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ABSTRACT 

The evaporation of charged waterdrops is accompanied by negligible 

loss of charge; consequently, as the surface area falls, the electrostatic 

pressure increases. When a critical value is reached, one or more highly 

charged drops are ^ected, the electrostatic pressure falls, and stability 

is regained. 

Experimental work is carried out by levitating the charged drops in 

the electric field. The range of drop radii studied in this experiment 

is from 90 to 40 urn. The average radius loss was found to be about 8% 

per disintegration, with a charge loss of about 20%. According to Ray- 

leigh's criterion, the drop will become unstable when the critical func- 

4TT(n + 2)yR^ 

rises to the critical value of 1. Here, ki is a constant, n is an integer 

greater than or equal to 2, R is the radius of the drop, Q is its charge 

and Y is the coefficient of surface tension for the liquid. Under normal 

conditions, the integer n in this critical function is 2. A higher value 

of n might represent a supercritical condition. In our experiment, the 

critical value was found always larger than 1, although previous experi- 

mental workers have agreed with the value 1. The critical value is higher 

than expected but there is internal consistency and the disintegration 

point is predictable: the disintegration always happens when the critical 

value reaches a specified, highest value. 

The mass loss during the disintegration found by earlier workers is 

checked in this experiment and suggestions are made for more precise 

methods of measurement. 
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1. INTRODUCTION 

1-1 Historical Background 

The stability of waterdrops in an electric field was first investi- 

gated a very long time ago. The interest arose because the mechanism is 

of basic importance in the production of lightning in thunderstorms (Taylor 

1964). 

In 1882, Rayleigh published his famous paper. On the Equilibrium of 

Liquid Conducting Masses Charged with Electricity. He derived a criterion 

which in brief may be expressed as: 

kiQ^ < 4(n + 2)TTR3Y (l-l) 

for spherical drops of radius R, charge Q, and surface tension y. The 

quantity n is an integer larger than or equal to 2 and ki is a constant, 

expressed in rationalized SI units (figure 1-1). 

For values of charge greater than those satisfying the inequality 1-1 

the criterion predicts that spherical drops should become unstable. Ray- 

leigh worked from the basis that the potential will be changed by slightly 

deforming the drop and he also expressed a generalized potential energy 

as a function of Q, Y» and R. Details will be shown in section 2. Since 

then, many scientists have tried to investigate this phenomenon in the 

laboratory. 

One way to do this is to allow charged drops to evaporate. Highly 

charged drops are levitated by an electric field in the atmosphere 

(figure 1-2): as the time goes on, each drop will decrease in size, but 

the charge will decrease at a slow rate with the result that the ratio 

of charge energy to surface energy will become too high for stabi1ity, 

and charge loss, disruption or both must occur. 
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Sig, 1-1 - A charged spherical drop 

E 

ir 
Fig. 1~2 A charged drop levitated in the atmosphere by the 

electric field. 



A. Doyle, D, R. Moffett and B. Vonnegut (1964) first investigated 

this phenomenon by letting highly charged waterdrops spray into a chamber 

between two large electrodes where they levitated in an electric field. 

One dhop was selected for observation. They found that after a period of 

time, say, several minutes, each charged drop suddenly fell down as if it 

had become very heavy. By abruptly increasing the electric field, the 

force balance would be reestablished before the drop hit the bottom elec- 

trode. During the evaporation, they found that the electric charge den- 

sity on the surface of the drop increased to a value that produced a 

potential gradient of several hundreds of kilovolt per cm, until finally 

one or more small highly charged drops was ejected, the suspended drop 

thereby losing about 30% of its charge. After a complete observation, 

they let the drop fall on to a filter paper to measure its radius. 

Their results suggested that Rayleigh's criterion is correct. 

Three years later, M. A. Abbas and J. Latham (1967) published their 

paper, considered as an extension of Doyle's work. The principle was 

almost the same, but the technique improved. They used a vibrational 

method to produce fine waterdrops. This method had the advantage of 

reducing the disturbance of the Still air between the electrodes caused 

by the spray method. After they levitated the drops between the electrodes, 

they measured the radius and charge on the drops by timing the rate of 

fall of the drops. Thus was provided a continuous measurement of the 

drop before and after disintegration. The drop disintegrated to eject 

about 25% of its mass in the form of highly charged waterdrops and then 

stabilized. Their result was very close to Rayleigh's criterion. 



But,.this work was criticized by G. A. Dawson (1970) who pointed 

out that the external electric field intensity, although several orders 

of magnitude smaller than the radial field of the charged drops, can 

cause appreciable deviations from sphericity near the instability point 

even though the limiting value of charge is affected very little. (The 

external field intensity is usually between 5 and 20 volts per cm, and 

the radial field of the charged drops is usually several hundred kilo- 

volts per cm. Details will be discussed in section 6.) He also pointed 

out that this kind of experiment might be not good for verifying the 

theoretically predicted behaviour of an isolated drop, although it 

probably does model quite well the behaviour of droplets evaporating 

in the electric field of the atmosphere. The levitating field in the 

laboratory experiment is very close to the actual electric field in 

the atmosphere. Later, in 1972, P. R. Brazier-Smith pointed out that 

with charged drops one could not use the spherical assumption although 

it was applied with considerable success to study the stability of un- 

charged drops. 

Despite (or perhaps because of) these two reasons, research in 

this experiment was still believed to be worthwhile. In 1973, G. A. 

Dawson published his paper. Charge Loss Meohanism of H'ighty Charged 

Waterdroptets tn the Atmosphere. In this paper, he studied at 

reduced pressure, the loss of charge mechanism and concluded that, at 

sea level, instability will be the dominant loss process; at higher 

altitudes, the charge loss for drops will probably be by ion collection. 

The size of the droplets and the electric field in the atmosphere de- 

termine which of these charge loss mechanisms will dominate. He 

pointed out that basically Rayleigii*'*s criterion still held. The main 



difference between his results and those of Abbas and Latham was the mass 

loss during the disintegration. DSiwson found the mass loss to be just 

a few percent, but Abbas and Latham found it to be 25%. 

This is the main interest in this thesis. The big difference in 

mass loss could be caused by a high and variable evaporation rate resulting 

from poor control of humidity and temperature. It is worthwhile to invest! 

gate in more detail the charge loss mechanism by ion collection. 

1-2 Aims of this Experiment 

The evaporation of highly charged waterdrops is an interesting 

experiment. This is true not only because it can apply to the produc- 

tion of lightning in thunderstorms, but also because it provides a good 

opportunity to look into the basic relation between temperature, humidity, 

pressure and charge. The main interest in this thesis is to investigate 

the different mass losses found by earlier workers and the possible 

effect of the ambient temperature and humidity. 

Rayleigh's criterion expressed in a mathematical analysis follows 

the work done by G. D. Hendricks and J. M. Schneider (1963). 

Different ways to set up the experiment have been tried. For 

producing fine drops, atomizers and hypodermic needles both have their 

disadvantages: an atomizer disturbs the still air inside the field; the 

hypodermic needle needs a high pressure to press the liquid. Some new 

apparatus is added to the arrangement of Abbas and Latham. The humidity 

is increased by evaporating water into the system, the temperature is 

continuously monitored and a TV videocorder is set up for recording the 

data. 



Some difficulties of the experiment are the difficulty of producing 

drops, the nonuniformity of the field, the evaporatioh rate of the drops 

and the general low level of accuracy of the measurement. 

The results are expressed in graphs of radius, charge and critical 

value vs time* the results of the experiment are quite reproducible. 

The average mass loss of the drop is about 23% per disintegration and 

charge Toss is about 20%. Although the critical value in this experiment 

is higher than the results of earlier workers, it still predicts the 

disintegration quite wel1. 



2. BASIC THEORY 

2“1 Introduction 

the forces acting on a charged waterdrop in an eTectMc field include 

the surface tensidh and electrostatic force. In this section we calculate 

the forces on the drop, including the effect of the shape of the drop. 

Rayleigh's criterion was derived from the calculation of this force. Most 

of these calculations follow the work done by C. D. Hendricks and J. M. 

Schneider (1963). Further details of the calculation are given in Appendix 1. 

The theory of measuring the radius and charge is presented in section 

2-2. An A.P.L. program used for the calculations is shown in Appendix It. 

2-2 Rayleigh's Criterion 

2-2-1 Introduction 

In 1882, Rayleigh published his famous paper, C?n Equilibrium of 

Liquid Conduoting Masses Charged with Eleotrioity, pointing out that 

charged liquid drops could become unstable under many circumstances, 

depending on the charges carriedj surface tension, drop's size and so 

on. The results were widely used and quoted but, like much of Rayleigh's 

work, old notation and omitted steps make the derivation of these results 

difficult to understand. In 1963, C. D. Hendricks and J. M. Schneider 

successfully obtained the criterion in a somewhat more modern and 

comprehensible fashion. In this thesis, I use Hendricks' and Schneider's 

work as a basis to develop a detailed calculation of Rayleigh's criterion. 

2-2-2 Calculation of Rayleigh's Criterion (after Hendricks and Schneider) 

In the beginning of this calculation we state a fundamental theorem 

from classical mechanics. This will be used in what follows: it is 

that for any system engaged in vibrations of sufficiently small amplitude 



about a position of stable equilibrium, the excursions from equilibrium 

are simple harmonic oscillations. For small displacements the potential 

energy function will be a homogeneous quadratic function of generalized 

coordinates. What we seek in this calculation is a potential energy 

function that is a homogeneous quadratic function of the generalized 

coordinates. 

First, let us assume a charged drop that is cylindrically symmetri 

and, in shapOj differs little from a sphere. The equation of this 

spheroid can be written in the following form: 

r = + I (cos e) (2-1) 

where r is the distance from the origin to the surface of spheroid, 

a^ << a^ for all n, is the Legendre Polynomial of order n, and e 

is the angle between the z-axis and radial direction. (See fig. 2-1.) 

a^ and a« are assume to be functions of time only. O' n,' ■ i . ■; . 

The volume of spheroid of equilibrium is calculated as follows: 

dV = r^ sin e dc|)dedr 

r r rTT r27T 
V = I Q /Q IQ r2 sin e d4)d0dr 

= ^ u. (2-2) 

Here, we let y = cos e. Using the binomial theorem in the form: 

(1 + x)^ = 1 + ax + [a(a - l)/2I]x^ + - - - 

if x« 1 (2-3) 

to expand r, and substituting in equation (2-2), we obtain the following 

expression for the volume of the spheroid: 



z 

Fig. 2-1 Coordinates used to describe the surface of the drop 



OJUJ 

A 

The first term of integration Ij wHI become second term 
J O _ 9 

I2 Will become 0, the third term will become 2Tra3 I -—-—- 
^ 2n + 1 a^2 

Details of the calculations are given in Appendix I-1. 

Summarizing the result, we get volume V equal to: 

V == 4 a3, where a = a^(l + I ——— (—)^) is the raduis. (2- 
° n 2n + 1 

This radius is that of a sphere of equal volume to that of the spheroid. 

The potential energy due to the surface tension is equal to the 

surface tension multiplied by the increase in surface area of spheroid 

over the arbitrary reference surface. The arbitrary reference surface is 

taken as the sphere of equilibrium. 

The area is given by 

where e and cp are usual spherical coordinate variables, and v is the angle 

surface point in question. (See fig. 2-2.) If the equation of the surface 

is F(r,0,4>) = 0, the normal vector is given by vF. 

2 
(2-5) 

between normal to the surface and a radial line from the origin through the 

F (r,0,(j)) = r (2-6) 

Suppose IJ-, are the unit vector of r, e, cp direction 
r b cp 

(2-7) 



Figo 2-2 Definition of the angle v 



JJL. 

where y = cos e again. 

Thus, the absolute value |vF| is: 

^ ( nil ^ ® 1 • <2-8) 

The quantity cos v is given by: 

cos V =   . 
|?F| 

Using (2-7) and (2-8), we f.ind 

(2-9) 

u2)]. (2-10) 

cos V = [1 + 
a„ dP„(u) n n 

= 1 r h=l 
^sin e)2] 

(cos » tl + 41 n (1 . 2 m,n ^2 dy dy 

Substituting (2-10) back onto (2-5), we get: 

S = ^-1 i -^-1 in "n® m 

dP (y) dP (u) 
_!1 m  (1 

dy dy 

= 4713 ^ + 477 I (2n + 1) + 2TTI n(n+l)(2n + 1) ^a o n=l n=l ^ 

Details are shown in Appendix 1-2. 

Thi^ equation can be rewritten as: 

S 47r[a^2 + 2l_^ (2n + l)"^a^2j , (2n + l)'*a^2 

+ 2TII n(n + l)(2n + l)'^a ^ . 
n=l. ^ 

- y^)dy 

(2-11) 



The first bracket can be recognized from (2-3) and (2-4) as a^. Hence 

S = 4na2 + 27T[ (n - l)(n + 2)(2n + l)’^a 2 (2-12) 
n=l " 

where the last two terms of (2-11), have been combined to give the last 

term in (2-12). If Y is the surface tension, the potential energy of 

capillarity calculated from the sphere of equilibrium is: 

P.E. = 2TIY^ (n - l)(n + 2)(2n + l)’'a^2 . (2-13) 

There is another potential energy present with charged droplets, 

the Static electric potential energy. If we can also express this stored 

energy approximately as a homogeneous quadratic function of the a^, 

we will be able to consider the a^ as generalized coordinates for the 

spheroid. We seek an approximation that leads to this result. A suit- 

able approximation is to calculate the charge density correct to the first 

order, then use this charge density to calculate the second-order perturb- 

ation in potential energy. 

The equation of the spheroid is then written as: 

^ ^ ^ I a„P„(p) + i a^P^(u), (2-14) 

since a is different from a^ by a second-order quantity and we just 

want to calculate the charge density correct to the first order. 

The electrostatic potential outside the conducting spheroid may 

be expanded in the harmonic series: 

$ = kil B r 
n=0 " 

-n-1 

where the constants are such that n 



n >1 , B « since << a^. Rationalized SI units are used, n o no 

kl=^ = 9 X 109 Nm^ Here, we recognize from the theory of multiples 

that BQ = Q, the total charge on the drop. Since PQ(P) = 1> we can rewrite 

the series as 

* = ki(a+ I B P . (2-15) r n n 

At the surface of the conductor the potential is a constant, namely 

where: 

i = ki(Q[a + I a P (u)] 
o p n n 

-1 + I a P n n 

Using the binomial theorem we find: 

$ = kiQ[a‘'(l-1% P„(p)J]+ kj , B P„(p)[a'"’' (1 - I (n + 1) ^P 
n a n n=l ^ n 

Qki Ok, a 1 - I(n + l)a^ P.(P) 
•I —Pn(p) + f' n + 1   

a "a 

Because a^ and are very small quantities, we may neglect the product of 

a^ and B^, and we get 

= I !n p (j,) -n^-g-1 • 
o _ . n . n' ' n _n + i 

a a a 

(2-16) 

Equating harmonics of the same order on both sides, we get: 



Substituting the relation of (2-17) back into (2-15), we find the potential 

of the spheroid is: 

kiQ „ kiQa^a 
<t> = — + A - " 

r n»l r 

n - 1 

n + —• (2-18) 

The charge density on the surface of the spheroid is given by: 

47ra V4> • n 
dr 

cos V (2-19) 

where a is the charge density, n is the unit vector normal to the surface, 

and V is the angle between the normal to the surface and the radial direction. 

Since cos v differs from 1 by just a small quantity, we may set cos v equal 

to 1. Thus, 

4^^ = 
^ ar r = a + la P (u) 

n " 

kiQ ^ (n - l)a 
 + QkJ .  ^-5-P„(u). 

n=l n 
(2-20) 

Detailed calculation is shown in Appendix 1-3. 

We may calculate, approximately, the second order change in potential 

by using this first order change in the charge density. Using the equation 

= / ^ dA^ we get: 

^ 1 

J Q J 
ar‘ dy d(p 

= 2Trki / 
^ n ^ a p ^ a P 
-9- [1 + I(n - 1)-^ HI - I-^iadp 
4ira2 n n 

1 



Qki Qki ^ n - 1 

a a n 2n +1 a^ 
(2-21) 

Detailed calculation is shown on the Appendix 1-3. 

The corresponding electrostatic potential energy, relative to the 

sphere of equilibrium, is 

W 1 
2 

Q^> 

kiQ2 y n - 1 a 2 
W =     I ^ . 

2 /' 2n + 1 a3 
(2-22) 

This is the homogeneous quadratic function of the a^'s that we were 

seeking. The minus sign here means the electrostatic force is opposed to 

the surface tension. 

Now, we can calculate the kinetic energy for the drop. After the 

kinetic energy is found, we can form the Lagrangian function and find the 

time variation of a^, n 
Since the drop is assumed homogeneous, inviscid and incompressible, 

we may assume the existence of a harmonic velocity potential This 

velocity potential may be expanded in the series: 

¥ = 6„ + I 6„r'’P„(ij) . 
° n=l " 

(2-23) 

The kinetic energy K is given: 

1 
2 V'l'-V'i'pd V 

where vis the velocity and p is the density. V is the volume. Since 'i’ 

is harmonic, if, = 0. We use the identity v*4^V'i' = 



Thus, V'W'F = V¥*V¥. Using the divergence theorem we find. 

V4'*V^pdV (2-24) 

Since the fluid is incompressible, p is constant and it can be brought in 

front of the integral. From (2-24), using the equation of the spheroid 

(2-14), we get: 

K = i p / I T dr u = ^ p 11 'i' 1^ a2d(})du (2-25) 

Here, we neglect the terms containing a^. The kinetic energy is: 

K = a^TTp 

= a^'fTp 

dp 
dr ^ 

-1 . o 

1 

r"'V P„(v.)]dM 

= a^Tp f r" ^ + JB ^ nr^'’ ^Pn^(u)]dy . V _ j on n n n ^ 

The first term will become zero, because of integrating of a single P^(u) 

Thus, 

K = a^TTp n r 2n-l 

2n + 1 

Using the equation of the spheroid and neglecting the higher order terms, 

we get 

K » 2ira2 pn a 2n-l ^n 

2n + 1 

(2-26) 



The 3^'s are unknown, but we can find them by calculating the vel 

city of the surface in the r direction from equations (2-1) and (2-23). 

dr 

dt 

da 

dt 
+1 

n=i dt 
P (u) 

da. 
= I — p„(^) 

n=l dt " 
(2-27) 

V, =_u^= n P^(p) . (2-28) 
9r 

Comparing (2-27) and (2-281, changing r to a + a^P^(y) and p n n 

neglecting the higher order terms, we get 

da 

dt 
= ng^ a*^”^ (2-29) 

Substituting (2-29) back to (2-26), we get the kinetic energy: 

K = Z-ni^p I n'^ (2n + I)' (2-30) 

The Lagrangian function is given 

L = K - P.E. - W 

L = 27ra^p Y n V(2n + 1) " 2iTY^(n - l)(n + 2)(2n + 1) 

+ y (n - l)(2n + l)'^Q2ki^ (2-31) 
n 2a3 



The Lagrangian equation of motion for a^ is 

d 
dt 'it> 

91 
aa. ) = 0 

at 
n 

= 4ita3pE n'^(2n + l)'^a* (2-32) 
n n 

' i 2a 
= -2IT Yl(n - l)(n + 2)(2n + l)'^2a_ + I(n - l){2n + l)'^Q2ki—°- 

3®n n 1 n 2a ^ 

(2-33) 

Combining (2-32) and (2-33), we get 

27Ta^pn 27rY(n l)(n + 2)a„ - (n - 1)—a = 0 
2a3 " 

or d^a„ n(n - 1) kiQ^ 
—^ +   — l(n + 2)Y -  -]a„ = 0. 
dt^ pa^ 47Ta3 

(2-34) 

This is the familiar result obtained by Rayleigh. If a^ cos(wt + a), 

then 
n(n - 1) kiQ2 

w2 =     [(n + 2) Y - — 1 . (2-35) 
pa^ 4iTa^ 

Thus, if kiQ^ > 167ra^Y» the droplet is unstable for all values of n below 

a criterion limit. The drop may break into smaller drops or, as usual, 

it may eject a smaller drop carrying charges away to regain stability. 



2“3 Determinatloh of the Radius and Charge of the Drop 

When a charged waterdrop Is levitated at a constant level, the 

electrostatic force and buoyant force must balance the gravitational 

force. Thus, we can write the equation: (see figure 2-3) 

is the density of the air, 1.293 kg/m^, 

g is the acceleration of gravity, 9.81 m/sec^ in Thunder Bay, 

Q is the charge on the drop, and 

Ej^ is the balanced electric field. 

Since « p,, , we set p^ =0 in equation (2-36). 

If we suddenly reduce the electric field, the drop begins to 

fall. The force acting on the falling drop are the gravitational force, 

the reduced electric force and Stokes’ force. (See figure 2-4.) Using 

Newton’s Second Law, we obtain the equation of motion: 

where V is the velocity of the drop, 

n is the viscosity of the air, 182.7 x 10’^ kg/msec, and 

is the reduced electric field. 

Calculating the charge Q from equation (2-36), we get 

(2-36) 

where R is the radius of the drop, 

p^. is the density of the water, 10^ kg/m^. 

f Pw 4 + QEr - eirnRV (2-37) 

(2-38) 



t - O * X 

t =T , X 

F1g. 

t = o . x^ 

t -T , x 

F1g. 

X 
a 

A 

2-3 Motionless charged drop levitated by the electric 

field 

2-4 Charged drop falling under reduced electric field 



Substituting {2-38) back into (2-37)» we get 

dt -6nnRV -4 ITR3 g+4 ,rR3 
3 W 3 ^w9 

dV 
dt 

% 
2p R2 

V - g(i - A 

Let A = 9n 

2PwR^ 
, B - g(l - r^). We get. 

dt B . 

The solution of (2-39) is: 

- ^(1 - 

(2-39) 

(2-40) 

A2 
(1 

e-At) (2-41) 

when t = T, X = -D, so 

D ). (2-42) 

Let us estimate the number AT. Suppose the radius is 60 urn (60 x 10 

and the falling time is 5.4 sec. 

These numbers are taken from experimental results. 

9 X 182.7 X 10'^ 
AT = —  — X 5.4 = 123 . 

2 X 36 X 10* 

-AT Thus, the number e actually is very small. We can drop this term 

in the equation (2-42). The simplified equation is 



(i)^ - T(i) . I = 0 

i 
A (T2 - 4| (2-43) 

Substituting the values of A and B back into the equation (2-43)* we get 

9n 
4p 

[T ± ( T2 - 
4D % 

w 
g(i - f-) 

] 

[T ± T 

In this experiment, is chosen 97.5% of E^. The distance of fall is 

5 cm. In a typical case, the falling time is 5.4 sec. The value of 

ix\j ^ 

———r—— IS approximately 0.028, which is small compared to 1. 
(1 r \ y 9 

Using the binomial theorem and choosing the negative sign 

in the equation, we get: 

R2 = 9^ ( -.-,..-20   ) . (2-44) 

9(1 -^)T 
b 

This equation can also be obtained by assuming that the drop falls the 

whole distance D at terminal velocity. 

We now have the result that the radius and charge of the drop 

can be determined from equations (2-44) and (2-38): 



R2 = in 
4p 

2D (2-44) 

TT R3 -1 (2-38) 



3. APPARATUS ■ 

3-1 Main Description 

The apparatus Is designed to produce fine waterdrops and built 

embodying the principle of the Millikah (1935) oil-drop experiment 

(figure 3-1). The whole apparatus sits inside a vacuum evaporator* on 

the top of 2.54 cm thick aluminum plate, covered with a glass jar 17.78 cm 

in radius and 60.96 cm in height. The purity of water used in the experi- 

ment may be an important factor, so filtered distilled water was used. 

The method for producing fine water drops by the vibrational method, based 

on the device of B. J. Mason, 0. W. Jayaratne and J. D. Woods (1963), will 

be described in detail in the next section. The vertical electric field 

required to levitate the waterdrops is applied by two parallel aluminum 

plates 15,24 cm in radius and 1.77 cm in thickness. The plates are polished 

smoothly and rounded at the edge to provide a moderately uniform electric 

field at the centre. 

In the center of the top electrode, a small hole is drilled to 

let the drops fall into the field region. A gate device which can be 

closed immediately after a suitable drop is chosen sits on the top electrode. 

It is a movable aluminum plate connected to a solenoid and powered by three 

6-volt batteries connected in series. (See figure 3-2.) 

The distance between the bottom plate and the lower electrode, 

the distance between electrodes, and the distance between the top 

electrode and the Plexiglas plate where the vibrational apparatus sits 

are 15.24 cm, 11.43 cm and 12.70 cm respectively; Plexiglas rods of 

*The major components are shown in table 3-1. 
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Fig« 3“2 Gate for closing hole in top electrode 



TABLE 3-1 Major Components of Apparatus 

Component Manufactured by Model 

Evaporator NRC 3114 

600V D.Co Power Supply Hewlett Packard 712 C 

Digital Voltmeter Fairchild 7050 

6 KV D.C. Power supply Sorensen 9005--5 

Recorder Bausch & Lomb VOMT 

Transformer Leybold 591 05 

Compressed Canadian Liquid.Air 'G' 

6 Volt Ba ttery Eveready 



1.77 cm radius are used for support. 

A continuously variable voltage is applied across the electrodes 

from a D.C. power supply. The field voltage is measured by a digital 

voltmeter. The waterdrops are charged by another D.C. variable power 

supply. The cable connecting this high voltage and needle is shielded 

and grounded to prevent any affect on the electric field. The inside 

of the glass jar is shielded with a grounded aluminum foil to prevent 

electrostatic effects on the electric field or the drops. Black 

conducting paper is placed over the foil to provide better viewing. 

Two holes are left in the foil; one for the light to enter, the 

other for viewing. The light source used in this experiment is a 

500 Watt projector lamp with a heat filter made of glass box containing 

cupric chloride solution. The purpose of the heat filter is to 

reduce the heating effect of the light on the air inside the jar and 

on the drop itself. Nevertheless, some convection currents were still 

present. A resistance wire was used to heat water in a glass vessel 

to increase the humidity inside the glass jar. 

The first vacuum feedthrough at the left in figure 3-1 is an 

electrical connection. It has 8 connecting points. Numbers 1 and 4 

are connected to the electrodes and a 600 V D.C. power supply. Numbers 

2 and 3 are connected to the earphone (described in the next section) 

and audio oscillator. Numbers 6 and 7 are connected to the solenoid 

and batteries. Numbers 5 and 8 are connected to the resistance wire 

and transformer. The second feedthrough is for high voltage. It 

allows the needle to be connected to a 6 XV D.C. variable power supply. 

The last one is a pipe connection joining the syringe and compressed 



nitrogen used to control the flow rate through the needle. 

3-2 Production of Fine Waterdrops by a Vibration Method 

3-2-1 Introduction 

The most successful method of producing fine waterdrops of radii 

in the range of 15 pm to 500 pm involves the break up of a mechanically 

vibrated jet of liquid, the theory of which was given by Rayleigh (1879). 

Some other ways have been used; for example, an electromechanical trans- 

ducer to introduce pressure fluctuations directily into the liquid prior 

to its emergence as a jet. However, if a uniform, stable flow is needed, 

the best way is still the vibration method. 

Dimmock (1950) first designed a vibrating device based on the 

principle of Rayleigh. The device is capable of producing fine drops, 

but it is very difficult to obtain reproduciable and stable modes of 

vibration and the sizes and directions of the streams are variable and 

difficult to control. 

In 1960, Schotland reported that he had used a vibrating hypo- 

dermic needle to produce drops in the radius range 150 to 500 pm, but 

his paper gives no experimental details. 

The apparatus used in our experiment is based on the device of 

B. J. Mason, 0. W. Jayaratne and J. D. Woods (1963). The purpose of 

their work was to produce a device to study the collision and coalescence 

of small waterdrops. It has proved to be useful also in the production 

of fine waterdrops for evaporation. The device produces directed streams 

of waterdrops of very uniform size with radii in the required range. 
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3-2-2 Construction and Operation 

A general view of the device is shown in figure 3-3. The holder 

of the syringe* and earphone** is made of Plexiglas. The earphone part 

is fixed, but the syringe part is adjustable, the needle going right 

through the hole in a spigot.*** The position of the needle may be 

adjusted by changing the holding position of syringe. More details 

of the construction are shown in figure 3-4. A stainless steel tube 

of 101-6 urn inside diameter and 203.2 ym outside diameter, through 

which water is forced at a constant rate, fits snugly into a small 

central hole near one side in the cylindrical spigot, which is cemented 

to the center of an iron diaphragm of an electromagnetically driven ear- 

phone. The energizing coil of the electromagnet is connected to an 

audio oscillator and power supply which causes the needle to be vibrated 

mechanically by the movement of the diaphragm and spigot. The frequency 

of the oscillator is adjusted until a resonant mode is reached with an 

amplitude of several millimeters. The resonance frequency which is 

quite sharply defined is determined not only by the needle, but also 

by the size and mass of diaphragm and spigot. For example, in this 

experiment a 7.5 cm long, 101.6 ym inside diameter tube driven at a 

point 5 cm from its tip resonates at about 310 Hz, a change of ± 10 Hz 

being sufficient to damp the oscillation completely. To ensure that 

the needle vibrates in the same stable mode for long periods, it is 

* The syringe is made of Plexiglas, 0.76 cm in radius, 6.43 cm in length. 
** The earphone is made by C. F. Connon Co., Springwater, New York, 

Brand: Alnico Magnet No. 25. 
*** The spigot is made of Plexiglas, 0.37 cm in radius, 1.90 cm in length. 
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Fig, 3~3 Vibrating needle for producing charged drops 
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necessairy to prevent it from moving in the spigot; this is achieved by 

the small locking screw at the end of the spigot. 

The stability of the droplet stream is particularly dependent 

upon the flow rate of the water and it is essential to keep this constant. 

The water is forced from the reservoir by the compressed nitrogen. The 

nitrogen supply is maintained at constant pressure controlled by the 

regulator^ A needle valve and 'T' tube connection are placed between 

the nitrogen and syringe for releasing the pressure when not in use. 

For a given needle and amplitude, a critical volume of water has 

to accumulate before it is flung off by a change in direction of 

the needle. At low flow rates the needle may vibrate several times 

before the critical volume of water accumulates; there is a tendency to 

eject this as a single drop. As the flow rate is increased, the water 

comes out continuously and breaks up into small masses. After travelling 

about 1 cm, the drops assume a spherical shape,. Drops of different sizes 

are projected in different directions and produce separate streams, the 
.( 

number of which may also be controlled by the frequency and amplitude 

of the vibrations. The needle used in this experiment is quite long, 

so the pressure change in the compressed nitrogen does not greatly 

affect the flow rate. This is very helpful in keeping the flow rate 

constant. 

If the needle vibrates in one plane, the major and satellite 

streams are almost coplanar but, more usually, the tip vibrates in 

a circle, an ellipse or a figure of eight. Then the droplets are flung 

off in different directions. 



3‘*2“3 Control of Droplets' Size and Frequency 

Tho main factors determining the size of droplets are the flow 

rate of water (mentioned in section 3-2-2), needle diameter, the resonant 

frequency and the amplitude of vibration. 

(a) Needle tip diameter 

A 101.6 urn inside diameter stainless steel tube is used as the 

needle. It is chamfered 30° to produce the drops. The needle is long 

enough (7.62 cm) to dampen flow rate charges at the tip under the 

inevitable fluctuating pressure. If drops of different radii are needed 
■ , ■ ■ ■■ . • ' ' ' 

we j u s t chan ge the t ube to a _1a rger size: 

(b) Resonance frequency 

The resonance frequency depends on the length of the needle, the 

position where the spigot is driven and the mass of spigot and diaphragm. 

It is very critical, so usually it takes time to find out the frequency, 

especially if the position of the spigot position is changed. The range 

is of the order of ± 20 Hz at 300 Hz. 

(c) Amplitude of Vibration 

It is often convenient to fix all the other factors and to vary 

the droplet size slightly by adjusting the output amplitude of audio 

oscillator and hence the amplitude of the needle oscillation. 

3-2-4 Production of Highly Charged Droplets 

When a highly charged droplet is needed, a 6 KV variable D.C. 

power supply is connected to the needle. The drops split when about 

5 KV is applied and produce drops of radius 200 pm even without 

vibration. If vibrated, the needle will produce highly charged drops 

of 15 pm radius or even smaller. 



3“2-5 Conclusion about the Vibration Method 

The vibration method is very useful for the production of drop- 

lets in the range of 15 Pm to 200 Pm needed in this experiment. There 

is still one drawback which arises from the change in the position of 

the spigot when the reservoir is refilled, necessitating a slight ad- 

justment of the frequency each time. 

3-3 Field and Time Control 

The method of measuring the radius and charge involves reducing 

the electric field suddenly and then determining the time for the drop 

to fall through a fixed distance. The ratio of reduced field to the 

original field should be a fixed number. A small potentiometer is 

used as shown in figure 3-5. A double pole switch and two resistors, 

R1 and R2, are kept in a small box work as a potentiometer. The values 

of R1 and R2 are 1.02 x 10^ and 1.45 ^ 10^ respectively. When the 

reduced field is required, the potentiometer is switched in and the 

voltage is reduced to the 97.5 percent of the original balanced voltage. 

Simultaneously, the other side of the switch is shorted, so’the timer 

starts to record the time until the switch is released. This small 

potentiometer thus provides an automatic time recorder. A precision 

digital voltmeter is placed across the electrodes so that it will give 

both the balanced voltage and the reduced voltage. A recorder is placed 

in parallel to the 600 V D.C. power supply so that it will record the 

voltage as a function of time during the measurement. 



inside the switchbox 

V : Voltmeter 
E : Electrode 
T : Timer 

* Small resistor 

: Large resistor 

Var : Variable D.C. power supply 

Re : Recorder 

Fig. 3-5 Diagram of circuit for reducing the electric field 



MEASUREMENTS 

4-1 Procedure of Measurements 

Small charged waterdrops are produced as described in section 3. 

The hole on the top electrode is opened by controlling the solenoid, with 

the result that the drops fall under gravity and enter the illuminated 

field. A suitable drop is chosen by adjusting the potential difference 

between the horizontal electrodes; it can be manipulated so that it remains 

in the field. The top hole is then closed to prevent more drops coming in; 

all other drops residing between the field will soon drift out of the 

field since their charge to mass ratio will in general differ from that 

required for levitation. This is the well-known Mil 1ikan method. (See 

figure 2-3.) The charge and radius of this drop are determined every 

30 seconds. Two measurements are required. One is the electric field 

needed to suspend the drop so that it is motionless. The other is the 

time necessary for the drop to fall a distance D in the reduced field E^,. 

This reduced field is obtained by means of a switch as discussed in section 

3-3. The distance of fall is marked by two lines drawn on the viewing 

window and two other lines drawn at the same level on the other side of 

a glass jar. This prevent parallax during measurement. It is hard to 

get accurate timing. The uncertainty is large, but it is still possible 

to know the radius of the drop within ± 10%. The field required to sus- 

pend the drop before the disintegration occurs decreases gradually and 

continuously as the evaporation proceeds. Evaporation thus produces an 

increase in the charge to mass ratio of the drop. When a disintegration 

happens, the drop fal 1s quickly and the field strength must be increased 

abruptly in order to retain the residual droplet between the electrodes. 



With some practice it is possible to suspend a droplet throught a succession 

of disintegrations. Each disintegration is accompanied by a loss of about 

20% to 30% of the charge residing on the droplet. The mass loss in a dis- 

integration is around 20%. No measurable loss of charge occurs during 

the intervals between successive disintegrations, but the radius decreases 

continuously in these periods. 



5. SOME DIFFICULTIES IN THE EXPERIMENT 

5-1 The Drops 

When the needle vibrates, the drops are thrown about 7 cm hori- 

zontally away from the needle. (See figure 5-1.) This distance depends 

on the frequency and output of the audio-oseillator. If we put a high volt 

age on the needle and thus charge the drops, they are thrown even further. 

(See figure 5-2.) If we want the drops to fall vertically into the elec- 

tric field, we need to put the needle about 12 cm away from the centre. 

(See figure 5-3.) Because of the narrow space inside the glass jar 

(35.56 cm in diameter and 60.96 cm in height), it is hard to put the 

needle in this position. 

To solve this problem, I tried many methods. First, I tried 

to put a high voltage ring around the needle to produce a field to 

change the direction of the drops by electrostatic repulsion. Second, 

I tried to put a ring carrying a smalT voltage around the centre hole 

to attract the drops. Third, I tried to produce a strong non-uniform 

field to charge the drops and then use a small field to attract the 

drops falling vertically through the hole. However, the more fields 

I used, the more complicated the situation became and the more diffi- 

cult it was to control the drops. Finally, I solved the problem by 

using a big glass cylinder to support the whole vibrating apparatus, 

with the needle a little off the center. (See figure 5-4.) When the 

drop charging is initiated, some of the drops are repelled by the first 

few drops that land on the glass and then fall through the hole. The 

drop size could be controlled by changing the output of the audio 
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Fig. 5-1 Uncharged drops are Fig. 5-2 Charged drops 

thrown about 7 cm away from are thrown even farther 

centre hole 

Fig^ 5-3 Ideally the drops 

can fall into the electric 

field vertically 

Fig. 5-4 The drops are repelled 

by the glass wall and pass 

through the hole 



oscinator, that 1s, changing the amp! itude of the needle vibration. (See 

section 3-2-2 (c).) ,Sometimes, 1 could even select the number of drops 

falling into the field. That had the advantage of avoiding too many 

highly charged drops falling into the field at the same time, causing 

a strong mutual repulsion. 

5-2 The Field 

The uniformity of the levitating field for suspended drops 

is important. A small degree of irregularity causes the drops to drift, 

sometimes to the point where they cannot be controlled at all. To 

counteract this tendency, the electrode (30.48 cm in diameter, 0.635 cm 

in thickness) is made as smooth as possible with a flat inside plane but 

some unevenness still remained (± 0.005 cm). The grounded foil on the 

glass jar affects the field, especially at the edge. (See figure 5-5 

a,b). But* if we always keep the drops at the centre part of the field, 

the effect is very small. The hole in the top electrode affects the 

field also, but it was made as small as possible to avoid serious dis- 

tortion of the uniform field. The drop is usually suspended about 3 cm 

away from the top electrode, so the effect of that hole probably is 

very small (1 ess than 0.1% of the field). 

5-3 The Evaporation Rate of the Drop 

The evaporation rate of the drop depends on the ambient 

temperature, the humidity inside the glass jar, the temperature of 

air circulating inside the room, the absorption of heat from the 

illuminating device, and the initial temperature of the drop. 

Because the volume of the drop is small, the force exerted 

on it is small too. A 70 ym radius drop experiences a gravitational 

force of 1.41x 10 N. Thus, some small factors which are normally 



Fig. 5-5a The shape of the electric field without grounding 

foil 

Fig. 5-5b The shape of the electric field with grounding 

foil 

——^  Electric field lines 
   Equipotential surface 



neglected must be considered carefully in this experiment. The heat 

transferred from 1ight is one. The projector used in this experiment 

produces a wide spectrum, and the absorption of water is different for 

different wavelengths. A heat filter is used, made of cupric chloride 

solution contained in a glass container (7.62 cm in diameter and 15.24 

cm in length). The efficiency of this heat filter has not been tested 

accurately, but nearly two-thirds of the heat is removed: this figure 

was derived from a crude measurement using a precision thermometer. 

The distance between the projector and the drop is a factor also. 

Usually, the distance is around 200 cm. In a sub-experiment, a higher 

evaporation rate was found when the distance was reduced to 60 cm. 

The fluctuation of room temperature, which is poorly controlled, 

is probably the biggest factor in the evaporation rate of the drop. 

When the room temperature is increasing, the evaporation rate increases 

markedly. Even just a few degrees Celsius change in the room temperature 

affects the evaporation rate almost immediately. To solve this difficulty, 

the temperature is recorded continuously and the experiment is always performed 

at a time of stable temperature. Extreme circulation of air in the room was 

prevented by blocking the outlet of the ventilating system. A decreasing 

temperature helps the drop last longer; that is, it causes a lower evapor- 

ation rate. This effect could not be accurately measured with the equip- 

ment at my disposal. 

A high humidity inside the glass jar causes a lower evaporation 

rate also. In the beginning of this experiment, much time was wasted 

because the humidity inside the jar was low. I tried to run the experiment 

right after I closed the glass jar, but failed to catch the drops. The 

drops moved very rapidly and disappeared. It took a great deal of patience 



to discover the reason. After I put a vessel of warm water into the jar 

and left it overnight, the situation became somewhat better. I was able 

to catch and control the drops. The humidity is now raised by heating 

water inside the glass jar with a low-voltage resistance wire. After 

20 minutes or so, high humidity is reached and water condenses on the 

glass jar. The current is then switched off and the system is left 

overnight to reach equilibrium. 

5-4 Some Difficulties in the Measurement 

The drop size is small, usually around 70 urn. It is very hard 

to look at the drop in the field even though the background in the jar 

and room is darkened. Thus, it is necessary to relax the eyes after 

each measurement. 

The position of the drop is judged by the eye, so uncertainty 

is involved, especially when the fal1ing velocity is fast. Parallax 

causes some uncertainty too. The uncertainty is discussed in section 6. 

Great care was taken to determine the balanced field precisely. 

This is important since the whole measurement depends on only a 2.5% 

reduction of this field. 

If the evaporation is fast, it is impossible to measure the 

size of the drop. Since the drop must fall for at least 3 seconds 

through the vertical measuring distance, the measurement will be in- 

accurate if the radius changes appreciably in this time. Sometimes 

it is necessary to reduce the field continuously to balance the drop, 

since it is evaporating. At times, the drop does not fall, or it 

falls a small distance and then rises up again, when the field is 

reduced. Details of this are discussed in section 6. 



As mentioned at the beginning, the size of the drop is small. 

Thus, when I do this experiment I must concentrate on controlling the 

drop in the field. I cannot record the voltage of the balanced field 

and the time of the fall as well* A TV camera was used to take pictures 

of the timer and digital voltmeter. The data was recorded on video 

tape so that it could be examined after several drops were processed. 



6. RESULTS At^D DISCUSSION 

6~1 Results 

From Rayleigh's criterion, we may expect that: 

< 47r(n + 2)R^Y (6-1) 

where Y is surface tension^ n is an integer greater than or equal to 2. 

During the progress of this experiment» approximately 100 different 

drops were examined. 

First, we look at the results for the negatively charged drops. 

From figure 6-1, which plots the radius, charge and critical function 

against time, we can see a typical result of the experiment. (Exact 

data are shown in Table 6-1 and a sample calculation is shown in Appendix 

III.) From the top we see that the radius of th?' ^rop R decreases conr 

tinuously, until a disintegration happens; the radius loss is about 6.22^ 

This corresponds to 17.53% loss In mass. From the middle graph we see 

that the charge always keeps constant* until the disintegration happens 

with a loss of 19.4% of charge. From the bottom graph we see that the 

critical function increases and reaches its highest value at the dis- 

integration point- After the disintegration, the value of the critical 

function becomes lower, the drop becoming more stable. But, after a 

few seconds, another disintegration happens and the mass loss is large, 

so that the drop hits the bottom electrode before the field can be 

increased. Figures 6-la, 6-lb and 6-lc show the radius, charge and 

critical function vs time in large scale graphs. 

Now We consider the positively charged drops. Figure 6-2, 

which plots the radius, charge and the critical function against time, 

shows a typical result. Exact data are shown in Table 6-2. There is 
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TAT^I F R-l! Data for figure 6-1 

Time (s) 

34 

50 

70 

83 

98 

113 

126 

143 

162 

191 

210 

231 

245 

259 

Radius ( p m) Charge 

67.58 0.956 

64.65 0.887 

68.52 1.121 

64.89 1.001 

65.Sr 1.098 

60.56 0.908 

61.09 0.988 

59.40 0.966 

58.02 0.986 

53.71 0.890 

53.48 0.980 

53.94 1.128 

50.63 1.013 

45.24 0.801 

(10-11 C) Critical Value 

0.728 

0.716 

0.961 

0.901 

1.040 

0.912 

1.052 

1.095 

1.226 

1.258 

1.547 

1.994 

1.948 

1.706 

(NEGATIVE) 



TABLE 6-2: Data for figure 6-2 

Time(s) 

10 

22 

36 

50 

70 

90 

107 

126 

145 

160 

191 

217 

239 

257 

274 

302 

336 

Radius( y m) 

78.79 

79.53 

76.68 

79.38 

74.50 

73.41 

73.53 

72.37 

68.33 

65.81 

63.71 

64.81 

61.72 

56.82 

61.37 

56.94 

48.97 

Charge (10“^^C) Critical Val 

1.541 

1.653 

1.536 

1.805 

1.570 

1.602 

1.690 

1.710 

1.556 

1.460 

1.526 

1.758 

1.672 

1.423 

1.943 

1.631 

1.153 

1.194 

1.335 

1.287 

1,602 

1.467 

1.595 

1.767 

1.897 

1.867 

1.838 

2.215 

2.793 

2.925 

2.712 

4.019 

3.543 

2.785 

(POSITIVE) 



no measurable loss in the radius and charge at the first disintegration. 

The reason is probably that the mass and charge loss are small. From the 

critical function figures we know that after this disintegration the value 

of the critical function is lower, and the drop tends to stabilize. The 

second disintegration occurs with a 14% loss in radius, that is 36.4% Toss 

in mass, and 28.9% loss in charge. Again, the value of the critical func- 

tion tends to an even lower value. Figures 6-2a, 6-2b and 6-2c show the 

graphs on a larger scale. 

The average radius loss in the measurement is 8.041% and the 

average charge loss is 20.788%: that is quite close to the prediction 

of Abbas and Latham* Table 6-3 shows the values of charge and radius 

1 OSS for 9 cases. 

The absolute value of the critical function is always higher 

than expected. (Rayleigh's criterion predicts 1. The average value 

in this experiment is 3.78.) However, the experimental result still 

shows a very good prediction; the disintegration happens when the 

value of critical function reaches a highest point and regains 

stability after disintegration. 

Figure 6-3a shows the radius vs charge at the disintegration 

point. The result is not close to the theoretical prediction. The 

theoretical result predicts kiP^/lb-nR^Y = 1, while the average experi- 

mental result is close to kiP^/lb-nR^y = 3.78. The values of radius 

and especially charge are unreasonably high at the disintegration 

point. This will be discussed later. If we believe that there is no 

possibility for the charge on the drop to increase during the measurement, 

we can take the average value of charge measured before the disintegration 

to correct the higher value. Figure 6-3b shows a araph of radius vs 
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TARi F Fr3: Data for 9 cases of Radius and Charge Loss 

Case Radius loss {%) Equivalent mass loss(%) 

8,91 

9.64 

6.22 

14 

7.71 

6.14 

8.04 

9.08 

6.275 

24.42 

26.22 

17.53 

36.40 

21.40 

17.32 

22.24 

24.84 

17.67 

Charge loss(%) 

19.92 

21.64 

19.4 

28.98 

7 

13.23 

30.10 

27.79 

19.03 

(BOTH SIGNS) 



corrected charge. The critical value given by this corrected charge 

is 2.422 which is still somewhat larger than the theoretical value 

of 1. Exact data are shown in Table 6-4. One possible fault in the 

measurement is the non-uniformity of the electric field. The field as 

made slightly non-uniform in order to keep the drop in the central region 

of the electrodes. For a non-uniformity of around 1% the effect on the 

result of measurement could be around 6%. 

Other workers have not presented ehough detailed data in their 

papdrs to allow me to check their results. It is hard to believe that 

the difference between their results and mine is due to a Targe systematic 

error in my experiment. The possibility of a 'supercritical' condition 

probably needs to be re-considered. Bacause of the symmetry of the drop, 

when the critical point is reached, the drop nrobably could pass the 

critical point and a 'supercritical' condition probably exists. The other 

possibility comes from Rayleigh's criterion, kiQ2/4'rr(n + 2)R^Y, when 

n is an integer larger or equal to 2. Earlier v>/orkers all agree that 

the critical value is reached when n is equal to 2. However, according 

to the formula, the critical value could go higher when n is larger 

than 2. It is possible that values of n that are larger than 2 have 

a physical meaning, and that the drop be stable when the critical function 

is much larger than 1. 

The drop always falls faster just before the disintegration point. 

This causes the higher values of the calculated radius and charge. (See 

figure 6-2.) For the first disintegration' point, the radius is 61,37 urn, 

while it should be 59 urn by prediction. The charge is 1.943 x 10”^^ C, 

while it should be. 1.63 x 10“T^ C. If we believe that the mass of the drop 

cannot increase, the only explanation is that the charge leaks. Because of 



Rad1u^(ym) 

62 

67.44 

68.04 

73.89 

65.56 

60.10 

55.54 

51.70 

67.30 

51.06 

62.95 

63.55 

74.13 

42.27 

40.71 

50.28 

49.466 

50.625 

79.68 

44.1476 

TARI P fi~^i Data for figure 6-3a, b 

Charge 

2.56 

1.895 

2.161 

2.509 

2.561 

1.631 

1.874 

1.352 

2.806 

1.692 

2.115 

2.086 

4.027 

0.866 

0.883 

1.39 

1.048 

1.136 

2.717 

0.904 

Cr1t. 

6.877 1.467 

2.878 1.609 

3.646 1.697 

3.837 1.823 

5.727 1.614 

3.010 1.454 

5.039 1.874 

3.250 1.201 

6.349 1.433 

5.294 1.692 

4.409 1.770 

3.3245 1.347 

9.79 1.470 

2.441 0.866 

2.842 0.883 

3.7386 1.149 

2.23 1.048 

2.447 1.095 

3.5886 2.119 

2.335 1.036 

Est. Charge (10"^^C) Est. Crit, 

2.22 

2.076 

2.24 

2.842 

2.273 

2.394 

5.039 

2.567 

2.726 

5.294 

3.566 

1.967 

1.3048 

2.441 

2.842 

2.556 

2.23 

2.27 

2.28 

2.335 



Radius (ptn) 

41,63 

53.30 

65.96 

^.22 

53.30 

55.76 

53.62 

49.18 

42.45 

61.37 

56.94 

47.787 

50.625 

45.24 

40.32 

62.00 

58.19 

56.99 

51.499 

48.08 

46.65 

51.175 

40.126 

Charge (10’ 

1.011 

1.540 

2.354 

1.781 

1.503 

1.327 

1,4 

1.16 

1.079 

1.943 

1.631 

1.314 

1.014 

0.801 

0.48 

2.267 

2.014 

2.029 

1.569 

1.422 

1.008 

1.795 

0.790 

Crit. 

3.467 

3.872 

4.7439 

4.1674 

3.67 

2.50 

3.127 

2,785 

3.743 

4.0186 

3.542 

3.891 

1.9477 

1.706 

0.865 

5.303 

5.061 

5.471 

4.435 

4.471 

2.462 

5.676 

2.379 

Est. Charge 

i.Oll 

1.432 

1.560 

1.560 

1.503 

1.327 

1.338 

1.16 

1.079 

1.622 

1.631 

0.842 

0.994 

0.801 

0.48 

2.267 

2.014 

2.029 

1.569 

1.422 

0.804 

1.795 

0.790 

(lO-l^C) Est. 

3.467 

3.33 

2.878 

3.318 

3.67 

2,50 

2.855 

2.785 

3.743 

2.799 

3.542 

1.596 

1.874 

1.706 

0.865 

5.303 

5.061 

5.471 

4.435 

4.471 

1.565 

5.676 

2.379 

Crit. 



the high humidity inside the jar, the electrical conductivity of the humid 

air is probably very high too, but the exact figure is beyond the range of 

this thesis. The shape of the drop could also affect the result, but more 

theoretical calculations must be made before anything definite could be said 

6-2 The Uncertainty in the Experiment 

The radius is calculated from; 

R = ( (6-2) 

Suppose the viscosity n, density p and gravitationaT acceleration g 

are exact. The uncertainty comes from the time of falling T, the distance 

of falling D, and the ratio of reduced field to the balanced field a. 

The uncertainty of a was tested and found around ± 0.1%. The estimated 

uncertainties of T and D are around 10% each. Thus, there is a total of 

10% uncertainty in the radius measurement. 

The charge is calculated from: 

q = AiTpgadR^ 

3 V„ 
(6-3) 

where d is the distance between two electrodes. Its uncertainty is 

estimated as ±1.5%. is the reduced voltage recorded during the 

measurement. Its estimated uncertainty is around 5%. The total 

uncertainty in the charge measurement is thus 36.6%. 

The critical function can be expressed as: 

V 3.. 
'2 

cn it. , 3.P.W [ 
2 /2Y 

D ^ 
) 

(1 - a)'S T 
(6-4) 

According to the uncertainties estimated above, the total uncertainty 

of the critical function is around ± 49.2% ! 



The uncertainties of charge and critical function are quite 

large. This is caused by the uncertainty of measuring time T and the 

distance D. Usually, the falling time of a 90 yfn radius drop is around 

2.5 s. It is very hard to judge the drops exactly by using the human 

eye. There are two ways to solve this problem. 0he is to set up a photo- 

cell to detect the drops automatically when they pass the line. The other 

way is to use a sensitive TV camera to take a slow motion picture and then 

replay it to determine the time and distance. But, both of these have some 

disadvantages. In either case* the equipment has to be sensitive to avoid 

the heating problem. 

The uncertainty of the ratio of the reduced field to the balanced 

field is a very 'dangerous' factor. If we have a ratio a = 0.975 ± 0.3%, 

the uncertainty in the critical function will be 18.6%. The ratio has 

been tested by a precision voltmeter and the uncertainty is around 0.1% 

in this measurement. 

6-3 The External Electric Field Affects the Results 

In 1970, G. A. Dawson mentioned in his paper. The Raytelgh 

Instahiln.ty. of Water Drops tn the Presence of External Electrtc Fields ^ 

that the shape of the drop will be distorted near the instability 

point by the external electric field. The radial electric field of 

the drop is four orders of magnitude larger than the levitating field in the 

beginning of the experiment. For a drop of radius 100 ym and charge 

1.67 X 10”^^ C, the radial electric field is 1.57 x lO^ V/m, while 

the levitating field is 2.46 x 10^ V/m. As Rayleigh's criterion 

is approached, the excess pressure inside the drop, which causes the 

spherical shape, decreases to zero, so the small levitating field will 

be able to produce appreciable distortion of this drop. This distortion 



would not cause too much effect (about 2.5%) on the final charge when 

instability occurs for drops of radius below 250 urn. Thus, the experi- 

ment probably is not perfectly suited for checking Rayleigh's criterion, 

but is still a very useful one, especially since the electric field in 

the atmosphere is around the same value as is used in the laboratory. 

In 1972, P. R. Brazier-Smith mentioned in his paper. The stability 

of Charged Drops in a Uniform Eleotrio Field, that the spheroidal assump- 

tion is not suitable for charged droplets. He pointed out that, if we 

consider the pressures on the upper pole, lower pole and equator, the 

shape of the drop and stability criterion are quite different from what 

Dawson found. He calculates the shape of the drop in the external 

electric field. This criticism is again theoretical and the difference 

probably could not be detected in the laboratory. Thus, there seems 

to be no better way to verify Rayleigh's criterion than the way it has 

been done by Doyle et al, Abbas and Latham, and Dawson. 

6-4 The Evaporation Affects the Measurment 

The equations that are used to determine the radius R and the 

charge Q were derived under the assumption that the volume of the drop 

does not change during the measurement. The fact that the drop is 

evaporating while it falls does introduce some error. An estimate of 

this error will be made here. 

If we assume that the ambient conditions (temperature, pressure, 

and humidity) do not change during measurement, the specific surface 

evaporation rate J can be defined as the volume loss per unit area A 

per unit time. That is: 

J 



If we assume the drop is spherical and the density is uniform, then: 

dV = 4TrR2dR . (6-6) 

Since the surface area of the drop is A = 4TTR2, the specific surface 

evaporation rate is just: 

J - dk 
dt 

The rate of volume loss is 

f • 

(6-7) 

(6-8) 

Substituting (6-7) into (6-8), we get 

dt 4ITR2J . 

Then the percentage volume loss in the time dt is 

(6-9) 

Y ^100% = X 100%. (6-10) 

From this equation we see that, when the specific surface evaporation 

rate is large or the radius of the drop is small, the percentage of 

volume loss in a time interval dt is large. Now, consider the 

equations we use for measurement: 

I 7rR3pg = QEjj (6-11) 

I itR3pg - Q = 6TtnRV . (6-12) 

The reduced field is about 2.5% less than the balanced field in the 

experiment. If the volume is decreasing rapidly, the left side of 

equation (6-12) will change to zero or negative in a short period of 

time, that is, the velocity of falling changes to zero or negative. 



This is the reason that the drop will stop falling and then rise up in 

some cases. 

If the radius of the drop is small, then according to the equation 

(6-10), the percentage volume loss is large. Suppose 0 = 0.078 ym/sec, 

t =25 Si R = 25 ym; the percentage volume loss will be 25%. It turns 

out that the balanced field is hard to stabilise, and it is necessary 

to reduce the field continuously to balance the drop. In this case the 

measurement becomes impossible. Thus, a low evaporation rate is necessary 

if we wish to measure the radius and the charge of small drops. 

measurement, then the evaporation rate will also be increasing and this 

will affect the measurement. 

The following sample calculation shows how the radius of a 

drop affects the percentage volume loss. 

If J =0.078 ym/s , dt = 2.7 s , and R = 78.79 ym, then 

On the same evaporation rate, when the radius is becoming smaller, 

the percentage volume loss is increasing. When the radius is smaller, 

but the evaporation rate is the same: 

If the temperature of the system is increasing during the 

100% = 0.802% 

J = 0.078 ym/s , dt = 6.99 s , R = 48.96 ym 

then 

X 100% = 3 X 0.078 X 6.99 
48.96 xl00% = 3.34% . 



From the example, the effect of the evaporation rate Is easy 

to see. If the evaporation rate is just one-tenth of the above number, 

even in the small radius case (25 ym) the volume loss is still small 

(2.5%) and the measurement is possible. 



7. CONCLUSION 

The results of the experiment are quite reproducible. Although 

the value of critical function is higher than it should be, it still 

predicts the disintegratioh quite well. The mass loss after the disin- 

tegration is around 23^, and the charge loss is around 20%. This result 

is quite close to the result of Abbas and Latham. Dawson mentioned in 

his paper that the mass loss is just few percent after disintegration; 

actually it is hard to tell the difference of a few percent with the 

method of measurement used in this kind of experiment. The difference 

in mass loss probably is not related to the evaporation rate directly. 

The changing ambient condition (fluctuation of temperature, low humidity) 

seems more 1ikely. 

In my experiment high humidity is reached before the measurement, 

and the measurement is performed at the most stable temperature. Thus, 

the effect of the ambient situation is reduced to the minimum. However, 

in order to know the exact effect, a further experiment will be necessary, 

probably involving a controllable temperature system, precision hygrometer, 

an improved method for measurement, reducing the heat transfer from the 

light source and a more uniform field. 

A low pressure experiment could be very interesting too, because 

it is closer to the situation in the atmosphere. That was the basic reason 

for using the enclosed vacuum system as a design norm. Although the exter- 

nal field used in this experiment wil1 affect the shape of the drop when 

it approaches the disintegration point, the field is close to the field 

to be found in the vicinity of electrified clouds and the surface of lakes 

and oceans (500 - 2000 V/m). So, if there are no other complicating factors. 
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such as corona discharge (Dawson, 1969),an evaporating droplet in the 

atmosphere would behave much the same way as in the laboratory. 



APPENDIX I Some Details of the Calculation of Rayleigh's Criterion 

I-l The Calculation of the Volume 

^ P„(M) +3H ^ PJy) P„(y)]dii 
-3 •/ -1 0 r\ ^0 ^ hm ^ 

The three terms of integration Ii, I25 13 are: 

^1 " f - 4 . 3 0 3 , (I-l) 

12 = /I, I 

= 2Tia2 r* lap J .1 nn (p)dp 

= 27ra2 I a r P (p) P (u)dp 
0 -1 ^ 

V PO(K) = 1 

= 2TI a2 ^ a 
° n " 2n + 1 no (This is orthogonal condition for 

the Legendre Equation.) 

= 0 (Because n is an integer equal to 
1 ....... OOj but not zero.) 

(1-2) 

= 27raon a„a, ^ P„(y) P„(^)dp 



7^ 

T 2ita 
2n + 1 iti 

= 2iTa^ Y 
2 a2 n 

0 n 2h + 1 a2 
(1-3) 

Combining (1-1), (1-2) and (1-3), we get 

V = 4 Tia^ + 0 + 2ira^ I _^ 
^ O n 2n + 1 ^0 

. 4^ a3 (1 + y -^— )") 
3 “0 2n + 1 0 

= 4 Tra^ Because << 1, use the reverse of binomial theorem 
^0 

Here, we let a = a-(l + i (/)2). 
° 1 2n + 1 ®o 

1-2 Calculation of the Surface Area 

/. 271 - 1 . ^ 27T - 1 dP (y ) dP (y) 

^ of * I f  — (1 - p2)dpd*. dy dy 

The first integral on the right is: 

Si J 0 J I 

1 
2TT f r^dy 
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dvi 

2„(2a2 + Zl ^ (2n + 1)*^ a2). u n 

In the second term, we use the formula 

- 1 dP^(y) dP. (ji) /. 1 f (1 - u2) —0— dn = n(n + D / P„(w)Pju)dR 
w.- Hi 

-1 
dp dp 

which is valid whether n is equal to, or different from, m. 

The second term $2 is: 

^2 “ m n l)(2n + 1) ^ 26 ^ 2 m,n n m n,m 

= 27T E n(n + l)(2n + l)~^a^ . 
n n 

Therefore, the total area is: 

S = 4TTa^^ + ^ ^^n~l ^ l)(2h + 1) ^a^ 

1-3 Calculation of Charge Density and Potential 

4Tra = - — I V 9r ' r = a + A a P (p) 
n n n'^' 

= kiQr"^ + kjl (n + l)Qr''^’^ a"'^ P„(P) a, 
n=l n' n 



rb 

= kiQa'^d - 2l P„) + kil (ii + l)Qa'"'2(i . + 2)^ PJa"'^P„(ii)a n-1, 
n=l 

ki2Q I -a 
n 

P n + kiZ (n + l)Qa'''‘^a'’‘^P„(p)a 
n=l " " 

= k Q_ . 
n a 

-^p„(p) + kii (n + 1) -S. p„(p)a, 
n=l 

^ (n - l)a 
kiQl ■ , ” Pn(u) 

In the above calculation terms of order a^ were neglected because they 

are smal 1. 

The electrostatic potential of the drop, 4>, is calculated by 

usi ng 

$ =/^A , 

kiQ a P a P^ 
  [1 + I (n - 1) ] [1 - I -2^ ]adu 
4iTa2 n n a 
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= i/ I 1 + I (n - l) ¥^] [ 1 
2 ■' -1 a ti ® 

a P 
I ^ ] dp 
n a 

a P n n 
+1 (n - 1) 

a P„ n n - I (n 
a2p2 

1)-M]dp . 
a 

The first terrri Is 

kiQ 

The second and third terms are zero because of the single P^(y) 

terms and n starts from 1 by definition. (Also see Appendix I-l.) 

By direction integration, the fourth term is: 

kiQ n - 1 a2 
H = -   I —— * 

a n 2n + 1 a^ 

Combining the results above, we get: 

kiQ kiQ n - 1 a^ 
^ ^   a 

a a n 2n + 1 a^ 
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APPENDIX II An A.P.L. program for calculating the radius, 
charge and critical value of the drops. 

V MESU 

rn 

C5i T2^T,A 

ran 7’3^!Z’2-T1 

[4] ( 0.975x0.113 ) 

[51 '^^0 . nOOlx ( ( 9X1.827x5 )^ ( 2x9.91x2 . SxT'S ) )*0.5 

fRl 10x4xoix981x/?*3 )f ( 3xF) 

[71 (7/?J7’-f-( gx 1 000000000x<7*2 )f( 16x7 2.8x0.OOlxolx??* 3) 

[R] ^TP.E TT^-IF OF FATAJIUG AHF^ 

[ 9 1 73 

[101 APF LFVIFATEV ELECTFIC FIELD AEE' 

[111 E 

[121 'TEE E AD TVS OF THE DROP ARE ' 

[13 1 R 

[141 'THE CHARGE OF THE DROP ARE ' 

[15 1 0 

[161 'THE RALEIGHS CRITERION ARE' 

[171 CRIT 

V 
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APPENDIX III Sample Calculations of Charge^ Radius and Critical Value 

The equations used for measurements are: 

R2 = _9n_ (  
2p,g (l-f^)T 

(2-44) 

Q = P g E~ 
0) ^ 

(2-38) 

The constants used in the calculations are: 
— 5/ 

viscosity n= 1.827 X 10 kg/msec 

density =10^ kg/m^ 

acceleration of gravity g = 9.81 m/sec^ 
^r ratio of reduced field to balanced field f— = 0.975 

b 
distance of fall D - 0.05 m 

distance between the two electrodes d = 0.113 m. 

The time of falling and reduced voltage measured at the disintegration 

point of figure 6-1 are 6.54 s and 57.95 V. 

So, the balanced electric field is 

= 57.95 r 0.975 4- 0.113 = 526 M/m. 

The radius R is equal to: 

„ ,9 X 1.827 X 10'^ 0.05 
R = (  — X — } 

2 X I03;x 9.81 0.025 x 6.54 

= 50.62 ym. 



Substituting R and Ej^ into (2-45), we get 

Q = |ir (50.62 X 10"®)3 X (103) X (9.81) r (526) 

= 1.013 X 10'“ C. 

The critical value can be expressed as: 

kiQ' 

4iT(n + 2)R^' 

where surface tension Y = 72.8 x 10”^ N/m, 

k = 9 X 10^^^, 

and Integer n = 2. 

We find the critical value to be 1.95. 
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