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ABSTRACT 

Remmel, T.K. 2000. Fire disturbance mapping in a northern boreal forest using 
AVHRR/NDVI imagery: comparing techniques of change detection and substrate 
correction. 98 pp. Advisor: Dr. A.H. Perera 

Key words: boreal forest, fire, remote sensing, spatial coincidence. 

Ontario’s landmass north of 51° latitude has been designated as the least intensively 
managed zone with respect to fire protection. Consequently, large natural fires dominate 
the boreal landscape. This northern zone, comprising nearly 43-million hectares of 
primarily unmanaged boreal forest, is virtually inaccessible by road. Understanding the 
fire dynamics of such an extensive, unmanaged, and inaccessible forest is valuable for 
further ecological research. 

Three methods of analyzing Advanced Very High Resolution Radiometer (AVHRR)/ 
Normalized Difference Vegetation Index (NDVI) imagery were compared for post-fire 
detection and mapping in northern Ontario. Exposed ground conditions, resulting from 
the removal of forest cover, can inflate derived AVHRR/NDVI values. Corrections for 
these effects were applied to test whether fire-mapping accuracy could be increased. 
The suitability of three threshold-driven change detection methods developed in Alaskan 
boreal forests were tested under northern Ontario conditions along with three corrections 
for substrate reflectance for 1992, 1993, and 1995 fire seasons. A factorial ANOVA 
statistical design was implemented to test equality among various spatial coincidence 
variables. Accuracy was assessed using a spatial database. 

Existing fire detection and mapping methods using AVHRR/NDVI are not directly 
suitable for use in northern Ontario. Results indicate the superiority of a strict, single- 
threshold method for reducing false detection and the lenient double-threshold method 
for increasing mapped area for each fire. Furthermore, strong correlation was found 
between fire size and the area detected to represent them; however, corrections for 
substrate reflectance did not significantly increase detection and mapping accuracy. 
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CHAPTER 1 - INTRODUCTION 

BACKGROUND 

To prioritize protection from wildfire in Ontario’s forests, fire managers have designated 

three fire management zones (described in Martell and Boychuk 1997) as shown in 

Figure 1. The dominantly southern zone is one of intensive fire control, aimed at 

protecting the high human population and associated values. The measured zone, 

primarily a region of sustainable forest licenses (SFLs), has experienced continued 

increases in control to protect valuable forest resources. The northernmost or extensive 

zone is subjected to low fire control because of sparse settlements and values and 

inaccessibility by road. Thus, most fires occurring within the nearly 43-million hectare 

unmanaged boreal forest are left to bum without any control and with modest 

monitoring. 

Given the minimal level of monitoring in the extensive zone, little is known about the 

occurrence and spatial distribution of fires during or shortly after disturbance events. 

The potential expansion of native forestry operations into this zone emphasizes the need 

to know where resources exist and what quantities have been destroyed by fire (E.A. 

107, Environmental Assessment Board 1994). With nearly three-million hectares 

burned in the extensive zone during the past half century alone (Perera et al. 1998), 

methods for providing accurate and efficient means of fire disturbance mapping are 

becoming increasingly essential. 
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Figure 1. Generalized fire protection zones in Ontario, Canada (after Perera et al. 1998). 



Fires are a tremendous force of change in the boreal ecosystems of northern Ontario. 

Given their magnitude, they can result in significant changes to landscape patterns, 

habitats, hydrological regimes, and natural resources availability (DeBano et al. 1998). 

Until recently, forest research has focused on the managed boreal forest, approximated 

by the measured zone of fire protection (Figure 1). However, the unmanaged, 

inaccessible, and extensive northern boreal forest provides an excellent opportunity to 

gain new ecological knowledge about natural fire regimes. 

In Ontario, “the long term health and vigor of Crown forests should be provided for by 

using practices that, within the limits of silvicultural requirements, emulate natural 

disturbances and landscape patterns while minimizing adverse effects on plant life, 

animal life, water, soil, air and social and economic values, including recreational values 

and heritage values” (Crown Forest Sustainability Act, Statutes of Ontario 1994, Chap. 

25). Therefore, knowledge of the northern fire regime would assist with forest 

management planning within the legal framework for Ontario. 

Information about forest biomass burning has allowed estimates of gaseous emissions 

(Cahoon et al. 1994) and carbon fluxes (French et al. 1996; Burke et al. 1997; Zepp et 

al. 1997). The release of carbon and subsequent sequestering after re-vegetation are 

important parameters for ecological modelling of boreal ecosystems. The ability to 

calculate carbon and aerosol fluxes provides avenues for studying atmospheric 

composition, climate change, and forest productivity. 



The random and vast spatial distribution of fires requires efficient mapping techniques 

that work for the entire extensive zone. Moreover, the harsh geography of northern 

landscapes hinders field mapping, making remotely sensed imagery the best choice for 

meeting these goals (Iverson et al. 1989). The low probability of obtaining cloud-free 

imagery and difficulties with mapping entire active fires further demonstrate the 

necessity of detecting post-fire disturbance patches, especially when fires extinguish 

before useable imagery is obtained. Thus, the current study compared methods to 

overcome obstacles of extent, timing, and removal of cloud cover with coarse spatial 

resolution, single-scene composite imagery (Holben 1986). 

ThQ Advanced Very High Resolution Radiometer (AVHRR) facilitates observation of 

spatially extensive areas (Roller and Colwell 1986; Teuber 1990) at approximately 1.1 

km^ resolution on a twice-daily basis. Thus, AVHRR images reduce data volume, 

analysis time, number of required images, and, therefore, the costs involved with 

obtaining, edge matching, and interpreting data. AVHRR imagery is easily accessible 

and costs approximately $0.0001/km^ (Lunetta and Elvidge 1998). Furthermore, the 

Normalized Difference Vegetation Index (NDVI) can be calculated from AVHRR’s red 

(R) and near-infrared (NIR) channels for tracking reductions in vegetation, a common 

effect of fire. 

Inflated NDVI values can result where ground conditions greatly influence the R and 

NIR reflectance components. For example, if the forest canopy is not closed, non-green 

reflectances from terrestrial soils and bedrock may reach the AVHRR sensor. Since soil 

and vegetation that is green have similar reflectance patterns in the stated spectral 



regions (low in R, higher in NIR), soil/vegetation confusion can result. Thus, the 

magnitudes and differences between the spectral components are evaluated for 

correcting background reflectance effects. Three corrections are presented in this study. 

Significant NDVI declines have been associated with vegetation disturbance patterns 

(e.g., Nemani and Running 1997), which include wildfires. Thresholds to measure 

NDVI decline have been established for mapping large boreal wildfires in Alaska 

(Kasischke et ah 1993; Kasischke and French 1995). Such thresholds are used to decide 

whether vegetation greenness between two dates has decreased sufficiently to be 

considered a fire disturbance. In the current study, these methods were applied in 

northern Ontario to compare their accuracy for similar purposes. 

Fires were ground-truthed using a comprehensive geographic information system (GIS) 

database of fire patterns, which contained dates and locations of fires in Ontario between 

1921 and 1995 and was compiled from hardcopy maps derived from field data, aerial 

photographs, and interpretation of Landsat images (Perera et al. 1998). 

This study compared the accuracy of fire mapping among three substrate corrections in 

conjunction with three AVHRR/NDVI threshold methods for the 1992, 1993, and 1995 

fire seasons in northern Ontario. 



GOAL AND OBJECTIVES 

The goal of this study was to compare the spatial coincidence among fires mapped with 

various substrate-corrected and uncorrected NDVI change-detection methods and the 

ground-truthing data. The methods were applied to mapping post-fire disturbance 

patches in northern Ontario for the 1992, 1993, and 1995 fire seasons. Three objectives 

were identified: to compare the accuracy of fire mapping from the (1) sensor, (2) event, 

and (3) truth perspectives. The objectives included comparisons from the general 

treatment level {sensor, event, and truth perspectives), followed by detailed fire-by-fire 

level comparisons {event and truth perspectives). Detailed comparisons of the sensor 

perspective were omitted due to data limitations (discussed under Methods). 

1.2.1 Hypotheses 

Given the goal and objectives for comparing the accuracy of fire mapping in northern 

Ontario, several null and alternate hypotheses were formulated for each accuracy 

measurement (described under Methods). Two null hypotheses were constructed, 

indicating equalities among (1) the effects of the three threshold methods and (2) the 

effects of the three substrate corrections. Alternate hypotheses implied that for either the 

threshold methods, or substrate corrections, at least one of the three effects differed from 

the others. For treatments rejecting a null hypothesis, further statistical tests were 

conducted to denote the specific treatment effects that differed. 



STUDY AREA 

The study area encompassed lands north of the Area of the Undertaking (Environmental 

Assessment Board 1994) in the province of Ontario, Canada (Figure 2). The southern 

boundary of the study area is 51°N, approximating the northern limit of SFLs. The study 

area lacks road access and contains a few, small sparsely distributed communities. 

In northern Ontario, topography is dominated by lakes and bedrock to the west and flat 

wetland plains to the east. Precipitation for the region varies between 450 and 800 mm 

annually. The cool mean-annual temperatures and extreme summer/winter fluctuations 

provide ideal growing conditions for boreal forest species (Ecological Stratification 

Working Group 1996). Boreal species are typified by black spruce (Picea mariana 

[Mill.] BSP), white spruce {Picea glauca [Moench] Voss), jack pine {Pinus banksiana 

Lamb.), balsam fir {Abies balsamea [L.] Mill.), tamarack {Larix laricina [Du Roi] K. 

Koch), white birch {Betula papyrifera Marsh.), and poplar species (e.g., Populus 

tremuloides Michx., Populus balsamifera L.) (Farrar 1995). 



Figure 2. Study area location in Ontario, Canada. 



Soils of northern Ontario are characterized by brunisols and podzols, with interspersed 

pockets of luvisols and organics (mesisols) (Agriculture and Agri-Food Canada 1996). 

Acidic brunisols and podzols occurring in mesic to arctic conditions regularly exhibit the 

strong brown chroma characteristic for the boreal region (resulting from high Fe and A1 

content). The eastern lowlands are dominated by undecomposed organic fibrisols, and 

the northern provincial limit is covered by extensive cryosols. Cryosols, common to 

northern boreal/barren landscapes, are underlain by permafrost and are subjected to 

cryoturbation. Pockets of luvisols characterized by thin layers of decomposing leaf litter 

also exist. Regosols and gleysols are rare within the study area. 

The boreal forest pattern is changed by disturbances, fire being a major constituent 

(Whelan 1995). Seasonal electrical storms, declining northward, initiate fires 

accounting for over 90 percent of the area burned (Johnson 1992); the rest have 

anthropogenic origins (Heinselman 1981). The average fire frequency is 50-200 years 

(Heinselman 1981; Bergeron et al. 1999); however, in regions of intensive fire 

suppression, frequencies are closer to 500-1000 years (Lynham and Stocks 1991). 



CHAPTER 2 - DETECTE'^G AND MAPPING FIRE DISTURBANCES 

Fire detection and mapping can be conducted for either active fires or post-fire 

disturbance patches. Active fire observation is usually satellite-based and relies on 

thermal or optical techniques. Three primary categories of post-fire mapping methods 

exist: field, airborne, and satellite based. 

ACTIVE FIRE DETECTION 

2.1.1 Thermal and Optical Methods 

Thermal and middle infrared imagery have been used in many fire detection and 

mapping studies (e.g., Matson et al. 1987; Pereira and Setzer 1993a; Pozo et al. 1997), 

allowing drastic thermal gradients between fires and non-fires to be detected. Real-time 

detection of boreal forest fires using infrared and thermal data has been very successful 

(Justice et al. 1996; Rauste et al. 1997). Natural Resources Canada, in conjunction with 

the Canada Centre for Remote Sensing, is now developing M3, a project to display fire 

hotspots in real time (http://fms.nofc.cfs.nrcan.gc.ca/FireM3/) from AVHRR 

multispectral imagery on the Internet. 

Nighttime Defense Meteorological Satellite Program (DMSP) optical images have been 

used to detect the high contrast between bright, active fires and the dark landscape 

(Ehrlich et al. 1997). This instance in time mapping depicts only areas currently 

burning, not necessarily the entire disturbance event during a specific satellite pass. 

Thus, the potential of this technique for mapping entire fire disturbances is low. 



Although thermal imagery is better suited for fire detection than mapping, benefits are 

also noted for isolating cloud in images, indicating the need for compositing, and 

making atmospheric corrections (Flasse and Ceccato 1996). Robinson (1991) provides a 

thorough review of projects using infrared data for fire detection. 

2.2 POST-FIRE DISTURBANCE DETECTION 

2.2.1 Field and Airborne Methods for Mapping Fire Disturbances 

Field surveys and airborne techniques are highly localized. In the past, post-fire 

mapping efforts involved field (Gillis and Leckie 1996) or aerial surveys, and 

disturbance patches were sketched by hand onto forest and highway maps (Williams 

1953). Field surveys were conducted immediately after a fire disturbance or during its 

suppression to minimize effects of re-growth on mapping accuracy. The current forest 

resources mapping standard in Canada is based on aerial-photograph interpretation 

(Madill and Aldred 1977; Gillis and Leckie 1993). 

Modem mapping methods involve the use of helicopters and field crews outfitted with 

global positioning system (GPS) units to trace disturbance perimeters (Gillis and Leckie 

1996). Then, the collected digital data are imported for use in a GIS. Gillis and Leckie 

(1996) also proposed methods for using digital frame cameras or video to replace 

conventional photography and eliminate the need to scan photos (King 1995). 

Dendrochronological fire histories have been constmcted using cross-sections of 

surviving trees in Ontario (e.g., Guyette and Dey 1995), providing records of cyclic fire 



activity. In Alberta, lake-bottom sediment cores were used to predict hundreds of years 

of site-specific fire history from pollen and charcoal inclusions (MacDonald et al. 1991; 

Larsen and MacDonald 1998). These methods provide general indications of fire 

calendar for large fire events, but are unusable for precise fire mapping. Landry et al. 

(1995) studied C-band HH-polarized radar images of Saskatchewan to develop methods 

of extracting fire disturbances and found that disturbances were easier to detect in the 

year following a fire event. 

2.2.2 Satellite Methods for Mapping Fire Disturbances 

The 1972 launch of the first Landsat series satellite led to a new era of data collection. 

Landscape-scale digital forest-data could be collected and used for type classification 

(Dodge and Bryant 1976; Beaubien 1979), change detection, and disturbance 

recognition (Iverson et al. 1989). 

Many researchers have been working on projects to detect fire disturbances from space. 

Pereira and Setzer (1993b) determined that Thematic Mapper (TM) band 4 was very 

useful for fire scar detection in Amazonia. Adding terrain data to TM imagery of New 

Mexico allowed Medler and Yool (1997) to increase the accuracy of supervised fire 

detection by 40 percent (as observed in the accuracy measure Kappa); they reasoned that 

terrain confines and directs the pattern of wildfire. Jakubauskas et al. (1990) found that 

timing imagery to allow complete vegetation mortality after a disturbance greatly 

improves the accuracy of disturbance mapping but Martin and Chuvieco (1995) found 

that it must be conducted before vegetation begins to recover. Woodcock et al. (1994) 



conducted separate classifications for “poorly” and “well” illuminated image regions to 

reduce shadow effects and thus misclassification errors. The application of a 

multisensor approach in Africa combined fine and coarse spatial resolution data, 

removing biases of data supplied from different sources (Eva and Lambin 1998). This 

multisensor method indicated that middle-infrared (1.1 to 3.0 pm) observations, not 

available on some common platforms, greatly enhance burned-area detection. 

The FireSat satellite is now being developed for continuous monitoring of global fire 

regimes (Levine et al. 1996). Although the emphasis is on active fires, some of the 

research is directed at detecting fire scars using various combinations of optical and 

infrared channels. An Alaskan RADARS AT study is also striving to simplify fire 

disturbance detection by comparing incidence angles, observed backscatter, and the 

relative differences between burn scars and forested areas (French et al 1999). The 

FireSat and RADARSAT methods are still in their early stages of development. 

2.2.2.1 Remote Sensing Change Detection 

During the 1980s, change detection concentrated on the then-new MSS and TM 

imagery. Primary processing techniques involved principal component (PC) analysis, 

finding axes 3, 4 and 5 to provide useful information on vegetation change (Bryne et al 

1980), allowing Richards and Milne (1983) to map burned areas in Australia. Forest 

mortality mapping in the Lake Tahoe basin (Collins and Woodcock 1996) and in 

Arizona (Patterson and Yool 1998) have relied on various orthogonalization techniques 

(i.e., multi-temporal Kauth-Thomas transformation, PC analysis, and Gram-Schmidt 



orthogonalization). Results showed that soil and vegetation moisture, both greatly 

affected by fire, could alter spectral signatures. 

An effort to map bums and their severity in Michigan (Jakubauskas et al. 1990) used a 

ratio of Landsat’s Multi-Spectral Scanner (MSS) bands 7/5. The resulting image was 

smoothed using a 3x3 majority filter and further classified using unsupervised methods 

to generate both pre- and post-fire raster images. A GIS was used to compare the paired 

images. 

Patterson and Yool (1998) emphasized the need for high spatial, radiometric, and 

spectral resolution. Milne (1988) indicated that radiometric, temporal, spatial, and 

registration accuracy factors are important considerations for digital change-detection 

research. The most important factor is knowledge of the environment being examined, 

especially when several scales are introduced simultaneously or comparisons are made 

between projects. 

2.2.2.2 AVHRR ’ s Role in Ve getation S tudies 

National Oceanic and Atmospheric Administration’s (NOAA) meteorological satellites 

have been utilized for vegetation studies at global (Agbu and James 1994), regional 

(Loveland and Belward 1997), and provincial scales (examples follow). Of primary 

appeal is NOAA’s AVHRR, operating in visible, infrared, and thermal regions of the 

electromagnetic spectrum. 



Four daily passes of the NOAA satellites, coupled with spatial resolutions ranging from 

1-8 km and a 9-million km^ coverage, have provided numerous vegetation monitoring 

and data collection opportunities worldwide. Significant vegetation change studies 

using AVHRR have been conducted in Africa (Gatlin et al. 1983; Tucker et al. 1985; 

Townshend and Justice 1986; Eva and Lambin 1998), Spain (Lopez et al. 1991; 

Gonzalez-Alonso et al 1996; Fernandez et al 1997), Alaska (Kasischke et al. 1993; 

Kasischke and French 1995; French et al 1995; Kasischke and French 1997), and 

Canada (Steyaert et al. 1997). 

The International Geosphere Biosphere Program has drafted several standards and goals 

for AVHRR 1-km remote sensing of the earth (Townshend et al. 1994), which are 

reflected in many of the aforementioned studies. Price (1987) provides detailed pre- 

launch calibration information for the AVHRR sensor: Vibrations during launching can 

compromise these calibrations, indicating the need for further calibration after satellite 

deployment (Eidenshink and Faundeen 1994). 

2.2.3 Vegetation Indices for Quantifying Greenness 

Fire destruction of vegetation usually begins with litter, foliage, and branches (Johnson 

1992). Destruction of foliage containing chlorophyll changes the normally observed 

R/NIR reflectance ratio for green vegetation. Based on this premise, the use of a 

vegetation index that is sensitive to the R and NIR regions of the electromagnetic 

spectrum is suited to quantifying vegetation change (Horler et al. 1983). 



Over the past three decades, many indices have been developed to summarize 

multispectral vegetation data (Appendix I). Most are either ratios or difference 

measures. Perry and Lautenschlager (1984) summarize many of these indices and 

indicate equivalencies among them. Due to its simplicity, NDVI is the most widely 

used. 

2.2.3.1 Normalized Difference Vegetation Index 

The values required to calculate NDVI are reflectance values from the R and NIR 

portions of the electromagnetic spectrum for each pixel: 

NDVI = (NIR-R)/(NIR+R) (1) 

The computed NDVI values range from -1.0 to +1.0 and describe the relative greenness 

of the represented area. The continuum of positive NDVI values represents a gradient of 

increasing greenness, often associated with the abundance of vegetation that is green 

(chlorophyll). Negative values commonly indicate clouds, haze, snow, ice, or rock. 

Calculation of the NDVI has been applied to MSS (e.g.. Rouse et al. 1973), TM (e.g.. 

Marsh et al. 1992), SPOT HRV (e.g., Larsson 1993), and AVHRR (e.g., Eastman and 

Fulk 1993) imagery. A comprehensive review of NDVI calculation, precision, and error 

is provided by Roderick et al. (1996). 

To obtain meaningful NDVI values for vegetation monitoring, the NIR component for 

each pixel must be greater than the corresponding R component. This property is best 



described with a diagram displaying the spectral reflectance of typical vegetation that is 

green, in the visible and NIR regions of the electromagnetic spectrum (Figure 3). 

Vegetation that is green, reflects little in the R portion of the spectrum and highly in the 

NIR (Goward et al. 1985). This characteristic difference (A) is measured and 

normalized by dividing by the sum of R and NIR reflectances. The resulting NDVI 

represents the ratio of reflectance change compared with total reflectance, reducing the 

bias of reflectance magnitude. The NDVI ratio reduces background noise; however, 

further stratification by species could greatly assist interpretation by minimizing 

differences in optical properties stemming from physiognomic variances (Leblanc et al. 

1997). 
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Figure 3. Reflectance curve of typical green vegetation in the visible and NIR regions of the 
electromagnetic spectrum (after Y. Li et al. 1993). (B), (G), (R), and (NIR) represent the 
blue, green, red, and near-infi-ared regions of the electromagnetic spectrum respectively; (A) is 
the difference in reflectance for typical green vegetation between the R and NIR spectral 
regions. 



In Spain, NDVI imagery derived from the AVHRR sensor has proven successful for 

detecting fires from 14 000 to 26 000 ha, using image subtraction with thresholds 

indicating significant change (Fernandez et al. 1997). In tropical regions, NDVI images 

have shown drastic contrast between burned and unbumed sites (Razafimpanilo et al. 

1995). Severe bums appear more likely to be classified correctly, because the low 

quantity of remnant vegetation is less likely to confuse the vegetation index. NDVI 

generated from TM imagery allowed Viedma et al (1997) to monitor vegetation 

recovery after fire disturbances in Spain. More recently, Pereira (1999) concluded that 

NDVI did not perform well in areas of little or no vegetative cover, especially where 

there was much exposed soil. 

Boreal forest fire detection methods have also been developed, mainly in Alaska but also 

in central Canada. A 1990-1992 study with AVHRR in Alaska arrived at a detection 

accuracy > 83% for all fires > 20 000 ha (Kasischke and French 1995). Fire events were 

detected by image subtraction and through setting NDVI change thresholds; detection 

was possible because scars showed significantly reduced NDVI compared to unbumed 

areas. Kasischke et al. (1993) were able to detect 89.5% of Alaskan fires > 2 000 ha in 

size by using similar methods and without experiencing false detection. Furthermore, 

the general shapes of detected fires were consistent with ground-tmthing data collected 

by field observers. Further studies have aimed at reducing cloud and atmospheric 

effects or by combining sequential seasons’ data to monitor delayed green-up on 

disturbed patches (French et al. 1995). 
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Canadian studies have concentrated primarily on the Boreal Ecosystem-Atmosphere 

Study (BOREAS) sites in central Saskatchewan and Manitoba (Z. Li et al. 1991 \ 

Steyaert et al. 1997). Temporal AVHRR/NDVI composites of the BOREAS sites were 

used to detect burned areas indicated by decreased NDVI values. Z. Li et al. (1997) 

examined the area under the temporal NDVI curves for the fire seasons before and after 

the study period to make robust decisions on areas flagged as disturbance sites. They 

also used middle infrared data to assist with detecting active fires on single-date images. 

Steyaert et al. (1997), although more concerned with land cover mapping, noted 

vegetation return and its relationship with NDVI when mapping burned areas. 

2.2.3.2 Soil Background Effects on Vegetation Indices 

Soils and vegetation that is green have different spectral signatures (Figure 4); however, 

they are generally similar in the R and NIR spectral regions (low R, higher NIR). 

Typically, soils reflect much higher in the R region than vegetation that is green, but 

sensors that view only broad slices of the electromagnetic spectrum and cannot 

synthesize hyperspectral soil or vegetation curves needed for more rigorous 

interpretation may confuse the two, resulting in inflated NDVI values (Huete and Tucker 

1991). 

Soil exposure can influence NDVI values when NIR > R, such that their difference 

(NIR-R) and R exhibit low values. Thus, to put NDVI into the proper context, the 

absolute magnitude of R and difference between R and the NIR values should be 

considered. 



R
ef

le
ct

an
ce

 

Figure 4. Reflectance curve of general soil types, with typical green-vegetation reflectance curve as 
reference in the visible and NIR regions of the electromagnetic spectrum (after Lillesand and 
Kiefer 1994). (B), (G), (R), and (NIR) represent the blue, green, red, and near-infrared regions 
of the electromagnetic spectrum respectively. (A) is the difference in reflectance for general soil 
types between the R and NIR spectral regions. 



22 

An early and successful attempt to understand soil effects in agricultural studies was 

made by Kauth and Thomas (1976) with the introduction of the tasseled cap (TC) 

transformation for TM and MSS platforms. This transformation generates several 

indices, of which soil brightness and green vegetation are most important. Extensive 

testing under agricultural conditions has proven this technique successful; nevertheless, 

the TC has not been applied to AVHRR imagery or forested landscapes. 

Two prominent vegetation indices consider the effect of soil reflectance on the index 

value for vegetation greenness: the perpendicular vegetation index (PVI) (Richardson 

and Wiegand 1977) and the soil adjusted vegetation index (SAVI) (Huete 1988). Of the 

two, PVI is the most common, accounting for soil background effects by basing its 

discrimination on a datum known as the soil line (Figure 5), a hypothetical line along 

which the R and NIR reflectance values of general soil types align when plotted in two- 

dimensional space (Huete and Tucker 1991). Mechanics indicate that dryer soils plot 

higher in R and NIR, while wetter soils plot lower. Therefore, the soil line represents a 

continuum of soil moisture regimes. Vegetation is indicated by NIR and R pairs plotting 

above the soil line (low R and high NIR reflectance). A gradient is formed 

perpendicularly upward from the soil line indicating increasing vegetative cover. This 

allows distance from soil-line thresholds to be selected for classifying percentage cover, 

which can be influenced by fire disturbances. 
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Vegetation plots 

Figure 5. The soil line concept for green vegetation within R-NIR spectral coordinate space (after 
Richardson and Wiegand 1977). 



The SAVI was developed to overcome shortfalls of the PVI, i.e., to minimize soil 

reflectance brightness (Huete 1988). Its use, however, is restricted to specific locations 

for which two constants must be experimentally calculated; thus, it is rarely used. 

2.2.3.3 Maximum NDVI Value Composites 

A convention for reducing cloud in AVHRR imagery (e.g., Fernandez et al. 1997) 

involves the construction of maximum value composites (MVC) from NDVI data 

(Holben 1986). The MVC is obtained by first superimposing all available scenes from 

the compositing period to form a multi-layered image. Then, the composite image is 

generated by selecting the maximum value at each pixel location from the layers 

comprising the stack. Since clouds act to depress NDVI values, retaining the maximum 

values from a compositing period will provide clearer images. 

Once the dates of maximum reflectance for each pixel are known for the composite 

period, R and NIR composites are also generated with pixel values from the equivalent 

dates. Viovy et al. (1992) compared MVC values with a competing alternative called 

the best index slope extraction (BISE), which removes spurious high NDVI values but 

requires more effort to calculate, and therefore, is not widely used. 

2.3 POTENTIAL GROUND-TRUTHING METHODS 

The most labour-intensive method is collection of field data by observers or surveyors 

(e.g., Kasischke et al. 1993; Pozo et al. 1997; Eve et al. 1999). Airphoto interpretation 



(e.g., Dodge and Bryant 1976; Ens 1987) is a cost-efficient alternative; however, the 

risk of human error can be high. Fernandez et al. (1997) used GPS-generated GIS 

database layers as ground truthing for fire disturbance studies in Spain, and Hopkins et 

al. (1988) relied on existing natural resources maps to assess the accuracy of forest land 

cover mapping in Wisconsin. 
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CHAPTER 3 - METHODS 

' DATA 

3.1.1 AVHRR Imagery 

The AVHRR/NDVI values (-1.0 to -i-l.O) are represented by pixel values from 10-210 

on 1063-m x 1063-m spatial resolution, 10-day composite AVHRR imagery. Thus, each 

pixel value represents one-percent of the actual NDVI range (Eidenshink and Faundeen 

1994). The AVHRR imagery was obtained from the NOAA polar orbiting television 

infrared observation satellites. 

A joint research funding effort by NOAA, the European Space Agency, the U.S. 

Geological Survey, the National Aeronautics and Space Administration, the 

Commonwealth Scientific and Industrial Research Organization, and the Satellite 

Meteorological Center provides local area coverage (LAC) imagery free of charge at 

http://edcwww.cr.usgs.gOv/landdaac/lKM/compl0d.html (Table 1). This Internet site 

has links to relevant and necessary online documentation. More extensive 

documentation of the AVHRR sensor characteristics is available in Rao (1987) and 

Kidwell (1991). 



Table 1. Spectral channels of the AVHRR sensor. 

Channel Description Spectral Range 

5 

6' 

Visible red 

Near IR 

Middle JR 

Thermal IR 

Thermal IR 

NDVI 

0.58-0.68 pm 

0.73 - 1.10 pm 

3.55 - 3.93 pm 

10.3 - 11.3 pm 

11.5-12.5 pm 

N/A 

Shaded rows represent data channels used in this study, 
t Calculated from channels 1 and 2. 
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3.1.2 Ground-Tmthed Data 

For the current study, ground-truthed data for testing the accuracy of fire mapping with 

AVHRR/NDVI consisted of a fire-pattern GIS database describing the dates and 

locations for fires in Ontario between 1921 and 1995 (Perera et al. 1998). It was 

compiled from hardcopy maps derived from field data, aerial photographs and 

interpretation of Landsat images. Lake and province boundary GIS databases were used 

to geo-correct AVHRR imagery. 

3.2 DATA MANIPULATION 

3.2.1 Threshold Methods 

Decreases in AVHRR/NDVI have been used to map vegetation senescence and forest 

fire disturbances in various biomes (e.g., Razafimpanilo et al. 1995; Fernandez et al. 

1997). Change-detection methods subtract values between two spatially complementary 

images and apply a threshold (Lunetta and Elvidge 1998) for discriminating significant 

decreases in vegetation greenness (e.g., Kasischke et al. 1993; Kasischke and French 

1995). These methods have been established in boreal Alaska for fire disturbance 

mapping with NDVI data (Table 2); change values exceeding the thresholds are mapped 

as fires. 

Threshold methods Xi and X2 were procedurally identical (Figure 6); only the threshold 

value differed. Method X3 differed from the first two methods because it combined the 

results of two threshold values (Figure 7). 
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Table 2. Descriptions and references for existing AVHRR/NDVI threshold methods compared in this 
study. 

Threshold Threshold Value Reference 
Method (AVHRR/NDVI units)  

Xi 23 Kasischke fl/. (1993) 

X2 24 Kasischke er fl/. (1993) 

X3 23 and 18 combined Kasischke and French (1995) 
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Figure 6. Processing sequence for two single-threshold methods (Xi and X2) to generate final fire maps 
from NDVI imagery. This process uses a threshold value of 23 NDVI pixel values for the Xi 
method, and 24 for the X2 method. 



Figure 7. Processing sequence for the double-threshold method (X3) to generate a final fire map from 
NDVI imagery. The double-threshold method (X3) merges two single-threshold-generated 
fire maps. The first single-threshold image uses a threshold of 23 NDVI pixel units; the second 
uses 18. 



Each threshold method required the selection of relatively cloud-free images acquired 

early and late during each fire season. The images were normalized to each other using 

an offset value (Kasischke and French 1995). For each pair of seasonal NDVI images, 

the late image pixel values were subtracted from those of the early images, quantifying 

the NDVI change. Resulting pixel values exceeding the threshold were coded as fires; 

the rest of the image was coded as background. Mapped fires smaller than 678 ha (six 

contiguous pixels) were considered noise and eliminated from analysis. This process 

was completed for Xi and X2, resulting in a set of final, binary fire maps (Os for 

background. Is for fires). 

Method X3 generated two binary fire images, comparable to the final fire images of 

methods Xi and X2. The combination of fire pixels from two threshold values could fill 

spatial gaps in fire events mapped by a single threshold. The two binary images were re- 

coded (Figure 7) and multiplied to generate a temporary fire image, with Os for original 

fires. Is for background, and 2s for potential additions to the original fires. Then, a 7x7 

focal-minimum function (ERDAS Inc. 1997) was applied to the temporary fire image 

(Figure 8). This function preserved original fires (Os) and potential fire pixels (2s) that 

were within the 7x7 focal neighbourhood of original fires. The resulting images were 

then re-coded to match final fire maps of methods Xi and X2. 
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To allow each contiguous cluster larger than six pixels (mapped fire event) to be 

analyzed independently, the fire images were clumped (ERDAS Inc. 1997), and each 

cluster was numbered with a unique grid code. 

3.2.2 Substrate Corrections 

Substrate corrections are necessary because where canopies are not closed, particularly 

in burned areas, the sensor is influenced by understory and ground-level materials 

(Huete 1988). Therefore, two substrate corrections were proposed, and were applied to 

the NDVI images before change detection analysis with thresholds. 

The characteristic difference between R and NIR reflectance for green vegetation has 

been documented and studied (e.g.. Tucker 1979; Filella and Penuelas 1994). This 

difference is much smaller for general soil types over the same spectral regions (e.g., 

Condit 1970; Stoner and Baumgardner 1981). Since both vegetation and soil reflect less 

in the R than NIR, their spectral curves can appear to have the same general shape if 

viewed only in these two broad spectral regions. To help distinguish soils from 

vegetation, the difference (A) between NIR and R reflectance is important, as is the 

magnitude of R, which is generally much lower for vegetation than soil. 

Rearranging the NDVI equation yields an opportunity to examine the influences of R 

magnitude and A on the calculation of NDVI: 

NDVI = A/(2R+A) (2) 



Similarly, this three-component relationship can be plotted as a surface (Figure 9). The 

NDVI surface is contained by three axes (x, y, z). The x-axis represents a gradient of all 

R(10< R<1010) values. The y-axis represents A (0 < A < 2000), and the z-axis, the 

actual NDVI value calculated from Equation 2. Within these constraints, highest NDVI 

(as expected) is observed where R is lowest, and A is greatest, clearly mimicking the 

spectral curve of green vegetation. Conversely, lowest NDVI is seen where R is high 

and A is lowest, imitating the spectral curve of common soil types. 

Superimposing the soil line (Huete and Tucker 1991) onto the surface in Figure 9 allows 

the definition of two dominant regions: vegetation above the soil line and non-vegetation 

below. This three-dimensional soil line extends from minimum NIR (where A is small) 

and R values to their maximums. Similar to Richardson and Wiegand’s (1977) PVI, a 

gradient of increasing greenness forms from the soil line towards maximum NDVI 

values (low R, large A). 
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NDVI 

0.8 - 1.0 

0.6 - 0.8 

0.4 - 0.6 

0.2 - 0.4 

0.0 - 0.2 

Soil line 

Zone 1 

Zone 2 

Figure 9. NDVI surface defined by R and A (NIR-R) components. Superimposed are the soil line 
(Richardson and Wiegand 1977; Huete and Tucker 1991) and two zones believed to contain 
falsely heightened NDVI values based on knowledge about soil and vegetation spectral 
reflectance patterns in the R and NIR regions of the electromagnetic spectrum. 



Two areas of the NDVI/R/A surface (Figure 9) exhibit questionably high NDVI values 

given knowledge of soil and vegetation reflectance patterns in the R and NIR regions of 

the electromagnetic spectrum, thus warranting NDVI suppression. The exact extent and 

shape of the areas are not known; however, their estimated locations are marked as 

zones 1 and 2 in Figure 9. Zones 1 and 2 were designated rectangular (for simplicity of 

calculation), with dimensions governed by percentage lengths of respective bounding 

NDVI/R/A surface axes. Three variations of size (0, 10, and 15 %) were used to 

designate the correction effect zones Co, C\, and C2, respectively. Since Co contains no 

area, it represented the uncorrected (null) effect. Zone dimensions were selected by 

examining R and NIR pixel distributions together with the ability of each zone to cover 

sufficient areas of concern on the NDVI/R/A surface. NDVI pixel values are considered 

to reside within Zone 1, with axis length x, when: 

[R < (lOOOx + 10)] and [A < (2000x + 10)] (3) 

and Zone 2 when: 

[R > (lOOO(l-x) + 10)] and [A > (2000(l-x) + 10)] (4) 

Pixel values residing within either Zone 1 or 2, for correction effects Ci or C2, were 

considered to have questionably high vegetative status and were corrected by subtracting 

0.1 true NDVI units in each case (10 pixel values). The correction reduced the 

magnitude of greenness where R and NIR reflectances were not normal for vegetation 

that is green. 
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3.2.3 Geocorrecting Imagery 

The mapped fire images were re-sampled to 531.5-m resolution and geo-corrected to 

match the projection of the GIS ground-truthing data. The increased resolution ensured 

a smoother fire boundary after the second-order geo-correction with nearest neighbour 

re-sampling (ERDAS Inc. 1997). Twenty-one ground control points were selected along 

distinctive hydrological features (e.g., shorelines, islands, rivers, and coastlines) (Martin 

and Chuvieco 1995), yielding an acceptable root mean square (RMS) error of 

approximately 400 m (Martin and Chuvieco 1995; Lunetta and Elvidge 1998). 

3.2.4 Manipulation of Ground-Truthing Database 

Fire polygons within the ground-truthing database (Perera et al. 1998) often abutted or 

were adjacent to other polygons, forming clusters. Thus, all polygons within 1063 m 

(one AVHRR pixel dimension) of each other were coded to indicate they are a part of a 

common ground-truthing fire event. To remove potential effects of varying map scale 

among fire events, the ground-truthing database was rasterized to the same resolution as 

the mapped fires (531.5 m) and converted back to vector format, allowing direct area 

comparisons. 



3.2.5 Generating Accuracy Measures 

For each treatment, the geometric unions between detected fires and the ground-truthing 

database were computed using Arcinfo (ESRI Inc. 1997). Overlapping polygons were 

split and given attributes from both original polygons. The original polygonal structures 

remained available by querying with original polygon identifiers (i.e., event and grid 

code). 

Accuracy was examined from three perspectives (i.e., sensor, event, and truth) for each 

treatment. These accuracy comparisons were conducted at two levels. First, each 

treatment was summarized in its entirety using total truthed and detected area values. 

Second, individual, detected fire events (ANOVA) were compared in detail. The sensor 

perspective was omitted from the ANOVA because undetected and falsely detected fires 

could not be assigned to individual fire events. The data hierarchy and terms used to 

describe the structure of the union database are displayed in Figure 10. 

Accuracy was assessed by calculating various measures for each treatment. These 

measures are described using an “ideal” database structure (Figure 11) as reference to 

Table 3, which lists the various measures computed. 



U
N

IO
N
 L

A
Y

E
R

 

40 

c/5 U 
[Z 
Q 
UJ f- u 
tu H UQ 
Q 

c<o U 
£ 
Q U f- U M t- 
Q 
Z 
D 

< ^ 
UJ E- 
cc < 
< 

O E- 

Z 

z o 
a >■ 
-j 
0 
o. 
H 
Z m 
> ca 
X 
H 
D 
01 t- 

M 
Q 
c/5 
Z 

Q u 
o. 
(X 
< 
s 
Z 

Q UJ Cu 
O. 
< 

< ^ w 5 a < 
< ^ 

< ^ 
W i 

< 
QC 
< 

Fi
gu

re
 1

0.
 

H
ie

ra
rc

hi
ca

l 
st

ru
ct

ur
e 

fo
r 

th
e 

st
an

da
rd

iz
ed

 n
am

in
g 

co
nv

en
tio

n 
(w

ith
 s

ho
rt

 f
or

m
s)

 u
se

d 
in

 th
is
 s

tu
dy

. T
he

 u
ni

on
 l

ay
er

 w
as

 g
en

er
at

ed
 b

y 
th

e 
ge

om
et

ri
c 

un
io

n 
of

 m
ap

pe
d 

an
d 

gr
ou

nd
-t

ru
th

in
g 

fi
re

 d
at

ab
as

es
. 

T
he

 n
am

in
g 

co
nv

en
tio

n 
is

 b
as

ed
 o

n 
oc

cu
rr

en
ce

 n
um

be
rs

 (
#)

 a
nd

 a
ss

oc
ia

te
d 

ar
ea

s 
(A

) 
fo

r 
al

l 
po

ss
ib

le
 c

on
di

tio
ns

 w
ith

in
 t

he
 d

at
a 

hi
er

ar
ch

y.
 

Su
bs

cr
ip

ts
 d

en
ot

e 
th

e 
sp

ec
if

ic
 b

ra
nc

h 
w

ith
in

 t
he

 h
ie

ra
rc

hy
, 

us
in

g 
co

m
bi

na
tio

ns
 o

f 
le

tte
rs

 d
es

ig
na

tin
g 

hi
gh

er
 h

ie
ra

rc
hi

ca
l 

le
ve

ls
 to

 r
ep

re
se

nt
 th

e 
en

d 
co

nd
iti

on
. 



Figure 11. Resulting components of the computed geometric union between mapped/detected fires and 
ground-truthing fires. Mapped/detected fires (rectangle) and truthing fires (oval); (a) 
undetected fire, (b) falsely detected fire, (c) area mapped inside ground-truthing perimeters, (d) 
mapped fire outside ground-truthing perimeters, and (e) unmapped area inside ground-truthing 
perimeters. 
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Table 3. Perspectives, observation levels, accuracy measures, and calculations for summarizing fire 
mapping accuracy. 

Perspective Level Name Accuracy Measure Calculation 

Sensor General Correct AMI / (AET + Apo) c / (b + c + d) 

Incorrect (AMO "b Apx>)/(AET "b Apo) (b + d) / (b + c + d) 

Omission (Aui + AUD)/(AET "b Apo) (e + a) / (b + c + d) 

Event General Correct AMI / AET 

Incorrect (AMO + Apo) / AET 

Omission (Aui + AUD) / AET 

Detailed Correct AMI / AET 

Outside AMO / AET 

Omission Aui / AET 

c / (c + d) 

(b + d) / (c + d) 

(e + a) / (c + d) 

c / (c + d) 

d / (c + d) 

e / (c + d) 

Truth General Correct AMI / AT 

Incorrect (AMO + Apo) / AT 

Omission (Aui + AUD) / AT 

Detailed Total AET/AT 

Correct AMI/AT 

Outside AMO / AT 

c / (a + c + e) 

(b + d) / (a + c + e) 

(e + a) / (a + c + e) 

(c + d) / (c + e) 

c / (c + e) 

d / (c + e) 

* Nomenclature is derived from the hierarchical naming convention established in Figure 10. 
t Example calculation areas are established in Figure 11. 
Shaded cells represent dependent (response) variables entered into the ANOVA. 
Components; (AMI) area mapped inside ground-truthing perimeters, (AET) area of total mapped event, 
(AFD) area falsely detected, (AMO) area mapped outside ground-truthing perimeters, (Aui) area unmapped 
inside ground-truthing perimeters, (Aj) area of total ground-truthing fire, and (AUD) area of ground- 
truthing fires undetected. 



^ EXPERIMENTAL DESIGN 

3.3.1 Treatment Design 

Three change-detection techniques utilizing NDVI thresholds for fire mapping form the 

base methods for data processing (Xi, X2, and X3). Before threshold processing, three 

levels of substrate corrections (Co, Ci, and C2) are applied to the NDVI imagery. These 

combinations were repeated for fire years 1992, 1993, and 1995 (Yk). Therefore, 27 

treatments (unique combinations of three fire years, three threshold methods, and three 

substrate corrections) were established, for which measured accuracy response variables 

were computed (Figure 12). 
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3.3.2 Statistical Design 

A 3x3 factorial ANOVA (SPSS 1997) design was used to test the null hypotheses for the 

fixed substrate corrections (i.e., Co.Ci, and C2) and fixed threshold methods (i.e., Xi, X2, 

and X3). Tests of significance {oc = 0.05) were conducted separately for each fire season 

(1992, 1993, and 1995). The model was unbalanced because the natural processes could 

not ensure an equal number of cases in each treatment. Data normality (an assumption 

of ANOVA) was ensured by re-scaling the percent-type accuracy variables to 

proportions and transformed using the arcsine-square-root function. 

Six ratio-scale variables (Figure 12) were tested separately within this statistical design, 

three each from the event and truth perspectives. Variables calculated from the event 

perspective are based on the total area associated with each ground-truthing event, and 

the truth perspective is based on the area of ground-truthing fires (Kasischke and French 

1995). Significant differences were tested with Scheffe’s post hoc tests (oc = 0.05) using 

harmonic means (SPSS 1997) to determine which effects differed within factors. 

Scheffe’s test was selected due to its conservative nature and ability to make linear 

comparisons between effects, instead of conducting all pair-wise comparisons. 
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3.3.3 Statistical hypotheses 

Given the goals and objectives outlined in the introduction, the following hypotheses 

were tested for each of the six accuracy variables computed in this study (Figure 12): 

Test equality among three substrate correction effects: 
Ho- l-ttl = ftx2 — |-tT3 ~ 0 

Hi: at least one |ixi 3*^= 0 

Test equality among three threshold method effects: 
Ho: M-po= M'pi = ^132 = 0 
Hi: at least one |ipi 7^: 0 

Test interaction among threshold methods and substrate corrections: 
Ho; (]J/r!J-p)ij = 0 (for all effects of i and j) 
Hi: at least one (p^|ip)ij ^ 0 

The linear notation of the ANOVA model: 

yijk — P + + Pj "I" (^P)ij ^ ijk 

y = observation 
p = grand-mean effect 
X = effect of substrate correction 
P = effect of threshold method 
e = error associated with observation 



CHAPTER 4 - RESULTS AND DISCUSSION 

The results and associated discussions are separated into two broad classes: 1) general 

overview of treatment totals {sensor, event, and truth perspectives) and 2) detailed 

comparison of areal coincidence for detected fires {event and truth perspectives). 

Discussion of detected fire numbers and their respective areas are included with the 

general overview of treatments. 

' GENERAL OVERVIEW OF TREATMENT TOTALS 

4.1.1 Comparing General Fire Numbers 

The number of ground-truthed fires and the total area burned varied among fire years 

(Table 4). Charting the percentage of correctly detected fires, along with those falsely 

detected (Figure 13), provides a summary of detection successes and errors (commission 

and omissions) for each treatment. 
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Table 4. Occurrence and area disturbed by forest fires in 
Ontario during study period. 

Fires in Truthing Database 
Year Number Total Area 

1992 12 151 900 

1993 10 70 700 

 1^95 34 325 900 

* Areas are rounded to the nearest 100 ha. 
Source: Ground-truthing database (Perera et al- 1998). 
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Average false-detection percentages were highest in 1992 (812%), intermediate in 1993 

(343%), and lowest in 1995 (34%) (Figure 13). Incidences of false detection were 

significantly higher in 1992 (n = 27, p < 0.05) than either 1993 or 1995, indicating 

highest commission error. Although 1995 exhibited lowest commission error, the higher 

number of ground-truthed fires emphasized errors of omission due to lack of detection. 

Incidences of correct fire detection were significantly highest in 1993, intermediate in 

1992, and lowest in 1995 (n = 27, p < 0.05). There were too few years of data to 

statistically test for differences among threshold methods or substrate corrections at the 

general treatment-level, regarding detection numbers. 

Although statistical comparisons were not possible among threshold methods or 

substrate corrections at the general treatment level, false detection seemed to be 

influenced by the threshold method used. Despite magnitude changes among years, 

these patterns were similar for each year of study. Thus, with further study (more years 

of data), it should be possible to indicate which of the threshold methods statistically 

returns the most accurate numbers of fire detection, lowest commission, and minimal 

omission. 

The very high occurrence of falsely detected fires in 1992 cannot be explained with 

certainty. However, the pattern exhibited by 1992 fires could indicate the influence of a 

thin cloud layer that depresses the NDVI values, classifying them as fires (e.g., 

Kasischke and French 1995) even though NDVI helps reduce background noise effects 

(Chen 1996). 



4.1.2 Comparing General Fire Areas 

The general summary of total fire area (Figure 14) indicates significant differences in 

false detection among years (n = 27, p > 0.05), with 1992 having highest occurrence. 

Therefore, the high numbers of false detection incidences in 1992 were substantiated by 

highest area of commission error. Mapped event area also differed among years (n = 27, 

p < 0.05), with 1993 and 1995 having the highest mapped event areas, approaching 

100% of the ground-truthing area datum. No significant differences were found among 

years for areas mapped outside ground-truthing perimeters (n = 27, p > 0.05), but areas 

mapped inside increased with each consecutive year (n = 27, p < 0.05). Finally, the area 

unmapped (omission inside ground-truthing perimeters) was significantly lower in 1995 

than in either 1992 or 1993 (n = 27, p < 0.05). 

The variability of interannual fire numbers and area burned is supported by other studies 

(e.g., Cahoon et al. 1996; Martell and Boychuk 1997). However, fire numbers and areas 

burned do appear to be related. 

Total mapped-ev^nf area provides a better estimate of actual fire size than does correctly 

mapped fire area, even when positional coincidence between a mapped fire and its 

corresponding ground-truthing fire areas is low. Differences in area among substrate 

correction effects and threshold effects were not tested because of limited replication by 

fire year. 
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4.1.3 Potential Sources of Error 

During the compilation of the ground-truthing fire database, two disturbances types were 

omitted: those that could not be verified by two sources and fires that were not “stand 

destroying” (Perera et al. 1998). Therefore, some falsely detected fires in this study may 

represent omitted ground truthing. Some falsely detected fires, however, may actually 

represent insect infestations, drought, smoke (Pereira and Setzer 1993), or other forest 

stresses that produce similar spectral conditions (e.g., Murtha 1973). 

The fire detection/mapping methods compared in this study tended to over-represent 

total fire areas, which is contrary to similar studies (e.g., Kasischke et a/. 1993; 

Kasischke and French 1995). The under-representation of ground-truthing fires by the 

Kasischke studies was explained with a citation from Gaboon et al. (1992) claiming that 

10-day image composites exhibit bias for high NDVI values; thus, disturbances 

occurring late in the composite period would be omitted. Late-occurring fires would not 

appear on the imagery until the following composite period, or if they occurred late in 

the fire season, not until the following year. Such cases can lead to an increase in 

undetected fire numbers and associated areas (increased error of omission). 

Seasonal and annual timing can alter the NDVI recorded on imagery due to differences 

in phenology (Kasischke and French 1997). Abscission during an early fall can 

contribute to patchy decreases in NDVI, potentially increasing numbers and areas of 

false fire detection, while a late spring could reduce initial (baseline) NDVI values. 



These seasonal effects indicate the importance of timing to obtain optimal imagery for 

fire detection and mapping studies (e.g., Kasischke and French 1993). 

Inter- and intra-annual effects could be explained due to climatic trends observed during 

the study period, as in Kasischke and French (1997). The 1995 fire season exhibited low 

precipitation (Environment Canada 1998), resulting in a high number of forest fires that 

burned extensive areas (Table 4). High precipitation during 1992 and 1993 

(Environment Canada 1998) is reflected by both low fire numbers and area burned 

(Table 4). 

4.1.4 General Fire Shapes 

The mapped fire shapes were similar to those in the ground-truthing database (Figure 

15). Seasonal fire patterns are shown in Figure 16. The ability to map fires accurately 

can be related to fire size (Kasischke et al. 1993), severity (White et al. 1996), 

vegetation moisture content (Patterson and Yool 1998), and level of cloud contamination 

(Kasischke and French 1995). 
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Figure 15. Comparison of area detected for each ground-truthing fire. All cases were extracted from the 
double threshold treatment (X3) with no substrate correction (CQ). Shaded area represents 
AVHRR/NDVI mapped fire; black outline represents ground-truthing fire perimeter. 
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1992 

1993 

1995 

Figure 16. Fires mapped with the double-threshold method and no substrate correction for 1992, 1993, 
and 1995 fire seasons. AVHRR/NDVI mapped fires (shaded) with ground-truthing reference 
perimeters. Study area boundary is shown along southern and western boundaries; the dashed 
line represents where the study area was trimmed for display purposes. 



Because only three years of data were analyzed, resulting in a low number of replicates, 

inferences are specific to the study period and cannot be extrapolated to other seasons 

without further sampling and study. 

4.1.5 General Sensor Perspective - Accuracy Assessment 

The accuracy levels calculated from the sensor perspective for all 27 treatments are 

displayed in Figure 17. The percentages of correctly detected fire areas differed each 

year (n = 27, p < 0.05), as did the percentage of area detected incorrectly (n = 27, p < 

0.05). No significant differences were observed for percentage of omission area during 

the three years (n = 27, p > 0.05). 

Due to limited replicates resulting from only three years of data, statistical comparisons 

could not be conducted among accuracy metrics for the general sensor perspective. 

However, Figure 17 suggests that omission can be reduced with the double-threshold 

method (X3). It also suggests that incorrectly detected fires may be reduced with the 

strictest, single-threshold method (X2) while increasing correct detection. The lower 

omission observed with the double-threshold method compared to the single-threshold 

methods was noted by Kasischke and French (1993). Negligible effects are observed for 

substrate corrections. 
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4.1.6 General Event Perspective - Accuracy Assessment 

The accuracy levels calculated from the event perspective for all 27 treatments are 

displayed in Figure 18. Accuracy measurements were compared with each treatment’s 

total event area (i.e., areas abutting or overlapping ground-truthing events) as a datum. 

The percentage of correctly detected fire areas was highest in 1995 (n = 27, p < 0.05). 

The percentage of incorrectly detected fire area was highest in 1992, and lowest in 1995 

(n = 27, p < 0.05). Omission was highest in 1992, with 1993 and 1995 considered 

statistically equal (n = 27, p < 0.05). 

Due to limited replicates resulting from only three years of data, statistical comparisons 

could not be conducted among accuracy metrics for the general event perspective. 

However, Figure 18 suggests that omission can be reduced by using the double- 

threshold method (X3), and incorrect detection can be reduced with the strictest 

threshold method (X2). Negligible effects are observed for substrate corrections. 
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4.1.7 General Truth Perspective - Accuracy Assessment 

The accuracy levels calculated by the truth perspective for all 27 treatments are 

displayed in Figure 19. These accuracy measurements were calculated with ground- 

truthing fire area as the datum. Significant differences were noted for the percentage of 

correctly mapped fires among all years (n = 27, p < 0.05), with 1995 being the most 

accurate and 1992 the least. Both percentages of incorrectly mapped fire area and 

omission area differed significantly each year (n = 27, p < 0.05), with 1995 exhibiting 

lowest values and 1992 the highest. 

Due to limited replicates resulting from only three years of data, statistical comparisons 

could not be conducted among accuracy metrics for the general truth perspective. 

However, Figure 19 suggests that the strictest single-threshold method (X2) could reduce 

incorrect detection. Furthermore, the double-threshold method (X3) appears to return 

highest accuracy values for correctly mapped fires. The X3 method, although returning 

highest accuracy for mapping inside ground-truthing perimeters, also exhibits highest 

incorrect detection, thus making selection of an optimal method difficult. Substrate 

correction effects appear negligible. Table 5 summarizes the accuracy for all 

perspectives, years, components, and threshold methods. 
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Table 5. General treatment-level summary of accuracy. 

Method Perspective Component 
1992 
(%) 

1993 

(%) 

1995 

(%) 

Sensor 
Correct 
Incorrect 
Omission 

Intermediate Event 
Correct 
Incorrect 
Omission 

Truth 
Correct 
Incorrect 
Omission 

8 
92 
43 
61 

727 
340 

15 
182 
85 

18 
82 
54 
63 

279 
186 
25 

112 
75 

70 
30 
92 
78 
34 

103 
43 
19 
57 

Sensor 
Correct 
Incorrect 
Omission 

Strict Event 
Correct 
Incorrect 
Omission 

Truth 
Correct 
Incorrect 
Omission 

9 
91 
59 
63 

647 
421 

13 
134 
87 

31 
69 

144 
62 

136 
286 

18 
39 
82 

73 
27 

101 
80 
30 

111 
42 
16 
58 

Sensor 
Correct 
Incorrect 
Omission 

Lenient Event 
Correct 
Incorrect 
Omission 

Truth 
Correct 
Incorrect 
Omission 

9 
91 
24 
60 

585 
155 
28 

272 
72 

19 
81 
21 
58 

245 
64 
48 

203 
52 

57 
43 
54 
74 
55 
69 
52 
38 
48 



64 

4.2 DETAILED MAPPING ACCURACY COMPARISONS 

Total event area (AET) and total ground-truthing area (AT), along with areas mapped 

inside (AMI), and outside (AMO) ground-truthing perimeters, were required to calculate 

the suite of accuracy measures defined in the Methods. Since these values cannot be 

calculated for false detection (AFD) or undetected fires (AUD), detailed accuracy 

comparisons were completed only for detected fires. Results and discussion regarding 

mapping accuracy between treatments at a fire-by-fire level are in the following two 

sections: 1) from the truth perspective and 2) from the event perspective. 

4.2.1 Truth Perspective 

For the truth perspective, the ANOVA tests (Table 6) found no significant differences (p 

> 0.05) among substrate correction effects or interaction effects among threshold 

methods and substrate corrections. However, significant differences (p < 0.05) were 

found among threshold methods in each year and for all accuracy measures, except for 

the area mapped outside truthing perimeters (AMO/AT) in 1993. Therefore, the null 

hypotheses for substrate correction could not be rejected. Null hypotheses were rejected 

for all threshold methods except AMO/AT (1993). Since no significant interactions were 

observed among threshold and correction factors, significance levels for each effect 

could be interpreted directly. ANOVA results are summarized in Table 6, with full 

results listed in Appendix II. 
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Table 6. Summarized ANOVA results (significance and probabilities) for the effects of 

threshold methods and substrate correction on three accuracy measurements 

regarding fire mapping from the truth perspective. 

Accuracy Variables 

Year Factors A^j/Aj Aj^j/Aj Ajy^Q/Aj 

1992 
Threshold 

Correction 

Threshold x Correction 

\99T 
Threshold 

Correction 

Threshold x Correction 

T995 
Threshold 0.000 0.000 0.014 

Correction NS NS NS 
Threshold x Correction 

NS indicates non-significance at a = 0.05, N = 63 (1992), N = 60 (1993), and N = 117 (1995). 

Threshold factor is testing equality among three fixed effects. 

Correction factor is testing equality among three fixed effects. Accuracy metrics 

comprising variables are (AET) area of total mapped fire event, (A-r) area of ground-truthing 

fire, (AMI) ^rea mapped within ground-truthing perimeters, and (A^o) area mapped outside 

ground-truthing perimeters. 

0.018 0.037 0.012 

NS NS NS 

NS NS NS 

0.009 0.000 NS 

NS NS NS 

NS NS NS 
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Scheffe’s post hoc tests were conducted for each variable/year combination that showed 

significant differences for threshold methods in the ANOVA. These tests determined 

which of the three threshold methods differed significantly and whether any 

homogeneous subsets of threshold methods existed. Summarized results from the post 

hoc tests are in Table 7. 

The results indicate that the double-threshold method (X3) consistently expressed event 

area (AET/AJ) most accurately. Likewise, X3 provided the best results for calculating 

areas mapped correctly within ground-truthing fire perimeters (AMI/AT). However, to 

reduce area mapped outside ground-truthing fire events, the strictest single-threshold 

method (X2) was preferred. 

Since effects of substrate corrections were not observed, the NDVI appeared relatively 

robust against substrate reflectance effects. Since NDVI robustness is not supported by 

the literature (e.g., Huete and Tucker 1991; Pereira 1999), potential faults with the 

general substrate-correction methods may exist. Stronger correction factors may be 

necessary to see pronounced effects. 

The threshold/correction methods tested in this study may be detecting fires from 

previous seasons, thereby increasing values for the false detection variable and 

decreasing overall accuracy. Further studies referencing backward one or two fire 

seasons (e.g., Kasischke and French 1995) could test this hypothesis for Ontario. The 

event area consistently represents ground-truthing area more accurately than only the 

correctly mapped area (Figure 20). 



Table 7. Scheffe's post hoc test results (significance and probabilities) for three 

accuracy measures among three threshold methods from the truth 

perspective. 

Accuracy Variables 
Year Comparison AEJ/A-J- Ajyjj/Aj Aj^[o/A'j’ 
1992 

Xj and X2 

Xj and X3 

X2 and X3 

1993 
Xiand X2 

Xj and X3 

X2 and X3 

1995 " 
XiandX2 NS NS NS 
XiandX3 0.005 0.000 NS 
X2andX3 0.002 0.000 0.027 

Effects are (Xi, X2) single-threshold methods, (X3) double-threshold method, 

(Co) no substrate correction, (Ci) slight substrate correction, and (C2) high 

substrate correction. Accuracy metrics comprising variables are (AET) area of 

total mapped fire event, (Ay) area of ground-truthing fire, (A^i) area mapped 

within ground-truthing perimeters, and (A^o) area mapped outside ground- 

truthing perimeters. NS indicates non-significance at a = 0.05, N = 63 (1992), 

NS NS NS 

0.029 0.042 0.022 

NS NS NS 

NS NS 

NS 0.000 

0.013 0.000 
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4.2.2 Event Perspective 

For the event perspective, the ANOVA tests (Table 8) found no significant differences 

(P>0 .05) among substrate correction effects or interaction effects between threshold 

methods and substrate corrections. Significant differences (p < 0.05) were found among 

threshold methods in all years for area unmapped within ground-tmthing perimeters 

(AUI/AT), and for the 1992 area mapped outside variable (AMO/AT). Therefore, null 

hypotheses for substrate correction and threshold methods could not be rejected, except 

in the stated cases for Aui/Aj and AMO/AT. Since no significant interactions were 

observed among threshold methods and substrate correction factors, significance levels 

for each effect could be interpreted directly. ANOVA results are summarized in Table 

8, with full results listed in Appendix II. 

Scheffe’s post hoc tests were conducted for each variable/year combination that showed 

significant differences for threshold methods in the ANOVA. These tests determined 

which threshold methods actually differed and whether any homogeneous subsets of 

threshold methods existed. Summarized results from the post hoc tests are listed in 

Table 9. 



70 

Table 8. Summarized ANOVA results (significance and probabilities) for the effects of threshold 

methods and substrate correction on three accuracy measurements regarding fire mapping 

from the event perspective. 

Accuracy Variables 

Year Factors AMJ/AET A^C/AEJ AUI/A^T 

1992 
Threshold 

Correction 

Threshold x Correction 

1993 
Threshold 

Correction 

Threshold x Correction 

1995 
Threshold NS NS 0.000 

Correction NS NS NS 
Threshold x Correction NS NS NS 

NS indicates non-significance at a = 0.05, N = 63 (1992), N = 60 (1993), and N = 117 (1995). 

Threshold factor is testing equality among three fixed effects. 

Correction factor is testing equality among three fixed effects. Accuracy metrics 

comprising variables are (A^i) area mapped inside ground-truthing perimeters, (A^o) ^^a 

mapped outside ground-truthing perimeters, (Am) area unmapped within ground-truthing 

perimeters, and (Agx) area of total mapped fire event. 

NS 0.043 0.003 

NS NS NS 

NS NS NS 

NS NS 0.000 

NS NS NS 

NS NS NS 



Table 9. Scheffe's post hoc test results (significance and probabilities) for three 

accuracy measures among three threshold methods from the event 

perspective. 

Year Comparison 
Accuracy Variables 

AMI/AET Ajyio/AEj AUI/AET 

1992 

1993 

1995 

Xiand X2 

Xiand X3 

X2 and X3 

Xi and X2 

Xiand X3 

X2 and X3 

Xj and X2 

Xj and X3 
X2 and X3 

NS 

NS 

NS 

NS 

0.005 

0.035 

0.028 

0.022 

0.000 

NS 

0.001 

0.000 

Effects are (Xi, X2) single-threshold methods, (X3) double-threshold method, 

(Co) no substrate correction, (Ci) slight substrate correction, and (C2) high 

substrate correction. Accuracy metrics comprising variables are (A^i) area 

mapped inside ground-truthing perimeters, (AMO) area mapped outside ground- 

truthing perimeters, (Am) area unmapped within ground-truthed perimeters, 

and (AET) area of total mapped fire event. NS indicates non-significance 

at a = 0.05, N = 63 (1992), N = 60 (1993), andN= 117(1995). 



Although the comparison of outside to event-area variable (AMO/AET) in 1992 indicated 

significant differences with the ANOVA model, the post hoc tests indicated no 

significant differences among threshold methods. This discrepancy is attributed to the 

separation effect that post hoc tests introduce. Since the probability of inequality 

between the double and single threshold methods was almost significant, the added 

variance from the correction factors may have caused the ANOVA model to show 

significance. However, when separated, the threshold methods did not vary sufficiently 

among methods. Therefore, from the event perspective, only the variable that compared 

undetected area to the event area (AUI/AET) indicated importance for selecting a suitable 

threshold method for fire mapping. 

The double-threshold method (X3) was found to differ significantly from both single- 

threshold methods (Xi and X2) for the AUI/AET variable. Areas unmapped inside 

truthing perimeters with the double-threshold method were the lowest; and omission was 

minimized due to the X3 method incorporating fire areas identified by two different 

threshold methods. 

4.2.3 Decision-Tree Analysis 

Decision-tree analysis has been used to classify remotely sensed data (e.g.. Running et 

al. 1995; Friedl and Brodley 1997). Each detected fire event in this study (n = 240) was 

classified using a decision-tree approach based on accuracy metric values (Figure 21). 

The decision tree provided a means for viewing accuracy visually, since numerical data 

were classified into one of six general coincidence categories occurring in the union 
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layers. Coincidence categories were designated by generalizing overlap patterns of 

ground-truthing fire and detected-fire perimeters. 

The results of the decision-tree analysis (Figure 22) indicate that although fires were not 

mapped with highest spatial and areal accuracy {coincidence category 1), mapped areas 

generally corresponded well with ground-truthing areas {coincidence category 5). 

Instances of mapping large areas outside ground-truthing fires {coincidence category 6) 

were low. Mapped areas contained fully by ground-truthing perimeters but having low 

areal correspondence {coincidence category 2) were also uncommon. Similarly, fires 

exhibiting poor areal correspondence with the majority of detected area outside ground- 

truthing perimeters {coincidence category 4) were rare. The high count for coincidence 

category 3 indicated that fires with low areal correspondence were generally well 

contained with the ground-truthing perimeters. A lower RMS error during geocorrection 

could result in improved accuracy, by spatially shifting cases within coincidence 

categories 3 and 4 to better correspond with ground-truthing fire perimeters. 



Figure 22. Decision-tree classification of detected fire events into coincidence categories (n = 240). 

Categories indicate levels of spatial coincidence among mapped-fire events and ground-truthing fire 

perimeters. Coincidence categories are (1) high areal and positional coincidence, (2) low areal but 

high positional coincidence, (3) low areal and reasonable positional coincidence, (4) low areal and low 

positional coincidence, (5) high areal but low positional coincidence, and (6) excessive mapped 
area and low positional coincidence. 



4.2.4 Correlation Among Accuracy Metrics 

To test the assumption that total mapped event area was associated with truthing-fire 

size, Pearson correlation coefficients were calculated (n = 240) for combinations of 

accuracy metrics used in this study (Table 10). Testing the correlation among all area 

metrics highlighted several significant (p < 0.05), positive relationships. 

Both total event area (AET) and total ground-truthing area (Ax) were strongly correlated 

with the area mapped inside ground-truthing perimeters (AMI). Total truthed-area (Aj) 

was also highly correlated with total event area (AET). Thus, it was concluded that as 

ground-truthing fire sizes increased, event area (AET) and area detected within ground- 

truthing perimeters (AMI) also increased. Similar results were found by Kasischke et al. 

(1993) and Kasischke and French (1995). 

Relationships among ground-truthing fire size (AT) and area undetected (Aui), or area 

mapped outside ground-truthing perimeters (AMO) indicated moderate relationships. 

Event area (AET) was correlated highly with areas mapped inside (AMI) and outside 

(AMO) ground-truthing perimeters. Therefore, increasingly larger fires can be mapped 

with increasingly larger, contiguous areas (AET), both inside (AMI) and outside (AMO) 

ground-truthing perimeters. 



Table 10. Pearson correlation coefficients and associated probabilities for accuracy 
metrics. 

 Aj AET AMI A^p A^j 

AT r 

P 

AET r 
P 

AMI r 

P 

AMO r 

P 

Aui r 
P 

0.863 

0.000 

0.889 

0.000 

0.629 

0.000 

0.695 

0.000 

0.992 

0.000 

0.875 

0.000 

0.248 

0.000 

0.805 

0.000 

0.289 

0.000 

0.052 

NS 

Cases (n = 240) were pooled from all 27 treatments. Correlation was tested among the metrics 

(Aj) total ground-truthing area, (Ayi) area undetected inside ground-truthing perimeters, (A^i) 

area mapped inside ground-truthing perimeters, (AMO) ^^ea mapped outside ground-truthing 

perimeters, and (A^T) total fire event area. NS signifies non-significance at a = 0.05. 
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CHAPTER 5 - CONCLUSIONS 

SUMMARY OF FINDINGS 

The accuracy assessment and decision-tree procedures developed in this study provided 

a simple and effective method for quantifying, visualizing, and partitioning accuracy for 

individual fire events. General trends regarding detected-area relationships with ground- 

truthing fire areas, among the different threshold methods, were generally comparable to 

those revealed in Alaska. However, the results of this study also indicate that existing 

methods for mapping post-fire disturbance patches with AVHRR/NDVI are not directly 

suited for use in northern Ontario. 

The double-threshold method showed promise for mapping large wildfires, especially 

representing their general shapes. A strong correlation was found between the ability to 

detect and map fires with increasing fire size. However, the higher tendency of false- 

detection rate of the double-threshold method needs to be reduced, which is 

contradictory to results published by Kasischke and French (1993). Rigorous removal of 

translucent cloud contamination from AVHRR images could increase accuracy 

throughout the study, which is supported by Kasischke and French (1997). 

No significant differences among substrate correction effects were found for any of the 

six accuracy variables (both perspectives) during the three fire seasons. In general, the 

double-threshold method consistently proved more effective than both of the single- 

threshold methods for accurately mapping areas within ground-truthing fire perimeters 

and for reducing omission. Consequently, the double-threshold method increased area 



mapped outside ground-truthing fire perimeters and the area of false detection. This is 

explained by the inclusion of areas defined by the second threshold. Thus, to reduce 

omission and false detection, use of the strictest single-threshold method is 

recommended. 

Ground-truthing fire sizes were found to be correlated with mapped event areas. 

Furthermore, these areas were highly correlated with correctly mapped area. Variability 

was high with respect to counting fire occurrences; thus, no technique was deemed 

satisfactory for consistently returning accurate counts of fire events. 

The ability to partition accuracy into various components (mapped-area inside, mapped- 

area outside, etc.) from several perspectives allowed each fire mapping technique to be 

scrutinized at several levels. This technique provides deeper insight to the distribution 

of accuracy than do current techniques relying on predominantly fire-event area 

comparisons (i.e., AET/AT) (e.g., Kasischke et al. 1993). Fire mapping techniques can be 

selected to emphasize specific accuracy components. 

Accuracy results were not consistent among fire seasons, nor were they consistently 

within acceptable bounds for accurate fire mapping. Additionally, the proposed 

substrate corrections did not significantly improve the mapping accuracy of fire 

disturbance patches. Furthermore, only three years were studied; thus, limited 

replication may have contributed to inconsistencies among years. Increasing the years 

of study could help extract trends more representative of the study area. 



80 

5.2 FUTURE CONSIDERATIONS 

Future research on fire detection and mapping in northern Ontario should focus on 

improving accuracy, specifically, reducing false detection. Adding a thermal channel 

for cloud extraction could improve fire detection and mapping algorithms (e.g., Flasse 

and Ceccato 1996). Fixed thresholds exhibit inherent hindrances due to variable 

climatic, topographic, radiometric, and spatial conditions of different study locations. 

Contextual thresholds (Fernandez et al. 1997) may be more practical for studying 

dynamic landscapes, as could some human intervention to help isolate cloud- 

contaminated areas, thereby reducing the fully automated nature of these fire mapping 

algorithms. However, human intervention can be a source of random error, which can 

vary greatly among operators. 

Development of binary and hierarchical classification schemes, using a variety of land- 

cover, soil, terrain, and vegetation data layers could provide unambiguous and context- 

sensitive methods for fire detection and mapping. Examples of these methods include 

decision-tree classification (Friedl and Brodley 1997) and regression tree analysis (Joel 

et al. 1994; Dobbertin and Biging 1997). The use of neural networks and fuzzy 

classifiers (Pal and Ghosh 1996) could provide opportunities for training decision- 

making during classification, to reduce susceptibility to local and temporal variations in 

data. Such classification procedures may involve the detection of core fire centres, 

followed by kernel growth algorithms to “fill” the remaining disturbance areas. Shorter 



intervals between images may also be useful, especially for detecting disturbances in 

areas where rapid re-vegetation may occur. 

The recently available, high-resolution Landsat 7 imagery, could be an economical 

option for smaller study areas requiring increased detail when mapping fires; however, 

for a 43-million hectare study area, an intermediate resolution between Landsat and 

AVHRR is preferred. 

Some of the mentioned improvements may be met with the recently launched Moderate 

Resolution Imaging Spectroradiometer (MODIS). MODIS features a spatial resolution 

nearer to 0.5 km, onboard calibration, better atmospheric correction than AVHRR, and 

automated geo-location coding (Hu et al. 2000). 
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APPENDIX I 

Common Vegetation Indices 
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APPENDIX II 

ANOVA Tables 
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Results of ANOVA on measures of spatial coincidence during 1992. 

Variable Factors Type III SS df MS 
Ag-j-/ An Model 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.209 

0.006 
0.000 
0.000 
0.040 
0.249 

9 

2 
2 
4 

54 
63 

0.023 

0.003 
0.000 
0.000 
0.001 

31.303 

4.307 
0.001 
0.005 

0.000 

0.018 
0.999 
1.000 

Aj^j/Ay Model 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.119 

0.003 
0.000 
0.000 
0.021 
0.141 

9 
2 
2 
4 

54 
63 

0.013 

0.001 
0.000 
0.000 
0.000 

33.602 

3.505 
0.000 
0.008 

0.000 
0.037 
1.000 
1.000 

AMQ/A-J- Model 
Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.082 

0.005 
0.000 
0.000 
0.027 
0.109 

9 
2 
2 
4 

54 
63 

0.009 
0.002 
0.000 
0.000 
0.000 

18.238 
4.841 
0.010 
0.003 

0.000 
0.012 
0.990 
1.000 

AMT/A MI'^ET Model 
Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.233 
0.001 
0.000 
0.000 
0.016 
0.249 

9 
2 
2 
4 

54 
63 

0.026 

0.000 
0.000 
0.000 
0.000 

89.274 

1.575 
0.005 
0.004 

0.000 

0.216 
0.995 
1.000 

Ajyjo/Agj Model 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.130 
0.002 
0.000 
0.000 
0.016 
0.145 

9 
2 
2 
4 

54 
63 

0.014 

0.001 
0.000 
0.000 
0.000 

49.781 
3.342 
0.054 
0.006 

0.000 
0.043 
0.947 
1.000 

Auj/Agy hlodel 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

1.095 
0.097 
0.001 
0.000 
0.398 
1.493 

9 
2 
2 
4 

54 
63 

0.122 

0.049 
0.000 
0.000 
0.007 

16.507 
6.602 
0.037 
0.014 

0.000 
0.003 
0.964 
1.000 

Metrics used in accuracy variables are total area of mapped fire event (AET), total area of ground-truthing 

fire (Ax), area mapped inside ground-truthing perimeters (AMI), area mapped outside ground-truthing perimeters 

(AMO)> and area undetected inside ground-ruthing perimeters (Aui). All tests were conducted with n = 240 
and a = 0.05. 



Results of ANOVA on measures of spatial coincidence during 1993. 

Variable Factors Type III SS df MS 
Agj/ Ay Model 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.304 

0.012 
0.000 
0.000 
0.058 
0.362 

9 
2 
2 
4 

51 
60 

0.034 

0.006 
0.000 
0.000 
0.001 

29.672 

5.129 
0.002 
0.000 

0.000 

0.009 
0.998 
1.000 

Aj^j/Aj Model 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.153 
0.004 
0.000 
0.000 
0.004 
0.157 

9 
2 
2 
4 

51 
60 

0.017 207.320 0.000 
0.002 22.887 0.000 
0.000 0.077 0.926 
0.000 0.003 1.000 
0.000 

AMQ/AT Model 
Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.128 
0.008 
0.000 
0.000 
0.074 
0.202 

9 
2 
2 
4 

51 
60 

0.014 
0.004 
0.000 
0.000 
0.001 

9.766 
2.774 
0.000 
0.000 

0.000 
0.072 
1.000 
1.000 

Ajy^j/Ag-j- Model 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.231 

0.000 
0.000 
0.000 
0.009 
0.240 

9 
2 
2 
4 

51 
60 

0.026 153.876 0.000 

0.000 1.124 0.333 
0.000 0.007 0.993 
0.000 0.001 1.000 
0.000 

AMQ/ Ag-p Model 
Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.122 

0.001 
0.000 
0.000 
0.010 
0.133 

9 
2 
2 
4 

51 
60 

0.014 

0.000 
0.000 
0.000 
0.000 

68.459 
2.185 
0.002 
0.000 

0.000 

0.123 
0.998 
1.000 

Agjj/Ag-p M[odel 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.487 

0.047 
0.000 
0.000 
0.078 
0.565 

9 

2 
2 
4 

51 
60 

0.054 

0.023 
0.000 
0.000 
0.002 

35.381 

15.315 
0.003 
0.000 

0.000 

0.000 
0.997 
1.000 

Metrics used in accuracy variables are total area of mapped fire event (AT)> total area of ground-truthing 

fire (Ap), area mapped inside ground-truthing perimeters (An), area mapped outside ground-truthing perimeters 

(AMO)> and area undetected inside ground-ruthing perimeters (AJI)- All tests were conducted with n = 240 
and a = 0.05. 
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Results of ANOVA on measures of spatial coincidence during 1995. 

Variable Factors Type III SS df MS 
Agy/A’p Model 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.593 

0.010 
0.000 
0.000 
0.063 
0.656 

9 
2 
2 
4 

108 
117 

0.066 

0.005 
0.000 
0.000 
0.001 

112.811 
8.422 
0.000 
0.000 

0.000 
0.000 
1.000 
1.000 

AMI/An Model 
Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.362 

0.003 
0.000 
0.000 
0.014 
0.376 

9 
2 
2 
4 

108 
117 

0.040 319.637 0.000 
0.002 13.247 0.000 
0.000 0.005 0.995 
0.000 0.001 1.000 
0.000 

AMQ/AT Model 
Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.194 

0.007 
0.000 
0.000 
0.084 
0.278 

9 
2 
2 
4 

108 
117 

0.022 
0.003 
0.000 
0.000 
0.001 

27.845 
4.438 
0.000 
0.000 

0.000 
0.014 
1.000 
1.000 

AMJ/Ag-j- Model 
Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.492 

0.000 
0.000 
0.000 
0.014 
0.506 

9 
2 
2 
4 

108 
117 

0.055 429.770 0.000 
0.000 0.744 0.478 
0.000 0.003 0.997 
0.000 0.002 1.000 
0.000 

AMQ/AET Model 
Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.206 
0.001 
0.000 
0.000 
0.020 
0.226 

9 
2 
2 
4 

108 
117 

0.023 122.201 0.000 
0.000 1.465 0.236 
0.000 0.000 1.000 
0.000 0.000 1.000 
0.000 

AUJ/AEJ NIodel 

Threshold 
Correction 

Threshold x Correction 
Error 
Total 

0.605 
0.027 
0.000 
0.000 
0.127 
0.732 

9 
2 
2 
4 

108 
117 

0.067 
0.013 
0.000 
0.000 
0.001 

57.288 
11.358 
0.001 
0.000 

0.000 

0.000 
0.999 
1.000 

Metrics used in accuracy variables are total area of mapped fire event (AET), total area of ground-truthing 

fire (Aj), area mapped inside ground-truthing perimeters (AMI), ^rea mapped outside ground-truthing perimeters 

(AMO)> Slid srea undetected inside ground-ruthing perimeters (Aui)- All tests were conducted with n = 240 
and a = 0.05. 


