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ABSTRACT 

Several new techniques are given in this thesis for the 

iterative solution of the linear system Ax = y. The class of 

matrices to which these techniques apply include circulant mat- 

rices, band matrices with well behaved inverses, and two dimen- 

sional analogues of these. Such matrices arise naturally in 

spline approximation problems. Our concern is with the iterative 

process + By, m > 0 with B chosen so 

that I-BA is small spectral radius). Thus B is an 

"approximate inverse" to A and we focus attention on the con- 

struction of B. 

For the circulant matrix A, starting with Fourier 

transform theory, we develop several approximate inversion 

methods, each optimal in its own sense. These procedures in- 

clude the diagonal block (DBq) method which determines B such 

that the central 2q+l diagonals of I-BA have zero entries, 

the least-squares CLSq) method which determines the 2q+l non- 

zero row elements of B by a least-squares process in the trans- 

form space, and the min-max (MMc[) method for symmetric A 

that produces the B of a particular form such that the spectral 

radius of 1-BA is minimized. Experimental results with test 

matrices are given with each approximate inversion technique con- 

sidered . 

1 



The DBq and LSq approximate inversion techniques 

are generalized to handle certain band matrices. The iterative 

scheme + By associated with the approximate 

inverse B is extended in the manner that the Jacobi iterative 

method is extended to the successive overrelaxation iterative 

technique. Experimental results on the test matrices used in- 

dicate that some of the methods developed here are capable of 

outperforming standard techniques by a substantial margin. 

Finally, we extend the LSq and DBq techniques to 

linear operators associated with certain approximation problems 

on the plane. We develop our notation and approximate inversion 

techniques for general finite regions on the plane. Experimental 

work is confined, however, to a two dimensional circulant problem, 

and results indicate that approximate inversion procedures are 

well suited to this situation. 
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INTRODUCTION 

In this thesis, we develop several techniques for 

approximating the inverse of certain nonsingular n x n matrices 

A. These approximate inverses, B, are used to establish itera- 

tive processes of the form = G + kj m > 0 to solve 

the linear system Ax = y. 

In Chapter 1, we establish our notation and give some 

fundamental results that serve as a basis for the chapters to 

follow. The relationship between an approximate inverse and some 

standard iterative techniques is mentioned. We end this chapter 

with definitions of computational complexity and effort for our 

iterative processes. These definitions serve as a basis for com- 

parison of iterative techniques in the chapters to follow. 

Chapter 2 deals with approximate inverses for circulant 

matrices. The circulant situation is recast in terms of convolu- 

tions of doubly infinite absolutely summable sequences. This 

allows us to make use of Fourier transform theory. Based on min- 

imization problems in the transform space, several approximate 

inversion techniques for circulant matrices are developed. The 

truncation (TRq) technique determines an approximate inverse B 

for A according to standard Fourier transform theory. The 

least-squares (LSq) technique determines B according to a 

slight modification of the minimization problem associated with 

1 
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the TRq technique and the diagonal block (DBq) technique de- 

teiTnines B according to a modification of the least-squares 

minimization problem. Finally in Chapter 2 we deal with the min- 

max (MMq) approximate inversion technique. This technique de- 

termines the circulant matrix B of a particular form such that 

the spectral radius of G = I-BA is minimized. 

The LSq and DBq approximate inversion techniques of 

Chapter 2 are extended in Chapter 3 to certain band matrices whose 

inverses are well behaved. Such matrices arise naturally in cer- 

tain approximation problems. Chapter 3 also contains certain ex- 

tended iterative processes based on approximate inversion techni- 

ques. These extensions parallel the extension of the Jacobi it- 

erative technique to the simultaneous overrelaxation, Gauss-Seidel, 

and successive overrelaxation iterative techniques. 

In Chapter 4, we further extend our LSq and DBq ap- 

proximate inversion techniques to certain linear operators assoc- 

iated with two dimensional approximation problems. A notation 

is developed that conveniently handles this extension and that 

lends itself readily to the programming of the algorithms devel^ 

oped. Details are given for two dimensional problems on general 

finite regions of the plane, but experimental results are res- 

tricted to two dimensional circulant interpolation problems on a 

parallelogram region on the plane. 

In Chapter 5 we discuss the concept of an approximate 
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inverse. We also suggest some further possibilities with two 

dimensional problems'. 



CHAPTER 1 

FUNDAMENTAL CONCEPTS 

1.1. INTRODUCTION 

Let X and Y be complex linear spaces and let 

A:X Y be a linear operator. For a given y in the range of 

A we are interested in solving the linear system Ax = y for 

X e X, We restrict bur attention to finite dimensional X and 

Y. In the finite case A can be described by a finite matrix 

and this is sufficient for the discussion of such problems. 

However, the concept of a linear operator allows more flexibility 

of notation. This flexibility is especially useful in Chapter 4 

where we consider two dimensional problems. 

In the next five sections of this chapter we establish 

OUT notation and list some standard results which set a background 

for the work to follow. In Section 1.7 we define our concepts of 

computational complexity and effort. These concepts provide us 

with a criterion for comparing iterative processes in the chapters 

which follow. 

1.2. BASIC NOTATION 

For the linear space X with basis {e^:i e I}, x e X, 

and X - x.e^ we have, when defined, standard norms such as 

II >^IL = suplxj^l, II x|| 2 = I I and || x|| 
iel \iel J 

= I 
iel 

X , 
1 

Given the norm on the linear spaces X and Y, we find 

4 
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it useful to consider the norm on the linear operator A;X Y 

P = 

Our concern is with linear systems of equations that 

have unique solutions; that is, with linear operators A which 

solvable with the aid of a computer, we concentrate our atten- 

tion on finite dimensional linear spaces. Therefore, we will be 

considering linear operators from the n dimensional space X 

to X. Our problems can be phrased in terms of n x n matrices 

and this is the notation we adopt for the greater part of this 

thesis. However, we keep in mind that this format is just a con- 

venient tool for some of our problems, and in reality what we 

are dealing with are linear operators. The merit in this atti- 

tude becomes apparent in Chapter 4 where we deal with two dimen- 

sional problems and where strict devotion to matrix notation, 

although valid, is awkward and unnatural. 

of the n X n matrix A by p(A) - max{|xl:X is an eigenvalue 

of A}. We use the spectral radius and numbers involving the 

spectral radius as a basis for most of our comparisons of itera- 

tive processes in the chapters which follow. 

have an inverse A”^. As we are interested in problems that are 

Further to our notation, we denote the spectral radius 

To lay the foundations necessary for the iterative 
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methods of the following chapters, we lean heavily on the first 

few chapters of Varga [15] and Young [16] and much of our nota- 

tion is adopted from these sources. 

1.3. DETERMINATION OF SPECTRAL RADIUS 

Much of this section could be stated in the more general 

notation of linear operators, but as our sole application of these 

results is in association with n x n matrices, such a general 

discussion is not necessary. 

For an arbitrary n x n complex matrix G we have 

(see Varga [15, p. 65], Young [16, p. 87]) 

p(G) = lim Cll G"'|| 2)^. (1.3.1) 
m->«> 

The norms || G|| ^ and ||G|| 2 are equivalent and hence 

p(G) = lim (II G”*!! )^. (1.3.2) 
00 

mr>“ 

n 
Since I1 G|| = max |g. .|, for G = (g. .)> we have by 

i j=i 

way of (1.3.2) an easily programed algorithm for finding p(G). 

Appendix B contains an APL program for finding spectral radius 

by this technique. We use this algorithm extensively when com- 

paring iterative methods. We comment that as the order of the 

linear system under consideration increases, the execution of 

this algorithm becomes costly. 
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1.4. GENERAL ITERATIVE PROCESSES 

Our concern is solely with the general iterative method 

used to solve the linear system 

Ax = y (1.4.2) 

where A is an n x n nonsingular complex matrix, and G is 

an n X n iteration matrix. For our purposes we require that 

(1,4.1) converge for any starting vector to a vector z 

independent of x^^^ and that this vector Z be the unique 

solution to (1.4.2). 

First, (Varga [15, p. 59]), the method (1.4.1) con- 

verges to a vector U independent of x^^^ if and only if 

p(G) < 1. Clearly U satisfies 

(I-G)U = k. (1.4.3) 

If (1.4.1) converges to z = A”^y thent (I-G)A"^y = k. Con- 

versely if p(G) < 1 then I-G is nonsingular and U = (I-G) ^k. 

If further k = (I-G)A ^y, then U = A ^y = ^. in summary, for 

the nonsingular matrix A, (1.4.1) converges to the unique solu- 

tion Z = A^y of (1.4.2), independent of x^^^ if and only if 

p(G) < 1 and k = (I-G)A"^y. 

t This condition on k is developed in Young [16, pp. 65-66] in 
a slightly more general context than that required for our pur- 
poses. 
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We complete this section by giving a theorem that puts 

the iterative method (1.4.1) into a slightly modified form which 

is very appropriate in the context of the chapters which follow. 

Theorem 1.4.1. For the nonsingular matrix A, when (1.4.1) 

converges it converges to the unique solution of Ax = y if and 

only if there exists a nonsingular matrix B such that G = I-BA 

and k = By. 

Proof: (Young [15, p. 68]) When (1.4.1) converges to Z = A ^y 

then (I-G)z = k and B = (I-G)A"^ which is nonsingular since 

p(G) < 1. Conversely if such a nonsingular B exists and (1.4.1) 

converges to z then BAz = By and Az = y. 

The matrix is acting as an approximate inverse to 

A, The concept of an approximate inverse is fundamental to all 

the iterative procedures considered in this thesis. 

1.5. CONVERGENCE RATES 

If, for a nonsingular n x n matrix A, we can find 

a matrix B such that G = I-BA, k = By and p(G) < 1, then 

(1.4.1) gives us an iterative process which theoretically will 

provide us with the unique solution to (1.4.2). In practice, 

however, we may find that the rate of convergence of our process 

is much too slow to be practical. The convergence rate of the 

resulting iterative process is one of the major considerations 
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in determining an acceptable B. 

Following Varga [15, p. 62], for the iterative process 

(1.4.1) used to solve the system (1.4.2) with nonsingular A, 

we have the error vectors where 2 = A”^y. The 

result that , m > 0 follows immediately and 

this leads to 

II < 2 • 

Our interest is in the behaviour of 

/II e« IU 

as m -i- We have a < || G”'||2^ and (Varga [15> p. 67]) 

when 6 is convergent (lim is the n x n null matrix) we 
m-^oo 

have 

lim - tn II G”^ 11 2^ = - -^.np (G) = R^(G) . 
m->«> 

R^(G) is the asymptotic rate of convergence. 

We employ R^(G) with the realization that it is an 

asymptotic value and may not accurately reflect the initial be- 

haviour of our iterative process. However, it does offer a con- 

venient means of comparing iterative methods and it is to this 

use that we put it in later chapters. 

For our iterative process (1.4.1) (written in terms of 

Theorem 1.4.1) used to solve (1.4.2), one of our objectives should 
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be the creation of a matrix B such that k = By and p(G) = 

P(I-BA) is as small as possible. In practice, however, one must 

consider the labour involved in reducing p(G) and decide if 

the energy expenditure required is justified. 

1,6. STANDARD METHODS 

We give four examples of standard methods which are 

of the form (1.4.1). Some of these methods are later used as a 

basis for comparison with the methods developed in subsequent 

chapters. Following Varga [15, pp. 87-88], we cast these methods 

in the format of Theorem 1.4.1. 

Our concern is with the iterative solution of the sys- 

tem Ax = y where A is an n x n nonsingular matrix. For 

nonsingular M, the expression A = M-N represents a splitting 

of the matrix A and this leads to the iterative process 

x(m+l) ^ + M'ly. m > 0. 

Since this can be written as = (I-M 

m 0, we see that M ^ corresponds to B in Theorem 1.4.1. 

We let A = D-E-F where D is a diagonal matrix, and 

E and F are strictly lower and upper triangular matrices res- 

pectively. First we have the Jacobi* method, where we require 

that D be nonsingular, and we write 

* Strictly speaking this is the point Jacobi method as opposed to 
the block Jacobi method, but as all methods considered in this 
thesis are point iterative methods, ve suppress the word point. 
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x(ra+l) = D"1(E+F)X'^“^ t D‘iy, m > 0. 

In this case M = D and N ~ E+F for our splitting of the ma- 

trix A. For brevity we list our examples of standard methods 

in Table 1.6.1. We include in brackets after the name of each 

method its abbreviation. These abbreviations provide a convenient 

notation in later chapters. This is especially true in Chapter 3 

where these standard methods are extended. 

TABLE 1.6.1 
STANDARD ITERATIVE METHODS 

METHOD ITERATION MATRIX G VECTOR k MATRIX M MATRIX N 

(1) Jacobi (J) D“i(E+F) D'ly E+F 

(2) simultaneous 
overrelaxa- 
tion (JOR) 

(JOD ^ (E+F) + (1-W) I toD”^y CO ■^D ((0 ^-1)D+E+F 

(3) Gauss-Seidel 
(GS) 

(D-E) IF (D-E)"iy D-E 

(4) successive 
overrelaxa- 
tion (SOR) 

(D-oaE) ^ ( (1-co) D+(of) (0 (D-coE) iy (0 iD-E 

1.7. COMPUTATIONAL COMPLEXITY 

Methods developed in subsequent chapters allow us to 

reduce the spectral radius of the iteration matrix, but often 

at the expense of increasing the work involved in each iteration. 

We thus incorporate a measure of this work into our comparison 

of various techniques. With the understanding that a computer 
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spends much more time on multiplication than on addition and 

subtraction, we give 

Definition 1.7.1. The computational complexity of the iterative 

method (1.4.1) is the number of multiplications required to per- 

form a single iteration divided by the order of the system 

under consideration. 

We symbolize our computational complexity by C. When 

referring to a particular iterative process (for example the GS 

iterative technique) we denote the associated computational com- 

plexity by C (GS). We keep in mind that the computational 

complexity depends to a great extent on the matrix A of the 

linear system Ax = y under consideration. 

Our interest is in the complexity per iteration and 

we ignore in our complexity measures the calculations required 

to establish the iterative process. This provides a convenient 

measure for comparing iterative processes and when the system 

Ax = y must be solved with many different values of y, the 

set-up work decreases in importance. Of course when a problem 

is being solved on a once only basis it is prudent when choosing 

a method to include the set-up time among the factors governing 

a decision. 

One method of comparing iterative processes of the 

form (1.4.1) is to investigate R„o(G) for each process, but this 
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does not give any indication of the computational complexity 

involved. To include both these measures we define the effort 

of our techniques. 

Definition 1.7.2. The effort, of the iterative process 

Cl.4.1) is given by 

= RW- 

As the effort represents a more complete measure (than 

just R^(G)) of the value of an iterative process in a test 

situation, we use efforts for comparison purposes in this thesis. 



CHAPTER 2 

THE CIRCULANT PROBLEM 

2.1. NOTATION AND FUNDAMENTAL RESULTS 

The iterative methods of Section 1.6 used to solve the 

linear system Ax = y are given in terms of splittings A = M-N 

of the matrix A because this formulation leads naturally to 

the generalizations which follow. For the iterative scheme (1.4.1) 

used to solve Ax = y, we have G = 1-M”^A and k = M"^y and 

for convergence we require p(G) < 1. Our goal is to make P(G) 

as small as is practically possible. Ultimately if M = A (A 

nonsingular) then M ^A = I and p(G) =0. It is of course un- 

desirable to make M = A since, as noted in Young [16, p. 75], 

in forming k we are back with the original problem. We may 

thus think of B = as an approximate inverse to A and each 

iterative process in Section 1.6 is related to an approximate in- 

version technique applied to A. It is the concept of an approx- 

imate inverse to which we now turn. We begin by considering 

circulant matrices. In particular we are interested in circulant 

matrices characterized by the following definition. 

Definition 2.1.1. The n x n band-circulant matrix A = (a. .)  —— lO 

of band width 2p + 1 (n > 2p+l) and with band elements 

(a_p, ..., aQ, ..., a^) has 

14 
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for 

a. . 
1^3 

1 ^ n. 

if j-i = k (mod n) , k e {-p,...,p} 

(2.1.1) 
0, otherwise 

1 ^ j ^ n. 

We restate the concept of linear operators represented 

by circulant matrices in terms of doubly infinite sequences and 

convolutions in order to take advantage of certain established 

results. Let M represent the set of all complex n x n cir- 

culant matrices, let represent the set of all doubly infin- 

ite absolutely summable complex valued sequences, and let 5^ 

represent the set of all doubly infinite complex valued periodic 

sequences of period n. Define ^ M by 

(4) (a)) = I 
k= i-j+kn 

(2.1.2) 

where l<i<n, l<jin and where a, e is the doubly 

infinite sequence {a, }. Define a:(C^“>S by a(X). = x . for K. n j n j 

0 < j < n-1, where X = (x^,...,x^) e As this defines the 

periodic sequence a(x) over one period, by periodic extension, 

a(x)^ is defined for all integers j. We comment that there is 

a reversal incorporated into a. 

The function c|) is a homomorphism from the commutative 

ring (^1,+,*), where + denotes addition of sequences and * 

denotes convolution of sequences (that is for x,y £ i, 
oo 

(x*y) . = ^ x.y. , ) , onto the commutative ring (M, + ,-) where 
3 ^ ^3 “ 
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+ denotes matrix addition and • denotes matrix multiplication. 

It follows that 

i|j:C£i/ker (f>, + ,*) ^ + (2.1.3) 

defined for a + ker cj) e £i/ker cj) by i|;(a+ker c|)) = <j>Ca) is a 

ring isomorphism. The function a is a linear bijection, and 

it follows that the vector spaces and are iso- 

morphic. Hence for all X e CC^, A £ M, 

a(Ax) = tii"l(A)Cc*CX)) (2.1.4) 

where for a + ker (p e f^/ker (f> and x e 

(a+ker <p) (x) = a * x. (2.1.5) 

The elements of £]^/ker cf) are the equivalence classes under the 

equivalence relation p on f-i defined for a,b e f-i by apb 

if and only if a*x = b*x for all x e 

In particular, with the n x n band-circulant matrix 

A with band elements (a ^,...,ap) we associate the sequence 

a given by 

and we let 

x,y E c". 

..., 0, ^_p^ •••j ^0^ •••> a^> 0, ... (2.1.6) 

a represent the equivalence class ^ (A) . Thus if 

the statement Ax = y is equivalent to a * a(x) = a(y). 

With the matrix A of Definition 2.1.1 we associate the 

expression 
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oo 

ACz) = _l a (2.1.7) 
j =: ♦ .CO 

where 2 is a complex variable and the a^'s are the elements 

of the doubly infinite sequence a associated with A. We see 

that factoring the polynomial z^ACz) corresponds to factoring 

the matrix A into a product of band-circulant matrices. When 

2 = t e [0,1], (2.1.7) represents the Fourier transform 

of the sequence a and we write A(e^^^^) = ^(t). We comment 

that since we are considering a to represent a linear operator 

on the space of all doubly infinite sequences of period n, we 

might consider the finite Fourier transform with 

t e ^0, . . . , However, as we are interested in large 

linear systems, we avoid this specialization to a particular 

finite value of n and consider the continuous Fourier trans- 

form with t e [0,1]. 

2.2. THE TRUNCATION (TR ) AND MULTIPLE TRUNCATION (MTR ) TECHNI- 
QUES ^ ^ 

If a(t) of the previous section is nonzero for all 

t £ [0,1] then has a Fourier expansion which is absolutely 

convergent. Let d be the doubly infinite sequence com- 

posed of the coefficients in the Fourier series expansion of 

1 7^ ^ V-. The d, 's can be found by resolving —^  into par- ^ z^A(z) 

tial fractions and expanding the resulting terms into series valid 
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for the unit circle in the complex plane. (We could also find 

ri^-2'TT ikt 
dt.) We have 1 = d(t)‘^(t) = (a*d)"(t) d, using d, = 

and A"^ = 4> (d), where cj) was defined in (2.1.2). We may 

also use elements from d to create band-circulant approximate 

inverses to A. Let B = TR (A) be the n x n band-circulant 

approximate inverse to A of band width 2q + 1 and with band 

elements 

|k| < q. We call this the truncation technique. Associated with 

this approximate inversion process> we have the iterative process 

^(m+1) _ + By used to solve the linear system 

Ax = y. 

When the sequence a is ...,0, 1, 0, ... (as 

is the case with the matrix T4 of Appendix C), we have 

2C/T - 21 
b^ = -' -^     which gives bo = 1.16, b^ = -0,309, 

b2 = 0.0829, ... and when the sequence a arises from the 

matrix T2 of Appendix C, we have bo = 2.21, b^ = -1.37, 

b2 = 0.759, b3 = -0.409, 64 =0.219, bs = -0.117, bg = 0.0629, ... 

In Table 2.2.1 we give some experimental results with the TR^ 

method applied to T2 and T4. Our computational complexity 

for the iterative process associated with the TR method is 

C(TR^) = 2(p+q) + l. 

0 
d(t) 

Cb , . . ., b„, . . . , b ) where b, = d, for 
-q’ * 0' 4 k k 
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Table 2,2.1 

Results with the TR^ method applied to the test mat- 

rices I2 and T4 of Appendix C. G is the iteration matrix 

for the iterative method associated with the approximate inver- 

sion method TR . 
q 

2q+l TR CT2) TRq(T4) 
mr 

3 
5 
7 
9 

11 
13 

'2.22 
1.20 
0.643 
0.344 
0.184 
0.0987 

diverges 
diverges 

29 
14 
10 
8.2 

0.196 
0.0526 
0.0141 
0.00377 
0.00101 
0.000271 

3.1 
2.4 
2.1 
2.0 
1.9 
1.8 

Closely associated with the TR^ method is a procedure 

involving the factors of z^A(z)• Knowledge of these factors 

allows us to write A = A,A^...A, where each A., 1 < i < k 

is an n X n band-circulant matrix. We define the multiple trun- 

cation approximate inversion technique by MTR (A) = TR (A^) 
T q^ 

TR CA2) • • -TR (A, ) where q = (q, >% > • • • jq^) • This has the ad- 
q2 ^k ^ 12 k 

vantage that the values of the q^’s can be varied to fit the 

requirements of the A^'s. The computational complexity of the 

iterative process associated with the MTR^ approximate inversion 

technique is C(MTR^) = 2(p+q) + 1, where q = q^+q2+. . .+qj^. 

Table 2.2.2 contains experimental results with this technique 

for the matrix T2 of Appendix C. Both the TR and MTR 
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methods are useful*, however better methods, and in two cases 

methods with a good potential for easy generalization to certain 

non-circulant situations, are developed in the remainder of this 

chapter. 

Table 2.2.2 

Results with the method applied to T2 of 

Appendix C. T2 is factored into A1A2A3 where Aj has band 

elements (.0.412, 0.990, 0.412); A2 has band elements (0.120, 

0.990, 0.120); and A3 has band elements (0.00906, 0.990, 

0.00906). MTR^(T2) = TR^^(AI)TR^^(A2)TR^^(A3). G is the itera- 

tion matrix of the associated iterative process and q = <li+q2+ci3 

2q+l 

7 
9 

11 
11 
13 
13 
13 

2qi + l 

3 

5 
5 
7 
7 
9 
5 

2q2 + l 

3 
3 
5 
3 
5 
3 
5 

2qs + l 

3 
3 
3 
3 
3 
3 
5 

PCG) 

1.23 
0.603 
0.667 
0.376 
0.351 
0.187 
0.667 

E(G) 

diverges 
30 
42 
17 
18 

11 
47 

2.3. THE LEAST-SQUARES (LS^) TECHNIQUE 

Let A be an n x n band-circulant matrix of band 

width 2p+l with band elements (a ^,...,...,a^) and let B 

be an n x n band-circulant matrix of band width 2q+l with band 

elements (b ^,...,b^,...,b^). We have the sequences a (given 

by ...,0,a ,...,a ,0,...) and b (given by ...,0,b_ ,...,b ,0,. —p “M. H 
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associated with A and B 

transforms §(t) and B(t) 

nontero on [0,1], the TR^ 

mines b, such that 

respectively and we have the Fourier 

defined on [0,1]. When ^(t) is 

method of the previous section deter- 

a(t) - h(t) dt (2.3.1) 

is minimized. 

This leads us to consider the problem of minimizing 

Q = 
ri 

0 

l-^(t)B(t)I^dt = - 6Ct)P|a(t)|2dt . (2.3.2) 

We are requiring that a(t)bCt) be the least-squares approximation 
/\ 

to f(t) =1 on [0,1] (where f is the identity sequence 

••.,0,1,0,...) in the hope that this will produce a more optimal 

approximate inversion technique than the TR^ method. 

For convenience We define the reversal operator R on 

the space of doubly infinite sequences X by (R(x))^ ~ ^ i 

X e X. Use is made of the fact that for doubly infinite sequences 

u and V with d and u*v defined we have u* = "^"(11*7 and 

R(u*v) = R(u) * R(v) where the superscript * denotes complex 

conjugate. 

The above notation and results are applied to the problem 

of minimizing Q in equation (2.3.2). We have 
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Q - 
n 

Cl -a (t) S (t)) Cl -a* (t) B* c t)) dt, (2.3.3) 

where Q = Q(h ^require = 0 for 

-q $ r < q. Now (for e IR)"^ 

m ^ 
w~ 

r 

[(1-^b) + (l-a*b*)(-a e^^^^bldt - 0 

0 

which gives 

2a 
-r 

^ (aba* 

Q 

(R(a)*a*b) + 

0 

1 ^ 2TT ITt 
CR(a)*a*R(b)) e 

0 

= + Cc*RCb))_^ (2.3.4) 

where G - Rta)*a. 

But we have R(c*R(b)) = R(c)*b and R(c) = c. Therefore, 

2a_^ = Cc*b),_. + CR(c*R(b)))y 

= 2(c*b)^, 

and a 
-r 

(c*b)^. (2.3.5) 

The problem has been reduced to a linear system of 

2q+l equations in 2q+l unknowns which in matrix notation reads 

t We restrict ourselves to real problems for the remainder of this 

chapter. 
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-1 ^2q 

—2q+l 
(2.3.6) 

^2q ^2q^l 

Since Rfc) = c, the above matrix, which we denote by C, is 

symmetric. 

The matrix C can be found directly from R(a)*a, but 

we calculate it in a slightly different manner which again finds 

application in the more general non-circulant situation of 

Chapter 3. Let the matrix M be given by 

M = 

-P 

0 a 
-P 

0 0 a 

ao a 0 
P 

3-0 a 0 
P 

-P 
a 0 . 
P 

0 ... 

0 ... 

0 a 
-P 

0 a 

ao a 0 
P 

“P 
ao 

. (2.3.7) 

Here M is a (2q+l) x (2(q+p)+l) matrix and C satisfies 

C = MM'. (2.3.8) 

A linear system similar to that of (2.3.6) will again 

occur in Chapter 3, but it will then enjoy a more general inter- 

pretation. Equation (2.3.6) provides us with an n x n band- 
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cirqulant approximate inverse R of band width 2q+l for an 

n X n band-^circulant matrix A of band width 2p+l. We denote 

this least-squares approximate inversion process and its associated 

iterative process by LS and we write B = LS (A). The computa- 
q q 

tiona.l complexity for this iterative process is 

C(LS ) = 2(p+q) + 1, 
H 

Experimental results with this method applied to the matrices 

T2 and T4 of Appendix C are given in Table 2.3.1. 

Table 2.3.1 

Results with the approximate inversion technique LS^ 

applied to the circulant test matrices T2 and T4 of Appendix 

C. G is the iteration matrix of the associated iterative process. 

2q+l LS^(T2) 

PCG) ECG) 

LS (T4) 
q ^ 

P(G) f(G) 

3 
5 
7 
9 

11 
13 

0.731 
0.489 
0.290 
0.162 
0.0879 
0.0473 

29 
15 
11 

8.2 
7.0 
6.2 

0.178 
0.0487 
0.0131 
0.00350 
0.000939 
0.000251 

2.9 
2.3 
2.1 
2.0 
1.9 
1.8 

2.4. THE DIAGONAL BLOCK (DB^) TECHNIQUE 

The least-squares minimization of the previous section 

suggests that we explore further such minimization problems in 
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search of practical techniques for getting a band-circulant 

approximate inverse for certain band-circulant matrices. 

We start by considering the problem of minimizing 

'1 

0 

|a(t)|dt (2.4.1) 

where a(t) and b(t) are the same as in (2.3.1). 

To simplify the problem we will consider the symmetric 

case. Consequently^ R(a) = a and R(b) = b and a(t) and 

BCt) are real valued functions on [0,1]. This simplification 

eliminates expressions involving (aCt)a*(t)) We further 

assume, as before, that a(t) ^ 0 for t e [0,1]. However, since 

a(t) is a real valued function on [0,1], we have a(t) > 0 

on [0,1] or a(t) <0 on [0,1] and |a(t)| is either 

a(t) or -a(t). We seek to minimize 

where 

and 

 1_ 
^(t) b(t) 

2 
a(t)dt (2.4.2) 

1 if a(t) > 0 on [0,1] 

1^-1 if a(t) < 0 on [0,1] 

j=l 

a(t) = ao + 2 £Lj cos 27rjt, (2.4.3) 
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9 b(t) = bo + 2 I b, cos 2TTkt. 
k=l ^ 

Q is, 

0 < r 

a function of b 

< q gives, for 

,... ,b , 
0 q 
r 0, 

and setting 

'1 

0 

2K act) 1 
a(t) Mt) (-2 cos (27rrt) )dt = 

and this reduces to 

*1 
cos (2Trrt)dt a(t) bft) cos (2TTrt)dt. 

But V f 0 and we get 

(a*b)" (t) cos(2Trrt)dt 0 
^ 0 

which reduces to 

Ca*b)^ = 0 for r ^ 0 . 

If r = 0 then 

and 

^ = 
3bo 

^-2/c act) 
Jo 

1 
act) b(t) 

(a*b)o = 1. 

We may state our linear system for 0 < r < 

(a*b)^ 

(2.4.4) 

for 

0, 

(2.4.5) 

(2.4.6) 

(2.4.7) 

dt = 0 

(2.4.8) 

[ as 

(2.4.9) 

where 
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1, if i = j 

0, otherwise 

The linear system (2.4.9) represents q+1 equations in q+1 

unknowns. Since R(a*b) = a*b, we see that b is being deter- 

mined such that Ca*b)^ = ^ for |k| < q. 

The above interpretation suggests that we extend our 

process to include ncn-symmetric cases by requiring that (2.4.9) 

hold for -q < r < q. This gives us the linear system 

ao a_ 

ai aq 

^-2q 

^-2q+l 

a 2q-l ao 

(2.4.10) 

Given an n x n band-circulant matrix A of band width 

2p+l with band elements (a , we use the linear system 

(2.4.10) to obtain an n x n band-circulant approximate inverse 

for A of band width 2q+l and with band elements (b ,...,b ). -q q 

We call this approximate inversion method the diagonal block 

(DB ) technique and write B = DB (A). This method will be gen- 
q q 

eralized in Chapter 3 where it will prove very effective on our 

test matrices. As well as the advantage that this method is easy 

to use we have the advantage that our computational complexity is 
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sul?5tp.Titially reduced from that of the 

cause o£ the additional zeros that the 

matrix I-BA. 

and TR methods be- 
q 

method creates in the 

When solving the linear system Ax = y 

n X n band-circulant matrix of band width 2p+l 

where A is an 

we have. 

C(DB^) ^ 2p, 

which is independent of q. In practice, however, an increase in 

q increases the work involved in finding DB^(A). In Table 2.4.1 

we give experimental results with this method for the test mat- 

rices and T4 of Appendix C. 

Table 2.4,1 

Results for the approximate inversion method DB^ applied 

to test matrices I2 and T4 of Appendix C. G is the iteration 

matrix of the associated iterative process. 

2q+l DB (T^) 

PCG) ECG) P(G) H(6) 

3 
5 
7 
9 

11 
13 

0.764 
0.444 
0.243 
0.131 
0.0703 
0.0376 

22 
7.4 
4.2 
3.0 
2.3 
1.8 

0.143 
0.0385 
0.0103 
0.00276 
0.000740 
0.000198 

1.0 
0.61 
0.44 
0.34 
0.28 
0.23 
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2.5. THE MIN-MAX (MM^) TECHNIQUE 

For the n x n band-circulant matrix A of band width 

2p+l with band elements (A ,...,a.,...>a ) we sedcthe n x n 
■ ^.p 0, p 

band-circulant matrix B of band width 2q+l with band elements 

(b ^,...,b^,...,b^) such that p(I-BA) is minimized. Let the 

first row of Q = I-BA be ,g^,...,g^_^). Then (Varga [is, 

p. 45, problem 13]) the n eigenvalues of G are given by 

^ - ^ (2.5.1) 

where = exp(2Trij/n) . As in the previous two sections, we have 

the doubly infinite sequences a and b associated with A and 

B respectively. We let c = a*b and (2.1.2) gives 

00 

H ^ ^£+nk ■ ‘^£+nk’ ° ^ ^ n-1 (2.5.2) 
k=-« 

where f is the identity sequence of section 2.3. Since 

(})? = 1, we have 
3 

= ^(j/n) - c(j/n) 

= 1 - b(j/n) a(j/n) 

(2.5.3) 

where " denotes the Fourier transform of Section 2.1. Therefore 

p(I-BA) = max{ I l-S(j/n)a(j/n) I :0 < j < n-1} (2.5.4) 

and our goal is to determine 

this maximum. 

As in Section 2.1, 

such that we minimize 

it is not our intention to tailor our 
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results to a specific n and so since we are interested in large 

linear systems we consider the problem of determining the b^’s 

to minimize 

II l-6(t)a(t)|| ^ . (2.5.5) 

We assume that R(.a) = a which makes d(t) and b(t) real 

valued functions, and we use an exchange algorithm to minimize 

1-|ao + 2 I a. cos 27rjt 
i j=i ^ 

bn + 2 

k=l 
b, cos 27Tkt 
k 

(2.5.6) 

As in previous cases we assume a(t) 0 for t E [0,1] . We have 

c(t) = a(t)b(t), and when we wish to consider c explicitly as a 

function of b^,b^,...,b^, we write c(b^,...,b^,t). Since for any 

integer f., cos 2Trf.(l-t) = cos 2Trf.t, we have c (t) = c(l-t) and 

the min-max approximation of c(t) to 1 on [0,Vj] gives us 

the same b ,...,b that we would get if we used the whole in- 

terval [0,1]. Our problem now is to determine b^,...,b^ to 

minimize 

l-P(t) sup |l-c(t) 
tsEo.Vj] 

(2.5.7) 

First we prove that an exchange method will give us the 

unique c(t) which satisfies this requirement. To accomplish 

this we require the following defintion (Meinardus [12, p. 16]). 

Definition 2.5.1. Let T be a compact set and let C(T) denote 

the space of all continuous real or complex valued functions on 



T. A linear subspace V of C(T) of finite dimension n is 

said to fulfill the Haar condition if for every f in V where 

f ^ 0, f vanishes at no more than n-1 points of T. 

Now CMeinardus [12, p. 16, pp. 105-111]) if the Haar 

condition is satisfied for a linear subspace V of the real 

space C[a,b] then for any f e C[a,b] there is a unique func- 

tion fy e V such that v = fy minimizes 

II f(t)-v(t3 

for all possible v e V. Furthermore fy can be found iteratively 

by an exchange method (which we will describe shortly). This mo- 

tivates the following theorem. 

Theorem 2.5.1. For the min-max problem of (2.5,7) the Haar condi- 

tion is satisfied. 

Proof. For this problem T = [0,^2! linear subspace V 

of C(T) has as a basis 

{^(t) cos 2Trkt: 0 < k < q} 

Our space V has dimension q+1 and if v e V then there exist 

numbers v, such that 
k 

q 
v(t) = I V ^(t) cos 2iTkt 

k=0 ^ 
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Now 

COS na = 2 cos(.n'-l)a cos a - cos(n-2)a (2.5.9) 

and hence there exist numbers such that 

q 
v(t) = ^(t) I P, (cos 27Tt)^ (2.5.10) 

k=0 ^ 

Since d(t) 0 for t e [0,1] , the number of zeros of v in 

[0,^] equals the number of zeros of 

^ P, (cos 2lTt)^ 
k=0 

in [0,^2]. But this is a polynomial of degree q in cos 2Trt 

and hence there are at most q values of cos 2TTt which make 

this zero. Since we are considering the interval [0,J^] this 

implies that there are at most q zeros of v in [0,i^] and 

the Haar condition is satisfied. 

Since we assumed R(a) = a, we are dealing with real 

valued functions on and because the Haar condition holds 

we can use an exchange algorithm to obtain the values of 

In employing an exchange method we approximate the con- 

tinuous min-max fit on [O,/^] required by the above discussion 

by a min-max fit on a set of equally spaced points in [0,1^]. 

This makes the programing of the exchange method easier and gives 

an accurate enough answer for our purposes. Cln our numerical 
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experiments we use 101 points including 0 and Vj.) 

Let the interval [0,^/2] he divided into N equal 

subintervals and let the points of division be 0 = t^, t^,...,tj^ 

- where if i < i then t. < t.. The value N is an initial 
. 1 J 

parameter for our exchange method and the N+1 points thus gen- 

erated remain fixed throughout the application of the algorithm. 

The first step of the exchange method used to solve for 

b^,...,b^ is to pick q+2 points from {. ,tj^} . (This re- 

quires that N > q+1.) We choose these points (starting with 

to = 0) as equally spaced as possible in the interval [0,/^], 

although the exchange algorithm would converge for any initial 

set of q+2 points from {t^ . ,tj^} . We denote these q+2 

points by t. ,...,t. and we determine b^,...,b^ such that 
0 q+1 

Cl(t) = c(b^,...,b^,t) approximates 1 on {t. ,...,t. } with 
° ^ ^0 ^q+1 

an error of constant magnitude and alternating sign on these q+2 

points. This is accomplished by solving the linear system 

1 - c (t. ) + (-l)^h = 0, 0 < u < q+1 (2.5.11) 
^ ^u 

for b^,...,b^, h where |h| is the magnitude of the error at 

t. ,... ,t. . Let 
11 1 
0 q+1 

n 
= (cos 2TTVt. ) an + 2 y a. cos 27rit. 

’ u ' j-1 *' u 

(2.5.12) 

for 0<v<q, 0<u< q+1. In matrix notation, the linear sys- 

tem C2.5.11) reads 
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0,0 

1,0 

2a 

2a 

0,1 

1,1 

3- . 1 n 2a - ' q+1,0 q+1,1 

2a. 1 
0, q 

2a, 
1, q 

2a , (-^1) 
q+l,q 

q+1 

■"a 

bi 
q 

(2.5.13) 

After solving this system of equations, we calculate 

✓V /S 

Cl (to) , • • . ,Ci (tj^) and locate a point in {t^ ,. . . ,tj^} where the 

maximum deviation of Qi (t) from 1 occurs. Call this point 

tp. If |l - Qi(tp)| < |h| then the process is finished and 

b^ = bQ,...,b^ ” ^q’ ll ^ ^i(tp)l > lh| then an exchange is 

made by the following standard technique* We augment the set 

t. ,...,t- by t and then discard one of the t. ,...,t. ^0 Vl P ^0 "q+1 
such that the deviations of ci(t) from 1 on the remaining q+2 

points alternate in sign. The above procedure is repeated on this 

new set of points. This i$ continued until a min-max fit of c(t) 

to 1 over the initial N+1 points is obtained. An APL program 

for executing this algorithm is given in Appendix A. 

We denote the min-max approximate inversion technique 

by and when we are solving the linear system Ax = y where 

A is an n x n band-circulant matrix of band width 2p+l, the 

computational complexity of our associated iterative process is 

C(.MM^) = 2(p+q) + 1. 
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In Tablq 2.5.1 we give experimental results for the MM^ method 

with matrices T2 and Ti^ of Appendix C. We comment that MM (T4) 

“ DB (T4) for q = 1,2,...,6, however this is not true for T2* 

No method can surpass the MM^ procedure when the only criterion 

is the spectral radius of the iteration matrix for the associated 

iterative process. However, compared to the DB^ method, the 

MM^ method creates many more nonzero terms in the iteration matrix. 

The relatively small computational complexity and the ease of im- 

plementation of the DB^ method favour it over the MM^ technique. 

Table 2.5.1 

Results with the MM^ approximate inversion technique 

applied to the matrices T2 and T4 of Appendix C. 6 is the 

iteration matrix of the associated iterative process. 

2q+l 

3 
5 
7 
9 

11 
13 

MM (T2) q ^ MM^(T4) 

P (G) 

0.620 
0.363 
0.199 
0.108 
0.0576 
0.0309 

H(G) 

19 
11 

8.1 
6.7 
6.0 
5.5 

P (G) 

0.143 
0.0384 
0.0103 
0.00276 
0.000739 
0.000198 

E(G) 

2.6 
2.2 
2.0 
1.9 
1.8 
1.8 

We end this section with a theorem giving a bound on 

p(I-BA) for certain symmetric n x n band-circulant matrices 

A when B is determined such that the expression in (2.5.5) is 

minimized. 
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Theorem 2.5.2, Let A be an n x n symmetric band-circulant 

matrix with band elements (a ,,a^....,a ) such that -p 0 p 

^(t) / 0 for t e [0,1] . If B is the n x n symmetric band- 

circulant matrix with band elements (b ,...,b^,...,b ) chosen 
^ -q' 0 q 

such that II 1 - 6(t)^Ct) is minimized, then 

P(I-BA) < 
2TTq 

1 + lidT (iw) ll~ i|a(t)|L. (2.5 

Proof. Let 6 be the doubly infinite sequence ...,0,3 ,..,B 
0 

...,3^,0,... with ^ j integers j and with 3^, 

0 < j < q chosen such that H — ^Ct)|l^ i5 minimized. 

Since, by (2.5.4), p(I-BA) is the maximum of |l - b(t)a(t) | 

1 
on < 0, 

n 
we have 

*' * n J ’ 

p(I-BA) < II 1 - b(t)a(t)l|^ 

< II 1 - g(t)act) 11^ 

<. l| a(t)|L \\j^- BCt)|| 

llai(i^lll. lUtoll 

where the last line follows from D. Jackson, see Meinardus [i2, 

p. 54]. 

2.6. SUMMARY OF TECHNIQUES FOR CIRCULANT MATRICES 

In Table 2.6.1, we compare the efforts for some of the 

iterative processes mentioned in this chapter applied to linear 

14) 
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systems invplving the matrices Tz and T4 of Appendix C. The 

DB technique is clearly the superior method for these test mat- 

rices even if one does not take into account its ease of implemen- 

tation compared to some of the other techniques such as the MM^ 

procedure. 

Table 2.6.1 

Comparison of efforts for some iterative processes 

applied to linear systems involving the matrices Jz and T4 

of Appendix C. 

Iterative method Effort with matrix indicated 

T2 T4 

J 
GS 
SOR 

TRq, 2q+l = 3 
5 
7 
9 

LSQ, 2q+l = 3 
^ 5 

7 
9 

DB , 2q+l = 5 
^ 5 

7 
9 

MM , 2q+l = 3 
^ 5 

7 
9 

diverges 
26 
15 

diverges 
diverges 

29 
14 
29 
15 
11 

8.2 
22 

7.4 
4,2 
3.0 
19 
11 

8.1 
6.7 

2.9 
1.8 
2.2 
3.1 
2.4 
2.1 
2.0 
2.9 
2.3 
2.1 
2.0 
1.0 
0.61 
0.44 
0.34 
2.6 
2.2 
2.0 
1.9 



CHAPTER 3 

APPROXIMATE INVERSES FOR CERTAIN BAND MATRICES 

3.1. INTRODUCTION AND NOTATION 

Our concern in this chapter is with nonsingular n x n 

band matrices whose inverses are well approximated by band mat- 

rices. We say that the n x n matrix A=(a. .),l<i<n, 
i,r ■ " 

i < j < n, is a band matrix of band width 2p+l if |i-j| > p 

implies . - 0, and our objective is to determine an n x n 

band matrix B= (b. .) of band width 2q+l such that B is in 

some sense an approximation to . For our purposes, it is ess- 

ential that p(I-BA) <1. It is also desirable that q be small 

compared to n, and that B be relatively easy to obtain. 

T T 
For I = BA = A B we must have 

M: b. = f., 1 < i < n 
11 1 “ - 

(3.1.1) 

where is the vector 

^i ^^i,i-s’'’* ^^i,i^‘*'^i,i+t^ 
(3.1.2) 

with s = min(q,i-l) and t - min(q,n-i); 

M. = 
1 

a. 
i-s,i-s-u 

a. 
i-s,1+t+V 

a. . ... a. 
i+t,i-s-u l+t,l+t+V 

(3.1.3) 

38 



(3.1.4) 

with u = min(p,i-s-l) and v = minCpin-i-t) and where 

with k = min(p+q,i-l), t - min(p+q,n-i) and with f. . = 1 if 

i = j and 0 otherwise for l<i<n, In general 

(3.1.1) represents a set of overdetermined systems of equations 

which cannot be satisfied exactly. However, as we demonstrate in 

the next two sections, in certain cases these systems can be 

approximately satisfied quite successfully. 

3.2. GENERALIZED LEAST-SQUARES TECHNIQUE 

For the matrix A of Section 3.1 we determine the n x n 

band matrix B of band width 2q+l such that the Euclidean norm 

of Q = I-BA is minimized. That is for G = (g. .) we minimize+ 

independently for 1 < i < n, where the f^, and were 

defined in Section 3.1. 

We comment that the above n minimization problems are 

local in nature in that b. is determined from entries in the 

band of A that occur in rows close to the i'th row. Of course 

(3.2.1) 

This is equivalent to minimizing 

(3.2.2) 

1 
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such local techniques are not capable of producing good approxi- 

mate inverses for all nonsingular band matrices. However, as ex- 

perimental results in this and the next section indicate, in cer- 

tain cases such methods work quite well. 

To solve the minimization problems of (3.2.2), we take 

partial derivatives of with respect to the components of 

and equate these derivatives to zero. This gives 

M.MTb. = M.f., 1 < i < n. (3.2.3) 
111 11 - - ^ ^ 

We observe from equations (2.3.6), (2.3.7) (2.3.8), and 

(3.2.3) that the LS^ method of Chapter 2 determines the n x n 

band-circulant approximate inverse B for the n x n band-cir- 

culant matrix A such that || I-BA|| ^ is minimized and no con- 

fusion results if we also denote the approximate inversion proce- 

dure of this section by LS . The procedure LS is now defined 
q q 

for both n X n band and n x n band-circulant matrices. 

Given the linear system Ax = y, where A is an n x n 

band matrix of band width 2p+l, we denote the least-squares 

approximate inverse of A by B = LS (A). The computational com- 
q 

plexity for the associated iterative method = (I-BA)x^”^^ 

+ By, m > 0, is, strictly speaking, 2(p+q) + 1 - ^P.~^. 

The term involving 1/n in this computational complexity decreases 

in importance as n becomes large. As our interest is in large 

linear systems, and as computational complexity is at best only 
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an estimate, we ignore terms in 1/n in our complexities. This 

prodtices a $omewhat high estiiftate o£ the computational complexity 

in our non-circulant test situations when n = 20, however, the 

results obtained are more in line with those expected for larger 

systems. Thus for the least-squares method we have 

C(LS ) = 2Cp+q) + 1. 
H 

In Table 3.2.1 we give experimental results with the LS^ method 

for the matrices T^, T3, and T5 of Appendix C. 

Table 3.2.1 

Results with the approximate inversion method LS^ 

applied to Tj, T3, and T5 of Appendix C. G is the iteration 

matrix of the associated iterative process. 

2q+l 

3 
5 
7 
9 

11 
13 

LS^(Ti) 

P CG) 

0.995 
0.977 
0.909 
0.741 
0.464 
0.206 

E(G) 

1800 
470 
140 
45 
22 
12 

LS^CTs) 

PCG) 

0.522 
0.112 
0.0223 
0.00551 
0.00143 
0.000382 

E(G) 

7.7 
3.2 
2.4 
2.1 
2.0 
1.9 

LS^(Ts) 

P(G) 

0.650 
0.298 
0.231 
0.118 
0.0422 
0.0215 

E(G) 

16 
7.4 
7.5 
6.1 
4.7 
4.4 

3.3. GENERALIZED DIAGONAL BLOCK TECHNIQUE 

The approximate inversion method DB^ of Chapter 2 is 

generalized in this section to a method for n x n band matrices. 
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Let A = (a. .) be an n x n band matrix of band width 

We seek an n x n band matrix B = (b. .) of band width 

such that for I-BA = Q = (g. .), |i~j| 1 implies g. 
1,3 1, 

We let b. be defined as in Section 3.1 and let 
1 

2p+l. 

2q+l 

. = 0. 
3 

D. 
1 

3- 3 
i-s,i-s ■’* i-s,i+t 

a. . ... a. 
i+t,i-s i+t,j+t 

(3.3.1) 

where as in Section 3.1, s = min(q,i-l) and t = min(q,n-i). 

Let 

d. = (f. . ,...,f. -,...,f. .J 
1 1,1-S 1,1 1,1+t 

(3.3.2) 

where the f. , 
1,3 

are defined as in Section 3.1. 

oTb. = d. , 1 < i < n. 
11 1 * 

We require that 

(3.3.3) 

This defines the generalized diagonal block technique and no con- 

fusion results if we symbolize thisprocess by DB^ and write 

B = DB (A). The DB method, like the LS method, is a local 
q q q 

approximate inversion procedure. 

When dealing with the linear system Ax = y where A is 

an n X n nonsingular band matrix of band width 2p+l, our com- 

putational complexity for the iterative process associated with 

the above approximate inversion technique is 

CCDB^) = 2p. 
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This expression for our computational complexity takes advantage 

of the central band of zeros in 1-BA. As with C(LS^), we ignore 

terms in l/n» In Table 3.3.1, we give experimental results with 

the DB^ technique applied to the matrices T^, T3, and T5 of 

Appendix C. 

Table 3.3.1 

Results with the approximate inversion method DB^ 

applied to T^, T3, and T5 of Appendix C. G is the iteration 

matrix of the associated iterative process. 

2q+l 

3 
5 
7 
9 

11 
13 

DB (Ti) 
<1 

P (G) 

0.914 
0.537 
0.298 
0.159 
0.0953 
0.0446 

H(G) 

67 
9.7 
5,0 
3.3 
2.6 
1.9 

0B^(T3) 

P CG) 

0.277 
0.0768 
0.0206 
0.00552 
0.00148 
0.000399 

E(G) 

1.6 
0.78 
0.52 
0.38 
0.31 
0.26 

DB^ds) 

P(G) 

0.784 
0.229 
0.206 
0.0958 
0.0370 
0.0333 

ECG) 

16 
2.7 
2.5 
1.7 
1.2 
1.2 

3.4. A GENERALIZATION OF THE SUCCESSIVE OVERRELAXATION ITERATIVE 
METHOD 

Unlike the Gauss-Seidel and the successive overrelaxa- 

tion iterative methods, the procedures we have developed so far 

do not use the available components of when finding 

^(m+l)^ Also, we have not made use of relaxation factors yet, 

and strictly speaking, our methods should only be compared with 
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the Jacobi method. In this section we extend our methods to pro- 

cedures which use available components of when finding 

^ and to procedures which employ a relaxation factor. 

Given the linear system Ax = y, where A is an n x n 

nonsingular band or band-circulant matrix, and the approximate in- 

version technique IT (IT is for example the technique 

for some q), we write B = ITCA) and have the associated itera- 

tive process 

^ Ct-BA)x*^'”^ + By, m > 0. (3.4.1) 

Let H = I^BA = n x n strictly lower 

triangular matrix and is an n x n upper triangular matrix. 

We start with (3.4.1) instead of the Jacobi method and parallel 

the development of the simultaneous overrelaxation. Gauss-Seidel, 

and successive overrelaxation methods from the Jacobi method. 

For the real number oi, the parallel to the simultaneous over- 

relaxation method is 

+ By) . (l-c.)x«, m > 0. (3.4.2) 

We denote this iterative process by JOR(IT). The parallel to 

the Gauss-Seidel method is 

(m.l) ^ . H X« . By, n. > 0 
L U 

or 
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^ By, m > 0. (3.4.3) 

We denote this iterative process by GS(IT). The parallel to the 

successive overrelaxation process is, for the real number to, 

^ ^ By) ^ (l-<.)x«, m > 0. 

This may be written as 

x(w+l) ,, (I-ujM )'hwH. + tl-u)I)x*^'"^ + to(I-u)H,)‘^By, m > 0. 
L U L 

(3.4.4) 

We denote this iterative process by SORCIT). For consistency we 

denote the iterative process of (3.4.1) by J(IT). As one would 

expect, for to = 1 the SOR(IT) process reduces to the GS(IT) 

process, 

Next we consider the special case where the n x n ma- 

trix A has nonzero diagonal elements. Let D be the n x n 

matrix which is zero off its diagonal and whose diagonal equals 

the diagonal of A. It follows that DBQ(A) = D and hence 

the J(DBQ), JOR(DBQ), GS(DBQ), and SOR(DBQ) methods are 

equivalent to the J, JOR, GS, and SOR methods respectively. 

(This does not hold in general for the LSQ technique.) 

The SOR(IT) method presents the added problem of de- 

terming the optimal relaxation factor The problems of the 

uniqueness of (A), and local minima for p((I-wH,) ^ (toH +(l-to)I)) 
D Li \Jl 

as a function of oo which are not absolute minima have not been 
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investigated. 

When A is a band matrix of band width 2p+l, we have 

the following computational complexities; 

C(GSCLS^)) = 2(p+q) + 1, 

CCSORCLS^)) = C(GS(LS^)) + 1, 

CCGSCDB )) = 2p, 
H 

• CCSORCDB^)) = C(GSCDB^)) +1. 

Again we neglect terms in 1/n in our computational complexities. 

Experimentally, we deal with both the GS(IT) and SOR(IT) methods. 

The former does not involve the determination of w, , however 
b 

once is found, the SORflT) method is, in certain cases, 

substantially superior to the GS(.IT) method. All our relaxation 

factors were determined experimentally. Experimental results with 

the GSCLS ) and GS(DB ) methods are given in Table 3.4.1 for 

the matrices Ti, T3, and T5 of Appendix C, and in Table 3.4.2 

results with the SOR(LS ) and SOR(DB ) methods are given for 

the same matrices. 

Table 3.4.1 

Results with the GSCLS ) and GS(DB ) iterative 

techniques for the matrices T^, T3, and T5 of Appendix C. 

G is the iteration matrix in each case. 



47 

Method Results with matrix indicated 

GSCLS ) 
q 

GS(DB^) 

+ 
O' 

3 
5 
7 
3 
5 
7 

T; 

PCG) 

0.995 
0.976 
0.904 
0.835 
0.280 
0.0890 

E(G) 

1800 
450 
130 
33 

4.7 
2.5 

T3 

P(G) 

0.484 
0.0736 
0.00580 
0.0769 
0.00589 
0.000425 

E(G) 

6.9 
2.7 
1.7 
0.78 
0.38 
0.26 

P(G) 

0.530 
0.138 
0.0979 
0.627 
0.0520 
0.0424 

E(G) 

11 
4.5 
4.7 
8.6 
1.4 
1.3 

Table 3.4.2 

Results with the S0R(LS^) and SOR(DB^) iterative 

techniques for the matrices T3, and T5 of Appendix C. 

G is the iteration matrix in each case and 03^ is the optimal 

relaxation factor determined experimentally to ±0.005. 

Method Results with matrix indicated 

+ 
cr E(G) 

T3 

P(G) E(G) E(G) 

SOR(LS^), 

SOR(DB^), 

2.195 
2.005 
1.825 
1.425 
1.085 
1.025 

0.988 
0.948 
0.815 
0.463 
0.0897 

830 
220 
68 

9.1 
2.9 

0.0273, 1.9 

1.310 
1.035 
1.005 
1.020 
1.0015 
1.00015 

0.306 
0.0390 
0.00506 
0.0208 
0.00150 
0.000150 

5.1 
2.5 
1.9 
0.77 
0.46 
0.34 

1.300 
1.055 
1.040 
1.230 
1.005 
1.010 

0.277 
0.0579 
0.0431 
0.370 
0.420 
0.0197 

6.2 
3.5 
3.8 
5.0 
1.6 
1.3 

3.5. HYBRID TECHNIQUES 

We observe that in certain cases it is to our advantage 

to vary from row to row the number of nonzero elements in our approxi- 

mate inverse. For example, the first and last few rows of the 
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inverse to Ti are the most difficult to approximate with a band 

matrix. This suggests that we use more nonzero elements in the 

first and last few rows of our approximate inverse than for the 

remaining rows. To illustrate, we might use DB (Tx) values 

for the first and last few rows of our approximate inverse and 

values from DB^ (Ti)> where q£ < qi for the remaining rows. 

We also have the option of using different approximate inversion 

techniques for various parts of our approximate inverse. We may, 

for example use the min-max approximate inversion technique on 

the circulant portion of Tx and another method for the ends of 

the band in Tx. We will say that an approximate inversion tech- 

nique is a hybrid technique if it uses a varying criterion to de- 

termine the elements of its approximate inverse. 

Hybrid techniques for getting an approximate inverse to 

a band matrix A provide more flexibility than the procedures 

mentioned so far. For efficient application of a hybrid technique, 

knowledge of the more ’’difficult” portions of A~^ must be avail- 

able. When applying a hybrid technique, we must decide on the 

techniques to be employed for the various portions of the inverse 

being created and we must decide on the number of nonzero elements 

to be allowed in each row of the approximate inverse. 

Experimental results indicate that for the matrices 

Tx and T3 of Appendix C we can take the exact inverse of a 

small Csay 8x8) version of these matrices and using data from 
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this small inverse C^-nd if desired data from one of the band-cir- 

culant approximate inversion methods of Chapter 2) we can patch 

together an approximate inverse to the given matrix. Good experi- 

mental results were obtained with such techniques. It is not our 

intention, however, to pursue in detail here the creation of hybrid 

approximate inversion techniques. 

3.6. SUMMARY OF TECHNIQUES FOR BAND MATRICES 

We emphasize that the techniques given in this chapter 

to produce an n x n band matrix B that acts as an approximate 

inverse to a given n x n band matrix A are intended for situa- 

'-1 
tions where A is well approximated by zero entries away from 

a central band. In Table 3.6.1 we compare the efforts for some 

of the iterative processes mentioned in this chapter applied to 

linear systems involving the matrices Tx, T3, and T5 of Appen- 

dix C. For these test matrices, the DB method stands out as 
q 

being the most useful. It is superior to the J, GS, SOR, and 

LS methods and it serves as a better basis for an extended 

method than does the LS^ procedure. 

Table 3.6.1 

Comparison of efforts for some iterative processes 

applied to linear systems involving the matrices Tx, T3, and 

T5 of Appendix C. 
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Iterative method Effort with matrix indicated 

Ti Ts 

J 
GS 
SOR 

LS , 2q+l = 3 
^ 5 

7 
DB , 2q+l = 3 

^ 5 
7 

GSCLS^), 2q+l = 3 

7 
GSCDB ), 2q+l = 3 

^ 5 
7 

SOR(LS^), 2q+l = 3 
3 
7 

SOR(DB^), 2q+l = 3 

7 

diverges 
57 
13 

1800 
470 
140 
67 

9.7 
5.0 

1800 
450 
130 
33 

4.7 
2.5 
830 
220 
68 

9.1 
2.9 
1.9 

3.1 
1.8 
2.4 
7.7 
3.2 
2.4 
1.6 
0.78 
0.52 

6.9 
2.7 
1.7 
0.78 
0.38 
0.26 
5.1 
2.5 
1.9 
0.77 
0.46 
0.34 

diverges 
12 
11 
16 

7.4 
7.5 
16 

2.7 
2.5 

11 
4.5 
4.7 
8.6 
1.4 
1.3 
6.2 
3.5 
3.8 

5.0 
1.6 
1.3 



CHAPTER 4 

TWO DIMENSIONAL APPROXIMATION PROBLEMS 

4,1. INTRODUCTION 

One application of the iterative processes considered so 

far occurs in the approximation of a function of one variable by 
n 

a spline S = J a. S. , where the S, are translates of the 
k=0 ^ 

basic piecewise cubic spline SQ of Appendix C. While this is 

useful, a more interesting problem is the approximation of functions 

of two variables. Our domain is now a region in the plane and our 

approximating function is a linear combination of translates of a 

two dimensional extension of SQ such as the one outlined in 

Appendix D. 

We begin our attack on the problem by constructing a 

mesh over our two dimensional region as in Figure 4.1.1. We re- 

quire that all the basic regions defined by this mesh be con- 

gruent parallelograms. If 6 - 90® then 

reg'lon of 
'interest 

51 
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we have a rectangular mesh and if further hi = h2 then we have 

a square mesh. In our numerical examples hi = h^ and 0 = 60®. 

Our mesh points are designated by ordered pairs of integers and 

we restrict our attention to sets of mesh points whose boundary 

points lie on a parallelogram in the plane. Thus for an irregular 

region we may be designating mesh points which are put to no dir- 

ect use. However, the inclusion of these points allows us to 

develop a simple and natural notation for the problem. Of course 

in practice such points are not included in computer programs where 

such inclusion would result in an undue waste of storage space. 

We designate the mesh point in the i'th row of points 

from the top and the j'th column (inclined at 0 degrees to the 

horizontal) of points from the left by (i,j). We let S. . de- 

note a basic two dimensional spline centered at the mesh point 

(i,j). To facilitate the following discussion, we let ^ denote 

the set of all mesh points (i,j) such that the spline S. . 

is being used in the given approximation problem. For example, in 

the least squares approximation problem, we use S. . if it has 
1,3 

nonzero values in the region in question. 

Given the function f defined on a region in the plane, 

our objective is to determine x. . for (i,j) c ^ such that 
1 # J 

I 
(i 

X. . S. . (4.1.1) 

approximates f over the region in question. It is convenient 

to consider the x. . as elements of the matrix 
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X = 

1,1 l,n 

X 
m,n 

(4.1.2) 

where if (i,j) i ^ we set x. . = 0. We let 

X„ - {X = (x. .):X is an m x n matrix and x. . = 0 Q. 1,3'' 1,1 

if Ci,j) ^ 

We observe that X is a subspace of the linear space of all 
u u 

m X n matrices. 

We assume that our approximation problems have unique 

solutions. This occurs, for example, in least-squares approxima- 

tion problems and in interpolation problems if sufficient bound- 

ary conditions are present as they are in the periodic 

problem of Section 4.6. The approximation problem of (4.1.1) may 

thus be stated in terms of the linear system 

AX = Y (4.1.3) 

where X,Y c X and A is a nonsingular linear operator from a 
X to X . 

We observe that if the splines ^ have small sup- 

port in the region under consideration then each j ^ 

for (i,j) e depends through A on only a few nearby elements 

of X (that is on elements x (k,f.) e 0. where the mesh 
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point (Xit) is geometrically near the meSh point (i,j)). In 

the next section we develop a convenient notation for linear opera- 

tors of this form. Linear operatorsoE this type arise in Section 

4.6 where we interpolate a doubly periodic function with a linear 

combination of quartic triangular splines. We observe that if the 

linear system of (4.1.3) were written in standard matrix notation, 

we would get a matrix which, although sparse, is neither band nor 

band-circulant in nature. 

4.2. NOTATION AND FUNDAMENTAL CONCEPTS 

Because of the limited overlap of elements in the set 

of translates of our basic two dimensional spline, each equation 

in (4.1.3) involves only elements in a relatively small portion of 

A. This observation leads to the following formulation. 

Let A = (A^ ^) be an m x n array, each of whose 

elements is a (2p+l) x (2p+l) matrix A. . given by 
^ j J 

A. 

aTPrP 

1.3 

a?>:P 
1.3 

0,0 
a. ^. 
i>3 

1,3 

0,p 
a. 
i>3 

i?'P 
_ 

(4.2.1) 



55 

We could be more general and not require each A. . to have the 
1, j 

same dimension, however, the above nOtatioli is sufficient for the 

purposes of this chapter. The array A, which we use to describe 

a higher dimensional analog of the band matrices considered in the 

previous chapter, can be used to define the linear operator of 

(4.1.3). Since only the x. .'s of X in (4.1.3) with 
^ >2 

(i,j) e ^ have any effect on an approximation problem under con- 

sideration, we assume for integers t, u with |t| <p, |u| <p, 

that a^*V =0 if Ci+t, i+u) is. We also assume that A. . 

is the (2p+l) X (2p+l) null matrix if (i,j) i Q. This last 

assumption assures that there is a one-to-one correspondence be- 

tween the elements y- - of Y for which (i,j) e S and the 

equations in the linear system (4.1.3). 

For simplicity in stating the following definition, we 

define ^ following occur: k < 1, k > m, 

Z < 1, t > n. 

Definition 4.2.1. For the m x n matrix X define AX to be 

the m X n matrix given by 

(AX). . = y y aT’? X. 
r=-p s=-p "’J 

(4.2.2) 

It follows that A is a linear operator from the space 

to the space , and the linear system (4.1.3) can be con- 

veniently given in this notation. Indeed, our definition of the 
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way A operates on an m x n matrix X e X is a higher di- 
0 u 

mensional analog of the multiplication of a band matrix and a 

vector. 

4.3. MULTIPLICATION OF THE LINEAR OPERATORS A = (A. .) AND 
B = CB. .) 

Let A = (A^ j) and B - (B^ be operators de- 

fined on the space X^ as in Section 4.2. Let each A. . be a 

(2p+l) X (2p+l) matrix and let each B. . be a (2q+l) x (2q+l) 
1,1 

matrix. We seek the linear operator C = (C^ such that for 

any m x n matrix X e X^^ 

CX = B(AX). (4.3.1) 

In terms of the previous section, the operator C can be re- 

presented by an m x n array of (2(p+q)+l) x (2(p+q)+l) matrices 

C. . following the format of (4.2.1) such that for integers t, 
^ > 1 

u with |t| < p+q, |u| < p+q, the elements c^*V of C. . are I I _ F n, 1 1 - r 

given by 

t ,u 

'ij 
I 

r=-q ?=-q 

^r,s g^t-r,u-s 
i,j i+r,j+s 

(4.3.2) 

where if |t-r| > p, or |u-s| > p or (i+r,j+s) { Q then 

a^ r,u s ^ ^ observe that if (i,i) i o then C. . is 

the (2(p+q)+l) x (2(p+q)+l) null matrix and if (i+t, j+u) { Q, 
then c^’V = 0. 

1,1 
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4.4. APPROXIMATE INVERSES FOR THE OPERATOR A = (^ij) 

We find it convenient to define our identity operator 

on X- by the m x n array I(r) = (I• *CT)) where each I. .(r) 
it 1, j 1, j 

is a (2r+l) x (2r+l) matrix in the format of (4.2.1) with ele- 

t u 
ments f^’^(r) given by 

1, if t - u = 0 and (i,j) e Q 

. (4.4.1) 
0, otherwise 

We are concerned with linear operators A = (A^ ^) 

whose inverses are well approximated by linear operators B = (B. .) 

where the dimensions of A. . and B. . are small compared to 

the dimensions of the array A. Specifically for the linear opera- 

tor A given by Definition 4.2.1, we seek a linear operator B 

of the form used in Section 4.3 such that BA = C = (C. .) in 
1,1 

some sense approximates I (p+q) . Ideally B = A ^ and 

^ ^ (p+q) , l<i<m,l<j<n. (4.4.2) 

It is not in general possible to satisfy these overdetermined 

systems exactly and we must be content with an approximate solu- 

tion. Of course the elements c^’^ of C. . automatically 
1,1 1,1 

satisfy (4.4.2) if (i+t, j+u) ^ and when determining B, the 

only pertinent equations arising from (4.4.2) are those for 

which (i+t, j+u) e 

Two approximate inversion techniques of the previous 
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chapter generalize nicely to two dimensional problems. First we 

consider a generalization of the least-squares technique. Let 

6 = (,G. 0 = I Cp+q) - BA. (We define this subtraction by 
^ > 3 

G. . = I. .Cp+q) " (BA). ..) We minimize CfoT the real case) 
^ >3 ^ >3 

QCB) = 
l,j ,t,u 

t,U |2\ H 
(4.4.3) 

t u 
where g.'. is an element of G. .. This is equivalent to min- 

1,3 1,3 ^ 

imizing 

Q. .(B) = tr([I .(p+q) - (BA) fp+q) _ (BA) ]) 
-*-»J 

(4.4.4) 

independently for each (i,j) e where tr denotes the trace 

operator. In a similar manner to the least-squares procedure of 

Chapter 3, the minimization problems of (4.4.4) are local in 

nature in that ^(B) depends only on ^ which is deter- 

mined from data in matrices in A = (A^ j) whose subscripts cor- 

respond to mesh points in Q that are geometrically near the 

mesh point (i,j) in the plane. 

The value of B. . that minimizes (4.4.4) is the least 
1,3 

-squares solution to the overdetermined linear system represented 

by 

(BA). . = 1. .Cp+q). 
^1,3 1,3 

After writing this overdetermined linear system in standard matrix 



nptation (which for reasons of space we do not do here), we see 

that our problem is handled by the procedures of Section 3.2. 

No ambiguity arisos if we denote this approximate inversion 

process by LS^ and write B = LS^(A). 

The diagonal block approximate inversion technique also 

generalizes to the linear operator A - (A. .). For this proce- 
1 j 3 

dure we require that 

t ,u ^t,u^ V 

1,1 1,1^ (BA): t,u 
1,1 

0 if |t| < q, |ul < q. (4.4.5) 

Determination of the B. . for (i,j) e according to the lin- 
1,1 

ear systems arising from (4.4.5) gives our approximate inverse 

B by the diagonal block technique for two dimensional problems. 

No confusion results if we denote this approximate inversion tech- 

nique by DB^ and write B = DB^CA). We observe that this pro- 

cedure, like our two dimensional extension of the least-squares 

technique, is a local technique. Another advantage of the DB^ 

technique is that this procedure supplies a great number of zero 

entries in the matrices of G = I - BA, and thus is capable of 

reducing the computational complexity from that of the LS^ tech- 

nique. We observe, however, that in certain cases it is more 

economical not to form the G. . but rather to apply A and B 
1,1 

individually in the iterative process 
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= X® - + BY, m > 0. 

This is the case for example vAien p = 2 and q = 1, however, 

if p = 1 and q = 1 it is more advantageous Cin terms of com- 

putational complexity) to form G. 

4.5. THE TWO DIMENSIONAL CIRCULANT PROBLEM 

We modify slightly the work of the previous sections to 

treat the two dimensional extension of the circulant problem 

handled in Chapter 2. This sets a background for the experimental 

work of the following section where we consider a two dimensional 

periodic interpolation problem. Again we consider linear operators 

from the space of all m x n matrices to the space of all m x n 

matrices. We represent our two dimensional extension of the band- 

circulant matrices of Chapter 2 by an m x n array A = (A^ 

of (2p+l) X (2p+l) matrices A. . following the format of 

(4.2.1). In the circulant case all the A^ ^ are equal. For 

the m X n matrix X = (x. .)j AX is the m x n matrix whose 

elements are defined by 

(AX), r ,s 
a. 

r=-p s=-p 
(E(X)) . 

^''p+i+r,p+;j+s 
(4.5.1) 

for 1 < i < m, 1 < j. < n, where ECX) is a (m+2p) x (n+2p) 

periodic extension of X with CE(X)) • . = x. 1 ^ i ^ m, 

1 < j < n, and with (E()()), « = (£()()). if k = t(mod m) and 
K t , U 
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£ = u(mod n). 

Ne?ct we consider multiplication of our two dimensional 

circulant operators. Let the m x n array B= (B. where 

each B. . is a (2q+l) x (2q+l) matrix, define a two dimensional 

circulant operator according to (4.5.1) and let C - BA. We 

observe that C may be represented by an m x n array of 

(2(p+q)+l) X (2(p+q)+l) matrices C. . with 
1 >1 

= y ^i,j ^ ^ 
r=-q s=-q 

,r,s t~r,u-s 
b.’. a. . * (4.5.2) 

where |t| < p+q, |u| < p+q and = 0 if it-r| > p or 
^ > 1 

u-s| > p. 

Following the previous section we have the least-squares 

approximate inversion method (denoted by LS ) which requires 

that j least-squares solution to the overdetermined 

system (BA). . = I. .(p+q)* We also have the diagonal block approx 
^ > 3 2-, 2 

imate inversion method (denoted by DB^) which requires that 

(BA) 
t ,u 

i J = 

1, if t=u=0 

0, otherwise 

for |t| < q, |ul < q. 

We list in Appendix F, FORTRAN programs for determin- 

ing DB (A) and LS (A) by the successive overrelaxation iterative 

technique. We comment that our algorithms for finding these 

apprpximate inverses make use of the notation developed in this 
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chapter. Thus we do not require explicit matrix statements of 

the linear systems whose solutions give our approximate inverses. 

In the next section, we make use of the following tech- 

nique to determine the spectral radius of two dimensional circu- 

lant linear operators. Let G = (G ) be an m x n array of 
5 Ul 

(,2p+l) X (2p+l) matrices G^ ^ following the format of (4.2.1), 

and let G define a circulant linear operator. We observe that 

r s 
the eigenvectors of G are the m x n matrices 0 ' , 1 < r < m, 

r s 
1 < s < n whose elements l<t<m, 1 <u<n are given 

r s 
by ^t'u ~ exp(2Trirt/m)exp(2trisu/n) . It follows that the eigen- 

values of G are given by 

s I g t ,u 
exp C2Tr irk/m) exp(27ris£/n) (4.5.3) 

and p (G) = max{ | ^ | *• 1 < r < m, 1 < s < n}. We consider the 

■ . , ' k,£ -k,-£ , 
symmetric case where ” g-j- ^ 

r,s 
0,0 

e + ^t,u 
k=l 

k,0 27rrk 
g^’ cos   
^t ,u m 

+ 2 
k=-p 

St!u 
rk 
m 

(4.5.4) 

A FORTRAN program to determine the spectral radius of a symmetric 

two dimensional circulant operator is given in Appendix E. 

4.6. APPLICATION TO A SPLINE INTERPOLATION PROBLEM 

We consider the mesh of Figure 4.1.1 with 0 = 60® and 
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hi = h2 = h and we consider a function f(x,y) defined on the 

plane in reference to the coordinate system of Figure 4.6.1. Our 

goal is to interpolate the function f(x,y) in the parallelogram 

Figure 4.6.1 

defined by (0,0), C0,b), (a,b), (a,0) in the special case when 

for all (x,y), 

f(x,y) = f(x+a,y) = f(x,y+b). (4.6.1) 

We further assume that for positive integers m, n; a = nh and 

b = mb. We then have an m x n matrix X of variables. The re- 

sulting linear system for the interpolation problem using translates 

of the basic spline of Appendix D is 

AX = Y 

where A = CA. 0 
^ i>3 

is the circulant linear operator with 
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L. 
12 

110 

1 6 1 

Oil 

(4.6.1) 

for l<i<m, l<j<n. Y is the m x n matrix formed by 

the values of f(x,y) on the mesh points of the m x n mesh 

under consideration. 

For the approximate inverse B to A, we consider the 

iterative process 

xCp+l) = + BY, P > 0. (4.6.2) 

For comparison purposes we determine p(I-BA) for various approx- 

imate inverses, and we test the process (4.6.2) for various values 

of B on an actual linear system. We make use of 

(P) « (p+1) 
6''^'' = max{ X. x^^^. I ; l<i<m, l<i<n}. 

(4.6.3) 

In Appendix G, we give a FORTRAN program for carrying out our two 

dimensional iterative procedures in the circulant case. 

Next we give some examples of approximate inverses for 

q = 1. With A defined by (4.6.1), the B. .of LSi(A) are 

given by 



65 

B. . = 

-0.245 -0.287 0.0959 

-0.287 2.25 -0.287 

0.0959 -0.287 -0.245 

(4.6.4) 

and the elements of DBi(A) are given by 

-0.282 -0.302 0.101 

-^0.302 2.30 -0.302 

0.101 -0.302 -0.282 

(4.6.5) 

The hexagonal shape of the basic spline under considera- 

tion suggests that we consider least-squares and diagonal block 

approximate inverses that reflect this geometric property of our 

basic spline. In particular for q = 1, we might consider the 

least-squares and diagonal block approximate inverses with 

b.^?^ = b-'-^ = 0. With this additional constraint, the elements 
1,1 1,1 

of the least-squares approximate inverse are 

-0.255 -0.255 0 

-0.255 

0 

2.225 -0.255 

-0.255 -0.255 

(4.6.6) 

and the elements of the diagonal block approximate inverse are 

-0.286 -0.286 0 

-0.286 2.286 -0.286 

0 -0.286 -0.286 

(4.6.7) 
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inverse 

by 

Fqr comparison purposes we also consider the quasi- 

B ~ CB. OJ l<i<m, l<j<n with each B. . given 
1. T r > j 

-1 

Q 

-1 0 

18 -1 

-1 -1 

(4.6.8) 

This is an exact inverse for the interpolation of functions of 

degree three or less (Frederickson [4]). 

In Table (4.6.1) we give experimental results with 

the LS^ and DB^ approximate inversion techniques. In Table 

C4.6.2) we give experimental results with the seven point approxi- 

mate inverses of (4.6.6) and (4.6.7), and with the quasi-inverse 

of (4.6.8). We observe that the quasi-inverse produces excellent 

results (p;^ = 2) for the well behaved Y of Table 4.6.2 in 

spite of the relatively high spectral radius of the associated 

I-BA, For comparison purposes, we comment that the iteration 

operator G = I-BA for the Jacobi iterative process (B = DBo(A)) 

has spectral radius one. 
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Table 4,6.1 

Results with the LSq and DBq approximate inversion 

techniques used with C4.6.2) to solve AX = Y where Y " (y* •) 
1, j 

is a 25 X 35 array given by y. . = sin 5?^ sin We 
1,3 25 35 

start with = Y , and pi is the smallest number such that 

5CP1) < 10"^. 

2q+l 

PCI-BA) 
0.237 
0.0649 
0.0163 

LSq 

Effort 
11 
12 
14 

Pi 
6 
4 
2 

PCI-BA) 
0.275 
0.0821 
0.0216 

DBq 

Effort 
11 

8.8 
6.9 

Pi 
7 
4 
3 

Table 4.6.2 

Results with the seven point least-squares approximate 

inverse, the seven point diagonal block approximate inverse and 

the quasi-inverse used with the iterative technique (4.6.2) to 

solve AX = Y. The definitions of X^^^, Y and pi are the 

same a? in the previous table. 

Approximate inverse 
seven point least-squares 
seven point diagonal block 
quasi-inverse 

p(I-BA) 
0.307 
0.429 
0.562 

Effort 
12 
14 
24 

Pi 
8 

10 
2 



CHAPTER 5 

SUIVMARY AND CONCLUSIONS 

5.1. THE CONCEPT OF AN APPROXIMATE INVERSE 

The concept of an approximate inverse and its relation- 

ship to the iterative process = G + k, m > 0, is 

central to the thesis. Conte and deBoor [2, pp. 162-163] com- 

ment that such iterative procedures are associated with finding 

a nonsingular matrix C such that G = I-C~^A, and k = C ^y. 

They further comment that the objective in such a procedure is to 

find a C such that C is easy to invert and G produces a 

good convergence rate for the above iterative process. This is 

closely connected with the concept of a splitting A = M-N where 

A and M are nonsingular n x n matrices. Splittings (which, 

as mentioned in Chapter 1, lead to the iterative processes 

j^C^+1) _ (I + M~^y) have been considered in detail 

(see Varga [15], Mangasarian [8], [9]). It appears, however, 

that the concept of an approximate inverse has not been fully ex- 

ploited in connection with iterative procedures. The comments in 

[2] can be extended to approximate inverses. That is, the 

objective is to find an approximation B to A ^ such that B 

is easy to obtain and G = 1-BA produces a good convergence rate 

in the associated iterative procedure. 

The approximate inversion procedures considered in this 

68 
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thesis are local procedures in the sense that they determine the 

i'th rovr in the approximate inverse & to A from entries in 

A that are ’’near" the i'th row of A. One application of such 

techniques, as demonstrated by the experimental results of pre- 

vious chapters, occurs in connection with least-squares approxima- 

tion by cubic splines. 

5.2. TWO DIMENSIONAL PROBLEMS 

The local procedures of Chapter 2 and Chapter 3 lead 

naturally to the consideration of local two dimensional procedures 

in Chapter 4. As experimental results indicate, these local tech- 

niques for getting an approximate inverse are highly effective 

for interpolation problems involving the two dimensional spline 

of Appendix D. Chapter 4 by no means covers the full extent of 

two dimensional local problems. The success with the two dimen- 

sional problem considered in Chapter 4 suggests further experi- 

mental work with other two dimensional linear operators (^fox ex- 

ample operators associated with different two dimensional splines). 

Further experimental work with non-circulant problems and with 

various regions in the plane is also suggested. The results with 

the extended methods of Chapter 3 suggest that similar extensions 

be studied for two dimensional approximate inverses. An inves- 

tigation of transform theory for the two dimensional circulant 

case and an extension of the MMq technique to the two dimensional 
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circulant problem is further suggested. 



APPENDIX A 

AN EXCHANGE ALGORITHM FOR THE mq, TECHNIQUE 

In this appendix, we give an APL function for finding 

the elements of MMq (A) when A is an n x n symmetric band- 

circulant matrix of band width 2p+l. Let A have band elements 

(a p,...,a^,.,.,a^) (with a^=a^ l<j< p). The function 

MINMAX of Figure A1 has arguments Q and A where Q = q and 

A is the vector (a^,a^,...ja^) and the output of MINMAX is the 

vector (bQ,b^,...,b ) where MMq (A) has band elements 

(b q>•••>^o * * *’’^q^’ include results in Figures A2 and A3 for 

1 < q < 6 for the matrices T2 (the vector SPLINE) and T4 

(the vector INT). The value of R in line [1] of MINMAX deter- 

mines the number of points in [0,1] on which the exchange al- 

gorithm is performed. In Figure A1 we use 2R+1 =201 points. 
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.SPLINE ■ 

07S5714 0.53169643 Q.053571423 

1 MINNAX SPLINE 

6480611 "0.7336419 

2 MINNAX SPLINE 

02G219 6- "1.1608087 0. 4 5050771 

3 MINNAX SPLINE 

1 531952 "1.30.93026 0.66096314 

4 MINNAX SPLINE 

1910373 "1.3552183 0.73012362 

C . 1 3 4 9 S 7 7 2 

5 MINNAX SPLINE 

2022601 ■ "1.368595 0.75081686 "O 

0.1 9 3 0 7 8 4 8 "O. 072393 4 7 

6 MINNAX SPLINE 

2 0 $ 2 3 9 "1 . 3 722 4 8 5 0 . 75670856 "0 

0.21170311 "0.10346356 0.038 

0. 000446^^28 57 

0 . 249 71 522 

0.3593425 

. 3 9 4 6 0 6 6 2 

.4050378 

798511 

Figure A2 
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Cll 
[2] 
[3] 
L 4 ] 
[5] 
[6] 
[7] 
L £ ] 
[9] 
CIO] 
C 11 ] 
[12] 
[13] 
[14] 
[15] 
[ 1 6 ] 
[17] 
[18] 
[19] 
[20] 
[21] 

[23] 
[24] 
[2 5] 
[26] 
[27] 
[.28] 
[29] 
[3 0] 
[31] 
[32] 
[33] 
[34] 
[35] 
[3 6] 
[37 ] 
[ 3 J 
[39] 
[ 4 0 ] 
[41] 
[42] 
[43] 
[44] 

V MINilAX A;TiAA;TTiTl ;I 
LI ;S iCl;Il iTP;SG;P;G;R; UP 
f"l 1 0 0 
T^O4((IR)TR) 
AA<-A [ 1 ] , 2x/1 [ 1 +A ( p/n - 1 ] 
I<-1 
y^(R+i)p1 

L Q : I-’<- F, 2 O o ( (.7 + 1 ) p J ) x T 

(I</"*e( pAA ) [ ( NiI-^Q+ 1 ) ) /L 0 
F-t-( (/^+1 ) , (i? + l ) )p 7 
O /i + , X |/ [] 1. p A ; 1 ( i7 + 1 ) ] 
TK-Tl l,(i7^//)xL(i? + l) +i^/7] 

LOO'PiCV^TxTl 

V\D F;6''C1 

Dl<-D[.C\n 
{/<-( 2o( n o . xo 0 , xNL) )x<^( ( LL+l)-, (NN+1) )pDl 

f/[ ;7//V + l]^“l*i7^i7 + l . 
GG l-*~( (/'i/iV +1 ) p 1) 
CC^CClliNNl 
LI^l-DxCC+ , xy[ ipCY7; i (.7 + 1) ] 
5^LJ[(7l^(tU-n[l]] 
->(( |6')<( |/7^C(;i[/7i7 + l]) )/L01 
TP^Tl,TZC1] 
IP^TPlG<-lTPl 
SG^i xLIlGVli ) , ( x^-) 
SG<-SGLGI 
P^iTlCl2=TP)/ipTP 
-^( (pP) >1 ) /LOl 
-^((P=l)v(P = pTP) ) /IP 

■^(iSGLP-ll=SGLPl ) ASGlP-vil^SGlP'} ))/Ll,L2 
P1:T1^( ( (P-2)pl) ,0, ( ( (p7’P)-P-l)pl) )/TP 

^LOOP 
L2:Tl^{(Pp1).0,(((pTP)-P+1)pl))/TP 

^LOOP 
LP: ->( (P = l ) AP^PTP) ) /P3 ,L4 
L3:->(P(7[1]=PG^[2])/L5 
Tl^"l^TP 
->L00P 

Lb: Tl<-{ 10 , ( ( (pT’P) - 2 )p 1 ) )/TP 
-*^L00F 

LA:-i-(SGLip TP) - 1 ] =SG [ p T’P ] ) /LG 
Ll^llLP 
->LG0P 

L6 : Ll-^( ( ( ( p .TP)-2)p 1 ) , 0 1)/TP 
•^LOOP 

LOliB^CCll].0.5xpp[1+1((pLP)-1)] 

nr 

Figure A1 
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II! T 

a n. 2 5 

1. MIN MAX INI 

1.1428571 ”0.28571429 

2 MJNMAX INI 

1.153 8 5 ■"0.30770005 0 . 0 7 6925012 

3 MimtAX IIJT 

1.1546392 ”0.30927835 (^08247 4 227 ’"O. 

4 MINMAX INI 

1. 15M-6 96 1 ”0 . 30939227 0 . 0823729 28 ”0. 

0.0055248619 

5 III mux INI 

1.1547003 ”0.30940061 0.082902126 ”0. 

0.0059215805 "0.0014803951 

6 MlUMAX INT 

1 . 1 5 4 7 C) 0 5 ” 0 . 3 0 9 4 (j 0 9 9 (1. 08290366 5 ” 0 . 

0.0059500943 "0.0015867047 0.000 

020618557 

022099449 

022205Q27 

022213673 

39667617 

figure A3 



APPENDIX B 

A PROGRAM POR RINDING SPECTRAL RADIUS 

For the n x n matrix G we give an APL program in 

Figure B1 which finds p (G) = lim ( 11 G”'^ |. LIMIT must be de- 
xa^oo 

fined before the program is executed and it represents the allow- 

able deviation between successive approximations to p(G). The 

algorithm uses values of m from the sequence 1,2,4,8,16,... . 

We also include in Figure B1 the result of using EIGG on the in- 

dicated test matrix. 
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V R^EIGG G;J’,CiL 
Cll i?*^l+J 

C 2 ] LO : G^G'^ f / + / I 
[3] ->(( I (R^RxC*i2*J) -DELIMIT) /n 
[41 G^G+,>^G 
[5l -^L0+ Qx L ~^R + 0 e/ -^el + 1 

V 

IE 8 
LI HI T 

'3T 
6 
G 
7 
F, 

2 1 
TEST 

05300653 

Figure B1 



APPENDIX C 

TEST MATRICES 

Four of our test matrices arise in connection with 

one dimensional spline approximation problems. The piecewise 

cubic spline defined on IR and with support [-2,2] is given by 

B(x) 

^ (X+2)3, X e [-2,-1) 

j + j (x+1) + j (x+l)2 _ 1 (x+l)3, X e [-1,0) 

< , . , , • CCl) 
j + j (1-x) + J Cl-x)2 - J (1-x)^, X e [0,1) 

j C2-x)3, X e [1,2] 

We consider the problem of least-squares approximation of the 

function f : [0,1] -> IR by a linear combination of the basic 

splines S, (x) = B I ^ ~ \ where h = ^ ; x, = kh, -1 < k < N+1. 

^ N+l' h » JN K 

We let g(x) = J aj^Sj^(x) and seek the which minimize 

.1 k=-l 

(g(x)-f (x))2dx. This produces the linear system 

0 

N+l 

I a < S , S > = <£,S.>, -1 1 j ^ N+l (C2) 

k=-l 

where <Sj = S^ (x) Sj^ (x) dx and <f,S^. > = f(x)S Cx)dx. 
0 3 

Since |j-k| > 3 implies = 0, a band matrix arises. 

(For a more detailed consideration of cubic spline approximation 

problems see Curtis [3], Powell [13].) We let n = N+3 and 
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denote the n x n matrix associated with the above linear system 

by A* The 3x3 upper left block of A is given by 

0.008928571429 
0.05758928571 
0.02678571429 

0.05758928571 
0.5392857143 
0.4741071429 

0.02678571429 
0.4741071429 
1.069642857 

The lower right 3x3 block of A is formed from the above 

array by first interchanging the first and last rows and then in- 

terchanging the first and last columns. The matrix A is symmet 

ric and the non-zero row elements from the diagonal out in rows 

4 to N-3 are h times 

1.078571429, 0.5316964286, 0.05357142857, 0.0004464285714 . 

Since the factor h occurs in all terms in the left hand side 

of the equations (C2), we may divide these equations by h and 

produce the matrix ^A. Our test matrix Ti is 1. A for n = 20 
h h 

Our test matrix T2 is the 20 x 20 band-circulant matrix 

(Definition 2.1.1) whose fourth row is identical to the fourth 

row of Ti . 

As well as the least-squares approximation problem, we 

consider a cubic spline interpolation problem. Let = f, 

0 < k < N and let f'(0) = Si, f'(1) = S2 and again let 
’N+1 

g(x) = 2 ^k^k^^^ * seek the a^’s such that f^ = g(x^). 
k=-l 

0 5 k < N and g' (0) = s^, g’ (1) = S2. This gives the linear 

system 
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4E ^-1 4E 
3 
4 

i-a. ^ +a. + ia. _ =f-j 0< j< N 
4 3 4 j+1 j " •. . J - 

■ 4h ^-1 4h ^+1 " ^2 

which gives rise to the (N+3) x (N+3) matrix (see also 

Kanraierer ancj Reddien [7]) 

1 
4 

0 

0 

1 

4 
1 

0 

0 

0 

0 

0 

0 

P 

1 

0 

We denote this matrix for the case N+3 = 20 by T3. Our test 

matrix T4 is the 20 x 20 band--circulant matrix whose second 

row is identical to the second row of T3. 

We denote by T5 the 20 x 20 band matrix constructed 

n 2 19 207 in the following manner. Let 

let a(s) denote an element picked randomly from S, The main 

diagonal of T5 has elements of the form 0.6 + 0.6 a(s), the 

diagonals immediately above and below the main diagonal have 

elements of the form 0.4 + 0.3 a(s), and the second diagonals 



80 

above and below the main diagonal have elements of the form 

0.1 + 0.1 oi(S)* The remaining elements of T5 are all zeros, In 

Table Cl we list some experimental results with our test matrices. 

Table Cl 

Experimental results with some of the standard methods 

of Chapter 1 for the test matrices of Appendix C. G is the 

iteration matrix in each case and was found experimentally 

to 

where n is the Order of the system under consideration. 

fO.005. All computational complexities ignore terms in — 

Test matrix 

Ti 
Tz 
T3 
T4 
T5 

Iterative process 

Jacobi 

P(G) 

1.28 
1.09 
0.526 
0,500 
1.38 

f(G) 

diverges 
diverges 

3.1 
2.9 

diverges 

Gauss-Seidel 

P(G) 

0.900 
0.796 
0.333 
0.321 
0.720 

E(G) 

57 
26 

1.8 
1.8 
12 

successive overrelaxation 

^b 

1.460 
1,340 
1.045 
1.075 
1.210 

P(G) 

0.578 
0.618 
0.280 
0.255 
0.632 

E(G) 

13 
15 

2.4 
2.2 
11 



APPENDIX D 

A TWO DIMENSIONAL SPLINE 

In Chapter 4, we make use o£ a two dimensional spline 

defined on a hexagonal region in the plane. For a detailed 

description of such splines see Frederickson [4]. In refer- 

ence to Figure D1, oiir basic triangular spline has the value 

at A and the value at each of B,C,D,E,F and G, and 

vanishes outside the hexagonal region of Figure D1. All the 

triangles in Figure D1 are equilateral. 
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APPENDIX E 

A FORTRAN PROGRAM'’*FOR SPECTRAL RADIUS IN THE TWO 
DIMENSIONAL CIRCULANT CASE 

The subroutine SPECRA of Figure El finds the spectral 

radius of the two dimensional circulant operator represented, 

in the notation of Chapter 4, by the m x n array G = (G. .) 
^ »3 

of (2p+l) X (2p+l) matrices G. .. This subroutine applies 

to the cases where j The argument G in the 

subroutine is one of the matrices G. IG is 2p+l, M is 

m, N is n, and RAD is the spectral radius determined by 

the subroutine. 

t designed for compilation under WATFIV. 
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100 

2 

3 

1 

SUHMfjUT I Mh SME CR A ( G » I G , M , N , RAD ) 
U I Mb; NS UJM G ( I G , I G ) 
RAD =() • 
IGG=( IG-1 )/2+ 1 
R M - M 
RN=N 
I C,i C l 1 — I (.I (? + 1 
MM = I M + 1 ) / 2 
CALL H SRR A D ( G » I G , R M ♦ RN , I C^G 1 , MM , M , 1 , N , R AD ) 
CALL R SR R A I) ( G * I G » R M * R Nl » I (t C.i 1 « 1 » M M f I'NJ * N * R A [) ) 
v; R I T>. ( n , 1 0 (J ) R A D 
bURNAT('O',’SRECTRAL RADIUS GF I-rtA IS '^EIS.R) 
RETURN! 
END 

SURRUUT I NE HSRR AD ( G * I * RM , RNf , I (,G 1 , L 1 1 * L 1 2 * L2 1 * L22 f R 
D I MENS IUM G( IG. IG J 
RI 2 2H31BS3 
DU 1 K 1 = L1 1 » L12 
DU 1 K2=L21,L22 
RK1=K 1 
RK2 =K2 
I G C i - I (i C:. 1 - 1 

1 C.IC’) » I G C-5 ) 

ss-o • 
DfJ 2 I R = I GG 1 , I G 
R I R = 1 R - I (n G 
SS = SS + G ( I R , I GG ) *CUS( R I 2=?RK I'-LR TR/RM ) 
S = S+2^'SS 
sss=u. 
DU 3 1R= 1 , I G 
DO 3 IS=1GG1,IG 
R I R.= il^-I GG 
R I S = iS-IGG 
SSS = SSS+G( IRTIS) -:=Cf]S ( P I 2''.'^ ( RK 1 ^R I R/RM-f RK2o=R I b/RN ) ) 
S = S + 2?:^SSS 
S = A H S ( S ) 
I F ( S . LT • R A r; ) GO TU 1 
RAD = b 
CUNT 1NUb 
RETURN 
END 

Figure El 



APPENDIX F 

FORTRAN PROGRAMSi* FOR piNDING THE LSq AND DBq APPROXIMATE 
INVERSES IN THE TWO DIMENSIONAL CIRCULANT CASE 

In Figure FI, we list a FORTRAN program for finding 

DBq CA). 

SUBROUTINE f)BQ( A , O , G , R! 1 , I A , IB , I G ) 
D I MEN S I CDrJ A ( I A , I A ) , B ( I B , I 0 ) * G ( I G t I G ) * R H ( I B , I B ) 
WRITE(6,102) 

102 FORMAT (* 0THE GRERATOR AM 
CALL OUTFHJT ( A , I A , I A , 1 , 1 ) 
DO 6 I=1♦IB 
DO 6 

6 RH(I,J)=0. 
IRH=(IB-1)/2+1 
RH(IRH,IRH)=1• 
W= 1 • 
CALL SO R ( A , B ♦ R1 I, I A , I O , V.' ) 
WR I TE( 6, 100) 

100 FORMAT (» 0 M • THE ORERATOR BM 
CALL OUTFHJT ( Bvl G* IB* 1 * 1 ) 
CALL MULT( B,A,C, I A, IB * IG) 
DO 1 I = 1 , I G 
DU 1 J = 1 , I G 

1 G(I,J)=-G(I,J) 
I GG={ IG-1 ) /2+ 1 
G{IGG,IGG)=1+G(IGG♦IGG) 
ViRITE ( fS, 1 01 ) 

10 1 FURMATC * 0 • , ' THE ORERATOR G ISM 
CALL OUTFMT ( G , I C , IG , 1 , 1 ) 
RETURN 
END ■ 

Figure FI 

The argument A is an element of the array defining the cir- 

culant operator whose approximate inverse is being determined, 

and the argument B is an element of that inverse. The argu- 

ment G is an element of the iteration operator associated with 

the diagonal block approximate inverse. The argument RH is 

t designed for compilation under WATFIV 
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used to create the right hand side of the linear sy'stem associated 

with the diagonal block approximate inversion technique. The 

arguments lA, IB, and IG are the dimensions of A, B, and 

G respectively. The subroutines MULT nad OUTPUT are described 

in Appendix G. 

In Figure F2, we list a FORTRAN program for finding 

LSq (A). The arguments A,B,G, lA, IB, IG are the same as above. 

The arguments ATA, RHSQ, and HATA are matrices created and 

used in the subroutine LSq. IHATA and lATA are the dimensions 

of HATA and ATA respectively and they are defined by 

IHATA = 3*IA - 2 and lATA = 2*IA - 1 in the calling program. 

Figure F3 contains a subroutine to solve by successive 

overrelaxation the linear systems created by DBQ and LSQ. 

Our LSQ and DBQ subroutines use a relaxation factor of 1, 

however this is easily modified. 
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S U R n U T I M [: L S (^ ( A * n ♦ v.j » A T A » RI KJ O « 1 i A T A * I A T A » I A y I i.i « lATA ) 
C) I MENS I nrj A ( I A , I A ) , tu I r. , I [' ) * G ( I G , I G ) 
D I r'lENS I GN AT A ( I ATA ■» I AT A ) t f^I ISQ ( I G * I B ) 
[> If'^ENSI GM HAT A( I I '.ATA , II 1 AT A ) 
I A 1=2*I A-1 
DG a I = 1 , IB 
DO 8 J=1 , I 3 

8 RHSO ( I , J ) =-0* 
DG 9 I=1,IHATA 
DG 9 J=1 , I HAT A 

9 HATA(I*J)=0. 
DG 5 I = I A, I A 1 
DO 5 J=I A♦ I A 1 

5 HATA(I,J)=A(I-I A-: 1 * J-I A+ 1 ) 
DG 1 I=1,IATA 
DG 1 J=1,IATA 
S = 0. 
DG 2 K=1 , I A 
DG 2 L= 1 , I A 

2 S=S+A(K,L )*HATA( I-1+K,J-1+L) 
1 ATA(I,J)=S 

LT=( IA~1 ) /2+1 
IBT=(IR-1)/2+l 
DG 3 1 = 1, IB 
DO 3 J=1,IB 
I 1 = IBT-I+LT 
I 2 = 1BT-J + LT 
I F ( I 1 . LT. 1 .GR. I 1 .GT . I A, GP^ . I 2. LT. 1 . OR . I 2 .GT. I A ) GG TG 3 
RHSO( I ,J ) =A( 11,12) 

3 CONTirJUE 
W = 1 . 
WRITE(6,102) 

102 FORMAT(*0THE OPERATOR A») 
CALL GUTF’UT( A , I A , I A , 1 , 1 ) 
CALL SGR( ATA,B,R!1GQ, I ATA, I O , VV ) 
V;RI TE ( 6, 1 00 ) 

100 FGRMAT(•0•,•THE OPERATOR B») 
CALL GUTF^UT ( B , I B , ICi , 1 , 1 ) 
CALL MULT( B,A,G, I A, IG, IG) 
DO 4 I =. 1 , I G 
DU 4 J= 1 , I G 

4 G( I ,J )=-G( I , J ) 
IGG={IG-1)/2+1 
G( I GG , I GG ) = 1 +G ( I GG , I GG ) 
WR T TE-( 5,101) 

101 FORMAT(»0THE OPERATOR G») 
CALL OUTPUT(G,IG,IG,1,1) 
RETURN 
END 

Figure F2 
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SURROUTirJt: SOR ( A * * F^l ! * I A * I G < W ) 
INTEGLER CTR/1/ 

C) I F^ENS I nrj A ( I A , I A ) ,i ( I n , I G ) . RH ( I B , I B ) 
DIHENSIf]N X 1 ( IB * iB ) , AG (10,10) ,RI IM ( 13,13) 
REAL X1/169-0./ 
DC.) 3 0 I = 1 , I B 
DC) 3 0 J=1,IB 

3 0 B( I ,J ) = 0. 
LT=(IA~1)/2+1 
DO 10 I = 1 , I A 
DU10J=1,IA 

10 AM < I ,J)=-A( I ,J)/A(LT,LT) 
AM(LT,LT)=0. 
DO 11 I - 1 , IB 
DO 11 J= 1 , IB 

11 RHM( I ,J)=RH( I , J )/A(LT,LT) 
5 0 DO 1 J = 1 , I B 

DO I 1=1,IB 
S=0 • 
DO 2 K= 1 , I B 
DC) 2 L= 1 , I B 
I 1=LT+I-K 
I2=LT+J“L 
IF( II,LT, 1,0R,I 1,GT, lA,0R,I2,LT,1,0R,I2,GT,IA) GO 
S = S + B ( K , L ) ^'AM ( 11,12) 

2 CONTINUE 
B( I , J ) = ( s+Ri-iM ( I, J ) ) -:nv +0 ( I, J ) ^ ( 1 ~w ) 

1 CONTINUE 
T-0 , 
DO 20 1=1,IB 
DO 20 J=1,IB 
TT--AB.5( X 1 ( I , J )-B( I , J ) ) 
IF(TT,LE,T) GO TO 20 
T = TT 

20 CONTINUE 
IF{ r,LE,l.OE-6) CO TO 60 
DU 40 1=1,IB 
DO 40 J=1,IB 

4 0 X 1 ( I ,J )=B( I ,J ) 
CTR=CTR+1 
IF(CTR,LE,100) GO TO 50 

60 V,'R I TE ( 6, 5 00 ) CTR 
500 FORMAT{»O*,*NO , OF ITERATIONS FOR S,0,R, IS', 13) 

RETURN 
END 

TO 2 

Figure F3 



APPENDIX G 

FORTRAN PROGRAMS*'FOR TWO DIMENSIONAL ITERATIVE PROCESSES IN THE 
CIRCULANT CASE 

This appendix contains FORTRAN programs for performing 

iterative processes based on approximate inverses in the two 

dimensional circulant case. Figure G1 contains the main program. 

In this example the LSi approximate inversion technique is be- 

ing employed to solve iteratively the problem represented in 

Table 4.6.1. Very little modification is required to employ the 

diagonal block technique. 

In the next few figures we list the subroutines used in 

connection with our two dimensional iterative processes. Figure 

G2 contains the subroutine EXTEND which performs the periodic 

extension of a two dimensional array according to the descrip- 

tion associated with (4.5.1). 

The subroutine MULT of Figure G3 determines B A 

according to (4.5.2), and the subroutine LINOP of Figure G3 

finds A X according to (4.5.1). 

The subroutine ITERAT of Figure G4 performs the itera- 

tion = 6 X^^^ + BY, and the subroutine MAXAB of 

Figure G4 determines according to (4.6.3). 

t designed for compilation under WATFIV. 
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G Tlvn D I ME£rJ51 DNAL ITCIRATIVC PF?OCIISSLS 
INTEGER F» 
t)II1EMSI0r.J X 1 ( 29,39 ) , X2 ( 29,39 ) ,3Y (29,39) 
D I MErj S I GN A { 3,3 ) , 3 ( 3,3 ) , G ( 3,5 ) , RM (3,3) 
DI MErJSinrJ AT A ( 7,7 ) , ! !ATA ( 7,7) , R1 ISO ( 7,7 ) 

EPSIL=1.OE-7 
MP =29 
NP = 39 
I A = 3 
I B=3 
IG = 5 
I MATA =3^- I A-2 
IATA = 2^I A-1 
P=(IG-1)/2 
LT=P+1 
MP 1 =MP-F> 
NP 1 =NP-f^ 
CALL TEST ( X 1 ,MP, r^r ,P ) 
CALL EXTEND( X 1 , r.P ,r;P ,P ) 
WR I TE ( 6, ^^5 0 ) 

450 FORMAT(*0»,*THE ARRAY Y IS*) 
CALL OUTPUT ( X 1 ,f.*.P ,TJP , F^ , C ) 
RE AFV, ( ( A ( I , J ) , I = 1 , I A ) , J = 1 , I A ) 
CALL LSO ( A, B , G , ATA , Rl :SG , I lATA , II lATA , I A , IB, IG , I ATA ) 
CALL L INC:r»( X 1 , BY , R , MP , NP , IB ) 

8 00 CALL I TERAT ( BY , X 1 , X2 , G, MP , r^P , I G ) 
ICC = 2 
CALL MAXAB(X1,X2,MP,NP,P,S) 
WfUTE ( 6, ' 00 ) S 

4 00 FORMAT (» O SUP .NORM ( X ( M+1 )-X ( M ) ) = *,E15.S) 
IF(S,LT•EPSIL) GO TO 900 
CALL I TE FJ AT ( BY , X 2 , X 1 , G , MP , NP , I G ) 
I CC= 1 
CALL MAX / :5( X 1 , X2 ,f’.P ,NP, P, S ) 
VJR ITE ( 6,400) S 
IF(S.LT.EPSIL) GO TO 900 
GO TO 800 

9 00 Vm ITE( 6,700) 
700 FORMAT (' 0',* SOLUT inrj IS*) 

CALL TEST( BY,MP,r^P,P ) 
GO TO (35,3 6) ,ICC 

35 CALL OUTFHjT ( X 1 ,MP ,r^P , P, 0 ) 
CALL EXTEND ( X 1 , MP , TJP ,P ) 
C ALL LI NOP(XI,X2,A,MP,NP, I A) 
CALL MAX A B ( BY , X 2 , MP , TJP , P , S ) 
ViRI TE ( 6,703 ) S 

703 FORMAT('O*,*MAX ERROR IN TESTED PRODUCT IS *,E15.8) 
CALL SPECRA( G, IC,r:Pl-P,rjPl-P ,RAD ) 
GO TO 38 

36 CALL OUTF>UT ( X2 ,MP ,r.'P, P, 0 ) 
CALL EXTEND ( X2,MP,NP,F’ ) 
CALL LI r J f iF' ( X 2 , X 1 , A , *.F" , N P , I A ) 
CALL MAXAfU B.Y , X. 1 , MP , NP , F' , S ) 
V/R I TE ( 6,70 3 ) S 
CALL SPECRA(G,I G , 1 ~F^ , r 4 P 1 ““ P , R A D ) 

3 8 ST()P 
E N D 

Figure G1 
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sufnH)UTirjti X ,r.n,r.!P*p ) 
DlMEMSinrj x(MP*Nr') 
INTF.GFEF^ F’ 

N=:NP-;>=:iP 
JRl=NP~P 
JF^2 = JP 1 + 1 
LT=P+1 
I Fi 1 =MP-P 
I B2=i in + i 
DO 1 1=1fP 
DO 1 J=1,P 

1 x( I, j ) = x ( I +n , j-} o ) 
DO 2 I=1*P 
DO 2 J = LT,JF?1 

2 X( 1 ,J )=X( I+M, J ) 
DO 3 I=1,P 
DO 3 J = JF>2,NP 

3 X( I , J)=X( I+M,J-P) 
DO 4 I=LT, I tn 
DO 4 J=Jf?2»NP 

4 X( I , J ) =X( I ,J-N) 
DO 5 I=If^2,MP 
DO 5 J=JR2,NP 

5 X( I ♦ J ) = X ( I , J-T4) 
DO 6 I = ie^2*MP 
DO 6 J=LT,JFM 

6 X( I ,J )=X( I-M,J ) 
DO 7 1=1(52, MP 
DO 7 J=1,P 

7 X( i , J ) = X( I“M♦J + O) 
DO 8 I =LT , I E5 1 
DO a J=1,P 

8 X(I,J)=X(I,J+N) 
RETURN 
ENf 

Figure G2 



SURROUT irJE ^'ULT ( C , A , C , I A . I 2 . I C ) 
D I ME N S I OfJ A ( I A , IA ) • R ( I 0 • I R ) , C ( I C • I C ) 
DO 10 I = 1 t 1C 
DP 10 J= 1 • IC 
C( I •J )=0. 
LT = ( I A-1 )V2+ 1 
MR=IC-LT+l 
DP 1 I=LT,MR 
DO 1 J-LTWv1R 
DP 1 K= 1 , I A 
DO 1 L=:l ♦ I A 
C( I -LT + K , J-LT+L)=C( I -LT + K , J-LT+L ) +B( I-LT+1 , J-LT + 1 ) A ( K * L ) 
RETURrJ 
END 

SUBROUT I ME L I NCR ( X • Y , A , MR , , I A ) 
DiriENSIOrj A( lA, lA ) ,X(MR.MP) ,Y(MP»NP) 
INTEGER P,P1 
P=(IA-1)/a 
P1=P+1 
I2=MP-P 
J2=NP-P 
DO 1 1= PI, I 2 
DO 1 J=P1*J2 
S=0. 
DO 2 K=1 ,I A 
DP 2 E=1, I A 
S = S + A ( K ,L ) ( I +K-P 1 , J + L-P 1 ) 
Y(I,J)=S 
RETURN 
END 

Figure G3 
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SUBROUTIME I TER AT { [3 Y * X 1 » * G , MP , TslP , I G ) 
DI MENS I c)^) BY ( KP, r;p ) , X 1 ( nr, NP ) # x 2 ( MP , NP ) ♦ G ( i G * i G > 
INTEGER P 
p-(IG-1)/2 
LT=P-»-l 
I e3-MP-p 
JF^ =NP-P 
CALL EXTEND ( X 1 *nP* rjP , P ) 
CALL L I NOP (XI, X 2 , G , MP , .NP , I G ) 
DC3 1 I=LT,IB 
DO 1 J = LT,Jf? 

1 X 2 ( I , J ) =n Y ( I , J ) + X2 < I , J ) 
RETURN 
ENf^ 

SUBROUTINE MAXAOC X, Y ,nP,rjP,P,S ) 
DIMENSIOrj X ( MP,NP) ,Y( NP , rjP ) 
INTEGER P 
jR = rjn-F^ 
IB=MP-P 
LT-P+1 
S=ABS(X(LT,LT)-YCLT,LT)) 
DO 1 I=LT,IB 
DU 1 J = LT,JFr 
T=AE3S ( X { I , J )-Y ( I , J ) ) 
IF(^.LE.S) GO TO 1 
S=T 

1 CONTINUE 
RETURN 
END 

Figure G4 
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The eubtoutine TEST of Figure G5 determines, according 

to statetnent 1, the elements of Y for testing an iterative 

process on Ax = Y. 

SUBROUT INE TEST ( V .NP.rjP ,P ) 
DIMENSION Y(MP,NP) 
INTEGER F> 
JR-NP-P 
I B=MP-P- 
LT=P+1 ' 
RN-NP-25!'F> 

RM=MP-2':'P 
PI = 3. 141S92 65 
DO 1 I=LT,IB 
RI=I-F> 
DO 1 J=LT,JR 
RJrzJ-p 

1 Y ( I , J ) = SIN ( 2^'PI ^:'RI/RM ) -'I^S irj ( 2'i=PI ^'R J/RN ) 
RETURN ' 
END 

Figure G5 

Finally Figure G6 contains an output subroutine for 

printing either on m x n matrix or the matrix X given E(X) 

where ECX) was defined in Section 4.5. The program of Figure 

G1 also uses subroutines from Appendix E and Appendix F. 
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50 1 
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SURROUTINE OUTPUT( X,MP,NP * P * MOD) 
DIMENSION X(MP*NP) 
INTEGER P,PR 
PR=NP-P 
IFCMUD.EQ.I) GO TO 400 
N = NP-25^«P 
M3=P+1 
M4=MP-P 
GO TO 401 
M3= 1 
M4=MP 
N = NP 
J J= 1 
II=N/10 
Ml = ( JJ-1 10 + M3 
M2= J 1 0+M3-1 
IF (JJ.GT.II) GO TO 504 
WRITE(6f503) 
WRITE( 6* 610) ( ( X( I ,J ) ,J=M1 ,M2 )* I=M3,M4) 
IF(M2.EQ«NP*0R.(M2.EO.PR.AND•MOD.NE•1)) 
JJ=JJ+1 
GO TO 502 
M2=N+M3-1 
WRITE(6,503) 
IND--M2-M 1 + 1 
GO TO(31,32,33,34 
WR ITE( 6,601 ) ( ( X ( 
GO TO 501 

WR TTE( 6, 602) 

GO TO 501 
WR n E( 6, 603) 
GO TO 501 
WRITE(6,604) 
GO TO 501 
WRiTE(6,605) 
GO TO 501 

, 35 
I , J 

( ( X( I , J ) 

( { X ( I , J ) 

( ( X( I ,J ) 

WRITE( 
GO TO 
WRITE! 
GO TO 

6, 60 6) 
50 1 
6, 607 ) 
50 1 

WRITE(6,608) 
GO TO 501 
WRITE(6,609) 
FORMAT!• 
FORMAT!• 
FORMAT! 
FORMAT! 
FORMAT! 
FORMAT! 
FORMAT! 
F 0 R Nl A T ! 
FORMAT! 
FORMAT! 
FORMAT! 
RETURN 

! ! X! I,J ) 

! ! X ! I , J ) 

! ! X ! I , J ) 

! ! X ! I , J ) 

! ! X! 
,E12.4 ) 
, 2E12.4 ) 
,3E12.4 ) 
,4E12.4 ) 
,5E12.4 ) 
, 6E 1 2.4 ) 
,7E12.4) 
,8E12.4) 
, 9 E 1 2.4 ) 
, 1OE12.4 ) 
) 

I , J ) 

36,37,38,39),IND 
,J=M1 ,M2 ) , I=M3 ,M4 ) 

,J = M1 ,M2 ) , I=M3,M4) 

J=M1 ,M2 ) 

J=M1 ,M2 ) 

J=M1 ,M2 ) 

J = M1 ,M2 ) 

J = M1 ,M2 ) 

J = M1 ,M2 ) 

J=M1 ,M2 ) 

,I=M3,M4 ) 

, I=M3,M4 ) 

,I=M3,M4) 

, I-M3,M4 ) 

, I=M3 ,M4 ) 

, I=M3,M4 ) 

, I=M3,M4 ) 

END 

GO TO 501 

Figure G6 
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