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Abstract 

General Purpose Graphics Processing Units (GPGPUs) have evolved from fixed function 

graphics pipeline to massively parallel general purpose processors capable of running 

thousands of threads on hundreds of cores. However, for running parallel workloads from 

diverse computing domains, GPGPUs need to be able to provide large volume of data from 

memory sub-systems. This places a great demand on GPGPU manufacturers to include low-

latency memory units, such as caches and shared memory, in order to provide huge amount 

of data to cores without suffering access delays. The criticality of memory hierarchy is 

expected to increase as the number of cores in GPGPUs is rising. To address this challenge, 

GPGPU designers have increased the size of caches in each generation of GPGPUs. 

However, increasing the size of these memory units also adds to power dissipation which has 

recently become a major design constraint in the design of microprocessor systems.  

In this thesis, we propose two optimization techniques to reduce power consumption in L1 

caches (data, texture and constant), shared memory and L2 cache. The first optimization 

technique targets static power. Evaluation of GPGPU applications shows that once a cache 

block is accessed by a thread, it takes several hundreds of clock cycles until the same block is 

accessed again. The long inter-access cycle can be used to put cache cells into drowsy mode 

and reduce static power. While drowsy cells reduce static power, they increase access time as 

voltage of a cache cell in drowsy mode should be raised before the block can be accessed. To 

mitigate performance impact of drowsy cells, we propose a novel technique called coarse 

grained drowsy mode. In coarse grained drowsy mode, we partition each cache into regions 

of consecutive cache blocks and wake up a region upon cache access. Due to temporal and 

spatial locality of cache accesses, this method dramatically reduces performance impact 

caused by drowsy cells. The second optimization technique relies on branch divergence in 

GPGPUs. The execution model in GPGPUs is Single Instruction Multiple Thread (SIMT) 

which means processing cores execute the same instruction with different data for GPGPU 

threads.  The SIMT execution model may result in divergence of threads when a control 

instruction is executed. GPGPUs execute branch instructions in two phases. In the first phase, 

threads in the taken path are active and the rest are idle. In the second phase, threads in the 
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not-taken path are executed and the rest are idle. Contemporary GPGPUs access all portions 

of cache blocks, although some threads are idle due to branch divergence. We propose 

accessing only portions of cache blocks corresponding to active threads. By disabling 

unnecessary sections of cache blocks, we are able to reduce dynamic power of caches. Our 

results show that on average, the two optimization techniques together reduce power of 

caches by up to 98% and 15% for static and dynamic power, respectively. 
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Chapter 1 

Introduction 

Computer industry has seen unprecedented growth in the last two decades. At the heart of 

this growth, is the advancement in microprocessor design. With the advancement in 

semiconductor technology, the performance of microprocessors has increased at a very fast 

rate. The performance increase and the cost reduction in manufacturing processes brought a 

new age in the computer industry. The computers went from being bulky machines 

occupying huge rooms to being portable devices that fit in small bags. The performance 

increase in microprocessors enabled software industry to provide applications that run faster 

and provide more functionality. During this time, the software industry relied on the 

advances in hardware to provide improved performance for their applications. The same set 

of instructions (computer programs) ran faster on a newer generation of hardware.  

This cycle of advancement in hardware continued for a number of years but has slowed 

down since 2003 [31]. A few issues contributing to the slow-down in the performance 

growth of microprocessors are outlined below: 

1. Energy consumption has become significant and the heat dissipation has become a 

major design constraint. 

2. There is a growing gap between memory and processor performance. Due to this, the 

processor has to wait a significant amount of time before the data is available for processing. 

3. Various techniques such as instruction pipelining and out-of-order execution were 

developed to overlap the execution of multiple instructions. However, applications exhibit 

limited instruction level parallelism and, therefore, the performance gain due to these 

techniques is limited. 

Due to these reasons, microprocessor vendors have adopted multiple processing units in 

place of single processing units. These multiple processing units are commonly referred to as 

processor cores. Now, the microprocessor industry produces chips that have multiple cores 

on a single die. Traditionally, most computer programs are written as sequential programs 
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and in the past the performance of the sequential programs improved with every new 

generation of computers. However, this premise does not strictly hold true today. A 

sequential program is run on only one of the cores. The current trend in microprocessor 

design is to increase the number of cores while maintain the processing speed of individual 

cores. Therefore, cores in a microprocessor will not become significantly faster than the ones 

that are in use today. To improve performance, software developers have to resort to parallel 

programming paradigm to continue to enjoy performance improvements for their 

applications.  

Parallel programming is not new to the computer industry. Computer programs for high-

performance computing applications have been under development for decades. These 

programs were run on high performance computer devices that are large-scale and expensive. 

Only a few applications could justify the use of expensive computers and, therefore, parallel 

programming remained limited to a small community of software developers. Modern day 

microprocessors are, mostly, parallel computers and parallel programming is critical to 

harness the full potential of their processing power. This has fueled a need in the 

programming community to adopt parallel programming, and multiple approaches have been 

taken to enable programmers to write parallel code. 

Microprocessors (or simply processors) are at the heart of processing in a computer, but are 

not the only processing chips in the system. Another notable processing element in the 

system is the Graphics Processing Unit (GPU). Graphics Processing Units (GPUs) were 

originally designed for graphics applications. They had to process millions of pixels and 

perform massive number of numerical calculations for graphical workloads. This pushed the 

GPU vendors to adopt designs that were optimized for throughput and were able to keep up 

with the demands of the ever growing gaming industry. As a result, GPUs took the many-

core trajectory to process huge number of pixels. With the advent of parallel programming, 

GPU vendors took the opportunity to introduce general purpose programming capabilities for 

their many core GPUs in an effort to increase their share of the processor industry by offering 

to run compute intensive tasks on their GPUs. This resulted in GPUs evolving from fixed-

function graphics pipeline to massively parallel general purpose processors capable of 
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running workloads from a wide variety of applications including graphics processing. The 

ability of the GPUs to process workloads from, not only graphics but, other domains have 

earned them the title of General Purpose Graphics Processing Units (GPGPUs). The GPUs 

have followed a many-core trajectory for their design for a long time and modern day 

GPGPUs have hundreds of cores capable of running thousands of threads. The computing 

power of modern day GPGPUs far exceeds that of general-purpose microprocessors. 

General-purpose microprocessors are optimized for low-latency for sequential computations. 

Therefore, the manufacturers designed the processors with large amount of cache memories 

and complex circuitry, such as branch predictors, in a bid to process sequential instructions as 

fast as possible. On the other hand the design philosophy of GPUs focused on maximizing 

execution throughput of parallel applications. The GPUs, thus, employed a huge number of 

cores to maximize throughput. Each core in a GPU is much simpler than a core in a general-

purpose microprocessor, which makes it possible to have hundreds of cores on a GPU in 

contrast to a few complex cores in a microprocessor. 

In this new era of parallel programming, GPUs have become even more important for the 

software industry in their drive to provide users with applications that are faster than ever 

before and that can keep up with the growing demand of compute intensive applications in 

diverse fields such as genome analysis, protein folding, weather prediction, computational 

finance, molecular simulation, etc. 

Applications, generally, have sequential and parallel blocks of code. Instructions within a 

sequential block have more dependency on other (neighbouring) instructions, whereas, 

instructions in a block of a parallel program have very little or no dependency on other block 

instructions. The sequential portion of the code needs to be run on the CPU which is 

optimized for low-latency. The parallel portion, however, can benefit from being offloaded to 

a GPGPU for execution. This strategy yields performance improvements for a multitude of 

applications that exhibit parallelism. To harness the increasing computing power of 

GPGPUs, a trend of heterogeneous computing has evolved where the sequential parts of an 

application are run on a CPU while the parallel parts are offloaded onto a GPU. This 

approach results in reduction of execution time of programs. 
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Besides performance, ease of programming also plays an important role in the decision to 

use a particular parallel programming technique. Until 2006, parallel programming using 

graphics chips was very difficult as programmers had to use graphics application 

programming interface (API) functions to access the cores in the GPU. This meant that 

OpenGL® or Direct3D® techniques were needed to program these GPUs. Even though the 

programming environment was high level, but still, the code was limited in its application 

due to the necessary use of graphics APIs. The applications that could be programmed using 

these APIs were limited and this prevented GPUs to be widely used for parallel 

programming. This, however, changed in 2007 when NVIDIA released CUDA [10]. CUDA 

stands for Compute Unified Device Architecture. It is a parallel computing platform 

consisting of general-purpose Application Programming Interface (API) model created by 

NVIDIA to allow direct access to the GPGPU’s virtual instruction set and parallel 

computational elements. To facilitate the ease of parallel programming, NVIDIA added 

additional hardware to its GPUs to serve requests of CUDA programs without having to go 

through the graphics interface at all [31].   

The well suited architecture of GPUs for parallel computation coupled with relative ease of 

programming opened new avenues for software developers to use GPUs in their applications. 

Today, a number of applications from diverse computing domains use GPUs as numeric 

computing engines. However, for their use as general purpose GPUs, vendors have to keep 

modifying the architecture of their designs to make them better suited to the requirements of 

general-purpose applications. The earlier designs of GPUs employed software-managed local 

memories instead of caches as a large amount of streaming data was difficult to cache. 

However, with the use of GPUs in general-purpose computing domains, various workloads 

exhibit high level of data locality. For this, the GPU vendors have adopted caches in their 

designs. NVIDIA and AMD both have added caches in their GPUs. For instance, Fermi [9] 

architecture from NVIDIA offers up to 48KB L1 cache per core, whereas AMD's Fusion 

GPU [13] offers 16KB L1 cache per core. These models also include global coherent L2 

caches. The size of cache keeps increasing with every generation. In case of NVIDIA, the 

size of L2 cache has been increased from 768 KB in Fermi [9] to 1536 KB in Kepler GK110 
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[11], and to 2048 KB in Maxwell GM107 [24]. This trend is likely to continue in future 

generations of GPGPUs. 

Large cache memories are power hungry components in GPGPUs and consume significant 

amount of static and dynamic power. This problem is going to intensify in future as dynamic 

power reduction has slowed down in recent years due to limited reduction in threshold 

voltage. Lowering threshold voltage has also resulted in an increase in static power.  These 

factors urge to find ways to reduce power consumption in caches. A number of architectural 

and circuit level techniques have been proposed to optimize power of caches in processors 

[6, 14]. However, GPGPUs have distinct cache access patterns and thus provide unique 

opportunities to reduce power of caches. GPGPUs use round-robin scheduling policy [5] to 

assign work to cores. So, a thread has to wait to be executed again, until all the other threads 

have been scheduled for execution. This means that once a cache block has been accessed by 

a thread, it has to wait hundreds of clock cycles before it can be accessed again. The long 

inter-access delay of cache blocks presents an opportunity to optimize leakage power as the 

cache blocks are not being accessed during this time interval. Two techniques [25, 8] can be 

used to reduce leakage power in caches. In the first technique [25], the cache blocks can be 

switched off to reduce leakage power. However, this results in the data in the cache block to 

be lost, which would have to be requested again from the main memory. This poses a set of 

problems: first, the accesses to the main memory consume an order of magnitude more 

energy than accesses to on-chip caches and fetching the same data from the memory will 

erode any power saving achieved by switching off the cache blocks. Second, this will incur a 

delay in utilizing the data, similar to the delay in the case of a cache miss which is 

unacceptable. Third, this will put more demand on the bandwidth of the inter-connection 

network which may pose to be a bottleneck for performance. The second technique [8] puts 

cache blocks in drowsy state during the long inter-access intervals. After a cache block is 

accessed, it is immediately put into drowsy mode to reduce leakage power and switched to an 

ON state whenever it is accessed again. This results in data still being in the cache during the 

time when it is in drowsy mode. To access a cache block in drowsy cell, its voltage first 

should be changed to the nominal voltage. This process takes a few cycles which may hurt 
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performance of GPGPU applications. To mitigate the impact of wakeup latency on 

performance, we introduce coarse grained drowsy mode scheme. In this scheme, we partition 

the cache blocks into cache regions of contiguous memory locations and keep the most 

recently accessed region ON, while keeping other regions in drowsy mode. This exploits the 

spatial and temporal locality in cache regions, so contiguous memory locations in the same 

region can be accessed without any wake-up delay. To reduce dynamic power, we exploit the 

underutilization of cache blocks in GPGPUs. The architecture of GPGPUs is based on Single 

Instruction Multiple Thread (SIMT) model in which all the threads execute instructions in a 

lock-step manner. However, due to branch divergence, not all the threads are active at the 

same time. This prevents a number of applications from fully utilizing warp slots each cycle. 

This property can be exploited to reduce dynamic power by disabling inactive portions of 

cache blocks dynamically. 

 

In summary, our work makes the following contributions: 

  (i). We exploit long inter-access cycle in GPGPUs and propose to save leakage 

power by putting cache blocks into drowsy mode. To overcome the latency overhead of 

drowsy cells, we use coarse granularity and partition a cache into regions of cache blocks. 

We switch all regions of cache blocks to drowsy mode except the region that was most 

recently accessed. By dynamically switching between drowsy and ON state for cache 

regions, we are able to reduce leakage power with negligible impact on performance. We call 

this technique, coarse grained drowsy mode. 

  (ii). We perform sensitivity analysis on the granularity of cache blocks in a cache 

region and evaluate the optimal region size to maximum power saving and minimize 

performance degrading. 

  (iii). We utilize GPGPU active-mask feature to detect inactive portions of cache 

blocks before an instruction is scheduled for execution, and reduce dynamic power by 

disabling bit-lines, word-lines and sense amplifiers of inactive cache cells. 
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  (iv). We perform a detailed experimental evaluation of all L1 caches (data, texture, 

constant, and instruction), shared memory and L2 cache for the above proposed techniques. 

We evaluate the power saving achieved for each type of cache and report performance 

impact for enabling our optimization techniques for all caches concurrently. Our results 

demonstrate that we achieve up to 98% and 15% static and dynamic power saving, 

respectively, in caches using our proposed techniques.  

The rest of the thesis is organized as follows. Chapter 2 provides the necessary background 

for our baseline GPGPU architecture model and related work. Chapter 3 explains the 

motivation behind our work, analyzes cache access patterns for all types of caches in 

GPGPUs, and discusses the details of our optimization techniques. Chapter 4 provides details 

of the experimental methodology used to evaluate our proposed techniques and the results 

obtained for power saving and performance. Finally, in chapter 5, we provide a summary of 

our work and conclude the thesis. 
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Chapter 2 

Background and Literature Review 

In this chapter, the architecture of a GPGPU is explained in detail. These details are 

important to understand the related work that has been done to reduce power consumption in 

GPGPUs. In section 2.1, the architecture and programming model of GPGPUs is described. 

An overview of different techniques that have been proposed to reduce power consumption 

in GPGPUs is given in section 2.2. 

2.1 Background 

Modern day GPGPUs are massively parallel processors capable of running thousands of 

threads on hundreds of cores. To explain the architecture of GPGPUs with consistent 

terminology, we describe it using NVIDIA and CUDA terminologies; however, our 

techniques are not vendor specific and can be applied to GPGPUs from other vendors too.  

In this section, we use NVIDIA Fermi series [9] GPGPU to describe the architecture of 

GPGPUs. This provides a basis to understand the GPGPU architecture. Even though other 

models of GPGPUs may have slight variations from the Fermi architecture, most of the 

architectural aspects are similar. 

2.1.1 Architecture of GPGPUs 

A GPGPU consists of a number of Streaming Multiprocessors (SMs) and each SM typically 

contains 8 to 32 Processing Elements (PEs) or cores. In the case of NVIDIA Fermi series [9], 

there are a total of 512 cores organized in 16 SMs of 32 cores each. Figure 2-1 shows 

architecture of a GPGPU. Each SM features a number of CUDA cores and memory spaces 

optimized for low latency. Theses memory spaces are private to each SM and are categorized 

into L1 data cache, shared memory and read only constant, instruction and texture caches. 

The global memory space is divided into six 64-bit memory partitions, providing a 384-bit 

memory interface. The architecture supports up to a total of 6 GB of GDDR5 (Graphics 

Double Data Rate 5) DRAM (Dynamic Random Access Memory) memory. 
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Figure 2-1: GPGPU Architecture. 

Figure 2-2 shows the architecture of Fermi series. A vertical rectangular strip represents an 

SM. It contains an orange portion (scheduler and dispatch). The execution units are 

represented by the green portion. The blue portion represents register file and L1 cache. The 

SMs are positioned adjacent to a shared L2 cache. The host interface provides connection to 

the CPU through PCI-Express. The GigaThread global scheduler is used to distribute thread 

blocks to thread schedulers in an SM.  

Figure 2-3 shows the architectural details of a Fermi Streaming Multiprocessor (SM). Each 

SM contains 32 CUDA processors or cores. Each CUDA core is composed of a fully 

pipelined integer arithmetic logic unit (ALU) and floating point unit (FPU). Every SM also 

contains 16 load/store units. These load/store units are used to calculate source and 

destination addresses for sixteen threads in one clock cycle. Supporting units are used to load 

and store data, for each of the address calculated, to cache or DRAM. Each SM also has 4 

Special Functions Units (SFUs) to execute transcendental instructions. The transcendental 

instructions are used to calculate functions such as sin, cosine, square root and reciprocal. 

The threads are executed in groups of 32 threads called warps. Each SM has two warp 
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schedulers and two instruction dispatch units. These units support two warps to be issued and 

executed concurrently. 

 

    Register File and L1 caches            Scheduler and Dispatch Units              SMs 

Figure 2-2: Fermi Architecture (courtesy: NVIDIA Fermi 2009 [9]). 

The L1 data cache and shared memory share 64 KB of space in an SM and can be 

configured either as 48 KB of shared memory with 16 KB of L1 cache, or as 16 KB of shared 

memory and 48 KB of L1 cache. This feature, of providing programmers the choice over the 

partitioning of memory space between shared memory and L1 data cache, was offered to 

benefit different types of workloads. Applications that make extensive use of shared memory 

can benefit from more space allocated to shared memory while for other applications, whose 

memory accesses are not known beforehand, a larger space for L1 cache is likely to improve 

performance. This also suggests that the structure of L1 cache and shared memory data lines 
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is similar, since they are configurable to share the same space. The memory is banked to 

offer greater bandwidth and each bank is associated with a slice of shared L2 cache. An 

interconnection network provides the connection between SMs and L2 cache. For this work, 

we use a 2D mesh topology for the inter-connection network as it is simple to implement and 

is throughput-effective [4]. 

 

Figure 2-3: Fermi Streaming Multiprocessor (SM) (courtesy: NVIDIA Fermi 2009 [9]) 
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2.1.2 Compute Unified Device Architecture (CUDA) 

A program that runs on the GPGPU is called a CUDA program. CUDA is a parallel 

computing platform consisting of Application Programming Interface (API) model created 

by NVIDIA to allow direct access to the GPGPU’s virtual instruction set and parallel 

computational elements. A CUDA program consists of blocks of code that are executed on 

either the host (CPU) or the device (GPGPU). The blocks that exhibit high level of data 

parallelism are implemented in the device code whereas blocks that exhibit little or no data 

parallelism are implemented in the host code. The NVIDIA C compiler (nvcc) separates the 

host code and the device code. The host code is further compiled by the C compiler on the 

host to run as a CPU process. The device code is typically further compiled by the nvcc to 

execute on the GPGPU. The device code is composed of data parallel functions, called 

kernels (figure 2-4). 

 

Figure 2-4: GPGPU Application hierarchy 

The kernel divides the work over a large number of threads to exploit data parallelism. All 

the threads generated during a kernel invocation are, collectively, called a grid. A grid is 
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divided into identically sized Cooperative Thread Arrays (CTAs). Within each CTA, threads 

are grouped together to form warps. Each warp is composed of 32 threads on current 

NVIDIA GPUs. Size of the warps is implementation specific and is not part of the CUDA 

specification. The programmer does not need to know the size of the warp to program in 

CUDA, but it can help in certain cases to optimize programs. The kernel function, on 

invocation, assigns CTAs to SMs for execution. To hide latency of long global memory 

operations and to effectively utilize resources in an SM, more than one CTA can be assigned 

to an SM. However, the number of CTAs that can be assigned to an SM is limited by the 

resources of the SM such as register file, size of shared memory, number of threads, etc. [10]. 

For example, if a CTA requires 12 KB of shared memory and the baseline SM has 48 KB 

available, then only 4 CTAs can be launched simultaneously on each SM.  

2.1.3 Thread Scheduling 

The unit of scheduling on SMs is a warp. The SM executes one warp at a time. The GPGPUs 

use scheduling of warps to hide latency of long-latency instructions by selecting a warp ready 

for execution over a warp that is stalled due to long-latency operations. The scheduling does 

not introduce any delay to the execution and is, therefore, referred to as zero overhead thread 

scheduling. With enough warps, the hardware is able to find warps ready for execution, in 

spite of having some warps waiting for long-latency instructions. This approach makes full 

use of the execution hardware. Different types of schedulers can be used to schedule warps 

for execution. A one level round-robin scheduler [5] schedules warps in a round robin 

fashion. This makes the warps progress at the same speed. Since all the warps are typically 

executing the same instructions, this can increase the probability of warps arriving at the 

long-latency instructions at the same time. This can stall all warps in a kernel and can 

adversely affect performance. In a two-level scheduler [17], the scheduler partitions warps 

into two groups. An active group holds warps eligible for execution and an inactive group 

holds pending warps. Warps waiting for long-latency operations such as global memory load 

are placed in the pending set. Once a warp becomes ready for execution, it is removed from 

the pending list and is inserted into the active list of warps. This approach can avoid stall 
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cycles encountered in the case of one level round-robin based scheduler [5] since the 

execution of warps progresses at different speeds. Therefore, the same long-latency 

instruction, in different warps, is spread out over time. This results in an increased 

probability of the scheduler to find ready warps for execution. In this work, we employ a 

two-level scheduler [17]. 

2.1.4 Parallel Execution Model 

The programming model of GPGPUs is Single Instruction Multiple Thread (SIMT). This 

means that all the threads within a warp execute the same instruction. This architecture 

reduces hardware cost since it allows the cost of fetching and processing an instruction to be 

amortized over a large number of threads.  This behaviour, of all the 32 threads executing the 

same instruction, is followed as long as all the threads within a warp have the same control 

path. However, if a GPGPU executes a control dependent instruction, then the set of 

instructions executed by threads may vary. For example, in the case of an if-then-else 

construct, the program is executed in two phases. In the first phase, the taken path is executed 

and in the second phase the not-taken path is executed. During these two phases, threads 

corresponding to each path are enabled and the rest are disabled. This phenomenon, of 

threads in the same warp following different control flow paths, is called branch divergence. 

In normal programming practice, it is recommended to avoid branch divergence as much as 

possible since it results in partial utilization of execution resources. However, there are 

scenarios where it is not possible to avoid branch divergence and programs use only a subset 

of the total threads within a warp during the course of execution. 

2.1.5 Memory Spaces 

The global memory space is shared by all the threads. To access data in the global memory, 

the accesses have to go through a two-level cache hierarchy. L2 cache is shared by all the 

SMs whereas L1 caches are private to an SM. The L1 caches are not coherent and follow a 

write-evict, write-no-allocate policy [10]. The L2 caches, on the other hand, are coherent and 

use write-back with write-allocate policy [10]. The cache blocks in GPGPUs are typically 
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wider than cache blocks in general-purpose microprocessors. In Fermi family of NVIDIA 

GPGPUs, the L1 and L2 cache blocks are 128 bytes with the exception of L1 texture caches. 

The wide cache lines allow load/store instructions of all threads within a warp to complete in 

a single instruction if the load/store addresses map to the same cache line. There are different 

types of L1 caches namely, L1 data cache, constant cache, texture cache and instruction 

cache. These caches are private to each SM. In addition to these L1 caches, every SM also 

has a shared memory space which is managed by the programmer to improve program 

performance by storing data that is frequently accessed. L1 data cache is used by a GPGPU 

to improve performance of applications that exhibit data locality. The L1 data cache is a 

read/write cache. 

Constant cache, on the other hand, is a read only cache that is used to store data that does 

not change over the course of kernel execution. The programmer can, explicitly, select data 

that can be stored in the constant cache for faster access during kernel execution. This can be 

particularly useful for look-up tables and other constant data.  

Instruction cache is used to provide faster access to future instructions by caching 

instructions, speculated, to be executed in future. In Fermi, each SM has 64 KB of on-chip 

memory space that can be partitioned between L1 cache and shared memory. Since the 

shared memory is on-chip, it is much faster than global memory. Shared memory is a 

programmer-managed memory space and is shared by all the threads within a CTA. Since 

shared memory is shared by all threads (in a CTA), this can be leveraged to share data 

between threads of the same CTA without having to refer data in the global memory. This 

helps to reduce utilization of memory bandwidth and also improves performance by reducing 

latency of memory accesses.  

Texture cache is a read only cache that is used to improve performance of graphics 

applications. Texture caches are optimized for multi-dimensional data locality, particularly, 

useful for processing data associated to texels (texture element) in texture filtering. Figure 2-

5 shows the prefetching in a texture cache architecture. To process fragments the architecture 

follows a number of stages. A fragment corresponds to a single pixel that includes colour, 
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depth, and texture coordinates. The first stage of the architecture involves the rasterizer 

looking up the cache tags for texel addresses of each of the fragments. A rasterizer is a 

graphics hardware system used to convert a 3-D (three-dimensional) world into a 2-D (two-

dimensional) image. Other data related to the fragment is forwarded to a fragment FIFO 

(First-In-First-Out).  

 

Figure 2-5: Texture Prefetching Architecture (courtesy of Prefetching in a Texture Cache 

Architecture [32]) 

If the texel addresses are not found in the cache tags, indicating a cache miss, the cache tags 

are updated with the texel addresses of the fragment.  The address of the texels is forwarded 
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to the memory request FIFO.  The cache addresses for the texels are also forwarded to 

fragment FIFO to be stored with the other data that is needed to process the fragment. The 

request FIFO sends requests to the texture memory system for the texel data. At the same 

time, space is reserved in the reorder buffer for the returning data. This allocation of space 

ensures that the system does not run into dead-lock if an out-of-order memory system is used. 

If the memory system is in-order, a FIFO can be used instead of the reorder buffer because 

the data from the memory would arrive in the same order as the requests sent to the memory. 

When a fragment reaches the head of the fragment FIFO, it can be processed if the data 

needed for all of its texels is present in the cache. This means that fragments that did not 

generate any misses can be processed immediately. The fragments, for which the texel data is 

not present in the cache, must first wait for the corresponding texel data to arrive from the 

memory system. It is important to avoid a scenario where the older cache blocks are not 

over-written prematurely by new cache blocks. This is ensured by committing the new cache 

blocks only when their corresponding fragment data is available at the head of the fragment 

FIFO. After all the texel data corresponding to the fragment is available, the fragment is 

removed from the head of the FIFO and is processed by the texture filter and applicator. 

2.2 Literature Review 

Extensive work has been done in GPGPUs to reduce power consumption without affecting 

performance. In this section, we review various techniques proposed for reducing power in 

processors and provide a brief explanation of each technique and explain how our work 

differs from the work done by others. 

2.2.1 Unifying Primary Cache, Scratch, and Register File Memories in a Throughput 

Processor 

GPGPUs are increasingly being used for high performance computing applications. This puts 

more demand on caches. Low-latency memory spaces are required to exploit significant data 

locality available in general purpose applications and reduce execution time of programs. 

Existing implementations of GPGPUs use a one-size-fit-all policy and hard-partition local 
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storage of an SM during the design time. However, GPGPU applications are diverse in the 

nature of memory requirements and a single memory unit is often most critical to 

performance of a given application. NVIDIA’s Fermi [9] offers flexibility to programmers 

over the choice of size between shared memory and L1 data cache at a coarse granularity of 

16/48 KB. This helps certain benchmarks that make use of shared memory to benefit from an 

increased shared memory size. Other benchmarks that do not make much use of shared 

memory can benefit from a larger L1 data cache. However, this feature is only reserved for 

shared memory and L1 data cache. This does not include the register file in GPGPUs, which 

is also critical to the performance of certain applications.  

Gebhart et al. [2] proposed a unified local memory which can dynamically change the 

capacity of register, shared memory, and cache on a per application basis. This can help 

applications to benefit from an increased low-latency space according to the needs of the 

application. For example, if an application requires more shared memory but does not make 

much use of register file, then the register file space can also be used for storing shared 

memory data. This helps in improving the performance of the application. Gebhart et al. [2] 

proposed a unified memory architecture that aggregates different memory units and allows a 

flexible allocation of memory customized for each application. Figure 2-6 shows the 

proposed unified memory architecture.  

 

Figure 2-6: Unified Memory Architecture (courtesy of Unifying Primary Cache, Scratch, and 

Register File Memories in a Throughput Processor [2]) 

The accesses to global memory are reduced in the unified memory architecture. This 

customized allocation of memory offers tuning that improves both performance and energy 

of GPGPUs.  
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Our work focuses on reducing leakage and dynamic power of caches by using drowsy 

caches and Divided Word Line (DWL). Therefore, our work differs from the work of 

Gebhart et al. [2] that unifies on-chip memory spaces to reduce global memory accesses. This 

technique [2] can be used along with our proposed optimization techniques to further reduce 

power consumption in GPGPUs. 

2.2.2 An Energy Efficient GPGPU Memory Hierarchy with Tiny Incoherent Caches 

Sankaranarayanan et al. [7] observed that L1 data cache and scratchpad memory consume a 

significant portion of dynamic energy as they have to service a large number of cores. They 

proposed adding tinyCache to reduce power of L1 data cache. A tinyCache is a small filter 

inserted between a Processing Element (PE) and an L1 data cache and intercepts accesses to 

the shared L1 cache. This technique reduces number of expensive requests to L1 data cache 

by replacing these requests with energy-efficient accesses to the tinyCache.  The inclusion of 

tinyCache for each PE presents a problem of addressing cache coherency. Since each PE has 

a private tinyCache, it is necessary to maintain coherency across tinyCaches of an SM. To 

reduce coherence overhead, Sankaranarayanan et al. proposed to either evict content of 

tinyCache into L1 cache (e.g. for barriers) or bypass tinyCache (e.g. for atomic operations).  

Figure 2-7 shows the architecture of a Streaming Multiprocessor containing tinyCaches. 

TinyCache filters out a sizable portion of memory accesses to the L1 cache and is able to 

reduce power of L1 data cache and scratchpad memory.  

This work [7] focuses on reducing dynamic power of L1 cache, whereas, our work reduces 

both static and dynamic power for L1 as well as L2 caches. The technique proposed by 

Sankaranarayanan et al. [7] can be combined with our proposed techniques to further reduce 

power consumption in caches. 
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Figure 2-7: SM with tinyCache (courtesy of An Energy Efficient GPGPU Memory Hierarchy 

with Tiny Incoherent Caches [7]) 

2.2.3 Optimizing Bandwidth and Power of Graphics Memory with Hybrid Memory 

Technologies and Adaptive Data Migration 

J. Zhao et al. [30] proposed a hybrid graphics memory system that integrates different 

memory technologies such as DRAM (Dynamic Random-Access Memory), spin-transfer 

torque memory (STT-RAM) and resistive memory (RRAM). Non-volatile memory (NVM) 

such as STT-RAM and RRAM do not require refresh operations and have very little standby 

power. However, they have longer write latency and high write energy.  Their design [30] of 

memory replaces part of the DRAM with NVM (STT-RAM and RRAM). By moving the 

read-only and infrequently-accessed data to the NVM partition, the hybrid memory system is 

able to consume less power than GDDR5 (Graphics Double Data Rate 5) memory in 

GPGPUs. Figure 2-8 shows the architecture of GPU with hybrid memory. On the left is the 

conventional GPU with off-chip DRAM. On the right is the GPU architecture with hybrid 

memory.  

The work done by J. Zhao et al. [30] focuses on reducing power consumption of main 

memory in GPGPUs. Our work is different as we focus on power of caches. Our proposed 
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techniques and the techniques proposed by J. Zhao et al. [30] can be combined to further 

reduce power in GPGPUs. 

 

Figure 2-8: GPU system with hybrid memory (courtesy of Optimizing Bandwidth and Power of 

Graphics Memory with Hybrid Memory Technologies and Adaptive Data 

Migration [30]) 

2.2.4 Warped Gates: Gating Aware Scheduling and Power Gating for GPGPUs 

Abdel Majeed et al. [27] proposed warped gates to switch off execution units within a 

Streaming Multiprocessor (SM) to reduce leakage power. GPGPU execution units are idle 

only for very short periods of time. Conventional power-gating techniques are not able to 

switch these execution units to save power. They showed that the two-level warp scheduler 

[17] greedily schedules instructions to execution units, resulting in short switching cycles 

between different types of execution units. This prevents the execution units from being idle 

for longer periods of time. They proposed a gating-aware two-level warp scheduler (GATES) 

over the two-level scheduler [17] proposed by Gebhart et al. The gating aware scheduler 

optimizes idle periods in execution units. GATES priorities issuing groups of instructions 

that run on the same type of execution unit for longer intervals before switching to the other 

group of instructions that use another type of execution unit. This approach increases the idle 

time and provides opportunity to power gate idle execution units. While, the proposed 

scheduler increases the idle periods for execution units, there are still many idle periods that 

are not long enough to justify switching off these execution units. The idle time has to be so 

long that the power saved by gating is more than the overhead of gating. To ensure this, they 

also proposed a new power gating scheme, called Blackout power gating. This power gating 
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scheme forces execution units to be gated for at least as many cycles that are necessary to 

recover the power gating overhead. The power gating scheme is enforced even when there 

are instructions waiting to use the execution unit that has been gated. This can, however, 

reduce performance as the instructions have to wait for the execution unit to become ready 

for execution. To reduce performance loss using Blackout, they use a runtime approach to 

adaptively adjust the amount of time a unit is idle before it can be gated. This runtime 

approach is referred to as Adaptive Idle Detect. The two techniques, GATES and Blackout 

are combined together to create a power gating scheme called Warped Gates. Warped Gates 

is able to save the static power in execution units.  

In our work, we propose to reduce power in caches as opposed to execution units, proposed 

by Abdel Majeed et al. [27]. The techniques proposed [27] by Abdel Majeed et al. are 

compatible with our proposed techniques and can be combined with our techniques to further 

reduce power in GPPGUs. 

2.2.5 Power Gating Strategies on GPUs 

P.-H. Wang et al. [28] proposed architectural-level power gating to reduce leakage power. 

Their proposed technique targets hardware in a GPU such as shader-clusters, fixed-function 

geometry units, and non-shader execution units. Their scheme turns off units at a coarser 

granularity than warped gates [27]. The quality of visual perception is, often, measured by 

frames per second. They observed that the shader resources required to satisfy the quality of 

visual perception vary across frames, depending on the complexity of the scene. They 

proposed a Predictive Shader Scheme (PSS) technique to predict the required shader 

resources for the next frame, and turn off the extra shader clusters that are not required. This 

reduces leakage power in shader clusters. They also observed that there is an imbalance 

between geometry and fragment computation. The fixed-function geometry units often need 

to wait for fragment computation to complete. This results in long stall time of the fixed-

function geometry units. They proposed Deferred Geometry Pipeline (DGP) mechanism to 

turn off execution and memory circuits in the fixed-function geometry units during the time 

for which these units are idle. In their work, they also analyzed idle periods for non-shader 
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execution units. A significant percentage of non-shader execution units remain idle for a long 

number of cycles. They use time-out power gating for non-shader execution units with 

request batching. Time-out power gating is used to turn off a circuit after observing a streak 

of idle cycles (Tidledetect) for the circuit. Some pipeline stages have shorter idle periods. For 

these stages, request batching can be employed to achieve more reduction in leakage power. 

When a new request is seen, a sleeping unit is not immediately activated. Instead, its wake-up 

action is delayed until the input buffer of the next pipeline stage remains under a pre-defined 

threshold.  Thus, request batching gathers short idle periods into a longer period.  

Using these techniques, P.-H. Wang et al. [28] are able to reduce leakage power of shader 

clusters, fixed-function geometry units, and non-shader execution units. In our work, we 

focus on reducing power in caches, and therefore, our techniques can be combined with the 

techniques proposed by P.-H. Wang et al. [28] to further reduce power in GPGPUs. 

2.2.6 SRAM-DRAM Hybrid Memory with Applications to Efficient Register Files in 

Fine-Grained Multi-Threading 

Wing-kei S. et al. [29] proposed a SRAM-DRAM hybrid register file for GPGPUs. In their 

memory cell design they integrate embedded DRAM (eDRAM) into SRAM cells. Each 

SRAM cell is supplemented by multiple DRAM cells. This way, each memory cell is able to 

store multiple bits. The configuration is such that a value can be locally copied between the 

SRAM cell and one of the DRAM branches within that cell.  The hybrid cell design allows 

external access to the SRAM cell, but does not allow direct access to DRAM branches. They 

use the term, multi-context memory, to refer to their memory organization where cells are 

partitioned into multiple contexts. Only one active context is accessible at a time. To access 

other dormant contexts, the active context needs to be explicitly switched. The external 

accesses only see the low-latency SRAM cell for the active context and, thus, the memory 

cell is able to hide the DRAM latency when accessing the active context. To access dormant 

contexts, they must first be made active by copying from DRAM to SRAM. This process of 

making a dormant context active is called context switching. Context switching involves 

accessing DRAM branches and incurs delays. To address the issues of context-switching 
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latencies and DRAM refresh, they propose a scheduling algorithm to do context-aware warp 

scheduling. Their design allows less energy consumption due to a reduction in silicon chip 

area and reduced capacitance in word-lines and bit-lines in hybrid memory. Hybrid memory 

uses DRAM capacitors as storage elements for dormant contexts. Since DRAM leaks charge 

over time, it must be refreshed periodically to retain data. This implies that dormant contexts 

need to be made active and then stored back as dormant contexts. This cycle is similar to a 

refresh for the DRAM capacitor. A refresh timer is added to each context to ensure that it is 

refreshed within retention time, in order to maintain consistency of data in the context. If a 

refresh timer for a context is close to the retention limit, the context is forcefully made active. 

This means that the active context also needs to be copied to DRAM. This can incur delays. 

However, the authors observe that in the multi-threading architecture, each warp is re-

scheduled within a reasonably short period of time. This means that each dormant context is 

made active, most of the time, before its refresh timer reaches the retention limit. Thus, 

DRAM refresh does not affect the normal pipeline operations.  

Their work uses this hybrid memory cell design for the register file in GPPGUs. This work 

[29] is different from our work as we focus on power reduction in caches. Their work [29] 

can be used along with our power-optimization techniques to further reduce power 

consumption in GPGPUs. 

2.2.7 Drowsy Caches: Simple Techniques for Reducing Leakage Power 

K. Flautner et al. [8] proposed to put cache lines into a state-preserving, low-power drowsy 

mode for SRAM caches in general-purpose microprocessors to reduce static power 

consumption. The information in the cache line is preserved in the drowsy mode, but the 

cache line needs to be switched to a high-power mode before the contents of the line can be 

accessed. The technique of Dynamic Voltage Scaling (DVS) is used to implement drowsy 

caches. Two different supply voltages can be selected for each cache line, one for drowsy 

mode and one for active mode. The changes that need to be made to the standard cache line 

include a drowsy bit, a mechanism to control the voltage to the cache line, and a word line 

gating circuit. The voltage controller controls the operating voltage of an array of memory 
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cells and the voltage level is determined by the state of the drowsy bit. For access to the 

drowsy line, the drowsy bit is cleared which switches the supply voltage to high VDD. If the 

cache line is in drowsy mode, accesses to it must be prevented, before the voltage level is 

raised. This is done in order to prevent contents of the cache line, upon access, from being 

lost when the supply voltage of the cache line is low. The wordline gating circuit is used to 

ensure that the cache line is only accessed when the supply voltage is high. Upon a cache 

access, the cache controller reads the drowsy bit to determine the condition of the voltage of 

the cache line. The contents of the cache line are accessed without any penalty in 

performance provided the line is in normal mode. However, if the line is in drowsy mode, its 

voltage first must be raised to high voltage before its contents can be read.  

This work [8] uses drowsy cache for general-purpose microprocessors. We discuss this 

work here as it provides the basis for the drowsy cache cells in SRAM. However, in our 

work, we use drowsy cache cells for caches in GPGPUs since the structure of SRAM cells 

for caches is the same in GPGPUs. Our technique uses coarse grained drowsy scheme which 

is different from the technique adopted in this work [8]. The technique [8] proposed in this 

work only targets static power in caches. We also target dynamic power of caches in our 

work. 

2.2.8 Warped Register File: A Power Efficient Register File for GPGPUs 

Warped register file [16] presents two techniques to reduce static and dynamic power 

consumption of GPGPU register files. The first technique involves a tri-modal register access 

control unit to reduce static power. This control unit enables a register file to switch between 

three modes, namely, ON, OFF and drowsy state. The proposed technique uses compiler to 

turn off unallocated registers and places the rest into drowsy mode to reduce leakage power. 

The registers are switched to ON, upon access, and are aggressively put into drowsy mode 

immediately after each access. The work also proposes a technique that prevents charging 

bit-lines and word-lines of registers associated with inactive threads to reduce dynamic 

power. This technique involves using active mask to determine inactive threads.  
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Our work is different from this work as we focus on optimizing power in caches while this 

work [16] targets power optimization in register file. Our work and warped register file [16] 

can be combined to achieve even greater power savings. 

2.2.9 Warped-Compression: Enabling Power Efficient GPUs through Register 

Compression 

Sangpil Lee et al. [33] proposed a warp-level compression scheme for reducing power 

consumption of register files in GPGPUs. Their work suggests that register values of threads 

within a warp exhibit arithmetic similarity, meaning the values for successive threads have 

very small arithmetic differences. The register values can, thus, be compressed to remove 

data redundancy. This reduces the effective register width and presents opportunities to 

reduce power consumption. Figure 2-9 shows how compression can help to reduce register 

file occupancy.  

 

Figure 2-9: Compression in register banks (courtesy of Warped Register File: A Power Efficient 

Register File for GPGPUs [33]) 
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The original data of 128-byte can be compressed to 64-byte. This compressed data can be 

saved in 4 register banks instead of 8 register banks needed for the uncompressed data. Since 

the register width is reduced by compression, it can help to save dynamic power of register 

file as less number of bits are needed. The work [33] proposes a low-cost and 

implementation-efficient base-delta-immediate (BDI) compression scheme to compress 

register file data in GPGPUs. The BDI compression scheme works by selecting one of the 

thread register values as the primary base value and then computing difference (or delta) 

values of all other thread registers with respect to the base value. The BDI scheme can be 

used for quick compression and decompression of data and is suitable for use in this 

architecture since its impact on performance is marginal.  

Sangpil Lee et al. [33] focus on power reduction in register file and our work targets caches 

in GPGPUs. Our work can be combined with their work [33] to reduce the power 

consumption even further. 

2.2.10 A Small, Fast and Low-Power Register File by Bit-Partitioning 

As the issue width and instruction size window increases in today’s dynamically scheduled 

superscalar processors, the number of ports and the size of the register file must be increased 

to exploit instruction level parallelism. The problem with increasing the size of the register 

file is the increase in power consumption and access delays. Masaaki Kondo et al. [34] 

proposed a Bit-Partitioned Register File (BPRF) to address these issues. Typical bit-width of 

registers is 32-bit or 64-bit. However, many operands do not need the full bit-width. Since for 

many operations, the effective bit-width of operands is shorter than the full bit-width, the 

upper bits are redundant. Storing these redundant bits wastes chip area, and access to these 

bits wastes unnecessary power. A Bit-Partitioned Register File (BPRF) helps to use these 

redundant upper bits for other operands by partitioning the register entries. Partitioning the 

register file reduces the bit-width of a register entry and increases effective size of the 

register file. In the case of operands whose bit-width exceeds the bit-width of one entry, 

multiple entries are allocated in the register file. For operands that fit within the register bit-

width, only one entry is reserved. This efficiently manages the limited register space and 
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increases the number of register entries. This technique helps to achieve higher Instruction 

per Cycle (IPC) in a smaller chip area and, thus, uses less power by efficient utilization of 

register storage space. 

Although this technique is for CPUs, but it provides an insight into data patterns for 

different applications. GPGPUs are widely used for running general-purpose programs 

ported from CPUs. This means that the data patterns exhibit a great deal of similarity for 

CPUs and GPGPUs. We discuss this technique [34] here to provide the reader with more 

information on the type of optimizations done for register files. These techniques can also be 

applied to GPGPUs. Since our work focuses on reducing power consumption in caches, the 

techniques used for power reduction in register files can complement our work in achieving 

greater power savings. 

2.2.11 Register File Partitioning and Recompilation for Register File Power Reduction 

A significant portion of energy consumption in processors is related to register files due to 

their large switching capacitance and long working time. However, not all registers 

contribute evenly to power consumption. Some registers contribute to a major portion of the 

total power consumption in register files, while others contribute only a fraction. Xuan Guan 

et al. [35] proposed to partition the register file into hot and cold regions. The registers that 

are accessed most frequently are placed in the hot region, whereas the registers that are less 

frequently accessed are put in the cold region. The registers that are most frequently 

accessed, i.e. the ones in the hot region, can be put in a special small section of the file that 

consumes much less power than the whole register file. The problem, however, in this 

approach is that the registers that are most frequently accessed may not necessarily have 

consecutive addresses in the register file. Since only contiguous memory locations in a 

physical register file can be partitioned into regions, the register file partitioning is 

accomplished by swapping the registers. Swapping of the registers is done by reallocating the 

registers after code generation. Their work employs a graph partitioning algorithm to select 

the candidates for hot register file region, i.e. the registers that are most frequently accessed. 

The variables are then re-mapped with a register reallocation process, which results in putting 
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the hot registers and cold registers in separate regions. For register reallocation, the assembly 

code has to be modified and, thus, this approach requires recompilation of program code. 

They use two techniques to reduce static and dynamic power. The first technique involves 

bit-line splitting to reduce dynamic power. The power dissipation of bit-lines is directly 

proportional to the number of registers on the bit-line. Splitting the bit-line into multiple 

segments helps to reduce dynamic power and the hot registers are mapped into the short bit-

line partition. This reduces the dynamic power for accesses to the registers in the hot region. 

The unused register file region can be put into drowsy state to reduce static power.  

This work targets register file power optimization for embedded processors [35]. GPGPUs, 

nowadays, are used for a wide variety of applications. The pattern of data stored in register 

file for different types of processors exhibits strong similarity with data used in applications 

run on GPGPUs. Therefore, this technique may be used for GPGPUs as well. This work [35] 

provides another technique for reducing power of register file. Since our work focuses on 

reducing power consumption in caches, this technique can work well with our proposed 

techniques if this work [35] is ported to GPGPUs. 

2.2.12 Reducing thread divergence in a GPU-accelerated branch-and-bound algorithm 

Lashgar et al. [36] proposed using a filter-cache to reduce power consumption in instruction 

caches. The architecture of GPGPUs is based on SIMT (Single Instruction Multiple Thread) 

model. This means that threads, grouped in warps, execute the same instruction. Since all 

threads execute the same instruction, therefore, the same instruction is fetched for every 

warp. Due to this, an instruction that has recently been fetched, has a high probability to be 

fetched again. This is referred to as “inter-warp instruction temporal locality”. This technique 

[36] aims to exploit this property to reduce number of accesses to the instruction cache. A 

small filter-cache is used to cache the instructions that have been fetched before, and helps to 

reduce number of accesses to the instruction cache. This increases the energy efficiency of 

the fetch engine by reducing number of accesses to the instruction cache.  



30 

 

This work [36] targets instruction cache for power optimization, while our work focuses on 

all caches except instruction cache. Therefore, this work [36] is well suited to be integrated 

with our work to further reduce power consumption of caches in GPGPUs. 

2.2.13 Characterizing and improving the use of demand-fetched caches in GPUs 

Jia et al. [37] characterized the performance of GPU applications with L1 caches and 

explored the access patterns and locality of L1 caches. They explore the degree to which 

performance may either improve or reduce, by turning L1 cache on and off. Their results 

indicate that, in some cases, L1 caches may hurt performance opposed to common intuition 

that caches always help to improve performance. In NVIDIA GPUs, L1 caches are not 

coherent across SMs. This means that global memory store instructions bypass L1 caches. 

This suggests that turning off caches can help, for applications, where the performance might 

be reduced by the use of L1 caches. Also, since GPGPUs have inherent latency tolerance 

mechanism due to massive multi-threading, the primary function of cache is more related to 

memory bandwidth than latency.  They propose a compile-time algorithm to speculate the 

impact of the cache on performance by using traffic estimates. Based on the speculated 

performance impact, L1 cache can be enabled or disabled. Although their work targets 

performance, the proposed technique can also be used to reduce power consumption when L1 

caches are not needed. 

This work involves optimization techniques that use recompilation of applications for 

gaining leakage power savings by turning off L1 caches. Our work, however, does not need 

recompilation of codes and targets both leakage and dynamic power optimization. We also 

provide power optimizations for all caches including L1 and L2, except instruction cache. 

2.2.14 A Locality-Aware Memory Hierarchy for Energy-Efficient GPU Architectures 

Since cache block size in GPGPUs is 128 bytes, blocks of 128 bytes are fetched from 

memory. Applications with high spatial locality can benefit from this coarse grained memory 

hierarchy. However, since GPGPUs run applications from different domains, not all 

applications exhibit regular control flow and memory access patterns. For such applications, 
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coarse grained memory accesses waste energy by fetching unnecessary data. The massive 

multithreaded architecture of GPGPUs provides little cache capacity per thread. This results 

in high cache miss rate which may lead to eviction of a cache block before it can be accessed 

again. This behaviour limits the degree of temporal locality that can be exploited for certain 

applications. This phenomenon combined with coarse grained only memory hierarchy results 

in significant over-fetching of off-chip data for irregular applications. This, not only, wastes 

DRAM power, but also wastes memory bandwidth and on-chip storage. Rhu et al. [38] 

proposed a Locality-Aware Memory (LAMAR) hierarchy technique to select appropriate 

memory access granularity for improving energy efficiency. They use a hardware predictor to 

adaptively adjust the memory access granularity without requiring any intervention from the 

programmer. 

The work of Rhu et al. [38] targets optimization of fetches from global memory to reduce 

power consumption. Our work is different from their work [38] as we focus on caches for 

optimizing power consumption. This work [38] can be used along with our techniques to 

further reduce power in memory hierarchy of GPGPUs. 

2.2.15 Power-efficient Computing for Compute-intensive GPGPU Applications 

Most of the energy optimization techniques focus on reducing power of register file or 

memory hierarchy to achieve energy efficiency. S. Zohaib Gilani et al. [39] proposed 

techniques to optimize power consumption of compute-intensive GPGPU applications. 

GPGPUs are, typically, optimized for floating-point intensive applications. Due to the 

diverse nature of applications that can be run on GPGPUs, there are many integer-intensive 

applications that are also run on GPGPUs. Such applications include, but are not limited to, 

those for data compression and encryption, medical image processing etc. To utilize the same 

hardware for both integer and floating point instructions, the floating point fused multiply-

add (FMA) units are enhanced to perform integer arithmetic, bitwise, and logical operations. 

Of the three techniques proposed in the work [39], the first technique involves combining a 

pair of dependent integer instructions into a composite instruction which can be efficiently 

executed by an enhanced fused multiply-add unit. The compiler forms these composite 
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instructions, and consequently, reduces the number of fetched/executed instructions. This 

improves performance and energy efficiency. The second technique exploits the 

computational redundancy exhibited by many applications. Computational redundancy 

occurs when a number of instructions are duplicated across multiple threads and produce the 

same results. This redundancy attributes to applications having duplicated control 

instructions across threads in SIMT groups and manipulation of constant values. Memory 

address calculations can also contribute to such computational redundancy. To exploit this 

behaviour of redundant computations, the authors suggest executing such instructions on a 

separate scalar unit. The technique involves dynamically detecting an instruction that 

produces the same result across all the threads in a warp. This detection is done at runtime, 

and such an instruction is then issued to a separate scalar pipeline. The source and destination 

registers for the instruction are kept in a separate Scalar Register File (SRF). The scalar 

pipeline and scalar register file form the scalar unit. This approach improves power 

efficiency by avoiding redundant computations. The scalar unit also relieves the SIMT 

pipeline from executing such redundant instructions and allows it to execute other 

instructions. This helps to improve the performance of the application. The third technique 

involves slicing the 32-bit data-path into two 16-bit data-paths. Many instructions do not 

require the full 32-bit data length to represent their operands, and 16-bit data-path suffices to 

hold the operands for accurate representation. Thus, using a single 16-bit data-path, reduces 

the register file access energy. On the other hand, two instructions that need only 16-bit data-

path to represent their operands can be issued simultaneously to improve performance.  

S. Zohaib Gilani et al. [39] proposed several optimization techniques to reduce power 

consumption in GPGPUs. Their techniques involve reducing redundancy in computation, and 

combining a pair of instructions to provide energy-efficient execution. They also propose 

slicing the data-path to optimize power consumption. Their work [39] focuses on optimizing 

power for execution pipeline. Our work differs from their work as we target on-chip memory 

spaces (caches and shared memory) to reduce power consumption. Their work [39] can be 

used along with our optimization techniques. The two techniques combined can help to 

achieve greater power savings. 
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2.2.16 PATS: Pattern Aware Scheduling and Power Gating for GPGPUs 

For the SIMT (Single Instruction Multiple Thread) model of GPGPUs, a single instruction is 

executed concurrently on several execution lanes, sometimes, referred to as SIMT lanes. 

However, due to branch divergence not all threads are active within a warp during execution. 

An active mask vector provides the basis for controlling which threads are active in case of 

branch divergence. For a control structure, the threads having the active-mask bit set execute, 

and the remaining threads stay idle. The threads in the taken and not-taken paths are executed 

sequentially based on which threads are active in the corresponding path. This leaves the 

hardware resources, corresponding to inactive threads, to be un-utilized. Qiumin Xu et al. 

[40] explored the branch divergence patterns for different benchmarks and observed that each 

benchmark exhibits very few divergence patterns. This means that many warps branch in the 

same way as other warps in the application. Thus, the hardware resources that are not utilized 

for these warps remain idle for most of the warps in the program. This can be exploited to 

gate these hardware units to save leakage power. Their work power gates the SIMT lanes that 

are not being used during branch divergence. Since there is a power overhead associated with 

gating of hardware units, the optimum power saving is achieved if the warps exhibiting 

similar divergence pattern are executed consecutively. The order in which the warps having 

similar divergence patterns are executed depends on the type of scheduler used. The authors 

[40] proposed a Pattern Aware Two-level warp Scheduler (PATS) that issues cluster of 

warps having similar active mask patterns. The pattern aware two-level warp scheduler 

increases the idle period of SIMT lanes, resulting in an improved power gating efficiency. 

The authors also proposed a runtime technique to dynamically track the active masks of 

warps, waiting in the operand collector buffer, which are soon going to be executed. This 

deterministic look-ahead technique can be used to proactively wakeup an idle execution unit 

or stop power gating any execution resource that may be needed in the near future. The two 

techniques are used, in tandem, to improve power gating efficiency. 

This work [40] proposes to reduce power consumption for execution units based on branch 

divergence. We also use branch divergence in our work, but to reduce dynamic power in 

caches. Our work targets caches for leakage and dynamic power and, inherently, differs from 
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the work of Qiumin Xu et al. [40]. However, our work and techniques proposed by Qiumin 

Xu et al. [40] can be used together to further improve energy efficiency in GPGPUs. 

2.2.17 Power-Aware L1 and L2 Caches for GPGPUs 

This paper is an extension of the previous work [26] on L1 data cache and L2 cache in 

GPGPUs. In this work [26], static and dynamic power in L1 data cache and L2 cache is 

reduced by using drowsy mode and divided word line approach. The drowsy mode scheme 

[26] greedily switches a block to drowsy mode immediately after it is accessed. In this thesis, 

we propose a novel technique of coarse grained drowsy mode over the drowsy mode 

technique used in the previous work [26]. We also performed design space exploration to 

determine the granularity for our new coarse grained drowsy mode. We performed sensitivity 

analysis in our work to determine the optimal granularity for the region size. In our previous 

work [26], the performance impact was explored for L1 data cache and L2 cache 

individually. In this work we enable the optimization techniques for all caches concurrently 

and report performance for all the caches combined.  

We have proposed improvements in our techniques in this work over our previous work 

[26]. We have included shared memory, texture and constant caches along with L1 data and 

L2 cache for our proposed techniques in this work. We have also performed more 

comprehensive analysis of performance as opposed to our previous work [26]. This work 

builds on our previous work and makes significant contribution in improving the techniques 

presented in our previous work [26]. Our new technique helps to further improve 

performance over our previous work [26]. 

2.3 Overview of previous works and our contribution 

Most of the techniques proposed to reduce energy consumption target register file energy [2, 

29, 16, 33, 34, 35]. Some of the works [2, 7, 8, 36, 37] target caches to reduce power, while 

other works [27, 28, 40] target execution units to optimize power consumption. Memory 

hierarchy has also been optimized [30, 38] to reduce power consumption. Architectural 

optimizations and optimizing redundant instructions have also been proposed to gain 
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performance and energy efficiency [39]. Some of the techniques proposed earlier can be used 

along with our proposed techniques to further optimize energy consumption. Our work 

targets all levels and types of caches, except instruction cache, in GPPGUs and we apply our 

proposed power saving techniques to reduce leakage as well as dynamic power. We propose 

a novel technique of using coarse grained drowsy mode. To the best of our knowledge, this 

technique has not been used before. Our work adds to previous works to optimize energy 

consumption and can also be used to gain insight into access patterns of caches in GPGPUs 

and latency tolerance of caches. 
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Chapter 3 

Motivation and Optimization Techniques 

In this chapter, we explain motivation behind our work and demonstrate power saving 

opportunities in GPGPUs using workloads from different domains. We also present our 

proposed optimization techniques in this chapter. We use applications from Rodinia [20], 

Parboil [21] and NVIDIA Computing SDK [18] benchmark suites for characterizing cache 

access patterns that can be exploited to save power in GPGPU caches. The detail of the 

experimental framework is discussed in chapter 4. 

3.1 Problem Definition 

Power dissipation used to be an issue in portable devices, until recently, but is now becoming 

a significant design constraint in the design of many systems. There are two sources of power 

dissipation in microprocessor design: static and dynamic. Static power is the leakage power 

dissipated when a component is idle, whereas, dynamic power is the power consumed 

whenever a component is accessed. Dynamic power used to be a major contributor to power 

dissipation in comparison to static power, but the trend of reducing geometrics of 

semiconductor devices has aggravated the problem of leakage currents. Now static power is 

rapidly becoming a major source of power dissipation in newer system designs. Voltage 

scaling has reduced over the years and is no longer contributing significantly in reducing 

dynamic power. Our work focuses on both sources of power dissipation in caches for 

GPGPUs and we propose techniques to optimize static and dynamic power consumption. 

There are different types of L1 caches in GPGPUs namely, L1 data cache, constant cache, 

texture cache, and instruction cache. The L1 caches are backed by a L2 cache. Shared 

memory, although technically not a cache, shares a great deal of similarity in architecture 

with L1 data cache, since the memory space for implementing shared memory is 

configurable to be partitioned between L1 data cache and shared memory. 
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In this section, we look at the share of static and dynamic power consumed by different 

caches in the context of GPGPUs. For static power, we model row-decoder, SRAM cells, and 

sense amplifier to estimate the static power consumed by each type of cache. Figure 3-1 

shows the breakdown of static power consumed by different caches and shared memory.  

L1 data % L2 % texture % constant % shared % instruction  %
 

Figure 3-1: Breakdown of static power for different memory spaces. 

Texture cache consumes the most static power at 34.3%, followed by shared memory 

consuming more than 23%. L1 data cache and L2 cache consume 11% and 21% of the static 

power, respectively. Constant and instruction cache consume significantly less power as 

compared to other caches, with constant cache consuming 4% and instruction cache 

consuming 5% of the total static power consumed by all caches. We used GPUWattch [41] to 

estimate dynamic power of caches. Figure 3-2 illustrates the percentage of total GPU 

dynamic power consumed by caches for different benchmarks. The last bar shows the 

average dynamic power share of all caches and shared memory for all the benchmarks. 
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Figure 3-2: Breakdown of cache dynamic power as percentage of total GPU dynamic power. 
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On average, more than 10% of total dynamic power is consumed by caches with some 

benchmarks, i.e. mri-gridding and lavaMD, consuming more than 21% and 38%, 

respectively. On average, L2 cache has the largest share of dynamic power of 4.5%. L1 data 

cache and shared memory, on average, consume 1.4% and 2.2%, respectively. Constant and 

instruction caches consume 1.02% and 0.53% of total GPU dynamic power, respectively. We 

also evaluate the breakdown of dynamic power for individual caches. On average, L2 cache 

contributes 45.5% to dynamic power consumed by all caches. L1 data cache contributes 

14%, shared memory 20.5%, while constant and instruction caches contribute 9.5% and 

5.1%, respectively, of total dynamic power consumed by caches. Figure 3-3 shows the 

breakdown of total power, static and dynamic, consumed by individual caches. The last bar 

shows the average total power share of all caches and shared memory for all the benchmarks. 
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Figure 3-3: Breakdown of total (static + dynamic) power consumed by cache memories. 

On average, L2 cache consumes more than 35% of total cache power while L1 data cache 

consumes more than 14%. Shared memory, on average, consumes around 20.8% of total 

cache power, whereas texture cache consumes 6.7%. Constant and instruction caches, on 

average, consume 14.9% and 7.3%, respectively. Our analysis shows that cache memories 

consume a significant percentage of power in GPGPUs and optimizing static and dynamic 

power in caches can help to achieve significant power savings in GPGPU architectures. 

3.2 Cache Access Patterns 

Next, we look at the opportunities in caches for optimizing static and dynamic power. The 

pattern of cache accesses in GPGPUs is unique and can be exploited to save static and 

dynamic power in cache blocks. For opportunities to reduce static power, we analyze access 
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patterns of cache blocks by analyzing two parameters: number of accesses to cache blocks 

and the inter-access delay for cache blocks. These two parameters play an important role in 

defining the access pattern of caches.  

Graphs in figure 3-4 show breakdown of accesses to the cache blocks in L1 data cache, L2 

cache, constant cache, texture cache, shared memory and instruction cache. Each bar in the 

graph is divided into 16 sections by using a logarithmic scale to categorize the number of 

accesses to cache blocks. The bottom most component labelled A0 shows number of blocks 

that are not accessed by any SM, A1 component shows the number of blocks accessed one 

time. Similarly, the last component A16384 shows the number of blocks that are accessed 

16384 times or more. From the graphs in figure 3-4, we observe that in L1 data cache, more 

than 25% of cache blocks are accessed less than 32 times. In mri-q, gaussian, leukocyte and 

tpacf, more than 90% of cache blocks in L1 data cache are accessed less than 32 times. In 

gaussian and leukocyte, more than 99% of cache blocks in L1 data cache are never used for 

execution. In L2 cache, more than 26% of cache blocks are accessed less than 16 times. 

Since most of memory requests are serviced by L1 caches, cache blocks in L2 are idle more 

often. In mri-q, tpacf and gaussian, more than 96% of cache blocks in L2 cache are accessed 

less than 32 times. In cutcp, mri-q, tpacf, gaussian, leukocyte and particlefilter, more than 

33% of cache blocks in L2 cache are never used for execution. In constant caches, 89% of 

cache blocks are accessed less than 2 times. In all benchmarks except cutcp, mri-q and 

leukocyte, more than 92% of cache blocks in constant cache are never used for execution. 

Since texture cache is only used for graphical applications, therefore, not all benchmarks use 

texture cache. Only kmeans, leukocyte, particlefilter and simpleTexture use texture cache. In 

kmeans and particlefilter, 50% and 94% of cache blocks in texture cache are never used for 

execution. The cache blocks in other benchmarks that do not use texture cache are never 

accessed. Some benchmarks, namely lbm, mri-q, bfs, cfd, gaussian, kmeans, leukocyte and 

simpleTexture, do not use shared memory and the memory blocks in shared memory are 

never accessed for these benchmarks. For those benchmarks that use shared memory, more 

than 89% of memory blocks in shared memory are accessed less than 4 times. For all the 

benchmarks, more than 93% of memory blocks in shared memory are never accessed. In 
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instruction cache, more than 27% of cache blocks are accessed less than 16 times. Around 

27% of cache blocks in instruction cache are never used for execution. 

0%

20%

40%

60%

80%

100%

CUT HST LBM MRG MRQ STL TPF BPR BFS CFD GSS HTS KMN LMD LCY NW PTF PHF SR1 SR2 STC STX

A[0] A[1] A[2] A[4] A[8] A[16] A[32] A[64] A[128] A[256] A[512] A[1024] A[2048] A[4096] A[8192] A[16384]

(a) L1 data cache 
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(b) L2 cache 
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(c) Constant cache 
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(d) Texture cache 
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(e) Shared memory 
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(f) Instruction cache 

Figure 3-4: Breakdown of accesses to cache blocks. 

This shows that for different types of caches and shared memory in GPGPUs, there is a 

significant percentage of cache blocks that are never accessed. This means that these blocks 

remain idle throughout the execution of the program and can be put into drowsy mode to 

reduce leakage power. Other than the cache blocks that are never accessed during execution, 

a large fraction of the cache blocks are accessed only a few times, providing an opportunity 

to put these cache blocks in drowsy state to gain power saving. 

Number of accesses to cache blocks play an important role in evaluating the access pattern 

of cache blocks for putting them into drowsy mode. However, the access pattern is not 

entirely dependent on number of cache accesses. It is also, greatly, impacted by inter-access 

cycle of cache blocks. Inter-access cycle of a cache block is the number of cycles between 

two consecutive accesses to the cache block. If the inter-access time is very small then the 

cache blocks cannot be put into drowsy mode as they would have to be switched back to ON 

state immediately after being put into drowsy state. In such a scenario, there would not be 

any considerable power saving because the only time leakage power can be reduced using 

drowsy mode is when the cache blocks are idle. It is, thus, necessary to have a significant 

inter-access delay for the cache blocks to be able to save power by putting the cache blocks 

in drowsy mode.  

In the two-level scheduler, a warp, after being executed has to wait for all the other warps 

in the active list to be scheduled, before it can be executed again. The only time when the 

scheduler schedules the same warp to be executed, consecutively, is when there are no other 

warps in the active list. This scenario, although possible, occurs quite rarely and hence there 

is a gap between two executions of the same warp. This inter-access delay provides the 
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opportunity to put the cache blocks into drowsy mode immediately after they have been 

accessed. This can be used to reduce leakage power.  

We measure the number of cycles elapsed between two consecutive accesses to the same 

cache block to analyze inter-access delay. Graphs in figure 3-5 show the breakdown of inter-

access cycles for cache blocks in L1 data, L2, constant, texture, shared and instruction 

caches. In L1 caches, more than 63% of cache blocks have inter-access cycles of 512 or 

more. The average inter-access cycle for L1 caches is 3578-cycles.  More than 69% of cache 

blocks in L2 cache have inter-access cycles of 512 or more, and the average inter-access 

cycle is 3702-cycles. In constant caches, more than 26% of cache blocks have average inter-

access cycles of 32 or more. The average inter-access cycle, in constant caches, is 161 cycles. 

Amongst the benchmarks that access texture cache, kmeans has 99%, leukocyte has 98%, 

particlefilter has 19% and simpleTexture has 74%, of cache blocks that have inter-access 

cycles of 32 or more. On an average, in benchmarks that use texture cache, 73% of cache 

blocks have inter-access cycles of 32 or more. The average inter-access cycles for these 

benchmarks, in texture caches, is 3249-cycles. For benchmarks that access shared memory, 

more than 51% of shared memory blocks have inter-access cycles of 128 or more. For these 

benchmarks, the average inter-access cycle is 1054-cycles in shared memory. In instruction 

caches, more than 12% of cache blocks have inter-access cycles of 16 or more. The average 

inter-access cycles for cache blocks, in instruction caches, is 23-cycles. The breakdown of 

inter-access cycles for different type of caches demonstrates that the cache blocks in these 

caches remain idle for a significant number of cycles before they are accessed again. This 

behaviour of access pattern in cache blocks can be exploited to put them into drowsy mode to 

reduce static (or leakage) power. 

Next, we look at opportunities to optimize dynamic power in cache blocks. GPGPUs 

execute threads in granularity of warps. Instructions are executed in a lock-step manner for 

the 32 threads in a warp. A fully utilized warp has all the 32 threads active and executes the 

same instruction at any given time. Most of the graphics applications make use of all the 32 

threads in a warp to execute instructions. However, general purpose applications exhibit 

more complex control flow behaviour due to frequent branch instructions. Conditional 
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branch instructions may cause threads, within a warp, to take different paths. This 

phenomenon is known as branch divergence. 
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(a) L1 data cache 
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(b) L2 cache 
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(c) Constant cache 
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(d) Texture cache 
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(e) Shared memory 
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(f) Instruction cache 

Figure 3-5: Breakdown of inter-access cycles to cache blocks. 

The architecture of GPGPUs provides only one active program counter (PC) for a warp 

during execution. In case of control instructions, for example an if-then-else construct, there 

are usually different instructions to be executed for the taken and not-taken paths. To execute 

these instructions, a warp has to make two passes over the divergent paths. The two passes 

are sequential to each other, and only the threads corresponding to that particular path are 

active during each pass. The other threads remain idle during the pass. However, in existing 

GPGPU implementations, cache blocks for all 32 threads are accessed even though we may 

have only a few active threads and the remaining threads, in a warp, may be idle. Different 

programs exhibit different level of branch divergence due to the nature of each program. We 

investigated branch divergence occurring in benchmarks that we used for our analysis of 

cache access patterns. For our analysis, we recorded the number of active threads whenever 

accesses to cache blocks are requested. Table 3-1 shows the percentage of active threads 

within the warps that access corresponding cache blocks for different type of caches and 

shared memory. Block utilization value of ‘0’ for a cache signifies that the benchmark does 

not make use of that particular type of cache. Since architecture of GPGPUs is based on 

SIMT programming model, all threads within a warp execute the same instruction. This 

means that the whole cache block in instruction cache is accessed for fetching each 

instruction, regardless of the branch divergence that may occur during execution of that 

instruction. Hence, block utilization for instruction cache is not reported in Table 3-1 as it is 

always 100%. It is important to note that L2 cache is accessed when a miss occurs in any of 

the L1 caches including data and texture caches. This is the main reason that block utilization 

in L2 cache is lower than block utilization in L1 data caches. While some benchmarks, for 

example kmeans and mri-q, have 32 active  threads in all warps throughout the entire 
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execution, other benchmarks such as gaussian and bfs, have very low cache block 

utilizations. Since, in the baseline architecture, the whole cache block is accessed even for 

programs with low warp utilization, significant dynamic power is wasted. We can reduce 

dynamic power in caches by avoiding these unnecessary accesses to cache blocks. 

Table 3-1: GPGPU Benchmarks and warp utilization 

Benchmarks Abbreviation 

Block Utilization (%) 

L1 L2 Shared Constant Texture 

 Cutcp CUT 99.9% 99.5% 94.1% 93.7% 0.0% 

 Histo HST 99.9% 98.2% 68.6% 99.9% 0.0% 

 Lbm LBM 100.0% 90.9% 0.0% 93.8% 0.0% 

 mri-gridding MRG 100.0% 99.2% 90.5% 99.5% 0.0% 

 mri-q MRQ 100.0% 100.0% 0.0% 100.0% 0.0% 

 stencil STL 100.0% 91.3% 99.3% 84.3% 0.0% 

 tpacf TPF 97.2% 78.5% 96.6% 100.0% 0.0% 

 backprop BPR 96.8% 89.8% 62.9% 71.3% 0.0% 

 Bfs BFS 81.1% 67.7% 0.0% 48.0% 0.0% 

 cfd CFD 99.7% 92.9% 0.0% 98.5% 0.0% 

 gaussian GSS 41.8% 36.3% 0.0% 14.0% 0.0% 

 hotspot HTS 100.0% 96.2% 78.1% 96.6% 0.0% 

 kmeans KMN 100.0% 100.0% 0.0% 100.0% 100.0% 

 lavaMD LMD 98.6% 96.6% 78.5% 80.6% 0.0% 

 leukocyte LCY 0.0% 93.4% 0.0% 92.2% 94.3% 

 nw NW 95.6% 97.2% 30.0% 28.7% 0.0% 

 particlefilter PTF 98.2% 98.4% 86.5% 88.4% 92.9% 

 pathfinder PHF 99.8% 97.8% 91.9% 92.8% 0.0% 

 srad_v1 SR1 99.4% 99.2% 21.1% 99.1% 0.0% 

 srad_v2 SR2 100.0% 95.5% 66.0% 100.0% 0.0% 

 streamcluster STC 98.3% 95.8% 94.3% 30.8% 0.0% 

simpleTexture STX 0.0% 84.0% 0.0% 100.0% 100.0% 

 

3.3 Power Reduction Techniques 

The unique access patterns of caches in GPGPUs present opportunities for power reduction. 

We describe the techniques to reduce static and dynamic power in this section. 
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3.3.1 Static Power Reduction Using Drowsy Cells 

In the last section, we discussed the inter-access pattern of cache blocks. Due to the 

scheduling policy [17], a warp has to wait after execution of all the other warps in the active 

list before it can be executed again. During this long inter-access cycle delay, the cache 

blocks are idle. This property of GPGPUs presents an opportunity to reduce leakage power 

for cache cells when they are idle. Several techniques have been proposed to reduce leakage 

power of cache cells by turning off cache blocks when they are not needed [1, 22]. The 

downside of these techniques is that the data in the cache blocks are lost when they are 

turned off and the extra power needed to access interconnection network and lower level 

cache or global memory erodes any power saving achieved by turning off cache cells. In 

addition, extra power is needed to re-load the data in the cache cells. This also results in 

increased latency to access the requested data, hence, reducing overall performance. These 

techniques are not suitable to our problem and, therefore, we use another technique of putting 

cache blocks into drowsy mode [8]. Dynamic voltage scaling is employed in a drowsy cell to 

reduce leakage power. Each cache block can be switched between high and low (drowsy) 

supply voltages. During access to the cache block, the voltage of SRAM cells is raised to 

nominal voltage. Following each access, the voltage is reduced to save leakage power. Due 

to short-channel effects in deep-submicron processes, leakage current reduces considerably 

in idle cache blocks. Since power is the product of voltage and current, reduced leakage 

current and low voltage, dramatically, reduce leakage power. Whenever a cache access 

request is generated by an SM, the voltage of the cache line is checked by the cache 

controller. The voltage level of the cache line is checked in parallel with the read and 

comparison of the cache tag; therefore, it does not incur any extra delay. If the cache line is 

in normal mode (high voltage), it can be accessed without any sacrifice in performance as 

there is no delay. However, in the case of a cache block being in drowsy mode, its voltage 

has to be raised to the normal voltage before the data on the cache line can be accessed. It is 

imperative to raise the voltage before accessing the cache block to prevent discharging bit-

line of the cache line as it may read out wrong data if the voltage is low. However, it needs a 

certain amount of time to raise the voltage of the cache line. Therefore, we need to wait for 
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the supply voltage to switch to normal mode before the data in the cache line can be 

accessed. This extra time to raise the voltage of the cache line can be referred to as wake-up 

latency. Since we have to wait a certain amount of time before the voltage of the cache line is 

raised to normal and the cache line can be accessed, it raises a concern that the execution 

time of applications may increase due to this delay. We can effectively hide this wake-up 

latency by raising the voltage of the cache line to be accessed in near future. However, to do 

this, we need to devise a scheme to know which cache block is going to be accessed in 

future. We use a two-level scheduler [17] to select a warp for execution. The scheduler 

selects a ready warp from the active list and sends it for execution. This process is repeated 

every cycle. To hide wake-up latency of drowsy cells, the scheduler should send the source 

operands of a load/store instruction to the memory unit before the instruction is issued for 

execution. To accomplish this, the scheduler can issue a warp and look into active list, in 

parallel, for the warp that is going to be issued in the next cycle. In this way, the overhead of 

drowsy cells with 1-cycle delay can be effectively hidden. Similarly, the scheduler can look 

into active list and send information of the warp to the memory unit n cycles ahead and may 

wake-up drowsy cells to hide n cycles of wake-up delay. In this way, the two level scheduler 

is able to hide the latency associated with drowsy cells.  

In our work, we also explore the scenario of using a scheduler that is not able to hide the 

latency associated with the wake-up delay of drowsy cells. For a scheduler that is not able to 

hide the wake-up latency of drowsy cells, we propose coarse grained drowsy mode scheme in 

which we partition cache blocks into regions of contiguous locations. We switch cache 

blocks between drowsy and ON states, in granularity of cache regions (partitions of cache 

blocks) instead of individual cache blocks. The last accessed region is kept ON, while all the 

other regions are put into drowsy mode. Figure 3-6 shows granularity of 1, 2 and 4 cache 

blocks in a cache region for a cache having 8 rows. Cache regions have been highlighted by 

using same colour for the cache blocks in a region. This means that contiguous cache blocks 

having the same colour constitute a cache region. If one of the cache blocks in the region is 

accessed, all the cache blocks in the region are switched on. This approach of partitioning 

cache blocks into cache regions improves performance of workloads that exhibit spatial and 



48 

 

temporal locality in cache accesses, since no wake-up delay is incurred for accesses within a 

cache region. In chapter 5, we evaluate the performance impact of drowsy cells having 

different wake-up latencies assuming that it is not feasible to hide the latency of drowsy cells. 

We also analyze the sensitivity of performance to region size to optimize for maximum 

power saving while keeping performance impact marginal.  

     

                        a). granularity = 1       b). granularity = 2         c). granularity = 4 

Figure 3-6: Different granularities for a cache with 8 rows. 

3.3.2 Reducing Dynamic Power Using Active Mask 

To reduce leakage power, we propose using drowsy cells for cache blocks when they are 

idle. This technique saves the static power associated with cache lines. To reduce dynamic 

power we employ another technique that we discuss in this section. In Fermi family [9], 

cache blocks are 128-byte wide. Whenever an SM executes a load/store instruction, the 

whole 128-byte cache block is accessed. Using the drowsy cells, all 128 bytes are switched to 

ON state for a cache block whenever it is accessed. Accessing such a large number of SRAM 

cells incurs significant dynamic power because of activating word-lines, bit-lines and sense 

amplifiers. 

The GPGPUs utilize a SIMT model and all threads (within a warp) execute in a lock-step 

manner. Since all threads execute the same instruction, control instructions in a program 

result in divergence of threads. The branch instructions are executed in two phases. In the 
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first phase, the threads in the taken path are active and the rest of the threads in a warp are 

idle. In the second phase, threads in the not-taken path are active and the rest are idle. 

However, in the baseline scheme, a warp with partial utilization still activates the complete 

cache line. This implies that Word-Line (WL), Bit-Line (BL), Bit-Line-Bar (BLB) and sense 

amplifiers are pre-charged for the whole cache line even though only a subset of the cache 

line is used for warp execution. This presents an opportunity to reduce dynamic power by 

accessing only the portion of cache blocks that correspond to active threads. In our 

evaluation of a variety of benchmarks, as shown in Table 3-1, we see that the percentage of 

active threads varies across the benchmarks. This is due to branch divergence. The technique 

of accessing portion of cache lines corresponding to active threads can help to reduce 

dynamic energy for benchmarks where not all threads are active at the same time. We can use 

the active mask in GPUs, which identifies active threads within a warp, to detect the number 

of active threads. The active mask is a vector of 32 bits with each bit corresponding to a 

single thread within a warp. When a branch instruction diverges, the bits corresponding to 

active threads are set and the rest are cleared. This vector, thus, provides the basis for 

detection of inactive threads and can be used to disable portions of cache blocks associated 

with inactive threads.  

We use the Divided Word Line (DWL) [23] technique to implement active mask-aware 

access to caches. The structure of a Divided Word Line is illustrated in figure 3-7. In DWL, 

the Word Line (WL) is segmented into several Small WLs (SWLs). Each SWL enables or 

disables access to the portion of cache block attached to it. We segment the Word Line such 

that each SWL covers 4-byte of the cache block. The output of a row decoder is connected to 

SWLs. Each SWL has to be enabled or disabled based on which portion of the cache block 

needs to be accessed. GPU baseline architecture provides the necessary control signals, 

making the integration of DWL into caches rather simpler. Every warp’s active mask 

contains the bit-vector that can be used to specify portions of the cache block that need to be 

enabled or disabled based on the thread being active or inactive. This mask can be used in 

conjunction with the row decoder to enable the corresponding cache portion within the cache 

line. The output of row decoder is fed into an “AND” gate which has its other input coming 
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from the active mask. The actual implementation of this technique is illustrated in figure 3-7. 

Each SWL is activated by an AND gate having two inputs, one coming from the row decoder 

(the horizontal line) and the other coming from the active mask (the vertical line). DWL 

reduces dynamic power since whenever a cache block is accessed, the bytes corresponding to 

the inactive cells within the cache block are disabled. 

 

Figure 3-7: Structure of DWL. 
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Chapter 4 

Methodology and Results 

In this chapter, we explain our experimental framework and evaluate power savings achieved 

by using our proposed optimization techniques. We used GPGPU-Sim (version 3.2.1) [3] to 

evaluate our power-aware optimization techniques. GPGPU-Sim is an open-source, detailed 

cycle-accurate simulator for GPGPUs. We configure the simulator to closely match 

NVIDIA's Fermi GTX480 as recommended in the GPGPU-Sim manual (Table 4-1). We use 

a collection of benchmarks from CUDA Computing SDK [18], Rodinia Benchmark suite 

[20] and Parboil Benchmark suite [21]. The benchmarks are listed in Table 3-1. We ran the 

benchmarks until completion or for 1 billion instructions, whichever comes first. 

Table 4-1: GPGPU-Sim Configuration 

Number of SMs 16 

Warps/Shader 48 

Threads per Warp 32 

PEs/SM 32 

Registers per core 32768 

$L1 data cache (size/assoc/line) 16KB/4-way/128B 

$L2 (size/assoc/line) 768KB/16-way/128B 

$Constant (size/assoc/line) 8KB/2-way/64B 

$Texture (size/assoc/line) 12KB/24-way/128B 

Shared Memory (size/assoc/line) 48KB/4-way/128B 

$Instruction (size/assoc/line) 2KB/4-way/128B 

4.1 Experimental Results 

In this section, we report the power savings achieved in L1 caches (data, texture and 

constant), shared memory and L2 cache. We also evaluate the performance impact in case of 

using a scheduler that is not able to hide the wake-up latency of drowsy cells.  

As discussed in Section 3.3.1, a two level scheduler can activate a cache block ahead of 

time and avoid any penalty due to wake-up latency. However, if the GPGPU uses a scheduler 

other than a two level scheduler, it might not be possible to hide the wake-up latency. We 

also investigate such a scenario and assume that we are unable to hide wake-up latency 
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causing delay in execution of warps. To take into account the effect of wake-up latency, we 

ran the benchmarks with one and two extra cycles overhead. These extra cycles are sufficient 

to switch cache cells from drowsy mode to normal mode [8]. It should also be noted that 

these latencies are in addition to the latency of the baseline cache. For the scheduler that is 

not able to hide the wake-up latency, we propose coarse grained drowsy scheme. We 

partition contiguous cache blocks into regions and switch between ON and drowsy in 

granularity of cache regions. After a cache block is accessed in a cache region, it is kept ON 

till the time another cache block, in another region, is requested for access. This improves the 

performance for workloads exhibiting spatial and temporal locality in cache access patterns. 

We ran the benchmarks with granularity of 1, 2, 4, 8, 16 and 32 cache blocks for region 

size and analyzed performance and power saving. The optimal performance and power 

saving was achieved for granularity of 16 cache blocks in a region. Figure 4-1 shows the 

performance of drowsy caches with granularity of 16 cache blocks in a cache region relative 

to the baseline scheme. The first and second bars show one and two-cycle wake-up delay, 

respectively. Bars less than one show slow-down. A GPGPU has many warps and if a warp is 

stalled due to cache delay, the GPGPU can issue and execute another warp. Hence, the 

performance changes slightly with wake-up delay. 
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Figure 4-1: Performance impact with region size of 16 for one and two cycles wake-up delay. 

We observed that for granularity of 1 cache block in a region, the performance of only two 

benchmarks was significantly affected. This indicates that most of the benchmarks are 

tolerant to using drowsy mode for region size of 1 except only two of these benchmarks. We 

analyzed these two benchmarks and found that the performance impact, for region size of 1, 

was due to instruction cache wake-up delay. Increasing the granularity of region size to 16 

improved the performance for the two benchmarks since all cache blocks are turned ON in 
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instruction cache at this granularity. According to our analysis, in chapter 3, the power share 

for instruction cache is only 5% of the total leakage power of all caches. Therefore, not using 

instruction cache does not affect the power saving significantly, but, it does help to ensure 

that performance is not affected adversely for any type of workload. We want our 

optimization techniques to be general for all benchmarks and do not want to sacrifice 

performance for even the rare cases. Therefore, we do not use instruction cache in our results 

for power and performance. We performed sensitivity analysis on the region size for all other 

caches, without enabling instruction cache, to determine the optimum region size for our 

coarse grained drowsy scheme. We performed sensitivity analysis for granularity of 1, 2, 4, 

8, 16 and 32 cache blocks for region size. Figure 4-2 shows performance of drowsy cache 

relative to the baseline scheme for coarse granularity of 1, 2, 4, 8, 16 and 32 cache blocks in 

a cache region, without enabling instruction cache. We observed optimal performance and 

power saving for granularity of 1 cache block in a region. There is a slow-down of less than 

0.5%, on average, for drowsy cell wake-up delay for coarse granularity of 1 cache block. Our 

sensitivity analysis shows that increasing the region size results in an increase in overall 

performance. For region size of 32, the slow-down is not more than 0.26%, on average. Since 

using a larger region size erodes power saving, and the performance gain is not significant to 

justify using a larger granularity, we use coarse granularity of 1 cache block for the region 

size. In some benchmarks the performance is improved, over baseline, by using our coarse 

grained drowsy scheme. We analyzed these benchmarks and found that the sequence of 

executed warps changes in our scheme which reduces cache miss rates and improves 

performance of these benchmarks.  
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(a) region size=1 cache block 
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(b) region size=2 cache block 
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 (c) region size=4 cache block 
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 (d) region size=8 cache block 
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 (e) region size=16 cache block 
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 (f) region size=32 cache block 

Figure 4-2: Performance impact when region size changes for one and two cycles wake-up 

delay. 
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For evaluating static power in caches, we used HSPICE to model our caches based on 6T 

SRAM cells. We use the technology files from Predictive Technology Models (PTM) [12] 

with feature size of 32-nm and nominal voltage of 0.9V. Using our model, we were able to 

quantify the leakage current in caches at different levels of voltage. Table 4-2 lists static 

power for nominal voltage and reduced voltages for different types of caches. We found that 

the state of SRAM cells can be maintained even if Vdd is reduced to 0.2V. In ideal scenario, a 

drowsy cell can work at 0.2V, but for real life applications it is imperative to add safety 

margin to take into account noise and also mismatch between transistors. From Table 4-2, we 

can see that even when Vdd is reduced to 0.4V, the static power is less than 6% of static 

power when cache cells operate at full Vdd. Having a higher than 0.2V Vdd also helps to 

reduce the time it takes to raise the voltage level of cache cells from drowsy to nominal 

voltage. We evaluate and report our results in this section assuming drowsy cells operate at 

0.4V. 

Table 4-2: Static Power of Caches 

Cache  
Vdd 

0.2 0.3 0.4 0.9 

L1 data cache 
Static Power 0.01988 0.03484 0.05956 1.05984 

% Saving 98.1 96.7 94.4 NA 

L2 
Static Power 0.15952 0.42464 0.9552 30.128 

% Saving 99.5 98.6 96.8 NA 

Shared memory 
Static Power 0.01084 0.029 0.06516 2.236 

% Saving 99.5 98.7 97.1 NA 

Texture Cache 
Static Power 0.0096 0.02448 0.05448 3.264 

% Saving 99.7 99.3 98.3 NA 

Constant Cache 
Static Power 0.0019 0.00496 0.01128 0.412 

% Saving 99.5 98.8 97.3 NA 

Instruction 

Cache 

Static Power 0.0016 0.00408 0.00908 0.544 

% Saving 99.7 99.3 98.3 NA 

 

Figure 4-3 shows the power saving achieved for different types of caches for coarse 

granularity of 1 cache block for the region size. We report static, dynamic and total power 

saving for the caches. We take into account the power overhead of DWL for reporting power 

saving. 
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 (a) L1 data cache 
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 (b) L2 cache 
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 (c) Constant cache 
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 (d) Texture cache 
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 (e) Shared memory 

Figure 4-3: Static, dynamic and total power saving. 
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For each benchmark in figure 4-3, the first bar represents the static power in caches with 

drowsy mode relative to the static power of the baseline scheme. The second column in 

figure 4-3 shows dynamic power in caches with SWL activated by active mask relative to 

dynamic power of the baseline scheme. Bars less than one show power reduction. We used 

the model in CACTI v6.0 [15] to extract resistance and capacitance of SWLs. Similar to 

static power, we used HSPICE with PTM [12] and feature size of 32-nm to estimate dynamic 

power. The dynamic power depends on warp utilization of benchmarks. The warp utilization 

of benchmarks is listed in Table 3-1. Benchmarks with low warp utilization have more 

potential for dynamic power saving, whereas benchmarks with moderate warp utilization 

have limited dynamic power saving. The third column in figure 4-3 shows the normalized 

total power. The combined system employs both techniques proposed for reducing static and 

dynamic power. Benchmarks that have low warp utilization, exhibit highest power saving 

because they take advantage of both the leakage and dynamic power saving techniques. On 

average, static and dynamic power is reduced by more than 92% and 3%, respectively, in L1 

data cache. The average power savings for L2 caches is more than 92% and 5% for static and 

dynamic power, respectively. In constant caches, static power is reduced by more than 94% 

and dynamic power is reduced by more than 15%. Texture caches report a power saving of 

more than 98% for static power and more than 2% for dynamic power. For shared memory, 

we observe a power saving of more than 94% and 13% for static and dynamic power, 

respectively.  

We also evaluated power saving achieved for our techniques relative to the total GPGPU 

power. We assume that 1/3 of the power is consumed by leakage power [42]. Optimizing 

power of L1 data and L2 caches reduces total power of GPGPU by 0.93% and 1.53%, 

respectively. For constant and texture caches, we achieve a total power saving of 0.43% and 

0.19%, respectively. Results for shared memory indicate that total power of GPGPU is 

reduced by 1.18%. Power saving results combined for all the caches indicate an overall 

GPGPU power saving of 4.26%.   

The size of cache memories is increasing with every new generation of GPGPUs. This 

increases the power share of caches in the overall power budget of the GPGPU. We have 
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evaluated our techniques for Fermi architecture in this work. However, our proposed 

techniques can be used to achieve even greater power savings for the newer generation of 

GPGPUs owing to the larger size and, consequently, higher power of the caches. 
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Chapter 5 

Summary and Future Work 

General Purpose Graphics Processing Units (GPGPUs) have evolved from fixed function 

graphics pipeline to massively parallel general purpose processors capable of running 

thousands of threads on hundreds of cores. The massively parallel architecture of GPGPUs 

makes them a suitable choice for running workloads that exhibit high level of parallelism. 

However, for running parallel workloads from diverse computing domains, GPGPUs need to 

be able to provide huge amounts of data from memory sub-systems. This places a great 

demand on GPGPU manufacturers to include low-latency memory spaces, such as caches 

and shared memory, to service huge amounts of data to PEs without suffering access delays.  

The size of the low-latency memory spaces is continually increasing to keep up with the 

requirements of massively parallel workloads. However, increasing the size of these memory 

spaces also adds to power dissipation which has recently become a major design constraint in 

the design of microprocessor systems. The designers of these systems are now forced to look 

for energy efficient designs to be able to deliver continued growth in performance while still 

confining to acceptable energy dissipation constraints.  

5.1 Contributions 

Our work analyzes architecture and data access patterns, peculiar to GPGPUs, to propose 

techniques to reduce power consumption in caches in GPGPUs. We propose two power-

aware optimization techniques that target static and dynamic power of L1 caches, shared 

memory and L2 cache in GPGPUs. Due to unique scheduling policies and execution model 

of GPGPUs, cache blocks have large inter-access distance and provide unique opportunities 

to reduce power. Our first optimization technique, coarse grained drowsy cells, puts cache 

blocks at a coarse granularity of cache regions into drowsy state while keeping only the last 

referenced region in ON state. GPGPUs have large number of warps to schedule for 

execution and putting cache blocks in drowsy state reaps huge power savings. The 

performance impact of using this coarse grained drowsy state management technique is 
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negligible since GPGPUs have a large pool of warps to choose from, for execution. The 

partitioning of cache blocks into regions exploits spatial and temporal locality for cache 

accesses and reduces the performance impact caused by wake-up latency.   The cache lines in 

GPGPUs are wide to provide data to all the 32 threads in a warp in one single access. 

However, not all the threads in a warp may be active and unnecessary accesses to unused 

portions of cache blocks waste significant amount of power. Our second technique exploits 

active masks and eliminates activation of unused portions of cache blocks. On average, these 

two optimization techniques combined are able to reduce static and dynamic power by up to 

98% and 15%, respectively. 

5.2 Future Work 

To further improve our current work in future, we can provide a small filter cache for L1 

caches so that number of accesses to L1 caches are reduced. This small filter cache will also 

help to reduce access energy associated with L1 caches. Our coarse grained drowsy scheme 

attempts to exploit spatial and temporal locality for cache accesses within a cache region. 

Locality can be increased by increasing the region size. However, increasing the region size 

erodes effective power saving. Even if the cache region size is increased, the increase in 

locality is only exploitable within a cache region in our proposed scheme. A small filter 

cache can help to exploit spatial and temporal locality in a more effective manner. The 

granularity of the cache region can be kept small to ensure optimal power savings and the 

recently accessed cache blocks can be kept in filter cache to exploit locality. Another benefit 

of adding a filter cache to our scheme is that spatial and temporal locality can be exploited 

for cache blocks that lie outside a cache region. Since cache region is composed of 

contiguous cache blocks, it limits the spatial and temporal locality to within that region. The 

filter cache can help overcome this limitation by keeping recently used cache blocks from 

any address within the cache. Our results for sensitivity show that the performance improves 

with increasing the cache region size. Therefore, it is expected that the inclusion of filter 

cache will help to improve the performance of our scheme further without eroding much of 

the power saving. 
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