STATIC DIELECTRIC PROPERTIES OF AN ENSEMBLE OF RESTRICTED ONE-DIMENSIONAL OSCILLATORS

A Thesis Submitted in Partial Fulfillment of the Requirements for the DEGREE OF MASTER OF SCIENCE

Department of Physics Lakehead University
Thunder Bay, Ontario Canada P7B 5El

February, 1984

ProQuest Number: 10611706

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611706
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

CONTENTS

Page
I. ABSTRACT 1
II. INTRODUCTION, BACKGROUND AND SUMMARY 2
(a) Experimental Background 3
(b) Theoretical Background 7
(c) The Present Theory 16
III. THE MODEL:
(a) 3-Dimensional, Unrestricted Simple Harmonic Oscillator with Dipolar Interaction 21
(i) Cavity Field 25
(ii) Reaction Field 26
(iii) Local Field (Onsager Theory) 27
(b) 1-Dimensional, Unrestricted and Restricted Simple Harmonic Oscillator with Dipolar Interaction 29
(i) Unrestricted Oscillator 29
(ii) Restricted Oscillator 34
IV. COMPUTED ENERGIES, WAVE FUNCTIONS AND STATIC POLARIZABILITY OF THE RESTRICTED SIMPLE HARMONIC OSCILLATOR WITHOUT DIPOLAR INTERACTION 38°
V. COMPUTED ENERGIES, WAVE FUNCTIONS AND STATIC POLARIZABILITY OF THE RESTRICTED SIMPLE HARMONIC OSCILLATOR WITH DIPOLAR INTERACTION 65
VI. POLARIZABILITIES OF EXCITED STATES AND TEMPERATURE DEPENDENCE OF THE C_{M} FUNCTION 86
VII. RESULTS 99
(a) Comparison of Permittivities 99
(b) Comparison of C_{M} Functions 100
VIII. DISCUSSION AND FUTURE PROPOSALS 108
(a) The Present Model 109
(b) Future Proposals 112
IX. REFERENCES 118

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. D.G.H. Frood who suggested this work, and who directed me through all its intricacies over an extended period.

I also wish to thank Dr. M.H. Hawton for her valuable advice regarding the computer analysis.

Finally, I wish to express my gratitude to Mrs. J. Boucher for her invaluable help in typing this thesis.

I. ABSTRACT

Deviations from constancy of the Clausius-Mossotti function, C_{M} with changes in density and temperature are considered on the basis of a one-dimensional oscillator model of the atom in which the valence electrons are assumed restricted by infinite potentials, but interact with all others in the medium through dipolar forces.

The density-dependence of C_{M} is qualitatively in agreement with experiment, but the temperature-dependence is negligible as the excited states of an oscillator do not represent those of real atoms. In addition, the model does not permit the existence of the ionized state of the atom.

The analysis here suggest a more promising, threedimensional model which admits of realistic atomic potentials, dipolar interaction based on continuous dielectric surroundings and repulsive potentials which ensure the existence of delocalized electronic states with consequent screening of the dipolar forces.
II. INTRODUCTION, BACKGROUND AND SUMMARY

It is well known for nonpolar materials that the static permittivity ε_{s} obeys fairly well the ClausiusMossotti formula:

$$
\begin{equation*}
\frac{\varepsilon_{s}-1}{\varepsilon_{s}+2}=\frac{4 \pi}{3} N_{o} \alpha_{o} \tag{II:I}
\end{equation*}
$$

where N_{o} is the particle number density and α_{0} is the polarizability of the isolated atom or molecule being considered. Since $N_{O}=\rho A / W$ where ρ is the mass density, W the molecular weight and $A=6.02 \times 10^{23}$ is Avogadro's number, (II:I) indicates for a given nonpolar material that the Clausius-Mossotti function: ${ }^{\dagger}$

$$
\begin{equation*}
C_{M}=\frac{W}{\rho}\left(\frac{\varepsilon_{S}-1}{\varepsilon_{S}+2}\right)=\left(\frac{4 \pi A}{3}\right) \alpha_{0} \tag{II:2}
\end{equation*}
$$

should be a constant independent of density and temperature. C_{M} should also be independent of frequency up to the point where appreciable optical absorption by the material begins to occur, usually in the infrared region.
${ }^{\dagger}$ In the literature C_{M} is sometimes defined by $C_{M}=\frac{1}{\rho}\left(\frac{\varepsilon_{s}-1}{\varepsilon_{s}+2}\right)=$ $\frac{4 \pi A}{3 W} \alpha_{0}$, but (II:2) is the more common definition. Density ρ is most frequently quoted in amagat units, but often in moles/l. Note that 1 mole/l $=22.39$ amagats. One amagat is defined as the number of molecules per unit volume in a perfect gas at N.T.P., viz: $2.689 \times 10^{19} \mathrm{~cm}^{-3}$.

At optical frequencies (II:l) is to be replaced by the Lorentz-Lorenz formula:

$$
\begin{equation*}
\frac{\mathrm{n}^{2}(\omega)-1}{\mathrm{n}^{2}(\omega)+2}=\frac{4 \pi}{3} \mathrm{~N}_{\mathrm{o}} \alpha(\omega) \tag{II:3}
\end{equation*}
$$

where $n(\omega)$ is the refractive index at the frequency and $\alpha(\omega)$ is the polarizability of the isolated particle at that frequency. From (II:3) it then follows that at a given frequency, ω, the Lorentz-Lorenz function:

$$
\begin{equation*}
L(\omega)=\frac{W}{\rho}\left(\frac{n^{2}-1}{n^{2}+2}\right)=\left(\frac{4 \pi A}{3}\right) \alpha(\omega) \tag{II:4}
\end{equation*}
$$

should also be a constant independent of density and temperature.
(a) Experimental Background

Experiments to test the constancy of C_{M} given by (II:2) for simple nonpolar gases such as $\mathrm{Ar}, \mathrm{Kr}, \mathrm{He}, \mathrm{Ne}, \mathrm{N}_{2}$, $\mathrm{H}_{2}, \mathrm{CO}_{2}$ and CH_{4} have been carried out since the early 1930's see, for example: Michels and Michels [1]; Michels, Jaspers and Saunders [2]; Michels, Saunders and Schipper [3]; Michels and Kleerekoper [4]; Michels, Ten Seldam and Overdijk [5]; Johnston, Outermans and Cole [6]; Johnston and Cole [7]; Orcutt and Cole [8], [9]. Most of the American work referred
to here was painstakingly accurate but carried out only at low or modest densities ($0 \sim 200$ amagats, say), but the Dutch work quoted used densities as high as $600 \sim 800$ amagats.

The results show that for most nonpolar gases C_{M} is not quite a constant, but rises as density is increased to a weak, broad maximum for densities in the range $200 \sim 300$ amagats, after which it decreases slowly as density is further increased. Generally, it is also observed that C_{M} shows a weak temperature dependence at all densities.

Experimental data for argon taken from Michels, Ten Seldam and Overdijk [5] are shown in Fig. l:a at temperatures of $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. Naturally, the experimental error is largest at the lower densities since here $\varepsilon-1$ is very small. It may be noticed that over the whole range of density

FIG. l. Clausius-Mosotti function of argon (Ref. [5]).
the variation of C_{M} is less than 1.6% in argon. Fig. 2 shows experimental results for CO_{2} taken from Michels and Kleerekoper [4], at temperatures of $50^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. Here C_{M} varies by about 2.8% over the density range shown. The temperature dependence of C_{M} is also more pronounced than for argon. Again, of course, the measurement errors are largest at the lower densities.

FIG. 2. Clausius-Mosotti function for carbon dioxide (Ref. [4]).

The results depicted for Ar and CO_{2} are fairly typical of those obtained for simple nonpolar atomic and molecular gases, respectively, but it may be mentioned that for the light atomic gases, He and Ne, the recent
measurements by Vidal and Lallemand [10] indicate that C_{M} does not exhibit a maximum in the density range of approximately $100 \sim 900$ amagats. In fact, in this range C_{M} is observed to decrease almost linearly with increasing density and the maximum, if it exists, must occur at well below 100 amagats. For both these gases the overall change in C_{M} is very small - less than 1\%. Similarly for molecular hydrogen, Michels, Sanders and Schipper [3] found that within experimental error no change at all could be observed in C_{M} in the density range 10-1000 amagats.

Measurements of C_{M} are usually carried out at audio or radio frequencies and no frequency dependence of C_{M} has been reported at these very long wavelengths. However, at optical frequencies where $L(\omega)$, given by (II:4), should be

FIG. 3. Lorentz-Lorenz functions of argon at $25^{\circ} \mathrm{C}$ for various wavelengths (Ref. [11]).
independent of ρ and T, there also appears to be a paucity of experimental data. Fig. 3 shows the results for Ar given by Michels and Botzen [ll] at various wavelengths in the range $4471^{\circ} \mathrm{A}-6678^{\circ} \mathrm{A}$, all at $25^{\circ} \mathrm{C}$. It may be observed that for a given wavelength the L vs. ρ curve has the same general shape as the C_{M} vs. ρ shown in Fig. 1.

Measurements of $L(\omega)$ vs. ρ for other gases, notably $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ and CH_{4} were carried out by Michels and Hamers [12], Michels, Lebesque and de Groot [13], and Michels, Botzen and de Groot [14], with essentially the same general results as for Ar; viz. an increase in $L(\omega)$ to a maximum followed by a decrease in $L(\omega)$ as density is further increased.
(b) Theoretical Background

The fact that C_{M} and $L(\omega)$ are nearly constant with changes in ρ and T indicates that use of the Lorentz local field to calculate the moment induced into a given nonpolar molecule is indeed a very good approximation. It will be recalled from elementary dielectric theory, Frohlich [15], that the Lorentz field is calculated as that existing inside a spherical specimen of radius so large that it has the macroscopic dielectric properties of the medium. This field arises from sources inside and outside the sphere and for a
cubic lattice or a homogeneous, isotropic medium the former vanishes. However, the latter is given by the combined contributions of the macroscopic field, E less the self-field, $\mathbb{E}_{s}=-\frac{4 \pi}{3} \mathcal{P}$ of the homogeneously polarized sphere. The Lorentz local field is thus:

$$
\begin{equation*}
\underline{F}=\underline{E}+\frac{4 \pi}{3} \underline{\sim} \tag{II:5}
\end{equation*}
$$

independent of the radius of the spherical specimen.

Equation (II:5) leads at once to the macroscopic, Clausius-Mossotti formula (II:l) but as pointed out by Fröhlich, [15], (App. 3), (II:1) may also be regarded as a molecular formula provided short-range (non-dipolar) forces are neglected and the molecular volume is chosen equal to the volume available per molecule, viz:

$$
\begin{equation*}
\frac{4 \pi}{3} a^{3}=\frac{1}{N_{o}} \tag{II:6}
\end{equation*}
$$

In this case (II:l) becomes the Clausius-Mossotti formula for a single molecule, viz:

$$
\begin{equation*}
\frac{\varepsilon_{s}-1}{\varepsilon_{s}+2}=\frac{\alpha_{o}}{a^{3}} \tag{II:7}
\end{equation*}
$$

Here a is the "dielectric" molecular radius. When (II:7) holds
it follows that α_{o} / a^{3} is proportional to the density which may be varied by changing the external pressure.

Kirkwood [16] was the first to realize that Lorentz's calculation of the local field, while probably valid in a solid cubic lattice, is suspect for a gas or liquid since it takes no account of the comparatively large density fluctuations that occur in fluids. This means in a fluid that considering the medium surrounding the sphere (in Lorentz's theory) to be a homogeneous, isotropic continuum may be too strong an approximation and an approach based on a medium with particulate structure would be more satisfactory.

Kirkwood assumed only dipolar interparticle forces need be considered and that the particle polarizability, α_{0} was independent of density. Since his model was based entirely on a particle picture there was no need to introduce the ingeneous device of the "Lorentz sphere" at the outset. The moment induced into the $i^{\text {th }}$ nonpolar molecule is then:

$$
\begin{equation*}
\underline{P}_{i}=\alpha_{\sigma F_{i}}=\alpha_{o}\left(D-\sum_{j \neq i} T_{i j} \cdot p_{j}\right) \tag{II:8}
\end{equation*}
$$

 is the dipole-dipole interaction tensor. The problem remaining
is to find the average value \bar{p}_{i} of ${\underset{\sim}{p}}_{i}$ using standard techniques of statistical physics. In this connection it may be noted, as shown by Kirkwood, that the calculation of $\bar{T}_{i j}$ introduces in a natural way a small sphere of indefinite radius surrounding the $i^{\text {th }}$ molecule. This is equivalent to the Lorentz sphere introduced in the earlier theory.

At very low densities, where correlation between $\overline{\mathrm{p}}_{\mathrm{j}}$ and $\overline{\mathrm{T}}_{i j}$ is negligible, the results show that the clausiusMossotti formula is recovered, but as the density increases, and correlation becomes more important, C_{M} rises to a very weak maximum usually at higher densities than observed experimentally. $\quad C_{M}$ then falls more slowly with increasing density than found experimentally. Kirkwood's [16] results for argon compared to the experimental results of Michels et al. [5] are shown in Fig. 4.

FIG. 4. Kirkwood's theory [16] for argon compared to experimental results of Michels et al. [5].

The fact that C_{M} calculated by Kirkwood rises more slowly with increasing density than indicated by experiment at low densities, and falls less rapidly at high density prompted other workers to examine the fluctuation theory more carefully. Thus Mandel and Mazur [17] took steps to remove the shape dependence of the dielectric sample in Kirkwood's theory. Earlier, de Boer, Vander Maesen and Ten Seldam [18], had introduced the effect of shortrange repulsive forces between particles by means of the Lennard-Jones and the Hertzfeld potentials. As expected their results show a more rapid decrease of C_{M} vs. ρ at high densities, but too slow an increase of C_{M} with increasing ρ at low densities.

Jansen and Mazur [19], [20] were the first to treat the particulate theory using quantum mechanics. They limited themselves to spherical molecules undergoing dipolar interaction only and found for H and $H e$ that the initial increase of C_{M} with increasing density was of the same order of magnitude as predicted by Kirkwood's theory. It should be stressed that unlike Kirkwood's theory, Jansen and Mazur took account of the fact that the polarizability of the particle was density dependent, but as in Kirkwood's theory short-range repulsive forces were ignored. Later, Jansen and Salem [21] extended the above theory to include the first few low-order multipole
moments for the rare gases and simple diatomic molcules, but finally Jansen [22] concluded that within the range of experimental error in the measurements this theory does not account for the observed results.

A somewhat different approach to the problem was taken by Michels, de Boer and Bijk [23]; de Groot and Ten Seldam [24], [25]; and Ten Seldam and de Groot [26], [27]. These authors concerned themselves with the change in energies and wave functions of atoms when the electrons are localized to a finite region of space surrounding the atom. This step essentially confines the electrons to a suitably shaped box at whose sides the potential becomes infinite and at which the wave function must vanish. Thus

FIG. 5. Polarizability of helium as a function of pressure: Ten Seldam and de Groot (Ref. [27]).

Ten Seldam and de Groot [27] considered an He atom confined to a sphere of radius r_{0} and used the change in energies and wave functions to find the change in polarizability of the confined He atom. As expected, α / α_{0} decreases smoothly with increasing density without sign of a maximum. The result is shown in Fig. 5.

It may be noted that, in a sense, this model represents a return to the Lorentz "continuum" model except that dipolar interaction between the caged atomic electrons and all others in the medium surrounding the sphere has been ignored. However, the repulsive forces, which tend to confine the electron to the sphere surrounding the nucleus, have been taken into account. Of course, density fluctuations in the dipolar interaction between the molecule and the surrounding medium are not considered in the Ten Seldam and de Groot model.

At this point it may be mentioned that in the area of a continuum theory for C_{M}, Böttcher [28], some years ago, proposed interpreting the Onsager formula for nonpolar materials in a certain way to try and explain the observed deviations from the Clausius-Mossotti formula.

It will be recalled for a nonpolar medium that Onsager's formula gives the permittivity from:

$$
\begin{equation*}
\frac{\left(\varepsilon_{s}-1\right)\left(2 \varepsilon_{s}+1\right)}{12 \pi \varepsilon_{s}}=\frac{N_{o}^{\alpha_{o}}}{1-\alpha_{o} g} \tag{II:9}
\end{equation*}
$$

where N_{o} is the number density of particles of polarizability α_{0} and

$$
\begin{equation*}
g=\frac{2\left(\varepsilon_{S}-1\right)}{2 \varepsilon_{S}+1} \cdot \frac{1}{a^{3}} \tag{II:l0}
\end{equation*}
$$

is the reaction field factor for molecules of radius a. It is usual in the Onsager theory to reduce (II:9) to the Clausius-Mossotti formula (II:I) by insisting that the particle volume equals the volume available to it according to (II:6), but Böttcher declined taking this step and instead treated $u=\alpha_{0} / a^{3}$ as a constant independent of density for each particular substance. In this way he finds a modified C_{M} function:

$$
C_{M}=C_{M}^{(0)} f\left(\varepsilon_{S}\right)
$$

where $C_{M}^{(0)}=4 \pi A \alpha_{0} / 3$ is the C_{M} function at zero density and

$$
\begin{equation*}
f\left(\varepsilon_{S}\right)=\frac{9 \varepsilon_{S}}{\left(\varepsilon_{S}+2\right)\left[\left(2 \varepsilon_{S}+1\right)-2\left(\varepsilon_{S}-1\right) u\right]} . \tag{II:ll:b}
\end{equation*}
$$

For $\varepsilon_{S}=1$ it is readily seen that $C_{M}=C_{M}^{(0)}$, but for other values of the permittivity $f\left(\varepsilon_{s}\right)$ will at first increase to a maximum and then decrease as ε_{s} (and thus the density) is further increased. In this way, with appropriate choices for u, Bötcher obtains C_{M} vs. ρ curves which fit the experimental data remarkably well for gases such as CO_{2}.

However, there is a fundamental difficulty in Böttcher's argument that α_{0} / a^{3} is a constant independent of density for from (II:9) and (II:10) we may readily compute the quantity $x=\frac{4 \pi}{3} N_{o} a^{3}$ to be:

$$
\begin{equation*}
x=\frac{\varepsilon_{s}-1}{\varepsilon_{S}+2}\left[\operatorname{uf}\left(\varepsilon_{s}\right)\right]^{-1} \tag{II:12}
\end{equation*}
$$

In Onsager's theory $\mathrm{X}=1$ at all densities, but for Böttcher's idea we may always plot X vs. ρ using experimental results of ε_{s} vs. ρ. For CO_{2}, for example, it may be shown that X decreases very slowly and almost linearly with increasing density. Extrapolating this result to $\rho=0$ leads to a nonvanishing value $\mathrm{X}=\mathrm{X}_{\mathrm{O}}$ at zero density $\left(\mathrm{X}_{\mathrm{O}}=1.55\right.$ for CO_{2}), and hence when $N_{0}=0, a^{3} \longrightarrow \infty$. It follows that at zero density α_{o} must also be infinite, a result in conflict with the observations that the polarizability of an isolated atom or molecule is a finite quantity.

(c) The Present Theory

It is apparent from the above review that there have been two main approaches to a theory of the ClausiusMossotti function, $C_{M}(\rho, T)$ in dense gases. The first of these is the "density-fluctuation" theory initiated by Kirkwood (loc. cit.) and the second the "continuum" theory initiated by de Groot and Ten Seldam (loc. cit.). To date there appears to be no theory which unifies both approaches simultaneously. However, the continuum theory has the advantage of predicting results at high densities which are beyond the accessible range of calculation of fluctuation theories because of the need to take account of higher and higher orders of multipole interactions as the density rises. For this reason the present work favours the continuum approach.

It is clear that a major improvement to the de Groot and Ten Seldam theory would be to include the effect of longrange dipolar interaction between the caged nonpolar particle and the surrounding medium. The effect of this interaction would be to attract the electron away from the core and thus lower the effective oscillator frequency of the caged electron and hence increase the polarizability. This would be the predominant effect at low densities. On the other hand, at high densities, where each electronic oscillator finds itself increasingly restricted by a δ-like potential at the surface
of the cage as density is raised, the energy would tend to increase and result in a reduction of polarizability. Qualitatively, therefore, as density is increased the polarizability would at first increase, pass through a maximum and then decrease at higher densities in agreement with experimental observation.

For long wavelength, dipole oscillations, where the fields are essentially electrostatic, it is not difficult to formulate the above idea quantitatively since the general technique for finding the potentials associated with an extended, eccentric dipole in a spherical cavity were given some time ago by Frood and Dekker [29]. For example, in the present problem a straightforward calculation (Frood [30]) of the reaction field of an extended, electronic dipole in a sphere of radius "a" with a fixed, centralized core charge, +e leads to the self-energy of the dipole in its own reaction field, viz:

$$
\begin{equation*}
V_{\underline{\text { self }}}=-\frac{e^{2}}{a}\left(\frac{\varepsilon-1}{2 \varepsilon+1}\right)\left(\frac{r}{a}\right)^{2} \sum_{n=0}^{\infty} B_{n}(\varepsilon)\left(\frac{r}{a}\right)^{2 n} \tag{II:13}
\end{equation*}
$$

where:

$$
B_{n}(\varepsilon)=\frac{(n+2)(2 \varepsilon+1)}{2[(n+2) \varepsilon+(n+1)]}
$$

and where r a is the position of the electron. The total potential in which the electron moves is then the sum of (II:13) and the atomic potential ($-e^{2} / r$ for hydrogen) which must then be inserted in the Schrodinger equation and the latter solved under the condition $\psi(r=a)=0$.

Leaving aside for the moment the formidable mathematical difficulties consequent upon this step, it will be noticed that (II:l3) depends explicitly on the quantity, ε which we desire to calculate. Thus, as used in the calculation of, say, a polarizability, (II:l3) requires that the permittivity be calculated self-consistently with the result! A further difficulty inherent in (II:l3) is that it diverges at $r=a$. For these reasons we do not pursue here a calculation for 3-dimensional atoms, but instead go directly to the more tractable case of a l-dimensional model. As will be seen in Sec. III the self-energy of the l-dimensional dipole in its own local field is then not explictly dependent on ε except through the polarization, $\underset{\sim}{\mathcal{P}}$, which is the quantity we wish to calculate. In addition, there is no divergence in this l-dimensional self-energy.

In Sec. III:a we review the well known calculation of the Clausius-Mossotti formula from the Onsager point of view, and in Sec. III:b:(i) we introduce the l-dimensional
model and the corresponding l-dimensional Clausius-Mossotti formula for an unrestricted oscillator experiencing dipolar interaction with its neighbors. In Sec. III:(b):(ii) we then restrict this oscillator by assuming short-range forces introduce a δ-function potential which confines the oscillator to a finite slab of thickness $2 \mathrm{x}_{0}$. We treat this problem quantum mechanically and require the wave function to vanish at $x= \pm x_{0}$. Here the computer is a natural tool since the range of the independent variable is finite for a restricted oscillator, and it is easy to discretize the interval $-\mathrm{x}_{0} \leq \mathrm{x} \leq \mathrm{x}_{\mathrm{o}}$.

In Sec. IV we compute the energies and wave functions of the restricted S.H.O. without dipolar interaction. The wave functions and energies so calculated are then used in perturbation theory to give the ground state polarizability as a function of density. As expected, the polarizability decreases smoothly as density increases in this model. In Sec. V we consider the same problem as in Sec. IV, but with dipolar interaction present and again compute the ground state polarizability. As expected, for this more realistic model there is a definite maximum in α vs. ρ which occurs in the density range $200 \sim 300$ am for $\mathrm{Ar}, \mathrm{Kr}, \mathrm{CO}_{2}$ and N_{2}.

In Sec. VI we calculate the polarizabilities of the excited states of a restricted l-dimensional S.H.O. experiencing
dipolar interaction with a view to investigating the temperature dependence of the C_{M} function. As may be expected, our model shows this effect to be negligible in view of the rather large energy gaps between the different states. However, here a surprising result occurs, namely, that at sufficiently high densities the polarizability of any excited state can become negative. This suggests that these states are those of free electrons rather than bound oscillators and provides, qualitatively, a suggestion for a completely different model in which a particle oscillator should, at the outset, be characterized as having a finite, density-dependent activation energy. Furthermore its interaction with other oscillators in the surrounded medium should occur through screened dipolar forces as suggested some time ago by Frood [31] for a closely related model. Discussion of this idea is considered in Sec. VIII, but in Sec. VII we compare our results for the dielectric constants of Ar, Kr, CO_{2} and N_{2} with experimental values and as will be seen there is fair agreement for comparison of experimental and theoretical ε vs. ρ, but only qualitative agreement for the same comparison of C_{M} functions.

The hard copy of the computer programmes which form Appendices A, B, C and D are printed as a separate document accompanying this thesis.
III. THE MODEL
(a) 3-Dimensional, Unrestricted Simple Harmonic Oscillator with Dipolar Interaction.

Consider a point dipole \vec{m} at the centre of a sphere of radius a and dielectric constant ε_{i}. This sphere is surrounded by a medium of dielectric constant ε. The whole is in an electric field \vec{E} which is uniform at infinity and parallel to the dipole $\overrightarrow{\mathrm{m}}$. The potential V_{o} outside the sphere satisfies Laplace's equation $\nabla^{2} V_{0}=0$, since there are no free charges except those at great distance required to maintain the macroscopic electric field \vec{E}. The potential V_{i} inside the sphere consists of the potential of the source dipole \vec{m} and the potential Φ_{i} which satisfies Laplace's equation $\nabla^{2} \Phi_{i}=0$.

Let us set up a spherical coordinate system so that the Z-axis is parallel to $\underset{\sim}{E}$ (and m) with origin at the centre of the sphere (Fig. 6).

FIG. 6. Induced point dipole in spherical cavity.

A general solution of Laplace's equation in spherical coordinates r, θ and ϕ is:

$$
\begin{equation*}
V=\sum_{n=0}^{\infty} \sum_{n=0}^{\infty}\left(A_{m n} r^{n}+\frac{B_{m n}}{r^{n+1}}\right) P_{n}^{m}(\cos \theta) e^{i m \phi} \tag{III:1}
\end{equation*}
$$

Since the system is spherically symmetrical, the potential both inside and outside are independent of the azimuthal angle. Thus the potential V_{o} outside the sphere is equal to:

$$
\begin{equation*}
V_{0}(r, \theta)=\sum_{n=0}^{\infty}\left(A_{n} r^{n}+\frac{B_{n}}{r^{n+1}}\right) P_{n}(\cos \theta) \tag{III:2}
\end{equation*}
$$

Because the potential must not have a singularity at the centre of the sphere $(r=0)$, we require:

$$
\begin{equation*}
\Phi_{i}=\sum_{n=0}^{\infty} c_{n} r^{n} P_{n}(\cos \theta) \tag{III:3}
\end{equation*}
$$

and hence the potential V_{i} inside is:

$$
\begin{equation*}
v_{i}(r, \theta)=\Phi_{i}+V_{\text {dipole }}=\sum_{n=0}^{\infty} c_{n} r^{n} p_{n}(\cos \theta)+\frac{m}{\varepsilon_{i} r^{2}} \cos \theta \tag{III:4}
\end{equation*}
$$

The boundary conditions are:
At $\mathrm{Z} \rightarrow \infty$ the potential outside must reduce to:

$$
\begin{equation*}
V_{0}(r, \theta)=-E Z=-E r \cos \theta \tag{III:5}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{i}(a, \theta)=V_{0}(a, \theta) \tag{III:6}
\end{equation*}
$$

since the potential is continuous across the boundary. Also:

$$
\begin{equation*}
\varepsilon_{i}\left(\frac{\partial V_{i}}{\partial r}\right)_{r=a}=\varepsilon\left(\frac{\partial V_{0}}{\partial r}\right)_{r=a} \tag{III:7}
\end{equation*}
$$

because the normal component of \vec{D} must be continuous at the boundary.

Since the field at $Z \longrightarrow \infty$ is $\frac{\partial V_{o}}{\partial r}=-E$ then all the coefficients A_{n} are zero except A_{1}, which has the value $A_{1}=-E$, and the potential V_{o} outside the sphere is therefore:

$$
\begin{equation*}
V_{0}(r, \theta)=-E r \cos \theta+\sum_{n=0}^{\infty} \frac{B_{n}}{r^{n+1}} P_{n}(\cos \theta) \tag{III:8}
\end{equation*}
$$

Applying the second and third boundary conditions to (III:4) and (III:8), and recalling the orthogonality properties of

Legendre's polynomials we easily obtain:

$$
\begin{equation*}
c_{n} a^{n}+\frac{m}{\varepsilon_{i} a^{2}} \delta_{n, 1}=-E a \delta_{n, 1}+\frac{B_{n}}{a^{n+1}} \tag{III:9}
\end{equation*}
$$

and:

$$
\begin{equation*}
n \varepsilon_{i} C_{n} a^{n-1}-\frac{2 m}{a^{3}} \delta_{n, 1}=-\varepsilon E \delta_{n, 1}-\frac{\varepsilon(n+1) B_{n}}{a^{n+2}} \tag{III:l0}
\end{equation*}
$$

For $n \neq 1$, these two equations become:

$$
\begin{equation*}
c_{n} a^{n}=\frac{B_{n}}{a^{n+1}} \tag{III:11}
\end{equation*}
$$

and

$$
\begin{equation*}
n \varepsilon_{i} C_{n} a^{n-1}=-\frac{\varepsilon(n+1) B_{n}}{a^{n+2}} \tag{III:12}
\end{equation*}
$$

From these last two equations it follows that $B_{n}=0$ and $c_{n}=0$ for all values of n except $n=1$. When $n=1$, we have:

$$
\begin{equation*}
C_{1}+\frac{m}{\varepsilon_{i}^{a^{3}}}=-E+\frac{B_{1}}{a^{3}} \tag{III:13}
\end{equation*}
$$

and:

$$
\begin{equation*}
\varepsilon_{i} C_{1}-\frac{2 m}{a^{3}}=-\varepsilon E-\frac{2 \varepsilon B_{1}}{a^{3}} \tag{III:14}
\end{equation*}
$$

and solving (III:l3) and (III:14) for B_{1} and C_{1}, there results:

$$
\begin{align*}
& B_{1}=\frac{\left(\varepsilon_{i}-\varepsilon\right) a^{3}}{\left(2 \varepsilon_{i}+\varepsilon_{i}\right)} E+\frac{3 m}{\left(2 \varepsilon_{i} \varepsilon_{i}\right)} \tag{III:l5}\\
& C_{1}=-\frac{3 \varepsilon}{\left(2 \varepsilon+\varepsilon_{i}\right)} E+\frac{2\left(\varepsilon_{i}-\varepsilon\right)}{\varepsilon_{i}\left(2 \varepsilon+\varepsilon_{i}\right)} \frac{m}{a^{3}} \tag{III:16}
\end{align*}
$$

(i) Cavity Field

Suppose $\overrightarrow{\mathrm{m}}=0$, then we have a dielectric ε_{i} imbedded in a dielectric ε_{o}. For this case:

$$
\begin{align*}
& B_{1}=\frac{\left(\varepsilon_{i}-\varepsilon\right) a^{3}}{\left(2 \varepsilon+\varepsilon_{i}\right)} E \tag{III:I7}\\
& C_{1}=\frac{-3 \varepsilon}{2 \varepsilon+\varepsilon_{i}} \quad E \tag{III:18}
\end{align*}
$$

The field inside the sphere is thus homogeneous and in the same direction as E, and is given by:

$$
\begin{equation*}
-\frac{\partial V_{i}}{\partial Z}=\frac{3 \varepsilon}{2 \varepsilon+\varepsilon_{i}} \quad E \tag{III:19}
\end{equation*}
$$

If in particular $\varepsilon_{i}=1$, we have what is referred to as the "cavity field"

$$
\begin{equation*}
\vec{E}_{C}=\frac{3 \varepsilon}{2 \varepsilon+1} \vec{E} \tag{III:20}
\end{equation*}
$$

(ii) Reaction Field

Consider now $\vec{E}=0$ so that we have a point dipole at the centre of a sphere of dielectric constant ε_{i} embedded in the medium of dielectric constant ε. For this case the field inside the sphere is given by:

$$
\begin{equation*}
-\frac{\partial V_{i}}{\partial Z}=\frac{2\left(\varepsilon-\varepsilon_{i}\right)}{\varepsilon_{i}\left(2 \varepsilon+\varepsilon_{i}\right)} \frac{m}{a^{3}}-\frac{m}{r^{3}}\left(1-3 \cos ^{2} \theta\right) \tag{III:21}
\end{equation*}
$$

The second term of (III:2l) is the Z-field of the point dipole \vec{m}. The first term of (III:21) is:

$$
\begin{equation*}
\vec{R}=\frac{2\left(\varepsilon-\varepsilon_{i}\right)}{\varepsilon_{i}\left(2 \varepsilon+\varepsilon_{i}\right)} \frac{\vec{m}}{a^{3}} \tag{III:22}
\end{equation*}
$$

This is clearly the field inside the sphere due to the polarized charges on both the inside and outside surfaces of the sphere. These polarized charges arise, of course, from the "source" dipole \vec{m}. For $\varepsilon_{i}=1$, we have what is called the "reaction field":

$$
\begin{equation*}
\overrightarrow{\mathrm{R}}=\frac{2(\varepsilon-1)}{2 \varepsilon+1} \frac{\overrightarrow{\mathrm{~m}}}{\mathrm{a}^{3}} \tag{III:23}
\end{equation*}
$$

This field has the direction of \vec{m} and is due to the polarized charges on the outside surface of the sphere which are considered fixed before the dipole and the dielectric sphere are
removed. Note also for a central, point dipole that the reaction field is homogeneous. However, as discussed in Sec. III: (c), for an extended dipole or for a point dipole which is not located at the centre of the cavity, the reaction field is not homogeneous.

(iii) Local Field (Onsager Theory)

Suppose now we fix the state of polarization in the medium outside the sphere and remove the sphere and its polarization from the dielectric, what is the total field inside the cavity? Clearly the field is given by Onsager's expression $F=$ (Cavity field) + (Reaction field of point dipole), that is:

$$
\begin{align*}
\vec{F} & =\vec{E}_{C}+\vec{R} \\
& =\frac{3 \varepsilon}{3 \varepsilon+1} \vec{E}+\frac{2(\varepsilon-1)}{2 \varepsilon+1} \frac{\vec{m}}{a^{3}} \tag{III:24}
\end{align*}
$$

But for a homogeneously polarized sphere:

$$
\begin{equation*}
\overrightarrow{\mathrm{m}}=\frac{4 \pi}{3} \mathrm{a}^{3} \overrightarrow{\mathrm{p}} \tag{III:25}
\end{equation*}
$$

where:

$$
\begin{equation*}
\vec{P}=\frac{\varepsilon-1}{4 \pi} \vec{E} \tag{III:26}
\end{equation*}
$$

is the polarization of the medium. Substituting (III:26) into
(III:25) we get:

$$
\begin{equation*}
\frac{\vec{m}}{a^{3}}=\frac{\varepsilon-1}{3} \quad \vec{E} \tag{III:27}
\end{equation*}
$$

and employing (III:27) in (III:24) there results:

$$
\begin{equation*}
\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{E}}+\frac{4 \pi}{3} \overrightarrow{\mathrm{P}}=\frac{\varepsilon+2}{3} \overrightarrow{\mathrm{E}} \tag{III:28}
\end{equation*}
$$

Eq. (III:28) is the well known Lorentz local field given earlier in (II:5). This field is independent of "a" the radius of the sphere.

The dipole moment can also be written as:

$$
\begin{equation*}
\overrightarrow{\mathrm{m}}=\alpha_{0} \overrightarrow{\mathrm{~F}} \tag{III:29}
\end{equation*}
$$

where α_{0} is the polarizability of the isolated molecule and \vec{F} is the local field.

Since the total moment per unit volume is:

$$
\begin{equation*}
\xrightarrow{P}=N_{0} m^{m}=N_{0} \alpha\left(\frac{\varepsilon+2}{3}\right) E \tag{III:30}
\end{equation*}
$$

we find using (III:30) in (III:26) that:

$$
\begin{equation*}
\frac{\varepsilon-1}{\varepsilon+2}=4 \pi N_{0} \alpha_{0} \tag{III:31}
\end{equation*}
$$

and (III:3l) is just the Clausius-Mossotti formula for an assembly of nonpolar, spherical molecules as shown in Sec. I.
(b) l-Dimensional, Unrestricted and Restricted Simple Harmonic Oscillators with Dipolar Interaction.
(i) Unrestricted Oscillator

Consider a dipole with the positive charge $+q$ at the origin and the negative charge $-q$ free to oscillate along the x-axis. The dipole is confined to a plane slab of thickness $2 \mathrm{x}_{\mathrm{o}}$ of dielectric constant unity which is sandwiched between two, plane semi-infinite media of permittivity ε. These represent the "surrounding medium." The whole is in an electric field, E, which is uniform at infinity and parallel to the dipole (Fig. 7).

FIG. 7. Induced line dipolar in slab cavity.

To obtain the local field in this case by the Onsager method used in Sec. III:(a) is very difficult and tedious. The reaction field can be obtained using the method of images and results in a non-summable series of terms. The cavity field is equally difficult to compute, but bearing in mind that it is only the local field which is of interest, we may proceed in a straightforward manner as follows:

Because of the continuity of the normal displacement at the boundary, the local field, $\underset{\sim}{F}$ inside the cavity must be:

$$
\begin{equation*}
\vec{F}=\varepsilon \vec{E}=\vec{E}+4 \pi \vec{P} \tag{III:32}
\end{equation*}
$$

where \vec{E} is the macroscopic field and \vec{P} is the moment per unit volume which is also equal to:

$$
\begin{equation*}
P=-q N_{0} x \tag{III:33}
\end{equation*}
$$

Here N_{o} is the number density of molecules in the medium and x is the displacement of the charge $-q$. It should be noted that the local field (III:32) is homogeneous and independent of the length of the dipole. Making use of (III:32) and (III: 33), the energy required to polarize the dipole is clearly:

$$
\begin{align*}
W & =q \int_{0}^{x} F d x \\
& =-q E x+4 \pi N_{o} q^{2}\left(\frac{x^{2}}{2}\right) \tag{III:34}\\
& =-q E x+\frac{1}{2} m_{o} \omega_{p}^{2} x^{2} \tag{III:35}
\end{align*}
$$

where:

$$
\begin{equation*}
\omega_{p}=\left(\frac{4 \pi N_{o} q^{2}}{m_{0}}\right)^{\frac{1}{2}} \tag{III:36}
\end{equation*}
$$

is the plasma frequency of the bound electrons in the medium. Thus, taking account of the back-reaction of the medium, the total potential energy of the system is:

$$
\begin{equation*}
V=\frac{1}{2} m_{o} \omega_{o}^{2} x^{2}-\frac{1}{2} m_{o} \omega_{p}^{2} x^{2}+q E x \tag{III:37}
\end{equation*}
$$

where ω_{o} is the frequency of the isolated oscillator. The Lagrangian of the system is therefore:

$$
\begin{align*}
L & =T-V=\frac{1}{2} m_{0} \dot{x}^{2}-\frac{1}{2} m_{o} \omega_{o}^{2} x^{2}+\frac{1}{2} m_{o} \omega_{p}^{2} x^{2}-q E x \\
& =\frac{1}{2} m_{0} \dot{x}^{2}-\frac{1}{2} m_{0} \omega_{e f f}^{2} x^{2}-q E x \tag{III:38}
\end{align*}
$$

where $\omega_{\text {eff }}=\left(\omega_{\mathrm{O}}^{2}-\omega_{\mathrm{p}}^{2}\right)^{\frac{1}{2}}$ is the density-dependent, effective
frequency of the oscillator in interaction with its surroundings. The first two terms of (III:38) represent the Lagrangian of a dipolar simple harmonic oscillator, and the last term in (III:38) is the negative of the interaction energy between the macroscopic field, \vec{E} and this dipole of moment $m=-q x$.

From classical mechanics the equation of motion of this oscillator is found from:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0 \tag{III:39}
\end{equation*}
$$

leading to:

$$
\begin{equation*}
\ddot{x}+\omega_{\text {eff }}^{2} x=-\frac{q}{m_{0}} E \tag{III:40}
\end{equation*}
$$

For an oscillating field of the form:

$$
\begin{equation*}
\vec{E}(t)=\vec{E}_{0} e^{i \omega t} \tag{III:41}
\end{equation*}
$$

an immediate particular solution of (III:40) is:

$$
\begin{equation*}
\vec{x}(t)=-\frac{q}{m_{0}} \frac{\vec{E}_{0} e^{i \omega t}}{\omega_{e f f}^{2}} \tag{III:42}
\end{equation*}
$$

Next using (III:42) in (III:33) the polarization becomes:

$$
\begin{equation*}
\vec{P}(t)=\frac{q^{2} n_{o}}{m_{o}} \frac{\vec{E}_{o} e^{i \omega t}}{\omega_{e f f}^{2}} \tag{III:43}
\end{equation*}
$$

leading at once to:

$$
\begin{equation*}
\frac{\varepsilon-1}{4 \pi} \vec{E}=\frac{q^{2} N_{o}}{m_{o}} \frac{\vec{E}_{o} e^{i \omega t}}{\omega_{e f f^{-\omega^{2}}}^{2}} \tag{III:44}
\end{equation*}
$$

and using (III:41) in (III:44) the frequency dependent dielectric constant is thus:

$$
\begin{equation*}
\varepsilon(\omega)=1+\frac{\omega_{p}^{2}}{\left(\omega_{0}^{2}-\omega_{p}^{2}\right)-\omega^{2}} \tag{III:45}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
\frac{\varepsilon(\omega)-1}{\varepsilon(\omega)}=\frac{\omega_{p}^{2}}{\omega_{0}^{2}-\omega^{2}} \tag{III:46}
\end{equation*}
$$

For static fields ($\omega=0$), (III:46) becomes:

$$
\begin{equation*}
\frac{\varepsilon_{s}-1}{3 \varepsilon_{s}}=\frac{\omega_{\mathrm{p}}^{2}}{3 \omega_{o}^{2}}=\frac{4 \pi N_{o}}{3} \alpha_{o} \tag{III:47}
\end{equation*}
$$

where $\alpha_{0}=\frac{e^{2}}{m \omega_{0}^{2}}$ is the polarizability of the isolated simple harmonic oscillator.

Eq. (III:47) is just the Clausius-Mossotti formula for a l-dimensional unrestricted simple harmonic oscillator interacting with dipolar forces with its neighbours. The factor $1 / 3$ is introduced on both sides of (III:47) so that the right hand side corresponds with that for the 3-dimensional Clausius-Mossotti formula given by (I:l) and (III:31).

(ii) Restricted Oscillator

Consider the system which is described in (III:b:i), but now the dipole is restricted by infinite potential barriers at $x= \pm x_{0}$. In other words, the dipole oscillates only in the region between $-x_{0}$ and x_{0}. This potential barrier represents the effect of the repulsive forces between the charge $-q$ and the "whole surrounding medium." The latter is considered to be a homogeneous, isotropic medium with dielectric constant ε (Fig. 7). Since the normal component of \vec{D} must be continuous at the boundary, the local field, \mathcal{E}, inside the cavity must still be given by (III:32), viz:

$$
\begin{equation*}
\vec{F}=\varepsilon \vec{E}=\vec{E}+4 \pi \vec{P} \tag{III:48}
\end{equation*}
$$

where E is the macroscopic field and ${ }^{P}$ is the moment per unit volume. F is also homogeneous and independent of the length of the dipole, provided this length is less than x_{o}. Comparing (III:32) with (III: 48), we concluded that the local field,

F, for both unrestricted and restricted oscillators are the same. Thus, the energy required to polarize the dipole is given by (III:35). The classical Hamiltonian of the system is therefore:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m_{o}}+\frac{1}{2} m_{o} \omega_{\mathrm{eff}}^{2} x^{2}+q E x \tag{III:49}
\end{equation*}
$$

where $p=m_{o} \dot{x}$ is the momentum of the charge $-q$ and $\omega_{\text {eff }}^{2}=$ $\left(\omega_{0}^{2}-\omega_{\mathrm{p}}^{2}\right)$ is the density-dependent, effective frequency of the oscillator in interaction with its surroundings. The first two terms of (III:49) represent the Hamiltonian of a simple harmonic (dipole) oscillator, and the last term is the interaction energy between the dipole of moment $m=-q x$ and the macroscopic field, \vec{E}. Since the charge $-q$ is restricted by infinite potential barriers, its wave function must vanish for $|x| \geq x_{0}$. When we consider the quantum nature of this system, the Hamiltonian of interest is:

$$
\begin{equation*}
H=-\frac{\pi^{2}}{2 m_{o}} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m_{o} \omega_{e f f}^{2} x^{2}+q E x \tag{III:50}
\end{equation*}
$$

where m_{0} is the mass of the charge $-q$ and T is Planck's constant. The Schrödinger equation of the system is thus:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \Psi}{d x^{2}}+\frac{1}{2} m_{0} \omega_{e f f}^{2} x^{2} \Psi+q E x \Psi=W \Psi \tag{III:51}
\end{equation*}
$$

and the wave function $\Psi(x)$ is required to vanish at $x= \pm x_{o}$, i.e.

$$
\begin{equation*}
\Psi\left(-\mathrm{x}_{0}\right)=\Psi\left(\mathrm{x}_{0}\right)=0 \tag{III:52}
\end{equation*}
$$

It is usual to solve (III:51) by an exact method, that is, by introducing a new coordinate

$$
\begin{equation*}
x^{\prime}=x+\frac{q E}{m_{0} \omega_{\operatorname{eff}}^{2}} \tag{III:53}
\end{equation*}
$$

then the wave equation becomes

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \Psi\left(x^{\prime}\right)}{d x^{\prime}}+\frac{1}{2} m_{o} \omega_{e f f^{\prime}}^{2} x^{\prime 2} \Psi\left(x^{\prime}\right)=\left(W+\frac{2 q^{2} E^{2}}{m_{o} \omega_{e f f}^{2}}\right) \Psi\left(x^{\prime}\right) \tag{III:54}
\end{equation*}
$$

but here the boundary conditions for the wave functions are:

$$
\begin{equation*}
\psi\left(-x_{0}+\frac{q E}{m_{0} \omega_{\text {eff }}^{2}}\right)=\psi\left(x_{0}+\frac{q E}{m_{0} \omega_{\text {eff }}^{2}}\right)=0 \tag{III:55}
\end{equation*}
$$

Since the wave functions depend upon a new coordinate, x^{\prime}, which is itself dependent on the macroscopic field, E, the new energy $W^{\prime}=W+\frac{2 q^{2} E^{2}}{m_{0} \omega_{\text {eff }}^{2}}$ and the wave function $\psi\left(x^{\prime}\right)$ are dependent on E in a more complicated way than for the unrestricted oscillator. We could in principle solve the

Schrödinger equation numerically for a range of fields, E, and extrapolate our results to zero field, but this is clearly a complicated procedure and we elect instead to use a perturbation method described below:

Let us assume that the macroscopic field is so small that $q E x$ can be treated as a perturbation, then the Schrödinger equation can be written:

$$
\begin{equation*}
\left(H_{O}+H^{\prime}\right) \Psi=W \Psi \tag{III:56}
\end{equation*}
$$

where

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 m_{o}} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m_{o} \omega_{e f f}^{2} x^{2} \tag{III:57}
\end{equation*}
$$

is the unperturbed Hamiltonian and

$$
\begin{equation*}
H^{\prime}=q E x \tag{III:58}
\end{equation*}
$$

is the perturbation potential energy.

The solution of the Schrödinger equation in the absence of both dipolar interaction $\left(\omega_{p}=0\right)$ and a macroscopic field, E, but with a wave function which vanishes at $|x|=x_{o}$ will be discussed in Sec. IV. Later, in Sec. V, the solution of the Schrodinger equation in the absence of a macroscopic field, E, but with dipolar interaction present and again with a wave function which vanishes at $|x|=x_{o}$ will be discussed.
IV. COMPUTED ENERGIES, WAVE FUNCTIONS AND STATIC POLARIZABILITY OF THE RESTRICTED SIMPLE HARMONIC OSCILLATOR WITHOUT DIPOLAR INTERACTION

Consider a simple harmonic oscillator which is restricted at $x= \pm x_{0}$ by infinite potential barriers. This implies that the wave functions vanish for $|x| \geq x_{0}$. The Schröinger equation of this system is then:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m_{O}} \frac{d^{2} \Psi}{d x^{2}}+\frac{1}{2} m_{O} \omega_{O}^{2} x^{2} \Psi=W \Psi \tag{IV:I}
\end{equation*}
$$

where m_{0} is the mass of the oscillating particle and ω_{0} is the angular frequency of the isolated oscillator. The wave function $\Psi(x)$ in (IV:l) is subjected to boundary conditions:

$$
\begin{equation*}
\psi\left(-x_{0}\right)=\psi\left(x_{0}\right)=0 \tag{IV:2}
\end{equation*}
$$

To solve (IV:I), subject to condition (IV:2), we first transform the equation into a dimensionless form. Thus by letting: ${ }^{\dagger}$

$$
\begin{equation*}
y=\sqrt{\frac{2 m_{0} \omega_{0}}{\hbar}} x \tag{IV:3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\omega=\omega / \hbar \omega_{0} \tag{IV:4}
\end{equation*}
$$

\]

(IV:I) becomes

$$
\begin{equation*}
-\frac{d^{2} \psi}{d y^{2}}+V(y) \Psi=w \Psi \tag{IV:5}
\end{equation*}
$$

where:

$$
\begin{equation*}
v(y)=\left(\frac{y}{2}\right)^{2} \tag{IV:6}
\end{equation*}
$$

To solve (IV:5) numerically, the difference-quotient approximation is to be used for approximating $\frac{d^{2} \psi}{d y^{2}}$ or $\psi^{\prime \prime}(y)$. To accomplish this, we select an integer $\mathrm{N}>0$ and divide the interval $\left[-Y_{0}, Y_{0}\right]$ into $N+1$ equal subintervals whose end points are the meshpoints. Defining

$$
\begin{equation*}
y_{0}=\sqrt{\frac{2 m \omega_{0}}{\hbar}} x_{0} \tag{IV:7}
\end{equation*}
$$

we let:

$$
\begin{equation*}
y_{i}=-Y_{0}+i h, \quad \text { for } i=0 \text { to } N+1 \tag{IV:8}
\end{equation*}
$$

where

$$
\begin{equation*}
h=\frac{Y_{0}-\left(-Y_{0}\right)}{N+1}=\frac{2 Y_{O}}{N+1} \tag{IV:9}
\end{equation*}
$$

At the interior meshpoints, $y_{i}, 1=1,2, \ldots, N$, the differential equation to be approximated is

$$
\begin{equation*}
-\Psi "\left(y_{i}\right)+V\left(y_{i}\right) \Psi\left(y_{i}\right)=w \Psi\left(y_{i}\right) \tag{IV:10}
\end{equation*}
$$

Now, expanding the wave function $\Psi(y)$ up to cubic terms in a Taylor polynomial about the point y_{i} evaluated at y_{i+1} and Y_{i-1}, we have:
$\Psi\left(y_{i+1}\right)=\Psi\left(y_{i}+h\right)=\Psi\left(y_{i}\right)+h \Psi\left(y_{i}\right)+\frac{h^{2}}{2} \Psi^{\prime \prime}\left(y_{i}\right)+\frac{h^{3}}{6} \Psi^{3}\left(y_{i}\right)+\frac{h^{4}}{24} \Psi^{(4)}\left(y_{i}\right)$
(IV:ll)
for some point $\xi_{i}^{+}, Y_{i}<\xi_{i}^{+}<Y_{i+1}$, and
$\Psi\left(y_{i-1}\right)=\Psi\left(y_{i}-h\right)=\Psi\left(y_{i}\right)-h \Psi\left(y_{i}\right)+\frac{h^{2}}{2} \Psi^{4}\left(y_{i}\right)-\frac{h^{3}}{6} \Psi^{3}\left(y_{i}\right)+\frac{h^{4}}{24} \Psi^{4}\left(y_{i}\right)$
(IV:12)
for some point $\bar{\xi}_{i}^{-}, Y_{i-1}<\xi_{i}^{-}<Y_{i}$.

If these two equations are added together, there results:
$\Psi^{\prime \prime}\left(y_{i}\right)=\frac{\Psi\left(y_{i-1}\right)-2 \Psi\left(y_{i}\right)+\Psi\left(y_{i+1}\right)}{h^{2}}-\frac{h^{2}}{24}\left[\Psi(4)\left(\xi_{i}^{+}\right)+\Psi(4)\left(\xi_{i}^{-}\right)\right]$
(IV:13)

Making use of Intermediate Value Theorem, the equation (IV:13) becomes

$$
\begin{equation*}
\Psi "\left(y_{i}\right)=\frac{\Psi\left(y_{i-1}\right)-2 \Psi\left(y_{i}\right)+\Psi\left(y_{i+1}\right)}{h^{2}}-\frac{h^{2}}{12} \Psi(4)\left(\xi_{i}\right) \tag{IV:14}
\end{equation*}
$$

for some point $\xi_{i}, Y_{i-1}<\xi_{i}<Y_{i+1}$.

Equation (IV:14) is called the Central Difference Formula for $\Psi "\left(y_{i}\right)$. Assuming that h is a small number such that the last term in Eq. (IV:l4) can be neglected, and bearing in mind that the truncation error is of $O\left(h^{2}\right)$, we thus have:

$$
\begin{equation*}
\Psi\left(y_{i}\right)=\frac{\Psi\left(y_{i-1}\right)-2 \Psi\left(y_{i}\right)+\Psi\left(y_{i+1}\right)}{h^{2}} \tag{IV:15}
\end{equation*}
$$

Replacing $\Psi "\left(y_{i}\right)$ in (IV:10) by (IV:15) the differential equation is approximated by the difference equation:

$$
\begin{equation*}
-\left[\frac{\Psi\left(y_{i-1}\right)-2 \Psi\left(y_{i}\right)+\Psi\left(y_{i+1}\right)}{h^{2}}\right]+V\left(y_{i}\right) \Psi\left(y_{i}\right)=w \Psi\left(y_{i}\right) \tag{IV:16.}
\end{equation*}
$$

for each $i=1,2,3, \ldots, N$, and subject to boundary conditions:

$$
\begin{equation*}
\Psi\left(Y_{0}\right)=\Psi\left(Y_{0}\right)=0 \text { or } \psi\left(Y_{0}\right)=\psi\left(Y_{n+1}\right)=0 \tag{IV:17}
\end{equation*}
$$

Equation (IV:l6) can be rewritten as

$$
\begin{array}{cl}
-\frac{1}{h^{2}} \Psi\left(y_{o}\right)+\left\{\frac{2}{h^{2}}+V\left(y_{1}\right)\right\} \Psi\left(y_{0}\right)-\frac{1}{h^{2}} \Psi\left(y_{2}\right) & =w \Psi\left(y_{1}\right) \\
-\frac{1}{h^{2}} \Psi\left(y_{1}\right)+\left\{\frac{2}{h^{2}}+V\left(y_{2}\right)\right\} \Psi\left(y_{2}\right)-\frac{1}{h^{2}} \Psi\left(y_{3}\right) & =w \Psi\left(y_{2}\right) \\
\text { • } & \\
\text { • } & \\
-\frac{1}{h^{2}} \Psi\left(y_{N-1}\right)+\left\{\frac{2}{h^{2}}+V\left(y_{N}\right)\right\} \Psi\left(y_{N}\right)-\frac{1}{h^{2}} \Psi\left(y_{N+1}\right) & =w \Psi\left(y_{N}\right)
\end{array}
$$

Substituting (IV:17) into the first and the last equations of (IV:18) we get:
(IV:19)

Equation (IV:18) can be expressed in the tridiagonal $N \times N$ matrix form shown in Eq. (IV:20):

$$
\begin{aligned}
& \left\{\frac{2}{h^{2}}+V\left(y_{1}\right)\right\} \Psi\left(y_{1}\right)-\frac{1}{h^{2}} \Psi\left(y_{2}\right) \\
& =\mathrm{w} \Psi\left(\mathrm{y}_{1}\right) \\
& -\frac{1}{\mathrm{~h}^{2}} \Psi\left(\mathrm{y}_{1}\right)+\left\{\frac{2}{\mathrm{~h}^{2}}+\mathrm{V}\left(\mathrm{y}_{2}\right)\right\} \Psi\left(\mathrm{y}_{2}\right)-\frac{1}{\mathrm{~h}^{2}} \Psi\left(\mathrm{y}_{3}\right) \\
& =\mathrm{w} \Psi\left(\mathrm{y}_{2}\right) \\
& -\frac{1}{\mathrm{~h}^{2}} \Psi\left(\mathrm{y}_{\mathrm{N}-1}\right)+\left\{\frac{2}{\mathrm{~h}^{2}}+\mathrm{V}\left(\mathrm{y}_{\mathrm{N}}\right)\right\} \Psi\left(\mathrm{y}_{\mathrm{N}}\right)=\mathrm{w} \Psi\left(\mathrm{y}_{\mathrm{N}}\right)
\end{aligned}
$$

(IV: 20)
or $W \Psi=W \Psi$ where the matrix A, shown in Eq. (IV:20) is also a a symmetrical. From mathematics, we know that it is possible to diagonalize the above matrix without changing its eigenvalues. The matrix which transforms A to diagonal form is called a similarity transformation. Here the process of diagonalization is done by computer. The computer program for this process is given in Appendix A. The well known QR algorithm for calculating the eigenvalues of the tridiagonal and symmetry matrix is used in this computation (see Burden et al. [32]). The diagonal matrix obtained above represents the eigenvalues (eigen-energies) of the matrix A, since $A \Psi=w \Psi$ or

It should be noted that the size of the matrix is determined by the integer N, and N is selected so that the distance $h=\frac{2 Y_{O}}{N+1}$ between Y_{2} and Y_{i+1} is very small. of course, this distance can be made as small as we wish. In other words, N can be chosen as large as we want. When N is large, the size of the matrix is also large, meaning more computation time is required to compute the eigenvalues of the matrix. In order to speed up the computation time, one has to choose N so that the distance $h=\frac{2 Y_{0}}{N+1}$ is reasonably small and the truncation error is also small. Of course, the larger the interval $\left[-Y_{0}, Y_{0}\right]$, the bigger the value of N to be chosen.

Now, we use the eigenvalue which is obtained by the $Q R$ algorithm to compute its corresponding eigenvector
(wave function), of course, the wave function which is obtained above is not entirely accurate since its corresponding eigenvalue carries a rounding error which is due to iteration in the QR algorithm. To find the nearly exact eigenvalue and eigen-vector, we write a computer program in which we can calculate this nearly exact eigen-energy and wave function*simultaneously. This program is given in Appendix B.

The computed energies and wave functions are shown in Figs. 8 to 14 for Y_{o} in the range $2 \sim 5$. In argon this corresponds to the density range $802 \mathrm{am}\left(Y_{0}=2\right)$ to 51.3 am ($Y_{0}=5$), with a similar density range for most other gases. Note here that energies are quoted in units of $\hbar \omega_{0}$ and that the energy and wave functions of the isolated oscillator are shown as dashed lines.

As mentioned in Sec. III:b:ii, we are not able to solve the Schrodinger equation given by (III:5I) in an exact manner. Instead we introduce perturbation theory, that is, we assume the macroscopic field, E, so small that qEx can be treated as a perturbation. Now, let us consider that the unperturbed system is a restricted simple harmonic oscillator without dipolar interaction with a wave equation given by (IV:I) and subject to boundary conditions. The
*Appendix D gives a programme for checking the accuracy of the wave function and energy. The former is seen to be correct to within 1 part in 10^{6}.

FIG. 8a: Energy levels of restricted S.H.O. for $Y_{o}=2,3$.

$$
Y_{o}=3.5
$$

$Y_{0}=4$

FIG. 3b: Energy levels of restricted S.H.O. for

$$
Y_{0}=3.5 \text { and } 4
$$

$$
Y_{o}=4.5
$$

$$
Y_{0}=5
$$

FIG. 8c: Energy levels of restricted S.H.O. for

$$
Y_{o}=4.5 \text { and } 5
$$

FIG. 9a: Wave functions of restricted S.H.O. for $Y_{o}=2$.

FIG. 9b: Wave functions of restricted S.H.O. for $Y_{O}=2$.

FIG. 10a: Wave functions of restricted S.H.O. for $Y_{o}=3$.

FIG. 10\%: Wave functions of restricted S.H.O. for $Y_{0}=3$.

FIG. lla: Wave functions of restricted S.H.O. for $Y_{o}=3.5$.

FIG. Ilb: Wave functions of restricted S.H.O. for $Y_{0}=3.5$.

FIG. 12a: Wave functions of restricted S.H.O. for $Y_{0}=4$.

FIG. 12b: Wave functions of restricted S.H.O. for $Y_{o}=4$.

FIG. 13a: Wave functions of restricted S.H.O. for $Y_{o}=4.5$.

FIG. 13b: Wave function of restricted S.H.O. for $\mathrm{Y}_{\mathrm{o}}=4.5$.

FIG. 14a: Wave function of restricted S.H.O. for $Y_{0}=5$.

FIG. 14b: Wave function of restricted S.H.O. for $\mathrm{Y}_{\mathrm{O}}=5$.

Hamiltonian of this system will be:

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m_{0} \omega_{0}^{2} x^{2}-q E x=H_{0} q E x \tag{IV:22}
\end{equation*}
$$

According to the perturbation theory, the change in energy is given by:

$$
\begin{equation*}
W=W_{o}+q E<\Psi_{0}|x| \Psi_{0}>+\sum_{n \neq 0}^{\infty} \frac{\mid\left\langle\psi_{n}\right| x\left|\Psi_{0}>\right|^{2}}{W_{0}-W_{n}} q^{2} E^{2} \tag{IV:23}
\end{equation*}
$$

where W_{n} and $\psi_{n}(x)$ are the energy and the wave function of the unperturbed state of the restricted oscillator without dipolar interaction. The matrix element $\left\langle\psi_{0}\right| x\left|\Psi_{0}\right\rangle$ is equal to zero since $\psi_{o}(x)$ has even or odd parity. Therefore (IV:23) can be simplified. It becomes:

$$
\begin{equation*}
W=W_{0}-\sum_{n \neq 0}^{\infty} \frac{\left|<\Psi_{n}(x)\right| x\left|\psi_{O}(x)>\right|^{2}}{W_{n}-W_{O}} q^{2} E^{2} \tag{IV:23}
\end{equation*}
$$

The static polarizability of the restricted oscillator without dipolar interaction is given by:

$$
\begin{equation*}
\alpha=-\frac{\partial^{2} W}{\partial E^{2}}=2 q^{2} \sum_{n \neq 0}^{\infty} \frac{\mid\left\langle\Psi_{n}(x)\right| x\left|\Psi_{o}(x)\right|^{2}}{W_{n}-W_{o}} \tag{IV:25}
\end{equation*}
$$

The wave functions, which are calculated by computer, are functions of y, where y is defined by (IV:3) The normalization of
wave function $\Psi(y)$ is done by computer (see Appendix B) and given by:

$$
\begin{equation*}
\int_{-Y_{0}}^{Y_{O}} \Psi(y) \Psi(y) d y=1 \tag{IV:26}
\end{equation*}
$$

However, the normalization of wave function $\Psi(x)$ is

$$
\begin{equation*}
\int_{-x_{0}}^{x_{0}} \Psi(x) \Psi(x) d x=1 \tag{IV:27}
\end{equation*}
$$

Using (IV:3), (IV:27) becomes

$$
\begin{equation*}
\sqrt{\frac{\hbar}{2 m_{0} \omega_{0}}} \int_{-Y_{0}}^{Y_{O}} \Psi(x) \Psi(x) d y=1 \tag{IV:28}
\end{equation*}
$$

Comparing (IV:26) with (IV:28) yields:

$$
\begin{equation*}
\Psi(x)=\left(\frac{2 m_{0} \omega_{0}}{\hbar}\right)^{\frac{3}{4}} \Psi(y) \tag{IV:29}
\end{equation*}
$$

Using (IV:29), (IV:3) and (IV:4) in (IV:25) the polarizability of a restricted oscillator without dipolar interaction then becomes:

$$
\begin{equation*}
\alpha=\frac{q^{2}}{m_{o} \omega_{o}} \sum_{n=1}^{\infty} \frac{\mid\left\langle\psi_{n}(y)\right| y\left|\psi_{o}(y)>\right|^{2}}{w_{n}-w_{o}} \tag{IV:30}
\end{equation*}
$$

Defining $\alpha_{o}=q^{2} / m_{o} \omega_{o}^{2}(I V: 30)$ gives the relative polarizability:

$$
\begin{equation*}
\frac{\alpha}{\alpha_{o}}=\sum_{n=1}^{\infty} \frac{\mid\left\langle\Psi_{n}(y)\right| y\left|\Psi_{o}(y)>\right|^{2}}{w_{n}-w_{o}} \tag{IV:31}
\end{equation*}
$$

Because the excited state wave functions have more nodes, the value of the matrix dipole element $\left\langle\psi_{n}\right| Y\left|\Psi_{o}\right\rangle$ is very small for $n>1 . \quad$ Thus, the relative polarizability can be approximated and is given here for the first 8 terms only, viz:

$$
\begin{equation*}
\frac{\alpha}{\alpha_{o}}=\sum_{n=1}^{8} \frac{\left|<\Psi_{n}(y)\right| y\left|\Psi_{o}(y)>\right|^{2}}{w_{n} w_{o}} \tag{IV:32}
\end{equation*}
$$

We compute (IV:32) using the energies w_{n} and wave functions $\Psi_{n}(y)$ computed above. The program for this calculation is given in Appendix C. The relative polarizability of a restricted simple harmonic oscillator without dipolar interaction vs. density is shown in Fig. 15. Here the density is calculated assuming $\mathrm{N}_{\mathrm{O}}=\left(2 \mathrm{x}_{\mathrm{O}}\right)^{-3}$.

DENSITY, Amagat

FIG. 15: Ground state polararization of restricted S.H.O. as a function of density.
V. COMPUTED ENERGIES, WAVE FUNCTIONS AND STATIC POLARIZABILITY OF THE RESTRICTED SIMPLE HARMONIC OSCILLATOR WITH DIPOLAR INTERACTION

The Hamiltonian of the restricted simple harmonic oscillator in the absence of macroscopic field, E, but with dipolar interaction present is given by:

$$
H=-\frac{\hbar^{2}}{2 m_{o}} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m_{o} \omega_{e f f}^{2} x^{2}
$$

and the Schrödinger equation of this system is thus:

$$
\mathrm{H} \Psi=\mathrm{W} \Psi
$$

or

$$
\begin{equation*}
-\frac{\hbar^{2}}{d m_{0}} \frac{d^{2} \psi}{d x^{2}}+\frac{1}{2} m_{o} \omega_{e f f}^{2} x^{2} \psi=W \Psi \tag{V:1}
\end{equation*}
$$

or

$$
\begin{equation*}
-\frac{\Pi^{2}}{2 m_{0}} \frac{d^{2} \psi}{d x^{2}}+\frac{1}{2} m_{o} \omega_{o}^{2} x^{2}\left(1-\frac{\omega_{p}^{2}}{\omega_{o}^{2}}\right) \psi=W \Psi \tag{V:2}
\end{equation*}
$$

Subjected to boundary condition:

$$
\begin{equation*}
\Psi\left(-x_{0}\right)=\Psi\left(x_{0}\right)=0 \tag{V:3}
\end{equation*}
$$

Since we have basically the same problem as in Sec. IV, but with a different effective frequency in the potential, we
use the same method of solution subject to boundary conditions ($V: 3$). Now, let us introduce the dimensionless y and w given by (IV:3) and (IV:4), viz:

$$
\begin{equation*}
y=\sqrt{\frac{2 m_{0}{ }^{\omega} o}{\pi}} x \tag{V:4}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega=\omega / \hbar \omega_{0} \tag{V:5}
\end{equation*}
$$

(V:2) becomes

$$
\begin{equation*}
-\frac{d^{2} \Psi}{d y^{2}}+V(y) \Psi=w \Psi \tag{V:6}
\end{equation*}
$$

where now:

$$
\begin{equation*}
V(y)=\left(\frac{y}{2}\right)^{2}\left[1-\frac{\omega^{2}}{\omega_{0}^{2}}\right] \tag{V:7}
\end{equation*}
$$

and the wave function $\Psi(y)$ is still subject to the boundary conditions:

$$
\begin{equation*}
\Psi\left(-Y_{O}\right)=\Psi\left(Y_{O}\right)=0 \tag{V:8}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{o}=\sqrt{\frac{2 m_{0} \omega_{o}}{\hbar}} x_{0} \tag{V:9}
\end{equation*}
$$

Now, let us discretize (V:6) and replace $\frac{d^{2} \Psi}{d y^{2}}$ by (IV:14) and also bearing in mind that the truncation error is of $O\left(h^{2}\right)$. We thus have:

$$
\begin{equation*}
-\left[\frac{\psi_{i-1}-2 \Psi_{i}+\psi_{i+1}}{h^{2}}\right]+V\left(y_{i}\right) \psi_{i}=w_{i} \tag{V:10}
\end{equation*}
$$

where:

$$
\begin{equation*}
\mathrm{h}=\frac{2 \mathrm{Y}_{\mathrm{O}}}{\mathrm{~N}+\mathrm{I}} \tag{ll}
\end{equation*}
$$

and N is the number of interior points. Also:

$$
\begin{equation*}
y_{i}=y_{o}+i \times h \text { for } i=1,2,3, \ldots N . \tag{V:12}
\end{equation*}
$$

By imposing boundary conditions (V:8), (V:10) is written in the compact form shown in Eq. (V:13) below:

To diagonalize the above matrix using the well known $Q R$ algorithm, one has to know the value of $V\left(y_{i}\right)$, for $i=1,2,3 \ldots$..,N. According to $(V: 7), V\left(Y_{i}\right)$ depends on ω_{p} and ω_{o}. From (III:36) we have:

$$
\begin{equation*}
\omega_{\mathrm{p}}^{2}=\left(\frac{4 \pi \mathrm{q}^{2} \mathrm{~N}_{\mathrm{O}}}{\mathrm{~m}_{\mathrm{o}}}\right) \tag{III:36}
\end{equation*}
$$

Now assume that the number density, N_{o} is equal to:

$$
\begin{equation*}
N_{0}=\frac{1}{\left(2 x_{0}\right)^{3}} \tag{V:14}
\end{equation*}
$$

where the charge q is equal to e and the mass m_{o} is equal to electron rest mass m_{e}. Then (III:36) becomes

$$
\begin{equation*}
\omega_{p}^{2}=\frac{4 \pi e^{2}}{m_{e}\left(2 x_{o}\right)^{3}} \tag{V:15}
\end{equation*}
$$

Using (V:9) the quantity $\frac{\omega_{p}^{2}}{\omega_{0}^{2}}$ is then given by:

$$
\begin{equation*}
\frac{\omega_{p}^{2}}{\omega_{0}^{2}}=\frac{\pi e^{2}}{Y_{0}^{3}} \sqrt{\frac{2 m_{e}}{\omega_{0} h^{3}}} \tag{V:16}
\end{equation*}
$$

By assigning values to Y_{0} and using values of ω_{o} which are obtained by extrapolating the experimental Clausius-Mossotti functions $\frac{\varepsilon-1}{\varepsilon+2} \frac{w}{\rho}=\frac{4 \pi}{3} A \alpha_{o}=\frac{4 \pi}{3} A \frac{e^{2}}{m_{0} \omega_{0}{ }^{2}}$ to zero density, one
can evaluate $V\left(Y_{i}\right)$ for $i=1,2, \ldots, N$. Using this procedure we find the frequencies of the electron in the isolated atoms to be for Argon $\omega_{o}=1.243 \times 10^{16} \mathrm{sec}^{-1}$; for Helium $\omega_{0}=3.5115 \times 10^{16} \mathrm{sec}^{-1}$; for Krypton $\omega_{0}=1.009 \times 10^{16} \mathrm{sec}^{-1}$, while for $\mathrm{CO}_{2} \omega_{o}=0.9245 \times 10^{16} \mathrm{sec}^{-1}$.

Since we now know the value of $V\left(y_{i}\right)$ the diagonalization of (V:13) can be performed. This process is, of course, done by computer. The program for assigning a value to Y_{o} and ω_{o}, and calculating the quantity $V\left(Y_{i}\right)$, and also diagonalizing the matrix which is given by (V:13) is given in Appendix A. As mentioned in Sec. IV, the eigen-energies computed above are not entirely accurate. This may be caused by the iteration process used in the calculating of the eigenvalues. To find the nearly exact eigenvalues and eigenvectors, we write a program which can compute the nearly exact eigenvalues and eigenvectors simulaneously. This program is listed in Appendix B.

The computed eigen-energies and wave functions of Ar gas are shown in Figs. 16 to 20. Note that the energies and wave functions of the isolated oscillator are shown as dashed lines in all figures. It should also be noted that we may not use the above method of calculation at very high densities, such that $\omega_{p}^{2} \simeq \omega_{o}^{2}$, for then the particle is essentially free but localized to a thin slab.

FIG. 16a: Energy levels in the unit of $\hbar \omega_{o}$ of restricted oscillator with dipolar interaction for $Y_{o}=3$ and 3,5 for argon.

FIG. 16b: Energy levels of restricted oscillator with dipolar interaction for $Y_{O}=4$ and 4.5 for argon.

FIG. 16c: Energy levels in the unit of $\hbar \omega_{0}$ of restricted oscillator with dipolar interaction for $Y_{O}=5$ and for argon.

FIG. 17a: Ground state and first excited state of restricted oscillator with dipolar interaction for $Y_{0}=3$ and for argon.

FIG. lib: Second and third excited states of restricted oscillator with dipolar interaction for $Y_{O}=3$ and for argon.

FIG. 18a: Ground state and first excited state wave function of restricted oscillator with dipolar interaction for $Y_{O}=3.5$ for argon.

FIG. 18b: Second and third excited state of restricted oscillator with dipolar interaction for $Y_{O}=3.5$ for argon.

FIG. 19a: Ground state and first excited state wave functions of restricted oscillator with dipolar interaction for $Y_{o}=4$ for argon.

FIG. 19b: Second and third excited state wave functions of restricted oscillator with dipolar interaction for $Y_{O}=4$ for argon.

FIG. 19c: Ground state and first excited state wave functions of restricted oscillator with dipolar interaction for $Y_{O}=4.5$ for argon.

FIG. 20a: Second and third excited state wave functions of restricted oscillator with dipolar interaction for $Y_{0}=4.5$ for argon.

FIG. 20b: Ground state and first excited state wave functions of restricted oscillator with dipolar interaction for $Y_{o}=5$ for argon.

FIG. 20c: Second and third excited state wave function of restricted oscillator with dipolar interaction for $Y_{0}=5$ for argon.

We mentioned in Sec. IV that it is difficult to solve exactly the Schrödinger equation given by (III:53). However, we suggested earlier that it might be easier to solve (III:53) by means of perturbation theory assuming that the macroscopic field E is so small that $q E x$ can be treated as a perturbation. According to perturbation theory, the energy of the system is given by:

$$
\begin{equation*}
\left.w=w_{0}+q E<\Psi_{o}|x| \Psi_{0}\right\rangle+\sum_{n \neq 0}^{\infty} \frac{\left.\left|\left\langle\psi_{n}\right| x\right| \Psi_{0}\right\rangle\left.\right|^{2} q^{2} E^{2}}{W_{0}-W_{n}} \tag{V:16}
\end{equation*}
$$

where, because of parity, the first order change on the right of (IV:16) vanishes. Thus the ground state polarizability of the restricted oscillator with dipolar interaction is equal to:

$$
\begin{equation*}
\alpha \approx 2 q^{2} \sum_{n=0}^{\infty} \frac{\left|<\Psi_{n}(x)\right| x\left|\Psi_{o}(x)>\right|^{2}}{W_{n}-W_{o}} \tag{V:17}
\end{equation*}
$$

where $\psi_{n}(x)$ and W_{n} are the wave function and the energy of the restricted oscillator with dipolar interaction. Both computed energies and wave functions are dimensionless quantities, and the relationships between dimensional and dimensionless quantities are given by (IV:3) and (IV:29), respectively. Using these in ($V: 17$), the polarizability of the system becomes

$$
\begin{equation*}
\alpha=\frac{e^{2}}{m_{e} \omega_{o}^{2}} \sum_{n=1}^{\infty} \frac{\mid\left\langle\psi_{n}(y)\right| y \mid \psi_{o}(y)>2}{{ }_{W_{n}}-w_{o}} \tag{V:18}
\end{equation*}
$$

The relative polarizability of the restricted simple harmonic oscillator with dipolar interaction is thus:

$$
\begin{equation*}
\frac{\alpha}{\alpha_{o}}=\sum_{n=1}^{\infty} \frac{\mid\left\langle\psi_{n}(y)\right| y\left|\psi_{o}(y)>\right|^{2}}{w_{n}-w_{o}} \tag{V:19}
\end{equation*}
$$

where $\alpha_{o}=e^{2} / m_{e} \omega_{0}^{2}$ is the polarizability of the isolated molecule. Using the energies and wave functions calculated above, we compute the relative ground state polarizabilities of $A, \mathrm{Kr}, \mathrm{N}_{2}{ }^{*}$ and CO_{2} and the results are shown in Fig. 21.

It is to be noted that α / α_{o} in Fig. 21 shows maxima for the restricted S.H.O. with dipolar interaction. These maxima occur in the range of a few hundred amagats in qualitative agreement with experiment. Here, of course, the one-dimensional C_{M} function is proportional to α / α_{o} and given by :

$$
\begin{equation*}
C_{M}=C_{M}^{(0)}\left(\alpha / \alpha_{0}\right) \tag{V:20}
\end{equation*}
$$

where $C_{M}^{O}=\frac{4 \pi}{3} A \alpha_{o}$ is the C_{M} function at zero density.

However, our results for C_{M} rise more rapidly with increasing density at low densities and fall off more rapidly with increasing density at high densities than do the experimental values. Possible reasons for this will be discussed in Secs. VII and VIII.

[^1]

FIG. 21. The ground state polarizability of restricted oscillator with dipolar interaction as a function of density for various gases.

VI. POLARIZABILITIES OF EXCITED STATES AND TEMPERATURE DEPENDENCE OF THE C_{M} FUNCTION.

In Sections IV and V we derived the ground state polarizability of the restricted, simple harmonic oscillator both with and without dipolar interaction. At $T=0^{\circ} \mathrm{K}$ this information is all we require to find the corresponding C_{M} function; but for $T>{ }^{\circ} K$ some oscillators will be in excited levels and to examine the temperature dependence of the permittivity we should take account of their contribution to the total polarization. Thus in principle both ε and C_{M} will exhibit temperature as well as density dependence. To discuss the former we first extend the computer calculation to find the polarizabilities of the excited states of the restricted simple harmonic oscillator experiencing dipolar interaction with its neighbours.

$$
\text { If } \alpha_{o}=e^{2} / m_{o} \omega_{o}^{2} \text { is the polarizability of the isolated }
$$ oscillator, the relative polarizability, $\alpha^{(n)}$ of the $n^{\text {th }}$ level is:

$$
\begin{equation*}
\alpha^{(n)} / \alpha_{0}=\sum_{m \neq n} \frac{\mid\left\langle\Psi_{m}\right| Y\left|\Psi_{n}>\right|^{2}}{w_{m}{ }^{-W_{n}}} \tag{VI:I}
\end{equation*}
$$

and in Appendix B we calculate (VI:I) directly from knowledge of w_{n} and ψ_{n} for the first 8 states. The results for $A r, K r$
CO_{2} and N_{2} are given in Tables I , II, III and IV, respectively. Plots of $\alpha^{(n)}$ vs. ρ for these gases are also given in Figs. 22, 23, 24 and 25.

It is interesting to note from these results that at sufficiently high densities the polarizabilities of the excited levels can become negative, and in this connection it should be recalled that the polarizability of the isolated simple harmonic oscillator is the same in all states. Now in simple dielectric theory it is usual to associate negative polarizabilities with free or unbounded states of the electron and if we adopt this interpretation here we would conclude that oscillator states n having $\alpha^{(n)}<0$ do not exist!

Further, consequences of this idea will be discussed in Sec. VIII, but for the present we assume simply that at any given density there are a finite number, N of discrete levels possible where N is the largest quantum number possible for which $\alpha^{(N)} \geq 0$. Clearly N decreases as the density increases.

We also adopt a Clausius-Mossotti approach to the calculation of the permittivity. For $T>0^{\circ} \mathrm{K}$, the medium is now essentially like a mixture of nonpolar, one-dimensional atoms of polarizabilities $\alpha^{(n)}$ and number densities:

$$
\begin{equation*}
N^{(n)}=\frac{N_{0}}{\sigma} e^{-\beta W_{n}} \tag{VI:2}
\end{equation*}
$$

where:

$$
\begin{equation*}
\sigma=\sum_{n=0}^{N} e^{-\beta W_{n}} \tag{VI:3}
\end{equation*}
$$

is the partition function of the oscillator with N discrete levels. Here $\beta=(k T)^{-1}$.

Since the local field, $\underset{\sim}{\text { is }}$ istill given by (III:32) for all states, the polarization contributed by particles in the level n is:

$$
\begin{equation*}
P_{n}=\alpha^{(n)} N(n)[(E+4 \pi P)] \tag{VI:5}
\end{equation*}
$$

Summing (VI:5) over allowed n values and solving for P leads to the dielectric constant:

$$
\begin{equation*}
\varepsilon-1=\frac{4 \pi \sum_{0}^{N} \alpha_{N}(n)_{N}(n)}{1-4 \pi \sum_{0}^{N} \alpha^{(n)} N_{N}^{(n)}} \tag{VI:6}
\end{equation*}
$$

and (VI:6) gives at once the Clausius-Mossotti function:

$$
\begin{equation*}
C_{M}=\frac{\varepsilon-1}{3 \varepsilon}\left(\frac{W}{\rho}\right)=\frac{4 \pi A}{3}\langle\alpha(T)\rangle \tag{VI:7}
\end{equation*}
$$

where, after use of (VI:2), the average polarizability at the temperature T is:

$$
\begin{equation*}
<\alpha(T)>=\frac{\sum_{0}^{N} \alpha(n) e^{-\beta\left(W_{n}-W_{o}\right)}}{\sum_{0}^{N} e^{-\beta\left(W_{n}-W_{0}\right)}} \tag{VI:8}
\end{equation*}
$$

Apart from noting that $\langle\alpha\rangle$, and hence C_{M}, have (vanishingly weak) negative, temperature coefficients, we make no attempt to calculate (IV:8) since clearly in the onedimensional model the spacing of the energy levels is so great compared to kT that the exponential factors in (IV:8) are negligibly small for all $\mathrm{n} \geq 1$. Thus, here, $\langle\alpha>$ reduces essentially to the polarizability, $\alpha^{(0)}$ of the ground state.

In fact, however, we should not use this simple method for estimating effects associated with excited states for although real atoms in any state of excitation can be looked upon as oscillators, the fundamental frequencies associated with their excited levels decrease as the quantum numbers of the levels increase.* Thus the extreme concavity of the restricted harmonic oscillator potential compared with the convexity of the potential in real atoms precludes use of
*For example, in hydrogen, the polarizability of the $n^{\text {th }}$ level is $\alpha^{(n)}=(n+1)^{6} \alpha^{(0)}($ large $n \geq 0)$ where $\alpha{ }^{(0)} \equiv e^{2} / m_{0} \omega_{0}^{2}$ is the ground state polarizability. Letting $\alpha^{(n)} \equiv e^{2} / m_{0} \omega_{n}^{2}$, the fundamental frequency ω_{n} of the nth level compared to that of the ground state is seen to be:

$$
\begin{equation*}
\omega_{n}=\omega_{0} /(n+1)^{3} \tag{VI:9}
\end{equation*}
$$

the former to predict any significant results associated with the excited states of real atoms. For this reason we cannot estimate the oscillatory contribution to the specific heat of the gas. However, it is possible to compute a densitydependent contribution to the equation of state arising from the internal, oscillatory motions in the atoms. At $T=0^{\circ} \mathrm{K}$ the latter contribution arises purely from the densitydependence of the ground state energy of the restricted harmonic oscillator, either with or without dipolar interaction with its neighbours. Of course, for the isolated atom this contribution to the pressure is entirely absent.

TABLE 1

$$
A R G O N
$$

HIGHERSTATE
D E N S I TY
P O L A R I Z A B I LITIES

Amagat	mol / 1	$\frac{\alpha^{(0)}}{\alpha_{0}}$	$\frac{\alpha^{(1)}}{\alpha_{0}}$	$\frac{\alpha^{(2)}}{\alpha_{0}}$	$\frac{\alpha^{(3)}}{\alpha_{0}}$
67.7	3.024	1.03897	1.0867e	1.08646	1.0185
117.0	5.225	1.06853	1. 05290	. 95243	0.6824.
132.2	5.706	1.07677	1.04518	0.87578	O.4521
150	6.710	1. 0851	1.02493	0.75835	0.2489
160.5	7.167	1.09016	1.00745	0.67976	0.13619
171.7	7.667	1.09427	0.98472	. 60257	9.0577%
197.4	8.816	1.10077	0.91659	0.41765	--0.092.4
29.5	10.205	1.10240	0.81 .478	0.2517	-0.16909
266.5	11.903	1.0948%	0.67984	0.06529	$-9.2 \mathrm{ar}$
33,5	13.979	$1.07 \% 07$	๑5\%5\%	- ¢¢	$\cdots \mathrm{O} 26 \mathrm{l}$
34]. 1	15.254	1.05502	0.43178	-0.10965	-0.2x15
72. 1	16.619	1.03164	0.3496	--9.13942	$\cdots .21549$
$446 \times$	19.9%	0.96662	0.18934	$\cdots 0.178 .1$	-0.1e2es
541.7	24.190	0.87714	0.05827	-9.17568	-0.1471
666.2	29.758	0.7665	-0.03426	-0.15436	-0.11400

TAB L E 2

KRYPTON

HIGHERSTATE
DENSITY
POLARIZABILITIES

Amagat	mol. 1.	$\frac{\alpha^{(0)}}{\alpha_{0}}$	$\frac{\alpha^{(1)}}{\alpha_{0}}$	$\frac{\alpha^{(2)}}{\alpha_{0}}$	$\frac{\alpha^{(3)}}{\alpha_{0}}$
47:	2.212	1.04843	1.04084	1.04084	1.02844
64.5	2.872	1.05704	1.05495	1.05557	9.93621
85.6	3.823	1.07659	1.06040	0.95652	0.62897
96.8	4.321	1.0861 .4	1.05308	0.87520	0.45470
109.9	4.910	1.09647	1.03272	0.75358	O. 22646
1256	5.610	1.10664	0.99154	0.59280	0.05492
144.4	6450	1.11486	0.92169	0.40808	-0. 10041
167.2	7.467	1.1.1825	0.81672	0.21786	-0.2027%
195.0	9.707	1.11242	0.67711	0.05165	-0.24317
229.4	10.243	1.09191	0.51181	--9.075\%9	$\cdots 2.0431$
2720	12.159	1.05121	0.35960	-0.14930	-0.21777
26.6	14.584	0.98592	0.17739	$\cdots .0 .17984$	-0.18979
396.3	17.700	9. 99517	0.04495	-0.17830	-0.14767

TAB L E 3

NITROGEN

HIGHERSTATE
DENSITY POLARIZABILITIES

Amaget	mol. 1.	$\frac{\alpha^{(0)}}{\alpha_{0}}$	$\frac{\alpha^{(1)}}{\alpha_{0}}$	$\frac{\alpha^{(2)}}{\alpha_{0}}$	$\frac{\alpha^{(3)}}{\alpha_{0}}$
64.7	2.891	1.05958	1.03939	1.05700	1. 02009
94.0	2.753	1.05191	1. 1.04999	1.03107	0.93405
111.9	4.996	1.06947	1.05392	0.95800	0.63195
1.43 .7	6.416	1.08722	1.02578	0.75494	0.25407
164.2	7.381	1.09601	0.98515	0.59623	0.04856
188.7	8.429	1.10272	0.91669	0.41441	-9.10142
254.8	11.381	1.09724	0.67782	0.05965	-0.23837
299.7	13.385	1.07557	0.51622	-0.06622	-0.24057
35.5	15.889	1.03428	0.54743	-0.14064	-0.21579
426.7	19.65	\% 96924	0.19774	-0. 17404	-0.18278
517.9	23.129	0.87958	0.6648	-0.17432	-0.14719

TABEE 4

CARBONDIOXIDE

H I GHER STATE
DENSITY P P L A R I ZABILITIES

Amaget	mol/l	$\frac{\alpha^{(0)}}{\alpha_{0}}$	$\frac{\alpha^{(1)}}{\alpha_{0}}$	$\frac{\alpha^{(\lambda)}}{\alpha_{0}}$	$\frac{\alpha^{(2)}}{\alpha_{0}}$
43.4	1.940	1.04547	1.04526	1.04292	1.02597
56.4	2.528	1.05975	1.05759	1.08822	0.74169
75.0	3.352	1.08022	1.06381	0.96011	0.63776
96.4	4.304	1.10155	1.03667	0.75772	0.25602
126.6	5.65	1.12130	0.92502	0.40902	-0.10019
146.6	6.546	1.12555	0.81914	0.21778	-0.20020
288.7	10.659	1.06028	0.33530	-0.15255	-0.21864
3474	15.516	0.70355	0.03869	-0.18038	-0.1.4791

DENSITY, mol/l
FIG. 22. Polarizabilities of excited states of restricted oscillator with dipolar interaction for Argon.

DENSITY, Amagat

FIG. 23. Polarizabilities of excited states of restricted oscillator with dipolar interaction for Krypton.

DENSITY, Amagat

FIG. 24. Polarizabilities of excited states of restricted oscillator with dipolar interaction for CO_{2}.

DENSITY, Amagat

FIG. 25. Polarizabilities of excited states of restricted oscillator with dipolar interaction for Nitrogen.

VII. RESULTS

There are two ways of comparing the present theory with experiment.
(a) Comparison of Permittivities

In the first, we recognize that ε_{s} refers to a common property in both the one-dimensional theory developed here and the three-dimensional experimental results. However, as seen by (III:31) and (III:47), the Clausius-Mossotti formulae differ for the two cases. If we now replace α_{o} in (III:31) and (III:47) by $\alpha=\alpha_{0}\left(\alpha / \alpha_{0}\right)$, the three-dimensional and onedimensional C_{M} functions (herein called $C_{M}^{(3)}$ and $C_{M}^{(1)}$, respectively) become:

$$
\begin{align*}
& C_{M}^{(3)}=\frac{\varepsilon_{S}^{-1}}{\varepsilon_{S}+2}\left(\frac{W}{\rho}\right)=\frac{4 \pi A \alpha_{o}}{3}\left(\frac{\alpha}{\alpha_{o}}\right) \tag{VII:1}\\
& C_{M}^{(1)}=\frac{\varepsilon_{S}-1}{3 \varepsilon_{S}}\left(\frac{W}{\rho}\right)=\frac{4 \pi A \alpha_{o}}{3}\left(\frac{\alpha}{\alpha_{o}}\right)
\end{align*}
$$

(VII:2)
and from (VII:1) and (VII:2) the experimental and theoretical static dielectric constants are:

Expt. : $\quad \varepsilon_{S}=\frac{1+2\left(\frac{\rho}{W}\right) C_{M}^{(3)}}{1-2\left(\frac{\rho}{W}\right) C_{M}^{(3)}}$

Theory: $\quad \varepsilon_{S}=\frac{1}{1-3\left(\frac{\rho}{W}\right) C_{M}^{(1)}}$

Next, using experimental results for $C_{M}^{(3)}$ and the calculated values of $C_{M}^{(1)}$, found using (V:19) and (V:20), we may plot ε_{s} vs. ρ for both cases. The results for $\mathrm{A}, \mathrm{Kr}, \mathrm{CO}_{2}$ and N_{2} are shown in Figs. 26, 27, 28 and 29, respectively.

It may be noted that over most of the density range the theoretical results are slightly higher than the experimental ones by as much as $4 \% \sim 5 \%$ in the mid-range of densities, but lower than the experimental values at high densities.

These results may be considered reasonably satisfactory, but they are, in fact, quite misleading in that we should really be comparing $C_{M}^{(3)}$ from experiment with $C_{M}^{(1)}$ from theory.
(b) Comparison of C_{M} Functions

When this step is taken the results are far from satisfactory as indicated by Figs. 30 and 31 which compare the experimental $\left(C_{M}^{(3)}\right)$ and theoretical $\left(C_{M}^{(1)}\right)$ clausiusMossotti functions for argon and krypton, respectively. Similarly unsatisfactory results hold for other gases examined.

In all cases the theoretical $C_{M}^{(1)}$ function achieves a maximum at roughly the same density as found for $C_{M}^{(3)}$

DENSITY, Amagat

FIG. 26. Static Permittivity of Argon vs. density.
—— Present theory
....... Experiment (Ref. [5])

DENSITY, Amagat

FIG. 27. Static permittivity of Krypton vs. density.
—— Present theory
\ldots Experiment (Ref. [10])

FIG. 28. Static permittivity of Carbon Dioxide vs. density.
—— Present theory
\ldots Experiment (Ref. [4])

FIG. 29. Static permittivity of Nitrogen vs. density.
— Present theory
\cdots Experiment (Ref. [33])

Fig. 30. Comparison of Clausius-Mossotti functions for Argon.
$C_{M}^{(1)}$, Present theory; $C_{M}^{(3)}$, Experiment (Ref. [5]).

FIG. 31. Comparison of Clausius-Mossotti functions for Krypton.
$C_{M}^{(1)}$, Present theory; $C_{M}^{(3)}$, Experiment (Ref. [10]).
experimentally, but $C_{M}^{(1)}$ rises too rapidly with increasing density at low densities and falls off too rapidly with density at high densities. It thus appears that the dipolar forces between a given molecule and all others in the medium are too strong at low densities and the repulsive forces (arising from the $\delta-1 i k e$ potential at the "dielectric radius", x_{o}) are too strong at high densities.

In sec. VIII we discuss the present model and are led to suggest a new model which, we feel, should lead to a better "continuum-type" theory for the C_{M} function.
VIII. DISCUSSION AND FUTURE PROPOSALS

Starting from a knowledge of the properties of an isolated, nonpolar atom (treated here as a simple harmonic oscillator), we have attempted in this thesis to discuss in a general way the forces acting on the valence electron(s) when the atom is surrounded by like particles at nonvanishing concentrations, as in a dense gas or fluid.

Our model is based on a "continuum" point of view in that the medium surrounding a given atom has been treated as a homogeneous, isotropic substance characterized by a certain dielectric constant, ε. We have recognized that the reaction potential of the instantaneous atomic dipole tends to attract the valence electrons away from the core while the repulsive potential, which is operative when these electrons are close to a nearest neighbour atom, tends to repel them back toward the core.

We argued that these two forces could account in a qualitative way for the density dependence of the clausiusMossotti function C_{M}. However, on closer inspection, it was found difficult to formulate this approach quantitatively in three-dimensions (Sec. II) because of the explicit appearance in the self-energy of the dielectric constant, which is the very quantity we desire to calculate. A further difficulty was the divergence of the self-energy at the dielectric radius,
a, of the sphere containing the atom.
(a) The Present Model

These difficulties disappeared, however, when we considered the equivalent one-dimensional problem (Sec. III), for although the permittivity appeared in the back-reaction of the medium, it did so only implicitly through the polar-. ization, P, the calculation of which is the main object of this thesis.

With the aid of a computer it was then possible to find the wave functions and energies of a one-dimensional, simple harmonic oscillator restricted by a δ-like repulsive potential at its boundaries (Sec. IV). These same quantities were also calculated for the restricted, one-dimensional oscillator experiencing dipolar interaction with all others in the surrounding medium (Sec. V). The computer is a natural tool for both these cases since we are concerned with the motion of an electron confined to a finite region in space and it is easy to discretize the interval concerned.

Our main result has been the calculation of the ground state polarizability of the one-dimensional, restricted, simple harmonic oscillator interacting through dipolar forces with the surrounding medium (Sec. V), and here we achieved qualitative agreement with experiment in that the C_{M}-function
at first increased with increasing density at low densities, went through a maximum, and then decreased with further increase of density.

When we extended our calculation to try to predict the temperature dependence of the C_{M}-function (Sec. VI), difficulties occurred in the oscillator model since the spacing of the energy levels at any density is so large compared to $k T$ that $\mathrm{dC}_{\mathrm{M}} / \mathrm{dT}$ was entirely negligible. The oscillator model thus precludes useful calculations of properties relating to excited states, such as, for example, $C_{M}(T)$ or the oscillatory contribution to the specific heat of the medium.

The basic difficulty here is that oscillator-like potentials are too concave compared with the potentials of real atoms, which are convex for valence electrons in excited levels. For this reason not too much significance is to be attached to the calculations of the excited state polarizabilities, $\alpha{ }^{(n)}$ discussed in Sec. VI. However, relative errors in employing the oscillator model for the ground state must be small and should lead to reasonable values for α (0).

An interesting feature of the computer calculation of $\alpha^{(n)}$ has been the possibility of negative polarizabilities of excited levels at sufficiently high densities. This result
is a direct consequence of the oscillator model which, as explained above, is not to be taken too seriously for the excited states. However, a negative value of $\alpha^{(n)}$ does remind us of an important omission in this model, as well as in all others discussed in Sec. II. This omission concerns the lack of a continuum state for the electron and is a direct result of assuming an infinite potential barrier at the dielectric radius. Such a feature precludes the existence of fully delocalized electronic states in the medium and may be a serious oversight, particularly at high densities.

For any model there should be a finite potential barrier for the valence electron(s) and as density is increased we should expect the overlap of potentials of neighbouring atoms to decrease the barrier height. With a finite barrier in the one-dimensional, oscillator model, for example, the wave functions and energies would be different from those calculated here and consequently the polarizabilities would also differ from those found in Sec. VI. There would, in addition, be a finite number, N of excited states possible and one could argue that N and the barrier height should be chosen consistently with the non-appearance of negative $\alpha^{(n)}$ for all $1 \leq n \leq N$. An additional effect in such a model would be that the dipolar forces between atoms are screened by the
existence of a finite density of free electrons at any given temperature and particle density. Such screening would tend to decrease the dipolar interaction between atoms and could result in a slower increase of C_{M} with increasing density than found with the present model.
(b) Future Proposals

From what has been said above, it is clear that the model discussed here is unsatisfactory in that:
(i) an oscillator-like potential is unsuitable for calculating properties associated with excited states,
(ii) the model lacks a finite activation energy for the valence electron(s) (even at zero density), and thus does not permit the existence of the ionized state of the atom.

In a better model it is also desirable to work in three-dimensions and to this end we return to (II:13) and note firstly that the coefficients $B_{N}(\varepsilon)$ in the self-energy of the valence electron in its own reaction field are very insensitive to the permittivity. Inspection shows that:

$$
0.75 \leq \mathrm{B}_{\mathrm{n}}(\varepsilon) \leq 1
$$

for all $0 \leq n \leq \infty$ and all $l \leq \varepsilon \leq \infty$. For this reason we may, as a reasonable approximation, select $B_{n}(\varepsilon) \simeq 1$ in which case (II:13) sums to give:

$$
\begin{equation*}
v_{\text {self }}=-\frac{e^{2}}{a}\left(\frac{\varepsilon-1}{2 \varepsilon+1}\right) \cdot \frac{(r / a)^{2}}{1-(r / a)^{2}} \tag{VIII:I}
\end{equation*}
$$

To (VIII: l) we must now add the atomic potential, $V_{a}(r)$ of the valence electron in the isolated atom to give an effective potential when the atom is surrounded by others at finite concentration. The result is shown by the dashed curve of Fig. 32 for say $V_{a}(r)=e^{2} / r$ (\equiv coulomb potential). There is clearly a maximum in this potential given by $V_{\underline{\max }}$ at $r=r_{\underline{\text { max }}}$.

FIG. 32

The difficulty of the negative infinity at $r=a$ could now be overcome by assuming the existence of a repulsive potential:

$$
V_{\underline{\text { rep }}}(r)=\left\{\begin{array}{cc}
0 & 0 \leq r \leq r_{\text {max }} \tag{VIII:2}\\
-\left(V_{\underline{v_{\text {elf }}}}(r)-V_{\underline{\max }}\right), & r_{\underline{\max }} \leq r \leq \infty
\end{array}\right.
$$

and the final total potential of a valence electron would be:

$$
V(r)= \begin{cases}V_{a}(r)+V_{\underline{\text { self }}}(r), & 0 \leq r \leq r_{\underline{\max }} \tag{VIII:3}\\ V_{\underline{\max }} & r_{\underline{\max }} \leq r \leq \infty\end{cases}
$$

$V(r)$ is indicated in Fig. 32 by the hatched line.

Fig. 32 may be taken to depict the situation at some intermediate density and to actually calculate the shape of $V(r)$, given $V_{a}(r)$, we could employ as a first approximation a value for $(\varepsilon-1) /(2 \varepsilon+1)$, occurring in (VIII:l), given by the unrefined Clausius-Mossotti formula (II:7) for a single molecule. In this way it may easily be seen that:

$$
\begin{equation*}
\frac{\varepsilon-1}{2 \varepsilon+1} \simeq \frac{\alpha_{o} / a^{3}}{1+\alpha_{o} / a^{3}} \tag{VIII:4}
\end{equation*}
$$

At low densities $V_{\underline{\max }}$ will be small and $r_{\underline{\max }}(\leq a)$ will be large and there will be negligible error in assuming the activation energy, A to be that of the isolated atom. In this case there will be a large number of excited states and the polarizability of the atom will be only slightly higher than that of the isolated atom. Screening for this case would also be negligible as the activation energy is so large compared with $k T$ that very few free electrons would exist at ordinary temperatures.

However, as the density increases $V_{\text {max }}$ would increase and A and $r_{\text {max }}$ would decrease and the energy levels would begin to rise above their values of the atom in isolation. There would thus be a general increase of the polarizability of the atom as density increases at low densities. For sufficiently low densities screening would still be unimportant, but as density is increased, and A continues to decrease, there will come a point (probably rather suddenly) at which sufficient free electrons will be present at ordinary temperatures that screening of the dipolar forces between atoms will become important. We might expect this point to be reached when the screening radius $r_{s}=\left(k T / 4 \pi n e e^{2}\right)^{\frac{3}{2}}$ is of the same order as the dielectric radius a. Here $n_{e}(\rho, T)$ is the number density of free electrons.

When screening is important the self-energy (VIII:l) would have to be modified as shown by Frood [31] and in this situation it might be expected that the number of excited states, $N(\rho, T)$ will be rather small. The polarizability of the particle would then be smaller than its value for the isolated atom and would continue to decrease as density is further increased.

The above remarks outline qualitatively how $\alpha(\rho, T)$ could change with density in a manner comparable to what is observed experimentally. A calculation based on the above ideas in which at every density quantities such as the activation energy, $A(\rho, T)$, the number of excited states, $N(\rho, T)$, the free electron density, $n_{e}(\rho, T)$ and the permittivity, $\varepsilon(\rho, T)$ are all mutually self-consistent would be interesting to perform with the aid of a computer.

It may be noted here that the reduction in polarizability envisioned at high densities in this proposed model is directly connected with a reduction in the number of excited states possible as density increases - rather than through increasing confinement of the electron to a "cage" as assumed in the present theory, or those of Ten Seldam et al (loc. cit.).

A complication which must be taken into account is that the polarizability $\alpha(n, \ell)$ of an electron (with principal
and orbital quantum numbers n and ℓ) together with the number density, $N(n, l)$ of atoms in that level must be non-catastrophic, i.e.

$$
\begin{equation*}
1-\alpha^{(n, l)} g(n, l) \geq 0 \tag{VIII:5}
\end{equation*}
$$

where

$$
g^{(n, l)}=\frac{4 \pi}{3} \frac{2(\varepsilon-1)}{2 \varepsilon+1} N(n, l)
$$

is the reaction field factor for the level (n, ℓ). As shown by Frood (loc. cit.) in connection with impurity conduction, (VIII:5) is the condition which determines the maximum quantum numbers $N(\rho, T)$ and $L(\rho, T)$ which can exist at a given density and temperature.

The foregoing remarks are closely related with the possible appearance of the metallic state in a sufficiently dense medium. Experimentally, it may thus be of interest to examine dielectric and/or conduction losses in very dense nonpolar gases as well as the static or low frequency behaviour of the Clausius-Mossotti function $C_{M}(\rho, T)$.

IX. REFERENCES

[1] Michels, A. and Michels, C., Phil. Trans. Roy. Soc. (A), 231, 409 (1933).
[.2] Michels, A., Jaspers, A. and Sanders, P., Physica 1, 627 (1934).
[3] Michels, A., Sanders, P. and Schipper, A., Physica 2, 753 - (1935).
[4] Michels, A. and Kleerekoper, L., Physica 6, 586 (1939).
[5] Michels, A., Ten Seldam, C.A. and Overdijk, S.D.J., Physica 17, 781 (1951).
[6] Johnston, D.R., Oudermans, G.J. and Cole, R.H., J. Chem. Phys. 33, 1310 (1960).
[7] Johnston, D.R. and Cole, R.H., J. Chem. Phys. 36, 318 (1962).
[8] Orcutt, R.H. and Cole, R.H., Physica 31, 1779 (1965).
[9] Orcutt, R.H. and Cole, R.H., J. Chem. Phys. 46, 697 (1967).
[10] Vidal, D. and Lallemand, M., J. Chem. Phys. 64, 4293 (1976).
[11] Michels, A. and Botzen, A., Physica 15, 769 (1949).
[12] Michels, A. and Hamers, J., Physica $\underline{4}^{\prime} 995$ (1937).
[13] Michels, A., Lebesque, L. and de Groot, S.R., Physica 13, 337 (1947).
[14] Michels, A., Botzen, A. and de Groot, S.R., Physica 13, 343 (1947).
[15] Fröhlich, H., Theory of Dielectrics, Oxf. Univ. Press, 2nd Ed. (1958).
[16] Kirkwood, J.G., J. Chem. Phys. $\underline{4}^{\prime}$, 592 (1936).
[17] Mandel, M. and Mazur, P., Physica 24, 116 (1958).
[18] de Boer, J., Vanden Maesen, F. and Ten Seldam, C.A., Physica 19, 265 (1953).
[19] Jansen, L. and Mazur, P., Physica 21, 193 (1955).
[20] Mazur, P. and Jansen, L., Physica 21, 208 (1955).
[21] Jansen, L. and Solem, A.D., Phys. Rev. 104, 1291 (1956).
[22] Jansen, L., Phys. Rev. 112, 434 (1958).
[23] Michels, A., de Boer, J. and Bijl, A., Physica 4, 981 (1937).
[24] de Groot, S.R. and Ten Seldam, C.A., Physica 12, 669 (1946).
[25] de Groot, S.R. and Ten Seldam, C.A., Physica 13, 47 (1947).
[26] Ten Seldam, C.A. and de Groot, S.R., Physica 18, 891 (1952).
[27] Ten Seldam, C.A. and de Groot, S.R., Physica 18, 905 (1952).
[28] Bottcher, C.J.F., "Theory of Electric Polarization", Vol. 1, Second edition, Elsevier Scientific Publishing Company, Amsterdam (1973).
[29] Frood, D.G. and Dekker, A.J., J. Chem. Phys. 20, 1030 (1952).
[30] Frood, D.G., Private Communication (1983).
[31] Frood, D.G.H., Proc. Phys. Soc. 75, 185 (1960).
[32] Burden, R.L., Douglas-Faires, J. and Reynolds, A.C., Numerical Analysis, Prindle, Weber and Schmidt (1978).
[33] Ely, J.F. and Straty, G.C., J. Chem. Phys. 61, 1480-1485 (1974).

APPENDICES A, B,C AND D FOR THESIS:

STATIC DIELECTRIC PROPERTIES OF AN ENSEMBLE OF RESTRICTED ONE-DIMENSIONAL OSCILLATORS

```
BY
BROTO TJIPTO MARGO
```

DEPARTMENT OF PHYSICS
LAKEHEAD UNIVERSITY
THUNDER BAY, ONTARIO
CANADA P7B 5El

FEBRUARY 1984

APPENDIX A

WOOO FREM
WOF FEM

$\begin{array}{ll}3650 & \text { FEM } \\ 700 & \text { REM } \\ 350 & \text { REM } \\ 3800 & \text { REM } \\ 3850 & \text { REM } \\ 3900 & \text { REM } \\ 3950 & \text { REM }\end{array}$
 $405 O$ DEFINT I, J,G,N \quad :REM DECLAFE INTEGEF.
4100 PRINT "THE NUMBER OF POINT MUST BE AN ODD NUMBER"
4 ISO TNFUT "THE NUMEEF OF FOINT IS":N :FEM N IS THE NUMEEF OF FOINT
4200 INFUT "THE VALUE DF Y1":Y1
4250 INFUT "THE VALUE OF Y2"!Y
4OO FFTNT " IF THE SYSTEM IS FESTFTCTED OSCILLATOF ONLY THEN THE SYSTEM "
4WEO FFTNT " TS INDEFENDENT OF ANGULAF FREQUENCY"
440 O INFUT "THE ANGULAF FFEQUENCY":WO "FEM W=WO
4450 FFINT
4500 FFTNT
455 FFINT
4600 FFTNT
465 FFETNT
47 OO FFTNT "THE FTGHT HAND STDE LIMIT IS =" Y
4750 FRINT
4800 FFTNT "THE ANGULAFF FREQUENCY IS":WO
4850 FRTNT
490 OE FM DEF FNV $(Y)=(Y / 2) \therefore 2$

FOOO NZ=N
$5050 H=(Y 2-1 * Y 1) /(N+1)$
E1OO FEM
:REM H IS LENGTH EETWEEN Yi AND Yi+1.

MATFIX [A] IS A TFIDIAGQNAL MATFIX:THEN WE CAN USE S VECTOFS FOFI FEFRESENTING MATFIX [:A].

EOO FOF $T=1.70 N$
$5250 \quad Y=Y 1+I H H$
$5300 \quad V Y=F M V\langle Y\rangle$
:FEM THIS LOOF IS USED TO FIND
: REM THE VALIUES DF Yi AND THE
"FEM ENTKIES OF Aii.

```
B5O A(I)==2/(H\cdotsC)+VY
54OO NEXT I
545% E(1)=0
E#OO Q(N)==0
5%O FOF I=2 TON
GOO B(I)=-1/(H%2)
565O Q(T-1)=-1/(H`2)
E%O NEXT I
5750 FEM
58OO EZ=E(2)
5850 FEM 
5950 FFINT B(I),A(I),Q(I)
OOO NEXT I
6O5O FEM
6100 FEM
6I50 DIM (: (BO)
6200 DIM S(B0)
625O DIM F(8O)
6OO FEEM
6OSO FEM
64OO FEEM
6450 IF N=2 6OTO 10350
600 FEM
6550 605UE I 1400
66OO FOF' I=\ TO N
6G50 A(T)=A(I)-LMD
6700 (E (I)=0
6750 S(I)=0
6800 F(I)=0
6850 O(I)=0
@900 NEXT I
69%OFI=A(1) *FEEM TNITIALTZATION
7000 FO=#(2) "FEW INITIALIZATION
70WO J=% FFEM FEFEF TO STEF:E%
710O FEM
```



```
7200 C(J)=FI/A(J-1)
72(00 (J)=E(J)/A(J-N)
700 O(J-1)=C(J)*FO+G(J)*A(J)
750 FIM-1*S(J)#FO+C(J)*A(J)
7400 IF J=N GOTO 765O
7450 F(J-1)=5(J)*E(J+1)
7500 FO=C(J) 如(J+1)
7550 J=3+1
7600 IF J&N GOTO 715O
76FO A (N)=FI :FEM THE LAST ENTFYY QF VECTOFI A
7706 DIM L (2,2),M(2,2),ML_(2,2), (2 (2,2),T(2,2)
```



```
7800 IF J=2 GOTO E6SO FFEM THE MATRIX FORM UF TO STEF:12 IS
7850 L..(1, 1)==[0(J-2)
7900 L_(1,2)=FF(J-2)
:FEM UFFEF TRIANEULAF MATFIX WITH VECTOF
```



```
7950 L.2., (2)=0 MFEM MATFTX IS FEDUCED INTO DIAGONAL

```

10700 NEXT I
10750 CLOSE\#1
10800 END
1.0gGO FOF I=1. TO 2
OOOO FOF J 1=1. TO 2 \#FEM OF 2 EY こ MATRTX MULTIPLICATION
10950 %UM=%
10950 %UM=%
1105%) C(MM=5UM+ML{I;F゙)*Z(ド, J1)
11100 NEXT F
111%O T(I,J1)=SUM
11200 NEXT J1
1135O NEXT I
11300 RETUFN
11550 FFM FFOM \#1140% TO \#1180O IS A SUBFROGFAM TO CALCULATE THE
ETGENVALUES OF THE LAST 2 EY 2 MATFIX OF MATFIX [A].
SO THE EIGENVALUES WTLL EE THE FOOTS OF OLADFATIG, EON.
1.1400 AN=A NN)+A(N-1) :FEM AN AND ABN IS THE COEFFICIENT OF THE
1.400 AN=A(N)+A(N-1)
XO-AN*X+ABN=O.
15OO FN=ANMO-4HAEN FFEM THEOFITICALLY:FNS=G, AND COMFUTEF
11550 FEM
"REN 相O%-411SOO IS A SUEFFOGFAM
DO AFFFOXIMATION,SO WE EXFECT
FNCO,AND IT NEGLIGIELE COMFAFE TO
THE FDOTS.
116OO IF FN\&O THEN FFXNT "THE D IS =" FN,"THE FOOT ="AN/E
"FFINT "E("N")=" E(N),"E("N-1")=" E(N-1)
: IF ABS (FN)<"OG THEN LMD=AN/2 :GOTO 118OO
116SO XLI=(AN+(RN*5))/2 听 "FEM XLI AND XL2 IS THE FOOTS
11700 XL2\#(AN-(FNN,5))/2 IFEM LMD IS THE NEW EIGENVALUE.
1175O IF AES (A(N)-XL1)<=AES (A N - -XL2) THEN LMD=XLI ELSE LMD=XL2
1.1800 FETUFN

```

\section*{APPENDIX B}

106
1050
1100
1150 1200 1250
1500 1 550 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1750 2000 2050 2100 2150 2200 256 2 OO
256
2400
2450
2500

2950 FRINT

WOSOFFTNT
IOO FFTNT
\(\leq 150\)
\(\therefore 65 \mathrm{FEM}\)
```

2550 TNFUT＂THE VALUE OF Y1．＂：Y1
玉曰S FFTNT＂IF THE SYSTEM JS FESTFTCTED OSCTLLATOF WTTHOUT DTFOLAF＂
27OO FFINT＂INTEFACTTON THEN THE STATEMENT WF4SO SHOLLD EE＂
こ75O FFTNT＂ACTTVATED AND 抖BOO SHOMAD EE DEACTTVATED＂
2EOO FFTNT＂ALSO，THE DTMENSTONLESS FOTENTIAL ENEFGY INDEFENDENT＂
工®＂O FFTNT＂OF FFEQUENCY WO，GO WE CAN WFTTE WO＝GOME VALUE＂
$29 O O$ TNFUT＂THE ANGULAF FFEQUENCY IS＂；WO＂FEEW W：WO
3000 FFTNT＂THE NUMEEF OF FOINT BETWEEN BOUNOAFY FOINTS IS＂N
Z4O FEM DEF FNN(Y)=(Y/2)\cdots2

```

```

S5O NZ=N NFEM NZ WILLI EE LISED LATER.
BOO H=(Y2-1*Y1)/(N+1) "FEM H IS LENGTH EETWEEN Yi AND Yi +I.:

```

```

THIS FFOGFAM IS WFTTTEN IN MTCFOSOFT EASIL FOFT NOFTH GTAF HOFTZON COMFUTEF：THIS FROGFAM FUN TN OOMFILED BASIC．

```

\section*{}
```3
＊THTS FFOGFAM CALCUIATES AND STORES THE FIFST EIGHT ETGEN－ ：ENEFGIES AND ETGEN－VECTOFS OF THE FESTFICTED OSCILLATOF WITH OF WITHOUT DIFOLAF INTEFACTION．
ACTUALLY，FOF A GTVEN EIGEN－ENEFGY，WE CAN CALCUIATE THE COFFESFONDTNG ETGEN－VECTOF：HOWEVEF，THE CALCLLATED ETGEN－ ENEFGIES FFOM FFOGFAM WHICH IS I．ISTED IN AFFENDIX A GFE NOT ACOUFATE AND THE EXACT ETGEN－ENEFGY WTLL BE SOMEWHEFE IN THE NETGEOLFHOOD OF THE CAL CULATED ETGEN－ENEFGY．
：THUS G GY SHIFTTNG CALCULATED ETGEN－ENEFGY TO LEFT AND FTGHT， ONE CAN OETATN THE NEAFLY EXACT ETGEN－ENEFGY AND ITG COFFESFOND EIGEN－VECTOF：
HEFE，WE USE THE SAME MATFIX \(A \Rightarrow\) AS USED IN THE FFOGFAM WHICH TS LTSTED IN AFFENDIX A AND ALSO USE THE CALCLLATED EIGEN－ ENEFGY TO GET A EETTEF AFFFOXIMATION OF EIGEN－ENEFGY．
NOTE：THIS FFOGFAM IS TNSEFEFAELE FFOM FFOGFAM WHICH TS LISTED IN AFFENDIX A．THAT IS \(S_{\text {GFTEF WE EET THE }}\) CALCULATED EIGEN－ENEFGY FFOM FFOGFAM（AFFENDIX A）， WE USE THIS FESULT AS OUF INFUT IN THIS FFOGFAM．
FEM
DEFDEL \(\mathrm{A}_{4} \mathrm{~B}_{4} \mathrm{C}_{9} \mathrm{E}_{9} \mathrm{O}_{9} \mathrm{Fi}_{9} Y_{y} \mathrm{~W}_{9} \mathrm{D}_{4} \mathrm{~V}_{9} \mathrm{X}_{9} \mathrm{H}_{9} \mathrm{M}_{9} \mathrm{~S}_{y} \mathrm{Z}\)
```



```
PRINT＂THE NUMBER OF POINT MUST BE AN ODD NUMBER＂
INFUT＂THE NUMEEF OF FOTNT IS＂：N ：FEM N IS THE NUMEEF OF FOINT BETWEEN THE EOUNDAFiY FOINTS
260 INFUT＂THE UALUE OF Y？＂：Y＂
＂THE LEFT HAND SIDE LIMIT TS＝＂Y1
却
＂THE FTGHT HAND SIDE LIMIT IS＝＂
＂THE ANGUI AF＇FFEDUENCY IS＂：WO
Z4O FEM DEF FNV（Y）＝（Y／2） 2
```



```
SE5 \(N Z=N\)＂FEM NZ WILL BE LSED LATER．
BOO \(H=(Y 2-1 * Y 1) /(N+1) \quad\)＂FEM H IS LENGTH EETWEEN Yi．AND Yi＋I．
```

उ6O FEM

```
#%O REM
MATFIX [A] IS A TFIDDAGONAL MATFIXXTHEN WE CMN USE S VECTOFS FO
FEFFESENTING MATRIX [AIn
#750 FEM
Sg0 DIM A(80),E(80), Q(80),A1(80),A2(BO),WF(80),WG(80),EG(10)
ZG50 DIM WN(BO),DZ(80),DF(BO);XZ(BO),YZ(BO);ZJ(10)
SOO FOF I=\ TO N UFOM THIS LOOF IS USED TD FIND
S95O Y=Y1+IKH NE FEM THE VALIUES OF YI AND THE
4OO VY=FNV (Y) &FEM ENTFTES OF A, i. .
4050 A(T)=2/(H^2)+VY
4100 NEXT I
4150 E(1)=0
4200 D(N)=0
425O FOF I=2 TO N
```



```
4SO Q(T-1)=-1/(H`2) UFEM Oi IS THE SUFEFDIAGONAL OF [A].
440% NEXT I
445O REM
4OOO FOFT I=1.TO NZZ "FEM THTS AI(I) IS NEEDED LATEF:IE.
45GO AI(I)=A(I) "FENM FOFI CALCUIATE THE WAVE FUNCTION
4GOO NEXT I "FEM AFTEF THE ETGENVALUE AFE OETAINED.
4650 HZ=H
4700 EZ=E(2)
475O FEM
4800 FOF I=1 TO N
4850 FFTNT E(I),A(I),Q(I)
4900 NEXT I
49%O OFEN "T",#I%"ETGENEFG" , "FEM ACCESS TO THE FILE WHICH EONTAINS
50OO FOF I=1 TO N
: EIGEN-ENEFGY: THIS ETGEN-ENEFGY
GOE% TNFUT##, A(I)
: WAS CALEULATED EY THE COMFUTER
5100 NEXT I
 I=:=1
5200 60SUE I1850
#50 IF TFLAG=1 GOTO 5400
5OO TF IND=O THEN GOSUE 14SSO ELSE GOSUE 1740O
5OO IF IFLAG=O THEN FFINT "NO FESULT" "STOF
54OO FOF J=O TO NZ+!
54% WF(J)=WN(J)
E5O NEXT J
EGO A(T)=EFG ": STOFE NEAFLYY EXACT ETGENVALUE IN A(T)
SOOO FRINT "THE VALUE OF I IS="I
56%0
5%0
5%0
 * THTS SECTION STOFES THE NEAFLY EXACT GROUND STATE WAVE
 * FUNCTION.
5950
5%00 OFFN "G",#2%"WANFFEN1"
%%% FOF J=O TO NZ+1
@OO FFTNT #2,WF(J)
6%O NEXT J
6100 ClOSE #%
6150:
```



```
650
6OO FOF I=2 TO NZ
6+50 TTSI=T/2
```

```
6400 ITG2=%)TST
6450 TF T=TTS2 THEN GOSUE 1275O ELSE GOSUE 11.95O
6OO IF IFLAG=1 GOTO 665O
65% TF TND=O THEN EOSUE 14.5% ELSE GOSUE 174%%
GOOO IF IFLAG=O THEN FFTNT "NO FESULT" :STOF
&&O FOFF J=O TD NZ+1
6OO WG (J)=WN(J)
6%O NEXT J
GBOO A(I)=EFG " ", "TOFE ETGEN-ENEFGY IN VECTOF A(I)
6950 FFTNT "THE VALUE OF I TS="I
69OO TF I=2 THEN GOSUE 21OOO
6夕GO TF T=Y THEN GOSUE 213OO
7OOO IF T=4 THEN GOSUE 216OO
7050 IF T=5 THEN GOSUE 21900
700 IF I=6 THEN GOSUE 22200
715O TF I=7 THEN GOSUE 22450
7200 IF I=9 THEN GOSUE 227EO
75O TF I=8 EOTO `. -50
7OO NEXT I
750 005UE 24200
7400 END
```



```
75OO, THTS SECTION CALEULATE THE UN-NOFMALIZED EIGEN-VECTOF:
75GO: BY ASSIGNTNG THE FTFST ENTRY OF ETGEN-VECTOF WN(1)=1 OF -1.
76OO: NOTE: WN(1)=1 WHEN THE WAVE FUNCTION HAS EVEN FARITY AND
76GO : WN(1)=-1 WHEN THE WAUE FUNCTION HAS ODD FAFTTY.
7700 "
775O REM
78OO FOF K==1 TO NZ
7850 A. (&)=A1 (&) - EFG
7900 NEXT K゙
7950 ITS1=I/% "ITS2=%*ITS1
8000 IF ITSE=I THEN SI=-1 :S%=A2(1)/EZ :GOTO 8L50
8050 51=1
8100 S2=-1*(A2(1)/EZ)
8150 WN(1)=51 "WN(2)=52
8こ00 &=%
850 SS=-1* (EZ*S1+A2(&゙)*S2)/Ez
8S00 WN (<゙+1)=53
85051=52
8400 52=5%
8450 <゙wド+1
8GOO TF K゙= (NZ-I) GOTO 82SO
G50 WN(O)=0 :WN (NZ+1)=0
B6OO FETUFN
8650:
```



```
8750:
```



```
8BSO: THTS SECTTON CALCULATE THE INTEGRAL USING STMFGON:S RULE.
8900 :
8950 F=1
9000 AF=DZ(0)+DZ(NZ+1)+4殒DZ(F゙)
9050 NN=(NZ+1)/2
910O FOF K=2 TO NN
```

```
7150 kZ=%**
9200 AFH=4*DZ(KZ-1)+%*DZ (KZ.w.w)
7550 AF=AF+AFH
9%OO NEXT K
950 AFE=(HZ/#)*AF
9400 FETUFW
9450
```



```
9E5O FEM
马600 "!!!
96EO : THTS SECTION CALCULATE THE FFOEAETLITY DENSITY.
9700 FEMM
9750 FOF J=0 TO NZ+1
9000 0Z(J)=WN(J)*WN(J)
9Q5O NEXT y
9900 FETUFN
9750
10000
10050
```



```
1015O * THIS SECTION CALDULATE THE NOFMALTZED WAVE FUNOTION.
10200
1025O AFA=AFE
10SOO KN=AFA*-n": #FEM CN IS NOFMALTZED CONSTANT
10SO FOF J=0 TO NZ+1
10400 WN(J)=CN*WN(J)
10450 YZ(.J)=WN(J)
1.5OO NEXT J
1055O FETUFN
10600
```



```
10700
10750
```



```
IOBE THHS SECTTON DETEFMINE WHEATHEF THE NEARLY EXACT ETGEN-
IOOO E ENEFGY TS DN THE LEFT/FIGHT HAND SIDE OF THE CALCULATED
OGO F ETEEN-ENEFGY WHICH IS COMFUTED EY FFEVIOLS PFOGFAM
11000 : (AFFENDTX A).
I.OSO: HERE: WE AGSUNE THAT THE WAVE FUNOTION HAS GYMNETFY
11100: AEOUT THE OFTGIN. FOF EVEN FUNOTION, CF IS THE DIFFERENT
11ISO: DF THE WAVE FUNCTTGN WHICH AFE EVAL.UATED AT FOINTS
112OO: YI AND YN. FOR ODD FUNETTON, CF IS THE WAVE FUNCTION WHICH
1\5O: TE EVALUATED AT THE OFTGIN.
113OO " TFLAG AND IND AFE INDICATOFS.
11SO : WHEN IFLAG=1 INDICATES THAT THE NEAFLY EXACT ETGEN-ENEFGY
114OO: AND ITS WAVE FUNCTION HAVE EEEN OBTAINED.
11AFO : WHEN TND=O INDICATES THE EXACT ETGEN-ENEFGY LIES ON THE
1GOO: LEFT HAND SIDE OF THE CALCLILATED EIGEN-ENEFGY (AFFENDIX A) :
INFO : WHEN TND=1. INDICATES THE EXACT ETGENVALUE LIES ON THE FTGHT
11GOO: HAND SIDE DF THE CALCLILATED EIGEN-ENEFGY (AFFENDIX A).
11650
```



```
1175O : THIS SUESECTION FOF THE WAVE FUNCTION HAS EVEN FAFITY.
11000
1.18SO IFLAG=O
```



```
14650 TT=.01
147OO IF I=S THEN TT="OOOI & "FT IG A DE/TNCFEMENT"
1475O IF ID=4 THEN TT=.OOOOO1 : GTNCE THE EIGENGENEFGY
14800 60T0 15250
14850 1F Y2 % G GOTO 15100
14900 TT=,001
1495O IF I=S THEN TT=,OOOO1
1.5000 IF I >=4 THEN TT=.000001
15050 GOTO 15250
15100 TT=.0001
15O IF T=S THEN TT=.000001
15%OO IF I = 4 THEN TT="00000O1
1.55O EL=A(I) -TT
15OO EH=A(I)
15E5O EFG=EL
15400 IF INC,1OOO THEN FFINT "EXIT THE LIMIT" "STOF
15450 HE=(EH~EL)/1O
15500 FOF .7B=0 TO 10
1555O EFG=EFG+JE*HE
156OO EG(JE)=EFG
15650 605UE 7800 "G05UE 9750 ".00SUE 9950 "GDSUE 10250
15700 IF I=ITS2 THEN GOSUE 2SE5O "GOTO 16OOO
15750 CF=AES(WN(1)-WN(N))
15000 IF CFC=1E-OS THEN TFLAG=1 "GOTO 17000
1585O ZJ (J8)=CF
15900 FFFTNT "CF("J8")="ZJ(J8)
15950 00TO 16200
16OOO CO=WN(N1)
16OEO IF AES(CO) IEWOQ THEN IFLAG=1 :OOTO 17000
16100 ZJ (JA)=AES(WC)
1615O FFTNT "CC("JE")="ZJ(JE)
16%OO NEXT JB
16250 CMTN=ZJ(0)
1600% JI=0
16B6 FOR K==1 TO 10
16400 IF ZU(F゙) & CMIN THEN EMIN=ZN(F゙) :J.#F
16450 NEXT K
16SOO FRTNT "INE IS="TNW
16550 FW=31
16600 K%=に゙4-1
1.605O トF==&゙心+1.
```



```
1.675O EL=EG(&O)
16日OO EH=EG(FF)
1685O IF (EH-EL) YE-15 THEN FFTNT "THE ASSUNFTION IS WFONG" "STOF
16900 EFG=EL
16550 GOTO 1545%
1700O FETUFN
1705%
17100 : +1++
17150"
```



```
17250;
17300 : FOF IND=1
1785% *
```

```
17400 TNO=0
174BO IF1.AB=O
175O% ITS1=I/2
175w% IT52=2*ITG1
17600 NI=(N+1)/2
17650 IF Y2 > % % GOTO 17900
17700 TT=.01
177EO IF I=# THEN TT:#00%|
178OO IF IT=4 THEN TT=,OOOOO1
1785% GOTO 18%%%.
17900 IF Y2 % GCMTO 18150
1795% TT=:"%% "
18OOO IF T=S THEN TT=,OOOO1
1BW% IF I \=4 THEN TT:=.OOOOOD
18100 GOTO 183OO
1母1"OTT=, O@1
180OO IF T=S THEN TT= OO0001
1@"EO IF T%=4 THEN TT:#."OOOOOO|
18उOO EL=A(I)
18S5% EH=A(I) +TT
1.6400 EFG=EL
1845O IF INO > 1OOO THEN PFINT "EXIT THE LIMIT " "STOF
185OO HE=(EH-EL)/10
18mGO FOF J7=0 TO 10
186OO EFG=EFGG+J7KHE
186品 EG(J7)=ERG
18700 00SUE 7800 *GOSUE 9750 "GOSUE 895O :GO5UE IO250
18750 IF I#ITS2 THEN OOSUE 2SE50 :GOTO 19050
18800 KF=:ABS (WN (1) -WN (N))
1.885O TF CFY=1E-0B THEN IFLAG=1 :GOTO 2OOSO
18900 zJ(J7)=币%
1.8950 FFTNT "CF'("J7")="ZJ(J7)
19000 G0TO 1%%50
19050 CC=WN (NI)
19100 IF ABS(CC) < 1E-OG THEN IFLAG=1 "GOTO 2OO%
191FO ZJ(J7)=AES(CD)
1.9200 FFINT "CG("J7")="ZJ(J7)
192EO NEXT J7
19ZOO CMTN=ZJ(O)
19350 FOF K==1 TO 10
```



```
19450 NEXT K:
195OO FFTNT "TNE IS="TNE
1.9550 KA=31-1.
1960% KE=J1+1
196%O TF JI=10 THEN EL=EH :EH=EH+TT :INC=TNC+1 :GOTO 194OO
19700
1.975% EL=EEG(FA)
1.9000 EH=EG (FE)
1985O IF (EHNEL)<1EWIF THEN FFINT "NEED SMALLEFR TOLEFIANCE":STOF
1.9900 EFG=EL
1.9950 GOTO 1.8500
2000% "
2OOSO FETUFN
20100 *
```



```
22900 NEXT K
22950 ClucE= #9
25000 RETURN
2305%
23100
23150"
```



```
23250 " :3
2SSOO: SINCE THE ODD FAFITY WAVE-FUNCTION IS ODD FUNCTION THEN
2SSSO, , IN ORDER TO COMFARE THE ENTRIES OF THE EIGENVECTOR, WE
2S400; NEED TO NEGATE THE HALF ENTRIES OF THE EIGEN-VECTOR.
2S450: THTS FROCESS IS DONE IN THIS GECTION
25500:
2550 NF1=N+1
23600 NH=NF1/2
2उ650 FOF K=1 TO NH
2צ700 WF (NF1-K)=-1*WF (NF1-K)
2%75O NEXT K
23gOO RETUFN
2S850
```




```
24000:
24O5O: THIS GECTION STORE THE NEAFLY EXACT EIGEN-ENEFGY TN NEWEFG
24100% FILE.
24150 "
242OO OFEN "O", #1O,"NEWERG"
24250 FOR K=1. TO 日
24300 FFFNT 相%A(K)
24%50 NEXT K
2440% CLOSE #10
24450 FETURN
24500 =
```



## APPENDIX C






```
1.1.50 END
12000 REM
12050 "
```



```
* THS GECHION CALCULATE THE INTEGRAL USING GTMPGON'S RULE.
1%20% "
1%2%0 к=1
12WOO AFF=D%(O)+DZ(NZ+1)+4*DZ(K) :FFEM DZ(I) IG THE TNTEGRAND
1ESEO NN=(NZ+1)/2 *" AT POTNT Yi.
12400 FOF K=% TO NN
12450 KZ=%**
125OO AFH=4*DZ(kZ-1)+2*DZ(&Z-2.2)
12550 AF:AF+AFH
12600 NEXT K
12650 AFE=(HZ/3)*AF
12700 FETURN
12750 "
```



```
12850
```



```
12950: THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE GFOUND
13OOO: STATE EIGEN-VECTOF:
1%%50 "
13100 OFEN "x",##%"WMVEFCN1"
13150 FOF K=0 TO NZ+1
132OO INFUT #2:WG(F)
1%25O NEXT K
13SOO ClOSE #%
12S5O FETUFN
13400
```



```
1.500
13550
13600
13650
1.3700
13750 OFEN "T",#S,"WAVEFCN2"
13800 FOF K=O TO NZ+1
13850 INFUT ##,WG(K)
13900 NEXT K
1%750 CLOSE #%
14000 FETUFN
14450
14100
14150
14200
14250
143OO EXCITED STATE ETGEN-VECTOF.
143%0
14400 OFEN "T":#4!"WAVEFCNS"
1.4450 FOF K=O TO NZ+1
14500 INFUT #4,WG(&)
1455O NEXT K
1.4600 ClOSE #4
1.4650 RETUNF
```

14700	
14800	
14850	
14900	THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE THIRD
1.4950	EXCTTED STATE ETEEN-VECTOF.
15000	:
15050	OFEN "T", \#5, "WAVEFCN4"
15100	FOF $\mathrm{F}=0 \mathrm{TO} \mathrm{NZ}+1$
15150	TNFUT \#F, WE (K)
1.5200	NEXT K
15250	Close \#5
15300	RETUFN
15350	
15400	
15450	"
15500	
15550	THIS GECTION ACCESSES THE FFILE WHICH CONTAINS THE FOUFTH
15600	EXCITED STATE ETGEN-VECTOR.
15650	*
15700	OFEN "T"y扣"WAVEFCNS"
15750	FOF $\mathrm{K}=0$ TO $\mathrm{NZ}+1$
15800	INFUT \# $\square_{\text {W }}$ WE (K)
15850	NEXT K
15900	CLOSE \#b
15950	FETTURN
16000	:
16050	
16100	
16150	
16200	THIS gection accesses the fille which contains the fifth
16250	EXCITED STATE ETGEN VECTOF:
1.6300	*
16350	OFEN "I", 杆7, "WAVEFENS"
16400	FOF K=O TO NZ+1
16450	INFUT \#7\%WG(k)
16500	NEXT K
16550	Cluge \#7
16600	RETUFN
16650	
16700	
16750	
16800	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
16850	THIS SECTION ACCESSES THE FILEE WHICH CONTAINS THE SIXTH
16900	EXCITED STATE ETGEN-VECTOF.
16950	*
17000	OFEN "T", \#8, "WAVEFCN7"
17050	FOR K=O TO NZ+1
17100	INFUT * $B_{\text {S }}$ WG(K)
17150	NEXT K
17200	Close \#8
17250	FETURN
17300	
17350	"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17400	



```
17500: THIS SECTION ACCESSES THE FILE WHICH CONTATNS THE SEVENTH
17550 " EXCITED STATE ETGEN-VECTOR.
17600 :
176EO OFEN "I",##%"WAVEFCNE"
17700 FOFR K=O TO NZ+1
17750 INFUT 林GWG(K)
17800 NEXT K
17850 CLOSE #9
17900 FETUFN
179%%:
```



```
18050 '
```



```
18150; THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE
19200% CALIULATED EIGEN-ENEFGIES.
18250"
19300 OFEN "I",#1O, "NEWEFG"
18S50 FOF K=1 TO G
18400 TNFUT #1O,A(K)
18450 NEXT K
18500 ClOSE #10
1.8550 RETUFN
```



```
18650 "
```



```
18750 % THTS SECTION ASSIGNE WF (K)=WG(K) for k=0 to n+1 {ETGEN.
18800 " -VECTOFS.
18850 FOR K゙=0 TO NZ+1
19900 WF (K)=WG(K)
18950 NEXT K
19000 RETUFN
```



## APPENDIX D

1060 1100 1． 1.0 1200 1550 1． FO 1550 1400 $1450:$ 1500
155O DEFDBL A, A:E:Y:W,D, W, Z
155O DEFDBL A, A:E:Y:W,D, W, Z
1600 DEFTNT I,J,F゙NN
1.650 REM
1760 FFTNT "THE NUMEEF OF FOTNT MUST EE AN ODD NUMEEF"
1750 FFINT
1800 INFUT "THE NLMEEF OF FOINT IS":N $F F E M$ N IS THE NUMEEF OF FOINT
1850 TMFUT "THE VALUE OF Y1":Y1
1900 INFUT "THE VALUE OF Y2"Y?
$19 \%$ FFTNT "IF TME SYSTEM IS A FESTFTCTED OSCTLLATOF ONL.Y THEN THE"
2OOO FFTNT "SYSTEM IS JNDEFENDENT OF ANGULAF FREGUENCY"
2050 FFTNT
2100 INFUT "THE ANEULAF FFEGLENCY IS":WO
2150 FRINT
ここO FFTNT "THE NUNEEF DF" FOINT EETWEEN EOUNDAFY FOINTS IS" N
2250 FFINT
2OO FHTNT "THE LEFT HAND SIDE LIMIT IS =" Y
2SEO FFINT
2400 FWINT "THE FIGHT HAND SIDE LIMIT IS =" Y2
2450 FRTNT
TWOO FFINT "THE ANGULAF FFEGUENEY IS":WO
2550 FFINT
Q6OO DEF FNV $(Y)=(=5+Y) \therefore 2$ FEM FOTENTIAL ENEFGY FUNCTION.
2650 DEF FNV $(Y)=(Y / 2) * 2 *\left(1-\left(90355060 \# /\left(Y^{2} 2 S\right) *(W 0 *=5)\right)\right)$
$27 O O:$ TF THE SYSTEM IS FESTFICTED OSCILLATOF WITHOUT DIFOI.AF INTEFACTION
$2750: T H E N$ \#26OO SHDULD EE ACTTVATED ELSE \#26SO SHDULD EE ACTIVATED.
$2800:$
$2850 \mathrm{NZ}=\mathrm{N}$
$2900 H=(Y 2-1 * Y 1) /(N+1) \quad$ "FEM H IS LENGTH EETWEEN Yi AND Yi + 1 .
2550 FIN

3050
$\because 10$ FEM MATFIX [A] IS A TFTDIAGONAL MATFIX, THEN WE CAN USE T VEGTOFS FOF
FEFRESENTING MATRIX [A].
3150 FEM
3200 FOR $I=1$ TO N
$3250 \quad Y=Y 1+I * H$
3300 VY=FNV $(Y)$
$3550 \mathrm{~A}(\mathrm{I})=2 /\left(\mathrm{H}^{-} 2\right)+V Y$
उ400 NEXT 1
$340 \mathrm{E}=-1 /\left(\mathrm{H}^{\circ} 2\right) \quad$ FFEM Ei IS THE SUEDIAGONAL OF [A].
3500 GOSUE 9200

3600 IF $1=1$ THEN GOSUE 5600

```
865
IF I=2 THEN GOSUE G2SO
7%O IF T:=% THEN GOSUE 69OO
Z75O TF I=4 THEN EOSLIE 7%EO
800 IF I=W THEN QOSUE 7%%O
BEO IF I=6 THEN GOSUE 8%WO
#00 IF T:#7 THEN GOSUE EWEO
#950 IF I=E THEN GOSUE 8850
4000
405%
4100
415%=
4%00 :
42F0:
4300:
450:
4400 :
4450
4%00
4550 7(0)=0
4600 Z(1)=A(1) NWF(1)+E*WF(2)
4650 FOF J=2 TO N-1
4700 Z (.j)=E*WF(J-1)+M(J)*WF(J) +E*WF (J+1)
475O NEXT J
4BOO Z (N) =E*WF (N-1)+A(N)*WF (N)
4850 2 (N+1) =0
4900 FOF J==0 TO N+1
49#O Z(J)=Z(J)/E (I) "FEM DTVIDE EACH ENTFY OF VECTOF Z EY A NUMEEF:
 FOR CONVENIIENT, WE CHOOSE ENERGY E(I.).
5OOO DFF=AES (Z (J)-WF (J))
GOG TF DFR % OOOOI THEN FFINT "THE DIFFEFENCE OF ITG CODFDINATE IS":DFF
 ELSE: FFINT "Z("J")-WF("J")="!DFR
E10% NEXT J
5150
520
525O NEXT I
5OO END
550
%400
5450
500
5550
F6OO DFEN "I",#2,"WAVEFCN1"
5050 FOF < ==0 TO NZ+1
576O TNFUT 标2WF(K゙)
5750 NEXT ド
500 CLOSE #2
5850 FETURN
5900
```



```
6000
6050 3
610% *
6150:
THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE
6200 *
G25O OFEN "I";壮""WAVEFCN2"
```

```
6OO FOF א=0 TO NZ+1
6\Xi% INFUT W#,WF(F゙)
6400 NEXT K:
G4WO Cl.OSE #S
65O% RETUFN
6550:
```



```
6650:
```



```
G750: THIS SECTION ACCESSES THE FILE WHICH EONTAINS THE
O8OO : SECOND EXCITED STATE EIGEN-VECTOF.
6850 "
6900 OFEN "I",#4!"WAVEFCNS"
6750 F=OF F=O TO NZ+1
7OOO TNFWUT 技4,WFF(K゙)
7%% NEXT &
7100 CLOSE #4.
715O FETUNN
7200 *
```



```
750% =
```



```
74OO " THIS SECTION ACCESSES THE FILE WHICH CONTAINS THE
7450: THIFD EXCITED STATE EIGEN-VECTOF.
7500*
75EO OFEN "I""林荈"WAVEFCN4"
76O% FOF K=O TO NZ+1
7650 INFUT #E,WF (F)
7700 NEXT &゙
7750 CLOSE 枺
7BOO RETUFN
7850:
```



```
7950 DFEN "I",#6""WAVEFCNS"
8OOO FOF K゙=O TO NZ+1
8OSO TNFUT 粙G,WF (F゙)
BLOO NEXT K
815% CLOSE 纬O
G%O FETUFN
82EO MFEN "I":#7,"WAVEFCNG"
GOO FOF K゙=O TO NZ+1
8क% INFUT ###WF(ド)
84OO NEXT K
845O CLOSE #7
85OO FETURN
8S5% OFEN "I",#8: "WAUEFCN7"
B6OO FOF F゙=O TO NZ+1
日GEO INFUT #E,WF:(ド)
G7OO NEXT &
8750 CLOSE #8
gBOO FETUFN
88%O DFEN "I";#8:"WAVEFCNO"
B9OO FOF K゙=O TO NZ+1
8%50 INFUIT 牪9,WF(ド)
9000 NEXT ド
```

```
9050 CLOSE 㭌%
9100 FETUFN
9150"
9%OO OFEN "T",#IO!"NEWEFG"
9250 FOR K=1 TO छ
9%OO INFUT #1O,E(K)
9S5O NEXT K
9400 ClOSE #1O
7450 RETUFN
```


[^0]:    ${ }^{\dagger}$ Note that the inverse scale length given by (IV:3) is $\sqrt{2}$ times larger than usually defined in text books dealing with the S.H.O.

[^1]:    ${ }^{*_{\omega}}{ }_{0}$ for $N_{2}$ is found from the $C_{M}$ function given by Ely and Staty [33].

