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ABSTRACT

The evaporation of charged waterdrops is accompanied'by negligible
loss of chafge; consequently, as the surface area falls, the eléctrOsfatic-
préssure.inckeases. When a critical value is reached, one or more highly
charged'drops are ajected, the electrostatic pressure falls, and stébiTity
is regained. |

Experimental work is carried out by levitating the charged drops in
the electric field. The range of drop radii studied in this expefiment
is from QO to 40 um. The average radius loss was found to be aont 8%
per disintegration, with a charge loss of about 20%. According to Ray-
Teigh's criterion, the drop will become unstable when the Cr‘iticzﬂ_fdncéi

dn(n + 2)yR3

rises to the critical value of 1. Here,‘kl is a conStant, n is an ﬁntéger
greatér‘than or equal to 2, R is the radius of the drop, Q is its charge -
and f is the coeffiéient'pf surface tension for,thef1iquid. ”Und§r'ndrmal
cdndifjons,-the integer n in this ¢ritica1 function is 2. A‘ﬁigher_vé]ue
of n hight represent a supercriﬁjéélvqondftion, In 6ur experimeht; the
critfcal value wasAfbund-always 1ar§er than i,glthough previous expgri—
mental workers have agreed with‘the value 1. The critical value is higher
than éxpected but there is interna1{consistency and the disintegration
point is predictable: the disintegration always happéns’when the critical
.value,reacheéﬁa'specified, highest ya1ue. |

‘}Thebmass loss during the disintegration found. by eaf]fer workerélfs
checked.in this experiment'and suggestions are made for more breti;e

methods of ‘measurement.
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1. INTRODUCTION

1-1°  Historical Background

The ;tabi]fty of waterdrops in an electric field was first investi-
gated a very long time ago. The interest arose because the mechanism is
of basic importance in the production of lightning in thunderstorms (Taylor,
1964).

In 1882, Rayleigh published his famous paper, On the Equilibrium of
Liquid Conducting Masses Charged with Electricity. He derived a qritefion
which in brief'may be expressed as:

| K1Q2 < 8(n + 2)7R3y (1-1)
for SphEricalrdrops of radius R, charge Q, and surface tension y. The
quantity ﬁ is an integer larger than or equal to 2 and‘ki is a cohstant,
expressed in rationa1ized>SI units (figure 1-1).

 For:va1ues'of charge greater than those satisfying'thé inequaiity iL],
the critérion predicts that spherical drops should become unstable. Ray-
leigh worked from the basis that'the poténtia1 will be changed by slightly
deforming fhe drop and he also expressed a generalized potential energy
as a function of Q, v, and R. Details will be shown in section 2. Since
then, many scientists have tried to ihvestigate this phenomenon in the
laboratory.

One way to do this is to allow charged drops to evaporate;' Highly
charged drops'are levitated by an electric field in fhe atmosphere.
(figure 1-2): as the time goes on, each dfop‘wi11 decrease in size, but
the charge will decrease at a slow rate with the result that the ratio
of charge energy to surface energy will become too high for stability,

and charge loss, disruption or both must occur.



fFiq. 1-1- A charged spherical drop

\J
~Fig. 1-2 A charged drop levitated in the atmosphere by the

electric field.



A. Doyle, D. R. Moffett and B. Vonnegut (1964) first investigated
this phenomenon by_]etting highly charged waterdrops spray into a chamber
between two large electrodes where they levitated in an electric field.
One drop was selected for observation. They found that after a period of
time, say, several minutes, each charged drop suddenly fell down as if it
had betome-very.heayy. By abruptly increasing the electric field, the
force balance would be reestab]fshed before the drop hit the bottom elec-
trode. Vquing the evaporatfbn, they found that the electric charge den-
sity on the surface of the drop increased to a value that proddced a
potential gradient of seVera1 hundreds of kilovolt per cm, until finally
one or more small high1y}chérged drops was' ejected; the suspended drop
thereby losing about 30% of its chargelv‘After‘a cbmp]ete observation,
they let the drop fa11”¢n to a fiIter.paper}tb measure its radeS._
.Their‘fésu]ts sﬁggested'that Rayleigh's criterion is COftect.

Three years 1ater, M. A. Abbas and J. Latham (1967) published their
paper, considered as én extension of Doyle‘s work. ~The principle was
almost the same, but;the technique improved. They used a vibrétional
method to produce fine waterdrops. This method had the advantage of |
reduCing-the disturbance of’the’StiT] air between the electrodes caused-
by the spray method. After they levitated the drdps'between the'electrodes,
they measured the radius and char§e on the drops by timing the rate of
fall of fhe drops . ThUS‘was provided a continuous meaSuremeht of the
drop beforé and after disintegration. ‘The drop disintegrated to eject
about 25% of its mass in the form of highly charged waterdrops and then

stabilized. "Their résu]t was very close to Rayleigh's criterion.



But, this work was criticized by G. A. Dawson (1970) who pointed
out;that the external eiectfic field intensity, although several orders
of maghitude smaller than the radial field of the charged drops, can
cause appreciable deviations from sphericity near the instability point
even though the Timiting value of charge is affected very little. (The
external field intensity is usually between 5 and 20 volts per cm, aﬁd
the radial field of the charged drops is usually several hundred kilo-
vdlts per cm. Details will be discussed in section 6.) He also poihted
out that this kind of experiment might be not good for verifying the
theoretically predicted behaviour of an isolated drop, althougB it
probab]y does model quite well the behaviour of droplets evaporating
ih.the electric field of the ameSphere. " The 1evi£ating field in the
1éb0ratory experiment is very close to the actual e1ectricifie1drin
the atmosphere. Later, in 1972, P. R. Brazier-Smith pointed out fhat
with charged drops'one could not use the spherica?_assumption although
it was applied with considerable success to study the stability of un-
~charged drops. |

Despite (or perhaps because of)'these two reasons, research in
this expefiment was. still believed to be worthwhile. In 1973, G. A.
Dawson published his paper, Charge Loss Mechanism of Highly Charged
Waterdroplets in the Atmosphere. In this paper, he studied at
reduced pressure, the loss of charge mechanism and concluded that, at
sea level, instability will be the dominant loss process; at higher
altitudes, the charge loss for drops will probably be by ion collection.
The size of the droplets and the electric field in the atmosphere de-
termine which of these charge loss mechanisms will dominate. He

pointed out that basically Ray]eigﬁ“s criterion still held. The main



difference between his results and those of Abbas and Latham was the mass
loss during the disintegration. Dawson found the mass 10ss to be‘just
a few percent,.but'Abbas and Latham found it to be 25%.

This is the main interest in this thesis. The big difference in
mass loss could be caused by a high and vakiab]e evaporatidn rate resU]ting
from,poof control of humidity and temperature. It is worthwhile to investi-

gate in'more‘detail the charge loss mechanism by ion collection.

1-2  Aims of this Experiment

'The evaporation of-high1y charged waterdrops is'ah intéfesting
experihent. fhis is trué hot oniy because ft can apply'tq the produc-
tion of 1ightning in thunderstorms, But’also because it proQides a good
opportunity to look into the basic relation bétween temperature, hUmidity,
’pressure and chérge. The main interest in this thesis is to investigate
the,different mass losses found by eak!ier workers and the possible
'effect_of>the‘ambient~temperature_and humidity.

Rayleigh‘s critekion expresséd in a mathematical analysis follows
the work -done by C. D. Hendricks and J. M. Schneider (1963).

Different ways to set up‘the experiment have beenitried. For
producing'finé drops, atomizers and hypodermic heedles both have their
disadvantages: an atomizer disturbs the still air inside the field; the
hypodermic needle needs a high pressure to press the liquid. Some new
apparatus is added to the arrangement of Abbas and Latham. The humidity
is increased by evaporating water”into the system, the temperature is
continuously monitored and a TV videocorder is set up‘for‘recording the

data.



Some difficuitfes of the experiment are the difficu1ty;of producing
drOps,_thePnohuniformity of the field, the evaporation-ratg of the dfop;
and the general low level of accuracy of‘the measurement. |

1 The results are expressed in graphs of radius, charge and critical
value vs time. Thé resu]fs of the experiment are‘quite'réproduciblé.
Thé average méssv ioss of the drop is about 23% per disintégrati’on and
charge ]6SS'i§'&bOUt 20%. ‘A1thOUQh the critical value in this experiment
is higher thanvthe‘resujts of earlier workers, 1t Sfi]] préditts the

'disintégrétion quite well. .



2. BASIC THEORY

2-1 Introduction

The forces acting on a charged waterdrop in an e]ectr1c field 1nc]ude
the surface tens1on and e]ectrostat1c force. In this section we calculate
the forces on the drop, including the effect of the shape of the drbp..
Rayieigh'e criterion was derived from the calculation of this force. Most
of these calcu1ationsvfo116w the work done by C. D. Hendricks and J. M.
Schneider (1963). Further details of the calculation are given fn Appendix I.

‘The theOry_of measuring the radius and charge is bresented in section

2-2. An A.P;L. pregram used for the calculations is shown in Appendix II.

2-2 Ray1e1gh s Cr1ter1on
2'2'1' Introduct1on

In 1882 Raylelgh pub11shed h1s famous paper On the Equzlzbrzum of
Liquid Conducting Masses Charged with E'Zectrzc@ty, poi nt1 ng out that
charged 11qu1d drops cou]d become unstab]e under many c1rcumstances,
depend1ng on the charges carr1ed, surface tens1on, drop s size and SO
on. The results were w1de1y used and quoted but, Tike - much of Ray1e1gh S
work, old notation and omitted steps make the der1vetjon of these results
difficult to undekstend. -In 1963, C. D. Heﬁdricks.and J. M. Schneider
succeésfu11y obtained the criterionlin a somewhat more modern and
comprehensible fashion. In this thesis,vI use'Hendkicks' and Schneider's

work as a basis to develop a detailed calculation of Rayleigh's criterion.}

2-2-2  Calculation of Rayleigh's Criterjon (after Hendricks and Schneider)
| In the beginniﬁg of this calculation we state a fundamental theorem
from classical mechanics. This Wiliebe used in what follows: f{t is

that‘fqr any system engeged in7vibrationsiofngffieiently small amplitude



about a position of stable equilibrium, the excursions}from equilibrium
are simple harmonic oscillations. For small displacements the potentia]
energy function will be a homogeneous quadratic function.of genera]ized |
coordinates. What we seek in this calculation is a potentié] energy
function that is a homogeneous quadratic function of the genefa]iied
coordinates. .
First, let us assume a charged drop that is cylindrically symmetric

and, in shape, differs 1ittle from a sphere. The equation of this

spheroid can be written in the following form:

r=a + g anPn‘(cos 8) .(2‘1)

where r is the distance from the origin tp'thekéurfacé of spheroid,
an'<<:ao for all n, Pn is the Legendre Po]ynohialloforder n, and‘é
is.the angle between the z-axis andiradial direction. (See,fig. 2-1.)
a,. and a, are assume to be funct1ons of t1me 0n1y ‘
The volume of sphero1d of equ1l1br1um 1s ca]cu]ated as follows:

]

r2 sin 6 de¢dedr

' Zw
r2 sin o d¢dedr
2 -1

r3du. (2-2)

dv

=
n

§.,
Here, we let u = cos 6. Using the binomial theorem in the form:

;(1‘+ x)% =1+ ax-+_[a(a - 1)/211x% + - - -
fx<<1 | (2-3)
tofexpahd‘r, and s&bstituting in equatibn (2-2), we obtain the following -

expression for the volume of the spheroid:



dé

do

X

-~ Fig. 2-1 Coordinates used to describe the surface of the drop



-hdld

a

1. .
311 oy N
" _/f_lao t+3 g

<
1
wiro

The first term of i‘nt’eg‘ration'l1 will become %ﬂao3, the second term
a2
J__2 n

n + 2
2n *+ 1 a,

I, will become 0, the third term will become’Znag

Details of the calculations are given in Appendix I-1.

‘Summarizing the result, we get volume 'V equal to:-

a y y PN . . '
a3, where a = a (1 ) —~—~—-(eﬂ02) is the raduis. (2-3)
n2n+1 % - |

<
i
Wi
e

This radiué-is that of a sphere of equal volume to;that‘of the spheroid.
The ﬁotentfalvénergy due fb‘thé surface'tensioh;fs equal to the
surque.tensionfmu1fip]ied by the increase in surface area of spheroid
over:the_afbitrary‘kéference suffaée.  The‘arbitrary refgrence:sUffacebis
taken as fhe;spherg of equilibrium. |

The area 1s’g{ven by
j. /.rsmedw¢ (2-5)
coSsS \) “ i

where evahd_¢‘aré”USua1‘sphericancoordinate~vafiab1e$; and v is the angle
between normal to the éurface.and.a~fédia1'1ine from the origfnrthrOUQh the
surface poiﬁt-in.QUéstion;. (See fig. 2-2.) If the equation of the surface

is F(r,e,¢) = o,-the5normal vector is giveh by vF.

F (r,e.¢) r a0 o1 anPn(cos 8) =0 . (2-6)
Suppoée ﬁr’ Ue’ U¢ are the unit(vectqr-of r, 6, ¢ directioh.
0, 9) o2 412y L1 9Fy
VF(r’ 8, ¢) = ar Ur T¥30 Ug vy sin 8 9 U¢
=Vﬁ + qn sine 9 p (W)U (2-7)
. F =1r . d]—‘ nue : ‘



Fig. 2-2 "Definition of the angle v



where p = cos ¢ again.

Thus, the absolute value |VF| ds:

a - i
[VF| = [1 + (r%=1 r—",s‘in ) %J Pm(u))z]2

The quantity cos v is given by:
- %
vF-Ur
| vF|

cos v =

Using (2-7) and (2-8), we find

_ | dp (u) ,
cos v = [1+ (g-i;F_‘ du sin 0)21”
aa dP (u) dP (u)
' “la g + 4 nm._n" m"’
(cos v) +5 }r:n,n

r2 du

Substituting (2-10) back onto (2-5), we getﬁ

2n 1 2on 1
,fo ‘[-1 r‘2du_d¢+%fo S

wn
0

1}

n=1 .
Details are shown in Appendix I-2.

This equation can be rewritten as:

= 2 ' 13 27 -
S = 4nfa 2 + 2§=1.(2n + 1) a % 4'n§=.1

+ an-I n(n+ 1)(2n + 1) 'a 2

41raz+41rz (2n+1) a2+2nZ

du -

)

-1 m,n

(1 - u2)].

dp (u) dP_(u)

a a.

(2-8)

(2-9)

(2-10)

m
&N du

du

n(n+1)(2n'+ 1)'1an2

-l 2
(2n + 1) a

(2-11)

(1 - 2)dy



The first bracket can be recognized from (2-3) and (2-4) as a2. Hence

'S = 4na2 + ZTrZ (n - 1)(n + 2)(2n + 1)'1a 2 (2-12)
n=1 n

where the last two terms of (2-11), have been combined to give the last
term in (2-12). 1f v is the surface tension, the potential energy of

capillarity calculated from the sphere of equilibrium is:
P.E. = 2my} (n - 1)(n+ 2)(2n+ 1) "a 2 . (2-13)

There is another potential energy present with charged dropTets,
the static electric potenfié1 éhergy. If we é$n a1so express this stored
energy approximately_asia homogeneous quadratic function of the an,
we will be able to‘consider ihe a, as.generéiized.coordihates for the

spheroid. We seek an approximation that 1eads‘to’this're3u1t;' A suit-

able approximétion'is to calculate the charge density correct to the first

order, then use this charge dénsity to calculate the second-order perturb-
ation in potential energy.
The equation of the spheroid is then written as:

r=ag+ E aP (u)~a+ E aP (u), (2-14)

since a is different from a, by a_second-order-quanffty and we just
waﬁﬁ_tb calculate the charge density correct to the first order.

The electrostatic potential outside the conducting spheroid may
be expanded in the harmonic series:

- . -n-1
® = klgpo B, T P (n)

where the_conStants'Bn are such that



n=>1, Bn << B0 since a, << ag. Rationalized SI units are used,

, 2 , ,
so k; = Z;%—-= 9 x 10° %§~ . Here, we recognize from the theory of multiples
. _ o} : » ' : , ‘
that B = Q, the total charge on the drop. Since Po(u) = 1, we can rewrite

the series as

o= k@ zﬂ B P, (u)r ™) (2-15)

At-the surface of the conductor the potential is a constant, namely e

where:
= -1 ' p 1-n-1
0o = ki(Qla + LaP ()17 + L P (u)la+ Lap 1)
Using the binomial theorem we find:
-1,.. .an' N : -n-1 an
% = kiQla” (1= PG+ kil ) BPp(u) ™ (1= ) (n + 1) P (u))]

. . a.
Ok Qky oA S 1= Un o+ 1)t P ()
T ;—_g ;*'pn(“) * k12;1 BpPp(u) [ nan ¥ 1

Because an and B, are very small quantities, we may neglect the product of
a and Bn’ énd we get
k,Q k,Q -a | kiB P (u) S16)
o = —— P np (4l Nl . (2-16)

<+
0 a a "a N n ‘a" 1

Equating harmonics of the same order on both sides, we get:

k,Q

a

n+1

) . }Qana Bna . (2 17)



Substituting the relation of (2-17) back into (2-15), we find the potential

of the spheroid is:

n -1
_ ki@ kiQa a b ()
o + 1 n ) (2-18)

The charge density on the surface of the spheroid is given by: .
4o = -'V¢'3‘R=§$-cos v (2€19)

where o is the charge density, n is the unit vector normal to the surface,

and v is the angle between the normal to the surface and the radial direction.

Since cos v differs from 1 by just a small quantity, we méy sét_cos v equal

tO 1. ThUS,

I
.
=

4ﬁo. _
‘ ar lr =a + Ean?n(u)‘

k;Q (n - 1)a,

1
+
L
=
—t

P (n). (2-20)
a2 n=1 _a3 :

Detalled calculation is shown 1n Appendix I-3.

We may ca]cu]ate, approx1mate1y, the Second order change in potent1a1

by using this f1rst order change in the charge density. Using the equat1on

) =;IQF-dA. we get.
f‘” I

Zﬂkl

©-.
1}

p .
n n
3 ]adu

4ﬂa

T



L A 4.2
a a h2n+1 a2

Detailed calculation is shown on the Appendix I-3.
The corresponding electrostatic potential energy, relative to the

sphere of equilibrium, is

=1

. k02 - 2
S k@ n-1 3, (2-22)

2 -hn 2n +1 a3

This is the homogeneous quadratic function of the a, 's that we were
seekihg "The minus sign here means the e]ectrostat1c force is opposed to
the surface tension.

Now, we can calculate the kinetic energy for the drop. After the
kinetic energy is found, we can form theALagrangiaﬁ function and find the
tfme variation of a. |
Since_the drop is assumed homogeneous, inviscid and incompressibie,

we may assume the éXistnCe of a harmonic velocity potential ¥. This:

velocity potentia] may be expanded in the series:
_ - , . n B _ .
y =g + I B,r Pn(u) . (2-23)

The kinetic energy K is given:

K=%[[[ pdV——-[[fVWV\deV

where v is the velocity and o is the density. V is the volume. Since V¥

is harmonic, v2 y = 0. We use the identity V-¥vy = vy-vy + yv2y,



‘Thus, V-yvy = vy-v¥., Using the divérgence theorem we find,

K = %[/f VY -vy¥pdV = %—p// \y%:i r2dudse . (2-24)

Since the f1u1d is incompressible, p is constant and it can be brought in
front of the 1ntegra1. From (2 24), using the equat1on of the sphero1d
(2-14), we get:

k=3 JC]; r2dedu = 3 o J[)fw a2dedy . (2-25)
Here, we neglect the terms containing a. The kinetic energy is:
aZ L _1 Wﬁ! du
. e 1 or H

o 1 ’
a2np. Jr . I8, *+ ] . BnrnPn(u)][gzl anrn—l- 'Pn(u)]du

- ) n=

-~
]

Al

: 1. |
2 n-1 s D Z2n-1 2
asmp f . [Boganr‘ ?n(u) +.‘rZ\8n nr pn (u)]du .

The first term will become zero, because of integrating of a single Pn(u) .

. ThUSs »

. ' 2
2n-1 _fn”
2n + 1

K=a2mp nr

Using the eqUatiOn.of the spheroid and neg]ecting»the_highek order terms,
we get

2 i
2n-1 B X (2-26)



‘The Bn's are unknown, but we can find them by calculating the velo-

city of the surface in the r direction from eduations (2—1)"and (2-23).

dr da da
—=—+ 1  —Tr ()
dt dt n=1 dt
da
=) —Np 2-27)
fel 3¢ n(u) (” )
¥ ) n-1 o : .
vy = ;;—qr‘- nﬁl.sn-n r .Pn(u) . » (2-28)

Comparing (2-27) and (2-28), thanging r to a + g.anPn(u) and

neglectihg the higher order terms, we get

da

_n . ns, a1 (2-29)
dt
Substituting (2-29) back to (2-26), we get the kinetic energy:

o ;1 o . -1 .,‘- )
K'=2nad Jn’' (2n+1)7 a2 (2-30)
The Lagrangian function is given by:

L=K-PE. -W
L=2ma% [n(2n+1)7187% - 2oy f(n - 1)(n + 2)(2n + 1) 2
n
-1 an24
+ 7 (n - 1)(2n + 1)"'Q2k, 20— (2-31)

n 2a3



The Lagrangian equation of motion for a_ is

d ,oL v _ 4oLy _
3—-(~§~? - (aan),— 0
gf-(§%~) = %—- 2na392n‘ (2n 3+ 1) 12a. )
’ n
= 4ﬂa3p§ nf1(2n + 1)-15; (2-32)
AL & iyl f P ) 2a o
(53*0 = -2n yJ(n - 1)(n + 2)(2n + 1)° 2a + Z(n - 1)(2n + 1) Q ky—2
“n . - 2a3
(2-33)

Combining (2-32) and (2-33), we get

‘sz'

2nadpn '3+ 2y (n -'1)(n + 2)a 4'(6 -1)—La =0,
: n : n, . 2% "
or dzan. n(n - 1) CkiQ2 B
2+ [(n+ 2)y - ]an = 0. (2-34)
dt? pa3 - _ 4na3

This'is>the familiar resuit obtained by Rayleigh. If an « cos(wt + §8),

then
n(n - 1) k,Q2
w2 = —— [(n+2) vy -
pal - 4qa3

1. (2-35)

Thus, if k1Q2 > 16ma3y, the droplet is unstable for all values of n below
a_cfiteribn 1imit. The drop may brgak'intoismaller drops or, as usual,

it may eject a smaller drop carrying charges away to regain stability.
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2-3 _Determination of the Radius and Charge of the Drop

Whén a'chérged-waterdrop is levitated at avéonstant level, tﬁe
e1ectrostatic-fofce and buoyant force must balance the gravitafibnél'
force. Thus, we éan write the equation: (see figure 2-3)

TR, = 0,)g = Q Ey» (2-36)
where R s the radius of the drop,

Py, is the‘denSity of the water, 103 kg/m3,

0y 1 the density of the air, 1.293 kg/m3,

- g is the: acceleration of grav1ty, 9 81 m/sec2 1n Thunder Bay,

Q is the charge on the drop, and

-'Eb is the balanced electric field.

Since p, << o, » We set o, = 0 in equation (2-36).

1if wejSUdden1y reduce the e]ectric field, the drop bégiﬁé-id
fall. The force acting onvthe_fallfng drop are the gravitationa] force,
the'redUCed’electfic force and‘Sfdkes} fokééi"(See figure 2-4.) Using
NeWton's Second Law, we obtain the equation of motion:

4 o3
3 R0y,

ala -
<

= %-nRBQ g +QE, - 6miRV, (2-37)

‘where V is the ve10c1ty of the drop,
o n is the v1scos1ty of the a1r,‘182 7 x 10 7 kg/msec, and
Er is the reduced electric field.
Calculating theichargé Q from eduatibn‘(2-36);“we éet :

*fR3;pQgEg% - (2-38)

o
|
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‘Fig. 2-3 Motionless charged.drop levitated by the electric
field -
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Fig. 2-4 Charged drop falling under réduted‘e]éétric field



Substituting (2-38) back into (2-37), we get

. , : E:
, 4 : r.
2R3 9!~~-6nnRv -3 wR3 o L g+E RS 5 g
S E
d 9n ry .
av o 9y _ g1 - 2.
at = R2 9( b)
) 9 EY‘
Let A = - 5 B =g(1-§): We get,
dv ot
ai" AV~ B . (2-39)
Theﬁsolution'of_(2539)lis:
v=-2a e Aty (2-40)
x=-8¢4bB (1A (2-81)
A A2 B
when t = T x = -D, SO
p=B871.-B (1M (2-42)
CA A2 :

Let us estimate the number AT. Suppose the radius is 60 um (60 x 107 °
and the falling time is 5.4 sec.
These numbers aré-téken from expefimenta1 results.
9 x 182.7 x 1077

AT = —— ——— x 5.4 = 123 .
' 2 x 36 x 10 '

-AT

Thus, the number e actually is very small. We can drop this term

in the equation.(2-42).[’The simplified equatioh is

m),



e

- § -
- %—T s+ 2 (122427 (2-43)

‘>h~

Substituting the values of A and B back into the equation (2- 43) -we get:

R2 ='Qﬂ~;{r t (T2 - E )" ]
| Pw g(1 - -
=TT (1-— )4
v g(1 - D12
By

In this experiment, E, is chosen 97.5% of E,. The distance of fall is
5cm. In a typical case, the falling time is 5.4 sec.t:The_value of

,4D  s appkOximatéiy 0.028, which is small cOmparéd'to 1.

- =yy2 o : _ :

9(1 Eb)T Using the binomial theorem and choosing the negative sign
in the equation, we get: |

Re =90 (2, . (2-44)

4o, > _ i
v g(l—-Ef)T

This equat1on can also be obta1ned by assum1ng that the drop fa1ls the
whole distance D at terminal velocity. o | |
we now have the resu]t that the rad1us and charge of the drop

can be determ1ned from equat1ons (2-44) and (2 38)



(2-44)

(2-38)

(=]



3, APPARATUS |

3-1 Main Description

‘The - apparatus is designed to produce fine waterdrpps and built
embodying the principle of the Millikan (1935) oil-drop experiment
(figure 3-1). The whole apparatus sits inside a vacuum evaporator* on
the top of»2.54.cm‘thick alumihum plate, coveréd with a g]ass:jar 17.78 cm
in radius and 60.96 cm in height. The purity of water used in the expérfe
ment may be an important factor, so filtered distilled water was used.
The‘method for producihg fine water drops by the vibrational method, based
on the device of B. J. Mason, 0. W. Jayarétne'qnd J. D. onds (1963), will
be described in detai]rin the next section. AThe.yeftica] electric fié1d
required to levitate the waterdrops iS‘applféd by twé'par611e1'a1uminum
pIdtéS'15.24 cm in radius and 1.77 cm in thickness. The p]afes are pé]ished
smodthiy and rounded'at the edge to provide a mdderately uniform electric’
field at the centre. |

In the center of the top electrode, a small hole is drilled to
let the drops fall into the field region.. A gate'device whfch‘can be
closed immediately after a suitable drop is chosen sits on the top electrode.
It 15 a movable a1uminum plate connected to a solenoid and powered by three
6-v01t-batteries‘cohneéted-in series. (See figure 3-2.)

The distance between the bottom plate and the lower electrode,
the distance bétweenielectrodes, and the distance between the top
electrode and. the Plexiglas plate where the vibrationalAapparatus sits

are 15.24 cm, 11.43 cm and 12.70 cm respectively; Plexiglas rods of

*The major components are shown in table 3-1.
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TABLE 3-1 Major Components of Apparatus

Component

Evaporator

600V D.C. Power Supply

Digital Voltmeter

6 KV.D.C. Power Supply
Recorder

Transforﬁér

Compressed N2

6‘V01t_Battery

Manufactured by
NRC

Hewlett Packard

 Fairchild

- Sorensen

Bausch & Lomb
Leybold
Canadian.Liquid;Air

Eveready

ModeT
3114

712 ¢

7050

9005-5
VOMT

591 05

—_——



1.77 cm radius are used for support.

A continudus]y variable voltage is applied across the electrodes
from a D.C. pdwer supply. The field voltage is measured by a digital
voltmeter. The waterdrops are charged by another D.C. variable bower’
supply. The cabTé connecting this high'vo1tage and needle is shielded
and.grounded_to prevent any affect on the electric field. VThe-inSide
of thé glass jar is shieided with a-grouhded aluminum foi1 to prevent
~electrostatic effects.onfthé electric field or the drops. Black
conducting paper is p]aCed-over the foil to‘provide better viewing.

Two holes are left in the foil; one for the 1ight to enter, the

other for viewing. The 1ight source used in'fhis exbekiment is a

500 Watt projector lamp with a heat filter made of glass box containing
cupric Chloridé so]Ut{on. The purpose of the heat filter is to

reduce the heating effect of ther1ight'on'the éir inside_the'jaf and

on the drop itself. Nevertheless, some convection currents were still
preéent. 'A.resistancé wire was used to heat water in a glass vessel

to increase the humidity inside the glass jar.

The first vacuum feedthrough at the left in figure 3-1 is an
electrica]'conhection} It has 8 connecting pdints; Numbers 1 and 4
are connected to the electrodes and a 600 V D.C. power supply. Numbers
2 and 3 are connected to the earphone (described in the next section)
and audio oscillator. Numbers 6 and 7 ake connected'toithe solenoid
andibatteries. Numbérs 5 and 8 are connected to the resistance wire
and transformer. jThe second feedthrough is:for highlvo]tage. It
allows the néed]e_to be connected to a 6 Kv-D.C. variable pbwér supply.

The last bne'is a pipe connection joining the syringe and.compressed
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nitrogen used to control the flow rate through the needle.

3-2 Production of Fine Waterdrops by a Vibration Method

3-2-1 Introduction

The most successful method of producing fine waterdrops of radii
in-the range of 15 um to 500 um involves the break up of a mechanically
vibrated jet of 1iquid, the theory of which was given by Rayleigh (1879).
Some other ways have been used; for example, an electromechanical trans;
ducer to introduce pressure fluctuations directily into the 1iquid prior -
to‘its emergence as a‘jet; However, if a unjform, stab]e.f1ow is needed,
the_best way. is still ihe vibration method.

| Dimmock (1950) first designed a vibrating device based on the
principle of RayTeigh. The device is capable of producing fine drops,
but.ft is very difficult to obtain>reproduciab1e and stable modes of
vibration and the sizes and directions of the streams are variable and
difficult to control.

In 1960, Schotland reported that he had used a vibrating hypo-
dermic needle to produce drops in the radius range 150 to 500 um, but
his paper gives no experimental details.

The apparatus used in our experiment is based on the device of
B. J. Mason, 0. W. Jayaratne and J. D. Woods (1963). The purpose of
their work was to produce a device to study the collision and coalescence
of small waterdrops. It has proved to be useful also in the production
of fine waterdrops for evaporation. The device produces directed streams

of waterdrops of very uniform size with radii in the_required range.



3-2-2 Construction and Operation

A general view of the device is shown in‘figure 3-3. The holder
of the éyringe* and earphone** is made of Plexiglas. The earphone part
is fixed, but the Syringe part is adjustable, the needle going right
through the hole in a spigot.*** The position of the needle may be
adjusted by ;hanging the holding position of syringe. More details
of the construction are shown in figure 3-4. A stainless steel tube
of 101.6 um inside diameter and 203.2 um outside diameter, through
which water is forced at a constant"raté, fits snugly into a small
central hole near one side in the cylindrical spigot, which is cemented
to the center of an iron diaphragm of an electromagnetically driven ear-
phone. The‘energizing coil of the electromagnet is connected to an
audio oscillator and power supply which causes the needle to be vibrated
méchanica11y‘by‘the movement of the diaphragm and spigot. The frequency
of .the oscillator fs adjusted until alresonant mode is reached with an
ampfitude of seVéra] millimeters. The resonance frequency which is
quite sharply defined is determined not ‘only Ey the heedie,‘but’a]so
by the size and mass of diaphragm and spigot. For example, in this
experiment a 7.5 cm long, 101.6 um inside diameter tube driven at'a
point 5 cm from its tip resonates at_abOut-BlO Hz, a change of + 10 Hz
>being SUffjcieht to damp the oscillation completely. To ensure that

the needle vibrates in the same stable mode for long periods, it is

*; 'The'syringe is made of Plexiglas, 0.76 cm in radius, 6.43 cm in length.

** The earphone is made by C. F. Connon Co., Springwater, New York,
Brand: Alnico Magnet No. 25.
Hhk The spigot is made of Plexiglas, 0.37 cm in radius, 1.90 cm in length.
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necessahy'to prevent it from moving in the spigot; this is achieved by
the small locking screw at the end of the spigot.

The stability of the droplet stream is particularly dependent

upon the flow rate of the water and it is essential to keep this constant.

The water is forted from the reservoir by the compressed‘nitrogenu 'Thet
nitrogen supply fs maintained at constant pressure controlled by the
regulator. A needie valve and 'T' tube connection are ﬁlaced betweeﬁ,
the nitrogen and syringe for releasing the pressure when not in use.

| Far a-inen_need]e-and amplitude, a critical volume of water -has
to,accumulate'befofe it is flung off by a change in direction of
the needle. At low flow rates the needle may-vibrate'seteralitimes
before the critical volume of water accumu1ates; there is a tendencyeto
eject th1s as a s1ngle drop “As the flow rate is increased, the water ;
comes out cont1nuous1y and breaks up into small masses. After;travelling
about 1 cm, the'drops assume a spherica1 shape. Dfops of different'sizes
are projected in d1fferent directions and produce separate streams, the
number of which may a]so be controlled by the frequency and amplitude
of the vibrations. The needle used in this experiment is quite Tong,
sotthe’pressure change'in the compressed'nftrogenldoes‘not‘gfeatly
affect the flow rate. This 1sfvery he1pfu1 in kez2ping the f]ow‘tate
coﬁstant. | | i '

If the need]e vibrates in one p]ane;Athe majpr and satellite

streams are almost cop]anat but, more usually, the tip vibrates in
a circle, an ellipse or a figure of eight. Then the droplets are flung

off in different directions.
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3—2—3j Control of Droplets' Size and Frequency

The main factors determining the size of'drop]ets are the flow
rate of water (mentioned in section 3-2-2), needle diameter, the resonant
frequenty and the amplitude of vibration.
~(a) - Néed1e tiﬁ.diameter

A 101.6 um ihside diameter stainless steel tube is used as the
needle. It is chamfered 30° to produce the drops. The needle is long
enough (7.62 cm) to dampen flow rate charges at the tip underAthe
inevitab1e,f]uctuating pressure. If drops of.differenf radii are'needgd
‘we just change the tube to.a_iarger'sfze; B .
(b) Resonance frequency
| The resonance'frequency depends on the Tength'of the needle, the
position where.the‘spigOt is driven and the mass of spigot and diaphragm.
It is very Criticél,'so usually it takes tihe to find out the fkequency,
‘éspeciajly.if‘the position df the spigbt:position is changed. The'range
is of the order of + 20 Hz at 300 Hz. | |
(c) Amplitude of Vibration

It is often convenient to fix all the other factors and to vary
the droplet éize's1ight1y by adjusting ihe output amplitude of audio

oscillator and hence the amplitude of the needle oscillation.

3-2-4 Production of Highly Charged Droplets

' When a highly charged droplet is heeded,~a 6'KV variable D.C.’
pbwer Supp]y is connected to the needle. The drops split wHen abOuf
5 kV is appliedrandiproduce drops of radius 200 um even without |
'vibratidn; If Vibrated, the needle wi]i produce highly ‘charged drops

of 15 um radius or even smaller.
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3-2-5 Conclusion about the Vibration Method

The vibration method is very useful for the production of drop-
lets in the range of 15 um to 200 vm needed in this'experiment. There
is still one drawback which arises from the change in the position qf
the spigot when the reservoir is refilled, necessitatingfé slight ad-

justment of the frequency each time.

3-3 Field and Time Control

The method of measuring the radius and charge invd1§es reducing
the'e]ectric fié]d sUQdeniy and thenadetermining the time for the drop‘
to fall‘through a_f%xéd d%étancef The ratfo of reduced field to the
original field should be a fixed number. A small potentiometer is
used as shown in figure 3-5. A double pole swit¢h andltwo'resistbrs,

R1 aﬁd R2, aré.keptvin a-Smal] box work as-a potentiometer. The vé]ues
of;Rl‘and R2 are 1.02 x 107 @ and 1.45 x 105 @ féspectiveTy. When the
.reddced fie]d'is.réquréd, the potentiometef is switched in(and the
voltage is reduced to the 97.5 bércent of the original baianced'vo1tage.
Simultaneously, the other side of the switéhgiélshorted, so‘the timer
starts- to record the time until theiswitchlis released. This small
potentiometer thus provides an automaticftime recorder. A precision
digital voltmeter is placed across the electrodes so that it will give
both the balanced voltage and the reduced voltage. A recorder is placed
in parallel to the 600 V D.C. power supply so that it will record the

voltage as a function of time during the measurement..
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Fig. 3-5 Diagrah of circuit for reducing the é]ectric fiéld‘



4, MEASUREMENTS

4-1 Procedure of Measurements

Smal1'chargéd waterdrops are produced as described in section 3.
The hole on the top e1éctrode is opened by cohtrd111ng the solenoid, with
the result that_thé‘drops fall under gravfty and enter thev111umina£ed
field. A suitable drop is chosen by adjusting the potentia1’differEnCe
between the horizontal electrodes; it can be manipulated so that it remains
in the field. The top hole is then closed to prevent more drops coming 1ﬁ;
all other drops régiding between the field will soon driff-out of the
field since théir charée»to mass ratio will in.genera]ldiffer from thét
required for levitation. This is the well-known Millikan method. (See
figure 2-3.) The charge and radius of this drop are determined every
30 séEonds;_ Two-meé$urements are required.- One is'thé~e]ectkﬁc field
needed to sUSpendithe‘dkopJSb that it<i5'mot16n1e§s.’ The other is the
time necessary for the drop to fall a distance D in‘thé_redUCed»fié1d Er,
This réduééd field is obtained by means of a switch as discussed in section
3-3. The distance of ‘fall is marked by two 1ines drawn on the viewing
window and two other lines drawn at the same level on the~dther'side of
a glass jar. ' This prevent para11ax during measurement. It is hard to
get.accurate‘timing. The uncertainty is large, but it‘is st111 possible
to know the radius of the drop within + 10%. The field required to sus-
pendfthe drop before the disintegration occurs decreases gradually and
confinuously as the evaporation proceeds. Evaporation thus produces an
increése‘in the charge to mass rafio,of the dropf When a disintegration
happens, the drop fa]]s‘quickiy‘and the field strenath mustrbe increased‘_

abruptly in order to .retain the resjdua]vdropTét betWéen the electrodes.



With some practice it is possible to suspend a droplet throught a succession
of disintegrations. Each disintegratiqn is accompanied by a loss of about
20% to 30% of the charge residing on the droplet. The mass loss in a dis-
integration is around 20%. No measurab]e loss of chargé occurs during

‘the intervals between successive disintegrations, but the radius'decreéses

coritinuously in these periods.
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5. SOME DIFFICULTIES IN THE EXPERIMENT

5-1 The Drops

When the needle vibrates, the drops are thrown about 7 cm hori-
zontally away from the needle. (See figure 5-1.) This distance depends
on the ffequency and output of the audio-oscillator. If we put a high volt-
- age on_the‘need1e and thus charge the drops, they are thrown even further.
(See figure 5-2.) If we want the drops to fall vertically into the elec-
tric field, we need to put the needle about 12 cm away frdm the centre.
(See figure_5—3.) Because of the narrow space inside the glass jar
(35.56 cm in diameter and760.96.cm in height), it isAhard to put the
needle in-tﬁis position. |

To solve this problem, I tried many methods. First, I tried
to pdt a high voltage ring around the needle to produce a fﬁeld to
change the direction of the drops by electrostatic repuTSion. "Second,

I tried to pUt a ring carrying a‘sma]]ivo1tage'around the centre hole
to attract the drops. Third, 1 tried to produce a strong non-uﬁiform
field to charge the drops and then use a small field to attraét the.
drops fa]ling vertically through the hole. However, the more fields

I uséd, the more'comp1icated‘the situation became and the more diffi-
cult it was to control the drops. Finally, I solved the problem by
using a big glass cylinder to éupportlthe whoie Vibratihg apparatus,
with the needle a little off the center. (Sée figure 5-4.)V When the
drop charging is initiatéd, some of the drops are repelled by the first
few drops that Tand on the glass and then fall through the hole. The

drop ‘size could be controlled by changing the output of the audio

40
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Fig. 5-1 Uncharged drops are Fig. 5-2 Charged drops
thrown about 7 cm away from are thrown even farther

centre hole

.
—

Fig. 5-3 1Ideally the drops Fig.'5-4 The drops are repelled
can fall into the electric by the glass wall and paSS

field vertically through the hole



oscillator, that is, changing the amplitude of the needle vibration. (See
section 3-2-2 (c).) §ometimes, I could even select the number of drops
falling into the fie]h. That had the advantage of avoiding too many
highly charged drops falling into the fieId at the same time, causing

a strong mutual repulsion.

5-2 The Field

| The uniformity of the levitating fie]d fbr suspended drops
is important. A small degree of irregularity céuses‘the drops to drift,
sometimes to the point where they cannot be controlled at all. To
counteract this tendency, the e1ectrodé_(30.48 cm in diameter, 0.635 cm
in thickness) is made as smooth as posﬁibTéfwith a flat 1nside_p1ane but
some unevenness still remained (+ 0.005 cm) . The-grdunded foil on the
glass jar affects the field, especially at’the edge.. (See figure 5-5
a,b). But, if we always keep the drops at the centre pért of the fie]d,
the effect is very small. The hole in the top electrode affects.the
field also, but it Was made as small as possib]e to avoid éerious dis-
tortion of the uniform field. The drop is usually suspended about 3 cm
awayifrom the top'e1ectrode; so the effect of that hole probably is
very sma11 (1ess than 0.1% of the field).
5-3 - The Evaporation Rate of the Drop

The eyaporation rate of the drop depends on the ambient
temperature, the humidity inside the glass jar, the temperature of
air circulating inside the room, the absorption of heat from the
illuminating device, and the initial temperature of the drop.

Because the volume of the drop is small, the force exerted
on it is small too. A 70 um radius drop experiences a gravitational

force 01”1.4‘1»«10'8 N. Thus, some small factors which are normally
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neglected must be considered carefully in this experiment. The heat
transferred from Tight is one. The projector used in this experiment
produces a wide spectrum, and the absorption of water ié different for
different wavé]éngths. A heat filter is used, made of cupric chloride
solution contained in a glass container (7.62 cm in diameter and 15.24
cm in length). The efficiency of this heat filter has not been tested
accurately, but nearly two-thirds of the heat is removed: this figure
was derived from a crude measurement using a precision thermometer.
The distance betWeen the projector and the drop is é factor also.
Usually, the distance is around 200 cm. In a sub-experiment, a higher
evaporation rate was found when the distance was reduced to 60 cm.

The‘f]uctuation of room temperature, whithlis.pdor1y controlled,
is probably the biggest factor in the evaporation rate of the drop.

When the room temperature is increasing, thé.evapOration'rate increases
markedly. Even just a few degrees Celsius change in the room témperature
affects the evaporation rate almost immediately. 'To'sq1ve this difficulty,

the temperature is recorded continuousiy and the expérimeht is always berformed
at a time of stable temperature. Extreme circulation of air in the room was
prevented by blocking the outlet of the yenti]ating system. A decreasing
temperaturé helps the drop last Tonger; that is, it causes a lower 9vappr-
ation rate. This effect could not be accurately measured with the equip-

ment at my disposal.

A high humidity inside the glass jar causes a lower evaporation
rate also.- In the beginning of this experiment, much time was wasted
because the humidity inside the jar was low:. ‘I tried to run the experiment
right'aftef I closed the glass jar, but faiied to catch fhé drops. vTher

drops moved very rapidly and disappeared. It took a great deal of patiencé



to discover the reason. After I put a vessel of warm water into the‘jar
and_1eft it overnight, the situation became somewhat better. 1 was able
to catch and control the drops. The humidity is now raised‘by‘heating
water inside the glass jar with a low-voltage resistance wire. After
20 minutes or so, high humidity is reached and water condenses or the
glass jar. The current is then switched off and the system 1is left
overnight to reach equilibrium.

5-4 Some Difficulties in the Measurement

The drop éize is small, usually around 70_um. It is very hard
to look at the drop in the field even though the background in the jar
and room is darkened. Thus, it is necessary to relax the eyes after
each measurement.

The position of the‘drop is judged by the eyég S0 unCertéinty
is involved, especially when the falling velocity is fast; Parallax
causes some uncertainty too. The hhcertainty_is discussed in section 6.

Great care was taken to determine the balanced field precisely.
This is important since the whole measurement depends on only a 2.5%
reduction of this fie]d. | :

If the evabbfation is fast, it is impossible toAmeasure the
size of therdrop. Since the drop must fall for at'Téast,3'seconds.
thrOUQh the vertical measuring distance, the measurement will be in-
accurate if the radius changes appreciably in this time. Sometimes
it is necessary to reduce the field continuously td balance the drop,
since it is evaporating. At times, the drop does ﬁot fall, or it
falis a small distance and then rises up again, when the field is

reduced. Details of this are discussed in section 6.
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As mentioned at the.beginning,'the size of the drop is small.
Thus, when I do this experiment I must concentrate on contro11ing the
drop in the field. I cannot record the voltage of the balanced field
and the time of the fall as well. A TV camera was used to take pictures
of:the timer and digita1'v01tmete‘r't The data was recorded on video

tape so that it could be examined after several drops were processed.



6. RESULTS AND DISCUSSION

6-1 Results

From Rayleigh's criterion, we may expect that:
k,Q2 < 4n(n + 2)R3y (6‘1)

where'y is surface tension, n is an integer greater than or equai to 2.
During the progresé of this experiment, approximately 100 different
drops4Weré éxémined.

'First, we look at the results for the negatively charged drops.
From figure 651,3which pldts the radius, charge and critical function

against time, we can see a typicaT'result of the experiment. (Exact

data are shown in Table 6-1 and a-samp]e‘gdlcu1atibn is shown in Appendix

I11.) From the'top we see that the radius of the “rep R decreases con-
tinubus]y, until a disintegration happéns; the radius loss is about 6;22%
This corresponds to 17.53% loss in mass. From the midd]é g}aph we see
that thé'charge always. keeps constant, until the dﬁsiniegfatioh happens
with a loss of 19.4% of charge. From the bgttom craph we see that the
critical function increases and reaches its highest.&&]he'at'the dis-
fntegration point. After the disintegratibn, the value of the critical
function becomes lower, the drop becoming more statle. But, after_a
few seconds, another disintegration hapbehs and the mass 10ss 15 large,
so that the drop hits the bottom .electrode before the field can be
increased. Figures €-la, 6-1b and 6-1c show the radius, charge.and
critical function vs timevin large scale graphs.

Now we consider the pbsitive]y charged drops. Figure.6-2,
whiChip]ots fhe radius, charge and the critical functioh against time,

shows a typical result. Exact data are shown in Table 6-2. .There is
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TARIE 6-]1: Data for figure 6-1

Time (s) Radius (, m) Charge (10-11 ¢) critical Value
34 67.58 0.956 0.728
50 64.65 0.887 0.716
70 68.52 1.121 0.961
83 64.89 1.001 0.901
98 65.81" 1.098 1.040
113 60.56 0.908 0.912
126 61.09 0.988 1.052
143 59.40 10.966 1.095
162 58.02 0.986 1.226
191 53.71 0.890 1.258
210" 53.48 0.980 1.547
231 53.94 1.128 1.994
245 50.63 1.013 1.948

259 45.24. 0.801 1.706

(NEGATIVE)



TABLE 6-2: Data for figure 6-2

Time(s) rRadius( u m)' Charge (10f11C) Critical Value
10 78.79 1.541 1.194
22 79.53 1.653 1.335

36 76.68 1.536 1.287

50 79.38 1.805 1.602

70 74.50 1.570 1.467

90 73.41 1.602 1.595

107 - .73.53 1.690 1.767
126 72.37 1.710 1.897

145 68.33 1,556 1.867
160 65.81 1.460 1.838

191 63.71 1.526 2.215

217 64.81 1.758 2.793
239 61.72 1.672 2.925

257 56.82 1.423 2.712

274 61.37 1.943 4.019

302 56.94 1.631 3.543
336 48.97 1.153 $2.785

(POSITIVE)
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no measurable loss in the radius and charge at the first disintegration.
The reasoh is probably that the mass and charge loss are small. From the
critica] function figures we know that after this disintegration the value
of the critical function is lower, and the drop tends to stabilize. The
second disintegration occurs with a 14% loss in radius, that is 36.4% Toss
in mass, and 28.9% loss in charge. Again, the value of the critical func-
tion tends to an even lower value. Figurest-Za, 6-2b and 6-2c show the
graphs on a larger scale.

The average radius 10ss in the measurement is 8;041% and the
average charge loss is 20,788%: that is quite é]ose to the predictioh
of Abbas and Latham. Table 6-3 shows thé'va1ues'of charge and radius
loss for 9 cases.

.Thé absolute value of the critical'function'iS'a]ways higher
than expected. (Ray]eigh3s criterion predicts 1. The aVerage‘va]ue
in this expériment is 3.78.) However, the éxperimenté1 result still
shows a very good predidtion; the disintegratidn happens when the
value of critical function reaches a highest point and regains
stability after disintegration.

Figure 6-3a shows the radius vs charge at the disintégratibn
point. The result is not close to the theoretical prediction. The
theoretical result predicts k1Q2/167R3y = 1, while the average experi-
mental result is close to k;Q?/16nR3y = 3.78. The values of radius
and especié11y chargé are unreasonably high at the disintegration
point. This will be discussed later. If we believe that there is no
possfbility for the charge on the drop to increase during fhe measurement,
we can take the averace va]ue of charge measured before the disintegration

to correct the higher value. Figure 6-3b shows a araph of radius vs
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T1ABLE £~%: Data for 9 cases of Radius and Charge Loss

Case - Radius Toss (%) - Equivalent mass 1055(%)' Charge 1055(%)‘

1 8.9 24..42 19.92
2 9.64 26.22 21.64
3 6.2 17.53 19.4
4 14 36.40 28.98

5 7.7 21.40 7

6  6.14 17.32 13.23
7 8.4 22.24 30.10
8  9.08 24,84 27.79
9 6.275 17.67 19.03

(BOTH SIGNS)
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corrected charge. The critical value given by‘this corrected charge
is 2.422 whiéh is still somewhat 1ar§ef than the theoretica] value
of 1. Exact data are shown in Table 644. One possible fault in the
measUrement is thé non- uniformity of the electric field. The field as
madé slightly non~uniform in order to keép the drOp‘in the centfa11region-
of‘the electrodes. Fdr a hon;pniformityAOf aréund 1%‘thé effett.on.the4
result of measurement could be around 6%. | |
Other workers have not presented enouphrdetailed data in-their 

papers to allow me to check their resu]tsf It is hard to belijeve that
the'difféfence between their results and mine is due to a large systematic
error in my experiment. The possibility of ay'Super¢hiti;a1' condition
rprobab1y needs to be he~¢onsidered. 'Bacausé;df the symmetry of thé:drop,
when‘the c?iticaJ point is reached, the drop'nrobab1y cqu1d pass the |
critical point and a JSUperCriti§a1"condition probably’éxistﬁ;':The7othEr
pqééibilfty'comes from Ray]eigh‘é‘critérfon, k;Q2/4%(n + 2)R3y, when .
n is an integer larcer or equal to 2. Earlier workers all agree that
the critical value is reached when n is équaT to 2. However, according
to the formula, the critical value could go hiqher-when'nfi5'1argef
than 2. It is possible that values of n that are larger than 2 have
a. physical meaning, and that the'drbb be sfab1e'wheh the critica1 function
is much larger than 1. |

| The drop always fal]s‘faster'just before the disintegrationvpoint;
This causes the higher values of the calculated radiu$ and charge. (See
figure 6-2.)  For thé'fikst disintegration point. the r&didg is 61.37 um,
whijé:it should be 59 umVBy'predictfon._ The charge is 1.943 x 107! ¢,
wh{le‘it shodid:be.1,€3 x loﬁil_Cb, If We'peTieve that the mass_of the drop

cannot increase, the on1yfeXp]anation is that thg‘charge,léaks. Because of
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TABLE b64: Data for figure 6-3a, b

Radius(um) Charge (10~1lc) crit. Est. Charge (10-llc) Est. cCrit.

62 2.56 6.877 1.467 2.22
67.44 1.895 2.878  1.609 2.076
68.04 2.161 3.646  1.697 2.24

173.89 2.509 3.837  1.823 2.842
65.56 2.561 5.727  1.614 2.273
60.10 1.631 3.010 1.454 2.394
55,54  1.874 5,039 1.874 5.039
51.70 1.352 3.250  1.201 2.567
67.30 2.806 6.349 1.433 2.726
51.06 1.692 5.204 1.692 5.294
62.95 2.115 4.409  1.770 13.566
63.55 2.086 3.3245 1.347 1.967
74.13 4,027 9.79  1.470 1.3048
42.27 0.866 2.441  0.866 2.441
40,71 0.883 2.842  0.883 2.842
50.28 1.39 3.7386 1.149 2.556
49.466 1.048 2,23 1.048 2.23
50.625 1.136 2.847 1.095 2.27
79.68 2.717 3.5886 2.119 2.28
44.1475  0.904 2.335 1.036 2.335



Radius(um) Charge (10‘110) Crit.

41.63
53.30
65.96
57.22
53.30
55.76
53.62
49.18

42.45 .

61.37
56.94
47.787
50. 625
45,24
40.32
62.00
58.19
56.99
51.499
48,08
46.65
51.175
40.126

1.011
1.540 -
2.354
1.781

1.503
1.327

1.4

1.16

1.079
1.943

1.631

1.314
1.014
10.801

0.48
2.267
2.014
2.029
1.569
1.422
1.008
1.795
0.790

3.467
3.872
4.7439
4.1674
3.67
2.50
3.127
2.785

3,743

4.0186

3.542

3.891
1.9477
1,766
0.865
5.303
5.061
5.471
4.435
4.471
2.462
5.676
2.379
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.631
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.014
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.804
.795
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"Est. Charge (10-11c) Est. crit.
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467

.33
.878
.318
.67
.50
.855
.785
743
.799
.542
.596
.874
706
.865
303
.061
.471
.435
471
.565
.676
.379
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the_high_humidity inside the jar, the electrical conductivity of‘the humid
airhis’probably very high too, but the exact figure is beyond the range of

this thesis. The shape of the drop could also affect the result, but more

theoretical calculations must be made before anything definite could be said.

6-2 TheiUncertainty'in the Experiment

The radius is calculated from:

R = Gog) Q) - (6-2)

Suppose the viscos1ty n, dens1ty o and grav1tat1ona1 accelerat1on g
are exact. The uncerta1nty comes from the t1me of fa111ng T, the d1stance
of fa111ng D, and the rat1o of reduced f1e1d to the ba]anced f1e1d a.
The uncerta1nty of o was tested and found around 0 1% The est1mated
uncerta1nt1es of T and D are around 10% each Thus, there is a total of |
10% uncerta1nty in the rad1us_measurement.
| The charge is'ca1¢u1ated from:
_ 4hpgadR3 , (6-3)
3 V. o

where.d is the'disfance betmeen two’e]ecfrodés; ‘Its unCertainty is
estimated as‘¥x1'57 .‘Vr is thefreduCed voltaée recorded during”thek~.
measurement Its est1mated uncerta1nty is around 5% Theitota1:.
uncerta1nty in the charoe measurement is thus 36 6%

The critical function can be expressed as:

crit. = 3mefem® o fo? 4D, (6-4)
S 2 VY V2 (1-a)z T |

According to the uncertainties est1mated above, the total uncerta1nty

of the cr1t1ca1 funct1on is around * 49.2%.
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The uncertainties of,charge'and critical function are quite
1arge, This is caused by the uncertainty of}heasuring time T and the
dietance D. UsUa]1y,’the falling time of a o0 um kaﬁius drOp is around
2.5 s. ‘It is very hard to judge the drops exact]v bv u51ng the human
eye. There are two ways to so]ve th1s problem. ©Ong-is to set up a,photo—
ce11 to detect_the dropsAautomat1ca11y‘when they‘pase the line. The other
way is to use a_sensitive TV camera to take a slow motion picture and then
fep]ay it to,determine the time and distance. ,But,.both of theSe'haye some
disadvantages.’ In either case, the equipment has to be‘seneitive te avoid
the heat1ng problem. | ,

The uncerta1nty of the ratio of the reduced f1e1d to the balanced
field 1$ a very 'dangerous factor. -If we have a rgtqo o = 0.975 % 073%,~
the uncertaihty ih the critical function will be 18,6%.' Thevratio has -
been teéted‘hy'a_precision voItmeter'and”the1uhcertainty is arodndlo.i%:f'
in:this measurement. | | '

¥

6-3' The Externa] E]ectr1c F1e1d Affects the Resu]ts

In 1970 G A Dawson ment1oned 1n his paper, The Rayletgh
Instabtlv,ty of‘ Watep Drops in the Presence of External E’Zectrzc erlds,
that the shape of the drop W111 be dlstorted near the 1nstab111ty

point . by the external ‘electric f1e1d The rad1a1 electric f1e1d of

the drop is four orders of magn1tude 1arger than the 1ev1tating field in the

beg1nn1ng of the exper1ment. For a drop of rad1us 100 um and charge
1.67 x 107" ¢, the radial electric field is 1.57 x 107 V/m, while

the 1evitatfhg field fé 2.46 x 103 V/m. As Rayleigh's criterion
is.abproached,'the,excess pressureiineide'thelqrop,.whieh causes the
shhehica1;shape, deerea§es\t6 zero,so\theesma11'1e§§tatingfieid wii1'

be”able;to prqduce'appre;iab]e‘diétOrtiOn of the QrOp.:-This.disfbrtion

BB
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would not cause too much effect (about 2.5%) on the final charge when
instability occurs for drops of radius below 250 um. Thus, the experi-
ment probably is not perfectly suited for checking Rayleigh's criteripn,
but is still a very useful one, especially since the e]ectric‘fie1d‘in

the atmosphere is around the same value as is used in the Jaboratory.

In 1972, P. R. Brazier—Smith.mentioned in his paper, The Stability
of Charged Drops in a Unifoi%_ Electric Field, that the Spher‘oidé1 assumb-
tion is not>suitab1e for charged droplets. He pointed ohtrthat, if we
consider the pressures on the ﬁpper pole, lower pole and equator, the
shape of the drop and stability crit.errion”are quite different from what
DaWSQn»found. He calculates the shépe of the dkop“in the external
electric field. Thié criticism is again,théoretica] and the difference
probably could not be deiectéd in the laboratory. ‘Thus, there seem5
to be no better way to verify Ray]eigh's'criterion‘than the way it has

been done by Doyle et al, Abbas and Latham, and Daden.

6-4 The EvaporatiqnvAffects_the Me;surment

| The equations tﬁat are used to determine the radius R and the
charge Q were deriyed under the assumptjon:that the volume of the drop
does not change during‘the measurement. The fact that .the drop'is
evaporafing while it.fa11s does introduce sbme error. An estimate of
this error will be made here. |

If we‘assume that the ambient conditions (temperature, pressure,

and humidity) do not change during measurement, the specific surface
evaporation rate J can be defined as the volume loss per unit area A

per unit time. That is:

dv

= 'A—d—t‘ .. (6-5)

J



If we assume the drop is spherical and the density is uniform, then:

dV = 47R2dR . (6-6)

Since the surface area of the drop is A = 4qR2, fhe specific surface

evaporation rate is just:

_dR :
-8 (6-7)

The rate of volume loss is

Q!.=' 2dR i}

at - "R - (6-8)
Substituting (6-7) into (6-8), we get

av _ 24 6

gt = 4nR3d . (6-9)
Then the percentage vo]umé loss in the time dt is

v 1003 = 399t 1004. (6-10)

v R

From this equation we see that, when the specific surface evaporation
rate is large or the radius of the drop is small, the pércentage of
volume loss in a time interval dt is large. Now, consider the

equations we use for measurement:

w|H

mR3pg - Q E, = 6mRV . (6-12)

Wl

The reduced field is about 2.5% less than the balanced field in the
experiment. Iflthé volume is decreasing rapidly, the left side of
equation (6-12) will change to zero or negative in a short period‘of

time, that is, the velocity of falling changes to zero or negative.

mR3g = QF, (6-11) -

L&
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This is the reasbn that the drop will stop falling and then rise up in
some cases.

If the radius of the drop is small, then according to the equation
(6~10), the percentage volume loss is large. Suppose J = 0.078 um/sec,

t =25s, R =25 um; the percentage volume loss will be 25%} It turﬁs

out that the balanced field is hard to stabilize, and it is necessary

to reduce the field continuously to balance the drop. In this case the'
measurement becomes impossible. Thus, a low evaporation rate'is neéessary
if we wish to measure the radius and the charge of smé11 drops.

If the temperature of the system is increasing during the
measurement, then the evaporation rate will also be increasing and this
will affect the measurement. .

The following sample calculation shows how the radius of a
»drop-affects the pércéntage.vo1ume Toss.

IfJ = 0;078,um/s , dt =2.7s , and:R'= 78.79 um, then-
dv

VX 100% =

3 x 0.078 x 2.7
T 78.79 |

«100% = 0.802% .

On the same evaporation'rate, when the radius is becoming smaller,
the percentage volume loss is increasing. When the radius is smaller,

but the evaporation rate is the same:

J =0.078 un/s , dt = 6.99 s , R = 48.96 um
“then
N« 100y = 320078 6:99 100y = 3.349



From the example, the effect of the evaporation rate is easy
to see. If the evaporation rate is just one-tenth of the above number,
even in the small radius case (25 um) the volume loss is still small

‘(2.5%) and the measurement is possible.

ru



/. CONCLUSION

The results of the experiment are quite reproducible. Although
the value of critical function is higher than it should be, it still
predicts the disintegration quite well. The mass loss after the disin-
tegration is around 23%, and the charge loss is around 20%. This result
1s.quité close to the result of Abbas and Latham. Dawson mentioned in
his paper that the mass loss is just few percent after disintegration;
actu§11y it is hard to tell the difference of a few percent with the
method of measurement used in this kind of experimént. The difference
in mass 1oss probably is not related to the evaporation rate directly.

The changing ambient condition (fluctuation of temperature, low humidity)
seems more 1ike1y.

In my experiment high humidity is reached before the meaéurement,
and the measureméhf is~perf0rmed at the most stable temperature. Thus,
the effect of the.ambient situation is reduced to the minimum. However,
in order to know the exact effect, a further experiment will be necessary,
probably involving a contro]iablé temperature system, precision hygrometer,
an improved method for measurement, reducing the heat transfer from the
l1ight source and a more uniform field.

A Tow pressure'exﬁeriment could be very interésting too, because
it is closer to the situafion in the atmosphere. That was the basic reason
for using the enclosed vacuum system as a .design norm. Although the exter-
nal field used in this experiment will affect the shape of thé drop when
it approaches the.disintegration point, the field is close to the field

to be found in the vicinity of electrified clouds and the surface of lakes

and oceans (500 - 2000 V/m). So, if there are no other complicating factors,
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such as corona discharge (Dawsdn, 1969),an evaporating droplet in the

atmoSphere would behave much the same way as in the laboratory.
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APPENDIX I Some Details of the Calculation of Rayleigh's Criterion

I-1 The Calculation of the Volume

.
of sl e +3zz () P (u)1ds

%o o

w|r

The three terms of integration I,, I,, I3 are:

2 1 a4 3 i
I = §m Jr-l, aldu = 3 ma_ (I-1)

E L A
I, = §'rrfv_ll 3a_0 réanpn (u)du

=,,;2'1Ta% f Za P u)du

1 _
= 2 °: =
2na2 Lap [ Po(u) P () B AORS:
= 20 ag ) a 2 5 no (This is orthogonal condition*for
o Mon+ the Legendre Equation.)
=0 (Because n is an integer equal to (1-2)
1 .......0, but not zero.)

, 1 -
I, = % an 3a, z %~anamPn(u)PmQu)du

-1

L]

2ragll a a Jr PP (w) P(u)du

“nm
nm -1
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2nay )T 2, an;l Som

. 2 aé :
2nad J - (1-3)
On2n+1al

n

Combining (I-1), (I-2) and (i-3), we get

a2
-4 .3 ' 3 2 _"n
v 3‘1ra0 + 0+ 21ra0‘%,2n +'13%'

. ‘ a
4 .3 - _3 n 2
= =7 a3 (1 + (=—)")
30 ‘g 2n+1 %
4 n
=z ma’ Because = << 1, use the reverse of binomial theorem.
3 o .

3 N cL . a
Here, we let a = ao(l + ) ———l——-(gﬂﬂz)-
’ "2n+1 %o

I-2  Calculation of the Surface Area

_21r ! ' 2'” 1 dp (IJ) dP (u)
—1 n m
) 2 + a - 2 ]

The first integral on the right is:

. 2m 1 )
51 _J[ 0 J[ -1 reude.

= Zvrf ) l"zdu



, 1

szf_fl (ag+ 1 aP (u)?du

n=1

[

: 2n(2a§ 4_2§=1'(2n + 1)'1 aZ).

In the second term, we use the formula

dP_(n) dP_(u H '
[ e n®) Pl 0 [ e (WP, (n)d
. du du ,1'

which is valid whether n is. equal to, or different from, m.

The second term S» is:

S2 = Zon )l aa n(n+1)(zn+1)7 26

sN N

2n g n(n f'I)(Zn + 1)'1ai 3

Therefore, the total area is:

S =4ma 2+ dnk__(2n + 1) 'aZ + 2r) . n(n + 1)(2n + 1) a2
o =170 n n=1 0 n

n n=

1-3 Calculation of Charge Density and Potehtia]

3d
dng = - = | _
: ar ' v = a f_g'anpn(“)

2

qur-

+ kl;_ (n +‘1)Qr‘-n'2 a1 Pn(u) a

n-l

. =2 ;
kiQ (a_fg an?n) f-k1%=

1:(n + ;)Q(a +v§anPn)fn'2an—1Pn(u)an
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b

"

kyQa (1 - zz Pl e 10 "2(1 - J(n + 212 P a1 (e

-n—2an—1

ki -kzoz P, + kil (n+ 1)0a

P (u)a
a n=1 n n

K 9——klzoz—P (u) + k] (n+1)—gP(u)a
a2 n a3 n=1

L}
=<
D—}O
+
=~
—
OO
&~
3
L e)
LY
=
N

In the above calculation terms of order a% were neglected because they
are small. |
The electrostétic potentiaI of the drop, ¢, is calculated by

using

L3
]

2
f f — dud¢

1

= 2n _/' ordu

-1

1 k;Q a_P a P
27;_/. L+ (n-1) -0y - 7 -0 jad
n n ; .

=1 4naZ2



1 du

1f1kQy, Cpy fng g p 2nfn
F e S EDNUERIE SRR

n a

n

1 k;Q aP a P 2P2
1f gl 2 - DA T (- )R e
n. n

The first term is

The second and third terms are zero because of the single Pn(”)
terms and n starts from 1 by definition. (Also see Appendix I-1.)
By direction integration, the fourth term is:
. . - 2
kiQ =~ n - 1,an

.qSL',—" Z _—
a n2n+1 a2

Cbmbihing the results above, we get:

k1Q kIQ n -1 a%

¢ = - : : —

a a n2o2n+1 a2
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APPENDIX II - An A.P.L. program for calculating the radius,

r11
r21
raj
fu]
rs
el
r71
rel
ral
r1o1
ri11
r127
ra3al
[147

v

r1s7

(161

f177

charge and critical value of the drops.

MESU

71«0,

m3T2-T1

F«7:(0.975%0.113)
Re0.0001x((9x1,827x5):(2x9,R1x2,5%xT3))x0.5
04(10¥4x01x98ixﬁ*3)e(3XF) o
CRIT+(9X1OOOOOOOOOXQ*2)%(1GX72.8xo;601XG1fo3)
VPHE PIMP OF FALLING ARE!
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V7R LEVITATED ELFCTRIC FIELD ARF v

r

"7Ur RADTIS OF THE DROP ARE !
‘THE CHARGE OF THE DROP ARE

VPUR RALFIGHS CRITERION ARE!

CRIT



APPENDIX III Sample Ca1c&1ations'of Charge, Radius and Critical Value

The equations used for measurements are:

2 - 9 4
i 20 ¢ ((1 - Enyr
P Eb |
-4 3 -1
Q= 37 R pwg Eb

The constants used in the calculations are:
vis;osity n'=1.827 x 10"5 kg/msec
densityp; = 103 kg/m3
.accelerafiph of graVity g = 9.81 m/secz
ratio of reduced field to balanced field

distahce‘of fa]1;D = 0.05m

£

= = 0.975

Ey

distance between the two electrodes d = 0.113 m.

(2-44)

(2-38)

The time7of"fa11ing and reduced voltage measured at the disintegkétidh

point of figure 6-1 are 6.54 s and 57.95 V. .
So; the baﬂanCEd electric field is
E, = 57.95 3 0.975 3 0.113 = 526 V/m.

The radius R is equal to:

. (9x 1.827 x107° 0.05 s
2% 103.x 9.81  0.025 x 6.54.

50,62'Qm.12

7



Substituting R and Ey into (2-45), we get

Q gv (50.62 x 107%)3 x (103) x (9.81) = (526)

11

1.013 x 10”'* ¢.

The critical value can be expressed as:

k1Q2
4n(n + 2)R3y

where surface tension y = 72.8 x 1073 N/m,
Nm2

<. 109N
k 9 10 C:-,

and integer n=2.

We find the critical value to be 1.95.

a0.
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