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ABSTRACT 

Cement-based stabilization/solidification (S/S) is a widely used technique to treat 

industrial wastes containing toxic metal ions before land disposal. To prevent the fast 

setting of the treated waste during its transportation from the treatment plant to the 

disposal site, small amounts of sucrose or sorbitol can be added to slow down the speed 

of cement setting, thus adding flexibility to the handling of the treated waste. However, 

suerose and sorbitol may also affect the leachability of the metal ions present in the 

treated waste because of their ability to alter the microstructure of hydrated cement pastes. 

In the first stage of this research, various types of cements (pure tricalcium silicate 

[C3S], white Portland cement [WPC] and ordinary Portland cement [OPC]), which 

represent systems of increasing compositional complexity, were investigated to better 

understand the contribution of individual cement components to the properties of 

hydrated pastes. The degree of hydration was measured as a function of curing time by 

SEM grey level analysis and loss-on-ignition testing. The hydration rate was found to 

decrease as C3S > WPC > OPC, correlating with the relative content of C3S and 

tricalcium aluminate (C3A). The fraction of non-evaporable water in fully hydrated OPC 

and WPC was 0.2349 ± O.OOSy and 0.2086 ± 0.0032, respectively. The micro structure of 

hydrated C3S was characterized by two prominent features; 1) large zones of unhydrated 

C3S particles embedded in dense calcium hydroxide (CH); and 2) porous zones in which 

calcium silicate hydrate (CSH) was the only hydration product. CH-rich zones were also 

observed in hydrated OPC and WPC, but they were smaller and became less distinct as 



hydration progressed. No large porous zones were present in hydrated OPC and WPC, 

which exhibited much lower overall porosity than C3S. 

In the second stage of this research, the effeets of a small amount of sucrose 

(0.037 or 0.15 wt%) or sorbitol (0.40 wt%) on the hydration and microstructure OPC, 

WPC and C3S were investigated as a function of curing time. For the above 

concentrations of sucrose or sorbitol, the retardation period was longer in OPC (3-7 days) 

than in WPC (1-3 days). Calcium hydroxide appeared before CSH at the earliest stages of 

hydration, and eventually formed into dense CH-rich islands that contained unhydrated 

grains of C3S. These islands were especially prominent in the hydrated C3S. The delaying 

effects with the above concentrations of sucrose or sorbitol were only temporary, except 

for 0.15% sucrose, which seemed to inhibit the hydration of C3S permanently. Due to 

adsorption on C3A, the same addition of sucrose caused less retardation on OPC and 

WPC than on C3S. By contrast, sorbitol had a more consistent impact on all the samples. 

After 56 days of curing, OPC and WPC consistently exceeded 77% degree of hydration 

and 27.6 MPa (4000 psi) unconfined compressive strength. OPC which contained 0.40 

wt% sorbitol had significantly higher strength and degree of hydration than all other OPC 

samples at 56 days. 

In the last stage of this research, the effects of sucrose or sorbitol addition on the 

hydration, unconfined compressive strength and leachability of Portland cement pastes 

containing 1% Pb and 1% Zn were studied as a function of time. Whereas Pb and Zn 

were found to shorten the time to achieve maximum hydration of Portland cement, the 

combination of these metals with 0.15 wt% sucrose or 0.40 wt% sorbitol retarded the 

setting of cement by at least 7 days and 28 days, respectively, without affecting the 



strength at 56 days. The leachability of Pb and Zn evaluated by the TCLP 1311 protocol 

at 56 and 71 days was slightly reduced or unchanged by the addition of sucrose or 

sorbitol. SEM-EDS and XRD analyses revealed that ettringite precipitation was favored 

whereas the formation of CSH gel, which accounts for most of the strength of hydrated 

cement, was delayed in cement pastes containing both metals and sucrose or sorbitol. 

These results indicate that controlled additions of sucrose or sorbitol can add flexibility to 

the handling of cement-treated metal waste, particularly when it needs to be transported 

between the treatment plant and the disposal site, without affecting its long term 

performance. 

Key words: Tricalicum silicate (C3S); Ordinary Portland cement (OPC); White Portland 

cement (WPG); Sucrose; Sorbitol; Micro structure; Hydration; Retardation; 

Stabilization/solidification (S/S); Heavy metals 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Stabilization/solidification (S/S) is a widely used technique to treat industrial 

wastes containing toxic metal ions before land disposal [1-3]'. Stabilization refers to the 

process of converting hazardous contaminants into less soluble, less mobile, and less 

toxic forms through chemical reactions. Solidification focuses on improving the physical 

stability of the treated wastes, such as by increasing compressive strength and decreasing 

permeability [2, 3]. Ordinary Portland cement (OPC) is often employed as the 

solidification medium owing to its wide availability, high strength, and well documented 

performance [2]. Cement-based S/S can be applied to the treatment of natrojarosite 

sludge produced by zinc refineries [4], mine tailings for making pastes backfill [5] and 

some brownfield sites, such as former wood preserving facilities, manufactured gas plants, 

and electric generating stations [6]. Sometimes, the treated wastes need to be transported 

from the treatment plant to the disposal site at some distance. During the transportation 

(e.g., by truck), the normal setting process of cement can be too rapid and cause 

operational difficulties. In these situations, controlling the setting rate with chemical 

retarders, such as sugars and sugar derivatives, is desirable. On the other hand, sugars and 

sugar derivatives may also influence the microstructure of the treated waste and the 

leachability of metals bound to the cement matrix. 

' References appear at the end of each chapter. 



This Chapter begins with some basie information on Portland eement, including 

its composition, its hydration reactions and products, the comparison of different types of 

Portland cement, and the mechanisms by which toxic metal wastes can be immobilized in 

Portland cement matrix. Next, a brief review of the current state of knowledge on how 

sugars and sugar derivatives interfere with cement hydration reactions is presented, and 

various other admixtures to cement-based S/S process are mentioned. This is followed by 

an identification of knowledge gaps and research opportunities. Lastly, the research 

objectives and the organization of the thesis are presented. 

1.1.1. Composition of Ordinary Portland Cement Clinker 

OPC is a basic construction material that is widely used in the daily life of human 

beings. It has five main components: tricalcium silicate (C3S); dicalcium silicate (C2S); 

tricalcium aiuminate (C3A); tetracalcium aluminoferrite (C4AF); and gypsum (CSH2). 

The typical composition of OPC is listed in Table 1-1. Minor constituents of Portland 

cement include magnesia, free lime, and alkalis [7-10]. 

Table 1-1 Typical composition of ordinary Portland cement [9] 

Chemical Formula Shorthand Notation Weight Percentage 

C3S 40-63 

C2S 9-31 

C3A 6-14 

C4AF 5-13 

cm2 2-10 [11] 

Tricalcium silicate 

Dicalcium silicate 

Tricalcium 
aiuminate 

Tetracalcium 
aluminoferrite 

Gypsum 

3Ca0Si02 

2Ca0Si02 

3Ca0Al203 

4CaO’Al203‘Fe203 

CaS04-2H20 



1.1.2. Hydration of Portland Cement 

C3S and C2S react exothermically with water to form calcium hydroxide (CH) and 

calcium silicate hydrate (CSH). CH crystallizes in the free pore spaces; it has definite 

Ca(OH)2 stoichiometry, but its crystal morphology varies with the available space, 

admixtures and temperature [10, 12, 13]. By comparison, CSH is an amorphous gel and 

does not have a fixed composition. It is the main product of cement hydration, making up 

one-half to two-thirds of the volume of the hydrated paste, and thus provides most of the 

product’s strength [10]. The specific surface area of CSH, measured by physical 

adsorption of water vapour on freeze-dried CSH paste, ranges from 250 to 450 m^/g, 

which is three orders of magnitude higher than that of unhydrated cement [10]. Due to its 

large surface area, CSH has the potential to adsorb toxic metal ions present in the waste 

[14]. In addition, coprecipitation [15] and the formation of metallosilicates [16-18] can 

also take place on CSH. Although C3S and C2S react with water to form the same 

hydration products, C2S hydrates more slowly and thus contributes more to long-term 

strength development [7-10]. 

Figure 1-1 depicts the rate of heat evolution during the hydration of C3S. As the 

heat generation is proportional to the amount of reaction, this calorimetric curve shows 

the various stages in the hydration of C3S [10]. Stage 1 is the period of rapid heat 

evolution during which calcium and hydroxide ions are rapidly dissolved from the 

surface of C3S grains, resulting in a highly alkaline solution. A pseudo-C3S structure, 

deficient in calcium with partially hydrolyzed orthosilicate groups, forms an outer layer 

around the unhydrated C3S [19]. Stage 2 is the dormant period in which hydration 



becomes self-retarding and slows down. Thin films of CSH form around the C3S particles, 

probably owing to polymerization of the hydrolyzed silicate groups and the 

rearrangement of the “hydrated” layer [19]. Once the concentrations of calcium and 

hydroxide ions reach critical values, CH crystallizes from solution and CSH precipitates 

at the surface of C3S grains. This is Stage 3: the acceleration period. As more and more 

hydration products form, they accumulate around the unhydrated grains and act as 

barriers that hinder the contact between C3S and water. Hydration becomes a diffusion- 

controlled process, thus leading to Stage 4: the deceleration period. In Stage 5, hydration 

continues at a very slow rate and is accompanied by an extremely low rate of heat 

generation. 

Stage 1 
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Figure 1-1 Rate of heat evolution during the hydration of tricalcium silicate [7, 10]. 

Tricalcium aluminate is another important component of unhydrated cement 

clinker. C3A is a reactive compound that, once contacted with water, forms calcium 

aluminate hydrates which, in turn, convert rapidly to hydrogamet [10]. This series of 

reactions can lead to flash-setting, which is undesirable because of the loss of some early 



strength [10]. To solve this problem, a small amount of gypsum is added to the OPC [7, 8, 

10]. C3A reacts with gypsum and water to form crystals of ettringite (C6AS3H32) or, if the 

sulfate availability is limited, monosulfate (C4ASHi2) [7, 8, 10]. The aluminum in these 

compounds is often substituted by Fe or other heteroatoms [8, 10]. Because of their 

definite crystal structure, ion substitution is the major mechanism for metal ion 

stabilization in ettringite and monosulfate [14]. 

The presence of tetracalcium aluminoferrite is the main reason for the grey color 

of OPC. C4AF undergoes similar hydration reactions as C3A, although they occur more 

slowly. The presence of C4AF allows the clinker mixture to be liquid at peak kiln 

processing temperature, thus facilitating the formation of the desired silicate phases [20]. 

It does not contribute significantly to the overall properties of OPC [8, 10]. 

1.1.3. Types of Portland Cement 

There are five ASTM classifications of Portland cement [21]. The corresponding 

chemical compositions and properties are listed in Table 1-2. 

OPC is Type I, which is the general purpose cement used for most construction 

[10, 22]. Type III cement is similar to Type I, except for a higher C3S content, lower C2S 

content and finer particle size which, together, make it faster setting and yield higher 

early strength [10, 22]. 

Type IV Portland cement has much more C2S than C3S. As a result, initial heat 

production during hydration is low (as is, therefore, the risk of thermal cracking), and 

strength develops more slowly than in other cements [10, 22]. The most important feature 



of Type V cement is its high resistance to sulfate attack, which results from its high ratio 

of C4AF to C3A [10, 22]. The susceptibility to sulfate attack is correlated with the C3A 

content, since sulfate can convert monosulfate into secondary ettringite, which causes 

volume expansion, generates internal stresses, and results in cracking ultimately [10], By 

comparison. Type II cement is characterized both by moderate sulfate resistance and 

moderate heat generation during hydration. 

Table 1-2 Typical chemical composition (wt.%) and properties of Portland cement 

(ASTM Types I to V) [10] 

Type I II III IV V 

C3S 

C2S 

C3A 

C4AF 

CSH2 

Fineness 
(Blaine, m^/kg) 
Compressive 

strength 
[1 day, MPa] 

Heat of hydration 
(7 days, J/g) 

50 

25 

12 

8 

C 

350 

6.89 

330 

45 

30 

350 

6.21 

250 

60 

15 

10 

8 

450 

13.8 

500 

25 

50 

12 

4 

300 

3.10 

210 

40 

40 

4 

10 

A 

350 

6.21 

250 

1.1.3.1. White Portland Cement 

White Portland cement (WPC) has a much lower transition metal content (iron 

and manganese especially) than OPC and, thus, has a brilliant white appearance that is 

advantageous for many decorative/reflective applications [23]. The maximum specified 



iron oxide content in WPC is 0.50%, whereas in OPC it nearly always exceeds 2%. 

Various pigments or coloured aggregates can be added to WPC to cover a broad colour 

spectrum and meet with specific aesthetic requirements. WPC is employed in city 

streetscapes, statues, towers, bridge parapets and reflective flooring [24]. The 

manufacture of WPC otherwise conforms to the above ASTM standards [21], with Type I 

and Type III being the most common forms [25]. 

Table 1-3 compares the average composition of Type I WPC with that of Type I 

OPC. The C2S and C3A levels are similar. WPC contains considerably less C4AF, 

however, with C3S making up the difference in mass. Thus, the composition of WPC can 

be considered to be intermediate between that of OPC and pure C3S. 

1.1.4. Set-Retardation in Portland Cement by Sugars and Sugar Derivatives 

Many chemical admixtures have the ability to slow down the hydration reactions 

[19, 26-36]. Various sugars, including glucose, lactose, maltose, cellobiose, a-methyl 

glucoside, sucrose, raffmose and a,a-trehalose, have known set-retardation capacity [19, 

26, 29, 30, 32-35], as do the sugar-derivatives arabitol, sorbitol and xylitol [37]. 

Sucrose, the main component of table sugar, is one of the most effective and 

commonly used set-retarders; the addition of 0.075 wt % sucrose to OPC increases the 

induction period of the hydration process from 2.5 to 31 hours [30]. Furthermore, sucrose 

can alter the micro structure of hydrated OPC paste by increasing the specific surface area 

and modifying the pore size distribution [38]. Many studies have investigated the 

mechanisms of set-retardation in cement pastes containing sucrose [19, 26, 29, 30, 33, 34, 



35, 39, 40]. Although the details of these mechanisms are still unknown, there is a general 

consensus among researchers that sucrose plays an important role in preventing the 

precipitation of the dissolved Ca and Si in pore solutions by poisoning the surfaces of 

early hydration products and/or C3S particles [19, 26, 29, 33, 35]. The poisoning agent 

may be a sucrose-calcium half salt R-0'...Ca^-0H [26, 33]. 

Table 1-3 Compositions of ASTM Type I Ordinary Portland cement and ASTM Type I 

White Portland cement [9] 

Composition OPC (Gray) WPC (White) 

Chemical content (wt%) 

Si02 

AI2O3 

FC203 

CaO 

MgO 

SO3 

Loss-on-ignition (wt%) 

Na20 eq.^ (wt%) 

20.5 

5.4 

2.6 

63.9 

2.1 

3.0 

1.4 

0.61 

22.7 

4.1 

0.3 

66.7 

0.9 

2.7 

1.6 

0.18 

Phase content (wt%) 

C3S 

C2S 

C3A 

C4AF 

54 

18 

10 

8 

63 

18 

10 

1 

Soluble alkalies, such as Na20 and K2O. 
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1.1.5. Admixtures to Cement-based S/S Processes 

Various admixtures can be added to the cement matrix to improve its 

immobilization efficiency. For example: lime and ferrous sulfate help maintain the pH 

within a desirable range; carbonates, sulfides and iron compounds can transform toxic 

metals into less soluble precipitates; ferrous sulfate and sodium hypoehlorite have the 

ability to reduce or oxidize metals to less toxic forms; and activated carbon and ion- 

exchange resins ean be used to adsorb metals [2]. The addition of bagasse (sugar cane 

residue) has also been reported to decrease the teachability of lead in cement-treated 

waste by adsorption [41]. 

1.1.6. Identification of Knowledge Gaps and Research Opportunities 

As mentioned in Section 1.2.3.1, WPC has an intermediate composition between 

pure C3S and OPC. Therefore, a comparison of hydration processes among these three 

cements would help better understand the contribution made by individual cement 

components to the properties of hydrated pastes. A previous study found that WPC has a 

shorter initial setting time and higher compressive strength than OPC [42], but no 

detailed comparison of the hydration behaviour of WPC and OPC over time has been 

reported. Although the microstructures of hydrated OPC and pure C3S have been 

investigated by other researchers [43], no such study has been done of WPC. Therefore, a 

comparative study of the hydration of C3S, OPC and WPC would be worthwhile to refine 

our understanding of cement hydration processes. 



The mechanisms underlying the retardation of cement hydration by the addition of 

sugars and sugar derivatives are largely unresolved and need further investigation. Since 

sucrose does not bind with aqueous silicon [26, 33], whereas comparatively weaker 

retarders such as sorbitol and arabitol [37] do bind silicon [44], they may delay cement 

setting in different ways. To the best of the author’s knowledge, the effect of silicon 

binders on cement hydration has not yet been reported. Research on this topic, therefore, 

may lead to a deeper understanding of the interactions between cement and sugar-based 

retarders. 

The effect of sugars and sugar derivatives on cement based stabilization/ 

solidification processes has not been previously investigated. The retarding influence of 

sugar could be advantageous when the waste-cement mixture needs to be transported 

long distances between the S/S treatment plant and the disposal site. In these situations, 

early hardening of the cement in the truck box or pipeline could result in severe 

operational difficulties and limited flexibility. In addition, as sucrose has been reported to 

modify the surface area and porosity of hydrated cement pastes [38], sucrose and perhaps 

other sugars or their derivatives may affect the immobilization mechanisms of 

contaminants such as heavy metals in the cement matrix. Research in this area will have 

practical value for users of cement-based stabilization/solidification processes in industry. 

1-10 



1.2 Research Objectives 

The objectives of this research were: 

Objective 1: to understand better the hydration processes of C3S, OPC and WPG, 

as well as the changes in micro structure of the hydrating pastes. 

Objective 2: to study the effects of sucrose and sorbitol on: 

• the hydration and micro structure of C3S 

• the hydration, microstructure, and strength development of OPC and 

WPG 

Objective 3: to investigate the effects of sucrose and sorbitol on the teachability, 

strength development, hydration, and micro structure of OPC-stabilized wastes 

containing lead and zinc nitrates. 

The three objectives listed above are complementary and range from the gathering 

of relevant fundamental knowledge (Objectives 1 and 2) to practical applications 

(Objective 3). This research is part of a research effort aimed at developing superior 

cement matrices to immobilize toxic metal wastes. 

1.3. Organization of the Thesis 

This thesis is composed of five chapters. Chapter 1 provides a general 

introduction, describes the objectives, and presents the organization of this thesis. 

Chapters 2, 3 and 4 are three separate manuscripts submitted for publication in peer- 
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reviewed journals. Chapter 4 has already been accepted by the Journal of Hazardous 

Materials. Each manuscript addresses one of the three research objectives that were 

mentioned above. All the manuscripts include separate sections for relevant background 

information, materials and methods, results and discussion, conclusions, tables, figures, 

and references. Chapter 5 presents the overall eonelusions and recommendations for 

future work. 

In addition, supporting experimental data and additional results that were not 

included in Chapters 2-4 (due to length restrictions for publications) are compiled as 12 

appendices at the end of the thesis. Briefly, these deal with the effect of particle size on 

loss-on-ignition data and on hydration results (Appendix A); the effect of arabitol 

addition on the degree of hydration of OPC (Appendix B) and on the microstructure of 

hydrated C3S (Appendix C); the strength of OPC with and without adding sucrose, 

sorbitol or arabitol (Appendix D); the effect of elevated curing temperature (40 °C) on the 

hydration rate and micro structure of OPC-treated heavy metal waste (Appendix E); the 

selection of extraction fluids for the leaching tests (Appendix F); the influence of metal 

addition on the hydration rate of OPC (Appendix G); the correlation between strength and 

degree of hydration for OPC and OPC-metal mixtures amended with sugars (Appendix 

H); the effect of lignosulfonate on the teachability of Pb (Appendix I); the complete 

leaching test results for cement-treated metal waste with and without the addition of 

sucrose or sorbitol (Appendix J); X-Ray diffractograms for selected OPC-metal samples 

with and without sucrose or sorbitol at early hydration times (Appendix K); and SEM- 

EDS analysis of OPC-metal samples (Appendix L). Additionally, Appendix M includes 
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the PDF version of Chapter 4, which has been published by the Journal of Hazardous 

Materials. 
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CHAPTER 2 

COMPARATIVE STUDY OF THE HYDRATION AND 

MICROSTRUCTURE OF TRICALCIUM SILICATE, ASTM TYPE I 

ORDINARY PORTLAND CEMENT, AND WHITE PORTLAND 

CEMENT 

Summary: The hydration and microstructure of ASTM Type I ordinary Portland cement 

(OPC), white Portland cement (WPC), and tricalcium silicate (C3S) were investigated by 

SEM-grey level analysis and loss-on-ignition tests as a function of curing time. The 

hydration rate was found to be C3S > WPC > OPC and was correlated with the total 

content of C3S and C3A. The fraction of non-evaporable water content in fully hydrated 

OPC and WPC is 0.2349 ± O.OOSy and 0.2086 ± 0.0032, respectively. The micro structure 

of hydrated C3S was characterized by two prominent features: 1) large zones of 

unhydrated C3S particles embedded in dense calcium hydroxide (CH) and 2) porous 

zones in which CSH was the only hydration product. CH-rich zones were also observed 

in hydrated OPC and WPC but they were smaller and became less distinct as hydration 

progressed in these systems. No large porous zones were present in hydrated OPC and 

WPC, which exhibited much lower overall porosity than C3S. 

Key words: Tricalcium silicate (C3S); Ordinary Portland cement (OPC); White Portland 

cement (WPC); Hydration; Microstructure 



2.1. Introduction 

Ordinary Portland cement (OPC) is a fundamental component of most concretes. 

Raw OPC has five main components: tricalcium silicate (C3S), dicalcium silicate (C2S). 

tricalcium aluminate (C3A), tetracalcium aluminoferrite (C4AF), and calcium sulfate 

(gypsum or anhydrite, 10% max). When contacted with water, C3A reacts with sulfate 

coming from the dissolution of gypsum to form ettringite (AFt) and monosulfate (AFm), 

thus preventing flash set associated with the formation of calcium aluminate hydrates. 

C3S and C2S undergo hydration to form calcium hydroxide (CH) and calcium silicate 

hydrate (CSH), which is the main hydration product and the principal contributor to 

cement strength [1]. 

White Portland cement (WPC) contains significantly fewer transition metal oxides 

(iron, manganese, and others) than OPC and, thus, once cured, has a brilliant white 

appearance that is advantageous for decorative applications as well as reflective flooring 

and roadway infrastructure [2]. WPC has been found to have a shorter initial setting time 

and higher compressive strength than OPC [3]; however, no detailed eomparison of the 

degree of hydration and micro structure of WPC and OPC over time has been reported. 

The microstructure of hydrated C3S and ASTM Type V Portland cement were compared 

by Kjellsen and Justnes [4]. C3S was found to hydrate into dense pockets in which C3S 

grains were engulfed in large calcium hydroxide masses. By contrast, hydrated OPC had 

a groundmass structure having more complex features such as finely dispersed calcium 

hydroxide, remnant A1 and Fe phases, and reduced porosity. To the best of the author’s 



knowledge, no detailed investigation of the micro structure of hydrated WPC pastes has 

been previously reported. 

The objectives of the present research were to compare the hydration and 

microstructure of OPC, WPC, and C3S as a function of curing time. This is done by using 

different analytical techniques such as loss-on-ignition measurements (i.e. destructive 

dehydration) and backscattered electron (BSE) microscopy incorporating grey level 

analysis. The results provide significant insights on how compositional differences affect 

cement hydration. 

Degree of hydration is an important parameter to quantify the conversion from 

unhydrated cement to its hydration products. It can be determined indirectly by various 

methods. Quantitative X-ray diffraction analysis (QXRD) [5-7], 'H & ^^Si NMR [5, 8] 

and grey level analysis [5, 6, 9] have been used to monitor the degree of hydration by 

determining the amount of unhydrated phases. The degree of hydration can also be 

measured by determining the amount of hydrated phases through loss-on-ignition testing 

[1,7, 10-12] or isothermal conduction calorimetry [7]. In this study, both loss-on-ignition 

testing and grey level analysis were used to determine the degree of hydration. Loss-on- 

ignition testing was selected because of its simplicity, low cost, and high efficiency 

(many samples can be tested at the same time). Grey level analysis provides information 

on both the degree of hydration and the distribution of mineralogical phases in hydrated 

pastes, and is thus a valuable tool to investigate the microstructure of hydrated cement. 

The aim of loss-on-ignition testing is to measure the amount of non-evaporable 

water, which is the water retained after freeze-drying or oven-drying at 105^C. The non- 



evaporable water content can be easily obtained by comparing the weights of the oven- 

dried paste before and after dehydrating at 1005 °C for two hours [1, 10, 11]. Since non- 

evaporable water approximately represents the structurally bound water in the hydration 

products, it is proportional to the fraction of cement that has reacted and can be used to 

estimate the degree of hydration if the non-evaporable water content in fully hydrated 

cement paste is known [1, 10, 12]. 

Scanning electron microscopy (SEM) in conjunction with image analysis is a 

powerful approach to study the microstructure of hydrated cement and can be used to 

determine degree of hydration through grey level analysis [5, 6, 9]. In a typical image of a 

hydrated cement paste taken by SEM in BSE mode, the main phases (C3S, C2S, CSH, and 

CH) appear in different grey levels due to their various average atomic numbers (the 

larger the atomic number, the higher the intensity of the electrons, and the brighter a 

chosen material appears). Typically, unhydrated clinkers are brighter than calcium 

hydroxide (lighter grey) and other hydration products including CSH and little amount of 

Al-containing phases (darker grey), whereas the porosity appears in black. With these 

distinct grey levels, BSE images can provide valuable information about hydration status, 

hydration products, and the phase distribution of the examined cement paste. [4, 9, 13-16]. 

When displayed in a grey level histogram ranging from 0 to 255 in which 0 and 255 

represent black and white and other intermediate grey levels are in between, various 

phases appear as individual peaks and the ratio of the area under each peak over the area 

of the whole histogram equals to the area percentage of the corresponding phase in the 

whole selected BSE image. The volume fraction of a phase in hydrated cement can be 

equated to its area fraction by this grey level analysis [15]. Scrivener [15, 16] found that 



the ratios of unhydrated phases, calcium hydroxide, and porosity calculated based on 

their grey levels are correlated to those determined by traditional methods. The area 

percentage of unhydrated phases can also be applied to calculate the degree of hydration 

of cement paste at a given water-to-cement ratio [5, 13]. 

2.2. Materials and Methods 

2.2.1. Sample Preparation 

ASTM C 150 Type I ordinary Portland cement (CEMEX Inc., Charlevoix, MI), 

ASTM Cl50 Type I white Portland cement (Aalborg Portland, Aalborg, Denmark) and 

pure tricalcium silicate (CTL Group, Skokie, IE) were used in this research. Both the 

OPC and WPC conform to the ASTM Cl50 standard for Type I cement which specifies 

the compositional and physical requirements including loss-on-ignition, insoluble residue, 

setting time, strength and air content. [17]. The manufacturers’ specifications for all three 

cements are provided in Table 3-1. The C3S was crystallographically-pure triclinic alite, 

with reported traces of AI2O3 and MgO, at 325 mesh. (Particles measure less than 44 pm.) 

Deionised-distilled water was pre-cooled to 10 °C and then mixed with kilogram 

quantities of OPC and WPC at a water-to-cement mass ratio of 0.40:1 ^ in a plastic bowl 

immersed in an ice-water bath. Temperature control was necessary with such large 

samples to counteract the heat generation at early times. The mixtures were stirred with a 

plastic spoon for about 7 min until they were homogeneous. All the samples were slurries 

after being mixed with water. They were then poured into either polyethylene ice cube 

' This ratio was optimized in preliminary tests. It is within the range of values (0.35 to 0.50) commonly 
used by other researchers. 



trays (WPC) or 5.08 x 10.16 cm (2x4 inch) PVC cylinders (OPC) and placed in triple- 

sealed, air-tight polyethylene bags to prevent carbonation and avoid the loss of humidity. 

They were immersed in a room temperature (20-22°C) water bath to cure. Sixteen 

Table 2-1 Chemical and physical analysis and potential compound compositions of 

unhydrated OPC, WPC, and C3S samples 

OPC (Gray) WPC (White) PureCsS 

Chemical 
composition (wt%) 

Si02 

AI2O3 

Fe203 

CaO 

MgO 

SO3 

Loss-on-ignition 
 (wt%)  

Insoluble residue 
 (wt%)  

Alkalies as Na20 
eg. (wt%) 

Blain fineness 
(m^/kg) 

C2S 

C3A 

C4AF 

19.35 

5.16 

2.47 

62.60 

3.48 

3.57 

1.52 

0.15 

0.85 

378 

Potential compound 
composition (wt.%) 

C3S 60 

11 

10 

8 

24.5 

2.1 

0.34 

69.0 

0.59 

2.13 

0.5 

0.08 

0.19 

393 

74 

14 

5 

1 

26.3 

traces 

0 

73.7 

traces 

0 

na 

na 

na 

100 

0 

0 

0 

na = not applicable 

parallel test samples were prepared of each type of cement, which allowed the loss-on- 

ignition to be determined in triplicate after 5 different curing periods of 3, 7, 14, 28 and 

56 days. A further loss-on-ignition measurement was done after 1 day curing. 
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SEM analyses were performed with pure C3S at 1, 7 and 56 days of curing. 

Samples were placed in three separate 8 ml polyethylene plastic bottles. In each bottle, 

1.20 g t C3S was blended with 0.72 ml deionised-distilled water at a water-to-solid mass 

ratio of 0.60:1 [18]. The slurry was then mixed with a small glass stir rod for 30 seconds. 

In order to prevent undesirable carbonation, all the preparation steps were done in a glove 

box under nitrogen. Samples were sealed in plastic bottles and cured at room temperature 

until testing. 

2.2.2. Loss-on-ignition Testing 

A small portion of each OPC or WPC sample was crushed, and 1.0 to 1.5 g of the 

850-2000 pm^ fraction was oven-heated for 24 h at 105 to remove evaporable water 

and obtain the evaporable free-water mass, JV105. Next, the temperature was increased and 

maintained at 1005 °C for 2 h to determine the fully dehydrated mass, ITioos- The degree 

of hydration au can be calculated by the equation 

' ■,/ = Wm - )/(FNEW X ) (2-1) 

in which the constant FNEW is the mass fraction of non-evaporable water in fully 

hydrated cement [1, 11]. The FNEW has been reported to be either 0.23 [19] or 0.24 [1, 

20] for OPC. However, the FNEW of white Portland cement is unknown and, without 

this value, equation 2-1 cannot be used to calculate the degree of hydration of WPC. 

“ This value was initially selected based on previous studies of C3S by X-ray diffractometry. 
’ The particle size distribution was found not to have a significant influence on the hydration results 
obtained by loss-on-ignition tests. For details, please see Appendix A. 



Therefore, one of the objectives of the present research was to evaluate the FNEW of 

WPC and compare it to the values measured for OPC. 

2.2.3. SEM-EDS Analyses 

After reaching the desired curing time, a small slice {ca. 0.5 g) was removed from 

the inner part of the sample, immersed for 24 h in acetone to halt hydration [21], dried at 

105 for 15 min, and then imbedded in epoxy resin. A thin-section was cut, lapped and 

polished using oil-based media so as not to alter the water-soluble minerals. After carbon- 

coating, it was analyzed with a JEOL JSM 5900 scanning electron microscope in BSE 

mode to improve contrast between different mineral phases [13, 16]. The elemental 

composition of mineral phases was determined by X-ray energy dispersive spectrometry 

(EDS) using an Oxford Link ISIS system (50 s live-time). SEM-EDS analyses were 

carried out on days 1, 7 and 56 for all the OPC, WPC, and C3S samples. 

2.2.4. Grey Level Analysis 

Grey level analysis was performed by using the Image-Pro Plus 5.0 software [22]. 

Each BSE image consists of 1280 X 960 pixels having grey levels ranging from 0 (black) 

to 256 (white). The grey levels are directly related to the atomic number of the material, 

and thus can be used to distinguish between mineralogical phases: unhydrated cement 

grains are the brightest features, CH and CSEI appear as two shades of grey, whereas pore 

space is black. (Figure 2-1) [4]. Also, as shown in Figure 2-1, there are two types of CSH: 

inner CSH that forms around residual unhydrated calcium silicate and outer CSH that 
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forms in the pore spaee; both of inner and outer CSH appears in similar grey scales [13]. 

The identity of all the above mentioned phases was confirmed by EDS separately. 

Figure 2-1 Backscattered electron image of OPC sample at day 7 

(UC: unhydrated cement grains, CEl: calcium hydroxide). 

These phases also appear as separate peaks in grey-scale histograms (Figure 2-2). 

The areas under these peaks can be used to calculate the percentage of individual phases 

[16]"^. For each OPC and WPC sample, calculations were carried out on 10 BSE images 

taken at different locations in the central section, and the results were averaged to obtain 

a representative phase distribution [16]. Because of the heterogeneous feature of hydrated 

C3S, a larger number of BSE images (15) were acquired for C3S samples. Every BSE 

image covered an area of 254 x 190 pm at an image scale of 0.198 pm/pixel. The results 

of the grey level analysis were then plotted as a function of curing time (day 1, 7 and 56) 

Microcracks were included in the calculation of porosity. They may be induced by shrinkage during the 
curing process or by drying during the preparation of thin slices for SEM analyses. 
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Figure 2-2 Backscattered electron image of OPC sample at day 7 and its grey level 

histogram (UC: unhydrated cement grains, CH: calcium hydroxide, 

OHP: other hydration products). 

The degree of hydration acr of OPC, WPC and C3S can be calculated by the 

equation 

a,„ =\-UClUC, [5,9] (2-2) 
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in which UC and UCQ are the area fractions of unhydrated cement particles at time t and 

the start of the hydration proeess, respectively. UC can be obtained from the area 

percentage of the unliydrated cement shown in BSE images, while UCo can be evaluated 

from the density of unhydrated eement powder as determined by ASTM C 188-95 [23] 

(Jc = 3,14 g/cm^ for OPC, = 3.06 g/em^ for WPC, and = 3.15 g/cm^ for C3S), density 

of water {d^ = 1.00 g/cm ) and the corresponding water-to-cement mass ratio R (0.40 for 

OPC and WPC, 0.60 for C3S) by Equation 2-3. 

f/C„ = OK )/(!/<,+i?K.) (2-3) 

Determining degree of hydration from grey level analysis is considerably more 

eomplex and time consuming than from loss-on-ignition data, but does not require 

knowledge of the FNEW. In the following section, we will show how grey level analysis 

and loss-on-ignition data for a few samples can be combined to evaluate the FNEW of 

OPC and WPC. Once the FNEW values are known, they can be used to determine the 

degree of hydration of a larger number of samples relatively easily using Equation 2-1 

and loss-on-ignition data, thus removing the need for complex grey level analysis, 

2.3. Results and Discussion 

2.3.1. Degree of Hydration 

Figure 2-3 illustrates the degree of hydration of OPC, WPC, and C3S at days 1, 7 

and 56 determined by grey level analysis. The degree of hydration was always highest for 

pure C3S. WPC hydrated faster than OPC during the first day, and then at a similar rate 

between day 1 and day 7. At day 56, both types of cement reached 80% hydration. These 
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results suggest that the rate of hydration reaction during the first day is correlated with the 

total content of C3S and C3A in the unhydrated samples (70% in OPC, 79% in WPC, and 

100% in C3S). This is consistent with the fact that C3S and C3A are more reactive than 

C2S and C4AF [1]; hence the higher the C3S and C3A content, the faster the initial 

hydration rate. The larger hydration rate of OPC by comparison with WPC at later times 

(after day 7) can be explained by the higher combined contents of C2S and C4AF in OPC 

(19% in OPC versus 15% in WPC), which hydrate more slowly than C3A and C3S [1]. 

analysis. Error bars correspond to the standard deviations over 15 measurements for C3S 

and 10 measurements for OPC and WPC. 

Figure 2-4a and 2-4b show the degree of hydration determined by grey level 

analysis versus the ratio (W105 - Wioo5)/W]oo5 for OPC and WPC, respectively. Samples 
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aged 1, 7 and 56 days were used to construct these plots. To include more data points 

with intermediate degree of hydration, samples containing 0.40 wt% sorbitol as well as 

0.037 wt% and 0.15 wt% sucrose (cement retarders [24, 25]) were also analyzed. 

Standard errors on the degree of hydration obtained by grey level analysis (error bars in 

the Y direction) are much higher than standard errors on the ratio (W105 - W]oo5)/Wioo5 

(error bars in the X direction). This is likely caused by the heterogeneous distribution of 

unhydrated phases in BSE images (i.e., there is significant variability in the amount of 

unhydrated phases present in each image). According to Equation 2-1, the data points are 

expected to plot linearly with a slope equal to the FNEW'^ The values of FNEW for OPC 

and WPG, including standard errors, obtained by linear regression are 0.2349 ± 0.0057 for 

OPC and 0.2086 ± 0.0032 for WPG. The FNEW of OPC compares well with previously 

reported values of either 0.23 [19] or 0.24 [1, 20]. 

Now that the numerical values for FNEW have been determined for the specific 

OPC and WPC cement samples used in this work, the degrees of hydration at 1, 3, 7, 14, 

28, and 56 days can be calculated from loss-on-ignition tests. Figure 2-5 depicts the 

degree of hydration as a function of time for OPC and WPC. The curing of OPC and 

WPC proceeded in two stages: a period of rapid hydration lasting about 3 days, followed 

by a slower reaction period. WPC hydrated faster than OPC during the first day, and then 

both materials hydrated at a similar rate (parallel curves) until day 14. Between days 14 

and 56, OPC hydrated at a faster rate than WPC. On day 56, both OPC and WPC had the 

same degree of hydration of 80%. These results are in accordance with those obtained 

from grey level analysis (Figure 2-3). 
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Figure 2-4 Degree of hydration obtained by grey level analysis for (a) OPC and (b) WPC 

versus the ratio (Wio5-Wioo5)/W]oo5 from loss-on-ignition testing. 
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Figure 2-5 Degree of hydration of OPC and WPC determined by loss-on-ignition tests. 

Error bars correspond to the standard deviation over 3 measurements. In many cases, the 

error bars are too short to be seen. 

2.3.2. Microstructure 

2.3.2.1.Pure C3S 

The microstructure of hydrating pure tricalcium silicate at days 1, 7 and 56 is 

shown in Figures 2-6 to 2-8. Islands consisting of bright unhydrated C3S grains 

embedded in a dense calcium hydroxide matrix (light grey) are clearly visible on BSE 

micrographs taken at a large image scale 0.657 pm /pixel (Figures 2-6a, 2-7a, and 2-8a). 

The identity of the two main phases in the islands (unhydrated C3S and CH) was 

ascertained by EDS analyses carried out at a smaller image scale of 0.055 pm /pixel 
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(Figures 2-6b, 2-7b, and 2-8b). The islands have dimensions ranging from tens to several 

hundred microns and are surrounded by a more porous matrix consisting mostly of 

unhydrated C3S and calcium-silicate-hydrate (CSH) gel (Figures 2-6c, 2-7c, and 2-8c, 

image scale: 0.100 pm /pixel). These observations are similar to those by Kjellsen and 

Justnes who used a lower water-to-solid ratio (0.40 versus 0.60 in this study) [4]. 

The contribution of CH-rich islands to the total sample area increased from 30.9 ± 

4.5 % at day 1 to 42.2 ± 4.2 % at day 7 (Table 2-2). This increase coincided with growth 

and amalgamation of individual islands (compare Figures 2-6a and 2-7a). However, CH- 

rich islands stopped growing after day 7, and their contribution to the total area at day 56 

(39.3 ± 2.6 %) was not statistically different from that at day 7. Berger and Mcgregor [26] 

proposed that the formation of calcium hydroxide deposits is favoured on the surfaces of 

C3S particles acting as ideal nucleation sites because of the nearby high concentration of 

Ca ions and the higher temperature at the liquid-solid surface, caused by the exothermic 

dissolution of C3S, which lowers the solubility of CH. By contrast, our observations of 

the growth of CH-rich islands combined with the paucity of CH in the porous areas until 

at least day 7, indicate that the precipitation of calcium as calcium hydroxide is not 

uniformly distributed on the surfaces of all C3S grains but rather occurs preferentially at 

the interfaces between a few CH-rich islands and the surrounding porous regions. 

In the porous areas surrounding the CH-rich islands, CSH is the main hydration 

product and forms rims around residual C3S cores (Figures 2-6c, 2-7c, and 2-8c). As 

hydration progresses, these residual C3S cores shrink and eventually disappear 

completely while the thickness of the CSH rims increases. The amount of porosity (i.e.. 
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the number of black pixels) in the porous areas decreases with curing time, due to 

precipitation of mostly CSH but also some CH in these areas. 

(b) (c) 

Figure 2-6 Backscattered electron images of C3S sample at day 1. (a) overall view, 

(b) CH-rich island, and (c) porous area showing (A) C3S, (B) CH, (C) CSH, and (D) 

pores. 
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(b) (c) 

Figure 2-7 Backscattered electron images of C3S sample at day 7. 

(a) overall view, (b) CH-rich island, and (c) porous area. 
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(a) 

(b) (c) 

Figure 2-8 Backscattered electron images of C3S sample at day 56. (a) overall view, 

(b) CH-rich island (in rectangle) and porous area (in ellipse), and (e) porous area. 
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Table 2-2 Area percentages of the CH-rich islands in C3S samples 

at days 1, 7 and 56 

Day Area percentage (%) Standard deviation (%) 

56 

4.5 

2.6 

Note: All values in this table were calculated from the results of grey level analysis on 7 

individual BSE images taken throughout a sample cross section. Each BSE image 

covered an area of 841 x 630 pm at an image scale of 0.657 pm /pixel. On each image, 

the boundaries of all the CH-rich islands were traced by hand, and the Image-Pro Plus 5.0 

software was used to calculate the ratio of islands to total area. 

Table 2-3 shows the distribution of individual phases in the islands and porous 

areas after 1, 7 and 56 days of curing. The composition of the CH-rich islands remained 

stable from day 1 to day 7. It consisted of approximately 20% unhydrated C3S, 63% CH, 

16% CSH, and 0.3% pores. All percentages refer to area or volume. The thick deposits of 

CH in the islands shielded the unhydrated C3S from contact with pore water, thus 

considerably slowing down the hydration of C3S in the islands. Therefore, the formation 

of CH-rich islands had a negative impact on the degree of hydration of C3S pastes. 

However, slow diffusion of water toward the C3S grains in the CH-rich islands caused a 

progressive hydration of these grains and the amount of CSH in the islands to increase 

from 18% on day 7 to 30% on day 56. It is also clear that the growth of CH-rich islands 

between day 1 and day 7 (see Table 2-2) is fed by the dissolution of C3S from the porous 

areas, which releases calcium in solution. The calcium then diffuses toward the islands 
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where it preeipitates as calcium hydroxide. The interruption in the growth of CH-rich 

islands after day 7, which was mentioned earlier (see Table 2-2) may be caused by the 

increased difficulty for Ca ions to diffuse towards the islands as the amount of pore space 

decreases significantly in the porous regions from 41% on day 7 to 19% on day 56. 

Table 2-3 Phase distribution in CH-rich islands and porous areas of C3S samples 

Phases 

C3S 

CH 

CSH 

pore 

Day 1 Day 7 Day 56 

Island area 
percentage 

(%) 

20.8±2.7 

63.2±2.8 

15.5±3.2 

0.32=1=0.23 

Porous 
area 

Island area 
Porous 

area 
Island area 
percentage 

Porous 
area 

percentage ^ ,  
percentage (o/\ percentage /o/\ percentage 

(%) 

8.4±1.6 

na 

51.i=t2.8 

40.2=1=2.7 

19.7=t6.6 

62.1=1=5.9 

17.7=t3.6 

0.36=t0.25 

6.3±1O 

na 

51.6=t3.7 

41.5=t4.5 

15.o±4.o 

54.5±3.5 

29.9±4.] 

0.60=1=0.87 

2.4±1.6 

1 1.1=1=4.3 

67.4=1=5.9 

19.O±8.6 

Note: All values in this table were calculated from the results of grey level analysis on 7 

individual BSE images taken in CH-rich islands and 7 individual BSE images taken in 

porous areas. Each BSE image taken in the CH-rich islands covered an area of 71 x 53 

pm at an image scale of 0.055 pm / pixel. Each BSE image taken in the porous areas 

covered an area of 127 x 96 pm at an image scale of 0.100 pm / pixel. 

The percentage of unhydrated C3S in the porous areas was much lower than in the 

CH-rich islands and decreased with curing time (from roughly 8% at day 1 to 2% at day 

56). As shown in Table 2-3, there was almost no CH detected from day 1 to day 7 in the 

porous areas, and only a small amount formed between day 7 and day 56 (11%). 
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Figure 2-9 depicts the overall phase distributions (with no differentiation between 

CH-rich islands and porous areas) in hydrated C3S samples at days 1, 7 and 56. The large 

standard errors are attributable to the heterogeneity of the images (i.e., some images 

contain more CH-rich islands while others have more porous areas). The ongoing 

decrease in amount of unhydrated C3S between day 1 and day 56 reflects the progression 

in degree of hydration and coincides with a corresponding ongoing increase in amount of 

CSH and decrease in pore space. It is interesting to note, however, that although the 

amount of calcium hydroxide increased between day 1 and day 7 (at 97.7% confidence 

level determined by the Student t-test), it remained stable between day 7 and day 56 

(within statistical uncertainty). This finding is consistent with the earlier result that CH- 

rich islands grew between day 1 and day 7 but remained stable in size between day 7 and 

day 56 (Table 2-2). This result is important because it suggests that the overall 

stoichiometry of the C3S hydration reaction is not constant over time: initially the 

hydration of C3S produces both CH (which accumulates in the CH-rich islands) and CSH 

(mostly in the porous regions) but at later times, the production of CH almost comes to a 

halt while the formation of CSH continues in the porous regions. 
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Figure 2-9 Overall phase distributions of C3S samples at days 1, 7 and 56 (CH: calcium 

hydroxide). The bar heights were obtained by averaging the results of grey level analysis 

on 15 different BSE images each covering an area of 254 x 190 pm at an image scale of 

0.198 pm / pixel. Standard deviations appear as error bars. 

2.3.2.2. OPC 

CH-rich islands encompassing unhydrated C3S grains and containing little CSH 

are visible in BSE micrographs of OPC samples (Figure 2-1 Oa), but their sizes usually 

remain below 100 microns, which is smaller than their counterpart in C3S samples. 

Another important difference with C3S samples is that even at day 1, CH along with CSH 

precipitate in large quantities in the regions surrounding the islands (Figure 2-10b). As a 

2-23 



result, the porosity of the regions surrounding the CH-rich islands is much smaller than in 

C3S samples of equal age. 

(a) (b) 

Figure 2-10 Baekscattered electron images of OPC sample at day 1. (a) Overall view and 

(b) transition between CH-rich islands at the bottom and surrounding area at the top 

showing (A) unhydrated phases, (B) CH, (C) OHP (other hydration product, which is 

mainly CSH), and (D) porosity. 

The differences in the precipitation behaviour of CH at early curing times 

between OPC and C3S samples may be explained by a combination of factors. The 

dissolution of free calcium oxide, sodium oxide, and potassium oxide present in OPC 

results in a higher pH and larger OH’ concentrations in the pore water of OPC compared 

to that of C3S [4]. Because of the common ion effect (OH’), the solubility of CH is lower 

in OPC, which probably results in a larger number of CH nucleation centres in OPC 

compared to C3S. In C3S, the lower number of nucleation centres favours the growth of 

large CH-rich islands, whereas the large number of nucleation centres in OPC explains 

the more uniform precipitation of CH throughout the entire sample and limits the size to 
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which the CH-rich islands can grow. Moreover, the diffusion of dissolved Ca towards the 

CH-rich islands, which is required for their growth, is hindered in OPC by the presence of 

CH and additional hydration products (such as ettringite and monosulfate) in the pore 

space surrounding the islands. By contrast, the large open spaces in the porous regions of 

the C3S samples (see Figures 2-6c and 2-7c) facilitate the diffusive transport of Ca 

towards the CH-rich islands, thus favouring their growth. 

Another difference between C3S and OPC samples is the much greater abundance 

of separated hydration shells (Hadley grains) [4, 13, 14, 16, 27, 28] in the OPC sample at 

early times (Figure 2-11). Separated hydration shells have been linked to the formation of 

an amorphous hydration product of C3A and gypsum on the surface of cement grains, 

which may inhibit the precipitation of CSH directly on the grain surface [13]. Big cement 

grains tend to be surrounded by a thin CSH shell, whereas the cores of small grains 

eventually disappear, leaving hollowed hydration shells. Interestingly, some separated 

hydration shells were also observed, although less frequently, in the C3S samples (Figure 

2-12) in spite of the fact that C3A and gypsum were absent from these samples. This 

observation is also consistent with previous findings [4]. 

As curing time increased, the distinction between CH-rich islands and the rest of 

the sample progressively disappeared as a result of the following transformations: large 

C3S grains originally embedded in CH-rich islands partially hydrated and became 

covered by shells of smooth-textured CSH, small C3S grains were completely converted 

to CSH, and the pore space in the surrounding regions was gradually filled with 

irregularly textured CSH (Figure 2-13). The hydration of C3S grains contained in the 
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early CH-rich islands proceeded faster for OPC than for pure C3S, probably because the 

islands were smaller in OPC than in C3S. 

Figure 2-11 Backscattered electron image of OPC samples at day 1 showing abundant 

separated hydration shells (indicated by arrows). 

Figure 2-12 Backscattered electron image of C3S samples at day 56 showing the 

existence of some separated hydration shells (indicated by arrows). 



Figure 2-13 Backscattered electron image of OPC sample at day 56 showing the initially 

formed CH island in circle. 

Figure 2-14 shows the phase distribution in hydrated OPC sample after 1,7 and 

56 days of curing. The phase named OHP (other hydration products) is mainly composed 

of CSH with minor components such as ettringite and monosulfate, which are usually 

intermingled with CSH [14]. The amount of unhydrated cement (UC) and the porosity 

decreased from day 1 to day 56, whereas the amount of CSH increased. The amount of 

CH remained approximately constant (within statistical error) between day 1 and day 56, 

thus indicating that very little CH if any was formed after day 1. These results are 

generally similar to those obtained in pure C3S samples (Figure 2-9), except that the 

porosity is much lower in OPC than in pure C3S (by 5 times or more) at each curing time. 

The lower porosity in OPC is attributable to a combination of the lower water-to-cement 
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ratio (0.4 in OPC versus 0.6 in pure C3S) and the abundant precipitation of CH in the 

pores surrounding the CH-rich islands in OPC. 
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Figure 2-14 Overall phase distributions of OPC samples at day 1, 7 and 56 (UC: 

unhydrated cement, CH: calcium hydroxide, and OHP: other hydration products). The bar 

heights were obtained by averaging the results of grey level analysis on 10 different BSE 

images each covering an area of 254 x 190 pm at an image scale of 0.198 pm / pixel. 

Standard deviations appear as error bars. 

2.3.2.3. WPC 

The microstructure in WPC was generally similar to that of OPC of the same age. 

CH-rich islands were visible BSE images of WPC at day 1, but the C3S grains embedded 

in these islands appeared to have thicker rims of CSH than those in the OPC samples 
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(Figure 2-15a). This is consistent with the larger degree of hydration measured for WPC 

samples at day 1 (Figure 2-3). At longer curing times, CH-rich islands were no longer 

distinguishable in either WPC or OPC images (Figure 2-15 b). Separated hydration shells 

were also abundant in WPC samples at day 1. The phase distributions of WPC samples 

(Figure 2-16) were generally similar (within statistical variability) to those of OPC 

samples of the same age. Comparing the phase distributions of WPC samples (Figure 2- 

16) and OPC samples (Figure 2-14) shows that the OHP content was higher in OPC (69.2 

± 2.7%) than in WPC (63.8 ± 2.3%) at day 56. By contrast, the CH content was lower in 

OPC (19.4 ± 3.0%) than in WPC (23.1 ± 2.7 %). Both differences are significant at a 

confidence level higher than 99.9% by Student’s T-tests. These differences may explain 

why the measured FNEW value for WPC (0.209 ± 0.003) is lower than that for OPC 

(0.235 ± 0.006), since the water/calcium mole ratio is 2.3 in CSH [29] but only 1.0 in CFI. 

(a) (b) 

Figure 2-15 Backscattered electron images of WPC samples at (a) day 1 and (b) day 56. 
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Figure 2-16 Overall phase distributions of WPG samples at day 1, 7 and 56 (UC: 

unhydrated cement, CH: calcium hydroxide, and OHP: other hydration products). The bar 

heights were obtained by averaging the results of grey level analysis on 10 different BSE 

images each covering an area of 254 x 190 pm at an image scale of 0.198 pm / pixel. 

Standard deviations appear as error bars. 

2.4. Conclusions 

1. The ratios of non-evaporable water content in fully hydrated OPC and WPC are 

0.235 ± 0.006 and 0.209 ± 0.003,respectively. 

2. C3S has a higher degree of hydration than OPC and WPC at any given time. WPC 

hydrates faster than OPC during the first day, but both reach the same degree of 
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hydration (80%) at day 56. The early rate of hydration is positively correlated 

with the C3S and C3A contents. 

]. Pure C3S hydrates by forming dense CH-rich islands containing a large proportion 

of unhydrated C3S grains surrounded by porous regions mainly composed of 

residual C3S particles and CSH. 

i. The amount of CH-rich islands in C3S increases from day 1 to day 7 but reaches a 

plateau at around day 7. Precipitation of CSH and some CH in the porous regions 

accounts for the increase in sample hydration after day 7. 

5. OPC samples contain CH-rich islands at day 1, but these islands are much smaller 

that in pure C3S samples. As curing time increases, the distinction between CH- 

rich islands and the rest of the sample progressively disappears as a result of the 

hydration of the large C3S grains originally embedded in CH-rich islands and the 

precipitation of irregularly textured CSH in the porous regions. 

5. The evolution of the microstructure of WPC during hydration is similar to that of 

OPC, except that C3S grains embedded in CH islands in WPC samples have 

thicker CSH rims than those in OPC samples, consistent with the larger degree of 

hydration of WPC at early times. 

7. Separated hydration shells (Hadley grains) are more prevalent in OPC and WPC 

than in pure C3S. 

8. The overall hydration stoichiometries for C3S, OPC and WPC are not constant 

over time: initially the hydration reactions produce both CH and CSH, but at later 

times the production of CH almost ceases while the formation of CSH continues. 
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CHAPTER 3 

EFFECT OF SUCROSE AND SORBITOL ON THE HYDRATION AND 

MICROSTRUCTURE OF ASTM TYPE I ORDINARY PORTLAND 

CEMENT, WHITE PORTLAND CEMENT, AND TRICALCIUM 

SILICATE 

Summary: The effect of a small amount of sucrose (0.037 or 0.15 wt%) or sorbitol (0.40 

wt%) on the hydration and microstructure of ASTM Type I ordinary Portland cement 

(OPC), white Portland cement (WPC) and tricalcium silicate (C3S) were investigated by 

loss-on-ignition tests and scanning electron microscopy (SEM) as a function of curing time. 

For a given concentration of sucrose or sorbitol, the retardation period was longer in OPC 

(3-7 days) than in WPC (1-3 days). Calcium hydroxide (CH) precipitated first and before 

calcium silicate hydrate (CSH) in un-set samples, and later formed dense CH-rich islands 

that shielded unhydrated C3S grains. These islands persisted in all the set samples, but they 

were more prominent in pure C3S than in OPC or WPC. There is a range of sucrose and 

sorbitol concentrations in which the effects of these compounds on both the hydration rate 

and microstructure are only temporary. This range is lower for C3S than for OPC and WPC 

when sucrose is added. Sucrose affected the initial hydration and micro structure of C3S 

much more than that of OPC and WPC. By contrast, sorbitol had a more consistent effect 

on all the samples and less impact on the initial hydration and microstructure of pure C3S 

than sucrose. All the OPC and WPC samples reached degrees of hydration higher than 77% 

and strengths higher than 27.6 MPa (4000 psi) after 56 days. OPC containing 0.40 wt% 



sorbitol had significantly higher strength and degree of hydration than the other samples at 

56 days. 

Key words: Ordinary Portland cement (OPC); White Portland cement (WPC); Tricalcium 

silicate (C3S); Sucrose; Sorbitol; Hydration; Strength; Microstructure 

3.1. Introduction 

Ordinary Portland cement (OPC) is a fundamental component of most concretes. 

Raw OPC has five main components; tricalcium silicate (C3S); dicalcium silicate (C2S); 

tricalcium aluminate (C3A); tetracalcium aluminoferrite (C4AF); and calcium sulfate 

(gypsum or anhydrite). Once contacted with water, C3A reacts with sulfate coming from 

the dissolution of gypsum to form ettringite (AFt) and monosulfate (AFm), thus preventing 

the flash set produced by the formation of caleium aluminate hydrates. C3S and C2S 

undergo hydration to form calcium hydroxide (CH) and calcium silicate hydrate (CSH), 

which are the main hydration products and the principal contributors to cement strength. 

C3S is more reactive and has a higher exothermic heat of formation than C2S. As a result, 

C3S and C2S are largely responsible for the early and late stages, respectively, of hydration 

and strength development [1,2]. White Portland cement (WPC) contains significantly 

fewer transition metal oxides (iron, manganese and others) than OPC and thus, once cured, 

has a brilliant white appearance that is advantageous for decorative applications as well as 

reflective flooring and roadway infrastructure [3]. 



For certain applications such as transporting cement-stabilized waste long distances 

by truck, the normal setting process could be too rapid and cause operational difficulties. In 

these situations, controlling the setting rate with chemical retarders is desirable. Many 

chemical admixtures have the ability to slow down the cement hydration reactions [4-15]. 

Among commonly used retarders, sucrose (table sugar) is one of the most effective; the 

addition of 0.075 wt % sucrose to OPC increases the induction period of hydration from 2.5 

to 31 hours [9]. Many studies have investigated the mechanisms of set-retardation in 

cement pastes containing sucrose [4, 7, 8, 9, 12, 13, 14, 16, 17]. Although the details of 

these mechanisms are still unknown, it is generally recognized that sucrose plays an 

important role in preventing the precipitation of Ca and Si present in pore solution by 

poisoning the growth surface of early hydration products or the surface of C3S particles [4, 

7, 8, 12, 14]. It has been proposed [4, 12] that the poisoning agent is a sucrose-calcium half 

salt [R-0'...Ca^-0H] that adsorbs onto growing CH nuclei via its pendant Ca(OH)^ group, 

thus inhibiting further deposition of calcium and hydroxide ions. The precipitation of CSH 

gel, which relies on the deposition of silica on an existing CH lattice, could be similarly 

inhibited by poisoning of the CH surface. In addition to retarding the setting of cement, 

sucrose may alter the micro structure of hydrated OPC paste by increasing the specific 

surface area and modifying the pore size distribution [18]. 

Sucrose does not bind significantly with silicon in solution [4, 12], but sorbitol, 

which is a sugar alcohol and a weaker retarder [19], can react with silicon to form stable 

five- or six-coordinated silicon polyolate complexes in high pH surroundings [20]. To the 

best of the author’s knowledge, no investigation has been reported previously of the effects 

of silicon binders on the hydration and microstructure of cement. Sorbitol is usually 



employed as a water-reducing plasticizer (superplasticizer) in cement admixtures [19, 21]; 

that is, it decreases the water needed to make the cement workable which, in turn, enhances 

its strength [22]. Sorbitol has been reported to prevent the nucleation and linear growth of 

ettringite owing to chelation of calcium and possibly aluminium ions that are incorporated 

into the crystal, thus shielding ettringite from further growth [21]. However, even if 

sorbitol-calcium complexes may exist, the interaction between sorbitol and calcium ions is 

very weak (pATai = 13.6) [23]. 

The objectives of this research were to explore the effects of a small addition of 

sucrose or sorbitol on the degree of hydration and microstructure of ASTM Type I OPC 

and WPC as a function of time'. To facilitate the inteipretation of the results, the 

microstructure of a much simpler system — pure tricaleium silicate (C3S) — was also 

investigated for comparison. Because the composition of WPC is intermediate between that 

of C3S and OPC (Table 3-1), these three systems provide increasing degrees of 

compositional complexity, with pure C3S and OPC being the least and most complex, 

respectively. 

3.2. Materials and methods 

3.2.1. Sample Preparation 

ASTM C 150 Type I ordinary Portland cement (CEMEX Inc., Charlevoix, MI), 

ASTM Cl50 Type I white Portland cement (Aalborg Portland, Aalborg, Denmark), and 

pure tricalcium silicate (CTL Group, Skokie, IE) were used in this research. Both the OPC 

' The effects of arabitol (a silicon binder) on the hydration of OPC and on the microstructure of C3S were also 
investigated; the results are displayed in Appendices B and C. 



and WPC conform to the ASTM Cl50 standard for Type I cement which specifies 

compositional and physical requirements, including loss-on-ignition, insoluble residue, 

setting time, strength and air content [24]. The manufacturers’ specifications for all three 

cements are provided in Table 3-1. The C3S was crystallographically-pure triclinic alite, 

with reported traces of AI2O3 and MgO, at 325 mesh. (Particles measure less than 44 pm.) 

Table 3-1 Chemical and physical analysis and potential compound compositions of 

unhydrated OPC, WPC, and C3S samples 

OPC (Gray) WPC (White) PureC3S 

Chemical 
composition (wt%) 

Si02 

AI2O3 

FC203 

CaO 

MgO 

SO3 

Loss-on-ignition 
 (wt%)  

Insoluble residue 
 (wt%)  

Alkalies as Na20 

eg. (wt%) 
Blain fineness 

(m^/kg) 
Potential eompound 
composition (wt.%) 

C3S 

C2S 

C3A 

C4AF 

19.35 

5.16 

2.47 

62.60 

3.48 

3.57 

1.52 

0.15 

0.85 

378 

60 

11 

10 

8 

24.5 

2.1 

0.34 

69.0 

0.59 

2.13 

0.5 

0.08 

0.19 

393 

74 

14 

5 

1 

26.3 

traces 

0 

73.7 

traees 

0 

na 

na 

na 

100 

0 

0 

0 

na = not applicable 



Reagent grade sucrose and sorbitol were dissolved in deionised water at 

concentrations ranging between 0 and 10 g/L. The solutions were pre-cooled to 10 °C and 

then mixed with kilogram quantities of OPC and WPC at a water-to-cement mass ratio of 

0.40:1 in a plastic bowl immersed in an ice-water bath. (Temperature control was necessary 

with such large samples to counteract the heat generation at early times. Some mixtures - 

most notably those containing sorbitol - released more heat than others.) The mixtures 

were stirred with a plastic spoon for about 7 min until they were homogeneous. All the 

samples were slurries after being mixed with water, especially those with the addition of 

sorbitol. They were then poured into either polyethylene ice cube trays (WPC) or 5.08 x 

10.16 cm (2x4 inch) PVC cylinders (WPC and OPC). The cylinders were filled in two 

successive layers, and each layer was tamped 50 times to minimize the entrapment of air 

bubbles. Next, the samples were placed in iriple-sealed air-tight polyethylene bags, and 

immersed in a water bath at room temperature (20-22 ”C) to cure. WPC samples cured in 

ice trays were used for loss-on-ignition testing after 1, 3, 7, 14 and 28 days of curing. All 

tests were carried out in triplicate, except at day 1. WPC cylinder samples were used for 

seven replicate strength tests and three replicate loss-on-ignition tests at 56 days of curing. 

OPC samples were used for triplicate loss-on-ignition tests at day 3,7, 14, 28 and 56, 

triplicate strength tests at day 56, and a further loss-on-ignition test at day 1. 

Due to low material availability, much smaller quantities were used of C3S. 

Samples were placed in separate 8 ml polyethylene plastic bottles. In each bottle, 1.20 g 

C3S was blended with 0.72 ml deionised-distilled water at a water-to-solid mass ratio of 

0.60:1 [15]. The slurry was then mixed with a small glass stir rod for 30 seconds. In order 



to prevent carbonation, all the preparation steps were done in a glove box under nitrogen. 

Samples were sealed in plastic bottles and cured at room temperature until testing. 

Table 3-2 shows the composition of all the samples. The letters ‘‘O”, “W”, and “C” 

in the batch names represent OPC, WPC, and C3S, respectively. Sucrose and sorbitol 

contents ranged from 0 to 0.40 wt%. 

Table 3-2 Sample compositions 

Batch name Binder 
Sorbitol/sucrose content 

(wt% of cement) 

O Control 

OSorbitol 

O Sucrose low 

O Sucrose high 

WControl 

WSorbitol 

W_Sucrose low 

WSucrose high 

CControl 

CSorbitol 

C_Sucrose low 

C Sucrose high 

OPC 

OPC 

OPC 

OPC 

WPC 

WPC 

WPC 

WPC 

C3S 

C3S 

C3S 

C3S 

0 

0.40 

0.037 

0.15 

0 

0.40 

0.037 

0.15 

0 

0.40 

0.037 

0.15 

3.2.2. Loss-on-ignition Testing 

Loss-on-ignition testing was performed to determine the degree of hydration of 

OPC and WPC samples. A small portion of each sample was crushed, and 1.0 to 1.5 g of 



the 850-2000 p,m fraction was oven-heated for 24 h at 105 to remove evaporable water 

and obtain the evaporable water-free mass, Pf'^ws- Next, the temperature was increased and 

maintained at 1005 °C for 2 h to determine the fully dehydrated mass, The degree of 

hydration ati was calculated as follows [1, 25], 

=W05-W^,0O5)/(C»'K,O5) (3-1) 

in which the constant c is the fraction of non-evaporable water content in fully hydrated 

cement. The value of c was determined to be 0.2349 for OPC and 0.2086 for WPC (Chapter 

3.2.3. Strength Testing 

Strength tests were carried out after the OPC and WPC samples had been cured for 

56 days. Immediately after they were removed from the moulds, sample cylinders were 

capped top and bottom with sulfur according to ASTM C617-98 [26], and the unconfmed 

compressive strength was measured according to ASTM Cl09 [27] . 

3.2.4. SEM-EDS Analyses 

After reaching the desired curing time, a small slice (ca. 0.5 g) was removed from 

the inner part of the sample, immersed for 24 h in acetone to halt hydration [28], dried at 

105 ^C for 15 min, and then imbedded in epoxy resin. A thin-section was cut, lapped, and 

polished using oil-based media so as not to alter the water-soluble minerals. After carbon- 

■ Considering the large number of samples and the elevated cost of the cubic moulds, PVC cylinders were 
selected for curing samples for strength testing. Preliminary test results demonstrated that after capping the 
cylindrical samples with sulfur, the standard errors for both shapes of samples were comparable. 
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coating, it was analyzed with a JEOL JSM 5900 scanning electron microscope in 

backscattered electron (BSE) mode to improve contrast between different mineral phases 

[29, 30]. The elemental composition of the phases was determined by X-ray energy 

dispersive spectrometry (EDS) using an Oxford Link ISIS system (50 s live-time). SEM- 

EDS analyses were carried out on days 1, 7 and 56 for all the OPC, WPG and C3S samples. 

3.3. Results 

3.3.1. Degree of Hydration 

3.3.1.1. Ordinary Portland Cement (OPC) 

Figure 3-1 depicts the effects of sucrose and sorbitol on the degree of hydration of 

OPC as a function of time, determined by loss-on-ignition testing. The addition of 0.037 

wt% sucrose (O Sucrose low) did not significantly retard the hydration of OPC. A higher 

amount of sucrose (O Sucrose high) only led to a temporary retardation period of less than 

7 days. At day 56, there was no statistically significant difference between the degree of 

hydration of O Sucrose high (80.2Q ± O.83 %) and O Control (81.Oj ± 0.82%). Adding 0.40 

wt% sorbitol (O Sorbitol) also caused a retardation of OPC hydration before day 7 and 

acceleration between day 7 and day 14. At day 56, O Sorbitol had a higher degree of 

hydration (84.lo ± 0.4i %) than 0_Control (81.0] ± O.82 %) with a confidence level of 99% 

by Student’s T-test. 



100% 

90% 

0 10 20 30 40 50 60 

Time (days) 

Figure 3-1 Effect of sucrose and sorbitol on the degree of hydration of OPC. The expanded 

graph shows the details for the first 8 days. Error bars correspond to standard deviations 

over three measurements. In many cases, the error bars are too short to be seen. 

3.3.1.2. White Portland Cement (WPC) 

The effects of sucrose and sorbitol on the degree of hydration of WPC as a function 

of time, determined by loss-on-ignition testing, are shown in Figure 3-2. The retardation 

effect was more short-lived in WPC (less than 3 days) than in OPC when either high 

sucrose or sorbitol was added. (Compare the expanded graphs in Figures 3-1 and 3-2). 

However, low sucrose delayed the hydration of WPC, but not that of OPC. At day 1, high 

sucrose did not decrease the hydration degree of WPC (32.09 %) as much as that of OPC 

(10.9o%). The addition of sorbitol, however, affected the hydration of both cements 
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similarly (OPC, 16.34%; WPC, 17.08%). The degree of hydration at day 3 in all the WPC 

samples was nearly 65%, which was higher than that measured in any OPC sample. 

0 10 20 30 40 50 60 

Time (days) 

Figure 3-2 Effect of sucrose and sorbitol on the degree of hydration of WPC. The expanded 

graph shows the details for the first 8 days. Error bars correspond to standard deviations 

over three measurements. In many cases, the error bars are too short to be seen. 

After 14 days of curing, all WPC samples reached approx. 74% degree of hydration. 

At that time, the two sucrose samples were slightly more hydrated than the Control and 

Sorbitol samples (at more than 80% confidence level by Student T-test). 

Comparison of the 56-day hydration data for OPC and WPC (Figures 3-1 and 3-2) 

shows that O Control and W Control both attained roughly 80% degree of hydration. 

However, 0_Sorbitol hydrated significantly more than W_ Sorbitol (84. lo versus 77.4Q% at 
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a 96% confidence level). By contrast, 0_Sucrose high hydrated less than the W_Sucrose 

high (80.29 versus 82.9y% at a 98% confidence level), while the difference between 

0_Sucrose low and W_Suerose low is not statistically significant. 

3.3.2. Strength 

Figures 3-3 and 3-4 depict the average 56-day strength of OPC and WPC with and 

without adding sucrose or sorbitol . Strength data are elosely correlated to hydration data. 

Adding 0.40 wt% sorbitol increased the strength of OPC at day 56 at 81% confidenee level 

by Student T-test. This result reflects the fact that the degree of hydration of 0_Sorbitol 

was higher than that of 0_Control after 56 days curing, and it is also consistent with 

previous research [19] showing that sorbitol improves the 28-day strength of OPC. By 

contrast, low and high sucrose decreased the 56-day strength only slightly. 

Figure 3-3 Effect of sucrose and sorbitol on the strength of OPC at day 56. 

Error bars correspond to the standard deviations over three measurements. 

^ The compressive strength of OPC samples with and without the addition of sucrose, sorbitol and arabitol 
was also tested at days 3, 7, 14 and 28. Please see Appendix D for additional strength results for OPC. 
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The effect of sorbitol or sucrose addition on the 56-day strength of WPC samples is 

shown in Figure 3-4. These effects are generally different in WPC and OPC samples. 

Although W Sucrose high exhibited a somewhat higher strength than W_Control at the 

82% confidence level, neither W_ Sorbitol nor W_Sucrose low differed significantly from 

W_Control in their 56-day strength. 

Similar to the hydration data, the strengths of O Control and W Control at day 56 

were comparable when considering experimental uncertainty. In addition, O Sorbitol (38.6 

MPa or 5594 psi) was much stronger than W Sorbitol (29.0 MPa or 4208 psi) at a 99.99% 

confidence level, while O Sucrose was weaker than W_Sucrose (at a 95% and 87% 

confidence levels for Sucrose low and Sucrose high, respectively). Both results are 

consistent with the corresponding degree of hydration data. 

□ W_Control 

0W Sucrose low 

W_Sorbitol 

W_Sucrose high 

Figure 3-4 Effect of sucrose and sorbitol on the strength of WPC at day 56. 

Error bars correspond to the standard deviations over seven measurements. 
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3.3.3. Microstructure 

As hydrated C3S samples have the simplest composition, their microstructure will 

be presented first and then compared with that of OPC and WPC. 

3.3.3.1. C3S 

The status (set or not set) of C3S samples and the distribution of hydration products 

with and without the addition of sucrose or sorbitol after 1, 7 and 56 days of curing are 

summarized in Table 3-3. 

Table 3-3 Status and distribution of hydration products for C3S samples at days 1, 7, and 56 

Sample Day 1 Day 7 

C Control 

C Sucrose low 

C_ Sucrose high 

C Sorbitol 

Set; CH-rich 
islands and porous 

areas; 
diameter of CH- 

rich islands is 
100-150 pm 
[Figure 3-5] 

Not set; 
no hydration 

products 
[Figure 3-8] 

Not set; no 
hydration products 

(similar to 
Figure 3-8) 

Not set; some CH 
[Figure 3-9] 

Set; CH-rich islands 
and porous areas; 

diameter of CH-rich 
islands is -200 pm 

[Figure 3-6] 

Set; CH-rich islands 
and porous areas; 

diameter of CFl-rieh 
islands is 

100-200 pm 
(similar to 
Figure 3-8) 
Not set; no 

hydration products 
(similar to 
Figure 3-8) 

Set; CH-rich islands 
and porous areas; 

diameter of CH-rich 
islands is 300-400 
pm [Figure 3-10] 

Day 56 

Set; CH-rich islands 
surrounded by CSH- 

rich regions and 
some remaining 

porous areas 
[Figure 3-7] 

Set; CH-rich islands 
surrounded by CSH- 

rich regions and 
some remaining 

porous areas 
(similar to 
Figure 3-8) 

Not set; no hydration 
products 

(similar to 
Figure 3-8) 

Set; CH-rich islands 
surrounded by CSH- 

rich regions 
[Figure 3-11] 
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Figure 3-5 shows typical BSE images of the C_Control sample at day 1 at different 

magnifications. Dense CH-rich islands consisting of bright unhydrated C3S grains 

embedded in a dense calcium hydroxide matrix (light grey) are surrounded by a more 

porous matrix consisting mostly of unhydrated C3S and CSH gel. These observations are 

similar to those by Kjellsen and Justnes [31] who used a lower water-to-solid ratio (0.40 

versus 0.60 in this study). The CH-rich islands grew from day 1 to day 7 up to 

approximately 200 pm (Figure 3-6) without significant modification in their composition 

(See Chapter 2), but stopped growing thereafter. Precipitation of further CSH and some 

CH in the porous areas led to a significant decrease in the porosity of these areas and to 

bridging of CH-rich islands by day 56 (Figure 3-7). 

The addition of 0.037 wt% sucrose (C_Sucrose low) delayed the hydration of C3S, 

and no hydration product was visible at day 1 in BSE images (Figure 3-8). The effect of 

sucrose had disappeared by day 7, as indicated by the similarity of the BSE images for 

C Sucrose low and C Control. At day 56, the porous areas in C_Sucrose low were also 

mostly filled-in by CSH precipitates. Nevertheless, when 0.15 wt% sucrose was added 

(C_Sucrose high), the hydration process was drastically delayed such that no hydration 

product was observed during 56 days of curing. 

The hydration of C_Sorbitol was also retarded but, by contrast with the sucrose 

samples, a small amount of elongated calcium hydroxide crystals was found at day 1 

(Figure 3-9). These CH crystals formed within unhydrated C3S clusters and were the 

precursors of the CH-rich dense areas. Despite the initial delay, C-Sorbitol contained larger 

CH-rich islands (300-400 pm) at day 7 than C Control and C_Sucrose low (Figure 3-10). 
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At day 56, all the previous porous areas were mostly filled-in by CSH precipitates (Figure 

3-11). The size of the CH-rich islands at day 56 in C Sorbitol remained larger than in 

C Control and C_Sucrose of the same age. Furthermore, the amount of unhydrated C3S 

remaining in the CH-rich regions was higher for C Sorbitol than for C Sucrose low and 

C Control. (Compare Figure 3-11 with Figure 3-7.) The large CH-rich regions probably 

impeded the diffusion of water to the embedded C3S. 

Figure 3-5 Backscattered electron images of C_Control at day 1: (a) overall view; 
(b) dense CH-rich islands; and (c) porous area, showing 

(A) C3S, (B) CH, (C) CSH and (D) pores. 



Figure 3-6 Backscattered electron image of Figure 3-7 Backscattered electron image of 

C Control at day 7. C_Control at day 56. 

Figure 3-8 Backscattered electron image of 

C Sucrose low at day 1. The bright particles are 

unhydrated C3S. 

Figure 3-9 Backscattered electron image of 

C_Sorbitol at day 1, showing 

(A) C3S and (B) CH. 
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Figure 3-10 Backscattered electron image of 

C Sorbitol at day 7. 

Figure 3-11 Backscattered electron image of 

C Sorbitol sample at day 56. 

3.3.3.2. OPC 

Table 3-4 shows the status (set or not set) of OPC samples and the distribution of 

hydration products, with and without the addition of sucrose or sorbitol, after 1, 7 and 56 

days of curing. The micro structure of 0_Control has been fully described in Chapter 2. In 

brief, when compared to C_Control, the 0_Control sample has smaller and less distinct 

CH-rich islands, reduced porosity, and more complex and dispersed precipitation of CH, 

CSH, and other hydration products such as ettringite and monosulfate (Figure 3-12). The 

differences in the microstructure of these two systems are likely attributable to the presence 

of alkalis (free calcium oxide, sodium oxide, and potassium oxide) that may affect the 

nucleation rate of CH and other components such as A1 and Fe phases in OPC (Chapter 2). 

As hydration progressed in OPC, the rims of CSH covering large C3S grains became 

thicker, smaller C3S grains were completely converted to CSH, and the pore space was 
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gradually filled with irregularly textured CSH and freshly formed CH (Figures 3-13 and 3- 

14). 

The addition of 0.037 wt% sucrose to OPC (O Sucrose low) neither delayed its 

hydration nor affected the micro structure at day 1. However, when 0.15 wt% sucrose or 

0.40 wt% sorbitol was added, the formation of CSH was delayed but small amounts of 

calcium hydroxide precipitated. The CH appeared either as large elongated crystals in 

0_Sucrose high (Figure 3-15) or as masses of smaller crystals in 0_Sorbitol (Figures 3-16), 

which were likely the precursors of the CH-rich islands. After day 7, sorbitol and sucrose 

ceased to affect the development of the OPC microstructure, and BSE images of 0_Control, 

0_Sorbitol, and O Sucrose high became indistinguishable. 

(a) (b) 

Figure 3-12 Backscattered electron images of 0_Control at day 1 with (a) low and (b) 

high magnification, showing 

(A) unhydrated cement grains, (B) CH, (C) CSH and (D) pore. 
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Table 3-4 Status and distribution of hydration products for OPC samples at days 1, 7 and 56 

Sample Day 1 Day 7 Day 56 

Set; small CH-rich 
islands (< 100 pm); 
thin rims of CSH on 
C3S grains; complex 

Control precipitation of CSH, 
CH, and other 

hydration products in 
the pore space 
[Figure 3-12] 

Set; thicker CSH rims 
on C3S grains and 

reduced porosity (by 
comparison with day 1) 

[Figure 3-13] 

Set; very thick CSH 
rims on remaining C3S 

grains; complex 
precipitation of CSH, 

CH, and other hydration 
products in the pore 

space; almost no 
porosity 

[Figure 3-14] 

Sucrose 
low 

Set; similar to Control 
at day 1 

[similar to Figure 12] 

Set; similar to Control at 
day 7 

[similar to Figure 3-13] 

Set; similar to Control at 
day 56 

[similar to Figure 3-14] 

Sucrose- 
high 

Not set; some CH 
crystals 

[Figure 3-15] 

Set; similar to Control at 
day 7 

[similar to Figure 3-13] 

Set; similar to Control at 
day 56 

[similar to Figure 3-14] 

Not set; some CH 
Sorbitol crystals 

[Figure 3-16] 

Set; similar to Control at 
day 7 

[similar to Figure 3-13] 

Set; similar to Control at 
day 56 

[similar to Figure 3-14] 

Figure 3-13 Backscattered electron image of Figure 3-14 Backscattered electron image of 

0_Control at day 7. 0_Control at day 56. 
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Figure 3-15 Backscattered electron images of O Sucrose high sample at day 1 with (a) 

low and (b) high magnification, showing (A) unhydrated cement grains and (B) CH. 

(a) (b) 

Figure 3-16 Backscattered electron images of O Sorbitol at day 1 with (a) low and (b) 

high magnification, showing (A) unhydrated cement grains and (B) CH. 
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3.3.3.3. WPC 

The microstructure of W_Control and 0_Control samples at the same age are 

similar (Figures 3-17 to 3-19). Adding 0.037 \Ni% sucrose did not significantly alter the 

microstructure of WPC at day 1 (Figure 3-20). Although addition of 0.15 wt% sucrose or 

(a) (b) 

Figure 3-17 Backscattered electron images of W Control at day 1 with (a) low and (b) high 

magnification, showing (A) unhydrated cement grains, (B) CH, (C) CSH and (D) pore. 

0.40 wt% sorbitol delayed the precipitation of CSH, some calcium hydroxide was present 

at day 1 (Figures 3-21 and 3-22). The amount of CH formed at day 1 with 0.15 wt% 

sucrose was significantly larger in WPC than in OPC. (Compare Figures 3-15a and 3-21 a.) 

No difference was observed when sorbitol was added, however. This is consistent with the 

fact that the degree of hydration at day 1 was much higher in W_Sucrose high (32%) than 

in 0_Sucrose high (11%), whereas 0_Sorbitol and W Sorbitol had similar degrees of 

hydration (17%). (See Figures 3-1 and 3-2.) After 1 day, neither sucrose nor sorbitol had a 

significant effect on the microstructure of WPC. Despite the slight differences between the 
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micro structure of WPC and OPC, the overall trends of WPC samples with various additives 

and different curing time were similar to their equivalent OPC counterparts. Thus, the 

status and micro structure WPC samplse can also be read from Table 3-4. 

Figure 3-18 Backscattered electron image of Figure 3-19 Backscattered electron image of 

W Control at day 7. W_Control at day 56. 

Figure 3-20 Backscattered electron image of W_Sucrose low at day 1. 

3-23 



(a) (b) 

Figure 3-21 Backscattered electron images of W_Sucrose high at day 1 with (a) low and 

(b) high magnification, showing (A) unhydrated cement grains and (B) CH. 

(a) (b) 

Figure 3-22 Backscattered electron images of W Sorbitol at day 1 with (a) low and (b) 

high magnification, showing (A) unhydrated cement grains and (B) CH. 



3.4. Discussion 

The above results show that sorbitol or sucrose at suitable concentrations can be 

effectively used to delay the hydration of OPC, WPC and pure C3S. The retardation effect 

was more severe on the precipitation of CSH than on that of CH. In all the systems where 

hydration was delayed, CH precipitated before CSH, and the early CH was the precursor of 

CH-rich islands that were later observed in the set samples. 

OPC, WPC and C3S were affected differently by sucrose, especially during the 

early stages of hydration. Addition of 0.037 wt% sucrose completely prevented the 

formation of hydration products in C3S at day 1, but did not significantly affect the 

microstructure of WPC or OPC. Increasing the concentration of sucrose to 0.15 wt% 

temporarily delayed the hydration of OPC and WPC (up to seven days), but prevented the 

precipitation of hydration products in C3S throughout the whole test period (56 days). 

Furthermore, addition of 0.15wt% sucrose affected OPC more than WPC: after 1 day, the 

degree of hydration was significantly higher for WPC than for OPC, and more CH had 

precipitated in WPC than in OPC. The smaller effect of sucrose on OPC and WPC than on 

C3S may be explained by the adsoiption of sucrose onto the aluminium phases, especially 

unhydrated C3A, which reduces the amount of free sucrose available to react with cement 

[7, 9,10,13]. 

The effect of sorbitol on C3S, OPC and WPC samples was more consistent than that 

of sucrose. At day 1, addition of 0.40 wt.% sorbitol prevented C3S, OPC and WPC from 

setting, but all three samples contained some CH precipitates. OPC and WPC samples 
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containing sorbitol had similar degrees of hydration at day I. By day 7, sorbitol no longer 

had a visible effect on the microstructure of C3S, OPC and WPC. 

The results indicate that there is a range in sucrose and sorbitol concentrations in 

which the effects of these compounds on both the hydration rate and micro structure are 

only temporary. With sucrose, this range is lower for C3S than for OPC and WPC. It is well 

established that sucrose enhances the solubility of Ca, Si, Al, and Fe initially in the aqueous 

phase [4, 12], probably as a result of the poisoning of growth surfaces on CH by a sucrose- 

calcium half salt [4, 12] or another poisoning agent such as surface-bound oligomeric 

calcium alkoxides [14]. As the concentration of ions in solution increases, the opportunity 

for these ions to precipitate by forming new nucleation sites rather than attaching to the 

poisoned nuclei also increases [18]. Although these new sites can also be poisoned by 

sucrose, as more and more new ones form, the “retardation barrier” can be overcome 

suddenly once there are more nucleation sites present than available sugar. This theory may 

explain why samples containing sucrose, although they were initially delayed, eventually 

hydrated fast enough to catch up with the control samples and achieve similar strengths, 

although they were initially delayed. In addition, this theory also explains why, if too much 

sucrose is added, the hydration is forever prevented by an “unconquerable bamer” [18]. 

Until now, no specific retardation mechanism has been proposed for sorbitol. 

However, unlike sucrose, sorbitol is able to form [HOSi(Rsor)2] and [Si(Rsor)3]^ complexes 

with aqueous silicon in alkaline media [20]. These anionic complexes may play a role in 

delaying the hydration of cement, possibly thi'ough Ca(OH)^ association. Moreover, it is 

tempting to speculate that the enhancement in strength and final degree of hydration of 
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OPC that resulted from 0.40% sorbitol addition was caused by the formation of sorbitol- 

silicate cross-links in the solid cement matrix. 

3.5. Conclusions 

Sucrose and sorbitol delayed the hydration of C3S, OPC and WPC by interfering 

with the precipitation of CSH and CH at early curing times. The delaying effect of sucrose 

and sorbitol only lasted a few days, except for the combination of C3S with 0.15 wt% 

sucrose, which did not set even after 56 days. For a given concentration of sucrose or 

sorbitol, the retardation period was longer in OPC (3-7 days) than in WPC (1-3 days). 

Calcium hydroxide appeared before CSH at the earliest stages of hydration, and eventually 

formed into dense CH-rich islands that contained unhydrated grains of C3S. These islands 

persisted in the paste micro structure even after CSH had started precipitating and the 

samples had set, but they were more prominent in pure C3S than in OPC or WPC. Sucrose 

affected the initial hydration and microstructure of C3S much more than that of OPC and 

WPC. By contrast, sorbitol had a more consistent effect on all the samples, and its impact 

on the initial hydration and micro structure of pure C3S was less severe than that of sucrose. 

After 56 days, all the OPC and WPC samples reached degrees of hydration close to 80% 

and strengths between 27.6 and 34.5 MPa (4000 and 5000 psi), except, that is, for OPC 

with 0.40 wt% sorbitol which had significantly higher strength and degree of hydration. 
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CHAPTER 4 

EFFECTS OF SUCROSE AND SORBITOL ON CEMENT-BASED 

STABILIZATION/SOLIDIFICATION OF TOXIC METAL WASTE^ 

Summary: The effects of sucrose or sorbitol addition on the hydration, unconfmed 

compressive strength and leachability of Portland cement pastes containing 1 % Pb and 1 % 

Zn were studied as a function of time. Whereas Pb and Zn were found to shorten the time to 

achieve maximum hydration of Portland cement, the combination of these metals with 0.15 

wt% sucrose or 0.40 wt% sorbitol retarded the setting of cement by at least 7 days and 28 

days, respectively, without affecting the strength at 56 days. The leachability of Pb and Zn 

evaluated by the TCLP 1311 protocol at 56 and 71 days was slightly reduced or unchanged 

by the addition of sucrose or sorbitol. SEM-EDS and XRD analyses revealed that ettringite 

precipitation was favored whereas the formation of CSEt gel, which accounts for most of 

the strength of hydrated cement, was delayed in cement pastes containing both metals and 

sucrose or sorbitol. These results indicate that controlled additions of sucrose or sorbitol 

can add flexibility to the handling of cement-treated metal waste, particularly when it needs 

to be transported by truck or pipeline between the treatment plant and the disposal site, 

without affecting its long term performance. 

Keywords: Stabilization/solidification (S/S); Cement; Sucrose; Sorbitol; Heavy metals 

This chapter was accepted for publication by the Journal of Hazardous Materials on June 6 2007. For the 
PDF file of the article in press, please see Appendix M. 



4.1. Introduction 

Stabilization/solidification (S/S) is a widely used technique for immobilizing toxic 

metal ions in industrial waste prior to landfilling. The binder of choice is most often 

Portland cement, owing to its ready availability, high strength and amply documented 

performance [1]. The main components of Portland cement are tricalcium silicate (C3S), 

dicalcium silicate (C2S), tricalcium aluminate (C3A), tetracalcium aluminoferrite (C4AF) 

and calcium sulfate (gypsum or anhydrite, 10% max). During cement hydration, C3A reacts 

with sulfate ions coming from the dissolution of calcium sulfate to form crystals of 

ettringite (AFt) and monosulfate (AFm), thus preventing the flash set of Portland cement. 

C3S and C2S undergo hydration to form calcium hydroxide (CH) and calcium silicate 

hydrate (CSH), which is the principal contributor to cement strength. [2] The CSH plays a 

key role in immobilizing adventitious metal ions by means of physical adsorption [3], 

coprecipitation [4] and formation of metallosilicates [5-7]. Further metal uptake is provided 

via ion substitution in ettringite crystals [3]. 

Sugars and their derivatives are found in many industrial wastes and byproducts, 

either as individual molecules or as the repeating units in long-chain compounds. For 

example, wood sugars and oligosaccharides mixed with lignosulfonates are byproducts 

from the manufacture of pulp and paper. They are widely used as retarders to control the 

setting of cement [8-13]. There has been no study published, however, on the effects of 

sugars as additives in cement-based S/S processes. The retarding influence of sugars could 

be advantageous when the waste-cement mixture needs to be transported for some distance 

between the S/S treatment plant and the disposal site. In these situations, early hardening of 



the cement in the truck box or pipeline could result in severe operational difficulties and 

limited flexibility. In the present research, a sugar (sucrose) and a sugar alcohol (sorbitol) 

were investigated. Both additives are highly resistant to alkali attack but differ in their 

affinity toward silicon: sorbitol is a silicon binder [14], whereas sucrose is not [8, 12]. As a 

result, these two additives are expected to interfere differently with the cement hydration 

reactions. Sucrose is one of the most effective and commonly used retarders for cement 

setting. The addition of 0.075 wt % sucrose increases the induction period of the hydration 

process from 2.5 to 31 hours [11]. Moreover, sucrose has been shown to enhance the 

specific surface area of hydrated cement pastes by increasing the number of small (1-2 nm) 

pores at the expense of medium-sized (4-20 nm) pores [15]. Sorbitol is often employed as a 

water-reducing plasticizer (superplasticizer) in cement admixtures, that is, it decreases the 

water needed to make the cement workable which, in turn, enhances its strength [16, 17]. 

The objective of this study was to explore the effects of small additions of sucrose 

or sorbitol on metal leachability and strength development for specimens of metal waste 

treated by cement-based stabilization/solidification. Synthetic Pb and Zn waste solutions 

were used because both metals are common to industrial waste streams and have been 

identified as priority metallic pollutants by the US Environmental Protection Agency [18]. 

To aid in the interpretation of the results, the degree of cement hydration and the 

micro structure of the treated waste matrix were also assessed as a function of time. 



4.2. Materials and Methods 

4.2.1. Sample Preparation 

Synthetic waste solutions containing 25.0 g/L of each Pb and Zn were prepared by 

dissolving 40.0 g Pb(N03)2 and 114 g Zn(N03)2-6H20 per litre of distilled-deionized water. 

Sucrose and sorbitol were dissolved in these solutions at concentrations ranging between 0 

and 10 g/L; equivalent metal-free solutions were also prepared. The solutions were pre- 

cooled to 10 °C and then mixed with normal Portland cement Type 10 (ASTM Type I) at a 

liquid-to-cement ratio of 0.40:1 in a plastic bowl over an ice-water bath. (Temperature 

control was necessary because certain mixtures - most notably those containing sorbitol - 

released more heat than others.) The mixtures were stirred with a plastic spoon until they 

were homogeneous, i.e., for about 7 min or, in the case of those which contained synthetic 

waste, about 12 min because of their higher viscosity. They were then poured into 

cylindrical PVC molds measuring 5.08 cm (2 inches) in diameter and 10.16 cm (4 inches) 

in height. To minimize the entrapment of air bubbles, the cylinders were filled in two 

successive layers and each layer tamped 50 times. Cylinders were placed in triple-sealed, 

air-tight polyethylene bags and immersed in a room temperature (20-22 °C) water bath to 

cure^. 

Table 4-1 provides the compositions of all sample mixtures. The Pb and Zn 

eoncentrations were each either 0 or 1.00 wt% of cement {i.e., 0.01 g of metal per gram of 

“ Samples were cured in sealed bags for eliminating the diffusion of metals from the samples to the water. The 
effects of higher curing temperature (40°C) on the leachability, degree of hydration and microstructure of 
OPC-sugar-treated wastes were also investigated; the results are displayed in Appendix E. These samples 
were cured in an environmental chamber at a temperature of 40 °C and humidity of 99 %. 



cement). Sucrose and sorbitol ranged from 0 to 0.40 wt%. Two types of control sample 

were prepared. The first (“Control”) consisted only of hydrated Portland cement; the 

second (“Control M”) additionally contained Pb and Zn but no sorbitol or sucrose. At least 

12 test cylinders were prepared of each mixture, which allowed the strength, leachability 

and loss-on-ignition to be determined in triplicate after 4 different curing periods: 7, 14, 

28, and 56 days. Additional tests were performed for the metal-free mixtures after curing 1 

day (loss-on-ignition) and 3 days (loss-on-ignition and strength), and for the waste- 

containing mixtures after 71 days (leachability). 

Table 4-1 Sample compositions 

Pb content Zn content Sorbitol/sucrose content 
('\^4%of cement) (wt% of cement) (wt% of eement) 

Batch name 

Control 

Sorbitol 

Sucrose-low 

Control M 

Sorbitol M 

Sucrose-low M 

Sucrose-high M 

0 

0 

0 

1.00 

1.00 

1.00 

1.00 

0 

0 

0 

1.00 

1.00 

1.00 

1.00 

0 

0.40 

0.15 

0 

0.40 

0.15 

0.38 

4.2.2. Strength Testing 

Immediately after they were removed from the molds, sample cylinders were 

capped top and bottom with sulfur according to ASTM C617-98 [19] and the unconfmed 

compressive strength was measured according to ASTM Cl09 [20]. 



4.2.3. Loss-on-ignition Testing 

A small portion of each sample was crushed and ca. 1.5 g of the 850-2000 pm 

fraction oven-heated for 24 h at 105 °C to find the evaporable water-free weight, fTios, and 

again for 2 h at 1005 °C to determine the fully dehydrated weight, JV\oo5- The degree of 

hydration au is given by the equation 

=(^,os-!^wos)/(0-24lV,„„) (4-1) 

in which 0.24 is the reported fraction of non-evaporable water in fully hydrated Portland 

cement [2,21]. 

4.2.4. Standard Leaching Procedure 

The mobility of Pb and Zn in treated waste samples was determined using the 

regulatory Toxicity Characteristic Leaching Procedure (TCLP) [22]. 20.0 g of sample with 

particle size 425-850 pm was combined with 400 mL 0.100 M acetic acid (pH 2.88) in a 

500 mL polypropylene bottle and rotated end-over-end at 30 rpm for 18 h at room 

temperature. The extract was passed through a 0.7 pm borosilicate microliber filter, and its 

pH measured using a Metrohm 6.0233.100 combination glass electrode. It was then 

acidified to pH 2 with concentrated nitric acid and analyzed by inductively coupled plasma- 

atomic emission spectroscopy (ICP-AES) using a Varian Vista Pro ICAP Radial 

spectrometer. The detection limits for Pb and Zn were 0.025 and 0.05 mg/L, respectively. 

^ This extraction fluid has an initial acidity of 2 Eq H7kg solid. The corresponding final pH of the liquid after 
the leaching test is approx. 12.29. For different extraction fluids with various initial acidities, the final pH is 
different. Please see Appendix F for details on the relationship between the initial acidity and the final pH of 
the extraction fluid after 18h of leaching test. 



Although the TCLP is a static batch test and does not simulate actual field 

conditions, it remains the standard regulatory method for monitoring the performance of 

full-scale cement-based stabilization/solidification operations in North America and for 

laboratory studies of the leaching behavior of cement-stabilized waste. 

4.2.5. Microstructure Analyses 

After reaching the desired curing time, a small slice {ca. 0.5 g) was removed from 

the inner part of the sample cylinder, immersed for 24 h in acetone to halt hydration [23], 

dried at 105 "C for 15 min, and then imbedded in epoxy resin. An oriented thin-section was 

cut, lapped and polished using oil-based media so as not to alter the water-soluble minerals. 

After carbon-coating, it was analyzed with a JEOL JSM 5900 scanning electron microscope 

in backscattered electron (BSE) mode to improve contrast between different mineral phases 

[24, 25]. The elemental composition of mineral phases was determined by X-ray energy 

dispersive spectrometry (EDS) using an Oxford Link ISIS system (120 s live-time) 

calibrated with corundum for Al, barium sulfate for S and O, orthoclase for Si and K, 

periclase for Mg, wollastonite for Ca, and jadeite for Na. Pure metal standards were used to 

calibrate Fe, Pb and Zn. SEM-EDS analyses were carried out on days 7, 28 and 56 for the 

samples containing Pb and Zn. The metal-free samples were analyzed on days 1, 7 and 56. 

4.2.6. Grey Level Analyses 

Each BSE image consists of 1280 X 960 pixels having grey levels ranging from 0 

(black) to 256 (white). The grey levels are directly related to the atomic number of the 



P
ix

el
 

material, and thus can be used to distinguish between mineralogical phases; unhydrated 

cement grains are the brightest features, CH and other hydration products (abbreviated OHP, 

mainly composed of CSH) appear as two shades of grey, whereas pore space is black. 

These phases also appear as separate peaks in grey-scale histograms (Figure 4-1), and the 

areas under these peaks can be used to calculate the percentage of individual phases [25, 

26]. For each sample, calculations were carried out on 15 adjacent BSE images and the 

results were averaged to obtain a representative phase distribution. Each image measured 

254 X 190 pm, yielding a resolution of 0.198 pm/pixel. The degree of hydration of a 

sample can also be calculated from the results of grey level analyses [27]: 

25000 

20000 

15000 

10000 

5000 

0 

0 50 100 150 200 250 

Grey level 

Figure 4-1 Backscattered electron image of Control sample at day 7 and its grey level 

histogram obtained with the Image-Pro Plus 5.0 software (UC: Unhydrated cement grains, 

OHP: other hydration products). 
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1 - uc/uc„ (4-2) ry — 

CJL 

in which UC and UCQ are the area fractions of unhydrated cement particles at time t and the 

start of the hydration process, respectively. The value of UCQ can be evaluated from the 

densities of Portland cement (Jc = 3.14 g/cm ) and water = 1.00 g/cm ) and the water- 

to-cement mass ratio {R = 0.40). 

t/C„ =(!/<, )/(lM,+iJ/rfJ 

4.2.7. XRD Analyses 

The mineralogy of the metal-containing samples at day 7 was characterized by X- 

ray diffractometry using a Philips PW 1050-3710 diffractometer with Cu-Ka radiation. 

Scans were carried out in the range 5°<20<75° with a 0.04° step interval and a counting 

time of 2 s per step. 

4.3. Results and Discussion 

4.3.1. Degree of Hydration 

Figure 4-2 depicts degree of hydration as a function of time for pure cement 

(Control) and cement containing 1% Pb and 1% Zn (Control M). The curing of metal-free 

cement proceeded in two stages - a period of rapid hydration lasting about 3 days, followed 

by a slower reaction period exhibiting zeroth-order kinetics - and required 56 days to reach 

the maximum hydration level of 80%. The addition of Pb and Zn greatly accelerated the 



overall curing process^, with maximum hydration being achieved in only 7 days. It would 

appear that added metal ions somehow interfere with the mechanistic step(s) responsible for 

terminating stage-1 of the hydration process. By contrast, previous studies of cement 

hydration in the presence of lead and zinc found that both metals retarded cement hydration. 

These studies, however, are not directly comparable to the present one because they were 

carried out with much larger metal concentrations [28, 29] or were limited to early curing 

times of less than 17 hours [30]. The retardation effect of Pb at early times has been 

explained by the rapid precipitation of colloidal lead hydroxide, sulfate, or hydroxysulfate 

as a protective membrane around unhydrated cement particles [29, 30]. At high 

concentrations, Zn may precipitate as low permeability CaZn2(0H)6‘H20 around 

unhydrated calcium silicate particles. [28]. 

Figure 4-3 reveals that, unlike added metal ions, sucrose and sorbitol did not 

radically alter the two-stage reaction profile that characterizes the hydration of pure 

Portland cement. However, the onset of stage-1 hydration was delayed by about 2 days in 

cements containing 0.15 wt% sucrose (Sucrose-low) or 0.40 wt% sorbitol (Sorbitol). Also, 

the sorbitol-containing mixture was slightly more hydrated after 7 days than either of the 

other two. The mechanisms by which certain sugars and sugar derivatives retard the 

hydration of cement are not fully understood. In the “half-salt” theory proposed by Thomas 

and Birchall [8, 12], calcium ions react with sucrose in alkaline solution to form a soluble 

sucrose-calcium salt complex Ca(OH)"^.. .Rguc (pA^ai of sucrose = 12.6). The pendant 

^ This result was also corroborated by several additional tests on different batches of samples. For details, 
please see Appendix G. 
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Figure 4-2 Effect of 1% Pb + 1% Zn addition on cement hydration rate. Error bars 

con-espond to the standard deviations over 3 measurements. 

Ca(OH)"' group in the half-salt is thought to adsorb onto growing calcium hydroxide (CH) 

nuclei and thus inhibit further precipitation of calcium and hydroxide ions on the poisoned 

surface. The precipitation of CSH gel, which relies on the deposition of silica on an 

existing CH lattice, is thought to be similarly inhibited by poisoning of the CH surface. 

Although published evidence supporting the existence of aqueous calcium-sucrose 

complexes is limited, Pannetier et al. [31] report formation of stable Ca(OH)Rsuc species in 

dilute alkaline solution and polymeric [Ca(OH)Rsuc]n as the concentrations are increased. 

By contrast, no specific retardation mechanism has been proposed for sorbitol which, at 

best, interacts weakly with calcium ions (pifai - 13.6) [32]. Unlike sucrose, however. 



sorbitol is able to form [HOSi(Rsoi)2] and [Si(Rsor)3]^ complexes with aqueous silicon in 

high pH surroundings [14]. These anionic complexes may play a role in delaying the 

hydration of cement (possibly through Ca(OH)^ association) and contribute to the 

enhancement observed in the strength and final degree of hydration of cement mixtures 

containing sorbitol by crosslinking in the solid cement matrix. 

Figure 4-3 Effect of sorbitol or sucrose addition on cement hydration rate. 

When added together with the metal ions, sucrose and sorbitol countered the 

accelerating influence of Pb and Zn on cement hydration, as demonstrated in Figure 4-4. 

Surprisingly, they were more effective at inhibiting hydration for the cement containing Pb 

and Zn than for pure cement. Addition of 0.15 wt% sucrose (Sucrose-low M) or 0.40 wt% 

sorbitol (Sorbitol M) limited the degree of hydration to 35% for at least 7 or 28 days. 



respectively. Thereafter, the reaction quickly went to completion (80% degree of 

hydration), that is, without going through stage-2 hydration. Addition of 0.38 wt% sucrose 

(Sucrose-high M) maintained hydration at 35-40% through the entire 56 day experiment. 

100% 
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g 
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Time (days) 
Figure 4-4 Effect of sorbitol or sucrose addition on cement hydration rate in samples 

containing 1% Pb + 1% Zn. 
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4.3.2. Grey Level Analyses 

Grey level analyses were carried out on Control and Control M samples at 7 days. 

The percentage of unhydrated cement was lower in the Control M sample (IO.2 ± 1.9%) 

than in the Control sample (15.i ± 2.6%) at a confidence level of 99.997% (Student t-test). 

The degrees of hydration calculated from grey level analysis using equation 4-2 {OGL = 65.9 

± 5.9% for the Control sample and 77.0 ± 4.3% for the Control M sample) are consistent 



with those independently calculated by loss-on-ignition using equation 4-1 (au = 60.7 ± O.7 

% for the Control sample and 78.1 ± 1.7% for the Control M sample, see Figure 4-2). 

Hence, both methods of measuring degree of hydration show that the presence of 1% Pb 

and 1% Zn improves hydration at 7 days. By contrast, grey level analyses reported by Ouki 

and Hills [26] found that the addition of 1% Pb or 1% Zn decreased hydration of Portland 

cement at 29 days by 29% and 11 %, respectively. 

4.3.3. Strength Tests 

Table 4-2 indicates the setting status (unset, set, or partially set) of all the samples at 

various stages of curing. Several of the samples {e.g.. samples containing both metals and 

sorbitol at day 1 and day 7) were poorly solidified and friable when removed from the 

molds, exhibiting less than 2.76 MPa (400 psi) compressive strength and under 35% degree 

of hydration. Hence, they were deemed to be unset. By contrast, cement was considered to 

be set when compressive strength exceeded 13.8 MPa (2000 psi) and the degree of 

hydration was over 45%. Two samples (Sorbitol M at day 28 and Sucrose-high M at day 56) 

were deemed to be only partly set. They consisted of millimetre-sized pebbles of cured 

cement within a poorly consolidated matrix, while exhibiting less than 2.76 MPa (400 psi) 

compressive strength and 35-45% hydration. 

Comparison between Figures 4-5 to 4-7 and Figures 4-2 to 4-4 reveals that the 

evolution of compressive strength correlates closely with that of the degree of hydration'"’. 

Pure cement (Control) reached a maximum strength of ca. 34.5 MPa (5000 psi) 

^ The relationship between strength and degree of hydration is further illustrated in Appendix H. 



after 14 days (Figure 4-5). The addition of 1% Pb and 1% Zn (Control M) resulted in higher 

strength at day 7 compared to pure cement (86% confidence, based on Student t-test). This 

result reflects the higher degree of hydration for the Control M sample compared with the 

Control sample at day 7, and is also in accordance with the findings of Tashiro et al. [33] 

who reported increased strength for cement containing between 0.5% and 5% PbO-Pb(OH)2 

or 0.5% Zn(OH)2 at 3 days and 28 days. In the present study, however, there was 

statistically no difference between the strengths observed for pure and metal-containing 

cement from day 14 onwards. 

Table 4-2 Summary of sample setting status and main hydration products 

found by SEM-EDS " 

Sample Day 1 Day 7 Day 28 Day 56 

Control 

Control M 

Sorbitol 

Sucrose-low 

Sorbitol M 

Sucrose-low M 

Sucrose-high M 

CH, CSH 

na 

CH 

CH 

m 

na 

_______ 

CH, CSH 

CH, CSH, 

ettringite ^ 

CH, CSH 

CH, CSH 

ettringite, 
/-If I b /--ic 11^ 
wxl , WoJrl 

ettringite, 

CSH" 

'^ringite : 

na 

CH, CSH, 

ettringite 

na 

na 

ettringite, 

CH, CSH 

ettringite, 

CH, CSH 

. < ettringite, 

CH 

CH, CSH 

CH, CSH, 

ettringite 

CH, CSH 

CH, CSH 

ettringite, 

CH, CSH 

ettringite, 

CH, CSH 

ettringite, 

CH, CSH 

^ Shading indicates that the cement was not set. Light shading indicates that the cement was 

partially set. No shading indicates that the cement was set. CH = calcium hydroxide. CSH = 

calcium silicate hydrate, na = not analyzed. ^ Only a small amount of this phase was 

detected. 
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Figure 4-5 Effect of 1% Pb and 1% Zn addition on cement strength. Error bars correspond 

to the standard deviations over 3 measurements. 

The effect of low sucrose and sorbitol addition on the compressive strength of 

metal-free cement is shown in Figure 4-6. Strength was reduced at day 3 for samples 

containing 0.15 wt% sucrose or 0.40 wt% sorbitol, but caught up with that of pure eement 

by day 7. At day 56, the sample containing sorbitol was slightly stronger (81% confidence 

level), which confirms previous reports that sorbitol improves the strength of OPC after 28 

days [16]. These results parallel the influence that sucrose and sorbitol had on the degree 

of hydration (Figure 4-3). 
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Figure 4-6 Effect of sorbitol or sucrose addition on the development of cement strength. 

Similarly, the influence of added sucrose or sorbitol on the strength of cement 

containing Pb and Zn (Figure 4-7) parallels their effect on the hydration of these samples 

(Figure 4-4). The addition of 0.15 wt.% sucrose (Sucrose-low M) or 0.4 wt% sorbitol 

(Sorbitol M) delayed cement setting for at least 7 and 28 days, respectively, with the 

strength of these samples rising to that of Control M immediately thereafter. These findings 

have practical imponance because they demonstrate that controlled addition of sucrose or 

sorbitol can delay the setting of S/S-treated metal waste for several days, thus adding 

flexibility for transportation to the final disposal site without negatively impacting the final 

product strength. However, excessive sucrose addition (Sucrose-high M; 0.38 wt%) delays 



setting beyond 56 days with unknown effects on final strength. 

Figure 4-7 Effect of sorbitol or sucrose addition on strength of samples 

containing 1% Pb + 1% Zn. 

4.3.4. Leaching Tests^ 

Figure 4-8 shows the average concentrations and standard deviations of dissolved 

Pb in the TCLP extracts at day 56 and day 71^ for the Control M, Sucrose-low M, and 

Sorbitol M samples, all of which were fully set by this time. The leachability of Pb from the 

cement containing sorbitol decreased between the two curing periods, but remained 

constant within experimental uncertainty for the other samples. On day 71, the average 

^ Preliminary results on the effect of lignosulfonate acid (a byproduct of the pulp and paper industry) on the 
leachability of Pb in cement-treated waste are shown in .Appendix 1. 
^ Leaching test results at days 7, 14 and 28 are shown in Appendix J. 
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leachability of Pb for the control sample was 0.52 ± 0.04 mg/L. Sucrose or sorbitol 

addition significantly inhibited lead leachability, the final values being 0.30 ± 0.09 mg/L for 

0.40 wt% sorbitol (leaching inhibited with 96% confidence) and O.Sg ± 0.11 mg/L for 0.15% 

sucrose (84% confidence). It is worth noting that differences in leachability were not 

caused by pH variations in the TCLP extracts; the final extract pH after 18 h agitation was 

12.4 for all the samples 

0.8 

56 71 

Time (days) 

Figure 4-8 Dissolved concentration of Pb in TCLP extracts. Error bars correspond to the 

standard deviations over 3 measurements. 

Figure 4-9 shows the concentration of Zn in the TCLP extracts. Between 56 and 71 

days, the zinc leachability decreased for the control and sorbitol-containing samples (93% 

and 84% confidence, respectively) but did not significantly change for the sample 
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containing sucrose. Unlike the results obtained for lead, the addition of sucrose or sorbitol 

to cement had no significant effect on Zn leachability by day 71. 
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Figure 4-9 Dissolved coneentration of Zn in TCLP extracts. 

4.3.5. Micro structure Analyses 

Table 4-2 lists the hydration products identified in each cement sample at different 

curing times and indieates whether or not the samples were set. 

In agreement with previous studies [24], calcium hydroxide and CSH were the main 

hydration products of pure Portland eement (Control). Cement containing 1% Pb and 1% 

Zn (Control M) had the same micro structure as metal-free cement (Figure 4-10). Shells of 
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Figure 4-10 Backscattered electron images of Control M sample (1% Pb + 1% Zn) at day 

56 showing (A) C3S, (C and F) inner CSH, (B, D, and E)outer CSH, (G, H and I) CH 

and (J) ettringite. 

smooth-textured CSH surrounded unhydrated cement grains (C3S primarily), while 

irregularly textured CSH occupied much of the void space that was originally filled with 

water. These two different CSH phases respectively correspond to what Diamond [34] 

terms “inner” and “outer” CSH. Small amounts of the Ca-Al-hydroxysulfate phases 

ettringite and monosulfate were disseminated throughout the sample and also might have 

been intermixed within the CSH as is suggested by the small amounts of A1 and S detected 

in that phase (typically less than 2 atom %). Taylor [35] reports that Ca-Al-hydroxysulfate 

can intermix with CSH at the micrometer to single-layer scale which is too small to be 

resolved by SEM-EDS. Lead and zinc were mostly present in CSH at concentrations 
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between 0.9 and 1.8 wt %. Ettringite and calcium hydroxide have much lower Pb and Zn 

concentrations (typically less than 0.8 wt %). 

The addition of sorbitol or sucrose to metal-free cement delayed CSH formation. At 

day 1, CH was the only hydration product detected in the Sucrose-low and Sorbitol samples 

(Figure 4-11). From day 7 onwards, however, these samples contained both CSH and CH. 

(a) (b) 

Figure 4-11 Backscattered electron images of (a) Sucrose-low and (b) Sorbitol 

samples at day 1 showing the (A) unhydrated C3S phase and (B) CH. 

When sucrose or sorbitol was added to cement in combination with Pb and Zn 

(Sucrose-low M, Sucrose-high M, Sorbitol M), the first hydration phase to appear consisted 

of platy Al-rich crystals (with cracks that were probably caused by drying; Figures 4-12a-c). 
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(c) 

Figure 4-12 Backscattered electron images of (a) Sorbitol M, (b) Sucrose-low M and (c) 

Sucrose-high M at day 7. The Al-rich phase is indicated by arrows. Bright areas are 

unhydrated cement consisting mainly of C3S. None of these samples were set by day 7. 

It was identified by X-ray diffractometry as ettringite, Ca6Al2(S04)3(0H)i2-26H20 (Figure 

4-13) . However, the average elemental composition determined by more than 50 

independent EDS measurements - Ca6.oo Al2,4i So.45Oi8.42Feo.11 Si0.57Pb0.06Zn0.n- indicates 

^ The XRD diffractograms for the Sucrose-low M and Sucrose-high M samples are displayed in Appendix K. 
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a much lower S/Ca ratio than that of ettringite^. Therefore, it is likely that ettringite was 

intermixed with unhydrated C3A, which would account for the low sulfur content. The 

presence of Fe, Si, Pb and Zn indicates that the ettringite contains impurities. As mentioned 

already, ettringite was also found in the absence of sucrose and sorbitol (Control M), but in 

much smaller amounts and coexisting with CH and CSH (Figures 4-10 and 4-14). 

As the samples containing metal and sucrose or sorbitol began to set, the amounts of 

calcium hydroxide and CSH increased (Table 4-2). Figure 4-15 shows a backscattered 

electron image of the Sucrose-high M sample at day 56, by which time partial setting had 

occurred. The image depicts ettringite coexisting with CSH (characterized by Ca/Si = 2.5- 

3.0:1) and a transition product which contains a significant concentration of A1 (Ca/Al = 3- 

5:1) and a lower Si concentration than CSH (Ca/Si = 3-8:1). 

2-Theta-Scale 

Figure 4-13 X-ray diffractogram of the Sorbitol M sample at day 7, showing (1) C3S or C2S, 

(2) ettringite, (3) portlandite (CH), and (4) C3A. 

Due to the space limitation, only selected SEM-EDS results are displayed in this Chapter. More SEM-EDS 
results are shown in Appendix L. 
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Figure 4-14 X-ray diffractogram of the Control M sample at day 7, showing (1) C3S or C2S, 

(2) ettringite, (3) portlandite (CH), and (4) C3A. 

Figure 4-15 Backscattered electron image of the Sucrose-high M sample at day 56, showing 

(A and B) ettringite, (C and D) CSFI, and (E and F) transitional product. 
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The elemental composition at several points within the ettringite, CSH and 

transition product was measured by EDS on several backscattered electron images of the 

Sucrose-high M sample at day 56 and plotted in Figures 4-16 and 4-17. Three regions 

corresponding to CSH (low A1 content), ettringite (high A1 content) and the transitional 

product (intermediate A1 content) are superimposed on the graphs. Similar results were 

obtained for the Sorbitol M sample (data not shown). The Si concentration increases almost 

linearly as the A1 concentration decreases (Figure 4-16), representing the transition from 

ettringite to CSH. Figure 4-17 indicates that Pb and Zn concentrations vary widely, from 1 

to 6 wt%, in CSH (corresponding to low A1 concentration). By contrast, the range of Pb and 

Zn concentrations is relatively limited, less than 2 wt%, in ettringite. The larger capacity of 
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Figure 4-16 Concentration of Si as a function of Al concentration in the Sucrose-high M 

sample at day 56. 
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Figure 4-17 Concentrations of Pb and Zn as a function of Al concentration in the Sucrose- 

high M sample at day 56. 

CSH for immobilizing Pb and Zn is likely explained by structural differences: ettringite 

forms hexagonal prismatic or acicular crystals in which ion substitutions are the only 

significant immobilization mechanism [3], whereas CSFl is an amorphous gel which allows 

Pb and Zn atoms to be immobilized through a variety of mechanisms such as sorption, 

coprecipitation, and formation of metallosilicates [3-7]. 

4.4. Conclusions 

The presence of 1 wt% Pb and 1 wt% Zn significantly shortens the time at which 

maximum hydration of Portland cement is achieved, but has relatively little effect 



on the final compressive strength. 

2. The addition of 0.15 wt% sucrose or 0.40 wt% sorbitol to metal-free Portland 

cement retards hydration and strength development for 3 to 7 days. 

. The retardation effect of sucrose and sorbitol are considerably enhanced when Pb 

and Zn are present. Controlled sucrose or sorbitol addition to metal-cement mixtures 

can retard setting for up to 28 days without affecting the 56-day strength, thus 

adding flexibility to the handling of S/S-treated waste. 

4. The long-term TCLP-based teachability of Pb may be somewhat reduced by the 

addition of sucrose or sorbitol; however, the long-term teachability of Zn is not 

significantly affected. 

5. Cement setting correlates with the precipitation of CSH gel. Precipitation of 

ettringite was favored and the formation of CSH and CH were delayed when 

sorbitol or sucrose was added to metal-cement mixtures. 

6. The ability of ettringite to immobilize Pb and Zn is inferior to that of CSH. 

7. Sorbitol conferred a slightly higher degree of hydration and compressive strength 

than sucrose to Portland cement after 56 days. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDED FUTURE WORK 

5.1. Summary and Conclusions 

This thesis deals with a series of laboratory experiments to investigate the effects 

of sugars and sugar derivatives (represented by sucrose and sorbitol) on the hydration and 

microstructure of tricalcium silicate (C3S), white Portland cement (WPC) and ordinary 

Portland cement (OPC), in order of increasing compositional complexity.. The hydration 

and microstructure of C3S, WPC and OPC without admixtures were first investigated to 

better understand the potential contribution of individual phase in the clinker to the 

overall hydration and micro structure of hydrated pastes (Chapter 2). As an environmental 

engineering application, the effects of sucrose and sorbitol on OPC-stabilized toxic metal 

wastes containing lead nitrate and zinc nitrate were also evaluated. 

The ratios of non-evaporable water content in fully hydrated OPC and WPC were 

found to be 0.2349 ± 0.0057 and 0.2086 ± 0.0032, respectively. C3S had a higher degree of 

hydration than OPC and WPC at any given time. WPC hydrated faster than OPC during 

the first day, but both reached the same degree of hydration (80%) at day 56. The early 

rate of hydration was positively correlated with the C3S and C3A contents. 

Pure C3S, upon hydration, formed dense CH-rich islands, containing large 

amounts of unhydrated C3S, in a porous matrix composed mainly of CSH and residual 

C3S. The number and size of the CH-rich islands increased from day 1 to day 7. Past day 



7, hydration was only accompanied by precipitation of CSH and minor CH in the porous 

region. 

Hydrated OPC contained CH-rich islands at day 1, but these islands were much 

smaller than in pure C3S. As curing time increased, the distinction between CH-rich 

islands and the rest of the paste progressively disappeared owing to hydration of C3S 

grains embedded in the islands and precipitation of in'egularly textured CSH in the 

porous regions. 

The evolution of micro structure in hydrated WPC was similar to that of OPC, 

except that the C3S grains embedded in the CH-rich islands had thicker CSH rims than 

those in hydrated OPC at day 1, consistent with the larger degree of hydration of WPC at 

early times. Separated hydration shells (Hadley grains) were more prevalent in OPC and 

WPC than in pure C3S. 

The overall hydration stoichiometries for C3S, OPC and WPC were not constant 

over time; the initial hydration products were CH and CSH, but after several days CH 

production almost ceased while CSH precipitation continued. 

Sucrose and sorbitol addition delayed the hydration of C3S, OPC and WPC by 

interfering with the precipitation of CSH and CH at early curing times. The delaying 

effect of sucrose (0.037 or 0.15 wt%) or sorbitol (0.40 wt%) only lasted a few days, 

except for the combination of C3S with 0.15 wt% sucrose, which did not set even after 56 

days. For the above concentrations of sucrose or sorbitol, the retardation period was 

longer in OPC (3-7 days) than in WPC (1-3 days). Calcium hydroxide appeared before 



CSH at the earliest stages of hydration, and eventually formed into dense CH-rich islands 

that contained unhydrated grains of C3S. These islands persisted in the paste 

microstructure even after CSH had started precipitating and the samples had set, but they 

were more prominent in pure C3S than in OPC or WPC. 

Sucrose affected the initial hydration and micro structure of C3S much more than 

that of OPC and WPC. By contrast, the effect of sorbitol was similar for all three cements, 

and less than that of sucrose in the case of pure C3S. After 56 days, all the cements 

attained nearly 80% hydration and 27.6-34.5 MPa (4000-5000 psi) compressive strength, 

except for OPC containing 0.40 wt% sorbitol which exhibited slightly higher strength and 

degree of hydration with statistical reliability. 

The presence of 1 wt% Pb and 1 wt% Zn significantly shortened the time at which 

maximum hydration of Portland cement was achieved, but had relatively little effect on 

the final compressive strength. The retardation effect of sucrose and sorbitol were 

considerably enhanced when Pb and Zn were present. The controlled sucrose (0.15 wt%) 

or sorbitol (0.40 wt%) addition to metal-cement mixtures could retard setting for up to 28 

days without affecting the 56-day strength, thus adding flexibility to the handling of S/S- 

treated waste. The amount of sucrose addition required to achieve a given delaying effect 

was always found to be lower than that of sorbitol. Furthermore, sucrose is cheaper than 

sorbitol. As a result, sucrose is recommended as an admixture to control the setting of 

cement-stabilized wastes. 



Cement setting correlated with the precipitation of CSH gel. Precipitation of 

ettringite was favoured and the formation of CSH and CH were delayed when sorbitol or 

sucrose was added to metal-cement mixtures. 

The long-term TCLP-based leachability of Pb may be somewhat reduced by the 

addition of sucrose (0.15 wt% or 0.38%) or sorbitol (0.40%); however, the long-term 

leachability of Zn was not significantly affected. The ability of ettringite to immobilize 

Pb and Zn was found to be inferior to that of CSH. 

5.2. Recommendations for Future Work 

The focus of this research was to investigate the effect of sucrose and sorbitol on 

the hydration and micro structure of cement as well as on the properties of heavy metal 

wastes stabilized/solidified by Portland cement. Although the results provide valuable 

insights, the exact mechanisms by which the microstructure is affected by the presence of 

sorbitol, sucrose, metals, and combinations thereof remain largely unexplained. 

Following are recommendations for further research which may help bridge these gaps in 

knowledge: 

• Study the solution chemistry at early hydration times with sucrose, sorbitol, heavy 

metals and combinations thereof; 

• Examine the effect of sucrose, sorbitol, heavy metals and combinations thereof on 

the porosity and surface area of the treated waste; 

• Explore the impact of sucrose or sorbitol on the zeta potential of the hydrating 

cement particles; 



• Investigate the interactions between sucrose or sorbitol and heavy metals by 

nuclear magnetic resonance (NMR) spectroscopy. 

• Study how the micro structure of cement-based materials correlates with their 

physical properties such as strength, consistency, workability, etc. 

Moreover, this work could be expanded by using a wider range of S/S agents, 

organic admixtures, contaminants, curing conditions and leaching procedures, such as: 

• cement-fly ash admixtures with different cement-to-fly ash ratios; 

• organic compounds such as lignosulfonates, v/hich are byproducts of the pulp and 

paper industry and already used commercially as cement admixtures; 

• toxic metal anions, such as chromate and arsenic, whose leachability in cement- 

stabilized waste may be more affected than the cations (Pb and Zn) used in this 

study; 

real industrial wastes containing a variety of inorganic contaminants; 

• different water-to-solid ratios during sample preparation; 

• different curing conditions, such as various curing temperatures (see preliminary 

tests in Appendix E); 

• dynamic leaching tests to more accurately simulate leaching conditions of 

cement-stabilized waste in the field. 



APPENDIX A 

EFFECT OF PARTICLE SIZE ON THE RESULTS OF 

LOSS-ON-IGNITION TESTS 

This appendix compares the degree of hydration values obtained with the same 

sample using different particle size ranges for loss-on-ignition testing. The results show 

that as long as particles are less than 2000 pm in size, their size distribution does not 

influence the hydration results significantly (Table A-1). 

Table A-1 Degree of hydration of Control (pure OPC) sample with different 

particle size (samples were made from the same batch) 

Degree of hydration 

68.33% 

67.91% 

67.65% 

Particle size 

850 ~ 2000 pm 

425-850 pm 

< 425 pm 



APPENDIX B 

EFFECT OF ARABITOL ON THE DEGREE OF HYDRATION OF 

ORDINARY PORTLAND CEMENT 

This appendix depicts how the addition of 2 wt% arabitol affects the degree of 

hydration of OPC. (The water-to-cement ratio was 0.40:1.) As displayed in Figure B-1, 

adding 2 wt% retards the hydration of OPC for at least 56 days. 

Figure B-1 Effect of 2 wt% arabitol on the degree of hydration of OPC. 
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APPENDIX C 

BACKSCATTERED ELECTRON IMAGES OF TRICALCIUM 

SILICATE CONTAINING ARABITOL 

This appendix presents BSE images of C3S samples containing 2 wt% arabitol 

after 1, 7, and 56 days of curing. (The water-to-cement ratio was 0.60:1.) 

(a) 
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(b) 

Figure C-1 Backscattered electron images of C3S arabitol samples at day 1, (a) overview 

and (b) magnified image. The bright grains are unhydrated C3S particles and the 

elongated crystals are calcium hydroxide. 
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Figure C-2 Backscattered electron image of C3S arabitol samples at day 7. 

Figure C-3 Backscattered electron image of C3S arabitol samples at day 56. 
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APPENDIX D 

EFFECT OF SUCROSE, SORBITOL, AND ARABITOL ON 

STRENGTH DEVELOPMENT OF ORDINARY PORTLAND 

CEMENT 

This appendix shows the strength data for OPC samples as a function of time with 

and without addition of sucrose, sorbitol, or arabitol. All the samples were in triple sealed 

plastic bags under water at room temperature. The data show that: 

The addition of 2 wt% arabitol inhibits the strength development of OPC for 

at least 56 days. 

Adding 0.40 wt% sorbitol or 0.15 wt% sucrose delays the strength 

development of OPC for less than 7 days. 

Sorbitol improves the strength of OPC after 56 days of curing (with 81% 

confidence level by Student T-test). 

Sucrose seems to slightly reduce the final strength of OPC. However, 

considering the experimental uncertainties, the effect is not significant. 
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Figure D-1 Strength development in OPC samples with and without addition of sucrose, 

sorbitol or arabitol. 
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APPENDIX E 

EFFECT OF TEMPERATURE ON THE PROPERTIES OF OPC- 

SUGAR-TREATED HEAVY METAL WASTE 

This appendix demonstrates the effect of elevated curing temperature (40 “^C) on 

the leachability, hydration rate, and the micro structure of OPC-treated waste containing 1 

% Pb and 1 % Zn. Samples containing small amount of sucrose or sorbitol were also 

evaluated. 

The samples cured at 40 °C were kept in sealed plastic bags in an environmental 

chamber at a temperature of 40 and humidity of 99 %. Samples cured at 20 °C were 

kept in triple-sealed plastic bags under water at room temperature, Sucrose-high and 

sucrose-low samples contain 0.38 wt% and 0.15 wt% sucrose respectively. Sorbitol 

samples contain 0.40 wt% sorbitol. TCLP 1311, with an initial pH of the extraction fluid 

equal to 2.88, was used to evaluate the leachability of Pb and Zn. The degree of hydration 

was determined by loss-on-ignition test. 

Conclusions: 

. The higher curing temperature increases the leachability of Pb but does not 

significantly affect the leachability of Zn (Figure E-1). 

2. The higher curing temperature accelerates the hydration process. For control 

samples, higher temperature leads to a higher degree of hydration by comparison 

with the sample cured at room temperature (Figure E-2). Higher curing 

A-8 



temperature also speeds up significantly the commencement of cement set when 

sucrose or sorbitol is added (Figure E-3). 

5. Samples cured at higher temperature are more porous than the ones cured at lower 

temperature (Figure E-4), 
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Figure E 

(a) cured at 20”C and (b) cured at 40 *^0. 
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APPENDIX F 

EVALUATION OF THE FINAL PH OF PURE OPC AFTER 

LEACHING TESTS WITH EXTRACTION FLUIDS OF VARYING 

INITIAL ACIDITIES 

This appendix shows the relationship between the initial acidity of the extraction 

fluid and its final pH value after 18 hours of static leaching test (TCLP 1311). Pure 

hydrated OPC was selected for the test. This result can be employed in choosing the 

proper extraction fluid for an aggressive leaching test. 

Experimental procedure description: Mix 20 ml solid (hydrated OPC sample with 

the particle size: 425 ~ 850 pm) with 400 mL extraction fluid consisting of a solution of 

dilute acetic acid. (The acidity of each solution is listed in Table F-1). Rotate the mixture 

at 30 rpm for 18 hours and monitor the final pH of the extraction fluid after the leaching 

test. 

Table F-1 The acidity of each extraction fluid before the leaching test and the final pH 

value after the leaching test 

Volume ofCH3COOH 
added to make 1 L solution 

5.7 11.4 22.8 34.2 45.6 57 

Eq H /kg solid (20 solid 
 400 ml liquid) 

12 16 20 

pH of the solution after the 
leaching test 

12.29 12.04 11.4 9.65 6.45 5.25 

Ee solution that has an acidity of 2 H /kg solid has an initial pH of 2.88. 
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The pH of each extraction fluid after the leaching test was plotted as a function of 

the acidity of the solution before the leaching test. Figure F-1 depicts that as the acidity 

increases, the pH decreases; there is a smooth decrease at beginning followed by a sharp 

drop and then again a slow decrease. The steepest pH drop occurs when the acidity is in 

the range of 12 to 16 H^/kg solid. 

This graph can be used in the aggressive leaching test to determine the initial 

acidity of the extraction fluid to achieve the desired final pH after the leaching test. 
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Figure F-1 pH of the extraction fluid after the leaching test as a function of the initial 

acidity of the fluid. 
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APPENDIX G 

INFLUENCE OF METAL ADDITION ON THE EARLY 

HYDRATION RATE OF ORDINARY PORTLAND CEMENT 

This appendix deals with the effect of Pb and Zn on the early hydration rate of 

OPC. As described in Chapter 4, metals were found to shorten the time to attain the 

maximum degree of hydration of OPC. To support this statement, several batches of 

samples were tested, and the results are reported in this appendix. 

When 1 wt% Pb and 1 wt% Zn were added to OPC, the hydration process was 

delayed for several days at the beginning and then accelarated quickly to surpass the 

control sample. Three batches of samples have been made to confirm this pattern. 

Because the first data point for the Control M sample in the first batch was obtained on 

day 7, the sample had already set, and there w^ere no data points to show the initial 

delaying effect of metals. The initial delay periods vary from batch to batch, which may 

be caused by the minor difference in the composition of OPC. However, the trends for all 

three batches were the same (Figure G-1). 
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Figure G-1 Degree of hydration of OPC and OPC-metal samples showing that metals 

delay the early hydration but later accelerate hydration (a) first batch, (b) second batch, 
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APPENDIX H 

RELATIONSHIP BETWEEN STRENGTH AND THE DEGREE OF 

HYDRATION OF OPC-SUGAR SAMPLES WITH AND WITHOUT 

METALS 

This appendix analyzes how the strength data correlates to the degree of hydration 

of sugar-containing OPC samples and OPC-metal mixtures. 

As shown in Figure H-1, samples with and without metals need a minimum 

degree of hydration of approximately 20% (without metals) and 33% (with metals), 

respectively, to develop any strength. In addition, for a given degree of hydration, 

samples with metals have a lower strength than samples without metals. Lastly, for 

samples without metals, there is a consistent and linear relationship between degree of 

hydration and strength for all samples up to a degree of hydration of about 65%; at higher 

degrees of hydration, the strength stabilizes between 27.6 and 34.5 MPa (4000 and 5000 

psi), except perhaps for sorbitol that seems to have a more extended linear range and may 

reach higher strengths. However, for samples with metals, the available data is not 

sufficient to demonstrate the existence of a linear range, although it may exist. It can still 

be concluded that the strength of metal-containing samples stabilizes at values between 

27.6 and 34.5 MPa (4000 and 5000 psi) at degrees of hydration higher than 80%, which 

is a much higher degree of hydration than that of metal-free samples. 
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Figure H-1 Relationship between strength and the degree of hydration for OPC sugar 

samples (a) with metals and (b) without metals. 

A-18 



APPENDIX I 

EFFECT OF LIGNOSULFONATE ACID ON THE LEACHABILITY 

OF LEAD 

This appendix examines the effect of lignosulfonate acid on the leachability of Pb 

from cement-teated samples. Two types of extraction fluid with different initial acidities 

were employed in the leaching test. Lignosulfonates are contained in some wastes from 

the pulp and paper industry that also contain sugars and sugar derivatives. Therefore, this 

study was relevant to assess the potential of these wastes as additives to cement used in 

stabilization/solidification processes. 

All the samples contained 1 wt% Pb. Samples contained either no lignosulfonate 

or 1 or 2 wt% lignosulfonate acid labelled as Lig low and Tig high, respectively. 

The effect of lignosulfonate acid on the leachability of Pb depends on the leaching 

test that is used. When the extraction fluid had an acidity of 14 eq iT/kg solid, adding 1 

wt% lignosulfonate acid greatly increased the leachability of Pb (Figure I-l). However, 

when the extraction fluid had an initial pH of 2.88 (2 eq HVkg solid), Figure 1-2 shows 

that both 1 wt% and 2 wt% lignosulfonate acid did not affect the leachability of Pb. 

The different effects may be due to complexation reactions between Pb and 

lignosulfonate acid. Once a Pb-lignosulfonate complex is formed, the Pb is transformed 

into a more soluble form, which increases its leachability. However, this is just an 

assumption without any experimental confirmation. More work to understand the 

underlying mechanisms is needed. 
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Figure 1-2 Leachability of Pb with and without the addition of lignosulfonate acid using 

the extraction fluid having an acidity of 2 eq HVkg solid (pH=2.88). 
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APPENDIX J 

EFFECT OF SUCROSE AND SORBITOL ON THE LEACHABILITY 

OF LEAD AND ZINC AS A FUNCTION OF TIME 

This appendix shows the complete results of the leaching tests with and without the 

addition of sucrose or sorbitol at day 7, 14, 28, 56 and 71. Only 56 and 71 days data were 

provided in Chapter 4. 
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Figure J-1 Leachability of (a) Pb and (b) Zn with and without the addition of sucrose or 

sorbitol at day 7, 14, 28, 56 and 71. 
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APPENDIX K 

X-RAY DIFFRACTOGRAMS OF CONTROL M, SORBITOL M, 

SUCROSE-HIGH M, AND SUCROSE-LOW M SAMPLES AT DAY 7 

This appendix displays the XRD diagrams of some OPC-metal samples with and 

without sucrose or sorbitol addition at early hydration times (day 7) in order to 

demonstrate that the addition of sucrose or sorbitol inhibits the hydration of OPC but 

facilitates the formation of ettringite. 

All the samples contain 1 wt% Pb and 1 wt% Zn. The Sorbitol M sample contains 

0.40 wt% sorbitol, the while Sucrose-high M and Sucrose-low M samples have 0.38 wt% 

and 0.15 wt% sucrose, respectively. Except for Control M, all the other three samples did 

not set on day 7. Comparison of the XRD diagrams for these four samples shows that 

Control M has samller peaks for ettringite and unhydrated phases (C3S and C2S) but 

much larger peaks for calcium hydroxide. By contrast, sugar-containing samples exhibit 

relatively high concentration of ettringite and little calcium hydroxide. 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 
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(a) 
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Figure K-1 XRD diagrams of (a) Control M, (b) Sorbitol M, (c) Sucrose-high M, and 

(d) Sucrose-low M samples at day 7, showing 

(1) C3S or C2S, (2) ettringite, (3) portlandite (CFl), and (4) C3A. 
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APPENDIX L 

SEM-EDS ANALYSES OF OPC METAL SAMPLES WITH AND 

WITHOUT SUGAR ADDITION 

This appendix lists SEM-EDS analysis results of OPC metal samples that were 

not presented in Chapter 4. 

Figures A12-3, 5, and 7 show that adding metals (Pb and Zn) and sucrose or 

sorbitol together delayed cement hydration at 7 days. A certain amount of ettringite 

exhibiting different morphologies was the only hydration product. As hydration 

continued, calcium hydroxide and CSH started to precipitate, while ettringite was still 

visible at 28 or 56 days (Figures E-4, L-6 and L-8 to E-11). Elowever, ettringite can also 

form without the addition of sucrose or sorbitol (Figure E-1). 

Figures L-9 to L-11 demonstrate the existence of a transitional phase during the 

hydration process of sugar-containing metal-cement mixture. This transitional phase has 

an intermediate concentration of both Si and Al. 

Figures E-l(b), L-2(b), L-3, and L-9 to L-11 and Tables L1-L6 reveal the 

elemental compositions of typical CH, CSH, and ettringite. These results also show that 

CSH has a higher capacity to immobilize heavy metals than ettringite. 
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(a) 

(b) 

Figure L-1 Backscattered electron images of Control M sample at day 7, (a) overview 

and (b) the magnified image of the circled area in image (a). 
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Table L-1 X-ray analysis of the points marked in Figure L-1 (b) 

Ca A1 Si S Pb Zn 
(atorn%) (atom%) (atom%) (atom%) (wt%) (wt%) 

20.04 8.67 2.06 1.95 1.15 0.10* 

23.32 

21.96 

8.45 

7.62 

2.59 

4.49 

2.46 

1.89 

0.88 

1.49 

0.38 

1.1 

Note: all the three points are ettringite 
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(b) 

Figure L-2 Backscattered electron images of Control M sample at day 56, (a) 

overview and (b) a magnified image. 

Table L-2 X-ray analysis of the points marked in Figure L-2 (b) 

Ca A1 Si 
(atom%) (atom%) (atom%) 

32.16 -0.02* 0.33 

23.76 1.05 3.74 

26.07 0.68 8 

21.98 1.48 9.6 

17.78 6.56 2.07 

29.54 1.1 10.12 

18.85 3.07 6.68 

23.54 1.32 8.14 

30.11 0.23 1.23 

21.08 1.92 8.23 

S Pb Zn 
(atom%) (wt%) (wt%) 

0.02* 0.22* 0.72 

0.62 0.85 0.73 

0.39 1.47 0.86 

0.83 1.17 1.2 

1.88 0.83 0.17* 

0.55 1.56 1.27 

1.29 1.09 1.15 

0.85 1.62 1.2 

0.19 0.44 0.44 

1.26 1.82 1.28 
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Note: 

1. Points 1, 2 and 9 are CH 

2. Points3,4, 6, 8, and lOareCSH 

3. Point 5 is ettringite 

4. Point 7 corresponds to medium concentrations of Al and Si.(maybe a transitional 

product) 

A-29 



(b) 

(c) 

Figure L-3 Backscattered electron images of Sorbitol M sample at day 7. 

A-30 



Table L-3 X-ray analysis of the points marked in Figure L-3 (c) 

Ca A1 Si S Pb Zn 
(atom%) (atom%) (atom%) (atom%) (wt%) (wt%) 

21.5 

20.3 

20.66 

21.53 

19 

19.68 

29.94 

26.43 

20.86 

6.45 

8.02 

7.85 

6.07 

5.65 

3.76 

1.03 

1.72 

1.47 

4.23 

3.11 

3.11 

4.18 

4.66 

5.77 

10.83 

1.95 

8.07 

0.77 

0.9 

0.93 

1.31 

0.37 

0.55 

0.21 

1.84 

0.24 

1.39 

1.38 

1.83 

2.19 

2.18 

2.52 

4.04 

2.12 

3.64 

1.98 

1.7 

2.01 

2.1 

1.63 

3.17 

4.59 

0.61 

3.8 

Note: 
1. Points 1-4: A1 phase (However, all these four points contain higher Si compared 

to other A1 phases). 

2. Point 5 and 6: transitional product 

3. Points 7 and 9: CSH 

4. Point 8: CH 
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Figure L-4 Backscattered electron image of Sorbitol M sample at day 28. 
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(b) 

(c) 

Figure L-5 Backscattered electron images of Sucrose-low M sample at day 7, the bright 

grains are unhydrated cement, while the grey phase is ettringite. 
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Figure L-6 Backscattered electron image of Sucrose-low M sample at day 28. 
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(b) (c) 

Figure L-7 Backscattered electron images of Sucrose-high M sample at day 7. The grey 

masses in both (b) and (c) are ettringite. 
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Figure L-8 Backscattered electron images of Sucrose-high M sample at day 28, showing 

(1) unhydrated cement, (2) ettringite, and (3) calcium hydroxide. 
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Figure L-9 Backscattered electron image of Sucrose-high M sample at day 56_1. 

Table L-4 X-ray analysis of the chosen points marked in Figure L-9 

Ca AT Si S Pb ziT" 
 (atom%) (atom%) (atom%) (atom%) (wt%) (wt%) 

1 

2 

4 

5 

6 

19.41 9.08 

19.26 7.17 

20.25 4.17 

18.74 1.8 

17.41 7.06 

17.37 3.5 

0.1 1.65 

1.96 1.78 

2.94 1.04 

8.41 0.76 

2.08 1.47 

5.57 1.17 

0.52* 0.43 

1.13 0.72 

1.05 0.82 

2.11 1.67 

1.44 0.53 

2.02 1.73 

Note: Figure A 12-9 combined with Table A 12-4 illustrates the change of the 

concentrations of Ca, Al, Si, Pb and Zn from point 1 to point 4, and from point 5 to 

point 6. 
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Figure L-10 Backscattered electron image of Sucrose-high M sample at day 56 2. 

Table L-5 X-ray analysis of the ehosen points marked in Figure L-10 

Ca Xi Si S Pb ZrT 
 (atom%) (atom%) (atom%) (atom%) (wt%) (wt%) 

1 

2 

3 

4 

5 

6 

17.05 8.91 

18.59 1.59 

19.41 1.63 

19.03 5.92 

18.32 7.01 

17.97 3.62 

0.03* 1.29 

7.37 0.33 

7.02 1.32 

2.47 2.17 

1.13 1.59 

5.06 1.43 

0.59 0.48 

2.91 5.74 

3.99 5.24 

2.32 1.79 

1.47 0.96 

2.32 3.84 

Note: 

1. Points 1 and 5: ettringite 

2. Points 2 and 3: CSH 

3. Points 4 and 6: transitional product 
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Figure L-11 Backscattered electron image of Sucrose-high M sample at day 56 3. 

Table L-6 X-ray analysis of the chosen points marked in Figure L-11 

Ca A1 Si S Pb Zn 
(atom%) (atom%) (atom%) (atom%) (wt%) (wt%) 

18.67 

18.94 

13.52 

19.11 

18.2 

25.18 

18.45 

32.35 

8.62 

1.25 

5.28 

0.96 

1.26 

0.77 

8.32 

0.36 

0.44 

7.1 

4.07 

9.7 

9.11 

9.18 

0.79 

1.88 

1.48 

0.79 

1.17 

0.15 

0.35 

0.17 

1.6 

0.23 

0.26* 

2.86 

2.31 

3.91 

2.98 

2.14 

0.85 

0.77 

0.47 

5.16 

1.9 

3.68 

2.9 

1.55 

0.77 

0.72 

Note: 

1. Points 1 and 7: ettringite 

2. Points 2, 4, 5, and 6: CSH 

3. Point 8: CH 

4. Point 3: the transitional product 

A-39 



APPENDIX M 

EFFECT OF SUCROSE AND SORBITOL ON CEMENT-BASED 

STABILIZATION/SOLIDIFICATION OF TOXIC METAL WASTE 

Accepted by the Journal of Hazardous Materials on 6 June 2007 
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Abstract 

The effects of sucrose or sorbitol addition on the hydration, unconhned compressive strength and leachability of Portland cement pastes containing 
1 % Pb and 1 % Zn were studied as a function of time. Whereas Pb and Zn were found to shorten the time to achieve maximum hydration of Portland 
cement, the combination of these metals with 0.15 wt% sucrose or 0.40 wt% sorbitol retarded the setting of cement by at least 7 and 28 days, 

respectively, without affecting the strength at 56 days. The leachability of Pb and Zn evaluated by the TCLP 1311 protocol at 56 and 71 days 
was slightly reduced or unchanged by the addition of sucrose or sorbitol. SEM-EDS and XRD analyses revealed that ettringite precipitation was 
favored whereas the formation of CSH gel, which accounts for most of the strength of hydrated cement, was delayed in cement pa,stes containing 
both metals and sucrose or sorbitol. These results indicate that controlled additions of sucrose or sorbitol can add flexibility to the handling of 
cement-treated metal waste, particularly when it needs to be transported by truck or pipeline between the treatment plant and the disposal site, 
without affecting its long-term performance. 
© 2007 Elsevier B.V. All rights reserved. 

Keywords: Stabilization/solidification (S/S); Cement; Sucrose; Sorbitol; Heavy metals 

1. Introduction 

Stabilization/solidification (S/S) is a widely used technique 
for immobilizing toxic metal ions in industrial waste prior to 
landfilling. The binder of choice is most often Portland cement, 
owing to its ready availability, high strength and amply doc- 
umented performance [1], The main components of Portland 
cement are tricalcium silicate (C3S), dicalcium silicate (C2S), 
tricalcium aluminate (C3 A), tetracalcium alumi noferrite (C4AF) 
and calcium sulfate (gypsum or anhydrite, 10% max). During 
cement hydration, C3 A reacts with sulfate ions coming from the 
dissolution of calcium sulfate to form crystals of ettringite (AFt) 
and monosulfate (AFm), thus preventing the flash set of Port- 
land cement. C3S and C2S undergo hydration to form calcium 
hydroxide (CH) and calcium silicate hydrate (CSH), which is 
the principal contributor to cement strength [2]. The CSH plays 
a key role in immobilizing adventitious metal ions by means 

* Corresponding author. Tel.: +1 807 343 8573; fax: +1 807 343 8928. 
E-mail address: lionel.catalan(2)|akeheadu.ca (L.J.J. Catalan). 

0304-3894/$ - see front matter © 2007 Elsevier B.V. All rights reserved, 
doi: 10.1016/j.jhazmat.2007.06.022 

of physical adsorption [3J, coprecipitation [4] and formation of 
metallosilicates [5-7]. Further metal uptake is provided via ion 
substitution in ettringite crystals [3j. 

Sugars and their derivatives are found in many industrial 
wastes and byproducts, either as individual molecules or as 
the repeating units in long-chain compounds. For example, 
wood sugars and oligosaccharides mixed with lignosulfonates 
are byproducts from the manufacture of pulp and paper. They 
are widely used as retarders to control the setting of cement 
[8-13]. There has been no study published, however, on the 
effects of sugars as additives in cement-based S/S processes. 
The retarding influence of sugars could be advantageous when 
the waste-cement mixture needs to be transported for some dis- 
tance between the S/S treatment plant and the disposal site. In 
these situations, early hardening of the cement in the truck box or 
pipeline could result in severe operational difficulties and limited 
flexibility. In the present research, a sugar (sucrose) and a sugar 
alcohol (sorbitol) were investigated. Both additives are highly 
resistant to alkali attack but differ in their affinity toward silicon: 
sorbitol is a silicon binder [14], whereas sucrose is not [8,12]. As 
a result, these two additives are expected to interfere differently 

Please cite this ajrticie in as: L, et al.. Effects of sucrose and sorbitol on cement-based stabilization/solidification of toxic metal 
waste, J. Hazard. Mater. (2CK17), dot: 10,10l6/j.jhazmat.2007.06.022 
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with the cement hydration reactions. Sucrose is one of the most 
effective and commonly used retarders for cement setting. The 
addition of 0.075 wt% sucrose increases the induction period of 
the hydration process from 2.5 to 31 h [11]. Moreover, sucrose 
has been shown to enhance the specific surface area of hydrated 
cement pastes by increasing the number of small (1-2 nm) pores 
at the expense of medium-sized (4-20 nm) pores [15]. Sorbitol is 
often employed as a water-reducing plasticizer (superplasticizer) 
in cement admixtures, that is, it decreases the water needed to 
make the cement workable which, in turn, enhances its strength 
[16,17]. 

The objective of this study was to explore the effects of 
small additions of sucrose or sorbitol on metal leachability and 
strength development for specimens of metal waste treated by 
cement-based stabilization/solidification. Synthetic Pb and Zn 
waste solutions were used because both metals are common 
to industrial waste streams and have been identified as priority 
metallic pollutants by the US Environmental Protection Agency 
[18]. To aid in the interpretation of the results, the degree of 
cement hydration and the microstructure of the treated waste 
matrix were also assessed as a function of time. 

2. Materials and methods 

2.7. Sample preparation 

Synthetic waste solutions containing 25.0 g/L of each Pb and 
Zn were prepared by dissolving 40.0 g Pb(N03)2 and 114g 
Zn(N03)2'6H20 per litre of distilled-deionized water. Sucrose 
and sorbitol were dissolved in these solutions at concentrations 
ranging between 0 and 10 g/L; equivalent metal-free solutions 
were also prepared. The solutions were pre-cooled to 10°C 
and then mixed with normal Portland cement Type 10 (ASTM 
Type I) at a liquid-to-cement ratio of 0.40:1 in a plastic bowl 
over an ice-water bath. (Temperature control was necessary 
because certain mixtures - most notably those containing sor- 
bitol - released more heat than others.) The mixtures were 
stirred with a plastic spoon until they were homogeneous, i.e., 
for about 7 min or, in the case of those which contained syn- 
thetic waste, about 12 min because of their higher viscosity. 
They were then poured into cylindrical PVC molds measur- 
ing 2 inches in diameter and 4 inches in height. To minimize 
the entrapment of air bubbles, the cylinders were filled in two 
successive layers and each layer tamped 50 times. Cylinders 
were placed in triple-sealed, air-tight polyethylene bags and 
immersed in a room temperature (20-22 °C) water bath to 
cure. 

Table 1 provides the compositions of all sample mixtures. 
The Pb and Zn concentrations were each either 0 or 1.00 wt% 
of cement (i.e., 0.01 g of metal per gram of cement). Sucrose 
and sorbitol ranged from 0 to 0.40 wt%. Two types of control 
sample were prepared. The first (“Control”) consisted only of 
hydrated Portland cement; the second (“Control M”) addition- 
ally contained Pb and Zn but no sorbitol or sucrose. At least 12 
test cylinders were prepared of each mixture, which allowed the 
strength, leachability and loss on ignition to be determined in 
triplicate after four different curing periods: 7, 14, 28, and 56 

Table 1 
Sample compositions 

Batch name Pb content 
(wt% of 
cement) 

Zn content 

(wt% of 
cement) 

Sorbitol/sucrose 
content (wt% of 
cement) 

Control 
Sorbitol 
Sucrose-low 
Control M 
Sorbitol M 
Sucrose-low M 
Sucrose-high M 

0 
0 

0 
1.00 

1.00 

1.00 

1.00 

0 
0 
0 
1.00 

1,00 
1.00 

1.00 

0 
0.40 
0.15 
0 

0.40 
0.15 
0.38 

days. Additional tests were performed for the metal-free mix- 
tures after curing 1 day (loss on ignition) and 3 days (loss on 
ignition and strength), and for the waste-containing mixtures 
after 71 days (leachability). 

2.2. Strength testing 

Immediately after they were removed from the molds, sample 
cylinders were capped top and bottom with sulfur according to 
ASTM C617-98 [ 19] and the unconfined compressive strength 
was measured according to ASTM Cl09 [20]. 

2.3. Loss on ignition testing 

A small portion of each sample was crushed and ca. 1.5 g 
of the 850-2000 p.m fraction oven-heated for 24 h at 105 “C to 
find the evaporable water-free weight, VTios, and again for 2 h at 
1005°C to determine the fully dehydrated weight, Vf'ioo5- The 
degree of hydration au is given by the equation 

fTios - ITioos ,,, 
C^LI =   (1) 

0.24VT,OO5 

in which 0.24 is the reported fraction of non-evaporable water 
in fully hydrated Portland cement [2,21]. 

2.4. Standard leaching procedure 

The mobility of Pb and Zn in treated waste samples was 
determined using the regulatory Toxicity Characteristic Leach- 
ing Procedure (TCLP) [22]. 20.0 g of sample with particle size 
425-850 p.m was combined with 400 mL O.IOOM acetic acid 
(pH 2.88) in a 500 mL polypropylene bottle and rotated end- 
over-end at 30rpm for 18 h at room temperature. The extract 
was passed through a 0.7 fxm borosilicate microfiber filter, and 
its pH measured using a Metrohm 6.0233.100 combination glass 
electrode. It was then acidified to pH 2 with concentrated nitric 
acid and analyzed by inductively coupled plasma-atomic emis- 
sion spectroscopy (ICP-AES) using a Varian Vista Pro ICAP 
Radial spectrometer. The detection limits for Pb and Zn were 
0.025 and 0.05 mg/L, respectively. 

Although the TCLP is a static batch test and does not simulate 
actual field conditions, it remains the standard regulatory method 
for monitoring the performance of full-scale cement-based sta- 
bilization/solidification operations in North America and for 

Please,cite this article in press as: Li^Hang et al., of Soctose and sqrbitol on cement-based stabilizatkm/sK^idification of toxic metal 
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laboratory studies of the leaching behavior of cement-stabilized 
waste. 

2.5. Microstructure analyses 

After reaching the desired curing time, a small slice {ca. 
0.5 g) was removed from the inner part of the sample cylin- 
der, immersed for 24 h in acetone to halt hydration [23], dried 
at 105°C for 15 min, and then imbedded in epoxy resin. An 
oriented thin-section was cut, lapped and polished using oil- 
based media so as not to alter the water-soluble minerals. After 
carbon-coating, it was analyzed with a JEOL JSM 5900 scan- 
ning electron microscope in backscattered electron (BSE) mode 
to improve contrast between different mineral phases [24,25], 
The elementa] composition of minerai phases was determined 
by X-ray energy dispersive spectrometry (EDS) using an Oxford 
Link ISIS system (120s live-time) calibrated with corundum for 
Al, barium sulfate for S and O, orthoclase for Si and K, periclase 
for Mg, wollastonite for Ca, and jadeite for Na. Pure metal stan- 
dards were used to calibrate Fe, Pb and Zn. SEM-EDS analyses 
were carried out on days 7, 28, and 56 for the samples containing 
Pb and Zn. The metal-free samples were analyzed on days 1, 7, 
and 56. 

ing a resolution of 0.198 pim/pixel. The degree of hydration of 
a sample can also be calculated from the results of grey level 
analyses [27]: 

acL 
UC, 

(2) 

in which UC/ and UCo are the area fractions of unhydrated 
cement particles at time r,- and the start of the hydration pro- 
cess, respectively. The value of UCQ can be evaluated from 
the densities of Portland cement (i^c = 2.14g/cm^) and water 

(<7w = 1 -00 g/cm^) and the water-to-cement mass ratio {R = 0.40). 

UCo- 
\/dc 

{\/d^) + {R/d^) 
(3) 

2.7. XRD analyses 

The mineralogy of the metal-containing samples at day 7 was 
characterized by X-ray diffractometry using a Philips PW 1050- 
3710 diffractometer with Cu-Ka radiation. Scans were carried 
out in the range 5° < 26 < 75^ with a 0.04° step interval and a 
counting time of 2 s per step. 

3. Results and discussion 

2.6. Grey level analyses 

Each BSE image consists of 1280 x 960 pixels having grey 
levels ranging from 0 (black) to 256 (white). The grey levels 
are directly related to the atomic number of the material, and 
thus can be used to distinguish between mineralogical phases: 
unhydrated cement grains are the brightest features, CH and 
other hydration products (abbreviated OHP, mainly composed 
of CSH) appear as two shades of grey, whereas pore space is 
black. These phases also appear as separate peaks in grey-scale 
histograms (Fig. 1), and the areas under these peaks can be used 
to calculate the percentage of individual phases [25,26]. For 
each sample, calculations were carried out on 15 adjacent BSE 
images and the results were averaged to obtain a representative 
phase distribution. Each image measured 254 x 190 p.m, yield- 

Grey level 

Fig. 1. BSE image of Control sample at day 7 and its grey level histogram 
obtained with the Image-Pro Plus 5.0 software (UC: unhydrated cement grains, 
OHP; other hydration products). 

3.1. Degree of hydration 

Fig. 2 depicts degree of hydration as a function of time 
for pure cement (Control) and cement containing 1% Pb and 
1% Zn (Control M). The curing of metal-free cement pro- 
ceeded in two stages - a period of rapid hydration lasting 
about 3 days, followed by a slower reaction period exhibit- 
ing zeroth-order kinetics - and required 56 days to reach the 
maximum hydration level of 80%. The addition of Pb and Zn 
greatly accelerated the overall curing process, with maximum 
hydration being achieved in only 7 days. It would appear that 
added metal ions somehow interfere with the mechanistic step(s) 
responsible for terminating stage-1 of the hydration process. 

Fig. 2. Effect of 1% Pb-r 1% Zn addition on cement hydration rate. Firror bars 
correspond to the standard deviations over three measurements. 

cite this article in press as: L, Zhang et al.. Effects of sucrose and sorbitol on t^ment-based $tiM>iUzation/solidiiiicatioii iDl t<^ic ^etal, 
w^e, J. Hazard. Mater. (2007j, doj;10.10i6/j.Jhazmat.2007.06.022 
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By contrast, previous studies of cement hydration in the pres- 
ence of lead and zinc found that both metals retarded cement 
hydration. These studies, however, are not directly comparable 
to the present one because they were carried out with much 
larger metal concentrations [28,29] or were limited to early cur- 
ing times of less than 17 h [30]. The retardation effect of Pb 
at early times has been explained by the rapid precipitation of 
colloidal lead hydroxide, sulfate, or hydroxy sulfate as a pro- 
tective membrane around unhydrated cement particles [29,30]. 
At high concentrations, Zn may precipitate as low permeability 
CaZn2(0H)6'H20 around unhydrated calcium silicate particles 
[28]. 

Fig. 3 reveals that, unlike added metal ions, sucrose and 
sorbitol did not radically alter the two-stage reaction profile 
that characterizes the hydration of pure Portland cement. How- 
ever, the onset of stage-1 hydration was delayed by about 2 
days in cements containing 0.15 wt% sucrose (Sucrose-low) or 
0.40 wt% sorbitol (Sorbitol). Also, the sorbitol-containing mix- 
ture was slightly more hydrated after 7 days than either of the 
other two. The mechanisms by which certain sugars and sugar 
derivatives retard the hydration of cement are not fully under- 
stood. In the “half-salt” theory proposed by Thomas and Birchall 
[8,12], calcium ions react with sucrose in alkaline solution to 
form a soluble sucrose-calcium salt complex Ca(OH)'^- • 

(pA'ai of sucrose = 12.6). The pendant Ca(OH)"^ group in the 
half-salt is thought to adsorb onto growing calcium hydroxide 
(CH) nuclei and thus inhibit further precipitation of calcium and 
hydroxide ions on the poisoned surface. The precipitation of 
CSH gel, which relies on the deposition of silica on an exist- 
ing CH lattice, is thought to be similarly inhibited by poisoning 
of the CH surface. Although published evidence supporting the 
existence of aqueous calcium-sucrose complexes is limited, Pan- 
netier et al. [31 ] report formation of stable Ca(OH)Rsuc species 
in dilute alkaline solution and polymeric [Ca(OH)Rsuc]/i 4S the 

concentrations are increased. By contrast, no specific retarda- 
tion mechanism has been proposed for sorbitol which, at best, 
interacts weakly with calcium ions (pA'ai = 13.6) [32]. Unlike 
sucrose, however, sorbitol is able to form [HOSi(Rsor)2J~ and 

[Si(Rsor)3]^~ complexes with aqueous silicon in high pH sur- 

Fig. 4. Effect of sorbitol or sucrose addition on cement hydration rate in samples 
containing 1% Pb+ 1% Zn. 

roundings [14]. These anionic complexes may play a role in 
delaying the hydration of cement (possibly through Ca(OH)+ 
association) and contribute to the enhancement observed in 
the strength and final degree of hydration of cement mix- 
tures containing sorbitol by crosslinking in the solid cement 
matrix. 

When added together with the metal ions, sucrose and sorbitol 
countered the accelerating influence of Pb and Zn on cement 
hydration, as demonstrated in Fig. 4. Surprisingly, they were 
more effective at inhibiting hydration for the cement contain- 
ing Pb and Zn than for pure cement. Addition of 0.15 wt% 
sucrose (Sucrose-low M) or 0.40 wt% sorbitol (Sorbitol M) lim- 
ited the degree of hydration to 35% for at least 7 or 28 days, 
respectively. Thereafter, the reaction quickly went to comple- 
tion (80% degree of hydration), that is, without going through 
stage-2 hydration. Addition of 0.38 wt% sucrose (Sucrose-high 
M) maintained hydration at 35^0% through the entire 56 day 
experiment. 

3.2. Grey level analyses 

Grey level analyses were carried out on Control and Con- 
trol M samples at 7 days. The percentage of unhydrated cement 
was lower in the Control M sample (10.2 ± 1.9%) than in the 
Control sample (15.1 ± 2.6%) at a confidence level of 99.997% 
(Student r-test). The degrees of hydration calculated fronr grey 
level analysis using Eq. (2) (aGi. = 65.9 ± 5.9% for the Con- 
trol sample and 77.0 ±4.3% for the Control M sample) are 
consistent with those independently calculated by loss on igni- 
tion using Eq. (1) (au = 60.7 ±0.7% for the Control sample 
and 78.1 ± 1.7% for the Control M sample, see Fig. 2). Hence, 
both methods of measuring degree of hydration show that the 
presence of 1% Pb and 1% Zn improves hydration at 7 days. 
By contrast, grey level analyses reported by Ouki and Hills 
[26] found that the addition of 1% Pb or 1% Zn decreased 
hydration of Portland cement at 29 days by 29% and 11 %, 
respectively. 
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Table 2 
Summary of sample setting status and main hydration products found by SEM- 
EDS" 

5 

Sample Day I Dav 7 Day 28 Day 56 

Control 

Ciontro! M na 

Sorbitol Cl 1 

Sucrosf-lovv (’ll 
Biiiiiii 

Sorbitol M mi mMrnmm 

Sucrose-low M lui 
lllliiiiiilii 

Sucrose-liiah M na \ 

CM, CSH CH, CSH 

CH, CSH, 
ettringite ^ 

CH. CSH 

CH. CSH 

CH^CSH' 

/'CUI * 
V. of * 

me 

CH, CSH, 
ettringite'’ 

na 

na 

cltmigtfe, 
CH,CSH 

ettringite, 
CILCSH 

CH 

CH, CSH 

CH, CSH, 
ettringite’’ 

CH, CSH 

CH, CSH 

ettringite, 
CH, CSH 

ettrinaite, 
CH. CSH 

ettringite, 
CH, CSfl 

“Shading indicates that the cement was not set. Light shading indicates that the 
cement was partially set. No shading indicates that the cement was set. CH: 
calcium hydroxide; CSH: calcium silicate hydrate; na: not analyzed. 
’’Only a small amount of this phase was detected. 

3.3. Strength tests 

Table 2 indicates the setting status (unset, set, or partially set) 
of all the samples at various stages of curing. Several of the sam- 
ples (e.g., samples containing both metals and sorbitol at day 1 
and day 7) were poorly solidified and friable when removed from 
the molds, exhibiting less than 400 psi (2.76 MPa) compressive 
strength and under 35% degree of hydration. Hence, they were 
deemed to be unset. By contrast, cement was considered to be set 
when compressive strength exceeded 2000 psi (13.8 MPa) and 
the degree of hydration was over 45%. Two samples (Sorbitol M 
at day 28 and Sucrose-high M at day 56) were deemed to be only 
partly set. They consisted of millimetre-sized pebbles of cured 
cement within a poorly consolidated matrix, while exhibiting 
less than 400 psi compressive strength and 35-45% hydration. 

0 10 20 30 40 50 60 

Time (days) 

Fig. 5. Effect of \% Pb and \% Zn addition on cement strength. Error bars 
correspond to the standard deviations over three measurements. 

Fig. 6. Effect of sorbitol or sucrose addition on the development of cement 
strength. 

Comparison between Figs. 5-7 and Figs. 2-4 reveals that 
evolution of compressive strength correlates closely with that of 
the degree of hydration. 

Pure cement (Control) reached a maximum strength of ca. 
5000psi (34.5 MPa) after 14 days (Fig. 5). The addition of 1% 
Pb and 1% Zn (Control M) resulted in higher strength at day 
7 compared to pure cement (86% confidence, based on Student 
Mest). This result reflects the higher degree of hydration for the 
Control M sample compared with the Control sample at day 7, 
and is also in accordance with the findings of Tashiro et al. [33] 
who reported increased strength for cement containing between 
0.5% and 5% PbO-Pb(OH)2 or 0.5% Zn(OH)2 at 3 days and 28 
days. In the present study, however, there was statistically no 
difference between the strengths observed for pure and metal- 
containing cement from day 14 onwards. 

The effect of low sucrose and sorbitol addition on the com- 
pressive strength of metal-free cement is shown in Fig. 6. 
Strength was reduced at day 3 for samples containing 0.15 wt% 
sucrose or 0.40 wt% sorbitol, but caught up with that of pure 
cement by day 7. At day 56, the sample containing sorbitol was 
slightly stronger (81% confidence level), which confirms previ- 

Fig. 7. Effect of .sorbitol or .sucrose addition on strength of samples containing 
1% Pb-hl%Zn. 
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0.8 

56 71 

Time (days) 

Fig. 8. Dissolved concentration of Pb in TCLP extracts. Error bars coirespond 

to the standard deviations over three measurements. 

ous reports that sorbitol improves the strength of OPC after 28 
days [16]. These results parallel the influence that sucrose and 
sorbitol had on the degree of hydration (Fig. 3). 

Similarly, the influence of added sucrose or sorbitol on the 
strength of cement containing Pb and Zn (Fig. 7) parallels their 
effect on the hydration of these samples (Fig, 4). The addi- 
tion of 0.15 wt% sucrose (Sucrose-low M) or 0.4 wt% sorbitol 
(Sorbitol M) delayed cement setting for at least 7 and 28 days, 
respectively, with the strength of these samples rising to that of 
Control M immediately thereafter. These findings have practical 
importance because they demonstrate that controlled addition 
of sucrose or sorbitol can delay the setting of S/S-treated metal 
waste for several days, thus adding flexibility for transportation 
to the final disposal site without negatively impacting the final 
product strength. However, excessive sucrose addition (Sucrose- 
high M; 0.38 wt%) delays setting beyond 56 days with unknown 
effects on final strength. 

3.4. Leaching tests 

0.25 

0.2- 

0.1 

0.05 

0 

O Control M 

ffl Sorbitol M 

■ Sucrose-low M 

56 71 

Time (days) 

Fig. 9. Dissolved concentration of Zn in TCLP extracts. 

fidence, respectively) but did not significantly change for the 
sample containing sucrose. Unlike the results obtained for lead, 
the addition of sucrose or sorbitol to cement had no significant 
effect on Zn leachability by day 71. 

3.5. Microstructure analyses 

Table 2 lists the hydration products identified in each cement 
sample at different curing times and indicates whether or not the 
samples were set. 

In agreement with previous studies [24], calcium hydroxide 
and CSH were the main hydration products of pure Portland 
cement (Control). Cement containing 1% Pb and 1% Zn (Con- 
trol M) had the same microstructure as metal-free cement 
(Fig. 10). Shells of smooth-textured CSH surrounded unhy- 
drated cement grains (C3S primarily), while irregularly textured 
CSH occupied much of the void space that was originally filled 
with water. These two different CSH phases respectively corre- 
spond to what Diamond [34] terms “inner” and “outer” CSH. 

Fig. 8 shows the average concentrations and standard devia- 
tions of dissolved Pb in the TCLP extracts at day 56 and day 71 
for the Control M, Sucrose-low M, and Sorbitol M samples, all 
of which were fully set by this time. The leachability of Pb from 
the cement containing sorbitol decreased between the two curing 
periods, but remained constant within experimental uncertainty 
for the other samples. On day 71, the average leachability of Pb 
for the control sample was 0.52 ± 0.04 mg/L. Sucrose or sor- 
bitol addition significantly inhibited lead leachability, the final 
values being 0.30 ± 0.09 mg/L for 0.40 wt% sorbitol (leaching 
inhibited with 96% confidence) and 0.39 ± 0.11 mg/L for 0.15% 
sucrose (84% confidence). It is worth noting that differences 
in leachability were not caused by pH variations in the TCLP 
extracts; the final extract pH after 18 h agitation was 12.4 for all 
the samples. 

Fig. 9 shows the concentration of Zn in the TCLP extracts. 
Between 56 and 71 days, the zinc leachability decreased for 
the control and sorbitol-containing samples (93% and 84% con- 

Fig. 10. Back.scattered electron images of Control M sample (1% Pb+ 1% Zn) 

at day 56 showing (A) C3S, (C and F) inner CSH, (B, D, and E) outer CSH, (G, 

H and 1) CH, and (J) ettringite. 
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Fig. 11. Backscattered electron images of (a) Sucrose-low and (b) Sorbitol 
samples at day 1 showing the (A) unhydrated C3S phase and (B) CFl. 

Small amounts of the Ca-Al-hydroxysulfate phases ettringite 

and monosulfate were disseminated throughout the sample and 

also might have been intermixed within the CSH as is sug- 

gested by the small amounts of Al and S detected in that 

phase (typically less than 2 atom%). Taylor [35] reports that 

Ca-Al-hydroxysulfate can intermix with CSH at the microm- 
eter to single-layer scale which is too small to be resolved by 

SEM-EDS. Lead and zinc were mostly present in CSH at con- 

centrations between 0.9 and 1.8 wt%. Ettringite and calcium 
hydroxide have much lower Pb and Zn concentrations (typically 

less than 0.8 wt%). 

The addition of sorbitol or sucrose to metal-free cement 

delayed CSH formation. At day 1, CH was the only hydra- 

tion product detected in the Sucrose-low and Sorbitol samples 

(Fig. 11). From day 7 onwards, however, these samples con- 

tained both CSH and CH. 

When sucrose or sorbitol was added to cement in com- 

bination with Pb and Zn (Sucrose-low M, Sucrose-high M, 

Sorbitol M), the first hydration phase to appear consisted 

of platy Al-rich crystals (with cracks that were probably 

caused by drying; Figs. 12a-c). It was identified by X- 

ray diffractometry as ettringite, Ca6Al2(S04)3(0H)i2-26H20 

(Fig. 13). However, the average elemental composition deter- 

Fig. 12. Backscattered electron images of (a) Sorbitol M, (b) Sucrose-low M and 
(c) Sucrose-high M at day 7. The Al-rich phase is indicated by arrows. Bright 
areas are unhydrated cement consisting mainly of C3S. None of these samples 
were set by day 7. 

mined by more than 50 independent EDS measurements 

- Ca6.00Al2.4iS0.45Ol8.42Fe0.ilSi0.57Pb0.06Zn0.il- indicates a 
much lower S/Ca ratio than that of ettringite. Therefore, it 

is likely that ettringite was intermixed with unhydrated C3A, 

which would account for the low sulfur content. The pres- 

ence of Fe, Si, Pb and Zn indicates that the ettringite contains 

impurities. As mentioned already, ettringite was also found 

in the absence of sucrose and sorbitol (Control M), but in 
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Fig. 13. X-ray diffractogram of the Sorbitol M sample at day 7, showing (1) 
C3S or C2S, (2) ettringite, (3) portlandite (CH), and (4) C3A. 
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Fig. 14. X-ray diffractogram of the Control M sample at day 7, showing (1) C3S 
or C2S, (2) ettringite, (3) portlandite (CH), and (4) C3A. 

much smaller amounts and coexisting with CH and CSH 
(Figs. 10 and 14). 

As the samples containing metal and sucrose or sorbitol began 
to set, the amounts of calcium hydroxide and CSH increased 
(Table 2). Fig. 15 shows a backscattered electron image of the 
Sucrose-high M sample at day 56, by which time partial setting 
had occurred. The image depicts ettringite coexisting with CSH 
(characterized by Ca/Si = 2.5-3.0;1) and a transition product 
which contains a significant concentration of Al (Ca/Al = 3-5:1) 
and a lower Si concentration than CSH (Ca/Si = 3-8:1). 

The elemental composition at several points within the ettrin- 
gite, CSH and transition product was measured by EDS on 

Fig. 16. Concentration of Si as a function of Al concentration in the Sucrose-high 
M sample at day 56. 

several backscattered electron images of the Sucrose-high M 
sample at day 56 and plotted in Figs. 16 and 17. Three regions 
corresponding to CSH (low Al content), ettringite (high Al con- 
tent) and the transitional product (intermediate Al content) are 
superimposed on the graphs. Similar results were obtained for 
the Sorbitol M sample (data not shown). The Si concentra- 
tion increases almost linearly as the Al concentration decreases 
(Fig. 16), representing the transition from ettringite to CSH. 
Fig. 17 indicates that Pb and Zn concentrations vary widely, from 
1 to 6 wt%, in CSH (corresponding to low Al concentration). By 
contrast, the range of Pb and Zn concentrations is relatively lim- 
ited, less than 2 wt%, in ettringite. The larger capacity of CSH for 
immobilizing Pb and Zn is likely explained by structural differ- 
ences: ettringite forms hexagonal prismatic or acicular crystals 
in which ion substitutions are the only significant immobiliza- 
tion mechanism [3|, whereas CSH is an amorphous gel which 
allovv'S Pb and Zn atoms to be immobilized through a variety of 
mechanisms such as sorption, coprecipitation, and formation of 
metallosilicates f3-7]. 
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Fig. 15. Backscattered electron image of the Sucrose-high M sample at day 56, Fig- 17. Concentrations of Pb and Zn as a function of Al concentration in the 

showing (A and B) ettringite, (C and D) CSH, and (E and F) transitional product. Sucrose-high M sample at day 56. 
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4. Conclusions 

1. The presence of 1 wt% Pb and 1 wt% Zn significantly short- 
ens the time at which maximum hydration of Portland cement 
is achieved, but has relatively little effect on the final com- 
pressive strength. 

2. The addition of 0.15wt% sucrose or 0.40 wt% sorbitol to 
metal-free Portland cement retards hydration and strength 
development for 3 to 7 days. 

3. The retardation effect of sucrose and sorbitol are considerably 
enhanced when Pb and Zn are present. Controlled sucrose or 
sorbitol addition to metal-cement mixtures can retard setting 
for up to 28 days without affecting the 56-day strength, thus 
adding flexibility to the handling of S/S-treated waste. 

4. The long-term TCLP-based leachability of Pb may be some- 
what reduced by the addition of sucrose or sorbitol; however, 
the long-term leachability of Zn is not significantly affected. 

5. Cement setting correlates with the precipitation of CSH gel. 
Precipitation of ettringite was favored and the formation of 
CSH and CH were delayed when sorbitol or sucrose was 
added to metal-cement mixtures. 

6. The ability of ettringite to immobilize Pb and Zn is inferior 
to that of CSH. 

7. Sorbitol conferred a slightly higher degree of hydration and 
compressive strength than sucrose to Portland cement after 
56 days. 
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