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2.1. 

Abstract 

The main purpose of this thesis is to give a characterization 

of nth order linear homogeneous differential equations that can be 

transformed into constant coefficient differential equations. The 

characterization given makes use of invariance theory originated 

by G. H. Halphen around 1880. 

Chapter 1 gives an introduction to the problem of transforming 

ordinary linear homogeneous differential equations into constant 

coefficient differential equations. Chapter 1 includes an example 

as well as enough of the theory of invariants to give a prpof of 

the main theorem of this thesis. 

Chapter 2 gives a generalization of the chain rule of elementary 

calculus. We make extensive use of this generalization throughout 

the thesis. 

Chapter 3 is a development of the transform equations that we 

make use of throughout this thesis. That is, we maike changes of 

the dependent variable and/or independent variable of a given 

differential equation. The transformed equation is expressed in 

terms of the coefficients of the original differential equation and 

the functions used to define the changes of variables that we have 

made. 

In the last section of Chapter 4 we prove an important 

invariance relation that is used in Chapter 5. The rest of Chapter 

4 contains invariance results that eire of historical interest as 

well as being a prelude to the results of Chapter 5. 



Ill 

Chapter 5, the moet important chapter of this thesis, concerns 

the invariance theory of Halphen. This invariance theory is needed 

to give the characterization of nth order differential equations that 

can be transformed into constant coefficient differential equations. 

Chapter 6 is devoted to applying the preceeding theory to the 

sblution of differential equations that can be transformed into 

constant coefficient differential equations. 

The appendix contains some interchange of summation formulas 

that we use throughout the thesis. 
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Notations 

Throughout this thesis we will use the reference system (a.b.c) , 

where a gives the chapter number, b gives the section number and 

c gives the mrnber of a particular formula, equation, theorem or 

lemma. For example equation (1.1.1) refers to the 1st equation of 

section 1 of Chapter 1 while Theorem Cl,3.i) refers to the 1st 

theorem of the 3rd section of Chapter 1. When results from the 

appendix are referenced, this is denoted by putting a s A . For 

example Lemma (A.1.1) refers to the first lemma of the appendix. 

When the dependent variable of a given function is obviously 

X , we shall not always explicitly specify it. For example u(x) 

is often referred to by just u . 

Phrases like "Kith order homogeneous differential equation" are 

often replaced by "differential equation" or just "equation" when 

no loss of clarity will result. 

Throughout this thesis we will denote the feth derivative of f(x) by 

f Cx) (f (X)) f 
Ck) 

and similarily 

fix) 
dt 

Cf (X)) 
Ck) 

t. 

r 



V 

That is, subscripting by a variable will denote the variable that 

differentiation is with respect to if it is other than x . 

C^[a, bj shall denote the set of all functions that are n 

times continuously differentiable with respect to x on [a, b] . 

The coefficient of the highest order derivative of the dependent 

variable in a differential equation shall be called the leading 

coefficient of the differential equation. 

shall denote the USUSLI binomial coefficients 
n! 

(n-k)!k! 

The characteristic equation (in X) of the constant coefficient 

differential equation 

"n-k 
= 0 , 

is 

The left side of this equation is referred to as the characteristic 

polynomial. 

When referring to a differential equation of order n , we 

denote this by saying it is of nth order. 
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Chapter 1 

Fundamental Concepts 

Cl.l) Introduction, Let 

(1.1.1) 
n 

be oui nth order linear homogeneous differential equation with 

coefficients ~a^(x) , where a^Tx) is a complex valued function. 

We shall always assume that equation (1.1.1) is valid on a real 

interval [a, b] and that (x) 0 on [a, b] . We will also 

assume that each a^(x) is 2n - i times continuously differentiable 

2ri“i 
on [a, b] . That is, a^^^Cx) e C [a, b] . Without loss of 

generality we can assume that a^ (x) = 1 , since if this were not 

the case we could divide equation (1.1.1) through by (x) getting 

a differential equation having one as its leading coefficient. 

In this thesis we are interested in solving equation (1.1.1) 

by transforming its dependent and independent variables. The 

transform of the independent variable that we will use has the form 

(1.1.2) 

and the transform of the dependent variable has the form 

(1.1.3) y(x) = v(x)z(t) 

where u(x) and v(x) are non-vanishing functions on [a, b] such 
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that u(x) e ^[a, b] and v(x) € C^[a, b] . The z Ct) in 

equation Cl.1.3) is the new dependent variable of the new independent 

variable t . In particular we are interested in developing necessary 

and sufficient conditions that will characterize those nth order 

differential equations (1.1.1) that can be transformed, by means of 

equations (1.1.2) and (1.1.3), into constant coefficient differential 

equations. These necessary and sufficient conditions will explicitly 

give u(x) and v(x) in terms of the coefficients a^(x) of the 

original differential equation. 

(1.2) An Example. By adjusting the coefficients of equation 

(1.1.1) by numeric factors it is easy to see that equation (1.1.1) 

can be cast in the form 

n k 
tl.2.1) I (k)a (X) — y(x) = 0 , la^(x) s 1) , 

k=0 ■ dx 

where the a^(x)'s of equation (1.2.1) differ from those of equation 

(1.1.1) by the constant factors |^| . 

Pefinitlon (1.2.1). Any differential equation of the form of 

equation (1.2,1) will called a differential equation in its 

normal form. 
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To facilitate comparison with work done by other authors, we 

will usually work with the normal form of equation (1.1.1). 

In order to illustrate the transformations we are interested 

in we consider the case n 3 . We transform the third order 

differential equation 

By using the chain rule of elementary calculus/ equation (1.2.3) 

and equation (1.2.4), we have that 

by means of the transformations 

(1.2.3) 

and 

(1.2.4) y(x) = vCx)z(t) . 

= u(x) ^ (v(x)z (t)) 

That is 

(1.2.5) = (uvXz (t) )^^ ^ + z(t) 
ox t 
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where we have used the notation (z (t)) 

manner we obtain 

Ck) ^ 
t k 

dt 
zCt) . In a similar 

(1.2.6) = fti%)(z(t))^^ + (2uv'^’ + u‘*’v) (z(t))y' + v‘^’z(t) , 
, ^ t t 
dx 

and 

3 
^ d y (x) , 3 V V (3) . 2 (1) . ^ (1) , , , (2) (1.2.7) —  = (u v)(z (t)) ^ + (3u V + 3uu v) (z (t) ) ^ 

dx' 

+ (3uv*^' + + u*^’v) (z(t))^^' +v*^’z(t) . 

When equations (1.2.4), (1.2.5), (1.2.6) and (1.2.7) are 

substituted into equation (1.2.2) we obtain 

(1.2.8) ( u^v)(z (t)) ^^ ^ + (3aj^u^v + 3u^v^^^ + 3uu^^ ^^^(z (t)) ^^ ^ 

+ (3uv^^^ + 3u^^^v^^^ + u^^^v + 6a^uv^^^ + 3a^u^^^v + la^uv) (z (t)) ^^ 

+ (v^^^ + 3a^v^^^ + 3a^v^^^ + a^v)z(t) = 0 . 

From equation (1.2.8) we see that if 

3a^u^v + 3u^v^^^ + 3uu^^^v = k^u^v , 

3qv^^^ + + u^^^v + 6a^uv^^^ + 3a^u^^^v + la^uv = k^u^v 

and 

+ 3a^v^^^ f 3a2V^^^ + agV = k^u^v , 
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where k , k and k are constants, then the solutions of the 
12 3 

differential equation (1.2.8) are the same as the solutions of the 

constant coefficient differential equation 

(z(t))^^^ +k (z(t))^^^ k (z(t))^^^ + k z(t) = 0 , 
t 1 t 2 t 3 

dt 
where t and x are related by = u(x) . 

dx 

As 

(x) = 

a specific example of equation (1.2.2) let a^^ (x) = 
3x 

3 (1 “ x) 
and [a, b] - [2, 3] * 

(1 x) (1 - x) 

That is, let us consider the differential equation 

(1.2.9) 
3 o » -3, 3-k _k 3\ 3 lx d 

1 I 1 . /i N 6-2k , k k=0 kl(1 - x) dx 

y (x) = 0 , (x e [2, 3] ) . 

If we use the transformations 

(1.2.10) dt , -2 

to = 

and 

(1.2.11) y(x) = exp 
z (t) 

1 - X 1 - X ' 

the differential equation (1.2.9) transforms into 

(1 .2.12) exp(—1 (1 - X) ^[(z(t))^^^ - 9(z(t))^^’ + 6z(t)] = 0 

Eqpiation (1.2.12) has the linearly independent solutions 

z^(t) = exp(Aj^t) , i = 1, 2, 3 
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where , X^ and X^ are the distinct real roots of 

Cl.2.13) - 9X + 6 = 0 . 

The solutions y^^Cx) of equation (1.2.9) are related to the 

solutions z^(t) of equation (1.2.12) by equation (1.2,11), where 

t is related to x by equation (1.2.10). Since the z^(t)'s are 

given by 

z^(t) = exp(A^t) , i = 1/ 2, 3, 

we have that 

Yi (x) (1 - x) exp|j^ - ^ 

(1 - x) ^ exp IY 1 exp (A ^t) 

(1 - x) ^expj 2"^'Igxp (A^ 

.A. 

C(1 - x)“^exp(-y 

(1 - X) ^dx) 

A. - 3 

where C is a constant of integration. Without loss of generality 

G can be taken to be one, hence the solutions of equation (1.2.9) 

are 

(1.2.14) y^(x) = (1 - x) exp| ^ — I , i = 1, 2, 3, 

where the A^'s are the roots of equation (1.2.13). 
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(1.3) The Nth Order Case. We wish to generalize the procedure 

used to solve the differential equation (1.2.9), to. solve nth order 

linear differential equations. In order to do this we must transform 

the differential equation 

.k 
(1.3.1) 

by means of 

n _K; 

^ (khn-k^^^ yCx) = 0 , (x e [a, b], a (x) = 1) , 
k=0 

(1.3.2) 
dt , 
~ = u(x) 
dx 

cind 

(1,3.3) y(x) = v(x)z(t) , 

to obtain 

(1.3.4) I h p (t) (z (t) )^ = 0 
t=0 

As usual u(x) does not vanish on [a, b] , hence t(x) = u (x)dx 

is a monotone increasing or decreasing function on [a, b] . Letti|ig 

h(x) = u(x)dx we see that the inverse of t exists and it can be 

written as 

(1.3.5) 
-1 

X = h (t) . 
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In order to find out how the b^(t)'s are related to the (x)'s , 

u(x) and v(x) , we require a result known as Faa de Bruno's Formula. 

Theorem (1.3.1). (Faa de Bruno's Formula). Let n be a 

positive integer and let k be such that 0 ^ k :< n , If = u (x) 

ri“l 
where uCx) e C [a, b] and u(x) is non-vanishing on [a, b] then 

for all x€ [a, b] 

,k k 
(1.3.6) 

.m 
= Y (j)(k, m; uCx)) 

dx m=0 dt 
m 

where 

(1.3.7) (j)Ck, m; uCx)) =/ 0 

I 

m = k = 0 

m = 0, k > 0 

k! 
m. 

k ' \ \ 

TT ' 
1=1 

otherwise 

The sum in equation (1.3.7) is over all partitions of m such that 

k 
5] m. = m 

i=l 

and 

y im. = k , 

1=1 " 

where the m^'s are all integers greater than or equal to zero. 
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A proof of Theorem Cl•3.1) is given in Chapter 2. 

Using Theorem (1.3.1) and equations (1.3.2) and (1.3.3), we 

simultaneously transform the independent and dependent variables 

of the differential equation (1.3^1), to obtain 

n k 
(1.3.8) I a (x) I 4>(k, j; u(x)) —^ (v(x)z(t)) = 0 , ' 

k=0 j=0 dt^ 

where <i>(k, j; u(x)) is given by equation (1.3.7). 

We wish to write the differential equation (1.3.8) in the form 

of equation (1.3.4). By using formula (A.1.4) to rearrange the sxams 

in equation (1.3.8) we find that 

n n j 

I I 4>(k/ j; u(x)) —J (v(x)z(t)) = 0 . 
j=0 k=j ’ ' dt"^ 

By using Leibnitz's rule for the differentiation of the product of 

two functions this equation becomes 

1 ? U(x))[j |(v(x))^^ (z(t)) = 0 . 
j=0 ^=0 k=j’^ 

By rearranging the sums of this equation using formula (A.1.2) we 

obtain 

(1.3.9) 
n n-Z n 

III (kl^r. (x)<l)(k, j + 1; u(x)) 
£=0 j=0 k=j+£'^^ 

+ I 
I , 

(v(x))^^^(z(t))^^^ 

which is of the same form as equation (1.3.4). 
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In order that equations Cl.3.4) and Cl.3.9) are the same 

C-t) 
differential equations, their coefficients of Cz(t))^ , 

-t = 0, 1, ..., n , must be equal. For £=0, 1, ...,n we have 

that 

(1.3.10) 
n-Z n I ’ P X 

= I 1 (3 + Zj u(x))p^ J(v(x)) 
^“0 

where t and x are related by ^ ~ u(x) . 

As will be shown in Chapter 2 4>(n, n; u(x)) = (u(x))^ , hence 

f n ^ 
recalling that (x) = 1 we see that the coefficient of (z(t))^ 

in equation (1.3.9) is (u(x))^v(x) . We have the following theorem. 

Theorem (1.3.2). Let x € [a, b] , then the differential 

equation Cl.3.1) can be transformed via equations (1.3.2) and (1.3.3) 

into a differential equation of the form 

^ d^ 
A(x) I c^_^ —^z(t)= 0 , (CQ = 1) , 

Z=0 dt 

where the are constants, if and only if there exist u(x) 

and v(x) such that 

= c p (u(x)) 
n^'Cr 

n 
V (x) 

for Z = 0, 1, ..., n - 1 . 

(j) 
t 
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Even though Theorem (1.3.2) characterizes those differential 

equations which can be transformed into essentially constant 

coefficient differential equations, it does not tell Us what u(x) 

and v(x) must be to accomplish this. By using the theory of 

invariants we will not only be able to tell whethei a given 

differential equation can be transformed into a constant coefficient 

differential equation, but we will also be able to explicitly specify 

the required transformation functions u(x) and v(x) in terms of 

the coefficients of the original differential equation. 

Cl * 4) Theory of Invariants. Theorem (1.3.2) gives necessary 

and sufficient conditions that the differential equation 

n k 
Cl.4.1) I ( k)VkC’'’ = ° ' ' 

k=0 ' ' dx 

transforms into essentially a constant coefficient differential 

equation by means of the transform equations 

/- . dt . . 
(1.4.2) ^ = u(x) 

eUld 

Cl.4.3) y(x) =v(x)z(t) . 

Fayet [I6j and Berkovic [3] have also found necessary and sufficient 

conditions for transforming ordinary linear homogeneous differential 

equations into constant coefficient differential equations via 

equations (1.4.2) and (1.4.3). In all these cases the required 
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transform functions u(x) and v(x) are not explicitly given in 

terms of the coefficients of the original equation. 

Breuer and Gottlieb [5] have considered the special case when 

the transform equations (1.4.2) and (1.4.3) are of the form 

d't 
^ = u(x) and y(x) = z(t) . That is, only the independent variable 

is transformed. They obtain essentially the following theorem. 

Theorem Cl»4.1). The differential equation 

n k 

Cl.4.4) I —k = 0 , (x £ [a, b] , (x) = 1) , 

k=0 dx 

where non-vanishing on [a, b] , can be transformed via 

dt 
™ = uCx) and y(x) = z(t) into a differential equation of the form 

(1.4.5) 

n 
A(x) y c o ~ir z(t) = 0 (Cfl = 1) , 

where the c. Vs are constants, if and only if 

n 

Cl.4.6) 1 ^ Cx)(|)(k, t} u(x)) = c ^a (x) , 
k^ n-k n--c n 

C'C- — 1, •••, n) , 

where the c^'s are constants and <j)(k, t; u(x)) is given by 

equation (1.3.7). Moreover if a u(x) exists such that these 

conditions hold then u(x) can be taken to be u (x) = (a^^(x)) 
■/n 

Proof: Using equation Cl.3.6) of Theorem Cl.3.1) we transform 

dt 
equation Cl.4.4) by means of the equations ~ sind y(x) = z(t) , 

1 ^ I u(x))(zCt)) 
k=o £=o 

0 . 

to obtain 
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By reeorranging the s\ams of this equation using foinnula (A. 1.4) we 

obtain 

Cl.4.7) I I a (x)(j)(k^ 1; u(x)) (2i(t) 
1=0 }^=l 

0 . 

As we will see in Chapter 2, 

,(f)(k,-0; u(x)). = 

1 

0 

k ^ 0 

k > 0 

and 

<J)(n, n; u(x)) = (u(x))^ , 

hence the coefficient of z(t) in equation (1.4.7) is 

the coefficient of (z(t))^ is (u(x)) . The theorem now 

follows immediately since if equation (1.4.7) is to be an equation 

of the form of equation (1.4.5), then each of its coefficients must 

be a constant times • it is obvious that CQ can be taken 

to be one without loss of generality. 

Q.E.D. 

Breuer and Gottlieb's conditions given by equations (1.4.6) have 

been obtained previously, for some of the lower order cases, by 

Peyovitch [34], Fayet [17] and Mangeron [29] (see also [32], [33]). 

In Chapter 4 we will use invariance considerations to prove Theorem 

(1.4.1), for the case n = 2 , as Peyovitch [34] did. 
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The other special case of the transform equations (1.4.2) and 

(1.4.3), where only the dependent variable is transformed by means 

of the equation y(x) = v(x)z(x) , will also be considered in 

Chapter 4. Using invariance considerations we will show that there 

exists a v(x) such that the transformation y(x) = v(x)z(x) . takes 

equation (1.4.1) to a constant coefficient differential equation if 

and only if the transformation y(x) = exp(- a^^ (x) dx) z (x) tsJces 

equation (1.4.1) to a constant coefficient differential equation. 

Considering the general case where n ^ 3 we shall use 

invariance considerations, originally studied by Halphen [l9j, to 

find necessary and sufficient conditions that characterize those 

nth order differential equations (1.4.1) that can be transformed, by 

means of equations (1.4.2) and (1.4.3), into constant coefficient 

differential equations. These necessary and sufficient conditions 

will explicitly give u(x) and v(x) in terms of the coefficients 

a^(x) of the original differential equation (1.4.1). 

In section (1,3) we transformed the differential equation (1,4.1), 

using equations (1.4.2) and (1.4.3), into the differential equation 

Cl.4.8) I b „ct) = 0 , 

where the b£(t)'s are given by equation (1.3.10). We also saw that 

bQ(t) = (u(x))^v(x) , which is non-vanishing on [a, b] since 

u(x) and v(x) are non-vanishing on [a, bj . Since Ct) is 
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non-vanishing on [a, b] we can divide equation (1.4.8) through by 

b^(t) to obtain, after adjusting the coefficients by appropriate 

numeric factors, an equation of the foarm 

n . . 
(1-4.9) I " ° ’ • 

—0 

That is, each b^ equation (1.4.9) is obtained from the 

corresponding b , (t) of equation (1.4.8) by dividing by 
ri“Jc 

(u(x))^v(x)| ^I . Ih Chapter 3 we will show that the b^^^(t)'s of 

equation (1.4.9) are given by 

n-s n-s-k XI D O 

(1.4.10) ’ = (u%) (n - s) 1 'I 
a^(x)sl 

k-0 j=0 
k!j!(n-k-j)! 

(f) (n-k-j ,s;u)v (j) 

(s = 0, 1, —, n) , 

where ^(k, j; u(x)) is given by equation (1.3.7). 

Definition (1.4.1). The differential equation (1.4.9), with 

its bj^(t)'s given by equation (1.4.10), is called the P (u(x) , v (x)) 

transform of equation (1.4.1). 

Definition (1.4.2) . The equations ~ ^ (x) and y(x) = v(x)z(t) 

are called the defining equations of the P(u(x), v(x)) transform 

of equation (1.4.1). 
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Note that the P(u(x), vCx)) transform of equation Cl.4.1) was 

obtained from equation Cl.4.1) by simultaneously transforming its 

dt 
independent and dependent variables by letting — = uCx) and 

yCx) = v(x)z(t) . 

When it is obvious what the defining equations of a P(uCx), v(x)) 

transform are, we may not always specify them. 

Note that the original differential equation Cl.4.1) and its 

PCU(X), VCX)) transform, equation (1.4.9), are both in normal forms. 

This is important for invariance theory considerations. In particular 

notice that the equations (1.4.1) and (1.4.9) both have leading 

coefficient one. 

Let n be some fixed positive integer and let [a, bj be a 

closed interval of the real line. We will denote by V the set of 

all nth order ordinary linear homogeneous differential equations 

of the normal form 

k _ 
Cap Cx) = 1) . 

Definition (1.4.3). The differential equations 

,n 

k=0 dx' 

and 

n 
d' 
k 

k-u dt 
k 

n 

k 
z(t) = 0 
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belonging to V , are said to be ^ equivalent/ if there exist 

n*“l n 
u(x) G C [a, b] and v(x) £ C [a, b] , both non-vanishing on 

[a, b] , such that the P(u(x), v(x)) transform of the first 

differential equation is the secohd differential equation. 

We may sometimes only say equivalent when we mean P equivalent 

From the example we did in section (1.2) it is obvious that on 

the interval [2r3] , 

3 lx 
3-k 

, , .6-2k , k 
k! (1-x) dx 

y Cx) 0 

is P equivalent to 

(z (t)) ^^^ - 9(z(t))^^^ + 6z Ct) = 0 . 

-2 I -3 
In this case we know u(x) = (1 - x) and v(x) = exp 

1-x 

Let G denote the set of all maps from V to V given by 

P(u, v) transforms. Let us consider an arbitrary P(u(x), v(x)) 

transform of an arbitrary equation (say equation (1,4.1)) in G , 

This PCU(X), V(X)) transform of equation (1.4.1), defined by 

dt 
U(X) and y(x) = v(x)z(t) 

As in section (1.3) t(x) = 

(1 - X 

is given by equation (1.4.9). 

u(x)dx is a monotone increasing or 

decreasing function on [a, b] . Letting h(x) = u(x)dx we see 

-1 
that the inverse of t exists, thus x = h (t) . We now consider 

1 
the p|-7^- - -^1 = p( ^ 

lutx) v(x)| 

Cl.4.9), defined by 

ct)) v(h~\t)) 
transform of equation 
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dx 1 1 
dt u(x) 

u (h Ct)) 
and 

 r y Cx) 
v(h (t)) 

Since y(x) = v(x)z(t) , it is obvious that the P 
1 1 

trans- 
u(x) ' v(x) 

form of equation (1.4.9) has the solutions y^(x), i=l,...,n , where 

each y^Cx) is a solution of equation (1.4.1), All P transforms have 

leading coefficient one, hence we must have that the p(—, —7^1 

transform of equation (1.4.9) is equation (1.4.1) (see Ross [37] , 

p. 385). We have in effect shown that the inverse of every mapping in 

G is in G . This also shows that the relation defined by definition 

Cl.4.3) is symmetric. This relation can also be shown to be reflexive 

and transitive, hence the relation is in fact a true equivalence relation 

Clearly the identity mapping is in G , it has defining equations 

of the form t = x and y(x) = z(t) . 

It can be shown that the composition of two maps in G is in 

G and that composition of mappings in G is associative, hence we 

have that G forms a group. The group elements are the mappings given 

by PCu, v) transforms and the group multiplication is the composition 

of these mappings. We now see that the problem of solving linear 

differential equations can be approached by the invariant theory of 

groups. Lie [27] was the first author to consider differential 

equations from this point of view. 

We now make some definitions and introduce the idea of an 

u(x) v(x) 

invariant of a differential equation. 
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Definition (1,4.4). Let M be the set of all matrices of 

the form 

dx 
r 
  _.Cn+l)->< (n+l)_ 

/a.U) 

da^(x) 

dx 

^"ao 00 

dx 
n 

a^ (x) 

da^(X) 

dx 

where the ajCx)'s are functions of x that are sufficiently 

differentiable. 

Definition (1.4.5). Let u(x) and v(x) be arbitrary non- 

vanishing functions on [a, b] such that uCx) e C [a, b] and 

v(x) € C^[a, b] . Let I be a map from M to the set of all 

complex valued functions with domain [a, bj . Let a^(x) , 

j = 0, 1, ..., n , be the coefficients of equation (1-4.1) and 

let bjCt), j = 0, 1, n , be the coefficients of the 

PCuCx), v(x)) transform of equation Cl.4.1) . If for all x e [a, bj 

and for all u(x) and v(x) aS defined above we have the identity 

(1.4.13) 

Idx 
r s I 

(n+l)x (n+l)j 
dt 

3^b.Ct) 

(n+l)x Cn+1) 



where then the function I is called an absolute 

invariant of equation tl.4.1). 

From this definition we see that an absolute invaLriant of 

equation (1.4.1) is a function of the coefficients of 

equation (1.4.1) and their derivatives with respect to x . This 

function has the property that for all x e [a, b] it has the 

same value as the same function formed from the coefficients of 

any arbitrary equation which is P equivalent to equation Cl.4,1). 

Note that in the left hand side of the identity (1.4.13) the 

derivatives are with respect to x while in the right hand side 

they are with respect to t . 

Let us again refer back to section (1.2). An absolute invariant, 

call it I , of the differential equation 

a3_j^(x) -^ y(x) = 0 
dx 

(a^ (x) = 1) 

is 

where 

2 

(1) 
2a a 

1 1 

(1) 3 
2 (a - 3a a + 2a ) 

3 12 1 
(1.4.14) 
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As a specific example consider the differential equation Cl.2.9), 

that is 

(1.4.15) 
3IX 

3-k 

k=0 
. , ,6-2k , k 
kl(1 - x) dx 

y(x) ^ 0 . 

-6 
For this differential equation (a^(x)) = -12(1 - x) ~ and 

T -2/3 . I = -3(-12) . That is, in this case the absolute invariant I 

is a constant. 

We riow come to one of the most important ideas of this thesis, 

that is, the idea of a canonical transform. 

Definition (1.4.6). A differential equation 

(1.4.16) jj;;) b ct) ^z(t) = 0 
k=0 ' ' dt 

(bp (t) E 1) , 

that is P equivalent to equation (1.4.1), is called a canonical 

transform of equation (1.4.1) if each b^(t) of equation Cl.4.16) 

is an absolute invariant of equation Cl.4.1). 

We now assume that the order of equation (1.4.1) is three or 

greater. We also assume that VgCa^(x)) , given by equation Cl.4.14), 

is non-vanishing on [a, b] and that C is an arbitrary non-zero 

Ster ! 
- n 

constant. Under these assumptions we will show in Chapter 5 that 

-1 
C the P exp(- a^(x)dx)|c ^ I transfoim 

of equation (1.4.1) is a canonical transform of equation (1.4.1). 

That is, a canonical transfoim of equation (1.4.1) is 

I") 
k=0 

(k) Vk<^> “ ° —n \ I dt 
(b(,(t) = 1) , 

where. 
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(1.4.17) > Ct) = Cn - s) 11 
n-s i 

-n-1 

C ^V^(a^Cx) ) 

n-s n-s-k a, (x)s! 

y y —  ^ ^ k' i • (n-k-i"i • 
k=0 j=0 

n - k - j, s;jc jexpj ja^ (x)dx j 

expj- a^(x)dxjjc ^V^Ca^Cx))] 

1 ~ n Cj) 

for s = 0, 1, ..., n . 

Note that the coefficients bj^(t) , given by equation (1.4.17), 

are functions of the a^(x)'s of equation (1.4.1) and their 

derivatives with respect to x , that contain no integrations. 

That is, for each j the term 

(|aj(x)dx)f (x) 

1 - n \Cj) 

ta^ (x))j 

of equation (1.4.17), results in an expression that contains no 

integrations. For example if j = 1 the expression is 

-5-n 1 - yi 

i-=^( c'VjCaj^U)) ® (VjCaj^(x))j - aj(x)(c"\(a.(x))] ® 

Moreover the (j) function in equation (1.4.17) contributes no 

integrations (see equation (1.3.7)). 

Laguerre [25] gave the above canonical transform for the case 

n = 3 and C - 1 . At the time Laguerre published the paper [25] 

he was not looking for a canonical transform and in fact he was not 
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aware that the transform he gave was a canonical transform. 

Halphen ([19], p. 219) gave the above canonical transform assuming 

that C = 1 , however he omitted the proof saying only that it was 

obvious. 

For the present, we shall assume that the 
1/3 , f _ 

(x)dxj| C Caj_) 
'( ) 

exp - transform of 

equation (1*4.1) is in fact a canonical transform of equation 

(1.4.1). Under this assumption we prove the following important 

theorem which was originally done by Halphen C[19], p. 142-143). 

Halphen merely stated the theorem (with C = 1) saying that it was 

obvious. In the proof we will use the usual notation that subscripting 

by a variable indicates the variable that differentiation is with 

respect to if it is other than x . For example (|)^ indicates 

that derivatives in Faa de Bruno's Formula (1.3.7) are to be taken 

with respect to t rather than x . 

Theorem (1.4.2). Let C be an arbitrary non-zero constant 

and assume that the order of equation (1.4.1) is three or greater. 

Moreover, assume that the function 

VjCa^^Cx)) = - 2a^a^^^’) - 2(a^ - 3a^a^ + 2a^) 

does not vanish on [a, b] . There exists a constant coefficient 
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differential equation of the form 

dt 
(CQ = 1) 

n K 

(1.4.18) I It 1 <: -3j- z(t) = 0 , 

k=0 dt 

that is P equivalent to equation (1.4.1), if and only if the 

It 1 f 1 ~ n 1 
p| [c ^VgCaj^Cx))! expj- a^(x)dxjjc ^ transform 

of equation (1.4.1) is a constant coefficient differential equation 

of the form of equation (1.4.18). 

Proof; The sufficiency is obvious from the definition of P 

equivalent. The necessity follows directly from the fact that the 
^ 1 - n 

-1 . . ..TV3 
C V^(aj^(x))j expj- a^(x)dxj|c transform 

of equation (1.4.1) is a canonical transform of equation (1.4.1). 

In fact it is 

n k. 

U.4.19) I f”\b . (t) -2^ zCt) = 0 , (b. (t) = 1) , 
k=0 ^ dt^ 

where the J^j^Ct) 's are absolute invariants of equation (1.4.1) 

given by 

(1.4.20) b (t) = 
n-s 

(n - s) 1 

exp(-|a^(x)dx) 

€“^3 (a^ (x))] 

-n-1 
—-— n-s n-s-k 

Z Z 
k=0 j=0 ^ 

s! 

k!j!(n-k-j)! 
n-k-j,s;|c ^V3(a^(x))j 

(j) 

73 

• exp - a^(x)dxjjc ^V^(aj^(x) )j 

1 - n 

for s = Q, 1, ..., n . Now suppose that there is a P(u(x), v(x)) 
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transform of equation Cl.4.1) that is a constant coefficient differential 

equation of the form of equation (1.4.18). That is, we are supposing 

that equation (1.4.18) is P equivalent to equation (1.4.1). By 

definition of absolute invariant, definition (1.4.5)# we have that 

for each s = 0, 1, ..., n , the function b (t) , given by 
n-s 

equation (1.4.20), has the same value as the Same function formed 

from the constant coefficients of equation (1.4.18). That is, we 

have that 

(1.4.21) b (t) = 
n—s 

(n - s) ! |„-1 

exp (-fc.dt) 

-n-1 
. 1 t—-—n-s n-s-k c. si 

1= ''.■vl ‘ I z 
k=0 j=0 

k!jl(n-k-j)! 

1 - n I 

n-k-j ,s;jc ^V^(c^)j expj- [c~(c^) ] ^ j 

for s = 0, 1, ...,n, where the c^^'s are the constant coefficients 

of equation (1.4.18). The integrations and differentiations in the 

right hand side of equation (1.4.21) are now with respect to t 

since the independent variable of equation (1.4.18) is t . 

Since the c.'s are constants and 
1 

VaCCi) = ' 

we have that 

c 
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where c is a constant. In Chapter 4 we will show that our 

assumption that V^Ca^Cx)) is non-vanishing on [a, b] guarantees 

that this constant c is non-zero, hence we can write 

tl.4.22) 

V (a.(x)) 
o 1 c 

= D , 

where D is a non-zero constant. In Chapter 2 we will show that 

m 

(|)^tk, m; c) = 

k = m 

otherwise , 

where c is a constant. Using this equation we obtain 

j = n - s - k 

tl.4.23) (f)^(n - k 
^/3 

- j, s; D = 

0 otherwise . 

Using equations (1.4.22) and (1.4.23) in equation (1.4.21) we 

obtain 

-n-1 

b (t) = exp 
n-s 

c^dtl D 

1 - n 
Cn-£ 

for s=0, 1, ...,n. Since c is a constant we find that 

Cn-s-k) 
1 - n 

■ ' # 

(-Jojdt) , exp - J^dtj D 

1 ::_n 
6 ^ 6 , .n-s-k 

= D C-c^) exp 

-k) 

hence 
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s - n 
n-s-k 3 

D s = 0, 1 . . . f n 

By equation Cl.4.24) it is clear that b tt) is a constant for 
n-s 

s=0, 1, n . To be done we need only show that = 1 . 

This follows immediately from equation Cl.4-24) since c^ = 1 . 

Halphen_[l9] and Chiellini [11] stated Theorem (IT4*2) in 

roughly the following manner. 

Necessary and sufficient conditions that equation Cl.4.1) can 

be transformed into a constant coefficient differential equation 

are that the coefficients of its canonical transform, which are 

absolute invariants of equation Cl.4.1), are constants. 

As an example consider the differential equation Cl.4.15), 

which, as we saw in section C1.2), can be transformed into a 

constant coefficient differential equation. For this differential 

equation Ca^ Cx)) = -12 Cl x) , which does not vanish on 

[2,3] . Since a^ Cx) of this equation is a Cx) =  ^^ , we 
Cl - X) 

easily find that 

Q-E.D. 

By Theorem Cl.4.2), with n = 3 and C = -12 , the 

il transform of equation Cl.4.15) 
defined by ~ = Cl - x) ^ and 

dx 

must be a constant coefficient differential equation. In fact it 
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is easily found to be 

(z(t))^^* - 9Cz(t))^^^ + 6zCt) = 0 . 

This is no surprise since the defining equations = Cl ~ x) 

and yCx) = Cl - x) ^ exp|£ ^ ^ | zCt) are the same defining equations 

we used in section C1.2). 

As we shall show later, if the order of the differential equation 

Cl.4.1) is n = 3 and Ca^^ (x)) =0 on [a, b] , then the problem 

of solving equation Cl.4.1) can be reduced to that of solving a second 

order linear differential equation. Laguerre [25], Brioschi C[6], [7]) 

and Halphen C[19], [20]) were aware of this. Halphen also knew that 

the theory of invariants could be extended to handle the other 

exceptional cases to Theorem Cl.4.2) where n > 3 and V^Ca^Cx)) E 0 

on [a, b] . 

In Chapters 4 and 5 we will give a brief indication of how to 

handle these cases. 

Although geometric interpretation can be given to invariants, 

we do not go into this here (see Wilczynski [41]). We only mention 

that the n linearly independent solutions of equation Cl.4.1) can 

be interpreted as homogeneous coordinates of a point in n - 1 

dimensional space. When x is varied this point moves along a 

cuirve in the n - 1 dimensional space that is referred to as the 

integral curve of equation (1.4.1). Halphen ([19], [20]) called 
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such a curve a "courbe attachee". It turns out (see Wilczynski 

([41]/ p. 48-53)) that the invariants of equation (1.4.1), under 

P(u(x), v(x)) transfo:ms, characterize the projective properties 

of the integral curve of equation (1.4.1), hence the maps that 

define P(u(x), v(x)) transforms are said to form a projective 

group. 

It is interesting to note tJiat the main result of this thesis, 

namely Theorem (1.4.2), was given by Halphen in his prize-winning 

paper [19]. Although this paper was not published until later, 

Halphen in 1880 won the Ormay Prize (Grand Prix des Sciences 

Mathematiques) of the Academy of Sciences in Paris for the results 

it contained. Halphen's results [19] seem to have been misunderstood 

and/or forgotten. Several authors, including Forsyth [18], Brioschi 

[7], Fayet [16], Peyovitch [34] and Berkovic [3], have referred to 

Halphen's work [19], yet they have failed to even give a statement 

of Theorem (1.4.2). In the little known paper [ll], Chiellini does 

give a statement of Theorem (1.4.2). In [9] and [10] Chiellini 

considers the special cases where n = 3 and n = 4 . Halphen’s 

collected works [2l] have been published in four volumes. Bibli- 

ographical material on Halphen is available in [35]. 
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Chapter 2 

A Generalization of the Chain Rale 

of Elementary Calculus 

C2.1) Introduction. As we have seen in Chapter 1, when the 

differential equation 

C2.1.1) \ (k) ° ° “ ' r^n » * k=0 

is transformed by means of 

(2.1.2) dt 

dx 
= u(x) 

and 

C2.1.3) y tx) = v(x)ztt) , 

we require a formula of the form 

(2.1.4) 

k k m 
-Tj- = 'I (j) (k, m; u(x) ) 

dx m=0 

or more generally one of the form 

,k “ 

dt 
m 

,m 

(2.1.5) = J (|) (k, m; u Cx)) 
m 

dx m=0 dt" 

In this chapter we study in some detail the properties of the 

function (|)(k, m; u(x)) . We will prove a number of results, 

concerning the <j)(k, m; u(x)) functions, that are not only of 

interest in their own right but also have application in proving 

invariance results. 
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C2.2) Schlomilch's Formula, In 1858 Schlomilch [39j showed 

that for 0^ m ^ k ^ n 

k 

(2.2.1) (|)(k, m; u (x)) = (ml) ^ lim —(t(x + p) - t(x))™ , 

p-^0 dp 

dt 
where u(x) . We will call equation (2.2.1) Schl<5milch's 

Formula. We now prove that Schlomilch's Formula is true Using 

Schlomilch's original proof. 

Theorem (2.2.1). Let n be a positive integer and let k 

be such that 0 ^ k ^ n . If ~ ^(x) where u(x) e C [a, b] 

and u(x) does not vanish on [a, bj then for all x e [a, b] 

,k k -k ^m 

^ lim (t(x + p) - t(x))“ . 

dx m=0 p->0 dp dt 

Proof;' Let y(t(x)) be any function of t(x) where — = u(x) 
 — ^ j ^ 

and y(t(x)) € C^[a, b] . By the usual chain rule of elementary 

calculus we have 

dy (t) _ dt dy (t) 

dx dx dt 
U(x) (y(t))^^^ . 

Similarily we find that 

(y(t))^^' = (u(x))+ (u(x))^(y(t))^^’ 

and 

ty(t))^^^ = (u(x)) ^^^ (y(t) )^^^ + 3u(x) (u (x)) (y(t))^^^ 
t t 

+ Cu(x))^(y(t))^^' . 

It is easy to show by mathematical induction on k that 
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C2.2.2) (yct))^’^^ = I ACk, m, u(x)) Cy (t) , 

m=0 

it) 
where A(k, m; u(x)) is a function only of Cutx)) , 

t=0, 1, . Clearly all the A(k, m; u(x))'s are 

independent of y(t) , hence we can specify a convenient y(t) in 

order to determine them. By letting y(t) = t in equation (2.2.2) 

we obtain 

(2.2.3) = I Atk, m; u(x)) (M . 

m=0 

/ k\ Ck) I k \ Ck) , k I Ck) 
Since j(t(x + p)) ] = jCtCx + p)) and jCtCx + p)) j 

is continuous by hypothesis, we have for x e [a, b] that 

[(tCx))^]^^^ = [Ct(x + p))^j 
k\ Ck) 

P p=0 

Letting t(x + p) = H + t(x) we obtain 

that is 

(2.2.4) 

|(t(x))^ ) 
(k) 

= (H + t(x)) 
k\(k) 

= ( L (ml 
k 

I 
m=0 

k 

I 
m-0 

p=0 

k-m | 

Ip 

(k) 

= I (;:) ct(x))^-(H") 

p=0 

p=0 

Ct 

m=0 ' ^ p=0 
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Comparing equations C2.2.3) and C2.2.4) we obtain 

P p=0 

p-^0 dp 

lim Cttx + p) - tCx))"^ 

where ~ = uCx) and 0 ^ m < k < n . 

Q.E.D. 

Equation (2.2.1) follows immediately from Theorem (2.2.1). 

Jordan ([22] , p. 31) gives a proof of Schlomilch's formula 

that is similar to the one we have given. The s index of summation 

in Jordan's equation (8) C[22], p. 32) should only run up to n . 

In that which follows, equation (2.1.5), rather than equation 

(2.1.4), will be taken as the definition of (|)Ck, m; u(x)). It is 

obvious from the proof of Theorem (2.2.1) that we have 

( 0 m > k 

C2.2.5) (J)(k, m; u(x)) = < 

C2.3) Faa de Bruno's Formula. We now find some alternate 

expressions for the function <t»(k, m; u(x)) . The following lemma 

was proven by Forsyth [18] under the more restrictive condition 

(ml) 
-1 in 

lim —(t(x + p) - t(x)) 0 < m < k . 
p-^0 dp 

that u(x) is infinitely differentiable. 
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Lemma (2,3.1) . Let n be a positive integer and let k be 

such that 0 ^ k ^ n . If u (x) is a non-vanishing function on 

ri“l 
[a, b] such that u(x) e C [a, b] and ^ = u(x) for x £ [a/ b] , 

then 

-1 / k 
(2.3.1) ml (k!) <j> (k, m; u(x)) = I coefficient of p in 

n 1 

( I IJ (t(x))‘">) 
' 1=1 

m 

Proof; Since u(x) £ ^[a, bj we have that t(x) £ C^[a, b] . 

Letting x + p £ [a, b] we use Taylor's series with Lagrange's 

form of the remainder to expand t (x + p) about p = 0 . We obtain 

n-1 k . 

tCx + p)= I ^ (tCx + p) 

k=0 ^ P 

n 

P=0 X+P=C, 

where c is a constant between x and x + p . As in Theorem 

(2.2.1) we have that 

[t (x + p) = jt(x) ] 
(k) 

p=0 

hence we obtain 

n k . n 

tcx + p) - t(x) = I ^ (t(x))'^''' + 2- 

k=l 

(t Cx + p)) 
tn) 

- (t(x)) 
x+p=c 

By using the notation 

pip) = I fr ct(x)) 
1=1 

and 

R (p ) = (t (x + p )) 
(n) - (tCx)) ^"’ , 

x+p=c 
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this equation becomes 

n 

t(x + p) - t(x) = PCP) + ~ RCP) 
nit 

P(p) is a polynomial of degree n and since t(x) e C^[a^ b] We 

have that RCP) is n times continuously differentiable with 

respect to p for x + p e [a, bj . Since m > 0 it follows that 

[ctCx + p) - t(x))"')p''^ =1 ( ijCPCp^ R(P))^ 
tk) 

P p=0 

m k , . ,(k-j),, n , ., 

JJTUJSII''""'-') lllr«»"n 
(j) 

p=0 

For 0 ^ j ^ n it is obvious that 

P RCP) 

Cj) 
= 0 if i > 0 , 

p=0 

hence the only non-zero term in the right side of the above equation 

is the one where i = 0 and j = 0 . We have that 

C2.3.2) 
mv 

(tCx + p) - tCx)) jp 

p=0 
(P(P)) 

m (k) 

p=0 

= (ij^ iT 

m \ (k) 

P p=0 

= klCj^(x) , 

where coefficient of p in I fr (tcx)) 
i=l ’ 

Equation (2.3.1) now follows immediately from equations (2.3.2) and 

(i) 

(2.2.5) . 

Q.E.D. 
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We now prove a result that we shall call Faa de Bruno's Formula. 

It was first published by Faa de Bruno in 1855 (jsee [8] ) . 

Theorem (2.3.1). (Faa de Bruno's Formula). Let n be a 

positive integer and let k be such that 0 ^ k < n . If utx) is 

n^l 
a non-vanishing function on [a, b] such that u(x) £ C [a, b] and 

dt 
dx 

= u(x) for X £ [a, b] , then 

m = k = 0 

C2.3.3) <j) Ck, m; u(x)) =< 0 

Ul , 

] |~ ^ I I jCuCx)) ^ ^V(i!) ^ otherwise 

ra>k or m=0,k>0 

Jc .. -. -. m 

^ ,i=l ~ J i=l 

The sura in equation (2,3.3) is taken over all partitions of m such 

that 

(2.3.4) 

and 

I m = la 

i=l 

(2,3.5) im. = k , 
i=l ^ 

where the m^'s are integers greater than or equal to zero. 

. n i / ■ \ ^ 
Proof t Expanding ( ^ (t(x))'^M using the multinomial 

1=1 ' 

theorem ([2] , p. 33) we find that 

coefficient of p in 

I I fr (t(x))'^^ 
‘i=l 

where the sum in the left side of the above equation is over all 



k and m. > 
1 

for all i . Since 0 ^ k n it is obvious that m, =0 for 
1 

i > k , hence the sum is over all partitions of m such that 

equations (2.3.4) and (2.3.5) hold, where m^ > 0 for all i . 

Using ecjuation (2.3.1) we immediately obtain equation (2.3.3). 

Jordan C[22], p. 33, 34) gives a proof of Theorem (2*3.1) 

assuming that u(x) is infinitely differentiable. Jordan's 

index of s\ammation C[22] , p. 34) should only run up to n . 

When m > k equations (2.3.4) and C2.3.5) cannot be 

satisfied by any partition {m^^} of m where m^ > 0 for all 

i . We interpret this as (j>Ck, m; uCx)) = 0 for m > k . 

Similarly we find that <j)(k, 0; u(x)) = 0 for k > 0 . These 

interpretations are consistent with Lemma C2.3.1) and equation 

(2.2.5). 

C2«4) Some Elementary Formulas for <j)(k, m; u(x)). We 

have defined (j) (k, m; u (x)) by the formula 

Q.E.D 

(2.4.1) —j- = I tj) (k, m; u(x) ) 
dx^ k=0 

d 

dt 

where 
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and uCx) is a non-vanishing function on [a, bj such that 

u(x) 6 C [a, bJ . In this section we find, for specific values 

of k and m , explicit formulas for c|>(k, m; u (x)) . 

Equations (2.2.5), (2.3.1) and (2.3.3) give closed form 

expressions for <j) (k, m; u(x)) . It is easy to show directly from 

Faa de Bruno's Formula, equation (2.3.3), that for 0 ^ k ^ n 

(2.4.3) <|)(k, k; u(x)) = (u(x))^ , 

(2.4.4) cf)(k, k - 1; u(x)) = {2) Cu (x) )^ ^ (u (x) ) ^^ ^ , 

C2.4.5) .(.(k, k - 2; u(x)) = ) {(u(x))‘^') + ( 3 | (u(x) (u (x)) 

and 

(2.4.6) (|)(k, k - 3; u(x)) = (u(x))^ ^(u(x))^^^ 

+ lojg j(u(x))’'"^(u(x) ) (u(x)) 

+ isjgj (u(x))^ ^t(u(x))*^^) 

In formulas (2.4.4), (2.4.5) and (2.4.6) we define (-j!) ^ = 0 

where j is a positive integer. This interpretation follows 

naturally as is seen in the following derivation of formula (2.4.6). 

TQ find <f)(k, k - 3; u(x)) from Faa de Bruno's Formula we let 

m = k - 3 in equation (2^3.3) and (2.3.4). Equation (2.3.4) becomes 

k 
y m. = k - 3 

(2) 

(2.4.7) 
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while equation C2.3.5) is 

k 
(2.4.8) y im. = k . 

i=i ^ 

Subtracting equation (2.4.7) from (2.4*8) we get 

k 
(2.4.9) I (i - l)m^ = 3 . 

i=2 

Since m. ^ 0 for all i we must have m^ = m = ... = m. . = 0 , 
1 5 6 k ' 

hence equation (2.4.9) becomes 

(2.4.10) m^ + 2mg + 3m^^ = 3 , 

while equations (2.4.7) and (2.4.8) become 

(2.4.11) m, + m +m +m = k- 3 
12 3 4 

and 

(2.4.12) ^2 ^ ^™4 ~ ^ * 

Since m^ ^ 0 for all i equation (2.4.10) shows that m^^ = 1 or 

m^ = 0 . If m^^ = 1 we see from equation (2.4.10) that m^, = m^ = 0 , 

hence using equation (2.4.11), or equation (2.4.12), we find that 

mji^ = k - 4 . We have found one partition {m^} of k - 3 to be 

(2.4.13) m, = k - 4, m_ = m. = 0, m, = 1, m_ = m. = ... = m, = 0 . 
1 Z o 4 o 6 JC 

We know that m^ “ "^6 ” '** ~ "he ” ^ that if m^ ^ 1 then 

m, = 0 . When m, = 0 we again use the fact that m. ^0 for all 
4 4 1 

i and we find from equation (2.4.10) that m^ = 1 or m^ = 0 . 
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Wxen 1%^ = 0 and = 1 equation C2.4.10) gives m2 = 1 , hence 

by equation (2.4.11), or equation (2.4.12), we find that = k - 5 . 

We have found a second partition {m^} of k - 3 to be 

(2.4.14) m, = k- 5, m^=m„=l, m. = m = ...=m, = 0. 
1 2 3 4 5 k 

When = 0 and =0 we find, similarily to above, that a third 

partition of k - 3 is 

(2.4.15) mj^ = k - 6, m2 =3, m3 = mi^ 
= "V = ° • 

Clearly these three partitions {m^} of k - 3 are the only 

partitions that satisfy equations (2.4.7) and (2.4.8) since m^ > 0 

for all i and equation (2.4.9) must also hold. We sum equation 

(2.3.3) over these partitions and find that <f) (k, k - 3; u(x)) is 

given by formula (2.4.6). 

Letting (-jl) ^ = 0 , where j is a positive integer, we 

find from formula (2.4.6) that 4> (3, 0; u(x)) = 0 , which agrees 

-1 
with equation (2.3.3). The interpretation that (^j1) = 0 for 

positive integer j amounts to excluding from the sum in equation 

(2.3.3) all those partitions {m^} of m that do not satisfy the 

condition m^ ^ 0 for all i . 

As a further example consider cj>(4, 1; u(x)) . The only 

possible partition {m.} , m. > 0 for all i , of 1 that satisfies 
4 ^ ^ 4 

the equations / m. = 1 and ) im.=4, is m =m =m = 
. , 1 1 12 3 
i=l i=l 

m = 1 . Summing equation (2.3.3) over this partition we find 

0 
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(3) 
<(»C4, 1; u(x)) = (u(x)) , which follows directly from formula 

(2.4.6) on the interpretation that (-j!) ^ = 0 for positive 

integer j . 

The formulas (2.4.3), (2.4.4) and (2.4^5) are easy to verify 

in the same way that formula (2.4.6) was verified. Equation (2.3.3) 

can be used to find any (k, m; u (x)) where m ^ 0, 0 ^ k ^ n and 

- - - li*^l 
u(x) is-a non-vanishing function on[a, bj such that u(x) € C [a, b] 

Let c be a constant. By equation (2.3.3) we obtain that 

,1 in = k - 0 

m>k or m=0,k>0 

m 

(2.4.16) <J) (k, m; c) = < 0 

^ IkljlT ^ otherwise , 

where the sum is over all partitions {m^^} of m such that 

k 
C2.4.17) m. = m , 

i=l ^ 
k 

(2.4.18) I im. = k 
i=l ^ 

and m^ ^ 0 for all i . Subtracting equation (2.4.17) from 

equation (2,4.18) we have that 

k 
(2.4.19) y (i “ l)m. = k - m . 

1=2 

Assuming that ^(k, m; c) ^ 0 , we see from equation (2.4.16) that 

m^ = 0 for i > 1 (since c is a constant). Equation (2.4.19) 

now gives that m = k , hence using equation (2.4.17) we find that 
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= k . 

(2.4.20) 

Equation (2.4.16) 

(j) (k, m; c) 

now gives 

in = k 

otherwise . 

similarly we obtain that 

(|)^(k, m; c) 

m = k 

otherwise , 

where 

m = k = 0 

(f)^Ck, m; ,c) = < 0 m>k or m=0,k>G 

. Ik! 7^ (m^!) 
i=l 

1 k 

i=l 

In the last equation c 
(i-1) d 

i-1 

1) l\”^i 
ii!) I otherwise . 

dt 
i-1 

c and the summation is over 

all partitions {m^} of m such that equation (2.4.17) and 

C2.4.18) hold. 

C2.5) Some Convolution Type Equations Involving 4>(k, m; u(x)). 

We now study in some detail the c|> (k/ m; u(x)) function defined 

by equation (2.1.5). 

The first result we wish to prove is a convolution type formula 

that is satisfied by <f) (k, m; u(x)) . 

Theorem (2.5.1). Let u(x) be a non-vanishing function on 

n IL 
[a, b] such that u(x) e C [a, b] . Let t = h(x) be any function 

such that (t(x))^^^ = (h(x))^^^ = u(x) . Also let g(t) be a 

non-vanishing function on T such that g(t) is n - 1 times 

continuously differentiable with respect to t on T where 
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T = {t|t = hCx) and x e [a, bj } 

■ds 
If s is any function of t such that — - g(t) then for 

0 < k < n 

(2.5.1) 
k k m 

7T = ^ m, gCt)) — 
dt m=0 ds 

(2.5.2) 
-k k - --- - ' - 

<f)(k, m; u(x)g(h(x))) 
dx m=0 ds 

m ' 

and 

(2.5.3) <|>(k, irl; u(x)g(h(x))) = J (j) (k, Zt it, m; g(t)) 
£=0 ^ 

vdiere the subscript t denotes that derivatives are to be taken with 

respect to t rather than x . 

Proof: Equation (2.5.1) follows immediately from the defining 

equation (2.1.5) and equation C2.2.5). 

ds dt ds 
From — = — — it follows that 

dx dx dt 

ds 
dx 

= u(x)g(h(x)) 

It is easy to show from the hypothesis of the theorem that 

ri" 1 
u(x)g(h(x)) £ C [a, b] and that u(x)g(h(x)) does not vanish 

on [a, b] . By equation (2.1.5) and (2.2.5) we obtain equation 

(2.5.2). 
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In a like manner we obtain 

.k k 

^ I 
dx £=0 
-rj- = I (j)Ck, £; uCx))  j . 

" - dt^ 

By using equation C2.5.1) to substitute for —y in this equation 

we obtain 

k k £ m 
—= I ^ (j)Ck, £; uCx))(i)^C£/ m; gCt)) —— . 
dx £=0 m=0 ds 

Using formula (A. 1.4) to rearrange the stims this is 

k k k m 
= 2 1 <i>Ck, £; uCx))(j)^C£, m; g(t)) —— . 

dx m=0 £=m ” ds' 

By equation (2.2.5) 4> (^f u(x)) = 0 if £ < m , similarily we 

have g(t)) =0 if £ < m , hence we obtain 

k k k m 

—iT = I I <l> Ck, £; u(x))<f) (£, m; g(t)) —— . 
dx m=0 £=0 ds 

By comparing this equation with equation (2.5.2) we obtain equation 

C2.5.3). 

Q.E.D. 

It is important to emphasize that for 0 < m < k 

m; u(x)g(h(x))) = IkljTJ (uM \u(x)gCh(x))) 

-1 k 
((.^(k, m, get)) = Ik!|]T|“ilj TT (Ci!) \g Ct) 

(l-l) 1 

while 



45- 

That is, the subscript t indicates that differentiation is with 

respect to t . 

Another convolution type formula that the function m; u(x)) 

satisfies is given in the following theorem. 

Theorem C2.S.2). Let 0^r<m<k<n where n is a 

positive integerIf u (x) .-is. a non-vanishing function on [a, b] 

such that u(x) e C [a, b] , then for all x € [a, bj 

Proof: Adopting the notation used in Theorem (2.2.1) we let 

t (x + p) - t (x) = H . 

By Schlomilch's Formula, equation (2.2.1), we obtain 

j^jcj)(k, m; u(x)) = ((m - r)lr!) ^lim (l/^)^^^ 

p-K) 

By Leibnitz's rule for product differentiation this is 

k 

lim I 
p->0 j=0 

which by equation (2.2.1) is precisely ecjuation (2.5.4). 

Q.E.D. 
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Chapter 3 

Transfoiming Wth Order Linear Differential Equations 

t3.1) Introduction. Let u(x) and v(x) be non-vanishing 

functions on [a, b] such that u(x) € ^[a, b] , V e C^[a, b] 

and n is a positive integer. In section Cl.3) we saw that 

transforming 

k=0 dx^ 

by means of the equations 

n k 

(3.1.1) I (kjVk^^ ' 

(3.1.2) 
dt . 
— = u Cx) 
dx 

and 

(3.1.3) y(x) = v(x)z(t) , 

results in the transformed equation 

13.1.4) III l"]a„ . (x)cMk, j + £; u(x))I^Av(x))‘^’(z(t)) 
£=o j=o k=j+^''"^ t t 

As indicated in section (1.4) we wish to express equation (3.1.4) in 

its normal form 

(3.1.5) I (^] b^_j^(t)(z(t))^'^’ = 0 > (bo(t) s 1) . 
0 

(.1) 
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In section (3,2) we express equation (3.1.4) in the foinm of 

equation (3.1.5) where the b . (t)'s are functions of only the 

a£(x)'s, u(x) f v(x) and their derivatives with iespect to x . 

In section C3.3) we transform equation (3.1.1) by changing only 

its dependent variable. That is, we let y(x) = v(x)y(x) . We 

then find necessary and sufficient conditions so that the transformed 

equation is a constant coefficient differential equation. We also 

show that if equation (3.1.1) is transformed by means of the equation 

y(x) = expC- a^(x)dx)y(x) , then we obtain a transformed equation 

that has the coefficient of the second highest order derivative of 

the dependent variable identically equal to zero. That is, we obtain 
n 

an equation of the form 7 f I b , (x) 
1,=0 ' "" I 

d’' _ 

dx 
y(x) =0 , where 

b^ (x) = 0 . In section C3.4) we transform equation (3.1.1) by 

changing its independent variable. That is, we let -7— = u(x) and 

yCx) - z(t) . We then give necessary and sufficient conditions so 

that the transformed equation is a constant coefficient differential 

equation. In section (3.5) we transform equation (3.1.1) by changing 

its dependent variable, then in the resulting equation we transform 

the independent variable. In section (3.6) we transform equation 

C3.1.1) by changing its independent variable, then in the resulting 

equation we treuisform the dependent variable. An identity between 

the results of sections (3.2), (3.5) and (3.6) is shown to hold. 
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In section C3.7) we show that equ.ation (3.1.1) can be transformed 

into an equation of the form 

This form has applications relative to invariance theory. Notably 

for n = 2 it means that every second order linear homogeneous 

differential equation can be reduced to the equation 

However to actually effect this reduction we must first find a 

solution of the second order equation in question. 

(3.2) Simultaneously Transforming the Independent and 

Dependent Variables. 

Let u(x) and v(x) be non-vanishing functions on [a, b] 

such that u(x) c ^[a, b] , v(x) e C^[a, b] and n is a 

positive integer. As in the previous section we wish to transform 

(bg (t) = 1, b^ (t) = (t) = 0) . 

(2) 
(z(t))^^'' = 0 . 

by means of the equations 

(3.2.2) 

and 

(3.2.3) y(x) = v(x)z(t) 
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to obtain 

(3.2.4) I |kj (2<t))^’'’ = 0 , (bptt) s 1) . 

By equation (3.1.4) equations (32.2) and (3.2.3) transform 

equation (3.2.1) to 

(3.2.5) I p » (t) (z (t) 0_ , ^ 
£=0 t 

where 

n n 

C3.2.6) Pjj^(t) = I I I j+n-m; ^ ^x)) ] (v (x)) 

i=0 k=i+n-m‘ ’ \ i 3=u K=3+n 

By equation (2.4.3) we have 

(j) 
t 

(}) (n, n; u(x)) = (u(x))” , 

hence since a^ (x) = 1 we see that 

PQ Ct) = Cu(x))^(x) . 

since u(x) and v(x) do not vanish on [a, b] neither does 

(u (x))^ (v (x)) . To have equation (3.2.5) take on the normal form 

of equation (3.2.4) we need only let 

(u(x))"v(x)[" 
I m 

-1 

t 

where given by equation (3.2.6). We have that 
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m n 

^ ^ (k) j+n-m; u(x)) 
j=0 k=j+n-m ' ' 

. li™;-||(.u„”vw(;i|'\vw,o> . 

By dropping the k index of sumation by n - m and then rearranging 

the sums using formula (A.1.4) this equation becomes 

-1 m 
13.2.7) b^(t) = [(u(x))''v(x)(;’)) Vk'^'^lk+n-m] 

• Y (|)(k+n-m, j+n-m; u (x)) [ ) (v (x)) 
j=0 I n-m ( , t 

We wish to express the b^(t)'s in terms of the aj^(x)'s , 

uCx) , v(x) and their derivatives with respect to x , hence we 

wish to express the operator 

Y 4>Ck+n-m, j+n-m; u (x)) 1-^ 
j=0 ' W 

in terms of an operator containing only derivatives with respect 

to X . Towards this end in equation (2.5.4) we let 

m Z + n - m, r-^n - m and k k + n - m , 

where the new k, m and n are as in equation (3.2.7) and 0 ^ k 

poing this we obtain 

|£+n mj ^ X+n-m; u (x)) 
i n-m I 

k+n-m , 

= I I ^"^U(jf Zi u (x)j(j) (k+n-m-j, n-m; u(x)) . 
j=0 ‘ ^ ' 

iZ) 
After multiplying this equation through by Cv(x))^ we s\im both 

sides of the resulting equation from Z = 0 to Z = k and use 

equation (2.2.5) to obtain 
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I 't+n-: 
C3.2.8) 1 ™ I (j) Ck+n-m, £+n-ra; u (x)) Cv Cx)) ^ 

I ^ 1=0 j=l 

k k 
k+n-m 

j 

<J) (j , t; u (x)) cj) (k+n-m-j , n-m; u(x)) (v(x) ) 
U) 

Using formula (A.1.4) to rearrange the sums in the right hand side 

of equation (3.2.8) we obtain 

RC3.2.8) = I 

j=0 l=o\ ^ 
<t>(jf ti u (x)) (j) Ck+n-m-j ; n-m; u(x))(v(x))^ 

il) 

where we have let R(3.2.8) stand for the right hand side of equation 

C3.2.8). Using equations (2.1.5) and (2.2.5) we obtain 

RC3.2.8) = I 

j=0 ' ^ 

(j) (k+n-m-j , n-m; U (x)) Cv Cx)) (j) 

By reversing the order of summation we obtain 

R(3.2.8) = 3u(x))(v(x)) (k-j) 

Equation (3.2.8) now becomes 

C3.2.9) 

k 

I 
j=0 

k 

= I 
j=0 

(f)(k+n-m, j+n-m; u (x)) (v (x)) ^^ ^ 
n-m I^ t 

k+n-m\ ... / V V / / X V (k-i) 
k_j j^(D+n-m, n-m; u(x)) (v(x)) 
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Equation (3.2.9) expresses the operator 

k I . 

^ (|)(k+n-m, j+n-m; u(x))P^^“ 
j=o 1 df 

in terms of an operator containing only derivatives with respect 

to X as we wanted. 

Using equation (3.2.9) in equation (3.2.7) we obtain 

-1 m k 
b (t) = 
m 

1 <1> (j+n-m, n-m; u (x)) (v (x)) ^a (x) . 
3 +n—m I m—k 

By reversing the order of the k summation, then reversing the 

order of the j summation and replacing m by n-s we obtain 

n-s n-s-k _ 
(3.2.10) b (t) = ((u(x))%(x)) (n-s)! J ^ (k! j! (n-k-j) I) 

ri“S . 
k=0 j=0 

• aj^(x)s! (J) (n-k-j , s; u (x)) (v (x)) ^^ ^ . 

If we express the <}> function in equation (3.2.10) by 

Schlomilch's formula, we obtain an expression for b (t) that 
n-s 

is the same as the one used by Forsyth ([18], p. 389). Forsyth 

derived his expression for b (t) by another method; we shall 
n-s 

return to this later. 

We now have that equation (3.2.1) transforms, by means of the 

equations (3.2.2) and (3.2.3), into the normal form equation (3.2.4), 

where the b^(t)'s are given by equation (3.2.10). Recalling section 

(1.4) we see that equation (3.2.4) is the P(u(x), v(x)) transform of 
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equation C3.2.1), defined by the equations C3.2.2) and (3.2.3) . 

Clearly the P(u(x), v(x)) transform of equation (3*2.1) was 

obtained by simultaneously transforming its independent and 

dependent variables. 

(3.3) Transforming the Dependent Variable. Let v(x) be 

non-vanishing on [a, b] such that v(x) £ C^[a, b] where_ n _is 

a positive integer. Transforming the equation 

n 
(k) 

C3.3.1) I IJJj a^_j^(x) Cy(x))= 0 , tap ' 
0 

by means of the equation 

(3.3.2) y(x) = v(x)y(x) , 

gives 

which is 

n 

I (k) 
-n » • 

(k) = 0 , 
k=0 

L (k) Vk<*> jio “'-^>(y(x))'^^ = 0 . 
k=0 

By rearranging the sums of this equation using formula (A.1.2) we 

obtain 

Cj) 
= 0 . 
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This equation can be written in the form 

C3.3.3) I P . Cx) Cy tx)) = 0 
—n “"“J 

where 

(3.3.4) (x) (v(x)) 
(k) 

0 . 

We wish to express equation (3.3.3) in the normal form 

(3.3.5) b . (x) (y(x)) = 0 (bp (x) = 1) . 

Equation (3.3.4) gives that PQ(x) = v(x) , which by hypothesis 

is non-vanishing on [a, b] . To obtain the normal form of equation 

C3.3.5) from equation (3.3.3) we need only let 

where the p^tx)'s are given by equation (3.3.4). Doing this 

we obtain 

Definition (3.3.1). The differential equation (3.3.5), with 

its b^(x)'s given by equation (3.3.6), is called the S(v(x)) 

transform of equation (3.3.1). 

Definition (3.3.2). The equation y(x) = v(x)y(x) is called 

the defining equation of the S(v(x)) transform of equation (3.3.1). 

-1 

(3.3.6) 
-1 

, (X) (v(x)) (v(x)) 
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Note that the StvCx)) transform of equation (3.3.1) is 

obtained from equation (3.3.1) by transforming its dependent 

variable by letting y(x) = v(x)y(x) . 

When it is obvious what the defining equation of a S(v(x)) 

transform is, we may not always specify it. 

The following theorem is an immediate consequence of definition 

(3.3.1) . 

Theorem (3.3.1). Let n be a positive integer and xe [a, b] 

There exists a constant coefficient differential equation Of the 

form 

I ( ^ 1 ^ ~ ^ 

dx- 

that is a S(v(x)) transform of equation (3.3.1) 

there exists a v(x) such that 

(CQ = 1) , 

if and only if 

(3.3.7) 
n-3 

^ ( k=0 ' 

n-j 
k 

-1 
a .(x)(v(x)) (v(x)) = c 
n-k-3 n-3 

j = 0, 1, ..., n-1 

where the c .'s are constants. 
n-3 

Assuming that the conditions given by Theorem (3.3.1) hold, 

we wish to determine v(x) . Letting j = n-1 inequation (3.3,7) 

(x) 
-1 (1) 

(v(x)) (v(x))^^ = c 

we find 
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where is some constant. Integrating this equation we find 

that 

vCx) = C expj- a^ Cx)dxj exp(c^x) 

where C is a non-zero constant. It is easy to see from equation 

(3.3.7) that we can assume without loss of generality that C = 1 , 

hence 

v(x) = expj- a^^dxj exp Cc^x) 

In the next chapter we show that the constant Cj^ can be taken to 

be zero without loss of generality. That is, if there exists a 

SCv(x)) transform of equation (3.3.1) that is a constant coefficient 

differential equation, then the defining equation of the transform 

can be taken as 

C3.3.8) 

The transform defined by equation (3.3.8) is known as the Liouville 

transform (see for example [27], p. 180). 

We now show that the S(vCx)) transform of equation (3.3.1) 

is the special case of the P(u(x), v(x)) transform of equation 

C3.3.1) where u(x) = 1 . 

By equations (3.2.4) and (3.2.10) we see that the Ptl# v(x)) 

d't 
transform of equation (3.3.1), defined by ~ ^ yCx) = v(x)z(t) , 

is 
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n 

C3.3.9) 

where 

(3.3*10) 

- - dt 
Since ~ 

dx 

C3.3.11) 

(j) = ° 3=0 * 

CbQ(t) E 1) 

b . (t) = (n-j)l(vCx)) ^ Y 'l Ckl£! (n^k-^) 

k=0 ^=0 

n-j n-j-k 

• a^(x)j! <j)(n-k-£, j; l)(v(x)) 
il) 

= 1 we find that 

t(x) = X + c , 

where c is a constant of integration. We also have that 

d^ d^ 
(3.3.12) 

dt^ dx^ 

using equation t2.4.20) we have that 

(|)(k, j; 1) = {: 
j = k 

j < k , 

hence equation (3.3.10) reduces to 

-1 
b . (t) = (n-j)!(v(x) ) ^ I (k! (n-j-k) Ij 1) ^ a (x) j ! (v (x)) 

k=0 ^ 

By reversing the summation in this equation we obtain 

C3.3.13) b (t) = (""^la , .(X) (v(x))"^ (v(x)) 
n-3 \ k I n-k-3 

(n-; j-k) 
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By equations (3.3.9), (3.3.11), (3.3.12) and (3.3.13) we have that 

dt 
the P(l, v(x)) transform of equation (3.3.1), defined by ^ 

and y(x) = v(x)z(t) , is 

(3.3.14) 
n 

1 ^ 1 ^ • (t) —^ z (x + c) =0 
j=0 ' 3 / n-D ^^3 dx* 

where the ^(t)'s are given by equation (3.3.13). 

Lemma (3.3.1). Let n be a positive integer and let v(x) 

be a non-vanishing function on [a, b] such that v(x) e C^[a, b] 

The P(l, v(x)) transform of equation (3.3.1) is the same as the 

S (v (x)) transform of equation (3.3.1). 

Proof; The proof follows immediately by comparing equations 

(3.3.5) and (3.3.14). The operators of these differential equations 

are the same, hence it follows that they are the same differential 

equations. 

Q.E.D. 
f 

The sjexpj- aj^(x)dx|J transform of equation (3.3.1) is 

Jo (") = ° ’ 

where 

(3.3.15) b^_, (X) = f ( . (x)exp(|ajdx) (exp(-jajdx)) 
JC”U 

(k) 
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We easily find from equation C3.3.15) that 

(x) E 1 , 

(x) E 0 , 

b^ (x) = a^ Cx) - (a^(x))^ - Ca^ (x)) ^ 

and 

bg (x) = a^ (x) - 3a^ Cx)a2(x) + 2 (a^ (x)) ^ - (a^ (x))^^^ . 

We immediately have the following well-known result Csee 

[12], [41]). 

* 

Lemma C3.3.2). The Sjexpj- a^dxjj transform 

Jo(”) (x)) = 0 

of equation (3.3.1), has the property that bg(x) = 1 and 

bj^ (x) E 0 on [a, b] . 

Definition (3.3.3). A differential equation 

Jo(") 
(x)) = 0 , 

is said to be in reduced normal form if b^(x) E l and b^(x) E 0 . 

In view of Lemma (3.3.1) and Lemma (3.3.2) we can reduce every 

equation C3.3.1) to a P equivalent equation which is in reduced 

normal form. 
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es. 4) Transforming the Inde|)endent Variable. Let u Cx) be 

ri““l 
a non-vanishing function on [a, b] such that u(x) £ C [a, b] 

where n is a positive integer. Transforming the independent 

variable of the equation 

n 

k=0 

by means of the equations 

dt 

(3.4.2) dx 

and 

tk) 
= 0 

= u(x) 

(a^ (x) = 1) , 

(3.4.3) yCx) = z(t) , 

gives 

n 

C3.4.4) 'l Ivl^ u(x) ) (z(t))^"^ = 0 . 

k=0 ' ' — 

k 

1 
m=0 

(m) 

Note that we have used equations (2.1.5) and (2.3.3) of Chapter 2 

to replace the operator 

k k ,m 

-Tj- by ^ (p (k, m; u (x) ) 
m 

The 

dx m=0 dt 

dependent variable y(x) has been replaced by z(t) to keep the 

dependent variable of the transformed equation consistent with the 

operator acting on it. 

Rearranging the sums of equation (3.4.4) using formula (A.1.4) 

we obtain the equation 

n 

I ^z(t)) _ n-m t 
m=0 

(m) 
C3.4.5) 0 
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where 

(3.4.6) ^ (k) ^ u(x)) . 

k—m 

Using equation (2.4.3) we find that PQ(t) = (u(x))^ , which by 

hypothesis cannot vanish on [a, b] . We wish to express equation 

(3.4.5) in the normal form 

(3.4.7) I ("lb (tUz(t))^’ = 0 , 07„(t) = 1) . ^ I m / n—m t 0 
m=0 

To obtain the normal form of equation (3.4.7) from equation (3.4.5) 

we need only let 

b (t) = 
n-m C) (u(x)) 

n 
-1 

P Ct) , 
n-m 

where p (t) is given by equation (3.4.6). Doing this we obtain 
n-m 

n 

C3.4.8) b (t) = I 
n-m , 

k=m 
ml m; 

-1 
I ^ja^__j^(x)(f) (k, m; u(x)) 

Definition (3.4.1). Equation (3.4.7), where the b (t)'s   n-m 

are given by equation (3.4.8), is called the T(u(x)) transform 

of equation (3.4.1). 

d't 
Definition (3.4.2). The equations — = u(x) and y(x) = z(t) 

are called the defining equations of the T(u(x)) transform of 

equation (3.4.1). 
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Note that the T(u(x)) transform of equation (3.4.1) was 

obtained by changing the independent variable of equation (3.4.1) 

dt 
on letting = u(x) . 

When it is obvious what the defining equations of a T(u(x)) 

transform are, we may not always specify them. 

Theorem (3.4.1). Let equation (3.4.1) be non-vanishing 

on [a, b] . There exists a T(u(x)) transform of equation (3.4.1) 

that is a constant coefficient differential equation of the form 

I (") = .io I™/ n- 

,m 

m=0 
m m 
dt 

z(t) = 0 , (Cg = 1) , 

if and only if there exists a u(x) such that 

-1 n 

C3.4.9) I 
k=m 

i:i (u (x)) n ,a (x)4>(k, m; u(x)) = c / 
k J n-k n-m 

m 0f 3-f •••/ ri""l 0' 

where the c 's are constants. Moreover if a u(x) exists such 
n-m 

that the conditions given by equation (3.4.9) hold, then u(x) can 

^/n 
be tcOcen to be (a (x)) 

n 

Proof; The necessary and sufficient conditions given by 

equation C3-4.9) follow immediately from definition (3.4.1). We 

now assume that the conditions given by equation (3.4.9) hold and 

we show that u(x) can be taken as |a^(x)J . Using equations 

C3.4.8), C2.3.3) and (2.4.3) we find that the coefficient of z(t) , 
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in the T(u(x)) transform of equation (3.4.1), is (u(x)) ^a^(x) , 

and that the coefficient of (z(t))^ is 1. Multiplying the 

T(u(x)) transform of equation (3.4.1) through by (u(x))^ we 

obtain an equation of the form 

I (k) ° ' 
k—0 

where (t) = (u(x))^ and ~ ^n^^^ ' Since we are assuming 

that the conditions given by equation (3.4.9) hold, this differential 

equation must be proportional to a constant coefficient differential 

equation with leading coefficient 1. It is now clear that we can 

Vn 
take u(x) to be (a^(x)) ^ 

Q.E.D. 

Note that Theorem (3.4.1) is just the normalized version of 

Breuer and Gottlieb's [5] result given by Theorem (1.4.1). 

Assuming that the conditions given by equation (3.4.9) hold, 

we let m = 1 in equation , (3.4.9) and we obtain 

. n - 1 , , . ,-2 , , ,, (1) 
(u(x)) (u(x)) = Cj , 

Where c^ is a constant. If we assume that c^^ = 0 this equation 

integrates to give 

u(x) = exp 
1 - n 

a^ (x)dxj , 

where we have let the constant of integration be zero. In the next 

chapter we will show that the coefficients of the T exp 

transform of equation (3.4.1) are a type of invariant of equation 

(3.4.1). 
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Leitima C3.4.1) . It is always possible to find an equation 

n . ' 

I (y(x)) ^ = 0 , (bQ(x) E 1) , 
k"0 

which is S equivalent to equation C3.4.1), that has the property 

that ^j^Cx) is non-vanishing on [a, b] . 

Proof; The SCvCx)) transform of equation (3.4.1) is 

I (y (x)) = 0 , (bQ(x) = 1) , 

where 

Vk‘"> =? ' 

hence 

n ... 
b^Cx) = I ["] a^_^(x)(v(x))"^(v(x))'^' . 

It is now obvious that we can always pick a v(x) such that 

is non-vanishing on [a, b] . 

Q. E. D. 

The following example illustrates an application of Lemma 

C3.4.1) . 

Consider the differential equation 

y 
(2) 

X ^ 
0 . (3.4.10) 
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Since the coefficient of y(x) of equation (3.4.10) is identically 

zero we cannot apply Theorem (3.4.1) to equation (3.4*10). However 

the S(x) transform, defined by y(x) = xy(x) , of equation (3.4.10) 

is 

(3.4.11) y^^^ + “ y(x) = 0 
^ X 

Applying theorem (3.4.1) to equation (3.4.11) we find that the 

T|~| transform, defined by ^ ^(x) = z (t) , of equation 

(3.4.11) is 

(z(t))^^’ + 2(z(t))^^’ + z(t) F 0 

We have that a solution of equation (3.4.10) is 

y(x) = xy(x) 

= xz(t) 

= X exp (At) , 

where X 

That is. 

is a root of X + 2X + 1 = 0 and t = — dx = -Cn x . Jx 
a solution of equation (3.4.10) is given by 

y(x) = X , 

2 
where X is a root of X + 2X + 1 = o . 
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We now show that the T(u(x)) transform of equation C3.4.1) 

is the special case of the P(.u(x), vCx)) transform where v(x) = 1 . 

The P(u(x), 1) transform of equation (3.4.1) is 

(3.4.12) I 1^1 ° ' (bpCt) = 1) , 

m=0 » ' 

where 

n-m 

b (t) = Cn-m) ! (uCx)) “ 'l (j l(n-j)!) ^a. (x)m!(J> (n-j , m; u(x)) . 

j=0 ^ 

By reversing the order of summation of this equation and then 

raising the index of summation by m we obtain 

-1 n 

(3.4.13) b„_„(t) = I 

j=m 

j;Uu(x))" I ^ )a . (x)4> Cj , m; u(x)) . 
i3 I n-3 

We have that the P(u(x), 1) transform of equation (3.4.1) is 

equation (3.4.12) where the b (t)'s are given by equation 
n-m 

(3.4.13) . 

Lemma C3.4.2) . Let n be a positive integer and let u(x) 

ri"*l 
be a non-vanishing function on [a, b] such that u(x) e C [a, b] . 

The P(u(x), 1) transform of equation (3.4.1) is the same as the 

Ttutx)) transform of equation (3.4.1). 

Proof: The proof follows immediately by comparing equations 

(3.4.7) and (3.4.12). These equations are the same. 

Q.E.D. 



-67- 

(3.5) The TCuCx) )oS(v(x)) Transform. 

PCutx)/ v(x)) transform of 

(3.5.1) a ,(x)(y(x))^’ 
n-k 

0 

We now show that the 

, (aQ (x) = 1) , 

can be decomposed into an S transform of the dependent variable, 

followed by a T transform of the independent variable. That is, 

P(u (x), v (x)) = T(u(x) )oS(v(x)) . 

The S(v(x)) transform of equation C3.5.1) is 

(3.5.2) 

where 

Jo 
= 0 , (PQ CX) = 1) , 

(3.5.3) = Jo ("k^l 
The T(u(x)) transform of equation (3.5.2) is 

(m) 

(k) 

13.5.4) I (;;) = 0 
m=0 ' ' 

(b(j(t) E 1) , 

where 

j (j) m; u(x)) . 
j=m« I 

By dropping the j index of summation by m and using equation 

(3.5.3) we obtain 



-68- 

n-m n-j-mi \-l, 
1-3-m 

k 

a . (x) (v(x)) ^^^4) (j+m, m; u(x)) . 
n—k-3-m 

By rearranging the siJins using formula (A. 1.2) this gives 

n-m k I . . V-1 
b Ct) 
n-m 

a (x)(v(x))^^ ^^4)Cj+m, m; u(x)) . 
n—k-m 

By reversing the order of the k summation and then reversing the 

order of the j summation we obtain 

-1 n-m n-m-k 
(3.5.5) b (t) = (n-m) i lv(x) (u(x) )^ ) J ^ (k! j ! (h-k-j) !) 

^ ^ ‘ k=0 j=0 

• aj^(x)ml (v(x)) ^^^ (|) (n-k-j , m; u(x)) . 

-1 

Lemma C3.5.1) . Let n be a positive integer and let u(x) 

and v(x) both be non-vanishing functions on [a, b] such that 

u(x) e ^[pi/ b] and v(x) e C^[a, b] . The P(u(x), v(x)) 

transform of equation (3.5,1) is the same as the T(u(x))oS(v(x)) 

transform of equation (3.5.1). 

\ 

Proof: The proof follows inmiediately by comparing equation 

(3.2.4) with equation (3.5.4). These equations are the same. 

Q.E.D. 
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Lemma (3.5.1) is historically significant. Some authors have 

used T (u(x))oS (v(x)) transforms to obtain their results while 

others have used P(u(x), v(x)) transforms. For example Forsyth 

[18] used the T (u(x))oS(v(x)) transform of equation (3.5.1) which 

he derived in roughly the same way as we have. His (p function was 

expressed in terms of Schlomilch's formula. 

(3.6) The S (v(X))oT(u(x)) Transform. We now show that the 

P (u (x) , v(x)) transform of 

C3.6.1) Jjk) 

JC““ L/ 

(k) 
= 0 (a^ (x) = 1) , 

can be decomposed into a T transform of the independent variable, 

followed by an S transform of the dependent variable. That is, 

P(u(x), v(x)) = S (v (x) )oT(u (x)) . 

The T(u(x)) transform of equation (3.6.1) is 

(3.6.2) I 
m=0 

„Ct) (y(t)) 
n—m 

(m) 

t 
0 , (PQ (t) = 1) , 

where 

(3.6.3) P n-m 
(t) (u (x) )^ a {x)(|)(k, m; 

n—X 
u(x)) . 

As usual u(x) is non-vanishing on [a, b] , hence 

t = |u (x)dx = h (x) r 

where h(x) is a continuous monotone increasing or decreasing 

function. Obviously the inverse of t exists, that is 
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X = h ^ Ct) 

We see that the S(v(x)) transform of equation C3.6.2) is the same 

as the SCvth ^(t))) transform of equation (3.6.2). It is given by 

n 
Cj) _ 

(3.6.4) 

where 

(j) = ° 
J=0 ' ' 

(bp(t) = 1) , 

bn-j 1 Pn-m-j Cv U)) Cx)) f ’ . 
m=0 

Using equation (3.6.3) we obtain 

n-j n 

m=0 k=m+3\ • ' / * '» * 

• a (x)(})(k, m+j; u(x) )(v(x)). 
n—k t 

(m) 

which on dropping the k index of summation by j gives 

-1 n-3 

b .(t) = y Y 
m=0 k=m 

(u(x))"v(x)! " 
n-3 

n w m+3 I 

k+j j / 

a . (x)(|)(k+j, ra+j; u(x))(v(x)) 
ri"*“ J “"K» 

(m) 

By rearranging the sum's using formula (A. 1.4) this is 

13.6.5) b^_.(t) = jj(u(x))"v(x) („:;,)] ( 

a . , (x)<f)(k+j, m+j; u(x))(v(x)). 
n^3-k t 

(m) 

It is easy to see that equation (3.6.5) is the same as equation 

(3.2.7). In exactly the Scime way equation (3.2.7) was shown to be 

equation (3.2.10), we obtain that eqqation (3,6.5) is 
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n-j n-i-kj \ -1 -1 
(3.6.6) b , (t) = 'l I Cu(x))%Cx) Cn-j) I (k!m! (n-k-m) I) 

k=0 m=0 I I 

• aj^(x)j! iji (n-k-m, j; u Ot)) (v (x)) . 

Lemma (3.6.1). Let n be a positive integer and let u(x) 

and v(x) both be non-vanishing functions on [a, b] such that 

u(x) e ^[a, b] and v(x) € C^[a, b] . The P (u (x) , v(X)) 

transform of equation (3*6.1) is the same as the S(v(x))oT(u(x)) 

transform of equation (3.6.1). 

Proof; The proof follows dLmmediately by comparing equation 

C3.2.4) with equation C3.6.4). These equations are the same since 

the b^_j(t)'s of equation (3.6.4) are given by equation (3.6.6). 

Q.E.D. 

Some authors have used S(v(x))oT(u(x)) transforms to obtain 

their results while others have used P(u(x), v(x)) transforms or 

T(u(x))OSCv(x)) transforms. For example Brioschi [6] used 

PCU(X), V(X)) transforms while Laguerre [25] used S (v (x)) oT (u (x)) 

transforms. As we saw earlier t = u(x)dx = h(x) , where h(x) 

is a monotone increasing or decreasing function on [a, b] . The 

inverse of t exists and Can be written as x = h ^(t) . We have 

that v(x) = v(h ^(t)) . Rather than writing v(h ^(t)) Laguerre 

[25] misleadingly writes v(t) . 
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C3,7) The Laguerre-Forsyth Form. In section C3.3) we showed 

that every differential equation of the type we are considering can 

be reduced to a P equivalent differential equation which is in 

reduced normal form, that is (x) = 0 . We now assume that this 

reduction has been effected and we consider the equation 

We show that equation (3.7.1) can be transformed, by a P(u(x), vCx)) 

transformation, into an equation of the form 

That is, we show that the coefficients of the second and third highest 

order derivatives of the dependent variable can be made equal to zero. 

Cockle [l3j first discovered this result for the case n = 3 . 

Laguerre [26] gave the general case and Forsyth [18] gave a clearer 

presentation of it (see also Wilczynski [4l]). 

Definition (3.7.1). A differential equation 

J„ (kl 0 Cb^ (x) = 1, b^ (x) - 0) . 

C3.7.2) (c^ (t) = 1, c^ (t) = c^ (t) = 0) 

n 

is said to be in Laguerre-Forsyth form if c^ Ct) = 1 aiid 

c^ Ct) ^ c^ Ct) = 0 . 
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The PCUCX), V(X)) transform of equation C3.7.1) is 

C3.7.3) I {"j c^_j^Ct) (z(t))^’ = 0 , CC()(t) = 1) , 
lc*”0 

where 

-1 n-s n-s-j -1 
(3.7.4) Cn-s) ! I (uCx) )^v(x) j ^ I j !ki (n-j-k) ! ] 

^ j=0 k=^0 ’ 

• bjCx)sl <i)(n-j-k# s; u (x)) (v (x)) , 

for s=0, 1, ...^n. Using the facts that (x) = 1 and 

bjCx) = 0 ; we apply equations (3.7,4), (2.4.3)> (2.4.4), (2.4.5) 

and (2.4.6) to find that 

(3.7.5) 

(3.7.6) 

(3.7.7) 

Cp(t) = 1 , 

n-1 -2 (1) ^ ■ -1 (1) 
Cl (t) = -y- U U + (uv) V 

“2, , . (n-^2) (n-3) -4f (1))^ n-2 -3 (2) 
(t) = u b^ (x) + u “'J + -y- u u' ' 

and 

(3.7.8) 

^ -2 -1 (2) ^ n-2 -3 (1) (1) 
+ U V V +   U U V 

(t) = u ^b^ (x) + ■ b^ (x)u ^u^^^ + U 

. (n-3)(n-4) -5(1) (2) . (n-3)(n-4)(n-5) -6/ (Dl^ 
u u u 

+ ^ 3(n-3).(n-4) „-5^(l)|,(D] 
V 2 4v I I 

n-3 -4 (2) (1) 3(n-3) -4 (1) (2) -3 -1 (3) 
+  u u V + ——- u u v +u V V 

V 2v 
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If Ct) = 0 we find from equation (3.7.6) that 

-1 
V V 

(1) 
2u 9 

where as usual v(x) is not zero on [a, b] . Integrating this 

equation we obtain that 

Z.H V (x) 

1-n 

>dn|cu(x)) ^ + c 9 

where c is a constant of integration. We have that 

1-n 
2 

v(x) = Cu(x)) exp(c) 

1-n 

= CCuCx)) ^ , 

where C is a non-zero constant. From equation (3.7.4) it is 

obvious that we can assume that C = 1 without loss of generality. 

We have that (t) = 0 if and only if 

1-n 

(3.7.9) v(x) = (u(x)) ^ , 

which is 

(3.7.10) u(x) = (v(x)) 

-2 
n-1 

Since bg (x) = 1 and b^ (x) = 0 the case for n = 1 is trivial 

For n = 1 equation (3.7.1) is 

f =° • dx 
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By equations C3.7.3), C3.7.5) and C3.7.6) the P(uCx), v tx)) 

transform of - 0 is 
dx 

dz Ct) ^ 

dt 
CuCx)v(x)) ^ (v (x)) ^z tt) 0 . 

We want the coefficient of zCt) to be zero> hence we let vCx) be 

any non-zero constant. This agrees with equation C3.7.9) which for 

n = 1 gives vCx) = 1 . 

For n > 1 Ct) = 0 if and only if equation C3.7.10) holds. 

hence we find that if Cj^ tt) = 0 then 

C3.7.11) 

(3.7.12) 

-n-1 

, , \ V -2 n-1 , . V V (1) (u(x)) = CvCx)) (vCx)) , 
n-1 

-n-1 

u 
(2) 

-n-1 -2n .. 

and 

C3 

-n-1 -2n 

.7.13) = ^fv ,n-l ^(1)^(2) 
n-1 [ -n-1 

-3n+l 

+ 2 (n + n) (n - 1) v v 

For n > 1 Cj (t) = 0 implies that equations (3.7.9) to (3.7.13) 

hold. Assuming that c^(t) = 0 these equations show that 

(3.7.14) c^Ct) = ^ b^ (x) + (n^ - n - 2) (-3(n-l)^) 

5-n 

n+l n-1 (2) 
3(n-1) 

.1 2-^^ 

2. / (1) n-1 
V V 

and 



-76- 

-n+7 -n+7 

1.-V n-1 , , , . 6 , , , n-1 tl) . n+1 n-1 „(3) (3.7.15) c Ct) =v b (x) + —^ b Cx)v v + T7"—TV ^ 

-2n+8 
. “3 TV / n-1 (1) (2) 
+ — (n-3) (n+1) (n-1) v v v 

-3n+9 

+ (n-1) ^(n-2)(n-3)(n+l)v ^ ^ 

We now find a u(x) and v(x) such that both (t) and 

(t) are zero. 

If (t) = 0 then (t) is given by equation (3.7.14), 

hence we wish to find a v(x) such that c^(t) given by equation 

C3.7.14) is zero. As Forsyth [18] did, we make the substitution 

C3.7.16) v(x) = [e;(x)]""^ , 

where ^ Cx) is some non-vanishing function on [a, b] . From 

equation C3.7.16) we easily obtain 

(3.7.17) (v(x))*'V= (n-1) (5(x))"”^(S(x)), 

(3.7.18) (v(x))'^’ = (n-l)5""^C*^^’ + (n-1) (n-2)c""^ 

and 

(3.7.19) (vCx))“* = (n-l)c""^?*^^ + 3(n-l)(n-2) 

+ (n-1) (n-2) (n-3)£"■“*( . 

Substituting equations (3.7.16), (3.7.17) and (3.7.18) 

^n-3^(1)^(2) 

into equation 

(3.7.14) we easily find 
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4 —1 ^ (9) 
(3.7.20) c^(t) = (^(x))^b^(x) + (n+l)3 CC (x)) ^ (x)) , 

provided that (t) ^ 0 . Since C(x) is non-vanishing on [a, b] 

we see from equation (3.7.20) that (t) =0 if and only if 

(3.7.21) (5(x))*^' + 3(n+l)”^b2(x)5(x) = 0 

and c^ (t).._= 0 That is, if - (t)~E o we can make C2"(t) = 0“ by 

ri“l 
letting v(x) = (^(x)) , where ?(x) is any non-trivial solution 

of (3.7.21) on [a, b] . Since c^(t) =0 if and only if equation 

(3.7.10) holds, we need only let 

(3.7.22) v(x) = (S(x))"”^ 

and 

(3.7.23) u(x) = (C(x))"^ , 

to make (t) = c^(t) = 0 , where ^(x) is any non-trivial 

solution of (3.7.21) on [a, b] . 

Definition (3.7.2). Let K(x) be a non-trivial solution of 

equation (3.7.21) on [a, b] . The p|(^(x)) (^(x))^ transform 

of equation (3.7,1) is called the Laguerre-Forsyth transform of 

equation (3.7.1). 
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Theorem (3.7.1). Let the order of the differential equation 

(3.7*1) be greater than 1. If ^(x) is a solution of the differential 

equation 

(5(x)f' + ;^b2Cx)5(x) = 0 , 

such that C(x) does not vanish on [a, b] and ^(x) e C^[a, b] , 

then the Laguerre-Forsyth transform of equation (3.7.1) is a 

differential equation having the Laguerre-Forsyth form. 

Proof; The proof follows immediately from the definition of 

Laguerre-Forsyth form, definition (3.7.1). 

Q.E.D. 

We now prove the following theorem whibh was done by Combescure 

[15] for the case n = 3 . 

Theorem (3.7.2). Let n > 1 and let u(x) and v(x) be non- 

ri“l 
vanishing functions on [a, b] such that u(x) e C [a, b] and 

v(x) £ C^[a, b] . Moreover let u(x) and v(x) be related by 

-2 

C3.7.24) u(x) = (v(x))"”^ . 

The P(u(x), v(x)) transform of equation (3.7.1) is given by the 

equations C3.7.3) and (3.7.4), where in particuleir we have 
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Cj (t) = 0 

-1 
6-2n 

Ct) 
n-1 , , X I 1 ,2 Cl)l n-1 = V tx) + I-3 Cn-1) I (n -n-2)lv 

n+1 
3(n-1) 

(2) n- 
V V 

and 

6 

(3.7.25) CjCt) = I - v" ^ [ I {b^(x)) 

Proof; Since equation (3.7.24) holds, the P(u(x), v(x)) 

transform of equation (3,7.1) has (t) = 0 , and (t) and 

(t) are given by equations (3.7.14) and (3.7.15) respectively. 

It remains to show that (t) is given by equation (3.7.25). 

Differentiating equation (3.7.14) with respect to x we find that 

4 5-n 

, ,^vv(l) n-1 ,, , . V (1) / ... n-1 (1), , . tc^Ct)) = V (b^(x)) + 4(n-l)v v b^ (x) 

7-3n 
6-2n 

(-n^+n+2) (n-l)''^v 

5-n 
n+1 n-1 (3) 

+ T7 TT V V 3(n-1) 

6-2n 

- (n-l)“^ (n-3) (n+l)v v^^^v^^^ 

Using this equation we express equation (3.7.15) as 

2 _ 4 

C3 (t) = V 
n-I 3 (1) 3 n-1 , .. (1) , n-1 , , , Tr(c^(t)) -~v (b(x)) '+v b (x) 

2 2 2 2 3 

(1) Recalling that (t(x)) = u(x) , equation (3.7.24) gives 

-2 
. , .,(1) n-1 
(t (x)) = V , 

hence we easily find that 

CjCt) = I (c^(t))^’ - V 
n-1 

(f Cb (x» 
Cl) 

b Cx) 
3 

Q.E.D. 

!-
• 

K
3 
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In view of Theorem C3.7.1) an immediate corollary to Theorem 

(3.7.2) is the following. 

Corollary. Let n > 1 and let C(x) be any solution of the 

differential equation 

(^(x))^^^ + 3(n+l) ^b2(x)^(x) = 0 , 

such that ^ (x) does not vanish on [a, b] and ^ (x) e C^[a, b] . 

The Laguerre-Forsyth transform of equation (3.7.1) is given by 

-2 
equations (3.7.3) and (3.7.4) with u(x) = (C(x)) and 

ri""l 
v(x) = (^(x)) , In particular we have 

Cl (t) E c^ (t) E 0 

and 

CjCt) = -(5(x))®[| (b2(x))‘^’ - b3(x)j . 

For n - 2 the above corollary can be stated as the following 

theorem which wae originally given by Laguerre [25]. 

Theorem (3.7.3). Let ^(x) be any solution of 

(5(x)) + b^(x)5{x) = 0 , 

such that ^(x) does not vanish on [a, b] and C(x) e C [a, b] . 

The Laguerre-Forsyth transform, with n = 2 , of the equation 
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C3.7.26) Cy(x)) + b (x)y(x) = 0 
2 

is 

(z(t))^^^ = 0 . 

Consider an arbitrary second order differential equation 

2 
(3.7.27) 

k=0 
k I ^2-k^^^ = 0 , 

(aQ (x) = 1) . 

By Lemma (3.3.2), equation (3.7,27) is reduced, by the transformation 

y(x) = exp(- aj^ (x)dx)y (x) , to an equivalent equation of the fom 

(3.7.28) y^^^ (x) + b2(x)y(x) = 0 . 

We also have that y(x) of equation (3.7.27) is connected to y(x) 

of equation (3.7.28) by 

(3.7.29) y(x) exp (- a^ (x)dx)y(x) . 

Suppose that a non-trivial solution y^(x) of equation (3.7.27) is 

known. By equation (3.7.29) a non-trivial solution ^(x) of equation 

(3.7.28) is 

(3.7.30) C (x) = exp( a^ (x)dx)y^ (x) . 

It follows from Theorem (3.7.3) and the definition of Laguerre- 

Forsyth transform (for n = 2) , that the solutions of equation 

(2) 
(3.7.28) are related to those of (z(t))^ = 0 , by y(x) = ^(x)z(t) , 
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where t = 

(2) 

-2 
(5(x)) dx , Two linearly independent solutions of 

(zCt))^'^' = 0 are and c^t , where and are arbitrary 

non-zero constants, hence the general solution of equation (3.7.28) 

IS 

y (x) = ^ Cx)z (t) 

= g (x) (c^+C2t) 

= c^C(x) + (x) (^(x))”^dx 

Using this equation in equation (3.7.29) we find that the general 

solution of equation (3.7.27) is 

a^ (x)dx) y(x) = exp(- 

By equation (3.7.30) this is 

yCx) = c^y^ (x) + c^y^ (x) 

c ^ (x) + c £ (x) 
1 2 

{5(x))"^dx 

]• 

exp(-2 
-2 

a^ (x)dx) Cy^ (x)) dx 

We have proven the following theorem. 

Theorem (3.7.4) . Let y^^ (x) be a non-trivial solution of 

equation C3.7.27), then a second linearly independent solution of 

equation (3.7.27) is 

72 ^3c) = y^ (x) exp(-2 
-2 

a.^ (x)dx) (y^ (x)) dx . 

Remark. Theorem C3.7.4) is a well known result (see for 

example Ross [37] , p. 91). 



-83- 

Chapter 4 

Theory of Invariants 

(4.1) Introduction. This chapter is a prelude to the next 

chapter where we find a canonical transform (see definition (1.4,6)) 

for the equation 

n k 

(4.1.1) ^ Ikl • 
k=0 ' ' ' dx 

In sections (4.2) and (4.3) we find semi-canonical S(v(x)) 

and T(u(x)) transforms of equation (4.1.1). That is> we find 

canonical transforms for the special cases where only the dependent 

variable, or independent variable is transformed. In section (4.4) 

we show that the function V^(a^(x)) , mentioned in section (1.4), 

obeys a certain invariance relation. This invariance relation will 

enable us to find the canonical transform in Chapter 5. 

(4.2) Invariants Under Changes of the Dependent Variable. In 

section C3.3) we saw tha.t the S(v(x)) transfoinm of 

n _k 
(4.2.1) 

J Ikl Vk'*> = ° ' = 1) ' 
k=0 dx 

IS 

(4.2.2) Jo lil (j) = 0 , (bQ(x) E 1) , 

where 

(4.2.3) b . (x) = Y [ 1 ^ V • 
-1 (k) 
V 
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We also saw by Lemma (3.3.1) that the S(v(x)) transform of 

equation (4.2.1) is the special case of the P(u(x), v (x)) transform 

of equation (4.2.1) where u(x) = 1 . By definition (1.4.3) every 

equation that is a S(v(x)) transform of equation C4.2.1) is P 

equivalent to equation (4.2.1). 

Definition (4.2.1). Any equation 

(x) (y (x)) 0 , (LQ (X) = 1) , 

that is a S (v(x)) transform of equation (4.2.1), is called ^ 

equivalent to equation (4*2.1). 

Note that every equation that is S equivalent to equation 

(4.2.1) is obtainable from equation (4.2.1) by transforming the 

dependent variable of equation (4.2.1), by means of a transform of 

the form y(x) = v(x)y(x) . 

Recalling equation (1.4.12) of definition (1.4.4) we have that 

M is the set of all matrices of the form 
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We now make the following definition. 

Definition C4.2.2). Let vCx) be an arbitrary non-vanishing 

function on [a, b] such that v(x) £ C^[a, bj . Let I be a 

map from M to the set of all complex valued functions with domain 

[a, b] . Let a^ (x), j = 0, 1, n , be the coefficients of 

equation _(4.2.1) and let -bj (x), j-= 0> 1, . n r be~the'coefficients' 

of the S(v(x)) transform of equation (4.2.1). If for all x £ [a, b] 

and for all v(x) as defined above we have the identity 

I 
dx 

r E I 

(n+1) X (n+l)i 
dx 

r ’"j 
(n+1)X(n+1) 

then the function I is called an absolute ^ semi-invariant of 

equation C4.2.1). 

From this definition we see that an absolute S semi-invariant 

of equation C4.2.1) is a function of the coefficients a^^ (x) of 

equation C4.2.1) and their derivatives with respect to x . This 

function has the property that for all x £ [a, b] it has the same 

value as the same function formed from the coefficients of any 

arbitrary equation which is S equivalent to equation (4.2.1). 

An absolute S semi-invariant is a function that is invariant only 

with respect to changes of the dependent variable, hence the prefix 

"semi" Csee [17], [26], [34] and [41]). 
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(4.2.4) 

Definition (4.2.3) . A differential equation 

(k) I (kl = 0 , 

k=0 

(LQ (X) = 1) , 

that is S equivalent to equation (4.2.1), is called a semi-canonical 

^ transform of equation C4.2.1) if each b^(x) of equation (4.2.4) 

is an absolute S serai-invariant of equation (4.2.1). 

A semi-canonical S transform of equation (4.2.1) is an 

equation that is obtainable from equation (4.2.1) by transforming 

only its dependent variable. 

We now prove the following theorem originally done by Cockle 

[12] in 1870 (see also [4], [26], [28], [32], [38] and [41]). That 

is, we show that the S|exp f- 
I )) 

aj^(x)dx|] transform of equation (4.2.1) 

is a semi-canonical S transform of equation (4.2.1). First we 

make a comment about constants of integration. If, for example, 
f f 

a^^ (x) = X , then the s|exp|- aj(x)dxj| = s|exp|- x ^| | transform 

of equation (4.2.1) is defined by 

y(x) = expj- a^ (x)dxjy (x) 

= exp 

exp 
(- 

X dx]y(x) 

2 

- c y (x) , 



-87- 

where c is a constant of integration. We always take the constant 

of integration c , that stems from integrating with respect 

to X , to be zero. That is, in the above example we have 

.2 
yCx) = expj- ^)y(x) 

Taking the constant of integration to be zero results in no loss of 

generality since we are only interested in finding one particular 

semi-canonical S transform. 

Theorem (4.2.1)^ Let a^^ (x) of equation C4.2.1) be non- 

transform of equation vanishing on [a, b] . The s|exp|-" a^^ (x)dx| 

(4.2,1) is a semi-canonical S transform of equation (4.2.1). 

Proof: Let the defining equation of the S 

transform of equation (4.2.1) be 

exp[-j a^ (x)dx 1) 

(4.2.5) y(x) = exp|- a^(x)dxjy(x) . 

Note that we are taking the constant of integration, that stems from 

integrating a^^ (x) with respect to x , to be zero. 

The S expj- a^ (x)dxj transform of equation C4.2.1) is 

(4.2.6) I —^y(x) = 0 , (bQ(x) = 1) , 
\J / J dx j=G 

where 
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n-3 
n-D 

(4.2.7) b (X) = I j —ja (x)exp 
k=0* ' 

(x)dx exp|- (x)dx j j (k) 

Each b .(x) is a function of the a.(x)'s and their derivatives 
n-j 3 

with respect to x , hence in the notation of definition {1.4.4) 

we can write 

(4.2.8) 
dx 

i k=0,1,...,n 

Cn+l)x(n+1) 

To be finished we need to show for k = 0,1,...,n , that for all 

X € [a, bj the function B 
dx 1 3 

a. Cx) has the same 
Cn+l)x(n+1) I 

value as the same function formed from the coefficients of any 

arbitrary equation which is S equivalent to equation (4.2.1). 

Let v(x) be an arbitrary non-vanishing function on [a, b] 

such that v(x) e C^[a, bj , The S(v(x)) transform of equation 

(4.2.1), defined by 

y (x) = v(x)z (x) , 

is 

n 
(j) _ C4.2.9) I jjj c^_j (x) (z(x)) '■'" = 0 , ' 

where 

(4.2.10) 
n-j . _ 

. (x) = I V . (x) (v(x) )“^ (v(x)) 
n-D k=0 ' ^ 

(k) 
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The coefficients CjCx) of equation C4.2.9) represent the coefficients 

of any arbitrary equation that is S equivalent to equation (4.2.1). 

Hence to complete the proof we need to show that for all X e [a, b] 

(4.2.11) B, 

idx 
r = B. 

(n+l)x Cn+1)/ 
dx 

— c. (x) 
1 J 

(n+l)x (n+l)J 

.k—0 f 1 n f_ 

where the function B, is defined by equations (4.2.7) and (4.2.8). 

// 1 1 
Clearly the B,j I—r c.(x)j I 's are just the coefficients 

'*'dx^ ^ 1 / (n+l)x (n+1)/ 

of the sjexpj- c^(x)dxj | transform of equation (4.2.9). Letting 

the defining equation of this transform be 

z (x) = exp |- Cj^ (x) dxj z"(x) , 

we find that the Sjexpf' c^(x)dxlI transform of equation (4.2.9) 

IS 

n 
(j) (4.2.12) I j"j (x) (5-(x))'-” = 0 , (dg(x) E 1) , 

where 

n-j 

(4.2.13) d . Cx) = 1 c , .(x)exp 

k=0 ' ^ I n-k-j 
Cj^ (x)dx exp |- (x)dx 

(k) 

Note that we are taking the constant of integration, that stems 

from integrating c^(x) with respect to x , to be zero. It is 

important that this constant be taken to be zero since we took the 

constant of integration when integrating a^(x) to be zero. By 
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equation C4.2.10) we have that 

(x) = a^ (x) + (v(x)) ^Cv(x))^^^ . 

Integrating this equation, taking the constant of integration to 

be zero, we obtain that 

(4.2.14) (x) = a^ (x)dx + £n v(x) . 

By equations (4.2.7), (4.2.8) and (4.2.13) we have as expected 

that 

(4.2.15) B, 
Idx 

r =j = dj^(x) , k = 0,1,...,n 

(n+l)x Cn+1)/ 

To show that the required identity (4.2.11) is true, it suffices to 

show that for all x e [a, b] 

bj^ (x) — dj^ (x) , k — 0,l,...,n, 

(see equations (4.2.8) and (4.2.15)). That is, to be finished we 

need only show that the differential equations (4.2.6) and (4.2.12) 

are the same. First we show that they have the same linearly 

independent solutions. 

From equation (4.2.5) we have that the n linearly independent 

solutions of equation (4.2.6) are related to those of equation 

(4,2.1) by 

C4.2.16) Tj^(x) = exp j (x)dxj y^^ (x) , i = 1,..., n . 
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We also have that yCx) = vCx)z(x) and zCx) 

hence we easily find that 

exp Cx)dxj z (x) , 

(4.2.17) zCx) = exp I) Cx)dxj Cv(x)) 
-1 

yCx) 

Making use of equation C4.2.14) we find from equation C4.2.17) 

that the n linearly independent solutions of equation C4.2.12) are 

related to those of equation '(4.2.1) by 

(4.2.18) z^ (X) Cx) f i = 1,.,. ,n . 

Comparing equation (4.2.18) with equation (4.2.16) we see that the 

differential equations (4.2.6) and (4.2.12) have the same n linearly 

independent solutions. We now use this fact to show that the dif- 

ferential equations (4.2.6) and C4.2.12) are the same. Subtracting 

equation (4.2.12) from equation (4.2.6) we obtain that 

\ b (x) - d . (x)| —^ z (x) =0 , 

where we have let z(x) be the dependent variable of both the 

differential equations (4.2.6) and (4,2.12). Since equations (4.2.6) 

and (4.2.12) have the same n linearly independent solutions, call 

them z^(x), i = l,...,n , it is obvious that the differential 

equation (4.2.19) also has the n linearly independent solutions 

z (x) , i=l,...,n , for x e [a, b] . However, equation (4.2.19) 

is of order at most n - 1 , hence it can have at most n - 1 

lineaurly independent solutions on [a, b] . That is, we have a 

(4.2.19) 1)1 i=o ' ' 
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contradiction unless the left side of equation C4.2.19) is 

identically zero, hence we have that “ dj^Cx), k = l,2,...,n , 

for all X e [a, bj . Recalling that (x) = d^ Cx) = 1 , we have 

for all X e [a, b] that 

bj^(x) = dj^(x) , k = 0,l,...,n . 

Q.E.D. 

Note that we can also prove Theorem (4.2.1) by directly showing 

that for all x e [a, bj 

bj^(x) = dj^(x) , k = 0,l,...,n . 

Let k be an arbitrary integer such that 0 < k ^ n , We 

must show that for all x € [a, b] 

where the Cj^Cx)'s are given by equation (4.2.10). By equation 

(4.2.14) we have that 

exp - Cj^dx = Cv(x)) ^exp (x)dx 

Using this equation and equation (4.2.10) in equation (4.2.20) it 

follows that we need to show that 
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(4.2.21) (x)dx 
it) 

k k-fc 
Cj) -1 (x)dx 

ll) 

Denote the left hand side of equation (4.2.21) by L(4.2.21). We 

have that 

\C 
L(4.2.21) = I aj^_^Cx)jv v ^exp[- 

Z-=o \ 

a^ (x)dx 
il) 

L(4.2.21)= I i U) -k-^‘">hh 
-1 

V exp H 
Using Leibnitz's rule for product differentiation this is 

k Z 

I I 
1=0 j=0 

By rearranging the sums using foinnula (A. 1.2) this is 

LC4.2.21) = 

Letting j £ and Z j we easily find that 

a^ (x)dx (j) 

a^(x)dx (j) 

k k-£ 

L(4.2.2X) = (j) 

Z=o i=o 

-1 
V exp I- a^(x)dx 

iZ) 

This equation shows that equation (4.2.21) is true. We are done 

since k was arbitrary. 
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Note that the coefficients h^^ix) , given by equation (4.2.7), 

are functions of the a^(x)'s of equation (4.2.1) and their derivative 

with respect to x , that contain no integrations. That is, for 
(k) 

each k the term exp 11 a. (x)dxl| exp I- a^ (x)dx| | , of equation (x)dxj| expj- a^ (x)dxj | 

(4.2.7), results in an expression containing no integrations. For 

example if k = 1 the expression is just -a^^ (x) . 

Theorem (4.2.2). Let a^^ (x) of equation (4.2.1) be non- 

vanishing on [a, b] . There exists a constant coefficient differential 

equation of the form 

n 
(4.2.22) I (*?] c -^y(x) = 0 , 

j=0 ‘ ^ ^ ^ dx"^ 
(°0 = 

that is S equivalent to equation (4.2.1), if and only if the 

S exp - a.^ (x)dx transform of equation (4.2.1) is a constant 

coefficient differential equation of the form of equation (4,2.22). 

Proof; The sufficiency is obvious from the definition of S 

equivalent. The necessity follows immediately from Theorem (4.2.1). 

The Slexpl- a.(x)dxl1 transform of equation (4.2.1) is 

(4.2.23) 

j- (x)dxj I 

IJ-) = 0 , (b^(x) = 1) , 

where the bjCx)'s are absolute S semi-invariants of equation 

(4.2.1) given by 
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(4.2.24) b^_. U) = (x)exp(faj (x)dx)j exp - (x)dx i| 
(k) 

j = . Now suppose that there is a S(v(x)) transform of 

equation (4.2.1) that is a constant coefficient differential equation 

of the form of equation (4.2.22). That is, we are supposing that 

equation (4.2.22) is S equivalent to equation (4.2.1). By the 

definition of absolute. _S semi-invariant, definition (4.2.1)# we 

have that the function (x) given by equation (4.2.24) has the 

same value as the same function formed from the constant coefficients 

of equation (4.2.22). That is, we have that 

(4.2.25) b„_,(x) = J^["-3)c^_^_.[expJcjdx)| exp - Ck) 

for j = 0,1,...,n , where the are the constant coefficients 

of equation (4.2.22). Equation (4.2.25) easily reduces to 

Y 
k=0 

b . Cx) = ^ I ^ ) c (-C ) j = 0,1,...,n . 

From this equation it is obvious that b .(x) is a constant for 
n-j 

j = 0,1,.,.,n . Moreover since c^ = 1 we have that 1 • 

Q.E.D. 

Theorem (4.2.3) . Let a^^(x) of equation (4.2.1) be identically 

zero on [a, b] . There exists a constant coefficient differential 

equation, that is S equivalent to equation (4.2.1), if and only if 

equation (4.2.1) is a constant coefficient differential equation. 
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Proof; The sufficiency is obvious since equation C4.2.1) is 

equivalent to itself. To prove the necessity we suppose that there 

exists a constant coefficient differential equation that is S 

equivalent to equation (4.2.1). That is, we suppose that there 

exists a v(x) such that the S(v(x)) transform of equation (4.2.1) 

is a constant coefficient differential equation. By equation (3.3.7) 

of Theorem (3.3.1) we must have that 

(4.2.26) Y ( 1 ^ V Cx)(v(x)) ^(v(x))^^^ = c 

k=0 ‘ ' n-K-j n-D 
j — 0,1,...,n—1 , 

where the c^ ^'s are constants. Letting j = n - 1 in equation 

(4.2.26) and recalling that a^^ (x) =0 by hypothesis, we have that 

(v(x)) ^ (v(x) )^^ ^ = c 
1 ' 

where c^ is some constant. If c^ = 0 then we are done since 

v(x) must be a constant, which says that equation (4.2.1) must 

have been a constant coefficient differential equation to start 

with. If c^ 0 then 

v(x) = C exp(c^x) , 

where C is a non-zero constant. It is easy to see from equation 

(4.2.26) that we can assume without loss of generality that C = 1 , 

hence 

v(x) = exp(c^x) . (4.2.27) 
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Letting j = n - 2 in equation (4.2.6) we use equation C4.2.7) 

and the fact that a^(x) = 0 to obtain 

a^Cx) + , 

which is 

(4.2.8) a^Cx) = r 

where is the constant ^^2 ” * La'tting j = n - 3 in 

equation (4.2.6) we use equations (4.2.7) and C4.2.8), and the fact 

that a^ (x) = 0 , to find that ^3^) also a constant. 

Continuing in this manner we find that each a^(x) is a constant. 

Q. E. D. 

C4.3) Invariants Under Changes of the Independent Variable 

In section (3.4) we saw that the T(u(x)) transform of 

^ Ik) Vk^"':. 
k=0 ‘ ' dx 
J (k) Vk^^> Tk = ° 

(a^(x) = 1) , 

is 

(4.3.2) I ("] b (t) (z(t))= 0 
m=0 

E 1) , 

where 

n 
b (t (x)) = I 
n-m , ^ 

k=m 
(k) n„ u(x)) 

(4.3.3) 
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We also saw by Lemma (3,4.1) that the T(u(x)) transform of equation 

(4.3.1) is the special case of the P(u(x), v (x)) transform of 

equation (4.3.1) where v(x) = 1 . By definition (1.4.3) every 

equation that is a T(u(x)) transform of equation (4.3.1) is P 

equivalent to equation (4.3.1). 

Definition (4.3.1). Any equation 

n , 

I K „<t) = 0 , (b.(t) i 1) , 
m=0 “ 

that is a T(u(x)) transform of equation (4.3.1), is called T 

equivalent to equation (4.3.1). 

Note that every equation that is T equivalent to equation 

C4.3.1) is obtainable from equation (4.3.1) by transforming the 

independent variable of equation (4.3.1), by means of a transform 

of the form ^ = u(x) . 
dx 

Recalling equation (1.4.12) of definition (1.4.4) we have that 

M is the set of all matrices of the form 
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We now make the following definition. 

Definition (4.3.2). Let u(x) be an arbitrary non-vanishing ' 

ri”l 
function on [a, bj such that u(x) e C [ar bj . Let I be a 

map from M to the set of all complex valued functions With domain 

[a, b] . Let (x) / j = 0,1,...,n , be the coefficients of ^ 

equation C4.3.1) and let > 3 = 0,1,...,n , be the coefficients 

of the TCU(X)) transform of equation (4.3.1). If for all x e [a, b] 

and for all u(x) as defined above we have the identity 

dx 
r 

(n+l)x (n+1)/ 

E I 
dt 

r '=j 
(n+l)x(n+1) 

where — = u(x) , then the function I is called an absolute T 

semi-invariant of equation (4.3.1). 

From this definition we see that an absolute T semi-invariant 

of equation (4.3,1) is a function of the coefficients a^^ (x) of 

equation (4.3.1) and their derivatives with respect to x . This 

function has the property that for all x e [a, b] it has the same 

value as the same function formed from the coefficients of any 

arbitrary equation which is T equivalent to equation (4.3.1). An 

absolute T semi-invariant function is a function that is invariant 

only with respect to changes of the independent variable, hence the 

prefix "semi" (see [17], [26], [34], [41]). 

1 
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Note that in the identity given in definition C4.3.2) the 

derivatives in the left hand side of the identity are taken with 

respect to x , while the derivatives in the right hand side are 

taken with respect to t . 

(bpCt) = 1) , 

Definition (4,3,3). A differential equation 

C4.3.4) I ("1 b „(t) (z(t)) *”* = 0 , 

that is T equivalent to equation (4.3.1), is called a semi-canonical 

transform of equation (4.3.1) if each b^(t) of (4.3.4) is an 

absolute T semi-invariant of equation (4.3.1). 

A semi-canonical T transform of equation (4.3.1) is an equation 

that is obtainable from equation (4.3.1) by transforming only the 

independent variable. 

We now prove the following theorem done originally by Peyovitch 

[34j in 1923 (see also [32]). The proof is similar to that of 

Theorem (4.2.1). In the proof we will use the usual notation that 

subscripting by a variable indicates the variable, that differentiation 

is with respect to, if it is other than x . For example indicates 

that the derivatives in Faa de Bruno's Formula, given by equation 

(1.3.7), are to be taken with respect to T rather than x . The 

theorem says that the T exp (rhrK trauisform of equation 

(4.3.1) is a semi-canonical T transform of equation (4.3.1). 

Before proving the theorem we make a comment about constants of 



-101 

integration. If, for example, a^(x) = x and n = 3 then the 

transfoirm of equation (4.3.1) 

is defined by 

dt 
dx 

exp 

exp 

where c is a constant of integration. We always take the constant 

of integration c , that stems from integrating a^^ (x) with respect 

to X , to be zero. That is, in the above example we have 

dt 
dx 

Taking the constant of integration to be zero results in no loss of 

generality since we are only interested in finding one particular 

semi-canonical T transform. 

Theorem (4,3.1). Let the order of equation (4.3.1) be greater 

than one and let a^^ (x) of equation (4.3.1) be non-vanishing on 

[a, b] . The T|exp|— ■--- 

is a semi-canonical T transform of equation (4.3.1). 

(x)dx I transform of equation (4.3.10) 
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Proof; Let the defining equations of the T 

transform of equation C4.3.1) be 

exp 1^— 
U - n J 

a^ Cx)dx 

(4.3.5) 
dt 12 , , . 

“‘Pla-rTT J«i(x)dx 

and 

y(x) = yCt) . 

Note that we are taking the constant of integration, that stems 

from integrating a^^ (x) with respect to x , to be zero. 

2 
The T exp a^ (x)dx 

(4.3.6) 

where 

(4.3.7) 

Ir^l 
jj;i 

transform of equation (4.3.1) is 

(m) 
(bp(t) = 1) , 

(k)Vk‘='> 

Each t>]^Ct) is a function of the a^(x)'s and their derivatives 

with respect to x , hence in the notation of definition (1.4.4) 

we can write 

(4.3.8) b^Ct) = 

Idx 
r 

(n+l)x(n+l) 
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To be done we need to show for k = 0,1,...,n , tha^t for all 

has the same X e [a, b] the function 

'(n+l)x(n+l) 

value as the same function formed from the coefficients of any 

arbitrary equation which is T equivalent to equation (4.3.1). 

Let u(x) be an arbitrary non-vanishing function on [a, b] 

ri""l 
such that u(x) e C [a, b] . The T(u(x)) transform, defined by 

dT 
dx = u(x) 

and 

of equation (4.3.1) is 

y(x) = Z(T) ^ 

(4.3.9) 
I (ml 

(m) 
= 0 , 

m=0 

(CQ(T) = 1) , 

where 

(4.3.10) c (T) 
n-m = 

.-1 

(u(x))^j [ k U(X)), m=0,l,...,n 

The coefficients equation (4.3.9) represent the coefficients 

of any arbitrary equation that is T equivalent to equation (4.3.1). 

To complete the proof we need to show that for all x e [a, b] 

(4.3.11) B, —^ a. (X) = B. 
^ d^ 

r c.(T) 

(n+l)x (n+l)i 
dT 

1 3 
(n+l)x(n+l), 

k = 0,1,...,n , 

where ~ = u(x) and the function B, 
dx 

(4.3,7) and (4.3.8). 

is defined by equations 
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Note that derivatives and integrations are taken with respect 

to the independent variable of the function in question. Clearly 

the B, I I—^ c.(T)1 I's are just the coefficients of the 

/ I ' '(nfl)xcn+l)| 
T| exp| ^ ^ I c^ C'r)dTj j transform of equation (4.3.9). Letting the 

defining equations of this transform be 

ds 

dx 
Cj (T)dTj 

and 

Z(T) = Z(S) , 

we find that the transform of equation 

(4.3.9) is given by 

n 

C4.3.12) I ("1 d (s) (i'ts)) = 0 , 

I™I ® 
(dg(s) = 1) , 

where 

(4.3.13) d 
n-m 

(s) (T)dT 

(T)dT ll 
(T) 

for m = 0,... ,n . 

Note that we are taking the constant of integration, that stems 

from integrating CJ^(T) with respect to T , to be zero. It is 

important that this constant of integration be taken to be zero since 

we took the constant of integration when integrating a^(x) with 

respect to x to be zero. By equations (4.3,10), (2.4.3) and (2.4.4) 

we have that 
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a. (x) . 

OjU) = Cu(x))”2(u(x)). 

clx 
Recalling that u (x) we integrate (T) with respect to T , 

taking the constant of integration to be zero, to obtain 

(4,3,14) C^(T)dT = c^ (T)U (x)dx 

aj^(x)dx + £n (u (x)) 

By equations (4.3,7)> (4.3.8) and (4.3*13) we have as expected 

that 

(4.3.15) Bj|^o.CT)j 

^(n+l)x(n+l) 

To show that the required identity (4.3.11) 

show that for all x e [a, b] 

(s) , k — 0,1,..*,n , 

is true, it suffices to 

bj^ (t) — dj^ (s) 'f k— 0,l,...,n, 

(see equations (4.3.8) and (4.3.15)). That is, to be finished we 

need only show that the differential equations (4.3.6) and (4.3.12) 

are the same. First we show that they have the same linearly 

independent solutions. 

Recall that y(x) = y(t) , hence the n linearly independent 

solutions of equation (4.3.6) are related to those of equation (4.3.1) 

by 

f • • • f C4.3.16) = YiCx) i = 1, n . 
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We also have that y (x) = z(x) and ZCT) = ^CS) / hence we have 

that yCx) = FCs) . That is, the n linearly independent solutions 

of equation C4.3.12) are related to those of equation (4.3.1) by 

= y^(x) , i = l,...,n . 

Comparing this equation with equation (4.3.16) we see that the 

differential equations (4.3.6) and (4.3.12) have the same n 

linearly independent solutions. 

We now show that the independent variables t and s , of 

ds 
equations (4.3.6) and (4.3.12) respectively, are related by — = 1 

Since ~ = u(x) and ^ = exp I-—~— c , (T)dTl we can use 
dx dx ll-njl / 

equation (4.3.14) to obtain 

ds _ d^ 

dx dx dx 
= u (x) exp (r^ 1=1 
= u(x)exp ^ ^ ^ a^ (x)dx + ^ ~ ^ ^ 

That is, 

(4.3.17) 
ds 

dx 
= exp 

Comparing equation (4.3.17) with equation (4.3.5), that is 

dt 

dx 
= exp (r^ ' 
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ds 
we have that -TT" = 1 » which is what we wanted to show, 

at 

We now show that the differential equations (4.3.6) and (4.3.12) 

ds 
are the same. Since = 1 , we have that 

dt 

. k , k ' 
ds dt 

k = 0,1/...,n . 

Using the relation 
ds^ dt 

j- we can subtract equation (4.3.12) 

from equation C4.3.6) obtaining 

n-1 

I 
m=0 

n-1 m 

I ™ - d (s) -^z(x) = 0 , 

where we have let z (x) be the dependent variable of both the 

differential equations (4.3.6) and (4.3.12). Since equations (4.3.6) 

and (4.3.12) have the same n linearly independent solutions, call 

them z^(x) , i = l,...,n , it is obvious that the differential 

equation (4.3.18) has the n linearly independent solutions 

Zj^(x) , i = l,...,n , for all x e [a, b] . Equation (4.3.18) can 

have at most n-1 linearly independent solutions for x e [a, b] 

since it is of order at most n - 1 . We have a contradiction 

unless equation (4.3.18) has t*j^Ct) = dj^(s) , k = 1,.. . ,n , for 

X e [a, bj . That is, recalling that t>Q (t) = = i » have 

for all X e [a, b] that 

bj^ (t (x)) = dj^(s (T (x))) , k = 0,l,...,n . 

Q.E.D. 
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Note that we can also prove Theorem (4.3.1) by directly showing 

that for all x e [a, bj 

b (t(x)) = d (S(T(X))) , m = 0,l,...,n . 
n—m n—m 

Let m be an arbitrary integer such that 0 ^ m n . We 

must show that for x e [a, b] 

• (l)|k, m; expj - ^ - ja^ (x)dxj | 

• m; exp|- f ^ c^CT)<3Tj| , 

= I 
k==m 

where the C^(T)'S are given by equation (4.3.10). By equation (4.3 

we have that 

c^ (x)dT = a^ (x)dx + — ^ tn u(x) . 

Using this equation and equation (4.3.10) in equation (4.3.19) it 

follows, after easy simplications, that we need to show that 

X (k) Vk‘^>'*’('^' K ) 
= I ^ s (kf m; u ^expbd - n) ^[a^dx] j 

k=m j=k' J ' ' •' ' / 

.14) 
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Letting t be an arbitrary integer such that m ^ Z ^ n , it suffices 

to show that the coefficients of a n(x) of each side of this equation 
n—t 

are equal. That is, it suffices to show that 

a^dx 

n 

(plZ, m; exp( 2 Cl - n) ^ 

k, m; u ^exp[2Cl - n) ^ = I <l>CZr k; uCx))<j>_ 
k=m 

a^dx 

By equation (2.2.5) (P (Z, k; u(x)) = 0 for k > ^ , hence the index 

of summation in the right hand side of this ecjuation can be stopped 

at k = Z , Similarily 4>, 
-1 -1 

a^^dx = 0 for k, m; u expj2(l - n) 

I 
k < m , hence the same index of summation can be started at k = 0 . 

Thus we must show that 

<\>\Zf m; exp 
1 - n 

a^dx 

a^dx = y k; u(x))iji k, m; u 'expl-—-2  
k=0 U - n J 

This equation follows immediately from equation (2.5.3) with ^ 

aidx) 

hence we are done. 

Note that the coefficients f given by equation (4.3.7), 

do contain integrations. It is the presence of these integrations 

that prevents us from proving a result analogous to Theorems (4.2.2) 

and (1.4.2). This is the case since the integral of a non-zero 

constant is not a constant. 

u(x)g(h(x)) = exp 
1 - n, 

a^dx t = T and g(t) = 
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We now prove Theorem C3.4.1), for the case n = 2 , in a 

manner similar to what Peyovitch [34j did. 

Theorem (4.3.2). Let 

2 

C4.3.20) I ' 

be a second order linear differential equation such that a^^ (x) and 

a^, (x) are non-vanishing on [a, b] . There exists a TCu(x)) trans- 

form of equation (4.3.20) that is a constant coefficient differential 

equation of the form 

C4.3.21) I j^l = 0 ^ = 1) / 

k=0 dT 

if and only if 

(4.3.22) (a^(x))^^^ + 4a^(x)a^(x) + y = 0 , 

where y is some constant. Moreover if the condition given by 

l/o 
equation (4.3.22) holds, then u(x) can be taken to be (a2(x)) ^ . 

Proof; First we show the necessity. Suppose that there exists 

a T(u(x)) transform of equation (4.3.20) that is a constant coefficient 

differential equation of the form of equation (4.3.21). Thus we are 

supposing that there exists>a u(x) such that the constant coefficients 

of equation (4.3.21) are given by 

(^•3-23) =2-m = IkK-k (x)(j)(k, m; u(x)) m = 0,1,2 . 



-111- 

By Theorem (4.3.1) the Tlexpj-2|a^(x)dxj transform of equation 

(4.3.20), defined by exp|-2 a^ (x)dx| and y(x) = ^(t) , is 

a semi-oanonical T transform of equation (4.3.20). It is given 

by 

2 

I 
m=0 

where 

k=m 

m= 0,1,2. As usual we are taking the constant of integration, 

that stems from integrating a^ (x) , to be zero. 

We now find the T 

(4.3.24) I (^) Vm^^^ ° ' 

(4.3.25) ^ | (m | | 

expj-2 c^dTj 1 transform of equation (4.3.21), 

defined by 

(4.3.26) 
ds , _ 
— = expl-2 c^dx 

and 

z (T ) = z Cs) . 

As usual we take the constant of integration, that stems from 

integrating r to be zero. That is, the constant of integration 

is taken to be zero since we took the constant of integration when 

integrating a^^ (x) to be zero. Since c^ is a constant by hypothesis, 

we have that 

► 

Cidx = C^T , 

hence equation (4.3.26) is 
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C4.3.27) 
<^S A ^ V 

— = expC-2CjT) . 

The T|exp|-2 

is given by 

CjdT = T expj-2CjT| transform of equation (4.3,21) 

(4.3.28) I (k) "^2-k^®^ 
(k) 

= 0 , 
k=0 

CdQ(s) = 1) , 

where 

(4.3.29) d- Cs) 
2—m 

m = 0,1,2 . From Theorem (4.3.1) (see its proof) it is obvious 

that 

(4.3.30) ^ "" 0,1,2 , 

and 

(4.3.31) If- = 1 • 
dt 

We have shown that the equations (4.3.30) give necessary con- 

ditions that there exists a constant coefficient differential equation 

that is T equivalent to equation (4.3.20). We now use these 

conditions to derive the condition (4.3.22). 

By equations (4.3.25), (4.3.29), (4.3.30), (2.4.3), (2.4.4) 

and (2.4.5) we have that 
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(t) = Cs) =1 , 

(t) = Cs) = 0 

and 

(4.3.32) 
~ 

(x)exp|4 a^ (x)dx (s) - c^exp(4c^T) 

The first two of these conditions, given by equations (4.3.30), are 

independent of the coefficients a^(x) of equation (4.3.20). That 

is, only the equation b2(t) = d^(s) can be used to find a condition, 

on the aj^(x)'s of equation (4.3.20), that must be satisfied if there 

is to be a constant coefficient differential equation that is a 

T(u(x)) trcoisform of equation (4.3.20). By equation (4.3.32) the 

equation b2(t) = d^(s) is 

(4.3.33) (x)dx = c^exp(4c^T) . 

We now use equation (4.3^33) to derive the condition (4.3.22). 

Integrating equation (4.3.27) we find that 

s (“2c^) exp (-2C^T) + C , 

where C is a constant. It follows that 

.-1 

expC4CjT) = j 4c^ (s - C)^j ' 

Hence eq[uation (4.3.33) becomes 

a2 (x)exp|4ja^ (x)dxj = 
2 2 * 

4c^ (s - C) 
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That is 

C4.3.34) (x)exp[4 (x)dx I = 

(a + 3s) 

where A, a, and 3 are constants. 

ds 
By equation (4.3.31) -rr = 1 1 hence we can differentiate 

dt 

the left side of equation (4.3.34) with respect to t , and at the 

same time differentiate its right side with respect to s , to 

obtain 

dx d 

dt dx 

d 

ds 
I2 (x)exp|4 a^ (x)dx| 

Since ^ = exp|-2 a^(x)dx| , we obtain that 

(4.3.35) exp je a^(x)dx )[^^i (x)a2(x) + (a^(x)) 

(ot + 3s) 

'■’] ■ ■ 2A3(a + 3s) 
-3 

We can now eliminate s between the equations (4.3.34) and (4.3.35) 

to find the condition (4,3.22) that we have been trying to derive. 

From equation (4.3.34) it follows that 

/ . \-3/2 
(a + 3s) 

-3 

a-2 (x) 
exp|6j a^(x)dxj 

-3 
Substituting this expression for (a + 3s) into equation (4.3.35) 

it follows that s has been eliminated and 

(1) -1/2 3/2 
4a^(x)a^(x) + (a^ (x)) = -2A 3(a2(x)) , 

which is 
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(4.3.36) (a Cx)) + 4a (x)a (x) + y Ca (x)) = 0 , 
2 12 2 

where 

Y = 2A ^3 . 

Equation (4.3.36) gives the condition (4.3.22) that we have been 

trying to derive, hence the necessijty_.part of the proof is complete. _ 

We how prove the sufficiency part of the proof. 

Suppose that the condition (4.3.22) holds* Integrating this 

Bernoulli differential equation (4.3.22) gives 

ft r r 
a^ (x) - exp I-4 a^dx||c + ^ exp|-2 a^dx|dx| ' 

where c is a constant. That is, equation (4.3.20) is of the form 

^ + 2a^ (x) ^ + exp|-4 a^dxjj c + ^ exp|-2 a^dxjdx 

dx 

(4.3.37) 
d^y (x) 

2 + 2a^ (x) ^ + expj-4 a^dxjjc + ^ expj-2 a^dxjdxj y (x) = 0 

It is easy to verify that the 

/z l||a2(x)) ” T|expj-2 a^dxjjc + expj-2 a^dxj 

of equation (4.3,37), defined by 

dx transform 

dT I „ 
^ = exp[-2 aj^dxjjc + |exp|-2 a^dxjdx 

and y(x) = Z(T) , is a constant coefficient differential equation 

of the form of equation (4.3.21). The sufficiency is proven and 

moreover if the condition given by equation (4.3.22) holds, we see 

V2 
that the u(x) of the hypothesis can be taken to be (a^(x)) 

Q.E.D. 
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We now compare Theorem (3.4.1) with Theorem (4.3.2). For the 

case n = 2 we consider the conditions of Theorem (3.4.1) that are 

given by equation (3.4.9). Recalling that the u(x) of the hypothesis 

V2 of Theorem (3.4.1) can be taken as (a^(x)) when n = 2 , we 

see that the conditions given by equation (3.4.9) are 

2 

k=m 

m = 0,1 , 

'2-m 

where c^ and c^ are some constants. Using equations (2.4.3), 

(2.4.4) and (2.4.5), recalling that (-j!) = 0 for positive 

integer j , we see that these conditions are 

and 

1 (1) 
a^(x)(a^(x)) +— (a^(x)) (a^(x))^ = . 

The first of these conditions is independent of the aj^(x)'s , hence 

vacuously it always holds. Easily the second condition is 

(a (x))^^^ + 4a (x)a (x) - 4c (a (x)) = 0 , 
2 12 12 

which is the same as the condition given by equation (4.3.22) of 

Theorem (4.3.2) since c-^ and y are just some constants. We have 
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shovm that for the case n = 2 Theorem C3.4.1) can be derived 

from invariance considerations. Theorem (4.3.2) can be generalized 

(see Peyovitch [34]) to find the conditions of Theorem C3.4.1) for 

higher orders. Since Theorem (3.4.1) is just the normarlized form 

of Theorem (1.4.1), we see that Breuer and Gottlieb's [5] conditions, 
t 

for at least the case n = 2 , were obtained previously using ' 

invariance considerations (see also [l7j,“[29]', [32] and [33]). Breuer 

and Gottlieb's direct derivation of these conditions is much simpler 

than the derivation that makes use of invariance arguments. 

(4.4) The Fundamental Relative Invauriant. In this section we 

consider the function V^(a^(x)) that was mentioned in section (1.4) 

The function (a^(x)) , formed from the coefficients a^(x) of 

the differential equation 

n 

is defined by 

(k) 
= 0 , (a^ (x) = 1) , 

(4.4.2) V^(a^(x)) = -(a^(x))^^^ + ^ j(a^ (x)) ^^^ - 2a^ (x) (a^ (x)) ^^ ^) 

- 2jag(x) - 3a^(x)a^(x) + 2(a^(x))^J . 

Let u(x) and v(x) be arbitrary non-vanishing functions on 

[a, b] such that u(x) e ^[a, b] and v(x) e C^[a, b] , where 

n is the order of the differential equation (4-4.1) (we are assuming 

that n ^3). The P(u(x), v(x)) transform of (4.4.1), defined by 
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|^= uCx) and y(x) = v(x)z(t) , is 

n 
(4.4.3) 

k=0 

where 

_ n-s n-s-k _ 
(4.4.4) b (t) = (n-s)!(u%) J ^ (k! j! (n-k-j) 1) a, (x)s! 

k=0 3=0 

(j) (n-k-j , s; u (x)) (v (x)) Cj) 

and ^ is defined by equation (1.3.7). 

Using equations (2.4.3) to (2.4.6), and equation (4.4.4) we 

find that 

b^ (t) = u^a^ (x) + (2u^) (n-l)u^^^ + (uv) , 

b^ (t) = u ^a^ (x) + u ^ (n-2)a^ (x)u ^ + (4u**) (n-2) (n-3) (u ^^ ^ ) 

+ (3u^) (n-2)u^^^ + (u^v) 2aj^(x)v^^^ + (u^v) 

+ (u^v) ^ (n-2)u^^^v^l^ , 

and 

b (t) = u ^a (x) + (2u*^) 3(n-3)a (x)u^^^ + (4u^) 3(n-3)(n-4)a (x)(U^^^) 
3 3 2 1 

+ u ^ (n-3)a^(x)u+ (4u^) (n-3)u^^^ + (2u^) (n-3) (n-4)u^u 

+ (8u^) (n-3) (n-4)(n-5) (u^^^) + (u^v) 3a2(x)v^^^ 

5 (1) (1) ^ 4 (2) (1) 
+ (4u^v) (n-3) (n-4)3v^ (u ^ V) + (u v) (n-3)u^ '' 

+ (u v) 3a^(x)v' + (2u v) 3(n-3)u^ 

+ (u^v) + iu\) 3 (n-3)a^ (x)u^^^v^^^ . 
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We now form the same function of these b^Ct)'s that V^Ca^Cx)) is 

of the aj|^(x)'s , that is 

(4.4.5) V3(b^(t)) = -(bj(t))^^’ + ajcb^Ct))^^^ - 2bj (t) (bj 

+ (-2)[b3(t) - 3bj(t)b2Ct) + 2(b3(t)>*) . 

Recalling that ^ = u(x) we see that _ 

d _ 6^ _ -1 
dt dt dx dx 

and 

-2 d (1) -3 d 
u —7 - u u — 

, 2 dx dx 

Using these formulas in equation (4.4.5) we find that 

V.(b.(t)) 
3 2. 

(u (x)) (a^(x)) . 

That is, we have proven the following lemma which was originally 

published by Laguerre [25] for only the case n = 3 . 

Lemma (4.4.1). Let 

V (a. (x)) = -a^^^ + 3 (a^^^ - 2a a^^^) - 2 (a - 3a a + 2a^) 
3 1 1 2 11 3 12 1 

be a function of the aj^(x)'s of equation (4.4.1). Let 

n 

I 
k=0 

(k) 

1 (k) =°' 
(bQ(t) = 1) , 
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be the P(uCx), v(x)) transform of equation (4.4.1), where u(x) 

and v(x) are arbitrary non-vanishing functions on [a, b] such 

y- 1 

that u(x) £ C [a, b] and v(x) e C [a, b] . The function 

(a^(x)) is related to the function V^Cb^Ct)) , which is given 

by equation (4.4.5), by 

C4.4.6) V^(b^(t)) = (u(x)) ^V^(a^(x)) . 

Lemma (4.4.1) guarantees that V^(b^(t(x))) is non-vanishing 

for X £ [a, b] if (a^^ (x)) is non-vanishing on [a, b] . We 

have used this fact in Theorem (1.4.2). 

Recalling equation (1,4.12) of definition (1.4.4) we have that 

M is the set of all matrices of the form 

a^ (x) 

(n+l)x(n+1) 

a^ (x) 

da^(x) 

dx 

We now make the following definition. 

Definition (4.4.1), Let u(x) and v(x) 

vanishing functions on [a, b] such that u(x) 

be arbitrary non- 

£ ^[a, b] and 
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vCx) € G^fa, bj . Let R be a map from M to the set of all complex 

valued functions with domain [a, bJ . Let a^Cx) , j = 0,1,...,n , 

be the coefficients of equation (4.4.1) and let b.(t) , j = 0,1,...,n , 

be the coefficients of the P(u(x), v(x)) transform of equation 

(4.4.1). If there exists an integer j , such that for all x £ [a, b] 

and for all uCx) and v(x) as defined above we have the identity 

idx 
(4.4.7) R|-^aj(x) = (u(x))^R 

(n+l)x(n+1)/ 
dt 

r ‘’j 
(n+1)X(n+1) 

dt 
where — \i{^) , then the function R is called a relative 

dx   

invariant of weight ^ of equation (4.4.1). 

Remeurk. We have that a relative invariant of equation (4.4.1) 

is a function of the coefficients a^(x) of equation (4.4.1) and 

their derivatives with respect to x . This function has the property 

that for all x e [a, bJ it has the same value as the product of 

the Scune function formed from the coefficients of any arbitrary 

equation which is P equivalent to equation (4.4.1), with an integral 

power of u(x) . Recall that u(x) connects the independent variables 

X and t of equations (4.4.1) and (4.4.3) respectively, by 

dt 
— = u(x) . 
dx 

Note that in the left hand side of the identity (4.4.7) the 

derivatives cure with respect to x , while in the right hand side 

they are with respect to t . 
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Definition C4.4.2)♦ A relative invariant of the differential 

equation (4.4.1) is called a fundamental relative invariant if it 

is independent of the order n of equation (4.4.1). 

We formed equation (4.4.3) by letting u(x) and v(x) be 

arbitrary functions, hence the b^(t)'s of equation (4.4.3) 

represent the coefficients of an arbitrary equation which is P 

equivalent to equation (4.4.1). In view of the two definitions just 

given, we see that the function V^(a^(x)) is a fundamental relative 

invariant of weight 3 of equation (4.4.1). 

In lieu of giving the motivation for Lemma (4.4.1) the author 

refers the reader to the works [4] , [6] , [7] , [14] , [15] [18] , [19] , 

[20], [30],<[3l] and [4l], which deal with finding relative inveuriants 

and other related problems. From these works it is evident that it 

is possible, in theory at least, to find n - 3 other relative 

invariants of equation (4.4.1), of weights 4 to n . Call these 

other relative invariants Vj(a^(x)) , j = 4,...,n . By definition 

they have the property that 

Vj(b^(t)) = (u(x)) Vj(a^(x)) , j = 4,...,n , 

where as usual the b^(t)'s are the coefficients of an arbitrary 

P(u(x), v(x)) transform of equation (4.4.1). Note that derivatives 

in Vj (t)) are taken with respect to t , where as usual 

= u(x) . The relative invariants V.(a.(x)) , j = 4,...,n , are 

not fundamental relative invariants, that is they depend on the order 
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of the differential equation 14.4.1). All of the relative invariants 

VjCa^Cx)) , j = 3,..*,n , of a given differential equation (4.4.1) 

of order n ^ 3 , are independent in the sense that if one of them 

is identically zero, this does not necessarily mean that any of 

the others are also identically zero. As we will see in the next 

chapter the relative invariants (a^^ (x)) , j = 3,...,n , are 

- important"since they can be'used to define canonical transforms of 

equation (4.4.1). 
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Chapter 5 

Canonical Transformations 

(5.1) Introduction. By definition (1.4.6), any differential 

equation P equivalent to 

n k 

(5.1.1) I (k) ° ' (aQ (x) = 1) , 
k=0 ' * dx 

that has the property that each of its coefficients is an absolute 

invariant of equation (5.1,1), is called a canonical transform of 

equation (5.1.1). 

In section (5.2) we find a canonical transform of equation 

(5.1.1) . This canonical transform is defined in terms of the 

fundamental relative invariant V2(a^(x)) , which we saw in section 

(4.4). In section (5.3) we find other canonical transforms of 

equation (5.1.1), that are defined in terras of the relative invariants 

Vj(a^(x)) , j = 4,...,n . The canonical transforms we give were first 

studied by Halphen [19]. 

In section (5.4) we prove the following theorem. 

Let 

V^Ca^(x)) = -(a^(x))^^^ + 3[(a^(x))^^^ - 2a^ (x) (a^ (x)) ^^ ^) 

- 2ja^(x) - 3a^(x)a^(x) + 2(a^(x)) j 

be a function of the a^(x)'s of 

3 

15.1.2) I 1^1 a, , (X) (y(x)) = 0 , (a. (x) S 1) . 
k=0 ^ 
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If V^Ca^Cx)) =0 on [a, bj then the general solution of equation 

(5.1.2) is 

yCx ) = exp - a^ (x)dx][c (x)] + c J(C(X)) 

-2 

dx + c 

where ' ^2 ^3 arbitrary non-zero constants and ? (x) 

is any non-trivial solution of 

j ^ (x) j + |- [ (x) - (a^ (x) - (a^ (x)) ^ (x) = 0 * 

In section (5.5) we give explicit expressions for some of the 

eibsolute invariants of equation (5.1.1) . 

(5.2) The Fundamental Canonical Transform. Recall that the 

Ptvi(x) , v(x) ) transform of 

n k 

(5.2.1) I Ik) ^ ° ' (a^ (x) E 1) , 

k=0 ^ ^ “ dx 

is 

(5.2.2) j ("j b (t) ^z(t) = 0 
k=0 ' * dt' 

(bg(t) E 1) , 

where 

(5.2.3) 

n-Z n-£-k a (x)£l .. 

b^_£(t) = (u"v) (n-£)! iu j'lTn-Y-j7V v 

for £ = 0,1,...,n . 

We now prove the following theorem that has already been referred 

to in section (1.4). The proof is similar to that of Theorems (4.2.1) 

and (4.3.1). In the proof we will as usual use the notation that 
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subscripting by a variable indicates the variable that differentiation 

is with respect to, if it is other than x . For example (})^ indicates 

that derivatives in Faa de Bruno's Formula, given by equation (1.3.7), 

are to be taken with respect to T rather than x . The theorem says 
1/3 , 1-n 

that the P ( ('^3 ‘"i (x))C 
-1 

exp - (x)dxj| (a^(x) j ^ trans- 

form of equation (5.2.1) is a canonical transform of equation (5.2.1), 

where Ca^(x)) is the fundamental relative invariant we saw in 

section (4.4) and C is an arbitrary non-zero constant. Before 

proving the theorem we again make a comment about constants of 

integration. If, for example, a^^ (x) = x then the 

p|(v Ca. (x))C , exp(- a (x)dxl(v (a. (x))C ^ I = 
\ _ 1/3 I /\ 3 0. ^ / 

PUV3(aiCx))C , expj- x dxj j (a^ (x) )C ^ j X dx 

equation (5.2.1) is defined by 

transform of 

|t={v3(a.Cx))C 

and 

1-n 

y(x) = exp|- X dxjjV3(a^(x))C ^ z(t) 

1-n 

= expj- ^— cj j V3 (a^ (x) )C ^ z(t) , 

where c is a constant of integration. We always take the constant 

of integration c , that stems from integrating a^^ (x) with respect 

to X , to be zero. That is, in the above example we have 
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y(x) = exp (x))C 
-I 

1-n 

z (t) 

Taking the constant of integration to be zero results in no loss of 

generality since we are only interested in finding one particular 

canonical transform. 

Theorem (5.2.1). Let the order of equation (5.2*1) be 3 or 

greater. Assume that the function 

Vjtaj^Cx)) = + 3(a^^’ - 2ajaj^’) - 2(a^ - 3a^a^ + 2a^) 

is non-vanishing on [a, b] . Moreover let C be an arbitrary 

non-zero constant. Under these assumptions the 

p| jvg (a^Cx) )C , expj- a^ (x)dxj| (a^ (x) )C 

1-n I transform 

of equation C5.2.1) is a canonical transform of equation (5.2.1), 

Proof; The defining equations of the 

/ ^^3 r l~u \ 
j[v3(ai(x))C , exp|-ja^ (x)dxj jvg (a^ (x) )C ^ | transform of 

equation (5.2.1) are 

(v3(a,(K))C-l) 

.1,1/3 

and 

1-n 

(5.2.4) y(x) = exp|- a^ (x)dxj (a^ (x) )C ^ y(t) . 

Note that we are taking the constant of integration, that stems 

from integrating a^^ (x) with respect to x , to be zero. 
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I \ ^/3 r \ 1 

MV3 (a± (x) )C ^, exp|- Cx)dxjjv Ca£(x))C^| ^ j The Pj 

transform of equation (5.2.1) is 

(5.2.5) 

where 

I |k) = ° ’ ' 
k=0 

-1-n 

(5.2.6) ^ exp||a^ (x)dx j jv^ (a^ (x) )C ^ (n--^) ! 

n-£ n—£.-k a, (x)-Cl 

I I ^ 
k=0 j=0 

k!j!(n-k-j)! 
n-k-j,-t; jv2(a^(x))C j 

(j) 

-n^/3 

• I exp |- a^ (x)dxjj (a^ (x) )C ^ 

1-n 

for Z = 0,1,...,n . Each ^ function of the a^(x)'s 

and their derivatives with respect to x , hence in the hdtation 

of definition (1.4.4) we can write 

(5.2.7) bj^(t) = BJ a^(x) 

(n+1) X (n+l)i 

k 0,1,...,n 

To be done we need to show for k = 0,1,...,h , that for all 

has the same 
I I d^ X £ [a, b] the function B I I a. (x) 
' dx^ 3 • (n+l)x(n+l), 

value as the same function formed from the coefficients of any 

arbitrary equation which is P equivalent to equation (5.2.1). 

Let u(x) and v(x) be arbitrary noni-vanishing functions on 

[a, bj such that u(x) £ ^[a, b] and v(x) £ C^[a, b] . The 

P(u(x), v(x)) transform, defined by 
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and 

dx 

dx 
uCx) 

y(x) = V(X)Z(T) , 

of equation C5.2.1) is 

-11 

(5.2.8) I 

k=0 

where 

^ (k) Vk'"> °' 

(5.2.9) c „(T) = (u"v) *(n-£)! I I 
'n~Z 

n-Z n-Z-Vi a (x)£l .. 
(j) (n-k-j ,£;u) V ^ , 

k=0 j=0 
k!j! (n-k-j)! 

for Z = 0,1,...,n . The coefficients c />(x) of equation (5.2.8) 
n—t 

represent the coefficients of any arbitrary equation that is P 

equivalent to equation (5.2.1). To complete the proof we need to 

show that for all x e [a, b] 

C5.2.10) B, 
idx 

(n+l)x (n+l)j 
Idx 

(n+l)x(n+1)/ 

k — 0,1,...,n ,- 

dx 
where = u(x) and the function is defined by equations 

(5.2.7) and (5.2.6). Note that derivatives and integrations are 

taken with respect to the ind^endent variable of the function in 

d^ ,1 
—T (x) question. Clearly the B 

Idx 1 J (n+1)X(n+1) 
's are just the 
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_a,V3 

transform of equation (5.2.8), where 

coefficients of the p| |v^ Cc^ CT))C ^ ) , exp|-jc^ CT)dx j^jv^ (c^ (T) )C 

1-n 

VJCO^CT)) = -(Cj(T))^^’ + 3[cC2tT))^*’ - 2Cj CT) (O^ (X)) 

- 2|CJ(T) - ac^Cxjc^Cx) + 2(Cj(x))^j . 

Letting the defining equations of this transform be 

ds ( , , 57= V3(0.(x))c 

and 

Z(T) = exp - ■ ^ <”^)dxjjv^ (c^ CT) )c”^j 

1-n 
6 , 

z (s) , 

^/3 
we find that the p|| (c^ Cx)) C , exp j- c^ (x)dx j jv^ Cc^ (x) )C 

transform of equation (5.2.8) is given by 

1-n 
6 

n 
C5.2.11) 

where 

J (k) = ° ' (d„(s).i), 
k=0 ds 

-1-n 

C5.2.12) d^_^Cs) = exp||c^ (T)dxj|v^ (C^(T) )C ^ (n-£) I 

n-£ n-£-k c, (x)£! 

I I 
k=0 j=0 

k!j!(n-k-j) ! 

(j)^|n-k-j, t} [v^(c^(x))c II exp|- c^ (x)dx| j (c^(x) )c 

1-n 

-11 6 

(j) 

for t = 0,1,...,n . 
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Note that we are taking the constant of integration, that stems 

from integrating ) with respect to T , to be zero. It is 

important that this constant of integration be taken to be zero 

since we took the constant of integration when integrating a^ (x) 

to be zero. By equations (5.2.9), (2.4.3) and (2.4.4) we have that 

cl (x ^ 

Oj (T) = 2jicu(x))r^ CuCx) )+ (u(x)v(x) )"^ (v(x)) 

Recalling that = u(x) we integrate c^^ CT ) with respect to T , 

taking the constant of integration to be zero, to obtain 

C5.2.13) c CT)dx = 
J 1 

Cj^ (T )U (x)dx 

n-1 
a^ (x)dx + ——Zn u(x) + £n v(x) 

By equations (5.2.6), C5.2,7) and (5.2.12) we have as expected 

that 

(5.2.14) B, (T) — dj^(s) , k — 0,l,...,n . 

(n+l)x(n+1) 

To show that the required identity (5.2.10) is true, it suffices to 

show that for all x e [a, b] 

bj^(t) = dj^Cs) , k = 0,1,...,n , 

(see equations (5.2.7) and C5.2.14)). That is, to be done we need 

only show that the differential equations (5.2.5) and (5.2.11) are 

the same. First we show that they have the same linearly independent 

solutions. 
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By equation (5.2.4) the n linearly independent solutions 

Yj Ct) , j = l,...,n , of equation (5.2.5) are related to the n 

linearly independent solutions yj (x) , j = l,...,n , of equation 

(5.2.1) by 

(5.2.15) yj(t) = expl j a^ (x)dxj|v^ (a^ (x) )C 

n-1 

yj(x) , j=l,...,n 

We also have that y(x) = V(X)Z(T) and 
. 1-n 

c, (T)dT'" ' ' . . ^ - 1 V3 (C^(T))C z (T ) = exp |- 

(5.2.16) 

From equation (5.2.13) it follows that 

^ z (s) , hence 

(s) = (v(x)) ^expj (T)dTj| V3 (C^(T) )C ^y(x) . 

n-1 

(5.2.17) exp I (T)dT| = exp||a^ (x)dx| (u(x)) ^ v(x) . 

In section (4.4) we saw that V^(a^(x)) is related to (c^(x)) 

by 

(5.2.18) V^(C^(T)) = (u(x)) ^V^(a^(x)) . 

Using equations (5.2.17) and (5.2,18) in equation (5.2,16) we obtain 

z (s) (a^ (x) )C 

n-1 
6 

y(x) . 

It follows that the n linearly independent solutions (s) , 

j = l,...,n , of equation (5.2.11) are relate to the n linearly 

independent solutions Yj(x) , j = l,...,n , of equation (5.2.1) by 
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Zj Cs) = expj tx)dxj| (a^(x) )C 
-1 

n-1 

Yj(x) . j=l, ,n 

Comparing this equation with equation (5*2.15) we see that the 

differential equations (5.2.5) and (5.2.11) have the same n linearly 

independent solutions. 

We now show that the independent variables t and s , of 

ds 
equations C5.2.5) and C5.2.11) respectively, are related by = 1 . 

dc I 
Since we can use equation (5.2.18) and 

dx 
dx 

= u (x) to obtain that 

ds _ dx_ ds 
dx dx dT 

= u (x)j (a^ (x) )C ^(u(x)) ^ 
1/3 

= lv^(a^(x))C 
_l\l/3 

That is 

11= V3(a.(x))C-^ 
1/3 

Comparing this equation with 
dt 
dx 

ds 
dt 

Vg(a^(x))C “1 
1/3 

, we see that 

= 1 , which is what we wanted to show. 

Using exactly the same argument that we used in Theorem (4.3.1) 

We have for all x e [a, b] that 

bj^CtCx)) = dj^(s(T(x))) , k 0,1,...,n . 

Q.E.D. 
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Note that in a manner analogous to the direct proofs of Theorems 

(4.2.1) and (4.3.1) (see the remaxks following those theorems), it 

is possible to prove Theorem (5.2.1) directly. This alternate proof, 

which makes use of the convolution Theorems (2.5.1) and (2.5.2), is 

extremely lengthy and it is omitted. 

Halphen [19] omitted entirely his proof of Theorem (5.2.1), 

saying only that it was obvious. 

Remark. The canonical transform, given by equation (5.2.5), of 

equation (5.2.1) depends on the fundamental relative invariant 

V3 (a^(x)) , hence it is referred to as the fundamental canonical 

transform. 

C5.3) Other Canonical Transforms. We now assume that we can 

find, besides V3(a^(x)) , the n - 3 other relative invariants 

Vj(ai(x)) , j = 4,...,n , of equation (5.2.1). These functions 

have the property that 

Vj(c^(T)) = (u(x)) ^ Vj(a^(x)) , 

where 
dT 
dx 

arbitrary 

derivatives 

dT 
— = u(x) . 
dx 

u (x) and the 

P(u(x) , v(x)) 

in Vj(cj_(T)) 

c. (T)'S are the coefficients of an 
1 

transform of equation (5.2.1). Note that 

are taken with respect to x , where 
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We have the following theorem. 

Theorem (5.3.1). Let the order n of equation t5.2.1) be 3 

or greater. Assume that Vj(a^(x)) is the first non-vanishing 

relative invariant of equation (5.2.1) on [a, b] where 3 3 < n 

Moreover let C be any non-zero constant. Under these assumptions 

_i //j • 
the PMV (a^Cx))C exp - a^-(x)dx )(v.(ai (x))e -1 2j transform 

of ecjuation (5.2.1) is a canonical transform of equation (5,2.1). 

Proof; The proof follows exactly that of Theorem (5.2.1) . 

Q.E.D, 

Remark. The case j = 3 of Theorem C5.3.1) is precisely 

Theorem C5.2.1). 

Theorem C5.3.2). Let the order n of equation (5.2.1) be 

3 or greater. Assume that V. (a. (x)) is the first non-vanishing 
J ^ 

relative invariant of equation (5.2.1) on [a, b] , where 3 ^ j ^ n 

Moreover let C be an arbitrary non-zero constant. Under these 

assumptions there exists a constant coefficient differential equation 

of the form 

C5.3.1) I (;:) V k=0 

z(t) =0 , 

that is P equivalent to equation (5.2.1), if and only if the 

Vi r 1-n 
(x))C-')^ l(Vj(ai(x))C , exp|- a^ (x)dxj [ (a^ transform of 

equation (5.2.1) is a constant coefficient differential equation of 

the form of equation (5.3.1). 



-136- 

Proof ; Since the P jVj(a^Cx))C , expj- (x)dxj | (a^ (x) )C 

1-n 
-IV 2j 

transform of equation C5.2.1) is a canonical transform of equation 

(5.2.1) the proof follows that of Theorem (1.4.2). 

Q.E.D. 

Remark. The case j - 3 of Theorem (5.3.2) is precisely 

Theorem (1.4.2). 

For an example consider the nth order Euler differential 

equation 

,k 
/n \ K-n c 
I k 1 ^ 

k=0 
C5.3.2) 

n \ k-n d , . 
- 1 X —^ y (x) = 0 

dx 

For this differential equation a^(x) = x 
-1 

V^(a^(x)) = -2x 
-3 

hence we find that 

That is, V^(a^(x)) of equation (5.3.2) is 

non-vanishing for any real interval [a, b] , however the singularity 

X = 0 of V^Ca^^(x)) requires that we only consider intervals that 

exclude x = 0 , Letting the arbitrary constant in Theorem (5.3.2) 

I -1 C = -2 , we find that I(a^(x))(-2) 

1/3 

be = X and 

exp (- a^ Cx)dxj| (a^ (x)) (-2) = exp(--£.n x)x = 1 . Hence by 

Theorem (5.3.2) there exists a constant coefficient differential 

equation that is P equivalent to equation (5.3.2), if and only if 

the P(x 1) transform of equation (5.3.2) is a constant coefficient 

differential equation. The defining equations of this transform are 

dt 1 
— = — and y(x) = z (t) , from which t = -tn x . It is well known 

that the transform defined by letting t = Zn x takes Euler differential 

equations to constant coefficient differential equations. 
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Theorem C5.3.2) suggests a method of handling the exceptional 

case of Theorem Cl.4.2) where V^(aj|^(x)) = 0 on [a, b] and 

to define a canonical transform of equation C5.2.1). We may however 

be able to find another canonical transform of equation C5.2.1) such 

that if equation (5.2.1) is P equivalent to a constant coefficient 

differential equation, then this canonical transfo^ of_equation 

(5.2.1) will be a constant coefficient differential equation. By 

Theorem C5.3.2) we see that we can determine such a canonical 

transform if we can find a relative invariant VjCaj^(x)) , 4 < j < n , 

such that VjCa^Cx)) does not vanish on [a, b] , As mentioned in 

section C4.4) reference material concerning the problem of finding 

these VjCa^Cx))'s can be found in [4], [6], [7], [14], [15], [18] > 

[19], [20], [30], [31] and [41]. 

C5.4) The Third Order Exceptional Case. In this section we 

consider the third order exceptional case to Theorem's (1.4.2) and 

(5.3,2). That is, we consider the differential equation 

n > 3 . When V (a.(x)) = 0 on [a, b] we cannot use V (a^(x)) 
3 3 

(k) 
(5.4.1) 

k=0 

&3-k(x) (y (x)) (a^(x) =: 1) 

where V (a, (x)) = 0 on 
3 1 

[a, b] . 

0 
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Theorem C5.4.1). Let a^(x) , i = 0,1,2,3 , be the coefficients 

of equation C5.4.1) and let c^ , c^ and c^ be arbitrary non-zero 

constants. If the function 

(5.4.2) V (a.(x)) = -Ca (x))‘^’ + 3 [ (a (x))^ - 2a (x) (a (x)) 
3 ^ 1 12 11' 

- 2ja^ (x) - 3a^(x)a^Cx) + 2Ca^Cx))^j 

is identically zero on [a, bj , then the general solution of equation 

C5.4.1) is 

C5.4.3) y Cx) = exp j- a^ Cx)dx j j^ Cx) j ^| + c^ ( ^ ^ ^3 ( ( ^ 

where ?(x) is any non-trivial solution of the differential equation 

C5.4.4) j^Cx)]^^^ + j ja^(x) - (a^(x))^ - (a^ (x)) C (x) = 0 . 

Proof; In section C3.3) we saw that the s|exp|-|a^ (x)dx| | 

transform of equation (5.4.1), defined by 

■ 

yCx) = exp[- a^ (x)dx]yCx) , 

IS 

C5.4.5) I (k) 
k=0 

(k) 
= 0 , (b^Cx) E 1) , 

where 

b^ (x) = 0 , 

b (x) = a (x) - (a (x))^ - (a (x))^^^ 
2 2 1 1 

(5.4.6) 
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and 

(5.4.7) b (x) = a (x) - 3a (x)a (x) + 2 (a Cx))^ - (a (x))*^^^ 
3 3 12 1 1 

if we let t = X and 

• 0 

yCx) = exp[- a^ (x)dxjy(t) = expj- a^ (x)dxj y(x) , 

we see that the S 

the same as the P 

exp I- 

1, exp|- 

a^ (x)dx transform of equation (5.4.1) is 

a^(x)dx|j transform of equation (5.4.1) 

(see Lemma C3.3.1)). Since t = x it follows that — = u(x) = 1 , 
dx 

hence equation (4.4.6) of Lemma (4.4.1) gives that 

V (a. (x)) = (b. (X)) 
31 31 

= -(b +3l(h (x))'^^ - 2b, (X) (b (X)) 
1 '2 11 

- 2|bg(x) - 3b^ (x) ^ (x) + 2 (b^ (x)) ^ j . 

Using the fact that b^^ (x) = 0 , this reduces to 

C5.4.8) VjCa^Cx)) = V (b^(x)) = SCb^Cx))”’ - 2bj (x) . 

Eq[uation (5.4.8) can be verified directly using equations (5.4.2), 

(5.4.6) and (5.4.7). By hypothesis V^(a^(x)) =0 on [a, b] , 

hence equation C5.4.8) gives that 

C5.4.9) 3(b^(x))^^^ - 2b^(x) = 0 , (x e [a, b] ) 
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By the corollary to Theorem (3.7.2) the p||^(x)j , jc(x)j | 

transform of equation (5.4.5), defined by 

(5.4.10) II =1^ 

and 

(5.4.11) y(x) =jc(x)j^ z(t) , 

is 

(5.4.12) (zCt))^^^ - K ^(x)j ®[3(b (X)) - 2bj(x)|z(t) = 0 , 

where ^ Cx) is any solution of 

(5.4.13) [c(x)U^’ +|b^(x)5(x) = 0 , 

that does not vanish on [a, b] . By equation (5.4.9) we see that 

equation (5.4.12) is 

(z(t))^®’ = 0 . 

The general solution of this differential equation is 

2 
(5.4.14) z(t)=c+ct + ct , 

12 3 

where and are arbitrary non-zero constants. Using 

equations (5.4.10), (5.4.11) and (5.4.14) it follows that the general 

solution of equation (5.4.5) is 
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yCx) = |?tx)j^(c^ + c^t + c^t^) 

= (sCx)) I ^ (x) j dx + [^(x)] dxj 

Since y(x) = exp|- (x)dx| ]^(x) it follows that the general 

solution of equation (5.4.1) is given by equation (5.4.3). Using 

equation C5.4.6) we see that equation (5.4.13) is equation (5.4*4) 

Q.E.t). 

Remark. Theorem (5.4.1) was known to Laguerre [25], Brioschi 

(see [6] and [7]), Halphen (see [19] and [20]) and Wilczynski [41] 

It has also been proven independently by Kostenko [24]. 

It can be shown (see [7] and [4lJ) that if all the relative 

invariants Vj(a^(x)) , j = 3,4,...,n , of 

n . . 
C5.4.15) I " a , (X) (y(x))= 0 , (a. (x) = 1) , 

k=0 ' 

are identically zero on [a, b] , then the general solution of 

equation (5.4.15) is 

y (x) exp I- a^ (x)dx j|^(x) 
n-1 

0 

where C(x) is any non-trivial solution of 

K(x) (a, (x))^ - (a, (x)) (x) = 0 

and , i = 1,...,n 0 are arbitrary non-zero constants. 
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We now illustrate Theorem C5.4.1) with an example. Consider 

the differential equation 

3 
(5.4.16) I ^Cy(x)) 

(k) = 0 , Cx e [a, b]) . 
k=0 

For equation (5.4.16) we have that a^Cx) = x , i = 0,1,2,3 . We 

easily find that V (a.(x)) = 0 for x e [a, b] , where [a, b] 
O 

is any real interval. We also have that 

a^ (x) - (a^(x)) - (a^(x))^^^ = -1 . 

By Theorem C5.4.1) the general solution of equation (5.4.16) is 

y (x) = expj- X dx j[ ^ Cx) j j ^ (x) j dx + c^j ( ^(x)) j 
where C Cx) is any non-trivial solution of 

I 5Cx) =0 . 

A non-trivial solution of this equation is 

K Cx) = exp I ^ X 

hence the general solution of equation (5.4.16) is 

2 
yCx) = expj- ^ jexpti^ ^2 x)dx + | exp(-/3 x)dx 

= exp 
2/3 X - X exp(- /J x) exp {-2/3 X 

c + c —^ -7^   +   
1 2 3 3 
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That is, 

C5.4.17) 

where c-^ 

the general solution of equation (5.4.16) is of the form 

2 

y(x) = ,exp|- ^ Ijc^expC/J x) + + c’^ exp C-/J x)j , 

, and are arbitrary non-zero constants. 

Note that the general solution of equation (5.4.16), given by 

equation (5.4.17), could also have been found by applying I’heorem 

(4.2.2) to equation (5.4.16). That is, the 

S jexp 

a constant coefficient differential equation. 

0 

|- a^ (x)dxj = Sjexpl- — 
X 

transform of equation (5.4.16) is 

(5.5) Some Absolute Invariants. Let us assume that C is an 

arbitrary non-zero constant and that the fundamental relative invariant 

(5.5.1) V,(a. (x)) = + 3 (a^ ^ - 2a a^^^) - 2 (a - 3a a + 2a^) , 
31 1 2 11 3121 

of 

n 
(k) 

(5.5.2) I j”j a^_j^(x) (y (x)) = 0 , (a^ (x) = 1) , 

k“0 

is non-vanishing on [a, b] . In section (5.2) we saw that the 

p| [Vs (af (x) )C , exp |- a^ (x)dx j| (a^^ (x) )C ^ j transform of 

equation (5.5.2) is a canonical transform of equation (5.5.2). It 

is given by 

n 

z 
k=0 

(b^(t) = 1) , 
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where 

(5.5.4) ^ (n-s) ll (x) )C ^ exp| ( a^(x)dx) 

n-s n-s-j a.(x)si 

I I ' 
j=0 k=0 

jlk!(n-j-k)I 

(j)ln-j-k, s; V^(a^(x))C jjexpi- (x)dxj Vg(a^ (x))C 

1-n 

-ll 6 

(k) 

s = 0,1/...,n . Recall that t and x are related by 

V3 
C5.5.5) ^ = u(x) = I V (a. (x) )C ^ 

dx 131 

By definition Cl.4.6), of canonical transform, we have that each 

bkCt) given by equation (5.5.4) is an absolute invariant of equation 

(5.5.2). We now give explicit expressions, in terms of the a^(x)'s 

of equation (5.5.2), for the absolute invariants b^^(t) , i = 0,1,2,3 

Making use of equations (5.5.4), (2.4.3) and (2.4.4) we obtain 

(5.5.6) bjj(t) = 1 

and 

(5.5.7) b^ (t) E 0 . 

We have that (t) are constants, hence they are 

trivially absolute invauriants of equation (5.5.2). Using equations 

(5.5.4), (2.4.3), (2.4.4) and (2.4.5) we obtain 
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(5.5.8) b^(t) = (3j^(x))j ®/3) 27[v (a^(x))p( [a - a - 
2 1 

7Cn+l) ((^ tl)\ 3Cn+l) 
Vg (a^Cx))[ Vg (a^U)) ] 

(2 

Recalling that V^(a^Cx)) is a fundamental relative invariant 

of weight 3 Csee equations (4.4.6) and C5.5.5)), we have that 

-3 

V3(b.tt)) = V3.(a.(x))C-V) 
^/3 

V-^(a^(x)) = G , 

where 

v^Cbj^Ct)) = - 2bj Ct) (bj (t)) 

- 2(b3Ct) - 3bj(t)b2(t) + 2(b3(t))^] . 

By the identity t5.5.7) b^(t(x)) = 0 for x e [a, b] , hence 

V^(b^tt)) = 3(b^(t))^^^ - 2b^(t) = C . 

We have that 

baCt) = [c - 3(b^(t))^'>) 
2 

3 H (b^ (t) ) 
(1) 

(c - 3[Va (a^(x))c"^) ^(b3(t))*^^j , 

where we have made use of equation (5.5,5). 
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That is 

(5.5.9) bs tt) C - 3(v (a^(x))c"' 
-1/3 

(b (t)) 
2 

(1) 

where (t) is given by equation (5.5.8). 

Note that although it is much more difficult, we could have 

found equation C5.5.9) directly from equation (5.5.4) on making use 

of equations C2.4.3) to C2.4.6). 

Equations C5.5.8) and (5.5.9) illustrate the complicated structure 

that absolute invariants have. 

Halphen [19] gave the absolute invaricuits b^ (t) and 1^3 (t) 

for the case C = 1 . 
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Chapter 6 

Applications 

(6,1) Introduction. In section (6.2) we find the solutions to 

the differential equation 

,L (k) 

(k) 
= 0 , 

k=0 
(a^ (x) = 1) , 

when it is S equivalent, T equivalent and/or P equivalent to 

a constant coefficient differential equation. Section (6.3) contains 

a detailed look at 3rd order linear differential equations that are 

P equivalent to constant coefficient differential equations, in 

section C6.4) we give some examples of nth order differential equations 

that are P equivalent to constant coefficient differential equations. 

(^^•2) Solutions of Differential Equations that are Equivalent 
to Constant Coefficient Differential Equations. 

We now find the solutions of the differential equation 

n 
C6.2.1) I [”] <y(x))= 0 , (3^^ (x) = 1) , 

k""0 

when it is S equivalent, T equivalent and/or P equivalent to 

constant coefficient differential equations. 

By Theorem (4.2.2), there exists a constant coefficient differential 

equation 

,k 

(6.2.2) I (e . k/ n-k k 
k=0 dx 

y(x) = 0 , (CQ = 1) , 
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that is S equivalent to equation C6.2.1), if and only if the 

S exp|- a^ (x)dx| 1 transform of equation (6.2.1) is a constant 

coefficient differential equation of the form of equation (6.2.2). 

We have the following theorem. 

Theorem (6.2.1) . Let a^^ (x) of equation C6-2.1) be non-vanishing 

on [a, b] . If there exists a constant coefficient differential 

equation that is S equivalent to equation (6.2.1), then the general 

solution of equation (6.2.1) is 

The are the multiplicities of the roots of the charac- 

teristic equation of equation (6.2.2). 

Proof; The theorem follows immediately from Theorem (4.2.2) 

since the solutions y^(x) , i - l,...,n , of equation (6.2.1) are 

related to the solutions » i = l,...,n , of equation (6.2,2) 

by 

Note that if the characteristic equation of equation (6.2.2) has 

1-1 
no multiple roots, then rj^ = 1, k = l,...,n , and the term x 

(6.2.3) 

m 
where / r, = n and the 3 

k=i ^ 
^'s are arbitrary non-zero constants. 

y^(x) = expj- a^ (x)dxj y^ (x) , 

• ► 

= expj- a^^ (x)dx| exp (A^x) i = 1 
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in equation (6.2.3) is unity. We are done. 

By Theorem (3.4.1), there exists a constant coefficient 

differential equation 

Jo (k) ° ' '-0 = 15' 

that is T equivalent to equation (6.2.1), if and only if the 

T |(a^(x)) transform of equation (6.2.1) is a constant coefficient 

differential equation of the form of equation (6.2.4). We have the 

following theorem which was proven in [5] by Breuer and Gottlieb. 

Theorem (6.2.2). Let a^(x) of equation (6.2.1) be non-vanishing 

on [a, b] . If there exists a constant coefficient differential 

eq[uation that is T equivalent to equation (6.2.1), then the general 

solution of equation (6.2.1) is 

r. 
m k . r 1/1 ^“1 if 1 / 

(6.2.5) y(x) = I ^ (a^(x)) ^dx] (a^(x)) ^dxj , 
k~l ”^“1 

m 
where J r^ = n and the arbitrary non-zero constants. 

k=l 
The are the multiplicities of the roots of the characteristic 

equation of equation (6.2.4). 

Proof; The theorem follows immediately from Theorem (3.4.1) 

since the solutions y^^(x) , i = l,...,n , of equation (6.2.1) are 

related to the solution z^(t) , i = l,...,n , of equation (6.2.4) 

by 
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y^Cx) = Zj^Ct) 

= exp (^i") 

= expjx^ (a^Cx)) ^^dxj , i = 1,...,n 

Note that if the characteristic equation of equation (6.2.4) 

has no multiple roots/then r, =1 ,k=l/...,n , and the term 

Vn 
(a^Cx)) dxl in equation (6.2,5) is unity. We are done. 

Let Vj Ca^(x)) be the first non-vanishing relative invariant 

of equation (6.2.1) on [a, b] , where 3 < j < n . By Theorem 

(5.3.2), there exists a constant coefficient differential equation 

C6.2.6) 1 (D1 ° ° in Ui k=0 
(CQ = 1) . 

that is P equivalent to equation (6.2.1), if and only if the 

i • l~n 
jVj(ai(x))) expj- a^ (x)dxj I Vj (a^ (x)) j transform of 

equation C6.2.1) is a constant coefficient differential equation 

of the form of equation (6.2.6). Note that we have taken the 

arbitrary constant C , of Theorem (5.3.2), to be 1. We have the 

following theorem (see [3] , p. 4). 

Theorem (6.2.3). Let the order of equation (6.2.1) be 3 or 

greater and assxxme that Vj(a^^(x)) is the first non-vanishing 

relative invariant of equation (6.2.1) on [a, b] , where 

3 ^ j < n . If there exists a constant coefficient differential 

equation that is P equivalent to equation (6.2.1) then the general 

solution of equation (6.2.1) is 
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r, 
m k 

C6.2.7) V j Ca^ Cx)) 

1-n 

2j 
yCx) = i I g^^expj-ja^ Cx)dxj 

k“l •^“1 

[VjCa^tx))j expjXj^j jVj (a^ (x)) j ^^dx | , 

m 

where ^ = n and the arbitrary non-zero constants. 

k=l 

The the multiplicities of the roots of the characteristic 

equation of equation (6.2.6). 

Proof; The theorem follows immediately from Theorem (5.3.2) 

since the solutions Yj^Cx) , i = l,...,n , of equation (6.2.1) 

are related to the solutions 2^^(t) , i = l>...,n , of equation 

(6.2.6) by 

y^(x) = exp|-|a^ (x)dxjj Vj (a^(x))] z^(t) 

1-n 

= exp j- a^ (x)dx jj Vj (a^ (x)) j exp(A^t) 

1-n ^ 

= expj- a^(x)dxjjVj(a^(x))j expjA^j| (a^(x))j ^^dx^ 

Note that if the characteristic equation of equation (6.2.6) 

1-1 

1-n 

has no multiple roots, the term 

(6.2.7) is unity. We are done. 

Vj (a^(x) )1 '^^dx in equation 

C6.3) Third Order Differential Equations that are Equivalent 

to Constant Coefficient Differential Equations. 

In this section we consider the third order differential equation 

3 
(6.3.1) I (k) (y 

(k) 
= 0 , 

k=0 

(a^j(x) = 1) . 



-152- 

Theorem (6.3.1). Let the relative invariant 

(x)) = - Ca^ Cx)) ^ + 3 j Ca^ Cx)) ^ - 2a^ (x) (a^ (x)) 

- 2la Cx) - 3a Cx)a (x) + 2 (a (x)) | , of equation C6.3.1), be 
V 3 X 2 1 

non-vanishing on [a, b] . There exists a constant coefficient 

differential equation that is P equivalent to equation (6.3.1), 

if and only if 

(6.3.2) 27lv^(aj^(x))pja^(x) - (a^Cx))^ - (a^(x))‘^‘) 

+ - 6V^(a^(x))|v^(a^(x)) 

= c27[Vj(a^(x))]®'^^ , 

where c is some constant. 

Proof; By Theorem (5.3.2), there exists a constant coefficient 

differential equation that is P equivalent to equation (6.3.1), if 

and only if the P 

transform of equation (6.3.1) is a constant coefficient differential 

Oil UilaU XS IT 6vJlXXVdX61i U cx^UdUXv^Ii • O • ±. j § Xi. 

[v^(aj^(x))C f [exp - a^ (x)dxj [v^ (a^ (x) )C | 

equation, where C is an arbitrary non-zero constant. This 

^/3 . r .. «n“^/3 
(v3Cai(x))C , exp|- a^ (x) dxj | (a^ (x)) C tramsform of 

equation C6.3.1) is given by (see equation (5.5.3) to (5.5.9) with 

n = 3) 

3 

I 
k=0 

C6.3.3) L(K) b3-ktt)CzCt))^ 
Ck) 

= 0 , 
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where 

(t) - 1 , 

(t) - 0 , 

C6.3.4) b^(t) = C ^^j 27(v^Ca^Cx))j^^^ 
-1 

+ 7 

27[v^{a^(x))p|a^tx) - Ca^(x))^ - (a^ (x))^^^ 

(v^ ta^ (x)) ] - 6V^ Ca^ Cx)) ( (a^ (x) j ^ 

and 

bjCt) --i(c-.| V3Cai(x))c“^) ^(b^(t)) 

Clearly b Ct) reduces to the constant - — when b (t) is a 
3 2 2 

constant, hence we see that equation (6.3.3) is a constant coefficient 

differential equation if and only if b^(t) is a constant. The 

condition given by equation (6.3.2) now follows immediately from 

equation C6.3.4). 

Q.E.D. 

We now consider some examples, taken from [23] , of third order 

differential equations that are P equivalent to constant coefficient 

differential equations. 

The differential equation 

C6.3.5) CYU)) - x"®yU) = 0 
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■■ _Q —»0 
has Cx) = (x) = 0 , a^ (x) = -x and V^(a^(x)) = 2x . 

Letting C = 2 in Theorem (5.3.2), we find that equation t6.3.5) 

is P equivalent to the constant coefficient differential equation 

(6.3.6) (z(t))^^^ - z(t) = 0 . 

Equation C6.3.6) has the characteristic equation 

(6.3.7) - 1 = 0 . 

Letting X^^ , k - 1,2,3 be the distinct roots of equation (6.3.7), 

the general solution of equation (6.3.5) is given by (see Theorem 

t6.2.3)) 

V 2 -1 
yCx) = I 3, X exp(-X X ) . 

k=l ^ ^ 

This solution is valid on any inteirval [a, b] not including x = 0 . 

Consider the differential equation 

C6.3.8) ty(x))‘^> + 3 ^ bx^^^a(v-l)x"V".-l y(^) = Q 
3x X 

where a, b and v are constants and b 0 . For this equation 
2v 2 3v 2V 2 

/ X - « /X ax +1-V , , bx +a(v-l)x +v -1 a (x) = 0 , a^ (x) =   r  , a^ (x) =     and 
1 2 -,23 3 ^ -X 3x X 

3 V —3 
V (a.(x)) = -2bx . Letting C = -2b in Theorem (5.3.2), we 
3 3- 

find that equation (6.3.8) is P equivalent to the constant 

coefficient differential equation 

(6.3.9) (z(t))^^^ + a(z(t))^^^ + bz(t) = 0 . 



Equation C6.3.9) has tho characteristic equation 

(6.3.10) 
3 

X + aX + t) — 0 . 

By Theorem (6.2.3), the general solution of equation (6.3.8) is 

m 

yCx) = J I ^ exp 

k=l £=1 ^ ' 

X 

'k V 

ra . - — 

where ^ r^^ = 3 and the are the roots, of multiplicities 

k=l 
, of equation, (6.3.10). This solution is valid for any interval 

[a, b] not including x = 0 . 

Consider the differential equation 

C6.3.11) CyU))^^’ ^ (yCx))'^’ + ay(x) = 0 , 

X 

2 
where a is a non-zero constant. For this equation a^^ (x) = — , 

2 
a^(x) = — , a (x) = a and V.(a-(x)) = -2a , Letting C = -2a 
z z 3 3 1 

X 

. in Theorem (5.3.2), we find that equation (6.3.11) is P equivalent 

to the constant coefficient differential equation 

C6.3.12) (z (t)) 
(3) 

+ az (t) 0 . 

Equation (6.3.12) has the characteristic equation 

3 
(6.3.13) X+a=0. 

Letting X^ , k = 1,2,3 , be the distinct roots of equation (6.3.13), 

the general solution of equation (6.3.11) (see Theorem (6.2.3)) is 
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This solution is valid for any interval [a, b] not including x = 0 

The following two examples illustrate the fact that a given 

differential equation may be P equivalent to more than one constant 

coefficient differential equation. 

The P(x ^, x) transform of 

C6.3.14) (y(x))'^’ -ix"^y(x) = 0 , 

defined by 

C6.3.15) 
dt 

dx 

-1 
X 

and 

C6.3.16) yCx) = xz(t) , 

is 

C6.3.17) Cz(t))^^’ - Cz(t))^^' - jzCt) = 0 . 

The T(x transform of equation (6.3.14), defined by 

C6.3.18) 
dt 

dx 

-1 
X 

and 

C6.3.19) y (x) = C (t) , 

is 

C6.3.20) (5(t))- 3C5(t))f^’ + 2(5(t)>y' - i 5(t) = 0 . 
t t t ^ 
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By Lemma C3.4.2) equation C6.3.20) is the same as the P(x , 1) 

transform of equation (6.3.14), hence from equations (6.3.17) and 

(6.3.20) we see that equation (6.3.14) is P equivalent to more 

than one constant coefficient differential equation. From equations 

C6.3.15), C6.3.16) and (6.3.17) we find that the solutions of 

eq[uation (6.3.14) are 

y(x) = xz(t) 

= X exp 

= X exp(Xj^£n x) 

X,+1 
k 

= X , 

where Xj^ , k = 1,2,3 , is a root of 

C6.3.21) - X - y = 0 . 

That is 

X +1 
(6.3.22) y(x) = x , k = 1,2,3 . 

From equations (6.3.18), (6.3.19) and (6.3.20) we find that the 

solutions of equation (6.3.14) are also given by 
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y Cx) = ^ Ct) 

= exp(r, t) 

= exp(rj^-€n x) 

= X 

where , k = 1,2,3 , is a root of 

C6.3.23) 
3 2 1 

r -3r +2r-j=0 

That is 

C6.3.24) y Cx) = X , k = 1,2,3 

From equations (6.3.22) and (6.3.24) we expect that r^^ = + 1 , 

which is easy to verify. That is, equation (6.2.23) becomes equation 

C6.3.21) where r is replaced by A + 1 . 

2/3^ X - x^ 
The p|exp(-/3" x) , exp | i| transform of 

(6.3.25) (y(x))^^^ + 3x(y(x))^^^ + 3x^(y(x))^^^ + x^y(x) = 0 , 

defined by 

(6.3.26) 
dx 

= exp (-/3" X) 

and 

(6.3.27) y (x) = exp j 2/3 X - X z (t) , 
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Csee section (5.4)) is 

(6.3.28) 

The S (exp(- ^1 

(3 ) 
(z(t))^ ^ = 0 . 

transform of equation (6.3.25), defined by 

2 

(6.3.29) y(x) = expj- ^jyCx) , 

IS 

(6.3.30) (y(x)) - 3(y(x)) = 0 . 

By Lemma (3.3.1) equation (6.3.30) is the same as the 

transform of equation (6.3.25), hence from equations (6.3.28) and 

(6.3.30) we see that equation (6.3.25) is P equivalent to more 

than one constant coefficient differential equation. From equations 

(6.3.26), (6.3.27) and (6.3.28) we find that the solutions of 

ecjuation (6.3.25) are 

y(x) = expj ^ ) z(t) 

= explV 

= exp ^)) , j = 0,1,2 . 

The factor (-/T) ^ can be replaced by one without loss of generality 

hence 

(6.3.31) y(x) = exp —  ^j| exp (-/3 x) J , j = 0,1,2 . 
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From equations C6.3.29) and (6.3.30) we find that the solutions of 

equation C6.3.25) are also given by 

2 

y(x) = exp|- ^]y(x) 

2 

= exp [- ^ j exp(Xj^x) 

= exp(  ] 

where Xj^,k = l,2,3, is a root of 

3 
(6.3.32) X - 3X = 0 . 

Equation (6.3.32) has the 3 distinct roots X^ = 'Pi , X^ = 0 and 

X^ = -/T , hence 

2 

(6.3.33) y(x) = exp 

where X^ = /J , X^ = 0 and X^ = -/i . Comparing equation (6.3.33) 

with equation (6.3.31) we see that we have obtained the same solutions 

of equation C6-3.25) by transforming it to two different constant 

coefficient differential equations. 

2X X - X 
k 

C6.4) Nth Order Differential Equations that are Equivalent to 
constant Coefficient Differential Equations. 

We now give some examples of nth order differential equations, 

(k) .L (kl 
k=0 

(SQ(X) = 1) , 0 
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that are P equivalent to constant coefficient differential equations. 

As noted in section C5.3) it is well known that the PCx 1) 

transform of the Euler differential equation C5.3.2), 

n 
C6.4.1) I 

k=0 

k-n, ... Ck) 
X (y(x)) = 0 

is a constant coefficient differential equation. The solutions of 

equation ~C6,4,1) are of the form y(x) = where X is a constant* 

We now consider the differential equation 

C6.4.2) + I (" (n - k)! (1 + i ) (y(x)) 
k=0 * 

(k) = 0 . 

This equation has a^Cx) = il Cl + — ) / i = 1»2,3 , hence V^Ca^^Cx)) 

is easily found to be -4, Letting the arbitrary constant in Theorem 

C5.3.2) be C = -4 , we find that lv^ (a^^^ (x)) C~4) j =1 and 

exp [- ai Cx)dx) j V3 Cai (x)) C-4) 
1-n 

-11 6 
exp 

exp - 

9 

dx 

exp(-x) 
X 

By Theorem C5.3.2), there exists a constant coefficient differential 

equation that is P equivalent to equation (6.4.2), if and only if 

the ^^x ) "transform of equation (6.4.2) is a constant 

coefficient differential equation. Recalling that 

= g|®2SE_LJLL| (see Lemma (3.3.1)), we find that the 
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I transform of equation (6.4.2), defined by 

exo C*"X)   
y (x) = —  y(x) , is a constant coefficient differential 

X 

equation. That is, y'Cx) is of the form exp (Ax) , hence the 

solutions of equation (6.4.2) are of the form y(x) = ^• 

where A is a constant. 

We now consider the differential equation 

C6.4.3) I IJJjci + x)'^x" '^(y(x)) 
(k) 

= 0 . 
k=0 

The coefficient of (y(x)) in equation (6.4.3) is (1 + x) , 

hence we must divide equation (6.4.3) through by (1 + x)^ to 

normalize its leading coefficient to 1. Carrying out this division 

we find that equation C6.4.3) is equivalent to 

.n-k 

ICIIrS^ 
k=0 

C6.4.4) (y(x)) = 0 , 

which has a. (x) = f-———j . We easily find that V^(a. (x)) of 
1 I 1 + X / 3 1 

equation (6.4.4) is . Letting the arbitrary constant C 

(1 + x) 
in Theorem (5.3.2) be C = 2 , we find that ( V (a. 

I 3 1 
(x))2 = (l+x) 

and 

exp a, Cx)dx|| (a^ (x)) 2 

1-n 

-li 6 
= exp h l+x dx 1(1 + x) 

n-1 

2 

n-1 

= exp |-l-x + £n(l + x)|(l + x) 

n+1 

= exp(-(l + x)) (1 + x) 
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By Theorem (5.3.2), there exists a constant coefficient differential 

equation that is P equivalent to equation (6.4.4), if and only if 
n+1. 

the p|ci + x) \ exp(-(l + x)) (1 + x) ^ ) transform of equation 

(6.4.4) is a constant coefficient differential equation. Assuming 
n+1 

that the P | (1 + x) exp(-(l + x)) (1 + x) ^ | transform of 

equation C6.4.4) is a constant coefficient differential equation, 

with dependent variable z(t) , we must have that 

n+1 

y (x) = exp (- (1 + x)) (1 + x) ^ z (t) . 

By assumption z(t) is the solution of a constant coefficient 

differential equation, where t = (1 + x) ^dx , hence we have that 

zit) is of the form 

z Ct) = exp (Xt) 

exp(X Cl + x) ^dx) 

= (1 + x) , 

where X is a constant. We must have that 

n+1 

y(x) = exp(-(l + x)) (1 + x) ^ (1 + x)^ 

n+l+2X 
2 

= exp C“l) exp (-x) (1 + x) 

Since the factor exp(-l) is a constant, it can be replaced by one, 

hence we see that y(x) is of the form 
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(6.4.5) yCx) = expt-x) (1 + x)^ , 

if equation (6.4.4) is P equivalent to a constant coefficient 

differential equation. The solutions y(x) , of equations (6.4.3) 

and (6.4.4), are known to be of the form given by equation (6.4.5) 

(see Allaway [l])/ where r is a root of the Poisson-Charlier 

polynomial {c^(r; 1)} defined by (see Szego [40, p. 35]) 

I 
exp(-x) (1 + x)^ = \ 

1= 

Clearly our assumption, that the P 

transform of equation (6.4.4) is a constant coefficient differential 

equation, was justified. Note that to actually effect this trans- 

formation of equation (6.4.4), for arbitrarily high n , is not 

practical because of the computations that would be involved. That 

is, although Theorem (5.4.2) is true for arbitrarily high n it 

is not practical, in general, to try and effect P(u(x), v(x)) 

transforms of differential equations of orders greater than 3 or 4. 

X 
c^(r; 1) ^ 

(1 + x) \ exp I - (1 + X) j (1 + x) 
n+1 
2 



-165- 

Appendix 

Interchange of Summation Formulas 

Rainville [36], p, 57, shows that 

CA.1.1) 

OO 00 00 k 

1 I p(k, j) = I I P(k + j, j) , 
k=0 j=0 k=0 j=0 

where P is a function of k and j . 

We easily obtain the following lemma from equation (A.l 

Lemma (A.1.1). Let n be a positive integer and let I 

function of k and j , then 

(A.1.2) 
n k n n-j 
I I P(k, j) = I I P(k + j, j) . 

k=0 j=0 j=0 k=0 

Proof; Letting 

1 k < n 

0 k > n 

we have 

n k «> k 

I I P(k, j) = ^ I X P(k, j) 
k=0 j=0 k=0 j=0 

By equation (A.1.1) this becomes 

00 OO n k 
I I P(k, j) = I I X P(k + j, j) , 

k=0 j=0 k=0 j=0 ■’ 

1) . 

be a 
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where 

(A.1.3) 

1 k + j < n 

0 k + j > n 

It is easy to see that the infinite k and j summations above can 

be interchanged, hence 

n k 00 oo 

I I 3) = I I + 3f j) • 
k=0 j=0 j=0 k=0 

By equation (A.1.3) this becomes 

n k n n-j 
I I p(k, j) = I p(k + j, j) . 

k=0 j=0 j=0 k=0 

Q.E.D. 

Corollary. 

n k n n 
(A.1.4) I I P(k, j) = I I P(k, j) . 

k=0 j=0 j=0 k=j 

Proof; Raising the k index of sumation in the right hand side 

of equation (A.1.2) by j we immediately obtain equation (A.1.4). 

Q.E.D. 
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