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ABSTRACT

Several new techniques are given in this thesis for the
iterative solution of the linear system AXx = y. The class of
matrices to which these .techniques apply include circulant mat-
rices, band matrices with well behaved inverses, and two dimen-
sional analogues of these. Such matrices arise naturally in
spline approximafion problems.‘ Our concern is with the iterative
process x(m+1) = (I-BA)x(m) + By, m> 0 with B chosen so
that I-BA 1is small (in spectral radius). Thus .B is an
"approximate inverse" to A and we focus attention on the con-
struction of >B.

For the circulant matrix A, starting with Fourier
transform theory, we develop several approximate inversion
methods; each optimal in its own sense. These procedures in-
clude the diagonal block (DBq) method which determines B such
that the central‘ 2q+1 diagonals of I-BA have zero'entries,
the least-squares (LSq) method which determines the 2q+1 non-
zero row elements of B by a least-squares process in the trans-
form space, and the min-max (MMq) method for symmetric A
that produces the B of a particular form such that the spectral
radius of I-BA is minimized. Ekperimental results with test
matrices are given with each appro&imate inversion technique con-

sidered.



The DBgq and LSq approximate inversion techniques
are generalized to handle certain band matrices. The iterative

scheme x(m+1)

= (I-BA)x(m) + By associated with the approximate
inverse} B is extended in the manner that the Jacobi iterative
method is extended to the successive overrelaxation iterative
technique. Experimental results on the test matricesused in-
dicate that some of the methods developed here are capable of
outperforming standard techniques by a substantial‘margin.
Finally, we extend the LSq and DBq techniques to
linear operators associated with certain approximation problems
on the plane. We develop our notation and approximate inversion
techniques for general finite regions on the plane. Experimental
work is confined, however, to a two dimensional circulant problem,

and results indicate that approximate inversion procedures are

well suited to this situation.
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- INTRODUCTION

In this thesis, we develop several techniques for
approximating the inverse of certain nonsingular n x n matrices
A. These approximate inverses, B, are used to establish itera-

(m+1) = G lX(m) + k,

tive processes of the form X m=> 0 to solve
the linear system Ax = Y.

In Chapterll, we establish our notation and give some
fundamental results that serve as a basis for the chapters to
follow. The relationship betweén an approkimate inverse and some
standard ‘iterative techniques is mentioned. We end this chapter
with definitions of computational complexity and effort for our
iterative processes. These definitions serve as a basis for com-
parison of iterative techniques in the chapters to follow.

Chapter 2 deals with approximate inverses for circulant
matrices. The circulant situation is recast in terms of convolu-
tions of doubly infinite absolutely summable sequences. This
allows us to make use of Fourier transform theory. Based on min-
imization problems in the transform space, several approximate
inversion techniques for circulant matrices are developed. The
truncation (TRq) technique determines an approkimate inverse B
for A according to standard Fourier transform theory. The
least-squares (LSq) technique determines B according to a

slight modification of the minimization problem associated with

1



the TRq technique and the diagonal block (DBq) technique de-
Atermines B according to a modification of the least-squares
minimization problem. Finally in Chapter 2 we deal with the min-
max- (MMq) approiimate inversion technique. This technique de-
termines the circulant matrix B of a particular form such that
the spectral radius of G = I-BA is minimized.

The LSq and DBq approkimate inversion techniques of
Chapter 2 are extended in Chapter 3 to certain band matrices whose
inverses are well behaved. Such matrices arise‘naturally in cer-
tain approximation problems. Chapter 3 also contains certain ex-
tended iterative processes bésed on approximate inversion techni-
queé. These extensions parallel the extension of the Jacobi it-
erative technique to the simultaneous overrelaxation, Gauss-Seidei,
and successive overrelaxation iterative techhiques.

In Chapter 4, we fufther extend our LSq and DBq ap-
proximate inversion technidues to certain linear operators assoc-
iated with two_dimensional approximation problems. A notation
is developed that conveniently handles this extension and that
lends itself readily to the programming of the algorithms devel-
oped.  Details are given for two dimensional problems on general
finite regions of theIPlane, but experimental results are res-
tricted to two dimensional circulant interpolation problems on a
parallelogram region on the plane.

In_Chapter 5 we discuss the concept of an‘approkimate



inverse. We also suggest some further possibilities with two

dimensional problems.



CHAPTER 1
FUNDAMENTAL CONCEPTS

1.1. INTRODUCTION

Let X and Y be complex linear spaces and let
A:X -~ Y be a linear operator. For a given y in the range of
A we are interested in solving the linear system AX = Yy for
X € X. We restrict our attention to finite dimensional X and
Y. in the finite case A <can be described by a finite matrix
‘and this is sufficient for the discussion of such problems.
However, the concept of a linear operator allows more flexibility
of notation. This flexibility is especially useful in Chapter 4
where we ﬁonsider two dimensional problems.

In the next five sections of this chapter we establish
our notation and list some standard results which set a background
for the work to follow. In Section 1.7 we define our concepts of
computational complexity and effort. These concepts provide us
with a criterion for comparing iterative processes in the chapters

which follow.

1.2. BASIC NOTATION

- For the linear space X with basis {e*:i e I}, x € X,

and X = } xiei we have, when defined, standard norms such as
iel
’ L
I 11, = suplx, ], nxnz=(z |xi|2) 2, and x|y = I Ixl.
% el iel iel
Given the norm || -||p on the linear spaces X and Y, we find

4



it useful to consider the norm on the linear operator A:X - Y

: || Ax ||
defined by || A]] = su —TT?TTE-, where in our case
P ixlf o TR

P = v1,2,°°;

Our concern is with linear systems of equations that
have unique solutions; that is, with linear operators A which
have an inverse AL, As we are interested in problems that are
solvable with the aid of a computer, we concentrate our atten-
tion on finite dimensional linear spaces. Therefore, we will be
considéring linear operators from the n dimensional space X
to X. Our problems can be phrased in terms of n x n matrices
and this is the notation we ado?t for the greater part of this
thesis. However, we keep in mind that this format is just a con-
venient tool for some of our problems, and in reality what we
are dealing with are linear operators. The merit in this atti-
tude becomes apparent in Chapter 4 where we deal with two dimen-
sional problems and where strict devotion to matrix notation,
although valid, ié'awkward and unpatural.

Further to our notation, we denote the spectral radius
of the n xn matrix A by p(A) = maX{|A|:A is an eigenvalue
of A}. We use the spectral radius and numbers involving the
spectral radius as a basis for most of our comparisons of itera-
tive processes in‘the chapters which follow.

To lay the foundations necessary for the iterative



methods of the following chapters, we lean heavily on the first
few chapters of Varga [15] and Young [16] and much of our nota-

tion is adopted from these sources.

1.3. DETERMINATION OF SPECTRAL RADIUS

Much of this section could be stated in the more general
notation of linear operators, but as our sole application of these
results is in association with n x n matrices, such a general
discussion is not necessary.

-For an arbitrary n x n complex matrix G we have

(see Varga [15, p. 65], Young [16, p. 87])

Y

p(G) = 1im (]| 6" 2) ™. (1.3.1)
m--
"The norms || G|| . and ||G||, are equivalent and hence
p(G) = lim cHG‘“Hw)l”“- (1.3.2)
m—oo

n

Since || G|l _ =max ]} |g
1 j:l

way of (1.3.2) an easily programed algorithm for finding o(G).

.. = . we have b
1’J|,. for G = (g; ;). we y
Appendix B contains an APL program for finding spectral radius
by this technique. We use this algorithm extensively when com-
paring iterative methods. We comment that as the order of the
linear system under consideration increases, the execution of

this algorithm becomes costly.



1.4. GENERAL ITERATIVE PROCESSES

Our concern is solely with the general iterative method

x @ e m L ns 0 (1.4.1)
used to solve the linear system

Ax

y (1.4.2)

where A is an n x n nonsingular complex matrix, and G is

an n x n iteration matrix. For our purposes we require that

(0)

(1.4.1) converge for any starting vector X to a vector z

(0)

independent of X and that this vector Zz be the unique
Splution to (1.4.2).
First, (Varga [15, p. 59]), the method (1.4.1) con-

(0)

verges to a vector U independent of ‘X if and oniy if

p(G) < 1. Clearly u satisfies
(I-G)u = k. (1.4.3)

If (1.4.1) converges to z = A"ly thent (I-G)A"ly = k. Con-
versely if p(G) <1 then I-G is nonsingular and u = (I-G) lk.
If further k = (I-G)A"ly, then u = A"ly = 2. In summary, for
the nonsingular matrix ‘A, (1.4.1) converges to the unique solu-

(0)

tion z = A"ly of (1.4.2), independent of X if and only if

p(G) <1 and k = (I-G)A7ly.

t This condition on Kk is developed in’Ydung [16, pp. 65-66] in
a slightly more general context than that required for our pur-
poses.



We complete this section by giving a theorem that puts
the iterative method (1.4.1) into a slightly modified form which

is very appropriate in the context of the chapters which follow.

Theorem 1.4.1. For the nonsingular matrix A, when (1.4.1)

’cpnverges it converges to the unique solution of Ax =y if and

I-BA

only if there exists a nonsingular matrix B such that G

and k = By.

Proof: (Young [16, p. 68]) When (1.4.1) converges to 2z = ATly
then .(I—G)Z =k and B = (I-G)A™! which is nonsingular since
p(G) < 1. Conversely if such a nonsingular B exists and (1.4.1)
converges to z then BAz = By and Az =y.

The matrix B is acting as an approximate inverse to
A. The concept of an approximate inverse is fundamental to all

the iterative procedures considered in this thesis.

1.5. CONVERGENCE RATES

If, for a nonsingular n x n matrix A, we can find
a matrix B such that G = I-BA, k = By and p(G) < 1, then
(1.4.1) gives us an iterative process which theoretically will
provide us with the unique solution to (1.4,2). In practice,.
however, we may find that the rate of convergence of our process
is much too slow to be practical. The convergence rate of the

resulting iterative process is one of the major considerations



in determining an acceptable B.
Following Varga [15, p. 62], for the iterative process

(1.4.1) used to solve the system (1.4.2) with nonsingular A,

e (m)

we have the error vectors =‘x(m)-2 where 2z = A-ly. The

(m) - Gm e(O)

result that e s M

v

.0 follows immediately and

this leads to

e®™ |, < |16, 1] ,.

Qur interest is in the behaviour of:
\ ¥
I e™]l,
LR WTISOIT

Il e

| GmHZMn and (Varga [15, p. 67])

as m > <, We have o, < |
when G is convergent (lim G® is the n x n null matrix) we

m--co
have

Lim - £n || &[], = - £no(8) = R_(®).
Mmoo

R_(G) is the asymptotic rate of convergence.

We employ R_(G) with the realization that it is an
asymptotic value and may not accurately reflect the initial bé-
haviour of our iterative process. However, it does offer a con-
venient means of‘éomparing iterative methods and it is to this
use that we put it in later chapters.

For our iterative process (1.4.1) (written in terms of

Theorem 1.4.1) used to solve (1.4.2), one of our objectives should
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be the creation of a matrix B such that k = By and o(G) =
o(I-BA) is as small as possible. In practice, however, one must
consider the labour involved in reducing p(G) and decide if

the energy expenditure required is justified.

1.6. STANDARD METHODS

We give four examples of standard methods which are
of the form (1.4.1). Some of these methods are later used as a
basis for comparison with the methods developed in subsequent
chapters. Following Varga [15, pp. 87-88], we cast these methods
in the format of Theorem 1.4.1.

Our concern is with the iterative solution of the sys-
tem AX =y where A is an n x n nonsingular matrix. For
nonsingular M, the expression A = M-N represents a splitting

of the matrix A and this leads to the iterative process
x @Dyt w1y ons o,

Since this can be written as x(m+1) = (I-M—IA)xcm) + MT1ly,
m 2 0, we see that M™! corresponds to B in Theorem 1.4.1.

We let A = D-E-F where D 1is a diagonal matrix, and
E and F are strictly lower and upper triangular matrices res-
pectively. First we have the Jacobi* method, where we require

that D be nonsingular, and we write

* Strictly speaking this is the point Jacobi method as opposed to
the block Jacobi method, but as all methods considered in this
thesis are point iterative methods, ve suppress the word point.
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X(m+1) = D-I(E+F)x(m) +D7ly, m>o0.

In this case M =D and N = E+F for our splitting of the ma-
trix A. For brevity we list our examples of standard methods
in Table 1.6.1. We include in brackets after the name of each
method its abbreviation. These abbreviations provide. a convenient
notation in later chapters. This is especially true in Chapter 3

where these standard methods are extended.

-TABLE 1.6.1
STANDARD ITERATIVE METHODS
METHOD ITERATION MATRIX G|VECTOR k MATRIX M{MATRIX N
(i) Jécobi 63 D1 (E+F) D7ly D E+F
(2) simultaneous [wD !(E+F)+(1-w)I |wD7ly w 1D (w 1-1)D+E+F
overrelaxa- '
tion (JOR)
(3) Gauss-Seidel |[(D-E) !F (D-E) "1y D-E F
(GS) : '
(4) successive (D-wE) "1 ((1-w)D+wh| w(D-«E) ly|lw D-E |(w 1-1)D+F
overrelaxa-
tion (SOR)

1.7. COMPUTATIONAL COMPLEXITY

Methods developed in subsequent chapters allow us to
reduce the spectral radius of the iteration matrix, but often
at the expense of increasing the work involved in each iteration.
We thus incorporate a measure of this work into our comparison

of various techniques. With the understanding that a computer
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spends much more time on multiplication than on addition and

subtraction, we give

Definition 1.7.1. The computational complexity of the iterative
method (1.4.1) is the number of multiplications required to per-
form a single iteration divided by the order of the system

under consideration.

We symbolize our computational complexity by C. When
referring to a particular iterative process (for example the GS
iterative technique) we denote the associated computational com-
plexity by C(GS). We keep in mind that the computational
complexity depends to a great extent on the maﬁrix A of the
linear system AX = Yy under consideration.

OQur interest is in the complexity per iteration and
we ignore in our complexity measures the calculations required
to establish the iterative proeess. This provides a convenient
measure for comparing iterative processes and when the system
Ax = y must be solved with many different values of Yy, the
set-up work decreases in importance. Of course when a problem
is being solved on a once only basis it is prudent when choosing
a method to include the set-up time among the factors governing
a decision,

One method of comparing iterative processes of the

form (1.4.1) is to investigate R_(G) for each process, but this
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does not give any indication of the computational complexity
involved. To include both these-measures we define the effort

of our techniques.

Definition 1.7.2. The effort, E(G), of the iterative process

(1.4.1) is given by

C
E(G) = .
@ = x5y
As the effort represents a more complete measure (than
just Rm(ﬁ)) of the value of an iterative process in a test

situation, we use efforts for comparison purposes in this thesis.



CHAPTER 2
THE CIRCULANT PROBLEM

2.1. NOTATION AND FUNDAMENTAL RESULTS

The iterative methods of Section 1.6 used to solve the
linear system Ax = y are given in terms of splittings A = M-N
of the matrix A because this formulation leads naturally to
the generalizations which follow. For the iterative scheme (1.4.1)
used to solve AXx =y, we have G = I-M"!A and k = M"ly and
for convergence we require p(Q) < 1. Our goal is to make p(GQ)
as small as is practically possible. Ultimately if M = A (A
nonsingular) then M !A =1 and p(G) = 0. It is of course un-
desirable to maké M = A since, as noted in Young [16, p. 75],

in forming kK we are back with the original problem. We may

thus think of B = M"! as an approximate inverse to A and each
iteiative process in Section 1.6 is related to an approximate in-
version technique applied to A. It is the concept of an approx-
imate inverse to thch we now turn. We begin by considering

circulant matrices. In particular we are interested in circulant

matrices characterized by the following definition.

Definition 2.1.1. The n x n band-circulant matrix A = (ai j)

of band width 2p + 1 (n 2z 2p+1) and with band elements

(a ., ..., Ags eees ap) has

14
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if j-i = k (mod n), k ¢ {-p,...,p}

[ |
a. . = 1 (2.1.1)

0, otherwise

for 1 <i<mn, 1<3j <n.

We restate the concept of linear operators represented
by circulant matrices in terms of doubly infinite sequences and
convolutions in order to take advantage of certain established
results. Let M represent the set of all complex n x n cir-
culant matrices, let £; represent the set of all doubly infin-
ite absolutely summable complex valued sequences, and let Sn
represent the set of all doubly infinite complex valued periodic

sequences of period n. Define ¢:£; -~ M by

o0

(¢ (a))i,j = kg

ai—j+kn (2.1.2)
where 1 <i<n, 1<j<n and where a ¢ £1 1is the doubly

infinite sequence {ak}. Define u:Cn-+sn by oe(x)j = for

Xn—j
0 < j <n-1, where X = (xl,...,xn) e €. As this defines the
periodic sequence a(X) over one period, by periodic extension,
a(x)j is defined for all integers j. We comment that there is
a reﬁersal incorporated into a.

The function ¢ 1is a homomorphism from the commutative
ring (£;,+,*), where + denotes addition of sequences and =
denotes convolution of sequences (that is for x,y 8_21’

o

(x*y)j = ) xkyj~k)’ onto the commutative ring (M,+,.) where

= .00
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+ denotes matrix addition and - denotes matrix multiplication.

It follows that
P:(Ly/ker ¢,+,%*) > (M,+,.) (2.1.3)

defined for a + ker ¢ ¢ £y/ker ¢ by vy(atker ¢) = ¢(a) is a
ring isomorphism. The function o is a linear bijection, and
it follows that the vector spaces (¢n,+) and (Sn,+) are iso-

morphic. Hence for all x e €°, A e M,
a(Ax) = v 1(A) (@(x)) (2.1.4)
where for a + ker ¢ ¢ £y/ker ¢ and x ¢ Sn’
(a+ker ¢) (x) = a * x. (2.1.5)

The_elements of £,/ker ¢ are the equivalence classes under the
equivélence relation p on £; defined for a,b e £; by apb
if and only if a*x = b*x for all x e Sn'

In particular, with the n x n band-circulant matrix
A with band elements (a_p,...,ap) we associate the sequence
a given by

02 o ap, 0, ... (2.1.6)

., 0,a _, ..., a
and we let a represent the equivalence class v 1(A). Thus if
X,y € Gn, the statement AX = Y is equivalent to. a * a(X) = a(y).

With the matrix A of Definition 2.1.1 we associate the

expression
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oo

A(z) = ) a. 23 (2.1.7)
j:.aoo J

where 2z 1is a complex variable and the aj's are the elements
of the doubly infinite sequence a associated with A. We see
that factoring the polynomial zPA(2) corresponds to factoring

the matrix A into a product of band-circulant matrices. When

z = ezwlt, t € [0,1], (2.1.7) represents the Fourier transform

2rit

of the sequence a and we write A(e ) = 4(t). We comment

that since we are considering a to represent a linear operator
on . the space of all doubly infinite sequences of period n, we

might consider the finite Fourier transform with

t e ?0, %3 ey Eilf. However, as we are interested in large

linear systems, we avoid this specialization to a particular
finite value of n and consider the continuous Fourier trans-

form with t ¢ [0,1].

2.2. THE TRUNCATION (TR ) AND MULTIPLE TRUNCATION (MIR,) TECHNI-
QUES

If 3a(t) of the previous section is nonzero for all

t e [0,1] “then has a Fourier expansion which is absolutely

1
ai(t)

convergent. Let d be the doubly infinite sequence {dk} com-

posed of the coefficients in the Fourier series expansion of
1 P

———. The d, ' be found b 1vi N
ﬁ(t) e k S can e oun y reso Vlng ZPA(_Z)

tial fractions and expanding the resulting terms into series valid

into par-
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for the unit circle in the complex plane. (We could also find
1,-2mikt

dk using dk = JO—ETET———dt.) We have 1 = é(t)»&(t) = (a*d) " (t)

and A7 = ¢$(d),  where ¢ was defined in (2.1.2). We may

also use elements from d to create band-circulant approximate

inverses to A. Let B = TRq(A) be the n x n band-circulant

approximate inverse to A of band width 2q + 1 and with band

elements Cb_q, e bo’ cees bq) where bk = dk for

|k|] < q. We call this the truncation technique. Associated with

this approximate inversion process, we have the iterative process

X(m+1) = (I-BA) x(m) + By wused to solve the linear system

Ax = y.
When the sequence a is ...,0, Y., 1, 4,0, ... (as
is the case wiThlthe matrix T, of Appendix C), we have
k
2(V/3 - 2 . . |
bk = (‘/3 ) which gives by = 1.16, b; = -0.309,
b, = 0.0829, ... and when the sequence a arises from the

2.21, by = -1.37,

matrix T, of Appendix C, we have by

-0.117, bg = 0.0629,

b2 = 0.759, b3-= —0.409, bq = 0.219, b5
In Table 2.2.1 we give some experimenfal results with the TRq
method applied to T, and T,. Our computational complexity

for the iterative process associated with the TRq method is

ctTRq) = 2(p+q)+1.
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Table 2.2.1
Results with the TRq method applied to the test mat-
rices T, and T, of Appendi£'C. G 1is the iteration matrix
for the iterative method associated with the approximate inver-

sion method TRq.

2q+1 TRq(Tz) TRqFT”)
p(G) E(G) o (@) E(G)
3 2.22 diverges 0.196 3.1
5 1.20 diverges | 0.0526 2.4
7 0.643 29 0.0141 2.1
9. 0.344 14 0.00377 2.0
11 0.184 10 0.00101 1.9
13 0.0987 8.2 0.000271 1.8

Closely associated with the TRq method is a procedure

involving the factors of sz(z). Knowledge of these factors

A

allows us to write A = A1A2...A where each Ai’ 1 <i<k

k
is an n'x n band-circulant matrix. We define the multiple trun-
cation approximate inversion technique by MTRq(A) = Tqu(Al)
Tqu(Az)...Tqu(Ak) where q = (ql,qz,.‘.,qk),' This has the ad-
vantage that thg valﬁes of the qi's can be varied to fit the
requ;rements of the Ai's. The computational complexity of the
iteraiive process associated with the MTRq approximate inversion
technique is C(MTRq) = 2(p+q) + 1, where q = Q+q,*+. ..+, .

Table 2.2.2 contains experimental results with this technique

for the matrix T, of Appendix C. Both the TRq and MIR,
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methods are useful; however better methods, and in two cases
methods with a good potential for easy generalization to certain
non-circulant situations, are developed in the remainder of this

chapter.

Table 2.2.2
Results with the MTRq method applied to T, of
Appendik C. T, is factored into A;A,A; where A; has band
elements (0.412, 0.990, 0.412); A, has band elements (0.120,
0.990, 0.120); and A; has band elements (0.00906, 0.990,
.' 0.00906) . MTRq(Tz) = Tqu(Al)_Tqu(,AZ)TR%(AQ. G is the itera-

tion matrix of the associated iterative process and q = q;+q»+qs3.

2q+1 | 2q;+1 | 2g,+1 | 2q3+1 | p(G) E(G)
7 3 3 3 1.23 diverges
9 5 3 3 0.603 30

11- 5 5 3 0.667 42

11 7 3 3 0.376 17

13 7 5 3 0.351 18

13 9 3 3 0.187 | 11

13 5 5 5 0.667 47

2.3. THE LEASTfSQUARES (LSq) TECHNIQUE

Let A be an n x n band-circulant matrix of band
width 2p+1 with band elements (a_p,...,ao,...,ap) and let B
be an n x n band-circulant matrix of band width 2q+1 with band

elements (b_q,...,b ,..a,bq). We have the sequences a (given

0

by ...,0,2 ,...,a_,0,...) and b (given by e..,0,b ,...,b ,0,...

-pP p -q q
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associated with A and B respectively and we have the Fourier
transforms 4(t) and b6(t) defined on [0,1]. When 4(t) is
nonzero on [0,1], the TRq‘ method of the previous section deter-
mines b, such that

i

Q

1 ~ 2
'é-t-{T - b(t) dt (2.3.1)

is minimized.
This leads us to consider the problem of minimizing

: 1 1
Q= J |1-4(t)b(t) |2dt = j ‘ﬂlﬁ - b(t)|2|a(t) ]2t . (2.3.2)
0 0

We are requiring that a(t)b(t) be the least-squares approximation
to f(t) =1 on [0,1] (where f is the identity sequence
.,0,1,0,...) in the hope that this will produce a more optimal

approximate inversion technique than the TRq method.

For convenience we define the reversal operator R on
the space of doubly infinite sequences X by (R(x))i =X_ for
x € X. Use is made of the fact that for doubly infinite sequences
u and v with 4 and uxv defined we have @* = R(u*) and
R(q*y) = R(u) * R(v) where the superscript x denotes complex
conjugate.

The above notation and results are applied to the problem

of minimizing Q in equation (2.3.2). We have
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Q = Jl (1-a(t)B(t)) (1-a* (£)B*(t))dt, (2.3.3)
0

nord: O = ire 3 o
where Q = Q(b_q,...,bo,...,bq). We require 3br = 0 for

qs7Ts<q. Now (for a;,b, e R)T

2mirt

S 1 R _ . R
- f [(1-8B) (-a*e™2™TY) L (1-a%b%) (-4 e )]dt = 0
R & 0
which gives
(1 A, _-2mirt .o 2rirt
2&__r * (aba* e +4*b*a e )dt
"0
[1 ~  =2Tirt 1 ~  2mirt
= (R(a)*a*b) e dt + J (R(a)+a*R(b)) e dt
‘0 0
= (exb) '+ (,(_:‘*R(b))_r (2.3.4)

where ¢ = R(a)*a.

But we have R(c*R(b)) R(c)*b and R(c) = c. Therefore,

2a__'= (e*b)_ + (R(c*R(b))),
= 2(c*b) .,
and a_. = (c*b)r. (2.3.5)

The problem has been reduced to a linear system of

2gq+1 equations in 2q+l1 unknowns which in matrix notation reads

T We restrict ourselves to real problems for the remainder of this
chapter.



Since R(c) = c, the above matrix, which we denote by

symmetric.
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(2.3.6)

is

The matrix C can be found directly from R(a)*a, but

we calculats it in a slightly different manner-which again finds

application in the more general non-circulant situation of

Chapter 3. Let the matrix M be given by

Here M is a

(29+1) x (2(gq+p)+1) matrix and C

. ap

2o

ap

ag

apg ...

c=m.

satisfies

.0
. (2.3.7)
P
(2.3.8)

A linear system similar to that of (2.3.6) will again

occur in Chapter 3, but it will then enjoy a more general inter-

pretation.

Equation (2.3.6) provides us with an

n x n band-
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circulant approximate inverse B of band width 2q+1 for an

n x n band-circulant matrix A of band width 2p+l. We denote
this léast—squares approximate inversion process and its associated
iterative process by LSq and we write B = LSq(A); The computa-

tional complexity for this iterative process is

C(LS) = 2(p+q) + 1.

Experimental results with this method applied to the matrices

T, and - T, of Appendix C are given in Table 2.3.1.

Table 2.3.1
Results with the approximate inversion technique LSq
applied to the circulant test matrices T, and T, of Appendix

C. G 1is the iteration matrix of the associated iterative process.

2g+1 LS (T LS (T
q qC 2) q( )
0(G) |E(G) p(G) | E(G)
3 0.731 29 0.178 2.9
5 0.489 15 0.0487 2.3
7 0.290 11 0.0131 2.1
9 0.162 8.2 0.00350 2.0
11 0.0879 (7.0 0.000939| 1.9
13 0.0473 (6.2 0.000251}( 1.8

2.4. THE DIAGONAL BLOCK (DBq) TECHNIQUE
The least-squares minimization of the previous section

suggests that we explore further such minimization problems in
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search of practical techniques for getting a band-circulant

approximate inverse for certain band-circulant matrices.

We start by considering the problem of minimizing

0 ) .
jo Im-b(t)l la(t) |dt

where 4(t) and bB(t) are the same as in (2.3.1).

(2.4.1)

To simplify the problem we will consider the symmetric

case. Consequently, ‘R(a) = a and R(b) = b and 4(t)

B(t) are real valued functions on

and

[0,1]. This simplification

. . : ' 1 B
eliminates expressions involving (4(t)4*(t)) &. We further

assume, as before, that 4(t) # 0 for t ¢ [0,1].

However, since

4(t) 1is a real valued functiqn on [0,1], we have 4(t) > O

on ,[0,1] or 4(t) <0 on .[0,1] and |4(t)]| is either

a(t) or -4(t).

where

and

We seek to minimize

1' 1 i 2
Q = I K (“"‘a(t) ; b(t)) a(t)dt

0

{1 if 4a(t) > 0 on
K =

L-l if 4(t) < 0 on

a(t) = ag + 2 g a. cos 2mjt,
j=1 7

(2.4.2)

[0,1]

[0,1]

(2.4.3)
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n q
b(t) = by + 2 }

bk cos 2nkt. (2.4.4)
k=1

Q is a function of b ,...,b,, and setting 8 -0 for
T

0 <r <q gives, for T # 0,

3 1 1 ~
§B§~= JO 2K a(t)( IO b(t)) (-2 cos(2rrt))dt = 0,

and this reduces to

Jl cos(2rrt)dt = Jl 4(t) b(t) cos(2nrt)dt. (2.4.5)
0 ' 0 '

But T # 0 and we get

1
J' (axb)” (t) cos(2wrt)dt = 0 (2.4.6)
0
which reduces to
(a*b)r =0 for r #£0. (2.4.7)

If r =20 then

5Q  _ (1 1 ¢ -
59;._ Jo-zK a(t) (ETFT - b(t))dt =0

and

(axb)g = 1. (2.4.8)

We may state our linear system for 0 < r < q as

(axb) . = 0, 4 (2.4.9)

where
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1, if i =j

1) 0, otherwise

The linear system (2.4.9) represents q+l equations in g+l
unknowns. Since R(axb) = axb, we see that b is being deter-

mined such that (a*b)k = for lkl < q.

%, 0 |
" The above interpretation suggests that we extend our
process to include non-symmetric cases by requiring that (2.4.9)

hold for -q < r < q. This gives us the linear system

[ag 8, -8, ] ﬂb_q. [0 |
lag T
0| (2.4.10)
: bo = ]. L4 V
0
32q #2q-1""" 20 ]
bq L 0

Given an n x n band-circulant matrix A of band width
2p+1 with bahd’elements (a*p’;f"ap)’ we use the linear system
(2.4.10) to obtain an n x n band-circulant approkimate inverse
for A of band width 2q+1 and with band elements (b_q,...,bq).
We cail this approximate inversion method the diagonal block
(DBq) technique and Write B = DBq(A). This method wiil be gen-
eralized in Chapter 3 where it will prove very effective on our
test matrices. As well as the advantage that this methbd is easy

to use we have the advantage that our computational éomplexity is
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substantially reduced from that of the LSq and TRq methods be-
cause of the additional zeros that the DBq method creates in the

matrix I-BA.

When solving the linear system AX =y where A 1is an

n x n band-circulant matrix of band width 2p+l1 we have,

C(DB = 2p,
(q) P

which is independent of q. In practice, however, an increase in
q increases the work involved in finding DBq(A). In Table 2.4.1
we give experimental results with this method for the test mat-

rices T, and T, of Appendix C.

Table 2.4,1
Results for the approximate inversicn method DBq applied
to test matrices T, and T, of Appendix C. G is the iteration

matrix of the associated iterative process.

2q+1 DBqFTZ) | DBq(Tq)
p(G) | E(G) p(G) E(G)
3 | 0.764 22 | 0.143 1.0
5 | 0.444 | 7.4 | 0.0385 0.61
7 | 0.243 | 4.2 | 0.0103 0.44
9 | 0.131 | 3.0 | 0.00276 | 0.34
11 | 0.0703 | 2.3 | 0.000740 | 0,28
13 | 0.0376 | 1.8 | 0.000198 | 0.23
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2.5. THE MIN-MAX (MMq) TECHNIQUE

For the n x n band-circulant matrix A of band width
_2p+1 with band elements (a;p,..w,ao,...,ap) we seé<the n X n
band-circulant matrix B of band width 2q+1 with band elements
(b _seebseb) such that p(I-BA) is minimized. Let the

first row of G = I-BA be (ga,gl,...,g ). Then (Varga [15,

n-1
-p. 45, problem 13]) the n eigenvalues of G are given by

. n-1
AL = g0+g1-¢j+...+gn_l o

, 0<3j<n-1 2.5.1
j 3 <J < ( )

where ¢j = exp(2rij/n). As in the previous two sections, we have
the doubly infinite sequences a and b associated with A and

B respectively. We let ¢ = axb and (2.1.2) gives

0 <k

A

gp = =§m £pink = S2enk’ n-1 (2.5.2)

where f is the identity sequence of section 2.3. Since

¢? = 1, we have

>
1]

£(3/m) - c(i/n)
- (2.5.3)

1 - B(3/n) 4(3/n)

]

where ~ denotes the Fourier transform of Section 2.1. Therefore

o (I-BA} = max{|1-B6(j/n)a(i/n)|:0 < j < n-1} (2.5.4)

and our goal is to determine b_q,...,bq such that we minimize
this maximum.

As in Section 2.1, it is not our intention to tailor our
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results to a specific n and so since we are interested in large
linear systems we consider the problem of determining the bk's

to minimize

Il 1-6()a(e) || - (2.5.5)

We assume that R(a) = a which makes 4(t) and B(t) real

valued functions, and we use an exchange algorithm to minimize
lll-gao + 2 E a, cos 2mjtj|bgy + 2 % b, cos 2nkt|L, (2.5.6)
\ j=1 k=1 X

As in previous cases we assume 4(t) # 0 for t e [0,1]. We have
&(t) = a(t)b(t), and when we wish to consider ¢ explicitly as a

function of bo’bl""’b , we write c(b

q 0,...,bq,t). Since for any

integer £, cos 2m€(1-t) = cos 2m€t, we have c(t) = c(l-t) and
the mip—max approximation of ¢(t) to 1 on [0,%@] gives us
the same bo,...',bq that we would get if we used the whole in-
terval [Q,l]. Our problem now is to determine bo""’bq to

minimize

16|, = sup  |1-¢()]. (2.5.7)
te[0, %]

First we prove that an exchange method will give us the
unique c(t) which satisfies this requirement. To accomplish

this we require the following defintion (Meinardus [12, p. 16]).

Definition 2.5.1. Let T be a compact set and let C(T) denote

the space of all continuous real or complex valued functions on
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T. A linear subspace V of C(C(T) of finite dimension n is
said to fulfill the Haar conditionif for every £ in V where
f £ 0, f vanishes at no more than n-1 points of T.

Now (Meinardus [12, p. 16, pp. 105-111}) if the Haar
condition is satisfied for a linear subspace V of the real
space C[a,b] then for any f e C[a,b] there is a unique func—

tion fy € V such that v = fv minimizes
HE)-v(r ||

for all possible Vv e V. Furthermore £, can be found iteratively
by an exchange method (which we will describe shortly). This mo-

tivates the following theorem..

Theorem 2.5.1. For the min-max problem of (2.5.7) the Haar condi-

tion is satisfied.
Proof. For this problem T = [0,%] and our linear subspace V
of C(T) has as a basis

{4(t) cos 2rkt: 0 < k < q}

Our space V has dimension q+1 and if v e V then there exist

numbers v such that

k
q
v(t) = Z Vi 4(t) cos 2mkt
k=0
q
= 4(t) ) vy cos 2mkt, (2.5.8)

k=0
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Now
cos no = 2 cos(n-l)a cos a ~ cos(n-2)a (2.5.9)

and hence there exist numbers Pk such that

q ,
v(t) = a(t) } P, (cos 2mt) K (2.5.10)
k=0

Since &4(t) #0 for t ¢ [0;1], the number of zeros of V in

[0,%] equals the number of zeros of

q
) Py (cos 2nt)k
k=0

in [0,%]. But this is a polynomial of degree q in cos 2rt
and Hence there are at most q values of cos 2nt  which make
this zero. Since we are considering the interval [0,/,] this
implies that there are at most q zeros of Vv in [0,%] and

the Haar condition is satisfied.

Since we assumed R(a) = a, we are dealing with real
valued functions on [0,14] and because the Haar condition holds
we can use an exchange algorithm to obtain the values of

b .,b .

0**" q
In employing an exchange method we approximate the con-

tinuous min-max fit on [0,%;] required by the above discussion
by a min-max fit on a set of equally spaced points in [0,%].
This makes the programing of the exchange method easier and gives

an accurate enough answer for our purposes. (In our numerical
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experiments we use 101 points including 0 and %.)

Let the interval [0,%] .be divided into N equal
subintervals and let the points of division be 0 = tys tl,...,tN
= .where if 1 < j .thenv ti < tj" The value N is an initial
parameter for our exchange method and the N+1 points thus gen-
erated remain fixed throughout the application of the algorithm.
The first step of the exchange method used to solve for
bo""’bq is to pick qf2 points from {to,...,tN}. (This re-
quires that N 2 q+1.) We choose these points (starting with

ty = 0) as equally spaced as possible in the interval [0,%],

although the exchange algorithm would converge for any initial

set of q+2 points from {to,...,tN}. We denote these q+2
poinfs by ti ,...,ti and we determine bé,...,ba such that
. . 0 q+l ,

c1(t) = c(bé,...,ba,t) approximates 1 on {ti ,...,ti }  with

0 q+l

an error of constant magnitude and alternating sign on these -q+2

points. This is accomplished by solving the linear system

1 - él(ti ) + (-D%h =0, 0<uc<q+l (2.5.11)
u

for bé,...,bé, h where |h| is the magnitude of the error at

t. ...t . Let
i i
0 q+1

f ) |
&y T (cos 2mvt )‘ao + 2 .z 2, cos 2mjt. (2.5.12)
u J:l u

for 0<v<q, 0<u<q+l. Inmatrix notation, the linear sys-

tem (2.5.11) reads
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— B M1l 1]
a0,0 2a0’1 . 2a0,q 1 bo 1
1
al,O Zatl,1 “ee 23,1,q =1 bl 1
= | (2.5.13)
q+1 -1
1,0 Pgrlr v Baan,g (DT 1P |
- - h 1

After solving this system of equations, we calculate

El(to),...,él(t and locate a point in '{to,...,tN} where the

N
maximum deviation of ¢&;(t) from 1 occurs. Call this point
tp' If A|1 - él(tp)| < |n| then the process is finished and

b =‘b1,...,b'-= bl. 1f 1 - ¢y (t > |h| then an exchange is
made by the following standard technique. We augment the set

t. ,...,t. by t_- and then discard one of the t. ,...,t.
0 i P i i
q+l 0 q+l
such that the deviations of ¢;(t) from 1 on the remaining g+2
points alternate in sign. The above procedure is repeated on this
new set of points. This is continued until a min-max fit of e(t)
to 1 over the initial N+1 points is obtained. An APL program
for executing this algorithm is given in Appendix A.
We denote the min-max approximate inversion technique
by MMq and when we are solving the linear system AX = y where

A is an n x n band-circulant matrix of band width 2p+l, the

computational complexity of our associated iterative process is

COM) = 2(prq) + 1.
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Ig Table 2.5.1 we give experimental results for the MMq method
with matrices T, andb'Th of Appendix C. We comment that MMq(Tu)
= DBq(qu for q =1,2,...,6, however this is not true for T,.
No method can surpass the MMq procedure when the only criterion
is the spectral radius of the iteration matrix for the associated
iterative process. However, compared to the DBq method, the

MMq method creates many more nonzero terms in the iteration matrix.
The relatively small computational complexity and the ease of im-

plementation of the DBq method favour it over the MMq technique.

Table 2.5.1
Results with the MMq- approximate inversion technique
applied to the matrices T, and T, of Appendix C. G is the

iteration matrix of the associated iterative process.

2q+1 | MMq(Tz) MMq(Tu)
o (G) EG) | p(® E(G)
3 0.620 19 0.143 2.6
5 0.363 11 0.0384 2.2
7 0.199 8.1 0.0103 2.0
9 0.108 6.7 0.00276 1.9
11 0.0576 6.0 0.000739 |1.8
13 0.0309 5.5 0.000198 |1.8

We end this section with a theorem giving a bound on
p(I-BA) for certain symmetric n x n band-circulant matrices
A when B is determined such that the expression in (2.5.5) is

minimized.
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'Theorem'2.5,2, Let A bean n xn symmetric band-circulant
matrix with band elements (a_p{...,ao,...,ap) such that

a(t) # 0 for t ¢ [0,1]. If B is the n xn symmetric band-
circulant-matrix with band elements (b-q"°”b0""’bq) chosen
suchthat || 1 - B(t)a(t)||_  is minimized, then

1 w2\ d 1
(1) < 7 (1 . —2—) 12 [es) 1. Na@ . (2.5.14)
Proof. Let B8 be the doubly infinite sequence ...,O,B_q,..,BO,
.,Bq,O,,.. with Bj = B—j for all integers j and with Bj,
0 < j < q chosen such that IIEI%T-- B(t)|| ., is minimized.

Since, by (2.5.4), p(I-BA) is the maximum of |1 - b(t)a(t)|
on {6, ly b o E:EJ}, we have
n n

o(I-BA) < || 1 - B()a(e) ||

IA

1 - Br)ay |l

N

tae)ll,, |l 3—(%3- - B0 I,

2 '
7ra (1 —2) I [zl - el

IA

where the last line follows from D. Jackson, see Meinardus [12,

p. 54].

2.6. SUMMARY OF TECHNIQUES FOR CIRCULANT MATRICES
In Table 2.6.1, we compare the efforts for some of the

iterative processes mentioned in this chapter applied to linear
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systems involving the matrices T, and Ty, of Appendix C. The
DBq technique is cléarly the supérior method for these test mat-
rices even if one does not take into account its ease of implemen-
tation compared to some of the other techniques such as the MMq

procedure.

Table 2.6.1
Comparison of efforts for some iterative pfocesSes
applied to linear systems involving the matrices T, and Ty

of Appendix C.

Iterative method | Effort with matrix indicated

T, Ty

J “diverges 2.9

GS 26 1.8

SOR 15 2.2

TRq, 2q+1 = 3 diverges 3.1
5 diverges 2.4

7 29 2.1

. 9 14 2.0
1Sq» 2q+1 = 3 29 2.9
5 15 2.3

7 11 2.1

: 9 8.2 2.0
DB , 2q+l = 3 22 1.0
T 5 7.4 0.61
7 4.2 0.44
9 3.0 0.34

MM , 2q+1 = 3 19 2.6
1 5 11 2.2

7 8.1 2.0

9 6.7 1.9




CHAPTER 3
APPROXIMATE INVERSES FOR CERTAIN BAND MATRICES

3.1. INTRODUCTION AND NOTATION

Our éoncern in this chapter is with nonsingular n x n
band matrices whose inverses are well approximated by band mat-
rices. We say that the n x n matrix A = Cai,j)’ 1 <ic<n,
i<j<n, isa band matrix of band width 2p+1 if li-j| > p
implies a; j = 0, and our objective is to determine an n X n

3

band matrix B = (bi .) of band width 2q+1 such that B is in
5 .

some sense an approximation to A;l. For our purposes, it is ess-

ential that p(I-BA) < 1. It is also desirable that q be small

compared to n, and that B be relatively easy to obtain.

For I = BA = ATBT we must have

Mib =f, 1<isn (3.1.1)

where bi is the vector

b; = (byioso e oy 5o 0Py se) (3.1.2)
with s = min(q,i-1) and t = min(q,n-i);
[ ai—s,i—s-u e ai—s,i+t+v.f
Mi = ; E (3.1.3)
ai+t;i—s—u U ai+t,i+t+v

~ -

38
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with u = min(p,i-s-1) and v = min(p,n-i-t) and where
f. = (£; g0 ofy gore ooty jap) (3.1.4)
with k = min(p+q,i-1), £ = min(p+q,n-i) and with £, ;=1 if

i=7j and 0 otherwise for 1 <i <n, 1<j <n. In general
(3.1.1) represents a set of overdetermined systems of equations
which cannot be satisfied exactly. However, as we demonstrate in
the next two sections, in certain cases these systems can be

approximately satisfied quite successfully.

3.2. GENERALIZED LEAST-SQUARES TECHNIQUE
For the matrix A of Section 3.1 we determine the n x n
band matrix B of band width 2q+1 such that the Euclidean norm

of G = I-BA is minimized. That is for G = (g. .) we minimizet

0
el ¢ = ,E ;E gﬁ’j)%é- (3.2.1)
i=1j=1
This is equivalent to minimizing
Q(b,) = (Mibi-fi)T(Mzbi-fi) (3.2.2)

independently for 1 g.i < n, where the Mi, fi’ and b.1 were
defined in Section 3.1.

We comment that the above n minimization problems are
‘local in nature in that bi is determined from entries in the

band of A that occur in rows close to the i'th row. Of course

Tt for the real case
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such local techniques are not capable of producing good approxi-
mate inverses for all honsingular band matrices. However, as ex-
perimental results in this and the next section indicate, in cer-
tain cases such methods work quite well.

To solve the minimization problems of (3.2.2), we take
partial derivatives of Qi(bi) with respect to the components of

bi and equate these derivatives to zero. This gives

MMb, =Mf,, 1<ic<n. (3.2.3)
11 1 1 1 - -

We observe from equations (2.3.6), (2.3.7) (2.3.8), and
(3.2.3) that the LSq method of Chapter 2 determines the n x n
band-circulant approximate inverse B for the n x n band-cir-
culant matrix A such that ||I-BA||E is minimized and no con-
fusion results if we also denote the approximate inversion proce-
dure of this section by LSq. The procedure LSq is now defined
for both n x n ‘band and n x n band-circulant matriées.

Given the linear system AX =y, where A is an n x n
band matrix of band width 2p+l, we denote the least-squares
approximate inverse of A by B = LSq(A). The com?ﬁtational com-

plexity for the associated iterative method x(m+1) = (I~BA)x(m)

+ By, m > 0, is, strictly speaking, 2(p+q) + 1 = (p+q)(£fq+1)

The term involving 1/n in this computational complexity decreases
in importance as n becomes large. As our interest is in large

linear systems, and as computational complexity is at best only
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an estimate, we ignore terms in 1/n in our complexities. This
produces a somewhat high estimate of the computational complexity
in our non-circulant test situations when n = 20, however, the
results obtained are more‘in line with those expected for larger

systems. Thus for the least-squares method we have

C(LSq) = 2(p+q) + 1.

In Table 3.2.1 we give experimental results with the qu method

for the matrices Tl,.T3, and Tg of Appendix C.

Table 3.2.1
Results with the approximate inversion method LS
applied to T;, Tz, and Ts of Appendix C. G is the iteration

matrix of the associated iterative process.

2q+1 LS (T LS (T Ls (T
q o (T1) §(T3) o(T5)
() | E® | o0& | E® | o®) | E®
3 0.995 | 1800 | 0.522 7.7 0.650 16
5 0.977 470 | 0.112 3.2 0.298 7.4
7 0.909 140 | 0.0223 2.4 0.231 7.5
9 0.741 45 | 0.00551 2.1 0.118 | 6.1
11 0.464 22 | 0.00143 2.0 0.0422 | 4.7
13 0.206 12 | 0.000382 | 1.9 0.0215 | 4.4

3.3. GENERALIZED DIAGONAL BLOCK TECHNIQUE
The approximate inversion method DBq of Chapter 2 is

generalized in this section to a method for n x n band matrices.
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Let A = (a; j) be an n x n band matrix of band width 2p+l.

b

We seek an n x n band matrix B = (bi .) of band width 2q+1

3

such that for I-BA = G = (gi j)’ |i-j| < q implies g 5~ 0.

2

We let bi be defined as in Section 3.1 and let

—a. . ‘e a. . -1
i-s,1-s 1-s,1+t
Di = : : (3.3.1)
L Fivt,i-s 0 Piat,jet ]

where as in Section 3.1, s = min(q,i-1) and t = min(q,n-i).

Let

d. = (£. . _,....f. ) (3.3.2)

S
i,i’ ’Ti,i+t

where the fi'j are defined as in Section 3.1. We require that

3

DTb. =d., 1<ic<n. (3.3.3)

This defines the generalized diagonal block technique and no con-
fusion results if we symbolize thisprocess by DBq and write
B = DBq(A). The DBq method, like the LSq method, is a local
approximate inversion procedure.

When dealing with the linear system AXx = y where A is
an n x n nonsingular band matrix of band widﬁh 2p+l, our com-
putational complexity for the iterative process associated with

the above approximate inversion technique is

C(DB ) = 2p.
(q) 2p
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This expression for our computational complexity takes advantage
of_the,central band of zeros in I-BA. As with C(LSq), we ignore
terms in 1/n. In Table 3.3.1, we give experimental results with
the DBq technique applied to the matrices T;, T3, and Ts of

Appendix C.

Table 3.3.1
Results with the approximate inversion method DBq
applied to T;, T3, and Tg of Appendix C. G is the iteration

matrix of the associated iterative process.

2g+1 DB (T DB (T DB (T
q q( 1) q( 3) q( 5)
p(G) | EWG) | p(6) E(G) 0 (G) E(G)
3 0.914 67 0.277 1.6 0.784 16
5 0.537 9.7 0.0768 0.78 0.229 2.7
7 0.298 5.0 0.0206 0.52 0.206 2.5
9 0.159 3.3 0.00552 0.38 0.0958 1.7
11 0.0953 2.6 0.00148 0.31 0.0370 1.2
13 0.0446 1.9 0.000399 0.26 0.0333 1.2

3.4. A GENERALIZATION OF THE SUCCESSIVE OVERRELAXATION ITERATIVE
METHOD

Unlike the Gauss-Seidel and thé successive overrelaxa-

tion iterative methods, the procedures we have developed so far
(m+1)

do not use the available components of X
L m+1) '

when finding
Also, we have not made use of relaxation factors yet,

and strictly speaking, our methods should only be compared with
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the Jacobi method. In this section we extend our methods to pro-

(m+1)

cedures which use available components of X when finding

x (m+1) and to procedures which employ a relaxation factor.

Given the linear system Ax =y, where A isan nxn
‘nOnsingular band or band-circulant matrix, and the approximate in-
version techniqge, IT (IT is for example the 'DBq technique

for some q), we write B = IT(A) and have the associated itera-

tive process
xm+1) (I-BA)x(m) + By, m> 0. (3.4.1)

Let H = I-BA = HL +.HU where HL is an n x n strictly lower
triangular matrix and HU is an n x n upper triangular matrix.
We start with (3.4.1) instead of the Jacobi method and parallel
the development of the simultaneous overrelaxation,‘Gauss—Seidel,
and successive overrelaxation methods from the Jacobi method.

For the real number w, the parallel to the simultaneous over-

relaxation method is

x(m+1) - w(HX(m) + By) + (l—w)X(m), ‘m > 0. (3.4.2)

We denote this iterative process by JOR(IT). The parallel to

the Gauss-Seidel méthod is

x(m+1) = HLx(m+1) + HUX(m) + By, m=>20

or
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X_(m+;)_= (1) Hux(.m) . (»,I-.HL)'"I By, m> 0. (3.4.3)

We denote this iterative process by GS(IT). The parallel to the

successive overrelaxation process is, for the real number w,

D™D ™ Ly e 1ewx ™, om0,

This may be written as

xPD) = (Tool) T H ¢ 0 DX s w(T-oH)) By, 2 0,
' (3.4.4)

We denote this iterative process by SOR(IT). For consistency we
‘denote the iterative process of (3.4.1) by J(IT). As one would
ekpé;t, for w =1 the SOR(IT) process reduces to the GS(IT)
process.

Next we consider the special case where the n x n ma-
trix A has nonzero diagonal elements. Let D be the n x n
matrix which is zero off its diagonal and whose diagonal equals
the diagonal of A. It follows that DBg(A) = D-L, and hence
the J(DBO), JOR(DBg), GS(DBy), and SOR(DBg) methods are
equivalent to the J, JOR, GS, and SOR methods respectiveiy.
(This does not hold in geneial for the LSy technique.)

The SOR(IT) method presents the added problem of de-
terming the optimal relaxation factor Wy - The problems of the

uniqueness of w,_ and local minima for p((I—wHL)—l(wHu+(1-w)I))

b

as a function of w which are not absolute minima have not been
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investigated.
When A is a band matrix of band width 2p+1, we have

the following computational complexities;
C(GS(LSq)) = 2(p+q) + 1,
C(SOR(.LSq)) = C(GS(LSq)) + 1,
C(GS(DB)) = 2p,

. C(;SOR(;DBq)) = C(GSCDBq)) + 1.

iAgain we neglect terms in 1/n  in our computational complexities.
Experimentally, we deal with both the GS(IT) and SOR(IT) methods.
The former does not involve the determination of Wy 5 however
once wy is found, the SOR(IT) method is, in certain cases,
substantially superior to the GS(IT) method. All our relaxation
factors were_determined experimentally. Experimental results with
the GS(LSq) and GS(DBq) methods are given in Table 3.4.1 for
the matrices T;, T3, and Ts of Appendix C, and in Table 3.4.2

‘results with the SOR(LSq) and SOR(DBq) methods are given for

the same matrices.

Table 3.4.1
Results with the GS(LSq) and GS(DBq) iterative
techniques for the matrices T;, Ty, and Ts5 of Appendix C.

G is the iteration matrix in each case.
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Method 4 Results with matrix indicated
T Ts Ts
T .
g o (G) E(G) p (G) EQ) | p(6) - E(G)
GS(LS ), 3 | 0.995 1800 | 0.484 6.9 0.530 11
T 5| 0.976 450 | 0.0736 2.7 0.138 4.5
7 | 0.904 130 | 0.00580 | 1.7 0.0979 4.7
GS(DB ), 3 | 0.835 33 | 0.0769 0.78 | 0.627 8.6
4" 5| 0.280 4.7 | 0.00589 | 0.38 | 0.0520 | 1.4
7 | 0.0890 2.5 | 0.000425 | 0.26 | 0.0424 1.3
Table 3.4.2

Results with the SORQLSq) and SOR(DBq) iterative
techniques for the matrices T;, T3, and Ts of Appendix C.
G 1is the iteration matrix in each case and Wy is the optimal

relaxation factor determined experimentally to #0.005.

Method ~ Results with matrix indicated

7 Ty T3 Ts
Sl owy, [e@ E@] wy  [e(® E(G) | w, |p(B) |E®
SOR(LSq), 3/2.195/0.988 |830 |1.310 |0.306 5.1 {1.300{0.277 |6.2
' 5/2.005/0.948 |220 |1.035 |0.0390 |2.5 |1.055{0.0579|3.5
. 7/1.825/0.815 | 68 |1.005 [0.00506 |[1.9 |[1.040|{0.0431|3.8
SOR(DB.), 311.425/0.463 9.1 11.020 |0.0208 |0.77/1.230/0.370 |5.0
5/1.085{0.0897/2.9 [1.0015 |0.00150 |0.46{1.005/0.420 |1.6
7/1.025/0.0273|1.9 |1.00015|/0.000150/0.34|1.010}0.0197|1.3

3.5. HYBRID TECHNIQUES
We observe that in certain cases it is to our advantage
to vary from row to row the number of nonzero elements in our approxi-

mate inverse. For example, the first and last few rows of the
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inverse to T: are the most difficult to approximate with a band
matrix. This suggests that we use more nonzero elements in the
first and last few rows of our approximate inverse than for the
remaining rows. To illustrate, we might use DBql(Tl) values
for the first and last few rows of our approximate inverse and
values from Dqu(Tl)’ where ¢, < q; for the remaining rows.
We also have the option of using different approximate inversion
techniques for various parts of our approximate inverse. We may,
for example use the min-max approximate inversion technique on
the circulant portion of T; and another method for the ends of
the band in T;. We will say that an approximate inversion tech-
nique is a hybrid technique if it uses a varying criterion to de-
termine the elements of its approximate inverse.

'Hybrid techniques for getting an approximate inverse to
a band matrix A pfovide more flexibility than the procedures
mentioned so far. For efficient application of a hybrid'technique;
knowledge of the more ndifficult" portions of A"l must be avail-
able. When applying a hybrid technique, we must decide on the
techniques to be employed for the various portions of the inverse
being created and we must decide on the number of nonzero elements
to be allowed in each row of the approximate inverse.

Experimental results indicate that for the matrices
Ty and T3 of Appendix C we can take the exact inverse of a

small (say 8 x 8) version of these matrices and using data from
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this small inverse (and if desired data from one of the band-cir-
culant’approximate inversion methods of Chapter 2) we can patch
together an approximate inverse to the given matrix. Good experi-
mental results were obtained with such techniques. It is not our
intention, however, to pursue in detail here the creation of hybrid

- - Y ‘ - 13
approximate inversion techniques.

3.6. SUMMARY OF TECHNIQUES FOR BAND MATRICES

We emphasize that the techniques given in this chapter
to produce an n x n band matrix B that acts as an approximate
Vinvefse to a givén n x n band matrix A are intended for situa-
tions where A—lv is well approximated by zero entries.away from
a central band. .In Table 3.6;1 we compare the efforts for some
of the iterative processes mentioned in this chapter applied to
linear systems involving the matrices T;, T3, and Ts of Appen-
dix C. For these test matrices, the DBq method stands out as
being the most useful. It is superior to the J, GS, SOR, gnd
LSq methods and it serves as a better basis for an extended

method than does the LSq procedure.

Table 3.6.1
Comparison of efforts for some iterative processes
applied to linear systems involving the matrices T;, T3, and

Ts of Appendix C.
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Iterative method Effort with matrix indicated

T, T3 Ts
J diverges | 3.1 diverges

GS 57 1.8 12
SOR | 13 2.4 11
LS , 2q+l = 3 1800 7.7 16
q 5 470 3.2 7.4
7 140 2.4 7.5
DB, 2q+l = 3 67 1.6 16
! 5 9.7 0.78 2.7
7 5.0 0.52 2.5
GS(LS ), 2q+l = 3 1800 6.9 11
- q 5 450 2.7 4.5
7 130 1.7 4.7
GS(DB ), 2q+l = 3 33 0.78 8.6
L 5 4.7 0.38 1.4
7 2.5 0.26 1.3
SOR(LS ), 2q+1 = 3 830 5.1 6.2
1 5 220 2.5 3.5
. 7 68 1.9 3.8
SOR(DB ), 2q+l = 3 9.1 0.77 5.0
T - 5 2.9 0.46 1.6
7 1.9 0.34 1.3




CHAPTER 4
TWO DIMENSIONAL APPROXIMATION PROBLEMS

4.1. INTRODUCTION
One application of the iterative processes considered so
far occurs in the approkimation of a function of one variable by

n
a spline S = ] a/ S , where the S,  are translates of the

k=0 k'k’ k

basic piecewise cubic spline S; of Appendix C. While this is
useful, a more interesting problem is the approximation of functions
of two variables. Our domaiﬁ is now a region in the plane and our |
approximating function is a iinear combination of translates of a
two dimensional extension of Sg such as the one outlined in
~Appendix D.

We beginvour attack on the problem by constructing a
mesh over our two dimensional Tegion aS in Figure 4.1.1. We re-
quire that all the basic regions defined by this mesh be con-
gruent parallelograms. If 6 = 90° then

fmj//

[T7 77 I v

/ / / 7 )(/ interest
7////1

/ [ | = &
o | ] ]

Figure 4.1.1

51
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we have a rectangular mesh and if further h; h, then we have

a square mesh. In our numerical eXamples' h; = h, and 6 = 60°.
Our mesh points are designated by ordered pairs of integers and

we restriét our attention to sets of mesh points whose boundary
pointslie on a parallelogram in the plane. Thus for an irregular
region we may be designating mesh points which are put to no dir-
ect use. However, the inclusion of these points allows us to
develop a simple and natural notation for the problem. Of course
in practice such points are not included in computer progfams where
such inclusion would result in an undue waste of storage space.

We designate the mesh point in the i'th row of points
from the top and the j'th column (inclined at © degrees to the
horizontal) of points from the left by (i,j). We let 5;; de-
note a basic two dimensional spline centered at the mesh point
'(i,j): To facilitate the following discussion, we let £  denote
the set of all mesh points (i,j) such that the spline Si,
is béiﬁg used in the given approximation problem. For example, in
the least squares approximation problem,'we use Si,j if it has
nonzero values in the region in question.

Given the function f£ defined on a region in the plane,

our objective is to determine Xy 3 for (i,j) e & such that
s :

X, . S, . (4.1.1)
(i,j)eq

approximates f over the region in question. It is convenient

to consider the X5 s as elements of the matrix
k)
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1,1 e 1,n
X = : : (4.1.2)
[ *m,1 7 %m,n |
where if (i,j) & 0  we set x; = 0. We let
XQ = {X = (xi,j):X is an m x n matrix and xi,j =0

if  (i,j) ¢ el.

We observe that XQ is a subspace of the linear space of all

m x n matrices.

We assume that our approximation problems have unique
solutions. This occurs, for example, in least-squares approxima-
tion problems and in interpolation problems if sufficient bound-
ary conditions are present as they are in the periodic
problem of Section 4.6. The approximation problem of (4.1.1) may

thus be stated in terms of the linear system
AX =Y (4.1.3)

where X,Y € ng and A is a nonsingular linear operator from
X to X_.
Q Q

We observe that if the splines S, ; have small sup-

3

port in the region under consideration then each Yy ; of Y

for (i,j) € @ depends through A on only a few nearby elements

of X (that is on elements xklﬂ’ (k,2) € @ where the mesh

3
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point (k,£) is geometrically near the mesh point (i,j)). In
‘the next section we dévelop a qonvenient‘hotation for linear opera-
tors of this_form. Linear operatorsof this type arise in Section
4.6 where we ihterpolate a doubly’periodic function with a linear
combination of quartic triangular splines. We observe that if the
linear system of (4.1.3) were written in standard matrix notation,
we would get a matrix which, although sparse, is neither band nor

band-circulant in nature.

4.2. NOTATION AND FUNDAMENTAL CONCEPTS

Because of the limited overlap of elements in the set
of translates of our basic tﬁo dimensional spline, each equation
in (4.1.3) involves only elements in a relatively small portkon of
A. This observation leads to the following formulation.

Let A = (Ai,j) be an m x n array, each of whose

elements is a (2p+1) x (2p+1) matrix Ai 3 given by

s

i .~P,-P - Nt
21,3 e a P:P
i,j
A. . = aQ’TP ... a0 ...'ag’? . (4.2.1)
i,] i,j i,] i,j .
aP» 7P . ab’P
L 1,J i,] _|
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We could be more general and not require each ‘Ai 3 to have the

]

same dimension, however, the above notation is sufficient for the
purposes of this chapter. The array A, which we use to describe
a highér dimensional analog of the band matrices considered in the
previous chapter, can be used to define the linear operator of
(4.1.3). Since only the xi,j's of X in (4.1.3) with

(i,j) € @ have any effect on an approximation problem under con-

sideration, we assume for integers t, u with |t] <P, |u| <P,
i,j

is the (2p+1) x (2p+1) mnull matrix if (i,j) ¢ Q. This last

that a =0 if (i+t, j+u) ¢ @. We also assume that A,

i,j
assumption assures that there is a one-to-one correspondence be-
tween the elements Yi,; of Y for which (i,j) € @ and the
equations in the linear system (4.1.3).

For simplicity in stating the following definition, we

define X p = 0 if any of the following occur: k < 1, k > m,

£ <1, £ > n.

Definition 4.2.1. For the m x n matrix X define AX to be

the m x.n matrix given by

. = f f al’s x (4.2.2)

j =p s=-p i,j Ti+r,j+s

(AX)i,

It follows that A is a linear operator from the space

X, to the space X and the linear system (4.1.3) can be con-

Q,

veniently given in this notation. Indeed, our definition of the
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way A operates on an m x n matrix X e XQ is a higher di-
mensional analog of the multiplication of a band matrix and a

vector.

4.3. MULTIPLICATION OF THE LINEAR OPERATORS A = (Ai j) AND

B = CBi,j) _
Let A = (_Ai j) and B = (Bi j) be operators de-
fined on the space XQ as in Section 4.2. Let each Ai 3 be a

(2p+1) x (2p+1) matrix and let each Bi 3 be a (2g9+1) x (2q+1)

2

matrix. We seek the linear operator C = (Ci j) such that for

’

any m x n matrix X e Xq
CX = B(AX). (4.3.1)

In terms of the previous section, the operator C can be re-
presented by an m x n array of (2(p+q)+1) x (2(p+q)+1l) matrices

C. . following the format of (4.2.1) such that for integers t,

>J

u with |t| < p+q, |u| < p+q, the elements CE’? of Ci 3 are

b s

given by

t,u 3
c:’, = ) JCLoa; .
i,j & i,j i+r,j+s

q |
§ o preS gt rsu-s (4.3.2)
S=-q

r=-q
where if |t-r| > p, or J|u-s| > p or (i+r,j+s) ¢ o then
t-r,u-s
i+r,j+s
the (2(p+q)+1) x (2(p+q)+1) null matrix and if (i+t, j+u) ¢ Q,

= 0. We observe that if (i,j) ¢ g then C; j is
: ’

then cF’? = 0.

H
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4.4. APPROXIMATE INVERSES FOR THE OPERATOR A = (Aj j)
We find it convenient to define our identity operator

on XQ by the m x n array I(r) = (Ii,j(r)) where each Ii,j(r)

is a (2r+1) x (2r+1) matrix in the format of (4.2.1) with ele-

ments f?’g(r) given by
1,)] )

[ 1, if t=u=0 and (i,j) e @
fiw?(r) = 9 | . (4.4.1)
»J ! 0, otherwise
L

We are concerned with linear operators A = (Ai j)

whose inverses are well approximated by linear operators B = (Bi 3
" . H

where the dimensions of Ai . and Bi . are small compared to
2 2

the dimensions of the array A. Specifically for the linear opera-
tor A given by Definition 4.2.1, we seek a linear operator B
of the form used in Section 4.3 such that BA = C = (Ci .) in

b

some sense approximates I(p+q). Ideally B = A™' and

=1, . i 1 <3j <nmn. 4.
Ci,j II,J(P+q), 1<ic<m, j <n (4.4.2)

It is not in general possible to satisfy these overdetermined
systems exactly and we must be content with an approximate solu-
tion. Of course the elements C::? of Ci,j automatically
satisfy (4.4.2) if (i+t, j+u) ¢ @, and when determining B, the
only pertinent equations arising from (4.4.2) are those for

which (i+t, j+u) € Q.

Two approximate inversion techniques of the previous
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chapter generalize nicely to two dimensional problems. First we

consider a generalization of the least-squares technique. Let

G = (Gi j) = I(p+q) - BA. (We define this subtraction by
Gi,j = Ii,j(p+q) - (BA)i,j') We minimize (for the real case)
t, L
Q(B) =( - _(gi ¢ 2) 2 (4.4.3)
s 5]
l,J ’tQu
where gg’? is an element of Gi i’ This is equivalent to min-
ol d 3
imizing

Q5B = ([l S(pra) - BA); (1TIL S(pra) - (BA); ;1)
| (4.4.4)

independently for each (i,j) € Q, whefe tr denotes the trace
operator. In a similar manner to the least-squares procedure of
Chapter 3, the minimization problems of (4.4.4) are local in
nature in that Qi,j(B) depends only on Bi,j which is deter-
mined from data in matrices in A = cAi,j) whose subscripts cor-
respond to mesh points in Q that are geometrically near the
mesh point (i,j) in the plane.

The value of B.l ; that minimizes (4.4.4) is the least

2

~-squares solution to the overdetermined linear system represented

by

(BRY); 5 = L; ;(pra).

1,]

After writing this overdetermined linear system in standard matrix



notation (which for reasons of space we do not do here), we see
that our problem is handled by the procedures of Section 3.2.
No ambiguity arises if we denote this approximate inversion
process by LSq and write B = LSq(A).

The diagonal block approximate inversion technique also -
generalizes to the linear operator A = (Ai j). For this proce-

3

dure we require that

tu _ ct,u

t, . '
i3 = £75era) - (BA)i"j1 =0 if |t]| <4, |u] < q. (4.4.5)

-

Determination of the B for (i,j) e © according to the lin-

i,j
ear systems arising fr6m>(4.4.5) gives our approximate inverse

B by the diagonal block technique for two dimensional problems.
No- confusion results if we denéte this approximate inversion tech-
nique by DBq and Qrite B = DBq(A). We observe that this pro-
cedure, like our two dimensional extension of‘the least-squares
technique, is a local technique. Another advantage of the DBq
technique is that this procedure supplies a great number of zero
entries in the matrices of G = I - BA, and thus is capable of
reducing the computational complexity from that of the LSé tech-
nique. We observe, however, that in certain cases it is more
economical not to form the Gi,j but rather to apply A and B

individually in the iterative process

X+ popayx@ o gy
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- x™ - gAx®™ L BY, m > 0.

This is the case for example when p = 2 and q = 1, however,
if p=1 and q =1 it is more advantageous (in terms of com-

putational compleﬁity) to form G.

4.5. THE TWO DIMENSIONAL CIRCULANT PROBLEM

We modify slightly the work of the previous sections to
treat the two dimensional ektension of the circulant problem
handled in Chapter 2. This sets a background for the experimental
work of the following section where we consider a two dimensional
periodic interpolation problem. Again we consider linear operators
from the space of all m x n matrices to the space of all m x n

matrices. We represent our two dimensional extension of the band-

)

circulant matrices of Chapter 2 by an m x n array A = (Ai 3
3

of (2p+1) x (2p+1) matrices Ai j following the format of

b

(4.2.1). In the circulant case all the Ai 3 are equal. For
>

the m x n matrix X = (xi j), AX is the m x n matrix whose
3

elements are defined by

(AX), . = E E al’> (E(X)) (4.5.1)

5] T=-p S=-p 1,) pti+r,ptj+s

for 1 <ig<¢<m, 1< j <n, where E(X) is a (m+2p) x (n+2p)

periodic extension of X with (E(X)) = 1 <1igm,

pripei T ML)
1 <j<n, and with (E(X))k 2= (.E(X))t u if k = t(mod m) and
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£ = u(mod ﬁ).

Next we consider multiplication of our two dimensional
circulant operators. Let the m x n array B = (Bi,j)’ where
each Bi,j is a (2g+1) x (29+1) matrix, define a two dimensional
circulant operator according to (4.5.1) and let C ='BA, We

observe that C may be represented'by an m X n array of

(2(p+q)+1) x (2(p+q)+1) matrices Ci j with

b

t,u _ g ‘i‘ r,s _t-T,u-s
Ci,j = _ bi,j ‘ai,j (4.5.2)
r=-q s=-q
t-r,u-s

where |t| < p+q, |u|] < p+q and a =0 if |t-r| > p or

i,]
lu-s| > p.

Following the previous section we have the least-squares
approximate inversion method (denoted by LSq) which requires
that Bi ; be the least-squares solution to the overdetermined

b

system (BA)i i = I p+q). We also have the diagonal block approx-

i,5¢

imate inversion method (denoted by DBq) which requires that

-t u 1, if t=u=20
COFSES

0, otherwise

for [t| <q, [u| <aq.

We list in Appendix F, FORTRAN programs for determin-
ing DBq(A) and LSq(A).by=thesuccessive overrelaxation iterative
technique. We comment that our algorithms for finding these

approximate inverses make use of the notation developed in this
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chapter. Thus we do not require explicit matrix statements of

the linear systems whose solutions give our approximate inverses.
In the next section, we make use of the following tech-

nique to determine the spectral radius of two dimensional circu-

lant linear operators. Let G = (G ) bean m x n array of

t,u

(2p+1) x (2p+1) matrices Gt u following the format of (4.2.1),

and let G define a circulant linear operator. We observe that

. ' . r,s
the eigenvectors of G are them x n matrices ¢ ’°, 1 <r < m,

T,s

o’ l1<ts<m,1<u<n are given
-3

1 £ s < n whose elements ¢
by ¢iaz = exp(2mirt/m)exp(2risu/n). It follows that the eigen-

values of G are given by

A = E E gk’z exp(2nirk/m)exp(2risf/n) (4.5.3)
r’s t;u .
k:.,,p ,ﬂ:..p

|: 1 <r<m 1 <s <n}. We consider the

k,L -k,-£
= 8

2
t,u t,u

and p(G) = max{]xr

IA

»S

symmetric case where g and

A = gg,o + 2 § g:’g cos 2;rk + 2 E § gk’Z cos 2n -

= 4+ ==
r,s “t,u ko1 t» =p £=1 t,u n

rk s£)

(4.5.4)

A FORTRAN program to determine the spectral radius of a symmetric

two dimensional circulant opeiator is given in Appendix E.

4.6. APPLICATION TO A SPLINE INTERPOLATION PROBLEM

We consider the mesh of Figure 4.1.1 with 6 = 60° and
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h; = hy, = h and we consider a function f(x,y) defined on the
plaﬁe in reference to the coordinate system of Figure 4.6.1. Our

goél is to interpolate the function f(x,y) in the parallelogram

y
(0,b) Z - : (a,b)

2> X

-

0 1  (a,0)
Figure 4.6.1

defined by (0,0), (0,b), (a,b), (a,0) in the special case when

for all (x,y),
£(x,y) = £(x+a,y) = £(x,y+b). (4.6.1)

We further assume that for positive integers m, n; a = nh and
b = mh. *We then have an m x n matrix X of variables. The re-
sulting linear system for the interpolation problem using translates

of the basic spline of Appendix D is

AX = Y

where A = (A. j) is the circulant linear operator with

1,
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1 1 0
A =1 |1 6 1 (4.6.1)
i,j 12 ' S

o 1 1

m, 1<j<n. Y is the m x n matrix formed by

IA

for 1 <1i
the values of‘ f(x,y) on the mesh points of the m X n mesh
under consideration.

For the appfoximaté inverse B to A, we consider the

iterative process

x(*1) _ (reayx (P + By, p =2 o. (4.6.2)

For comparison purposes we determine p(I-BA) for various approx-
imate inverses, and we test the process (4.6.2) for various values

of B on an actual linear system. We make use of

GCP),= mak{lxgpfl) —-XFPQI: 1<i<m,1<j<n}.
: 1,) 1,] T T -

(4.6.3)

In Appendix G, we give a FORTRAN program for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>