Assimilation of Basic Xenoliths within Centre 3 Syenites

 of the Coldwell Alkaline Complex, Ontarioby

Derek N Nicol (c)

A Thesis submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

Lakehead University
Thunder Bay, Ontario
Canada

April, 1990

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611818
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABGTRACT

This thesis describes the occurence, mineralogy and assimilation of basic zenoliths hosted by Centre 3 syenites. Field work was carried out in two locations, one in the vicinity of Neys/Ashburton and the other a large megasenolith hosted by Centre 1 syenites in the vicinity of Walf Camp Lake

Least altered aenoliths consist of plagioclase, pyrazene amohibale, biotite, apatite and apaque phases. With increasing assimilation this Changes to a combination of plagioclase, amphibole, biotite, apatite, opaque phases, alkali feldspar, calcite, fluorite, sphene, zircon, REE phases and quartz.

Plagioclase is replaced by alkali feldspar in the form of porphyroblasts and crystals in the groundmass. Plagioclase is also decalcified to more albitic compositions along with recrystallization. Amphitole compositions extend over the same range of amphibole compositions in the host ferro-edenite syenite. The general effect of aenalith assimilation is the equilibrium of a zenolith's mineral assemblage to that of the host syenite. Assimilation processes seen at wolf Camp Lake are similiar to those seen
at Neys/ashturton.
Bulk rock data along with mineralogical compositional variation in clinopyroxenes, suggest a tholeitic basalt parentage for zenoliths in both areas. Cr and fi contents indicate an evolved nature to the parent volcanics. Data also suggest the possible existence of a second undersaturated type of volcamic xenolith present at Neys/ashburton. Parental basalts are postulated to be coeval volcanics related to the formation of the Coldwell Complex.

Modelling by mass balance mixing calculations of contamination of host syenites indicates that contaminated ferro-edenite syenites are the result of direct assimilation of volcanic zenoliths by ferro-edenite syenite Quartz syenites are found to be unsuitable parents to contaminated ferro-edenite syenites

ACKNDWLEDTEMENTG

First of all, Dr. R.H. Mitehell. He is sincerely thonked for his helpiulness and guidance in my effarts to produce this thesis. Patience in revising multiple copies of chapters and correcting terrible English quickly and efficiently are also gratefully acknowledged.

I also thank Dr. J. Gittens and Dr. D. Gorman of the University of Toronto for inspiring me during undergriaduate studies to continue studies in igneous petrology and mineralogy. without them I wauld not have made it this far.

Thanks to all the technicians involued in the preparation of the thesis.
A. Hammond and R. Viitalis for preparing countless SEM disce and thin sections. S. Moogk for assistince with computer work. Al Mockenzie for invaluable assistance on the scanning electron micrascope and for showing me some unbelievable duck shooting. S. Millar, geology deportment secretary, for always hoving a cherful hello.

Fellow geology grads Eut Spark, Richard Mchaphlin, Geoffery Abdallah. Earb Kowalski, David Nical, Earb Gegmayer and Mark Pummala for providing a great social atmosphere and interesting conversations, not always about gealogy.

Lastly, but not lesst of all, my fomby and Christina Teubner for
encouragement and support through 2 years away from home and some difficult times.

A special acknowledgement goes to Ellen Sigdock, my loving girliriend and companion. Thanks for being there with me through all the good and bad times we've shared together May we have many more with each other. Also thanks for typing the manuscript and saving me from what would be a horrific task.

TAELE DF CONTENTS

Abstract i
Acknowledqements iii
List of Figures viii
List of Tiables xi
List of Plates xii
EHAPTER DNE INTROOLICTIDN
1.1 Regional Geologic Setting
1.2 General Geology 2
1.3 Litholopies 3
1.4 Present Study: Aseimilation of Easic Kenoliths 1.4.1 Doject of Study 5
1.4.2 Field Investigation 6
CHAPTER TWO YENOLITHS OCCURRING IN CENTRE 3 AND CENTRE 1 SYENTES
2.1 Macroscopic Observations
2.1.1 Neys/ashburton - Centre 3 7
2.1.2 Dther Xenoliths 10
2.1 .3 Wolf Camp Lake - Centre 1 10
2.2 Petrography of the Kenoliths
2.2 .1 Neys/Ashburton 12
2.2 .2 molf Camp Like 17
2.5 Summary of Neys/Asinburton and Wolf Camp Lake 20
CHAPTER THREE CDMPOGITIONAL VARIATION DF AMPHIGOLE PVRGMENE AND FELDGPAR
3.1 introduction 22
3.2 Amphibole Eompositional Variation 22
3.2 .1 Neys/ashburton 2.5
3.2 .2 wolf Camp Lake 25
3.2 .3 Discussion of Amphibole Eompositionil Variation 25
3.3 Furoxene Compusitional Variation 26
3.3 .1 Neys/ashourton 27
3.3 wolf Camp Lake 28
333 Discussion of Pyrasene Compositional Variation 29
3.4 Feldspar Compositional Variation
3.4 .1 Neys/ashburton 32
3.42 Wolf Camp Lake 33
3.43 Summary of Feldspar Composition. 34
CHAPTER FOUR WHOLE ROCK EHEMISTRY OF EASIC MEMOLITHS
4.1 introduction 36
4.2 Neys/Ashburton
42.1 Major Elements 37
4.2.2 Minor Elements 40
4.2.3 Comparison to other Keweenawan Wolcanics 40
4.3 Wolf Camp Lake
4.3.1 Major Elements 42
4.3.2 Minor Elements 43
4.3.3 Eomparison to other Keweenewan volcanics 44
4.4 Comparison of wolf Camp Lake and Neygs/Ashburton. 45
CHAPTER FIVE RELATIONGHIP BETWEEN KENDLITHS AND HOST SYENITES
5.1 introduction 47
5.2 Kenolith Compositional Changes 47
5.3 Origin of Contaminated Ferro-edenite Syenite 50
5.4 Principal Component Analysis 53
SUMMARY 56
REFERENCES 57

APPENDICES

1 Methods of Microprobe Anslysis
2 Amphibole Compositions for Neys/Ashburton xenoliths
3 Amphibole Compositions for wolf Camp Lake meqaxenolith
4 Amphibole Compositions for Wolf Camp Lake host syenites
5 Pyroxene Compositions for Meys/Ashburton wemoliths

5 Pyrowene Compositions for wolf Camp Lake megasenolith 7 Pyrozene Compositions for tolf Camo Lake host syenites 6 Feldspar Compositions for Neys/Ashburton zenoliths
9 Feldspar Compositions for wolf Camp Lake megaxenolith

LIST DF FIGURES

CHAPTER DNE

1.1 Tectonic setting of the Lake Superior Basin and location of the Coldwell Alkaline Complex.
1.2 Geology of the Coldwell Alkaline Complex.

CHAPTER TWD

2.1 Dutcrop maps of the Neys/Ashburton study area showing distribution of rock types and xenoliths.
2.2 Wolf Camp Lake Study area.

CHAPTER THREE

3.1 Neys/ashburton amphibole compositions.
3.2 Neys/Ashburton amphibole compositions.
3.3 Neys/Ashburton amphibole compositions.
3.4 Wolf Camp Lake amphibole compositions.
3.5 Pyroxene compositions for C2358 and C2490, Neys/Ashburton.
3.6 Pyroxene compositions for [2498, Neys/Ashburton.
3.7 Pyroxene compositions for ferro-edenite syenite and xenoliths reported by Lukosius-Sanders(1988).
3.8 Pyroxene compositions for contaminated ferro-edenite syenite. ferro-edenite syenite and xenoliths reported by Lukosius-Sanders(1988)
3.9 Pyroxene compositions for C2531A, Wolf Camp Lake.
3.10 Pyroxene compositions for C3122, Wolf Camp Lake.
3.11 Pyroxere compositions for C3123, Wolf Camp Lake.
3.12 Pyroxene compositions for C3120, Wolf Camp Lske.
3.13 Pyroxene compositions for C2515 and C2516, Wolf Camp Lake.
3.14 Pyroxene compositions for C2531A, Wolf Camp Lake.
3.15 Characterization of magmatic parentage for Neys/ashburton xenoliths from clinopyroxene compositions.
3.16 Characterization of magmatic parentage for Wolf Camp Lake megasenolith from clinopyroxene compositions.
3.17 Plagioclase compositions for C2358, Neys/Ashburton.
3.18 Plagioclase compositions for C2510, Neys/Ashburton.
3.19 Plagioclase compositions for C2498, Neys/Ashburton.
3.20 Plagioclase compositions for C2331, Neys/ashburton.
3.21 Plagioclase compositions for C2490, Neys/Ashburton.
3.22 Plagioclase compositions for C2340, Neys/Ashburton.
3.23 Feldspars from host syenites Neys/Ashburton.
3.24 Plagioclase compositions for C3120, Wolf Camp Lake.
3.25 Plagioclase compositions for C3123, Wolf Camp Lake.
3.26 Plagioclase compositions for C3125, Wolf Camp Lake.
3.27 Plagioclase compositions for C2531A, Wolf Camp Lake.

CHAPTER FOUR

4.1 Variation diagrams for Neys/Ashburton wenoliths.
4.2 Streckeisen-LeMaitre rock classification plot for Meys/Ashburton xenoliths.
4.3 Variation diagrams for Wolf Camp Lake megazenolith samples.
4.4 Streckeisen-LeMaitre rock classification plot for Woli Camp Lake megaxenolith samples.
4.5 AFM diagram for Neys/Ashburton and wiolf Camp Lake megasenolith.

CHAPTER FIVE

5.1 Modelling compositional changes in zenoliths with Michipicoten Island volcanic as parent.
5.2 Modelling compositional changes in xenoliths with Michipicoten Island volcanic as parent.
5.4 Modelling compositional changes in xenoliths with Keweenawan Reference suite as parent.
5.5 Modelling compositional changes in xenoliths with Keweenawan Reference suite as parent.
5.6 Mass balance mixing calculations using addition of Michipicoten Island volcanic to ferro-edenite syenite.
5.7 Mass balance mixing calculations using addition of Michipicoten Island volcanic to ferro-edenite syenite.
5.8 Mass balance mixing calculations using addition of Michipicoten Island yolcanic to ferro-edenite syenite.
5.9 Mass balance mixing calculations using addition of Keweenawan volcanic to ferro-edenite syenite.
5.10 Mass balance mixing calculations using addition of Keweenswan volcanic to ferro-edenite syenite.
5.11 Mass balance mixing calculations using addition of Keweenawan volcanic to ferro-edenite syenite.
5.12 Mass balance mixing calculations using addition of Neys/ashburton senolith to ferro-edenite syenite.
5.13 Mass balance mixing calculations using addition of Neys/Ashburton renolith to ferro-edenite syenite.
5.14 Mass balance mixing calculations using addition of Neys/Ashburton xenolith to ferro-edenite syenite.
5.15 Mass balance mixing calculations using addition of more assimilated Neys/Ashburton xenolith to ferro-edenite syenite.
5.16 Mass balance mixing calculations modelling quartz syenite as parent to contaminated ferro-edenite syenite.
5.17 Mass balance mixing calculations modelling quartz syenite as parent to contaminated ferro-edenite syenite.
5.18 Harker diagram for Neys/ashburton xenoliths, ferro-edenite syenite and contaminated ferro-edenite syenite.
5.19 Principal Components Analysis scatterplot.
5.20 Principal Components Analysis scatterplot.

LIST DF TABLES

CHAPTER FDUR

4.1 Whole Rock Analyses and CIPW Norms for Neys/Ashburton Xenoliths
4.2 Minor Element Compositions for Neys/Ashburton Xenoliths
4.3 Comparison Neys/Ashburton Xenoliths to other Keweenawan Volcanics
4.4 Whole Rock Analyses and CIPW Norms for Wolf Camp Lake Megaxenolith
4.5 Minor Element Compositions for Wolf Camp Lake Megasenolith
4.6 Comparison of Wolf Camp Lake Megasenolith to other Keweenawan Volcanics

CHAPTER FIVE

5.1 Principal Components Analysis for Ferro-edenite Syenite, Contaminated Ferro-edenite Syenite and genoliths from Neys/Ashburton

CHAPTER TWO

2.1 Xenolith-rich zone adjacent to the Little Pic River.
2.2 Xenolith-rich zone of Ashburton Lookout.
2.3 Xenoliths within contaminated ferro-edenite syenite.
2.4 Range in size and shape of the xenoliths.
2.5 Host syenite/zenolith contacts.
2.6 Relict plagioclase phenocrysts in least altered Neys/ashburton renoliths.
2.7 Relict clinopyroxene phenocrysts in least altered Neys/Ashburton xenolith.
2.8 overgrowth of amphibole on relict clinopyroxene phenocryst.
2.9 Texture of least altered Neys/Ashburton xenolith.
2.10 SEM photo of opaque mass.
2.11 Coronal overgrowth of alkali feldspar on relict plagioclase phenocryst.
2.12 Alkali feldspar overgrowth on relict plagioclase phenocryst.
2.13 Alkali feldspar porphyroblastic growth in Neys/Ashburton Xenolith.
2.14 Detail of biotite ovoid.
2.15 Large tiotite ovoid.
2.16 Beginning of ovoid development.
2.17 SEM photo of alkali feldspar replacement of plagioclase.
2.16 SEM photo of alkali feldspar replacement of plagioclase.
2.19 Replacement alkali feldspar with high barium content.
2.20 Recystallization of Neys/Ashburton renolith due to assimilation.
2.21 SEM photo of zircon growth within xenoliths due to increased assimilation.
2.22 Ghosting of a xenolith.
2.23 Texture of unaltered wolf Camp Lake xenolith.
2.24 Recrystallization of Wolf Camp Lake senolith due to assimilation effects.
2.25 Recrystallized vesicle in wolf Camp Lake xenolith.
2.26 vesicle in highly assimilated Wolf Camp Lake xenolth.

Chapter 1

Introduction

1.1 Regional Geologic Setting

Located approximately 250 km east of Thunder Bay, Ontario, the Coldwell
Alkaline Complex is the largest of its kind in North America and represents a manifestation of late Precambrian Keweenawan igneous activity Mitchell and Platt, 1982). The complex is approximately circular in plan with a diameter of about 25 km . Figure 1.1 shows the location of the Coldwell Complex with respect to the major structural and tectonic features of the Lake Superior Basin.

The Coldwell Alkaline Complex intrudes an east-west trending greenstone belt within the Superior Province of the Candian Shield. This greenstone belt is part of the Schreiber-white Lake Archean metavolcamic and metasediment terrain and consists of mafic to felsic volcanics and greywackes which are all regionally metamorphosed to greenschist and amphibolite grade. A 2 km wide contact metamorphic aureole surrounds the complex. A maximum grade of pyroxene hornfels facies is reached adjacent to the contact (Walker, 1967). The complex as a whole is the most southerly of a north-south trending group of contemperaneous alkaline

Figure 1.1 Tectonic zetting of the Lake Superior Easin and locat ion of the Coldwell Alkaline Complex.

intrusions (Prairie Lake, Killala Lake, Chipman Lake) (Mitchell and Platt, 1962).

Platt and Mitchell (1962) using a seventeen point Rb-Sr isochron, reported an age of $1044.5 \pm 6.2 \mathrm{Ma}$, placing the complex as Neohelikian in aqe. This age indicates that the Coldwell Complex was emplaced after the bulk of the Keweenawan igneous activity found in the Lake Superior Basin during the Late Precambrian.

1.2 General Geology

A summary of the geology of the complex as presented by Mitchell and Platt (1962) is shown in Figure 1.2.

A significant positive gravity anomaly over the complex suggests the infrastructure of the complex is composed of mafic rocks. Mitchell et al (19a3) interpret the gravity study to suggest that the complex consists of a cap of felsic rocks, $3-5 \mathrm{~km}$ thick, overlying a differentiated besic intrusion consisting of a gabbro layer of peridotite and/or pyroxenite. This supports the hypothesis that at least some of the Coldwell Complex rocks are the result of the differentiation of a basic parent.

The structure of the complex is as yet poorly understood. Mitchell and

Platt (1982) propose that the original form of the intrusion has been obscured by block faulting and that several periods of magmatism were involved in its emplacement. Intrusion of magma is postulated to be related to cauldron subsidence, thereby giving the roughly circular dimensions to the body. Block faulting, breccia zones and metisomatism in the western portions of the intrusion are believed to represent an area close to the roof, whereas the absence of these features in the eastern portions indicate a deeper structural level. Many volcanic xenoliths in the central portions of the intrusion are thought to be remnants of basaltic cap rock lavas (Mitchell and Platt, 1982).

1.3 Lithologies

The Coldwell Alkaline Complex is unusual as it contains rocks of undersaturated, saturated and oversaturated character. Mitchell and Platt (i978) recognize three distinct centres of igneous activity each having a Characteristic differentiation trend. Each magmatic centre is the expression of a cauldron subsidence event. The centres are, in order of intrusion;

Centre 1: saturated alkaline rocks with peralkaline residua, Centre 2: undersaturated alkaline rocks and,

Centre 3: Alkaline rocks with oversaturated residua.

Rocks of Centre 1 are the oldest in the Complex and consist of gabbro and ferro-augite syenite. The gabbro forms the border of the intrusion and has intruded the ferro-augite syenite. The petrological relationship between these two rock types is not known (Mitchell and Platt, 1978). The magma that produced the ferro-augite syenites differentiated towards extreme iron enrichment with peralkaline oversaturated residua. This has led to the formation in these rocks of the characteristic minerals; fayblite, aenigmatite, ferro-augite and ferro-richterite (Mitchell and Platt, 1978).

Centre 2 rocks consist of the earliest-formed nepheline-bearing biotite gabbro. These are followed by the intrusion of nepheline syenites which are interpreted by Mitchell and Platt (1982) as being formed by fractional crystallization of an alkali basalt parent. Associated with the rocks of Centre 2 is a swarm of lamprophyre and analoite tinquaite dikes

The last episode of magmatic activity, Centre 3 , consists of siturated and oversoturated syenites, and it is these rocks with which this thesis is mainly concerned. They are confined to the western half of the intrusion and intrude all earlier rocks. Xenoliths of comagmatic volcanics, country rock and other Centres are commonly found. A previous study by

Lukosius-Sanders (1986) has identified four main rock types in Centre 3 based upon their petrographic and mineralogical characteristics. All are alkali feldspar syenites, that are distinguished on the basis of the nature of the amphibole present. These are; magnesiohornblende syenite, ferro-edenite syenite, contaminated ferro-edenite syenite and quartz syenite. Contacts between the varieties may be sharp, gradational or undefined and the many small injections of megma have led to complex inter-relationships between all four rock types. Also present in Centre 3 are xenolith-rich areas consisting of many basaltic senoliths in various stages of digestion, within a matrix of contaminated ferro-edenite syenite. A complete spectrum of contaminated rocks exist from uncontaminated ferro-edenite syenite through to highly contaminated ferro-edenite syenite. Study of the contamination, or assimilation, as well as determining the nature of the xenoliths is the primary objective of this thesis.

1.4 Present Study: Assimilation of Basic Xenoliths

1.4.1 Doject of Study

The object of the present study is to examine zenoliths incorporated within the syenites of Centre 3 , in the vicinity of Neys Lookout, in order to determine the nature of the assimilation process and the effects of
aseimilation on the host syenite. Methods employed include examination of samples in thin section by petrographic and scanning electron microscopy, together with whole rock anolysis of xenoliths, contaminated syenites and uncontamingted syenites.

A large brecciated block of basaltic rock measuring approximately 2 km by 3 km occuring in the vicinity of wolf Camp Lake was also examined. Host rocks to this megasenolith belong to Centre 1 . The composition and relationship to the host syenites were also investigated to determine if the processes of assimilation were similiar to those occurring in Centre 3. An attempt to determine if this xenolith is relited to those occurring in Centre 3 syenites is also made.

1.4.2 Field Investigation

Detailed mapping of outcrops exposed along Trans Canada Highway* 17 in the vicinity of Neys Lookout were carried out to determine relationships between the volcanic xenoliths and the contaminated syenites. Detailed sampling was undertaken for further study in the laboratory.

Traverses in the wolf Camp Lake area were made to determine the size and boundaries of the volcanic block and samples taken to determine the composition and effects, if any, of its incorporation in Centre 1 syenites.

Chapter Two

Kenoliths occurring in Centre 1 and Centre 3 syenites

2.1 Macroscopic Observations

2.1.1 Neys/ashburton - Centre 3

Wenoliths of country rock hormfels and other Coldwell Comples rocks are found in syenites of Centre 3, but by far the most common senoliths found in the Neys/Ashburton study area are of volcanic origin. These were previously identified as oligoclase basalt, and Mitchell and Platt (1978, 1982) suggested that they represent a suite of coeval alkaline volcanics related to the formation of the coldwell Comples and possibly were cap rocks to the intrusion. Figures 2.1A through 2.1. are a series of outcrop maps of the Neys/ashburton study ares showing the distribution of the xenolith tupes.

The volcanic zenoliths have a wide range of distribution being found also in the Western Contact Zone of the Complex (Jago, 1900) and on Pic Island (Lukosius-Sanders, 1988). The xenoliths are characteristically found only in ferro-edenite syenite and its contaminated variants in all of these areas. Inclusion of the kenoliths into the ferro-edenite syenite has led to its contamination and formation of an apparently large variety of syenite types.

The main occurence of the volcanic senoliths is in the form of

FIGURE 2.1 LOCATION OF OUTCROPS NEYS/ASHBURTON STUDY AREA

$$
E \cdots W
$$

fes-ferroedenite syenite
cfes-contaminated ferroedenite syenite
Δ volcanic xenolith

FIGURE 2.1A

figure 2.1B

FIGURE 2.1C

ys Lookout parking
entrance

$3 \quad 10 \mathrm{~m}$
FIGURE 2.1F
FIGURE 2.1G

FIGURE 2.1 H

FIGURE 2.1 J

Plate 2.1 Xenolith-rich zone adjacent to the Little Pic River. Neys/Ashburton study ares.

Plate 2.2 Kenolith-rich zone located at Ashburton Lookout, Neys/Ashburton study area.

zenolith-rich areas described as breccias by Lukosius-Sanders (1960). Two such xenolith-rich zones are located in the Neys/ashburton study area, one adjacent to the Little Fic River (figure 2.1 A, Flate 2.1), the other at the Ashburton Lookout (figure 2.1., Plate 2.2). Lukosius-Sanders (198B) has identified a similiar zone on Pic Island.

Kenoliths are also found in highly-contaminated purplish ferro-edenite syenite which occurs as large masses brecciated by the intrusion of later bodies of uncontaminated ferro-edenite syenite (figure $2.1 \mathrm{E}-\mathrm{E}$, Plate 2.3)

The volcanic senoliths are fine grained and holocrystalline ranging from aphanitic to phanerocrystalline depending on the degree of assimilation that has occurred. They are dark grey-to-black in colour, with the more resorbed specimens being less dark in colour. A wide range of sizes and shapes are seen in outcrop (Plate 2.4). The size ranges from a few millmetres to ower 1 metre in diameter, and shape ranges from angular to rounded. As assimilation of any one xenolith progresees the degree of roundness increases as does grain size. Common to outcrops of zenolith-rich areas is the occurrence of a mixture of xenoliths in various stapes of assimilation. Assimilation varies from nil to near complete digestion, resulting in the formotion of ghost zenoliths in which it is possible only to see the remnant out line of the ariginal clast. Such bodies are delineated by a greater

Plate 2.3 Xenoliths within highly contaminated ferro-edenite syenite. Xenoliths display development of biotite ovoids (dark spots) and porphyroblastic alkali feldspar growth (white spots).

Plate 2.4 Wide range of size and shape to volcanic xenoliths in Little Pic River xenolith-rich zone. Xenoliths are also brecciated by host syenite penetrating along fractures.

concentration of mafics in the host ferro-edenite syenite than is normally found. Unaffected xenoliths and ghast zenoliths are troken up by syenite magma that has penetrated along fractures (Plate 2.4)

Development af a porphyroblastic texture occurs concurrent with inctease in grain size with progressing assimilation. This results from the formation of alkali feldspar porphyroblasts and biotite ovoids. Alkali feldspar porphyroblasts resch upto 5 mm in size and are hematized. Biotite gyoids can contribute upto 10 volume of a kenolith. The ovoids consist of biotite and amphitole and give the xenolithe a spotty, mottled appearance On exposed surfaces preferential weathering of the ovoids occurs, resulting in the formation of a pitted surface. Xenoliths that appear to be unaffected by assimilation contain few ovoids, whereas thase that are highly-altered contain many. Dvoids occur randomly within a zenolith and may stradde xenolith/host contocts. The presence of the porphyroblastic texture and ovoid development has previously been reparted from the western Contact Zone syenites by Jago (1980).
genolith/host contacts vary with the deqree of assimilation. Those seemingly showing no assimilation have sharp contacts, wheregs those which have been extensively assimilated exhibit contacts that are embayed. rounded, diffuse or undulase (Plates $2.3-2.5$).

Plate 2.5 Detail of host syenite/xenolith contacts. Contacts are embayed, rounded, diffuse or undulose in assimilated samples.

Plate 2.6 Relict plagioclase phenocrysts in least altered Neys/Ashburton volcanic xenolith. Note two optically distinct amphiboles present in section, one green-to-brown the other green-to-blue green.

All varieties of contact type can be found in wenolith-rich areas. Menoliths become progressively rounder as assimilation proceeds. Rarely seen is a darkening of a xenoliths rim at the contact with the host due to formation of amphibole and biotite (Plate 2.3 , right of Centre).

2.12 Dther Xenoliths

Dther rock types are found as zenoliths within the Centre 3 syenites These include metavolcanic and metasedimentary senoliths of country rock and cognate inclusions of other Coldwell complex rock types. The volcanic zenoliths are only found within ferro-edenite syenite and contaminated Yariants but the other zenoliths tupes can be found in all Centre 3 syenites. Cognate xemoliths include nepheline syenite, gabbro, lamprophyre and ferro-augite syenite Xenoliths within ferro-edenite syenite are common. whereas few are found in the quartz syenite and maqnesio-hornblende syenite

2.13 Wolf Comp Loke - Centre 1

The megasenolith occuring at Wolf Comp Lake forms a large block within Eentre 1 at the Coldwell Complex (figure 2.2). In some portions of the block it is passible to distinguish individual lava flows of not more than a few metres thickness. Such flows are visible on the east side of Trans-Canada Highway $* 17$ and at the southwest end of the hill which

Figure 2.2 Wolf Camp Lake study area. Large hill to south of Wolf Camp Lake comprises the bulk of the megaxenolith.

comprises the buik of the xenolith. These flows can be distinguished from ench other by the occurrence of relict flow tops that exhibit vesiculation. The outcrop of the vesicular zones is limited and tracing out of individual flows over any distance proved impussible.

The wolf Camp Lake megaxenolith is quite different in character to those seen in the Neys/Ashburton study ares. It is much finer grained and darker in colour with the overall appearance of a hornfels. Closer to the contact with the host syenites, the xenolith is slightly coarser grained, although remaining aphanitic in texture. Enlargement of grain size due ta recrystallization and appearance of alkali feldspar porphyroblasts in proximity to the host contact demonstrate that portions of the block are showing the effects of assimilation in the Centre 1 syenites. Biotite avoids are not developed.

Greenish-black, fine-grsined vesicles range from $1-3 \mathrm{~mm}$ in size and give a spotty or mottled appearance to the weathered specimens. On highly weathered surfaces they produce a pebbly surface, as they are not as easily eroded as the matrix. Typically vesicles are too fine grained to permit characterization of their mineralogy howeser, in proximity to the contact with the Centre 1 host, the vesicles become coarser grained and enlarged in size $(2-5 x)$ and are seen to consist of green-black amphibole, biotite and
alkali feldspar. Sulphides may or may not be present.
Contacts, when visible, between the megaxenolith and the host syenites are sharp and well-defined. Dn the north end of the hill, outcrops on the highway show the block to be brecciated by intruding syenite magma. The resulting fragments other than becoming coarser grained, show little effect of being incorporated within the syenite. Blocks are angular and rounded edges are absent.

2.2 Petrography of the Xenaliths

2.2.1 Neys/Ashburton

The volcanic zenoliths in the Neys/Ashburton study area consist primarily of plagioclase, amphitole and biotite with minor clinopyroxene, potassium feldspar, opaque phases and apatite. with increasing alteration due to assimilation by the host ferro-edenite syenite calcite, sphene, fluorite, zircon, thorite and rare earth carbonates appear as accessory phases.

Yenoliths that are angular in shape and show no effects of assimilation generally are porphyritic, with plagioclase and rarely clinopyrnsene phenucrysts (Plates 2.6 and 2.7). Relict plagioclase phenocrysts occur mainly as lath-shoped crystals and rarer tabular zoned crystals. They are commonly highly-altered and cloudy due to the formation of hematite and

Plate 2.7 Relict clinopyroxene phenocrysts in least altered Neys/Ashburton xenolith.

Plate 2.8 overgrowth of amphibole on relict clinopyruxene phenocryst.

sericite/saussurite. Compositions determined using the Michel-Levy Method are in the range labradorite-bytownite. Jago (1980) reported compositions in the labradorite range and that plagioclase phenocrysts exhibited glomeroporphyrytic and interpenetrant textures. Plagioclase phenocrysts show no preferred orientation.

Relict pyroxene phenocrysts are corroded euhedral crystals that are colourless-to-pale green in colour. Slight plenchroism is exhibited by few examples. Overgrowths of amphibole (Plate 2.8) are common, as are intergrowths along cleavage traces.

Relict phenocrysts of plagioclase and clinopyroxene are set in a groundmass of corroded plagioclase laths, amphibole, biotite, opaque phases and apatite. The texture is that of a metabasalt (Plate 2.9). Groundmass plagioclase shows no preferred orientation and is highly altered to a combination of sericite/saussurite with hematite clouding. Their compositions by the Michel-Levy Method are in the ronge oligoclase-labradorite. Inclusions of apatite and biotite are common and strained extinction is evident.

Two optically distinct varieties of amphibole are present (Plate 2.6).
The most common amphibole exhibits a pale olive green-to-dark olive green or light brown through olive green pleachroism. This amphitole occurs as

Plate 2.9 Texture of least altered Neys/Ashburton xenolith.

Plate 2.10 SEM photo of opaque mass consisting of magnetite (light gray) with exsolved ilmenite (darker gray). Such masses are common in altered xenoliths.

corroded, ragged-looking anhedral to subhedral crystals. It occurs in isolated patches with biotite or with clinopyroxene as rims and intergrowths. Replacement of this amphibole by biotite and opaques is common.

The less common amphibole exhibits light green-to-blue green pleochroism (Plate 2.6). This amphibole can be seen to be replacing the more common brown-green amphibole as diffuse patches. It also occurs within relict clinopyroxene crystals and with biotite.

Subhedral biotite is present in various proportions and is pleochroic from pale straw yellow-to-dark red brown. Commonly inclusions of radioactive phases produce radiation damage halos. Replacement of amphibole by biotite and reaction rims of biotite around opaque minerals are common.

In the majority of the least-altered specimens a small amount of clinopyroxene can be found in the groundmass. It forms small anhedral crystals exhibiting the same optical characteristics as displayed by the clinopyroxene phenocrysts. Apatite occurs as acicular needles primarily with plagioclase, but also as inclusions within amphibole and biotite. Inclusions of apatite in biotite are commonly seen to produce halas in the host. Dpaque minerals are tupically present as small anhedral or subhedral
grains. Using EDS/SEM techniques the opaque grains were identified as pyrite, chalcopyrite, magnetite, ilmenite, sphalerite and gialena. Common to the amphiboles are small sulphide blebs, consisting principally of pyrite, and lesser chalcopyrite. Larger opaque masses found with amphibole and tiotite are a combination of magnetite with exsolved ilmenite (Plate 2.10). Sphalerite and galena are rare.

With incressing degrees of assimilation porphyroblastic growth of alkali feldspar occurs in the xenoliths. This feature has also been reported in the Western Contact Zone syenites by Jago (1980) and Lukosius-Sanders (1988). Growth of alkali feldspar starts with the development of coronal overgrowths on relict plagioclase phenocrysts (Plates 2.11 and 2.12) and continues until the phenocryst is completely replaced by an alkali feldspar porphyroblast. Alkali feldspar porphyrablast growth also results from the formation of alkali feldspar crystals in the xenolith matrix (Plate 2.13). The porphyroblasts may or may not show twinning (Darlsbad) and development of a perthitic texture. They commonly are corroded in sppearance and altered to hematite and sericitersassurite. Inclusions of biotite, amphibole and opaque phases are common.

Biotite owoids consist primarily of mics and amphibole with accessory clinopyroxene, iluorite, calcite and opaque phases (Plates 2.14 and 2.15).

Plate 2.11 Coronal overgrowths of alkali felispar on relict plagioclase phenocrysts begins development of alkali feldspar porphyroblasts.

Plate 2.12 Alkali feldspar overgrowth on relict plagioclase phenocryst.

Plate 2.13 Alkali feldspar porphyroblastic growth within a Neys/Ashburton xenolith. Notice concentration of amphibole growth at the host/ xenolith contact.

Plate 2.14 Detail of biotite ovoid. Example consists mainly of subhedral biotite flakes with accessory opaques and fluorite.

Plate 2.15 Large biotite ovoid consisting of subhedral biotite flakes and amphibole with accessory opaques. Note radiation damage halos in biotite.

Plate 2.16 Beginnings of ovoid development.

Amphibole is commonly of the blue-green variety. The appearance of the ovoid is determined primarily by biotite which occurs as randomiy-oriented subhedral crystals. Biotite ovoids are roughly circular in shape and nccur randomly within zenoliths or strading the contacts between zenoliths and host ferro-edenite syenite. Biotite ovoids are also found within the contaminated host. Dyoid size increases with the degree of assimilation.

Oyoid development begins with formation of a few biotite crystals and blue-green amphibole, with or without opaque phases (Plate 2.16). As the degree of kenolith resorption increases, the ovoid grows by the addition of biotite crystals outward from the origingl core. In the more advanced stages of formation fluorite, opaque grains and calcite appear in the core. Development of biotite ovoids in the senoliths appears to be a random process caused by the addition of fluids derived from the host ferro-edenite syenites.

A feature common to all volcanic xenoliths that is observable by scanning electron imagery is the replacement of plagioclase laths in the groundmass by alkali feldspar (Plates 2.17 and 2.18). Alkali feldspar formation occurs as diffuse patches within these crystals. This feldspar is rich in celsian and contains up to 6 Ban wt 罗 (see chapter 3; Plate 2.19). Growth of alkali feldspar crystals in the groundmass occurs along with

Plates 2.17 and 2.18 SEM photos of alkali feldspar replacement and growth within plagioclase feldspar of volcanic zenoliths. Alkali feldspar shows as a lighter phase within the darker plagioclase laths.

Figure 2.19 Replacement alkali feldspar with high barium contents. Celsiantion aiegs appear lighter in colour. Darker phase is plagioclase.

plagioclase replacement.
Assimilation results in an increase in grain size and recrystallization of the groundmass (Plate 2.20). Plagioclase laths are recrystallized to produce a granular mosaic with triple point grain boundaries. Recrystallized plagioclase displays poor development of abite twinning. Fluorite, calcite and rarely quartz are present. Other phases present are anhedral zircons (Plate 2.21) that are highly altered and rare earth carbonates.

With complete assimilation the xenoliths appear as ghosts of the original volcanics from which they formed (Plate 2.22). The only evidence of their hoving existed are porphyroblastic alkali feldspars, biotite ovoids and increased mafic mineral content, giving the host syenite a distinct purplish colour. Assimilation results in the production of the conteminated Varieties of ferro-edenite syenite.

2.2 .2 Wolf Camp Lake

Typically the wolf Camp Lake volcanics consist of plagioclase, amphibole, clinopyroxene and biotite. Minor phases are opaque minerals and apatite together with accessory sphene, calcite and fluorite. Accessory phsees occur in recrystallized specimens close to syenite contacts. Olivine, or is pseudomorphs, are absent.

The volcanics are holocrystalline and aphanitic. In some cases grain size

Plate 2.20 Higher degrees of assimilation results in the recrystallization of the volcanic to coarser grain size. Plagioclase laths are recrystallized to a granular mosaic.

Plate 2.21 SEM photo of zircon growth within xenoliths with increased degree of assimilation.

Plate 2.22 with complete assimilation xenoliths appear as ghosts of the original volcanics from which they formed. In photo a partially assimilated xenolith is seen on the left and a ghost is seen on the right. Note cuarser grain size and and decreased mafic content of ghost relative to the other xenolith.

Plate 2.23 Texture of unaltered wolf Camp Lake xenolith of fine grained non-oriented plagioclase crystals. Texture is that of a common basalt.

is so small that the rocks appear cryptocrystalline. Specimens closer to the contacts with the host Centre 1 syenites are recrystallized and coarser in grain size, although they remain aphamitic in character. The rocks rarely contain plagioclase and clinopyroxene phenocrysts.

Unaltered specimens display a distict volcanic texture and are similiar to common basalts (Plate 2.23). Plagiociase dccurs as very small acicular laths showing no preferred orientations. Plagioclase is commonly turbid in appearance due to hematization and sericite/saussurite formation and exhibits poor development of albite twinning, precluding optical composition determination. In those areas of the megaxenolith near to or at the contact with the host syenites, plagioclase is recrystallized to a granular mosaic of crystals exhibiting poor albite twinning (Plate 2.24). Alkali feldspar forms as granular crystals in assaciation with the recrystallized plagioclase or as porphyroblasts with inclusions of clinopyroxene and amphibole.

Amphibole occurs as ragged anhedral-to-subhedral crystals in slightly coarser grained recrystallized samples. Amphibole shows pleochroism from pale straw yellow-to-brown green, colourless or pale green-to-green and pale green-to-blue green. The blue green amphibole is less common. Inclusions of opaque minerals are common, inclusions of feldspar, biotite

Plate 2.24 Recrystallization occurs towards the host/syenite contact to a coarser grain size.

Plate 2.25 Recrystallized vesicle within Wolf Camp Lake volcanic. Granular clinopyroxene and amphibole are major constituents

and pyrasene rare. The more common brown-green amphibole can be seen forming rims on pyrosene grains or altering to tiotite. The less common blue-green amphibole occurs as zones within the brown-green amphibole

Pyrosene occurs as isolated granular anhedral crystals or as inclusions within biotite and amphibole. It is pale green in colour and may exhibit slight pleachroism from colourless-to-pale green. Inclusions of apaque phases are commonly present.

Subhedral biotite is pleochroic pale red-brown-to-dark red-brown and pale straw yellow-to-dark red-brown. It accurs as rims to opaque grains and zones within amphibole crystals. Halos around inclusions within biotite crystals are rarely seen.

Apatite occurs is acicular needles within plagioclase and the other major minerals of the exenolith. Anhedral-to-subhedral opaque grains commonly occur as inclusions within amphibole and biotite and may have rims of sphene. They consist mainly of magnetite with exsolved ilmenite. Sulphides are rarely seen. The accessory minerals calcite, fluorite and sphene appear towards syenite contacts where recrystallization has occurred.

Vesicles are seen in few specimens from the megaxenolith and are interpreted to represent the tops of individual flows. Clinopyroxene and
amphibole are major constituents (Plate 2.25). Clinopyroxene forms a core of granular crystals which are colourless-to-pale green in colour forming a core which is surrounded by a rim of amphibole. With increasing alteration the vesicles are recrystallized to a mass of randomly-oriented amphibole crystals and biotite. Accessary calcite, fluorite, sphene, upaques and rarely alkali-feldspar occur in recrystallized vesicles. Biotite-rich recrystallized vesicles resemble biotite ovoids (Plate 2.26).

Distinct changes can be seen in the megaxenolith from the interior to the contact with the host Centre 1 syenites. The block grades from a fine grained volcanic rock to a slightly-coarser grained metabasalt as the contact is approached. Pyroxene begins to dissappes as it is replaced by biotite, amphibole and opaques. Plagioclase begins to recrystallize and alkali feldspar growth and replacement of plagiochase occurs. In proximity to the contact with the host syenites plagioclise recrystallization is complete and growth of alkali feldspar, both as crystals in the groundmas and porphyroblasts, is extensive. Accessory calcite, fluorite and sphene are present. Vesicles if present are recrystallized to assemblages of amphibole, biotite and accessory phases.

23 Summary of Neys/ashburton and wolf Camp Lake

Although different in mineralogical character, the senoliths of

Flate 2.26 Vesicle in altered xenolith close to host/syenite contact. Amphitole and biotite tecome more prominent with increasing assimilation. Biotite-rich recrystallized vesicles resemble biotite ovoids.

Neys/Ashburton Lookouts and the megoxenolith of wolf Camp Lake show related effects of being immersed in their host syenitic magmas. with increasing assimilation recrystallization ocours such that plagioclase laths produce a granular mosaic of poorly albite-twinned crystals. As this recrystallization occurs, alkali feldspar forms both in the groundmass and as porphyroblasts. The porphyroblasts begin growth as rims to relict plagioclase phenocrysts. Wolf Camp Lake genolithe however do not show the development of biotite ovoids that are prevalent in the senoliths of Neys/ashburton. Dther similarities include the appearince of accessory calcite, fluorite and sphene with increasimg assimilation and the formation of biotite. It appears the assimilation process involves the addition of alkalies, fron and volatiles into the xenolithe, the source of these materials tueing the host syenites.

Chapter Three

Compositional Yoriation of Amphibole. Furgxene and Feldspar

31 introduction

Other than the limited data reported by Lukasus-Eanders (1986), little is known of the compositional variation exhibited by amohibule, purosene and plagioclase within the senoliths found in the vicinity of Neys/ashburton Lookouts. The present study expands on this limited data base and provides new data for the wolf Camp Lake meqaxenolith.

Renoliths studied ronged from those lesst-affected by assimilation to thase highly-affected to obtain the best possible representation of compositional variations. Specimens were prepared as one inch diameter polished discs and andyzed using a Hitachi 570 scanning electron microscope ty energy dispersive analysis. Eack scattered electron imagery and x-ray energy spectra were used to identify mineral grains suitable for analysis. Five-to-ten spot analyses were made per thin section. Analytical methods are outlined in Appendix 1.

3.2 Amphibole Compusitional Variation

Claseification and nomenclature used for the amphiboles are those recommended ty the IMA suticomittee on amphitoles (Lenke, 1978). Structure formulae were calculated on the basis of 23 oxygens with catians
allocated to structural sites according to the standard formula of
$\mathrm{A}_{0-1} \mathrm{X}_{2} \mathrm{H}_{5} \mathrm{Z}_{8} \mathrm{a}_{22}$ (OH,F, Cl) . Ferric iron contents were calculated on a stoichiometric basis using the method proposed by oroop (1978). A complete list of amphitole compositions is given in Appendices 2,3 and 4.

Figures $3.1,32$ and 33 are classification diaqrams far amphitoles from xenoliths in the Neys/Ashburton study area. The compositions of amphiboles found in the ferro-edenite syenite and contaminated ferro-edenite syenite (Lukosius-Ganders, 1986) are plotted for comparison. Figure 3.4 is an amphibole classification diagram for amphiboles in the wolf Camp Lake megaxenolith with amphiboles from host syenites plotted for comparison.

3.2.1 Neys/ashburton

All amphiboles from senoliths in the Neys/Ashburton study ares are calcic and exhibit a wide range of composition, ranging from magnesian hastingsite and ferroan pargasitic hornblende to ferro-edenite and ferro-actinolite to ferm-hornblende. In Figures 3.1 and 3.2 there occurs a Cluster of points in the compositional fields of ferroan pargasitic hornblende and magnesian hastingsite respectively. From these clusters, points spread with increasing $5 i$ contents and near-constant magnesium

FIGURE 3.1 NEYS LOOKOUT / ASHBURTON AMPHIBOLE COMPOSITIONS

O XENOLITH LEAST ASSIMILATED

- FERROEDENITE SYENITE
- CONTAMINATED FERROEDENITE SYENITE
- XENOLITH INTERMEDIATE ASSIMILATION

Q XENOLITH HIGHLY ASSIMILATED

$$
(\mathrm{Na}+\mathrm{K})_{A}>.5 ; \mathrm{Ti}<.5 ; \mathrm{Fe}^{3} \leqslant \mathrm{Al}^{6}
$$

FIGURE 3.2 NEYS LOOKOUT/ASHBURTON AMPHIBOLE COMPOSITIONS

$$
(\mathrm{Na}+\mathrm{K})_{A} \geqslant .5 ; \mathrm{Ti}<.5 ; \mathrm{Fe}^{3}>\mathrm{Al}^{6}
$$

FIGURE 3.3 NEYS LOOKOUT/ASHBURTON

 AMPHIBOLE COMPOSITIONS

FIGURE 3.4 WOLF CAMP LAKE

AMPHIBOLE COMPOSITIONS

0 XENOLITH

- hOST SYENITE

$$
(\mathrm{Na}+\mathrm{K})_{A} \geqslant .5 ; \mathrm{Ti}<.5 ; \mathrm{Fe}^{3}>\mathrm{Al}^{6}
$$

numbers into the ferm-edenite comousitional fields. Figure 3 s shows a onsiderable scatter of puints ranging from ferra-actinalite to ferro-hornblende with near-constant moqnesium numbers. Amphibole compositions are similiar to those of the ferro-edenite syenite and contaminated ferro-edenite suenite, except that they have higher amounts of H compared ta the hast suenite amphibales, with magnesium numbers being 20 to So percent higher. This is due to the xenoliths being more magnestum-rich than the syenites. Amphibule formation in the senoliths involves the replacement of magnesium-rich pyroxenes, and this is in turn is reflected in the composition of the amphibole.

Lukosius-Sanders (198b) reports that groundmase amphiboles replacing Pyrosene are ferroan pargasitio hormblende, ferro-actinolitic hormblende and ferro-edente. Amphibule in biatite ovoids is ferra-edenite or ferro-edenitic horntlende and is more highly evolved than the other amphitoles in the xenoliths as it has higher si contents.

Amphitule compositions in the senoliths reflect the degree of assimilation. As the amount of assimilation increases, amphitole compusitions become more evolyed and exhibit imcreasing si cantents. This is illustrated in the compositianal diagrams (Fiqure 3.1 to 3.3) which show that Si increases from a low of G.s cations per unit cell to a high af around
7.7 Gitions per unit cell

32.2 walf CamaLake

Amphitole compositions do not show an extensive ranqe of compositional Yoristion (Fiqure 3.4). They plot in the ferro-edente hornthende region with minor oyerlap into edenitic hormblende and hastingsitic hornblende.

Amphitole is generally omly found in those specimens located near contacts with the host syenites, where assimilation effects are most pronounced. Figure 3.4 shows that the xenolithic amphiboles compositions are slightly more magriesion than amphitioles in hast syenite.

3.2.3 Discussion of Amphitole Compositions

In each case, amphibole compositions in the senoliths are found to extend oyer the same range of amphibule compositions as found in their syenite hosts, except for those senoliths least affected by the assimistion process. This is seen for Neys/Ashturton xenoliths (Fiqures 3.1 and 3.2). On these figures there occurs a cluster of points in the compusitional fields of ferroan pargasitic hornblende and magnesian hastingsite respectively with no corresponding amphitules in the host syenites. These amphibale compositions represent the initial amphibole formed in the xenolithe at the expense of puroxene. From these clusters, points spread with incressing si contents and near-constant magresium numbers to amphitoles

Correspunding to host syenite amphiboles.

Development of amphibole occurs in the senolithe because it is the liquidus phase of the hast syenite magma. The magma equilibrates with the zenolith and forms within it the mineral phase in which it is saturated. Hence the similority in composition between senolith and host amphiboles. Senolith amphiboles are more magnesian due to the senolith being more magnesium-rich than the syenite. The range of amphitole compositions is due partly to the various degree of assimilation of the xenoliths studied and evolution of amphiboles in the host syenites. The longer a senolith is within a syenite magma, the more assimilated it will become and the more evolved the amphiboles become as they equilibrate to those amphiboles in the syenite.

In the case of the wolf Camp Lake senoliths, amphitule is only found in proximity to the contacts with host syenites and as such does not show the compositional varistion displayed by those amphiboles in Neys/ashburton senoliths. This amphibole has only a limited range of composition as the host syenites contain amphibole of limited compositional variation.

3.3 Furoxene Compositional Variation

Classification and nomenclature used for pyroxene is that proposed ty Morimoto (1989). The accuracy of the microprobe anolyses was checked ty

Gabulating their stiochiometry on the basis of 6 oxygens. End member molecular components were calculatedusing on APL program "STRUCTURE" (Mitchell, unpublished). A complete list of pyrosene analyses is presented in Appendices 5, 6 and 7.

331 Neys/Ashturton

Pyrosene is not a common constituent of the wenaliths and few suitable crystals were found for analysis. Figures 3.5 and 3.6 are compositional plots for pyroxene in xenoliths from the Neys/Ashburton study area. All are clinopyrosenes that show little compusitional variation. They are classified as augites and diopsides. Sodium was tupicaly not detectable, although some examples do contain up to 1 wt $\mathrm{SNa}_{2} \mathrm{O}$. When compared to
hast syenites xenolith pyrakenes are deficient in toth TiO_{2} and $\mathrm{Na}_{2} \mathrm{O}$.
Kenolith pyroxene compositions are notatly-different from those
reported by Lukosius-Sanders (198e) in that they contain significently-less
TiO_{2} and $\mathrm{Na}_{2} \mathrm{O}$. Data reported by Lukosius-Sanders is plotted on the acmite:

Ti-pyraxene: CATS diagram (Figure 3.8). They contain TiO_{2} up to a few weight : ${ }^{8}$ and $\mathrm{Na}_{2} \mathrm{O}$ between 2 and 2.2 weight $:$. Fyroxenes in ths study contain a trace-to-mil Tia_{2} and a trace-to-nil Nagn. $\mathrm{Al}_{2} \mathrm{O}_{3}$ contents of

1. DIOPSIDE
2. HEDENBERGITE
3. AUGITE
4. Pigeonite
5. ENSTATITE
©. FERROSILITE

FIGURE 3.5 PYROXENE COMPOSITIONS FOR C2358(+) AND C2490(•).

FIGURE 3.6 PYROXENE COMPOSITIONS FOR C2498.

FIGURE 3.7 PYROXENE COMPOSITIONS FOR FERROEDENITE SYENITE(0) AND XENOLITHS (+).

FIGURE 3.8 PYROXENE COMPOSITIONS FOR FERROEDENITE SYENITE(\circ), CONTAMINATED FERROEDENITE SYENITE(•) AND XENOLITHS (+).

Fyroxenes found in this study are also low in comparison to pyroxenes reported by Lukosius-Sanders (1988). Fyroxene compositions reported by Lukosius-Sinders (1986) represent one volcanic kenolith, so little significant comparisun is passible.

3.3 .2 Wolf CampLake

Pyroxene compositions for the wolf Camp Lake megacenolith are plotted on Figures 3.9, 3.10 and 3.11. They show the same limited compositional range as Neys/ashburton pyroxenes. The xenolith C3120 is atypical in that. ferrosilite is present in oddition to clinopyroxene (Figure 3.12). This indicates that at least some portions of the megaxenolith hove possibly undergone effects of contact metamorphism and therefore may be described as a hornfels. It was found that pyraxenes in recrystallized vesicles are clinopyroxene of the same composition as the pyroxene in the groundmass.

Host syenite pyroxene compositions are plotted on Figures 3.13 and 3.14. They are different from those pyroxenes in the megaxenolith in that they contain an appreciable somite component and thus plot in the acmite: diopside: hedenbergite diagram. Sodium contents range from 1.5 weight $\%$ to 5 weight $\$ \mathrm{Na}_{2} \mathrm{O} . \mathrm{TiO}_{2}$ is present in only trace amounts. Host syenite pyrasenes are also considerably enriched in Fe 0 and moderately enriched in

FIGURE 3.9 PYROXENE COMPOSITIONS FOR C2531A.

FIGURE 3.10 PYROXENE COMPOSITIONS FOR C3122.

WOLF CAMP LAKE MEGAXENOLITH

FIGURE 3.11 PYROXENE COMPOSITIONS FOR C3123.

FIGURE 3.12 PYROXENE COMPOSITIONS FOR C3120.

Cal with respect to kenolith puroxene compositions. No useful comparison is possible between host and senolith pyroxene

33.3 Discussion of Pyrosene Compositional Variation

Pyrowenes from both the Neys/Ashturton study area and wolf Camp Lake hove similiar compositions. They also have yery different compositions from pyrosenes found in their respective host syenites. This is due to pyroxene in the zenoliths being converted to amphibole early in the assimilation process. As a result no equilibrium is set up between wenolith pyroxenes and liquidus pyroxenes in the host syenites. The amphitole mantle daes not allow the host syenite magma to equilibrate with the senolith pyrasenes.

The purasenes however supply information as to the nature of the parental volcanic rocks. This is due to their being relict phases.

Leterrier et al (1982) devised a method based on statistical study of Ti, $\mathrm{Cr}, \mathrm{Ca}, \mathrm{Al}$ and Na contents of calcic clinopyrosenes which identifies the mogmatic affinities of the volcanic rocks within which the clinopyrosenes exist. This method was applied successfully to voloanic rocks which had undergone metamorphism or metasomatism. Magmatic affinities are claimed to be distinguished with better than 80 confidence.

Figure 3.15 is a series of plots bosed upon the Leterrier et al. (1962)

Figure 3.15 Characterization of magmstic parentage for Neys/Ashburton xenoliths from clinopyroxene compositions. After LeTerrier et al, 1982.
methad for pyroxene compositions fom Neys/Ashturton zenoliths. Figure 3.15A distinguishes between alkali and tholetitic plus calc-alkaline basalts. Neys/Ashburton pyraxenes plot strading the division between the two fields. This could be interpreted as indicating that two senolith tupes present at Neys/ashburton, one a tholeife and the other an alkali basalt. It may also reflect the addition of sodium to pyroxene in the earliest stages of assimilation.

Figure 3.156 indicates that the source racks for the senoliths are orogenic basalte in origin. This is incorrect given the tectonic setting of the Coldwell Complex (Chapter 1). Clinopyroxenes in Neys/Ashburton xenoliths contain less TiO_{2} than is needed to plat their compositions into the correct field of non-orogenic basalts. This is due to their evolved nature as clinopyrowenes of tholeibic basalts decrease Tin_{2} contents with fractionation (Deer et al. 1978). Figure 3.15C distinquishes between tholeites and calc-alkaline basalts from Figure 3.15A. This diagram indicates a definite tholeitic parentage for Neys/Ashburton xenoliths.

Figure 3.16 applies the method of Leterrier et al (1982) to pyroxene compositions from wolf Camp Lake. Figure 3.16 A indicates the volcanics are not alkali basalts but either tholeitic or calc-alkaline. Figure 3.16 E

Figure 3.16 Characterization of magmatic parentage for the Walf Camp Lake megaxenolith from clinopyroxene compositions. After LeTerrier et al, 1982.
indicates incorrectly an orogenic origin for the source volcamics, given the Coldwell Complex tectonic setting. Again low TiO_{2} contents of the pyrowenes indicate an evolved nature, such as those in Neys/ashburton xenoliths. Figury 3.16 C indicates a definite tholeitic affinity for the source volcanics at Wolf Camp Lake
TiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ contents of the pyroxenes for both Neys/Ashburton and Wolf Camp Lake volcanics indicate a tholeiitic basalt parent. It has been documented that clinopyroxenes from undersaturated volcanic rocks, such as alkali olivine basalts, are high in initial TiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ and with fractionation of these rock types TiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ contents increase (Magonthier and Velde, 1976). Lomdes (1973) concludes also from study of Late Cenozoic tasalts in Utah that Al increases in clinopyrowene with increase in fractionation of alkaline basalts. It was also concluded that for tholeitic basalts. Al shows the opposite trend and decreases with increasing fractionation. Clinopyrowenes for Neys/Ashburton and wolf Camp Lake contain very little to $\mathrm{no}_{\mathrm{TiO}}^{2}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$, indicating fractionation from a tholeitic basalt, with the small amounts indicating a tholeitic basalt in an evolved state.

Olivine and/or its alteration products are not seen in either Neys/Ashburton or Wolf Camp Lake genoliths. This suggests that the basalt was not an alkali olivine basalt, giving credence to the conclusions from pyroxene compositional data

3.4 Feldspar Compasitional Dota

Structural formulae and end member molecular components were determined on the basis of 32 oxygens using the feldspar subroutine of the "STRUCTURE" computer program (Mitchell, unpublished). Complete analytical data are presented in Appendices 8 and 9

3.4.1 Neys/ashburton

Figures 3.17 through 3.22 illustrate feldspar compositional variation in xenoliths from the Neys/ashburton area. The compositions of both plagioclase and alkali feldspar reflect the degree of assimilation of the kenoliths.

In sections that appear to be least-affected by assimilation, plagioclase is calcic with compositions up to An_{75}, although on average they lie between An $40-70$ (andesine-labradorite). With increasing assimilation, plagiaclase compositions become increasingly-sadic and trend towards more albitic compositions. Highly assimilated xenoliths have plagioclase

FIGURE 3.20 PLAGIOCLASE COMPOSITIONS FOR C2331.

FIGURE 3.21 PLAGIOCLASE COMPOSITIONS FOR C2490.

FIGURE 3.22 PLAGIOCLASE COMPOSITIONS FOR C2340.

Gomposituns that are more sodic than $A \mathrm{~B}$ bo (Figure 3.22)

Recrystallization accompanies this compusitionsl change, and lath-shaped relict plagionases are comverted into a grarular texture of rounded crystals exhibiting pory albite twinning. Ascouiated with these Changes is the teplacement of plagioclase dy alkali feldepar. Alkali feldspar compasitions are platted for those suecimens where analysis was possible. A common feature of this replacement alkali feldspar, either as Jistinct crystals in the groundmass or as difuse patches within relict plagiochase laths, is the presence of appreciable barium contents. These Vary from 0.5 to 6.4 wt 罗 Bat. In some cases it is poseble to find almost complete replacement of plagiochase by alkali ieldeqar crystals

Fiqure 323 shows feldspar compasitions for ferro-edenite and contaminated ferra-edenite suenite as reported by Lukosus-Sanders (1960). The feldspars are perthites and antiperthtes with secondary feldspars being altite.

3.42 Wolf Cama Like

Eumpositional data for the wolf Biamp lake megasenolith are illustrated on figures 3.24 through 3.27 . Samples represented ty figures 3.24 through 326 are from within the thock, whereas Fiqure 3.27 represents a somple

FERROEDENITE SYENITE

FIGURE 3.23 FELDSPARS FROM HOST SYENITES NEYS/ASHBURTON

FIGURE 3:24 PLAGIOCLASE COMPOSITIONS FOR C3120.

FIGURE 3.25 PLAGIOCLASE COMPOSITIONS FOR C3123.

FIGURE 3.26 PLAGIOCLASE COMPOSITIONS FOR C3125.

FIGURE 3.27 PLAGIOCLASE COMPOSITIONS FOR C2531A.
collected in contact with the host syenite. Those from within the block have plagioclase compositions in the range of andesine (An30-50). The varistion to more sodic compositions is due to effects of assimilation. There is also minor replacement of plagioclase by alkali feldspar, this giving compositions up to 26 mol . m orthoclase. The most extreme case of assimilation is represented by xenolith C2531A (Figure 3.27).

Recrystallization has occured producing a granular matrix of poorly-twinned albite crystals. Alkali feldspar crystals are also now present in the matrix.

The range in orthoclase compositions is due to the presence of minor amounts of sodium.

3.4 .3 Summary of Feldspar compositions

Both Neys/Ashburton and wolf Camp Lake feldspar compositions exhibit the same patterns. With increasing assimilation effects due to incorporation into the host, original plagioclase compositions of oligoclase/andesine are decalcified and converted to albite. Along with this decalcification there occurs 1) recrystallization of plagiocliase laths to granular crystals exhibiting poor twinning and 2) replacement of plagioclase and growth of alkali feldepar, this being orthoclase in composition and characterized by high barium content (up to 5.4 wt Bab).

Phenocrysts are present in the xenoliths of Neys/Ashburton, these being relicts of the original volcanic texture. They are zoned and range from bytownite to labradorite in composition. Groundmass plagioclase is oligoclase-andesine in composition. This plagioclase composition co-existing with a clinopyroxene is similiar to co-existing plagioclase and calcic-clinopyroxene in Nipigon diabase reported by Sutcliffe (1987) and in tholeiitic basalts from southwest Utah reported by Lowder (1973). This indicates the basalt parents to Neys/ashburton and wolf Camp Lake xenoliths are common basalts that are not highly evolved.

Chapter Four

Whole Rock Chemistry of Basic Yenoliths

4. 1 Introduction

Whole rock analyses for major and minor elements were obtained for ten specimens from Neys/Ashburton and twelve from Wolf Camp Lake. Whole rock analyses for Neys/Ashburton rocks were undertaken by the Centre in Mining and Mineral Exploration Research at Laurentian University. Analyses were performed using XRF methods on glass discs. Accuracy for major elements is ± 28, for trace elements $\pm 10 \%$ (Lukosius-Sanders, 1988). Trace elements were determined using pressed powder. Whole rock analyses for Wolf Camp Lake rocks were performed by \%-Ray Assay Laboratories in Toronto, Ontario using similar methods. Detection limits for major elements were $\pm 0.01 \%$ and $\pm 10 \mathrm{ppm}$ for trace elements. Major elements determined were $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}, \mathrm{CaO}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$. Trace elements included $\mathrm{Cr}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{Zr}, \mathrm{Y}, \mathrm{Sr}, \mathrm{Rb}, \mathrm{Ba}, \mathrm{Ce}, \mathrm{La}$, Nb and Ga .

Normative calculations were processed using a computer program called "ROCALC", written by Stormer (1985) and based on the method in Barker (1983). Also calculated were AFM plotting parameters and $\mathrm{F}^{\prime}, \mathrm{Q}$, An
parameters used in the Streckeisen-Lematre (1979) rock classification plot.

4.2 Neys/Ashburton

42.1 Major Elements

Major element compositions for Neys/Ashburton xenoliths and their respective CIP留 norms can be found in Table 4.1. Of the ten analyses, four are quartz normative, one is neither quartz nor nepheline normative and the other five are nepheline normative.

Figure 4.1 is a series of yariation diagrams for the major oxides ys SiO_{2}.

$$
\mathrm{SiO}_{2} \text { shows the greatest yariation from a low of } 45.4 \% \text { to } 54.2 \% \text {. Points }
$$ are identified for those samples least assimilated through to those most assimilated. Weak trends are observed in $\mathrm{K}_{2} \mathrm{O}$, $\mathrm{Na}_{2} \mathrm{O}, \mathrm{Cou}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ with increasing SiO_{2} contents. CaO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are seen to decrease and $\mathrm{K}_{2} \mathrm{O}$, $\mathrm{Na}_{2} \mathrm{O}$ are seen to increase from unassimilated to assimilated specimens. Increases in $K_{2} 0$ reflects addition of potassium feldspar into the specimens as assimilation progresses whereas increase in $\mathrm{Na}_{2} \mathrm{O}$ and decrease in CaO reflects the decalcification of plagioclase to more sodic compostions. Mgo and $\mathrm{Al}_{2} \mathrm{O}_{3}$ show no identifiable trend as the degree of assimilation

TABLE 4.1 YHOLE ROCK ANALYSES AND CIF'W NORMS FOR NEYG/ASHEIURTON:ZENOLITHS
ANAL''SES ARE IN ORDER OF INCREASING ASSIMILATION

	C2311	C2503	C2438	C2309	C2490	C2303	C2351	C2386	C2330	C2331
Si02	49.69	50.21	50.30	51.20	51.45	53.00	53.83	54.16	54.22	45.40
$\mathrm{Ti02}$	0.89	0.74	0.69	0.89	0.64	0.82	0.81	0.79	0.65	1.28
A 203	15.21	15.69	15.23	15.93	15.33	15.48	15.24	15.37	15.28	15.36
Fe 203	11.60	10.28	9.95	11.53	9.72	10.71	10.10	9.56	8.76	14.27
MnO	0.21	0.19	0.19	0.22	0.17	0.19	0.19	0.17	0.16	0.28
CaO	8.04	9.20	7.43	8.16	9.34	7.23	6.80	6.08	7.16	8.72
MgO	4.61	6.00	5.55	4.97	5.90	3.99	4.12	3.90	5.01	4.06
Ma 20	6.28	4.26	6.81	3.23	3.91	4.45	4.84	5.81	4.79	4.75
K 20	1.84	1.80	2.25	1.84	2.00	2.31	2.65	2.60	2.22	2.75
P 205	0.60	0.45	0.38	0.61	0.40	0.55	0.42	0.40	0.37	1.47

$\begin{array}{lllllllllll}\text { TOTAL } & 98.96 & 98.82 & 98.78 & 98.56 & 98.87 & 98.74 & 99.01 & 98.34 & 98.62 & 98.34\end{array}$

CIPW NORMS

0	-----	-----	-----	5.06	----	2.01	0.10	---	0.29	
OR	10.96	10.77	13.48	11.04	11.93	13.82	15.79	15.53	13.29	16.50
AB	33.68	33.88	29.30	27.71	33.50	38.17	41.39	46.20	41.12	25.49
AN	7.96	18.60	4.40	23.88	18.57	15.63	12.15	3.31	15.32	12.68
NE	10.85	1.41	15.71		-----	----	----	1.90	-----	8.34
DI	20.32	17.75	22.36	8.49	18.72	11.67	13.27	13.56	14.08	14.12
HY	-----	--	-----	8.63	2.26	4.66	4.22	-----	6.14	-----
OL	1.53	4.83	2.55		2.75	--.--	----	2.48	-----	2.62
12	0.46	0.42	0.41	0.48	0.36	0.42	0.42	0.37	0.35	0.61
HM	11.72	10.40	10.07	11.69	9.84	10.85	10.20	9.67	8.39	14.51
TN	1.12	0.89	0.82	1.60	1.12	1.49	1.47	1.03	1.16	1.67
AP	1.43	1.08	0.91	1.46	0.96	1.31	1.01	0.97	0.89	3.54

Figure 4.1 Variation diagrams for Neys/Ashburton xenoliths.

Figure 4.1 continued.
incresses.

Sample C2331 is anomalous in that it plots away from the main group of xenoliths. It contains approximately 5% less SiO_{2} and has significantly more TiO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ than the other xenoliths. Fetrologic study shows it to be highly assimilated with a large amount of potassium feldspar growth. It is possible this sample represents another type of kenolith.

C2311, C2331 and C2498 are strongly nepheline normative with C2311 and C2498 exhibiting intermediate assimilation effects and C2331 being highly assimilated. C2386 and C2503 are slightly nepheline normative and exhibit slight effects of assimilation. Those specimens that are quartz normative decrease in their amount of normative quartz as their degree of assimilation increases. These observations seem to indicate two trends in Neys/Ashburton xenoliths. One trend is for quartz normative specimens becoming less saturated with assimilation, the other trend for specimens that are nepheline normative becoming more nepheline normative as assimilation progresses. This indicates there may be two types of volcanics present in the Neys/Ashburton xenoliths syenite. However pyroxene compositional data contradicts this as it indicates that saturated volcanic rocks are parental to the xenoliths. It is possible that the trends
reflect the occurence of two different assimilation episodes, each hoving distinctive chemical characteristics.

Figure 4.2 plots compositions according to the rock classification scheme of Streckeisen and LeMaitre (1979). The dota shows a considerable scatter, and range from phonolite and basanite through latite to tholeitic basalt. As assimilation increases points plot away from the original compositions of a tholeiite towards a latite due to alkali addition. This agrees with plagioclase compositional data as anorthite content decresses. The least assimilated samples plat towards the field of tholeitic basalt, agreeing with the conclusions derived from pyrosene compositions. Two trends however seem to evident in the data, one from oversaturated to saturated, the other from saturated to highly understaurated. This apain could indicate the presence of two types of kenoliths or different assimilation trends. If a second type of xenolith is present the original compositions could lie in the area of alkali basalts.

Compositions of alkali-feldspars are also plotted on figure 4.2. One trend seems to progress towards these compositions whereas the other deviates away from it. The trend that gpproaches alkali feldspar compositions indicates the xenoliths are becoming more syenitic in noture as their compositions equilibrate with their syenite hosts. The other trend

8 LATITE
8 FOID-BEARING LATITE
9 MUGEARITE
10a* THOLEIITIC BASALT
12 TEPHRITIC PHONOLITE
13 BASANITE

FIGURE 4.2 STRECKEISEN - LEMAITRE ROCK CLASSIFICATION PLOT FOR NEYS/ASHBURTON XENOLITHS
towards compositions more undersaturated than alkali feldspar may be due to the presence of a different reaction.

4.2.2 Minor Elements

Minor element compositions of the Neys/Ashburton zenoliths are listed in Table 4.2.

Trends in the minor elements of Neys/Ashburton xenoliths are poorly-developed, but it is possible to identify weak trends as SiO_{2} increases. Y and Rb are seen to increase and $\mathrm{Cr}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Sr}$ are seen to decrease. Cu, Pb, Zr, La and Ee , do not develop only significant trends. Barium is present in significant amounts, ranging from 471 ppm to 3157 ppm, with the higher amounts in those specimens showing postassium feldspar addition. Sr is also present in significant amounts, ranging from 526 ppm to 916 ppm.

Noticable in all specimens are low contents of Cr and Ni . This indicates that the volcanic parent or parents to the senoliths is of an evolved nature.

This agrees with information obtained from pyroxene compositional variations.

4.2.3 Comparison with other Keweenawan Volcanics

Table 4.3 compares the Neys/Ashburton volcanic xenoliths to other Keweenawan volcanics found in the region. Neys/ashburton compositions

TABLE 4.2 MIMOR ELEMENT COMPUSITIONS FOR HEYS/ASHBIRTON XENOLTHS IN PFM

	$C 2303$	$C 2309$	$C 2311$	$C 2330$	$C 2331$	$C 2351$	$C 2386$	$C 2490$	$C 2498$	$C 2503$
Cr	8	15	18	17	26	15	11	20	17	21
Co	46	45	51	45	54	48	36	46	49	49
Ni	27	32	31	55	34	28	28	55	53	55
Cu	105	110	112	48	84	60	42	54	54	70
Zn	115	124	110	106	145	139	99	92	116	95
Pb	0	52	0	0	45	41	35	0	27	46
Zr	234	150	178	332	152	165	194	180	236	156
Y	37	31	31	39	36	29	31	227	29	26
Sr	706	725	741	526	917	621	566	640	592	656
Rb	111	82	86	115	77	140	134	76	115	79
Ba	364	792	804	471	3158	711	791	570	766	715
Ce	162	158	161	208	238	142	132	142	175	129
La	92	86	83	111	128	68	70	74	95	65

TABLE 4.3 COMP ARISON OF MEYS/ASHBURTON XENOLITHS TO OTHER KEWEENAY'Y AN YOLC ANICS

	MEYS/ASHBURTOH	KEY	QUEBEC MIME	SOUTH SHORE
5102	49.7-51.2	46.6-48.7	43.4-47.6	50.2-54.0
TiO2	0.69-0.89	0.72-2.33	1.10-1.80	2.10-2.50
Al203	15.21-15.93	15.8-19.2	15.2-16.7	13.9-14.2
Fe203	9.95-11.6	8.20-14.3	10.9-12.4	11.1-13.9
MnO	0.19-0.22	0.11-0.17	0.17-0.20	0.22-0.27
MgO	4.61-6.0	5.30-8.70	6.30-9.00	4.00-6.40
CaO	7.43-9.20	9.20-12.4	7.10-10.5	6.00-8.10
$\mathrm{Na}_{2} 20$	3.22-6.81	2.20-2.60	1.90-2.90	2.90-3.60
K20	1.80-2.25	0.12-0.54	0.20-1.20	0.60-1.40
P205	0.38-0.61	0.03-0.25	0.10-0.18	0.31-0.37

KEW= KEWEENAYAN REFERENCE SUITE (BASALTIC YOLCANISM STUD'Y PROJIECT,1981)
QUEBEC MINE = QUEBEC MINE BASALTS, MICHIPICOTEN ISLAND (ANNELLS, 1974)
SOUTH SHORE= SOUTH SHORE B ASALTS, MICHIPICOTEN ISLAND (ANNELLS, 1974)
are represented by those least-altered by assimilation.
Two groups of tholeiites are found on Michipicoten Island (Annells, 1974), these being the Quebec Mine basalts and the South Shore basalts. When compared to the Quebec Mine Suite, the Neys/Ashburton xenoliths are found to have more $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$. Mgo. $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{MnO}$ and
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ are comparable with TiO_{2} and MgO less. The South Shore Suite prove to be higher in $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and MnO with less $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}$, $\mathrm{P}_{2} \mathrm{O}_{5}$ and comparable Mgo.

Neys/Ashburton xenoliths differ significantly from the keweenawan Reference Suite (Basaltic Volcanism Study Project, 1901) being enriched in $\mathrm{SiO}_{2}, \mathrm{No}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}$ and $\mathrm{F}_{2} \mathrm{O}_{5}$ and slightly enriched in Mno. They hove less $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{CaO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and TiO_{2}.

In general, Neys/Ashburton least assimilated xenoliths are enriched in the alkalies and $\mathrm{P}_{2} \mathrm{O}_{5}$ and depleted in TiO_{2} relative to other Keweenswan basalts. TiO_{2} depletion indicates the parent volcanic(s) of Neys/Ashburton zenuliths to be more evolved than the other volcanics wheress enrichment in alkalies and $\mathrm{P}_{2} \mathrm{O}_{5}$ shows there is contamination present from the host
syenites.

43 Wolf Camp Lake

4.3.1 Mojor Elements

Wolf Camp Lake megaxenolith major element compositions and their respective CIPW norms are presented in Table 4.4. All specimens are quartz normative ranging from less than 1% quartz to over 11% quartz.

Figure 4.3 is a series of variation diagrams for the major oxides vs SiO_{2}.
SiO_{2} shows the greatest variation from a low of 48.3% to a high of 53.9%.

Points are identified for least-assimilated to most-assimilated specimens.
$\mathrm{MgO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{K}_{2} \mathrm{O}$ produce trends when plotted against increasing SiO_{2}
content. MgO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are seen to decrease while $\mathrm{K}_{2} \mathrm{O}$ increases. A weak
trend of increasing $\mathrm{Na}_{2} \mathrm{O}$ is also evident. CaO and $\mathrm{Al}_{2} \mathrm{O}_{3}$ show no recognizable trends.

It is observed that the most assimilated samples C2517 and [2518 are distinctly different in composition to the other xenoliths. The specimens plot as the most extreme loss or increase of components with SiD_{2}
increase. C3121 represents the closest composition to that of the original volcanic rocks.

TABLE 4.4 WHOLE ROCK ANALYSES AND CIPY NORMS FOR 'YOLF CAMP LAKE MEGAXENOLITH
ANALYSES ARE N ORDER OF INCREASING ASSIMILATION

	C3121	C2531	C3123	C2530	C2523	C3125	C2526	C 2524	C3120	C3124	C2518	C2517
SiO 2	48.30	49.50	49.60	49.70	49.80	49.80	50.30	50.50	51.70	52.20	53.80	53.90
TiO2	2.03	1.80	1.90	1.77	1.93	2.00	1.92	1.78	1.97	1.94	1.29	1.40
A1203	14.30	14.00	13.90	12.30	13.90	13.90	13.90	13.30	14.20	14.00	15.40	14.50
Fe203	15.40	14.30	14.50	13.60	13.90	14.90	15.80	15.20	14.50	14.50	11.00	12.60
Mno	0.27	0.28	0.24	0.30	0.20	0.27	0.27	0.29	0.25	0.22	0.25	0.27
CaO	7.84	7.83	7.85	9.11	7.02	6.56	6.34	5.09	7.15	7.25	4.11	4.37
Mgo	4.14	3.42	3.64	4.17	3.56	3.67	4.00	3.08	2.56	2.46	0.76	1.16
Ha20	3.47	4.83	3.85	3.62	4.26	3.95	2.63	4.56	3.81	3.57	5.18	4.74
K20	1.67	1.68	1.81	2.85	2.52	2.97	2.13	2.85	2.38	2.56	4.36	4.54
P205	1.07	0.87	0.99	0.92	1.00	1.02	0.88	0.87	1.05	1.07	0.42	0.48
LOI	1.23	0.47	1.00	1.00	1.16	0.77	1.00	1.70	0.31	0.16	2.77	0.70

$\begin{array}{lllllllllllllll}\text { TOTAL } & 99.90 & 99.20 & 99.60 & 99.60 & 99.50 & 100.10 & 99.40 & 99.50 & 100.20 & 100.20 & 99.30 & 99.20\end{array}$

CIPW NORMS

0	4.73	0.22	4.61	1.15	1.55	1.49	11.25	2.71	7.30	8.57	0.89	2.21
OR	10.02	10.08	10.88	17.13	15.18	17.67	12.82	17.27	14.13	15.16	26.65	27.39
AB	29.81	41.49	35.15	31.15	36.75	33.65	22.67	39.57	32.38	30.28	45.34	40.95
AN	18.80	11.73	15.57	9.05	11.59	11.50	20.20	7.59	14.68	14.65	6.10	4.98
W0				-----		-_-_	-----	-_-	----	_-_-_	1.29	0.79
OH	5.84	12.99	9.11	20.03	8.73	6.70	0.20	5.67	6.35	6.61	4.22	6.36
HY	7.76	2.63	5.00	1.28	4.99	6.85	10.06	5.24	3.46	3.08		
H	0.59	0.61	0.52	0.65	0.44	0.58	0.59	0.64	0.54	0.47	0.55	0.59
HM	15.64	14.52	14.75	13.83	14.17	15.00	16.09	15.59	14.56	14.53	11.38	12.86
TM	4.30	3.70	4.07	3.57	4.26	4.19	4.04	3.66	4.16	4.16	2.56	2.75
AP	2.57	2.09	2.39	2.22	2.42	2.43	2.12	2.11	2.50	2.54	1.05	1.16

Figure 4.3 Variation diagrams for Wolf Camp Lake megaxenolith samples.

Figure 4.3 continued.

All specimens are quartz normative, with normative hypersthene indicating a parent basalt with tholeitic affinities.

Figure 4.4 plots compositions according to the rock elassification scheme of Streckeisen and Lellaitre (1979). The data shows considerable scatter, with compositions ranging from mugearite and calc-alkaline andesite at the least-assimilated part of the trend to trachyte towards highly-assimilated samples. As assimilation progresses, compositions plot away from the least assimilated samples towards the highly assimilated specimens due to alkali addition. The normative anorthite content is also seen to decrease, this agreeing with observed plagioclase compositional variations. C3121 is the least assimilated of all samples and plots close to the tholeiitic basalt field, showing this rock type to be a likely parent to the megaxenolith basalts. This conclusion agrees with the observed pyroxene compositional variation. All data plots on the same trend indicating only one parental rock type is present. Data also trends towards ploted alkali feldspar compositions, indicating equilibrium to more syenitic compositions of the host.

4.3.2 Minor Elements

Minor element compositions for the wolf Camp Lake megaxenolith are given in Table 4.5. No significant trends are found in the elements other

7 TRACHYTE
8 LATITE
9 MUGEARITE
9 Calc-alkaline andesite

FIGURE 4.4 STRECKEISEN-LEMAITRE ROCK CLASSIFICATION PLOT FOR WOLF CAMP LAKE

Cr	<10	<10	25	20	19	<10	25	<10	<10	<10	<10	$\leqslant 10$
Rb	107	109	115	72	120	127	79	82	86	59	64	118
Sr	314	275	464	259	278	337	430	525	481	499	487	536
Y	60	50	44	40	30	36	24	35	43	42	38	43
Zr	346	356	339	379	332	367	349	329	350	329	332	332
Nb	136	154	104	128	125	126	129	126	135	125	122	114
Ba	3430	2610	1020	1410	1020	1240	768	1370	771	1410	1170	1250
Ni	<2	2	20	7	32	21	21	22	22	19	24	21
Ba	15	18	18	20	19	14	19	18	19	16	19	17

TABLE 4.6 COMPARISON OF WOLF CAMP LAKE MEGAXENOLTH TO OTHER KEYEENAY AN VOLCANICS

	MEYS/ASHBURTON	KEW	QUEBEC MIME	SOUTH SHORE
SiO2	$48.3-52.2$	$46.6-48.7$	$43.4-47.6$	$50.2-54.0$
$\mathrm{TiO2}$	$1.90-2.03$	$0.72-2.33$	$1.10-1.80$	$2.10-2.50$
$\mathrm{Al203}$	$13.9-14.3$	$15.8-19.2$	$15.2-16.7$	$13.9-14.2$
Fe 203	$14.5-15.9$	$8.20-14.3$	$10.9-12.4$	$11.1-13.9$
MnO	$0.22-0.27$	$0.11-0.17$	$0.17-0.20$	$0.22-0.27$
MgO	$2.46-4.14$	$5.30-8.70$	$6.30-9.00$	$4.00-6.40$
CaO	$6.34-7.85$	$9.20-12.4$	$7.10-10.5$	$6.00-8.10$
Na 20	$2.65-3.95$	$2.20-2.60$	$1.90-2.90$	$2.90-5.60$
K 2 O	$1.67-2.97$	$0.12-0.54$	$0.20-1.20$	$0.60-1.40$
P 205	$0.88-1.07$	$0.03-0.25$	$0.10-0.18$	$0.31-0.37$

KEY' = KEWEENA'YAN REFERENCE SUITE (BASALTIC VOLCANISM STUOY PROJECT, 1981) QUEBEC MINE= QUEBEC MINE BASALTS, MICHIPICOTEN ISLAND (ANNELLS, 1974) SOUTH SHORE= SDUTH SHORE BASALTS, MICHIPICOTEN ISLAND (ANNELLS, 1974)
than slight decreases in Sr and Nb with increasing SiO_{2}. Ba is seen to increase significantly in the most assimilated samples, reflecting addition of potassium reldspar. Dther elements show no trends. Barium and strontium are present in significant amounts ranging from 766 ppm to 3430 ppm and 259 ppm to 536 ppm respectively. $2 r$ is present ranging from 329 ppm to 379 ppm .

Cr and Ni contents are low to nil for Wolf Camp Lake specimens, indicating the parental tholeitic basalt to be evolved.

4.3.3 Comparison to other Koweenawan Volcanics

Table 4.6 compares Wolf Camp Lake magaxenolith samples to other Keweenawan volcanics. Wolf Camp Lake compositions are represented by least assimilated specimens.

Compared to South Shore tholeites of Michipicoten Island (Annells, 1974) a close match is observed, except that Wolf Camp Lake is slightly poorer in $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ and less in $\mathrm{Al}_{2} \mathrm{O}_{3}$. CaO and Mgo. Compared to Quebec Mine basalts, Wolf Camp Lake is found to be higher in $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ and less in $\mathrm{Al}_{2} \mathrm{O}_{3}$, CaO and MgO .

Compared to tholeites of the Keweenawan Reference Suite (Basaltic

Figure 4.5 AFM diagram for Neys/Ashburton xenoliths (e) and Wolf Camp Lake megaxenolith (+).

$$
\begin{aligned}
& A=\mathrm{Na} 20+\mathrm{K} 20 \\
& F=(\mathrm{FeO}+.8999 \mathrm{Fe} 203)+(\mathrm{FeO}+2 \mathrm{Fe} 203)(\mathrm{Fe}+\mathrm{Fe}) \\
& \mathrm{M}=\mathrm{MgO}
\end{aligned}
$$

Volcanism Study Project, 1981), Wolf Camp Lake specimens are significantly different. They are higher in $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}, \mathrm{Na}_{2} \mathrm{O}$, $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ and lower in $\mathrm{Al}_{2} \mathrm{O}_{3}$. MgO and CaO .

In general, compared to other Keweenawan volcanics, Wolf Camp Lake xenoliths are higher in alkalies. $\mathrm{P}_{2} \mathrm{O}_{5}$, MnO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and lower in CaO, Mgo and $\mathrm{Al}_{2} \mathrm{O}_{3}$. Increased alkalies indicate assimilation occuring in the least-altered specimens. South Shore basalts show the closest match indicsting a tholeitic parentage possible. TiO_{2} contents show wolf Camp Lake to be only slightly more evolved than Michipicoten Island tholeiites. 4.4 Comparison of Wolf Camp Lake and Neys/Ashburton

Figure 4.5 is an AFM diagram for Neys/Ashburton senoliths and the wolf Camp Lake megaxenolith composition. Neys/Ashburton xenoliths have slightly more total Fe, Mgo and higher alkalies than Wolf Camp Lake samples. Both however show the same response to assimilation as alkalies increases. The most assimilated samples in each case plot with higher alkali content. Neys/Ashburton data suggests development of two trends, each increasing with alkali content. This may indicate the presence of two renolith types.

Both Neys/Ashburton and wolf Camp Lake show the same trends on the Streckeisen-Lemaitre rock classification plot of decreasing normative anorthite with incressing assimilation, agreeing with observed plagioclase compositional variation.

Bulk rock compositions from both areas and EIPW norms indicate the zenoliths are derived from a tholeitic basalt parent. Neys/ashburion disploys trends suggesting the presence of a second undersaturated yenolith type. Pyroxene compositional variation indicates an evolved tholeific parentage. Trace element data from the xenoliths agree with this conclusion as Ni and Cr contents are low. Wolf Camp Lake senoliths are slightly more evolved than Neys/Ashburton wemoliths as they contain less Ni and Cr . In the case of the Neys/ashburton zenoliths, identification of two rock types is difficult due to the absence of completely-fresh rocks and few analyses available.

Chopter Five

Relationship between the Yenoliths and Host Syenites

5.1 introduction

It was suggested by Jago (1980) and Lukosius-Sanders (1986) that assimilation of the basic xenoliths in the Western Contact Zone and Neys/Ashburton has resulted in the production of contaminated ferro-edenite syenites from uncontaminated ferro-edenite syenite. This hypothesis is tested in this study by modelling the contamination of a ferro-edenite syenite by the addition of basic renoliths. This is accomplished by mass balance mixing calculations and principal component analysis. The compositional changes found in the senoliths are also modelled using these techniques.

5.2 Xenolith Compositional Changes

Mass balance mixing calculations are used to study the compositional changes in the xenoliths due to assimilation. The calculations are based on the procedure orginally devised by Bryan et al (1969), and incorporated into the Geochemical Program Package of Geist et al (1965). Proportions of a specified set of components are added to or subtracted from a parent to produce a least squares best fit to a given daughter composition. This
procedure permits the modelling of assimilation or mising processes. The sum of the squared values of residuals (R-squared) is used as a test of whether or not a solution is acceptable. R-squared yalues less than 1 are considered acceptable with values less than 0.3 a good fit and values less than 0.1 an excellent fit.

To assess compositional changes during zenolith assimilation, the parents used are Keweenawan volcanics from the area of the North Shore, Lake Superior, these being from Michipicoten Island (Arinells, 1974) and the Keweenawan Reference Suite (Basaltic Volcanism Study Project, 1981). The doughters are the xenoliths observed at Neys/Ashburton. Components added to the renoliths are minerals found within the host ferro-edemite syenites, as they are the source of the components added.

Figures 5.1 and 5.2 are mass balance mixing calculations modelling a Michipicoten Island tholeite (AK 108) as the parent for volcanic xenoliths at Neys/Ashburton. By adding various combinations of minerals to this volcanic it was found the best solution was obtained by the addition of albite, potassium feldspar, magnetite and apatite. This combination of minerals produce R-squared values of 0.199 and 0.091 for the daughter compositions C2490 and C2330 respectively. C2490 is a yenolith displaying

	PARENT	albite	mas	kspar	apat	DAUGHTER
S:02	47.60	67.45	0.27	63.66	0.00	51.45
T:02	: 4.4	0.00	0.00	0.00	0.00	0.64
AL200	13.20	20.50	0.21	19.54	0.00	15.33
V゙20S	3.00	0.00	0.00	0.00	0.00	0.00
YEO	10.52	0.06	92.73	0.09	0.00	3.75
Mso	0.13	0.00	0.00	0.00	0.10	0.17
MGO	7.90	c. 10	0.00	0.00	0.10	5.90
CAO	3.80	0.85	\%.00	0.50	55.24	9.34
NAこO	2.90	:0.97	0.00	0.80	0.00	3.91
K20	- 50	-. 35	0.00	15.60	0.00	2.00
H2O-	0.00	0.15	0.00	0.00	1.36	0.00
:20-	0.00	0.00	0.00	0.00	0.00	0.00
P203	0.14	0.00	0.00	0.00	42.05	0.40

(PARENT-MINERALS=DAUGKTER)
PARENT: aK iOS
DAUGHTER: © 2490

	SOE'N \% CUMULATE	
ak $=08$	1.000	
alb:te	- 0.252	56.484
mag	-.006	1.342
hspar	0.154	35.603
apat	0.020	4.565
○2790	1.431	

$$
R S Q U A R E D=0.199
$$

	$\begin{aligned} & \text { PARENT } \\ & \text { ANALYSIS } \end{aligned}$	DAUGHEER ANALYSIS	DALGHTER	WEIGHTED
SI02	22.50	22.94	22.85	0.33
T102	0.68	0.29	0.48	-0.19
AL20:	7.19	6.83	7.20	-0.07
FEO	4.97	3.90	3.89	0.02
M:O	0.09	0.07	0.06	0.01
MGO	S. 73	2.63	2.62	0.01
CAO	4.16	4.16	4.10	0.06
NA20	1.37	1.75	1. 72	0.03
K20	0.23	0.83	0.87	0.02
P205	0.07	0.13	0.89	-0.21

cr	250.000	20.220	146.974	-126.754	0.000
co	52.000	45.600	36.393	0.207	0.000
nj	150.000	54.380	104.981	-50.101	0.000
ca	59.000	34.130	41.293	12.837	0.000
7 y	160.000	179.706	111.980	67.726	0.000
y	47.000	23.597	32.394	-4.297	0.000
sr	250.000	639.918	174.969	464.949	0.000
ba	200.000	569.750	139.975	429.775	0.000

FIGURE 5.1

	PAREこ：	a $16: \%$	mag	kspar	apat	DAUGHTER
SIGE	47.60	67.45	0.37	63.66	0.00	54.22
＇side	1． 4 4	0.00	0.00	0.00	0.00	0.65
A： 203	15．20	20.50	0.21	19.54	0.00	15.28
F220\％	0.00	$\therefore .00$	0.00	0.00	0.00	0.00
FEC	10.52	0.06	92.73	0.09	0.00	7.89
nxo	\％．18	0.80	0.00	0.00	0.10	0.16
M6a	7.90	（ ． 10	（1．00	0.00	0.10	5.01
CA：	8．30	0.31	0.00	0.50	55.34	7． 6
NAこO	2.90	10.97	0.00	0.80	0.00	4.79
人2）	： 60	0.38	0.00	15.60	0.00	2．22
H2O－	0.00	0.25	0.00	0.00	i． 86	0.00
：20－	0.00	0.00	0.00	0.00	0.00	0.00
アご家	U．15	0.00	0.00	0.00	42.05	0.37

（：ARENT－MANBRAES＝DAOGHTER）

FARENT：	aK 100
OALGHTER：	02300

SOL＇N \％CUMULATE
ak $108 \quad 1.000$
albite $0.520 \quad 68.326$
mag 0.090 2．286
$\begin{array}{lll}\text { kspar } & 0.213 & 28.249\end{array}$
apat．
02300
$0.0: 2$ i．640
1．755

R SQUARED＝ 0.092

S：02
T：O2
Al．203
FEO
MNO
MGO
CAO
$\therefore A 20$
K20
P205

DAUGHTER
ANALYSis
23.41
0.23
6.59
3.40
0.07
2.10
3.09

2． 07
0.96
0.16
0.07
16.630
45.400
55.220
43.090

33 ． 350
39． 221
526．099
471.180

					BULK
cr	210．000	16.630	119.892	－103．262	0.000
00	52.000	45.400	29．638	15.712	0.000
\cdots ¢	150.000	55.220	85.637	-30.417	0.000
cu	59.000	48.090	33.684	i4．406	0.000
7 r	160．000	33.350	91．346	240.604	0.000
y	47.000	39．821	26.833	12.488	0.000
Sr	250.000	526.099	142.729	383.370	0.000
ba	200.000	471.180	114．183	356.997	0.000

IAUCHTER
CALC
23.35
0.39
7.30
3.40
0.05
2.14

3． 06
2． 04
0.94

0． 47

WEIGHTED RESID
0.22
$-0.1 \pm$
-0.14
0.01
0.02
0.02
0.03
0.03
0.02
-0.09

FIGURE 5.2
few effects of assimilation whereas C 2330 is a highly assimilated zenolith. Amounts of components added depend on the degree of assimilation of the xenolith. Only 25.2 albite was added to the least assimilated C 2490 whereas 52 K albite was added to the more highly assimilated wenolith C2330. Potassium feldspar and magnetite also show this relationship of increased addition to the more assimilated zenolith. Apatite results are variable as $\mathrm{P}_{2} \mathrm{O}_{5}$ contents of the genolithe show no relationship to degree of assimilation only that concentrations are higher in assimilated zenoliths.

Figures 5.3 and 5.4 are mass balance mixing calculations using a Keweenawan tholeife, KEw5, as the parent. Addition of the same four minerals used in calculations for AK 106 produces R -squared values of 0.172 and 0.170 , with the components showing the relationship of more addition to produce more-assimilated kenoliths. This indicates that the modelling procedure is valid for the general case. Both examples demonstrate that addition of albite, potassium feldspar, magnetite and apatite produce assimilated xenoliths, the amounts added governing the degree of assimilation.

To test further the modelling process, these four minerals were added to a xenolith displaying no effects of assimilation to investigate whether or

	PAREN:	albite	mag	kspar	apat	DAUGUTER
ST02	48.73	67.42	0.27	63.66	0.00	51.45
Tro2	0.32	0.00	0.00	0.00	0.00	0.64
AL203	18.02	20.50	(1.23	59,54	0.00	15.33
FE203	0.00	0.00	0.00	0.00	0.00	0.00
PEO	8.67	0.06	92.73	0.09	0.00	\&.75
MOO	O. 11	\%.00	0.00	0.00	0.10	0.17
MGO	7.77	0.10	0.00	0.00	0.10	5.90
CAO	10.10	0.81	0.00	0.50	55.34	9.34
NA20	2.39	-0.97	0.00	0.80	0.00	3.91
$\therefore 20$	0.21	0.36	0.00	25.60	0.00	2.00
H2O-	3.29	0.15	0.00	0.00	i. 36	0.00
120--	0.00	0.00	0.00	0.00	0.00	0.00
5905	0.06	0.00	0.00	0.00	42.05	0.40

(PARENT-MINERAES=DAUGHTER)

PAREN: Kew 5
DAUGHTER: ©2490

	SOL'N	CUMU:
kew 5	1.000	
ajbite	0.260	57.768
mag	0.016	3.605
Aspar	0.160	-5.440
apat	0.014	3.179
02490	1. 450	

Si:3
T102
AL20S
FEG
MNO
MGO
CAO
NA20
K20
P205

R SOUARED = 0.:72

PARENT
ANALYSIS
22.77
0.38
3.42
4.05
0.05
8. 63
4.73

1. 12
0.10
0.03

DAUGHTER
DAUGHTER
CALC 22.98
0. 26
8.03
S. 31
0.04
2.51
4.14
1.55
0.76
0.62

WETGHTED
RESID
-0.15
0.02
-0.24
-0.01
0.04
0.12
0.02
0.20
0.13
-0.13

BULK D

co	140.000	20.220	96.466	-76.246	0.000
co	48.200	45.600	33.212	12.388	0.000
ni	270.000	54.890	186.041	-131.161	0.000
sr	210.000	659.310	144.699	495.220	0.000
rb	2.000	75.469	1.378	74.091	0.000
5 B	51.000	569.750	35.141	534.609	0.000
ce	10.500	142.670	7.235	134.435	0.000
1 a	4.290	73.750	2.956	70.794	0.000

FIGURE 5.3

	PAREN'	albite	mag	kspar	apat	DAUGHTER
Sl0e	48.73	67.41	0.27	63.66	0.00	54.22
Tio2	0.32	0.00	0.00	0.00	0.00	0.65
A.208	10.02	20.50	0.21	$i 9.54$	0.00	15.23
F\%203	0.00	0.00	0.00	0.00	0.00	0.00
FEC	3.67	0.06	92.75	0.09	0.00	7.89
MNO	0.:	0.00	0.00	0.00	0:10	0.16
MGO	7.77	$0 .: 0$	0.00	0.00	0.10	5.01
CAO	:0.13	0.81	0.00	0.50	55.84	7.16
NA20	2.39	10.97	0.00	0.80	0.00	4.79
$\because 20$	0.21	0.36	0.00	15.60	0.00	2.22
H 2 O	3.29	0.15	0.00	0.00	1.86	0.00
H20-	0.00	0.00	0.00	0.00	0.00	0.00
P205	0.00	0.00	0.00	0.00	42.05	0.37

(PARANT-MTNERALS = DAUGHTER)
PARENT: kew 5
DACGHTER: c20こ0

> SOL'N \% cumulate
kew 5 i.000

albite	0.507	60.257
mag	0.020	2.603
kspar	0.222	28.228
apat	0.007	0.914
c2030	1.726	

$$
R \text { SQUARED }=0.170
$$

	PARENT	DAUGHTER	DAUGHTER	WEIGHTED
	ANALYSIS	ANALYSIS	CALC	RESID
SIO2	22.77	23.41	23.45	-0.18
T102	0.38	0.28	0.22	0.07
AL20	8.42	6.59	7.98	-0.28
FEO	4.05	3.40	3.41	-0.01
MNO	0.05	0.07	0.02	0.04
MGO	0.63	2.16	2.04	0.12
CAO	4.73	3.09	3.09	0.00
NA20	1.32	2.07	1.91	0.16
K20	0.10	0.96	0.85	0.10
P205	0.03	0.16	0.26	-0.03

					BULK D
0 O	14.0.000	16.630	78.24i	-61.611	0.000
co	40.200	45.400	26.937	18.463	0.000
ni	270.000	55.220	150.893	-95.673	0.000
3 s	210.000	526.099	117.361	408.733	0.000
rb	2.000	:14.757	1.118	113.639	0.000
ba	51.000	471.130	28.502	442.678	0.000
ce	10.500	209.320	5.868	202.452	0.000
1 a	4.290	110.470	2.398	103.072	0.000

not a contaminated xenolith could be produced. The results are presented in figure 5.5. Using C2490 as the parent and C2330 as the dauphter composition, an R-squared value of 0.019 is obtained, indicating that this model is yalid also for the Neys/ashburton xenoliths. Apatite in this case is subtracted as $\mathrm{P}_{2} \mathrm{O}_{5}$ is present in ugrying amounts within the renoliths with no relationship to degree of assimilation, other than being present in increased amounts in affected senoliths.

The program also allows for the inclusion of trace elements in the calculations, without affecting the result of mass balance mixing. The program predicts the distribution of trace elements in the diughter based on the proportions of minerals added to produce the daughter. For all calculations, trace element distributions do not match those observed in the daughter compositions. This suggests that the trace elements in the assimilation process are controlled by some other process not modelled by these calculations.

53 Drigin of Contaminated Ferra-edenite Syenite

Modelling of the origin of contaminated ferro-edenite syentes involves the addition of volcanic compositions to a parent ferro-edenite syenite to determine if a contaminated ferro-edenite suenite can be produced.

UNWEIGHTED INPUT DATA：

	PARENT	albite	mag	kspar	apat	DAUGKEER
S502	万こ． 4.	67.41	0.27	63.66	0.00	54.22
＂：${ }^{\text {a }}$	1）．64	0.00	0.00	0.00	0.00	0.65
ATこの回	25．33	20.50	0．25	19.54	0.00	15.28
$\because 2203$	0．00	0.00	0.00	0.00	0.00	0.00
FEO	Q．75	○． 06	92.73	0.09	0.00	7.89
MSO	O．17	0.00	0.00	0.00	0.10	0．16
Mrio	5.30	0.10	0.00	0.00	0.10	5.01
\therefore AO	9． $3 \times$	0.31	0.00	0.50	55.34	$7 .: 6$
NACU	3.30	10.97	0.00	0.80	0.00	4.79
K20	2.00	0.36	0.00	± 5.60	0.00	2.22
420－	0.00	0.55	0.00	0.00	1.86	0.00
1120－	3． 00	0.00	0.00	0.00	0.00	0.00
F205	0.40	0.00	0.00	0.00	42.05	0.37

（PASENG－MINERASS＝DAUGHEER）

FAKENT：C2490
OAJGHTER：C2330

SOL＇\because	CUMUS
1.000	
0.139	22．326
0.002	1．243
0.048	± 8.538
－0．005	－2．167
1.230	

R SQUARED＝0．019

	PARENW	SAUGETER	DAUGHTER	WEIGHTED
	ANALYSIS	ANALYSIS	CALC	RESID
S502	22.94	23.45	23.42	－0．05
TIO2	6.29	0.28	0.23	0.05
Al．203	6.83	6.59	7.01	－0．08
FEO	3.90	3.40	3．4：	－0．00
MNO	0.07	0.07	0.06	0.01
MGO	2．63	2.16	2.14	0.02
CAO	4.16	3.09	3．11	－0．02
NA20	－． 75	2.07	2.07	0.00
K20	0.89	0.96	0.36	0.00
P205	0．： 8	0.16	－0．10	0.08

					BUEK
CO	20.220	16.630	16.438	0.192	0.000
co	45.600	45.400	37.070	3.330	0.000
3 i	54.880	55.220	44.614	10.606	0.000
cu	54.180	48.090	44.004	4.086	0.000
2 n	91.810	106.650	74.635	32.015	0.000
p ${ }^{\text {a }}$	0.030	0.060	0.065	－0．005	0.000
スr	179．706	321.950	146.089	185.861	0.000
y	28.597	29.321	23．247	16.074	0.000
$s \mathrm{r}$	639.918	526.099	520.211	5.888	0.000
rb	75.463	114.757	61.351	53.406	0.000
ba	$569: 750$	471.180	463.169	8．011	0.000
ce	141．670	203.320	115.168	93.152	0.000
$1 a$	73.750	：1＂470	53.954	50.516	0.000

Volcanic rocks added are from Michipicoten Island (Annells, 1974) and the Keweenawan Reference Suite (Basaltic Volcanism Study Project, 1981). Contamination of quartz syenite to form contaminated ferro-edenite syenite was also investigated.

Figures 5.5 through 5.8 are the results of mass balance mising calculations using a variety of contaminated ferm-edenite syenites from least-conteminated to highly-contrminated. The volcanic zenolith composition added is from Michipicoten Island. Results indicate the addition of a volcanic xenolith into a ferro-edenite syenite may produce a contaminated ferro-edenite syenite. For the least contaminated ferro-edenite syenite composition xenolith addition of 12.5 produces the closest match. This increases to 248 and 75.78 for the more contaminated syenites. The amount of kenolith added varies with the degree of contamination. Little addition results in slight contamination whereas large additions produce highly contaminated compasitions.

This trend of differing senolith amounts added producing varying degrees of assimilation is also seen in figures 5.9 through 5.11 which models origin of contaminated ferro-edenite syenite with the added yolcanic rocks being from the Keweenowan Reference Suite. The results obtained are comparable

UNWEIGHTED INPUT DATA:

	Parenm	ak144	DAUGHTER
stoz	64.75	46.70	62.97
TIO2	0.37	: . 80	0.45
Ala0:	15.65	16.80	15.44
FEzU0	0.00	0.00	0.00
EEO	4.50	11.85	5.55
Mno	0.:	0.20	0.12
MGO	0.57	6.90	1.57
cas	1.66	9.80	2.34
NA20	5.70	2.40	5.27
K20	5.30	0.40	4.70
H20-	0.00	3.80	0.00
H20-	0.00	0.00	0.00
P205	0.00	0.18	0.08

(PAREST-MINERAES=DAUGHTER)
PARENT: C2334
DAUGHTER: c232
SOL'N \% CUMULATE

$$
\begin{array}{lll}
c 2334 & \div .000 & \\
\text { akis } & 0.225 & \% 100.000
\end{array}
$$

$$
12329 \quad \text { 1. } 225
$$

R SQUARED $=0.337$

	PAREN:	DAUGMTER	DAUGRTER	WEIGHTED
	ANALYSIS	ANALYSIS	CALC	RESID
SIO2	65.65	63.34	63.75	0.19
Tro2	0.37	0.46	0.54	-0.08
AL203	15.37	15.57	15.99	-0.31
E EO	9.57	5.64	5. 42	0.22
MSO	0.11	0.12	0.12	-0.01
MGC	0.58	1. 59	1.30	0.29
QAO	1. 68	2.38	2.62	-0.24
NAこO	5.78	5.35	5.42	-0.06
K20	5.37	4. 77	4.82	-0.05
P205	0.01	0.08	0.03	0.05

FIGURE 5.6

	PARENT	akić	DAUGHTER
S:02	6C.75	46.70	$6 \pm .00$
TIO2	0.37	1. 80	0.43
Ais0:	1. 6.65	± 6.30	: 6.00
をEこ0O	0.00	0.00	0.00
\% $\because 0$	4.50	12.85	5.34
MNO	$0.2:$	0.20	0.15
MaO	0.57	6.90	1.75
CAO	1. 66	9.80	3.45
$\therefore \mathrm{A} 20$	5.70	2.90	3.16
K20	5.30	0.40	4.63
H20-	0.00	3.30	0.00
1120-	0.00	0.00	0.00
P205	0.0%	0.13	0.14

(PARENT-MINERALS=DAUGHTER)

PARENT:	C233G
DAUGHTER:	02335

SOL'N \% CUMULATE

$c 2334$	1.000	
$a k 144$	0.240	$\% 100.000$

c.2335 \quad 2.240
K SQUARED $=0.404$

SIO2	65.66	61.87	62.30	-0.44
T.02	0.37	0.49	0.66	-0.18
AL203	-5.87	16.22	16.07	0.15
FEO	4.57	5.92	6.06	-0.14
MNO	0.11	0.15	0.13	0.02
MGO	0.58	1.77	1.35	-0.08
CAO	1.68	3.30	3.33	0.18
NA2O	5.78	5.24	5.14	0.10
K20	5.37	4.70	4.41	0.29
P208	0.01	0.14	0.04	0.09

FIGURE 5.7

	PANENT	ak144	DAUGHTER
9502	64.75	46．70	こ4．70
TiO2	O． 27	1． 30	0.61
M1．20．	35．6．3	16．30	15． 50
fleaus	0.00	0.00	0．00
$\because \because 0$	＋． 30	11．85	7.68
$\mathrm{M} \because 0$	O．i	0.20	ט． 16
M60	0.37	6.90	4.17
CAO	1． 66	O． U_{0}	702
$\therefore A=0$	5．70	2.90	4.35
M20	3． 20	0.40	2． 73
「ご	8． 00	3.30	1．79
H20－	0.00	0.00	0.00
9205	$0 \cdot 01$	0.18	U． 67

（ PAREXT－MINERALS＝DAUGHEER）

```
    「AREM?: ©2024
DACGHTER. \(\quad\) © 20.5
```

	SOL＇	CUMidate
c23：4	$\pm .000$	
akif4	i． 130	$\% 100.000$
－2050	2．$=00$	

F SQUARED $=2.576$

	PAREXT	DACGMTER	DALGHTER	NEIGHTED
	ANALYSIS	ANALYSIS	CALC	RESID
5102	65.6 ¢	56．19	56.44	－0．25
TIO2	0.37	0.62	1.17	－0．54
AL203	15.27	15.92	16.41	－0．49
EEO	\＆．37	7.89	2．68	－0．79
Mivo	0.12	0.16	0.16	－0．00
MGO	0.50	4.28	4.00	0.20
Cat	$\pm .63$	7.21	6． 20	1．01
$\therefore A 己 O$	5.78	4.47	4.02	0.45
F 0	3． 37	2．37	2.73	0.14
P205	O．0：	0.30	0.10	0.27

FIGURE 5.8

FIGURE 5.9

	PARENT	kew 3	DAUGHEER
SIO2	64.75	47.19	$6 i .00$
¹02	0.37	0.35	0.48
AL20:	15.65	:7.04	$\therefore 6.00$
FE203	0.00	0.00	0.00
$\because \mathrm{O} 0$	4.50	10.0\%	3. 34
VNO	0.5 i	0.14	0.15
MGO	0.57	3. \ddagger	1. 75
CAO	3.66	10.76	3.45
$\triangle A 2 O$	3.70	2.23	5. 16
K20	5.30	0.35	6.63
H2O-). 00	2.55	0.00
$\mathrm{H2O}^{-}$	0.00	0.00	0.00
\%205	0.0i	0.12	0.14

(PARENT-MINERALS=DAUGHTER)

PARENT: C2Oこ4
IAUGHTER: c2335
SOL'N \% CUMULATE
c2334 $\quad 1.000$
kew $3 \quad 0.232 \% 100.000$
c2025
1.232
$R \mathrm{SQUARED}=0.569$

	PARENT	DAUGHTER	DAUGHTER	WETGHTED
	ANALYSIS	ANALYSIS	CALC	RESID
SIO2	65.66	61.87	62.43	-0.57
TIOZ	0.37	0.49	0.49	-0.00
AL20S	15.37	16.22	16.20	0.03
FEO	4.57	5.92	5.67	0.25
MNO	0.11	0.15	0.12	0.03
MGO	0.58	1.77	2.06	-0.28
CAO	1.63	0.50	3.47	0.03
NA20	5.73	5.24	5.12	0.12
K20	5.37	4.70	4.42	0.23
P205	0.01	0.14	0.03	0.10

FIGURE 5.10

	PARENT	kew 3	DAUGHTER
SI02	64.75	47.13	54.70
Troz	0.37	0.35	0.6 :
AL200	:3.65	17.04	15.50
FE203	0.00	0.00	0.00
FEO	f. 50	10.06	7.68
MNO	0.11	0.14	0.16
MGO	0.37	3.1:	G. 17
CAO	1.66	10.76	7.02
スneo	5.70	2.23	9.35
K20	E. 30	0.35	2.79
H20:	0.00	2.55	1. 79
H20-	0.00	0.00	0.60
P205	0.0 F	0.13	0.37

(PARENT-MINERALS=DAUGETER)
PAREDT: C2334
DAUGHTER: c2059

to the gbove galculations. Addition of basic wolcanics to ferro-edenite syenite results in the production of contaminated ferro-edenite syenite with the degree of contamination varying with the amounts of volcanic material added.

Figures 5.12 through 5.14 show that addition of least-assimilated Neys/Ashburton senolith compositions also results in the production of contaminated ferro-edenite syenite from ferro-edenite syenite. When the compusition of xenolith C2311 is added, it produces the same trends as seen by addition of Michipcoten Island and Keweenawan Reference Suite volcanic rocks.

In the above cases it is observed the R-squared value is high (2.576, 1.906 and 6.333 respectively) for the most contaminated samples. This is the result of two possibilities. Either the xenolith composition chosen is not compositionally similiar to that of the Neys/Ashburton cenoliths or it is possible that addition of more contaminated xemoliths is needed to produce highiy contaminated ferro-edenite syenite. To test the latter possibility. conditions were remodelled using addition of a more assimilated xenolith, C2490, to an uncontamined ferro-edenite syenite. The results are presented in figure 5.15 . The R-squared value is 0.159 for 253.3% yolcanic xenolith

	PARENT	c2011	Davght		
S502	64.75	49.69	62.97		
TIO2	0.37	0.89	0.45		
A.20:	15.65	:5.2:	15.44		
FE203	0.00	0.00	0.00		
Feo	4.50	10.43	5.55		
MNO	0.:	0.21	0.12		
Mgo	0.57	4.65	1.57		
CAO	-. 66	8.04	2.34		
NA20	5.70	6.28	5.27		
K20	5.30	1.84	G. 70		
H20-	0.00	0.00	0.00		
H20-	0.00	0.00	0.00		
P205	0.01	0.60	0.00		
(PARENT-MINERALS = DAUGHTER)					
PARENT: DAUGHTER:		c2334			
		c 2329			
		SOL'N \% CUMULATE			
$02334 \cdot 2.000$					
c231:		0.165 \%100		000	
c2029		1.165			
R SQUARED $=0.720$					
PARENT			DAUGYTER	DAUGHTER	WEIGHTED
	ANALY	SIS	ANALYSIS	CALC	RESID
Sroz	65.		63.94	63.58	0.33
TTO2			0.46	0.45	0.01
AL 203	15.		15.67	15.83	-0.16
FEO			5.64	5.43	0.21
MNO			0.: 2	0.13	-0.01
MGO			1.59	1.16	0.43
CAO			2.38	2.60	-0.23
Na20			5.35	5.87	-0.51
$\because 20$			4.77	4.88	-0. 11
P205			0.08	0.09	-0.01

FIGURE 5.12

	PARENT	c23:1	DAUGHTE
SIO2	64.75	49.69	61.00
TIO2	0.37	0.89	0.48
A1,20:	15.65	15.21	10.00
feeos	0.00	(0.00	0.00
EEO	4.50	10.48	5.34
M NO	0.11	$0.2=$	0.15
MaO	0.37	4.5:	1.75
CAO	i. 66	8.04	3.45
NA20	5.70	6.28	5.16
K 20	5. 30	i. 34	4.63
H20	0.00	0.00	0.00
H20-	0.00	0.00	0.00
P20.5	0.01	0.60	0.14

(PARENT-MINERALS = DAUGHTER)

$$
\begin{array}{cc}
\text { PARENT: } & \text { c2334 } \\
\text { DAUGHRER: } & \text { c23335 }
\end{array}
$$

FIGURE 5.13

	PAREST	c201i	davghter
5102	64.75	10.60	34.70
TIOE	0.37	0.09	0.61
ALeus	15.65	: 3.2 e	:5.50
EESOO	0.00	0.00	0.00
F:O	$\therefore .30$:0.80	7.63
Y:30	0. i 1	-.2:	0.16
MC0	0.37	i. 6 i	i. 17
CAO	: 6.60	0.04	7.02
$\therefore 100$	5.70	6.20	4.35
R20	3.30	i. 34	2.79
:20-	0.00	0.00	1.79
:20-	0.00	0.00	0.00
P20S	0.01	0.60	0. 07

(PARE: T-MINERALS=DACGHTER)

FAREST:	02334
QAUGHTER:	02059

$$
\text { SCL' } \because \% \text { CUMULATE }
$$

$$
\quad-\ldots-\cdots \cdots, \ldots-\ldots
$$

$$
02005 \quad 2.000
$$

$$
\begin{array}{lll}
0231 & 2.300 & \% 100.000
\end{array}
$$

$$
02050
$$

$$
3.300
$$

6.330

	PARENT	DAUGHTER	DAUGHTER	WEIGHTED
	ANALYSIS	ARALYSIS	calc	RESid
Sic2	¢3.66	56.19	55.41	0.78
TIOE	0.37	0.62	0.74	-0.12
ALaOS	13.27	15.92	15.65	0.27
FeO	4.57	7.89	8.78	-0.89
MnO	0.11	0.16	0.18	-0.02
MGO	0.58	4.28	3.43	0.85
CAO	1. 63	7.21	6.19	1.02
\therefore A20	5. 78	4.47	6.22	-1.75
K 20	5.37	2.87	2.96	-0.09
P205	0.01	0.30	0.42	-0.05

FIGURE 5.14

	PAREN：	c2490	DAOGHTER
5100	6 立． 75	こう．f5	54.70
TiO2	0.37	0.64	0.61
\therefore A．ang	$こ ら .58$	こ シ． 2	15．30
FここOO	0.0	0.00	0.00
－20	$\therefore .30$	8.75	7．ES
M：	0.11	0.17	S．ic
MGO	0.57	こ．00	＋． 17
CAO	1．66	9.34	7.02
$\because \mathrm{O} 20$	5． 70	S． 91	4.35
Kこ0	5.30	2.00	2.79
H20	0.00	0.00	1． 73
1120－	0.00	0.00	0.00
9205	$0: 01$	0.40	0.07

（ FARENT－MINERALS＝DAUGHEER）

FARENT：CaSOA
IAUGHTER：C2053
SOL $\because \quad \because$ CUMULATE

02304	1.000	
$c 2430$	2.533	$\because 100.000$
02030	3.530	

K SUUARED＝ $0 . \pm 59$

PAREST UAESKTER DAUGHTER WEIGHTED
ANALYSIS AVALYSIS
65.66
0.37
13.87

4．57
0.11
0.50

1． 6 S
5． 70
3． 37
0.01
36.19
0.62
1.5 .92
7.89

U． 16
4.20
7.21
4.47

2． 37
0.30
56.26
0.50
≥ 5.72
7.70
0.15
4.49
7.32
4.50

2． 98
0.30

RESID
-0.07
0.05
0.20
0.19
0.01 ．
-0.20
-0.11
-0.03
-0.12
0.00

FIGURE 5.15
added. The large amount of zenolith addition required is implausible and suggests that the simple mising procedure is not valid for this case.

Figures 5.16 and 5.17 are the results of mass balance mixing calculations modelling quartz syenites as parents to the contaminated ferro-edenite syenites. On average R-squared values are greater than one, this indicating they are not possible parents. Ferro-adenite syenites produce a much better fit to the model as potential parents.

5.4 Principal Component Analysis

Variation diagrams for SiO_{2} vs majar oxide components for whole rock compositions of genoliths and host syenites are plotted on figure 5.18. Compositions from this study are combined with those reported by Lukosius-Sanders (1968). The plots show linear relationships between the end-members ferro-edenite syenite and yenoliths with contaminated ferro-edenite syenite lying intermediate between the two. This suggests that the three rock types are related. To study further the relationship between Neys/Ashburton xenoliths, ferro-edenite syenite and contaminated ferro-edenite syenite, principal component analysis is used.

Principal component analysis was carried out using the subroutine principal components of Multiwariant Methods contained within the

	PARENT	kew 3	DAUGHT
SI02	64.10	47.19	62.97
Tl02	0.39	0.95	0.45
AL20:	16.00	± 7.04	15.44
Fe203	0.00	0.00	0.00
PEO	4.92	10.0 ¢	5.55
mato	0.14	0.14	0.12
MaO	0.3 -3	8.1:	1.57
CaO	-. 30	10.76	2.34
Na20	5.99	2.20	5. 27
Kこ0	5.66	0.85	4.70
H20+	0.00	2.55	0.00
120-	0.00	0.00	0.00
P205	0.06	0.12	0.02

(PARENT-MINERALS=DAUGHTER)
$\begin{array}{cc}\text { PARENT: } & c 2473 \\ \text { DAUGHTER: } & 02329\end{array}$

	SOI. ' N	CUMULATE
02475	1.000	
kew 3	0.127	$\% 100.000$
c 2 こ29	1.127	

R SQUARED $=1.628$

PARENT	DAUGHTER	DAUGHTER	WEIGHTED
ANALYSIS	ANALYSIS	CALC	RESID
64.80	63.94	63.00	0.93
0.39	0.46	0.46	-0.00
16.17	15.67	16.33	-0.66
4.97	5.64	5.57	0.06
0.14	0.12	0.14	-0.03
0.36	1.53	1.25	0.34
1.31	2.33	2.40	-0.02
6.06	5.35	5.64	-0.28
5.72	4.77	5.13	-0.35
0.06	0.08	0.07	0.01

FIGURE 5.16

	PARENT	kew 5	DAUGHTER
SIO2	64.is	48.75	62.97
TIO2	0.39	0.82	0.45
AT. 20.8	: 6.00	± 8.02	15.44
FE203	0.00	0.00	0.00
VEO	4.92	3.67	5.55
M:O	0.14	U.1:	0.: 2
MGO	0.36	7.77	1.57
CAU	1.30	:0.:3	2.34
NA2O	5.99	2.39	5.27
K20	5.66	0.21	4.70
$\mathrm{H} 20+$	0.00	3.20	0.00
H2O-	0.00	0.00	0.00
P20.5	$0.0 \dot{6}$	0.06	0.08

(PARENT-MINERALS=DAUGHAER)

PARENT: C2473
DAUGHTER: C2329

	SOL'N	\% CUMULATE
c2473	i.000	
kew 5	0.132	\%100.000
c2329	1.132	

R SQUARED = 1.614

PARENT	DAUGHTER	DAUGHTER	WEIGHTED
ANAIYSIS	ANALYSIS	CALC	RESID
64.80	63.94	63.13	0.81
0.39	0.46	0.45	0.01
16.17	15.67	16.45	-0.78
4.97	5.64	5.43	0.20
0.14	0.12	0.14	-0.02
0.36	1.59	1.25	0.34
1.31	2.38	2.37	0.01
6.06	5.35	5.64	-0.29
5.72	4.77	5.09	-0.31
0.06	0.03	0.06	0.02

FIGURE 5.17

Statgraphics Statistical Graphics System, designed by the Statistical Graphics Corporation. Ordinary variation diagrams do not account for all the variation inherent in the data set. In principal component analysis all data is used such that all variance in the raw data is accounted for. Principal components that explain most of the variance can be identified in a data set such that the others may be discarded reducing the number of variables to consider. Plots of principal components are equivalent to n-dimensional orthogonal variation diagrams.

In this study the data set is the whole rock composition of yenoliths and host syenites. MnO and $\mathrm{F}_{2} \mathrm{O}_{5}$ are deleted from the principal component. andysis as they contribute very little to the variance in the data set.

Principal component analysis of the eight major oxides $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$,
$\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{MgO}, \mathrm{No}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$ generates Table 5.1 which shows the proportion of the total variance accounted for by each component. In this case the first three components account for over 90% of the total variance encountered.

Figures 5.19 and 5.20 are scatter plots of component 1 vs components 2

TAELE 5.1 PRINCIPAL COMPONENTS ANALYSIS FOR FERRO-EDENITE SYENITE, CONT AMINATED FERRO-EDENITE SYENITE AND XENOLITHS FROM NEYS/ASHEURTON

COMPONENT MUMBER	PERCENT OF YARIANCE	CUMULATME PERCENTAGE
1	63.75933	63.75933
2	19.35054	83.10987
3	7.41613	90.52599
4	5.31908	95.84507
5	2.41470	98.25978
6	1.20900	99.46877
7	0.47446	99.94323
8	0.05677	100.00000

FIGURE 5.19 SCATTERPLOT OF PRINCIPAL COMPONENTS ANALYSIS

FIGURE 5.20 SCATTERPLOT OF PRINCIPAL COMPONENTS
and 3 respectively. Kenoliths plot to the left-hand side of each figure within a small field. within this field it is found that least assimilated senoliths range to more assimilated enoliths.

Ferro-edenite syenites all plot together in a tight group on the right-hand side of each diagram.

Between ferro-edenite syenite and the kenoliths is a wide spread of data points representing contaminated ferro-edenite syenite. Identification of data points (figures 5.19 and 5.20) leads to the observation that highly-contaminated ferro-edenite syenites plot towards the senolith end of the distribution pattern and slightly-contamingted ferro-edenite syenite plots toward the ferro-edenite syenite end of the distribution pattern. This is significant in that it suggests that contiaminated ferro-edenite syenites are the result of the direct assimilation of Neys/Ashburton volcanic xenoliths by ferro-edenite syenite. This supports the conclusions reached from the mass balance mixing calculations outlined in section 5.3.

Summory

Volcanics that produced the senoliths found in the Neys/Ashburton study area and the megasenolith are postulated to be coeval with the production of the Coldwell Alkaline Complex and to have formed cap rock lavas. Eulk rock composition and puroxene compositional variation indicate they were of an evolved tholeitic basalt character. Cauldron subsidence may hove caused their brecciation and subsequent inclusion into the Coldwell syenites.

Modelling by mass balance mixing calculations indicate volcanic yenoliths are assimilated by the equilibration of their mineral assemblages with that of the host syenites. Ferro-edenite syenite is seen to be the parent of contaminated ferro-edenite syenite.

Further study of the eenoliths in the Neys/ashburton area is needed to determine if there are two tupes of xenoliths present. Trace element behavior in the assimilation process also requires further investigation as mass balance mixing modelled in this study is inadequate.

REFERENCES

> Annells, R, 1974. Keweenawan volcanic rocks of Michipicoten Island Lake Superior, Ontario, an eruptive centre of Proterozoic age. Geol.Sury Can.Bull. 218 , 141p.

Basaltic Volcanism Study Project, 1981. Basaltic volcanism on the terrestrial planets. Pergamon Press, Inc., New York, 1286p.

Deer, W., Howie, R. \& Zussman, J, 1976. Rock Forming Minerals. Volume 2A. Single Chain Silicates(2nd ed.). John wiley \& Sons. 668p.

Geist,D.,Baker,B., \& McBirney,A. 1985. GPP: A program package for creating and using Geochemical Data Files.

Hawthorne,F., 1961. Crystal chemistry of the amphiboles in Veblen.D.(ed). Amphiboles and other hydrous Pyriboles-Mineralogy. Reviews in Mineralogy, Vol.9A, Min.Soc.Am., pp1-120.

Jago,B., 1980. Geology of a Portion Of the weatern Contact Margin, the Coldwell Complex. Unpublished BSc. thesis, Lakehead University, Thunder Bay, Ontario. 98p.

LeTerrier, J., Maury,R., Thonon,P., Girard,D. \& Marchal,M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Plan.Sci.Lett., Vol.59, 139-154.

Lowder, G., 1973. Late Cenozoic Transitional Alkali-0livine-Tholeitic Basalt and Andesite from the Margin of the Great Basin, Southwest Utah. Geol.Soc.Am.Bull., Vol.84, pp2993-3012.

Lukosius-Sanders,J.,1988. Petrology of Syenites from Centre 3 of the Coldwell Alkaline Complex, Northwest Ontario. Unpublished MSc. thesis, Lakehead University, Thunder Bay, Ontario. 110p.

Magonthier,M. \& Velde,D.1976. Mineralogy and Petrology of some Tertiary Leucite-Rhonite basanites from central France. Mineral Mag., 40, pp817-826.

Mitchell,R. \& Platt,R.G., 1978. Mafic mineralogy of Ferro-augite Syenite from the Coldwell Alkaline Complex, Ontario, Canada. Jour Pet., Vol.19, Part 4, pp627-651.

Mitchell,R. \& Platt,R.G., 1982. Mineralogy and Petrology of Nepheline Syenites from the Coldwell Alkaline Complex, Ontario, Canada. Jour Pet., Vol.23, Part 2, pp 186-214.

Mitchell,R., Platt,R.G. \& Cheadle,S., 1983. A gravity Study of the Coldwell Complex, Northwestern Ontario and its Petrological Significance. Can.Jour, Earth Sci., Vol.20, No. 11 , pp1631-1638.

Morimoto,N., 1989. Nomenclature of Pyroxenes. Can.Min., Vol.27, pp 143-156.
Platt,R.G. \& Mitchell,R., 1982. Rb-Sr Geochronolgy of the Coldwell Complex, Northwestern Ontario, Canada. Can.Jour Earth Sci., Vol.19, pp1796-1801.

Statistical Graphics Corporation 1986. STATGRAPHICS,Statistical Graphics System, Rockville.MD.

Stormer,J., 1985. ROCALC. A program for calculating normative calculations.
Streckeisen,A. \& LeMaitre,R., 1979. A chemical approximation to the Modal QAPF Classification of the Igneous Rocks. N.Jb.Miner.Abh., Vol.136. pp 169-206.

Sutcliffe,R., 1987. Petrology of Middle Proterozoic diabases and Picrites from Lake Nipigon, Canada. Contrib.Min.Petrl., Vol.96, pp201-211.

Walker,J., 1967 Geology of the Jackfish-Middleton Area. Ont.Dept. of Mines, Geol.Rpt. 50, 41p

APPENDIX 1

MICROPROBE ANALYSIS

Circular, one-inch diameter polished discs were studied using a Hitachi 5-570 Scanning Electron Microscope at Lakehead University, Thunder Bay, Ontario. Quantitative analysis was accomplished using energy dispersive x-ray spectrometry and the Tracor Northern MICROD programifull 2AF correction procedure). Counting time ranged from 80 to 100 seconds with an accelerating voltage of 20 KeV , a beam current of 0.38 nA and spot size of approximately 1 um. Standards used were minerals similiar in composition to those analysed.

	C2328A	C2331								
5 SO 2	43.14	44.33	43.88	43.15	43.57	43.48	41.60	42.29	42.92	40.50
${ }^{412013}$	7.40	7.36	8.04	7.19	8.10	7.77	7.84	7.43	8.54	10.68
Feo	21.10	21.07	22.12	22.05	21.51	21.86	21.58	22.14	20.91	23.04
Mna	0.04	0.03	0.05	0.04	0.02	0.03	0.05	0.04	0.04	0.07
Ti02	1.04	0.98	1.16	1.26	1.18	1.05	0.91	1.38	1.21	1.92
Mgo	8.65	9.59	8.41	8.38	9.17	8.00	8.29	8.06	10.29	5.92
CaO	11.33	11.23	11.28	11.67	11.52	11.78	11.35	11.65	9.68	11.23
Na 2 O	3.49	2.26	1.52	1.34	2.45	1.21	2.96	2.28	1.92	1.94
K20	1.28	1.20	1.25	1.26	1.29	1.34	1.55	1.21	2.61	1.65
TOTAL	97.48	98.06	97.72	96.33	98.81	96.52	96.46	96.49	98.12	96.95
	C2331									
SiO 2	39.71	39.66	40.53	40.22	40.28	40.10	40.15	40.43	39.30	40.15
A1203	10.29	11.23	10.90	10.78	10.78	10.92	10.16	11.26	10.78	10.75
Feo	22.94	22.59	22.08	20.92	20.25	21.59	22.47	21.73	21.28	21.61
MnO	0.07	0.04	0.05 .	0.04	0.02	0.04	0.05	0.06	0.04	0.06
TiO2	1.82	2.49	2.39	2.61	2.66	2.25	2.24	2.16	2.30	2.34
MgO	6.57	6.79	6.64	7.67	7.02	6.83	6.80	6.61	6.34	7.33
C30	11.53	11.36	11.55	11.76	11.54	11.31	11.29	11.08	11.41	11.58
Na 20	2.03	2.15	1.63	1.65	2.91	3.16	1.36	2.07	1.60	2.31
K20	1.84	1.87	1.75	1.79	1.83	1.70	1.66	1.44	1.68	1.75
total	96.81	98.17	97.51	97.44	97.30	97.89	96.17	96.84	95.24	97.87
	C2331	C2331	C2331	C2331	C2331	02331	C2331	C2331	C2331	C2331

$\mathrm{SiO2}$	39.89	40.46	40.50	40.50	39.15	40.06	40.23	40.36	39.91	38.13
$\mathrm{Al203}$	10.41	10.75	10.92	10.45	10.91	10.62	10.77	10.91	10.50	10.50
FeO	22.84	22.82	21.35	23.09	24.76	20.85	22.26	23.47	23.27	22.65
MnO	0.05	0.05	0.03	0.05	0.03	0.04	0.05	0.04	0.04	0.05
$\mathrm{TiO2}$	2.18	1.81	2.60	2.32	0.73	2.93	2.21	2.17	2.33	2.05
M 0 O	6.43	5.94	7.44	5.63	6.48	6.40	5.90	6.35	6.99	6.30
CO 0	11.53	11.17	11.69	11.54	10.87	11.14	11.48	11.38	11.32	10.95
Na 20	1.85	1.88	2.07	2.84	3.25	2.14	2.43	2.81	3.01	3.18
K 20	1.70	1.84	1.56	1.67	1.86	1.77	1.61	1.64	1.73	1.85
TOTAL	96.89	97.04	98.16	98.07	98.05	95.96	96.95	99.12	99.11	95.66

AFPENDK 2 CONTINUED...

	$C 2331$	$C 2331$	$C 2331$	$C 2358$						
$\mathrm{SiO2}$	39.66	41.08	40.47	46.80	47.38	48.95	47.93	51.40	48.91	48.86
A 1203	10.63	11.08	10.92	6.02	4.76	4.70	4.77	4.27	4.07	3.93
FeO	21.67	20.95	20.77	19.85	19.34	19.90	19.95	19.66	20.01	19.60
MnO	0.03	0.04	0.03	0.32	0.28	0.52	0.38	0.41	0.37	0.35
$\mathrm{TiO2}$	2.18	2.32	2.65	1.78	1.29	0.75	0.96	0.66	1.01	0.91
MgO	7.13	7.59	6.96	8.88	9.30	9.97	9.25	9.49	10.20	9.68
CaO	11.40	11.37	11.55	11.45	11.48	10.41	11.19	10.64	11.09	11.34
Na 20	2.83	2.19	2.45	1.71	1.53	1.72	1.85	1.73	1.66	0.88
K 20	1.67	1.73	1.72	0.64	0.52	0.59	0.64	0.47	0.35	0.44
TOTAL	97.21	98.35	97.52	98.29	96.76	98.35	97.53	98.74	98.56	97.20

| $C 2358$ | $\mathbf{C 2 3 5 8}$ | C 2358 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{SiO2}$	48.62	48.69	48.46	48.03	51.08	50.35	48.97	47.48	46.23	46.72
$\mathrm{Al203}$	4.19	3.25	4.46	4.81	2.49	3.33	4.66	5.12	6.25	4.22
$\mathrm{Fe0}$	20.56	20.80	20.67	21.10	18.80	19.08	20.43	20.36	20.59	20.31
MnO	0.17	0.34	0.40	0.42	0.46	0.36	0.27	0.30	0.56	0.42
$\mathrm{TiO2}$	0.74	0.84	1.06	1.40	0.32	0.46	0.96	1.33	1.57	1.45
MgO	9.01	9.04	9.39	8.76	10.16	10.13	9.41	9.38	8.71	9.50
CaO	11.82	11.63	11.21	10.72	11.68	11.57	11.08	10.94	10.78	10.91
Na 20	1.33	1.05	2.27	1.02	0.71	1.82	3.16	1.23	1.42	2.15
K 20	0.41	0.55	0.44	0.46	0.34	0.29	0.58	0.57	0.64	0.47
TOTAL	97.32	97.31	99.59	98.00	97.12	97.38	99.89	96.72	96.75	96.98

	C2358	C2490	C2490	C2490	C2490	C2498	C2498	C2498	C2498	C2498
SiO2	45.29	47.07	46.60	46.39	47.21	41.51	40.69	40.94	42.98	41.11
Al203	6.02	5.93	5.83	6.58	5.98	10.18	10.11	9.79	7.80	9.83
FeO	20.69	18.22	17.85	18.27	18.77	19.47	19.66	19.88	19.55	20.50
MnO	0.41	0.36	0.18	0.28	0.25	0.49	0.38	0.47	0.36	0.44
Ti02	1.59	1.09	1.07	1.09	0.81	1.56	1.46	1.28	0.45	0.99
MaO	8.62	10.15	11.64	10.64	11.07	9.14	9.43	8.84	9.93	8.66
cio	11.02	11.44	11.54	11.26	11.08	11.35	11.21	11.12	11.71	11.66
Na 20	1.78	2.20	2.53	2.21	1.82	2.35	2.63	2.88	2.51	2.49
K20	0.64	0.57	0.60	0.79	0.66	1.26	1.15	1.11	1.10	1.01
TOTAL	97.30	97.98	98.88	98.17	97.65	98.19	97.87	97.52	97.41	96.69

APFENDIX 3 AMFHIBOLE EOMPOSITIONS FOR WOLF CAMP LAKE MEGAXEMOLITH

	02519	C2519	02519	C2519						
5102	44.46	44.60	42.07	42.54	43.35	42.93	43.06	41.85	43.21	42.94
A1203	7.97	8.23	7.71	8.32	8.23	7.81	8.16	8.79	8.19	8.22
MgO	9.34	9.09	9.10	8.50	8.95	8.58	8.63	8.73	8.28	7.94
$\mathrm{C}_{3} \mathrm{O}$	11.47	11.00	11.23	10.93	11.48	11.22	11.11	11.37	10.91	10.85
Na 20	2.23	1.31	3.31	2.37	2.27	1.75	2.48	1.55	1.49	1.58
K20	1.18	1.33	1.24	1.22	1.26	1.43	1.41	1.44	1.60	1.39
FeO	20.48	21.89	21.21	21.28	21.18	21.31	21.24	21.42	21.39	21.93
MnO	0.04	0.07	0.04	0.05	0.06	0.04	0.05	0.04	0.05	0.04
TiO2	0.77	0.75	1.53	1.38	1.71	1.43	1.25	1.34	1.76	1.67
TOTAL	97.95	98.28	97.44	96.59	98.49	96.83	97.81	96.53	96.90	96.57

| $C 2519$ | 02519 | 02519 | 02519 | $C 2519$ | 02519 | 02519 | 02519 | 02519 | 02519 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{SiO2}$	42.76	41.76	44.72	42.53	42.22	43.47	42.22	42.32	43.15	43.71
A 203	8.44	8.28	6.80	7.75	8.37	8.35	7.97	8.58	8.30	8.17
MgO	8.22	7.78	7.89	7.84	6.87	7.14	9.37	6.75	7.19	7.81
CaO	11.21	11.05	10.59	10.77	11.15	11.37	11.30	11.07	11.26	11.22
Na 20	2.98	2.52	0.62	1.64	2.16	1.91	2.02	2.96	1.89	1.81
K 0	1.25	1.30	1.44	1.43	1.41	1.40	1.29	1.25	1.36	1.42
FeO	21.33	21.95	23.73	23.04	23.39	23.40	21.57	24.11	22.29	22.05
MnO	0.04	0.02	0.05	0.06	0.07	0.06	0.03	0.06	0.07	0.06
$\mathrm{TiO2}$	1.48	1.49	1.08	1.54	1.49	1.80	1.47	1.64	1.76	1.49
TOTAL	97.94	96.15	96.92	96.60	97.12	98.89	97.24	98.75	97.27	97.74

C2531A C2531A C2531A C2531A C2531A C2531A

$\mathrm{SiO2}$	40.68	42.62	43.19	39.57	41.14	39.57
$\mathrm{Al2O3}$	9.92	9.21	9.80	10.52	8.89	11.13
MgO	7.10	10.23	10.07	8.42	5.86	8.24
CaO	11.28	11.13	11.58	13.22	10.73	11.67
Na 20	3.59	3.52	2.89	2.84	3.57	3.14
K 20	1.38	1.35	1.38	1.35	1.48	1.25
FeO	21.54	18.62	19.30	16.71	23.60	19.08
MnO	0.39	0.27	0.51	0.56	0.47	0.61
$\mathrm{TiO2}$	2.58	0.94	0.80	4.84	2.03	3.26
TOTAL	98.47	97.88	98.51	98.04	97.77	97.95

	$C 2515$									
Si02	47.08	49.05	47.85	47.91	47.39	47.31	47.10	46.51	48.07	47.20
$\mathrm{Al203}$	2.08	1.01	1.09	1.62	1.46	1.56	1.74	1.77	1.43	1.68
MgO	1.45	0.00	0.00	0.00	0.00	0.70	0.73	0.00	0.45	0.81
C 0	6.20	9.11	4.83	4.81	5.18	4.93	5.43	5.30	5.10	5.23
Na 20	5.02	1.38	5.51	5.21	4.18	5.04	4.56	3.71	4.36	4.25
K 20	1.24	0.40	1.05	1.19	1.08	1.21	1.02	1.00	0.96	1.20
FeO	33.16	35.39	36.06	35.14	35.70	35.62	34.92	35.72	34.85	35.21
MnO	0.58	2.06	1.23	1.19	0.94	0.86	1.37	0.87	0.77	0.90
$\mathrm{TiO2}$	1.57	0.00	0.38	0.77	0.63	0.43	0.51	1.28	0.51	0.35
TOTAL	98.38	98.40	98.00	98.74	97.65	97.67	98.73	97.53	96.50	97.79

| C 2515 | C 2515 | C 2516 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{SiO2}$	47.95	45.80	46.40	47.07	45.99	47.18	45.80	46.80	47.63	46.97
A 1203	1.76	2.10	2.04	2.22	2.23	2.22	2.13	2.87	1.95	1.65
M 90	1.07	0.00	0.00	0.43	0.00	0.00	0.48	0.84	0.00	0.00
C 00	5.02	5.72	6.30	6.38	6.43	6.23	6.69	6.07	5.80	5.93
Na 20	4.50	4.97	3.32	3.99	3.32	3.74	3.69	4.84	3.47	4.11
K 20	1.14	1.20	1.08	1.17	1.21	1.15	1.15	1.00	1.11	0.89
FeO	34.98	34.22	34.44	34.21	34.44	34.34	34.44	32.65	35.78	35.57
MnO	0.99	0.85	0.88	0.77	0.83	0.71	0.60	0.72	0.71	0.70
$\mathrm{TiO2}$	0.26	1.61	2.10	2.18	2.36	2.52	2.28	2.02	0.81	0.86
TOTAL	98.89	97.21	98.09	98.42	98.01	98.08	98.67	98.81	98.55	98.14

	C2516	C2516	C2516	C2531A						
$\mathrm{Si02}$	47.80	47.36	46.05	42.16	41.77	42.88	41.55	41.09	41.90	41.25
A 1203	1.79	1.83	2.17	7.60	7.80	6.94	7.84	7.79	8.17	8.24
MgO	0.00	0.62	0.00	5.94	5.53	4.97	5.01	4.03	5.53	4.91
CaO	5.96	6.10	6.33	10.58	10.19	10.71	10.18	10.22	10.19	10.25
Na 20	3.06	3.45	4.11	3.44	3.13	3.01	3.05	3.24	3.26	2.94
K 0	0.94	0.87	1.05	1.27	1.33	1.13	1.27	1.28	1.49	1.48
FeO	35.82	34.57	34.15	23.33	24.77	26.08	26.40	26.94	26.06	25.79
MnO	0.80	0.89	1.05	0.59	0.55	0.65	0.56	0.46	0.73	0.45
TiO2	0.43	0.82	1.37	1.95	1.65	1.30	1.68	2.02	1.62	1.86
TOTAL	98.05	97.94	97.16	96.90	96.71	97.67	98.75	97.08	99.27	97.16

APPENDIX 4 CONTIMUED...

C2531A C2531A C2531A

$\mathrm{SiO2}$	41.63	40.86	40.80
$\mathrm{Al203}$	8.32	7.90	8.75
M 9 O	4.99	4.59	4.79
C 0 O	10.06	10.23	10.27
Na 2 O	2.12	2.80	3.48
K 20	1.49	1.24	1.30
FeO	25.99	26.21	26.27
MnO	0.61	0.64	0.52
$\mathrm{TiO2}$	1.70	1.61	1.49
TOTAL	97.16	96.74	98.86

APPENDIX 5 PYROXEME COMPOSITIONS FOR NEYS/ASHBURTON XENOLITHS

	C2358	C2358	C2358	C2490						
Si02	52.67	51.99	52.34	51.82	51.90	53.35	50.75	51.45	51.06	50.27
AL203	0.33	0.84	0.77	0.97	0.50	0.55	1.25	2.10	0.36	0.00
Mno	0.59	0.48	0.64	0.55	0.65	0.56	0.68	0.39	0.51	0.52
Feo	15.27	15.12	15.99	12.25	14.81	13.68	13.33	11.59	13.54	13.51
MgO	9.10	8.32	8.74	11.82	11.26	11.54	11.03	12.63	9.83	10.51
CaO	21.94	21.01	20.43	22.07	20.99	22.05	21.41	20.70	22.55	22.53
Na 2 O	0.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.89	1.31
K20	0.00	0.30	0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00
TiO2	0.00	0.40	0.23	0.28	0.00	0.00	0.38	0.26	0.00	0.00
TOTAL	99.91	100.80	99.83	99.90	101.62	101.89	100.23	99.13	98.73	98.66
	C2498									

$\mathrm{SiO2}$	51.13	51.97	52.53	51.69	51.99	50.88	50.63	52.39	52.39	51.12
$\mathrm{Al203}$	0.53	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00
MnO	0.57	0.41	0.51	0.47	0.57	0.49	0.55	0.53	0.47	0.60
FeO	14.73	12.90	13.15	14.08	13.60	13.59	12.99	13.84	13.04	13.49
MgO	10.29	10.88	11.30	10.03	9.57	9.72	10.56	11.00	11.38	11.24
C 20	20.84	22.38	23.47	23.05	23.78	23.38	24.17	22.54	23.15	22.63
Na 20	1.47	0.00	0.00	0.00	0.00	0.00	0.00	0.88	0.00	0.89
K 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TiO2	0.14	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.66	99.26	99.96	99.31	100.21	98.53	99.74	101.18	101.15	101.20

$C 2498$	$C 2498$	$C 2498$

$\mathrm{SiO2}$	51.51	51.72	51.45
A 1203	0.00	0.00	0.00
MnO	0.53	0.45	0.53
FeO	12.40	12.97	14.22
MgO	12.11	11.53	10.71
CaO	22.12	22.37	22.50
Na 20	0.63	0.68	0.91
K 20	0.00	0.00	0.00
$\mathrm{TiO2}$	0.31	0.17	0.22
TOTAL	100.25	101.16	100.53

C2531A C2531A C2531A C2531A C2531A C2531A C2531A C2531A C2531A C2531A

$5 i 02$	52.26	52.55	51.49	51.21	53.51	51.48	51.87	52.05	51.86	51.75
$\mathrm{Al203}$	0.73	0.00	0.00	0.00	0.72	0.00	0.00	0.78	0.49	0.00
CoO	22.45	23.27	22.42	23.31	22.89	22.85	22.67	23.34	22.91	22.53
MgO	9.36	10.66	10.74	10.38	10.00	10.70	11.30	9.98	10.51	11.56
Ma 20	0.00	1.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	13.81	12.61	13.25	13.66	13.34	13.20	13.23	13.43	13.14	12.54
MnO	0.39	0.75	0.65	0.47	0.49	0.58	0.63	0.46	0.63	0.59
$\mathrm{TiO2}$	0.11	0.00	0.15	0.00	0.31	0.39	0.00	0.17	0.00	0.14
TOTAL	99.10	101.41	98.70	99.04	101.26	99.10	99.70	100.22	99.54	99.11

C2531A C2531A C2531A C2531A C2531A C2531A C2531A C2531A C2531A C2531A

$S i 02$	51.41	52.12	51.78	51.82	51.51	52.38	51.50	52.60	52.03	51.85
$\mathrm{Al20} 3$	0.98	0.00	0.61	0.81	0.00	0.85	0.00	1.13	0.00	0.87
CaO	23.18	21.63	22.77	22.74	22.60	24.00	22.78	22.95	22.83	22.79
MgO	9.84	11.78	11.21	9.41	9.84	10.79	10.80	9.29	10.46	9.85
Ma 20	0.00	1.44	1.08	0.00	1.27	0.00	0.00	0.82	0.00	0.00
K 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	13.35	13.35	12.88	13.33	13.70	13.83	13.94	13.93	13.45	14.35
MnO	0.44	0.75	0.37	0.43	0.72	0.48	0.51	0.56	0.75	0.53
$\mathrm{TiO2}$	0.00	0.22	0.00	0.00	0.00	0.00	0.21	0.00	0.30	0.25
TOTAL	99.20	101.29	100.70	98.54	99.65	101.32	99.74	101.27	99.82	100.47

$C 3120$	$C 3120$	03120	03120	03120	03120	03120	$c 3120$	$c 3120$	$c 3120$

$\mathrm{SiO2}$	50.99	52.27	52.98	53.99	52.90	52.21	50.52	52.37	51.28	52.11
A 1203	0.00	0.00	0.00	1.27	0.00	0.00	0.00	0.00	0.00	0.36
CaO	1.59	19.40	1.12	13.61	19.21	1.49	1.23	1.26	1.15	1.38
MgO	15.31	10.99	14.77	9.85	9.89	15.00	15.05	14.95	14.56	14.95
Na 20	0.00	0.00	0.00	0.00	0.00	0.00	1.08	0.00	0.00	0.00
K 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	30.70	15.75	30.91	19.47	15.68	30.38	30.68	30.47	30.94	30.05
MnO	1.15	0.62	0.99	0.53	0.52	0.93	1.11	1.09	1.10	1.24
$\mathrm{TiO2}$	0.00	0.00	0.22	0.25	0.00	0.00	0.00	0.22	0.00	0.00
TOTAL	99.74	99.55	100.99	98.96	100.16	100.00	99.68	100.36	99.02	100.08

	c3120									
SiO 2	51.78	51.88	52.61	52.39	53.17	52.96	53.25	53.03	52.86	52.67
A203	0.00	0.00	0.67	0.36	1.06	0.38	0.00	0.00	0.59	0.26
CaO	1.07	1.30	20.00	20.49	19.92	20.74	20.61	20.63	20.87	20.96
MgO	15.15	14.13	11.65	11.00	11.02	11.36	12.62	10.78	11.41	11.55
Na 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K20	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F¢0	31.63	30.87	14.86	14.52	14.22	13.87	13.40	14.32	14.40	13.86
MnO	1.13	0.99	0.79	0.59	0.97	0.53	0.73	0.79	0.83	0.65
Ti02	0.30	0.13	0.00	0.00	0.31	0.00	0.27	0.23	0.00	0.24
TOTAL	101.06	99.41	100.58	99.36	100.70	99.84	100.89	99.78	100.96	100.38
	C3120									

SiO2	52.89	51.83	52.94	52.79	52.75	52.72	52.69	52.34	54.05	52.48
Al203	0.55	0.42	0.26	0.00	0.60	0.00	1.06	0.00	0.43	0.00
CaO	20.80	21.02	21.11	21.32	21.13	21.00	21.12	20.45	20.86	20.92
MgO	10.85	11.33	10.41	11.35	11.27	11.16	11.38	11.70	11.35	10.85
Na 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.96
K 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO 0	14.01	14.05	13.46	13.72	13.63	14.17	12.89	13.68	13.75	14.44
MnO	0.69	0.68	0.70	0.76	0.73	0.54	0.83	0.50	0.69	0.83
TiO2	0.00	0.28	0.16	0.00	0.24	0.31	0.23	0.28	0.12	0.34
TOTAL	99.79	99.61	99.03	99.95	100.36	99.90	100.19	98.96	101.25	100.82

	C3120	c3120	C3120	C3120	C3122	C3122	03122	C3122	c3122	C3122
Si02	52.28	52.17	52.71	52.11	53.23	52.92	52.43	51.90	51.78	51.86
A1203	0.35	0.00	0.36	0.00	0.52	0.00	0.72	0.68	0.60	0.00
CaO	20.91	20.64	21.14	20.81	20.62	20.38	20.62	19.98	20.23	20.37
Mog	11.20	11.88	11.14	10.84	11.80	11.96	12.12	11.41	11.55	12.18
Na 20	0.00	1.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K201	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	13.70	14.13	14.02	14.25	13.65	13.56	13.80	13.97	15.29	13.61
Mno	0.81	0.78	0.85	0.65	0.34	0.52	0.55	0.23	0.46	0.58
TiO2	0.18	0.00	0.23	0.23	0.17	0.17	0.26	0.27	0.43	0.51
TOTAL	39.42	100.84	100.45	98.88	100.32	99.51	100.50	98.45	100.33	99.10

	$C 3122$									
Si02	51.88	51.81	52.35	52.60	52.48	52.07	53.05	51.30	5.00	52.21
A1203	0.70	0.00	0.00	0.00	0.80	0.65	0.00	0.64	0.00	0.00
CaO	20.92	20.31	20.43	20.42	19.80	20.59	20.47	20.62	20.07	20.34
Mg 0	12.54	12.35	12.20	11.57	11.75	11.77	12.44	11.87	12.76	11.38
Na 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\mathrm{Fe0}$	13.17	13.38	14.28	13.46	14.23	13.74	14.00	13.54	13.98	13.49
MnO	0.61	0.52	0.56	0.53	0.50	0.59	0.55	0.60	0.52	0.65
Ti02	0.22	0.30	0.59	0.00	0.00	0.27	0.58	0.51	0.34	0.17
TOTAL	100.04	98.67	100.42	98.58	99.56	99.69	101.09	99.08	100.67	98.65

	$C 3122$	$C 3123$	$C 3123$	$C 3123$						
$\mathrm{SiO2}$	53.15	52.39	52.29	52.64	52.39	51.91	52.37	52.02	50.51	48.50
Al 203	0.00	0.00	0.00	0.00	0.51	0.00	1.55	0.65	1.31	1.39
C 0	20.51	20.69	20.71	21.19	20.58	20.83	20.76	20.61	19.45	19.58
MgO	10.78	12.48	12.31	12.08	11.44	11.88	11.59	11.27	8.85	12.06
Na 20	0.00	0.00	0.94	0.00	0.00	0.00	0.00	0.62	0.00	0.00
K 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	13.36	13.50	12.21	12.09	13.10	13.19	13.04	13.14	16.38	14.94
MriO	0.64	0.46	0.51	0.54	0.62	0.49	0.81	0.44	0.43	0.50
$\mathrm{TiO2}$	0.18	0.26	0.25	0.16	0.32	0.15	0.30	0.80	0.00	3.50
TOTAL	98.61	99.79	99.22	98.70	98.96	98.45	100.42	99.53	98.75	101.31

	$C 3123$	$C C 3123$	$C 3123$	$C 3123$						
Si02	53.44	51.51	52.87	52.21	51.06	52.58	51.72	53.46	51.43	51.43
A1203	0.00	1.79	0.00	0.00	1.79	0.00	1.64	0.00	1.47	1.28
C30	20.50	20.08	20.79	21.34	20.79	21.27	20.53	21.75	20.89	21.00
MaO	12.10	11.56	13.15	12.51	11.94	11.23	11.59	12.36	11.66	12.18
Na 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	12.58	13.49	12.08	12.64	12.30	12.36	11.96	11.25	12.68	13.49
Mn0	0.47	0.64	0.35	0.46	0.49	0.47	0.41	0.49	0.40	0.51
Ti02	0.00	1.36	0.29	0.18	0.79	0.64	0.80	0.00	1.17	1.08
TOTAL	99.10	100.44	99.53	99.34	99.16	99.15	98.65	99.30	99.69	100.97

APPENDIX 6 CONTINUED...

	$C 3123$				
$\mathrm{SiO2}$	53.81	52.94	53.71	53.51	53.40
$\mathrm{Al203}$	0.00	0.00	0.00	0.00	0.00
CaO	21.25	21.42	22.67	22.81	21.71
MgO	12.07	10.73	12.13	11.19	11.48
Na 20	0.00	0.00	0.00	0.00	0.00
K 20	0.00	0.00	0.00	0.00	0.00
$\mathrm{Fe0}$	12.23	15.39	12.58	12.61	13.50
MnO	0.45	0.58	0.29	0.68	0.70
$\mathrm{THO2}$	0.17	0.00	0.00	0.00	0.45
TOTAL	99.99	101.06	101.38	100.80	101.24

	$C 2515$									
$\mathrm{Si02}$	49.06	48.30	48.57	48.21	48.65	48.49	47.84	47.93	50.76	47.66
A1203	0.76	0.59	0.76	0.43	0.60	0.57	0.62	0.00	0.00	0.46
$\mathrm{Ti02}$	0.37	0.00	0.00	0.33	0.44	0.25	0.39	0.34	0.00	0.19
MnO	0.69	0.53	0.78	0.80	0.85	0.50	0.30	0.58	0.76	0.75
FeO	28.94	28.21	29.17	28.26	28.65	29.45	28.60	28.23	28.91	25.79
MgO	1.22	0.85	1.43	0.73	0.71	0.79	0.61	8.00	0.89	1.98
CaO	18.55	18.68	18.93	18.20	18.44	17.53	17.62	18.49	15.78	19.28
Na 20	0.98	1.61	0.95	1.53	1.08	1.75	2.02	1.50	3.97	2.01
K 20	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00
TOTAL	100.77	99.38	101.57	98.48	99.52	99.32	99.71	99.04	101.07	99.19

	02516	C2516	C 2516	C2516	C2516	02516	C2516	c2516	C2531A	C2531A
Si02	48.10	48.38	48.93	48.95	48.52	47.47	47.58	47.75	49.22	50.20
A1203	0.41	0.87	0.64	0.00	0.82	0.36	0.00	0.00	0.55	0.42
Ti02	0.36	0.24	0.18	0.36	0.00	0.40	0.59	0.29	0.23	0.00
Mno	0.76	0.83	0.56	0.81	0.84	0.59	0.85	0.72	1.05	0.91
Feo	29.15	28.24	29.12	28.23	28.46	28.70	28.96	29.10	25.38	25.71
Mgo	0.38	0.35	0.73	1.26	0.78	0.48	0.48	0.53	2.30	1.13
CaO	18.13	17.89	17.96	18.07	18.13	17.77	17.51	17.75	18.06	17.23
Na 2 O	1.61	1.82	1.55	1.58	2.46	1.68	3.25	1.81	2.28	2.58
K20	0.00	0.00	0.09	0.00	0.00	0.00	0.09	0.00	0.00	0.00
TOTAL	99.54	99.90	100.73	100.36	100.94	98.42	100.19	99.07	100.69	99.31

$\mathrm{Si02}$	49.78	48.78	49.56	50.30	49.77	49.30	50.15	50.16	50.53	50.89
Al203	0.00	0.00	0.00	0.00	0.00	0.82	0.00	0.76	0.45	0.54
$\mathrm{TiO2}$	0.00	0.26	0.00	0.00	0.00	0.27	0.00	0.00	0.00	0.00
MnO	0.88	0.78	0.89	0.89	0.75	0.87	1.09	1.25	0.87	1.03
FeO	25.40	25.49	25.59	25.78	25.09	25.29	25.32	25.78	25.39	25.84
M 0	1.66	2.25	2.31	2.20	1.96	1.69	2.26	1.53	1.71	2.31
CaO	17.17	19.03	18.46	18.09	18.26	17.79	18.28	20.42	18.28	18.56
Na 20	3.94	2.34	2.98	2.61	2.99	1.71	3.91	0.00	2.97	1.97
K20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.65	99.87	99.79	100.90	98.82	98.48	101.02	99.90	100.20	101.14

APPEMDIX 7 CONTHUED...

	C.2531A	C2531A						
$\mathrm{SOO2}$	49.04	49.99	50.23	49.35	48.62	51.03	49.29	49.63
A 1203	0.44	0.28	0.35	0.00	0.60	0.63	0.64	0.43
$\mathrm{TiO2}$	0.00	0.00	0.00	0.22	0.23	0.00	0.18	0.00
MnO	0.96	0.95	0.80	0.90	1.03	0.91	1.15	0.77
FeO	25.01	25.26	24.94	24.72	25.24	25.47	24.73	25.50
MgO	2.13	2.05	2.63	1.82	1.69	1.60	1.72	2.05
CaO	18.39	17.42	18.16	18.18	18.39	18.14	18.16	17.65
Na 20	3.79	3.44	3.79	4.84	1.77	3.23	1.85	4.16
K 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	101.38	99.39	101.16	101.00	98.67	101.03	98.76	101.09

APPENDIX 8 FELDSPAR COMPOSITIONS FOR NEYG/ASHEURTON YENOLITHS

| C 2305 | C 2312 | C 2312 | C 2312 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{SiO2}$	65.35	65.42	61.96	63.16	64.51	62.95	63.40	63.31	63.55	66.09
$\mathrm{Al203}$	23.54	23.71	25.52	19.96	23.05	23.99	24.64	18.88	18.75	21.30
$\mathrm{Fe0}$	0.26	0.22	0.25	0.00	0.24	0.24	0.00	0.57	0.43	0.13
CaO	3.49	3.74	6.49	0.96	3.72	4.29	3.89	0.69	0.19	1.36
Na 20	8.98	8.20	7.37	1.35	9.08	8.85	9.25	0.68	0.00	11.53
K 20	0.08	0.21	0.10	12.36	0.24	0.13	0.24	15.77	15.53	0.28
BaO	0.17	0.00	0.00	0.60	0.23	0.00	0.00	0.00	0.00	0.00
TOTAL	101.87	101.50	101.69	98.40	101.07	100.45	101.42	99.92	98.46	101.20

| $C 2312$ | $C 2312$ | $C 2312$ | $C 2312$ | C2319A | C2319A | C2319A | C2319A | C2319A | C2319A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Si02	65.88	62.87	63.07	62.84	63.75	63.36	66.65	63.28	62.93	64.66
Al203	20.63	22.76	22.92	22.97	18.12	18.10	20.40	22.40	21.34	21.97
FeO	0.09	0.35	0.36	0.20	0.00	0.23	0.21	0.26	0.23	0.33
CaO	0.87	3.22	3.60	3.59	0.31	0.22	0.70	2.47	2.38	2.30
Na 20	12.42	10.89	9.94	10.27	1.32	3.11	11.93	11.84	12.43	11.60
K 20	0.24	0.21	0.19	0.17	15.55	14.30	0.28	0.40	0.16	0.29
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.14	100.29	100.08	100.03	99.04	99.32	100.16	100.65	99.46	101.15

	C2319A	C2319A	C2328A							
SiO2	65.79	62.94	63.19	65.27	63.77	67.03	67.40	66.32	61.48	61.70
A1203	22.06	23.57	19.54	19.00	18.33	21.02	19.49	19.99	21.87	23.80
FeO	0.22	0.25	0.80	0.00	0.16	0.11	0.19	0.30	0.29	0.18
CaO	1.22	4.26	0.83	0.00	0.00	1.02	0.31	1.06	3.34	4.73
Na20	11.47	10.06	0.83	0.93	1.66	11.70	12.19	12.59	10.89	10.14
K20	0.18	0.21	15.18	15.75	15.72	0.20	0.14	0.22	0.31	0.17
EaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.95	101.29	100.37	100.95	99.65	101.09	99.73	100.48	98.17	100.74

	C2328A	C2331	C2331	$C 2331$						
Si02	61.42	64.50	64.09	63.50	61.95	62.21	58.86	61.91	60.72	60.43
A1203	23.59	24.30	25.03	24.61	25.32	25.77	26.76	25.14	25.25	26.58
Fe0	0.33	0.00	0.22	0.27	0.00	0.28	0.37	0.14	0.15	0.35
CaO	4.08	4.89	4.76	5.58	6.19	4.64	7.76	5.37	6.07	7.04
Na20	9.61	7.89	7.00	7.67	6.49	6.27	6.34	6.08	6.88	7.02
K20	0.11	0.15	0.00	0.09	0.26	1.35	0.18	0.16	0.13	0.11
Ba0	0.00	0.00	0.00	0.00	0.00	0.31	0.18	0.34	0.00	0.15
TOTAL	99.13	101.72	101.11	101.70	100.22	100.82	100.44	101.13	99.20	101.69

	$C 2331$									
$\mathrm{SiO2}$	56.32	61.05	65.64	58.58	63.37	58.47	61.84	67.64	66.62	66.53
$\mathrm{Al203}$	28.89	25.23	22.74	27.60	24.10	27.28	24.83	21.97	20.89	21.85
$\mathrm{Fe0}$	0.27	0.26	0.29	0.25	0.00	0.18	0.00	0.13	0.16	0.00
CaO	10.13	5.82	2.88	7.80	4.50	8.19	5.36	1.10	0.65	1.75
Ma 20	5.38	8.19	9.78	6.72	8.71	6.75	7.26	9.37	9.54	9.29
K 20	0.12	0.17	0.12	0.25	0.00	0.16	0.24	0.13	0.39	0.16
CaO	0.28	0.00	0.00	0.29	0.00	0.32	0.00	0.00	0.00	0.00
TOTAL	101.40	100.72	101.46	101.47	100.68	101.36	99.53	100.34	98.26	99.58
	$C 2331$									

$\mathrm{SiO2}$	64.92	66.13	63.58	62.69	63.42	63.34	63.53	63.46	60.91	61.77
A 1203	22.79	21.90	20.05	20.08	20.17	20.26	19.91	20.32	19.45	19.45
FeO	0.23	0.24	0.27	0.00	0.25	0.00	0.40	0.22	0.15	0.00
CaO	3.01	1.49	0.00	0.24	0.10	0.14	0.30	0.11	0.00	0.11
Na 20	9.06	8.60	1.32	1.39	0.83	1.98	1.84	1.21	1.84	0.80
K 20	0.30	0.50	14.28	13.28	14.17	13.34	13.11	13.43	13.23	13.48
BaO	0.00	0.00	1.65	2.75	2.60	1.64	2.72	1.96	2.49	2.83
TOTAL	100.33	98.86	101.15	100.43	101.53	100.70	101.79	100.71	98.07	98.43

| C 2331 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SiO2	61.99	62.50	60.76	60.04	62.58	60.85	58.47	60.63	61.52	60.99
A1203	20.04	19.53	18.90	20.31	19.47	19.91	20.52	19.70	19.69	19.67
Fe0	0.48	0.13	0.00	0.43	0.12	0.00	0.00	0.22	0.11	0.19
Ca0	0.00	0.14	0.00	1.61	0.23	0.00	0.12	0.28	0.13	0.14
Na20	1.04	1.39	0.58	1.51	1.12	0.00	0.73	1.23	1.25	1.58
K20	13.09	13.11	15.04	11.94	12.97	13.91	12.58	13.33	13.19	12.80
BaO	2.67	2.44	2.42	4.01	2.57	4.93	6.45	2.96	3.21	2.75
TOTAL	99.31	99.24	97.70	99.85	99.06	99.60	98.87	98.36	99.10	98.12

	$C 2331$	$C 2340$								
Si02	62.69	64.70	67.26	66.11	66.58	67.79	64.54	66.84	65.17	67.14
A1203	19.66	19.30	22.26	22.88	22.45	21.24	20.65	22.02	22.23	22.57
Fe0	0.38	0.00	0.00	0.00	0.17	0.22	0.14	0.00	0.31	0.10
CaO	0.14	0.28	2.36	2.60	2.75	1.43	1.13	2.12	1.51	2.62
Na20	1.88	0.83	8.70	8.69	9.84	9.64	4.19	9.54	9.45	8.45
K20	12.40	12.59	0.18	0.33	0.13	0.41	7.25	0.14	0.57	0.21
BaO	2.30	0.43	0.00	0.00	0.00	0.00	0.50	0.20	0.00	0.00
TOTAL	99.45	98.12	100.76	100.61	101.91	100.73	98.40	100.87	99.24	101.09

AFPENDIX 8 CONTINUED...

	$C 2340$									
Si02	65.85	66.37	67.16	67.02	66.30	66.88	65.61	64.59	66.25	65.78
A1203	22.30	22.44	22.41	22.63	21.67	22.97	22.53	22.18	22.39	22.70
Fe0	0.24	0.00	0.23	0.27	0.00	0.27	0.00	0.23	0.20	0.00
CaO	2.24	2.66	2.33	2.54	2.53	2.34	2.43	2.32	2.77	2.90
Na 20	8.77	9.17	9.45	9.33	9.03	9.04	9.22	8.17	9.09	9.06
K 20	0.29	0.37	0.17	0.18	0.12	0.16	0.24	0.32	0.09	0.21
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.18	0.00	0.00
TOTAL	99.69	100.99	101.74	101.97	99.65	101.66	100.18	98.49	100.79	100.66

	$C 2340$	02358								
102	64.62	64.71	65.37	64.34	69.10	65.16	66.34	65.96	65.16	63.48
$\mathrm{Al203}$	21.69	22.42	22.18	22.32	20.00	22.11	22.03	21.68	22.14	23.66
FeO	0.00	0.25	0.13	0.27	0.34	0.10	0.26	0.16	0.21	0.00
CaO	2.87	2.52	2.63	2.68	0.24	2.44	2.18	1.92	2.32	3.88
Na 20	9.06	8.68	8.98	8.64	9.44	9.31	8.59	9.53	9.78	9.11
K 20	0.26	0.26	0.22	0.18	1.45	0.20	0.07	0.10	0.21	0.14
B 30	0.00	0.00	0.00	0.00	0.33	0.00	0.24	0.19	0.00	0.00
TOTAL	98.50	98.84	99.52	98.41	100.90	99.33	99.71	99.55	99.82	100.27

	$C 2358$									
SiO2	64.08	63.94	63.40	64.92	62.00	64.81	61.48	64.50	62.01	64.30
$\mathrm{Al203}$	23.46	24.30	24.07	23.38	24.55	22.80	23.60	23.08	25.01	24.09
FeO	0.00	0.00	0.00	0.12	0.00	0.00	0.15	0.23	0.00	0.10
CaO	3.62	4.58	4.27	3.43	5.66	3.76	4.72	3.48	5.95	3.83
Na 20	7.93	7.82	8.73	8.56	7.67	8.45	8.14	8.40	7.42	8.51
K 20	0.23	0.13	0.21	0.28	0.18	0.26	0.21	0.09	0.27	0.00
BaO	0.00	0.00	0.00	0.00	0.23	0.00	0.23	0.00	0.00	0.00
TOTAL	99.33	100.76	100.67	100.68	100.28	100.08	98.54	99.78	100.66	100.84

	$C 2358$	0.2358	$C 2358$	$C 2358$	$C 2358$					

	C2358	C2358	C2356	C2358	C2358	C2490	Q2490	C2490	C2490	02490
5102	64.40	64.85	64.99	64.13	63.81	57.11	56.92	64.57	62.51	57.53
Al203	19.99	19.69	19.46	19.22	23.29	26.27	27.75	18.70	22.49	27.02
Feo	0.00	0.00	0.18	0.00	0.00	0.00	0.29	0.14	0.12	0.12
CaO	0.10	0.00	0.00	0.20	3.32	0.47	8.98	0.19	4.26	8.81
Na 2 O	1.22	1.20	1.32	0.34	8.62	15.33	7.35	1.48	10.58	6.80
K20	14.29	14.21	13.57	15.43	0.19	0.20	0.00	14.85	19.00	0.58
BaO	0.73	0.76	0.65	0.56	0.00	0.00	0.00	0.64	0.00	0.00
TOTAL	100.73	100.72	100.17	99.88	99.23	99.39	101.26	100.58	100.14	100.87
	C2490									

Si02	55.60	64.44	64.21	65.00	63.17	63.91	62.26	55.39	55.95	60.95
Al203	27.36	23.56	22.56	23.08	24.67	24.00	25.75	30.26	29.51	29.15
Fe0	0.13	0.31	0.11	0.12	0.30	0.34	0.24	0.34	0.19	0.16
CaO	9.89	4.36	2.93	3.19	5.14	4.57	6.13	10.84	9.78	1.64
Na20	8.39	8.14	8.07	9.04	8.10	7.64	6.99	4.10	4.98	9.24
K20	0.10	0.08	0.22	0.00	0.21	0.23	0.07	0.09	0.16	0.18
Ba0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.00	0.00
TOTAL	101.48	100.90	98.10	100.42	101.59	100.69	101.44	101.30	100.57	101.32

	C2490									
$\mathrm{SiO2}$	59.01	60.93	58.76	60.48	59.81	61.11	60.93	59.96	62.34	60.48
A1203	28.45	29.01	28.60	28.29	28.28	28.44	28.18	28.29	28.24	28.82
FeO	0.22	0.25	0.12	0.17	0.22	0.00	0.28	0.25	0.14	0.24
CaO	1.73	1.59	1.42	1.55	1.33	1.55	1.24	1.34	1.38	1.30
Na 20	9.85	8.87	10.12	10.30	9.81	10.66	11.20	11.61	9.75	10.67
K 20	0.15	0.13	0.07	0.00	0.07	0.08	0.00	0.10	0.06	0.00
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	99.40	100.77	99.09	100.80	99.52	101.84	101.82	101.55	101.91	101.50

	$C 2490$									
Si02	60.86	61.34	60.81	56.06	56.11	56.75	56.40	49.17	53.69	55.92
A1203	28.20	28.95	27.98	27.46	28.17	28.17	28.21	32.53	30.67	29.05
Fe0	0.37	0.00	0.14	0.12	0.32	0.32	0.21	0.51	0.20	0.20
Ca0	1.38	1.38	1.25	9.46	9.21	9.66	9.60	13.87	12.48	10.02
Na20	9.77	9.97	9.49	5.33	4.46	5.86	5.50	2.77	3.94	5.39
K20	0.21	0.00	0.23	0.17	0.13	0.16	0.08	0.10	0.08	0.00
Ba0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.79	101.64	99.90	98.59	98.40	100.92	100.00	98.95	101.06	100.58

AFFENOIX 8 CONTINUED...

| $C 2490$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SiO2	55.69	56.75	49.84	50.84	51.23	49.90	55.41	52.66	56.53	56.65
Al203	28.22	29.06	32.78	32.54	32.33	32.85	29.47	30.19	27.26	28.13
Fe0	0.15	0.31	0.23	0.00	0.27	0.00	0.11	0.39	0.26	0.34
Ca0	9.80	9.76	14.96	14.12	13.08	15.06	10.72	10.71	8.70	8.93
MaZO	5.73	5.50	2.97	3.40	2.92	3.31	5.53	4.52	5.69	5.76
K20	0.06	0.17	0.06	0.00	0.07	0.00	0.11	0.40	0.17	0.28
BaO	0.00	0.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	99.66	101.74	100.85	100.90	99.91	101.13	101.34	98.87	99.18	100.10

	$C 2490$	$C 2490$	$C 2490$	$C 2498$						
$\mathrm{SiO2}$	50.86	51.04	50.66	61.67	61.43	63.36	62.27	61.67	62.28	63.16
$\mathrm{Al203}$	32.97	32.29	32.44	19.73	24.68	23.50	25.16	24.30	23.98	22.26
Fe 0	0.00	0.28	0.16	0.18	0.15	0.00	0.13	0.00	0.14	0.75
CaO	14.31	14.48	14.13	0.12	5.30	3.62	5.51	5.31	4.43	4.61
Na 20	3.37	3.13	3.27	0.00	7.26	8.59	7.30	7.87	6.65	7.99
K 20	0.00	0.00	0.00	14.61	0.22	0.13	0.22	0.00	0.13	0.35
B 00	0.00	0.00	0.00	1.94	0.00	0.00	0.00	0.00	0.26	0.00
TOTAL	101.51	101.23	100.67	98.25	99.04	99.20	100.59	99.15	99.38	99.11

	C2498	C 2498								
$\mathrm{Si02}$	58.91	62.01	61.10	61.02	61.25	60.74	60.22	61.49	61.62	62.42
A 203	26.69	20.84	20.84	24.64	24.48	25.63	25.49	25.65	24.66	24.22
$\mathrm{Fe0}$	0.16	0.11	0.00	0.35	0.24	0.27	0.18	0.27	0.00	0.33
CaO	6.35	0.22	0.23	5.19	5.41	5.11	6.16	5.70	4.98	5.05
Na 20	6.50	0.00	0.58	8.18	7.97	7.21	8.69	7.74	7.89	7.09
K 20	0.74	14.13	14.34	0.33	0.24	0.75	0.00	0.10	0.10	0.21
BaO	0.00	2.84	3.25	0.00	0.00	0.00	0.23	0.00	0.00	0.00
TOTAL	99.34	100.15	99.98	99.71	99.59	99.72	100.98	100.95	99.24	99.31

	$C 2498$	$C 2510$								
$\mathrm{SiO2}$	63.44	59.85	59.23	59.18	59.90	62.19	59.95	61.92	62.30	59.35
$\mathrm{Al203}$	23.12	24.95	26.13	25.55	25.58	22.88	24.83	22.99	22.58	25.66
FOO	0.24	0.16	0.24	0.00	0.26	0.27	0.00	0.14	0.22	0.26
CaO	4.36	7.20	7.33	7.66	7.14	4.54	7.20	4.89	4.49	7.90
Na 20	7.80	8.01	6.99	7.63	7.56	9.20	8.21	9.38	10.24	7.04
K 20	0.16	0.24	0.33	0.10	0.00	0.12	0.10	0.20	0.15	0.11
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25
TOTAL	99.12	100.41	100.24	100.28	100.44	99.21	100.27	99.51	99.98	100.56

	$C 2510$									
Si02	61.85	60.96	62.65	62.62	63.94	62.84	62.33	63.43	58.46	62.04
A1203	24.03	23.52	24.05	23.16	22.17	23.62	22.49	23.04	24.99	22.58
Fe0	0.21	0.15	0.11	0.16	0.21	0.37	0.25	0.33	0.29	0.37
Ca0	5.57	5.30	5.63	4.45	3.96	4.66	4.49	4.72	7.22	4.36
Na20	9.02	8.55	8.51	8.75	9.64	8.81	9.52	8.57	7.43	8.97
K20	0.17	0.14	0.18	0.12	0.16	0.19	0.28	0.25	0.17	0.10
Ba0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.86	98.35	101.13	99.26	100.07	100.50	99.35	100.35	98.56	98.43
	$C 2510$	$C 2510$	$C 2510$	$C 2510$						
Si02	60.23	59.41	62.01	58.00						
A1203	24.34	25.16	22.87	25.78						
Fe0	0.00	0.00	0.32	0.26						
C30	5.94	7.70	4.40	8.14						
Na20	8.23	7.81	9.20	7.25						
K20	0.15	0.10	0.00	0.00						
Ba0	0.00	0.00	0.13	0.00						
TOTAL	98.89	100.34	98.94	99.43						

	C2531A									
SiO 2	64.52	63.72	63.88	63.61	63.43	63.77	65.21	62.97	64.30	65.78
A1203	23.19	20.34	20.95	20.74	20.43	20.48	23.03	20.04	21.93	21.45
Feo	0.00	0.12	0.26	0.39	0.00	0.00	0.00	0.28	0.20	0.00
C 20	1.54	0.46	0.49	0.00	0.00	0.58	1.90	0.19	1.74	1.21
N 20	10.35	1.85	1.81	1.65	1.25	2.17	10.85	1.16	9.99	10.96
K20	0.51	12.23	14.02	13.78	14.32	13.17	0.20	15.26	0.23	0.37
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
tatal	100.12	98.57	101.42	100.18	99.94	100.12	101.18	100.48	98.59	99.78

C2531A C2531A C2531A C2531A C2531A C2531A C2531A C2531A C2531A C2531A

$\mathrm{SiO2}$	63.60	65.61	63.83	64.12	65.24	64.74	66.32	66.34	64.65	63.63
$\mathrm{Al203}$	20.69	22.74	20.16	22.76	21.74	21.76	21.37	22.58	21.84	21.27
FeO	0.00	0.00	0.14	0.00	0.00	0.17	0.29	0.00	0.17	0.49
CaO	0.15	1.84	0.30	1.86	1.47	1.51	1.16	1.20	1.70	0.67
Na 20	1.03	10.00	2.38	9.94	10.95	10.75	11.31	11.20	9.96	3.47
K 20	14.95	0.00	12.24	0.15	0.17	0.18	0.29	0.00	0.08	10.19
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.44	100.40	99.49	99.07	99.55	99.11	100.75	101.31	98.55	99.95

	C2531A	C3120	C3120	c3120						
SiO 2	65.00	66.58	64.02	65.39	64.79	66.01	65.10	64.15	57.19	58.48
A1203	22.17	22.40	21.71	21.83	22.43	21.95	22.39	24.33	27.48	26.15
Feo	0.00	0.00	0.26	0.30	0.44	0.20	0.22	0.24	0.50	0.46
CaO	1.47	1.44	1.36	1.12	1.75	1.40	1.21	3.38	7.00	5.87
Na 20	10.40	10.84	10.84	10.93	11.07	10.99	10.92	8.82	6.26	7.24
K20	0.00	0.29	0.09	0.50	0.17	0.22	0.55	0.14	0.44	0.18
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	99.04	101.56	98.92	100.26	100.64	101.12	100.52	100.46	99.33	99.22
	C3120	03120	c3120							
5102	56.65	65.32	65.20	65.81	64.92	65.45	62.78	63.55	64.52	65.66
A1203	27.16	22.16	21.68	21.26	22.16	22.40	24.05	23.41	22.22	23.21
Fob	0.48	0.24	0.47	1.10	1.28	1.60	0.36	0.57	0.18	0.56
CaO^{0}	7.49	1.96	1.40	1.36	1.44	1.20	3.00	1.76	1.58	2.22
Na 2 O	6.16	10.03	9.34	9.24	9.47	9.53	8.84	9.49	9.69	9.06
K20	0.00	0.52	0.49	0.00	0.30	0.26	0.16	0.66	0.06	0.35
BaO	0.00	0.00	0.00	0.00	0.00	0.00	1.28	0.00	0.00	0.00
TOTAL	98.45	100.24	98.58	98.77	99.84	100.44	100.47	99.44	99.08	101.06

	C3120									
$\mathrm{Si02}$	63.80	62.59	61.70	65.38	61.57	59.90	57.51	61.10	61.51	64.17
A120S	23.95	24.11	24.19	22.33	24.74	26.52	26.57	26.24	24.73	24.56
Fel	0.13	0.29	0.65	0.21	0.29	0.69	1.15	0.53	0.43	0.35
Ca0	2.82	3.96	4.31	1.65	4.43	3.46	9.32	5.36	4.48	3.55
Na 20	8.37	9.15	8.34	9.45	7.36	5.11	6.32	6.89	7.52	8.61
K20	0.00	0.35	0.45	0.00	0.11	3.69	0.36	0.15	0.20	0.07
E30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.20	0.00	0.00
tot AL	99.07	100.46	99.54	99.03	98.50	99.37	101.23	101.46	98.86	101.32
	C3123	C3123	03123	C3123	C3123	c3123	03123	c3123	C3123	C3123

Si02	58.76	59.62	58.32	58.79	56.73	58.08	59.86	57.89	56.74	56.96
A1203	26.34	24.82	26.41	24.26	27.13	27.62	26.42	26.98	27.42	28.61
FeO	1.04	0.62	0.71	0.34	0.50	0.55	0.48	0.50	0.62	0.56
C 0	5.79	5.60	6.35	7.43	7.24	6.54	5.80	6.93	7.50	8.04
Na 20	7.45	8.31	7.90	7.15	6.80	6.55	6.90	6.94	6.18	5.68
K 20	0.14	0.10	0.08	0.16	0.12	0.11	0.33	0.00	0.08	0.00
Ba0	0.00	0.00	0.00	0.95	0.00	1.18	0.78	0.00	0.00	0.00
TOTAL	99.51	99.07	99.78	99.08	98.53	100.62	100.56	99.24	98.54	99.84

	$C 3123$									
Si02	63.85	58.89	59.21	59.96	62.33	60.09	61.24	62.32	57.81	57.77
A1203	20.52	27.35	26.11	26.26	25.17	25.95	24.68	24.69	26.73	26.29
Fe0	0.30	0.20	0.40	0.39	0.34	0.45	1.00	0.36	0.45	1.26
CaO	0.90	6.72	5.85	6.05	4.29	5.89	4.72	4.30	6.40	6.61
Na 20	3.11	6.42	7.58	7.23	7.62	7.31	8.43	8.81	7.31	6.69
K 20	10.78	0.00	0.07	0.10	0.00	0.14	0.39	0.08	0.07	0.16
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.13	0.00
TOTAL	99.46	100.08	99.22	100.00	99.74	99.83	100.46	100.55	99.90	98.78

	C3125	C3125	03125	C3125	c3125	C3125	C3125	C3125	C3125	c3, 125
5102	57.76	55.44	57.74	58.43	58.59	57.25	58.91	63.31	60.75	60.06
A1203	27.10	27.37	26.29	25.63	25.68	26.06	26.56	24.12	24.36	25.61
FeO	0.28	0.74	0.67	0.34	0.25	0.69	0.31	0.42	0.13	0.36
CaO	7.48	5.12	6.64	6.25	6.22	5.80	6.69	3.96	5.39	4.99
Na20	7.69	6.11	7.42	8.50	7.80	6.63	7.99	8.43	8.66	8.23
K20	0.00	2.96	0.27	0.11	0.00	1.98	0.10	0.14	0.12	1.63
B30	1.01	0.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	101.33	98.71	99.12	99.44	98.54	98.40	100.66	100.61	99.40	100.88

	03125	C3125								
$\mathrm{SiO2}$	57.86	62.33	62.59	61.33	60.72	59.25	60.54	61.17	60.95	62.26
A1203	21.63	24.04	21.85	24.34	24.35	24.67	25.64	24.65	24.09	24.54
Feo	0.63	0.12	0.19	0.35	0.50	0.34	0.23	0.23	0.55	0.47
CaO_{3}	9.31	4.18	1.70	5.38	4.45	4.99	5.36	4.93	4.50	4.77
Na 20	9.04	8.00	10.59	9.04	9.81	9.39	9.24	9.27	8.75	9.09
K20	1.37	0.29	0.76	0.20	0.12	0.27	0.00	0.00	0.10	0.10
BaO	0.00	0.00	0.94	0.00	0.00	0.62	0.00	0.00	0.00	0.00
TOTAL	100.00	98.95	98.63	101.13	100.06	99.51	101.02	100.45	98.93	101.24
	03125	c3125								
5102	61.51	61.81	58.73	59.83	60.52	60.18	60.61	60.69	61.08	61.70
A1203	24.17	24.28	26.15	24.65	24.55	25.34	24.37	25.02	25.48	24.32
FeO	0.30	0.31	0.17	0.25	0.47	0.30	0.28	0.42	0.28	0.22
CaO^{0}	4.70	4.89	7.35	5.08	5.40	5.80	5.14	5.17	4.99	4.75
Na 20	9.88	8.99	7.96	8.75	8.69	7.74	9.41	8.59	9.48	9.61
K20	0.00	0.11	0.17	0.00	0.00	0.14	0.25	0.09	0.08	0.00
BaO	0.00	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.55	100.39	100.53	99.36	99.62	99.71	100.05	99.98	101.50	100.71
	C3125	C3125	C3125	C3125						
Si02	60.21	60.67	62.13	62.58						
A1203	25.13	24.85	24.85	24.88						
Feo	0.31	0.36	0.51	0.31						
Ca	5.36	5.06	4.64	4.55						
Na 20	9.02	8.71	8.29	8.84						
K20	0.08	0.21	0.00	0.00						
B30	0.00	0.00	0.00	0.00						
TOTAL	100.11	99.86	101.37	101.27						

