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Abstract 

When a positron/electron pair annihilate via the two-photon pathway, the emitted photons are 
momentum correlated. This correlation ensures that they move along a straight line path in opposite 

directions. An experiment performed in 2004 by Dr. V.D. Irby measured the time interval between 
detection of the photons. He observed a decay in the number of counts with increasing detection time 
interval, which he described using a Lorentzian, the line width of which at full-width half-maximum is 
measured to be 120ps. The data collected by Irby is interesting because current theory predicts that 

because the source is so localized (the effective source width used by Irby is safely within 5rnrn) the 
photons should be detected within a time interval of �t=d/c where d is the thickness of the source. This 
time interval corresponds to 17ps. This thesis fits the results to an exponential, and shows that this 
exponentially decaying nature of the coincidence time interval is characteristic of the entanglement of 
the two photons. We find that the wavefunctions of the photons decoheres in space according to how 
long the particle pair took to decay (which is exponential), and that the probability of simultaneous 
detection depends on the exponential of the product of the lifetime of positronium and the detection 
time interval. 
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CHAPTER 1 

INTRODUCTION 

Quantum mechanics was first discovered as a solution to the problems of blackbody 

radiation, the photo-electric effect and other phenomena such as how atoms emit 

radiation only at discrete energies. It provides a good explanation of atomic and 

photonic phenomena in vacuum and within the framework of interaction forces. 

This description of reality does come with conceptual difficulties, however. Arising 

out of the quantum mechanical description of the world are the ideas of action-at-

a-distance, non-locality and entanglement, all of which seem to operate in counter­

intuitive and mysterious ways. Many great scientists (and lots of mediocre ones, too) 

have had great difficulties in accepting that quantum mechanics may be complete in 

its description of reality and that it is reality that is confusing. 

In their oft-cited paper "Can Quantum-Mechanical Description of Physical 

Reality Be Considered Complete?" [1] Einstein, Podolsky and Rosen contemplate 

the idea of non-commutating operations performed on an entangled system. They 

look at a system described by a two part wavefunction \[! (xi, x2) = L 1/Jn (xi) Un (x2) n 
where 1/Jn (xi) describes one component (which could be photons or electrons etc. )  

and Un (.T2) is  the set of eigenfunctions of Q (the position operator) and describes 

the second component. Measuring the position of one of the particles completely 

determines the wavefunction of the second particle. Measuring the complementary 

property momentum also completely determines the wavefunction of the second 

particle, only in this case the determined wavefunction is now an eigenfuntion of 

1 
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the momentum operator P. Since P and Q are non-commuting operators, position 

and momentum cannot both be described completely at the same time. Thus Ein­

stein, Podolsky and Rosen conclude that this description of reality must be faulty 

since the second system has not been interacted with. In their words 

"This makes the reality of P and Q depend upon the process of measure­

ment carried out on the first system which does not disturb the second 

system in any way. No reasonable definition of reality could be expected 

to permit this. 11 

As it happens, the EPR paradox or the idea that interacting with one particle may 

alter the state of another distant particle instantaneously is now a familiar concept 

in quantum mechanics reflective of a property called 11 entanglement". When two or 

more things (like photons) are created from the same process (such as an annihilation 

event) and must conserve some property between them (such as momentum) the 

two objects may be entangled. A familiar example of entanglement are the Bell 

thought experiments [2] . In these experiments, two electrons which must conserve 

angular momentum between them are sent in different directions and the different 

spatial components of spin are measured as in the Stern-Gerlach experiments. The 

measurement of these spatial components corresponds to non-commuting operators, 

just as in the EPR example. 

Once we measure the x-component of spin of one of the particles using a Stern­

Gerlach magnet , we can infer the x-component of spin of the other particle. If we 

believed the EPR argument it would be reasonable to assume that we could measure 

the x-component of spin of one of the particles and the z-component of spin of the 

other particle and infer the corresponding spin components for each particle. Then 

we would have shown that the spacial components of spin can in fact be measured 

simultaneously and that quantum mechanics is not a valid theory. 
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However, application of Bell's theorem and non-locality to this EPR thought 

experiment shows that measuring a component of spin of one of the particles changes 

the wavefunction of the other instantaneously, and that subsequent measurement of 

the second particle's spin is reflective of this altered state not the original spin­

conserved state. Many experiments have been performed to test Bell's inequality 

and non-locality [3] [4] [5] . No matter the distance between the entangled electrons, 

they are described by a single wavefunction and a change in that wavefunction 

caused by a measurement of the properties of either particle instantaneously affects 

the state of the other. This is the essence of entanglement . The wavefunction that 

describes the entangled states cannot be separated into the product of the individual 

component states. They are linked at the most basic level. 

This thesis is concerned with the wavefunction that can be used to describe the 

entangled state of the photons emitted via the annihilation of the matter/anti-matter 

pair of an electron and a positron. When an electron and a positron are in close 

enough proximity they can annihilate each other. This annihilation process converts 

the energy associated with the mass and motion of the particles into radiation. There 

are two probable pathways for the emittance of this radiation. The first pathway 

is taken when the positron/ electron pair has a total spin one, and sees the energy 

released in the form of three photons. The second pathway is taken when the 

positron/ electron pair has spin zero, and sees the energy released in the form of two 

photons. We are interested in the two-photon process. 

The two photons created from this annihilation process are described using the 

theory of wavefunction collapse[l] . Between them they must conserve the energy 

and momentum of the matter/anti-matter pair. The energy conservation property 

ensures that both photons are approximately .511MeV in energy. The momentum 

conservation property means that these two photons travel in opposite directions, 

and the angular momentum conservation property is what results in the two-photon 
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process where one is spin up and the other spin down. These three properties taken 

together make this positron/electron two-photon system an ideal candidate to study 

the nature of their entanglement , and to examine what phenomenon may arise from 

this entanglement. The measurement of one of the photon's momentum results in 

the collapse of the wavefunction of the second photon. 

This theoretical work examines the entanglement discovered by an American 

scientist Victor D. Irby [6] . He performed an experiment that used very fast detec­

tion equipment to detect the two photons to confirm the hypothesis that these two 

photons could be detected simultaneously. The experiment allowed Irby to mea­

sure accurately the time difference between detection events. He observed what 

we claim is an exponential decay function characterizing the difference in detection 

times versus number of counts. This means that although some photon pairs are 

detected almost simultaneously, most are separated by a significant time interval. 

The number of decay events decreases exponentially with the time interval between 

detection of the correlated photons. Irby estimates a characteristic line width of 

around lOOps. 

This exponential decay in the number of counts with increasing detection time 

interval is interesting because current theory predicts that because the source is 

so localized (the effective source width used by Irby is safely within 5mm) it was 

expected that the arrival time difference should be the time it takes to traverse 

the source flt = d/ c where d is the thickness of the source. It takes light about 

17ps to traverse 5mm. An uncertainty of this magnitude would account for the 

annihilation occurring at an extreme end of the source. However, the line width 

of the exponential decay at full-width half-maximum is ten times greater than this 

source location uncertainty, measured by Irby as about 120ps. Light takes this long 

to traverse 3.6cm. We claim that the exponentially decaying nature of the coincidence 

time interval is characteristic of the entanglement of the two photons. 
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For a practical application, time of flight positron emission technology (TOF 

PET) uses the time difference between detection events of photons produced through 

two-photon annihilation to localize the source of radiation along the line of response 

[7] . The Irby experiment begins with a highly localized source, and so should give 

us a good idea about how accurate coincident detection can be for applications such 

as TOF PET. 

This thesis explains this time difference between detection events using the phe­

nomenon of decoherence. Using the results pertaining to two-photon detection 

experiments published in 2010 (see reference [8] ) we present a theory linking the 

time-dependent decoherence of the particle pair with the time detection difference. 

It begins by deriving the atomic "before" and radiative "after" states using a combi­

nation of solutions to the Dirac equation and theories of spontaneous emission. We 

then switch to centre of mass and relative coordinates as in other published work[8] 

and elucidate a possible explanation for the non-simultaneous detection phenom-

en on. 



CHAPTER 2 

THE IRBY EXPERIMENT 

In 2004 a paper [6] was published in the Journal of Measurement Science and Tech­

nology that presented an experiment which concluded that there exists a funda­

mental uncertainty in the arrival times of two photons which are emitted from the 

same annihilation event. The author , V. Irby, was striving to the answer the question 

"what is the minimum quantum uncertainty in the time interval between detection of 

the two annihilation photons?". The conclusion reached was that the linewidth of the 

curve formed by plotting time difference between detection events against number 

of counts has a line width which agrees very well with the lifetime of positronium. 

The challenge for us is to explain why, and to present a formalism which describes 

the event accurately. The experiment of Irby will now be presented. 

The heart of the experimental set up is a 3mm wide plastic disc containing 22 N a. 

This form of radioactive sodium decays via one of two pathways. The first pathway, 

accounting for 90% of the decay, is f3 + decay wherein a photon (later referred to as 

the "start" photon) , a positron and a neutrino are released. The second pathway 

is electron capture, and does not include the release of a positron. Sodium 22 has 

a half-life of about 2.6 years [9] . This capsule of sodium serves as our positron 

source. It is sandwiched between two aluminum plates of 3mm thickness. At this 

thickness it is highly probable that all positrons emitted from 22 N a decay will find 

an electron to annihilate with within this sandwich. In fact , virtually all positrons 

are annihilated within one millimeter of aluminum, so we consider our positronium 

to be localized within 5mm. 

6 
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Since the photons emitted via two-photon decay are highly momentum-correlated 

and the center of mass momentum of the electron/positron pair (positronium) is 

almost zero we expect the sum of momentum of the photons emitted from this 

process to be close to zero. This means that the photons fly off at almost exactly 

180° in order to conserve the approximately zero momentum of the center of mass. 

So the next part of the set-up is the placement of two photon detectors on opposite 

sides of the sample. The photon detectors used in this experiment cannot distin­

guish between photon energies, although detection efficiency does vary depending 

on photon frequency. This means that coincidence rates of the detectors include 

three different rates. A coincidence count could be a result of a start photon fol­

lowed by one of the singlet decay photons, a start photon followed by a triplet decay 

photon, two photons from the three-photon annihilation process or our desired cor­

related annihilation photons. The formula describing the coincident rate for anni­

hilation/annihilation events is calculated by Irby [6] as 

RAA = [ EstartEstop n�;p afiRo l (2 . 1 )  

where E denotes detection efficiency, n is  the solid angle of the detector as viewed by 

the source, Ro is the source activity, a takes into account how many photons emitted 

are annihilation photons and !I is the fraction of annihilation events that occur 

through the singlet channel. The subscripts 'start' and 'stop' label the detectors. 

The 'stop' detector electronically delays the signal so that it is always last to arrive 

at the picosecond timing analyzer. The role of these labels becomes clearer once 

the experiment has been fully explained. The formula describing the coincidence 

rate for decay/ annihilation events (when the photon emitted at the beginning of 

the decay process is recorded within coincidence limit with an annihilation photon) , 

RnA, is 
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[ f2start R l f2stop ( J j3J ) RDA = 2 Estart� 0 Estop� a 1 + 3 (2.2) 

where j3 takes into account how many photons emitted are decay prompt photons 

and where h is the fraction of annihilation events that occur through the triplet 

channel. If we plot these two formulas against each other inserting values reflective 

of lrby's experimental set-up we see that when the detectors are set lOcm apart 

with the source exactly between them, coincidence rates are dominated by annihi-

lation/ annihilation events. The placement of the detectors along a line bisecting 

the source assures us that the coincidence rates picked up by the detectors is highly 

dominated by annihilation/annihilation events (see Figure 2 . 1 ) .  

Now we have established that the experimental set-up filters out undesired pho-

tons. In order to have confidence in the results we must establish that errors present 

in the experiment are less than the accuracy claimed. The author summarizes all 

expected experimental uncertainties as 

electronic jitter 

electronic walk 

/j.tj � 38 ps 

/j.tw � 45 ps 

transit time spread /j.ttts � 52 ps 

source location /j.ts � 47 ps 

These errors are added in quadrature. 

There is not much to be done about electronic jitter or electronic walk. These 

uncertainties are inherent to the instruments used. However, lrby uses an interesting 

method to reduce transit time spread while increasing accuracy. 

TRANSIT TIME SPREAD AND PULSE HEIGHT DISTRIBUTION 

Photons are picked up by a multi-channel plate detector (MCPD) , which is essen­

tially a plate with many channels running diagonally through it . The channel pores 

are lOfLm in diameter and are slanted 8° from the vertical. When an incident 

photon has been absorbed by the detector it triggers an electron avalanche through 
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Figure 2 . 1: Coincidence rates vs Source position. The short-dashed line represents 
coincident detection of a decay photon with either a photon from the three-photon 
decay process or the two-photon decay process. The long-dashed line represents 
coincident detection of the photons created by the two-photon annihilation process. 
The solid line represents total coincindence detections. As the detectors are moved 
farther from the source, coincident detection events are dominated by two-photon 
annihilation [6] . 
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the detector creating a pulse which is then picked up by an anode connected to the 

MCPD. It follows that photons of lower energy which cannot penetrate through 

matter create the largest pulses at the detector because they are absorbed close to 

the top of plate and an electron avalanche has the entirety of the plate in which to 

propagate. On the other hand, gamma photons released in two photon annihilation 

events have very high penetration depths through matter. They are likely to be 

absorbed close to the anode creating a pulse of relatively low height. Irby filters 

out pulses of high amplitude while maintaining the lower threshold. This is done 

by selecting pulses within the range L\ V which correspond to the incident radiation 

being absorbed at L\x according to the relation [6] 

jL\xj = so 
ln (V + L\V) 

ln (no) V 
(2.3) 

Since L\x tends to zero as L\ V tends to zero, and since x is directly proportional to 

transit time spread, we can reduce L\ttts by making L\ V as small as possible while 

keeping it close to the lower detection limit to filter out other radiation detection 

events. 

Looking at pulse height distribution qualitatively as in Figure 2.2 we see that for 

lower energy electron pulses there is a peak around 17mV. This peak corresponds 

to radiation hitting the MCP detector as deep into the channel as possible without 

penetrating matter. The Gaussian shape of the peak is explained by the rapid 

attenuation of incident low-energy radiation through matter. However the purely 

exponential decay of the high-energy ')'-photon pulse amplitude is well supported 

by its high penetration through matter. As pulse height increases to above 20m V, 

those originating from low-energy sources rapidly go to zero and pulse counts are 

dominated by the ')'-photons. Irby also electronically tags all over-range events and 

does not use them when calculating coincidences, as these !'-photons likely originate 

as the start photon in positron emission or as triple-decay photons. Irby's results 
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Figure 2 .2: Pulse Height Distribution for a MicroChannel-Plate Detector. The solid 
line represents the pulse height distribution for mid-energy ( 1  keV) electrons. The 
dashed line represents the pulse height distribution for .511 MeV photons [6] . 
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Figure 2.3: Final results by Irby (2004). This data is fit  with a Lorenztian function, 
where a double exponential is required to describe positronium decay. 

are plotted as photon counts vs. time interval between detection events in Figure 

2.3. 

The two photons that are detected by Irby are highly correlated, and there exists 

a single wave function that describes both of them together. As stated in the Intro-

duction, it was expected that Irby would see simultaneous detection of the two 

momentum correlated photons produced in the two-photon positron/electron anni­

hilation process when the source is midway between the detectors. Since this is not 

the case all of the time and the detection time difference at FWHM is very large 
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when compared to the time it takes light to traverse a 5mm sample, the correlated 

photons cannot generally be described using a delta function. There must be a 

wavefunction that can be used to find the probability of simultaneous detection. 

The rest of this thesis is concentrated on finding this wavefunction and using it to 

derive the probability of simultaneous detection. 



CHAPTER 3 

THE DIRAC EQUATION 

The purpose of using the Dirac Equation is to calculate the probability that a 

positron will annihilate with an electron to form two photons, as in Sakurai [10] . 

Sakurai uses conservation of energy, relativity and creation and destruction operators 

in constructing his field operator \]!. It is Lorentz covariant, conserves momentum 

as its basic premise and naturally describes the annihilation and creation of charged 

spin-1/2 particles. In the end, Sakurai calculates a lifetime for the positron/electron 

bound state. We continue by using his S- and M-matrix elements combined with 

the theory of spontaneous emission. But first . . .  Dirac! 

3 . 1  DERIVATION 

We begin with a derivation of the Dirac equation. In relativity, conservation of 

energy is described by 
( �2

2
) - p2 = (me? (3. 1 )  

In relativistic quantum mechanics the operator p = -ihV becomes cr · ( -ihV) 

where V equals ( ;x, ;Y, ;z) and cr is an operator introduced by Dirac to factor the 

p2 term. The operator form of E is E(op) = ihgt. The equation (3. 1 )  becomes 

(E(op) ) (E(op) ) -e
- - cr · p -e- + cr · p = (me? (3.2) 

Making substitutions forE and p and using the parameterization (x1 , x2 , x3,et = xa ) , 

equation (3. 1) becomes 

14 
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(3.3) 

Manipulation of this equation led Dirac to the famous Dirac Equation 

(��a��+ �c) \II = o (3.4) 

where 1 � with fL = 1 ,  2, 3, 4 are 4 x 4 matrices given by 

(3.5) 

The usual choice for the set of a� is the Pauli matrices. The free-particle (A� = 

(0, 0)) solution of the Dirac equation with p # 0 is 

(3.6) 

The two-by-two matrices a� must satisfy certain mathematical requirements (See 

appendix B) .  \II is explicitly defined as a Dirac spinor. 

W= (3. 7) 

Each '1/Ji is either positive or negative in energy. We now use the Dirac equation to 

find plane wave solutions for \II. This set of plane wave-solutions can then be used 

as components in a Fourier series to describe an event. 
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3. 2 PLANE WAVE SOLUTIONS 

The plane wave solutions used to construct appropriate Fourier series must be ortho­

normal and comprise a complete set. The solutions derived below satisfy these con­

ditions and will form the basis of the quantized Dirac field. This description of 

the quantized Dirac field will lead us towards a method of describing the physical 

event of positron/ electron pair annihilation. In order to describe interaction with 

photons, we must re-write ( CT • p) in the Hamiltonian with p -----+ p - eAIL/ c where 

AIL is the time-independent electromagnetic interaction potential. It is then assumed 

that \]i ( x, t) is an eigenfuction of in gt with eigenvalue E. In solving the Dirac equa­

tion for this potential, Wi(x, 0) = 1/Jie(-ip·x/n) are four component spinors with the 

1/J i being the time-independent portion, a four vector. To avoid confusion we point 

out that the 1/Ji are functions of a four vector in the sense that they are defined by 

space-time coordinates, and W(x, t) is a four vector in the sense that it is composed 

of 4 vectors. Once the Dirac equation has been evaluated for our potential AIL (see 

Appendix A) , our u(p) functions like in equation (3.6) are as follows: 



1 

0 

p3cj (E + mc2) 

(PI + ip2) cj ( E + mc2) 

0 

1 

(Pl - ip2) cj (E + mc2) 

-p3c/ (E + mc2) 

-p3c/ (E + mc2) 

- (Pl + ip2) cj (E + mc2) 

1 

0 

- (Pl + ip2) c/ (E + mc2) 

p3cj (E + mc2) 

0 

1 
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(3.8) 

(3 .9) 

If we note that the time evolution of a positron in the vector potential +eA11/ c is 

the same as that of an electron in a field described by -eA11/ c we see that the uCn) (p) 

solutions presented above describe ,  in order, a spin-up electron, a spin-down electron, 

a spin-up positron and a spin-down positron. These together form an orthonormal 

set and the law of conservation of charge holds true. These solutions taken at t = 0 

can be expanded in a Fourier series so that one may describe all possible states for 

an electron and a positron of a certain spin and momentum. They cannot , however, 

describe a system in which positrons and electrons are created and/or destroyed in 

finite number until we replace the Fourier coefficients with creation and destruction 
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operators. After adding the operators and completing the solution, we are left with 

the operator 

1 
4 r;;;;;; 

w(x, t) = vV � � v lEfb�)(t)u(r) (p)eip·x/n (3. 10) 

where r denotes collectively the sign of the energy (the sign of the charge on the 

particle) and the spin state of that particle. In this way, the four possibilities for 

r are a positron spin up or down or an electron spin up or down. It will be noted 

that after we took the time dependence out of the free field solutions (3.8) , the time 

dependence of w(x, t) arises out of the time dependent nature of the creation and 

destruction operators b�(r) ( t) and b�) ( t). By the Heisenberg equation of motion 

. . . 

b(r) = !_ [H b(r)] = =f!_b(r) lEI p n ' p n p 
bt(r) = j_ [H bt(r)] = ±j_b(r) lEI p n ' p n p forr= { 1 , 2 , 3 , 4} 

we see that 

b�)(t) = b�)(O)e=FiiEit/h 

b�(r) (t) = b�(r) (O)e±iiEit/n 

which enables us to write W ( x, t) as 

w(x, t) _1 " /ffrc2 (" b(r) (O)u(r) (p) exp [ ip. X - i lEI t l (3. 11) vV L.., lEI L.., p n n p r=l,2 
+ c�4 

b�(')(O)uH(p) exp [ ip� x 
+ i 1!1 tl ) . 
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The elements of (3 . 1 1) can be interpreted so that the sign of the energy denotes 

the species of particle, whether electron or positron. By doing this we further asso-

ciate the first and second parts of (3. 1 1) as Hermitian conjugates and make the 

following substitutions in the creation and destruction operators 

for r = 1 , 2 b�) = b�) u(r) (p) = u(s) (p) 

for r = 3, 4 b�� = d�) u(r) (-p) = v(s) (p) 

where d�) and db(s) satisfy the same anticommutation relations as b�) and bb(s) but 

are defined as for electrons instead of positrons. 

Our expressions for \I! and its conjugate \I! are finally 

,T• ( ) = _1_ � r;;;;;; (b(s) (s)( ) [ ip ·X_ i lEI tl dt(s) (s)( ) [-ip ·X i lEI tl) 
'±' x, t VV � y IEf P u p exp fi fi + P v p exp fi + fi 

(3. 12) 

'T'( ) = _1_ � �c2 (d(s)-(s) ( ) [ip. X 
- i lEI t l bt(s)-(s) ( ) r-ip . X i lEI t l) 

'±' x, t VV L IE I P v p exp fi fi + P u p exp fi + fi . 
p 

(3. 13) 

The above expression for \I!(x, t) is an evolution of the plane wave function char­

acterized by (p, r) , and is now a field operator, operating in the number space of 

electrons and positrons of momentum p and spin s existing at points ( x, t). The shift 

from the plane wave function to field operator is known as the second quantization. 

We will break down \I! and \I! into expressions which will prove to be convenient 

later. Separating the positive and negative frequency parts of \I! and \I! we can write 

them as 

nt.(+) = _1_ � � �nc2 b(s) (s)( ) [ip. X 
- i lEI tl 

'+' VV L L IE  I P u p exp fi fi p s=1,2 
(3. 14) 



which annihilates electrons, 

o!.(-) = _1_'"""''"""' �c2dt(s) (s)( ) [-ip. X i lEI tl 
'fl JV L L lEI P v P exp h + h V p s=1,2 

which creates positrons 

o/,(+) = _1_'"""' '"""' �c2 d(s)-(s)( ) [ip. X - i lEI tl 
'fl JV L L lE I  p v P exp h h p s=1,2 

which annihilates positrons and 

o!.(-) = _1_'"""' '"""' �c2 bt(s)-(s)( ) [-ip. X i lEI tl 
'fl JV L L lEI 

p u P exp h + h p s=1,2 
which creates electrons. 

3 . 2 . 1  INTERACTION HAMILTONIAN 
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(3. 15) 

(3. 16) 

(3. 17) 

Thus far we have been using SI units , but from this point on we will switch to the 

natural units where fi = c = 1 .  We assume that our problem is solvable through 

perturbation theory, so that the evolution of our state vector <P in the interaction 

picture is equal to the interaction Hamiltonian acting on that state, i .e. 

(3. 18) 

We begin finding a solution by defining an operator U(t, to) such that <P(t) = 

U(t, to)<P(to). It is apparent then that there exists the boundary condition U(to, to) = 

1 .  Equation (3 . 18) can then be written i gtu(t, to) = H1U(t, to)· If we combine this 

differential equation with the boundary condition, we get 

U(t, to) = 

(3. 19) 
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when solved iteratively. What is exciting about this solution is that each expression 

pertains to an outcome of higher order than the last , so that "1" represents no change 

in the system (i .e. , when the initial state <I>(to) is identical to the final state <I>(t)), 

the next expression represents a first-order change in the system etc. What is meant 

by 'first order change' cannot be defined until both the Hamiltonian and the state 

vectors (initial and final) are defined, which will be done for positron annihilation 

shortly. It will be noted, however, that this iterative solution proves to be the key 

to describing physical interactions that may result in many different outcomes. For 

example, it is known that positron-electron annihilation may result in the release 

of two photons (a second-order solution) or three photons (a third order solution) . 

There is also more than one possible second or third-order outcome, although the 

probabilities of these alternate solutions may be very small. In fact , the most useful 

thing about (3.19) is that by bracketing it with the initial and final states of interest 

and then squaring one obtains the probability of that transition. 

(3.20) 

Although U(t, to) has proven to be a very useful function, it is possible to 

encounter difficulties with its dependence on the time interval b.t = t- t0• When 

this interval is small enough (depending on the process) we might choose t to come 

before the process has finished and not get any useful information. To avoid this 

scenario we create a new operatorS such that S = U(oo, -oo) as in (3.21) below. 

S(oo, -oo) 

(3.21) 
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Although it is impossible for us to know what has happened and will happen to 

particles from the beginning of time to the end of it (if there is such a thing as a 

beginning and end of time) , our choice of infinities is intended to represent a time 

interval significant enough to encapsulate the relevant process in time so that the 

history of the initial state and the fate of the final state are irrelevant. 

We have been referring to the two-photon annihilation process as second order. 

The proof of this lies in the interaction Hamiltonian. The interaction Hamiltonian 

density can be derived from the Lagrangian density to be Hint = -ie'lir J.L \It AJ.L with 

AJ.L defined as the well-known quantized radiation field operator 

AJ.L(x, t) = ( Jv) 2::2:: c� [ ak,a(t)E�a)eikx + al,a(t)E�a)e-ikx] k a 
(3.22) 

in the Coulomb gauge where Jv vanishes under integration, k is the wave number, 

and E(a) indicates the polarization. The derivation of this operator can be found in 

almost any quantum mechanics textbook [?]. It is worthwhile to note that while x 

and t parameterize A, they do not define the operator space. Rather than operating 

in space and time, the quantized radiation field operator operates in number space 

via the creation and annihilation operators at and a. Thus this operator acts as a 

mechanism whereby we can create and/or destroy a photon of energy w, wave vector 

k and polarization a at position x and time t. 

For later purposes, we will write AJ.L(x, t) as the sum of the positive and negative 

frequency parts. 



A (x t) = A(+) + A(-) /L l  !L IL 

where 

A�+) = ( )v) 2:::::2::::: c�ak,a(t)E�a)eik-x annihilates a photon 
k a 

A �-) = ( )v) 2:::::2::::: c�al,a(t)E�a)e-ik-x creates a photon 
k a 

The interaction Hamiltonian is then 
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(3.23) 

Equation (3.23) appears attractively simple, but it is deceivingly complex . Now 

that W, W, and Au have been defined, their product in the interaction Hamiltonian 

results in eight possible combinations, and this is only when they appear in the first 

order expression in (3.21)! To see explicitly what outcomes are possible, we write 

down the arguments of the integrations of the first order of the Hamiltonian 

HI(tl) 

= -ie J W'Y IL wA!Ldx3 

= -ie J [ ( 1/;(+) + 1/;(-)) 'Y 11 ( 1/;(+) + 1/;(-)) (A�+) + A�-)) J dx3 

= -ie J [ ( 1/;(+)'Y111/J(+) + 1/;(+)'Y111/J(-) + 1/;(-)'Y111/J(+) + 1/;(-)'Y111/J(-)) (A�+) + A�-)) J dx3 

It is clear, after a little bit of trial and error, that for our choice of A11 the below 

transitions are possible and indeed are the only ones possible. Any other choices for 

initial or final states will result in either an invalid operation or the creation of the 

null vector. The arguments of bras and kets are as follows: e-, e+, photons. For the 

sake of clarity, only creation and annihilation operators will be written down, and 

other factors omitted. 



Transitio n 

1/J(+)I/k'l/J(+) A(+) 

1/J (+)1M 1/J( +)A (-) 

bra,operators,ket 

(O,O,n- 1ldbal1,1,n) 

(O,O,n+ 1ldbat l1,1,n) 

"1'(+)"'111"1'(-)A(+) (0 0 11 ddt IO 0 ) 'f' 'r'f' , ,n- a , ,n 

1/J (+)1M 1/J (-)A (-) ( 0, 0, n + 11 ddt at I 0, 0, n) 

1/J (-)1M 1/J (+)A ( +) ( 1 , 0, n - 11 b t ba 11 , 0, n) 

1/J (-)1M 1/J (+)A (-) ( 1' , 0, n + 1 , I b t' bat 11 , 0 , n) 

1/J(-) 1M 1/J(-) A(+) (1, 1, n- 11 bt dt a IO, 0, n) 

1/J (-)1M 1/J (-)A (-) ( 1 , 1 , n + 11 dt bat I 0, 0, n) 
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The first order equation as written above can, depending on which initial and final 

states are of interest , give the probabilities for eight possible transitions. It should 

be noted that notation for photon occupation number is different than that for par-

tides, for there may exist two photons of exactly the same state in a system whereas 

two identical electrons (or positrons) are forbidden. This difference has its roots in 

the commutation relations that define the relationship between creation and anni-

hilation operators. The commutation relations are as follows, with Or representing 

annihilation operators and ot representing creation operators in momentum-spin 

stater: 

{Or, 0:,} = 6rr' 

{Or, Or' } =  0 

{ 0�, o:,} = 0 

For photons the term in brackets is defined as {A, B} = AB-BA (the commutation 

relation) , and for the particles is {A, B} = AB+ BA (the anti-commutation relation) . 
These differences reflect the physical reality of the Fermionic nature of electrons and 

positrons, and the Bosonic nature of photons. 
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The second order element ( -i)2 I�oo dti t� HI (ti)HI(t2) dt2 which we will call 

S(2) has sixty-four elements which in different combination predict specific outcomes. 

If we substitute (3.23) for HI we get 

S(2) 
= ( -i)2 I�oo dti I�� HI (ti)HI(t2) dt2 

= ( -i)2 I d4xi hz>t1 d4x2Hint (x2) Hint (xi) 

= e2 I d4xi hz>t1 d4x2W (x2) rllW (x2) All (xi) W (xi)rvW (xi) Av (x2) 

= e2 I d4xi hz>tl d4x2 { 'lj;(+) (x2) + 'lj;(-) (x2)} r ll { 'lj;(+) (x2) + 'lj;(-) (x2)} All (xi) 

X { 'l/;(+) (xi)+ 'l/;(-) (xi)} "fv { 'l/;(+) (xi)+ 'l/;(-) (xi)} Av (x2) 

There are sixteen terms in this equation, and therefore sixteen possible transitions 

before you take into account the different variations possible after Au and Av are 

expanded (then the possibilities swell to sixty-four) , so I will not list them all. But 

once again, the probability of transition from one state to another may be found by 

bracketing this expression with appropriate initial and final states. In our case the 

final state is (<P1 J = (h , Lk J , the initial J<Pi ) = Je+,e- ) . Upon inserting these states, 

we see that only two of the sixty-four expressions survive. S(2) becomes S1i, and 

the initial and final photon states may be separated from the particle states because 

their respective operators do not interact. We can also interchange summation 

indices (which have been omitted here) in order that the two particle terms may 

look as similar as possible, but this must be accompanied by the addition of the 

step functions 8 ( tx - ty) and the recognition that our integration parameter now 

depends on whether tx follows ty or vice versa. After these changes are made, S(2) 

becomes 



S fi = ( -e)2 J d4xi J d4x2 (h, 1-kl AJL (xi) Av (x2) IO) (/' JL) a/3 bv)'Y0 

X [(01 '1/J�+) (xi) '1/J�-) (x2) '1/J�+) (xi) '1/Ji+) (x2) je+e-) 8 (ti- t2) 

- (O I '¢�+) (x2) '¢�-)(xi)'¢�+) (xi) '1/Ji+) (x2) je+ e-) e (t2- ti)] . 
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(3.24) 

This expression for S fi can be further simplified by inserting a complete set 
of states In) (nl between the second and third operators in the electron field 

. (+) -(-) -(+) (+) expressiOns as follows, where (O I '¢(3 (xi)'¢"� (x2) '1/Ja (xi) '¢8 (x2) le+e-) 
(+)-(-) -(+) (+) (O I '¢I '¢2 In) (nl '¢I '¢2 le+e-). We see that only the vacuum term contributes, 

leaving us with (O I '¢;+) '¢l-) IO) (O I '1/Ji+) '¢�+) le+e-). Similarly, (O I '¢;+)'1/Jl-)'l/Ji+) 'lj;�+) le+e-) = 

-(+) (-) -(+) (+) (O I '¢2 '¢I IO) (O I 'lj;I '¢2 le+e-). sfi has now become 

sfi = ( -e)2 J d4xi J d4x2 (lk, Lkl AJL (xi) Av (x2) IO) fu fv 

X [(ol '1/Ji+)'¢;-) IO ) (O I '1/Ji+)'¢�+) je+e-) e (ti- t2) 

- (O I '¢;+)'1/Ji-) IO ) (O I '1/Ji+)'¢�+) je+e-) e (t2- ti)] . 

(3.25) 

This turns out to be a very interesting and revealing expression. The first part 
states that two photons will be created, each at two different places and times xi 
and x2 (remembering of course that these are four-vectors), and that the photons 
will have wave vectors k and -k. The second part reads that if ti > t2, an electron 
is annihilated and another created at x2 (the earlier time). These events are followed 
by the annihilation of both a positron and an electron at xi. The third part reads 
exactly the same as the second, but with the exchange of h f-t t2, and XI f-t x2. The 
S-matrix element may be further simplified by substituting the proper expressions 
for'¢(+) '¢(+) into the term that annihilates the positron and original electron After 
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substitution of (3.16) and (3.14) into (3.25) we are left with 

s fi = ( -e)2 J d4xi J d4x2 (h, 1-kl Au (xi) Av (x2) IO) bu)a(J ( rv)ji8 (3.26) 

x [(OI1/J1+) (xi) 1/J�-) (x2) IO) (01 1/J�+) (xi) 1/J�+) (x2) Je+e-) ¢ (ti- t2) 

- (011/J�+) (x2) 1/J1-) (xi) IO) (011/J�+) (xi) 1/J�+) (x2) Je+e-) ¢ (t2- ti)] . 

The expression (011/J�+)?/J�+) le+e-) can be expanded to read [ �z;�+) (P+) e
iP+·x1 ] 

[ �u�s-) (p_) eip_·x2] which defines the annihilation of an electron at x1 and 
a positron at x2. We may also solve for \lk, Lkl Au (xi) Av (x2) IO). Since both 
Au and Av can create a photon with momenta k1 or k2 at XI or x2, the term 

Equation (3.26) now looks like 

(3.28) 

(3.29) 

The probability of the annihilation of an electron-positron pair via the creation of 
two momentum-correlated photons is expressed as the product of the plane wave 
solutions for the correlated photons (3.27) with an intermediate time ordered state 
(3.28) and the plane wave particle expressions for an electron and a positron (3.29). 

The intermediate states sandwiched between the vacuum states in (3.28) are new 
and describe what is happening in between xi and x2. The operator ¢is one when 
its argument is greater than one and zero otherwise. The expression then reads that 
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if ti > t2 a virtual electron propagates from x2 to xi, and if t2 > ti a virtual positron 
propagates from XI to x2. 

We can consider both scenarios (the propagation of a virtual electron from x2 
to x1 and the propagation of a virtual positron from xi to x2) simultaneously using 
the time ordering product T ( 1/J a ( x) 1/J f3 ( x') ) . In evaluating this product it is shown 
that regardless of whether t1 is later or earlier than t2, 

(OJ'l/J�+) (x2) 1/Jh-) (xi) JO) (3.30) 
-i 

J 
4 (-iry·p+ m)a{3 . , 

--3 d p 2 2 . exp [ zp · ( x - x ) ] . 
( 21r) p + m - ZE 

The meaning of this product is that we can consider what is happening between 
xi and x2 as either a virtual electron going forward in time from x2 to XI or an 
electron going backward in time from xi to x2. Whether the reader chooses to 
interpret virtual positrons and electrons or solely one kind of virtual particle going 
backwards or forwards in time is a matter of preference. What is important is that 
considering both situations together leaves us with (3.30) , which is Lorentz invariant 
and covariant in (x, Xo ) . 

Substituting (3.30) into (3.26) and rearranging we get 

So, for example, Sfi may describe the following scenario: an electron of positive spin 
is annihilated at xi creating a photon and a virtual electron in the same instant. 
The photon flies off with momentum ki, the virtual electron propagates to x2 where 



29 

kl 
k2 

Xl 

t X2 

P+ P-

Figure 3. 1: A positron (p+) and an electron (p-) moving at low speed are annihilated 
at x1 and x2. A virtual particle moves from one annihilation location to the other, 
represented by q. Two photons of k1 and k2 fly off along a line. 

it is annihilated at t2 along with a positron of negative spin. In that instant, a 
photon of momentum - k  is created at x2. The ordering of events is easily pictured 
using a Feynman diagram 3.1 Defining a covariant matrix element M1i (q) as 

M i (q) = ie2V/E(a1) [-ifq + m_] /E(a2)u {q +--+ -q} . J q2 + m2 _ 'Lc 
(3.32) 

Then the covariant matrix element describes the exchange of a virtual particle from 
points q to -q, used as dummy variables for x1 and x2 the space-time coordinates 
of the annihilation events. 
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Sakurai uses the S-matrix element to obtain the cross-section for pair annihilation 
in the center-of-mass coordinate system [10] 

Jrr
2 

O" = {3: for {3 + < < 1 

with ro = a/m where a = 1�7 is the fine structure constant and {3+ = IP+ I /m. 

This is used to calculate the lifetime of positronium (a bound e+ e- state) using the 
formula 

( )
- 1 1 

T = O"V+P 2 
where p = 1/ [ 1r ( 2aa) 3] is the square of the bound-state wave function at the origin, 
v+ is the electron/positron velocity (low compared to that of light). Taking the limit 
as v+ --* 0 Sakurai calculates 

2 - 10 T para-positronium = -5 - C:::: 1.25 X 10 sec. 
a m  

(3.33) 



CHAPTER 4 

CHANGING BASES 

Our wavefunction is a linear combination of two states. Sakurai describes them in 
terms of the physical objects involved: the first state is that of the positron/electron 
pair and the second state is the two photons. This description is useful when 
describing the various annihilation and creation processes, but in order to describe 
the entanglement of the two photons and the results obtained by Irby we will effect 
a change of basis. Instead of using the positions of annihilation we switch to center 
and relative coordinates. 

(4.1) 

Likewise instead of writing momentum separated as that of the electron (P- ) and 
that of the positron (P+) we describe momentum in terms of center and relative 
coordinates. This is very convenient because it allows us to easily describe a net 
momentum zero event (one where the positron and electron are moving at low and 
opposite velocities (3 + = (3 _ ,  which is an excellent approximation. 

(4.2) 

The third component to be affected by the change is the wave-vector k. 

Under these transformations the S-matrix (3.31) element of Sakurai is 
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s(2) = -i-1- __!!!__ __!!!__ _1 __ 1_ 12 (2,77/ E_ V E+ V 2wi V 2w2 V 

X J d4Xc J d4xr J d4qMfi (q) 
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(4.3) 

Sakurai uses an infinite volume approximation in which integration of ( 4.3) gives 

(4.4) 

Since ki · XI + k2 · X2 = kc · Xc + kr · Xr for the photons and P+ · XI + P- · X2 = 

Pc · Xc + Pr · Xr, for the particles, our operators and their Fourier transform properties 
remain unchanged. These vector additions may be visualized using Figure 4. 1. The 
linear superposition of states 'ljJ (x,t) now looks like 

(4.5) 
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�� ---------r�------� 

1------r-

Figure 4. 1 :  A visualization of the composition of the center of energy ( xc) and relative 
(xr) coordinates. The blue box represents the source. The kn kc, Pn and Pc are 
constructed similarly. 



CHAPTER 5 

THEORY OF SPONTANEOUS EMISSION 

For a system decaying from one state to another such as ours the state vector is 
a combination of the two states. Each state In) is preceded by a time-dependant 
coefficient Cn ( t) . 

Ca (t) Ia) + Cb (t) lb) 

Ca (t) I a) + Cb (t) lb) 

(5 . 1 )  

(5.2) 

Solving the Schrodinger equation of motion ��) = -� V l?.b (t)) where V is the 
interaction potential will yield a pair of coupled differential equations for Ca ( t) and 
cb ( t) , the time dependent coefficients. Adapting the Weisskopf-Wigner theory of 
spontaneous emission [ 1 1 ]  will allow us to solve for these time-dependent coefficients, 
and the coefficient of the state describing the correlated photons will contain the 
decay constant describing the double-exponential shape of Irby 's results (2.3) .  

Theories of spontaneous emission describe what happens when an atom in an 
excited state releases energy in the form of radiation and does so without the 
prompting of an external field. This absence of a prompting field means that the 
emitted photons are not subject to an harmonic field operating to drive the fre-
quency of the atom's radiance. We use spontaneous emission to describe the decay 
of a para-positronium "atom" into two momentum-correlated photons. The methods 
used in [ 1 2] and [ 1 1 ]  use the time-dependant Schrodinger equation to solve for the 
coefficients of the components of the wavefunction. We do not, but instead use the 
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function U (t , t') derived by Sakurai to describe the time evolution of the function 

1/J . 
At the time of annihilation it is the combination of properties of the particle pair 

that is of interest. We describe their pairing (positronium) using a single state vector 

1/J based on the observables momentum and energy as well as position. The photons 
produced by para-positronium decay are highly momentum and energy correlated 
so we describe them with a single ket. 

The time evolution of our wavefunction is 

1 1/J) = -iU (t, t') 11/J (t')) 
Our system begins in the state l 1s , ke) and evolves into Ike, kr) , satisfying the initial 
and final conditions eke (to) = 1 and Ckr ( t > > to) = 1 and of course I eke (to) 1 2 + 
lckr (t) l 2 = 1. We use the theory of spontaneous emission to obtain expressions for 
the coefficients. With U(2) = UP) 6 (ke - Pe) , and U(o) = U�o) 6 (ke - Pe) 

11/J (t)) = -U (t, t') 11/J (t')) 

1 1/J (t + /:).t)) = -U (t + /:).t, t') 1 1/J (t')) let t' = t 
11/J (t + f).t)) = - [u;o) (t + f:).t, t) + up) (t + f)., t) + up) (t + f)., t)] 11/J (t)) 

[ 1 1/J (t + f).t)) - u;o) (t + f:).t, t) 1 1/J (t))] 1 f:).t = - [up) (t + f:).t, t) + up) (t + f)., t)] 1 f:).t 1 1/J (t)) 
�� (t)) = - [uP) (t , t') + U$2) (t , t')J 11/J(t)) 

Ca (t) l 1s , ke)+I:kcb (t) Ike, kr) = - [up) (t, t') + up) (t, t')] Ca (t) l 1s , ke)+I:kcb (t) Ike, kr) 
To get the pair of coupled differential equations we multiply the above equation by 
bras from the left. Multiplying by (1s, ke l , we get 

Ca (t) -ica (t) (1s , ke l up) (t, t') l 1s , ke) - I:kcb (t) (1s , ke l u;2) (t, t') Ike, kr) 
. (2) Ca (t) I:kcb (t) (1s, ke l ur (t , t') Ike, kr) (5.3) 



Multiplying by (kc , kr / ,  we get the other equation 

The differential equation for the first coefficient is 

where (! /  U(2) (t , to) / i ) = uj7) .Writing out uj7) 

. (2) 
( ) 

auj7) (to , t) 
ufi to , t = 

at 

For times ( t - to) > > ( tc - tr) we can replace uj7) with sj:) and get 

. (2) as(2) (t t) 
( ) t� 0 ' ufi to , t = 

at 

Substituting ( 4.4) in the above equation 
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(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

we can see that the variable t is buried in the four-component delta function. We 
can exchange 21fl) (we - Ec) (the energy part) with T = t - t0 (time derivative unity 
because the energy will not change over time) and 63 (kc - Pc) (2n)3 /V with Jkc,Pc ' 

appropriate for discrete and well-defined momentum, which our photons certainly 
have. Our result for (5.8) is then 

Substituting this into (5.4) and (5.5) we get 



Ca (t) = c exp [( -iEe - f) (t to)] 
. (2) Cb (t) = -CU fi { exp [( -iEe - f) (t - to)] 

- exp [-iwe (t - to)] } (we - Ee + if)-1 
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(5.9) 

(5 . 1 0) 

The time to is the time of positron ejection from the radioactive decay. For times 
much greater than f-1 the first term of (5. 1 0) can be neglected, leaving Cb (t) = 
- exp [-iwe (t - t0) ] (we - Ee + if)-\ where S(2) is the S-matrix element describing 
two-photon annihilation. Then following the theory of Weisskopf-Wigner [ 1 1 ] , with 
w = 2 lkr l , and E = 2m (to first order in E) we get for the coefficient cb (t) = ckr (t) 

( ) 
_

A 
exp [-iw (t - to)] Ckr t -

W - E + if 

Where A is the normalization constant. We evaluate for A as in [8] and get 

( ) _ {8;r exp [-iw (t - to)] Ckr t - V VJf2 W - E + if 

(5. 1 1 ) 

This is the coefficient needed to describe the evolution of the two-photon radiation. 
The coefficient Ca (t) = eke (t) is essentially zero after a few decay time constants. 



CHAPTER 6 

DISCUSSION 

Now that we have found the time dependent coefficient describing the evolution 
of the wavefunction of the correlated photons, we will use this coefficient to find 
an expression describing the time difference in detection of the two photons. The 
mixture of states describing the relative dynamics is constructed using ckr (t) and 

(6. 1 )  

Strictly speaking this mixture should be weighted as in the 1 s  state, but since r > > 

a;;-1 the weights can be neglected, and we can treat (6. 1 )  as a pure state. Now we 
have a wave vector in the momentum basis. However the detection device of Irby 
measures position and arrival time. In order to describe these, we switch to space 
time coordinates to get the space-time wavefunction 'lj; (xr , t) .  

where 

l'l/Jr) = j d3x'lj; (xn t) lxr) . 

To switch from position to momentum coordinates we use lxr ) = eikr ·xr lkr) j (21r)3/2 

and then integrate over Xr and kr as in [8] to find 

1/J ( lx, l ,  t) � {f1:, l 
exp [- (iE + r) (t - to - � l:x, l) ] 
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(6.2a) 
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It is important that we specify that t > to , and we need to include in this statement 

that the times implicit in Xr are also greater than to . 

Irby tried to analyze his results in a paper published in 2003 (See Reference 

[13]) using the theory presented in the Einstein Podolsky Rosenthal paper of 1935 

[1 J .  This theory relies on wavefunction collapse to describe the entanglement of 

two particles. Once the property in which the particles are entangled (in our case, 

momentum) has been measured for one particle, the wavefunction of the other par­

ticle collapses into an eigenfunction of the density matrix. Irby's attempt was unsuc­

cessful largely because the wavefunctions he constructed could not describe the time 

difference in detection of the two photons. Because we have switched to center of 

energy and relative coordinates, the relative detection time is fairly easy to pull out, 

and we shall continue using the wavefunction collapse method. Like EPR and Irby 

we write (6.2a) as 
00 

'1/J ( lxr l , t) = 8 (71 - to) 8 (72 - to) J dxt5 ( lx< l - x) '1/J ( lx< l  + X, t) 
0 

where lxr l  = ( lx< l - x) and t5 ( lx< l - x )  is a position eigenvector with eigenvalue 

x. The step functions ensure that the photons are not released before the positron 

has been released at time t0 • We define 71 as the emission time of the first photon 

and 72 as the emission time of the second photon. The time t< is the time of 

the first photodetection, t< of the second. We integrate over x, which is still a 

four-dimensional space-time vector. 

The probability for coincident detection is , within the center of energy and rela-

tive coordinates, 

(6.3) 

Substituting (6.2a) into (6.3) and averaging over positron emission times we get 

(6.4) 
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where r is the rate of positron injection and IT1 - T2 1 is time interval separating 

detection events. The formula (6.4) gives the probability of coincident detection 

for the entangled photons released via the two-photon pathway of positron-electron 

annihilation. The exponential term is a product of a characteristic decay time r 

(positronium lifetime) and the time interval between detection events. Figure (6. 1 )  

is the data collected by Irby (and generously sent to us), fitted to a comparison of 

curves ( 6. 1 ) .  The curve that best fits both the peak and the tails is the exponential. 

Then the most probable result is P = 87r1;,1zv , when T1 - T2 = 0, which is the 

peak, and as the time difference increases the probability of that result decreases 

exponentially. 

We stated at the beginning of this thesis that our goal was to create an expression 

that accounts for the exponentially decaying count rates with respect to the size of 

the time difference between detection times. The expression (6.4) does so very neatly. 

The physics of it is this: averaging over the positron emission times indicates that 

we do not know the instant at which the positron is created. Also it is true that we 

do not know the instant of decay; it follows an exponential decay curve. This decay 

probability can be summed up as "The electron and positron most likely annihilate 

right away (corresponding to the sharp peak in detection of two photons arriving 

simultaneously). If the pair do not annihilate instantaneously, they are then most 

likely to decay in the next instant (corresponding to the two photons arriving a 

short time apart)" and so on such that the probability of the pair still existing 

decreases exponentially and the probability of detecting the two photons arriving 

a significant time apart has increased. The reason the time difference in photon 

detection reflects the probability curve of the annihilation event is because detection 

of the photon position is a consequence of causality and dependent on the occurrence 

of the annihilation. This is what we have built into equation (6.4) by using center 

of energy and relative coordinates, photon emission times that are dependent on 
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Sol id l ine (red): Doub le Expo ne nti a l  
Dashed l i ne (green): lo rentzian 
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Figure 6.1: Irby's raw data, showing various function fittings. The double expo­
nential is a better fit to the peak, and the tails follow the Lorentzian fitting. The 
standard deviation of the double exponential is aproximately 0.45, with FWHM of 
about 103ps. 
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positron emission timing and distance traveled to the detector, spontaneous emission 

theory and momentum correlation leading to wavefunction collapse. 

The time difference between detection of the two simultaneously created photons 

is the direct result of the decoherence of the wavepacket describing them. If the 

center of energy were not spread out over space, the fact that the photons are 

detected 120ps apart would have to mean that one photon was emitted 3cm closer 

to its detector than the other photon. However, Irby's source is so localized (to 

within 3-7mm) that the time interval between photon arrival times must be a result 

of some physical process that treats the photon wave packet as being spread out 

over an area. My theory is that if the energy of the photons is spread out over 

an area then it 's arrival at the detector will not register at the instant that the 

leading edge of the pulse arrives. The absorption of the photon's energy does not 

necessarily happen at the instant of the wavefront 's arrival, but rather according 

to a probability curve described by P(t) = 81T1;, 1 2v exp [-r IT1 - T2 1 ] . I would put 

forward that the decoherence (the spreading over space) out of the wavefunction 

occurs over the time it takes for the matter/ antimatter pair to annihilate. Thus 

over a series of measurements the detection time difference at FWHM is the lifetime 

of the positron/ electron pair. 

6.1 APPLICATION 

These results can be immediately applied to existing technologies, most notably 

time-of-flight positron emission tomography (TOF PET). PET is used to image 

tumors in a person's body by having the patient ingest a substance tagged with 

a radioactive element that releases positrons in its decay process. The substance, 

glucose for example, is taken into the tumor along with the radioactive element and 

the tumor becomes the source of gamma ray emissions [15] . 
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The PET detector is built as a long hollow tube of concentric detector rings 

into which the patient is inserted. When two detectors log near-simultaneous events 

(within the order of lOns) the event is attributed to two--photon annihilation and 

computer software constructs a line between the two detectors called the line of 

response (LOR). Many of these LOR are logged, and wherever they intersect is a 

likely source of radiation. Time-of-flight PET is a refinement of PET based on the 

time interval between detection events. The time interval between detection events 

is used to calculate where along the LOR the photons originated [16] (see Figure 6.2) . 

Irby's experiment and our research is significant to TOF PET because it shows 

that there is a significant uncertainty in the location of the radiative source, or the 

tumor. An uncertainty of at least 120ps (or 3.6cm in distance) would be a reasonable 

margin of error, although there are still a significant number of photon pairs that 

are detected at greater time intervals than this. 

6.2 FUTURE EXPERIMENTATION 

The theoretical results obtained in this thesis paper could be corroborated by further 

experimentation. In order to test the theory that the detection time interval is a 

result of decoherence stemming from the decay process, other experiments must be 

devised to rule out other possibilities. For example, Irby's experiment occurs within 

high vacuum and are thus limited to the physical constraints of a high vacuum 

apparatus. The detectors are never more than lOcm apart. If, for example, the 

decoherence of the photon wavepacket occurs as a consequence of propagation over 

distance and not as proposed in this thesis, an experiment where the detectors are a 

larger distance apart would yield an exaggerated curve and larger FWHM. It must 
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(a) (h) 

Figure 6.2 : A diagram illustrating the detection of one pair of momentum correlated 
photons originating from the two-photon positron/electron annihilation process. 
Image (a) illustrates that in PET, location information is distributed equally along 
the LOR. Image (b) illustrates that in TOF PET, source location information is 
localized to a segment of the LOR [ 1 6] .  
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be noted, however, that if this is the case Irby's results of 120ps (the lifetime of 

positronium) would be an enormous coincidence. 

Another aspect of the theory that could be tested with a larger experimental 

set-up are the effects spatial localization perpendicular to the direction of propaga­

tion. The further apart the detectors are, the lesser the angle their surfaces subtend 

from the source, thus increasing our knowledge of their location. According to the 

Heisenberg uncertainty principle as it applies to the relationship between location 

and momentum /::,.x/::,.p ? fi/2. Since the photons are so strongly momentum corre­

lated, it would be interesting to see an analysis of the results of Irbys experiment and 

identical set-ups at further distances from the viewpoint of the relationship between 

highly localized position and correlated momentum. 



7.1 A .  PLANE WAVE SOLUTION 

CHAPTER 7 

APPENDICES 

In order to find plane wave solutions to the Dirac equation, we must re-write the 

Hamiltonian (a · p) as p ---t p - e�JL where A JL  is the time-independent electro­

magnetic interaction potential. It is then assumed that 'lf(x, t) is an eigenfuction of 

ingt with eigenvalue E. Thus 

A(x, t) = (A, iA o) 

and 

'lf(x ,  t) = w(x, O ) e-iEt/n . 

After making these substitutions in (?? ) ,  the equation becomes 

( -in-/!- + eAo 
OXo C 

(T • (in v + e�JL ) 

- a · (inV+e�,. ) ) ( '¢A )  
= - me 

( '¢A )  

inL + eAo nl. nt. OX0 c 'f' B 'f/ B 

This matrix reduces to the following two equations: 
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(7.1) 

(7.2) 

(7.3) 

(7.4) 
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(7.5) 

Equations (7.4) and (7.5) then simplify to 

( . eAtt 1 ( 2 
a- · 'tn"\1--)'1/Js = - -me + E - eAo)'I/JA e e 

(7.6) 

(7.7) 

The free-particle (A = ( 0 ,  0)) solution of the Dirac equation with p i= 0 is 

'1/J 
= 
( '1/JA ) 

= 
( UA (P) ) exp (ip·� - i�t) 

'1/Js us (P) 
(7.8) 

Where uA(P) and us (P) are four component spinors independent of x and t. If we 

substitute (7.8) into equations (7.6) and (7. 7) we get 

a- · (lnV)us (p) exp lp·- - 2- = - (-me + E)uA (p) exp 2p ·- - 2- (7 9) 
. ( . X . Et) 1 2 ( . X . Et) 

n n e n n · 

(7.10) 

and 

a- · (inV)us (p) exp ip·- - i- = - ( -me + E)uA (p) exp ip·- - i-
( x Et) 1 2 ( x Et) 

n n e n n 
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(7.11) 

After some investigation, we find that there exist two appropriate solutions for both 

uA (P) and uB(p). Solutions uC1) (p) and uC2) (p) have E = V I P I2 c2 + m2c4 > 0, and 

are associated withuA(p). Solutions uC3) (p) and uC4) (p) have E = V IP I 2 c2 + m2c4 < 

0, and are associated withuB(P ). 

7.2 B .  SIGMA MATRICES 

There are many possibilities for our choices of O" w In order to satisfy the requirements 

in using a Dirac spin or, the gamma matrices need only satisfy the following four 

requirements: that they be traceless, of even dimension greater than 2 and have 

eigenvalues of ±1. By virtue of these characteristics of the O" J M the gamma matrices 

satisfy the anticommutation relations { ry J-L , ry v} = 26 J-L,v , and are each Hermitian. 

These relationships are important because with them one may derrive the differential 

law of current conservation, and show that the Dirac equation is valid independent of 

the choice of representation. The choice of the placement and sign of the imaginary 

numbers in the ry J-L matrices determines the form of the 4-vector spinor. We make the 

easy choice for the O" J-L of (3.5) and choose the standard form of the Pauli matrices, 

which satisfy the four requirements. This choice of ry J-L corresponds to a four-vector 

of the form W = [w ,i'lio] · 

The 2 x 2 matrices O" J-L :  

( 1 0 ) 
' 0"4 = 

0 -1 
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