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Abstract 

Globally, freshwater ecosystems are constantly under the threat of various biological and 
chemical stressors. In Canada, millions of dollars are spent on the rehabilitation process of these 
water bodies every year. Maintenance of healthy water systems is important for their 
conservation and survival of human kind. This study examines the use of periphyton as a tool for 
monitoring water quality by examining the dynamics (biofilm thickness, species density, species 
richness, species diversity, and biomass) in periphyton communities in lentic environments. 
Previous research validates the successful use of periphyton in lotic environments. 

This multi-proxy (Bacillariophyceae, Chlorophyceae, Cyanophyceae, and protozoa) study 
investigated the colonization pattern of periphyton on inert glass slides (10 X 3 X 0.1cm) 
suspended in the littoral zone of 3 sampling locations in northern Lake Simcoe, to a maximum 
period of 30 days (per sampling period) with intermittent sampling. The study was repeated four 
times in different seasons during 2011-2013. The retrieved slides were observed under a 
microscope for taxonomic composition of periphyton communities, species density, and biofilm 
thickness. The hypotheses tested were (1) periphyton community dynamics vary with season and 
location, (2) species diversity decreases as a result of increase in nutrient concentration, (3) 
diatom abundance and species composition will increase in spring and fall seasons as a result of 
lake turnover processes. 

Results indicated that there was significant variation in the periphyton colonization 
pattern with seasons, locations and with the duration of slide exposure. The overall periphyton 
growth (biofilm thickness, biomass and species density) exhibited an increase during the early 
phase (rmAnova p<0.05 between days of exposure); a climax during the mid phase (miAnova 
/7<0.05 between days of exposure); a sloughing-off period, and an increase in growth towards the 
late growth phase (rmAnova /7<0.05 between days of exposure). The highest species density (site 
LC: 7.91iogio) was observed during summer (rmAnovap<0.05 between seasons) when a decrease 
in diversity in Bacillariophyceae was observed. However, Bacillariophyceae abundance and 
diversity increased during spring and fall sampling periods as a result of lake turnover processes 
and the availability of nutrients. Overall species diversity did not decrease when the total 
phosphorus concentration increased in the water column. This is mainly because of the increased 
diversity in Chlorophyceae, Cyanophyceae and protozoa. 

The periphyton community varied with the environmental stressors such as variations in 
conductivity and nutrient concentrations. Thus, the mature periphyton community composition 
and their dynamics demonstrated that they can be used as an indicator of water quality changes 
in this study area. 



Lay summary 

The mission statement of Lakehead University’s Department of Biology is "Faculty and 

students in the Department of Biology are bound together by a common interest in explaining the 

diversity of life, the fit between form and fimction, and the distribution and abundance of 

organisms." The current study focuses on the dynamics of periphyton, which is a 

multidimensional matrix composed of an initial layer of bacteria on a substrate followed by the 

attachment of algae, protozoa, and various invertebrates. This study contributes to one of the 

central research themes outlined in the mission statement, the relationships between life forms 

and their environmental functions. The study advances our understanding of various biotic and 

abiotic factors influencing periphyton growth in near-shore lake environments. Understanding 

the succession of periphyton communities and their environmental niches is a valuable tool in 

assessing water quality as periphyton members are able to rapidly respond to physical and 

chemical stressors. Three major research questions were investigated. 1. What are the effects of 

seasonality and nutrient concentrations on periphyton? 2. How periphyton growth patterns relate 

to water quality? 3. Can the periphyton composition represent the nutrient availability of each 

sampling site? Results showed that the species composition varied considerably between sites 

and sampling periods and that nutrient concentration influenced the presence or absence of 

certain species. This study provides a baseline dataset for periphyton and water quality 

measurements in northern Lake Simcoe. Furthermore, it may be useful to the development of a 

periphyton based water quality index for northern Lake Simcoe which will assist scientists and 

policy makers in their efforts towards more efficient water resources management. 



iv 

Acknowledgments. 

I have had enormous support from many colleagues, friends and family during this 

portion of my academic journey. First and foremost I want to thank my beautiful daughters for 

putting up with my "just give me 10 more minutes to write" which really meant 30 minutes. 

Love you girls with all my heart. Always remember that you have choices and options no matter 

what your life situation is. I thank my parents and my sister for their continuous unconditional 

love and support in all aspects of my life. There is no doubt that without your support I could 

have accomplished this. To my good friend, Florin, who is my greatest critic and supporter who 

laughed with me, wiped away my tears, and kept me moving forward, thank you. 

To my supervisors. Dr. Sreekumari Kurissery and Dr. Nandakumar Kanavillil, I thank 

you so much for making this part of my academic journey a reality and initiating access to 

graduate studies at the Orillia campus of Lakehead. You are true trailblazers and I have grown so 

much personally and professionally as a result of your expertise, leadership and guidance. Thank 

you! 

Thank you so much to my LU lab family, Vicki, Steve, Carly, Diane, Thamara and 

Carolyn. Vicki, I thank you all for your support and having the patience to view my presentations 

(sometimes multiple times), listen to my ideas and give me thoughtful feedback. Steve a special 

thank you for all of your reading and multiple edits during the writing phase of my thesis. A big 

thank you to you all! 

I have said before that "it takes a village to raise a graduate student" and indeed it did. 

Thank you to everyone at Lakehead for their constant support, friendly smiles, hugs and coffee 

when needed. I will carry the memory of my Lakehead family wherever I go. 



Table of contents 

1. List of tables vi 

2. List of figures vii 

3. Chapter 1; Introduction 1 

4. Chapter 2: General Materials and Methods 17 

5. Chapter 3: Colonization and succession of periphyton community on glass slides in 
Northern Lake Simcoe. 

Introduction 27 

Results 30 

Discussion 61 

6. Chapter 4: An exploration of periphyton as possible bio-indicators in 3 varying 
nutrient locations in the littoral zones of Northern Lake Simcoe 

Introduction 75 

Results 81 

Discussion 114 

7. Chapter 5: Conclusion 121 

8. Bibliography 125 



VI 

List of Tables. 

1. Table 1. Summary of studies that used periphyton as a monitoring tool of water quality (p9). 

2. Table 2. Specific areas of periphyton research and the references (pi 2). 

3. Table 3. Sampling date schedule (p21) 

3. Table 4. Mean values and standard deviations of hydrological parameters at all sites and 
sampling periods (SP). DO refers to dissolved oxygen and TP refers to total phosphorus (p32). 

4. Table 5. Results of repeated measure ANOVA for biofilm thickness, species density, 
chlorophyll a , biomass, and species richness observed in three study sites during four sampling 
periods. The resultant F values andp values were obtained after Greenhouse-Geisser correction. 
Post-hoc tests on pair-wise comparison were carried out using Bonferroni correction (the 
significant results are mentioned in the text) (p34). 

5. Table 6. Algal species present in the periphyton community during the duration of the study 
(October 2011- November 2012). Present represents species observed at least 50% of time 
during the entire s\xxdy, frequent represents presence of 60-80% of the time during the entire 
study, and abundant represents presence of > 90% of the time during the study (p58). 

6. Table 7. Presence of diatom species in different sampling periods (seasons) (p61). 

7. Table 8a. Diatom relative abundance values calculated from total abundance of the diatoms 
according to site within each sampling period (total abundance is 1.0 or 100%) (p89). 

8. Table 8b. Non diatom relative abundance values calculated from total abundance of the non- 
diatoms according to site within each sampling period (total abundance is 1.0 or 100%) (p91). 

9. Table 9. Possible diatom and non-diatom species as environmental indicators in Northern 
Lake Simcoe (p94). 

10. Table 10. Regression values for corresponding hydrological parameters in CCA analysis in 
all four sampling periods (Significance codes: 0.001 0.01 0.05) (p95). 



vii 

List of Figures. 

1. Figure 1. Development of natural biofilm (Sekar et al., 2004; Bellinger & Sigee 2010) (p3). 

2. Figure 2. The evolution of periphyton studies (Lamed 2010) (pi 2). 

3. Figure 3. Map of Lake Simcoe and the three sampling locations (pi 7). 

4. Figure 4. Site 1 (KB). Kempenfelt Bay, Barrie, ON (pi8). 

5. Figure 5. Site 2 (CIO). Concession 10, Ramara, ON (pi9). 

6. Figure 6. Site 3 (LC). Lagoon City, Brechin, ON (p20). 

7. Figure 7. Periphyton collection rig (p21). 

8. Figure 8. Viewing areas of a glass slide (p23). 

9. Figure 9(a-d). Variation in biofilm thickness observed on glass slides during the study 
period. Error bars represent the 95% confidence limit (p33). 

10. Figure lO(a-d). Variation in average periphyton species density during the study period. 
Error bars represent the 95% confidence limit (p37). 

11. Figure ll(a-d). Variation in average periphyton biomass during the study period. Error bars 
represent the 95% confidence limit (p40). 

12. Figure 12(a-d). Variation in the average periphyton species richness during the study 
period. Error bars represent the 95% confidence limit (p43). 

13. Figure 13(a-d). Variation in average periphyton species diversity during the study period. 
Error bars represent the 95% confidence limit (p47). 

14. Figure 14(a-c). Variation in densities of dominant diatoms species over all sampling periods 
(p48). 

15. Figure 15(a-d). Variation in the dominance of diatom species in different sampling periods 
(p49). 
16. Figure 16(a-d). Variation in average percentage composition of various periphyton 
taxonomic groups observed at three sampling locations during the four sampling periods (p52). 

17. Figure 17(a-c). Variation in the average percentage composition of various taxonomic 
groups according to site (p53). 

18. Figure 18. CCA bi-plots of dominant diatom species composition with corresponding 
environmental factors for sampling period 1 by sites and species. Eigenvalues along the first and 
second axes were 0.3069 and 0.1464 respectively. This explained 46% of the total variation. The 
species names have been abbreviated to fit the bi-plot (p97). 



viii 

19. Figure 19. CCA bi-plots of dominant diatom species composition with corresponding 
environmental factors for sampling period 2 by sites and species. Eigenvalues along the first and 
second axes were 0.5663 and 0.1003 respectively. This explained 67% of the total variation. The 
species names have been abbreviated to fit the bi-plot (p98). 

20. Figure 20. CCA bi-plots of dominant diatom species composition with corresponding 
environmental factors for sampling period 3 by sites and species. Eigenvalues along the first and 
second axes were 0.2059 and 0.1005 respectively. This explained 31% of the total variation. The 
species names have been abbreviated to fit the bi-plot (pi01). 

21. Figure 21. CCA bi-plots of dominant diatom species composition with corresponding 
environmental factors for sampling period 4 by sites and species. Eigenvalues along the first and 
second axes were 0.30883 and 0.07393respectively. This explained 31% of the total variation. 
The species names have been abbreviated to fit the bi-plot (pi03). 

22. Figure 22. CCA bi-plots of dominant non diatom species composition with corresponding 
environmental factors for sampling period 1 by sites and species. Eigenvalues along the first and 
second axes were 0.26448 and 0.03951 respectively. This explained 30% of the total variation. 
The species names have been abbreviated to fit the bi-plot (pi06). 

23. Figure 23. CCA bi-plots of dominant non diatom species composition with corresponding 
environmental factors for sampling period 2 by sites and species. Eigenvalues along the first and 
second axes were 0.6369 and 0.4558 respectively. The species names have been abbreviated to 
fit the bi-plot (pi08). 

24. Figure 24. CCA bi-plots of dominant non diatom species composition with corresponding 
environmental factors for sampling period 3 by sites and species. Eigenvalues along the first and 
second axes were 0.3263 and 0.2149 respectively. This explained 54% of the total variation. The 
species names have been abbreviated to fit the bi-plot (pi 10). 

25. Figure 25. CCA bi-plots of dominant non diatom species composition with corresponding 
environmental factors for sampling period 4 by sites and species. Eigenvalues along the first and 
second axes were 0.3110 and 0.1991 respectively. This corresponds to 51% of the total variation. 
The species names have been abbreviated to fit the bi-plot (pi 12). 



Chapter 1: Introduction 

The latin translation for periphyton is ’’attached plants". Periphyton plays a dominant 

role in natural biofilm development which is dominated by phototrophic algae, but also includes 

heterotrophic organisms including bacteria, protozoa, and some invertebrates (Wetzel 1983; 

Zippel et al., 2007; Azim et al., 2010; Wu et al., 2011). It can be found in all aquatic 

environments such as lakes, rivers and streams, as well as brackish and salt water environments, 

although species composition varies within and between the environments. 

Periphyton contributes to the primary productivity of an environment and therefore acts 

as a key food source to larger organisms within the aquatic ecosystem. Periphyton communities 

actively take part in environmental processes such as nutrient cycles and precipitation of 

pollutants. Water quality is defined as “the condition of the water, including chemical, physical, 

and biological characteristics, usually with respect to its suitability for a particular purpose such 

as drinking or swimming (NOAA 2014). Periphyton can act as an important tool to monitor 

water quality changes in aquatic environments as it is composed of a variety of microorganisms 

that are sensitive to these changes (Wetzel 1983; Azim et al., 2010). 

The population dynamics of periphyton is often related to the phytoplankton community, 

as phytoplankton contributes propagules to periphyton (Peterson et al., 1996; Sekar et al., 1998; 

Bellinger & Sigee., 2010). The typical growth of a periphyton community begins with bacterial 

and debris attachment to a bare (or disturbed) substratum surface. The growth regime generally 

includes three phases; an early phase, mid phase and late phase (Figure 1). Depending on the 

environmental conditions, a periphyton community takes different durations to attain maturity 

wherein autogenic sloughing off and reattachment of periphyton are common (Stevenson et al., 

1996; Sekar et al., 2004; Bellinger & Sigee 2010; Kanavillil et al., 2012). 
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The abundance and species composition of periphyton community vary during each of 

these developmental phases. For example, the diatom succession begins with the attachment of a 

highly populated species from the water column. At this time the light intensity may be high 

(Peterson et al., 1996; Sekar et ah, 1998; Bellinger & Sigee 2010). These early colonizers 

generally possess a rapid reproduction strategy and therefore colonize the substratum quickly 

(Sekar et ah, 2004; Bellinger & Sigee 2010; Kanavillil et ah, 2013). The diatom species arriving 

at the mid-successional phase generally possess a morphological advantage of a longer 

mucilaginous stalk with which they grow vertically from the basal attachment to the substratum 

(e.g. Cymbella spp.). This will help them obtain higher levels of irradiance (Bellinger & Sigee 

2010). The diatom species arriving at the late successional phase are generally highly motile with 

special morphological features such as keels (i.e Nitzschia sp) and are able to maintain a high 

growth rate at low irradiance level (Sekar et al., 2004; Bellinger & Sigee 2010; Kanavillil & 

Kurissery, 2013). 

long stalked 
diatoms (i.e.; 

Cymbella) 

Filamentous 
Green Algae 

Rosette for ining 
diatoms (i.e.: 

Synedra) 

Prostate diatoms 

(i.e ; Cocrone/s) 

stalked diatoms (i.e: 
Stigeoclonium) (i.e: 

Gomphenemo) 
Late phase 

layer of 
bacteria 

Mid phase 

Early phase 

Figure 1. Development of natural biofilm (Sekar et al., 2004; Bellinger & Sigee 2010). 
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In addition, the periphyton community also responds to variations in abiotic and biotic 

environmental factors from within the periphyton community and the water column. This is 

because organisms in the periphyton community possess distinct ecological preferences and 

tolerances for different environmental factors (Bellinger & Sigee, 2010). 

Abiotic factors: 

The major abiotic factors affecting the periphyton community includes temperature, light, 

nutrient concentrations and hydraulic conditions of the water column such as flow rate. 

Temperature 

The requirement of thermal energy to carry out physiological processes such as 

enzymatic catalytic conversions is well known for all organisms (Lamed 2010). Temperature is 

an important physical factor in the periphyton growth (Butterwick et al., 2005). Optimum growth 

temperatures may range from 10-30°C, however, individual species may have varied tolerance 

levels within this range. For this reason, periphyton species composition and abundance would 

reflect the temperature changes (Butterwick et al., 2005; Lamed (2010). However, temperature 

alone may not be a limiting factor in periphyton growth (De Nicola et al., 2003; Liboriussen & 

Jeppesen 2006). 

Light 

The relative abundance of a periphyton community is determined by the availability of 

sunlight for the organisms in the community (Masseret et al., 1998). Some of the dominant 

members of the periphyton community belong to Bacillariophyceae as well as Chlorophyceae 

which are photoautotrophs. Therefore, light availability is one of the most influential variables 

that determine the growth and composition of periphyton communities due to the variation in the 



optimal irradiance ranges for different groups of periphyton communities. Photoautotrophic 

periphyton under heavily shaded habitat undergoes physiological changes that maximize their 

photosynthetic efficacy at lower light levels (Hill 1996; Stevenson et al., 1996) 

The physical structure of a biofilm, for example biofilm thickness can influence the light 

penetration. Community members respond to light availability resulting in taxonomic shifts 

within the periphyton community (Dodds 1992). The taxonomic shifts may include organisms 

capable of performing metabolic activities at lower light intensity dominate the light reduced 

area within the periphyton community (Hillebrand et al., 2000). Shifts also include the presence 

of longer stalked diatoms and Chlorophyceae, in addition to a higher abundance of cyanobacteria 

in the periphyton community (Hillebrand et al., 2000; Liboriussen et al., 2006). 

Nutrients 

The nutrient acquisition in the periphyton community occurs internally (fi-om nutrient 

cycles such as decomposition of waste products) and externally from sources such as 

surroimding water, substrate and sediment. Numerous studies have been performed on nutrient 

gradients and the resulting shifts in taxonomic compositions, specifically, the relative abundance 

of different species of periphyton (Liboriussen & Jeppesen, 2006; Vis et al., 2008; Ferragut & de 

Campos Bicudo, 2010; Schneider et al., 2011). Schneider et al (2011) observed that minor 

taxonomic shifts within periphyton communities occurred with small changes in total 

phosphorus (TP) concentrations (between 5-lOpg/L) and major shifts with large changes 

(between concentrations of 10-30pg/L). Vis et al. (2008) indicated that the relative abundance of 

Cyanophyceae increased with exposure to urban wastewater with high nutrient concentration. 

Winter and Duthie (2000) observed similar results in their study of agricultural and non- 

agricultural study localities along two Southern Ontario waterways, Laurel and Carrol Creeks. 
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They determined that there was a difference in algal dominance when these sites were compared. 

It was concluded that run off from the agricultural field into the stream affected the overall 

growth of benthic algae especially with respect to the percentage cover of algae on the rocky 

surfaces and their taxonomic composition (Winter & Duthie, 2000). 

Nutrient cycling within the periphyton community is thought to be sustainable for short 

periods of time (Mulholland et al., 1996; Mulholland & Webster 2010). Studies suggest that 

nutrient recycling within the periphyton community was responsible for 10-70% of the 

phosphorus (P) uptake with a daily P turnover rate of <15% per day (Mulholland et al., 1996; 

Mulholland & Webster 2010). This process would seem to benefit the periphyton community as 

a response to a reduced nutrient input from external sources. 

Hydraulic Conditions 

The effects of flow velocity, floods and spate events on periph>ton community dynamics 

have been widely studied for many years, mostly in lotic environments (Peterson 1986; 

Stevenson 1990; Iwaniec et al., 2006; Gottlieb et al., 2006; Wiklund et al., 2010; Izagirre et al., 

2009; Lamed 2010). These studies excluded lentic systems and the role that hydraulic conditions 

play, such as wave turbulence, micro/macro currents, and water level changes (Lamed 2010). 

Biotic Influences 

The periphyton community represents organisms belonging to several trophic levels. 

These members such as bacteria, micro algae, and protozoa engage in inter-specific interactions 

(Burgmer et al., 2010). Large invertebrate grazers use periphyton communities as habitat and 

also contribute to inter-specific interactions between trophic levels via grazing. Thus, predation 

and grazing play an important role in determining periphyton species composition. 



Fitter & Hildebrand (2009) and Burgmer et al (2010) have observed that the entire 

assemblage of the periphyton community responded to the presence or absence of grazing 

meiofauna. Invertebrate grazers such as insect larvae, crustaceans and snails leave obvious 

tracks upon the non selective ingestion of the periphyton and therefore can produce a heavy 

grazing impact on periphyton community (Burgmer et al., 2010). 

Meiofauna grazers, such as nematodes, can cause both positive and negative impacts on 

periphyton communities (Madji et al., 2011). The negative impacts include grazing and non 

selective disturbance within the periphyton community (Madji 2011), while the positive impacts 

include increased turnover rates of oxygen within the community. In addition, the grazing 

benefits microbial metabolism by creating increased light penetration as a result of tunnelling 

and disturbance (Madji et al., 2011; Mathieu 2007). 

Phytoplankton 

Phytoplankton are considered as one of the propagule pools for the periphyton 

community and therefore it influences immigration and emigration rates of periphyton members 

(Bellinger & Sigee 2010). The dynamic relationship between phytoplankton and periphyton is 

dependent on the drivers of light and nutrients. At high levels of nutrients, phytoplankton can 

proliferate at high rate and as a result, increases water turbidity causing a shading effect on 

periphyton by reducing light availability (Azim et al., 2010). However, Azim et al (2010) also 

found that at high rates of nutrient loading, periphyton communities experienced increased 

growth rates and as a result increased productivity within the community. This will result in 

increased rates of breakages and dislodging thereby contributing to the turbidity of the water 

column (Azim et al., 2010). 
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Thus, ecologically phytoplankton and periphyton communities are seen as separate 

communities which function independently, but have a strong interaction between each other in 

terms of resource availability. However, according to Vadeboncoeur et al (2002), Azim et al 

(2010), and Bellinger & Sigee (2010) the periphyton communities contribute slightly more than 

half to the lentic ecosystem productivity as a whole. 

Periphyton as a tool for bio-monitoring 

There are many characteristics of periphyton that can be used as water quality indicators 

of nutrients. These include variations in biomass (Ash Free Dry Weight or Dry Weight), 

taxonomic composition, species diversity, chlorophyll a and species succession. Many 

researchers have contributed to the validity of using periphyton as a bioindicator through 

quantification of these characteristics that periphyton provides (Table 1). Hillebrand and Sommer 

(2000) found that algal species diversity (Shannon Diversity) responded more sensitively to 

cultural eutrophication than other measures such as evenness and therefore is a better measure of 

eutrophication in a particular area. Many studies have used multi-proxy approaches by 

employing more than one parameter, such as Chlorophyceae, Bacillariophyceae, Cyanophyceae, 

to determine the validity of using periphyton as a reliable indicator of water quality, whereas, 

others studied only one group, such as Bacillariophyceae, protozoa or Chlorophyceae. The list 

demonstrates that there is a limited amount of research on periphyton from lentic aquatic systems 

(Table 1). It can be noted that diatoms are often the main focus of the study as opposed to other 

members of periphyton which may be due to the already developed trophic diatom indices over 

the last few years (Kelly et al., 1995; Rott et al., 1999; Potapova and Charles., 2003; Lavoie et 

al., 2006). The trophic diatom indices were developed as a rapid assessment tool for monitoring 
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changes within an aquatic ecosystem. Diatoms are ideal to use as there are typically the most 

dominant group within a periphyton community. 

Table 1: Summary of studies that used periphyton as a monitoring tool of water quality based on 
nutrient measurements. 

Author Biomass Chi a Taxonomic 
Composition 
(including 
species 
diversity) 

Diatoms or 
Periphyton 
(D or P) 

Lakes or 
Rivers 
/Streams 

Carrick et al., 1988 X 

Delong & Brusvren, 1992 X 

Kelly et al., 1995 X D 

Kwandrans, 1998 X D 

Vis et al., 1998 X X 

Masseret et al., 1998 X X X R 

Chessman et al., 1999 X D R 

Carpenter & Waite., 2000 

Winter & Duthie, 2000 X D 

Winter & Duthie, 2000 X D 

Hill et al., 2000 X X X 

King et al., 2000 X X 

Lewis et al., 2001 X X Marine 

Kumulaynen, 2002 X X X R 

Blinn & Herbst 2003 X 

Kitner & Poulickova, 2003 D 

Lemmen, 2003 X Marine 

Catteano et al., 2004 X D 

Poulickova et al., 2004 X D 

Komulaynen, 2004 X X X R 

Lavoie, 2004 X X X D R 

Gaiser et al., 2006 X X D Everglades 

Potapova & Charles, 2007 X D R 

Kelly et al., 2008 X D 

Lambert et al., 2008 X 

Reavie et al., 2010 X 

Delgado et al., 2010 X X X D 
Cardinale, 2011 

Komulainen & Slastina 2012 X X X R 

Schneider et al., 2012 X 

Smucker & Vis 2013 X X D 

Schneider et al., 2013 X 
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Previous studies have shown that algae are capable of responding quickly and predictably 

to a wide range of pollutants (McCormick & Cairns 1994; Pan et al., 1996; Potapova et al., 

2003). Historically, the mention of freshwater organisms as water quality indicators was done by 

Kolenati in 1848 and again by Cohn in 1853 (Liebmann 1962: Bellinger & Sigee 2010). Both 

these studies determined that the composition of freshwater organisms was different in polluted 

and non-polluted areas. Benthic algal communities have also been reported to be useful 

indicators of water quality (Dixit et al., 1992). More recent studies have evaluated the response 

of algae, specifically planktonic diatoms, to the input of newly identified water pollutants such as 

triclosan, atrizine and road salt run off (Nietch et al., 2013; Prosser et al., 2013; Cook & 

Francoeur 2013) in addition to the response of periphyton production after the biological 

invasion of Dreissenid mussels (Ozersky et al., 2013). 

The use of periphyton as a successful indicator of phosphorus (P) has been reported by 

Gaiser et al (2006) while studying in the Florida Everglades aquatic ecosystem. They found that 

the species composition of periphyton community closely represented the total phosphorus (TP) 

concentration in Everglades through the observation of the dominance shift of taxa in relation to 

the TP measurements. However, the need of marsh specific approach in determining periphyton 

species composition based water quality index has been suggested by many workers as there is a 

possibility of variation caused by local environment as many periphyton species will be common 

within a specific geographic area (Potapova & Charles 2002; Gaiser et al., 2006; Reavie 2010). 

However, the species dominance will be directed by TP values at specific sites. While studying 

in wetland ecosystems, Lane & Brown (2007) and Reavie (2010) found that epiphytic diatoms 

were more responsive to human disturbances than phytoplankton. The significance of local and 

geographical scales while comparing phytoplankton and periphyton as water quality indicators 
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has been stressed by Potapova & Charles (2002) and Reavie (2010). Periphyton is currently 

being used as a bio-assessment tool of water quality in the European Union, the Environmental 

Protection Agency, USA and the Ministry of the Environment in New Zealand. All of these 

protocols focus on stream bio-assessments. The role of a bio-assessment tool is to rapidly 

determine the health of a water body at a moment in time. 

Past periphyton studies 

Periphyton has been a topic of study for over several decades. Early studies included the 

impacts of abiotic parameters and the seasonal variation of periphyton growth in streams (Brown 

1908; Eddy 1925) (Figure 2). This was followed by more comprehensive studies which included 

the N-fixation of cyanobacteria (Allison & Morris 1930) (Figure 2). By the mid to late 20* 

century studies on algal response to abiotic factors such as the water flow velocity, light and 

substrate have appeared (Huntsman 1948; McConnell & Sigler 1959; Mclntire 1966; Siver 1977; 

Homer & Welch 1981) (Figure 2). 

The breadth, depth and complexity of periphyton studies have advanced greatly over 

time due to technological advances such as the introduction of the Scanning Electron 

Microscope, Molecular Biology techniques, etc. More recent studies (Table 2) include the 

examination of molecular finger printing of microalgae (Szabo et al., 2008); the allelopathic 

control of cyanobacteria blooms by periphyton biofllms (Wu et al., 2011); the taxonomic 

distinctness of algae (Leira., 2009); the effects of biological invasive species on periphyton 

(Cecala et al., 2008; Ozersky et al., 2013; Stevie 2013); the effect of multiple stressors on 

periphyton (Rotter et al., 2013); and the relationship dynamics between periphyton and 

phytoplankton assemblages (Zebek 2013, Mihaljevic., et al 2013). 
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Colonization and periodicity of streann algae (Brown 
1908) ■Periphyton Succession (Eddy 1925), N-fixation of 

cyanobacteria (Allison & Morris 1930), Stream algae 
responses to nutrient addition (Huntsman 1948) 

I Light limitation beneath riparian canopies (McConnell & 
I Sigler 1959) , Velocity effects on periphyton respiration 
I (Mclntire 1966) 

Phycoperiphyton as Indicators of Water Quality (Collins & 
Weber 1978) 

Velocity effects on periphyton growth (Horner & Welch 
1981) 

Figure 2: The evolution of periphyton studies (Lamed 2010)^ 

Table 2: Specific areas of periphyton research and the references. 

Area of study of Periphyton Author/ year 
Effects of light/riparian zone 
shade on periphyton growth 

Burgmer et al., 2010; Porter- Goff, 2010; Bellinger & Sigee 2010. 

Invertebrate grazing/ herbivory 
effects 

Rosemond et al., 1993; Burgmer et al., 2010 

Taxonomic distinctness Leira et al., 2009 
Effect of substrata Siver, 1977; Catteneo & Amireault 1992; Rodriguez 1993; Lowe et al., 1996; 

Sabater et al., 1998; Danilova & Ekelund, 2001; Pizarro et al., 2002; Potapova & 
Charles, 2005.  

Use as a water quality indicator Carrick et al., 1988; Delong & Brusvren 1992; Kelly et al., 1995; Kwandrans et al., 
1998; Vis et al., 1998; Masseret et al., 1998; Chessman et al., 1999; Carpenter & 
Waite 2000; Winter & Duthie 2000; Hill et al., 2000; King et al., 2000; Lewis et 
al., 2001; Komulaynen, 2002; Kitner & Poulickova 2003; Lemmen, 2003; Catteano 
et al., 2004; Poulickova et al., 2004; Komulaynen, 2004; Lavoie 2004; Gaiser et al., 
2006; Potapova & Charles 2007; Kelly et al., 2008; Lambert et al., 2008; Reavie et 
al., 2010; Delgado et al., 2010; Cardinale, 2011; Smucker & Vis 2013  

Use of periphyton in aquaculture 
as alternative food source for fish 

Azim et al., 2005 

Colonization of organisms in the 
periphyton community 
(Community' growth dynamics) 

Szabo et al., 2008; Sekar et al., 1998; O’Toole et al., 2000; Sekar et al., 2004; 
Taniwaki et al., 2013. 

Periphyton responses to 
anthropogenic toxic inputs (i.e 
gas spill, herbicides, triclosan, 
atrizine, road salt. 

Shortreed & Stockner, 1983; Kosinski, 1984; Falasco et al., 2009; Larras 2013; 
Nietch et al., 2013; Prosser et al., 2013; Cook & Francoeur 2013. 

Allelopathic control of 
cyanobacteria blooms by 
periphyton biofilms  

Wu et al., 2011 

Effects of the biological invasive 
Dreissena polymorpha on 
periphyton  

Cecala et al., 2008; Ozersky et al., 2013; Stevie 2013 

Multi stressor influences on 
periphyton  

Rotter et al., 2013 

Inter-relationship of periphyton 
and phytoplankton assemblages 

Zebek, 2013; Mihaljevic et al., 2013 
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Knowledge Gap & Research Rationale 

There is a limited amount of research on the use of periphyton as a water quality indicator 

in lentic environments as well as studies on colonization, succession and autogenic processes 

occurring within periphyton communities (see Tables 1 & 2). However, there is a copious 

amount of literature available on periphyton from lotic environments. Studies that used algae as a 

water quality monitoring tool mostly collected phytoplankton samples from the pelagic zone of a 

lake or that occurred on deep water sediment samples (Poulickova et al., 2004; Liboriussen & 

Jeppeson 2006). This opens up the need for studies on periphyton community collected from the 

near shore areas to be used as a tool to monitor water quality of the lentic systems. Moreover, 

periphyton growing in the fringe areas is exposed directly to land originated effluents and 

therefore is considered as one of the best suitable communities to understand the water quality 

changes of lentic water systems. 

In a lentic system, periphyton acts both as a source of primary production as well as a 

connecting link between near-shore and pelagic areas since they contribute to the phytoplankton 

population (by breakage/ sloughing-off) though this is a topic of debate (Moss et al., 1981). The 

hydrodynamics of a water body help the distribution of land originated nutrients along the 

shoreline towards the deeper benthic zones and into pelagic zones (Macintyre & Melack, 1995). 

However, in addition to the hydrodynamic distribution of nutrients, organisms with high motility 

often assist in the distribution of nutrients by moving littoral matter from the near shore areas to 

the pelagic zone (Hampton et al., 2011). Many remediation and restoration strategies for lakes 

occur in the littoral zone through the use of vegetation, and the use of periphyton as a bio- 
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monitoring tools by identifying and quantifying members of the community. This could 

contribute greatly to the sustainability of the ecosystems by providing early detection of changes 

in water quality. 

Anthropogenic activities that contribute to the degradation of water quality often occur 

near the shoreline. The near shore habitat is influenced greatly through landscape changes, 

effluent discharges, fishing, boating and wading activities (Bellinger & Sigee 2010). Drainages 

from faulty sewage/septic systems located near the edge of the water body also can reach lake 

water. As previously mentioned, since periphyton communities generally grow in the fringe 

areas of the lake, they are the communities exposed to these anthropogenic activities directly and 

therefore are the ideal community to observe water quality changes. The quick response to water 

quality changes (or any stressors) is reflected on periphyton community, such as taxa shifts, 

species richness and species diversity variation, therefore acting as an ideal indicator of water 

quality changes. 

The health of Lake Simcoe has a long history of water quality degradation due to the 

influence of excessive nutrient input originating from anthropogenic activities such as intensive 

agriculture, septic tank leakages, and effluent output from waste water treatment plants, in 

addition to the occurrence of biological invasions e.g. Dreissenia polymorpha and Bythotrephes 

longimanus (Ozersky et al., 2013; Kelly et al., 2013). Lake Simcoe has experienced high 

phosphorus load throughout the last few decades due to urbanization, agricultural runoff and 

effluent release (Winter et al., 2007; Young et al., 2010; Palmer et al., 2011; North et al., 2013; 

Palmer et al., 2013) 
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Excessive nutrient input from intensive agriculture has led to eutrophication in some parts 

of Lake Simcoe (North et al., 2013). Literature review showed that there is a limited amount of 

data on water quality from the northern part of Lake Simcoe compared to southern or central 

parts. In addition, data on periphyton research showed very little information available from the 

littoral zone of Lake Simcoe. Therefore, this study aims to fill this gap by generating base line 

data on periphyton community dynamics from the littoral zone of northern Lake Simcoe. The 

data generated will help to design a periphyton based water quality index for this part of Lake 

Simcoe. The study will emphasize on microalgae especially on diatoms and non-diatoms of the 

periphyton community. This study thus will help to design a more cost effective management 

strategy for Lake Simcoe through the examination of periphyton community changes in relation 

to water quality. 

Study Design: 

In order to understand the periphyton community dynamics (biofilm thickness, biomass, 

species density, species richness and species diversity) with season, location of study (degree of 

exposure to anthropogenic activities), and duration of exposure field studies were carried out 

from three different locations in the northern part of Lake Simcoe. The study was repeated 4 

times over a 2 year period to represent different seasons of a year (SPl=Fall 2011, 

SP2=Spring2012, SP3=Summer 2012, SP4=Fall 2012). Once autogenic species processes have 

been understood, influences of temperature and lake turnover processes on periphyton 

community have been determined from the data. In addition, the influence of environmental 

parameters such as nutrient concentrations and other water chemistry parameters on periphyton 

community was also studied from the data. 
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The hypotheses tested were: 

1. The periphyton community dynamics (biofilm thickness, biomass, species density, species 
diversity, species richness) vary with season and location (degree of exposure to anthropogenic 
activities) of study. 

2. The periphyton species diversity decreases as a result of increased nutrient availability. 

3. The periphyton community dynamics are influenced by autogenic processes. 

4. Diatom abundance and species composition will increase in spring and fall seasons as a result 
of lake turnover processes. 

The following part of the thesis is divided into 4 chapters. Chapter 2 describes the general 

methodology employed in this study. Chapter 3 focuses on the colonization and successional 

patterns in periphyton including spatial and temporal dynamics. Chapter 4 describes periphyton 

community dynamics as an index of water quality changes. Finally, chapter 5 provides an overall 

summary, conclusion and future research suggestions. 
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Chapter 2: Materials and General Methods 

Site Selection 

The study was conducted at three sampling sites located in the northern part of Lake 

Simcoe, namely Kempenfelt Bay (KB), Barrie, ON (44.377858,-79.689331), Concession Point 

10 (CIO), Ramara Township, ON (44.590956,-79.317856), and Lagoon City (LC), Brechin, ON 

(44.546931,-79.209366) (Figure 3). Lake Simcoe is a hard water, dimictic lake with a surface 

area of 722km‘. The entire watershed area consists of 2899km"' (Palmer et al., 2011; North et al., 

2013). It is divided geographically by two large bays, Cook's Bay, located at the southern tip of 

the lake (mean depth 13m, maximum depth 15m, surface area 44km), Kempenfelt Bay near 

Barrie, Ontario (mean depth 14m, maximum depth 42m, surface area 34km ), and the large 

shallow main basin which covers the northeastern portion of the lake (mean depth 14m, 

maximum depth 33m, surface area 643km ) (Winter et al., 2007; Young et al., 2010; North et al., 

2013). It is a main connecting passage of the Trent Severn Waterway (North et al., 2013). The 

lake’s water retention time is approximately 11 years as it drains into Lake Couchiching by way 

of the Atherley Narrows (Young et al., 2010; North et al., 2013). 

# Kempenfelt Bay, Barrie (KB) 

T Concession Point 10,Ramara 
Township (CIO) 

I Lagoon City, Brechin, ON (LC) 

Figure 3. Map of Lake Simcoe and 
the three sampling locations. 
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Sampling site descriptions 

The sampling sites were chosen according to varying degrees of anthropogenic 

disturbances that they are exposed to. The disturbances include effluent discharge from a sewage 

treatment plant (KB, Barrie), a fairly undisturbed area (CIO, Ramara Township) and an intense 

lakeshore residential development area (LC, Brechin). 

Site 1. Kempenfelt Bay, Barrie (KB) 

This site is located in the treated effluent release discharge canal that empties into 

Kempenfelt Bay. This site is less than a kilometre away from the Barrie Water Pollution Control 

Centre (WPCC). The WPCC treats effluents for the city's population of approximately 196,000 

(StatsCan 2014). The site also has a high traffic tourist public park/beach. Centennial Beach, 

which is next to a heavily used boat ramp. 

Figure 4. Site 1. Kempenfelt Bay, Barrie, ON. 



19 

The public beach is often under a swimming advisory during summer months as a result 

of unsafe levels of bacteria (Simcoe District Health Unit 2014) and provides habitat for many 

Canadian geese and various duck species. Due to the occurrence of the above mentioned 

environmental disturbances, including a point source nutrient input (effluent discharge from 

water treatment plant), this site is considered as a highly disturbed area. 

Site 2. Concession Point 10, Ramara Township (CIO) 

The second site (CIO) is located in the nearshore of northern Lake Simcoe in the Ramara 

Township. This is a quiet bay surrounded by few cottages (approximately 40 dwellings). The 

mode of sewage waste treatment in this vicinity is through holding tanks and septic beds. Ditches 

on both sides of the main gravel road provide easy run-off to the lake, as one of the ditches 

connects directly with the lake. 

Figure 5. Site 2. Concession 10, Rama, ON. 
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Many boats and personal watercraft reside in this bay in addition to supporting a takeoff 

and landing area of local floatplanes. Anthropogenic influences are considered at a lesser degree 

at this site compared to other two therefore this site is considered as the least disturbed one in 

this study. 

Site 3. Lagoon City, Brechin (LC) 

Site three (LC) is located in the north western area of Lake Simcoe, in Lagoon City, 

Brechin, Ontario. Lagoon city is a popular tourist location for boaters and cottagers due to its 

easy access to Lake Simcoe and the Trent Severn waterway via long and winding 

interconnecting canals (LCCA, 2014). The area of Lagoon City was formerly a wetland (pre 

1970s). 

Figure 6. Site 3. Lagoon City, Brechin, ON. 

The sampling site is located in the main canal leading to Lake Simcoe approximately 

500m away from the water treatment centre. Lagoon city also provides its ~ 3,000 residents with 

sewage treatment services via a treatment plant built in the 1990s (Town of Ramara, 2014). As a 
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result of anthropogenic stressors such as excessive boating, nutrient enrichment and degradation 

of natural terrain, this site is considered a moderate to highly disturbed one. 

Periphyton collection 

Periphyton samples were collected over a 1 year period during 4 sampling periods 

representing ice free seasons (Table 3) using collection rigs (Figure 7), containing fifty (50) glass 

slides (10cm x 3cm x 0.3cm). The rigs with cleaned slides (slides were cleaned using detergent 

devoid of phosphate, rinsed with tap water followed by deionized water and air dried before 

suspension), were submerged in the littoral zone of the three sampling locations (approximately 

10-20cm below the surface water). Six glass slides each were randomly collected at a five day 

interval to a maximum of 30 days. The slides were carefully removed from the rig and inserted 

into clean 150 ml polyethylene bottles containing surface water collected from the sampling 

location (separate polyethylene bottles were used for each slide). Slides were collected in 

unfiltered water and delivered into the sample containers underwater to avoid the collapse of the 

natural biofilm. All samples were stored in a cooler box containing ice until arrival at the lab. 

Table 3. Schedule of sampling dates. 

Sampling Period Dates (30 day duration) 

Fall 2011 (October 7 to November 11) 

Spring 2012 (May 11 to June 15) 

Summer 2012 (August 16 to September 11) 

Fall 2012 (October 12 to November 7) 
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Glass slides were used as they are considered an inert substrata and an inexpensive easy 

way to collect and examine microalgae (Oemke & Burton 1986; Kanavillil et al., 2012; 

Kanavillil & Kurissery 2013). 

Figure 7. Periphyton collection rig. The rig is 
deployed on day zero of the study with 50 slides. 
The steel pole is driven into the sediment and the 
slides trays are submerged at depths of 10- 20cm 
below the water surface. 

Periphyton analysis 

Periphyton analysis during this study involved microalgae (diatom and non-diatom 

groups) and protozoa. Bacteria were not enumerated during this study. The microalgae were 

quantified and identified to the species level using identification keys and manuals. 

Periphyton enumeration and identification were carried out by the following method; one 

side of the glass slide was cleaned by wiping with cotton (chosen randomly) and the intact 

periphyton was examined live under a compound light microscope (Ken-a-vision). Triplicate 

slides were analysed for periphyton community analysis. The surface of the glass slide was 

continuously watered (filtered surface lake water) by using a Pasteur pipette (Kanavillil & 

Kurissery, 2013). Nine predetermined viewing areas (Figure 8) were examined for taxonomic 

composition (diatom and non diatom species), species density, and biofilm thickness. 

Identifications were made using 400X or 1OOOX magnification, and microalgae were identified 

to genus and, if possible, species level, by using identification keys and manuals (Prescott 1978; 
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Round et al., 1990; Kelly et al., 2005; Wehr et al., 2002; Spaulding et al., 2010). Motile cells 

were counted first to avoid omission. Cell over lay and optical quality was handled by constant 

refocusing within the many layers of the biofilm. Each layer was independently counted to avoid 

duplication of cells. Where growth was too thick to observe clearly the viewing co-ordinates 

were adjusted accordingly. On two separate occasions thick growth and inorganic depositions 

made it impossible to count on the substrate and the sample slide had to be scraped with a razor 

and the scraped slide was then rinsed 5mls of filtered lake water and enumeration was performed 

on a haemocytometer in triplicate (PHE 2014). Biofilm thickness was measured in micrometres 

at each viewing area by recording the measurement at substratum surface (A) and at the top of 

the biofilm (B) (Sekar et al., 2004). The thickness was calculated by subtracting B from A. The 

nine (9) viewing area values were averaged to get a mean wet biofihn thickness (Sekar et al., 

2004). 

Figure 8. Viewing areas of a glass slide. 

Periphyton biomass was determined by following the APHA method (APHA 2005). Each 

periphyton slide was scraped (one side) with a hard bristle brush and rinsed with 10ml of filtered 

lake water. An additional aliquot of 5ml of water was used to rinse the brush. The scraped extract 

was filtered through a pre-weighed Whatman GF/B 47mm glass fibre filter. The filter paper was 

dried at 50°C in an oven for 24-48 hours and re-weighed. The biomass was finally expressed as 

mg (dry weight)/cm^. 
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Measurement of periphyton chlorophyll a concentration was done by following APHA 

protocol (APHA, 2005). This involved scraping of the periphyton from one side of the glass slide 

(in triplicate) by using 10 ml of filtered lake water and filtering through Whatman GF/B 47mm 

glass fibre filter. The filter paper with the periphyton was extracted using 90% acetone (12 ml) in 

a refrigerator for 16-24hr. Upon extraction, the samples were centrifuged for 15 minutes at 

1055.10 (g), the supernatant was extracted using a Pasteur pipette and transferred into a 10ml 

acid washed, glass test tube which was inserted directly into a Beckton Dickinson 

Spectrophotometer (DU700) where the corrected absorbance measurements (750,664,647, and 

630nm) were recorded and the chlorophyll a concentration was calculated and expressed as 

mg/cm . 

Water parameters 

During each sampling day, water samples were collected to measure biochemistry 

parameters such as dissolved oxygen, conductivity, pH and temperature. Water pH, dissolved 

oxygen and conductivity were measured in-situ by using a hydro lab (VWR Symphony SB9 

0M5), ambient water temperatures were measured by using a Fisher Scientific thermometer. 

Water samples were also collected for nutrient analysis and chlorophyll a using clean IL 

polyethylene bottles from each sampling area (10-20 cm below the water surface, the same depth 

at which slides were suspended; Kanavillil & Kurissery, 2013). Unfiltered water samples for 

nutrient analysis were stored in freezer until analyses were carried out. Total phosphorus was 

analyzed (in duplicates) following the standardized persulfate oxidation digestate method 

(APHA, 2005). Ascorbic acid reagent pillows (HACH) were used for final determination. 

Chlorophyll a measurements give an estimation of primary productivity of the water 

column and that of periphyton. In this study, chlorophyll a from the water column was measured 
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according to the APHA standard protocol (APHA, 2005). This was done by filtering 1 litre of 

water sample through a 0.045mm Whatman GF/B47mm glass fibre filter and extracting 

chlorophyll« in 12 ml of 90% acetone at 4®C for 16-24hr. The remaining steps were the same as 

that described for periphyton samples. Chlorophyll a, concentrations were expressed as mg/cm 

(APHA2005). 

Data analysis 

Species density was expressed as an average of cells/organisms observed per cm^. 

Dominant species were determined from the average density of each species present. In this 

study dominance is described as the species having highest density and present consistently 

throughout the 30 days compared to rest of the species. Species diversity was calculated by using 

the Shannon-Weiner Index (Ricklefs, 2001). 

The Shapiro-Wilk test for normality resulted in the failure to meet parametric 

assumptions for species density data. To meet parametric assumptions periphyton communities 

were subdivided into 2 groups, diatoms and non diatoms. Species density was logio transformed 

to down weigh species dominance effects and resulted in a normal distribution (Kilroy et al., 

2006). This procedure also assisted in the management of outliers. Additionally, rare species that 

appeared in low numbers >1 and present only once during the entire sampling period were 

removed from the analysis. 

The values for biofilm thickness were logio transformed while the values for chlorophyll 

a (periphyton and the water column) and biomass were transformed to square root to allow for 

linearity during data comparison. Data for total phosphorus, and hydrological parameters such as 

temperature, DO, pH, and conductivity remained unchanged and raw values were used and 

resulted in normal distribution. 



26 

The biofilm parameters such as thickness, species density, species richness, species 

diversity, chlorophyll a, and biomass within study period and between sampling locations were 

compared using repeated measure two way ANOVA with Greenhouse-Geisser Correction (IBM 

SPSS Statistics, Verl9, SPSS Inc, Armonk, New York, USA). Post hoc tests using a Bonferroni 

Correction were performed to test pair wise comparisons (Kanavillil & Kurissery, 2013). One 

way analysis of variance was performed on all biochemistry parameters between sampling 

periods and sites (Microsoft Excel, 2007). 

Species densities of periphyton communities (grouped into diatoms and non diatoms) and 

were ordinated using Canonical Correspondence Analysis (R Project for Statistical Computing 

http;//www.r.project.org. Vegan Package) to summarize the species composition of each 

sampling period in addition to testing the possible relationships between environmental factors 

and the species distribution (Palmer 1993; ter Braak 1995). 

In addition, relationships between all parameters studied such as species density 

(periphyton & phytoplankton), biofilm thickness, chlorophyll a (periphyton 8c water column), 

biomass, DO, TP, pH, conductivity and temperature were tested using linear regression analysis 

(r^ ) (Microsoft Excel, 2007). 
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Chapter 3: Colonization and succession of periphyton community on glass slides in Northern 
Lake Simcoe. 

Introduction 

Periphyton communities are ubiquitous in nature and are part of a larger dynamic natural 

biofilm matrix of both photoautotrophic and heterotrophic organisms, including diatoms, green 

algae, bacteria, Cyanophyceae, protozoa and other invertebrates (Wetzel 1983; Azim et al., 2005; 

Wu et al., 2011). Many members are considered primary producers and contribute to various 

trophic levels within the food web. 

Periphyton growth dynamics exhibit various colonization, growth and successional 

patterns (Sekar et al., 2004; Szabo et al., 2008). Periphyton community composition is heavily 

influenced by nutrient and light availability (Gustina 1996; Von Schiller et al., 2007), physical 

disturbances such as flow rate, wave action etc. (Peterson, 1986; Stevenson, 1990; Iwaniec et al., 

2006; Gottlieb et al., 2006; Cecala et al., 2008; Izagirre et al., 2009; Wiklund et al., 2010) and 

biotic factors such as grazing pressure (Rosemond et al., 1993; Burgmer, 2010). Thus, the 

taxonomic composition and species succession are influenced by water quality, 

immigration/emigration and reproduction rates of the periphyton members (Pan et al., 1996; 

Sekar, 2004; King et al., 2006; Bellinger & Sigee, 2010). Different modes of attachment, 

especially those of Bacillariophyceae, will also influence the species dominance of periphyton 

community during its different phases of development (Kanavillil et al., 2014). 

The literature survey (chapter 1) indicates that there is a limited amount of data on 

periphyton community dynamics from temperate area compared to tropical area, especially from 

lentic water systems. Data on this is thought to help us better understand the health of water 
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systems being studied and therefore to take adequate ecosystem restoration strategies if needed. 

In order to understand periphyton community succession with season, location of study (degree 

of exposure to anthropogenic activities), and duration of substratum exposure, 30 days field 

exposure studies were carried out from three different locations in the northern part of Lake 

Simcoe. The study was repeated four times to represent different seasons of a year. The 

hypotheses tested were: 

1. The periphyton community dynamics vary with season and location (degree of exposure to 
anthropogenic activities) of study. 

2. The periphyton species diversity decreases at areas with increased nutrient availability. 

3. The periphyton community dynamics are influenced by autogenic processes. 

4. Diatom abundance and species composition increase in spring and fall seasons as a result of 
lake turnover processes. 

This chapter describes the successional patterns of periphyton communities in three 

locations in northern Lake Simcoe exposed to varying degrees of anthropogenic influences. The 

community dynamics have been studied from the data on taxonomic composition, biomass, 

chlorophyll a and biofilm thickness during the growth period of 30 days. 

Methods 

Detailed general methodology is described in chapter 2. The study was conducted at three 

sampling locations in the northern part of Lake Simcoe, namely Kempenfelt Bay, Barrie, ON 

(44.377858,-79.689331), Concession Point 10, Ramara Township, ON (44.590956,-79.317856), 

and Lagoon City, Brechin, ON (44.546931,-79.209366) (Figure 3). 

Periphyton samples were collected with the help of collection rigs (Figure 4), containing 

fifty (50) glass slides (10cm x 3cm xO.3 cm). Extra slides were used for replicates and in case of 
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breakage or loss. The rigs with cleaned slides were submerged in the littoral zone of the three 

sampling locations (approximately 10-20 cm below the surface water). 

Periphyton members mainly diatoms, green algae and cyanobacteria were quantified and 

identified to species level by using various identification keys and manuals (Prescott 1978; 

Round et al., 1990; Wehr et al., 2002; Kelly et al., 2005; Spaulding et al., 2010). The data 

obtained were taxonomic composition (diatom and non diatom species), species density, relative 

abundance, and biofilm thickness. 

Hydrological parameters such as dissolved oxygen, conductivity, pH and temperature 

were measured during each sampling day. Ambient water temperatures were measured by using 

a Fisher Scientific thermometer. Unfiltered water samples were also collected for nutrient and 

chlorophyll a analyses in clean IL polyethylene bottles from the sub-surface area (10-20 cm 

below the water surface, the same depth at which slides were suspended) (Kanavillil & 

Kurissery, 2013). Water samples for nutrient analysis were stored in a freezer until the analyses 

were performed. 

Data analysis 

2 
Species density was expressed as an average of number of cells observed per cm . 

Species dominance was determined from the average density of each species present in the 

community. Species diversity was calculated using Shannon-Weiner Index (Ricklefs, 2001). The 

data were analyzed with the help of various statistical tests as described in the chapter 2. 
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Results 

Hydrological parameters 

Temperature varied significantly over the four sampling periods, ranging from 5-28°C 

(^3,72=30.68 , p<0.05). The maximum temperature was recorded during sampling period 3 at LC 

(28°C). The lowest temperature value was recorded during sampling period 4 at CIO (5°C ). The 

dissolved oxygen (DO) concentration varied significantly ranging from 3.44-10.7mg/L between 

sampling periods (F3j2=10.61, /><0.05 ), but did not vary significantly between the days in each 

sampling period or sites. Conductivity values varied from 334-1183pS/cm. It varied significantly 

between sites (F3j2=10.12,7?<0.05), but did not vary significantly between sampling periods of a 

particular site or with the days of observation in each sampling period. The highest conductivity 

values recorded was at KB (Table 4), located near the treated effluent release area of the City of 

Barrie's Waste Water treatment plant. The conductivity values of other two locations were 

approximately half that of KB. 

Over the entire study period water TP concentrations ranged from 0.006 to 0.200mg/L. 

One way ANOVA results showed a significant variation between sites (^2,59= 2.99,/?<0.05), and 

days of observation within each sampling period (Fz,69=3.88, p< 0.05), but did not vary 

significantly between sampling periods. More specifically KB and LC, situated in the vicinity of 

effluent release from waste water treatment plants, had consistently higher TP concentrations 

than CIO. In terms of compliance with provincial environmental standards, all sites exceeded the 

Provincial guideline, i.e. concentration of 0.02mg/L, with the exception of sampling period 2 at 

KB. 

Chlorophyll a concentrations of periphyton varied from 0.09 to 1.41mg/m . Periphyton 

chlorophyll a concentrations varied significantly between sites (F2,47=322.45,/?<0.05) and days 
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of growth (F5,48=4.92,/7<0.05, Table 5). The maximum concentration of periphyton chlorophyll 

a was recorded at KB during sampling period 3 (1.41 mg/m ). Chlorophyll a concentrations of 

periphyton showed a general increase up to 20-25 days. This was followed by a decrease to the 

end of the sampling period (30 days). The trend was similar for periphyton micro-algal density 

and the relationship between periphyton density and periphyton chlorophyll a in sampling period 

1, 2, & 4 was significant (r^=0.44, /?<0.05, r^=0.55, p<0.05, r^=0.33, p<0.05, respectively for 

sampling period 1, 2,and 4). Interaction results of two- way miANOVA between sites and days, 

sites and sampling period, days and sampling period and sites and days and sampling period also 

resulted in significant variation in periphyton chlorophyll a concentrations (Table 5). 

Chlorophyll a concentrations in the water column during the study period varied from 

0.05 to 40.80mg/m^ It varied significantly between sampling periods, (one way ANOVA 

^3,68=9.49, /7<0.05) and reached moderate significance between sites (one way ANOVA 

^2,69“2.48, />=0.09). 

The maximum concentration of chlorophyll a from the water column was recorded 

during sampling period 2 at LC (40.80mg/m^). Generally, chlorophyll a concentrations in the 

water column was more stable than those of the periphyton. For example, during sampling period 

3 there was a general increase over the days of observation in all sites. Exceptions to this trend 

were observed during sampling period 4 at sites CIO and LC where a steep decrease in 

chlorophyll a concentrations was observed on day 30 of the sampling period. 



Table 4. Mean values and standard deviations in parenthesis of hydrological parameters at all 
sites and sampling periods (SP). DO refers to dissolved oxygen and TP refers to total 
phosphorus. 
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KB Temperature DO pH Conductivity 
pS/cm  

TP(mg/L) Chlorophyll a 
(Periphyton) mg/m^ 

SPl 11.42 (3.01) 4.80 (0.82) 7.85 (0.15) 636.83 (228.83) 0.05 (0.03) 0.61 (0.28) 

SP2 14.83 (3.97) 8.33 (1.42) 7.58 (0.14) 803.33 (271.83) 0.07 (0.06) 0.91 (0.41) 

SP3 20.17(1.47) 5.62 (2.12) 7.71 (0.29) 475 (74.23) 0.06 (0.04) 0.82(0.39) 

SP4 9.25(1.84) 8.4 (0.85) 7.25 (0.39) NA 0.10(0.60) 0.89 (0.21) 

CIO 

SPl 11.33 (3.08) 5.37 (1.08) 7.83 (0.35) 389.33 (60.85) 0.05 (0.02) 0.48 (0.26) 

SP2 16.5 (2.51) 8.3 (0.56) 734 (0.27) 403 (5.36) 0.05 (0.05) 0.34 (0.15) 

SP3 21.5(2.59) 7.73 (0.55) 7.83 (0.20) 386.67(10.33) 0.03 (0.02) 0.21 (0.05) 

SP4 8.833 (2.93) 7.95 (1.70) 7.25 (0.32) NA 0.07 (0.03) 0.45 (0.06) 

LC 

SPl 11.5 (3.39) 5.65 (0.97) 7.93 (0.20) 401.67 (34.91) 0.07 (0.04) 0.18(0.06) 

SP2 20.33 (2.88) 6.87(1.09) 7.68 (0.24) 435.05(17.95) 0.04(0.01) 0.38 (0.28) 

SP3 23 (2.68) 7.53 (0.94) 7.83 (0.20) 395(16.43) 0.06 (0.04) 0.22 (0.15) 

SP4 9.42 (2.25) 8.05 (0.67) 7.50 (0.22) NA 0.04 (0.02) 0.42 (0.23) 

Periphyton characteristics (biofUm thickness, biofilm biomass, species density, species 
richness and species diversity) 

Biofilm thickness values showed a normal growth pattern with one distinct peak 

demonstrating a gradual increase until 15-20 days followed by a decrease (Figure 9). The 

variation in biofilm thickness during the study was minimum at KB (18.11-96.67pm) while 

maximum at CIO (1.78-126.33pm). According to the two way rmANOVA results, biofilm 

thickness varied significantly over the duration of study period (^3,43=187.92, j9<0.05; Table 5). 

Thickness also varied significantly between sampling periods (F3,48=177.44, /?<0.05; 

Table 5) and between sites (Fi,48=605.68, /?<0.05, Table 5). The post hoc analysis showed that 

the thickness varied significantly only between days 5 and 15 during the sampling periods 

(^3,48=^^^-/7<0.05). Interaction results of two way rmANOVA between sites and days, sites 

and sampling period, days and sampling period and sites and days and sampling period resulted 

in significant variation of biofilm thickness (Table 5). 
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Figure 9(a-d). Variation in biofilm thickness observed on glass slides during the study period. 
Biofilm thickness values of 4 sampling periods (sampling periods 1 -4) were averaged 
independently and plotted against duration of slide exposure. Error bars represent the 95% 
confidence limit. 

(b) 
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Table 5. Results of two way repeated measure ANOVA for biofilm thickness, species density, 
chlorophyll a, biomass, and species richness observed in three study sites during four sampling 
periods. The resultant F values and p values were obtained after Greenhouse-Geisser correction. 
Post-hoc tests on pair-wise comparison were carried out using Bonferroni correction (the 
significant results are mentioned in the text). 

Source ss df ms 

Total species density (Slides) 

Sites 20.921 19.879 835.209 

Days 21.595 4.319 8.099 

Sampling Periods 2.201 0.734 1.376 0.261 
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Sites X Days 6.308 10 1.199 50.366 

Sites X Sampling period 12.438 3.94 165.524 

Days X Sampling period 16.624 15 1.108 2.078 0.028 

Sites X Days X Sampling period 11.943 30 0.757 31.786 

Chi a Slides 

Sites 4.068 2.657 503.851 0.000 

Days 2.043 0.409 4.923 0.001 

Sampling Periods 0.982 0.327 3.945 0.014 

Sites X Days 0.792 10 0.103 10.503 0.000 

Sites X Sampling period 0.835 0.182 34.491 0.000 

Days X Sampling period 0.528 15 0.035 0.424 0.964 

Sites X Days X Sampling period 1.019 30 0.044 8.417 0.000 

Biomass 

Sites 0.101 2.0 0.068 1.027 0.344 

Days 14.243 2.849 1.75 0.141 

Sampling Periods 191.444 63.815 39.202 

Sites X Days 5.94 10 0.803 12.132 

Sites X Sampling period 3.242 0.731 11.034 

Days X Sampling period 34.087 15 2.272 1.396 0.188 

Sites X Days X Sampling period 26.548 30 1.197 18.072 

Species Diversity (Slides) 

Sites 3.89 2.498 28.5 

Days 3.899 0.78 2.68 0.032 

Sampling Periods 13.319 4.44 15.28 

Sites X Days 5.086 10 0.653 1.53 

Sites X Sampling period 6.971 1.492 17.03 

Days X Sampling period 5.563 15 0.371 1.23 0.253 

Sites X Days X Sampling period 21.625 30 0.926 10.56 
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Species Richness (Slides) 

Sites 635.68 380.091 226.388 0.000 

Days 467.343 93.469 3.392 0.011 

Sampling Periods 1342.772 447.591 16.241 

Sites X Days 288.03 10 34.444 20.516 0.000 

Sites X Sampling period 1059.564 211.181 125.783 0.000 

Days X Sampling period 908.687 15 60.579 2.198 0.02 

Sites X Days X Sampling period 831.688 30 33.153 19.746 0.000 

Biqfilm Thickness 

Sites 1.699 1.042 647.759 0.000 

Days 1.517 0.303 187.972 0.000 

Sampling Periods 3.808 1.269 786.151 0.000 

Sites X Days 1.048 10 0.129 79.933 0.000 

Sites X Sampling period 1.872 0.383 237.912 0.000 

Days X Sampling period 8.218 15 0.548 339.359 0.000 

Sites X Days X Sampling period 5.937 30 0.243 150.938 0.000 

Total species density 

Species density followed a similar trend of variation as that of biofilm thickness and was 

2 2 significantly correlated with the latter during sampling periods 1, 3, and 4 (r =0.35,/><0.05, r = 

0.16,/><0.05, r^=0.34,/><0.05, respectively). Species density was also positively correlated with 

periphyton chlorophyll a concentrations for the same sampling periods (r =0.44, p<0.05, r = 

0.55, p<0.05, respectively). FigureslO(a-d) show the distribution of species density with the 

duration of study with values ranging from logio 5.81/cm to logio 6.29/cm during the early 

growing phase (5 days) and logio 6.90/cm^ to logio 7.36/cm^ during the mid growth phase (15 to 

20 days). The late growth phase (25 to 30 days) showed a reduced density probably due to 

sloughing off of cells. An exception to this trend was observed during sampling period 1 at site 
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LC (Figure 10a). At this location a continuous increase of species density over the days of 

growth was observed during sampling period 1 (Figure 10a). 

The maximum and minimum species density values recorded were at site KB during 

sampling period 4 (logio 8.25 and logic 4.84, respectively). According to the results of two way 

rmANOVA, species density showed significant variation within sampling periods (F3,48=8.10, 

p<0.05) and between sites (Fi,48=8 3 5.21, /><0.05), but did not vary significantly between 

sampling periods (F3,48=1.38,/>=0.261). However, the interaction results of two way miANOVA 

between sites and days, sites and sampling periods resulted in significant variations (Table 5). 

However, the post hoc analysis indicated significant variation in species density for only day 5 

between all other days of growth. 

Figure lO(a-d). Variation in average periphyton species density during the study period. Four 
sampling periods are independently averaged and plotted against the duration of the slide 
exposure. Error bars represent the 95% confidence limit. 
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Biomass 

Biomass showed a similar pattern of variation as seen in biofllm thickness and species 

density. The biomass gradually increased until 15-20 days, but showed a reduction by day 25 

(Figure lla-d). The maximum value of biomass recorded was during sampling period 1 at KB 

(2643.00mg/L) while the minimum was recorded at the same site (KB) during sampling period 4 

(0.05mg/L). 

The two way rmANOVA of periphyton biomass values showed significant variation 

between sampling periods (7^3,48=1 1.03, /><0.05), but the variation between sites and days of 

growth was not significant (Table 5). However, interaction results of two way rmANOVA 

between sites and days, sites and sampling period resulted in significant variation (Table 5). Post 

hoc analysis showed that sampling period 3 was the only period that varied significantly from the 

other sites (p<0.05). Sampling period 3 was in summer and therefore experienced higher growth 
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of Chlorophyceae, more specifically the filamentous green algae than the rest of the sampling 

periods (Figure 1 Ic). 

Figure ll(a-d). Variation in average periphyton biomass during the study period. Four sampling 
periods are independently averaged and plotted against the duration of the slide exposure. Error 
bars represent the 95% confidence limit. 
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(d) 

Species richness 

Species richness followed more or less the same trend as that of species diversity. Species 

richness and diversity were significantly correlated (r =0.42, /?<0.05). Figure 12(a-d) shows a 

growth pattern containing two distinct peaks of species richness during the growth period 

demonstrating the two maxima observed during the early and late successional phases. The 
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exception to the dual peaked pattern is observed during sampling period 3 at KB where the 

species richness values followed a general growth curve which corresponded to the highest 

species density values of the same period (Figure 10c). 

The two way miANOVA results showed significant variation in species richness with 

the duration of slide exposure (F5,48=3.39, p<0.05, Table 5) and between the sites (F2,48=226.39, 

/7<0.05, Table 5). The highest species richness value was recorded on day 20 at site KB (29 

species) and the minimum recorded on day 5 at LC (6 species). There was a consistent increase 

in species richness up to days 20-25. Post hoc analysis showed significant variation between day 

5 and all other days of growth. Species richness values for day 5 ranged from 6 to 21 which were 

recorded during sampling period 4. 

The two way miANOVA also showed a significant variation in species richness between 

sampling periods (F3,48=16.24,p<0.05). Although,hoc analysis showed significant variation 

between sampling periods 1, 2 and 4 (p<0.05), site specific trends played a role in this variation. 

For example, KB ranked number one for overall species richness for all sampling periods. In 

contrast CIO demonstrated relatively lower species richness during sampling periods 1 and 2 and 

seemed to follow the trend observed for biofilm thickness and species density at this site. Species 

richness values were high during sampling periods 3 and 4 and followed a general growth pattern 

with 2 distinct peaks. At site LC the richness values with duration of slide exposure followed a 

bimodal distribution. An exception to this trend was observed during sampling period 3 day 10 

which showed a sharp decline in species richness (Figure 12c). This decline was not detected in 

species density, but was seen in the species diversity values. During this time, the species 

dominance showed an increasing shift due to the dominance of Cocconeis placentula (an 
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abundance value of 0.50 compared to an earlier abundance value of 0.02 on day 5 and a value of 

0.26 on day 15). 

Figure 12(a-d). Variation in the average periphyton species richness during the study period 
(sampling periods 1-4 respectively). Four sampling periods are independently averaged and 
plotted against the duration of the slide exposure. Error bars represent the 95% confidence limit. 
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Species diversity 

Species diversity values exhibited a normal growth pattern with two distinct peaks, one 

early and the other in the late successional phases of the biofllm development (Figure 13a-d). For 

example, at CIO during sampling period 2 species diversity increased rapidly from day 1 to day 5 

then progressively decreased to a minimum value during day 20 followed by an increase towards 

the end of the growth period. A second minima was recorded in some cases, especially by the 

end of the growth period, as observed at CIO during sampling period 4. However, it is unclear if 

this is a trend or rather a part of data "noise". Although, the two peaks of diversity values can be 
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noticed in most sites, but there were some noticeable exceptions, mainly during sampling period 

4. For instance, at LC species diversity values followed a classic single peaked growth pattern 

(Figure 13d), while at site KB the species diversity variation during the growth period suggested 

a repeated increase and decrease resulting in a cyclic pattern (Figure 13d). 

As expected the variation of species diversity and species dominance followed opposite 

patterns. For example, on days 20-25 there was a decrease of species diversity possibly due to 

sloughing off of organisms from the community. Exceptions to this trend were observed during 

sampling period 1 at KB where an observable shift in diversity from day 15 to day 20 was seen 

(Figure 13a). The shift included a decrease in diversity value from 1.79 on day 15 to 0.19 on day 

20. This shift in diversity may be due to the dominance of the diatom species Cocconeis 

placentula which accounted for 97% of the entire community. This dominance lowered slightly 

by day 25, however a decline in non diatom members by day 30 resulted in a community mainly 

composed of diatoms. Site KB is the other example of deviation from the general dual peaked 

trend observed during sampling period 4 (Figure 13d). Diversity values showed a sudden 

decrease during day 15 corresponding to a shift in dominance of Navicula lancelota which 

accounted for 97% of the entire community (Figure 14a). This dominance suddenly reversed by 

day 20 pushing the diversity values higher. Linear regression results showed a significant 

positive relationship between the species diversity and density during sampling period 1 (r = 

0.46,;?<0.05). 

Results of two way rmANOVA showed significant variation between sampling periods 

which directly reflects seasonality (F3,48=15.28,/?<0.05). Overall species diversity measurements 

showed higher values during sampling periods 1 and 4 which coincided with the fall turnover. 
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Sampling period 3 gave rise to the highest diversity during the sampling periods (2.97). 

Additionally, post hoc analysis showed that sampling period 3 was the only period to vary 

significantly from the other 3 sampling periods (p<0.05). Sampling period 3 was summer and it 

experienced a high growth of Chlorophyceae due to the warm water temperature and longer 

insolence period. Additionally, there was a significant correlation between species diversity of 

periphyton and species density of phytoplankton (r =0.32, /><0.05). This is an interesting 

relationship as it points to the role of phytoplankton as a supplier of propagules to periphyton. 

The two way miANOVA results also showed significant variation in the species diversity 

values between sites (7^2,96=28.50, p<0.05). As mentioned earlier, the fluctuation in species 

diversity values corresponded to the shifts in diatom dominance (Figure 15a-d). The lowest 

diversity value was observed at KB (sampling period 4). The diversity value at KB was 

significantly correlated (positively) to TP in water (r^=0.35, /?<0.05). It is important to note that 

site KB had the highest overall TP concentrations among the sites during the entire study period 

(Table 4). 

The diversity values at sites LC and CIO showed lesser fluctuation compared to KB. 

Among the three sites, CIO consistently showed highest values during sampling periods 1, 3 and 

4, while site LC maintained a stable diversity value throughout the study period. 

Interaction results of the two way imANOVA between sites and days, sites and sampling 

period, days and sampling period and sites and days and sampling period resulted in significant 

variation of species diversity (Table 5). 
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Figure 13 (a-d). Variation in average periphyton species diversity during the study period. Four 
sampling periods are independently averaged and plotted against the duration of the slide 
exposure. Error bars represent the 95% confidence limit. 
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14(a-c). Density variation of dominant diatoms species at KB, CIO and LC respectively, 
observed during the study period. Each of the four sampling period values were averaged. 

9 
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15(a-d). Density variation of dominant diatom species in each sampling period (1-4), according 
to site observed during the study period. 
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Taxonomic Composition 

Table 6 lists all species observed in the periphyton communities during the study. In total, 

there were 65 Bacillariophyceae members, 29 members of Chlorophyceae, 19 members of 

protozoa, 4 genera of Cyanophyceae, 2 genera of Chrysophyceae and 1 rotifer in addition to 

various macroinvertebrates. 

The relative abundance of these groups expressed as percentage densities were calculated 

from species density variables, varied between sampling periods, and sites (Figure 16a-d). 

Bacillariophyceae was the dominant group throughout the study followed by the Chlorophyceae 

and protozoa. A diversion from this trend was found in sampling period 3 at CIO where 

Cyanophyceae accounted for almost the same percentage as that of Chlorophyceae and the 

protozoa (Figure 14b). 

Bacillariophyceae 

The most dominant species in all sites during sampling period 1 was Cocconeis 

placentula (Figure 14a). However, the remaining sampling periods showed site specific species 

dominance (Figure 15b-d). For example during sampling period 2 although sites CIO and LC 

showed dominance of Cocconeis placentula, site KB showed dominance of Acnanthidium 

minutissimum. Sampling period 3 also showed similar result as that of sampling period 2 (Figure 

15c). Sampling period 4 showed variation in species dominance at site KB and LC, but site CIO 

was similar to sampling periods 2 and 3 (Figure 15d). The shift in species dominance at KB 

showed a dominance of the cold water species Navicula lancelota during sampling period 4 

(Figure 14a). At site LC the shift resulted in the dominance of Fragilaria crotensis (Figure 14c). 
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Figure 16(a-d). Variation in average percentage density of algal groups observed at three 
sampling locations during the four sampling periods within the study. 



Figure 17 (a-c). Variation in average percentage composition of various taxonomic groups 
according to site (KB, CIO, LC respectively). 
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The diatom species recorded has been divided into 4 categories; present, frequent, 

abundant, and absent. Present is defined as a species observed at least 50% of time, frequent is 

defined as a species observed 60-80% of the time and abundant is observed 90% of the duration 

of study. Cocconeis placentula, Cymbella tumida, Gomphonema truncatum, Acnanthidium 

minutissimum and Amphora ovalis were observed as abundant while, frequently observed within 

the community were Cymbella lanceolota, Epithemia turgida, Navicula spp., Fragilaria 

crotensis, Synedra spp. and Synedra ulna (Table 6). 
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During the entire growth period, Navicula lanceolota, Aulacoseira varians (Melosira 

varians), Nitzschia spp., and Gyrosigma acuminatium were frequently present during the early 

growth phase while Eucocconeis spp, Navicula tripunctata, Pinnularia sp., Placoneis eigens, 

Rhopolodia gibba were relatively more frequent during the late growth phase (Table 6). 

In general the periphyton community development was highly dependent on the site and 

environmental factors such as TP, DO, and conductivity. Some sites shared common initial 

colonizers such as Acnanthidium minutissimum, Cocconeis placentula, Cymbella tumida and 

Diatoma vulgaris, however variability between sites and between sampling periods (seasonal 

influence) was observed. 

Diatom taxonomic composition showed seasonal variation in species abundances (Table 

7). For example, fall samples (sampling period 1) showed species such as Cosmioneis spp., and 

Cymatopleura solea while the spring samples (sampling period 2) showed the presence of 

different species such as Cymatopluera elliptica, Entomoneis paludosa, Eucocconeis spp., 

Gomphoneis spp., Meridion circulare, Stauroneis spp., and Synedra cyclopium. 

The samples collected during summer (sampling period 3) gave rise to a highly diverse 

taxonomic composition which included many common species and species that were only 

observed during summer (Table 7). These species were Amphipleura pellucida, Cocconeis 

pediculus, Cosmioneis reimeri, Eutonia spp., Fragilaria capucina, Fragilaria spp., Frustulia 

spp., Gomphonema parvulum, Gomphenesis spp., Navicula stesvicensis, and Nitzschia calida 

(Table 7). Species that overlapped between sampling periods 3 and 4 (sampling period 4 - 

second fall), but were not observed in any other sampling periods were Navicula tripunctata, 

Neidium dubium, and Tabellaria flocculosa. Finally, species present only during second fall 
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included Amphipleura spp., Cocconeis pediculus, Cymatopleura ovalis, Epithemia sorex, 

Eucocconeis spp., Navicula gastrum, Nitzschia amphibia, Sellaphora pupulla, and Synedra 

capitata. 

Site specificity also played a role in diatom taxonomic composition. Most of the common 

diatoms such as Cocconeis placentula, Cymbella tumida, Gomphonema truncatum, Navicula 

spp., and Synedra spp. were observed in all 3 sites, however some were site specific. For 

example, some site specific taxa included MmV/fun circulare (KB and CIO), Nitzschia amphibia 

(CIO and LC) and Synedra cyclopium (KB and CIO). 

Non-diatom groups 

Members other than diatoms observed in the periphyton community included 

Chlorophyceae, Cyanophyceae, Chrysophyceae and protozoa groups. The species varied 

between sampling periods and sites. For example, sampling period 3 (summer) gave rise to the 

highest abundance of Chlorophyceae (logio 7.23/cm ). Species such as Coleastrum spp., and 

Cosmarium spp. were observed abundantly throughout the entire study period followed by the 

frequent presence of Coleachaeta spp.. Filamentous green algae (FGA) spp., and Pediastrum 

simplex. The Chlorophyceae appeared in certain growth phases of periphyton community. For 

example, species such as Closterium spp., Crucigenia tetrapedia, Green algae (GA) spp., 

Monorhaphidium convolutum, and Staurastrum spp. were observed during the early phase of 

growth while Scenedesmus quadricauda were observed mostly in the late growth phase of the 

periphyton (Table 6). 

Various protozoa were observed in the periphyton community during the entire growth 

period. Species such as Amoeba spp., Stylonchia spp. and some unknown protozoan species were 
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abundant during the entire growth phase. Species such as Actinosphaerium spp., Euglena spp., 

Lacrymaria spp., and Euplotes spp. were more frequently observed during the early growth 

phase while species such as Amoeba spp., Stylonchia spp. and some unknown protozoan species 

were observed more frequently during the late phase of biofilm development (Table 6). 

Cyanophyceae species were present in the periphyton community in all sites and 

sampling periods. Merismopedia glauca was the most abundant species and was the main 

contributor to the high density values (logio 5.45) of Cyanophyceae on day 10 during summer. 

Anabaena spp. was present during the early growth phase while Chroococcus spp. and Spirulina 

princeps was recorded during the late growth phase (Table 6). 

Several species of Nematodes were abundantly present during the entire growth period, 

however this was restricted to site CIO and LC. 

The presence-absence of non-diatom species showed a seasonal trend. While certain non- 

diatom species were present during all sampling periods, some species were observed only in 

certain sampling period. For instance, the sampling periods 1 and 2 included common taxa 

(observed in all 4 sampling periods) such as Coleastrum spp., and Cosmarium spp., in addition to 

rare ones such as Crucigenia tetrapedia. The spring sampling period recorded various non- 

diatom taxa such as; Diplochloris spp., Kirchneriella spp., Spirogyra spp., Spirulina spp., 

Chroococcus spp., Chlamydomonas spp. mdDinobryon divergens which were not present 

during the other sampling periods. 

The summer sampling period exhibited the most diverse non-diatom species. They 

included Characium spp., Coelastrum microporum, Pediastrum tetras, Spirulina spp., 

Stigeclonium tenue^ Amphileptus spp., in addition to the presence of unknown copepods and 



ostracods. The species that were present in spring and summer included Characiopsis spp., 

Kirchneriella spp., Monorhaphidium convolutum, and Spirulina spp. 
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The second fall sampling period included species such as Staurastrum gracile, 

Stigeoclonium spp., Arcella spp., Platycola vaginella, Stentor spp. It is important to note that 

Chironomidae larvae were present during spring and summer only. Species that were commonly 

present during the first and second fall sampling periods included Dictyosphaerium pulchellum, 

Coleastrum spp., Coleochaete spp. and the protozoa species Stentor spp. 

Site also played a role in non-diatom taxonomic composition. Though many common 

non-diatom species were present in all sites, some were seen only in certain sites. For example, 

some species recorded only at KB included Diplochloris lunata and the protozoa species, 

Platycola vaginella in addition to the only recorded unidentified ostracods. The lowest species 

richness value (average over all sampling periods) of non-diatom species during the study period 

was at KB (5.4 species) while CIO had a much higher average species richness value (7.5 

species). CIO also had the highest density of Cyanophyceae species, Merismopedia glauca, 

among all three sites. Other species present only at CIO included Staurastrum gracile, 

Pediastrum tetras, and the testate amoeba Arcella spp. The average species richness value for 

site LC was on par with CIO (7.5 species). Site LC also showed the only presence of 

Chrysophyceae genus, Dinobryon divergens and the protozoa species Lecane lunaris. 
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Table 6. Algal species present in the periphyton community during the duration of the study 
(October 2011- November 2012). Present represents species observed at least 50% of time 
during the entire study, frequent represents presence of 60-80% of the time during the entire 
study, and abundant represents presence of > 90% of the time during the study. 

Algal Species Days of Exposure x=present; xx= Frequent, xxx= abundant, -=absent 

10 15 20 25 30 

Acnanthes spp 

Acnanthidium minutissimum XX 

Amphipleura pellucida 

Amphipleura so lea 

Amphora ovalis 

Asterionelia formosa 

Aulacosiera granulata 

Cocconeis pediculus 

Cocconeis placentula 

Cosmioneis reimeri 

Craticula cuspidata 

Cyclotella meneghiniana 

Cyclotella spp. 

Cymatopluera elliptica 

Cymatopleura ovalis 

Cymatopleura solea 

Cymbella lanceolota XX 

Cymbella tumida 

Diatoma vulgaris 

Entomoneis paludosa 

Epithemia sorex 

Epithemia turgida 

Eucconeis spp. XXX 

Eutonia spp. 

Fragilaria capucina 

Fragilaria crotensis 

Fragilaria spp. 

Frustulia spp. 

Gomphenema acuminatium 

Gomphonema parvulum 

Gomphonema truncatum 

Gomphoneis spp. 

Gyrosigma acuminatium 

Hippodonta capitata 
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Meridion circulare 

Navicula gastrum 

Navicula lanceolota 

Navicula spp. 

Navicula stesvicensis 

Navicula tripunctata 

Neidium dubium 

Nitzschia acicularis 

Nitzschia amphibia 

Nitzschia calida 

Nitzschia lanceolata 

Nitzschia sigmoidea 

Nitzschia spp. 

Pinnularia sp. 

Placoneis eigens 

Rhoicosphenia curvata 

Rhopolodia gibba 

Sellaphora pupulla 

Stauroneis spp. 

Suriella ovalis 

Synedra acus 

Synedra capitata 

Synedra cyclopium 

Synedra spp. 

Synedra ulna 

Tabellaria fenestra 

Tabellaria flocculosa 

Unknown diatom 

Ankistrodesmus spp. 

Characiopsis spp. 

Characium spp. 

Chroococcus spp. 

Closterium lunata 

Closterium spp. 

Coleachaeta spp. 

Coelastnim microporum 

Coleastrum spp. 

Cosmarium spp. 

Crucigenia tetrapedia 

Dictyosphaerium pulchellum 

Diplochloris lunata 
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Eurastrum spp. 

EGA spp. 

GA spp. 

Kirchneriella spp. 

Monorhaphidium convolutum 

Pediastrum simplex 

Pediastrum tetras 

Scenedesmus quadricauda 

Spirogyra spp. 

Spimlina princeps 

Spimlina spp. 

Staurastrum gracile 

Staurastrum spp. 

Stigeoclonium spp. 

Anabaena sp. 

Merismopedia glauca 

Dinobryon spp. 

Actinosphaerium spp. 

Amoeba spp. 

Amphileptus spp. 

Arcella spp. 

Chlamydomonas sp. 

Colpidinium spp. 

Daphnia spp. 

Euglena spp. 

Euplotes spp. 

Laciymaria spp. 

Lecane lunaris 

Litonotus spp. 

Phacus spp. 

Platycola vaginella 

Rotifer spp. 

Stentor spp. 

Stylonchia spp. 

Unknown protozoa spp. XXX 

Vorticella spp. 

Nematode spp. 

Unknown copepod spp. 

Unknown ostracod spp. 

Chironomid spp. 
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Table 7. Presence of diatom species in different sampling periods (seasons). 

SPRING (SP2) SUMMER (SP3) FALL (SPl & SP4 

Cymatopluera elliptica Amphipleura pellucida Amphipleura spp. 

Entomoneis paludosa Cocconeis pediculus Cocconeis pediculus 

Eucconeis spp. Cosmioneis reimeri Cymatopleura ovalis 

Gomphoneis spp. Eutonia spp. Epithemia sorex 

Meridion circulare Fragilaria capucina Eucconeis spp. 

Stauroneis spp. Fragilaria spp. Navicula gastrum 

Synedra cyclopium Frustulia spp. Navicula tripunctata 

Gomphonema parvulum Neidium dubium 

Gomphoneis spp. Nitzschia amphibia 

Navicula tripunctata Synedra capitata 

Neidium dubium Tabellaria flocculosa 

Nitzschia calida Cosmioneis reimeri 

Tabellaria flocculosa Cymatopleura solea 

Discussion 

Periphyton succession 

The successional patterns of periphyton communities are often similar to those observed 

in terrestrial ecosystems (Macarthur & Wilson 1967). Periphyton succession follows predictable 
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sequences or phases during its development including early, middle and late phases of growth 

(Stevenson 1990; Biggs et al., 1998; Sekar et al., 2004; Kanavillil et al., 2014). 

Species succession with duration of slide exposure: 

The growth of periphyton community in this study showed pioneer species such as 

Cocconeis spp., and Acnanthidium minutissimum which was also observed by other researchers 

from Oak Creek, Arizona, USA (Korte & Blinn 1983). However, the present study differed from 

the previous study in that Cocconeis spp. and Acnanthidium minutissimum remained dominant 

during majority of time over the study duration. These results were similar to the study 

performed by Kanavillil et al (2012) which looked at the succession of diatoms in natural 

biofilms on glass slides. These two species were reported to possess an adaptation to succeed in 

disturbed habitat with a high to moderate supply of resources (Biggs et al., 1998). Small cell size, 

rapid replication rates and fast colonization could be certain characteristics that helped these 

species to succeed as primary colonizers during the early phase (day 5-10) of periphyton growth 

and in the subsequent period (from day 25-30). However, species such as Cymbella tumida, 

Gomphonema truncatum and Amphora ovalis generally appeared during the mid phase of 

periphyton growth were characterized by large cell size, slow colonization, slow growth and 

attaining high biomass. Obviously, they required higher resource supply and less disturbance 

than the early colonizers. A similar growth pattern of for Cymbella spp. and Gomphonema spp. 

was observed by previous researchers (Korte & Blinn 1983). According to them, these taxa are 

able to uptake nutrients at a more efficient rate, resistant to herbivory via endotoxins, low 

palatability, stronger adhesion to substrate and growing tall or being filamentous. These features 

helped them to form high biomass in periphyton community (Biggs et al., 1998). The Cymbella 

spp. and Amphora spp. also employ additional reproductive strategies through producing 
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mucilaginous protective tubing for protection from degradation/ desiccation and perhaps reduced 

palatability to detract predators (Round et al., 1990). 

The mid- late phase (days 10-20) of the periphyton community gave rise to taxa such as 

Nitzschia palea and Gomphonema spp., Cymbella lanceolota, and the rosette forming Synedra 

spp. These species employ adaptations to succeed in highly stressful/less productive undisturbed 

habitats by using attributes such as small-medium cells sizes, slow colonisation, slow growth, 

coupled with strong attachment capabilities (Biggs et al., 1998). Once the community has been 

established, by approximately 15-20 days, solitary diatoms with high mobility started to appear 

in the community. They include Gyrosigma acuminatium, Pinnularia sp. and the chain forming 

Fragilaria crotonensis. These diatoms are successful at maintaining a high growth rate at a lower 

irradiance level (Bellinger & Sigee 2010). 

The present study observed Bacillariophyceae as the dominant group throughout the 

period of study which is similar to the findings of Kanavillil et al (2012), but varied from the 

findings of Sekar et al (2002) which included a co-dominance of Chlorophyceae and 

Bacillariophyceae during the early to mid phase subsequently leading to a Cyanophyceae 

dominated community. The variations in taxonomic composition could be due to the differences 

of substrata used in addition to the varying environments where these studies were carried out. 

Sekar et al (2002) studied in a typical tropical freshwater reservoir while the present study is in a 

temperate open freshwater system. 

Seasonal variation in periphyton community development: 

The periphyton community development is dependent on seasonal factors such as 

variation in nutrient concentration, temperature, duration of irradiance etc. In the present study. 
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the increased nutrient concentration that was detected during fall may be due to the fall of leaf 

litters and subsequent degradation of them releasing nutrients into the water. In addition, the fall 

turnover of water column also brings in nutrients to the shallow areas. Site CIO experienced the 

largest quantity of leaf litter among the 3 sampling locations. Similarly, the increase in 

atmospheric temperature increased water runoff due to melting of snow and water turn over 

resulting in higher nutrient concentration during spring. The summer season was when the 

highest growth occurred and could be due to the influence of more than one parameter. 

The abundance of a species in a sampling period would suggest a strong preference for 

growth parameters that vary with seasons. There are several studies that reported seasonal 

abundance of certain periphyton species (Oemke & Burton 1986, Passey et al., 1999, Artigas et 

al., 2012 and Kanavillil et al., 2012). In the present study, the results of one way ANOVA 

showed that water temperatures varied significantly between spring, summer and fall sampling 

periods which were reflected on the presence/absence of diatom and non diatom species. For 

example, there was a shift in diatom dominance at KB during fall sampling period (4) Navicula 

lancelota (from logio 5.90 to logio 8.24) and the presence of Meridion circulare which is a cold 

water diatom species (Round et al., 1990; Kelly et al., 2005). Some other groups that exhibited a 

temperature preference, especially during the summer (water temperature ~28°C), were 

Chlorophyceae and Cyanophyceae (Figure 16c). 

Among the other environmental factors that varied seasonally TP played a influential role 

in the taxonomic composition. Previous studies demonstrated that TP variation acts as an 

important driver of growth and taxonomic shifts in microalgae in an aquatic ecosystem 

(Liboriussen & Jeppesen, 2006; Vis et al., 2008; Ferragut & de Campos Bicudo, 2010). The 
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increased TP concentration as observed during certain sampling period might have played a role 

in species dominance. In the present study the maximum number of species (29 species on day 

20) at KB was observed during sampling period 4 (second fall) coinciding with the highest 

concentration of TP in the water column (Table 4). There was a significant correlation between 

TP and species richness for all sampling periods. All sites and sampling periods exceeded the 

provincial guideline concentration of 0.02 mg/L, with the exception of sampling period 2 at KB. 

This relatively low value may have been due to an error occurred during sample analysis. 

Thus, the present study results disagreed with Passy and Blanchet (2007) who found that 

an increase in nutrient concentration resulted in a decrease in species richness. This study 

observed that other factors such as light availability and autogenic processes such as sloughing 

off and immigration and emigration rates might have played important roles in determining the 

species richness in the periphyton communities studied. 

Though nitrogen analysis results were not ready in time for the writing of this thesis it 

may play a role in various species presence according to site. For example, the presence of 

Anabaena spp., and high abundances of Merismopedia glauca and Rhopolodia gibba are 

exclusive to site CIO and all these species are nitrogen specialists (Stevenson et al., 1996). 

Periphyton Characteristics (biofilm thickness, chlorophyll a, biomass, species density, 

species diversity and species richness) 

Biofilm thickness values showed a normal growth pattern with a gradual increase until 

15-20 days followed by a decrease until the end of the sampling period (Figure 9a-d). The 

biofilm thickness varied between sampling periods as a result of seasonality. Biofilm thickness 
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demonstrated a relationship with hydrological parameters such as temperature, pH, DO and 

conductivity as seen in the results of regression analysis. 

There was significant correlation between the biofilm parameters biofilm thickness and 

biomass at site CIO only and may have been due to the higher disturbance levels as a result of 

intense wave action at this site. Species diversity showed a near significant correlation with 

biofilm thickness at site LC, while species density correlated significantly with biofilm thickness 

at sites CIO and LC. The biofilm thickness at site KB may have been negatively influenced by 

the constant sedimentation load from the effluent release from the Waste Water Treatment 

Centre in Barrie, ON. 

Periphyton chlorophyll a concentrations followed a normal growth pattern and showed a 

general increase from the early stage of periphyton growth to days 20-25. This was followed by a 

decrease to the end of the sampling period (30 days). Repeated measure ANOVA results verified 

that there was significant variation between the days of growth. The trend was similar for 

periphyton micro-algal density and the correlation between periphyton micro-algal density and 

periphyton chlorophyll a in sampling period 1, 2, & 4. 

Chlorophyll a concentrations in the water column varied significantly between sampling 

periods, sites and the duration of study in each sampling period. The general trend of chlorophyll 

a distribution exhibited a normal single peak growth pattern except for sampling period 1 when 

all sites exhibited 2 distinct peaks. The peaks at KB were more distinct than the other 2 sites and 

this may be due to the higher TP concentrations at KB. During sampling period 2 the maximum 

concentration of chlorophyll a was recorded at LC. This high concentration might be 

representing the spring turnover and this resulted in an increase in diatom abundance. 
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The periphyton chlorophyll a concentrations during sampling period 3 at site KB were 

related to the biomass values. This was in contrast to the species density values which did not 

follow the chlorophyll a variation during sampling period 3. The weak relationship between 

periphyton chlorophyll a and species density during sampling period 3 at KB may be related to 

the lower biomass values of diatom and non diatom species found at site KB (Stevenson et al., 

1996; Biggs et al., 1998). Additionally, KB periphyton during sampling period 3 demonstrated a 

continuous growth until the end of the study (30 days) as opposed to the other two sites and 

sampling periods. This indicates the periphyton community at site KB during sampling period 3 

might still be in a transition period (Lamberti & Resh, 1985; Porter-Goff 2010). Additionally, the 

chlorophyll a concentrations in the water colunrn during sampling period 3 followed a similar 

variation over time and this resulted in a significant positive correlation between chlorophyll a in 

water column and periphyton biomass. The results thus show influence of water column micro- 

algal biomass on the periphyton biomass. 

As mentioned above biomass values generally followed the same trend as that of biofilm 

thickness, species density and periphyton chlorophyll a throughout the study period. The 

maximum biomass recorded was during sampling period 3 at KB (3035.56mg/L) which is 

summer and included higher populations of Chlorophyceae, Cyanophyceae and protozoa. While 

the minimum value was recorded at the same site (KB) during fall (sampling period 4, 

0.05mg/L) which was the beginning of decreasing water temperatures and insolence. The results 

of regression analysis showed periphyton biomass was significantly related to TP concentration. 

As described by Stevenson et al (1996), biomass is a fundamental measure of the 

interaction between species composition, abiotic environmental factors and grazing. However, 

they also proposed that biomass measurement is a poor indicator of benthic algal mass when 
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there are large inputs of sediment and inorganic matter in addition to the dominant presence of 

heterotrophic and detrivore organisms within the periphyton community. Sites KB and CIO 

reflected Stevenson's proposal as the slides at KB were consistently covered with an inorganic 

layer of sediment. This was the result of effluent release from the City of Barrie’s effluent 

treatment plant into the lake. Site CIO also received suspended load from land water run-off and 

other anthropogenic sources. Site CIO had the lowest water levels among the three locations. The 

slides often showed sand deposition. The accumulation of inorganic deposits may have skewed 

the biomass results and therefore resulted in a weak relationship with algal density and biofilm 

thickness. 

The species density increased with the duration of study up to 15-20 days (Figure 10). 

The late successional growth phase (25 to 30 days) showed a decreasing trend probably under 

the influence of sloughing off processes. Many other researchers have observed the same trend in 

species density over time (Stevenson et al., 1996; Biggs et al., 1998; Catteano et al., 1990; 

Kanavillil et al., 2012). An exception to this general trend occurred only during sampling period 

1 at LC where a continuous increase of density was observed throughout the period. Any 

particular reason could not be described for this exception. 

The temporal variation in periphyton density was significant (miANOVA, Table 5). The 

highest value of species density was observed during sampling 1 (first fall) at KB. Since KB was 

prone to most anthropogenic disturbance compared to other two locations, the variation in 

periphyton density could indicate the influence of these factors on the community build-up. In 

addition to the anthropogenic factors, physical factors such as water movement and wave actions 

could influence the periphyton community formation. Previous studies by Catteano et al (1990) 

demonstrated that physical factors such as wave action can influence populations in periphyton. 
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Species richness and diversity. 

Species richness and diversity are important indicators of the biofilm development 

processes which respond to external stimuli/ stressors such as pollution (Kitner and Poulickova 

2003; Poulickova et ah, 2004). The overall trend of species diversity showed a growth curve with 

2 distinct peaks during the 30 day period and varied significantly between days of growth (5 to 

30). 

The first peak of diversity was recorded (consistently in all sampling periods) during the 

early phase of periphyton development i.e. by day 10 and the second peak during the late growth 

phase immediately after the sloughing off period (25-30 days). The similarities in diversity 

measurements during the two peaks may be attributed to the availability of space and less 

competition. An exception to this trend was observed during sampling period 4 at KB where a 

cyclic pattern of high and low diversities was observed. The fluctuation in species diversity at 

KB (sampling period 4) corresponded to intense diatom dominance shifts ending in the lowest 

values of species diversity during the study. It is important to note that site KB had the highest 

overall TP concentrations among the sites during the entire study period. As mentioned earlier 

TP has a strong influence on periphyton growth dynamics. However, the cyclic pattern at site KB 

may also be related to the effluent release and the turbidity. At site KB the rig and slides were 

often observed to have a layer of sediment deposit. Probably, this deposit might have resulted in 

the collapse of the biofilm thereby opening new space for the new recruits. The collapse or 

disturbance of periphyton has been studied well in flood plains and lotic environments, but very 

rarely in lentic ecosystems. The observed single peak growth pattern of species diversity found at 

site LC during sampling period 4 suggests a stable environmental condition during the period of 

study (sampling period 4). 



70 

Species richness followed the trend of a double peaked growth pattern similar to that of 

species diversity over the growth period. It was generally higher during the early and late phases 

of periphyton growth. Artigas et al (2012) found similar results and observed a great increase of 

species richness on days 1 to 7 as a result of early colonization processes. 

Species richness varied significantly between days, sites and sampling periods. The 

variation may be attributed to species tolerances to the existing environmental variables 

including hydrological parameters such as temperature, dissolved oxygen and availability of 

nutrients from the water column. The greatest overall species richness was observed during 

sampling period 4 which is fall. The fall turnover may result in the recycling of various nutrients 

such as silica and phosphorus which might influence the growth of periphyton communities, in 

particular the Bacillariophyceae. The days with higher biomass (usually 20-25 days) were 

observed to have higher species richness, and they were significantly correlated in sampling 

period 1 and 4. This may be an expected outcome due to higher immigration rates (more motile 

diatoms) and lower emigration rates in addition to the arrival of environmentally tolerant taxa 

(Peterson et al., 1996; Sekar et al., 1997; Bellinger and Sigee 2010). 

Sites KB and CIO during sampling period 3 exhibited a normal growth curve for species 

richness with a significant decrease in species richness during the late phase of development. 

Species richness and TP were significantly correlated in all 4 sampling periods. Sampling period 

3 showed the highest TP concentration during the study. The species that were present at a high 

abundance during the late phase of periphyton growth at KB included the diatom species 

Acnanthidium minutissimum and Fragellaria crotensis which are indicators of high nutrient 

concentrations (Vis et al., 1998; Geoffroy et al., 2000; Duong et al., 2007). At CIO species 

composition included the pollution tolerant diatoms Acnanthidium minutissimum and Navicula 
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lanceolata (Kelly et al., 2005). Phosphorus is the limiting factor in lentic environments and may 

influence the growth of periphyton communities (Winter and Duthie 2000). As mentioned 

before, there were also some rare species that appeared only during certain sampling periods. 

For example, Meridion circulare, a rosette forming diatom with strong attachment was only 

observed during sampling period two. According to Smucker & Vis (2013), the community 

composition at the end of succession represents the typical environmental conditions existing at a 

site location. 

Periphyton communities take varying time periods to reach maturity. This depends on the 

location of study, study period, hydrological conditions, the substratum used etc. According to 

Bernhardt & Likens (2004) periphyton communities reach maturity in 28 days on a natural 

substratum such as rocks, however, the duration of maturity on artificial substratum can take 

much longer (Lamberti & Resh, 1985; Porter-Goff 2010). However, the present study showed 

community reached stability by 15-20 days, as the parameters such as the density, diversity, 

species richness and biofllm thickness started stabilizing by this time. Therefore, the duration of 

slide exposure in this study is thought to produce a good account of periphyton community 

development in this area. 

Non Diatom succession 

The succession of taxonomic groups other than diatoms in periphyton community 

observed in this study was different from those observed by Sekar et al (2002) and Liboriussen 

and Jeppesen (2006), however these previous studies used plexi-glass and plastic strips as 

substrata and may also play a contributing role to the variation of non diatom contributions to the 

over community. In the present study, Bacillariophyceae dominated the community throughout 
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the study period in contrast to the co-dominance of Chlorophyceae and Bacillariophyceae during 

the initial phase and dominance of Cyanophyceae towards the end of the study as observed by 

the above workers. However, this study also showed abundances of Chlorophyceae and 

Cyanophyceae during different sampling periods. For example sampling period 3 showed high 

densities of Chlorophyceae (25%) and Cyanophyceae (20%) as part of the periphyton 

community instead of 7-10% of the entire community observed during the other sampling 

periods. Furthermore, the variation observed among non diatom groups was site specific. For 

instance, the highest abundance of Cyanophyceae (~30% of the entire community) was observed 

at site CIO. As CIO was considered the least disturbed one in this study these results may suggest 

the need for further investigation and ongoing water quality monitoring. 

The successional pattern of non-diatoms showed presence of less motile Chlorophyceae 

such as Coleachaeta spp., Cosmarium spp., and Coleastrum spp. during the early stages of 

periphyton community development followed by motile or strongly attached forms such as 

Closterium spp.. Filamentous green algae (FGA) spp. and the Cyanophyceae group. This 

successional pattern may be influenced by various factors such as competition for light and space 

(Sekar et al., 2004; Bellinger & Sigee 2010). 

Cyanophyceae were present during all sampling periods except sampling period 2 

Cyanophyceae have the ability to produce toxic lipopolysaccharides which can cause gastric 

distress and various dermatitis responses (NOAA 2014). As reported earlier, increased nutrient 

input can lead to a dense growth of certain Cyanophyceae (Schindler, 1977; Wetzel, 1983; 

Winter et al., 2011). As reported by Numburg et al (2013) Lake Simcoe's consistently high TP 

concentration in the recent past might have resulted in a dense growth of Cyanophyceae at 

certain locations. 
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Protozoa are the major consumers of microalgae and bacteria in the periphyton 

communities (Rosemond et al., 1993; Burgmer et al., 2010). Thus, the dominance of protozoa 

may have a significant impact on the periphyton community composition (Rosemond et al., 

1993; Burgmer et al., 2010). As observed in other non-diatom groups, the population densities of 

protozoa also exhibited variation with time. The growth rate of periphyton became slow with 

lowering of water temperature during sampling periods 1 and 2 (Table 4) and this agrees with 

earlier studies (Rosemond et el., 1993; Mieczan et al., 2013). 

Conclusion 

The general trend of periphyton growth was highly influenced by natural autogenic 

succession processes in addition to the time of year (seasonality), site and duration of slide 

exposure in each sampling period. The overall periphyton growth exhibited an increase in 

density during the early phase; a climax during the mid phase; a reduction during sloughing off 

period (mid-late phase) and an increase towards the end due to re-colonization. The present study 

showed consistent dominance of Bacillariophyceae during the entire study period as opposed to 

the initial co-dominance of Bacillariophyceae and Chlorophyceae, leading to Chlorophyceae 

during the middle phase and to Cyanophyceae towards the end as observed by Sekar et al (2002). 

Therefore, the hypothesis that the periphyton community dynamics are influenced by autogenic 

processes was well supported, however a longer duration of study might have provided evidence 

of a longer term successional pattern such as taxonomic group shifts in periphyton communities. 

This study observed great variability in periphyton species composition throughout the 

four sampling periods. Certain species were present only during certain season. Seasonality also 

had an influence on the overall density and periphyton taxonomic group dominance. The summer 

season (sampling period 3) resulted in high abundance of non diatom groups such as 
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Chlorophyceae and Cyanophyceae. The spring and fall sampling periods (SP2-Spring, SPl & 

SP4- Fall) recorded high density of Bacillariophyceae may be due to the lake turnover processes 

and availability of nutrients. Therefore, the hypothesis that periphyton community dynamics vary 

seasonally can be justified. 

The variation in species diversity distribution followed a normal growth pattern with two 

peaks demonstrating high diversities during the initial phase and towards the end of the study. 

This would suggest that species diversity depends on environmental disturbances and space 

availability. It was hypothesized that periphyton species diversity would decrease as a result of 

increased nutrient availability. This hypothesis seems to be true only with respect to 

Bacillariophyceae whose diversity is decreased with an increase in TP concentration, however, 

over all the diversity of the periphyton community did not change. This is because a reduction in 

Bacillariophyceae resulted in an increase in diversity in other groups such as Chlorophyceae, 

Cyanophyceae, protozoa and other organisms. Therefore, this hypothesis is not fully accepted. 

However, it is important to note that overall species diversity is also influenced by seasonal 

changes in hydrological factors especially the water temperature and insolence period. 

This study showed that periphyton development is influenced by a variety of hydrological 

factors that may vary with site and season. This influence can relay important information about 

the water quality and the possibility of using periphyton community dynamics as water quality 

indicator of a certain location. The presence of indicator species such as the nutrient pollution 

tolerant species Fragilaria crotensis or Anabaena spp. (Cyanophyceae) indicates the condition of 

water in that location. Thus, the results from this study provide important and useful information 

to the ecosystem managers to consider periphyton community dynamics as an environmentally 

benign method of assessment of water quality in this area. 
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Chapter 4: An exploration of periphyton as a possible bio-indicator of water quality in the littoral 
zones of Northern Lake Simcoe 

Introduction 

Degradation of freshwater bodies is a global problem. Anthropogenic pressures have 

contributed significantly to the degradation of fresh water systems. Intensive mining and 

agricultural practices, damming, river diversion and increased human population are all 

contributors to the modification of aquatic ecosystems. The preservation of water quality is a 

global concern due to the limited availability of consumable fresh water. Fresh consumable 

surface water is one of the most important requirements to the quality of human life and it is 

decreasing on a daily basis (Chislock et al., 2013). As the human population keeps growing, the 

consequent anthropogenic impacts will exert more pressure on our fi-esh water bodies and 

therefore it is imperative that reliable monitoring tools be adopted to protect our water systems. 

In Canada, Federal and Provincial governments spend millions of dollars annually to 

mitigate water quality issues (e.g.. Lake Simcoe Clean Up Fund). Many factors (e.g. pollutants) 

that affect the quality of our water can be reduced through monitoring strategies. Bio-monitoring 

is a complimentary monitoring tool that can be used in combination with chemical monitoring 

methods. Periphyton is a useful tool that can be used to bio-monitor water systems (Azim et al., 

2005; Schneider et al., 2009; Rotter et al., 2013). Various periphyton community characteristics 

that can be used to bio-monitor water systems include biomass, taxonomic composition, species 

diversity, chlorophyll a and species abundance/succession. The addition of periphyton as a 

monitoring tool in combination with chemical and other biological methods will result in a 

comprehensive approach of water quality monitoring. 
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Factors influencing water quality 

Abiotic factors influencing water quality include chemical contaminants such as 

pharmaceuticals, industrial waste, fertilizers, physical factors such as temperature and light 

intensity while biotic influences include biological factors such as pathogens, invasive species, 

etc. 

The methods currently being used to monitor our water resources include chemical 

analysis (i.e., assessing the amount of contaminants, such as heavy metals, pharmaceuticals, etc), 

the measurement of abiotic parameters (e.g. dissolved oxygen, pH, etc.), and measurement of 

nutrients (e.g.. Total Phosphorus (TP), Total Nitrogen (TN), Calcium (Ca), etc). In addition to 

these assessments, microbiological analysis (such as periphyton, phytoplankton, pathogens and 

conforms bacteria) and macro-biological analysis (i.e. macro-invertebrates, fish communities and 

macrophytes) may also be used. 

From the studies carried out in Europe, it has become evident that although the 

introduction of General Diatom Index (GDI) (Coste & Ayphassorho 1991: Kwandrans et al., 

1998) adds validity to bio-monitoring, there is a rising concern of unreliability of this index to 

other geographic locations due to variation of environmental conditions and different taxa. This 

necessitates the development of monitoring metrics specific to geographical location of interest 

(Gaiser et al., 2006; Potapova & Charles, 2002; Reavie, 2010). Additionally, Kwandrans et al., 

(1998) suggests that the characteristics of river type (i.e: alpine vs. lowland, low vs. high 

velocity) must be considered while developing water quality indices. This opinion is shared by 

Winter and Duthie (2000); Lewis et al. (2002); Komulaynen (2002); and Hill et al (2000). Pan et 
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al (1999) adds that benthic diatoms are mainly regulated by local influences. Therefore, indices 

chosen to be used in a study must represent the geographical sampling location suitably. 

Currently in Canada the Eastern Canadian Diatom Index (IDEC) has been developed for 

biomonitoring streams in Eastern Canada. The IDEC shows good correspondence with nutrient 

values and various diatom species for each geographic location, but does not take the non diatom 

members of periphyton into consideration (Lavoie et al., 2014). 

Periphyton as a lentic system bio-indicator 

The literature review showed far less research on the use of periphyton as a tool for lentic 

system bio-monitoring (see chapter 1 for details). However, there is a copious amount of 

literature available on the use of periphyton as a biomonitoring tool for the lotic environments 

(Table 1). Most bio-monitoring protocols for the pelagic zone of lakes consist of phytoplankton 

or epilithic forms on the sediments (Poulickova et al., 2004; Liboriussen & Jeppeson, 2006). 

Excessive nutrient loading of water bodies is a leading cause of the impairment of 

freshwater and coastal marine ecosystems worldwide (Schindler, 1977; Cardinale, 2011; 

Chislock et al., 2013). In a local context Lake Simcoe, Ontario is still suffering from a 3 fold 

increase in phosphorus levels since pre settlement (North et al., 2013). This has led to the decline 

of the cold water fishery due to lower dissolved oxygen levels. However, as a result of the Lake 

Simcoe phosphorus reduction plan that targets a 40% reduction of P by 2045 (North et al., 2013), 

the conditions showed significant improvement. 

High levels of nutrients and other pollutants can be retained in the littoral zone through 

macrophytic, epilithic and epiphytic buffers (Hadwen & Bunn 2005). This often means that 

nutrient increase may be detected in the pelagic zone especially during the early stages of 
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pollution. Periphyton generally grows in the littoral areas of lakes and is the set of organisms 

getting directly exposed to the land originated pollutants. Therefore using them as an early 

detection tool of pollutants is highly logical. In turn, this would help to design 

intervention/prevention strategies for the spreading of pollutants offshore (Hadwen & Bunn, 

2005). 

The littoral zone algae can represent the trophic status of lakes. Poulickova et al (2004) 

observed that the littoral periphyton samples could accurately reflect the trophic status of the 

lakes being studied (55.5% to 66.6% of the total lakes studied). Kitner and Poulickova (2003) 

evaluated the use of littoral diatoms as good indicators of water quality with positive results. 

They used two different trophic diatom indices as suggested by van Dam et al (1994) and Rott 

(1999) as well as the saprobity index of Slodecek and Sladekova (1996) (Poulickova & Kitner 

2003). It was concluded that the littoral diatoms represented the trophic status of the littoral 

environment. Additionally, they noted that the index created by van Dam et al. (1996) was the 

best index to use, as it fits well with the data collected. 

Many studies have been performed on diatom taxonomy and its response to biological, 

chemical and physical stressors. Diatoms have been suggested as strong indicators of water 

quality due to their single cell structure, narrow optima and tolerance levels for environmental 

variables as a result of quick generation time (Dixit et al., 1992). In addition to these qualities, 

diatoms are inexpensive to analyse (compared to chemical analysis) and can be easily collected. 

Additionally, well documented literature for species identification, tolerance, and sensitivity 

levels are readily available. However, there is a lack of data on non diatom groups of periphyton 

and their usefiilness as indicators of water quality. Non diatoms groups can provide important 

information about the microcosm that they grow in and can be used to detect ecological 
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degradation (Hill et al., 2000; Blinn & Herbst 2003; Schneider et al., 2011). However, the 

identification of algae other than diatoms is very difficult due to various growth and generative 

stages that they possess (Schneider et al., 2011). 

Current use of periphyton as bio-monitoring tool 

Periphyton is currently being used in several water quality bio-assessment protocols on a 

global level by the European Union, the United States of America Environmental Protection 

Agency, and the Ministry of the Environment in New Zealand (European Water Framework 

Directive 2014; EPA 2014; NIWA 2014). In a local context, periphyton (diatom focussed) based 

bio-assessments are gaining popularity in Ontario and Eastern Canada (Lavoie et al., 2014) 

However, these protocols focus on stream bio-assessments and therefore leave a gap for 

nearshore areas. Additionally, there is a lack of periph)don studies that include members other 

than diatoms such as bacteria, Chlorophyceae, Cyanophyceae, protozoa etc. 

The current biological water quality monitoring protocol in the Lake Simcoe watershed 

consists of collecting planktonic diatoms from the nearshore areas of the lake and tributaries, 

however this protocol is relatively new and analysis has yet to be completed (personal 

communication LSRCA 2014). The Ministry of the Environment also monitors water quality of 

Lake Simcoe through chemical analysis as well as phytoplankton analysis (LSRCA 2014). 

The literature survey (see chapter 1) indicates that there is a lack of data on periphyton as 

bioindicator of water quality from temperate areas, especially from lentic water systems. 

Therefore, data on periphyton is thought to help us better understand the health of the aquatic 

ecosystems being studied. 
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This chapter describes the taxonomic composition in relation to the natural and 

anthropogenic stressors of periphyton communities in three locations of northern Lake Simcoe 

with varying degrees of anthropogenic influences. The community dynamics have been studied 

from the data on taxonomic composition, biomass, chlorophyll a and biofilm thickness over a 

period of 30 days. 

Methods (refer to Chapter 2- General Materials and Methods for details) 

The detailed general methodology is described in chapter 2. Briefly, the study was 

conducted in three sampling locations in the northern part of Lake Simcoe, namely Kempenfelt 

Bay, Barrie, ON (44.377858,-79.689331), Concession Point 10, Ramara Township, ON 

(44.590956,-79.317856), and Lagoon City, Brechin, ON (44.546931,-79.209366) (Figure 2). 

Periphyton samples were collected using collection rigs (Figure 7), containing fifty (50) 

glass slides (10cm X 3cm X 0.3 cm). Extra slides were used for replicates and in case of 

breakage or loss. The rigs with cleaned slides were submerged in the littoral zone of the three 

sampling locations (approximately 10-20 cm below the surface water). Six glass slides each were 

collected at a five day interval to a maximum of 30 days. 

This chapter concentrates on periphyton species composition and dynamics from the 

three sampling locations and relates that to water quality parameters to specifically address the 

dynamics in periphyton as indicators of water quality changes. Therefore, if the evidence 

supports, periphyton community composition and dynamics may be suggested as a biological 

indicator of water quality for the northern part of Lake Simcoe. The methods used for 

measurements and analyses of data on periphyton density, species composition, biofilm 

thickness, diversity with sampling location, sampling periods and duration of slide exposure 

remain the same as that of chapter 3 and therefore are not described here to avoid repetition. 
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Results 

The description of the variation of hydrological and biofilm parameters has been 

provided in chapter 3. To avoid repetition while understanding the relationship between the 

water quality parameters and biofilm parameters, this chapter mainly focuses on the inter- 

relationship between these parameters. Therefore this chapter describes data from a biological 

indicator of environmental conditions point of view. 

Variation and inter-relationship between water quality and periphyton parameters 

Temperature (°C) varied greatly over the seasons (fall, spring and summer, 5-28°C; one 

way ANOVA F3j2=30.68, /?<0.05), but did not vary significantly between sites in a given 

sampling period. Temperature correlated significantly with species density during sampling 

period one (r =0.33, /><0.05) and met moderate significance at site KB (r=0.14, />=0.08). 

Species diversity and temperature showed moderate significant correlation at sites CIO and LC 

(r=0.16, p=Q.01\ r =0.17, p=0.06). Biofilm thickness was significantly correlated with 

temperature at site LC (r^=0.57,/><0.05) and showed moderate significance at site CIO (r^=0.17, 

p=0.07) 

Conductivity varied significantly between sites (F3j2= 10.12,/?<0.05), but did not vary 

significantly between sampling periods. The highest conductivity value was recorded at site KB 

(1183pS), located near the treated effluent release area for the City of Barrie's Waste Water 

treatment plant. There was significant correlation between conductivity and species density in 

sampling period 1 & 3 (r =0.30, p<0.05; r=0.41, /><0.05). Significant correlation between 

species density and conductivity was found at site CIO (r =0.59, /?<0.05). Biofilm thickness 

significantly correlated with conductivity at LC (r =0.28, /7<0.05). A significant negative 

correlation was found between conductivity and biomass (r^=0.05,p<0.05) at site KB. 
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Dissolved oxygen values ranged from 4.0mg/L to 10.2 mg/L. The highest values were 

recorded at site KB during spring (sampling period 2) while the lowest value was recorded at the 

end of sampling period 4 (second fall) at site LC. Dissolved oxygen values varied significantly 

between sampling periods, but not between sites (One way ANOVA F3 72= 10.62, p<0.05). There 

was a significant correlation between dissolved oxygen and species density at KB (r =0.24, 

/7<0.05). The species diversity values at LC correlated with dissolved oxygen (r =0.45, /?<0.05). 

A significant correlation with biofilm thickness was observed at KB and LC (r =0.24,/?<0.05; 

r^=0.24, /><0.05, respectively). Dissolved oxygen showed a significant negative correlation with 

biomass at all sites (r^=0.02,/><0.05, r^=0.02,/?<0.05; r^=0.09,/?<0.05. Periphyton chlorophyll a 

showed a significant positive correlation with dissolved oxygen {r =0.14,p<0.05). 

Total phosphorus (TP) concentrations ranged from 0.06mg/L to 0.200mg/L over the 

entire study period. The highest recorded TP concentration was at KB (0.200mg/L) during 

sampling period 4. One way ANOVA analysis showed a significant variation of total 

phosphorus (TP) concentration between sites (^2.69=3.13, p<0.05), but not between sampling 

periods. Sites KB and LC, situated in the vicinity of treated effluent releases, had consistently 

higher TP concentrations than site CIO. 

Regression analysis showed a significant relationship between TP and species density for 

sampling periods 1 & 4 (r^=0.34,/?<0.05; r^=0.35,p<0.05); biomass for sampling period 1 (r^= 

0.22, p<0.05); and species diversity for sampling period 4 (r^=0.35, /?<0.05). Biofilm thickness 

showed a moderately significant correlation with TP at CIO (r^=0.14,/?=0.07). Species diversity 

showed a significant correlation with TP at KB only (r =0.30,/?<0.05). 
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Chlorophyll a concentrations of periphyton varied from 0.09 to 1.41mg/m^over the study 

period. Periphyton chlorophyll a concentrations varied significantly between sites (i^2,4v=322.45, 

p<0.05) and days of growth (F5,48=4.92, p<0.05, Table 5). There was a significant negative 

correlation with periphyton chlorophyll a and temperature at site KB (r^=0.06, p<0.05) while at 

site CIO the relationship was positive (r =0.14,/?<0.05). Periphyton chlorophyll a correlated 

2 2 
with dissolved oxygen and conductivity at CIO only (r =0.13,p<0.05; r = 0.11,^<0.05). 

Chlorophyll a concentrations in the water column varied significantly between sampling 

periods and sites (F3,4s=410.00, p<0.05; F2,48=7611.67, p<0.05, respectively; Table 5). The 

maximum concentration of chlorophyll a was recorded during sampling period 2 at site LC 

(40.80 mg/m ). Chlorophyll a showed a significant correlation with periphyton biomass at all 

three sites (r^=0.28,p<0.05; r^=0.63,p<0.05; r^=0.24,p<0.05. A significant correlation was also 

found between chlorophyll a (water) and periphyton species density at sites KB and CIO (r^= 

0.19,/7<0.05; r =0.36,/?<0.05). Finally, chlorophyll a (water) and periphyton species diversity 

had a significant negative correlation at site KB (r^=0.07,/?<0.05) 

The biofllm thickness varied significantly with the duration of slide exposure (F3,4s= 

187.92,p<0.05; Table 5), between sampling periods (F3,43=177.44,/?<0.05; Table 5) and between 

sites (Fi,48=605.68, p<0.05, Table 5). There was a significant correlation between the biofilm 

parameters biofllm thickness and biomass at site CIO (r^= 0.21, /?<0.05). Species diversity 

showed a moderately significant correlation with biofllm thickness at LC (r^=0.15, p=0.07), 

while species density correlated significantly with biofllm thickness at sites CIO and LC (r = 

0.16,/7<0.05; r^=0.43,/)<0.05). 
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Species density 

Species density increased during the early and mid phases followed by a decrease 

towards the end due to sloughing off of cells (Figure lOa-d). The maximum and minimum 

species density values were recorded at site KB during sampling period 4 (logio 8.25, logio4.84). 

According to the results of miANOVA, species density showed significant variation between 

days (F3^48=8.10,/><0.05, (Table 5) and between sites (Fi^48=835.21,p<0.05, Table 5), but did not 

significantly vary between sampling periods (F3,48=1.38,p=0.261). As mentioned before species 

density showed significant correlation with the various water quality and biofilm parameters 

such as conductivity, pH, temperature, dissolved oxygen and chlorophyll a. Species density also 

showed a significant correlation with biomass at LC (r =0.20,/?<0.05). 

Biomass 

Biomass followed a similar pattern of variation as biofilm thickness and species density; 

it increased gradually until 15-20 days then reduced by day 25 (Figure 1 la-d). The maximum 

biomass value was recorded during sampling period 1 at KB (2643.00mg/L) while the minimum 

was observed at the same site (KB) during sampling period 4 (0.05mg/L). The periphyton 

biomass values during the study varied significantly between sampling periods (F3,48=11.03, 

p<0.05), but the variation between sites was not significant. 

A significant correlation between temperature and biomass was observed in all sites, 

however, at site LC a negative correlation was detected (r^=0.06, p<0.05) while sites KB and 

CIO were positively correlated (r^=0.15,/?<0.05; r^=0.39, p<0.05, respectively). Biomass and 

dissolved oxygen were negatively correlated at all sites (/=0.02, p<0.05; r^=0.02, /?<0.05; f^= 

0.09, /?<0.05, respectively). The relationship between biomass and conductivity showed a 

negative correlation at KB and LC (r^=0.02, p<0.05; r^=0.1l, p<0.05) and showed moderate 
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significance at site LC (r^=0.03, /?=0.09). The pH correlated significantly with biomass at site 

C10(r^=0.47,p<0.05). 

Species richness 

Species richness followed more or less the same trend as that of species diversity. Species 

richness also showed two peaks within the growth pattern, one during the early and the other 

during the late growth phases (Figure 12a-d). The miANOVA results showed significant 

variation in species richness with the duration of slide exposure (F5,48=3.39, p<0.05; Table 5), 

between the sites (F2,48=226.39, p<0.05) and between sampling periods (F3,48=16.24, p<0.05). 

The highest species richness value was recorded at KB (29 species) and the lowest at LC (6 

species). There was a consistent increase in species richness up to days 20-25. The species 

richness variation was site specific. For example site KB ranked number one for overall species 

richness among all sampling periods. In contrast site CIO showed relatively lower species 

richness during sampling periods 1 and 2 while high richness during sampling periods 3 and 4. 

At site LC the species richness values followed a typical growth pattern which exhibited 2 peaks 

except during sampling period 3. 

Regression analysis results showed a significant negative correlation between species 

richness and TP for sampling periods 1, 2 and 3 (r^=0.01, /?<0.05; r^=0.05, p<0.05; r^=0.02, 

/?<0.05). Site-wise regression analysis showed significant correlations between species richness 

and various hydrological parameters. Although, species richness and temperature showed a 

significant correlation at KB (r^=0.15, p<0.05), there was a negative correlation at CIO and LC 

(r^=0.01, p<0.05; r^=0.05, p<0.05). Species richness values decreased as the temperature 

increased. The total phosphorus correlated significantly with species richness at KB and had an 
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inverse relationship at CIO and LC. As the TP concentrations increased the species richness 

decreased. For example, Figure 12c shows a decrease in species richness during sampling period 

3 at LC on day 10 while there was an increase of TP. A significant correlation between richness 

and DO was observed at KB {r=0.\A, p<0.05), while a negative relationship was observed with 

conductivity at the same site (r^=0.04, /><0.05). Species richness values decreased as 

conductivity values increased (Figure 12b). 

Species diversity 

Species diversity values with days of growth showed two peaks, one during the early and 

the other during the late growth phases (Figure 13a-d). Species diversity values varied 

considerably with the sampling period. For example, during sampling period 1 at KB diversity 

fell suddenly fi*om day 15 (1.79) to day 20 (0.19) (Figure 13a). This is due to the rapid increase 

in density (97%) of the diatom Cocconeis placentula. Site KB experienced another variation 

during sampling period 4 when the diversity decreased on day 15 due to the dominance of the 

diatom A/flv/cn/n lancelota (97%) (Figure 16d). 

Repeated measure ANOVA showed significant variation in diversity between sampling 

periods (F3,48=15.28, p<0.05). Overall species diversity measurements were highest during 

sampling periods 1 and 4 which coincided with fall turnover. During this time the diatom 

diversity was very high, but the non-diatoms showed lowest diversity. Sampling period 3 

(summer) gave rise to the overall highest diversity (2.97) due to the dominance of non-diatom 

groups. Additionally, there was a significant correlation between periphyton species diversity 

and the species density of phytoplankton (r^=0.32, p<0.05). This is an interesting relationship 

supporting the view that ph34oplankton act as propagule supplier of periphyton. 
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The variation in diatom diversity was related to TP as evidenced by a significant 

correlation between these two (r^=0.35, p<0.05) during sampling period 4. Site-wise regression 

analysis showed a significant positive correlation with TP at KB (r =0.30, /?<0.05) while site 

CIO and LC showed a moderately significant negative correlation (r =0.10, p= 0.08). The 

negative correlation indicates an inverse relationship between TP and diversity. 

As mentioned previously species diversity significantly related to various hydrological 

parameters such as temperature and dissolved oxygen. Additionally, moderately significant 

■y 

relationships were found between diversity and biofilm thickness at LC (r =0.15, p=0.07), and 

biomass at CIO (r^=0.15,/?=0.07). 

Taxonomic Composition 

Table 6 lists all species observed in the periphyton communities over the entire study 

period. In total, there were 65 Bacillariophyceae members, 29 members of Chlorophyceae, 19 

members of protozoa, 4 genera of Cyanophyceae, 2 genera of Chrysophyceae and 1 Rotifera 

member in addition to various macroinvertebrates. Bacillariophyceae was the dominant group 

throughout the study. Chlorophyceae and protozoa were the next abundant groups with the 

exception of sampling period 3, day 10, where Cyanobacteria accounted for a large percentage of 

the overall abundance. The relative abundance of these groups expressed as percentage densities, 

varied between sampling periods (Figure 16a-d) and sites (Figure 17a-d). 

In general the periphyton community development was highly dependent on the specific 

site and environmental factors such as TP, DO, and conductivity. Some sites shared common 

initial colonizers such as Acnanthidium minutissimum, Cocconeis placentula, Cymbella tumida 
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and Diatoma vulgaris, however variability between sites and between sampling periods (seasonal 

influence) was observed. 

Diatom taxonomic composition showed season specific abundances (Table 7). For 

example, fall samples (sampling period 1) showed species such as Cosmioneis spp., and 

Cymatopleura solea while the spring samples (sampling period 2) showed the presence of 

Cymatopluera elliptica, Entomoneis paludosa, Eucocconeis spp., Gomphoneis spp., Meridion 

circulare, Stauroneis spp., and Synedra cyclopium. 

The samples collected during summer gave rise to a highly diverse taxonomic 

composition which included many common species and species that were observed only during 

sampling period 3 (Table 7). These species included Amphipleura pellucida, Cocconeis 

pediculus, Cosmioneis reimeri, Eutonia spp., Fragilaria capucina, Fragilaria spp., Frustulia 

spp., Gomphonema parvulum, Gomphoneis spp., Navicula stesvicensis, and Nitzschia calida 

(Table 7). Species that overlapped between sampling periods 3 & 4, but were not observed in any 

other sampling periods included species such as Navicula tripunctata, Neidium dubium, and 

Tabellaria flocculosa. Finally, species unique to the second fall included Amphipleura spp. 

Cocconeis pediculus, Cymatopleura ovalis, Epithemia sorex, Eucocconeis spp., Navicula 

gastrum, Nitzschia amphibia, Sellaphora pupulla, and Synedra capitata. 

Site specificity also played a role in diatom taxonomic composition. Most of the common 

diatoms such as Cocconeis placentula, Cymbella tumida, Gomphonema truncatum, Navicula 

spp., and Synedra spp. were observed in all 3 sites, however some were site specific, for 

example, Meridion circulare (KB and CIO), Nitzschia amphibia (CIO and LC) and Synedra 

cyclopium (KB and CIO). 
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Various indicator species (diatoms) of high, moderate and low organic pollution were 

observed during the study, such as Cymatopluera elliptica, Epithemia turgida, Eutonia spp., 

respectively (Table 8a). Additionally, indicators of high conductivity such as Navicula 

slevencisus and Entomoneis paludosa were observed during this study. Non diatom species such 

as Pediastrum spp. and Cosmarium spp. may be described as bio-indicators of high nutrient 

concentrations (Table 9). 

Table 8a. Diatom relative abundance values calculated from total abundance of the diatoms 
according to site within each sampling period (total abundance is 1.0 or 100%). 

SPl KB CIO LC 

Days Species Abundance Species Abundance Species Abundance 

Acnanthidium 

minutissimum 

0.18 Cymbella tumida 0.21 Diatoma vulgaris 0.09 

Cocconeis placentula 0.15 Navicula spp. 0.43 Navicula spp. 0.13 

Diatoma vulgaris 0.22 Synedra spp. 0.16 Synedra spp. 0.16 

10 Cocconeis placentula 0.36 Acnanthidium 

minutissimum 

0.14 Cocconeis placentula 0.56 

10 

10 

Fragellaria crotensis 0.17 Epithemia turgida 0.18 Navicula spp. 0.13 

Aulacoseira (Melosira) 

varians 

0.12 Navicula spp. 0.19 Synedra spp. 0.08 

15 Cocconeis placentula 0.36 Cocconeis 

placentula 

0.23 NA 

15 

15 

20 

Fragellaria crotensis 0.23 Epithemia turgida 0.26 NA 

Navicula spp. 0.13 Navicula spp. 0.15 NA 

Cocconeis placentula 0.96 Cocconeis 

placentula 

0.15 Acnanthidium 

minutissimum 

0.14 

20 Gomphonema 

truncatum 

0.01 Epithemia turgida 0.33 Cocconeis placentula 0.22 

20 

25 

Synedra spp. 0.01 Navicula spp. 0.1 Navicula spp. 0.20 

Cocconeis placentula 0.94 Acnanthidium 

minutissimum 

0.16 Cocconeis placentula 0.29 

25 Gomphonema 

truncatum 

0.01 Cocconeis 

placentula 

0.20 Epithemia turgida 0.09 

25 

30 

Synedra spp. 0.01 Epithemia turgida 0.32 Synedra spp. 0.24 

Cocconeis placentula 0.88 Acnanthidium 

minutissimum 

0.10 Cocconeis placentula 0.30 
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30 Gomphonema 

tnmcatum 

0.08 Cocconeis 

placentula 

0.18 Fragellaria crotensis 0.31 

30 Navicula spp. 0.01 Epithemia turgida 0.36 Synedra spp. 0.09 

SP2 KB CIO LC 

Diatoma vulgaris 0.64 Cymbella tumida 0.38 Diatoma vulgaris 0.06 

Navicula spp. 0.10 Diatoma vulgaris 0.16 Fragellaria 
crotonensis 

0.47 

5 

To" 

TF 

Nitzschia sigmoidea 0.08 Fragellaria 
crotonensis 

0.12 Synedra spp. 0.15 

Acnanthidium 
minutissimum 

0.21 Acnanthidium 
minutissimum 

0.15 Acnanthidium 
minutissimum 

0.08 

Diatoma vulgaris 0.25 Cymbella tumida 0.49 Diatoma vulgaris 0.01 

10 Navicula spp. 0.22 Diatoma vulgaris 0.08 Fragellaria 
crotonensis 

0.57 

15 Acnanthidium 
minutissimum 

0.63 Acnanthidium 
minutissimum 

0.28 Acnanthidium 
minutissimum 

0.23 

15 

IT 

Diatoma vulgaris 0.22 Cocconeis 
placentula 

0.65 Cocconeis placentula 0.16 

Navicula spp. 0.05 Epithemia turgida 0.04 Fragellaria 
crotonensis 

0.46 

20 

20” 

Acnanthidium 
minutissimum 

0.61 Cocconeis 
placentula 

0.82 Amphora ovalis 0.48 

Diatoma vulgaris 0.25 Cymbella 
lanceolota 

0.1 Cocconeis placentula 0.22 

20 Navicula spp. 0.05 Epithemia turgida 0.02 Fragellaria 
crotonensis 

0.05 

25 Acnanthidium 
minutissimum 

0.29 Acnanthidium 
minutissimum 

0.33 Acnanthidium 
minutissimum 

0.14 

25 Diatoma vulgaris 0.23 Cocconeis 
placentula 

0.48 Cocconeis placentula 0.73 

25 Navicula spp. 0.20 Cymbella lancelota 0.12 Cymbella tumida 0.02 

30 Acnanthidium 
minutissimum 

0.58 Acnanthidium 
minutissimum 

0.37 Amphora ovalis 0.09 

30 Fragellaria crotonensis 0.17 Cocconeis 
placentula 

0.54 Acnanthidium 
minutissimum 

0.39 

30 Navicula spp. 0.06 Cymbella tumida 0.02 Cocconeis placentula 0.38 

SP3 KB CIO LC 

Cocconeis placentula 0.19 Cocconeis pediculus 0.14 Cymbella tumida 0.08 

Cymbella tumida 0.09 Cymbella tumida 0.12 Navicula spp. 0.22 

Navicula spp. 0.32 Navicula spp. 0.18 Synedra spp. 0.1 

10 Acnanthidium 
minutissimum 

0.18 Cocconeis 
placentula 

0.09 Cocconeis placentula 0.50 

10 Cymbella tumida 0.20 Cymbella tumida 0.06 Gomphonema 
truncatum 

0.] 

10 Fragilaria crotonensis 0.18 Synedra spp. 0.14 Navicula spp. 0.03 

15 

TT 

Acnanthidium 
minutissimum 

0.16 Acnanthidium 
minutissimum 

0.1 Cocconeis placentula 0.26 

Cocconeis placentula 0.33 Cocconeis 
placentula 

0.18 Epithemia turgida 0.09 

15 

W 

Cymbella tumida 0.20 Epithemia turgida 0.08 Fragellaria 
crotonensis 

0.06 

Acnanthidium 
minutissimum 

0.36 Cocconeis 
placentula 

0.31 Cocconeis placentula 0.43 
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20 Cocconeis placentula 0.41 Epithemia turgida 0.14 Epithemia turgida 0.30 

20 Gomphonema 
truncatum 

0.08 Navicula spp. 0.19 Navicula tripunctata 0.15 

25 Acnanthidium 
minutissimum 

0.45 Cymbella tumida 0.07 Cocconeis placentula 0.13 

25 Cocconeis placentula 0.14 Navicula spp. 0.38 Cymbella tumida 0.41 

25 Fragilaria crotonensis 0.20 Synedra spp. 0.08 Epithemia turgida 0.15 

30 Acnanthidium 
minutissimum 

0.27 Acnanthidium 
minutissimum 

0.22 Cocconeis placentula 0.22 

30 Cocconeis placentula 0.14 Cocconeis 
placentula 

0.20 Cymbella tumida 0.30 

30 Fragilaria crotonensis 0.42 Navicula lanceolata 0.11 Epithemia turgida 0.20 

SP4 KB CIO LC 

Cymbella tumida 0.14 Cymbella tumida 0.13 Amphora ovalis 0.23 

Fragilaria crotonensis 0.20 Fragilaria 
crotonensis 

0.12 Cocconeis placentula 0.23 

Synedra spp. 0.19 Synedra spp. 0.15 Cyclotella spp. 0.08 

10 Fragilaria crotonensis 0.29 Fragilaria 
crotonensis 

0.20 Navicula sp 0.17 

10 Melosira varians 0.14 Melosira varians 0.19 Synedra acus 0.19 

10 

IT 

Synedra spp. 0.11 Synedra spp. 0.13 Synedra ulna 0.16 

Fragilaria crotonensis 0.00 Fragilaria 
crotonensis 

0.17 Cocconeis placentula 0.16 

15 Navicula lanceolata 0.97 Navicula lanceolata 0.12 Navicula lanceolata 0.10 

15 Synedra acus 0.00 Synedra acus 0.12 Synedra ulna 0.10 

20 Asterionelia formosa 0.03 Asterionelia 
formosa 

0.10 Cocconeis placentula 0.12 

Fragilaria crotonensis 0.19 Fragilaria 
crotonensis 

0.29 Navicula sp 0.14 

20 

'JT 

Navicula lanceolata 0.23 Navicula lanceolata 0.16 Synedra ulna 0.14 

Amphora ovalis 0.71 Amphora ovalis 0.20 Cocconeis placentula 0.16 

25 Diatoma vulgaris 0.04 Diatoma vulgaris 0.31 Cymbella lanceolata 0.15 

25 Navicula spp. 0.06 Navicula spp. 0.13 Fragilaria 
crotonensis 

0.28 

30 Amphora ovalis 0.24 Amphora ovalis 0.36 Cocconeis placentula 0.20 

30 Cocconeis pediculus 0.41 Cocconeis pediculus 0.10 Fragilaria 
crotonensis 

0.57 

30 Nitzschia lanceolata 0.05 Nitzschia lanceolata 0.16 Synedra spp. 0.05 

Table 8b. Non diatom relative abundance values calculated from total abundance of the non 
diatoms according to site within each sampling period (total abundance is 1.0 or 100%). 

Days Species Abundance Species Abundance Species Abundance 

SPl KB CIO LC 

Colpidium spp. 0.05 Closterium spp. 0.5 Staurastrum spp. 0.35 

Daphnia spp. 0.05 Scenedesmus 
quadricauda 

0.25 Merismopedia glauca 0.30 

Unknown 
protozoan spp. 

0.91 Unknown protozoan 

  
0.25 Unknown protozoan 

iEE:  

0.15 
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10 Coleochaete spp. 0.14 Scenedesmus 
quadricauda 

0.059 Ankistrodesmus spp. 0.13 

10 Coleastrum spp. 0.03 Unknown protozoa 

.SEE:  

0.82 Coleochaete spp. 0.13 

10 Anabaena spp. 0.75 Nematode spp. 0.04 Unknown protozoa 

  

0.75 

15 Colpidium spp. 0.5 Coleochaete spp. 0.78 Coleochaete spp. 0.78 

15 Vorticella spp. 0.39 Unknown protozoa 
spp-  

0.22 Unknown protozoa 

.SEE:  

0.22 

20 Coleochaete spp. 0.05 Ankistrodesmus spp. 0.07 Ankistrodesmus spp. 0.07 

20 Stentor spp. 0.06 Pediastrum simplex 0.03 Pediastrum simplex 0.03 

20 Unknown 
protozoa spp. 

0.81 Merismopedia glauca 0.53 Merismopedia glauca 0.53 

25 Coleochaete spp. 0.10 Chroococcus spp. 0.26 Chroococcus spp. 0.26 

25 Dictyosphaerium 
pulchellum  

0.12 Unknown protozoan 

iEE^  
0.57 Coleochaete spp. 0.04 

25 Unknown 
protozoa spp. 

0.65 Nematode spp. 0.043 Coleastrum spp. 0.04 

30 N/A Chroococcus spp. 0.11 Chroococcus spp. 0.11 

30 N/A Scenedesmus 
quadricauda 

0.09 Merismopedia glauca 0.76 

30 N/A Merismopedia glauca 0.76 Scenedesmus 
quadricauda 

0.09 

SP2 KB CIO LC 

Scenedesmus 
quadricauda 

0.12 Lacrymaria spp. 0.15 Scenedesmus 
quadricauda 

0.12 

Euplotes spp. 0.10 Stylonchia spp. 0.23 Euplotes spp. 0.10 

Nematode spp. 0.57 Nematode spp. 0.15 Nematode sp 0.57 

10 Spirogyra spp. 0.28 Unknown EGA 0.12 Spirogyra spp. 0.28 

10 Unknown 
protozoa spp. 

0.20 Euplotes spp. 0.24 Unknown protozoa 

SE£^  
0.20 

10 Nematode spp. 0.12 Nematode spp. 0.18 Nematode spp. 0.12 

15 Euplotes spp. 0.31 Coelastrum spp. 0.29 Euplotes spp. 0.31 

15 Litonotus spp. 0.15 Stylonchia spp. 0.29 Litonotus spp. 0.15 

20 Coleochaete spp. 0.15 Unknown protozoa 

mi  
0.29 Coleochaete spp. 0.15 

20 Scenedesmus 
quadricauda 

0.185 Unknown EGA sp 0.74 Scenedesmus 
quadricauda 

0.18 

20 Chironomid spp. 0.184 Amoeba spp. 0.05 Chironomid spp. 0.18 

25 Cosmarium spp. 0.44 Rotifer spp. 0.13 Cosmarium spp. 0.44 

25 Scenedesmus 
quadricauda 

0.22 Unknown protozoa 

m  

0.5 Scenedesmus 
quadricauda 

0.22 

25 Unknown 
protozoa spp. 

0.22 N/A Unknown protozoa 

mi  

0.22 

30 Rotifer spp. 0.19 Unknown protozoa 

mi  

0.27 Rotifer spp. 0.19 

30 Unknown 
protozoa spp. 

0.44 Vorticella spp. 0.13 Unknown protozoa 

SEE^  

0.44 

SP3 KB CIO LC 

Unknown GA spp. 0.17 Merismopedia glauca 0.34 Merismopedia glauca 0.83 

Stylonchia spp. 0.13 Euplotes spp. 0.10 Unknown GA spp. 0.09 

Unknown 
protozoan spp. 

0.15 Stylonchia spp. 0.14 Cosmarium spp. 0.03 
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10 Kirchneriella spp. 0.45 Dictyosphaerium 
pulchellum  

0.07 Coleochaete spp. 0.58 

10 Cosmarium spp. 0.09 Merismopedia glauca 0.84 Stigeoclonium spp. 0.13 

10 Scenedesmus 
quadncauda 

0.09 Spirulina spp. 0.01 Euplotes spp. 0.08 

15 Cosmarium spp. 0.67 Dictyosphaerium 
pulchellum (cells) 

0.24 Merismopedia glauca 0.84 

15 Unknown 
ostracod 

0.33 Merismopedia glauca 0.65 Coleochaete spp. 0.07 

15 N/A Coleochaete spp. 0.02 Unknown protozoa 

^  

0.02 

20 Cosmarium spp. 0.03 Coleochaete spp. 0.5 Pediastrum simplex 0.2 

20 unknown GA spp. 0.03 Stigeclonium spp. 0.5 Unknown protozoa 

  

0.8 

20 Unknown 
protozoa spp. 

0.91 N/A N/A 

25 Unknown FGA 

m:  

0.67 Cosmarium spp. 0.67 Coelastrum spp. 0.40 

25 Unknown copepod 0.11 N/A Unknown GA 0.18 

30 Coelastrum 
microporum 

0.19 Merismopedia glauca 0.82 Coelastrum spp. 0.36 

30 Cosmarium spp. 0.10 Euplotes spp. 0.04 Scenedesmus 
quadricauda 

o.i; 

30 Unknown 
protozoa spp. 

0.57 Coleochaete spp. 0.03 Unknown GA spp. 0.16 

SP4 KB CIO LC 

Arcella spp. 0.27 Euplotes spp. 0.25 Pediastrum simplex 0.33 

Unknown 
Protozoa spp. 

0.45 Merismopedia glauca 0.4 Euplotes spp. 0.67 

N/A Unknown GA spp. 0.15 N/A 

10 Arcella spp. 0.05 Unknown protozoa 

  

0.31 Coelastrum spp. 0.38 

10 Stylonychia spp. 0.19 Cosmarium spp. 0.15 Unknown protozoa 

  

0.25 

10 Unknown 
protozoa spp. 

0.48 Nematode spp. 0.15 N/A 

15 Scenedesmus 
quadricauda 

0.25 Unknown protozoa 

SPE^  

0.68 Unknown protozoa 

spP:  
0.7 

15 

Is 

Platycola 
vaginella 

0.5 Actinosphaerium spp. 0.08 N/A 

Euplotes spp. 0.25 Nematode spp. 0.08 N/A 

20 Unknown 
protozoa spp. 

0.90 Cosmarium spp. 0.22 Dictyosphaerium 
pulchellum  

0.41 

Pediastrum 
simplex 

0.02 Scenedesmus 
quadricauda 

0.44 Unknown protozoa 

mi  

0.33 

Scenedesmus 
quadricauda 

0.08 N/A Coelastrum spp. 0.1 

25 Coelastrum spp. 0.33 Coelastrum spp. 0.30 Unknown protozoa 

SPE^  

0.67 

Arcella spp. 0.33 Unknown GA spp. 0.255814 Rotifer spp. 0.25 

25 

3^ 

Nematode spp. 0.22 Unknown protozoa 

m:  

0.139535 Stentor spp. 0.08 

Unknown 

SPE:  
FGA 0.83 Unknown FGA spp. 0.220779 Vorticella spp. 0.13 

30 Nematode spp. 0.069 Unknown GA spp. 0.12987 Coleochaete spp. 0.17 

30 N/A Nematode spp. 0.168831 Unknown protozoa. 0.2 
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Table 9. Possible diatom and non diatom species as environmental indicators in Northern Lake 
Simcoe. 

Environmental indication Indicator Species Reference 

Diatom Group 

Heavy organic pollution Cymatopluera elliptica (KB) Kelly et al., 2005 

Synedra cyclopium (KB) Kelly et al., 2005 

Nitzschia sigmoidea (LC) Kelly et al., 2005 

Wu et al., 2011 

Moderate organic pollution Epithemia turgida (CIO dominant) Kelly et al., 2005 

Low nutrient concentration Eutonia spp. (CIO) Kelly et al., 2005 

Gomphoneis spp. (CIO) Stevenson et al., 1996 

Tabeltariaflocculosa (CIO) Kelly et al., 2005 

High Electrolytes Navicula slevencisus (KB & LC) Potapova et al., 2013 

Entomoneis paludosa (KB & LC) Kelly et al., 2005 

Non Diatom Group 

High nutrient concentration Pediastmm spp. (KB & LC) Schneider et al., 2009 

Cosmarium spp. (KB & LC) Schneider et al., 2009 

Scenedesmus guadricauda (KB & LC) Schneider et al., 2009 

Dictyosphaerium pulchellum (KB & LC) Schneider et al., 2009 

Canonical Correspondence Analysis (CCA) 

Diatom groups 

Ordination was used to assess the correspondence between hydrological parameters (TP, 

DO, pH, temperature, conductivity), and periphyton community composition between sites 

(Table 10). The analysis was carried out for all 4 sampling periods separately. The data for 

diatom and non diatom groups was analysed separately by CCA. 
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Sampling period 1 

Eigenvalues along the first and second axes were 0.3069 and 0.1464 respectively. This 

explained 46% of the total variation for sampling period 1. The relative positions of the species 

and site scores showed a strong influence of hydrological parameters on the species composition 

at each site. The most important predicators of species distribution, as indicated in their 

significant correlation with the first CCA axis were DO (r^=0.69, /><0.001), pH (r^=-0.20, 

p<0.001), temperature (r^=-0.64, p<0.001), conductivity (r^=-0.87, /?<0.001), site (r^=0.56, 

/><0.001) and TP (r^=0.04,/><0.001). Although the largest variation among the three sites was 

attributed to the first CCA axis, the second CCA axis also exhibited strong correlations with the 

environmental variables such as, dissolved oxygen (r =0.72,/><0.001 ), pH (r =0.98, p<0.001), 

temperature (r^=0.77, j!7<0.001), and total phosphorus (r^= 0.99,/?<0.001) (Table 10). 

Table 10. Regression values for corresponding hydrological parameters in CCA analysis in all 
four sampling periods (Significance codes: ‘***’ 0.001 ‘**’ 0.01 0.05). 

Diatoms Non diatoms 

Parameter CAlr‘ CA2r‘ Parameter CAl r CA2r" 

Sampling period 1 

DO 0.69 0.72 0.001 *** DO 0.80 -0.60 0.001 

pH -0.20 0.98 0.001 pH 0.99 0.09 0.001 

Temp -0.60 0.77 0.001 Temp 0.96 0.28 0.001 *** 

TP 0.05 0.99 0.001 TP 0.99 -0.03 0.001 

Cond -0.87 -0.49 0.001 Cond -0.33 0.95 0.001 

Sampling period 2 

DO -0.88 -0.48 0.001 DO -0.30 0.95 0.666 

Temp 0.95 0.31 0.001 Temp 0.05 -0.99 0.001 

TP -0.99 -0.04 0.001 TP 0.36 0.93 0.825 

Cond -0.98 0.20 0.001 Cond 0.65 0.76 0.001 

Sampling period 3 

DO -0.13 0.99 0.484 DO 0.85 0.52 0.001 

pH 0.99 -0.07 0.001 pH 0.80 0.61 0.001 *** 

Temp 0.83 0.56 0.001 Temp 0.25 0.97 0.001 
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TP -0.57 0.82 0.001 TP -0.96 0.28 0.001 

Cond -0.99 -0.14 0.001 Cond -0.85 -0.52 0.001 *** 

Sampling period 4 

pH 0.42 0.91 0.001 pH 0.99 -0.07 0.001 

Temp -0.56 0.83 0.672 Temp 0.83 0.56 0.001 

TP -0.96 -0.26 0.692 TP -0.57 0.82 0.001 

Figure 18 shows the position of site KB in the lower left comer of the diagram 

corresponding to the conductivity variable. Site KB exhibited the highest values of conductivity 

during the study (Table 4). The location of the diatom species Rhoicosphenia curvata in the 

lower left quadrant corresponded strongly to site KB as it was observed exclusively at site KB 

(Figure 18). 

Site LC was plotted at the centre- top position of the diagram (Figure 18). The species 

associated with site LC were Suriella ovalis (exclusive to site LC) and Asterionelia formosa 

which was found in a higher abundance at this site than the other 2 sites (Figure 18). In terms of 

the influence of environmental factors TP corresponded most with site LC (Figure 18). This is 

due to higher concentrations of TP at site LC (0.04mg/L to 0.13mg/L) compared to the other two 

sites during sampling period 1 (Table 3). Figure 18 showed the location of site 2 (CIO) in the 

lower left quadrant of the CCA diagram. Although CIO did not show correspondence with any of 

the environmental factors species such as Pinnularia sp. was exclusive to this site (Figure 18). 

The species Amphora ovalis, Placoneis eigens, and Rhopolodia gibba were observed in higher 

abundance at CIO than at the other two sites (Figure 18). 

Figure 18 shows the diatom species Aulacoseira varians {Melosira varians) was 

corresponded to the temperature and was observed at sites KB and LC only. Higher temperatures 

were recorded at both these sites (15°C & 17°C respectively). A correspondence with Fragilaria 
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crotensis with pH can be seen in Figure 18. Fragilaria crotensis was present at all sites and 

ANOVA results showed that pH did not vary significantly between sites. The dissolved oxygen 

concentration was related to the diatom species Gyrosigma acuminatium (Figure 18). This 

particular species was present in all 3 sites, and ANOVA results showed no significant variation 

between sites. 

Figure 18. CCA bi-plots of dominant diatom species composition with corresponding 
environmental factors for sampling period 1 by sites and species. Eigenvalues along the first and 
second axes were 0.3069 and 0.1464 respectively. This explained 46% of the total variation. The 
species names have been abbreviated to fit the bi plot. 
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Sampling period 2 

Eigenvalues along the first and second axes were 0.5663 and 0.1003 respectively. This 

explained 67% of the total variation for sampling period 2. The relative positions of the species 

and site scores showed a strong influence of the hydrological variables on the species 

composition of each site. The most important predicators of species distribution, as indicated in 

the significant correlation with the first CCA axis were DO (r -0.88,/><0.001), temperature (r = 

0.95), conductivity (r^= -0.98, p<0.001), and TP (r^= -0.99, /?<0.001). Although the largest 

variation among the three sites was attributed to the first CCA axis, the second CCA axis also 

exhibited strong correlations with the environmental variables such as conductivity (r = 0.20, 

p<0.001), and total phosphorus (r^= -0.04110,p<0.001) (Table 10). 

Figure 19 shows the position of site 1 (KB) in the upper left quadrant of the diagram 

corresponding to the conductivity variable. Site KB exhibited the highest values of conductivity 

during the study (Table 4). Figure 19 shows the location of the diatom species Navicula spp. and 

Diatoma vulgaris in the upper left quadrant related strongly to site KB as it was observed in high 

densities at site KB and as the dominant species at various points throughout sampling period 2 

(Table 8a). 

The TP variable corresponded most with site KB and in particular Stauroneis sp. and 

Nitzschia spp. Though the species Acnanthidium minutissimum was plotted in the same area it 

was present at all sites in high abundance, similar to the species Cocconeis placentula located on 

the first CCA axis on the right side of the bi-plot. These two species were co-dominant 

throughout the duration of study (30 days) (Table 8a). Figure 19 showed the position of site 2 
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(CIO) in the lower left quadrant of the CCA diagram. The speeies Cymbella lancelota was 

associated with site CIO as it was observed in higher abundance compared to sites KB and LC. 

Cymbella lancelota was a dominant member of the taxonomic composition towards the late 

phase of the 30 day growth period (Table 8a). 

Figure 19. CCA bi-plots of dominant diatom species composition with corresponding 
environmental factors for sampling period 2 by sites and species. Eigenvalues along the first and 
second axes were 0.5663 and 0.1003 respectively. This explained 67% of the total variation. The 
species names have been abbreviated to fit the bi plot. 

CA1 



100 

Site 3 (LC) was plotted in the upper left quadrant of the bi-plot (Figure 19). The strongest 

corresponding species was Amphora ovalis which was observed at site LC in high densities and 

dominating the taxonomic composition by 50% at one point (during sampling period 2; Table 

8a). Placoneis eigens was present exclusively at CIO during sampling period 2, while the diatom 

Navicula lancelota was observed at CIO and LC and was found in higher densities at CIO. The 

species Fragilaria crotensis corresponded with LC also and dominated the taxonomic 

composition (50%) for the first half of sampling period 2 and also seemed to relate to the 

temperature variable (Table 8a). 

The diatom species positioned in the centre of the bi-plot corresponded with all sites 

during the 30 day period (i.e., Synedra spp, Gomphonema truncatum, Cymbella tumida, 

Cyclotella spp.), except the species Nitzschia sigmoidea which had higher densities at KB and 

LC than at CIO (Figure 19). 

Sampling period 3 

Eigenvalues along the first and second axes were 0.2059 and 0.1005 respectively. This 

explained 31% of the total variation for sampling period 3. The relative positions of the species 

and site scores showed a strong influence of the hydrological variables on the species 

composition at each site. The most important predicators of species distribution, as indicated in 

their significant correlation with the first CCA axis were pH {y= 0.99, p<0.001), temperature 

{r^= 0.83), and TP (r^= -0.57,/?<0.001). Although the largest variation among the three sites was 

attributed to the first CCA axis, the second CCA axis also exhibited strong correlations with the 

environmental variables such as DO (r^= 0.99, /?<0.001), and total phosphorus (r^= 0.82, 

;7<0.001) (Table 10). 
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Figure 20 shows the position of site 1 (KB) in the lower left quadrant of the bi-plot 

corresponding to the conductivity variable. Site KB exhibited the highest values of conductivity 

during the entire study (Table 4). Figure 20 showed the location of diatom species Aulacoseira 

varians (Melosira varians) in the lower left quadrant corresponding strongly to site KB as it was 

exclusive to this site. Other species located in the lower left quadrant corresponded with KB with 

high abundance values at this site compared to the other two sites (i.e., Synedra acus, Navicula 

lancelota). The diatom species Acnanthidium minutissimum co-dominated with Cocconeis 

placentula throughout sampling period 3 at KB (Table 8a). 

Figure 20 shows the location of site 2 (CIO) in the lower right quadrant of the CCA 

diagram. The species Cocconeispediculus was observed exclusively at site CIO and was located 

in the lower right quadrant. Species such as Nitzschia acicularis, Placoneis eigens, Rhopolodia 

gibba, Rhoicosphenia curvata and Cymbella lancelota were observed in all sites, but were in 

higher densities at site CIO. 

Site 3 (LC) was plotted in the upper left region of the diagram (Figure 20). The species 

observed exclusively at this site was Suriella ovalis, which was also situated in the upper right 

quadrant (Figure 20). 

The species located in the centre of the CCA diagram were present at all sites in similar 

abundances (i.e, Cocconeis placentula, Gomphenema truncatum, Navicula tripunctata, 

Cyclotella spp.) (Figure 20). 
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Figure 20. CCA bi-plots of dominant diatom species composition with corresponding 
environmental factors for sampling period 3 by sites and species. Eigenvalues along the first and 
second axes were 0.2059 and 0.1005 respectively. This explained 31% of the total variation. The 
species names have been abbreviated to fit the bi- plot. 

CA1 

The species Nitzschia sigmoidea and Cymatopleura solea corresponded with TP. 

Nitzschia sigmoidea was found exclusively at site KB while Cymatopleura solea was observed at 

site KB and LC. Both sites KB and LC had the highest recorded TP values over the entire 

sampling period 3 (0.12mg/L & 0.13mg/L respectively). 
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The species Epithemia turgida and Amphora ovalis were associated with temperature 

(Figure 20). Both species were observed in high densities at sites CIO and LC. Although 

temperature did not vary significantly between sites (ANOVA) the average temperature at sites 

CIO and LC were almost 3®C higher than site KB (Table 4). 

Sampling period 4 

Eigenvalues along the first and second axes were 0.30883 and 0.07393 respectively. This 

explained 31% of the total variation for sampling period 3. The relative positions of the species 

and site scores showed a strong influence of the hydrological variables on the species 

composition of each site. The most important predicators of species distribution, as indicated in 

their significant correlation with the first CCA axis were site (r^=0.86, p<0.001), pH (r^=0.42, 

p<0.001), and TP (r^=-0.57, p<0.001). Although the largest variation among the three sites was 

attributed to the first CCA axis, the second CCA axis also exhibited strong correlations with the 

environmental variables such as pH (r^=0.91,p<0.001) (Table 10). 

Figure 21 shows the position of site 1 (KB) in the lower left quadrant of the bi-plot 

corresponding to the TP and DO factors. Species that corresponded strongly with KB and the TP 

variable included Navicula lancelota, Gomphonema acuminatium, and Navicula tripunctata, 

which were present at all sites, but in higher abundances at KB. Additionally, the species 

Gyrosigma acuminatium was present exclusively at sites KB and CIO, but was observed in 

higher densities at KB. The highest TP concentration over the four sampling periods was 

recorded at site KB (0.20mg/L) which is 10 times higher than the provincial guidelines 

concentration of 0.02mg/L. The species Amphora ovalis corresponded with the DO variable and 
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was present in all sites. One way ANOVA results showed that DO did not significantly vary 

between sites. 

Figure 21 shows the location of site 2 (CIO) in the lower right quadrant of the bi-plot. 

The species Epithemia sorex was observed exclusively at CIO and was positioned in the lower 

right quadrant. Species such as Placoneis eigens, Rhopolodia gibba, and Craticula cuspidata 

were observed across all sites, but they were observed in higher densities at site CIO. 

Figure 21. CCA bi-plots of dominant diatom species composition with corresponding 
environmental factors for sampling period 4 by sites and species. Eigenvalues along the first and 
second axes were 0.30883 and 0.07393 respectively. This explained 31% of the total variation. 
The species names have been abbreviated to fit the bi-plot. 
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Site 3 (LC) was plotted in the upper right region of the diagram (Figure 21). The 

corresponding species, Nitzschia acicularis was also positioned in the upper right quadrant 

(Figure 21). The species Cymbella lancelota was present at all sites, however it was observed in 

higher densities at site LC (Table 8a). The location of Cocconeis placentula in the upper right 

quadrant is indicative of its dominance at site LC throughout sampling period 4, although it was 

present at the other two sites in lower densities (Table 8a). Similarly, the other species plotted in 

this quadrant were present in all sites, but in higher densities at LC. 

The species, Fragilaria crotensis was plotted on the first CCA axis in the upper region of 

the diagram and was observed at sites KB and LC in high densities and at times dominated the 

community (Table 8a). The species that were located near the second CCA axis on the right hand 

side were observed in all 3 sites in similar densities, except for the species Epithemia turgida 

located to the extreme right, which was only present at sites CIO and LC. 

Non Diatoms 

Sampling period 1 

Eigenvalues along the first and second axes were 0.26448 and 0.03951 respectively. This 

explained 30% of the total variation for sampling period 1. The relative positions of the species 

and site scores showed a strong influence of the water quality variables on the species 

composition at each site. The most important predicators of species distribution, as indicated in 

their significant correlation with the first CCA axis were DO (r^= 0.80,/?<0.001), pH (r^= 0.99, 

/7<0.001), TP (r^= 0.99,/7<0.001), temperature (r^= -0.57,p<0.001), and conductivity (r^= -0.32, 

/><0.001. Although the largest variation among the three sites was attributed to the first CCA 
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axis, the second CCA axis also exhibited correlations with the environmental variables such as 

conductivity (r^= 0.95,/><0.001) (Table 10). 

Figure 22 shows the position of site 1 (KB) in the upper left quadrant of the bi-plot 

corresponding with conductivity. Site KB exhibited the highest values of conductivity during the 

study (Table 4). The location of site CIO was in the lower right quadrant of the CCA diagram 

where Nematode spp. was plotted and subsequently corresponded with this site. 

Site 3 (LC) was plotted in the middle right area of the hi-plot (Figure 21). Anabaena spp. 

was exclusive to LC and was positioned in the lower left quadrant of the bi-plot corresponding 

with site 3. The species dispersion at this site was under the influence of TP. The species 

Coleastrum spp. was present at sites KB and LC, but was in higher density at site LC than KB 

(Table 8b). 

The species located on the first CCA axis near the lower quadrants was Merismopedia 

glauca which was present at CIO and LC only, while the species positioned on the same axis in 

the upper region was observed in all sites in similar proportions. The location of Staurastrum sp. 

which is located in the upper right quadrant of the bi-plot was associated with temperature. This 

species was observed in high densities during the first sampling day of the 30 day growth period 

at site LC (Table 8b). 
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Figure 22. CCA bi-plots of dominant non diatom species composition with corresponding 
environmental factors for sampling period 1 by sites and species. Eigenvalues along the first and 
second axes were 0.26448 and 0.03951 respectively. This explained 30% of the total variation. 
The species names have been abbreviated to fit the bi plot. 

CA1 

Sampling period 2 

Eigenvalues along the first and second axes were 0.6369 and 0.4558 respectively and 

explained 100% of the variation. The relative positions of the species and site scores showed a 

strong influence of hydrological factors on species composition of each site. The most important 

predicator of species distribution as indicated in their significant correlation with the first CCA 
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axis were site (r^= -0.15, /?<0.001), and conductivity (r^= 0.65, /7<0.001. Although the largest 

amount of variation among the three sites was attributed to the first CCA axis, the second CCA 

axis also exhibited strong correlation with temperature (r^= -0.99,/?<0.001) (Table 10). 

Figure 23 shows the position of KB in the upper right quadrant of the bi-plot 

corresponding to conductivity. Site 1 (KB) exhibited the highest values of conductivity during 

the study (Table 4). Species present in KB and associated environmental factors such as DO & 

conductivity were Diplochloris lunata, and unknown green algae spp. (GA) and the protozoan 

Vorticella spp. (Figure 23). 

In the bi-plot site 2 (CIO) was situated in the mid left quadrant (Figure 23). Lacrymaria 

spp. was observed at sites CIO and LC, but in higher densities at CIO. Similarly, the filamentous 

green algae (FGA) spp. were observed at all sites, but higher densities were observed at CIO 

(Figure 23). 

Site 3 (LC) was located in the lower left quadrant of the bi-plot (Figure 23). Nematode sp. 

corresponded with site LC and was exclusive to this site (Figure 23). The species dispersion at 

this site was under the influence of pH, which according to ANOVA results, did not significantly 

vary between sites. However, Cosmarium spp. corresponded to pH and was observed at CIO and 

LC in higher densities (Figure 23). The average pH value (7.68) for site LC was higher than at 

KB and CIO (7.58, 7.34, respectively). 

Temperature corresponded with Coleastrum spp. which was present on day 15 of the 

sampling period, while the protozoa Phacus spp. was observed early in the sampling period only 

on day 5 (Figure 23). Species positioned on the lower left quadrant Euplotes spp. and Burnstrum 

spp. were observed at CIO and LC, but not at KB (Figure 23). 
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Figure 23. CCA bi-plots of dominant non diatom species composition with corresponding 
environmental factors for sampling period 2 by sites and species. Eigenvalues along the first and 
second axes were 0.6369 and 0.4558 respectively. The species names have been abbreviated to 
fit the bi plot. 
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Sampling period 3 

Eigenvalues along the first and second axes were 0.3263 and 0.2149 respectively. This 

explained 54% of the total variation for sampling period 3. The relative positions of the species 

and site scores showed a strong influence of the hydrological factors on the species composition 

of each site. The most important predicators of species distribution, as indicated in the 

significant correlation with the first CCA axis were DO = 0.85,/)<0.001), pH (r^= 0.80, 

p<0.001), TP (r^= -0.96,/7<0.001) and conductivity (r^= 0.65,/><0.001. Although the largest 

variation among the three sites was attributed to the first CCA axis, the second CCA axis also 

exhibited strong correlations with temperature (r^= 0.97,/?<0.001) (Table 10). 

Figure 24 shows site 1 (KB) located in the lower left quadrant of the bi-plot 

corresponding to conductivity. Site KB exhibited the highest values of conductivity during the 

study (Table 4). The unknown Ostracod sp. corresponded to site KB and the associated high 

conductivity levels which were exclusive to KB. 

Site 2 (CIO) was situated in the lower left quadrant of the bi-plot (Figure 24). 

Dictyosphaeriumpulchellum corresponded to this site and was exclusive to CIO. The other 

species positioned in this quadrant were Euglena spp., and Actinosphaerium spp. observed at KB 

and CIO only, and Coleochaete spp., that was observed at LC and CIO (Figure 24). 
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Figure 24. CCA bi-plots of dominant non diatom species composition with corresponding 

environmental factors for sampling period 3 by sites and species. Eigenvalues along the first and 

second axes were 0.3263 and 0.2149 respectively. This explained 54% of the total variation. The 

species names have been abbreviated to fit the bi-plot. 

CA1 

Site 3 (LC) was located in the upper left quadrant of the CCA bi-plot (Figure 24). Species 

exclusive to site LC included Ankistrodesmus sp., and Closterium lunata. The average TP 

concentrations at sites KB and LC were twice as high as the average value at site CIO 

(0.03mg/L). Species associated with TP included Chlorophyceae members, Stigeclonium tenue 
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and unknown green algae (GA) as well as the protozoan species Amphileptus spp., and a Rotifer 

species (Figure 24). 

Species such as Stylonchia spp., and Nematode sp. situated in the lower left quadrant 

were observed at sites CIO and LC, while Kirchneriella spp., were observed at KB and LC, but 

not at CIO (Figure 24). 

The Cyanobacteria species was located in the upper left quadrant of the bi-plot and was 

associated with the DO (Figure 24). It was observed at sites CIO and LC, but its density was 3 

times higher than at LC (Table 8b). 

Sampling period 4 

Eigenvalues along the first and second axes were 0.3110 and 0.1991 respectively. This 

corresponds to 51% of the total variation for sampling period 3. The positions of species and site 

scores showed a strong influence of the hydrological factors on the species composition of each 

site. The most important predicators of species distribution, as indicated in their significant 

correlation with the first CCA axis were pH (r^=0.99, /?<0.001) and temperature (r^=0.83, 

p<0.001). Although the largest amount of variation among the three sites was attributed to the 

first CCA axis, the second CCA axis also exhibited strong correlations with TP (r =0.82, 

;?<0.001) (Table 10). 

Figure 25 shows the position of site 1 (KB) in the upper left quadrant of the bi-plot 

corresponding to TP and DO. Site KB had the highest TP concentrations during the study 

(0.20mg/L) in this sampling period 4. The dissolved oxygen levels did not vary significantly 

between sites (one way ANOVA). Species which corresponded strongly with KB included 

unknown protozoa species. 
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Site 2 (CIO) was located in the lower left quadrant of the CCA bi-plot (Figure 25). The 

Cyanobacteria species Merismopedia glauca was exclusively seen at site CIO. The species 

Euglena spp. was observed in all three sites, but in higher densities at site CIO (Figure 25). 

Figure 25. CCA bi-plots of dominant non diatom species composition with corresponding 
environmental factors for sampling period 4 by sites and species. Eigenvalues along the first and 
second axes were 0.3110 and 0.1991 respectively. This corresponds to 51% of the total variation. 
The species names have been abbreviated to fit the bi-plot. 
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Site 3 (LC) was situated at the top lower right quadrant and was associated with pH 

(Figure 24). Pediastrum tetra was observed exclusively at this site. Species such as unknown 

testate amoeba (TA) and Staurastrum sp., were observed in higher densities at site LC (Figure 

24). The species, Charopsis spp. located at the top of the CCA bi-plot was observed at sites KB 

and LC, but in higher density at LC. The species positioned in the centre of the bi-plot, such as 

Scenedesmus quadricauda, Pediastrum simplex, Colpidinium spp., and Trinema lineare were 

observed at all sites. The species Cosmarium spp., corresponded with temperature and was 

observed in high density at LC (Table 8b). 

Discussion 

Variation in diatom assemblages and individual species abundances provided reliable 

indicators of water quality changes at the three sampling sites in the northern Lake Simcoe. A 

multivariate ordination analysis in this study showed that dissolved oxygen, total phosphorus 

(TP), conductivity, and spatial variation in sampling locations were the most significant factors 

influencing the periphyton community structure. 

The interaction of these abiotic determinants and their influence on the periphyton natural 

succession process produced highly variable species assemblages, though many periphyton 

community members such as Cocconeis placentula, Cymbella tumida, Gomphonema truncatum, 

Navicula spp., and Synedra spp. appeared in all sampling locations and sampling periods. 

However, variation in the periphyton assemblages was observed between sampling periods and 

sites. Some of these species were observed in previous studies from northern part of Lake 

Simcoe by Kanavillil et al (2012 & 2013). 
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Environmental variables influencing the periphyton community. 

The results of the Canonical correspondence analysis (CCA) revealed seasonal variations 

in species density and environmental factors. The distribution of certain species highly 

corresponded to the measured hydrological parameters and in turn the study sites during various 

sampling periods (Table 10). Although, some of the variations could be attributed to seasonality, 

potential water quality indicator species were detected in site comparison analysis in a given 

sampling period. 

Many of the hydrological parameters tested in this study significantly correlated with first 

CCA axis but less often with the second CCA axis. CCA analysis for the diatom group showed a 

significant negative correlation between the first CCA axis and TP during all sampling periods. 

The non diatom group did not show the same relationship which might have been due to their 

lower density values and number of species. TP values significantly correlated with the second 

CCA axis during sampling periods 1, 2 and 4 which coincided with fall and spring turnover 

processes and additional internal loading of P into the water column (Winter et al., 2011). 

Dissolved oxygen correlated strongly with the first CCA axis with a significant negative 

relationship in sampling periods 2 and 4 for both diatom and non diatom groups. Conductivity 

negatively correlated with the first CCA axis for all sampling periods for the diatom group. 

However, the non diatom group in sampling period 2 showed a significant positive relationship 

with the first CCA axis. The main drivers of the periphyton community composition therefore 

were dissolved oxygen and total phosphorus in addition to various autogenic successional 

processes that were discussed in chapter 2. 
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Species diversity is considered as a good indicator of water quality (Tilman et al., 1997; 

Sondergaard & Jeppesen 2007; Leira et al., 2008). Varying degrees of anthropogenic activities at 

the three sampling locations had varying degrees of impacts on the periph}^on species 

composition and development. Site KB with the highest anthropogenic disturbance among the 

three sampling locations showed lowest species diversity however, regression analysis showed a 

significant positive relationship with TP. The organic pollution tolerant diatoms such as 

Cymatopluera elliptica and Synedra cyclopium (Kelly et al., 2005) were observed at KB (Table 

10). Literature suggests that water quality decreases as nutrient concentration increases (Tilman 

et al., 1997; Winter & Duthie 2000; Leira et al., 2008). The decrease in species richness as 

observed in KB corresponds to the increase in nutrient concentration (Jeppesen et al., 2000; 

Biggs et al., 1998). 

Site KB is a well known point source of phosphorus to Lake Simcoe and is located on a 

public beach, and near a park and boat launch at Kempenfelt Bay, Barrie, ON. This area does not 

have a natural shoreline and there is weekly scheduled application of fertilizers by the city for 

flower beds, grass and non native trees during summer. Additionally, the sampling location is 

adjacent to the waste water treatment plant of the city of Barrie. The treated waste water goes 

through a de-nitrification process which includes addition of various salts before the effluent is 

released into the lake. The water here recorded very high conductivity values; double that of the 

other two locations as a result of this effluent discharge. LC is another site that received effluent 

discharge from a waste water treatment plant. Species such as Navicula slevencisus was observed 

at KB while the diatom Entomoneis paludosa was present at KB and LC. Both these species 

indicate high electrolyte water (Potapova et al., 2013) (Table 9). Furthermore, the highly motile 

diatom species Entomoneis paludosa has the tolerance for high concentration of salts and 
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sulfates, which may be the case in these locations, often encountered near the waste water 

treatment plants (Kelly et al., 2005) (Table 9). 

Sites KB and LC experienced moderate to high degrees of anthropogenic disturbances 

and also shared similar taxa. The diatom species Fragilaria crotensis contributed almost 50% of 

the periphyton species density at LC during the first half of the sampling period while it was 

common in other two sites. Previous studies reported a shift from Stephanodiscus spp. 

abundance to Fragilaria spp. specifically Fragilaria crotonensis in Lake Simcoe during post 

Dreissenid invasion (Winter et al., 2011). According to Winter et al (2011) this shift coincided 

with an increase in silica to phosphorus ratio (Si:P) in Lake Simcoe, which Fragilaria spp. can 

endure well (Winter et al., 2011). 

Nitzschia sigmoidea was recorded at higher densities at LC. The TP concentrations at LC 

were consistently above the Provincial guidelines of 0.02mg/L. Previous research suggests that 

water quality decreases as nutrient levels increase (Tilman et al., 1997; Winter & Duthie 2000; 

Leira et al., 2008). The diatom Nitzschia sigmoidea is tolerant of heavy organic pollutants and 

high suspended loads (Kelly et al., 2005; Wu et al., 2011) (Table 9). Site LC is located in the 

main water channel of Lagoon city that drains water to Lake Simcoe. The water channels in 

Lagoon City are known for excessive TP loads and the occurrence of toxic Cyanobacteria 

blooms during summer months (Simcoe Muskoka District Health Unit 2014). Though the main 

channel did not observe high concentrations of Cyanobacteria like in the inner channels, the 

presence of organic pollutant tolerant species such as Nitzschia sigmoidea can be considered as a 

sign of deteriorating water quality at this location (Schindler, 1977; Wetzel, 1983; Stevenson et 

al., 1996). 
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Overall, the high abundance of Chlorophyceae such as Pediastrum spp., Cosmarium spp. 

and Scendesmus quadricauda observed at LC were all indicative of high nutrient concentrations 

and possible impairment of water quality. Scenedesmus quadricauda and Dictyosphaerium 

pulchellum were observed to correspond well with TP in the CCA analysis. Schneider et al 

(2009) developed an index for water quality based on the relationship of TP with Chlorophyceae. 

The least disturbed site among the three was CIO. Even though a bloom was not detected 

at this site, Cyanobacteria species such as Chooroccocus spp. and Merismopedia glauca were 

recorded in high densities during summer. As Cyanobacteria members can fix nitrogen it will be 

interesting to investigate this site further with respect to nitrogen concentration and its impacts. 

The CIO also showed an abundance of Epithemia turgida which was associated with moderate 

nutrient conditions (Kelly et al., 2005). Species distribution such as Tabellaria flocculosa and 

Navicula spp. showed correspondence to dissolved oxygen (DO) in the sampling locations. The 

diatom species Tabellaria flocculosa was found at site CIO only while Navicula spp. was 

observed in all sites. The DO values were lower at CIO compared to the other two locations. The 

species composition at CIO also showed a presence of the diatoms Gomphoneis spp. and Eutonia 

spp. indicating the possibility of ecological impairment at this site. Eutonia spp. are noted for 

their tolerance to acidity and low nutrient conditions (Kelly et al., 2005). 

Additionally, at CIO the presence of the tube dwelling diatom such as Gomphoneis spp. 

is representative of low nutrient concentration water and is able to proliferate rapidly to form 

large mats on substrata such as rock (Stevenson et al., 1996). It is interesting to note that 

Tabellaria flocculosa which was only observed at CIO is indicative of a low nutrient 

environment since this species is sensitive to pollution (Kelly et al., 2005). 
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The foregoing part of discussion demonstrates significance of variation of sampling 

locations and their environmental factors on the periphyton species composition and dynamics. 

As stated before, since these littoral periphyton communities are exposed directly to the land 

originated point source pollution and since their tolerance vary with environmental factors, they 

have the potential to act as biological indicators of water quality. The study will give additional 

information regarding the use of periphyton as biological indicators if it can be expanded to 

several other locations in the lake and sampling was carried out at different depths. As suggested 

by Kim (2011) at a depth of 1.5m or less the general trend is a mono dominance of diatom 

species. However, if the depth is increased to 2.5m to 30m, a poly dominance of diatom species 

can be detected in a periphyton community. 

Conclusion 

The variation in taxonomic composition between the three sites supported the hypothesis 

that the periphyton community dynamics would vary with season and location of the study. 

Seasonal variation in periphyton composition could be due to the variation in their tolerance of 

major environmental parameters such as temperature, nutrient availability, duration of irradiance 

etc. which vary seasonally. 

The periphyton species diversity decreased as a result of increased nutrient availability as 

observed at KB. Several other factors such as the influence of phytoplankton species 

composition, grazing pressure, inter specific competition etc., needs to be studied to further the 

understanding of periphyton community dynamics. A long term study from these locations 

would provide more data on various indicator species and their relationships with water quality. 

This would help to undertake more specific mitigation and management strategies. 
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Although there were substantial loadings on the first CCA axis for all 4 sampling periods and the 

corresponding regression results with the various hydrological parameters the unaccounted 

variation suggests an influence of factors other than autogenic succession processes such as 

grazing, competition etc. in addition to a potential influence of untested environmental drivers. 

Therefore it may be prudent to measure more water quality parameters to relate that to the 

taxonomic composition. As a result of the unknown water quality parameters and their impacts 

on species composition the hypothesis that periphyton species composition and their dynamics 

can be used as an index of water quality can only be partially accepted at this time. 

Finally, as the majority of literature on Lake Simcoe seems to exclude the northern 

geographical area of the lake a periphyton diatom based index may assist in designing a more 

comprehensive monitoring strategy for this part of the lake. 
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Chapter 5: Conclusion 

Periphyton communities are system specific reliable indicators of water quality changes 

in aquatic ecosystems. Autogenic processes such as colonization and succession combined with 

hydrological parameters and nutrient (TP) inputs are strong controlling factors in the 

development of periphyton. Other factors, such as seasonality, substratum surface etc. can also 

strongly influence the abundance and taxonomic composition of periphyton community. 

This study attempted to fill the gap in knowledge on periphyton community dynamics 

vis-a-vis variation of hydrological parameters and location of study from the northern part of 

Lake Simcoe. The data generated from this study thus will help to design a periphyton based 

water quality index for this part of Lake Simcoe 

In order to understand the periphyton community dynamics with season, location of study 

and duration of substratum exposure (30 days), field exposure studies were carried out in three 

different locations in the northern part of Lake Simcoe. The study was repeated four times to 

represent different seasons of a year. The hypotheses tested were: 

1. The periphyton community dynamics (biofilm thickness, biomass, species density, species 
diversity, species richness) vary with season and location (degree of exposure to anthropogenic 
activities) of study. 

2. The periphyton species diversity decreases as a result of increased nutrient availability. 

3. The periphyton community dynamics are influenced by autogenic processes. 

4. Diatom abundance and species composition will increase in spring and fall seasons as a result 
of lake turnover processes. 

The result of the tested hypotheses through the experimental design of this study has led to the 

following conclusions. 



The periphyton community dynamics did vary with season and location (and therefore 

with the degree of anthropogenic influence) of study. The variation of taxonomic composition 
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between the three sites supported the hypothesis that the periphyton community dynamics would 

vary with season and location of the study. Certain species were present only during certain 

seasons. Seasonality also had an effect on the periphyton density, as well as the taxonomic 

composition. The summer season gave rise to a high abundance of non-diatom groups, such as 

Chlorophyceae and Cyanophyceae. The spring and fall sampling periods recorded high density 

of Bacillariophyceae as a result of lake turnover processes and the availability of nutrients. 

Therefore the hypothesis that periphyton community dynamics vary between seasons is fully 

accepted. 

It was hypothesized that periphyton species diversity would decrease as a result of 

increased nutrient availability. However, as a result of a multi-proxy approach, including 

Bacillariophyceae, Chlorophyceae, Cyanophyceae, Chrysophyceae, protozoa and other groups 

the expected decrease in diversity as a result of higher nutrient concentration (TP in this case) 

was confounded by other factors that resulted in higher diversity in periphyton. This suggests 

that as the diversity of Bacillariophyceae decreases (as a result of higher nutrient inputs, such as 

TP), the non-diatom groups increase. However, it is important to note that overall species 

diversity is also influenced by seasons, as temperature and light availability play influencing 

roles in periphyton growth. This hypothesis seems to be tme only with respect to 

Bacillariophyceae whose diversity is decreased with an increase in TP. Therefore, this hypothesis 

is not fully accepted. 

The general trend of periphyton development was highly influenced by natural autogenic 

succession processes. The overall growth trend was an increase during the early phase; a climax 
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during the mid phase; a sloughing off period, and finally an increase in growth in the late growth 

phase as re-colonization occurred. Certain species were only present during certain phases of 

periphyton development. This study agreed with previous studies in that early diatom colonizers 

generally possess a rapid reproduction strategy and therefore colonize the substratum quickly. 

The diatom species arriving at the mid-successional phase generally possess a morphological 

advantage of longer mucilaginous stalk with which they grow vertically from the basal 

attachment disc (e.g. Cymbella spp.). This will help them to obtain higher levels of irradiance. 

The diatom species arriving at the late successional phase are generally highly motile with 

morphological features such as keels (i.e Nitzschia sp) and are able to maintain a high growth 

rate at a lower irradiance. 

Though the spring season did not bring the expected diatom abundances in the periphyton 

community, the high chlorophyll a concentration from the water column, observed in spring may 

represent the spring turnover process resulting in an increase in diatom abundance. This would 

suggest a relationship between the phytoplankton and periphyton communities with the former 

acting as a propagule supply ground to the latter. The maximum value of periphyton species 

density was observed during fall. Therefore the hypothesis that diatom abundance and species 

composition increases in spring and fall seasons as a result of lake turnover processes was partly 

accepted. 

Periphyton species composition and their dynamics can be used as an index of water 

quality. The dynamic relationship between water chemistry and the taxonomic composition of 

periphyton, showed good correspondence with the variations in water quality parameters studied. 

However, the relationship also revealed a potential influence of untested environmental 

drivers such as nutrients other than TP. Therefore, it may be prudent to include more water 
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chemistry data to correlate with the periphyton taxonomic composition. There was evidence that 

various species reasonably indicated variations in certain hydrological parameter such as DO, 

temperature, conductivity, TP and location of study. The data thus provided significant 

indications of using periphyton community dynamics as indicators of water quality from the 

northern part of Lake Simcoe. 

Future research 

This study was able to shed some light on the various roles that species composition play 

in natural autogenic processes in addition to being good indicators of water quality. However, a 

comparison of the periphyton assemblages and phytoplankton communities would be a 

promising fiiture research area to be explored. Additionally, a long term study on periphyton 

community dynamics would be useful to come up with a periphyton based water quality index 

that would help in better management strategies for freshwater systems. 

This study revealed that factors such as competition and grazing may contribute to the 

processes of growth dynamics of periphyton. Therefore, it may be prudent to include more 

biological factors to study dynamics of periphyton community to better understand the processes. 
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