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ABSTRACT 

Insulin resistance is the principle step towards the progression of type 2 diabetes, and has 

been linked to increased circulating levels of cytokines, leading to chronic low-grade 

inflammation. Specifically, in chronic disease states increased interleukin-6 (IL-6) is 

thought to play a critical role in the regulation of insulin resistance in peripheral tissues, 

and has been used as a marker of insulin resistance. There is also an endogenous up- 

regulation of IL-6 in response to physical activity, which has been linked to improved 

insulin sensitivity. This leads to the question “how can elevated IL-6 lead to the 

development of insulin resistance, and yet also lead to increased insulin sensitivity?” 

Resolving the dual role of IL-6 in regulating insulin resistance/sensitivity is critical to the 

development of potential therapeutic interventions. This study was designed to 

investigate the role of IL-6 on high fat diet (HFD) induced glucose intolerance, and the 

response to voluntary physical activity in the prevention of insulin resistance. Six-week- 

old wild type (WT) and IL-6 knockout (KO) mice with (RUN) or without (SED) access 

to running wheels were fed a HFD (60% from kcal) for 4 weeks. A glucose tolerance test 

revealed that blood glucose levels were 25-30% higher in KO RUN compared to all other 

groups after 30 minutes. In WT RUN, weight gain was positively coiTelated with total 

caloric intake; however, this correlation was absent in KO RUN, which may be attributed 

to impaired glycogen breakdown or increased thenuogenesis in these mice. In soleus 

muscle, there was a 2-fold increase in SOCS3 expression in KO RUN compared to all 

other groups. In gastrocnemius/plantaris muscles, Akt phosphorylation was 31% higher 

in WT RUN compared to WT SED, but this effect of running was absent in KO mice. 
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Additionally, there was a 2.4-fold increase in leptin expression in KO RUN compared to 

KO SED in the gastrocnemius/plantaris muscles. In the liver, there was a 2-3.8-fold 

increase in SOCS3 expression in KO SED compared to all other groups, and AMPKa 

phosphorylation was 27% higher in WT mice (both RUN and SED) compared to KO 

mice (both RUN and SED). These findings provide new insight into the role of the IL-6 

in metabolism and energy storage, and highlights tissue specific changes in early 

signaling pathways in response to HFD for 4 weeks. The collective findings suggest that 

endogenous IL-6 is important for the prevention of insulin resistance leading to type 2 

diabetes. 
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LAY SUMMARY 

Faculty and students in the Department of Biology are bound together by a common 

interest in explaining the diversity of life, the fit between form and function, and the 

distribution and abundance of organisms. The purpose of this research was to investigate 

the effects of the cytokine lL-6, high fat diet, and physical activity on glucose tolerance 

and insulin action within a more physiological context. The findings suggest that IL-6 is 

important for the prevention of insulin resistance induced by high fat diet, and help 

further our understanding of the mechanisms behind the increase in insulin sensitivity in 

response to regular physical activity in the treatment and prevention of type 2 diabetes. 
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INTRODUCTION 

It is estimated that 347 million people worldwide have diabetes, with approximately 90% 

of those cases being type 2 diabetes (T2D) (World Health Organization). There are many 

grave pathophysiological outcomes of T2D, leading to increased morbidity and mortality. 

Increased blood glucose levels associated with T2D leads to a greater incidence of tissue 

damage leading to complications in the cardiovascular system, kidneys, retina, and 

peripheral nervous system. Furthermore, the World Health Organization projects that 

deaths attributed to diabetes will double between 2005 and 2030. Altered function of 

insulin at peripheral tissues leads to insulin resistance in skeletal muscle, liver, and 

adipose tissue, which is critical to the development and progression of T2D. 

Insulin is an anabolic hormone that is released by the p-cells in the pancreas to maintain 

glucose homeostasis within the body. The insulin-signaling cascade begins when insulin 

binds to the insulin receptor (IR) on the cell membrane. Insulin binding results in 

autophosphorylation and activation of the IR beta subunit. Once activated, IR 

phosphorylates and activates several molecules, including the insulin receptor substrate 

(IRS) proteins 1 and 2. IR binds to IRS-1 and IRS-2 through the Pleckstrin Homology 

(PH), and Phosphotyrosine Binding (PTB) domains [1]. IRS-1 functions primarily in 

skeletal muscle and adipose tissues, whereas IRS-2 functions primarily in the liver [2]. 

The tyrosine phosphorylation of IRS proteins activates binding sites for Src homology 2 

(SH2) domain proteins including phosphoinositide 3-kinase (P13K) [3]. IRS 

phosphorylates PI3K by binding to the regulatory subunit p85, and generates membrane 
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phosphatidyl-inositol-3,4,5-trisphosphate (PIP3). In turn, PIP3 recruits and activates 

phosphoinositide 3-dependent kinase 1 and 2, protein kinase C, and Akt leading to 

subsequent phosphorylation of downstream targets such as mammalian target of 

rapamycin (mTOR), and glycogen synthase kinase-3p. Insulin is released in response to 

increased levels of circulating glucose, causing a coordinated response in peripheral 

tissues with the overall goal to take up and store glucose. Insulin stimulates glucose 

uptake in skeletal muscle and adipose tissue, and the activation of Akt causes 

translocation of glucose transporter 4 (GLUT-4) vesicles to the plasma membrane to 

facilitate glucose transport into the cells. In the liver, insulin signaling regulates 

gluconeogenesis by inhibiting key enzymes, resulting in reduced hepatic glucose output. 

Although skeletal muscle accounts for approximately 75% of whole body insulin- 

stimulated glucose uptake through both insulin dependent and insulin independent 

mechanisms, glycogen synthesis is also stimulated to store large amounts of glucose in 

the liver [4]. The effects of insulin on glucose metabolism are complex and highly 

regulated. Adding to this complexity, these signaling pathways can be altered or 

influenced by various pathophysiological conditions, such as inflammation, infection, and 

obesity. 

The current literature provides evidence that elevated IL-6 plays an important role both in 

the development of insulin resistance, and as a mediator of physical activity induced 

increases in insulin sensitivity. Therefore, an IL-6 paradox does exist, such that elevated 

lL-6 can lead to the development of insulin resistance, and yet can also lead to increased 

insulin sensitivity. However, there are still many gaps in the knowledge related to these 
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context dependent physiological outcomes of elevated IL-6. An improved understanding 

of the mechanisms behind lL-6 signaling, physical activity, and insulin sensitivity are 

required to develop improved treatment strategies for T2D. 

Chronic low-grade inflammation versus acute inflammation 

Interleukin-6 (IL-6) is a pleiotropic cytokine that is secreted by and acts on a wide variety 

of tissues and cells. IL-6 mediates several steps in the activation of inflammatory 

responses, by regulating the synthesis of pro-inflammatory cytokines [5]. However, IL-6 

also promotes the synthesis of anti-inflammatory cytokines such as, IL-1 receptor 

antagonist and IL-10 [5,6]. Therefore, IL-6 exhibits both pro- and anti-inflammatory 

properties, and there seems to be context dependent effects. The plasma levels of IL-6 in 

healthy humans are typically less than 5 pg/ml [7] (Table 1). Although many different 

cell types are capable of producing IL-6, the release differs under varying physiological 

conditions within the body. In healthy humans, adipose tissue releases 10-35% of lL-6 in 

basal circulating levels [8]. Immune cells, specifically macrophages, that are present 

within adipose tissue are responsible for releasing the majority of IL-6 from this tissue 

[9] . In obesity, increased numbers of macrophages begin to infiltrate the white adipose 

tissue, and the macrophage content correlates positively with adiposity and adipocyte size 

[10] . This increased number of macrophages leads to increased production of C-reactive 

protein, and inflammatory cytokines, including TNFa, IL-lp and lL-6 [11]. Additionally, 

it was found that TNFa and IL-6 were more highly expressed in macrophages compared 

to adipocyte cells in adipose tissue obtained from an obese mouse model {ob/oh). 

Therefore, obesity has been characterized as a state of chronic low-grade inflammation. 
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due to the increased secretion and subsequent ~2-3-fold elevation in systemic 

inflammatory markers from macrophages in the adipose tissue [10,12] (Table 1). 

In contrast to chronically elevated IL-6, there can also be elevated IL-6 in response to 

acute infection, sepsis or physical activity. An acute phase response results in the release 

of similar inflammatory markers that are seen in chronic low-grade inflammation, 

however, the acute circulating levels of these markers are much higher than levels 

associated with systemic inflammation. An acute transient increase in inflammatory 

markers also occurs during physical activity [11]. While it is true that eccentric 

contractions cause damage to skeletal muscle and can elicit an inflammatory response, 

there is also an acute transient increases in cytokine levels in response to physical activity 

in undamaged muscle [13]. However, unlike sepsis and infection, pro-inflammatory 

cytokines, TNFa and IL-ip, do not typically increase [14,15]. It has been reported that 

plasma lL-6 concentrations increased approximately 100 fold during exercise, and the 

magnitude of increase in IL-6 depends on the duration and intensity of the exercise [16- 

18] (Table 1). Increases in IL-6 mRNA and protein were found in skeletal muscle during 

exercise, and the skeletal muscle cells produced enough IL-6 to account for the large 

increase in plasma IL-6 levels [19-21]. In contrast to chronic low-grade inflammation, 

infection and sepsis, it was shown that this acute increase in IL-6 levels was not due to 

activation of macrophages [22]. 
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Table 1. Plasma levels of inflammatory markers in humans under varying 

physiological and pathophysiological conditions. 

Inflammatory Normal 
Marker' 

Obesity Sepsis Exercise 

IL-6 <5 pg/ml 
[7,12,97,103-109] 

1.5-38 pg/ml 
[105,106^10-113] 

3.5-16000 pg/ml 
[115,116] 

-100 fold 
elevation in 
resting 
concentration 
[6,16-18,97] 

TNF-a <3.5 pg/ml 1.8-88 pg/ml 
[12,16,103,106,116] [106,110,113] 

Undetectablc- 
1000 pg/ml [117] 

~2 fold elevation 
in resting 
concentration 
[6, 16] 

IL-10 <3.0 pg/ml 
[103,109,118] 

0.35-10 pg/ml 
[108,111,112,118] 

Undetectable- 
1700 pg/ml [119] 

-8-27 fold 
elevation in 
resting 
concentration 
[6,16] 

CRP <10 mg/1 [107] 1.3-8.5 mg/1 
[105,106,108,1 10,112] 

>10 mg/1 [120] Up to 100 fold 
elevation in 
resting 
concentration 
[6,16,121] 

1 IL-6=interleukin-6, TNF- a=tumor necrosis factor alpha, IL-I0==interleukin-10, CRP=C 
reactive protein 
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Although both chronic low-grade inflammation and physical activity result in increased 

plasma lL-6 levels, there are important differences between the two conditions. Chronic 

low-grade inflammation is characterized by a slight yet significant systemic increase in 

lL-6 levels, whereas physical activity results in an acute and transient increase in IL-6 

levels. During chronic low-grade inflammation the increased lL-6 is released primarily 

from macrophages in adipose tissue [10,12], while during physical activity the IL-6 is 

released from skeletal muscle [19,23]. IL-6 released from muscle during physical 

activity allows accumulation within the skeletal muscle compartment and potentially 

increases specificity of IL-6 signaling at skeletal muscle, aeting in an autoerine/paraerine 

fashion. This also may aceount for differences observed in the effects of IL-6 in response 

to physical activity (acute/transient) versus chronic low-grade inflammation. Although 

IL-6 released from skeletal muscle still ends up in the eireulation, and aets in an 

endocrine manner during physical activity, the elevated IL-6 is only transient, and 

therefore, does not have the negative effects on tissues seen with chronically elevated IL- 

6 levels. The differences between these ehronie and acute IL-6 elevations may be 

important with respeet to the effeets that the increased IL-6 has on target tissues, and 

more specifically, the effects on insulin signaling within these tissues. 

IL-6 increases SOCS3 expression 

IL-6 initiates cell signaling by binding to the IL-6 receptor (IL-6R), which is also known 

as a type I cytokine receptor. The IL-6R exists as membrane bound and soluble 

reeeptors, and IL-6 regulates the inflammatory state by coordinated signaling through 

both forms. The interaetion between lL-6 and IL-6R forms a heterodimer with a non- 

ligand binding membrane glycoprotein, gpl30 [24]. The complex formed between IL- 
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6/IL-6R and gpl30 activates the Janus kinase-signal transducer and activator of 

transcription (Jak/STAT) signal transduction pathway in IL-6 target cells, leading to the 

phosphorylation of the cytoplasmic portion of gpl30 [25]. The phospho-tyrosine 

residues on gpl30 are docking sites for STAT proteins, which are able to bind to these 

docking sites via SH2 (Src-homology 2) domains. Several studies, both in vitro and in 

vivo, have shown that lL-6 stimulation increases the phosphorylation of STAT3 proteins. 

Activated STAT3 is translocated to the nucleus, where it is able to regulate the 

transcription of IL-6 target genes. IL-6 mediated Jak/STAT signaling can be induced 

rapidly, and results in increased phosphorylation of STAT3 under acute inflammatory 

conditions [26-29] (Fig. 1). 

As a negative feedback control, activated STAT proteins induce the expression of 

suppressor of cytokine signaling (SOCS) proteins, which inhibit signaling events in 

response to various cytokines, including IL-6, IL-10, and interferon gamma. SOCS3 is 

able to down regulate IL-6 signaling by exerting negative feedback control on the 

Jak/STAT pathway through various mechanisms [30-32]. Both in vivo and in vitro 

studies provide evidence that elevated circulating levels of IL-6 result in increased 

expression of SOCS3 proteins in skeletal muscle [26,33-35], liver [36], and adipose 

tissue [26,37]. Consequently, this increase in SOCS3 expression has various important 

downstream effects on the insulin-signaling pathway in these tissues. 
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IL-6 Receptor 

O 

insulin Receptor 

O 

nnnnnnnnnni yuuuuuyuyu nnnnnnnnnnnnn yyyyyyyyyyyyy 

GLUT-4 mediated 
glucose uptake 

STAT3 activation leads to increased 
S0CS3 expression 
Increased S0CS3 exerts negative feedback 
on Jak/STAT signaling 
Increased S0CS3 negatively regulates 
insulin signaling 
Acute li-6 increases AMPK activity, 
potentially involving STAT3. However, 
increased SOCS3 may inhibit IL-6 induced 
AMPK activation 

Figure 1. IL-6, insulin, and leptin signaling in skeletal muscle. Chronic low-grade 

inflammation is associated with increased levels of IL-6, which leads to increased 

phosphorylation of STAT3, and subsequent increased SOCS3 expression. Increased 

SOCS3 mediates the inhibitory effects of IL-6 on insulin signaling and glucose uptake. 

SOCS3 directly dismpts insulin signaling by binding to IR and preventing interaction 

with IRS-1 (primarily in skeletal muscle and adipose tissue) / IRS-2 (primarily in the 

liver), and may target IRS-l/IRS-2 for degradation. Disrupting the early signaling events 

also has downstream effects on other proteins in the insulin pathway including P13K and 

Akt, ultimately leading to insulin resistance and attenuated GLUT-4 mediated glucose 

uptake. Chronically elevated leptin levels also leads to increased SOCS3 expression. 
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which can also directly inhibit insulin mediated glucose uptake. In addition, SOCS3 can 

have indirect effects on glucose uptake; increased SOCS3 leading to leptin resistance, 

and impaired leptin mediated AMPK activation. In contrast, acute/transient IL-6 

elevations in response to physical activity do not cause sustained increased SOCS3 

expression, but cause increased insulin sensitivity in peripheral tissues by increased 

AMPK activity and subsequent increased glucose uptake. IL-6 mediated activation of 

AMPK in response to physical activity is blunted in chronic inflammatory states. Since 

IL-6 is required for physical activity-induced AMPK activation and obesity results in a 

blunted physical activity-induced activation of AMPK, it is possible that increased 

SOCS3 may cause IL-6 resistance, which results in diminished AMPK activity and 

increased insulin resistance. 

IL-6=inlerleukin-6, STAT3= signal transducer and activator of transcription 3, SOCS3=suppressor of 

cytokine signaling 3, IR=insulin receptor, IRS=insulin receptor substrate, PI3K= phosphoinositidc 3 kinase, 

GLUT-4=glucose transporter 4, AMPK.=AMP activated protein kinase 
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SOCS3 and insulin resistance 

Chronically elevated lL-6 leads to increased expression of SOCS3 proteins in skeletal 

muscle, liver and adipose tissue. This increased expression of SOCS3 mediates the 

inhibitory effects of IL-6 on insulin signaling and glucose metabolism [36,38,39], It has 

been shown that insulin resistance increases following SOCS3 adenoviral [36] and 

transgene [38] overexpression in liver and adipose tissue. SOCS3 adenoviral 

overexpression in the liver of dh/db obese mice lead to increased plasma insulin 

concentrations, glucose intolerance, and insulin resistance. Furthemiore, when these 

mice were given antisense treatment for SOCS3 protein, insulin sensitivity improved 

[39], Similarly, after a muscle specific deletion of SOCS3, whole body glucose tolerance 

and insulin sensitivity increased. This was due to enhanced glucose uptake into skeletal 

muscle [40]. Additionally, it was found that insulin sensitivity increased following an 

adipose tissue specific SOCS3 deletion, suggesting that SOCS3 negatively regulates 

insulin signaling [37,41]. Although it has been demonstrated that increased SOCS3 

expression causes insulin resistance in multiple tissues, the mechanisms by which SOCS3 

exerts these effects are less clear. There is a large body of evidence supporting that 

SOCS3 disrupts insulin signaling by binding to specific sites on IR, and IRS-l/IRS-2, as 

well as targeting IRS-1/IRS-2 for degradation [36]. Dismpting these early signaling 

events also has downstream effects on other important proteins in the insulin pathway, 

including PI3K and Akt. 

It has been demonstrated that the p subunit of IR and SOCS3 co-immunoprecipitated in 

muscle lysates, and adenoviral mediated overexpression of SOCS3 resulted in decreased 
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insulin stimulated phosphoiylation of both IRS-1 and lRS-2 [36]. Since the decreased 

phosphorylation of IRS-1 and IRS-2 occurred without a decrease in IR phosphorylation, 

SOCS3 may bind to residues on IR that are involved in IR/IRS binding. Tyrosine 960 of 

IR is an important residue in IR/IRS binding [42], and when mutated to phenylalanine, 

SOCS3 was unable to bind to the p subunit of IR [36]. This finding suggests that when 

SOCS3 binds to the IR, it inhibits IR/IRS 1 interaction, and consequently, disrupts insulin 

signaling. Co-immunoprecipitation of SOCS3 with both the P subunit of IR and IRS-1 

was increased in skeletal muscle from rats fed HFD and obese Zucker rats compared to 

the control rats [43,44]. HFDs cause elevated IL-6, which leads to increased SOCS3 

expression, and acts as barrier between IR and IRS-1 binding. Consequently, insulin 

stimulated tyrosine phosphorylation of IRS-1 was decreased in both the HFD rats and 

obese Zucker rats compared to the control rats [43,44]. The decreased IRS-1 

phosphorylation caused decreased activity and phosphorylation of P13K, and increased 

insulin resistance [44]. Following a skeletal muscle specific SOCS3 deletion, there was 

no difference in IR, IRS-1, and Akt protein expression. However, IRS-1 association with 

the p85 subunit of PI3K and Akt phosphorylation increased in SOCS3 deficient mice 

after insulin stimulation [40]. These studies suggest that muscle specific SOCS3 deletion 

improves insulin sensitivity in mice fed a HFD. 

Along with skeletal muscle, increased SOCS3 expression can also induce insulin 

resistance in the liver. When the HepG2 cells (human liver cell line) and primary 

hepatocytes were treated first with IL-6 and then insulin, SOCS3 expression increased, 

and tyrosine phosphorylation of IRS-1 and IRS-2 were decreased, but the 



phosphorylation of IR did not differ [45,46]. Similar to skeletal muscle, it was found that 

SOCS3 co-immunoprecipitated with the (3 subunit of IR in liver lysates, and these 

findings suggest that SOCS3 attenuates insulin signaling by inhibiting IR/IRS binding in 

the liver [36], Increased SOCS3 suppressed IRS-1 association with the p85 subunit of 

PI3K, and attenuated Akt phosphorylation [39,45,46]. When treated with antisense 

oligonucleotides against SOCS3, the phosphorylation of both IRS-1 and IRS-2 was 

restored, and the activity of PI3K and Akt was improved [39], In a lipopolysaccharide 

(LPS) model for sepsis, SOCS3 protein expression was increased in the liver, which 

resulted in a drastic decrease in IRS-1 and IRS-2 phosphorylation in response to insulin. 

Furthermore, insulin stimulated PI3K and Akt activity were both significantly decreased 

[36], However, in contrast to other studies, IR phosphorylation was decreased in the 

mice that were treated with LPS. It should be noted that LPS injection simulates 

endotoxemia in the liver tissue, and this is a severe model of systemic inflammation 

compared to chronic low-grade inflammation. This may account for discrepancies in 

results between studies using these different models of inflammation. 

In addition to decreased tyrosine phosphorylation of IRS-1 and IRS-2, SOCS has also 

been shown to mediate the degradation of these proteins. Adenoviral mediated 

expression of SOCS 1 in liver lysates resulted in reduced levels of IRS-1 and IRS-2 

proteins, and these levels returned to normal when SOCSl was no longer detected [47]. 

SOCS proteins contain a highly conserved binding domain known as the SOCS box [30- 

32]. The SOCS box has an Elongin C binding motif that can form a complex with 

Elongin B [48]. This Elongin BC complex assembles an E3 ubiquitin ligase complex. 
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which can degrade IRS-l and IRS-2 proteins [49]. The deletion of SOCS box residues 

resulted in no reduction of IRS-1 and IRS-2 proteins levels when SOCS I was expressed 

using an adenovirus [47], Although these results were only shown with SOCSl, the 

Elongin C binding motif is present in the SOCS box of both SOCSl and SOCS3. 

Therefore, under certain circumstances degradation via the E3 ubiquitin ligase complex is 

a plausible explanation for the reduced IRS-l and IRS-2 protein levels following SOCS3 

expression [36]. 

Along with skeletal muscle and liver, SOCS3 is also a negative regulator of insulin 

signaling in adipose tissue. When SOCS3 was overexpressed in primary adipocytes or 

adipose tissue, insulin stimulated IRS-l tyrosine phosphorylation, PI3K activation of p85 

subunit, and Akt phosphorylation decreased resulting in increased insulin resistance 

[38,50]. There was also a significant reduction in IRS-l protein levels, which suggests 

that SOCS3 may be capable of degrading IRS-l via ubiquitin ligase in adipose tissue 

[38,50]. SOCS3 deficient mouse embiyonic fibroblasts, differentiated into adipocytes, 

showed increased IRS-l and IRS-2 tyrosine phosphorylation compared to wild type 

adipocytes when stimulated with insulin [37]. Additionally, in the SOCS3 deficient 

adipocytes, p85 subunit binding to IRS-l, PI3K activity, and glucose uptake were all 

increased. During chronic insulin treatment, which simulates conditions that lead to 

increased SOCS3 expression, IRS-l protein levels were decreased in wild type 

adipocytes, which were not seen in the SOCS3 deficient adipocytes [37]. HFD miee with 

an adipose tissue specific deletion SOCS3 deletion (AKO) had increased glucose infusion 

rate with hyperinsulinaemic-euglyceamic clamp tests compared to the control mice [41]. 
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Following a bolus of insulin, there was decreased IRS-1 tyrosine phosphorylation and 

lRS-1 protein levels in the HFD control mice compared to the HFD AKO mice. These 

findings demonstrate that the deletion of SOCS3 can protect against HFD induced insulin 

resistance in adipose tissue. 

Collectively, these studies provide evidence that SOCS3 is a negative regulator of insulin 

signaling in skeletal muscle, liver, and adipose tissue. The ability of SOCS3 to inhibit 

insulin signaling suggests that these proteins influence energy balance and glucose 

homeostasis within the body. In support of this, SOCS3 is also known to have a role in 

the development of leptin resistance. 

SOCS3 and leptin resistance 

Leptin is a hormone produced and secreted by several tissues, which regulates energy 

balance and caloric intake in the body. Although adipose tissue is the principle site of 

leptin secretion, this hormone can also be released from skeletal muscle [51,52]. A 

change in both substrate availability and substrate requirements can modulate leptin 

secretion from these tissues, which results in the regulation of food intake and energy 

balance, stimulates glucose transport, and inhibits insulin secretion by pancreatic p-cells. 

The leptin receptor (LRb) is a class I cytokine receptor, and is membrane bound as a 

homodimer [53]. In the hypothalamus, leptin binds to its receptor on the plasma 

membrane, and this leads to tyrosine phosphorylation of Jak2, and subsequent tyrosine 

phosphorylation of LRb [54,55]. Phosphorylated LRb binds to, and activates STAT3 

proteins. STAT3 activation increases pro-opiomelanocortin (POMC) expression, as well 

as inhibits neuropeptide Y (NPY) and agouti-related peptide (AgRP) activity, all resulting 

14 



in appetite suppression and increased energy expenditure [56-58]. The activation of 

STAT3 by leptin also mediates the transcription of SOCS3 protein [59]. Similar to IL-6 

signal transduction, leptin induces SOCS3 expression, and SOCS3 then inhibits leptin 

signaling (Figure 1). SOCS3 inhibits leptin signaling by binding to Tyr985 on LRb, and 

blocking further signal transduction through STAT3, and also by inhibiting Jak2 

phosphorylation[60,61]. Mice with haploinsufficiency of SOCS3 had lower plasma 

leptin levels, and had prolonged activation of STAT3 proteins compared to wild type 

mice when administered the same does of leptin [62]. When leptin was infused into 

neuron specific SOCS3 deficient mice, these mice had greater weight loss compared to 

the wild type mice. Furthermore, when these mice were fed a HFD, the wild type gained 

significantly more weight than the SOCS3 deficient mice [63]. SOCS3 mediated 

inhibition of leptin signaling prevents leptin from effectively modulating energy intake 

and suppressing appetite, and exacerbates obesity. 

Under normal conditions, leptin stimulation results in increased activity of AMP 

activated protein kinase (AMPK), and downstream target acetyl-CoA carboxylase (ACC) 

in peripheral tissues [64]. AMPK is a regulator of cellular energy balance, and once 

activated switches on energy producing pathways. AMPK phosphorylates target proteins 

leading to increased fatty acid oxidation, glucose transport, and lipolysis in skeletal 

muscle, liver, and adipose tissue [65]. However, leptin failed to increase AMPK or ACC 

phosphorylation in rat soleus muscle following a HFD, indicating that the tissue had 

become leptin resistant [65,66]. Leptin stimulation resulted in decreased AMPK 

mediated Jak2, IRS-1, and Akt phosphorylation in the liver of rats fed a HFD compared 
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to control rats [67]. Additionally, AMPK expression was decreased in the HFD liver. 

Leptin resistance has also been connected to increased SOCS3 mRNA and protein 

expression in skeletal muscle cells [68]. When SOCS3 was overexpressed in skeletal 

muscle, there was decreased a2AMPK activity, and decreased ACC phosphorylation 

[69]. These results imply that increased SOCS3 can lead to the development of leptin 

resistance in the muscle cells. 

Chronic low-grade inflammation is associated with both increased circulating lL-6 and 

leptin levels, and consequently increased SOCS3 expression. Therefore, SOCS3 

expression has both direct and indirect effects on the insulin-signaling pathway under 

these conditions. As previously discussed, SOCS3 causes insulin resistance by directly 

inhibiting IR and IRS-1/IRS-2, which consequently causes decreased activity of 

downstream components in the insulin-signaling pathway. SOCS3 can also negatively 

regulate leptin signaling leading to impaired leptin induced glucose uptake via AMPK 

and insulin signaling, and cause subsequent interactions between the leptin and insulin 

signaling pathways (Fig. 1). These interactions allow SOCS3 to mediate Rirther indirect 

effects on insulin signaling. 

Physical activity and insulin signaling 

It has been well documented that regular physical activity can alleviate or protect against 

T2D by enhancing insulin sensitivity in peripheral tissues [70-78], Metformin is an 

antidiabetic drug that lowers fasting plasma insulin and glucose levels, and improves 

glucose tolerance by suppressing hepatic glucose production and increasing glucose 

uptake in skeletal muscle [79,80], Metfomiin suppresses hepatic glucose production 
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through a reduction in the rate of gluconeogenesis [80]. Due to the effectiveness of 

metformin on lowering plasma glucose concentrations, and the inexpensive cost, 

metfonuin is the most commonly prescribed drug for T2D patients [81]. Studies 

comparing the effectiveness of exercise, metformin and the combination treatment on 

insulin sensitivity have yielded interesting findings. Insulin resistant individuals were 

either treated with metformin, underwent a single bout of exercise, or both combined, and 

insulin sensitivity was measured 4 hours post exercise. Euglycemic hyperinsulinemic 

clamp tests found that insulin sensitivity increased by 54% in the individuals that 

exercised, and these changes were not seen in the metformin or combination treatments 

[81], When prediabetic individuals participated in exercise training with or without 

metformin for 12 weeks, insulin sensitivity was increased in all treatments. However, the 

increase in insulin sensitivity was 25-30% higher in the exercise without metformin 

treatment compared to the others [82]. Additionally, prediabetic individuals prescribed 

either metformin or 150 minutes of physical activity per week for approximately 3 years 

resulted in the incidence of diabetes being reduced by 31% and 58% in the metfonuin 

and physical activity groups respectively [83]. Life style changes associated with regular 

physical activity and treatment with metformin both enhance insulin sensitivity, and 

reduced the incidence of diabetes in high-risk candidates. Drugs are more often chosen 

as the prescribed treatment in T2D, however it has been shown that the endogenous 

response to physical activity is more effective. It is important to understand the 

mechanisms behind the increase in insulin sensitivity in response to physical activity, as 

well as, why these mechanisms are more effective than current phamiacological 

treatments. 

17 



IL-6 and physical activity 

As previously stated, IL-6 is elevated during physical activity, and plasma levels increase 

up to 100 fold (Table 1). lL-6 infusion during physical activity caused increased glucose 

disposal [84], and stimulated the production of anti inflammatoiy cytokines IL-1 receptor 

antagonist and IL-IO. The production of IL-10 is important because it inhibits the 

production of pro inflammatory cytokines lL-1, TNFa, and IL-8 [5,16,85]. Furthermore, 

glucose uptake rate was lower in IL-6 knockout mice compared to wild type, and the 

knockout mice did not benefit from voluntary wheel running to the same extent as the 

wild type mice [86]. These studies suggest that acute elevations in IL-6 increase insulin 

sensitivity, whereas the lack of IL-6 prevents the exercise induced increases in insulin 

sensitivity. 

The mechanism by which elevated IL-6 improves insulin sensitivity following physical 

activity may involve the regulation of AMPK activity. AMPK is an evolutionary 

conserved apy heterotrimer that consists of an a catalytic subunit, and py regulatory 

subunits [87,88]. Mice that overexpressed a skeletal muscle specific kinase dead form of 

AMPKa2 had reduced exercise tolerance during a single bout of exercise compared to 

wild type mice [89,90]. Additionally, AMPKp2 knock out mice had reduced maximal 

exercise capacity and AMPK activity during treadmill running compared to wild type 

mice [91], and muscle specific AMPKpip2 knock out mice showed decreased 

AMPKala2 activity and AMPK phosphorylation following exercise compared to wild 

type mice [92]. Following muscle contraction, glucose uptake rates did not increase until 

the last five minutes of the contraction period in hind limb muscles from AMPKot2 
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dominant negative mice, whereas glucose uptake rates increased rapidly and remained 

elevated throughout the contraction period in wild type mice [93]. A similar study on 

AMPKa2 dominant negative mice found that contraction induced glucose uptake was 

reduced by 50% in extensor digitorum longus muscle compared to the wild type mice, 

suggesting that AMPK activity has important role in physical activity induced glucose 

uptake [94]. However, another study found that contraction stimulated glucose uptake 

into tibialis anterior, extensor digitorum longus, and gastrocnemius muscles were similar 

in muscle specific transgenic mice with inactive AMPKa2 catalytic subunits when 

compared to wild type mice [95]. In order to visualize GLUT-4 translocation and 

localization, mice quadriceps muscle fibers were transfected with GLUT4-enhanced 

green fluorescent protein (EGFP). Following ablation of AMPKa2 activity in transgenic 

mice, GLUT4-EGFP basal localization, and contraction stimulated GLUT4-EGFP 

translocation was similar compared to wild type mice [96]. In contrast to above, these 

studies suggest that AMPKa2 activation may not be required for physical activity 

induced glucose uptake. Therefore, AMPK activity may be necessary for full activation 

of physical activity induced glucose transport, but it appears there are also AMPK 

independent mechanisms involved in this process [94]. 

Several studies have shown that lL-6 is an important factor involved in physical activity- 

mediated activation of AMPK. AMPK is activated by decreases in the energy state of the 

cell, or increases in the AMP: ATP ratio, and it was shown that incubation of skeletal 

muscle cells with IL-6 resulted in increased concentrations of AMP [97]. Incubating 

extensor digitorum longus muscle and cultured F442a adipocyte with IL-6 resulted in 
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increased AMPK and ACC phosphorylation in the cells [98,99]. Additionally, physieal 

aetivity eaused increased AMPK and ACC phosphorylation in skeletal musele, liver, and 

adipose tissue of control mice, and these effects were diminished in IL-6 knockout mice 

[98,99], IL-6 infusion into humans at a plasma concentration that mimics levels reached 

during strenuous exercise increased glucose disposal rate. Furthermore, L6 myotubes, 

when treated with IL-6, resulted in inereased insulin stimulated transloeation of GLUT-4 

to the plasma membrane, and was aecompanied by a 1.8-fold increase in AMPK 

phosphorylation compared to untreated myotubes [26]. Following adenoviral-mediated 

infeetion of myotubes with a dominant negative AMPKa subunit, IL-6 induced increases 

in insulin stimulated glucose uptake were inhibited. AMPK phosphorylation was reduced 

in obese rats compared to lean rats, and contraction failed to inerease AMPK activity in 

the obese rats following exercise [100,101]. Similarly, HFD fed mice had reduced 

exercise tolerance, and attenuated AMPKa2 activity during a single bout of exereise 

compared to chow fed mice [102]. IL-6 has been shown to be required for physical 

activity-mediated increases in AMPK activity [98,99], but it remains unclear why IL-6 is 

inhibited from activating AMPK in response to physical activity in chronic inflammatory 

states. In eontrast, it was found that T2D subjects had similar physical activity induced 

AMPKa2 activity compared to non-diabetic subjects [103]. However, none of these 

subjects were obese, and may not be suffering from chronic low-grade inflammation in 

eonjunction with T2D. This interpretation was supported by another study that compared 

AMPK activity between obese non-diabetic, non-obese T2D, and obese T2D subjeets. 

The obese non-diabetic and obese T2D subjects showed diminished physical activity 

induced inereases in AMPK phosphorylation, AMPKa2 aetivity, and total AMPK 
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activity compared to non-obese T2D subjects [104]. Furthermore, obese non-diabetic 

and obese T2D subjects had attenuated increases in ACC phosphorylation compared to 

non-obese T2D subjects. These results indicate that the inhibition of physical activity 

induced increases in AMPK activity occurs under obese or chronic low-grade 

inflammatory conditions, and that IL- 6 resistance may be related to the reduced AMPK 

response. 

Statement of Problem 

The role of elevated lL-6 in insulin resistance and insulin sensitivity is an active area of 

investigation. The current literature provides evidence that lL-6 induces insulin 

resistance, and that it can also improve insulin sensitivity. These studies suggest that the 

effects of lL-6 on insulin signaling are context dependent, and that this is a critical factor 

in this paradox that cannot be overlooked. 

Specific Aims 

The purpose of the present study was to determine both the role of lL-6 on HFD induced 

glucose intolerance, and in response to voluntary physical activity in the prevention of 

insulin resistance in IL-6 deficient mice. 

Hypotheses 

1) IL-6 is required for FIFO induced insulin resistance. 

2) The absence of lL-6 will prevent the beneficial effects of physical activity on 

insulin signaling. 

MATERIALS AND METHODS 
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Animals 

The IL-6 knockout (KO) mice (B6.129S2-I16''”^^''^^Vj) were purchased from Jackson 

Laboratory (Bar Harbour, ME, USA). The KO mice were generated using a targeting 

vector. This vector was designed to place a neomycin resistance cassette into the first 

coding exon of the IL-6 gene. This construct was electroporated into 129S2/SvPas- 

derived D3 embiyonic stem cells. The correctly targeted embryonic stem cells were 

injected into wild type mice (C57BL/6J) blastocysts. The resulting mouse line was bred 

to C57BL/6J (Stock No. 000664) mice for 11 generations. Male KO (n=^16), and wild 

type (WT) (n=14) were obtained at ~6 weeks of age, and studied after one week of 

acclimatization (Fig. 2). Mice were housed under controlled temperature (18-20°C), 

humidity (40-70%), decibel level (<70 dB), and lighting (12h of light; 12h of dark) with 

free access to food and water. All animal experiments were performed in accordance 

with the institutional animal care committee guidelines at Lakehead University. 

Experimental protocol 

The mice were fed a HFD (D12492; Research Diets Inc., New Bmnswick, NJ, USA) 

containing the following nutrient content (in kcal percent): fat 60%, protein 20%, 

carbohydrate 20%; with a total caloric content of 5.24 kcal g ' (Appendix A). Eight KO 

and 6 WT mice had free access to running wheels (Appendix B). Over the 4 weeks of the 

study, food intake and running distance were recorded daily, and body weight was 

recorded weekly (Fig. 2). Daily food intake was tracked by calculating the difference 

between the mass of food added to each cage, and the mass of food remaining in each 

cage. Daily mnning distances were tracked using CatEye Velo 5. 
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Delimitations 

Delimitations are those set by the investigator. 

1. The study subjects were mice and not humans 

2. The study was one single time point 

Limitations and Basic Assumptions 

Limitations and basic assumptions are inherent to the experimental design. 

1. Mice were disease and pathogen free 

2. Mice were well fed and hydrated 

3. The mnning distances were similar to the reading on the monitor (free spinning of 

the wheel as mice jump on and off was negligible) 

4. There were no underlying factors within the skeletal muscles or liver that would 

affect normal function 

Glucose tolerance test 

After 3 weeks of HFD mice were morning fasted for 5 hours prior to the glucose 

tolerance test (GTT) (Fig. 2). Mice were secured in a tail-first restrainer with an 

adjustable head gate. This design allowed the animal to walk in to the restrainer without 

being physically forced backwards. Once secured, the tail was swabbed with alcohol 

soaked gauze to increase visibility of the vein. The lateral tail vein was then located in 

the middle third of the tail for blood draw. Baseline blood glucose levels were taken 

prior to a bolus intraperitoneal injection of glucose (1 g kg '). Blood samples were taken 

from the tail vein at baseline (0), and after 30, 60, 90, and 120 minutes. Glucose levels 

were measured with a hand held whole-blood glucose monitor (OneTouch Ultra2), and 
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values were compared at each time point. The blood glucose response was quantified by 

calculating the area under the curve after the injeetion of glucose and subtraeting baseline 

to describe the concentration of glucose in the blood 120 minutes after administration. 

Tissue collection 

At the end of the 4 weeks, mice were morning fasted for 5 hours, and then insulin was 

administered intraperitoneally to all animals at a dose of 10 U kg '. Ten minutes after the 

insulin injeetion, mice were anesthetized with isofluorane, and the hearts were removed 

(Fig. 2). The liver, soleus, gastrocnemius/plantaris (combined) muscles (left and right leg 

muscles) were removed and immediately frozen in liquid nitrogen for further analysis. 

The gastrocnemius and plantaris muscles were combined because they both have similar 

type I and type 11 myosin heavy profiles (both have a predominant IIB, with varying type 

IIA and IIX), whereas the soleus is approximately 50% type I myosin heavy chain and is 

postural. 

Tissue lysis 

Soleus muscle 

Frozen soleus muscles were homogenized in 20 volumes of ice-cold lysis buffer (25 mM 

Tris pH=7.5, 150mM NaCl, ImM EDTA, 1% Triton-X 100) in 2 mL round bottom 

microcentrifuge tubes. Immediately before use, phosphatase inhibitor cocktails 2 (Sigma, 

P5726) and 3 (Sigma, P0044), and protease inhibitor cocktail (Sigma, P8340) were added 

to the lysis buffer at a final concentration of 1% (v/v). A tissue lyser bead was added to 

each tube, and the tubes were placed in pre-chi lied cassettes. The tissues were disrupted 
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using the Qiagen Retsch TissueLyser for 3 min at 30 Hz. Samples were centrifuged at 

16,000 X g for 10 minutes at 4^’C, and then the supernatants were collected and stored at - 

80°C for immunoblot and enzyme-linked immunosorbent assay (ELISA) analysis. 

Gastrocnemius andplantaris muscle 

Frozen gastrocnemius/plantaris muscles were homogenized in 10 volumes of ice-cold 

lysis buffer (25 mM Tris pH=7.5, l50mM NaCl, ImM EDTA, 1% Triton-X 100) in 2 mL 

round bottom microcentrifuge tubes. Immediately before use, sodium fluoride (NaF) 

(Sigma, SI504) was added as a serine/threonine phosphatase inhibitor at a final 

concentration of 20 mM, sodium orthovanadate (NaVO.^ (Abeam, ab 120386) (Appendix 

C) was added as a tyrosine phosphatase inhibitor at a final concentration of 2 mM, and 

protease inhibitor cocktail (Sigma, P8340) was added to the lysis buffer at a final 

concentration of 1% (v/v). A tissue lyser bead was added to each tube, and the tubes 

were placed in pre-chilled cassettes. The tissues were disrupted using the Qiagen Retsch 

TissueLyser for 6 min at 30 Hz. Samples were centrifuged at 16,000 x g for 10 minutes 

at 4®C, and then the supernatants were collected and stored at -80^'C for immunoblot and 

ELISA analysis. 

Liver tissue 

Frozen liver tissue was homogenized in 10 volumes of ice-cold lysis buffer (25 mM Tris 

pH=7.5, 150mM NaCl, ImM EDTA, 1% Triton-X 100)) in 2 mL round bottom 

microcentrifuge tubes. Immediately before use, sodium fluoride (NaF) (Sigma, SI504) 

was added as a serine/threonine phosphatase inhibitor at a final concentration of 20 mM, 

sodium orthovanadate (NaVO:,) (Abeam, abl20386) was added as a tyrosine phosphatase 
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inhibitor at a final concentration of 2 mM, and protease inhibitor cocktail (Sigma, P8340) 

was added to the lysis buffer at a final eoneentration of 1 % (v/v). A tissue lyser bead was 

added to each tube, and the tubes were placed in pre-chilled cassettes. The tissues were 

disrupted using the Qiagen Retseh TissueLyser for 6 min at 30 Hz. Samples were 

centrifuged at 16,000 x g for 10 minutes at T’C, and then the supernatants were collected 

and stored at -80°C for immunoblot and ELISA analysis. 

Cell culture 

To serve as positive controls, C2C12 mouse skeletal muscle cells were grown in 25cm" 

or 75cm" flasks in a humidified incubator at 37“C, 5% CO2, and 20% O2. Flasks were 

coated for 30 minutes at room temperature with 0.1% filter sterilized gelatin (Knox) prior 

to cell seeding. For AlCAR treatment, cells were grown for 2 days in growth media (GM, 

High Glucose Dulbeceo’s Modified Eagle’s Medium (DMEM, Thermo Scientific, 

SH30022.01) containing 10% fetal bovine serum (FBS, Thenno Scientific, SH30396.03) 

and ImM sodium pyruvate (Sigma, S8636)), after which the media was ehanged to 

differentiation media (DM, DMEM containing 0.05mg/ml gentamicin sulfate (Lonza, 17- 

518Z), ImM sodium pyruvate, 2% donor equine serum (Thermo Seientific, 

SH30074.03), and 1% penicillin/streptomycin solution (Thermo Scientific, SV30010)) 

following a wash with Dulbecco’s Phosphate Buffered Saline (DPBS, Themio Scientific, 

SH30028.02) for 6 days. Media was changed to fresh DM every 2 days, and for the last 

24 hours in culture, ImM AlCAR (Cayman Chemical, 10010241) was added to the flask 

in fresh DM. Alternatively, for insulin treatment, cells were cultured for one day in GM, 

after which media was changed to DM following a DPBS wash. Cells were grown for 

another 6 days in DM, and media was changed to fresh DM every 2 days. For the last 3 
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days in culture, humulin R (Lilly, HI-210) was added to the media in one flask to a 

concentration of lOOnM to test the effects of chronically elevated insulin. In this flask, 

media was changed every day to fresh DM containing the humulin R. To assess acute 

responses to insulin, humulin R was added to a concentration of lOOnM to a second flask 

15 minutes before lysis. 

Cell lysis 

Cells were washed twice with DPBS, and ice-cold lysis buffer was added to the flask. 

The lysis buffer contained 25mM Tris (pH 7.5), 150mM sodium chloride, ImM 

Ethylenediaminetetraacetic acid (EDTA), and 1% Triton X-100. Immediately before use, 

phosphatase inhibitor cocktails 2 (Sigma, P5726) and 3 (Sigma, P0044), and protease 

inhibitor cocktail (Sigma, P8340) were added to the lysis buffer at a final concentration 

of 1% (v/v). A cell scraper was used to remove the cells from the bottom of the flask, and 

the lysis buffer containing cells was removed from the flask and put into 2ml round 

bottom microcentrifuge tubes. A tissue lyser bead was added to each tube, and the 

samples were homogenized using the Qiagen Retsch TissueLyser for 2 minutes at 20Hz. 

The beads were removed and the samples were centrifuged at 10, 000 x g for 1 minute, 

after which the supernatant was collected, and the samples were stored at -80^’C until the 

protein assay. 

Protein quantification 

Protein assays were done using Bio-Rad Protein Assay (Bio-Rad, Hercules CA, 500- 

0114) on all positive control cells, soleus muscle (diluted 1:5 in double distilled water), 

gastrocnemius/plantaris muscle (diluted 1:10 in double distilled water), and liver samples 
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(diluted 1:40 in double distilled water) to determine the protein concentrations of these 

samples for further use in western blotting and ELISA analysis. The protein assay 

standards were prepared from bovine serum albumin (BSA) at 1.45 mg/ml, which was 

then serially diluted to 0.09 mg/ml. The protein assay blank was double distilled water. 

Following the preparation of the standards and samples, 5 pi of the blank, each standard, 

and each sample were added to a separate well in duplicates. Reagent A’ was prepared 

by combing 25 pi per well of Reagent A, and 20 pi of Reagent S for every 1 ml of 

Reagent A. 25 pi of Reagent A' was then added to each well, followed by 200 pi of 

Reagent B to each well. Once Reagent B was added to each well, the plate was sealed 

and put on the plate shaker for 5 seconds. The plate was incubated at room temperature 

for 15 minutes in the dark, and then read at 750 nm. 

Sample preparation 

All positive control cells, soleus muscle, gastrocnemius/plantaris muscle, and liver 

samples were prepared at a final concentration of 2.25 pg/pl. The final volume of 600 pi 

of each prepared sample was achieved by using 150 pi of 4X sodium dodecyl sulfate 

(SDS) reducing buffer (10 ml Tris (6.8 pH, 500 mM), 4.06 ml double distilled water, 2 g 

SDS, 5 mg bromophenol blue, 10 ml glycerol, 110 pi p-mercaptoethanol), and varying 

volumes of distilled water and sample supernatant depending on the initial protein 

concentration of each sample. These samples were prepared in 1.5 ml tubes, and were 

boiled for 5 minutes to denature the proteins. 

Protein expression analysis 
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Gel electrophoresis 

SDS-PAGE gels were made for protein analysis. First, a 15% separating (7.2 ml distilled 

water, 5 ml Tris (1.5 M, 8.8 pH), 0.2 ml 10% SDS, 7.5 ml 40% acrylamide) gel was made 

and the beaker was placed in a vacuum for 15 minutes to remove air bubbles. After the 

15 minutes, the beaker containing the separating gel was removed from the vacuum, and 

20 pi of 97% electrophoresis grade N, N, N’, N’- tetramethylethylenediamine (TEMED) 

(Thermo Scientific, BP 15020) and 100 pi of 10% ammonium persulfate (APS) (Bio-Rad, 

1610700) were added on the stir plate mixing gently. The separating gel was poured to 

the 12 mm pour line from the bottom of the comb, and was overlayed with 20% 

methanol. This was allowed to polymerize for 30 minutes. After the gel polymerized, 

the methanol was washed out 3 times with 0.1% SDS, and the residue was dried with a 

Kim wipe. The stacking gel (12.7 ml distilled water, 5 ml Tris (0.5 M, 6.8 pH), 0.2 10% 

SDS, 2 ml 40% aciylamide) was made and the beaker was placed in a vacuum for 15 

minutes to remove air bubbles and air from the solution. After 15 minutes, the beaker 

containing the stacking gel was removed from the vacuum, and 20 pi of 97% 

electrophoresis grade TEMED and 100 pi of 10% APS were added on the stir plate 

mixing gently. The stacking gel was poured, and the gel combs were inserted to make the 

wells for the samples. The gel was allowed to polymerize for 30 minutes. Once the gel 

had polymerized, a total of 45 pg of protein was loaded into each well, and the gel was 

run at 200V in IX Running Buffer (3.0 g Tris base, 14.4 g glycine, 1.0 g SDS, 1.0 L 

distilled water) on ice for approximately 1 hour. Once the samples had run to the bottom 

of the gel, indicated once the dye front had disappeared, the electrophoresis was stopped. 
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Western blotting 

The gel was transferred to nitrocellulose membranes at 30V overnight at 4°C in IX 

Transfer Buffer (5.3 g Tris, 2.9 g glycine, 800 ml distilled water, 200 ml methanol). 

After the overnight transfer, the membranes were rinsed in distilled water for 5 minutes. 

Ponceau S stain solution (475 ml distilled water, 25 ml 5% acetic acid, 0.5 g (0.1 % w/v) 

Ponceau S) was added to the membranes for 5 minutes to reveal protein lanes, and verify 

equal loading. Ponceau S staining was used to verity equal loading over actin or other 

housekeeping protein detection because it is reversible, and it does not rely on a single 

protein for normalization. Therefore, it avoids the possibility that the housekeeping or 

actin protein used may vary in certain conditions, or that they can be saturated at the 

levels of loading necessary for the detection of low-expressed target proteins [105]. The 

membranes were then destained with O.IM sodium hydroxide (NaOH) and washed for 5 

minutes in IX Tris-Buffered Saline with Tween 20 (TBST) (24.4 g Tris HCl, 5.56 g Tris 

base (pH 7.6), 87.66 g NaCl, 1 L distilled water, then 100 ml of this into 900 ml of 

distilled water and 1 ml Tween 20). The membranes were then blocked with the 

appropriate percentage of milk for 1 hour at room temperature. The membranes were 

then put into primary antibody solution (Antibodies diluted in milk. Used: 

phosphorylated Akt^' (0.125 mg/ml. Abeam), leptin (1 pg/ml. Abeam); pan Akt 

(1:1000 dilution. Cell Signaling Technology), SOCS3 (1:500 dilution. Cell Signaling 

Technology), phosphorylated AMPKa^^^^'^" (1:500 dilution. Cell Signaling Technology), 

and total AMPKa (1:1000 dilution. Cell Signaling Technology)) overnight with agitation 

at 4°C. The next day the membranes were washed 5 times for 5 minutes each in IX 

TBST. The membranes were incubated with goat-anti rabbit (HRP) secondary antibody 
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(Antibody diluted in milk. 1:2500 dilution, Thermo Scientific) for 1 hour at room 

temperature. Afterwards the membranes were washed again 5 times for 5 minutes each 

in IX TBST. Chemiluminescence was done using Clarity Western ECL solution (Bio- 

Rad, 170-5060). Equal volumes of each solution were mixed together and the 

membranes were incubated in the solution for 5 minutes. The immunoreactive 

complexes were then detected with enhanced chemiluminescence (ChemiDoc^”^ XRS, 

Bio-Rad, Hercules, CA, USA). 

Normalization and densitometry 

Each western was normalized to a loading control sample. The loading control sample 

was also used as a positive control to ensure that the antibody recognizes the targeted 

protein. The specific controls were: pAkt/total Akt (C2C12 myotubes treated with 100 

nM dose of humulin R to mimic an acute dose of insulin for 15 minutes prior to cell 

lysis), pAMPKa/total AMPKa (C2C12 myotubes treated with 1 mM AICAR for 24 

hours prior to cell lysis), and SOCS3/leptin (C2C12 myotubes treated with 100 nM dose 

of humulin R for 3 days to mimic a chronic dose of insulin prior to cell lysis). The 

protein bands were quantified by densitometry using ImageJ software. 

Enzyme-linked immunosorbent assay 

To quantify the endogenous levels of phosphorylated STAT3 in soleus muscle, 

gastrocnemius/plantaris muscle, and liver tissue, PathScan® Phospho-Stat3 (Tyr705) 

Sandwich ELISA Kit (Cell Signaling Technology, Danvers, MA, USA) was used as per 

manufacturer’s manual. A total of 30 pg of protein was added to each well, and the plate 

was pre-coated with capture antibody. The plate was then sealed and incubated overnight 
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at 4°C. The next day the wells were washed 4 times with 200 |al of wash buffer each 

time. After the washes, 100 |A1 of the detection antibody solution was added to each well, 

and the plate was sealed and incubated for 1 hour at 37°C. The wells were then washed 

again 4 times with 200 pi of wash buffer each time. After the washes, 100 pi of HRP 

linked solution was added to each well, and the plate was sealed and incubated for 30 

minutes at 37°C. The wells were then washed again 4 times with 200 pi of wash buffer 

each time. After the washes, 100 pi of 3,3’, 5, 5’- tetramethylbenzidine (TMB) start 

solution was added to each well, and the plate was then sealed and incubated for 

approximately 10 minutes at 37°C. After the incubation, 100 pi of stop solution was 

added to each well, and the plate was read at 450 nm. 

Statistics 

Data are presented as means ± SEM. Comparisons between groups were done using two 

way analysis of variance (ANOVA) for all comparisons except average daily mnning 

distance (one way ANOVA), and the correlation of change in body weight and caloric 

intake. ANOVA tests were followed by Fisher LSD post-hoc tests (SigniaStat software, 

Systat, Chicago, IL, USA). Significance was accepted at/? < 0.05. 
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Figure 2. Flow chart of the study design. Abbreviations: HFD, high fat diet; IPGTT, 

intraperitoneal glucose tolerance test; IP, intraperitoneal; WT, wild type. 
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RESULTS 

Sedentary mice showed increased weight gain compared to runners 

Initial body weights of WT and KO mice, in both running (RUN) and sedentary (SED) 

groups were taken, and then recorded weekly for 4 weeks following the introduction of 

HFD (Fig. 3A). There were no differences in body weight between groups at the 

beginning of the study. As expected, WT SED mice gained more weight compared to 

RUN mice (24.8% versus 17.6%, p<0.05) (Fig. 3A). However, the KO mice showed no 

differences in weight gain between the SED and RUN groups (p===0.08) (Fig. 3A). Within 

WT, WT SED mice gained more weight compared to KO SED mice (24.8% versus 

16.8%, p<0.05), but there were no differences in weight gain between the WT and KO 

mice in the RUN group (p=0.08) (Fig. 3A). Differences in body weight were observed 

between WT SED and KO RUN mice at week 1, 3, and 4 (p<0.05) (Fig. 3B). At week 4, 

WT SED mice had higher body weight compared to all other groups (p<0.05) (Fig. 3B). 
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Figure 3. Sedentary mice showed increased weight gain compared to runners after 4 

weeks on a high fat diet. A) The mean change in body weight (grams) in wild type (WT) 

and IL-6 knockout (KO) groups with (RUN) and without (SED) voluntary access to 

running wheels fed a high fat diet for 4 weeks. B) The mean body weight (grams) in WT 

and KO groups (RUN & SED) over 4 weeks on a high fat diet. ^ denotes significant 

differences (p<0.05) between WT SED and all other groups. " denotes significant 

differences (p<0.05) between WT SED and KO RUN groups. denotes significant 

differences (p<0.05) between WT SED and all other groups. Data are presented as mean 

± SEM, (n==6-8 per group). 
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Runners consumed more calories compared to sedentary mice 

Daily food intake was recorded over 4 weeks, and caloric intake of HFD was calculated 

(Fig. 4A and B). It was found that RUN mice consumed more calories compared to SED 

mice in both WT (13.0%, p<0.05) and KO (18.6%, p<0.05) groups (Fig 4J). By week 2, 

both KO RUN and WT RUN mice had increased cumulative caloric intake compared to 

both KO SED and WT SED mice (p<0.05), and this increase was also observed at week 3 

and 4 (Fig. 45). There were no differences in average daily running distance between 

these two groups over the duration of the study (10.3 km/day ± 0.7 versus 11.5 km/day ± 

0.6, for WT and KO mice, respectively) (p=0.083) (Fig. 5A), and running distances 

remained constant over the 4 weeks (Fig. 55). 
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Figure 4. Runners consumed more calories compared to sedentary mice over 4 

weeks on a high fat diet. A) The mean total caloric intake (kcal) for wild type (WT) and 

IL-6 knockout (KO) groups with (RUN) and without (SED) voluntary access to running 

wheels fed a high fat diet for 4 weeks. B) The mean cumulative caloric intake (kcal) for 

WT and KO groups (RUN & SED) over 4 weeks on a high fat diet. ^ denotes significant 

differences (p<0.05) between RUN and SED mice. denotes significant differences 

(p£0.05) between KO RUN and both KO SED and WT SED groups. ^ denotes significant 

differences (p<0.05) between WT RUN and both KO SED and WT SED groups. Data are 

presented as mean ± SEM, (n=6-8 per group). 
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Figure 5. There were no differences in running distances between groups. A) The 

average daily running distance (km) for wild type (WT) and IL-6 knockout (KO) groups 

with (RUN) voluntary access to running wheels fed a high fat diet for 4 weeks. B) The 

mean weekly running distance (km) each week for WT and KO RUN groups fed a high 

fat diet for 4 weeks. Data are presented as mean ± SEM, (n=6-8 per group). 
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Lack of IL-6 negatively affects glucose tolerance in runners 

After exposure to HFD for 3 weeks, there were no differences in fasting blood glucose 

levels between the groups (Fig. 6A). In order to test glucose tolerance, mice were given a 

bolus intraperitoneal injection of glucose and circulating glucose concentration was 

measured every 30 minutes for 2 hours. After 30 minutes, blood glucose levels were 25- 

30% higher (p<0.05) in the KO RUN compared to all other groups (Fig. 6B). The 

calculated area under the curve for the GTT yielded a non-significant (25.6%) increase in 

blood glucose in KO RUN compared to WT RUN (639 ± 56.6 versus 508.7 ± 66.9, 

p=0.l51)(Fig. 6Q. 
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Figure 6. Lack of IL-6 negatively affects glucose tolerance in runners. A) The mean 

fasting (baseline) blood glucose level (mM) for wild type (WT) and IL-6 knockout (KO) 

groups with (RUN) and without (SED) voluntary access to running wheels after 3 weeks 

on a high fat diet. B) The mean blood glucose levels above baseline (mM) following a 

bolus intraperitoneal injection of glucose in WT and KO groups (RUN & SED) after 3 

weeks on a high fat diet. C) The mean glucose area under the concentration-time curve 

above baseline (mM glucose x 120 minutes) for WT and KO groups (RUN & SED) after 

3 weeks on a high fat diet. ^ denotes significant differences (p<0.05) between KO RUN 

and all other groups. Data are presented as mean ± SEM, (n=6-8 per group). 
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Lack of IL-6 disrupts the link between caloric intake and weight gain in 
runners 

The correlation between total caloric intake and weight gain was examined between WT 

RUN and KO RUN mice. As expected, the amount of weight gain was positively 

correlated (r^=0.77) with total caloric intake in WT RUN mice over 4 weeks on HFD 

(Fig. 7). However, this association was absent in KO RUN mice (r^=0.02), indicating an 

uncoupling of the caloric intake and weight gain relationship. 
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Figure 7. Lack of IL-6 disrupts the relationship between caloric intake and weight 

gain in runners. The correlation between total caloric intake (kcal) and total change in 

body weight (grams) in wild type (WT) (n=5) and IL-6 knockout (KO) (n=8) groups with 

(RUN) voluntary access to running wheels fed a high fat diet for 4 weeks. The data from 

one WT animal was removed as an outlier based on the value being greater than two 

standard deviations from the mean. 
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Phosphorylation and expression of signaling proteins 

So lens muscle 

After 4 weeks on HFD, the phosphorylation and abundance of signaling proteins 

associated with insulin resistance, physical activity and IL-6 were determined in soleus 

muscle, gastrocnemius and plantaris muscles, and liver tissue. A bolus intraperitoneal 

injection of insulin was administered 10 minutes prior to tissue collection. In the soleus 

muscle, no differences in insulin stimulated phosphorylation were found 

between groups (Fig. 8A). Jn soleus muscle, phosphorylation was 

decreased in KO RUN group compared to all other groups (p<0.05) (Fig. 8B). There was 

a 2-fold increase in SOCS3 expression in KO RUN compared to all other groups 

(p<0.05), supporting its inhibitory role for STAT3 (Fig. 8C). Leptin is a honnone 

produced and secreted by several tissues, which regulates energy balance and caloric 

intake in the body resulting in increased activity of AMP activated protein kinase 

(AMPK) in peripheral tissues [64]. AMPK phosphorylates target proteins leading to 

increased fatty acid oxidation, glucose transport, and lipolysis in skeletal muscle, liver, 

and adipose tissue [65]. It was found that leptin expression did not differ between groups 

in soleus muscle (Fig. 7D). AMPKa '' phosphorylation was not detected in any of 

the groups, and there were no differences in AMPKa expression between the groups (Fig. 

8E). 

43 



pAkt •a 

^ 4? 
4-0 jy^p 

AM 

IfOUh 

Pohc#au S ftCViC    I 

B C 

D 
Lsptln »Mv 

IMkO* 
IMkM 

^ ^ ^ tS> 
ai|/ -f 

Ponc«au S 

Myy A " 
AMPHo M ILO^ 

1MkD< 
Poneaau S 

24 

Figure 8. Soleus skeletal muscle protein expression of Akt, STATS, SOCS3, leptin, 

and AMPKa from wild type (WT) and IL-6 knockout (KO) groups with (RUN) and 

without (SED) voluntary access to running wheels fed a high fat diet for 4 weeks. 

Insulin stimulated A) phosphorylation B) STATS^^*^^^^ phosphorylation C) 

SOCS3 expression D) Leptin expression E) AMPKa expression. ^ denotes significant 

differences (p<0.05) between KO RUN and all other groups. Data are presented as mean 

± SEM, (n^6-8 per group). Ponceau S stains are shown as markers of equal protein 

loading. 
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Gastrocnemius andplantaris muscle 

In contrast to soleus muscle, insulin stimulated phosphorylation was 31 % 

higher in WT RUN compared to WT SED, but this effect of running was absent in KO 

mice in gastrocnemius/plantaris muscles (p<0.05) (Fig. 9J). There were no differences 

in phosphorylation between groups, and SOCS3 expression was not 

detected in any of the groups (Fig. 9B). However, there was a 2.4-fold increase in leptin 

expression in KO RUN compared to KO SED in gastrocnemius/plantaris muscles 

(p<0.05) (Fig. 9C). Similar to soleus muscle, AMPKa phosphorylation was not 

detected in any of the groups, and there were no differences in AMPKa expression 

between groups (Fig. 9D). 
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Figure 9. Gastrocnemius and plantaris skeletal muscle protein expression of Akt, 

STAT3, leptin, and AMPKa from wild type (WT) and IL-6 knockout (KO) groups 

with (RUN) and without (SED) voluntary access to running wheels fed a high fat 

diet for 4 weeks. Insulin stimulated A) phosphorylation B) 

phosphorylation C) Leptin expression D) AMPKa expression. ^ denotes significant 

differences (p<0.05) between WT RUN and WT SED groups. denotes significant 

differences (p<0.05) between KO RUN and KO SED groups. Data are presented as mean 

± SEM, (n=6-8 per group). Ponceau S stains are shown as markers of equal protein 

loading. 
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Liver tissue 

Q P I? '17^ 

In liver, there were no differences in insulin stimulated Akt phosphorylation 

between groups (Fig. lOA). Similar to gastrocnemius/plantaris muscles, there were no 

differences in phosphorylation between groups (Fig. 10.5). However, there 

was a 2-3.8-fold increase in SOCS3 expression in KO SED compared to all other groups 

(p<0.05) (Fig. IOC). No differences in leptin expression were found between groups 

(p=0.268 for WT RUN compared to KO RUN) (Fig. lOZ)). Unlike the skeletal muscles, 

phosphorylation was detected in liver tissue. It was found that 

phosphorylation was 27% higher in WT groups (both RUN and SED) 

compared to KO groups (both RUN and SED) (p<0.05) (Fig. 105). 
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Figure 10. Liver protein expression of Akt, STAT3, SOCS3, leptin, and AMPKa 

from wild type (WT) and IL-6 knockout (KO) groups with (RUN) and without 

(SED) voluntary access to running wheels fed a high fat diet for 4 weeks. Insulin 

stimulated A) phosphorylation B) STAT3^^*^^^^ phosphorylation C) SOCS3 

expression D) Leptin expression E) AMPKa^^*^'^^ phosphorylation. ^ denotes significant 

differences (p<0.05) between KO SED and all other groups, '’denotes significant 

differences (p<0.05) between WT and KO groups. Data are presented as mean ± SEM, 

(n=6-8 per group). Ponceau S stains are shown as markers of equal protein loading. 
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DISCUSSION 

It has been previously shown that IL-6 influences glucose and lipid metabolism, and 

more specifically, insulin action [106-108], One intriguing aspect of IL-6 is the apparent 

context dependent dual role of this cytokine in glucose metabolism [109], The present 

study was designed to investigate the role of lL-6 on HFD induced glucose intolerance, 

and the response to voluntary physical activity in the prevention of insulin resistance. 

Previous research has established that changes in the expression of SOCS3, and leptin, 

and the activation of STAT3, and AMPK are linked to the regulation of insulin signaling 

in obesity and diabetes [109], This study was first to report that the lack of IL-6 dismpts 

the link between caloric intake and weight gain in runners, which provides new insight 

into the role of IL-6 in metabolism and energy storage. This study also revealed 

important tissue specific differences in SOCS3 expression, leptin expression, and Akt 

phosphorylation. In its entirety, the findings of the present study suggest that endogenous 

IL-6 is important for the prevention of insulin resistance induced by HFD. 

During and up to 4 hours after exercise, plasma IL-6 concentrations can increase 

approximately 100 fold, which can increase insulin sensitivity in peripheral tissues 

[20,76]. Recent findings published by Benrick et al. (86) found that IL-6 KO mice with 

access to running wheels had increased blood glucose compared to WT mice with access 

to running wheels. The IL-6 KO mice did not benefit from running to the same extent as 

WT mice, and therefore, they concluded that endogenous lL-6 contributes to physical 

activity induced insulin sensitivity. While these findings are in agreement with the 

present study, there are some differences between the studies, including observations of 
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weight gain [86], The study by Benrick el al. (86) utilized a voluntaiy physical activity 

model with HFD, and they found no differences in weight gain after 5 weeks on HFD 

between the WT and lL-6 KO mice, in either the sedentary or running groups. This was 

in contrast to the present study, which found that WT SED mice had increased weight 

gain compared to all other groups after 4 weeks on HFD. The HFD chosen for the 

present study contained a nutrient content of 60% fat, whereas the HFD used by Benrick 

et al. (86) contained 35.5% fat, which may account for the discrepancies in weight gain 

findings. Although it is known that HFD leads to increased IL-6, both the amount and 

duration of this increase is variable, and can lead to differences in insulin signaling. In 

long tenn studies without the use of HFD, blood glucose levels were increased in IL-6 

KO mice compared to WT mice, and the IL-6 KO mice were obese at 9 months of age 

[108]. Previous studies that investigated the effects of HFD for 12-14 weeks also found 

that blood glucose levels were increased in IL-6 KO mice compared to WT mice 

[110,111]. Although these long duration studies demonstrated obesity and insulin 

resistance in the IL-6 KO mice, the experimental designs utilized overnight fasts and 

larger glucose doses to induce more robust effects. In an effort to detect early changes in 

glucose tolerance, and to assess insulin action within a more physiological context, the 

GTT was conducted after 3 weeks on HFD [112,113]. The mice were morning fasted for 

5 hours to mimic an overnight fast in humans due to metabolic differences, and 

administered a conservative dose (1 g kg’”) of glucose prior to the test [112]. The GTT 

revealed that blood glucose increased 25-30% more in KO RUN compared to all other 

groups after 30 minutes. Despite running equal distances, and consuming the same 

amount of calories, the KO RUN exhibited early signs of glueose intoleranee eompared 
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to WT RUN. This impaired glucose tolerance in KO RUN is an indicator of developing 

insulin resistance, and these findings suggest that IL-6 has an important role in the 

beneficial effects of physical activity on HFD induced glucose intolerance. 

IL-6 has been shown to inhibit glycogen synthase activity and increase glycogen 

phosphorylase activity in rodent hepatocytes [114]. Additionally, IL-6 produced by 

contracting skeletal muscle may mediate hepatic glucose output during exercise, and 

when glucose was ingested prior to exercise, lL-6 release from skeletal muscle was 

attenuated [115,116]. In an lL-6 secreting tumour model, there was increased glycogen 

breakdown, which showed that IL-6 has a direct effect on glycogen metabolism in the 

liver [117]. In the present study, the amount of weight gain was positively correlated 

with total caloric intake in WT RUN mice, but this correlation was absent in KO RUN 

mice. The lack of endogenous lL-6 in KO RUN mice may have prevented effective 

glycogen breakdown in skeletal muscle and liver, which may have led to less glucose 

utilization during physical activity. Consequently, the KO RUN mice may have utilized 

available dietary fats as a main energy source. Although KO RUN were consuming 

similar amounts of food compared to WT RUN, utilizing fat as the primary energy 

substrate during physical activity may contribute to the disrupted relationship between 

weight gain and total caloric intake in KO RUN mice. Another possible explanation for 

these findings involves increased energy expenditure and thermogenesis in the KO RUN 

mice. Uncoupling proteins (UCPs) generate heat by uncoupling oxidative 

phosphorylation [118]. The increased expression of these proteins in brown adipose 

tissue (BAT) and white adipose tissue (WAT) result in increased energy expenditure, and 
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are involved in temperature and body weight regulation [118]. It has been shown that 

acute increases in IL-6 during physical activity can increase UCPl expression in WAT, 

and UCPl expression was lower in lL-6 KO compared to WT mice [119]. However, this 

physical activity induced increase in UCPl expression was not completely blunted in IL- 

6 KO mice [119]. In the present study, the HFD may have prevented physical activity 

induced thermogenesis in WT RUN mice due to pro-inflammatory cytokines and other 

secreted factors associated with chronic low-grade inflammation, which can inhibit the 

expression of UCPl in BAT and WAT [120]. Therefore, increased thermogenesis may 

have been blunted by HFD to a greater extent in WT RUN mice compared to the KO 

RUN mice leading to the uncoupling of the caloric intake-weight gain relationship. 

It has been established that both the biochemical adaptations to exercise, and the effects 

of various dietary conditions differ between skeletal muscle types [121-123]. The results 

in this study provide novel support for different changes in early signaling pathways 

between oxidative and glycolytic skeletal muscles when exposed to HFD and physical 

activity. Increased SOCS3 expression has been associated with insulin resistance in 

peripheral tissues [36-38], but it has also been shown that physical activity can lead to 

increased SOCS3 mRNA expression [124]. Spangenburg et a/. (124) found that exercise 

training increased SOCS3 mRNA expression in rat soleus and plantaris skeletal muscles, 

which may be linked to subsequent increases in IL-6 expression. Rat plantaris and mouse 

soleus muscle have comparable oxidative capacities measured by succinate 

dehydrogenase activity [125]. The present study demonstrated that the lack of IL-6 led to 

increased SOCS3 expression in response to physical activity in soleus muscle of KO 
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RUN mice. If increased S0CS3 expression contributes to increased IL-6 expression 

during physical activity, then KO RUN mice may have prevented a feed back mechanism 

on SOCS3, allowing SOCS3 expression to continue to increase in KO RUN compared to 

the other groups. Therefore, the present study demonstrates for the first time that 

physical activity can induce increases in SOCS3 expression at the protein level. 

Insulin stimulates the activation of Akt causing the translocation of GLUT-4 vesicles to 

the plasma membrane, leading to glucose uptake in skeletal muscle [109]. Physical 

activity increases insulin sensitivity, while HFD has been shown to cause insulin 

resistance. The present study found inereased insulin-stimulated Akt phosphorylation in 

WT RUN compared to WT SED mice, which demonstrated that physical activity 

prevented insulin resistance in gastrocnemius and plantaris muscles of WT RUN mice. 

However, insulin stimulated Akt phosphorylation in KO RUN mice was not increased 

compared to either SED group. This finding implies that the prevention of insulin 

resistance in response to physical activity requires endogenous IE-6 in skeletal muscle. It 

was hypothesized that KO mice may have impaired glycogen breakdown due to the lack 

of IL-6, resulting in a higher demand for free fatty acids. Since leptin can increase fatty 

aeid uptake in skeletal muscle, the increased leptin expression in the gastrocnemius and 

plantaris muscles of KO RUN mice can possibly be explained due to the higher demand 

for free fatty acids in these muscles during physical activity [126,127]. If KO mice have 

restricted glueose availability, and are mainly utilizing fats, this resembles the high fat 

and low carbohydrate formulation of ketogenie diets. Increased leptin levels have been 

reported in rats that were fed a ketogenie diet compared to a standard diet, and these 
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findings provide additional support for increased leptin expression in the gastrocnemius 

and plantaris muscles due to the higher demand for free fatty acids [128]. 

Unlike in the soleus muscle, SOCS3 expression was not detected in the gastrocnemius 

and plantaris muscles in any of the groups. Additionally, no differences were observed in 

insulin stimulated Akt phosphorylation or leptin expression in the soleus muscle. The 

fiber differences between soleus, gastrocnemius, and plantaris muscles may account for 

the differences in SOCS3 expression, Akt phosphorylation, and leptin expression 

between the muscles. Mouse gastrocnemius and plantaris muscles have much higher 

percentage of myosin heavy chain IIB fibers, and glycolytic capacity compared to mouse 

soleus muscle [125]. While the gastrocnemius and plantaris muscles are recruited for 

voluntary wheel mnning, the soleus has higher oxidative capacity and is used both as a 

postural muscle, and for voluntary wheel running [129]. Therefore, the fiber type 

composition of these skeletal muscles and muscle recruitment may be important to the 

response of each muscle to HFD and physical activity. 

In addition to the differential effects of exposure to HFD and physical activity on early 

signaling pathways in soleus, gastrocnemius, and plantaris muscles, the present study also 

found tissue specific effects in the liver. It was expected that HFD would lead to 

increased SOCS3 expression in the liver, and that this increase can be prevented by 

physical activity [109]. KO SED mice had increased SOCS3 expression compared to all 

other groups, but this increased SOCS3 was not associated with insulin resistance, as no 

differences in insulin stimulated Akt phosphorylation was observed between groups. 
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However, this finding may highlight impaired lipid metabolism in the liver of KO mice. 

Both WT RUN and WT SED mice had increased AMPK phosphorylation compared to 

both KO RUN and KO SED mice. The activation of AMPK in the liver leads to the 

stimulation of fatty acid oxidation, and the inhibition of lipogenesis [130]. The lack of 

lL-6 may impair AMPK phosphorylation causing lipid accumulation and increased 

SOCS3 expression in KO SED mice. While physical activity increases SOCS3 

expression in skeletal muscle [124], increased SOCS3 expression is induced in the liver, 

and is linked to the pathogenesis of T2D [109]. It was shown that the lack of IL-6 

induced early increases in SOCS3 expression in the liver in response to HFD in sedentary 

animals. However, in skeletal muscle, physical activity induced SOCS3 was exacerbated 

by the lack of IL-6, highlighting the tissue and context specific differences in SOCS3 

expression. 

CONCLUSION 

In conclusion, the present study was designed to investigate the role of IL-6 on HFD 

induced glucose intolerance, and the response to voluntary physical activity in the 

prevention of insulin resistance in IL-6 deficient mice. The collective findings suggest 

that endogenous lL-6 is important for the prevention of insulin resistance induced by 

HFD. This study provides new insight into the role of the IL-6 in metabolism and energy 

storage, and highlights tissue specific changes in early signaling pathways in response to 

HFD for 4 weeks. There are many grave pathophysiological outcomes of T2D, including 

increased morbidity and mortality. Importantly, physical activity is effective in the 

prevention of T2D, and is more effective than current pharmacological treatments for 
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humans [81,82], Therefore, it is critical to elucidate the mechanisms behind the increase 

in insulin sensitivity in response to regular physical activity. 

Future directions 

In light of the findings in the present study, an important future direction of this work 

would be to investigate the role of IL-6 on HFD induced glucose intolerance, and the 

response to voluntary physical activity in the prevention of insulin resistance using a 

long-term model. By extending the study from 4 weeks to 12 weeks, different effects of 

IL-6 on signaling pathways, and glucose metabolism may be found. These findings can 

be compared to the early changes that were detected after 4 weeks on HFD, which can 

continue to elucidate the mechanisms of IL-6 on insulin resistance and insulin sensitivity. 

Further understanding of these mechanisms has become especially important due to the 

introduction of the drug Tocilizumab. Tocilizumab is a recombinant humanized 

monoclonal antibody, which targets the IL-6 receptor. This drug is now prescribed for 

the treatment of rheumatoid arthritis in patients [131]. Tocilizumab has proven effective 

at treating this inflammatory disease, and therefore, it has been hypothesized that 

Tocilizumab may be beneficial in treating other inflammatory and chronic conditions, 

including T2D [131,132]. Studies have shown that Tocilizumab decreased insulin 

resistance in non-diabetic patients with rheumatoid arthritis, and decreased HbAlc levels 

in diabetic patients with rheumatoid arthritis [133,134]. While these studies have yielded 

positive results, much more rigorous clinical trials are necessary. IL-6 is important for 

physical activity induced increase in insulin sensitivity, and therefore, clinical trials are 

necessary since physical activity has been proven more effective than current 

pharmacological treatments for T2D. In order to test these effects, another possible 
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future direction could combine long-term HFD, physical activity, and Tocilizumab 

treatment. Instead of utilizing lL-6 KO mice, Tocilizumab could be administered to the 

mice in order to investigate the effects of this drug on insulin resistance and physical 

activity. 
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Diet Induced Obesity (DIO) Diet 

Product Data 

D12492 I OpenSource 
A MDIBTS^ 

Description 

Rodent Diet with 60% kcal% fat. 

Used in Research 

Obesity 
Diabetes 

Packaging 

Product is packed in 12.5 kg box. 
Each box is identified with the 
product name, description, lot 
number and expiration date. 

Lead Time 

IN-STOCK. Ready for next day 
shipment. 

Gamma-Irradiation 

Yes. Add 10 days to delivery time. 

Form 

Pellet, Powder, Liquid 

Shelf Life 
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D12450B 
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Total 
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*Typical analysis of cholesterol in lard = 0.95 mg/gram. 
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Cholesterol (mg)/kg = 300.8 
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Running Wheel Set Up 

Running wheels (4.5 inch Run Around Wheels) were suspended from the top of the cage. 

A magnet was attached to the running wheel, and the CatEye Velo 5 sensor was 

suspended through a light switch cover. The purpose of the light switch cover was to 

prevent the mice from chewing on the wires. The CatEye Velo 5 sensor tracked wheel 

revolutions, and distance was adjusted based on wheel circumference. 
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Sodium Orthovanadate Protocol 

200 niM (lOOX) stock solution of sodium orthovanadate (Abeam, ab 1203 86) was 

prepared to be used a tyrosine phosphatase inhibitor during tissue lysis. First, 3.68 g of 

sodium orthovanadate was added to 90 ml of double distilled water, and the solution was 

mixed on a stir plate. As the solution was mixing, the volume was brought to 100 ml. 

Once the solution was mixed thoroughly, the initial pFl of the solution was checked. The 

solution was then brought to pH^lO using 12N/1N hydrochloric acid (HCl). During the 

pH process the solution turned yellow, and then orange. The solution was then 

microwaved for 60 seconds until it began to boil, and the solution turned colourless. The 

colourless solution was then cooled to room temperature. Once at room temperature, the 

solution was again brought to pH^^lO using 12N/1N HCl. During the pH process the 

solution yellow. The solution was then microwaved for 60 seconds until it began to boil, 

and the solution turned colourless. The colourless solution was then cooled to room 

temperature. Once at room temperature, the solution was again brought to pH=10 using 

12N/1N HCl. During the pH process the solution turned very pale yellow. The solution 

was then microwabed for 60 seconds until it began to boil, and the solution turned 

colourless. The colourless solution was then cooled to room temperature. Once at room 

temperature, the solution was again brought to pH==10 using 12N/1N HCl. The pH was 

stabilized at 10, and the solution remained colourless. The sodium orthovanadate 

solution was then stored in 1 ml aliquots at -20 °C. 
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