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ABSTRACT 

Leaving strips of uncut timber within clearcuts has been 
questioned as an effective option for moose (Alces alces) 
management. Winter use of strips of timber was examined in six 
study sites in Northwestern Ontario. Winter aerial track surveys 
and spring browse surveys in 1987 and 1988 showed that moose used 
areas near the strips of residual timber within clearcuts during 
the winter. The area within 45 m of the strips was preferred 
(p<0.05) in 2 of 11 cases and used as available in the remaining 
9 cases. The area within 90 m of the strips was preferred in 5 
of 11 cases and used as available in the other 6 cases. Aerial 
track survey data also showed that moose significantly (p<0.01) 
preferred the area within 45 and 90 m of cover. Analysis of 
spring browse survey data showed no significant (p<0.01) 
difference between the number of stems available or browsed that 
was related to distance from the strips. Significant (p<0.01) 
differences between the number of twigs available and browsed 
were found but differences in browsing seemed related to 
availability rather than increasing distance from the strips. 
Snow surveys showed significantly (p<0.01) lower snow depths 
within the strips than in the cutover. Snow depth and conditions 
adjacent to the corridor may have been influenced by the strips, 
but were also influenced by wind, terrain and ground cover. 
Residual strips of timber were not being used specifically for 
feeding areas but may have been used as escape cover, thermal 
cover or as travelling areas. 
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INTRODUCTION 

Habitat management is an important technique for moose 

management in northern Ontario (OMNR 1988) and timber harvesting 

is an important management tool. Logging has historically been 

thought to benefit moose by creating an interspersion of early 

and late successional stages needed by moose (Welsh et al. 1980), 

but increased demand for wood and mechanization of harvesting 

have produced larger, cleaner cuts (Hamilton et al. 1980). 

Optimum habitat provides both disturbed areas for food and mature 

conifers for cover (Hamilton and Drysdale 1975) but large 

disturbed areas retain little cover and hence are not as useful 

as smaller ones (Hamilton et al. 1980, Telfer 1978a). Leaving 

scattered coniferous cover in cutovers should provide thermal and 

escape cover in close proximity to large amounts of browse (OMNR 

1984). 

The Ontario Ministry of Natural Resources Timber Management 

Guidelines for the Provision of Moose Habitat recommend that 

shelter patches should be left in clearcuts when the clearcut 

area exceeds 100 hectares (ha) and the edge to edge width of the 

cutover is greater than 400 meters (m) (OMNR 1988). The purpose 

of these shelter patches is to ensure vegetative diversity and 
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Still provide for a reasonable timber harvest. One way the 

guidelines are being implemented is to leave strips of timber, 

called corridors, within some clearcut areas. 

The main objective of this study was to answer the question: 

do moose use corridors of uncut timber left within clearcuts?. 

Secondary questions were: how do the corridors affect nearby snow 

depths, and how do moose use corridors during winter?. 



LITERATURE REVIEW 

Moose may select corridors for food availability, thermal 

cover, escape cover, or altered snow depths. Figure 1 shows a 

theoretical model of the factors that influence moose habitat 

selection in Northwestern Ontario in winter. According to this 

model, predation, cover, food, terrain, and meterological 

conditions can affect moose habitat selection. The importance of 

each of these factors can change depending on the choices a moose 

has for habitat selection. 

This literature review will cover other studies of habitat 

selection and feeding habits by moose and the influence of snow 

on moose. Thermal and hiding cover will also be discussed as 

well as the interrelationships among these factors. 

WINTER FCX)D AVAILABILITY AND HABITAT USE 

Winter food availability has traditionally been thought a 

major limiting factor to some moose populations. However, 

spring, summer and fall diets can also be important in 

influencing production and survival of moose (Peek 1974). 

Many researchers have noted that moose move from open areas 
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in early winter to areas with more overhead cover in the late 

winter (Crete and Jordan 1982, Phillips et al. 1973, Poliquin et 

al. 1977, Welsh et al. 1980). The timing of this move and the 

explanations for it vary. Krefting (1974) stated that in 

general, moose in Northcentral North America seek dense cover 

when snow is deeper than 90 cm. Telfer (1978Z?), in Alberta, 

found that in winters with light snowfall, moose distribution was 

positively correlated with browse production. In contrast, 

Phillips et al. (1973) in Northern Minnesota found that moose 

showed a preference for cover types that provide shelter from 

cold stress, rather than abundant browse in a winter with less 

than 50 cm snowfall. Schwab (1985) in Northcentral British 

Columbia also found that in a low snowfall winter, moose habitat 

use was more highly correlated with dense cover than forage 

abundance. Schwab thought that moose moved into areas of cover 

in order to reduce the chances of both cold and heat stress. He 

said that moose could avoid cold stress by staying out of the 

wind and under cover in very cold weather. Moose avoided heat 

stress by moving into shaded areas during days when solar 

radiation was high in the late winter and early spring. 

Interspersion of food and cover are important to moose. 

Brusnyk (1981) found that the most browsing was done in areas of 

timber reserve adjacent to clearcuts and concluded that these 

areas were selected for their coniferous cover and their abundant 

browse. Many of these reserves had spruce budworm (Choristoneura 

fumiferana (Clem.)) damage and were partly open. Brusnyk noted 



6 

that the deciduous shrubs present in the reserves were taller 

than those in the clearcuts. This made relatively more food 

available as the snow got deeper. Welsh et al.(1980) found that 

diversity was important in early winter concentration areas and 

Proulx (1983) found that diverse areas were preferred for late 

winter concentration areas also. 

In many studies browsing in these winter areas was 

relatively light. Crete and Jordan (1982) found that percentage 

of browse removed rarely exceeded 10 percent in 18 moose 

concentration areas studied. Peek et al. (1976) had up to 33 

percent browsing as measured by spring line transect counts but 

concluded that overbrowsing was not a problem because of the 

number of alternate forage sources. Prescott (1968) in Nova 

Scotia found less than 20 percent of all stems browsed and 

Hamilton et al. (1980) in Northwestern Ontario concluded that the 

range was not near carrying capacity as no more than 35 percent 

of plots sampled were being used. Gumming (1987) in a review of 

browse surveys in Ontario, concluded that forage availability was 

not limiting the moose population. 

INFLUENCE OF SNOW ON MOOSE 

Snow can have two direct effects on moose. It can reduce 

the amount of food available by burying forage species and it can 

increase the energetic costs of travel (Coady 1974). Snow depth 



and hardness can also have an effect on predation rates of wolves 

(Canis lupus 1 and the age class distribution of the moose killed 

(Peterson and Allen 1974, Bergerud and Snider 1988). 

Coady (1974) said that 60 to 70 cm of soft snow will impede 

moose and that more than 90 cm of snow will severely restrict 

movement of an adult. Calves can be restricted by less snow and 

all animals can be restricted by less snow if it is more dense or 

crusty. 

Snow maturation, which is marked by formation of crusts and 

changes in density, hardness, and depth can be affected by forest 

cover type. In general, snow matures faster in an open area than 

it does under a coniferous canopy. Snow is also deeper in an 

open area than under a full coniferous canopy (Golding and 

Swanson 1978). The difference in snow characteristics between 

open areas and coniferous cover have been thought to be one of 

the main factors governing moose movement into areas of denser 

cover as winter progressed (Peek 1971). 

Crusted snow conditions that provide support for moose are 

seldom extensive. Snow conditions which provide only partial 

support for moose make movement more difficult because of 

resistance to movement and the chance of abrasion from hard 

crusts (Coady 1974). 



COVER 

The importance of cover can be evaluated by looking at the 

components of cover that result in a net benefit to the animal 

under different environmental conditions (Peek et al. 1982). 

Nudds (1977) said the two major components of cover are the 

vertical and horizontal distribution of vegetation. These 

components can be studied as thermal and escape cover. One 

vegetation type may act as both thermal and escape cover but 

these cover types can have different characteristics and will be 

discussed separately. 

Thermal Cover 

Thermal cover reduces the radiant and convective heat 

transfer between an animal and its environment. Heat transfer is 

reduced by decreasing the temperature gradient and/or by reducing 

the wind flow over the surface of an object. Reducing the amount 

of heat lost to the environment will allow an animal to expend 

less energy to stay thermoneutral. One method of regulating heat 

loss used by moose is changing posture. Renecker et al. (1978) 

found that moose calves could maintain thermoneutrality without 

increasing metabolism down to temperatures below -30° C when 

lying down. Smaller moose with less fat per kilogram of body 

weight, especially calves, are more easily stressed by cold 

weather and will expend energy to stay thermoneutral in 
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conditions where a larger moose is not stressed. 

The hypothesis that moose select habitat to reduce cold 

stress has been put forward by a number of researchers. Brusnyk 

and Gilbert (1983) thought that moose selected forest reserves in 

winter because of their more favourable thermal conditions. 

VanBallenberghe and Peek (1971) observed moose leaving heavy 

cover after the passing of winter storms. Rolley and Keith 

(1980) thought that closed canopy stands offered moose a more 

favourable thermal environment. 

In contrast, Schwab (1985) found that moose selection of 

cover was best explained as a response to winter heat stress. 

Reflection of solar radiation as well as direct radiation made 

heat stress most likely to occur in cutovers or other open areas. 

Schwab thought that moose occupied cutovers with residual timber 

because there was shade available. Forests with full canopies 

usually provided acceptable thermal environments for moose. 

One reason moose have to be selective for thermal cover in 

winter is because of their seasonal changes in metabolic rate. 

Moose metabolic rate slows down about the same time they are 

becoming restricted by snow and temperatures are dropping 

(Regel in et al. 1985). Moose metabolic rate drops regardless of 

the amount of food available (Schwartz et al. 1988). This drop 

in metabolic rate is characterized by less movement and less 

foraging. If the reduction in foraging exceeds the reduction in 

metabolic rate then an animal will be expending more energy than 

it is taking in and must use stored energy for maintenance. The 
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quality of winter browse can influence how fast fat and protein 

reserves are used (Schwartz et al. 1988) but the length of time 

an animal can survive depends on the amount of energy reserves 

and the rate of depletion. 

During the winter a moose may be exposed to both heat and 

cold stress. Both types of stress require an expenditure of 

energy to retain thermoneutrality. If a moose is in a negative 

energy balance, thermal cover is necessary to reduce the amount 

of stored energy used. 

Escape Cover 

Escape cover and edge are related. The importance of edge 

has long been known and the use of edge by moose has been 

previously discussed (Hamilton et al. 1980, McNicol and Gilbert 

1978). Edge is beneficial because it provides more than one of 

the biological requirements of an animal in a small area. Escape 

cover is one of these requirements. 

Lyon and Marcum (1986) have defined escape cover for elk 

(Cervus elaohus) as being vegetation capable of hiding 90 percent 

of a standing adult elk from the view of a human at a distance of 

60 m or less. The vegetation could be shrubs or mature tree 

stems. This definition was arrived at as a consensus of expert 

opinions and is related to how far an elk will move when 

startled. Thomas et al. (1976) also referring to elk said that 

for optimum effect, escape cover should be between four and eight 



sight distances wide. Sight distance is defined as how far an 

animal can see and varies with vegetation type. Escape cover for 

moose may need to be quantified differently because moose have a 

different social structure and may have different predators and 

different predator avoidance strategies. 

Hamilton et al. (1980) defined three cover types for moose. 

One was uncut forest at the edge of the cutover. Another was 

aggregates of trees with a density of at least 400 trees per 

hectare and an area of 0.2 ha. This definition was made to fit 

most uncut patches of timber in harvested areas and the uncut 

edges of cutovers. The third type of cover was smaller clumps of 

residual down to 0.04 ha with densities as low as 200 trees per 

hectare. This allowed clumps of aspen with as few as 25 trees to 

be classified as cover. 

Lyon (1987) has written a computer program (HIDE2) that uses 

stem size and density to determine the escape cover value of 

different stands of timber. When Hamilton's definition of 400 

trees per hectare is entered into Lyon's program, it predicts 

that, with a stem diameter of 24 cm, 90 out of 100 moose could 

find hiding cover (have 90 percent of their body obstructed by 

stems) within €,0 m of the edge. With half the density (200 trees 

per hectare) the program predicts that 56 of 100 moose could find 

escape cover if the stems were 24 cm in diameter and that 75 out 

of 100 moose could find cover if the stems were 30 cm in 

diameter. This shows that the density of trees that Hamilton et 

al. (1980) described as cover can obstruct the view of moose and 
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can act effectively as escape cover if the stand is large enough. 

Hamilton et al. (1980) suggested that small or sparse 

aggregates of trees provide escape cover for moose in the same 

way as uncut forest. This allowed moose to use more of the 

available browse in the cutover as long as snow did not restrict 

the moose from moving from one patch of residual to another. 

INTERRELATIONSHIPS 

The relationships between these factors are not particularly 

complex, they are just not well defined. Thermal cover that 

provides protection from wind and has a full canopy should always 

be able to act as escape cover. McNicol and Gilbert (1978) said 

that moose should get a thermal advantage by bedding on the south 

side of residual conifer cover in clearcuts. Hamilton et al. 

(1980) noted that moose may stay close to forest edges to escape 

wind. If we accept escape cover as being something that blocks 

visibility of a moose from at least one side, then these areas 

that provide thermal cover can also provide escape cover. 

Escape cover does not necessarily provide thermal cover. The 

type of stem and the canopy cover, which are important components 

of thermal cover are unimportant when calculating escape cover 

for moose. 

Past research has quantified the relationship between food 

availability and cover by examining how moose use the edge of 

cutovers and uncut timber. Brusnyk (1981) found that over 70 
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percent of all moose and moose tracks seen during winter surveys 

were associated with edges of timber reserves. Hamilton et al. 

(1980) found that moose preferred the area in a cutover within 80 

m of the edge of uncut timber. 

Increasing snow depth negatively affects food availability 

by decreasing the amount of food available. Adverse snow 

conditions can have a more severe effect if moose are using 

patches of residual timber within a clearcut to gain access to 

food. If a clearcut had patches of timber scattered throughout, 

a moose would be able to use most of that area until the snow 

became too deep or hard. In deep or crusted snow, a moose may be 

unable or unwilling to move from one patch of cover to another 

and would be restricted to the periphery. 
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STUDY AREA DESCRIPTION 

Study sites were selected to represent normal forest 

harvesting practices in Northwestern Ontario. To measure use of 

uncut strips of timber by moose, six study sites (Figure 2) were 

selected to meet the following specifications: areas must have 

been cut three to ten years before the beginning of the study, 

areas must not have been treated with herbicide, areas must have 

had at least one moose corridor. Study sites are referred to 

throughout this text by the numbers one through six. The 

selected cutover areas ranged from 297 to 4828 ha and the mean 

cutover size was 1394 ha. Figures 3-8 show the vegetative cover 

types of each study site. 

VEGETATION 

The study areas were in the Superior section of the boreal 

forest region (Rowe 1972). There was variation in forest types 

within each area but four of the six areas were classified as 

boreal mixedwood forest. This forest type has 25 to 75 percent 

hardwood composition with the remainder being conifer. Nearly 50 

percent of Ontario’s productive forest land is mixedwood forest 

(McClain 1980). Timber species present before harvest were: 

white spruce (Picea glauca [Moench] Voss), black spruce (P. 
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Figure 8. Vegetation type map for study site 6 
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mariana [Mill.] B.S.P.), balsam fir (Abies balsamifera [L.] 

Mill.), trembling aspen (Populus tremuloides Michx) and white 

birch (Betula Daovrifera Marsh.). Study site 1 was predominantly 

jack pine (Pinus banksiana Lamb.) with less than 10 percent white 

spruce and aspen. Study site 6 was composed of more than 75 

percent mature to overmature white spruce. 

All cutover areas except study site 1 had been scarified. 

There was no scarification within clumps of residual timber and 

most low areas. Other species present in the cutover areas were: 

beaked hazel fCorvlus cornuta Marsh.), serviceberry (Amelanchier 

alnifolia (Nutt.) Nutt. ex. Roem.), pin cherry (Prunus 

oensvlvanica L.), red osier dogwood (Cornus stolonifera Michx.), 

mountain ash (Sorbus americana Marsh.), green alder (Alnus crisoa 

(Ait.) Pursh), willow (Sal lx spp.), viburnum (spp.), mountain 

maple (Acer soicatum Lam.) and speckled alder (Alnus rugosa 

(DuRoi) Spreng.). 

SOILS 

The soils in all study areas are the result of extensive 

glaciation. All sites lie within the precambrian shield and 

granitic bedrock predominates. The soils are generally thin 

sandy till over bedrock, with areas of lacustrine and outwash 

sand (Zoltai 1965). For each study site, general soil and 

landform types are given in Table 1. 
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Table 1 

Area 

Soils and landforms for individual study sites. 

Soi 1 

lacustrine sand 

thin sandy till 
over bedrock 

thin sandy till 
over bedrock 

thin till over 
bedrock with 
discontinous thin 
loess 
thin sandy till 
over bedrock 

thin sandy till 
over bedrock 

Landform 

gently rolling 

rol1ing 

rolling 

gently to moderately 
rolling 

rolling 

rolling 
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CLIMATE 

The major climatic considerations in this study were 

snowfall and mean monthly temperature for December through March. 

The winter of 1986/87 had above average temperatures for all 4 

months and below average snowfall for every month except February 

(Table 2). The winter of 1987/88 had below average temperatures 

for January and February, and the snowfall was below normal for 

all four months. Snow was generally deeper and temperatures 

lower in the more northerly study areas. 
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Table 2. 

Month 

December 

January 

February 

March 

Mean monthly temperatures and snowfall for December 
through March in Thunder Bay, Ontario. Thirty year 
average versus winter of 1987 and 1988. 

Temperature 
(degrees Celsius) 

30 year 1986/87 1987/88 
average 

-11.1 -7.2 -6.2 

-15.4 -10.5 -15.9 

-13.0 -6.0 -16.0 

-6.3 -3.0 -4.8 

Snowfa11 
(cm) 

30 year 1986/87 1987/88 
average 

46.2 16.8 17.2 

48.4 30.0 34.2 

30.7 41.6 11.6 

34.2 9.8 30.2 
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METHODS 

AERIAL SURVEYS 

The objective of the aerial surveys of corridors and 

adjacent cutovers was to record the amount of moose use, as 

measured by moose tracks and sightings. 

Study areas were surveyed during the winter using a Cessna 

185 on days with at least 80 percent sunshine, winds less than 30 

km/hr and an air temperature greater than minus 25° C. Flights 

were between 10:30 and 15:00 hours, at least 4 days apart and 

with no significant snowfall or high winds for at least one day. 

Tracks were observed by circling each study area at an 

altitude of 100 to 150 m until all tracks were recorded. Tracks 

were recorded by drawing the tracks on a sheet of acetate 

covering an aerial photograph of the area. The same sheet of 

acetate was used until there was a snowfall to prevent recording 

the same tracks on successive surveys. Each area was circled 

until all tracks were recorded. Moose seen and wolf tracks were 

also recorded during the aerial survey. 

Tracks were digitized onto a base map of the area and a 

geographic information system, ARC/INFO (ESRI 1989) was used for 
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analysis. ARC/INFO was used to estimate: (1) the combined 

length of all tracks in the cutover area, (2) the combined length 

of all tracks and the area of the cutover within 45 m of each 

cover type, (3) the combined length of all tracks and the area of 

cutover outside of 45 m from each cover type, (4) the combined 

length of all tracks and the area of the cutover within 90 m of 

each cover type and (5) the combined length of all tracks and 

area of cutover outside of 90 m from each cover type. These 

estimates were made for each of the six study areas. 

The area within 45 m of a cover type edge was referred to as 

the 45 m buffer area, the area within 90 m, the 90 m buffer area 

(Figure 9). All study sites had two buffer areas (45 m and 90 m) 

for each cover type available within that study site. The total 

of the buffer areas for each cover type and the total length of 

track within the buffer areas for each cover type were used in 

the analysis. 

One result of using these buffers is that the total length 

of track measured within the buffers by ARC/INFO may not be 

consistently additive. For example; the length of tracks between 

45 and 90 m from one study site cannot always be found by 

subtracting the, length of tracks within 45 m from the length of 

track within 90 m. The reason for this is illustrated by a 

situation where the distance between two patches of different 

cover types are within 45 m and there is a moose track running 

roughly between the two patches of cover (Figure 10). When 

ARC/INFO measures the length of tracks within the 45 m buffer, it 
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will measure the length of tracks within 45 m of each patch. 

These 45 m buffers can overlap and the length of tracks within 

the overlap is measured twice. 

This situation, two different cover types within 45 m of 

each other with overlapping buffers could have been avoided by 

assigning the same label to each cover patch. When two or more 

patches of the same cover type are within the buffer distance, 

the buffer does not intersect but rather goes around both patches 

so that there is only one buffer area for the two patches (Figure 

11). If this method were used, there would be no way to 

differentiate between cover types and no way to analyze whether 

certain cover types, such as corridors, were preferred or 

avoided. The different cover patches could be looked at manually 

but there would be no way to measure the buffer area accurately 

or the length of track near one particular stand or group of 

stands. 

Another alternative would have been to buffer each patch 

individually and then to remove the tracks that fell within the 

buffer area from any further analysis. In the case of different 

cover patches with overlapping buffers this would have involved a 

decision as to which cover patch was influencing the moose’s 

movements. The information to make this decision was not 

available. 

A third alternative to the overlap problem would have been 

to label each stand separately, buffer all stands within the 

study area and create a new class of cover type for analysis that 
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was made up of the overlap areas. These overlap cover types 

would have different areas and different shapes and would have to 

be classified as to what vegetation type buffers were being 

overlapped (e.g. conifer-conifer, conifer-hardwood). There would 

have been two-way overlaps as well as three-way and possibly 

four-way overlaps to analyze. I did not think this overlap 

analysis was necessary to answer the primary question of whether 

moose were using corridors or not. 

The length of tracks within each buffer was determined as 

the sum of: (1) the combined length of tracks within the buffer 

and (2) the combined length of tracks within the cover type that 

was buffered. Including the length of tracks within the cover 

type made it impossible to separate between a preference for a 

certain cover type and a preference for the buffer of the same 

cover type. Moose tracks recorded in cover types with canopies 

that could be seen through might show a preference, avoidance or 

use as available for the cover type itself, while the cover types 

with coniferous canopies showed use only in relation to the 

buffer area. 

Data were analyzed this way because the corridors were 

either mixedwood or pure conifer and trying to record the tracks 

under a dense coniferous canopy using fixed wing aircraft might 

have introduced unknown biases into the data. Tracks were 

recorded only to the edge of coniferous cover. 
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Analysis of Aerial Survey Data 

A chi square test of goodness of fit was used to see if 

track length was distributed in proportion to area within and 

outside of the 45 and 90 m buffers for each study site. The 

proportion of tracks within and outside of 45 and 90 m of each 

coyer type were compared with the proportion of area available by 

using the same test. Ninety-five percent confidence limits were 

assigned to the observed proportion of track length in each 

buffer area (Neu et al. 1974, Byers and Steinhorst 1984) and 

these buffer areas were classified as preferred, used as 

available or avoided. 

Preferred areas were defined as those in which the 

proportion of area in the buffer is outside of the calculated 

confidence interval and less than the proportion of track length 

in the buffer. Areas used as available were defined as those in 

which the proportion of area available is within the confidence 

interval and avoided areas were defined as those where the 

proportion of area in the buffer is outside of the confidence 

interval and greater than the proportion of track length in the 

buffer. 

BROWSE SURVEYS 

The objective of the browse survey was to see if there was a 

difference in moose feeding intensity or diet composition with 
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increasing distance from the corridors. 

Starting points for survey lines were randomly chosen along 

the corridor. There were at least three survey lines per 

corridor and in corridors over one kilometre in length, one 

survey line was included for each additional 200 m of corridor. 

Survey lines ran perpendicular to the corridor and each line 

consisted of 18 plots. Plots were two by ten metres in size with 

five metres between plots. Each side of each line consisted of 

nine plots going out into the cutover area. 

Three distance strata were defined. Distance stratum 1 was 

the group of plots 0 to 46 m from the corridor, distance stratum 

2 was 45 to 90 m from the corridor and distance stratum 3 was 90 

to 135 m from the corridor. 

All stems on each plot were tallied and described by plant 

species, height class (.5 to 1.0 m, 1.01 to 2.0 m, greater than 

2.0 m), and whether the stems were browsed or unbrowsed. In 

addition, the number of twigs, as well as the number of stems, 

for all species and height classes were tallied in one randomly 

selected plot within each distance stratum for each line sampled. 

Since plots for twig counts were randomly chosen within strata, 

the number of twigs per plot in the twig plot was used as a ratio 

estimator of the number of twigs per plot for each stratum. The 

ratio estimator was calculated for each stratum, in each line 

sampled using the formula below. 

  3 3 n-   

Y, =(I Z y,, /I Z 

i=1 j=1 i=1 j=1 
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i = stratum number: 1, 2, 3. 
_ j = twig or stem number:1,2,3.... 

= mean number of twigs per plot in the ith stratum 
= number of twigs in the twig plot for that 

stratum 

^ij ■ number of stems in the twig plot for that 
_ stratum 
X. = mean number of stems per plot in the ith stratum 

On plots with stems over 2.0 m in height, only twigs which were 

within 2.7 m of the ground were tallied. 

A twig was defined, following Schewe and Stewart (1986), as 

the part of the branch of a woody plant distal to the point where 

it could be browsed. A stem was defined as the part of the plant 

that was attached to the roots. 

Analysis of Browse Survey Data 

Stem counts were analyzed by comparing mean number of stems 

per plot among distance strata using contingency tables to test 

the hypothesis that there was no difference in availability or 

browsing among strata. Browse preference and diet composition 

were also calculated from the stem data and compared using 

contingency tables. 

The mean number of twigs available per plot and the mean 

number of twigs browsed in each stratum were compared using 

contingency tables. 
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SNOW SURVEYS 

The objective of the snow survey was to see if the corridors 

caused snow depths to be greater near the corridor. Deeper snow 

could reduce the effectiveness of the corridor as a component of 

moose habitat by reducing the amount of winter use the area 

receives. 

Snow depth was measured at four different study areas at 

monthly intervals. These four areas were selected because of 

their easy accessibility during the winter months. The corridors 

on three areas were oriented along a north-south axis and the 

fourth was oriented on an east-west axis. At each area, two snow 

survey lines were randomly selected that were perpendicular to 

the corridor. Plots were 10, 20, 40, 80, and 120 m from the edge 

of the corridor along the survey line. In addition, a plot was 

placed 20 m inside the corridor on each side of the corridor. 

Ten snow depths were measured at each plot. The same lines and 

plots were used throughout the winter. 

Analysis of Snow Survey Data 

Mean snow depths within and outside of the corridors were 

compared for each snow station using the least significant 

difference test. 
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RESULTS 

AERIAL SURVEY 

Fourteen aerial surveys were flown during the two winters of 

the study. Five surveys were flown in 1987 and nine in 1988. A 

total of 353.6 km of tracks were recorded. The average total 

length of tracks per study site was 68.9 km and the total length 

ranged from 16.9 to 101.1 km. Maps showing moose tracks observed 

in each study area during the aerial surveys are in Appendix 1. 

Five single moose and 13 groups of moose were sighted during the 

surveys (Table 3). 

Out of 31 moose sighted on the study areas, 22 were within 

45 m of cover and four of the 22 were within 45 m of a corridor. 

All other moose sighted were beyond 90 m from cover. 

A chi-square test was used to test the hypothesis that 

length of track was distributed in proportion to the amount of 

area within and outside 45 m of all edges and within and outside 

90 m of all edges for each study site. The hypothesis that track 

length is distributed in proportion to area within each study 

site was rejected (P<0.01) (Appendix 2). Inspection of the 

length of track per hectare in Table 4 shows moose preferred the 

area within 90 m of the edge of all cover types and within 45 m 
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Table 3. Sums of lengths of individual moose tracks and number 
of moose sightings in each study area. 

Total length Number of Number of Number in 
Study site of track (km) single moose moose groups each group 

52.1 

2 70.6 

3 101.1 0 

4 22.1 0 

5 16.9 0 

6 90.8 3 

Total 353.6 5 

1 3 

3 3, 2, 2 

3 2, 2, 2 

2 

3 

4 2, 2, 2. 2 

13 
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Table 4. Track length per hectare within and outside of the 45 
and 90 m buffers for all cover types within each study 
area. 

Metres of track length per hectare 

Study site 
Within 
45 m 

1167 

3024 

1559 

767 

478 

363 

Outside 
45 m 

460* 

1985* 

1032* 

787 

234* 

216* 

Within 
90 m 

852 

2324 

1358 

666 

378 

319 

Outside 
90 m 

412* 

1702* 

927* 

185* 

260* 

190* 

* Significant difference at P<0.01 
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of the edge in all but area 4. For each of the six study sites, 

the area within 45 or 90 m of the corridor cover type was either 

preferred (p<0.05) or used as available (Table 5). The only 

cover type that had a higher percentage of preferred use than the 

corridor was residual hardwood. Each site and the cover types 

that were preferred or avoided will be described individually. 

All preferences or avoidances were significant at p<0.05. A 

complete listing of all cover types for each area along with the 

proportion of track lengths and the proportion of total area 

taken by that cover type buffer are in Appendix 3. 

Area 1 

In this area the corridors themselves were harvested in 

winter 1988. Data are presented for both the winter prior to 

cutting (1987) and after (1988). 

1987 

The only corridor type in this area was coniferous corridor 

and it was preferred at both 45 and 90 m. The corridor buffers 

had 11.0 times more track than the coniferous uncut forest edge 

buffers, which were the next most used type. The coniferous 

uncut forest edge buffer had 3.3 times the amount of area as the 

corridor buffer and was significantly avoided at 45 and 90 m. 
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Table 5. Total number of buffer areas that were preferred, 
avoided or used as available for all six study sites. 

Cover Type 

Corridor (all types) 

Residual hardwood 

Residual mixedwood 

Alder swamp 

Timbered swamp 

Stream and lake 
reserve 
Uncut forest edge 

Residual blocks 

Residual conifer 

Grass/cattai1 marsh 

Number 
preferred 

6 

4 

0 

0 

0 

0 

0 

0 

0 

Number 
used as 
available 

15 

2 

10 

5 

8 

8 

12 

8 

4 

6 

4 

Number 
avoided 

0 

0 

0 

2 

0 

6 

0 

0 

2 

Peat bog 0 0 
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1988 

The corridors had been cut but there was still a preference 

for the area within both 45 and 90 m of where the corridors had 

been. These were the only preferences for 1988 and there were no 

avoided areas. 

The proportion of track in the corridor buffer in 1988 was 

only 42 percent of what it was in 1987. The coniferous uncut 

edge buffers received nine percent more of the total proportion 

of track than the corridor buffers in 1988 and showed no 

avoidance as they had in 1987. 

Area 2 

The mixedwood corridor was preferred in this area at 90 m. 

The residual mixedwood and residual hardwood were both preferred 

at 45 and 90 m. Areas that were avoided at both 45 and 90 m were 

the coniferous swamp and cattail/grass marsh types. Also the 

mixedwood uncut edge was avoided at 45 m. The residual mixedwood 

and hardwood area to the west of the corridor was used as an 

early winter yard by moose. In the 15 times the area was flown 

during the study, there were fresh tracks 14 times and moose were 

seen 4 times. Most tracks and sightings were within this 

residual cover to the west of the corridor. 
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Area 3 

In this area the conifer and mixedwood corridor types were 

both preferred at 90 m. These were the only corridor types 

available. The mixedwood residual was preferred at both 45 and 

90 m. The only area that was avoided was the coniferous uncut 

edge. It was avoided at 45 m. 

Area 4 

In this area the mixedwood corridor was preferred within 45 

and 90 m. The other areas that were preferred were the residual 

uncut hardwood at 45 and 90 m. The only avoided area was the 

uncut conifer edge at 45 m. 

Area 5 

In this area residual uncut hardwood was preferred at 45 and 

90 m. The only area avoided was the alder swamp type at 45 m. 

The mixedwood uncut edge also shows an avoidance but since there 

were no tracks within this buffer, the chi-square test was not 

valid (Steel and Torrie 1980). 

Area 6 

In this area the only preference was for residual hardwood 
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at 45 and 90 m. There were no areas that were classified as 

being avoided. 

SNOW SURVEY 

The winter of the snow survey, 1987-1988, had less than 

average snowfall (Table 2). The maximum snow depths for the four 

sites ranged from 65.8 cm at Area 4 to 92.8 cm at Area 3. There 

was no major thaw during January or February and the first time 

that the crusted snow could support a man with snowshoes was 

March 12. On March 19, wolf tracks were noted on top of the 

crust while moose were still breaking through. There was no 

blood observed in the moose tracks, indicating that the crust was 

not hard enough to break the skin on a moose's leg. On April 2, 

the snow was soft after midday and snow depths were beginning to 

decline. The snow depths had noticeably declined by April 9 

(Appendix 3) and the surveys ended at that point. 

The least significant difference test showed that snow 

depths were significantly (P<0.05) less within the corridors than 

in the clearcut at all study sites and on all days snow depths 

were measured except at area 3 on February 27, 1988 (Appendix 3). 

Two areas, both of which were oriented on a north-south 

axis, showed a build up of snow in the cutover within 20 m of the 

edge of the corridor (Figures 12-15). In one area, the effect 

disappeared as winter progressed but in the other it became more 
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strongly pronounced. 

Bedding areas were noted during the snow surveys and of a 

total of 18 beds found, nine were in the corridor and six were at 

the edge or within ten metres of the edge of the corridor. Two 

beds were in the residual patches away from the corridor and one 

bed was outside the residual. 

BROWSE SURVEY 

Browse surveys were completed for study site 1 in 1987 and 

for all areas in 1988. Study site 1 was surveyed in 1987 because 

the area was going to be harvested in the fall of 1987 and there 

was only enough money to complete a survey on one area. 

Altogether, 189 plots were sampled in 1987 and 918 plots were 

sampled in 1988. The average number of plots per study area was 

163. There were only 36 plots recorded in study area 5 (Table 6) 

and none in study area 4 due to a program error in the computer 

used for data collection. 

All Areas 

Stems 

The mean numbers of browsed and unbrowsed stems per plot 

(Figure 16 and Figure 17) showed no significant differences 

(P>0.01) among strata or areas 
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Table 6. Total number of sample plots completed in cutover area 
in each study site. 

Study site 

1-1987 

1-1988 

2 

3 

4 

5 

6 

Number of plots 

189 

270 

90 

270 

0 

36 

126 

Total 981 
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Twigs 

The mean numbers of browsed and unbrowsed twigs per plot 

were not distributed randomly (P<0.01) among strata or areas 

(Figure 18 and Figure 19) 

Individual chi square values contribute equally to the 

overall chi square and can be used to help interpret the data 

(Steel and Torrie 1980 pp 498). Inspection of these chi square 

values for unbrowsed twigs (Table 7) shows the differences among 

strata are more uniform than differences among areas. For 

browsed twigs (Table 8), area 5 contributed 56.0 percent to the 

total chi square value and areas 5 and 1 together contributed 

77.3 percent of the total. This indicates that differences among 

areas are greater than differences among strata. 

Species Preference and Availability 

Figure 20 shows the percent browse availability over all 

areas. Species which were browsed but made up less then one 

percent of the available stems were juneberry, mountain maple, 

red osier dogwood and balsam fir. Figure 21 shows the percent 

diet composition for all areas. A preference rating for each 

species was calculated (Petrides 1975) (Table 9). To see if 

preferred species availability was influencing the browsing 

pattern, the distribution and amount of browsing of four species 

that had the highest percentages of stems browsed was examined. 
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Table 7. Chi square calculations for unbrowsed twigs per plot 

Observed values 

Strata 

Study area number 
1 2 3 

1628 

858 

879 

1696 

154 

204 

131 

211 

170 

5 

589 

334 

597 

6 

762 

656 

641 

Expected values 

Strata 

Study area number 
1 2 3 5 6 

1382 216 210 624 856 

933 146 142 421 571 

1050 164 160 474 642 

Calculated chi square values 

Strata 

Column total 

Study area number 
1 2 3 5 6 Total 

43.7 10.4 29.9 2.0 8.3 94.3 

6.0 0.4 33.6 18.1 12.7 70.8 

27.9 9.5 0.7 31.7 0.0 69.8 

77.6 20.4 64.2 51.9 21.0 234.1 

Tabular chi square value for 8 degrees of freedom and 
probability of a larger chi square less than 0.01 is 20.1. 
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Table 8. Chi square calculations for browsed twigs per plot. 

Observed values 

Strata 

Study area number 
1 2 3 5 6 

28.1 11.6 7.3 26.5 7.9 

13.1 19.0 7.0 3.0 4.0 

80.6 25.0 10.0 1.8 3.5 

Expected values 

Strata 

Study area number 
1 2 3 5 6 

39.9 18.2 7.9 10.3 5.0 

22.6 10.3 4.5 5.8 2.8 

59.3 27.1 11.8 15.2 7.5 

Calculated chi square values 

Strata 

2 

3 

Study area number 
1 2 3 

Column total 

3.5 

4.0 

7.7 

15.2 

2.4 

7.3 

0.2 

9.9 

0.1 

1 .4 

0.3 

1.7 

5 

25.7 

1 .4 

11.8 

38.9 

6 

1.6 

0.5 

2.1 

4.2 

Total 

33.3 

14.6 

22.1 

69.9 

Tabular chi square value for 8 degrees of freedom and 
probability of a larger chi square less than 0.01 is 20.1. 
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Table 9. Availability, use and preference for browse species 
found on all study sites. Preference rating calculated 
following Petrides (1976). Preference rating of 
greater than one indicates preference. 

Species Percent 
diet 

Aspen 16.3 
Willow 10.6 
Green alder 3.5 
Speckled alder 4.4 
Beaked hazel 6.1 
Pin cherry 15.0 
Balsam fir 0.2 
White spruce 0.1 
Mountain ash 7.2 
Amelanchier (spp.) 4.2 
Acer spicatum 3.5 
White birch 27.9 
Jack pine 0.0 
Viburnum (spp.) 0.2 
Red osier dogwood 0.7 

of Percent 
available 

5.4 
13.4 
22.0 
13.8 
6.4 
7.0 
0.6 
1.0 
1 .9 
2.7 
1 .7 
8.0 
16.6 
0.1 
0.3 

Preference 
rating 

3.0 
0.8 
0.2 
0.3 
0.9 
2.1 
0.3 
0.1 
3.8 
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These species were: white birch, 28 percent browsed, aspen, 16 

percent, pin cherry, 15 percent, and willow, 11 percent. Willow 

is the only one of these that is not a preferred species, but was 

included because it accounts for 11 percent of the diet. 

Data were examined for a change in diet composition from one 

stratum to another that was different from the change in 

availability. Figure 22 shows the percentages of stems of these 

preferred species available in each of the different strata. It 

also shows what percent of the total diet each species comprised 

in these strata. In all cases except one (aspen stratum 1 to 

stratum 3) an increase or decrease in percent of diet corresponds 

to an increase or decrease in availability. The number of stems 

available and browsed are in Appendix 5. 

A contingency table test (Table 10) to see if the amount of 

browse of these four preferred species is distributed randomly 

across strata and species shows that browse is not (P<0.01) 

distributed randomly across strata. White birch and aspen make 

up 88.6 percent of the total chi square value and cherry and 

salix make up the remaining 11.4 percent. This shows that white 

birch and aspen are distributed in patches while cherry and 

willow are distributed more evenly. 

A test to see if these species were browsed randomly shows 

browsing is not distributed randomly across strata or species 

(chi square calculated = 36.9; tabular value, 6 df, 0.01 level of 

probability = 16.8). 

A contingency table test using the ratio of unbrowsed stems 
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Table 10. Chi square calculations for total number of stems for 
four preferred species. 

Observed values 

Strata 

Species 

Aspen Cherry Birch Willow 

369 486 511 745 

328 541 897 761 

584 570 527 870 

Expected values 

Strata 

Species 

Aspen Cherry Birch Willow 

376 469 568 698 

450 561 680 835 

454 567 687 843 

Calculated chi square values 

Species 

Strata 

Column total 

Aspen Cherry Birch Willow 

0.1 0.6 5.8 3.2 

2 33.2 0.7 69.1 6.6 

3 36.9 0.0 37.1 0.9 

70.2 1.3 112.0 10.7 

Total 

9.7 

109.6 

74.9 

194.1 

Tabular chi square value for 6 degrees of freedom and 
probability of a larger chi square less than 0.01 is 16.8. 
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to browsed stems was performed. This test showed that when 

browsing was related to availability there was no pattern that 

was significantly (P<0.01) different from random in browsing 

between strata or species. 

Area 1 

Browse surveys were carried out before and after the 

corridors were harvested in area 1. The purpose was to see if 

the intensity or pattern of use changed after the corridors were 

removed. 

Stem and Twig Counts 

The mean number of stems per plot and browsed stems per plot 

for 1987 and 1988 (Table 11) showed no significant (P>0.01) 

difference in the number available or browsed between strata or 

years. 

Table 12 shows the mean number of twigs per plot and browsed 

twigs per plot in 1987 and 1988. The contingency table analysis 

showed that there was a significant (P<0.01) difference in the 

number of twigs per plot available. Examination of the 

individual chi square values (Table 13) showed there was nearly 

equal contribution from each year to this difference between 

years. However, in both years, strata 1 and 2 contributed much 

more to the total chi square value than stratum 3. 
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Table 11. 

Stratum 1 

Stratum 2 

Stratum 3 

Mean number of stems per hectare in area 1 in 1987 and 
1988. 

Mean 
number of 
unbrowsed 
stems 

1987 1988 

45000 42000 

44000 40000 

52500 32000 

Mean 
number of 
browsed 
stems 

1987 1988 

7500 1500 

2000 500 

5500 1000 
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Table 12. 

Stratum 1 

Stratum 2 

Stratum 3 

Mean number of twigs per hectare in area 1 in 1987 and 
1988. 

Mean 
number of 
unbrowsed 
twigs 

1987 1988 

814000 673000 

429000 574000 

439500 481000 

Mean 
number of 
browsed 
twigs 

1987 1988 

14000 9000 

65000 3000 

40000 2500 
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Table 13. Chi square calculations for twigs per plot for area 1 
in 1987 and 1988. 

Year 1987 1988 

Observed values 
Stratum 

1 1628 1346 

2 858 1148 

3 879 962 

Expected values 
Stratum 

1 1467 1506 

2 989 1016 

3 908 932 

Calculated chi square values 
Total 

34.7 

34.5 

1 .8 

71 .0 

Stratum 
1 17.6 17.1 

2 17.5 17.0 

3 0.9 0.9 

Column total 36.0 35.0 

Tabular chi square value for 2 degrees of freedom and 
probability of a larger chi square less than 0.01 is 9.2. 
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The test for differences in number of browsed twigs per plot 

also showed a significant (P<0.01) difference between years and 

between strata (Table 14). There were less twigs per plot 

browsed in 1988 than 1987 and the contingency table showed there 

was a greater contribution to the total chi square value from 

1988 than 1987 (19.0 and 4.6 respectively). 

Species Preference and Availability 

The same preferred species were used in this analysis as in 

the overall analysis. Figures 23 and 24 show the percent 

availability of stems of the most preferred species and their 

percent of diet composition by stratum. In 1987 there were eight 

cases where the change in number of stems browsed between stratum 

followed the same trend as the change in number available. There 

were two cases where there was a greater amount of browsing 

between stratum and less food available. There was one case 

where there was the same amount of browsing between stratum but 

less food available. There was one case where there was more 

food available but less browsing. 

In 1988 there were seven cases where the change in number of 

stems browsed between stratum followed the same trend as the 

change in number available. There was one case where there was a 

greater amount of browsing between stratum and less food 

available. There were four cases where there was more food 
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Table 14. Chi square calculations for browsed twigs per plot for 
area 1 in 1987 and 1988. 

1988 

18.1 

6.2 

4.9 

9.0 

3.7 

16.5 

9.3 

1.6 

8.2 

19.1 

Total 

11.5 

2.0 

10.2 

23.7 

Year 

Observed Values 
Stratum 

1 

1987 

28.0 

13.0 

80.0 

Expected Values 
Stratum 

1 37.1 

15.5 

68.4 

Calculated chi square values 

Stratum 
1 2.2 

2 0.4 

3 2.0 

Column Total 4.6 

Tabular chi square value for 2 degrees of freedom and 
probability of a larger chi square less than 0.01 is 9.2. 
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available but less browsing. 

This shows that the pattern of browsing in relation to 

availability remained about the same over the two years. 
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DISCUSSION 

PREFERRED AREAS 

Aerial survey results showed that corridors of timber, 

hardwood residual and mixedwood residual were preferred during 

the winter months. This preference resulted from a combination 

of favourable habitat conditions that moose found within these 

areas. These conditions will be discussed for corridors and for 

hardwood and mixedwood residual. 

Corridors 

Corridors offer a mixture of food, thermal cover, escape 

cover and snow conditions that are favourable to moose. Since 

the highest percentage of stems per plot browsed within 45 m of 

the corridor on any study site was 13.5 percent (study site 2), 

there was still adequate food available for moose near the 

corridor. Moose did not show a preference between different 

cover types of corridor but since all corridors studied had a 

conifer component there was usually a conifer dominant canopy to 

provide cover from radiative heat loss. Corridors were wide 

enough that a moose within the corridor could not be seen from 

the cutover, thus providing adequate escape cover. Snow was less 
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deep in the corridor, which would allow moose to travel with less 

energy expenditure than if they were moving through a clearcut. 

In this study the corridors were preferred less often than 

the hardwood residual but if snow depth or hardness had been a 

more important factor in habitat selection, the corridors may 

have shown more concentrated use. In a winter with deeper or 

harder snow, residual areas would no longer be accessible 

(Hamilton et. al. 1980) while the corridors would still provide 

food along their edges, thermal cover, escape cover and decreased 

snow depths within the corridor for travelling. Also, the 

hardwood residual data is biased towards showing more use than 

the corridors because tracks within the hardwood residual were 

recorded and used in the analysis while those within the 

corridors were not. 

In the area where the corridors were cut, (study area 1) 

moose showed a preference for the corridor buffers before and 

after the corridors were harvested. The cutover area at this 

site had very dense horizontal cover in the form of jack pine 

stems one to three metres tall. Thompson et al. (1981) and 

Proulx and Joyal (1981) thought that moose used the same winter 

yard in successive years. The preference for the buffer area 

after the corridors had been removed may be a case of using the 

same habitat feature year after year. Use of the corridor 

buffers did decline the year the corridor was removed. The 

decline in use may be due to moose shifting use to other areas. 

This shift in use was shown by the increase in the proportion of 
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track in the uncut forest edge buffers ( 45 m buffer: 0.027 in 

1987, 0.158 in 1988, 90 m buffer: 0.044 in 1987, 0.236 in 1988). 

Similar increases were also seen in residual uncut conifer 

buffers, and the residual uncut mixedwood buffers. However, the 

significance of these shifts may be nullified by the fact that 

there was still harvesting going on during the winter of 1988. 

There was only half the length of recorded track in 1988 in spite 

of an increase from five aerial surveys in 1987 to nine in 1988. 

Hardwood and Mixedwood Residual 

Hardwood residual was preferred in all areas except 1 and 3 

where none was available and there was residual mixedwood timber 

which could act as escape cover in all areas. A moose can reduce 

the chances of encountering a predator by staying in or near 

escape cover (Lyon and Marcum 1986, Hamilton et al. 1980). 

Brusnyk and Gilbert (1983) found that areas with a semi-open 

canopy, such as hardwood and mixedwood residual in this study, 

tend to have taller stems of browse species in greater abundance 

than the clearcut. This effect was exaggerated on these study 

sites because most of the rest of the cutover area outside of the 

residual had been scarified. 

Although a hardwood canopy does not significantly reduce the 

depth of snow (Weitzman and Bay 1959), the stems could break the 

wind so there was less wind packing of snow in these hardwood 

residual areas. This made the hardwood residual an area with 
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high food availability, softer than average snow and escape cover 

in the form of stems of mature trees and young trees and shrubs. 

Mixedwood residual was either preferred (4 times) or used as 

available (10 times). This cover type could offer lower snow 

depths as well as escape and thermal cover because of the conifer 

component of these stands. It could offer browse near the edges, 

or in the interior of the stand if the hardwood component was 

dominant. 

MOOSE HABITAT SELECTION 

Factors that can influence moose habitat selection in winter 

are: food availability, predation, escape cover, and 

meteorological conditions such as snow depth and hardness, air 

temperature and wind speed. In order to understand moose habitat 

selection in this study, some individual factors have been 

quantified when possible and moose habitat preferences examined 

in the context of these quantified factors. 

Food availability and use in this study was comparable to 

other studies of winter habitat (Prescott 1968, Hamilton et al. 

1980 and Peek et al. 1976). Browsing of stems of all species was 

not higher than 18 percent within any stratum on any study area 

and only 16.7 percent of all aspen, cherry, birch and willow 

stems were browsed over all areas. This indicates that food 

availability was not limiting on any of the study areas. 
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Predation can also affect habitat selection. Edwards (1983) 

suggested that cows with calves occupy areas with relatively poor 

food quality in order to avoid wolves on Isle Royale. 

Moose were able to use residual cover types as escape cover 

on most of the study areas but they may also use broken terrain 

for the same purpose. Welsh et al. (1980) found that use of 

cutovers increased with increasing ruggedness. Sight can be 

effectively blocked on one or both sides by a moose being on the 

side of a ridge or in a narrow draw or ravine. Ruggedness will 

probably also affect the distribution of browse plants. The 

distribution of plants is more likely to be patchy due to more 

abrupt microsite differences within the cutover. Moose may have 

been selecting patches that offered a combination of preferred 

browse species and escape cover. By using terrain and existing 

residual as cover moose were able to browse far from the 

corridor. 

Snow depths were only greater than 70 cm for, at most, four 

weeks during 1988. Snow depths of 60 to 70 cm will impede moose 

movement and snow depths greater than 90 cm severely restrict 

movement (Coady 1974). The coldest mean monthly temperatures 

during this study period were in January and February of 1988 ( 

15.9 and -16 degrees Celsius respectively). These mean monthly 

temperatures were still above that which would stress a healthy 

calf moose (Renecker et al. 1978). 

While food availability, snow conditions and cold stress 

were generally not limiting factors, they were probably still 
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important for habitat selection on a small scale. Weather 

conditions and food availability vary within a cutover and either 

one, or both, may have had a strong influence on habitat 

selection during periods of the study. 

VALIDITY OF RESULTS 

The aerial survey results, which showed that moose prefer 

the area near the corridor seem to contradict the browse survey 

results, which do not show a preference for use near the 

corridor. 

Aerial surveys had biases that were caused by selecting the 

same conditions for each survey. These conditions were: surveys 

were done only between 10:30-15:00, surveys were done on sunny 

days with winds less than 30 km/hr and surveys were never done 

when the air temperature was below -25° C. Track length, rather 

than moose sightings, was used as a measure of habitat use 

because a moose sighting is an instantaneous observation and it 

is often impossible to tell why a moose has selected a particular 

area or what activity it was involved in. 

Tracks, while they show where moose have been, also have 

some problems. The Neu et al. (1974) method, used in the 

analysis of tracks, assumes that habitat availability is the same 

for all animals and that all observations are independent 

(Alldredge and Ratti 1986). Both of these assumptions may have 
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been violated. 

Moose home ranges in Northwestern Minnesota ranged from 259 

to 3912 ha in summer and fall and from 77 to 751 ha in late 

winter (Phillips et al. 1973). Cutover sizes in this study ranged 

from 297 ha to 4828 ha. If the cutover size is larger than the 

home range of a moose, all habitat types available in the cutover 

are not available to each moose. Three of the cutover areas in 

this study were greater than 750 ha but because of the relatively 

light snowfall during the study period, moose mobility may have 

been higher than normal and home ranges corresponding!y larger. 

Neu et al. (1974) assumed independence of tracks because 

track surveys were made far enough apart in time to reduce the 

chances of recording the same set of tracks more than once. In 

this study, the methods used to record tracks prevented the same 

tracks from being recorded more than once. However, when a group 

of tracks was observed, each track was recorded rather than 

choosing one track to represent what may have been a group 

movement. Cow/calf groups or groups of bulls were thus recorded 

as separate and independent tracks when members of the group may 

not have been acting independently. 

Also, it was impossible to tell the sex and age of a moose 

by tracks. This could be important if there was differential use 

of habitat by sex and age as was noted by Todesco (1988). 

Another problem is that tracks would remain visible in areas of 

residual on cutovers but would get blown full of snow in 

openings. Tracks also don’t show what moose were doing when they 
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made the tracks. 

Browse surveys also have limitations: first, if there was a 

change in browse preference or area of use from leaf off to the 

time of the browse survey it could not be detected. Such a change 

in forage preference has been noted by Peek (1971) and changes in 

habitat from early to late winter have been noted by Crete and 

Jordan (1982), Phillips et al.(1973) and Welsh et al.(1980). 

Second, it is impossible to tell whether or not a stem or twig 

has been browsed more than once, although this is probably a 

minor problem in an area with low moose density. Third, the low 

intensity of browsing and the high variance in browsing made the 

results less reliable as indicators of use. 

In this study, there was no observed change in diet 

composition between strata. However, since snow did not limit 

moose movements for most of the winter previous to the browse 

survey, a change in diet composition would not have been 

detectable. For example, if moose preferred aspen late in the 

winter, and were still able to move to where aspen was abundant, 

the change in diet composition from less aspen in early winter to 

more aspen in late winter would not be evident. This problem 

was accentuated by the low moose density. A higher moose density 

would have shown any trends more strongly. Also, a change in 

areas of use in relation to the corridor would not be detectable 

by this browse survey. Use could have been influenced by 

residual or terrain and although residual was noted in the browse 

surveys, quantifying specifically how moose may use residual or 
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terrain as escape or thermal cover was not possible. 

Despite these drawbacks in the two methods, inferences can 

still be made. The aerial survey showed moose prefer areas near 

the corridor or some sort of cover. The aerial survey showed 

tracks were most often found within either 45 m (five areas) or 

90 m (all six areas) of any type of edge. Brusnyk and Gilbert 

(1983) found that 74 percent of moose track locations were 

associated with dense conifer edges. Browse surveys showed that 

generally moose browse plant species in relation to their 

availability. These findings are similar to those of Crete 

(1987) who found a significant positive linear relationship 

between winter use of deciduous species and density. 

The aerial survey results differed from the browse survey 

results because they measured different things. The aerial 

survey showed a more general use pattern by moose. It showed 

where moose had been whether they were browsing or travelling or 

avoiding predators during a period from January through March. 

The aerial survey gives a better representation of how moose use 

the clearcut area and the cover within the clearcut during the 

winter months. The browse survey results show browsing use from 

late fall through early spring. The browse survey may have shown 

different results if it was related to other features that 

provided cover (i.e. terrain and residual timber) rather than 

just distance from the corridor. 
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MANAGEMENT RECOMMENDATIONS 

The results of this study have shown that moose do use 

corridors. The types of corridors available were mixedwood and 

conifer and there was no difference in preference between types. 

The corridors were 100 to 200 m wide. This width provided 

adequate escape cover, and snow conditions in the corridor were 

similar to those in an uncut stand. A narrower corridor could be 

effective if the timber was dense enough to provide overhead and 

lateral cover but not so dense that a moose could not move 

through it. Snow depths decreased gradually for about 20 m going 

into the corridor. It is likely that a corridor 50 m wide would 

be the minimum necessary to insure decreased snow depths within 

the corridor. In broken terrain where timber quality varies a 

wider corridor would probably be necessary to provide uniform 

snow depths and cover along the length of the corridor. The 

wider corridor would make it more likely that there was some 

dense timber that the moose could use if travelling along the 

length of the corridor. 

Corridors were preferred whether they follow a straight line 

as in areas 2, 3, 4 and 5, or whether they followed land features 

like the corridor in area 6. I think the best configuration for 

corridors in cutovers that are larger than 100 ha would be a 

pattern similar to the corridors in area 3. This area has 

corridors that are perpendicular to each other and allow moose to 

cross the cutover going north, south, east or west. I think this 
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ability to cross a cutover from side to side and top to bottom is 

especially important in large cuts where the distance around the 

cutover is greatest. 

An east-west corridor has some special properties that may 

be considered when planning corridors. In late winter/early 

spring, when moose movement is usually most restricted, an east- 

west corridor may be a better travel route because of the softer, 

shallower snow on the south side. The south side of the east- 

west corridor is exposed to the sun for most of the day and is 

protected from north and northwest winds. This exposure to the 

sun and lack of cooling winds causes the snow to soften and melt 

faster than any other area in the corridor or cutover. The 

crusts on the south side may be harder than the crusts within the 

corridor early in the day, but these crusts will be softer than 

those within the corridor by mid-afternoon of a sunny day. 

The north side of the corridor has less exposure to the sun 

than either the south side or the clearcut. This slows the 

process of snow maturation from solar radiation within the shade 

on the north side of the corridor. In early to mid-winter, there 

would be less crust formation from solar radiation on the north 

side than on the south side or in the clearcut. This would 

result in softer snow for a longer period of the winter. 

RESEARCH RECOMMENDATIONS 

This study suggests that the role of escape cover in moose 
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habitat selection needs to be better quantified. Escape cover 

affects both food availability for moose and their success in 

avoiding predators. The role of terrain as escape cover is 

especially important. If it could be shown how moose use terrain 

as escape cover, timber patches or corridors could be used to 

supplement the cover provided by terrain and could be placed in 

more strategic locations. 
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APPENDIX 1 

MOOSE TRACKS OBSERVED DURING AERIAL SURVEYS 



Figure 25. Moose tracks observed in study site 1. 
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Figure 27. Moose tracks observed in study site 3 
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Figure 28. Moose tracks observed in study site 4. 
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Figure 29 Moose trocks observed in study site 5 



Figure 30. Moose tracks observed study site 6. 
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APPENDIX 2 

GOODNESS OF FIT CALCULATIONS FOR LENGTH 
OF TRACKS WITHIN 45 AND 90 M OF COVER 

FOR EACH STUDY SITE 
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Table 15. Cover type symbols and descriptions used 
analysis. 

in track 

Cover type symbol Description 

ccut clearcut 

mcor 
hcor 
ccor 

mixedwood corridor 
hardwood corridor 
conifer corridor 

mbl k 
hblk 
cblk 

mixedwood blocks 
hardwood blocks 
conifer blocks 

msl r 
hsl r 
csl r 

mixedwood stream and 
hardwood stream and 

lake reserves 
lake reserves 

conifer stream and lake reserves 

mres 
hres 
cres 

mixedwood residual 
hardwood residual 
conifer residual 

mswp 
hswp 
cswp 
aswp 
gswp 
pbog 

mixedwood swamp 
hardwood swamp 
conifer swamp 
alder swamp 
grass/cattail swamp 
peat bog 

medg mixedwood uncut edge 
hedg hardwood uncut edge 
cedg conifer uncut edge 
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Table 16. Calculated goodness of fit values for study site 
1987. 

Cover Buffer Prop. Prop. Observed 
type distance of total of length length 

area in area of track 

Expected 
length 
of track 

 ^  

Calculated 
goodness 
of 
fit 

ccor 
ccor 
cbl k 
cblk 
mres 
mres 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 

0.053 
0.060 
0.008 
0.010 
0.016 
0.018 
0.177 
0. 137 

0.387 
0.483 
0.004 
0.007 
0.015 
0.031 
0.027 
0.044 

8557.9 
10677.4 
89.0 
159.5 
339 
692 
592 
982 

1177.1 
1323.9 
174.3 
225.5 
352.6 
391.5 
3899.7 
3016.9 

46 
66 
0 
0 
0 
0 
3 
1 

Total = 116 

Expected track lengths found by multiplying total length 
of track in area by proportion of area for each cover type and 
buffer distance. Tabular value, 7 df, 0.01 level of probability 
=18.5. 
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Table 17. Calculated goodness of fit values for study site 1, 
1988. 

Cover Buffer Prop. Prop. Observed Expected 
type distance of total of length length length 

area in area of track of track 

Calculated 
goodness 
of 
fit 

ccor 
ccor 
cbl k 
cblk 
mres 
mres 
cres 
cres 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.053 
0.060 
0.008 
0.010 
0.016 
0.018 
0.007 
0.009 
0.177 
0.137 

0.177 
0.246 
0.008 
0.020 
0.052 
0.073 
0.006 
0.023 
0.158 
0.236 

7040.5 
9777.4 
314.0 
805.2 
2064.0 
2895.7 
237.2 
903.0 
6264.6 
9365.2 

2113.6 
2377.2 
312.9 
404.9 
633.1 
702.9 
261.6 
360.4 
7002.1 
5417.0 

11 
23 
0 
0 
3 
7 
0 
1 
0 
3 

Total = 48 

Expected track lengths found by multiplying total length 
of track in area by proportion of area for each cover type and 
buffer distance. Tabular value, 7 df, 0.01 level of probability 
= 18.5. 
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Table 18. Calculated goodness of fit values for study site 2. 

Cover Buffer Prop. Prop. Observed 
type distance of total of length length 

area in area of track 
(meters) 

mcor 
mcor 
cblk 
cbl k 
mres 
mres 
hres 
hres 
cswp 
cswp 
gswp 
gswp 
medg 
medg 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.032 
0.035 
0.024 
0.026 
0.030 
0.033 
0.124 
0.135 
0.006 
0.010 
0.041 
0.048 
0.242 
0.196 
0.033 
0.034 

0.044 
0.083 
0.022 
0.041 
0.098 
0.127 
0.383 
0.514 
0.001 
0.002 
0.003 
0.009 
0.108 
0.217 
0.020 
0.036 

3113.5 
5836.4 
1586.4 
2904.6 
6929.7 
8969.8 
27048.9 
36268.9 
62.8 
108.7 
183.9 
621.0 
7621.5 
15328.0 
1388.5 
2524.2 

Expected 
length 
of track 
(meters) 

7442 
2501 
1703 
1862 
2100 
2309 
8789 
9537 
453.4 
714.7 
2895.9 
3411.7 
17074.2 
13836.5 
2296.6 
2374.6 

Calculated 
Goodness 
of 
fit 

0 
4 
0 
1 
11 
19 
38 
75 
0 
1 
3 
2 
5 
0 
0 
0 

Total = 159 

Expected length of track found by multiplying total length 
of tracks in area by proportion of total area for each cover type 
and buffer distance. Tabular value, 13 df, 0.01 level of 
probability = 27.7. 
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Table 19. Calculated goodness of fit values for study site 3. 

Cover Buffer Prop. Prop. Observed Expected 
type distance of total of length length length 

area in area of track of track 
(meters) (meters) 

Calculated 
Goodness 
of 
fit 

mcor 
mcor 
ccor 
ccor 
mres 
mres 
cres 
cres 
aswp 
aswp 
gswp 
gswp 
medg 
medg 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.093 
0.085 
0.012 
0.014 
0.038 
0.043 
0.027 
0.033 
0.021 
0.023 
0.009 
0.011 
.063 
.062 
.014 
.018 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

152 
282 
050 
093 
108 
191 
018 
038 
045 
066 
004 
008 
069 
135 
002 
007 

15382.1 
28551.2 
5059.2 
9418.7 
10922.9 
19271.2 
1842.4 
3889.6 
4588.6 
6696.4 
388.4 
786.6 
6976.2 
13609.9 
244.6 
658.8 

9386 
8558 
1251 
1449 
3840 
4334 
2730 
3322 
2115 
2290 
943.30 
1140.9 
6328 
6235 
1375 
1775 

4 
47 
12 
44 
13 
51 
0 
0 
3 
8 
0 
0 
0 
9 
1 
1 

Total = 193 

Expected length of track found by multiplying total length 
of tracks in area by proportion of total area for each cover type 
and buffer distance. Tabular value, 13 df, 0.01 level of 
probability = 27.7. 
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Table 20. Calculated goodness of fit values for study site 4. 

Cover Buffer Prop. Prop. Observed Expected 
type distance of total of length length length 

area in area of track of track 
(meters) (meters) 

Calculated 
Goodness 
of 
fit 

mcor 
mcor 
ccor 
ccor 
msl r 
msl r 
mres 
mres 
hres 
hres 
hswp 
hswp 
cswp 
cswp 
aswp 
aswp 
gswp 
gswp 
medg 
medg 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

026 
026 
018 
021 
041 

0.041 
0.047 
0.052 
0.050 
0.053 
0.014 

018 
061 
063 
036 
041 
013 
019 
034 
033 
135 
085 

0.207 
0.284 
0.062 
0.130 
0.015 
0.028 
0.049 
0.092 
0.200 
0.282 
0.091 
0.147 
0.092 
0.207 
0.089 
0.126 
0.007 
0.032 
0.033 
0.081 
0.026 
0.067 

4576.7 
6278.3 
1374.2 
2862.9 
328.1 
616.6 
1088.3 
2029 
4430 
6233 
2014 
3243 
2032 
4564.8 
1961.9 
2786.4 
155.7 
698.4 
734.3 
1795.0 
571 .0 
1474.6 

569 
572 
389 
476 
907 
902 
1037.0 
1143.1 
1110.9 
1176.2 
315.2 
399.7 
1350.7 
1382.6 
805.3 
901 
286 
410 
743 
733 

8 
00 
83 
63 
2 

2986.8 
1887.0 

28 
57 
2 
12 
0 
0 
0 
1 
10 
22 
9 
20 
0 
7 
2 
4 
0 
0 
0 
2 
2 
0 

Total = 179 

Expected length of track found by multiplying total length 
of tracks in area by proportion of total area for each cover type 
and buffer distance. Tabular value, 19 df, 0.01 level of 
probability = 36.2. 
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Table 21 . Calculated goodness of fit for study site 5 

Cover Buffer Prop. Prop. Observed Expected Calculated 
type distance of total of length length length goodness 

area in area of track of track of 
(meters) (meters) fit 

mcor 
mcor 
ccor 
ccor 
mb! k 
mb! k 
msl r 
msl r 
mres 
mres 
hres 
hres 
cres 
cres 
mswp 
mswp 
aswp 
aswp 
medg 
medg 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.028 
0.027 
0.011 
0.012 
0.024 
0.019 
0.047 
0.049 
0.013 
0.016 
0.076 
0.077 

002 
004 
007 
008 
061 

0.063 
0.035 
0.029 
0.081 
0.058 

0 
0 
0 
0 
0 

0.103 
0.141 
0.026 
0.045 
0.050 
0.075 
0.074 
0.124 
0.077 
0.107 
0.305 
0.453 
0.010 
0.014 
0.055 
0.066 
0.003 
0.032 
0.000 
0.013 
0.115 
0.181 

1739.3 
2398.1 
442.4 
767.1 
839.3 
1268.3 
1246 
2095 
1298 
1806 
5171 
7680 
165.1 
244.8 
926.9 
1111.7 
46.3 
544.9 
0.0 
226.8 
1946.6 
3069.8 

481 
462 
182 
196 
403 
315.4 
800.1 
833.1 
219.0 
267.2 
1293.0 
1309.8 
41.5 
66.0 
117.63 
141.1 
1031.1 
1059.8 
586.0 
499.76 
1370.7 
981.5 

3 
8 
0 
2 
0 
3 
0 

5 
9 
12 
31 
0 
0 
6 
7 
1 
0 
1 
0 
0 
4 

Total = 95 

Expected length of track found by multiplying total length 
of tracks in area by proportion of total area for each cover type 
and buffer distance. Tabular value, 19 df, 0.01 level of 
probability = 36.2. 
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Table 22. Calculated goodness of fit value for study site 6. 

Cover Buffer Prop. Prop. Observed Expected Calculated 
type distance of total of length length of length of goodness 

area in area limit track 
(meters) 

track 
(meters) 

of 
fit 

mcor 
mcor 
hcor 
hcor 
ccor 
ccor 
msl r 
msl r 
csl r 
csl r 
mres 
mrse 
hres 
hres 
cswp 
cswp 
aswp 
aswp 
gswp 
gswp 
pbog 
pbog 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.008 
0.008 
0.001 
0.001 
0.003 
0.003 
0.076 
0.065 
0.001 
0.001 
0.004 
0.004 
0.017 
0.017 
0.055 
0.057 
0.025 
0.027 
0.022 
0.023 
0.001 
0.002 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

042 
074 
005 
009 
020 
045 
055 
131 
002 
003 
027 
035 
145 
227 
044 
088 
051 
081 
030 
041 
001 
001 

3803.2 
6679.7 
468.4 
797.4 
1844.7 
4065.7 
5027.6 
11867.5 
146.7 
232.7 
2482.9 
3178.3 
13177.2 
20562.7 
3949 
8012 
4642 
7357 
2686 
3755.4 
53.1 
122.1 

700.0 
726.6 
62.2_^ 
81 .6 
262.1 
275.2 
6906.3 
5926.9 
51.7 
72.6 
407.4 
379.0 
1506.5 
1563 
4998 
5159 
2309 
2494 
1978.4 
2052.3 
131.3 
149.1 

14 
49 
3 
6 
10 
52 
1 
6 
0 
0 
1 1 
21 
90 
231 
0 
2 
2 
9 
0 
1 
0 
0 

Total = 508 

Expected length of track found by multiplying total length 
of track in area by proportion of total area for each cover type 
and buffer distance. Tabular value, 21 df, 0.01 level of 
probability = 38.9. 
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APPENDIX 3 

CONFIDENCE LIMIT CALCULATIONS FOR 
TRACK LENGTH FOR EACH STUDY AREA 
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Table 23. Ninety-five percent confidence limits around the 
observed proportion of track length in each cover type 
and buffer area available in area 1, 1987. 

Cover Buffer Prop. Prop. Upper Lower 
type distance of total of length conf. conf. 

area in area limit limit 

Significance 
+ = positive 
- - negative 
0 = none 

ccor 
ccor 
cbl k 
cbl k 
mres 
mres 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 

0 
0 
0 
0 
0 
0 
0 
0 

053 
060 
008 
010 
016 
018 
177 
137 

0.387 
0.483 
0.004 
0.007 
0.015 
0.031 
0.027 
0.044 

0.518 
0.618 
0.021 
0.030 
0.048 
0.078 
0.070 
0.100 

0.256 
0.349 
-0.013 
-0.016 
-0.018 
-0.016 
-0.017 
-0.011 

+ 
+ 

0 
0 
0 
0 
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Table 24. Ninety-five percent confidence limits around the 
observed proportion of track length in each cover 
type and buffer area available in area 1, 1988. 

Cover Buffer Prop. Prop. Upper Lower 
type distance of total of length conf. conf. 

area in area limit limit 

Significance 
+ = positive 
- = negative 
0 = none 

ccor 
ccor 
cbl k 
cbl k 
mres 
mres 
cres 
cres 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

053 
060 
008 
010 
016 
018 
007 
009 
177 
137 

0.177 
0.246 
0.008 
0.020 
0.052 
0.073 
0.006 
0.023 
0.158 
0.236 

0.254 
0.333 
0.026 
0.049 
0.097 
0.125 
0.021 
0.053 
0.231 
0.321 

0.075 
0.130 
-0.016 
-0.018 
-0.008 
-0.003 
-0.015 
-0.017 
0.060 
0.122 

+ 
+ 

0 
0 
0 
0 
0 
0 
0 
0 
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Table 25. Ninety-five percent confidence limits around the 
observed proportion of track length in each cover type 
and buffer area available in area 2. 

Cover Buffer Prop. Prop. Upper Lower 
type distance of total of length conf. conf. 

area in area limit limit 

Significance 
+ = positive 
- = negative 
0 = none 

mcor 
mcor 
cblk 
cblk 
mres 
mres 
hres 
hres 
cswp 
cswp 
gswp 
gswp 
medg 
medg 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.032 
0.035 
0.024 
0.026 
0.030 
0.033 

124 
135 
006 
010 
041 

0.048 
0.242 
0.196 
0.033 
0.034 

0 
0 
0 
0 
0 

044 
083 
022 
041 
098 
127 

0.383 
0.514 
0.001 
0.002 
0.003 
0.009 
0.108 
0.217 
0.020 
0.036 

0.066 
0.113 
0.039 
0.063 
0.130 
0.163 
0.436 
0.568 
0.004 
0.006 
0.008 
0.019 
0.142 
0.262 
0.035 
0.056 

0.022 
0.053 
0.006 
0.020 
0.066 
0.091 
0.330 
0.459 
-0.002 
-0.003 
-0.003 
-0.001 
0.074 
0.172 
0.005 
0.016 

0 
+ 
0 
0 
+ 
+ 
+ 
+ 

0 
0 
0 
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Cover 
type 

moor 
moor 
ccor 
ccor 
mres 
mres 
ores 
ores 
aswp 
aswp 
gswp 
gswp 
medg 
medg 
cedg 
cedg 

26. Ninety-five percent confidence limits around the 
observed proportion of track length in each cover 
type and buffer area available in area 3. 

Buffer Prop. Prop. Upper Lower 
distance of total of length conf. conf. 

area in area limit limit 

Significance 
+ = positive 
- = negative 
0 = none 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.093 
0.085 
0.012 
0.014 
0.038 
0.043 

027 
033 
021 
023 
009 

0.011 
0.063 
0.062 
0.014 
0.018 

0.152 
0.282 
0.050 
0.093 
0.108 
0.191 
0.018 
0.038 
0.045 
0.066 
0.004 
0.088 
0.069 
0.135 
0.002 
0.007 

0.230 
0.380 
0.097 
0.156 

175 
276 
047 
080 
090 

0.120 
0.017 
0.027 
0.124 
0.208 
0.013 
0.024 

0.074 
0.185 
0.003 
0.030 
0.041 
0.106 
-0.011 
-0.003 
0.000 
0.012 
-0.010 
-0.011 
0.014 
0.061 
-0.008 
-0.011 

0 
+ 
0 
+ 
+ 
+ 

0 
0 
0 
0 
0 
0 
0 
0 
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Table 27. Ninety-five percent confidence limits around the 
observed proportion of track length in the each cover 
type and buffer area available in area 4. 

Cover Buffer Prop. Prop. Upper 
type distance of total of length conf. 

area in area limit 

mcor 
mcor 
ccor 
ccor 
msl r 
msl r 
mres 
mres 
hres 
hres 
hswp 
hswp 
cswp 
cswp 
aswp 
aswp 
gswp 
gswp 
medg 
medg 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.026 
0.026 
0.018 
0.021 
0.041 
0.041 
0.047 
0.052 
0.050 
0.053 
0.014 
0.018 
0.061 
0.063 
0.036 
0.041 
0.013 
0.019 
0.034 
0.033 
0.135 
0.085 

0.207 
0.284 
0.062 
0.130 
0.015 
0.028 
0.049 
0.092 
0.200 
0.282 
0.091 
0.147 
0.092 
0.207 
0.089 
0.126 
0.007 
0.032 
0.033 
0.081 
0.026 
0.067 

0.355 
0.452 
0.152 
0.255 
0.060 
0.089 
0.130 
0.200 
0.350 
0.450 
0.199 
0.279 
0.200 
0.358 
0.195 
0.250 
0.038 
0.097 
0.100 
0.183 
0.085 
0.160 

Lower 
conf. 
1 imi t 

0.056 
0.116 
-0.028 
0.004 
-0.030 
-0.034 
-0.032 
-0.016 
0.051 
0.114 
-0.016 
0.015 
-0.016 
0.055 
-0.017 
0.002 
-0.024 
-0.034 
-0.034 
-0.021 
-0.033 
-0.026 

Significance 
+ = positive 
- = negative 

0 = none 

+ 
+ 
0 
0 
0 
0 
0 
0 
+ 
+ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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Table 28. Ninety-five percent confidence limits around the 
observed proportion of track length in each cover 
type and buffer area available in area 5. 

Cover Buffer Prop. Prop. Upper Lower 
type distance of total of length conf. conf. 

area in area limit limit 

Significance 
+ = positive 
- = negative 
0 = none 

mcor 
mcor 
ccor 
ccor 
mbl k 
mbl k 
msl r 
msl r 
mres 
mres 
hres 
hres 
cres 
cres 
mswp 
mswp 
aswp 
aswp 
medg 
medg 
cedg 
cedg 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.028 
0.027 

011 
012 
024 
019 
047 
049 

0.013 
0.016 
0.076 
0.077 
0.002 
0.004 
0.007 
0.008 
0.061 
0.063 
0.035 
0.029 
0.081 
0.058 

103 
141 
026 
045 
050 
075 
074 
124 
077 
107 
305 
453 
010 
014 
055 

0.066 
0.003 
0.032 
0.000 
0.013 
0.115 
0.181 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

254 
315 
105 
149 
158 
206 

0.204 
0.287 
0.209 
0.260 

534 
701 
059 
074 
168 

0.189 
0.029 
0.120 
0.000 
0.071 
0.274 
0.373 

-0.048 
-0.032 
-0.053 
-0.058 
-0.058 
-0.056 
-0.056 
-0.040 
-0.056 
-0.047 
0.076 
0.205 
-0.039 
-0.045 
-0.059 
-0.058 
-0.023 
-0.056 
0.000 
-0.044 
-0.044 
-0.011 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
+ 
+ 
0 
0 
0 
0 
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Table 29. Ninety-five percent confidence limits around the 
observed proportion of track length in each cover 
type and buffer area available in area 6. 

Cover Buffer Prop. Prop. Upper Lower Significance 
type distance of total of length conf. conf. + = positive 

area in area limit limit - = negative 
0 = none 

mcor 
mcor 
hcor 
hcor 
ccor 
ccor 
msl r 
msl r 
csl r 
csl r 
mres 
mres 
hres 
hres 
cswp 
cswp 
aswp 
aswp 
gswp 
gswp 
pbog 
pbog 

45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 
45 
90 

0.008 
0.008 
0.001 
0.001 
0.003 
0.003 
0.076 
0.065 
0.001 
0.001 
0.004 
0.004 
0.017 
0.017 
0.055 
0.057 
0.025 
0.027 
0.022 
0.023 
0.001 
0.002 

0.042 
0.074 
0.005 
0.009 
0.020 
0.045 
0.055 
0.131 
0.002 
0.003 
0.027 
0.035 
0.145 
0.227 
0.044 
0.088 
0.051 
0.081 
0.030 
0.041 
0.001 
0.001 

0 
0 
0 
0 
0 
0 
0 
0 

097 
145 
025 
034 
059 
101 
118 
223 

0.013 
0.016 

072 
085 
241 
341 
099 
166 
11 1 
156 
076 
096 

0.007 
0.011 

-0.013 
0.002 
-0.014 
-0.017 
-0.018 
-0.012 
-0.007 
0.039 
-0.009 
-0.011 
-0.017 
-0.015 
0.049 
0.112 
-0.012 
-0.011 
-0.009 
-0.007 
-0.017 
-0.013 
-0.006 
-0.009 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
+ 
+ 

0 
0 
0 
0 
0 
0 
0 
0 
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APPENDIX 4 

MEAN SNOW DEPTHS FOR EACH SNOW STATION 
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Table 30. 

Direction 
from 
corridor 

East 

20 m into 
20 m into 

Mean snow depths for area 2 from winter of 1988 snow 
surveys. Vertical lines to the left of the mean 
indicates no significant difference (p<0.05) between 
means. 

Distance 
from 
corridor 
(meters) 

120 
100 
80 
60 
40 
20 
10 

corridor 
corridor 

10 
20 
40 
60 
80 
100 
120 

Snow depth (cm) 

Jan. 16 Feb. 14 Mar. 

36.1 
38.7 
33.8 
36.3 
34 
36 
37.8 
26.2 
32 
36 
32 
41 
39 
39 
37 
40 

59 
52 
52.1 
55 
59 
57 
62.8 
48.0 
45 
65 
55 
58 
60 
72 
63.1 
70.3 

77.3 
63.5 
64.4 
70.4 
66.6 
70.1 
79.0 
57.5 
56.5 
83.5 
69.7 
75.3 
76.7 
84.5 
76.2 
81.5 

12 

West 



117 

Table 31. Mean snow depths for area 3 from winter of 1988 snow 
surveys. Vertical lines to the left of the mean 
indicates no significant difference (p<0.05) between 
means. 

Directi on 
from 
corridor 

North 

Distance 
from 
corridor 
(meters) 

120 
100 
80 
40 
20 
10 

20 m into corridor 
20 m into corridor 

10 
20 
40 
80 
100 
120 

Snow depth (cm) 

Jan. 30 Feb. 27 Mar. 22 

41 
40 
38 
42 
47.1 
37.2 
14 
44 
47 

6 
2 
6 

41.8 
43 
41 
40 
38 

66 
55 
55 
42 
51 
63 
64 
63 
65 
62 
62.2 
68.4 
64.9 
55.4 

90.4 
89.4 
78.7 
85.8 
87.5 
90.2 
74.3 
75.8 
80.6 
82.1 
82.1 
92.8 
83.0 
88.1 South 
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Table 32. 

Directi on 
from 
corridor 

East 

20 m into 
20 m into 

Mean snow depths for area 4 from winter of 1988 snow 
surveys. Vertical lines to the left of the mean 
indicate no significant difference (p<0.05) between 
means. 

Distance 
from 
corridor 
(meters) 

120 
100 
80 
60 
40 
20 
10 

corridor 
corridor 

10 
20 
40 
60 
80 
100 
120 

Snow depth (cm) 

Jan. 10 Feb. 07 

36 
37 
34 
33 
32 
28 
29.8 
14.7 
20 
27 
27 
29 
31 
33 
34.4 
36.1 

50.1 
49.9 
48.3 
48 
47 
44 
42 
28 
29 
38.8 
41.3 
42.6 
45.5 
47.8 
46.3 
48.5 

Mar. 05 Apr. 02 

60.5 
61.9 
58.8 
54.9 
56.8 
56.9 
51 
36 
26 
54 
53.1 
54.4 
55.1 
55.5 
58.6 
65.8 

60.8 
59.9 
56 
59 
55 
57 
55.8 
34.8 
36.0 
55.1 
58.7 
61.3 
64.5 
57.8 
64 
62 West 
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Table 33. Mean snow depths for area 5 from winter of 1988 snow 
surveys. Vertical lines to the left of the mean 
indicate no significant difference (p<0.05) between 
means. 

Direction 
from 
corridor 

East 

Distance 
from 
corridor 
(meters) 

120 
100 
80 
60 
40 
20 
10 

20 m into corridor 
20 m into corridor 

10 
20 
40 
60 
80 
100 

West 120 

Snow depth (cm) 

Jan. 03 Jan. 24 

29.4 
30.8 
28.6 
27.7 
25.8 
35.1 
32.4 
16.5 
17.6 
35.3 
32.2 
33.3 
31 .0 
29.4 
32.2 
16.4 

39.8 
41.5 
38.5 
37.8 
42.7 
43 
40 
22 
37 
43 
43.1 
40.2 
39 
40 
35 
35 

Feb. 21 Mar. 20 Apr. 09 

51 .5 
51 .6 
54.6 
40.8 
55.7 
57.5 
53.8 
32.8 
46.6 
55.0 
57.8 
51 .8 
50.0 
48.5 
48.3 
46.0 

69 
73 
66 
59 
65.1 
65.2 
65.7 
45.8 
59.9 
65 
66 
64 
59 
62 
69 
68 

39.5 
38.3 
32.2 
29.6 
30.1 
33 
34 
30 
39 
36 
31 
32 
29 
29 
35 
37.3 
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APPENDIX 5 

TOTAL NUMBER OF ASPEN, CHERRY, WHITE BIRCH AND WILLOW 
STEMS FROM ALL STUDY AREAS, AVAILABLE AND BROWSED 
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Table 34. 

Species 

Aspen 

Cherry 

Bi rch 

Sal ix 

Total 

Total number, from all areas, of stems of 
of plants that were available and browsed 
distance strata. 

four species 
in each 

Strata 1 Strata 2 Strata 3 
Number Number Number Number Number Number 
available browsed available browsed available browsed 

369 82 328 

486 84 541 

511 107 897 

745 102 761 

2111 375 2527 

43 584 113 

50 570 68 

129 527 151 

78 870 178 

300 2451 510 


