxide-dominant iron formation, 
pentagons = silicate-dominant iron formation. After Deer et al. (1992). 
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Figure 4.8: Plot showing biotite compositions of the samples from Musselwhite. Grey 
shaded area is the field for naturally occurring biotites in nature. Triangles = felsic 
metavolcanic samples, circles = biotite-garnet schist, squares = mafic metavolcanic 
samples, diamonds = oxide-dominant iron formation, pentagons = silicate-dominant iron 
formation. After Deer et al., 1992. 

 
 

 Silica has a weak positive correlation with Mg# of biotite (Figure 4.9b). No 

conclusive correlation exists between Mg# and silica content or alumina and silica 

content (Fig. 4.9a, c). Note how there is no division between any rock type from the 

others – all units overlap and are very similar in composition. 
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Figure 4.9: Oxide-oxide plots of biotites from the Musselwhite mine. Triangles = felsic 
metavolcanic samples, circles = biotite-garnet schist, squares = mafic metavolcanic 
samples, diamonds = oxide-dominant iron formation, pentagons = silicate-dominant iron 
formation. 
 

When plotted against gold concentration, a weak correlation is seen between Si 

content of biotite and Au (Fig. 4.10a). When gold concentration is plotted against Mg# 

for the mine biotites, a weak positive correlation with scatter is seen (Fig. 4.10b). No 

correlation exists between gold and K2O or alumina content (Fig. 4.10c,d). 
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Figure 4.10: Oxide concentrations of biotite vs. whole rock gold concentrations at 
Musselwhite Mine. Triangles = felsic metavolcanic samples, circles = biotite-garnet 
schist, squares = mafic metavolcanic samples, diamonds = oxide-dominant iron 
formation.  
 

When the SEM data of the thin sections is compared to isotope geochemistry of 

biotite mineral separates, a few trends are seen. Positive correlations between Mg# and 

light hydrogen isotopes and Mg# and heavier δ15N exist (Fig. 4.11). No apparent trend is 

observed between Mg# and δ18O (Fig. 4.11).  No apparent trends are observed between 

stable isotopes and K2O concentrations (Fig. 4.11). No apparent trends are observed 

between silica content of biotite and δD or δ18O (Fig. 4.12). ). However, a weak positive 

trends exists between SiO2 content and increasing δ15N (Fig 4.12).  Alumina content also 

increases with increasing (i.e.: heavier) δ15N but does not share any conclusive trends 

with δD or δ18O (Fig. 4.12).  
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Figure 4.11: Mg# (left column) and K2O (right column) vs. isotopic signatures of biotite 
samples at Musselwhite Mine. Triangles = felsic metavolcanic samples, circles = biotite-
garnet schist, squares = mafic metavolcanic samples, diamonds = oxide-dominant iron 
formation. 
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Figure 4.12: SiO2 (left column) and alumina (right column) vs. isotopes of biotite 
samples at Musselwhite Mine. Triangles = felsic metavolcanic samples, circles = biotite-
garnet schist, squares = mafic metavolcanic samples, diamonds = oxide-dominant iron 

formation. 
 

4.5 Discussion 

In Chapter 3, it was found that some hydrogen isotopic signatures of biotite were 

too light to be explained by metamorphic fluids and were not likely influenced by organic 

matter. However, there still are a few other possible explanations. Suzuoki and Epstein 

(1976) suggested that one cause of light hydrogen isotopes can be due to high iron 

content of biotite, as a result of the larger Fe cation causing a corresponding preference 
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for the smaller H ion in the hydroxyl space. The annite content of some of the biotites at 

the Musselwhite Mine are higher than those of the surrounding granitoids, as would be 

expected for biotite created within an iron formation. However, there is a negative 

correlation exists between phlogopite content and heavier hydrogen isotopes rather than a 

positive one as would be expected for iron-based hydrogen fractionation. This strongly 

suggests that hydrogen fractionation due to iron content is not the cause for the low 

negative isotopic signature of the biotite at Musselwhite. This leaves magmatic sources as 

a plausable source of light hydrogen isotopic signatures for the biotite samples at the 

Musselwhite Mine. 

The silica and phlogopite content of biotite samples correlate positively. They 

also both correlate positively with the whole rock gold concentration. This suggests that 

biotites with higher silica and phlogopite content are more likely to be directly related to 

gold mineralization (and the quartz flooding associated with it). That low δD isotopes 

correlate positively with high Mg# and SiO2-rich biotites further bolsters the suggestion 

that biotite and gold mineralisation are related to fluids of a magmatic nature.  

The biotite compositions of the regional felsic rocks suggest that the 

metasedimentary sample E438532 is not derived directly from biotite of the granitoids 

surrounding the North Caribou Lake greenstone belt. However, the biotite is extremely 

high in silica and low in alumina (uncharacteristic of metasedimentary rocks) and also 

has the highest Mg# of all the regional biotites. It is possible then that the biotite in this 

rock could have been influenced by the same hydrothermal fluids as the rocks at 

Musselwhite. 

 

Two different colours of biotite have been noted at Musselwhtie Mine: brown 

biotite that makes up the majority, and a much less common green variety. Not all 

samples in this study contain green biotite and even those that do generally still contain 
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brown biotite. In thin section, green biotite is closely associated with quartz veins and is 

found as inclusions in massive pyrrhotite. This suggests that green biotite is more directly 

associated with gold mineralisation than the brown variety is. Table 4.1 shows that the 

samples with significant green biotite are the ones with the lowest δ15N (excluding the 

samples from the base of the Northern Iron Formation, E354010 and E358110).  

Table 4.1: Table showing δ15N and which species of biotite are present in samples from 
the Musselwhite Mine. X= significant presence, (*) = minor constituent. 
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The presence of both green and brown biotite has been noted in greisen deposits 

(Glass et al., 1958; Dudoignon et al., 1988; Gottesmann and Forster, 2004) with brown 

biotite generally representing the primary phase and early fluid stages and green biotite 

being part of late stage hydrothermal alteration. Due to the common association of green 

biotite with quartz veins and pyrrhotite mineralisation, the green biotites of the 

Musselwhite mine may also represent late stage hydrothermal alteration. Although 

beyond the scope of this study, a study of the geochemical compositions of green and 

brown biotite may give further insight to mineralisation at Musselwhite Mine. 
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CHAPTER 5: DISCUSSION & CONCLUSIONS 

5.1 Discussion 

Nitrogen isotopes of biotite from Musselwhite Mine range between -1.5 and +9.0 

per mil. The values overlap with those found for granites (Jia and Kerrich, 2000), basalt 

(Marty and Zimmerman, 1999; Nishizawa et al., 2007) and sedimentary and 

metasedimentary rocks (Jia, 2006; Haendel et al., 1986; Bebout et al., 1999). However, 

the nitrogen concentrations of the majority of biotite samples of the Musselwhite Mine 

are lower than any previously studied schist, which typically contain nitrogen 

concentrations in the hundreds of ppm, irrespective of age (Haendel et al., 1986; Boyd 

and Philippot, 1998; Pitcairn et al., 2005; Jia, 2006; Fig. 5.1). The cluster of points with 

high N concentration from Musselwhite lie within the field of data for the andalusite 

facies rocks (T= 500-600°C, P =3-4 kbar) of the Cooma complex, which is of the same 

metamorphic grade as Musselwhite (Jia, 2006). The Cooma complex is a packet of 

metasedimentary rocks that have undergone contact metamorphism with grade increasing 

toward the contact between the sedimentary rocks and the pluton (Jia, 2006). This 

strongly suggests that the interpretation of the high N samples from the Musselwhite 

mine as metasedimentary rocks that escaped influence of hydrothermal fluids is prudent. 

The majority of samples with lower N samples must then have formed from fluids 

different than those of the original metasedimentary rocks at Musselwhite. 
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Figure 5.1: Fields showing δ15N and N concentrations of metasedimentary rocks. White 

circles and pentagon are high N samples from this study. 
 

The positive correlation of N concentration with increasing δ15N of samples from 

Musselwhite makes it possible to speculate as to the origins of mineralisation at 

Musselwhite. There are a few ways a positive trend in nitrogen concentration vs. δ15N 

could be created: 1) interaction of metamorphosed rocks with meteoric fluids 2) 

crystallization of biotite from metamorphic fluids of differing composition than those of 

the metamorphic rocks 3) interaction of metamorphic rocks and magmatically derived 

fluids. As previously discussed in Chapter 3, the hydrogen signatures of biotite as well as 

the estimated depth of formation rule out meteoric fluids as a possible source for the low 

nitrogen signature. It may be possible to create such nitrogen signatures from 

metamorphic fluids. Jia (2006) states temperatures below 600°C will result in a 1 to 2 per 
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mil shift in δ15N due to N2 being the dominant species lost to the fluid phase and shifts of 

7-10‰ in δ15N are possible at temperatures in excess of 600°C. However, the 

concentration of nitrogen in the fluid phase produced by the devolitilisation of hydroxyl-

bearing minerals would be very low (Fig 5.2). The temperature range of quartz-biotite 

pairs from Musselwhite (343-622°C) indicate that the range of nitrogen isotopes could 

have been produced by fluids exsolved during metamorphism. Fractionation between 

biotite and N2 or NH3 in metamorphic fluids is highly dependent on initial compositions 

of the rock and the type of fractionation constrained, thus how far it can drive the data 

from the curve is difficult to assess. However, if fractionation is minimal, then it cannot 

account for the trend shown by the data for Musselwhite. Moreover, the temperatures of 

Musselwhite ranges from lower greenschist to middle-upper amphibolite facies – a very 

broad metamorphic range for such a small area.  
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Figure 5.2: Graph showing a possible way of creating biotite with low N and δ15N from 
metamorphic fluids. Grey arrow represents fractionation of samples from Jia (2006).  

 

The positive correlation between N concentration and δ15N and the broad range of 

δ15N of the Musselwhite Mine (Fig. 3.5) could also be explained by the interaction of 

metamorphosed rocks with magmatic fluids. The work of Bebout et al. (1999) shows a 

positive correlation for samples adjacent to the Skiddaw pluton which were interpreted as 

a mix of metamorphic micas and micas affected by greisenization (i.e., magmatic fluids; 

Fig. 3.7). It is of interest to note that in the data of Jia and Kerrich (1999), if each mine’s 

data are examined in isolation, most display positive correlations (Fig. 5.3). This positive 

correlation could also be an indicator of a magmatically-derived fluid influence in these 

deposits.  
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Figure 5.3: Positive correlations of nitrogen isotopic signatures of various gold deposits 
in the data set of Jia and Kerrich (1999). Circles = Dome, Squares = Goldhawk, 
Diamonds = Hollinger, and stars = Geraldton. 

 

No correlation is observed between nitrogen signature of biotite and Au 

mineralisation in the samples from Musselwhite. This could be due to the presence of 

multiple fluid events that have recrystallised biotite, but did not all precipitate gold. 

However, the large sample size that was required to generate a detectable amount of 

nitrogen for analysis could also have masked any correlation. 300-2000 mg of biotite was 

collected for each sample, and although all care was taken to create pure samples, if a 

mix of more than one type of biotite was produced, the result would be an average 

between the two. This mix of biotites of different origins is a possible explanation as to 
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why there is no apparent correlation between Au mineralization and nitrogen isotopic 

signature, which might be expected if Au rich fluids were derived from a pluton, but 

would not be expected from metamorphic fluids being responsible for Au mineralisation. 

The δ18O signatures of biotite at Musselwhite Mine range between +7.1 and 

10.1‰ and regional plutonic biotites surrounding the NCLGB have a δ18O of +2.0 to 

+4.0‰. Turi and Taylor (1971) studied oxygen isotopes of the rocks of the French Valley 

Formation (quartz-biotite schist) and the Southern California batholith, which are 

comparable to the rock types in this study in that they represent metasedimentary rocks 

and plutons. Biotite δ18O values of quartz-biotite schist of the French Valley Formation 

range between +11.6 and +20.0‰, with the majority of values falling above +16‰ (Turi 

and Taylor, 1971). Garlick and Epstein (1967) found the general δ18O of schists to range 

between +13 and +18‰. Taylor and Epstein (1964) and Savin and Epstein (1970) found 

a similar general range for shales (+14 to +19‰). The biotites of the Southern California 

batholith range between +4 and +8 ‰ (Turi and Taylor, 1971) The δ18O of biotites of the 

Musselwhite mine fall somewhere between the values of the biotites of the Southern 

California batholith and the values of biotite of the French Valley Formation. Turi and 

Taylor (1971) noted that biotite δ18O values near the contact between the French Valley 

Fm. and the Southern California batholith indicated an exchange of fluids between the 

pluton and the surrounding schists. If that is true, and if the biotites of Musselwhite Mine 

were truly pelitic originally, then it is likely that the biotite values at Musselwhite Mine 

represent a fluid exchange between the schists and magmatic fluids.  

Quartz δ18O values for Musselwhite indicate exchange between magmatic fluids 

and metamorphic rocks. δ18O of quartz samples range between 12.4 and 17.2 ‰, with the 
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lowest values associated with gold-bearing zones and the silicate dominant iron 

formation. The values of Otto (2002) for barren and gold-bearing quartz veins overlap 

with these values. The values for the mineralized zone at Musselwhite are similar to the 

values reported by Fyfe and Kerrich (1982) for the Yellowknife district (Campbell Shear: 

δ18O = +11.49 to +12.53; Con shear: +11.50 to 12.25; Ptarmigan: +12.60 to +13.16; 

Surface: +13.51 to +13.56). However, there is a distinct increase in δ18O of quartz both 

below and above the silicate dominant iron formation at Musselwhite. This contrasts with 

the findings in Fyfe and Kerrich (1982) that showed that the host rocks adjacent to the 

quartz veins have the same δ18O as the gold veins. Quartz from the silicate dominant iron 

formation of Musselwhite yields values between 12-14 ‰ whereas the oxide dominant 

iron formation has a δ18O 14 ‰ or higher and quartz from the biotite-garnet schist also 

has higher δ18O than quartz sampled from the silicate dominant iron formation. The 

signature of the silicate facies iron formation and quartz veins of the Musselwhite mine 

possibly suggests either fluid-rock interaction of the heavier isotopic signature of the iron 

formation with an isotopically lighter fluid and/or that isotopically light fluids have 

overprinted the signature of the isotopically heavier fluids. The values of quartz taken 

from metasedimentary rocks of the Yellowknife district all fall in the same range as the 

quartz veins suggesting that the “host rocks” mentioned in Fyfe and Kerrich (1982) are in 

truth a part of the alteration halo surrounding gold mineralisation, as they are somewhat 

low compared to most sedimentary rocks (Sheppard, 1986). 

 

H2O calculations using oxygen isotopes from quartz and biotite pairs give fluids 

with compositions around +9.0 to +12.6‰. These values overlap with the values for 
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fluids from other Archean greenstone belts reported in Fyfe and Kerrich (1982). These 

values place the fluids in the area of overlap between magmatic and metamorphic fluids. 

However, the fact that the gold at Musselwhite occurs in a metasedimentary packet must 

be taken into consideration. The host rocks of the Musselwhite deposit have a distinctly 

higher δ18O than do areas of mineralisation. This would suggest that magmatically 

derived fluids were responsible for mineralisation at Musselwhite Mine.  

 

As stated in Chapter 1, currently there are two models postulated for the source of 

gold in orogenic gold deposits: the metamorphic model, where metamorphic fluids are 

responsible for the leaching, transport and deposition of gold, and the magmatic model 

where gold is transported in a magmatic body and exhaled with the fluid phase at time of 

crystallization. The N, O, and H isotopic values for the Musselwhite mine are more 

consistent with a magmatic-fluid model than a metamorphic fluid model. However, there 

are other points that must be addressed if the magmatic fluid model can be plausible. One 

of the major arguments against the magmatic theories for orogenic gold deposits is that 

Au mineralisation either pre or post-dates associated plutonic events (Kerrich and 

Cassidy, 1994). However, the methods used to date plutonic rocks and mineralisation in 

gold deposits are very different. Plutons are typically dated using U-Pb dating of zircons 

whereas orogenic gold deposits are dated by a variety of techniques, including Pb-Pb, K-

Ar and Ar-Ar, Rb-Sr and Nd-Sm. Kerrich and Cassidy (1994) observe that the Pb-Pb 

technique used to date these deposits has an error of approximately 30 Ma, and that for 

other techniques such as Ar-Ar and Rb-Sr great care must be take to ensure that these 
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values have not been reset. Kerrich and Cassidy (1994) suggest that these errors are 

sufficient to make pluton emplacement and deposit genesis roughly coeval. Maas 

(unpublished data, 2006) reported four separate Nd-Sm ages, with the value  of 2690 +/- 

9 Ma as the preferred age of gold mineralisation at Musselwhite Mine. The batholith to 

the south of Musselwhite has yielded ages of 2729.4 +/- 7.1 and 2725.8 +/- 3.2Ma 

(Klipfel, 2002). The preferred Sm-Nd age is based on a two-point line between a pure 

garnet separate with less than 1% mineral inclusions and an averaged value of three 

whole rock samples (Maas, unpublished data, 2006). While this age is reported as being 

the most precise, the exclusion of data in order to achieve a precise result can be 

misleading and may ultimately be inaccurate. The age of 2695 +/- 25 Ma quoted in this 

study is the value obtained when all five samples (the four mentioned above and a garnet 

separate with around 20% inclusions) are plotted individually, as this represents all Nd-

Sm data values obtained. In light of this Nd-Sm age, the zircon U-Pb ages reported by 

Klipfel (2002) of 2729.4 +/- 7.1 to 2725.8 +/- 3.2Ma are nearly within error of the age of 

mineralisation, and indicate that pluton emplacement occurred and gold mineralisation of 

the Northern Iron Formation may have been coeval. Maas (unpublished data, 2006) notes 

that the Sm-Nd age generated by the garnet separates (2664 +/- 19 Ma) is distinctly 

younger than those given by the whole rock –garnet combined values (2695+/-25Ma), 

and postulates LREE metasomatism post-garnet growth as a potential explanation. In 

addition, the multi-stage growth of garnets noted in the deposit in Chapter 2 may have 

affected the Sm-Nd date itself.  
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Another argument presented against magmatic theories of orogenic gold is the 

low concentrations of gold in igneous and metaigneous rocks. However, Connors et al. 

(1993) noted that volatile loss exhibits a strong, even overriding control on the Au 

content of an igneous body, as Au and metals will partition preferentially into the vapour 

phase. If gold is so partial to the vapour phase, then it is very likely that the initial gold 

concentration of a body of magma is very different to the final concentration of the 

resulting igneous pluton, and measurement of gold concentrations of rocks will yield very 

little information on the true initial concentration of gold in a given pluton. Mungall 

(2002) showed several possible scenarios that would allow for the creation of Au-rich 

magmas in a continental arc setting including: subduction of young, hot oceanic crust, 

stalling of a subduction slab, resulting in partial melting of the slab, subduction and 

secondary devolatilisation of a “warm” plate (intermediate between hot, young and old, 

cold oceanic crust), and flat subduction trapping asthenoshpere between plates. Thus it is 

possible to have emplacement of Au- rich magmas in an orogenic setting that upon 

devolatilisation would have no indication of having once been so.  

 

The Musselwhite mine is classified as an orogenic gold deposit by Otto (2002) 

and as an iron-formation-hosted orogenic gold deposit by Blower and Kiernan (2003). 

However, as stated previously in Chapter 1, the term “orogenic gold” is used as a blanket 

term for most Archean greenstone deposits, regardless of genetic particulars and iron-

formation-hosted merely describes the host rocks, not the mineralisation. When gold 

mineralisation is discovered in Archean terranes, there is a very strong tendency to 

automatically classify it as an orogenic gold deposit barring strong indicators to the 
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contrary. Part of this tendency is due the orogenic model’s inclusion of metamorphosed 

terranes as one of their defining features.  

 

Veins and stockworks of quartz and carbonate minerals, pyrite, albite, muscovite, 

pyrite and tourmaline are diagnostic gangue minerals of orogenic gold mineralisation 

(Kerrich, 1989). While quartz and carbonate are indeed associated with mineralisation of 

the Musselwhite mine, there are some features of the deposit that do not fit well with the 

orogenic-mesothermal gold model including: the presence of pyrrhotite rather than pyrite 

and its association with gold, the association of gold with “retrograde” chlorite-

hornblende-calcite veins (Otto, 2002) and in garnets rather than quartz veins, the extreme 

scarcity of muscovite and sericite in the deposit, the presence of cobalt, lead and nickel 

tellurides associated with gold tellurides (Liefrovich, 2007), and the range of 

temperatures generated this study and chlorite temperatures from Otto (2002).  

 

5.2 Conclusions 

The nitrogen signature of biotites from the 11700 N section of Musselwhite Mine 

yield values from -1.3 to +11.1 ‰ and have nitrogen concentrations of 10 ppm to around 

150 ppm. Hydrogen isotopic data for the mine biotites ranges from -55 to -100 per mil, 

with and average δD of -86 ‰. Oxygen isotopic values for biotite are between +7.1 and 

+8.9 ‰. The stable isotope geochemistry of biotite at Musselwhite Mine reveal two 

populations: one that represents the relatively unaltered biotite-garnet schist that caps the 

Northern Iron Formation and a second signature. The second population’s signature could 

have been produced by crystallization of biotite from metamorphic fluids derived from 
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devolitilisation of metamorphic rocks, or by interaction of magmatic-derived fluids 

interacting with metamorphic rocks. When the range of temperatures of biotite at 

Musselwhite Mine is taken into consideration, it seems less likely that fluids produced by 

regional metamorphism are the cause of the isotopic signatures at Musselwhite Mine. 

 

5.3 Recommendations 

The current knowledge of nitrogen and its behaviour in rocks is very sparse. This 

is largely due to the low concentration of nitrogen in most rocks. Only recently has it 

become possible to measure the nitrogen isotopes of rocks and then only in certain 

minerals in large quantities. The result is an average isotopic signature for the mineral 

concentrate and a bias towards rocks containing a certain mineral. More studies, both 

experimental and empirical, are recommended to better constrain the isotopic signature of 

various rocks. A more extensive study of the compositions, both isotopic and 

mineralogical, of green and brown biotite and their abundances at Musselwhite would 

help to better understand the relationship of biotite with gold mineralisation and provide 

further insight into the nature of fluid-rock interactions at Musselwhite Mine.  
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Appendix A 
 

Whole rock geochemistry of the rocks of the North Caribou 
Lake greenstone belt 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SAMPLE SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO LOI Total
E438514 72.35 15.06 2.33 1.92 0.40 4.35 2.59 0.005 0.15 0.04 0.063 0.02 0.04 0.41 99.71
E438513 72.10 15.18 2.53 2.16 0.48 4.36 2.17 0.005 0.16 0.04 0.08 0.02 0.03 0.65 99.96
E438508 66.52 16.82 3.54 3.56 1.34 4.29 2.10 0.005 0.48 0.05 0.134 0.04 0.06 0.73 99.67
E438509 68.06 16.76 3.03 3.45 1.10 4.69 1.67 0.005 0.38 0.04 0.113 0.05 0.05 0.55 99.95
E438510 72.25 14.60 2.05 1.76 0.53 3.55 3.80 0.005 0.24 0.04 0.062 0.03 0.08 0.64 99.62
E438511 72.85 15.54 1.06 1.18 0.26 4.31 3.91 0.005 0.09 0.02 0.043 0.03 0.05 0.52 99.86
E438512 71.00 15.52 2.40 2.27 0.63 4.20 2.74 0.005 0.27 0.02 0.082 0.03 0.1 0.34 99.6
E438515 70.44 16.26 2.52 2.54 0.59 4.93 1.64 0.005 0.28 0.03 0.076 0.04 0.03 0.45 99.83
E438517 71.73 15.39 2.15 2.66 0.68 4.38 1.85 0.005 0.27 0.03 0.074 0.03 0.03 0.43 99.71
E438520 69.36 15.91 2.92 2.97 0.91 4.57 1.48 0.005 0.35 0.04 0.082 0.04 0.05 1.12 99.8
E438523 76.61 12.55 1.98 1.47 0.36 4.58 0.89 0.005 0.14 0.02 0.034 0.01 0.04 0.44 99.12
E438524 72.38 15.27 2.38 2.09 0.69 5.08 0.95 0.005 0.22 0.03 0.035 0.02 0.04 0.65 99.83
E438525 65.56 16.74 4.51 3.91 1.62 4.38 1.55 0.005 0.49 0.06 0.178 0.07 0.05 0.67 99.79
E438526 75.01 13.94 1.02 0.87 0.15 3.97 4.10 0.005 0.04 0.02 0.017 0.01 0.02 0.39 99.55
E438527 70.53 15.97 2.75 3.00 0.77 4.73 1.18 0.005 0.32 0.04 0.09 0.05 0.03 0.41 99.87
E438528 69.23 16.18 3.06 3.00 0.95 4.44 1.81 0.005 0.34 0.04 0.102 0.05 0.05 0.57 99.82
E438529 67.05 16.42 3.77 3.56 1.46 4.29 1.99 0.005 0.36 0.05 0.158 0.06 0.09 0.64 99.9
E438530 74.24 14.03 1.41 1.04 0.27 3.67 4.28 0.005 0.09 0.03 0.04 0.01 0.04 0.34 99.5
E438531 72.64 15.20 1.72 1.77 0.48 4.37 2.87 0.005 0.18 0.03 0.067 0.03 0.06 0.45 99.86
E438504 45.69 17.00 8.87 15.32 4.11 2.31 0.11 0.05 1.08 0.22 0.082 0.02 0.005 5.03 99.89
E438505 52.40 16.66 11.10 11.03 4.13 1.15 0.35 0.05 1.15 0.25 0.09 0.01 0.01 1.39 99.77
E438506 48.41 15.74 12.30 11.57 6.41 2.05 0.13 0.04 1.05 0.22 0.087 0.01 0.005 1.82 99.84
E438519 50.00 14.85 13.49 8.68 6.88 3.35 0.38 0.01 0.75 0.21 0.055 0.01 0.01 1.23 99.91
E438507 48.61 15.63 13.15 10.67 7.38 1.49 0.13 0.05 1.08 0.21 0.105 0.01 0.005 1.33 99.85
E438516 55.60 14.19 8.30 8.68 8.33 3.12 0.23 0.1 0.27 0.15 0.023 0.01 0.01 0.85 99.87
E438521 47.59 14.33 15.87 10.89 6.36 1.74 0.24 0.03 1.81 0.22 0.128 0.03 0.01 0.72 99.97
E438518 45.08 14.62 15.97 7.67 9.70 2.14 1.16 0.05 1.55 0.24 0.119 0.02 0.04 1.51 99.87
E438522 66.15 14.87 5.22 4.48 2.92 1.51 1.73 0.005 0.59 0.09 0.148 0.02 0.05 2.06 99.83
E438532 65.07 15.38 4.45 3.85 3.25 3.64 2.08 0.02 0.62 0.07 0.173 0.04 0.05 1.23 99.92
E438534 75.43 13.38 1.81 0.17 0.49 1.70 5.73 0.005 0.12 0.005 0.021 0.01 0.08 0.94 99.88
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SAMPLE As Ba Bi Ce Cr Cu Ga La Mo Nb Ni Pb Rb Sb Se
E438514 6 330 2 10 6 5 2 20 2 7 5 14 96 2 1
E438513 5 220 2 20 38 10 2 10 2 9 5 12 86 2 1
E438508 5 460 2 60 17 10 2 40 2 12 10 16 78 2 1
E438509 2.5 410 2 50 43 10 2 30 2 5 10 13 59 2 1
E438510 5 590 2 50 10 10 2 30 2 9 5 27 122 2 1
E438511 5 390 2 10 36 5 2 10 2 7 5 33 189 2 1
E438512 5 770 2 60 8 5 2 20 2 5 5 18 110 2 1
E438515 2.5 220 2 30 34 10 2 10 2 5 5 12 52 2 1
E438517 6 230 2 30 32 5 2 20 2 7 10 14 68 2 1
E438520 5 350 2 30 10 10 2 10 2 3 10 11 36 2 1
E438523 7 360 2 70 27 10 2 30 2 7 5 10 24 2 1
E438524 5 280 2 10 5 5 2 10 2 11 5 12 35 2 1
E438525 7 380 2 70 30 5 2 40 2 6 10 13 66 2 1
E438526 2.5 130 2 10 8 5 2 10 2 10 5 32 212 2 1
E438527 5 210 2 10 29 10 2 10 2 3 5 12 55 2 1
E438528 2.5 390 2 40 12 10 2 10 2 3 10 11 57 2 1
E438529 2.5 660 2 70 32 20 2 40 2 4 10 16 82 2 1
E438530 5 300 2 10 31 5 2 5 2 11 10 29 223 2 1
E438531 2.5 460 2 20 28 10 2 5 2 10 5 18 158 2 1
E438504 11 20 2 20 290 110 2 5 2 3 130 4 2 2 1
E438505 7 80 2 10 311 150 2 5 2 3 150 2 8 2 1
E438506 6 10 2 10 273 140 2 5 2 3 120 2 2 2 1
E438519 10 70 2 5 85 30 2 10 2 2 40 5 10 2 1
E438507 6 10 2 10 292 140 2 10 2 2 140 2 2 2 1
E438516 8 110 2 5 573 5 2 5 2 1 100 4 4 2 1
E438521 9 40 2 10 174 90 2 5 2 5 70 10 7 2 1
E438518 9 330 2 5 324 30 2 10 2 4 180 5 40 2 1
E438522 7 380 2 40 37 100 2 30 2 6 20 7 56 2 1
E438532 5 410 2 40 121 20 2 30 2 6 70 13 66 2 1
E438534 2.5 580 2 20 15 5 2 10 2 9 10 9 145 2 1
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SAMPLE Sn Sr Ta Th Ti U W Y Zr Zn V
E438514 6 132 5 11 908 2 5 6 104 40 10
E438513 6 138 5 10 1005 2 5 7 125 40 10
E438508 6 367 5 13 2820 4 5 14 175 60 40
E438509 5 410 5 8 2200 2 5 7 145 50 30
E438510 5 197 5 17 1385 4 5 12 129 40 20
E438511 7 228 5 8 600 4 5 6 67 30 10
E438512 7 247 5 17 1675 2 5 6 172 50 20
E438515 5 331 5 5 1655 2 5 5 125 50 20
E438517 6 258 5 9 1595 2 5 8 93 30 20
E438520 2.5 329 5 4 2020 4 5 7 107 30 30
E438523 6 85 5 21 858 2 5 35 212 20 5
E438524 5 146 5 9 1330 2 5 35 95 30 20
E438525 5 555 5 12 2890 2 5 11 147 60 60
E438526 7 50 5 18 341 12 5 17 51 20 5
E438527 2.5 393 5 5 1895 2 5 3 113 40 30
E438528 6 411 5 8 1990 2 5 4 122 50 30
E438529 2.5 525 5 11 2110 4 5 9 123 60 50
E438530 7 89 5 21 572 2 5 13 94 30 10
E438531 6 192 5 14 1100 4 5 12 126 40 10
E438504 2.5 149 5 2 6390 2 5 20 61 80 290
E438505 2.5 84 5 2 6780 2 5 23 66 100 320
E438506 2.5 110 5 2 6200 2 5 21 61 90 290
E438519 2.5 61 5 2 4390 2 5 15 36 80 280
E438507 2.5 119 5 2 6330 2 5 22 63 100 300
E438516 2.5 81 5 2 1595 2 5 8 15 50 190
E438521 2.5 278 5 2 18100 2 5 29 103 140 370
E438518 2.5 140 5 2 9150 2 5 24 82 140 330
E438522 5 122 5 7 3480 2 5 15 141 50 100
E438532 2.5 331 5 10 3650 4 5 11 156 60 70
E438534 7 68 5 14 782 4 5 17 159 10 5
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Appendix B  
 

SEM-EDS data for regional biotite samples 
 
 
 
 
 
 
 
 
 
 
 
 
 



Averaged and normalized values used for plots

SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 Y total Al total Fe/Fe+
Mg

Mg#
E43850

9
37.949 3.554 17.246 22.63 0.373 8.135 BDT 0.223 9.914 0.008 5.555 2.995 0.609 0.391
37.698 2.574 17.649 22.317 0.327 9.07 BDT 0.168 10.021 0.078 5.656 3.067 0.58 0.42
37.64 2.914 17.464 22.609 0.254 8.617 BDT 0.249 10.015 5.694 5.615 3.041 0.595 0.405

37.802 2.676 17.792 22.323 0.245 8.802 BDT 0.27 10.034 0.078 5.634 3.089 0.587 0.413
38.03 2.974 17.477 22.781 0.263 8.62 BDT 0.204 9.678 -0.055 5.647 3.028 0.597 0.403

38.132 3.523 17.5 22.718 0.183 8.325 BDT 0.231 9.537 0.04 5.614 3.025 0.605 0.395
38.81 2.163 18.203 20.444 0.669 10.998 BDT -0.259 9.329 -0.294 5.773 3.084 0.511 0.489

E43851
0 

37.733 2.143 17.633 23.244 BDT 8.905 BDT BDT 9.771 BDT 5.738 3.068 0.594 0.406
37.08 2.052 17.359 24.084 BDT 8.993 BDT BDT 9.768 BDT 5.812 3.041 0.6 0.4

37.409 2.161 17.442 24.068 BDT 9.053 BDT BDT 9.257 BDT 5.829 3.043 0.599 0.401
38.008 2.109 17.343 23.216 BDT 8.627 BDT BDT 9.87 BDT 5.698 3.02 0.602 0.398
37.659 2.012 17.088 23.8 BDT 8.863 BDT BDT 9.942 BDT 5.762 2.985 0.601 0.399

E43851
2

38.052 2.746 17.668 22.605 BDT 9.023 BDT BDT 9.512 BDT 5.701 3.054 0.584 0.416
37.603 2.953 17.349 23.333 BDT 8.774 BDT BDT 9.528 BDT 5.71 3.017 0.599 0.401
37.629 2.868 17.637 22.845 BDT 8.862 BDT BDT 9.489 BDT 5.71 3.061 0.591 0.409
37.491 2.98 17.207 23.568 BDT 8.746 BDT BDT 9.605 BDT 5.726 2.997 0.602 0.398
37.608 2.965 17.399 22.996 BDT 8.763 BDT BDT 9.655 BDT 5.675 3.024 0.595 0.405
37.871 2.944 17.17 22.981 BDT 8.928 BDT BDT 9.583 BDT 5.669 2.977 0.591 0.409

E43853
0

36.694 2.567 17.204 26.909 0.835 6.154 BDT BDT 9.594 BDT 5.566 3.082 0.674 0.326
39.681 2.534 20.247 21.044 BDT 5.854 BDT BDT 10.01 BDT 5.389 3.432 0.667 0.333
37.965 2.562 18.206 23.724 0.895 6.696 BDT BDT 10.046 BDT 5.569 3.167 0.665 0.335
37.802 2.734 17.892 24.175 0.946 6.538 BDT BDT 10.092 BDT 5.59 3.143 0.674 0.326
37.524 2.588 17.859 24.382 0.846 6.831 BDT BDT 10.13 BDT 5.253 3.521 0.668 0.332

E43845
32

39.644 1.79 17.267 16.507 BDT 14.358 BDT 0.291 9.981 0.12 5.77 2.903 0.392 0.608
39.522 1.935 17.219 16.651 BDT 14.31 BDT 0.129 10.063 0.167 5.78 2.896 0.395 0.605
39.538 1.94 17.385 16.324 BDT 14.512 BDT 0.186 9.898 0.214 5.787 2.919 0.387 0.613
39.093 1.814 17.272 16.857 BDT 14.423 BDT 0.239 9.851 0.547 5.829 2.908 0.396 0.604
39.199 1.968 17.361 16.829 BDT 14.703 BDT 0.236 9.567 0.149 5.855 2.919 0.391 0.609
39.455 1.995 17.135 16.968 BDT 14.293 BDT 0.234 9.86 0.067 5.808 2.885 0.4 0.6
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5Na2O BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.51 0.39 BDL BDL

MgO 7.73 7.22 7.93 7.81 7.49 8.94 8.45 8.24 8.39 8.9 8.14 8.12 8.41 7.91 7.98
Al2O3 15.89 16.15 16.9 16.38 15.64 16.65 16.55 17.08 16.78 16.99 16.37 16.76 16.41 16.09 16.57
SiO2 35.52 35.76 36.02 36.13 34.71 35.45 35.88 35.84 36.35 35.91 36.16 35.74 35.11 35.13 35.03
K2O 9.72 9.41 9.25 9.05 9.1 9.35 9.82 9.75 9.21 9.67 9.39 9.7 9.36 9.21 9.48
CaO BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
TiO2 3.15 3.52 3.15 3.34 3.53 2.61 2.73 2.24 2.41 2.62 3.32 2.8 2.45 2.88 2.78

V2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
Cr2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

MnO 0.49 BDL BDL BDL BDL BDL BDL BDL 0.44 BDL BDL BDL BDL BDL 0.46
FeO 20.65 23.04 20.25 21.75 20.58 20.69 20.8 22.26 21.14 21.59 21.54 21.06 21.38 21.68 20.75

total 93.15 95.1 93.5 94.46 91.05 93.69 94.23 190.13 190.4 95.68 189.61 281.1 279.46 185.95 93.05
cation 

sum
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4Na2O 0.39 BDL BDL BDL BDL BDL BDL 0.39 BDL 0.4 BDL BDL BDL BDL

MgO 8.4 8.59 -0.18* 7.9 8.1 7.99 8.03 8.12 8.12 8.33 7.62 8.02 7.65 7.8
Al2O3 16.81 17.32 0.35* 16.16 16.4 16.54 16.54 16.68 16.33 16.2 15.96 16.46 16.33 16.6
SiO2 34.99 35.91 0.54* 35.98 34.81 35.88 35.46 35.85 35.94 35.94 35.97 35.69 34.78 35.96
K2O 9.84 9.25 0.36* 9.23 9.28 9.33 9.08 8.81 9.21 9.14 9.11 8.87 8.89 8.74
CaO BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
TiO2 2.08 2.43 46.24 2.84 2.68 2.22 2.77 3.22 3.14 2.66 3.18 3.15 3.15 3.68

V2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
Cr2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

MnO BDL BDL 6.06 BDL BDL BDL BDL BDL 0.38 BDL BDL BDL BDL BDL
FeO 20.2 21.26 42.99 20.92 21.29 21.21 21.74 21.37 21.88 21.07 20.86 20.85 21.71 21.41

total 92.71 94.76 95.29 93.03 92.56 93.17 93.62 189.44 188.74 93.74 92.7 93.04 186.7 94.19
cation 

sum
4.99 4.96 4.83 4.92 4.97 4.94 4.94 4.93 4.93 4.95 4.91 4.91 4.94 4.89
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5SiO2 37.32 34.86 36.25 35.78 36.77 35.74 36.23 36.05 36.3 35.28 37.01 37.3 37.45 34.17 35.31

TiO2 1.82 2.14 2.14 2.16 2.01 1.68 2.32 1.89 1.44 2.61 2.58 1.97 2 1.79 2.13
Al2O3 17.37 16.31 17 16.93 16.96 16.63 17.09 17.27 17.14 15.96 16.78 16.75 17.26 17.66 16.05

FeO 22.34 21.84 23.76 21.25 22.3 23.32 23.69 23.2 23.47 22.97 23.08 22.39 22.66 25.57 22.87
MnO BDL 0.69 0.55 BDL BDL 0.45 0.7 BDL 0.55 BDL BDL BDL 0.56 BDL 0.72
MgO 8.88 7.91 8.52 8.73 8.68 8.87 8.65 8.77 8.43 8.83 8.07 8.87 8.9 9.6 8.41
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Cr2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

total 97.28 92.88 97.61 94.17 96.19 95.71 98.54 96.1 97.04 95.46 97.37 96.31 98.28 96.01 94.79
cation 

sum
4.97 4.99 4.98 4.96 4.96 4.98 5.01 4.98 4.99 5.02 4.96 4.96 4.95 5 5
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Cr2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

total 95.02 96.31 98.36 95.94 97.39 97.04 93.79 94.74 97.47 95.52
cation 

sum
4.97 4.95 4.93 5 4.98 5 4.96 4.99 4.98 4.99
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total 92.46 95.3 92.84 95.44 93.91 92.05 93.14 92 91.85 94 90.81 92.76 92.82 93.39 92.84
Cation 

Sum
2.82 2.81 2.83 2.82 2.83 2.83 2.83 2.81 2.84 2.83 2.83 2.82 2.82 2.84 2.83

 point 4-
1

 point 4-
2

 point 4-
3

 point 4-
4

 point 4-
5

 point 5-
1

 point 5-
2

 point 5-
3

 point 5-
4

 point 5-
5

 point 6-
1

 point 6-
2

 point 6-
3

 point 6-
4

 point 6-
5SiO2 34.68 34.55 33.87 34.22 31.99 34.82 34.79 34.6 34.14 34.84 35.19 34.84 35.12 34.28 34.47

TiO2 2.9 2.84 2.72 2.63 2.38 2.5 2.93 2.52 2.76 2.95 2.7 2.62 2.87 2.63 2.7
Al2O3 15.79 16.18 15.55 15.74 14.46 15.86 16.28 16.09 15.63 16.27 15.77 15.5 16.1 15.6 15.87

FeO 21.39 20.66 22.1 21.28 20.95 21.33 20.6 20.52 21.83 21.63 21.06 21.21 21.58 20.85 20.83
MnO BDL 0.29 BDL BDL 0.41 0.33 BDL BDL BDL 0.3 BDL BDL BDL BDL 0.41
MgO 8.08 7.99 8.52 7.62 7.3 8.16 7.94 7.81 8.16 8.29 8.15 8.7 8.16 8.33 7.66
CaO BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

Na2O BDL BDL BDL BDL BDL BDL BDL BDL 0.39 BDL BDL 0.37 0.37 0.36 0.41
K2O 8.76 8.92 8.5 8.76 8.42 9.05 8.76 8.7 8.72 9.24 8.79 8.77 8.66 8.97 8.81

Cr2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

total 91.6 91.43 91.26 90.25 85.91 92.05 91.3 90.24 91.63 93.52 91.93 92.35 92.45 91.36 91.09
Cation 

Sum
2.82 2.83 2.84 2.82 2.84 2.84 2.83 2.82 2.84 2.84 2.82 2.84 2.82 2.84 2.83

E438512

B5



 point 1-
1

 point 1-
2

 point 1-
3

 point 1-
4

 point 1-
5

 point 1-
6

 point 2-
1

 point 2-
2

 point 2-
3

 point 2-
4

 point 2-
5

 point 2-
6

 point 3-
1SiO2 37.25 35.15 36.52 36.32 62.76 25.71 35.63 37.84 37.31 36.81 36.92 47.78 36.14

TiO2 2.93 2.22 2.68 2.52 BDL 1.65 2.49 2.67 2.81 2.76 3 0.9 2.7
Al2O3 17.35 15.92 17.42 17.02 18.12 12.33 16.8 16.8 17.17 17.45 17.93 32.08 17.47

FeO 23.37 22.84 24.32 22.52 BDL 34 22.46 22.99 24.02 22.42 24.49 5.53 23.74
MnO 0.93 0.9 0.65 0.78 BDL 0.64 0.79 0.73 1.01 0.78 0.8 BDL BDL
MgO 6.63 6.1 5.98 6.61 BDL 3.46 5.98 6.24 6.54 6.46 6.72 1.57 6.73
CaO BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

Na2O BDL BDL BDL BDL 1.39 BDL BDL BDL BDL BDL BDL BDL BDL
K2O 9.74 9.08 9.36 9.5 14.6 6.62 9.72 9.92 9.59 9.45 9.14 11.19 9.42

Cr2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

Total 98.2 92.21 96.93 95.27 96.87 84.41 93.87 97.19 98.45 96.13 99 99.05 96.2
Cation 

Sum
4.93 4.94 4.91 4.91 4.38 5.15 4.93 4.89 4.9 4.9 4.9 4.49 4.93

 point 3-
2

 point 3-
3

 point 3-
4

 point 3-
5

 point 4-
1

 point 4-
2

 point 4-
3

 point 4-
4

 point 4-
5

 point 4-
6

 point 5-
1

 point 5-
2

 point 5-
3

 point 5-
4

 point 5-
5

 point 5-
6SiO2 36.32 36.56 36.55 37.25 37.09 34.83 34.14 36.69 37.83 36.86 37.85 36.81 37.14 35.36 36.92 47.14

TiO2 2.56 2.06 2.55 2.82 2.41 2.46 2.66 2.5 2.76 2.94 2.45 2.75 2.55 2.31 2.48 0.73
Al2O3 17.18 17.31 17.8 17.75 18.09 16.31 16.31 17.35 18.5 17.84 16.97 18.24 18.23 16.58 16.57 29.92

FeO 23.53 22.76 22.78 22.03 23.74 21.89 23.01 23.3 23.98 23.52 23.77 23.77 23.92 22.36 24.99 4.79
MnO 0.75 1.25 0.91 0.77 0.65 0.84 0.86 0.63 1.17 1.01 0.96 0.67 0.68 1.35 0.57 BDL
MgO 6.56 7.04 6.19 6.57 6.05 6.17 5.33 6.32 6.58 6.19 7.19 6.79 6.7 6.42 6.71 1.34
CaO BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

Na2O BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
K2O 9.73 9.49 9.55 9.83 10.03 9.38 8.89 10.58 10.09 9.68 9.64 10.02 10.17 9.78 9.5 10.96

Cr2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

Total 96.63 96.47 96.33 97.02 98.06 91.88 91.2 97.37 100.91 98.04 98.83 99.05 99.39 94.16 97.74 94.88
Cation 

Sum
4.95 4.94 4.9 4.89 4.91 4.92 4.91 4.96 4.9 4.9 4.94 4.92 4.96 4.95 4.94 4.48

E438530

B6



 point 1-
1

 point 1-
2

 point 1-
3

 point 1-
4

 point 1-
5

 point 2-
1

 point 2-
2

 point 2-
3

 point 2-
4

 point 2-
5

 point 2-
6

 point 3-
1

 point 3-
2

 point 3-
3

 point 3-
4

 point 3-
5Na2O BDL BDL BDL BDL BDL BDL BDL 8.42 0.35 BDL BDL BDL BDL BDL 1.39 BDL

MgO 14.05 13.75 14.08 13.51 13.04 14.17 13.45 BDL 13.52 13.61 BDL 13.62 14.13 14.03 10.09 13.19
Al2O3 16.5 16.3 17.3 16.21 16.04 16.38 16.44 24.64 16.28 16.48 1.12 16.15 16.25 17.29 11.27 16.14
SiO2 37.26 37.7 38.68 37.62 37.71 37.4 37.52 61.73 37.18 37.05 30.36 37.22 37.53 37.43 43.79 36.8
K2O 9.37 9.52 9.75 9.76 9.8 9.44 9.43 BDL 8.99 9.48 BDL 9.47 9.23 9.47 0.23 9.37
CaO BDL BDL BDL BDL BDL BDL BDL 6.14 BDL BDL 28.07 BDL BDL BDL 11.79 BDL
TiO2 1.83 2.07 1.84 1.9 1.61 1.84 2.01 BDL 1.69 1.78 36.52 1.68 1.85 1.47 BDL 1.91

Cr2O3 0.37 BDL BDL BDL BDL 0.35 BDL BDL BDL BDL BDL 0.65 0.56 BDL 0.55 0.74
FeO 16.37 15.36 15.8 15.7 16.38 15.48 15.52 BDL 15.66 14.92 0.34 15.87 16.19 16.12 15.9 16.06

Total 95.75 94.7 97.45 94.7 94.58 95.06 94.37 100.93 93.67 93.32 96.41 94.66 95.74 95.81 95.01 94.21
Cation 

sum
2.85 2.84 2.84 2.84 2.85 2.85 2.83 2.5 2.84 2.84 2.43 2.85 2.84 2.86 2.69 2.85

 point 4-
1

 point 4-
2

 point 4-
3

 point 4-
4

 point 5-
1

 point 5-
2

 point 5-
3

 point 5-
4

 point 5-
5Na2O BDL BDL BDL 0.35 BDL BDL BDL BDL BDL

MgO 13.21 14.78 14.09 13.42 13.2 13.57 13.78 13.61 13.64
Al2O3 16.84 16.6 16.48 15.62 16.1 15.86 16.44 16.57 16.3
SiO2 36.71 36.24 37.74 37.31 36.62 38.07 37.54 37.1 37.82
K2O 9 8.25 9.42 9.46 9.12 9.33 9.2 9.59 9.53
CaO BDL BDL BDL BDL BDL BDL BDL BDL BDL
TiO2 1.84 1.63 2.2 1.77 1.69 2.12 1.93 1.94 1.79

Cr2O3 BDL BDL BDL BDL BDL BDL BDL BDL BDL
FeO 16.11 15.36 16.1 15.97 15.61 16.4 16.33 15.8 16.35

Total 93.71 92.86 96.03 93.9 92.34 95.35 95.22 94.61 95.43
Cation 

sum
2.84 2.84 2.84 2.85 2.84 2.84 2.84 2.85 2.85
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Appendix C 
 

SEM data for biotite samples of the Musselwhite Mine 
 



NORMALIZED DATA USED FOR PLOTS
SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 Y site tot Al Tot Fe# Mg#

E354010 35.758 2.121 16.993 29.568 BDL 6.123 BDL BDL 9.661 BDL 5.861 3.04 0.73 0.27

35.736 2.41 16.891 29.863 BDL 5.391 BDL BDL 9.872 BDL 5.786 3.032 0.757 0.243

35.882 2.509 16.953 29.33 BDL 5.94 BDL BDL 9.648 BDL 5.819 3.029 0.735 0.265

35.375 2.456 17.243 29.169 BDL 5.62 BDL BDL 9.746 BDL 5.778 3.098 0.745 0.255

35.878 2.276 17.213 30.142 BDL 4.759 BDL BDL 9.918 BDL 5.765 3.097 0.781 0.219

E354016 35.807 1.145 18.124 30.382 BDL 5.216 -0.043 0.292 9.112 0.02 5.885 3.252 0.766 0.234

35.814 1.015 18.193 30.346 BDL 5.329 -0.067 0.239 9.216 0.028 5.905 3.264 0.762 0.238

35.604 0.711 18.366 30.339 BDL 5.377 0.112 0.304 8.992 BDL 5.932 3.308 0.76 0.24

35.604 1.113 18.52 29.749 BDL 5.386 0.098 0.347 9.133 0.055 5.863 3.319 0.756 0.244

36.076 2.142 17.665 28.541 BDL 6.312 -0.027 0.315 9.12 0.123 5.832 3.137 0.717 0.283

E354040 36.115 2.173 17.451 27.523 BDL 7.191 0.046 0.365 9.123 0.01 5.85 3.095 0.682 0.318

36.149 1.9 17.503 27.798 BDL 7.221 -0.07 0.301 9.103 -0.009 5.88 3.105 0.684 0.316

35.993 2.205 17.364 28.303 BDL 6.826 -0.022 0.077 8.977 0.122 5.898 3.093 0.699 0.301

E354025 34.912 1.077 22.73 18.178 BDL 12.438 BDL BDL 10.258 BDL 5.927 3.876 0.451 0.549

35.592 1.067 22.163 18.213 BDL 12.167 BDL BDL 10.248 BDL 6.014 3.818 0.457 0.543

37.95 1.507 17.338 20.939 BDL 11.816 BDL BDL 9.399 BDL 5.826 2.985 0.499 0.501

35.52 1.305 21.86 18.866 BDL 11.723 BDL BDL 10.012 BDL 5.887 3.743 0.475 0.525

37.516 1.299 18.464 20.782 BDL 11.582 BDL BDL 9.838 BDL 5.858 3.178 0.502 0.498

E358108 36.825 2.518 17.219 24.656 BDL 8.279 BDL BDL 9.725 BDL 5.763 3.031 0.626 0.374

36.952 2.924 16.958 24.729 BDL 7.975 BDL BDL 9.92 BDL 5.721 2.981 0.635 0.365

36.669 2.949 17.517 24.752 BDL 8.234 BDL BDL 9.574 BDL 5.773 3.071 0.628 0.372

36.735 1.968 17.536 24.589 BDL 8.687 BDL BDL 9.841 BDL 5.808 3.089 0.614 0.386

E354041 35.206 2.214 20.873 26.279 BDL 6.044 BDL BDL 9.692 BDL 5.761 3.662 0.709 0.291

35.664 2.289 20.512 25.879 BDL 5.912 BDL BDL 9.616 BDL 5.713 3.603 0.711 0.289

35.121 2.436 20.737 25.98 BDL 5.949 BDL BDL 9.696 BDL 5.735 3.649 0.71 0.29

35.102 2.598 20.393 26.058 BDL 5.9 BDL BDL 9.722 BDL 5.725 3.599 0.713 0.287

35.612 2.194 20.695 25.786 BDL 5.851 -0.02 0.457 9.362 0.101 5.684 3.631 0.712 0.288

35.781 2.439 20.262 25.516 BDL 6.326 -0.061 0.229 9.277 0.142 5.73 3.554 0.693 0.307

36.633 2.393 20.319 23.396 BDL 7.612 0.025 0.242 9.347 0.162 5.703 3.518 0.633 0.367

C2



E35401
0

point 1-1 point 1-2 point 1-3 point 1-4 point 1-5 point 2-1 point 2-2 point 2-3 point 2-4 point 2-5 point 3-1 point 3-2 point 3-3 point 3-4 point 3-5 point 3-6

SiO2 33.28 34.19 35.24 33.23 34.65 39.62 39.62 34.3 33.95 32.54 35.07 33.09 35.13 34.21 35.58 33.04

TiO2 2.28 1.66 2.15 2 2.02 0.48 0.48 2.03 2.13 2.2 2.56 2.46 2.76 2.69 2.46 1.94

Al2O3 15.62 17.07 16.22 15.57 16.59 13.1 13.1 16.57 16.42 15.39 16.33 15.17 16.11 15.85 16.14 16.34

FeO 27.38 28.95 29.35 27.45 27.94 25.72 25.72 30.19 28.31 27.88 28.29 26.56 28.42 27.9 28.02 27.63

MnO 0.48  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

MgO 5.51 5.89 6.03 5.44 6.36 4.07 4.07 5.2 5.36 4.76 5.78 4.43 5.32 5.65 5.64 5.87

CaO  BDL  BDL  BDL  BDL  BDL 11.09 11.09  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Na2O  BDL  BDL  BDL  BDL  BDL 0.82 0.82  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

K2O 9.17 8.77 9.91 9.04 9.2 1.54 1.54 9.31 9.4 9.2 9.63 9.12 9.05 9.16 9.57 8.93

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Total 93.72 96.53 98.9 92.73 96.76 96.44 96.44 97.6 95.57 91.97 97.66 90.83 96.79 95.46 97.41 93.75

Cation 
Sum

5.01 5.01 5.02 4.99 4.98 4.77 4.77 5.02 4.99 5.01 5 4.96 4.96 4.99 4.97 5

point 4-1 point 4-2 point 4-3 point 4-4 point 5-1 point 5-2 point 5-3 point 5-4 point 5-5

SiO2 33.37 36.71 34.13 34.01 35 34.02 34.97 34.43 33.52

TiO2 2.14  BDL 1.91 2.21 2.73 2.68 2.27 2.13 2.13

Al2O3 16.47 20.4 16.99 16 17.36 16.52 16.29 16.62 16.46

FeO 28.03 30.67 27.63 27.7 29.58 28.21 28.4 28.94 29.11

MnO  BDL 3.47  BDL  BDL  BDL  BDL  BDL  BDL  BDL

MgO 5.86 1.34 5.76 6.33 4.66 5.01 4.98 4.78 3.9

CaO  BDL 5.94  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Na2O  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

K2O 9.35 0.38 9.25 9.17 9.55 9.82 9.14 9.42 9.88

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Total 95.22 98.91 95.67 95.42 98.88 96.26 96.05 96.32 95

Cation 
Sum

5 4.69 5.01 5.03 4.99 5 4.97 4.99 4.99

C3



E35401
6

point 1-1 point 1-2 point 1-3 point 1-4 point 1-5 point 2-1 point 2-2 point 2-3 point 2-4 point 2-5 point 3-1 point 3-2 point 3-3 point 3-4

Na2O  BDL  BDL  BDL  BDL  BDL  BDL 0.37 0.39  BDL n.m 0.4  BDL 0.45 0.49

MgO 5.37 5.12 5.19 5.19 5.11 5.37 5.24 5.01 5.1 4.97 5.43 5.37 5.3 5.05

Al2O3 17.58 17.29 17.9 17.9 18.2 17.42 17.69 17.89 17.87 18.13 17.62 18.36 18.11 18.15

SiO2 35.53 34.76 34.96 34.96 34.46 35.27 34.88 35.33 35.64 35.25 34.9 35.37 35 34.77

K2O 8.97 8.89 9.05 9.05 9.04 8.84 8.99 8.92 9.02 9.11 8.83 8.77 9.11 8.66

CaO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL 0.4

TiO2 1.13 0.94 0.8 0.8 1.09 1.18 1.01 1.26 1.04 1.15 0.78 0.88 0.7 0.44

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

FeO 29.81 29.13 29.49 29.49 29.5 29.94 29.99 30.26 29.69 29.77 29.5 29.97 29.91 29.95

Total 98.39 96.13 97.39 97.39 97.4 98.02 98.17 99.06 98.36 98.38 97.46 98.72 98.58 97.91

Cation 
sum

2.86 2.86 2.86 2.86 2.86 2.86 2.87 2.86 2.85 2.86 2.87 2.86 2.88 2.87

point 3-5 point 3-6 point 4-1 point 4-2 point 4-3 point 4-4

Na2O  BDL 0.39  BDL 0.42  BDL 0.37

MgO 5.12 5.41 6.26 6.06 6.09 6.16

Al2O3 17.83 18.37 17.49 16.83 16.67 16.77

SiO2 33.89 35.72 35.4 35.2 34.95 34.87

K2O 8.83 9.02 9.03 8.96 8.63 8.88

CaO  BDL  BDL  BDL  BDL  BDL  BDL

TiO2 0.96 1.22 1.81 1.88 2.08 2.56

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL

FeO 28.63 29.52 28.52 27.85 27.87 26.86

Total 95.26 99.65 98.51 97.2 96.29 96.47

Cation 
sum

2.86 2.86 2.86 2.86 2.84 2.85

C4



E35402
5 point 1-1 point 1-2 point 1-3 point 1-4 point 1-5 point 2-1 point 2-2 point 2-3 point 2-4 point 2-5 point 3-1 point 3-2 point 3-3 point 3-4 point 3-5 point 3-6

SiO2 34.44 34.2 34.66 33.93 33.35 35.14 33.34 33.2 34.17 35 36.96 36.63 35.39 36.69 38.28 36.36

TiO2 1.47 0.9 0.88 0.9 1.11 1.18 0.82 0.76 1.33 1.05 1.09 1.4 1.1 1.44 2.55 1.21

Al2O3 22.24 21.56 22.97 22.11 22.19 22.27 21.73 20.69 21.26 20.45 17.24 17.63 16.01 16.71 15.68 17.35

FeO 17.95 17.29 18.09 18.03 17.47 18.58 17.09 16.53 17.58 17.69 19.57 20.31 19.99 19.49 22.34 19.88

MnO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

MgO 11.97 11.89 12.6 12.59 11.74 12.01 11.57 11.6 12.04 11.18 12.14 11.47 11.34 11.97 9.43 12.16

CaO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL 3.67  BDL

Na2O  BDL  BDL  BDL 0.71  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

K2O 9.84 10.05 9.93 10.43 9.87 10.21 9.81 9.5 10.1 9.58 9.36 9.75 8.95 9.27 7.56 9.62

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Total 97.91 95.89 99.13 98.7 95.73 99.39 94.36 92.28 96.48 94.95 96.36 97.19 92.78 95.57 99.51 96.58

Cation 
Sum

5.04 5.04 5.05 5.11 5.06 5.05 5.05 5.02 5.04 4.99 5.02 5.02 5.02 5 4.93 5.03

point 4-1 point 4-2 point 4-3 point 4-4 point 4-5 point 4-6 point 5-1 point 5-2 point 5-3 point 5-4 point 5-5

SiO2 32.72 33.65 35.71 33.78 35.21 35 35.38 33.94 36.59 37.68 37.47

TiO2 1.18 1.24 1.27 1.31 1.54 1.02 1.16 1.16 1.29 1.03 1.63

Al2O3 21.44 20.33 21.7 20.87 20.08 22.4 17.97 16.06 18.27 19.14 17.72

FeO 17.92 17.73 18.36 18.51 18.01 18.9 19.5 19.6 20.2 20.85 20.08

MnO 0.51  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

MgO 10.93 10.88 11.91 10.8 11.71 11.8 10.81 10.29 11.51 11.68 11.63

CaO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL 0.51

Na2O  BDL  BDL 0.53  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

K2O 9.62 9.53 10.01 9.41 9.78 9.72 9.34 8.99 10.08 9.96 9.1

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Total 94.32 93.36 99.49 94.68 96.33 98.84 94.16 90.04 97.94 100.34 98.14

Cation 
Sum

5.05 5.03 5.04 5.03 5.02 5.03 5.01 5.01 5.03 5.01 4.99

C5



E35404
0 point 1-1 point 1-2 point 1-3 point 1-4 point 2-1 point 2-2 point 2-3 point 2-4

Na2O  BDL 0.55 0.36  BDL  BDL  BDL 0.54 0.38

MgO 6.83 6.93 7.1 6.86 6.57 6.98 7.38 7.21

Al2O3 16.99 16.35 16.73 17.23 16.47 17.04 17.32 17.17

SiO2 35.29 34.19 34.8 34.98 34.26 35.77 35.67 34.65

K2O 8.81 8.52 8.86 8.99 8.19 9.13 8.81 9.04

CaO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

TiO2 2.44 1.85 1.91 2.19 2.22 2.2 1.48 1.84

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

FeO 26.73 25.86 26.33 27.22 26.3 27.11 27.57 26.73

Total 97.09 94.25 96.09 97.47 94.01 98.23 98.77 97.02

Cation 
sum

2.85 2.86 2.86 2.85 2.83 2.85 2.87 2.87

point 2-5 point 3-1 point 3-2 point 3-3 point 3-4 point 3-5

Na2O  BDL  BDL  BDL  BDL  BDL  BDL

MgO 6.99 6.89 6.83 1.52 1.61 6.25

Al2O3 17.13 16.85 17.26 21.85 21.89 16.65

SiO2 35.47 35.51 36.04 38.27 38.38 33.71

K2O 9.12 9.14 9.06  BDL  BDL 8.07

CaO  BDL  BDL  BDL 3.84 3.88  BDL

TiO2 1.48 2.23 2  BDL  BDL 2.21

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL

FeO 27.49 27.35 27.89 35.06 35.35 27.48

CuO  BDL  BDL  BDL  BDL  BDL  BDL

Ag2O  BDL  BDL  BDL  BDL  BDL  BDL

Au2O3  BDL  BDL  BDL  BDL  BDL  BDL

Total 90.69 91.08 92.25 99.02 99.5 88.12

Cation 
sum

2.86 2.85 2.85 2.64 2.64 2.84

C6



E35404
1

point 1-1 point 1-2 point 1-3 point 1-4 point 1-5 point 1-6 point 1-7 point 1-8 point 2-1 point 2-2 point 2-3 point 2-4 point 2-5 point 2-6

SiO2 33.75 33.87 33.92 34.39 34.19 46.65 57.02 57.55 35.09 35.47 35.53 34.1 34.48 36.22

TiO2 1.83 2.14 2.62 2.05 2.07  BDL 0.47  BDL 2.5 1.91 2.71 1.85 2.24  BDL

Al2O3 20.18 20.26 20.46 20.15 19.82 36.92 29.35 28.88 20.16 20.95 20.13 20.11 19.14 64.36

FeO 24.71 25.13 26.5 25.35 25.32 1.27  BDL  BDL 25.08 26.95 25.75 24.89 24.14  BDL

MnO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

MgO 5.96 5.77 6.03 5.97 5.48  BDL  BDL  BDL 5.79 5.54 6.19 6.24 5.2  BDL

CaO  BDL  BDL  BDL  BDL  BDL  BDL 9.62 9.96  BDL  BDL  BDL  BDL  BDL  BDL

Na2O  BDL  BDL  BDL  BDL  BDL  BDL 6.41 5.63  BDL  BDL  BDL  BDL  BDL  BDL

K2O 9.36 9.43 9.2 9.34 9.5 10.55  BDL  BDL 9.48 9.75 9.42 9.24 9.21  BDL

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Total 95.79 96.6 98.73 97.25 96.38 95.39 102.87 102.02 98.1 100.57 99.73 96.43 94.41 100.58

Cation 
Sum

4.95 4.98 4.96 4.96 4.93 4.43 4.4 4.35 4.93 4.96 4.95 4.97 4.92 4.21

point 3-1 point 3-2 point 3-3 point 3-4 point 3-5 point 3-6 point 3-7 point 3-8 point 4-1 point 4-2 point 4-3 point 4-4 point 4-5 point 4-6 point 5-1 point 5-2

SiO2 33.83 31.44 34.2 34.57 35.36 35.71 46.47 46.16 34.23 34.7 33.47 34.55 34.33 2.34 24.19 17.77

TiO2 2.28 2.53 2.39 2.18 1.91  BDL  BDL  BDL 2.8 2.78 1.98 2.9 2.48 48.34  BDL  BDL

Al2O3 19.62 18.89 20.2 21.03 21.01 65.1 35.62 35.73 19.49 19.28 21.16 19.49 19.7 2.03 60.27 40.57

FeO 25.1 25.06 25.53 25.56 24.61 0.56  BDL  BDL 24.66 25.61 25.26 25.3 25.57 47.56 14.52 35.68

MnO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL 3.77

MgO 5.47 5.6 5.55 6.05 6.23  BDL  BDL  BDL 5.59 5.66 6.16 5.63 5.59  BDL 1.32 1.46

CaO  BDL  BDL  BDL  BDL  BDL  BDL 17.55 18.32  BDL  BDL  BDL  BDL  BDL 1.32  BDL 1.48

Na2O  BDL  BDL  BDL  BDL  BDL  BDL 1.4 1.43  BDL  BDL  BDL  BDL  BDL  BDL 0.46 1.33

K2O 9.44 9.31 9.44 9.16 9.54  BDL  BDL  BDL 9.29 9.43 9.54 9.77 9.22  BDL  BDL  BDL

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Total 95.74 92.83 97.31 98.55 98.66 101.37 101.04 101.64 96.06 97.46 97.57 97.64 96.89 101.59 100.76 102.06

Cation 
Sum

4.98 5.02 4.95 4.95 4.94 4.24 4.38 4.4 4.92 4.95 5 4.95 4.96 4.72 4.56 5.06

C7



E35810
5 point 1-1 point 1-2 point 1-3 point 1-4 point 1-5 point 2-1 point 2-2 point 2-3 point 2-4 point 2-5 point 3-1 point 3-2 point 3-3 point 3-4 point 3-5

Na2O  BDL  BDL  BDL  BDL  BDL Na2O 0.41  BDL  BDL 0.36  BDL  BDL  BDL  BDL  BDL 0.45

MgO 9.34 8.91 9.1 8.62 8.7 MgO 9.3 9.55 8.98 9.69 9.22 9.55 9.55 9.19 9.3 9.28

Al2O3 19 18.68 17.82 17.51 17.89 Al2O3 18.1 18.26 17.13 17.8 17.91 17.75 18.11 18.38 17.57 17.8

SiO2 36.66 35.19 35.84 33.8 33.5 SiO2 34.58 35.63 33.65 33.56 35.69 35.96 35.46 35.88 35.62 36.25

K2O 9.26 8.94 9.39 8.77 8.24 K2O 8.65 8.49 8.41 7.75 8.55 9 8.78 8.88 8.53 8.97

CaO  BDL  BDL  BDL  BDL  BDL CaO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

TiO2 1.87 1.89 1.7 1.74 1.56 TiO2 1.27 1.27 2.12 1.15 1.49 2.2 1.98 2.08 1.97 2.67

Cr2O3  BDL  BDL  BDL  BDL  BDL Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL 0.32

MnO  BDL  BDL  BDL  BDL  BDL MnO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

FeO 22.41 21.47 22.13 21.46 21.82 FeO 22.2 22.29 21.82 22.03 22.34 23.02 23.11 22.46 22.57 22.77

CuO  BDL  BDL  BDL  BDL  BDL

Ag2O  BDL  BDL  BDL  BDL  BDL

Au2O3  BDL  BDL  BDL  BDL  BDL

Total 98.54 95.08 95.98 91.9 91.71 ] 94.51 95.49 92.11 92.34 95.2 97.48 96.99 96.87 95.56 98.51

Cation 
sum

2.84 2.84 2.86 2.85 2.85 2.86 2.84 2.84 2.86 2.83 2.85 2.85 2.83 2.83 2.84

point 4-1 point 4-2 point 4-3 point 4-4 point 4-5 point 5-1 point 5-2 point 5-3 point 5-4 point 5-5

Na2O 0.49 0.47 0.37 0.4 0.5  BDL  BDL 0.37 0.49  BDL

MgO 10 10 10.95 9.97 10.25 9.93 9.74 9.84 10.01 9.83

Al2O3 16.67 17.58 17.51 17.57 17.61 17.69 17.71 17.11 18.18 18.56

SiO2 35.81 36.01 37.39 36.33 35.85 36.35 36.01 35.3 36.91 36.28

K2O 8.71 8.37 9.07 8.83 8.75 8.66 8.18 8.54 8.77 8.63

CaO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

TiO2 1.58 1.52 1.78 1.92 1.23 1.85 1.53 1.54 1.48 1.45

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

MnO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

FeO 22.13 22.08 21.78 22.22 21.73 22.64 22.61 21.98 21.92 22.27

Total 95.39 96.03 98.85 97.24 95.92 97.12 95.78 94.68 97.76 97.02

Cation 
sum

2.86 2.84 2.85 2.84 2.86 2.83 2.83 2.85 2.84 2.84

C8



E35810
6 point 1-1 point 1-2 point 1-3 point 1-4 point 1-5 point 1-6 point 1-7 point 1-8 point 2-1 point 2-2 point 2-3 point 2-4 point 2-5

Na2O  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

MgO 6.18 5.97 6.28 5.71 6.03 1.64 1.4 1.49 6.14 6.25 6.72 6.26 5.92

Al2O3 18.72 17.9 18.12 17.54 18.27 21.4 21.13 20.26 19.22 18.43 18.24 18.57 18.52

SiO2 34.87 34.61 35.22 33.12 34.15 38.28 37.93 36.25 33.78 34.58 34.96 33.91 34.53

K2O 9.18 9.47 9.3 9.11 8.96  BDL  BDL  BDL 9.69 9.31 9.5 9.01 9.26

CaO  BDL  BDL  BDL  BDL  BDL 4.06 3.24 3.21  BDL  BDL  BDL  BDL  BDL

TiO2 1.61 1.65 1.61 1.46 1.36 0.20* 0.06*  BDL 1.73 1.84 1.46 1.61 1.73

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

FeO 25.46 27.15 26.7 26.52 25.94 35.66 34.93 33.4 25.08 25.3 24.78 23.55 25.5

CuO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Ag2O  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL 0.46  BDL 0.46  BDL  BDL

Au2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Total 96.02 96.75 97.23 93.46 94.71 101.04 98.63 94.61 96.1 95.71 96.12 92.91 95.46

Cation 
sum

2.84 2.86 2.85 2.87 2.85 2.65 2.63 2.64 2.86 2.85 2.85 2.83 2.84

point 3-1 point 3-2 point 3-3 point 3-4 point 3-5 point 4-1 point 4-2 point 4-3 point 4-4 point 4-5 point 5-1 point 5-2 point 5-3 point 5-4

Na2O  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

MgO 6.1 6.02 6.48 6.23 6.24 5.65 5.69 5.62 5.8 6.03 6.25 6.02 6.25 1.49

Al2O3 17.54 16.5 17.71 16.93 16.53 15.72 15.09 15.66 15.81 16.5 16.52 16.48 17 20.77

SiO2 34.91 35.33 34.62 34.2 34.13 35.1 33.44 35.19 35.19 34.76 34.4 34.75 35.13 37.68

K2O 9.2 9.24 9.37 9.05 9.1 8.83 9.06 9.11 9.43 8.78 8.91 9.04 9.1  BDL

CaO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL 2.5

TiO2 1.54 2.61 1.24 1.77 1.91 2.3 2.46 2.67 2.82 1.65 1.22 1.44 1.23  BDL

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

FeO 26.13 26.93 26.28 26.67 26.96 28.01 27.16 27 27.61 27.87 27.74 26.94 26.96 36.34

CuO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Ag2O  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL 0.45  BDL  BDL  BDL  BDL

Au2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Total 95.42 96.63 95.7 94.85 94.87 95.61 92.9 95.25 96.66 96.04 95.04 94.67 95.67 98.78

Cation 
sum

2.84 2.82 2.85 2.86 2.86 2.84 2.86 2.84 2.84 2.86 2.86 2.86 2.84 2.64

C9



E35810
6

point 5-5 point 5-6 point 5-7

Na2O  BDL  BDL  BDL

MgO 0.94 5.94 5.99

Al2O3 19.39 15.53 16

SiO2 35.29 33.89 34.27

K2O  BDL 8.94 8.81

CaO 2.98  BDL  BDL

TiO2  BDL 1.78 1.71

Cr2O3  BDL  BDL  BDL

MnO 2.17  BDL  BDL

FeO 33.01 26.76 27.33

CuO  BDL  BDL  BDL

Ag2O  BDL  BDL  BDL

Au2O3  BDL  BDL  BDL

Total 93.78 92.84 94.11

Cation 
sum

2.65 2.85 2.86

C10



E35810
8 point 1-1 point 1-2 point 2-1 point 2-2 point 2-3 point 2-4 point 2-5 point 3-1 point 3-2 point 3-3 point 3-4 point 3-5

SiO2 45.21 44.06 36.35 35.74 36.3 35.86 37.12 37.07 36.76 35.22 35.47 36.37

TiO2 0.75 1.1 2.51 2.23 2.82 2.21 2.65 2.67 3.06 3.3 2.52 2.75

Al2O3 13.19 12.91 17.29 16.57 16.7 17.28 16.95 17 16.87 16.27 16.21 16.66

FeO 21.35 21.72 24.63 23.44 24.51 23.62 25.27 24.23 24.59 22.97 24.38 24.9

MnO 0.55  BDL 0.48  BDL 0.58  BDL  BDL  BDL  BDL 0.7 0.39* 0.48

MgO 6.47 6.78 8.14 8.23 8.35 8.01 8.04 7.56 7.73 7.5 7.98 8.27

CaO 11.62 11.59  BDL  BDL  BDL 0.41  BDL  BDL  BDL  BDL  BDL  BDL

Na2O 0.63 0.82  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

K2O 1.37 1.15 9.84 9.56 9.82 8.96 9.73 9.72 9.83 9.37 9.77 9.87

Cr2O3  BDL 0.41  BDL  BDL  BDL  BDL  BDL 0.55  BDL  BDL  BDL  BDL

Total 101.14 100.54 99.24 95.77 99.08 96.35 99.76 98.8 98.84 95.33 96.33 99.3

Cation 
Sum

4.68 4.7 5.01 4.98 5.01 4.94 4.98 4.94 4.94 4.94 5.02 4.99

point 4-1 point 4-2 point 4-3 point 4-4 point 4-5 point 5-1 point 5-2 point 5-3 point 5-4 point 5-5

SiO2 36.67 36.65 36.08 36.41 34.67 35.38 36.78 36.47 36.03 45.94

TiO2 3 2.88 2.77 3.53 2.35 1.71 2.03 2.55 1.46 0.79

Al2O3 17 17.35 17.21 16.91 17.72 17.26 16.96 17.23 17.6 10.48

FeO 22.89 24.52 23.66 26.19 24.59 24.71 24.64 23.12 24.36 19.6

MnO  BDL 0.55  BDL  BDL  BDL  BDL  BDL  BDL  BDL 0.8

MgO 7.84 8.09 8.57 7.63 8.38 8.6 8.76 8.37 8.48 8.36

CaO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL 12.12

Na2O  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

K2O 9.57 9.82 9.84 9.85 8.07 9.39 9.63 9.91 9.82 0.74

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

Total 96.97 99.86 98.13 100.52 95.78 97.05 98.8 97.65 97.75 98.83

Cation 
Sum

4.93 4.97 4.98 4.96 4.96 5.02 4.99 4.96 5.02 4.65

C11



E358110 

point 1-1 point 1-2 point 1-3 point 1-4 point 1-5 point 1-6 point 1-7 point 2-1 point 2-2 point 2-3

Na2O  BDL 0.43  BDL 0.62 0.41  BDL  BDL 0.56 0.38 0.49

MgO 11.47 11.44 11.59 11.92 11.25 16.28 11.5 11.29 11.56 12.13

Al2O3 18.32 17.66 17.97 18.24 18.78 17.13 18.48 18.79 18.29 18.82

SiO2 36.14 34.9 34.99 35.16 35.77 28.53 35.27 36.44 35.76 36.57

K2O 9.18 8.38 8.93 8.74 9.64 0.22 9.71 9.03 8.62 9.57

CaO  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

TiO2 1.18 1.22 1.02 1.31 1.11  BDL 1.01 1.18 0.9 1.31

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL  BDL

MnO  BDL  BDL 0.36  BDL  BDL  BDL  BDL  BDL 0.44  BDL

FeO 19.67 19.12 20.75 18.82 19.51 25.53 19.95 19.2 19.69 19.52

Total 95.96 93.15 95.61 94.81 96.47 87.69 95.92 96.49 95.64 98.41

Cation 
sum

2.14 2.14 2.16 2.15 2.16 2.14 2.16 2.14 2.14 2.16

point 3-1 point 3-2 point 3-3 point 3-4 point 3-5 point 3-6 point 3-7 point 4-1

Na2O 0.46  BDL  BDL  BDL  BDL  BDL  BDL Na2O  BDL

MgO 11.18 0.31 16.99 11.06 11.76 10.26  BDL MgO 14.55

Al2O3 19.52 37.52 23.21 18.02 19.47 17.45  BDL Al2O3 17.87

SiO2 35.8 46.18 27.84 34.8 33.78 36.15 0.93 SiO2 30.22

K2O 9.47 10.77 0.96 8.85 7.59 8.54  BDL K2O 4.57

CaO  BDL  BDL  BDL  BDL  BDL 1.75  BDL CaO  BDL

TiO2 1.39 0.29 0.45 1.37 1 3.02  BDL TiO2 1.01

Cr2O3  BDL  BDL  BDL  BDL  BDL  BDL  BDL Cr2O3  BDL

MnO  BDL  BDL 0.37  BDL 0.5 0.37  BDL MnO 0.39

FeO 19.45  BDL 22.81 18.77 20.15 18.29 78.92 FeO 21.89

Rb2O  BDL

Total 97.27 95.07 92.63 92.87 94.25 95.83 79.85 SrO  BDL

Cation 
sum

2.15 1.9 2.14 2.14 2.14 2.12 2.96 Total 93.09

C12


