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ii
Abstract

The main purpose of this thesis is to give a characterization
of nth order linear homogeneous differential equations that can. be
transformed into constant coefficient differential equations. The
characterization given makes use of invariance theory originated:
by G. H. Halphen around 1880.

Chapter 1 gives an introduction to the problem of transforming
ordinary linear homogeneocus differential equations into constant
coefficient differential equations. Chapter 1 includes an example
as well as enough of the theory of invar%ants to give a proof of
the main theorem of this‘thgsis.

Chapter 2 éives a generalization of the chain rule of elementary
calculus. We make extensive use of this generalization throughout
the thesis.

Chééter 3 is a development of the transform equations that we
make use of throughout this thesis. That is, we make changes af
the dependent variable and/orindependént variable of a given
differential equation. The transformed equation is expressed in
terms of the coefficients of the original differential equation and
the functions used to define the changes of variables that we have
made.

In the lagt section of Chapter 4 we prové an important
invariance relation that is used in Chapter 5. The rest of Chapter
4 contains invariance results that are of historical interest as

well as being a prelude to the results of Chapter 5.



Chapter 5, the most important chapter of this fhesis, concerﬁs
the invariance theory of Halphen. This invariance theory is needed
to give the characterization of nth order differential equations that
can be transformed into constant coefficient differential gqﬁations.

Chapter 6 is devoted_to applying the preceeding theory to the

sblution of differential equations that can be traqgfo;@ed into

constant coefficient differential equations.
The appendix contains some interchange of summation formulas

that we use throughout the thesis.



iv
Notations

Throughout this thesis we will use the reference system (a.b.c),
where a gives the chapter number, b gives the section number and
¢ gives the number of a particular formula, equation, theorem or
lemma. For example equation (1.1.1) refers to the lst equation of
section 1 of Chapter 1 while Theorem (1.3.1) refers to the 1lst
theorem of the 3rd section of Chapter 1. When results from the
appendix are referenced, this is denoted by putting a = A . For
examﬁle Lemma (A.l.l)‘refers to the first lemma of the appendix.

When the dependent variable of a given function is obviousl§
x , we shall not always explicitly specify it. For example.:u(x).
is often referred to by just u .

'Phrases like "nth order homogenecus Qifferential equation" are
often replaced by "differentiai equation" or justr"equation“ when
no loss of clarity will result.

Throughout this thesis we will denote the kth derivative of £ (x) by

k g
Lt = @™ =X

dx :
and similarily’

k
d ) (k)
—L ) = (£

dat



That is, subscriptipg by a variable will denote the variable that
differentiation is with respect to if it is other than x .
C"[a, b] shall denote the set of all functions that are n
times continuously differentiable with respect to x on [a, b] .
The coefficient of the highest order derivative of the dependent

variable in a differential equation shall be called the leading

coefficient of the differential equation.

n!

(n) shall denote the usudl binomial coefficients -——— .
k (n=k) !k!

The characteristic equation (in A) of the constant coefficient

differential equation

z n dk

( ) c . —S—yix) =0,
- k .

k=0 ‘¥ D7k 4

is

n
n) k
X { c A =0 .
k=0 k n-k

The left side of this equation is referred to as the characteristic
polynomial.
When referring to a differential equation of order n , we

denote this by saying it is of nth order.






Chapter 1

Fundamental Concepts

(1.1) Introduction. Let

]
(1.1.1) a
k=0 n-k

be an pth order linear homogeneous differential equation with
coéfficiénts ;ai(x) , where aifk) is a complex valued function.
We shall always assume that equation (1.1.1) is valid on a real
interval [a, b] and that ao(x) 20 on [a, b] . We will also
assume that each ai(x) is 2n - i times continuously differentiable
on [a, b] . That is, a; (x) € Czn_i[a, b] . Without loss of
generglity we can éssume that ao(x) = 1, since if this were not
the case we could divide equation (l1.1.1) through by ao(x) getting
a differential equation having one as its leading coefficient.

In this thesis we are interested in solving equation (1.1.1)
by'transfbrming its dependent and’independent variables. The

transform of the independent variable that we will use has the form

(1.1.2) = .1 (x)

ax
and the transform of the dependent variable has the form
(1.1.3) yx) = vix)z(t) ,

where u(x) and v(x) are non-vanishing functions on [a, b] such



that um)ecmih,ﬂ and v@)eC%a,M..Tm z(t) in
equation (1.1.3) is the new dependent variable of the new independent
variable t . 1In particular we are interested in developihg necessary
and sufficient conditions that will characterize those nth order
differential equations (1.1.1) that can be transformed, by means of
equations (1.1.2) and (1.1.3), into constant coefficient differential
equations. These"necessary and sufficient conditions wiil explicitly
give u(x) and v{x) in terms of the coefficients ai(x) of the

original differential equation.

(1.2) An Example. By adjusting the coefficients of equation
(1.1.1) by numeric factors it is easy to see that equation (1.1.1)

can be cast in the form
5 n
(1.2.1) ) (k]an_k(x) S yx) =0, (a;x) =1,

where the ai(x)'s of equation (1.2.1) differ from those of equation

(1.1.1) by the constant factors (;) .

Definition (1.2.1). Any differential equation of the form of

equation (1.2.1) will called a differential equation in its

normal form.




To facilitate comparison with work done by other authors, we
will usually work with the normal form of equation (1.1.1).

In order to illustrate the transformations we are interested
in we consider the case n = 3 . We transform the third order

differential equation

~

(1.2.2) . Z (3 )25 k y(x) =0~ (xe[a, b], agx) = 1)~

by means of the transformations

. at _
(1.2.3) ax - u (x)
and
(1.2.4) y(x) = vix)z(t)

By using the chéin rule of elementary calculus, equation (1.2.3)

and. equation (1.2.4), we have that

dy(x) _ dy (x)
dax ul) g

d
= u(x) ac (vix)z(t))

_ dz(t) av(x) z(t)
= u(x)[v(x) + ax &)
That is,
(1.2.5) &) = goxz @M+ v (e

dx ’



k
where we have used the notation (z(t))ék) = —gi-z(t) . In a similar
dt
manner we obtain
2 : ; .
(1.2.6) ‘—i—-”—z(i)—ﬂuzv)(z(t))é” + a4 Dy, (z(t))t(:l) +v @z,
dx
and
aly( 3 ( ( (
(1.2.7) X - v)(z(t))é3) + Guiv?) 43Py (z(t))tZ)
dx
+ @uv?) 4 30 Me (1), 2Dy (z(t))él) + vz
When equations (1.2.4), (1.2.5), (1.2.6) and (1.2.7) are
substituted into equation (1.2.2) we obtain
1.2.8) (@ wze) P 4 Gap?v + 32 4 30 Vo) 2
+ (3uv(2) + 3u(1)v(1) + u(2)v + 6a1uv(1) + 3a1u(1)v + 3a2uv)(z(t))t
+ (v(s) + 3a v(2) + 3a v(l) + a,v)z(t) =0 .
1 2 3
From equation (1.2.8) we see that if
3a1u2v + 3u2v(1) + 3uu(1)v = kluav ’
3uv(2) + 3u(1)v(1) +.u(2)v + 6a1uv(1) + 3a1u(1)v + 3a2uv = k2u3v

and

(3) (2) (1) _ 3
v + 3a1v + 3a2v + agv = k3u v ,



where k1 R k2 and k3 are constants, then the solutions of the

differential equation (1.2.8) are the same as the solutions of the

constant coefficient differential equation

(2)
t

(1)
t

(3)

(z(t))t

+ kl(z(t)) kz(z(t)) + k3z(t) =0,

where t and x are related by aE _ ulx) .

dx
As a specific example of equation (1.2.2) let a (x) = 3x 5

6x2' 6x3 . (1 - x)

ay(x) = —=—, a;(x) = —>=— and [a, b] = [2, 3] .
(1 - x) (1 - x)
That is, let us consider the differential equation.
3=k k

(1.2.9) ¥ (i) —3x 4 ym=0, (xel2 3D .

k=0 k1 (1l - x) dx

If we use the transformations

dt _ -2
(1.2.10) - a-x
and
(1.2.11) vx) = exp(1 :3x )lzft; ,

the differential equation (1.2.9) transforms into

(1.2.12) exp( =3 ) -] (3) (1)

l -x

Equation (1.2.12) has the linearly independent solutions

zi‘t) = exp(Ait) ’ i=1, 2, 3,

(z(£)) 7 - 9(z()) " + 62(1)] =

r

o .



where Al ' AZ and As are the distinct real roots of

(1.2.13) A _on+6=0.

The solutions yi(x) of equation (1.2.9) are related to the
solutions zi(t) of equation (1.2.12) by equation (1.2.11), where

t 1is related to x by equation (1.2.10). Since the zi(t)'s are

given by

Zi(t) = exp(kit) R i=1, 2, 3,
we have that

-1 -3
y; (x) = (1 - x) exp(l — x)zi(t)

= @ -0 len|=2ep o0

= (. X exp| T |exP (A

_ -1 -3 -2

= (1 - x) exp(lr_ x]exp(kij(l x) dx)

L qr -3
C(l - x) exp("l—_—x) ’

where C is a constant of integration. Without loss of generality

C can be taken to be one, hence the solutions of equation (1.2.9)

are
L M -3
(1.2.14) yi(x) = (1 - x) exp(—iij;;) ’ i=1 2,3,

where the Ai's are the roots of equation (1.2.13).



(1.3) The Nth Order Case. We wigsh to generalize the procedure

used to solve the differential equation (1.2.9), to solve nth order
linear differential equations. 1In order to do this we must transform

the differential equation

n k
d o .
(1.3.1) )} na._(X)———y(X)=0, (x € {a, B], a,(x) = 1) ,
k=0 (k) n-k dxk : 0

by means of

(1.3.2) Eeum

and

(1.3.3) y&x) = vx)z(t) ,

to obtain

(1.3.4) E bn_z(t)(z(t))éz) =0 .

£=0
As usual u(x) does not vanish-on [a, b] , hence t(x) = ju(x)dx
is a monotone increasing or decreasing function on [a, b] . Letting
h(x) = Ju(x)dx we see that the inverse of t exists and it can be

written as

(1.3.5) x=h (t) .



In order to find out how the bi(t)'s are related to the ai(x)'s .

u(x) and v(x) , we require a result known as Faa de Bruno's Formula.

Theorem (1.3.1). (Faa de Bruno's Formula). Let n be a

positive integer and let k be such that 0 <k <n . If %§-= u(x)
where u(x) € Cn_l[a, b] and u(x) is non-vanishing on [a, b] then
for all xe [a, b]

k m

k
(1.3.6) o T etk mroue)) L,
dx m=0 ' dt
where
(1 m=%k =0
(1.3.7) ok, m; ulx)) ={ 0 m=0, k>0
m
X (i-1) 4
k! u .
Z T—T_ ——ET__J< otherwise.

The sum in equation (1.3.7) is over all partitions of m such that

Il e~1%
=
]
8

1

and

I
o

i
im,
i=t *

where the. mi's are all integers greater than or equal to zero.



A proof of Theorem (1.3.1l) is given in Chapter 2.
Using Theorem (1.3.1) and equations (1.3.2) and (1.3.3), we
simultaneously transform the independent and dependent variables

of the differential equation (1.3.1), to obtain

k 3
(1.3.8) ( ) 2@ I ek, 35 uG) 2 wzt) =0,
j=0 dt3

where ¢(k, ji u(x)) is glven by equation (l 3.7).

We wish to write the differential equation (1.3.8) in the form
of equation (1.3.4). By using formula {A.l1.4) to rearrange the sums
in equation: (1.3.8) we find that
J

x] 2@ 0k, 35 we) =5 ez =0 .
3j dt

I ~~—8
he—1s

j=0 k

By using Leibnitz's rule for the differentiation of the product of

two functions this equation becomes

(5-2) £y _

E.‘l % (k) (x) ok, 3; u(x))(ﬂ)(V(X)) (z (t)) o .

j=0 £=0 k=
By rearranging the sums of this equation using formula (A.1.2) we

obtain

(3) (£)

n nN=-. £
(1.3.9) § 7 K() L0k, 3+ £ w7 e aen

£=0 3=0 k=j+

which is of the same form as equation (1.3.4).
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In order that equations (1.3.4) and (1.3.9) are the. same
)

differential equations, their coefficients of (z(t))t '

£ =0,1, ..., n, must be equal. For £ =0, 1, ..., n we have
that
+
(1.3.10)  b__,(t) = [ Janos b0, 3+ & wean 3 4 Heown D,
n—
j= 0 k=j+£
dt
where t and x are related by ax - u (x)
As will be shown in Chapter 2 ¢(n, n; u(x)) = (u(x))n , hence

recalling that ao(x) = 1 we see that the coefficient of (z(t))(n)

in equation (1.3.9) is (u(x))™(x) . We have the following theorem.

Theorem (1.3.2). Let x ¢ [a, b] , then the differential

equation (1.3.1) can be transformed via equations (1.3.2) and (1.3.3)

into a differential equation of the form

P oo 5
A(x) c — z(t)= 0 , (cp, = 1) ,
22y nt dt£ 0

where the ck's are constants, if and only if there exist u{(x)

and v(x) such that

n—ﬂ n .
- (3)

L [ Ma s, 5+ £ we|d § ) ve] = e pan™veo |

j= O k=j+L .

for £=O, l, ...,n’lo
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Even though Theorem (1.3.2) characterizes those differential
equations which can be transformed into essentially constant
coefficient differential equations, it does not tell us what u(x)
and v(x) must be to accomplish‘this. By using the theory of
invariants we will not only be able to tell whether a given

differential equation can be transformed into a constant coefficient

differential equation, but we will also be able to explicitly specify
the required transformation functions u(x) and v(x) in terms of

the coefficients of the original differential equation.

(1.4) Theory of Invariants. Theorem (1.3.2) gives necessary

and sufficient conditions that the differential equation

E n dk
(1.4.1) a_ _ (x) =y =0, (a,(x) = 1) ,
k=0 (k) etk T g K 0

transforms into essentially a constant coefficient differential

equation by means of the transform equations

(1.4.2) ax - u(x)
and
(1.4.3) y(x) = vix)z(t) .

Fayet [16] and Berkovic [3] have also found necessary and sufficient
conditions for transforming ordinary linear homogeneous differential
equations into constant coefficient differential equations via

equations (1.4.2) and (1.4.3). 1In all these cases the required
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transform functions u(x) and v(x) are not explicitly given in
terms of the coefficients of the original equation.

Breuer and Gottlieb [5] have considered the special case when
the transform equations (1.4.2) and (1.4.3) are of the form
dt

3 - u(x) and y(x) = z(t) . That is, only the independent variable

is transformed. They obtain essentially the following theorem.

Theorem (l1.4.1). The differential equation

: n dk‘
(1.4.4) z a _k(x) ——E-y(x) =0, (x € [a, b], ao(x) 1),

k=0 o ax

where an(x) is non-vanishing on [a, b] , can be transformed via

ac = u(x) and y(x)

It

z(t) into a differential equation of the form.

ax
P
(1.4.5) A(x) - c z(t) =0, (e, = 1) ,
2=0 n-t 4, L L
where the ck's are constants, if and only if
n
(1.4.6) kZZ a Lok, L ulx) =c pa (x), =1, ..., n) ,

where the cz's are constants and ¢(k, £; u(x)) is given by

equation (1.3.7). Moreover if a u(x) exists such that these

/n

1
conditions hold then u(x) can be taken to be u(x) = (a,(x)) .

Proof: Using equation (1.3.6) of Theorem (1.3.1) we transform

t=u(x) and y(x) = z(t) ,

equation (1.4.4) by means of the equations I

to obtain

n k Ct)
Y oa . (x) T ok, £; ux))(z) "’ =0 .
k=0 n-k

£=0 t
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By rearranging the sums of this equation using formula (A.l.4) we

cbtain
T )
(1.4.7) I I a _ ek, £ ux))(ze), =o0.
£=0 k=L -
As we will see in Chapter 2,
1 k=0
b(k, 0; ux)) = - ~ .
0 k>0

and

¢(n, n; ulx)) = (EN" ,

hence the coefficient of z(t) in equation (1.4.7) is an(x) and
the coefficient of (z(t))én) is (u(x))" . The theorem now
follows immediately since if equation (1.4.7) is to be an egquation
of the form of equation (1.4.5), then each of its coefficients must
be a constant times a (x) . It is obvious that ¢, can be taken
to be one without loss of generality.
Q.E.D.

Breuer and Gottlieb's conditions given by equations (1.4.6) have
been obtained previously, for scme of the lower order cases, by
Peyovitch [34], Fayet [17] and Mangeron [29] (see also [32], [33]).

In Chapter 4 we will use invariance considerations to prove Theorem

(1.4.1), for the case n = 2 , as Peyovitch [34] did.
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The other special case of the transform equations (1.4.2) and
(1.4.3), where only the dependent variable is transformed by means
of the equation y(x) = v(x)z(x) , will also be considered in
Chapter 4. Using invariance considerations we will show that there
exists a v(x) such that the transformation y(x) = v(x)z(x) . takes
equation (1.4.1) to a constant coefficient differential equation if
and only if the transformation y(x) = exp(-Jal(x)dx)z(x) takes
equation (1.4.1) to(a constant coefficient differential equation.

Considering the general case'where_;n 2 3 we shall use
invariance considerations, originally studied by Halphen [19], to
find necessary and sufficient conditions that characterize those
nth order d%fferential equations (1.4.1) that can be ;ransformed, by
means of equations (1.4.2) and (1.4.3), into constant coéfficient
differential equations. These necessary and sufficient coﬁditions
will explicitly give u(x) and v(x) in terms of the coefficients
aiCK) of the original differential equation (1.4.1).

In section (1.3) we transformed the differential equation (1.4.1),

using equations (1.4.2) and (1.4.3), into the differential equation

n
(1.4.8) L b__plt) (z(t))é!') =0,

£=0
where the bz(t)'s are given by equation (1.3.10). We also saw that
by (t) = (ux))"(x) , which is non-vanishing on [a, b] since

u(x) and v(x) are non-vanishing on [a, b] . Since bo(t) is
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non-vanishing on [a, b] we can divide equation (1.4.8) through by
bo(t) to obtain, after adjusting the coefficients by appropriate

numeric factors, an equation of the form

n
(1.4.9) 1 (rPa® @ =0, wyw =1 .

That is, each bn (t) of equation (1.4.9) is obtained from the

-k

corresponding bn_g(t) of edﬁatioﬁr(l.éi8) b; dividing by

(u(x)) ™ (x)(i) . In Chapter 3 we will show that the b__ (t)'s of
equation (1.4.9) are given by

n-s n-s-k a (x)s!

n -1 s k
1.4.10) - b . (t) = - ! : : n
( ) b _(t) = (@v) (n-s) kzo L W

¢(n-k¥j,s;u)v(j) R

(s=0, l, cesoy n) I3

where ¢(k, j; u(x)) is given by equation (1.3.7).

Definition (1.4.1). The differential equation (1.4.9), with

its bk(t)'s given by equation (1.4.10), is called the Plu(x), v(x))

transform of equation (1.4.1).

Definition (1.4.2). The equations o= ulx) and y(&x) = v(x)z(t)

are called the defining equations of the P(u(x), v(x)) transform

of equation (1.4.1).
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Note that the P(u(x), v(x)) transform of equation (1.4.1) was
obtained from equation (1.4.1) by simultaneously transforming its
independent and dependent variables by letting g§-= u(x) and
y(x) = vix)z(t) .

When it is obvious what the defining equations of a P(u(x), v(x))
transform are, we may not always specify them.

Note that the original differential equation (1.4.1) and its
P(u(x), v{x)) transform, equation (1.4.9), are both in normal forms.
This is important for invariance theory considerations. In particular
notice that the equations (l.4.1) and (1.4.9) both have leading
coefficient one.

Let n be some fixed positive integer and let [a, b] be a
closed interval of the real line. We will denote by D thé set of

all nth order ordinary linear homogeneous differential equations

of the normal form
k
( | 2 ® -—y(x) ' (apx) = 1) .
k—O '

Definition (1.4.3). The differential equations

Jk

T (M) a e - yoe
(k) n-k dxky

il
o

and
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belonging to D , are said to be P equivalent, if there exist
u(x) € Cn—l[a, b] and v(x) € C*a, b] , both non-vanishing on
[a, b] , such that the P(u(x), v(x)) transform of the first
differeritial equation is the second differential equation.
We may sometimes only say equivalent when we mean P equivalent.

From the example we did in section (1.2) it is obvious that on

the interval [2,/3]} , ~—— __

3 3-k k

3 3ix
) yx) =0
k=0 (k) k! (1-x) 6-2k dxk

is P equivalent to

() _ gz V)

(Z(t))t N

+ 6z(t) =0 ..

-3
- X

. -2 ! -1
In this case we know u((x) = (1 - x) and v(x) exp(1 )(1 - X) .

Let G denote the set of all maps from D to D given by
P(u, v) transforms. Let us consider an arbitrary P(u(x), v(x))
transform of an arbitrary equation (say equation (1.4.1)) in G .

This P(u(x), v(x)) transform of equation (1.4.1), defined by

g§-= u(x) and y(x) = v(x)z(t) , is given by equation (1.4.9).

As in section (1.3) t(x) = Ju(x)dx is a monotone increasing or

decreasing function on [a, b] . Letting h(x) = Ju(x)dx we see

that the inverse of t exists, thus x =h (t) . We now consider

1 1)=P 1
ulx) ' vi(x) u(h—l(t))

(1.4.9), defined by

the P{ ' ) transform of equation

vt e))
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ax _ 1 1
e uwl g m™ e
and
z(t) = v ) y(x) = _11 y(x) .
v(h "~ (t))
Since y(x) = v(x)z(t) , it is obvious that the P(;%;T ’ vtx)) trans-

form of equation (1.4.9) has the solutions yi(x), i=1l,...,n , where
each yi(x) is a solution of equation (1.4.1). All P transforms have
leading coefficient one, hence we must have that the P(G%;T ' ;%;T)
transform of equation (1.4.9) is equation (1.4.1) (see Ross [37],
p. 385). We have in effect shown that the inverse of every mapping in
G is in G . This also shows that the relation defineé by definition
(1.4.3) is symmetric. This relation can also be shown to be reflexive
and transitive, hence the relation is in fact a true equivalence relation.

Clearly the identity mapping is in G , it has defining equations
of the form t =x and y(x) = z(t) .

It can be shown that the composition of two maps in. G is in
G and that composition of mappings in G is associative, hence we
have that G forms a group. The group elements are the mappings given
by P(u, v) transforms and the group multiplication is the composition
of these mappings. We now see that the problem of solving linear
differential equatibns can be approached by the invariant theory of
groups. Lie [27] was the first author to consider differential
equations from this point of view.

We now make some definitions and introduce the idea of an

invariant of a differential equation.



Definition (1.4.4).

the form

.
|55 a0
dx J

_(n+l)xX(n+l)_ | . —

-19-

Let M be the set

/aOCX)

of all matrices of

al (X) ) an (x)
da, (x) da_ (x)
: |
¢ 1
a‘a_ (x) |
_n_
dxn

where the aj(x)'s are functions of x that are sufficiently

differentiable.

Definition (1.4.5).

Let u(x)

and v (x)

be arbitrary non-

vanishing functions on [a, b] such that u(x) e,Cn—l[a, b]v and

vix) € Cn[a, b] .

Let I be a map from M +to the set of all

complex valued functions with domain [a, b] . Let aj(x) ’

j=0,1, ..., n,

be the coefficients of equation (1.4.1) and

let bj(t), =0,1, «.., n, be the coefficients of the

P(u(x), v(x))

transform of equation (1.4.1).

If for all x € [a, b]

and for all u(x) and v(x) as defined above we have the identity
i i
(1.4.13) 1 %aj (x) = 1 (—d—i»bj (.t))
dx (n+1) % (n+1) de (n+1)x(n+1) /]
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where g§-= u(x) , then the function I is called an absolute
invariant of equation (1.4.1).

From this definition we see that an absolute invariant of
equation (1.4.1) is a function of the coefficients ai(x) of
equation (1.4.1) and their derivatives with respect to x . This
function has the property that for all x € [a, b] it has the
same value as the same function formed from the coefficients of
any arbitrary equation which is ’P equivalent to equation (1.4.1).

Note that in the left hand side of the identity (1.4.13) the
derivatives are with respect tc x while in the right hand side
they are with respect to t .

Let us again refer back to section (1.2). An absolute invariant,

call it I , of the differential equation

3 k
3 : d
J 1l]a,  x) =c-y&x) =0, (a.(x) = 1) ,
Xe0 (k) 3-k ax 0
is
2 2 (U, .7 (M2 _ 6 _ (2), 783
=W, -a -a ) +55 (v - 5 vV, ]y, ’
where
i _ _ __(2) 1)y _ . (1), _ _ .- 3
(1.4.14) V3 = V3(ai(x)) = a1 + 3(a2 2a1a1 ) 2(a3 3a1a2 + 2a1)
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As a specific example consider the differential equation (1.2.9),

that is
3 3-k k
(1.4.15) ) [i) 22— L ywo=o0.
k=0 kt (1 ~ x) dx
For this differential equation V3(ai(x)) = =12(1 - x)-6 and

-2 :
I = -3(-12) /3 . That is, in this case the absolute invariant 1

is a constant.
We now come to one of the most important ideas of this thesis,

that is, the idea of a canonical transform.

Definition (1.4.6). A differential equation

a = =
d—'t?Z(t) =0, (bo(t) =1) ,

(1.4.16) E (;) b _ (t)
k=0
that is P equivalent to equation (1.4.1), is called a canonical
transform of equation (1.4.1) if each bi(t) of equation (1.4.16)
is an absolute invariant of equation (1.4.1).
We now assume that the order of equation (1.4.1) is three or
greater. We also assume that V3(ai(x)) + given by equation (1.4.14),

is non-vanishing on [a, b] and that C is an arbitrary non-zero

constant. Under these assumptions we will show in Cha ter 5 that

the P((C V (a. (x))) / , exp(- Ja (x)dx)(C V (a. (x))] ) transform

of equation (1.4.1) is a canonical transform of equation (1.4.1).

That is, a canonical transform of equation (l1.4.1) is
k
( | by (8) g =te) =0, (by(t) = 1) ,
k=0 t

where .
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-n-1

o 1 —¢ ngs n-s-k a, (x)s!
(1.4.17) b _ (t) = (n - s)!(C v, (ai(x)v)) kZO jz TN

o

- ¢ln -k -3, s;‘c-lva(zi(x)))1/3)exp(Ial(x)dx)

(3)

1l -n
sax|(c v @ ) &

. exp( al X x}( V3 ai

for s =0,1, ..., n.

Note that the coefficients bk(t)_, given by equation (1.4.17),
are functions of the ai(x)'s of equation (1.4.1) and their
Qerivatives with respect to x , that contain no integrations.

That is, for each 3j the term
1 - p\3)
-1 . 6
exp( al(x)dx) exp(— a (X)) c v,(a; (x))
1 3771
of equation (1:4.17), results in an expression that contains no

integrations. For example if j = 1 the expression is

-5-n l-n
l-n{ -1 6 (1) -1 6
T c Vatai(x)) (V3(ai(x))) - al(x)(c Va(ai(x))}

Moreover the ¢ function in equation (1.4.17) contributes no
integrations (see equation (1.3.7)).

Laguerre [25] gave the above canonical transform for the case
n=3 and C =1 . At the time Laguerre published the paper [25]

he was not looking for a canonical transform and in fact he was not
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aware that the transform he gave was a canonical transform.
Halphen ([19], p. 219) gave the above canonical transform assuming
that C = 1 , however he omitted the proof saying only that it was
obvious.

For the present, we shall assume that the
1/3 1-n

P((C—lv3(ai) , exp(—Jal(x)dx”~C—1V3(ai))—€_) ‘transform of
éﬁuaéion 11.4:1) is ig faét a_canghical transform of equation
(1.4.1). Under this assumption we prove the following important
theorem which was originally done by Halphen ([19], p. 142-143).
Halphen merely stated the theorem (with -C = 1) saying that it was
obvious. Ig the proof we will use the usual notation that subscripting
by a variable indicates the variable that differentiation is with
respect to if it is other than x . For example ¢t indicates

that derivatives in Faa de Bruno's Formula (1.3.7) are to be taken

with respect to t rather than x .

Theorem (l1.4.2). Let C be an arbitrary non-zero constant

and assume that the order of equation (1.4.1) is three or greater.

Moreover, assume that the function

- _.(2) (1) (1)
Vs(ai(x)) = a1 + 3(a2 a

- 2a
11

3
- - +
) 2(a3 3a1a2 2a1)

does not vanish on [a, b] . There exists a constant coefficient



-24-

differential equation of the form

n n dk
(1.4.18) I | )Cn—k < z@) =0, (cy = 1)

k=0 k dtk
that is P equivalent to equation (1.4.1), if ang only if the
- n
p( (c"lv3 (a; (x)) )1/3 , exp(-Jal (;é)dx) (c‘lv3 (a, (x) )) & ) transform
of equation (1.4.1) is a constant coefficient differential eguation

of the form of equation (1.4.18).

Proof: The sufficiency is obvious from the definition of P

equivalent. The necessity follows directly from the fact that the
l1-ny\

-1 173 -1 %
P} |C Vs(ai(x))) ’ exp(— al(x)dx)(c V3(ai(x)) transform
of equation (1.4.1) is a canonical transform of equation (1.4.1).
In fact it is
k

d A
b (t) — z(t) = 0, (b, (t) = 1) ,
) n-k dtk 0

n

n
(1.4.19) ¥ (k

k=0
where the bk(t)'s are absolute invariants of equation (1.4.1)

given by

-n-1

n-s n-s-k

(1.4.20) b___(t) = tn - )} (c'lv3 (ai(x))] ¢ 1 1 a, (x)
exp (~[a, (x)ax) k=0 j=0
5! k-3,s: [, (a, )] 73
I = T '3'5'(C Vatay X )

1-n (3)
. (exp(-Jal(x)dx)(C-1V3'(ai(")’)) ° )

for s =0,1, ..., n . Now suppose that there is a P(u(x), v(x))
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transform of equation (1.4.1) that is a constant coefficient differential
equation of the form of equation (1.4.18). That is, we are supposing
that equation (1.4.18) is P equivalent to equation (1.4.1). By
definition of absolute invariant, definition (1.4.5); we have that

for each s =0, 1, ..., n, the function bn_s(t) ¢+ given by

equation (1.4.20), has the same value as the same function formed

“from the constant coefficients ofleQHAtibn 61.4:18). That is, we

have that
-n-1
. i R ——— n-s n-s-k c, s!
(1.4.21) bn—S (t) = "L—S—)'— I(C' V3 (Ci)) 5 z Z k!5! (];_k_')l
exp(—Jcldt) k=0 j=0 I 7"

(3)

(exp.(—jcldt) (c'l.v3 (ci)]—_;’_

for s =0,1, ..., n, where the «ci's are the constant coefficients

o 1
. ¢t(n-kfj's;(c 1Va(ci)) /3

t

of equation (1.4.18). The integrations and differentiations in the
right hand side of equation (1.4.21) are now with respect to t
since the independent variable of equation (1.4.18) is ¢t .

Since the ci's are constants and

ay

) , 5 (e )(1) d

3
N = -— - + 2
Vstcl) (cl)t 2t 2c1(c1) 2(c3 30102 cl) '

we have that

V3'(ci) = C o



-26—

where c¢ 1is a constant. In Chapter 4 we will show that our
assumption that V,(a;(x)) is non-vanishing on [a, b] guarantees
that this constant ¢ is non-zero, hence we can write

Vg (ai (x))

(1.4.22) —_—=

C
= =D
C c !

where D is a non-zero constant. In Chapter 2 we will show that

c k=m
¢t(kl m; c) =

0 otherwise ,

where ¢ 1is a constant. 7Using this equation we obtain
DS/3 j=n-s -k
. 1,3
(1.4.23) ¢t(n -k -3, s:;D ) =

0 otherwise .

Using equations (1.4.22) and (1.4.23) in equation (1.4.21) we

obtain
-1 e 1 -1 (n-s-k)
e _ s
b - (t) = exp( c dt)D 6 Z =S1e b /3 exp(— c dt)D 6 )
n-s 1 k k 1
k=0
t
for s =0,1, ..., n . Since ¢ 1is a constant we find that
l-n (n-s-k) 1l -n
(éxp(—Jcldt)D 6 ) =D 6 (—cl)n_s_kexp(—Jcldt) v
t

hence
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S ~ n
n—s—kD 3

=S
(1.4.24) b___(£) = kZO (_“ks c, (-¢ ) , s§=0,1, ..., n .

By equation (1.4.24) it is clear that bn— (t) is a constant for

s=0,1, ..., n . To be done we need only show that b, (t) =1 .

This follows immediately from equation (1.4.24) since e, = 1.
Q.E.D.

Halphen_[19] and Chiellini [11] -stated Theorem (1.4.2) in
roughly the following manner.

Necessary and sufficient conditions that equation (1.4.1) can
be transformed into a constant coefficient differential equation
are that the coefficients of its canonical transform, which are
absolute invariants of_equation'(l.4.1), are constants.

As an example coﬁsider the differential eqﬁatiOn (1.4.15),

which, as we saw in section (1.2), can be transformed into a

constant coefficient differential equation. For this differential

equation V3(ai(x)) = ~-12(1 - x)_6 , which does not wvanish on
[2, 3] . since al(x) of this equation is al(x) = 3x 5+ We
1 - x)

easily find that

exp(-Jaldx} = (1 - x)-‘3 exp(l_f x,

By Theorem (l1.4.2), with n = 3. and C = =12 , the
2

Pi(1 - x)- s (1 - x)—l‘exp( = )

1 - = transform of equation (1.4.15),

exp(l-i x )z(t) !

1

defined by gﬁ-: (1 - x)-'2 and y(x) = (1 - x)_

must be a constant coefficient'differential equation. In fact it
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is easily found to be

(3)
t

(1)

(z(v)) £

- 9(z(t)) + 6z(t) =0 .

This is no surprise since the defining equations §§-= (1 - x)_2
-3

l -x

and y(x) = (1 - x)—l exp( ]z(t) are the same defining equations
we used in section (1.2).

As we shall show later, if the order of the differential equation
(1.4.1) is n =3 and V3(ai(x)) =0 on [a, b] , then the problem
of solving equation (1.4.1) can be reduced to that of solving a second
order linear differential equation. Laguerre [25], Brioschi ([6], [7])
and Halphen ([19], [20]) were aware of this. Halphen also knew that
the theory of invariants could be extended to handle the other
exceptional cases to Theorem (l1.4.2) where n > 3 and V3(ai(x)),5 0
on [a, b] .

In Chapters 4 and 5 we will give a brief indication of how to
handle these cases.

Although geometric interpretation can be given to invariants,
we do not go into this here (see Wilczynski [41]). We only mention
that the n 1linearly independent solutions of equation (l1.4.1) can
be interpreted as homogeneous coordinates of a point in n - 1
dimensional space. When x 1is varied this point moves along a
curve in the n - 1 dimensional space that is referred to as the

integral curve of equation (1.4.1). Halphen ([19], [20]) called
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such a curve a "courbe attachée". It turns out (see Wilczynski
([41], p. 48-53)) that the invariants of equation (1.4.1), under
P(u(x), v(x)) transforms, characterize the projective properties
of the integral curve of equation (1.4.1), hence the maps that
define P(u(x), v(x)) transforms are said to form a projective

group.

"It is interesting to note that the main result of this thesis,
namely Theorem (1.4.2), was given by Halphen in his prize-winning
paper [19]. Although this paper was not published until later,
Halphen in }880 won the Ormay Prize (Grand Prix des Sciences
Mathématiqﬁes) of the Academy of Sciences in Paris for the results
it contained. Halphen's results [19] seem té have been misunderstood
and/or forgotten. Several authors, including Forsyth [18], Brioschi
[7], Fayet [16], Peyovitch [34] and Berkovic [3], have referred to
Halphen's work [19], yet they have failed to even give a statement
of Theorem (1.4.2). In the little known paper [11], Chiellini does
give a statement of Theorem (1.4.2). 1In [9] and [10] Chiellini
considers the special cases where n =3 and n = 4 . Halphen's

collected works [21] have been published in four volumes. Bibli-

ographical material on Halphen is available in [35].
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Chapter 2

A Generalization of the Chain Rule
of Elementary Calculus

(2.1) Introduction. As we have seen in Chapter 1, when the

differential equation

n k
d
(2.1.1) Y (2 a yx) =0, (a (x)=1),
=0 {k) n-k dxk 0

is transformed by means of

dt _

(2.1.2) = - u(x)

and

(2.1.3) yx) = vix)z(t) ,

we require a formula of the form

dk k dm
(2.1.4) 5= 1 ¢k, m ux)) —,

dx m=0 dt
or more generally one of the form

k o m

d d
(2.1.5) %= z ¢k, m; u(x)) @ -

dx m=0 dt

In this chapter we study in some detail the properties of the
function ¢(k, m; u(x)) . We will prove a number of results,
concerning the ¢(k, m; u(x)) functions, that are not only of
interest in their own right but also have application in proving

invariance results.
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(2.2) schldémilch's Formula. In 1858 Schldmilch [39] showed

that for 0<m< k<n

Kk .
. d
hm—?(uX+p)-tmnm,
p+0 dp

(2.2.1) o (k, m; u(x)) = (i) "

:x—t = u(x) . We will call equation (2.2.1) Schl®milch's

Formula. We now prove that Schldmilch's Formula is true using

where

“Schldmilch's origi;al ?roof.

Theorem (2.2.1). Let n be a positive integer and let k

be such that 0 <k <n . If %§t= u(x) where u(x) e-Cn-l[a; b]

and u(x) does not vanish on [a, b] then for all x ¢ [a, b]

k k k m
L= ) om0 uim e+ o) - ee)™

dx m=0 o0 dp dt

Proof: Let y(t(x)) be any function of t(x) where %§-= u(x)

and y(t(x)) € C"[a, b] . By the usual chain rule of elementary

calculus we have

adxz( t) _ gx_tég_éz_)_ = u(x) (y(t))él)

Similarily we find that

(2)

(2) + @) yen

e = @ey) P

(1)

(y(t))

and

(1)

(1)
(y(£))

(2)
t

(3)

N P = @e) @

+ 3u(x) (u(x))

+ )’ e Y

(y (£))

It is easy to show by mathematical induction on k that
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k
.22 ™ = ¥ @nT ak, moue) gen™
m=0
where A(k, m; u(x)) is a function only of (u(x)) ) ’
£=0,1, ..., k -1 . Clearly all the A(k, m; u(x))'s are

independent of y(t) , hence we can specify a convenient y(t) in
order to determine them. By letting y(t) = tk in equation (2.2.2)

we obtain

k) k -
) = ¥ A, m; ulx)) (i) &

m=0

(2.2.3) (

Since (t(x + O))k) ) = ((t(x + O))k]:k) and ((t(x + p))k)(k)

is continuous by hypothesis, we have for x ¢ [a, b] that

(k (k)
(ceen®) o [ceox + p))k)p .
p=0
Letting t(x + p) = H + t(x) we obtain
(k) (k)
[een™ ) = @+ cen®))
p=0
k - _ (k)
= I (o) 5" can® m)
m=0 e p=0
k _ (k)
= 1 (5] wen e .
m=0 P lo=0
that is
(2.2.4) ((t(x))k)(k) = ]f (k]cux))k'mcn‘“) wo
| m=0 m P p=0
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Comparing equations (2.2.3) and (2.2.4) we obtain

m_ (k)
g

Ak, m; u(x))
p=0

dk m
1im = (t{x + p) = t(x)) ,
p>0 dp

where §§-= ulx) and 0<m<k<n.

Q.E.D.
Equation (2.2.1) follows immediately from Theorem (2.2.1).
Jordan ([22], p. 31) gives a proof of Schldmilch's formula
that is similar to the one we have given. The s index of summation
in Jordan's equation (8) ([22], p. 32) should only run up to n .
In that which follows, equation (2.1.5), rather than equation
(2.1.4), will be taken as the definition of ¢(k, m; u(x)). It is

obvious from the proof of Theorem (2.2.1) that we have
0 m> k

(2.2.5)  ¢(k, m; u(x)) = k

mt) "} 1im —‘-ii—' (tlx +p) - txN™ o

p->0 dp

A
g

(2.3) Faa de Bruno's Formula. We now find some alternate

expressions for the function ¢(k, m; u(x)) . The following lemma
was proven by Forsyth [18] under the more restrictive condition

that u({x) is infinitely differentiable.

IA
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Lemma (2.3.1). Let n be a positive integer and let k be

such that 0< k< n . If u(x) is a non-vanishing function on
n-1 dt
[a, b] such that u(x) ¢ C [a, b] and = - u(x) for x ¢ [a, b] ,

then

-1
(2.3.1) m! (k!) ¢(k, m; u(x)) = (coefficient of pk in
n

i m
> P (i)
(izl o (e ) ) .
Proof: Since u(x) € Cn-l[a, b] we have that t(x) € Cn[a, b] .

Letting x + p € [a, b] we use Taylor's series with Lagrange's

form of the remainder to expand t(x + p) about p = 0 . We obtain

n-1 k n
tx+ o) = ] &5 [teer o) +%T(ct(x+p>)“"
k=0 p=0 : P |x+p=c

where ¢ 1is a constant between x and x + p . As in Theorem

(2.2.1) we have that

[t(x + p)}(k) = (t(x))(k) ‘
P |o=0 :
hence we obtain
ok x) . p" (n) (n)
tlx +p) - £(x) = ] o (£) T 4 Sp{(Elx + p)) (tx))
k=1 7 n P x+p=cC
By using the notation
. (i)
Plp) = ) i—, (t(x))
i=1 77
and
R(p) = (£(x + p))p(n) - e ™,

xX+p=c
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this equation becomes

- n
t(x +p) = t(x) = P(p) +f‘—!-RLp) .

P(p) 1is a polynomial of degree n and since t(x) € Cn[a, b] we
have that R(p) 1is n times continuously differentiable with

respect to p for x +p € [a, b] . Since m = 0 it follows that

I I AT b

p=0

‘1—0 Z [5){@en™ ) ([——-R(pﬂ ):j)) o

For 0 < j = n it is obvious that

=0 if i >o0-,

n il (3)
(p R(D), )p .

hence the only non-zero term in the right side of the above equation

is the one where i =0 and j = 0 . We have that

(k)

(k)
(2.3.2) (el +0) = et [e o)™ )

I}
o

p=0

(( z ﬂ;- (e ) )

P

(k)

= k!Ck(x) v
n i
k i)|™
where Ck(x) is the coefficient of »p in z %T'(t(x))(l)) .
l=l -

Equation (2.3.1) now follows immediately from equations (2.3.2) and
(2.2.5).

Q.E.D.

=0
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We now prove a result that we shall call Faa de Bruno's Formula.

It was first published by Faa de Bruno in 1855 (see [8]).

Theorem (2.3.1). (Faa de Bruno's Formula). Let n be a

positive integer and let k be such that 0< k< n . If ulx) is

a non-vanishing function on [a, b] such that u(x) € Cn—l[a, b] and

dt
> u(x) for x € [a, b] , then
r1 m=%k=20
(2.3.3) ¢(k, m; u(x)) =* 0 m>k or m=0, k>0
k k m,
| -1 i - -1 .
Tkt .l | (mi!)_) .| | ((u(x))(l D i) ) * otherwise.
\ i=1 i=1
The sum in equation (2.3.3) is taken over all partitionS'of ‘m such
that
, k
(2.3.4) ] m, =m
i=1 *
and
k
(2.3.5) Y} im, =k ,

i=1 .

where the mi's are integers greater than or equal to zero.

using the multinomial

noot ()™
Proof: Expanding ( ) %T-(t(x)) )
i=1 77
theorem ([2], p. 33) we find that

(= -1 % (i-1) -1\ _ k
Zm!(T—Tlmiq) T_T ((u(x)) (it) ) = (coefficient of o in
i=1 i=1
n i .. m
[ I 5 wean®) ) ,
i=1 il

where the sum in the left side of the above equation is over all
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n n
partitions of m such that Z mi =m, Z imi = k and m, >0
i=1 i=1
for all i . Since 0 £ k £ n it is obvious that m, = 0 for
i > k , hence the sum is over all partitions of m such that
equations (2.3.4) and (2.3.5) hold, where m, 2 0 for all i .

Using equation (2.3.1) we immediately obtain equation (2.3.3).

Q.E.D.

Jordan ([22]; é:—33,.523 giQes a proéf of Theorem (2.3.1)
assuming that wu(x) is infinitely differentiable. Jordan's
index of summation ([22], p. 34) should only run up to n .
When m > k equations (2.3.4) and (2.3.5) cannot be
satisfied by any partition {mi} of m where m, > 0 for all
i . We interpret thig aér é(k, m; u(x)) =0 for m>k .
Similarly we find that ¢(k, O; u(x)) = 0 for k > O . These
interprétations are consistent with Lemma (2.3.1) and equation

(2.2.5).

(2.4) Some Elementary Formulas for ¢(k, m; u(x)). We

have defined ¢(k, m; u(x)) by the formula

& F a
(2.4.1) %= L oG, m u) —¢,
dx k=0 dat

where

(2.4.2) u(x)

1
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and u(x) is a non-vanishing function on [a, b] such that
u(x) € Cn_l[a, b] . 1In this section we find, for specific values
of k and m , explicit formulas for ¢ (k, m; u(x)) .

Equations (2.2.5), (2.3.1l) and (2.3.3) give closed form
expressions for ¢(k, m; u(x)) . It is easy to show directly from

Fad de Bruno's Formula, equation (2.3.3), that for 0 < k < n

(2.4.3) ok, ki ulx)) = (wxN™,
(2.4.4) ¥k, k - 1 ut) = (5] @en* e,
(1),2 (2)

(2.4.5) ¢k, k - 2; ulx)) = 3(-’2) () 3+ (’;)(u(x))k'3(u(x))

and

(2.4.6) b, k= 35 ut) = 5] @) e @

(1) (2)

+ 10(?)(u(x))k—5(u(x)) (u(x))

_ 3
+ 15(2) e (e By .

-1
In formulas (2.4.4), (2.4.5) and (2.4.6) we define (=3j!) =0,

where 3j 1is a positive integer. This interpretation follows
naturally as is seen in the following derivation of formula (2.4.6).
To find ¢(k, k - 3; u(x)) from Faia de Bruno's Formula we let

m =%k - 3 in equation (2.3.3) and (2.3.4). Equation (2.3.4) becomes

K
(2.4.7) .Z m, =k -3
i=1
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while equation (2.3.5) is

3
(2.4.8) ] img =k .
i=1

Subtracting equation (2.4.7) from (2.4.8) we get

K
(2.4.9) } d-Lm =3,
i=2

since m 2 0 for all i we must have me=m = ...=m. =0,

hence equation (2.4.9) becomes

+ 3mu =3,

2

(2.4.10) m, + 2m3

while equations (2.4.7) and (2.4.8) become

(2.4.11) m +m +m +m =5k ~ 3
1 2 3 L
and
2.4. + + = .
(2.4.12) m1 + 2m2 3m3 4mu k

Since m, 2 0 for all i equation (2.4.10) shows that m, =1 or
mu =0 . If m, = 1 we see from egquation (2.4.10) that m, =m, = o,
hence using equation (2.4.11), or equation (2.4.12), we find that

m; =k - 4 . We have found one partition {mi} of k -3 to be

(2.4.13) m, = k -4, m, =m, = o, m = 1, m, = m6 = ...=m = 0
= = = = i z

We know that m, m6 .o m 0 and that if ml+ 1 then

m“ = 0 . When m, = 0 we again use the fact that m, 2 0 for all

i and we find from equation (2.4.10) that m, = 1 or m, = 0.
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When m =0 and my =1 equation (2.4.10) gives m, =1, hence
by equation (2.4.11), or equation (2.4.12), we find that m =k-5.

We have found a second partition {m;} of k-3 to be

(2.4.14) m

=k - 5, m2 = m3 =1, m‘+ = mS = L. = mk =0 .

When m, = 0 and m, = 0 we find, similarily to above, that a third

partition {mi} of k - 3 is
(2.4.15) m =k-6,m=3,m=m=...= m, =0 .

Clearly these three partitions {mi} of k - 3 are the only
partitions that satisfy equations (2.4.7) and (2.4.8) since m; 2 0]
for all i‘ and equation (2.4.9) must also hold. We sum equation
(2.3.3) over these partitions and find that ¢ (k, k - 3; u(x)) is
given by formula (2.4.6).

ﬁétting' (—j!)';1 = 0, where Jj 1is a positive integer, we
find from formula (2.4.6) that $(3, 0; u(x)) = 0 , which agrees
with equation”f2.3.3).v The interpretation that (,-j!)—1 = 0 for
positive integer - j amounts to excluding from the sum in equation
(2.3.3) all those partitions {mi} of m that do not satisfy the
condition m, 20 for all i .

As a further example consider ¢ (4, 1; u(x)) . The only

possible partition {mi} »m; 20 for all i, of 1 that satisfies

4 4

the equations Z m, =1 and z im, =4, is m_ =m_ =m_ = 0,
. 1 . 1 1 2 3
i=1 i=1

m =1 . Summing equation (2.3.3) over this partition we find

"
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3
$(4, 1; u(x)) = (u(x))( ) , which follows directly from formula

(2.4.6) on the interpretation that (-j'!)_1 = 0 for positive

integexr 3j .
The formulas (2.4.3), (2.4.4) and (2.4.5) are easy to verify

in the same way that formula (2.4.6) was verified. Equation (2.3.3)

can be used to find any ¢(k, m; u(x)) where m= 0, 0 < k £ n and

u(x) is-a non-vanishing fufictionh on [a, Bb] such that ulx) € Cﬁ;i[a; bik.
Let ¢ be a constant. By equation (2.3.3) we obtain that

1 m=%k=20
(2.4.16) ¢(k, m; c) = 0 m>k or m=0,k>0

’ . h i
c(l_l)(i{) ) otherwise ,

| k -1
Tk! T:l' (iniz)) TT

i=1

where the sum is over all partitions {mi} of m such that

(2.4.17)

|
[ur]

(2.4.18)

I~ Il b

P
=

and m, 2 0 for all i . Subtracting equation (2.4.17) from
equation (2.4.18) we have that

k
(2.4.19) I G-Lm =k -m.

i=2

Assuming that ¢(k, m; ¢) 2 0 , we see from equation (2.4.16) that

m, = 0 for i > 1 (since c is a constant). Equation (2.4.19)

now gives that m = k , hence using equation (2.4.17) we find that
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m, =k . Equation (2.4.16) now gives

ck m =%k
(2.4.20) ¢(k, m; c) =
0 otherwise .
Similarly we obtain that
ck m =k
¢t(k, m; c) =
-0 otherwise ,
where
'l m=k =0

¢t(k, m; .c) = < 0 m>k or m=0,k>0

: A e )™
‘Zk!(T_T-(mi!)) TT (ct' (i1) ) otherwise .
i=1

i=1
(i-1) at-l
In the last equation 'ct = —ﬁI:i-c and the summation is over
dat

all partitions {mi} of m such that equation (2.4.17) and

(2.4.18) hold.

(2.5) Some Convolution Type Equations Involving ¢(k, m; u(x)).

We now study in some detail the ¢ (k, m; u(x)) function defined

by equation (2.1.5).

The first result we wish to prove is a convolution type formula

that is satisfied by ¢(k, m; u(x)) .

Theorem (2.5.1). Let u(x) be a non-vanishing function on

[a, b] such that u(x) € Cn—l[a, b] . Let t = h(x) be any function

such that (t(x))(l) = (h(x))(l) = ﬁ(x) . Also let g(t) be a
non-vanishing function on T such that g(t) is n - 1 times

continuously differentiable with respect to t on T where
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T={t|t = hix) and x ¢ [a, b]} .

If s is any function of t such that '%%-= g(t) then for
0Lk <£n
k k m
d d
(2.5.1) = L ¢ komiog(e)) =,
dt m=0 ds
B, —. k k —— a_ - —~
d d
(2.5.2) =% = 1 ¢k, mi ux)ghx))) —¢ ,
dx m=0 ds
and

ke
(2.5.3) ¢ (k, m; ulx)g(hix))) = «(’,z ¢k, £; u(X))¢t(£, m; g(t)) ,
=0

where the subscript. t denotes that derivatives are to be taken with

respect to t rather than x .

Proof: Equation (2.5.1) follows immediately from the defining
equation (2.1.5) and equation (2.2.5).

it follows that

s —
= - u(x)gh(x)) .

It is easy to show from the hypothesis of the theorem that
u(x)gth(x)) € Cn—l[a, b] and that u(x)g(h(x)) does not vanish

on [a, b] . By equation (2.1.5) and (2.2.5) we obtain equation

(2.5.2).
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In a like manner we obtain

k k £
d d
%= 1 ok, & ue)) 5.
ax £=0 dat
d£
By using equation (2.5.1) to substitute for —7 in this equation
dat
we obtain
dk k £ o
= 1 ) el & ut)e W mi gle)) —5 -
ax~  £=0 m=0 ds
Using formula (A.1.4) to rearrange thé sums this is
& k ok &
== ) T etk £ ui)e (8, ms gle)) = .
dx m=0 £=m ds

By equation (2.2.5) ¢(£, m; u(x)) =0 if £ <m , similarily we

have ¢t(£, m; g(t)) =0 if £ <m , hence we obtain

dk k k ‘ dm'
5= 1 T ok, £ w8 m gle)) 5 .
ax m=0 {=0 ds

By comparing this equation with equation (2.5.2) we obtain equation

(2.5.3).

Q.E.D.

It is important to emphasize that for 0 < m < k

X oE - (-1} "
¢k, m; ulx)g(h(x))) = Zk!(ﬁ(mis)) TT ((ia) (u(x)g (h(x))) )
i=1 i=1

while

k Lk -1 (i-1)| i
¢p Uer m; g(t)) = Lkt T'T(mi.!)) TT [un Twen ™) .
i=1 i=1
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That is, the subscript t indicates that differentiation is with
respect to t .
Another convolution type formula that the function ¢(k, m; u(x))

satisfies is given in the following theorem.

Theorem (2.5.2). Let 0 <r <m<k<n where n is a

positive integer. _If u(x) .-is. a .non-vanishing function on --[a, b]

such that u(x) € Cn_l[a, b] , then for all xce¢ [a, b]
m 2 k
(2.5.4) [F]e, mi weo) = T [Sets mors wee)e ey x b))
, 3=0
‘Proof: Adopting the notation used in Theorem (2.2.1) we let
t{x + p) - t(x) = H .

By Schldmilch's Formula, equation (2.2.1), we obtain

(k)
)

(m - 2)ien)  Lin (5"

'(§)¢(k, m; u(x)) Ln

(m = o) te) t1im (@ THS &)
p>0 =

By Leibnitz's rule for product differentiation this is
m | A1 & k) mer (9) . ox (k-3)
(Fetr mi ) = (@ - oenTaim } (5] @D :
p~>0 j=0
which by equation (2.2.1) is precisely equation (2.5.4).

Q.E.D.
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Chapter 3

Transforming Nth Order Linear Differential Equations
be non-vanishing

Introduction. Let u(x)
Cn-l

(3.1)
[al b]

functions on
is a positive integer.

and n
transforming
n n dk
(3.1.1) Z(kkmk&)—?yu)=0, momyzl),
k=0 dx
by means of the equations
at _
(3.1.2) ax - u(x)
and
(3.1.3) yx) = vix)z(t) ,

results in the transformed equation

n n-£ n
)

3.1.4) } }
£=0 §=0 k=3j+L
As indicated in section (1.4) we wish to express equation (3.1.4) in

its normal form
t

(3.1.5)

and Vv (x)
[al b]. r V € Cvn[al b]

such that u(x) €
In section (1.3) we saw that

(z)an—k(x)¢(k' j o+ £; u(x))(jzzyv(x))

£) _

(3)
t

£)
(z(t))t

1)

]

0
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In section (3.2) we express equation (3.1.4) in the form of
equation (3.1.5) where the bn_k(t)'s are functions of only the
ai(x)‘s,‘u(x) ; v{X) and their derivatives with respect to x .
In section (3.3) we transform equation (3.1.1) by changing only
its dependent variable. That is, we let y(X) = v(X)y(x) . We

then find necessary and sufficient conditions so that the transformed

7equation is a constant coefficient differential equation. We also

show that if equation (3.l1.1) is transformed by means of the equation
yx) = exp(rJal(x)dx)§Tx) + then we obtain a transformed equation

that has the coefficient of the second highest order derivative of

.the dependent variable identically equal to zero. That is, we obtain

an equation.of the form z ( ) b (x) ——E-y(x) r Wwhere
blcx) = 0 . In section L3.4) we transform equation (3.1.1) by
changing its independent variable. That is, we let g§-= u(x) and
y(x) = z(t) . We then give necessary and<sufficient conditions so

that the transformed equatibn is a constant coefficient differential
equation. In section (3.5) we transform equation (3.1.1) by changing
its dependent variable, then in the resulting equation we transform
the independent variable. In section (3.6) we transform equation
(3.1.1) by changing its independent variable, then in the resulting
equation we transform the dependent variable. An identity between

the results of sections (3.2), (3.5) and (3.6) is shown to hold.
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In section (3.7) we show that equation (3.1.1) can be transformed

into an equation of the form

n
kgo ‘(i)bn_k(t) (z(t))ék) =0, (by(£) = 1, by (£) = b, (t) = 0) .

This form has applications relative to invariance theory. Notably
for n = 2 it means that every second order linear homogeneous

differential equation can be reduced to the equation

zen? =0 .

However to actually effect this reduction we must first find a

solution of the second order equation in question.

(3.2) simultaneously Transforming the Independent and
Dependent Variables.

Let u(x) and v(x) be non-vanishing functions on [a, b]
such that u(x) € Cn_l[a, b] , vix) € C%a, b] and n is a

positive integer. As in the previous section we wish to transform
(3.2.1) TP e wen® = o (a, (x) = 1)
e Zo k| n-k ; ‘ ' 0 ‘

by means of the equations

(3.2.2) g%= u (x)

and

(3.2.3) vi{x) = vix)z(t) ,
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to obtain

n
(3.2.4) kZO (ﬁ) bn_k(t)(z(t))ék) =0, (by (t) = 1)

By equation (3.1.4) equations (3.2.2) and (3.2.3) transform

equation (3.2.1) to

n
W _
(3.2.5) ZZO P _pt)(z(e)) =0, .
where
(3.2.6) -7 7 » : nem; J+n-m (3)
2.6) pp(e) = 1 T (gl e, senemi weo) [F700 e
j=0 k=j+n-m

By equationh(2.4.3):we have
$(n, n; ux)) = (@EN",

hence since ao(x) = 1 we see that
n
Py (t) = (u(x)) v(x)

Since u(x) and v(x) do not vanish on [a, b] neither does
(u(x))n(v(x)) . To have equation (3.2.5) take on the normal form
of equation (3.2.4) we need only let

=1

’

n n
b_(t) = pm(t)((u(xn v 1)

where pm(t) is given by equation (3.2.6). We have that
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m n

b_(t) = jzo k~j§n_m (E) a__ ()¢ (k, j+n-m; u(x))
o R T CTS RN ))(vmn‘“ :

By dropping the k index of sumation by n - m and then rearranging

the sums using formula (A.1.4) this equation becomes

-1 m
_ n n n
(3.2.7) by(®) = (e (2] 1 I COY N
k j+n-m (3)
+ 1 ptemem, genems wo) [ ey
j=0 ‘

We .wish to express the 'bm(t)ﬁs in terms of the ai(x)‘s ’
u(x) , v(x) and their derivatives with respect to x , hence we

wish to express the operator
k

} ¢ (k+n-m, j+n-m; u(x))
j=0 '

j+n-m dJ
n-m

in terms of an operator containing only derivatives with respect

to x . Towards this end in equation (2.5.4) we let

m>*>£+n-mr>n-m and k>k +n-m,
where the new k, m and n are as in equation (3.2.7) and 0 < £ < k .
Poing this we obtain

(£+n m)¢(k+n—m, L+n-m; u(x))

k+n-m
= ) (k+?—m]¢(j, £; u(x))$ (k+n-m-j, n-m; u(x)) .

3=0
4
After multiplying this equation through by (v(x))é ) we sum both

sides of the resulting equation from £ =0 to £ = k and use

equation (2.2.5) to obtain
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x . kK k
(3.2.8) KE (zzl_—_xx;m)ﬂlﬁn-m, £+n-m; u(x)) (v(x)) w )
=0

t £=0 j.-—..,e‘ 3

k+n-m)

. $(3, £ u(x))é(k+n-m-3, n-m; u(x))(v(x))“’

Using formula (A.l.4) to rearrande the sums in the right hand side

of equation (3.2.8) we obtain

E (k+n m)q)(:" £; u(x))¢(k+n-m-j; n-m; u(x)) (v(x)) (£)

X
R(3.2.8) = )
j=0 £=o\

where we have let R(3.2.8) stand for the right hand side of equation

(3.2.8). Using equations (2.1.5) and (2.2.5) we obtain.

k
R(3.2.8) = ) (kﬂj‘ m)¢(k+n—m—3, nem; u(x)) (vx)) 3

3=0

By reversing the order of summation we obtain

k .
R(3.2.8) = Z ( Ko m)¢(3+n-m. n-m; u(x)) (v(x)) (k=3)

Equation (3.2.8) now becomes

(3.2.9) )

Hrv1W

(J+n m) ¢ (k+n-m, j+n-m; u(x)) (v(x)) (J
( k+n (k-3)

m)¢(3+n—m, n-m; u(x)) (v(x))

ur~1w

r



-52-

Equation (3.2.9) expresses the operator

k . 3
Z ¢ (k+n-m, j+n-m; u(x))‘J:?mm _Q?
j=0 dt

in terms of an operator containing only derivatives with respect

to x as we wanted.
Using equation (3.2.9) in equation (3.2.7) we obtain
b_(t) = [ (ux))™ )\ F ) 2
o ( uo) V(X)(m))_ kZO jzo(km"“)

) ¢ Ganm, noms uo) v Fa o

.. k+n-m
j+n-m

By reversing the order of the k summation, then reversing the

order of the j summation and replacing m by n-s we obtain

n-s n-s-k

n -1 . N -1
(3.2.10) b___(t) = ((u(x)) v(x)) (n-s)! ) Y (k!j!(n-k-3) 1)
n-s . .
k=0 j=0

s a ()8! $n-k-3, 55 ulx)) (v P

If we express the ¢ function in equation (3.2.10) by
Schlémilch's formula, we obtain an expression for bn_s(t) that
is the same as the one used by Forsyth ([18], p. 389). Forsyth
derived his expression for bn_s(t) by another method; we shall
return to this later.

We now have that equation (3.2.1) transforms, by means of the
equations (3.2.2) and (3.2.3), into the normal form equation (3.2.4),
where the bi(t)'s are given by equation (3.2.10). Recalling section

(1.4) we see that equation (3.2.4) is the P(u(x), v(x)) transform of
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equation (3.2.1), defined by the equations (3.2.2) and (3.2.3).
Clearly the P(u(x), v{(x)) transform of equation (3.2.1l) was
obtained by simultaneously transforming its independent. and

dependent variables.

(3.3) Transforming the Dependent Variable. Let v(x) be

non-vanishing on [a, b] such that v(x) e Q?[a,_?] where n is

a positive integer. Transforming the equation

n
(3.3.1) L (3] px0 o™ =0, @w =D,

by means of the equation

(3.3.2) y(x) = vix)¥(x) ,
gives
Ii (n) a _ (x) (v(x)?(x))(k) =0,
k=0 k n-k
which is“

k

n k
(k=3) ,—,: (3)
Y (Mla o T [%lewn Fen 3 =0 .

By rearranging the sums of this equation using formula (A.l1.2) we
obtain

n n-j .
) ) 3 =0 .

jgo kZO ‘kzj) (k;j)an-k—j (x) (v(x))
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This equation can be written in the form

v ()
(3.3.3) Y b L en P =0,
j=0 7
where
n-j .
_ nyyn-j (k)
(3.3.4) Py () = kzo (J)( y )an_k_j (x) (vix)) " =0
We wish to express equation (3.3.3) in the normal form
(3.3.5) rzl (‘.‘)b 0 e P =0, (b, (x) = 1) .
j=0 \ J] n=J ' 0 ‘,

Equation (3.3.4) gives that po(x) = v(x) , which by hypothesis

is non-vanishing on [a, b] To obtain the normal form of equation

(3.3.5) from equation (3.3.3) we need only let

-1 .
Py (x)

By = (3] v

where thew pi(x)'s are given by equation (3.3.4). Doing this

we obtain

ne3d ) n-j -1 (x)
(3.3.6) b _.(x) = J ( )a s () )T v
n-j k=0 k n-k-j

Definition (3.3.1). The differential equation (3.3.5), with

its bi(x)'s given by equation (3.3.6), is called the S(v(x))

transform of equation (3.3.1).

Definition (3.3.2). The equation y(x) = v(x)¥(x) is called

the defining equation of the S(v(x)) transform of equation (3.3.1).
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Note that the S(v(x)) transform of equation (3.3.1l) is
obtained from equation (3.3.1) by transforming its dependent
variable by letting y(x) = v(x)y(x) .

When it is obvious what the defining equation of a S(v(x))
transform is, we may not always specify it.

The following theorem is an immediate consequence of definition

(3.3_.1).

Theorem (3.3.1). Let n be a positive integer and xe¢ [a, b] .

There exists a constant coefficient differential equation of the

form
n J
)) (n) Chei T 3 ¥{x) =0, (¢g = 1) ,
j=o '’ J ax

that is a S(v(x)) transform of equation (3.3.1), if and only if

there exists a v (x) such that

I
(o}

n=j _ -
(3.3.7) ZO (" ) 2y @ e T vy

where the ¢ .'s are constants.

Assuming that the conditions given by Theorem (3.3.1) hold,
we wish to determine v(x) . Letting 3j = n-1 inequation (3.3.7)

we find

a0 + wen wen ) =e
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where c¢

1 is some constant. Integrating this equation we find

that
v(ix) = C exp(-[al(X)dX)exp(CIX) '

where C 1is a non-zero constant. It is easy to see from equation
(3.3.7) that we can assume without loss of generality that C =1 ,

hence
v(ix) = exp(—]aldx)exp(clx) .

In the next chapter we show that the copstant ¢, can be taken to

be zero without loss of generality. That is, if there exists a
S(v(x)) transform of equation (3.3.1l) that is a constant coefficient
differential equation, then the defining equation of the transform

can be taken as
(3.3.8) y(x) = exp(-Jalde yvix) .

The transform defined by equation (3.3.8) is known as the Liouville
transform (see for example [27], p. 180).

We now show that the S(v(x)) transform of equation (3.3.1)
is the special case of the P(u(x), v(x)) transform of equation
(3.3.1) where u(x) =1 .

By equations (3.2.4) and (3.2.10) we see that the P(1, v(x))

dt

transform of equation (3.3.1), defined by ax - 1 and y(&) = vx)z(t)

is
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n
n (.J) _ =
(3.3.9) jgo (J’ b,y (z(e)) 7 =0, (by (t) = 1) ,
where
-1 Bzd n-j-k , .

(3.3.10) b__.(t) = (n-3) 1 (v(x)) ) % (k1£! (n=k=-£) 1)

n=J k=0 £=0 '

(£)

- a (x)3! 6 (n-k-£, j; 1) (v(x))
Since gﬁ-éni we find that

(3.3.11) t(x) =x+c,

‘where c¢ is a constant of integration. We also have that

] j
(3.3.12) a4 4a
at?  ax’

Using equation (2.4.20) we have that

1 j=k
¢(kr J; 1) =
0 j <k,
hence equation (3.3.10) reduces to
n-j .
. - . Loyl . -j-
b (t) = (=1 veN ™ T k-3 130 Ve 603t vy PTIT)
n-=j
k=0
By reversing the summation in this equation we obtain
(k)

n-j .
= n-j -1
(3.3.13) b _5(t) = kzo ( N )an_k_j (%) (v(x)) " (v(x))
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By equations (3.3.9), (3.3.11), (3.3.12) and (3.3.13) we have that

the P(1l, v(x)) transform of equation (3.3.1), defined by g£-= 1

and y(x) = v(x)z(t) , is
n 3

(3.3.14) ) (n] b . (t) Szx+c) =0,
Zo Vil n-3 ax)

where the bn_j(t)'s are given by equation (3.3.13).

Lemma (3.3.1). Let n be a positive integer and let vi(x)

be a non-vanishing function on [a, b] such that v(x) € Cn[a, b} .
The P(l, v(x)) transform of equation (3.3.1) is the same as the

S(v(x)) transform of equation (3.3.1).

Proof: The proof follows immediately by comparing equations
(3.3.5) and (3.3.14). The operators of these differential‘equations
are the same, hence it follows that they are the same differential
equations.

Q.E.D.

The S(exp(—fal(x)dx)) transform of equation (3.3.1) is

T (n (3)
jZO (J) bn..j (x) (Y(x)) =0,

where

(3.3.15) b5 (x) = :E: (n]:j]an_k_j (x)epraldx] (exp(-Jaldx” (k)
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We easily find from equation (3.3.15) that

by (x) = 1,
b1 (x) =0,
b, ®) = a,60) - (a N = (@ )
andw -
by (x) = aj(x) - 3a, (x)a, (x) + 2(q, x))° - (a, (x))(Z) .

We immediately have the following well-known result (see

[12], [41]).

Lemma (3.3.2). The S(exp‘-faldx)) transform
T (% p e = o
L ( j) ey X @ '

of equation (3.3.1), has the property that bj(x) = 1 and

b, (x) =0 on [a;, b] .

Definition (3.3.3). A differential equation

) (5) Pany @0 0 =0,
j=0 J J

is said to be in reduced normal form if bo(x) = 1 and bl(x) =0

In view of Lemma (3.3.1) and Lemma (3.3.2) we can reduce every
equation (3.3.1) to a P equivalent equation which is in reduced

normal form.



-60-

(3.4) Transforming the Independent Variable. Let u(x) be

Cn_l[a, b]

a non-vanishing function on [a, b] such that u(x) €
where n is a positive integer. Transforming the independent

variable of the equation

(3.4.1) rf“a x) yx)) & =0 (a, (x) = 1
.4. =0(k] n_k.X) y (x) = ’ a,(x) = Y
by means of the equations
dt  _

(3.4.2) ax - ux)
and
(3.4.3) yx) = z(t) ,
gives

: noon k . - (m)
(3.4.4) kzo (k)an_k(x) go ¢ (k, m; u(x))(z(t))t =0 .

Note that we have used equations (2.1.5) and (2.3.3) of Chapter 2

k k m
to replace the operator —gi- by z ¢(k, m; u(x)) 4 .’ The
m
dx m=0 dt

dependent variable y(x) has been replaced by z(t) to keep the
dependent variable of the transformed equation consistent with the
operator acting on it.
Rearranging the sums of equation (3.4.4) using formula (A.1.4)
we obtain the equation
n

(3.4.5) L B t6) (z(E)

(m)
m=0 t

=O,
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where
o n
(3.4.6) Poom® = 1 {%) 23 00 mi ut)) .

Using equation (2.4.3) we find that po(t) = (u(X))n , which by
hypothesis cannot vanish on [a, b] . We wish to express equation

(3.4.5) in the normal form

(3.4.7) Z (m) Pacm® cz(tn( ™ -0, (g (t) = 1) .

To obtain the normal form of equation (3.4.7) from equation (3.4.5)

we need only let

b (t). =
n--m

(m] @en®

p___(t) ,

where pn_m(t) is given by equation (3.4.6). Doing this we obtain

n
(3.4.8) b _(£) =.k§m(($}(u(x>)“ [ 2o G (ks ms )

k

Definition (3.4.1). Equation (3.4.7), where the bn_m(t)'s

are given by equation (3.4.8), is called the T{u(x)) transform

of equation (3.4.1).

Definition (3.4.2). The eguations g§-= u(x) and y(x) = z(t)

are called the defining equations of the T(u(x)) transform of

equation (3.4.1).
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Note that the T(u(x)) transform of equation (3.4.1) was
obtained by changing the independent variable of equation (3.4.1)
. dt _
on letting ax = u(x) .

When it is obvious what the defining equations of a T(u(x))

transform are, we may not always specify them.

Theorem (3.4.1). Let an(x) of equation (3.4.1) be non-vanishing

on [a, b] . There exists a T(u(x)) transform of equation (3.4.1)

that is a constant coefficient differential equation of the form

dm

n
n

z (m) cn—m

m=0 d

if and only if there exists a' u(x) such that

I
o]

n -1
(3.4.9) ] ((I‘;)(u(x))“) [ )20k (026 s mi w0
k=m n
m=20,1, ..., n-1,

where the cn_m's are constants. Moreover if a u(x) exists such
that the conditions given by equation (3.4.9) hold, then wu(x) can

1/n
be taken to be (an(x)) .

Proof: The necessary and sufficient conditions given by
equation (3.4.9) follow immediately from definition (3.4.1). We
now assume that the conditions given by equation (3.4.9) hold and
we show that u(x) can be taken as (an(xﬂl/n . Using equations

(3.4.8), (2.3.3) and (2.4.3) we find that the coefficient of z(t) ,
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in the T(u(x)) transform of equation (3.4.1), is (u(x))_nan(x) R

and that the coefficient of (z(t))én) is 1. Multiplying the

T(u(x)) transform of equation (3.4.1) through by (u(x))n we

obtain an equation of the form

o n (k)
Zo lk) b &)z " =0,
wﬁéfe Egkt) = ?ﬁ(x){ﬁ- and-_£n(t) = an(x) . Since we are assuming

that the conditions given by equation (3.4.9) hold, this differential
.equation must be proportional to a constant coefficient differential
equation with leading coefficient 1. It is now clear that we can
take ukx) to be (an(x))lv/n .
Q.E.D.

Note that Theorem (3.4.1) is just the normalized version of
Breuer and Gottlieb's [5] result given by Theorem (1.4.1).

Assuming that the conditions given by equation (3.4.9) hold,

we let m =1 in equation .(3.4.9) and we obtain

a, (x)
1 n~-1 -2 (1) _
) + = (u(x)) (u(x)) =cy
where c is a constant. If we assume that ¢, = 0 this equation

1 1

integrates to give

u(x) = exp( 1 f a Jal(x)dx) ’

where we have let the constant of integration be zero. In the next

exp (i%;-fal(x)dx})

transform of equation (3.4.1) are a type of invariant of equation

chapter we will show that the coefficients of the T

(3.4.1).



-64-

Lemma (3.4.1). It is always possible to find an equation

’Z‘ n (k) )
b (x) (?(X)) =0, (b,(x) = 1) ,
ko0 (k) ‘n-k 0

which is S equivalent to equation (3.4.1), that has the property

that b (x) is non-vanishing on [a, b] .

Proof: The S(v(x)) transform of equation (3.4.1) ‘is

T |n —ory (k) -
kzo (k) b ) F&) " =0, (by(x) = 1) ,
where
7K nx -1 (3)
b, (x) = jzo [ 5 |2aego 8 WO T )
hence
n _ 4
b_(x) = jzo HE x) (7)) ey

It is now obvious that we can always pick a v(x) such that bn(x)
is non-vanishing on [a, b] .
0.E.D.
The following example illustrates an application of: Lemma
(3.4.1) .

Consider the differential equation

(3.4.10) ¢y ;lc-y“) =0
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Since the coefficient of y(x) of equation (3.4.10) is identically
zero we cannot apply Theorem (3.4.1) to equation (3.4.10). However
the S(x) transform, defined by yv(x) = xy(x) , of edquation (3.4.10)
is

— 1 -
+ é-y(l) + 5 yx) =0.
x x

(3.4.11) 72

Applying theorem (3.4.1) to equation (3.4.11) we find that the

T(iJ transform, defined by %§-= i— and ¥(x) = z(t) , of eguation
(3.4.11) is
(e 2+ 2z vz =0 .

We have that a solution of equation (3.4.10) is

y(x) = xy(x)
= xz(t)
= x exp(At) ,
2 1 .
where A dis a root of A +2X +1 =0 and t = J;-dx =4&n x .

That is, a solution of equation (3.4.10) is given by

A+l
y(x) = x '

2
where A is a root of A + 2X +1 =0 .
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We now show that the T(u(x)) transform of equation (3.4.1)
is the special case of the P(u(x), v(x)) transform where v(x) = 1 .

The P(u(x), 1) transform of equation (3.4.1) is

n
(3.4.12) L |n) Pam® zen™ =0,y =),
m=0
where
-p oM -1
b _(t) = (n-m)! (u(x)) Y G- Ca,(x)mi¢(n-j, m; ulx)) .
n-m 320 3

By reversing the order of summation of this equation and then
raising the index of summation by m we obtain

n
(3.4.13) b _ (£) = ]

. ‘;)(u(X))n)_l(?)an_j(x)¢(j, m; u(x)) .
J=m

We have thét the P(u(x), 1) transform of equation (3.4.1l) is
equation (3.4.12) where the bn_m(t)'s are given by equation

(3.4.13).

Lemma (3.4.2). Let n be a positive integer and let u(x)

be a non-vanishing function on [a, b] such that u(x) eVCn—l[a, b] .
The P(u(x), 1) transform of equation (3.4.1) is the same as the

T(u(x)) transform of equation (3.4.1).

Proof: The proof follows immediately by comparing equations
(3.4.7) and (3.4.12). These equations are the same.

Q.E.D.
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(3.5) The T((u(x))oS(v(x)) Transform. We now show that the

P(u(x), v(x)) transform of

n
(k)
(3.5.1) Y (D) a ) (v =0
k=0 (k) n-k

can be decomposed into an S transform of the dependent

followed by a T transform of the independent variable.

Pu(x), vix)) = T(u(x))osv(x))
The S(v(x))( transform of equation (3.5.1) is
(3)

n
(3.5.2) Y [%)e Ly =0, (p, (x)
3=0 (3) n=j 0

where

(3.5.3) p. .(x) =
n-j
k=0

The T(u(x)) transform of equation (3.5.2) is

n
(3.5.4) mZO'(::I) b _ (t)(z (t.,)ém) -0, (by (t)

where

n-=m

By dropping the j

(3.5.3) we obtain

That is,

, (agx) = 1),

variable,

1)

n-j .
- -1 (k)
I (") 2nokey @ 00 T v

1)

n -1
b (t) = j’zm((;')(um))n) (3] Ppeg @8 Cr mi i)

index of summation by m and using equation
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n-m n- n-J -m
b (t) = Jzo L ((m)(u(x)) v(x)) (3+m)( )
. an_k_j_m(x)(V(x))(k)¢(j+m, mi u(x)) .

By rearranging the sums using formula (A.l.2) this gives

SREE A [ T I ey

(k-3)

. a x) (v(x)) ¥4 (G4m, m; uwx))

n-k-m

By reversing the order of the k summation and then reversing the

order of the j summation we obtain

-1 n-m n-m-k

(3.5.5) b___(t) = (n—m)!(v(x)(u(x))n) I 1 (ktit(n-k-3)1)°
n-m .
» k=0 3j=0
(3)

* ay (x)m! (vx)) ¢ (n-k-j, m; u(x))

Lemma (3.5.1). Let n be a positive integer and let u(x)

and v(x) both be non-vanishing functions on [a, b] such that
u(x) € Cn-l[a, b] and v(x) € C'[a, b] . The P(ulx), v(x))
transform of equation (3.5.1) is the same as the T(u(x))oS(v(x))

transform of equation (3.5.1).

\
Proof: The proof follows immediately by comparing equation

(3.2.4) with equation (3.5.4). These equations are the same.

Q.E.D.
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Lemma (3.5.1) is historically significant. Some authors have
used T(u(x))oS(v(x)) transforms to obtain their results while
others have used P(u(x), v(x)) transforms. For example Forsyth
[18] used the T(u(x))oS(v(x)) transform of equation (3.5.1) which
he derived in roughly the same way as we have. His ¢ function was

expressed in terms of Schldmilch's formula.

(3.6) The S(v(x))oT(u(x)) Transform. We now show that the

P(u(x), vi({x)) transform of

v (n oy ()
(3.6.1) I (k) a _ &N =0, (@ (x) =-1) ,
=0 - I

can be decomposed into a T transform of the independent variable,
followed by an S transform of the dependent variable. That is,
Pu(x), v(x)) = s(v(x))oT(u(x)) .

The T(u(x)) transform of equation (3.6.1) is

n
(3.6.2) I 2 epn®@en™ <o, (b, (£) = 1),
m=0 ' ’
where
o n n - n i
(3.6.3) p _.(t) ) ((m)(u(x)) {k) a (X (k, m; u(x)) .
k=m\ " n

As usual u(x) is non-vanishing on [a, b] , hence
't'=‘ju(x)dx = h(x) ,

‘where h(x) 1is a continuocus monotone increasing or decreasing

function. Obviously the inverse of t exists, that is
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We see that the S(v(x)) transform of equation (3.6.2) is the same

-1
as the S(v(h (t))) transform of equation (3.6.2). It is given by

n
(3.6.4) I 5] oy @en =0, wyw =1,
where
139 1 n-j : (m)
b_(t) = mzo[ 2 ) Py ) WD T e
Using equation (3.6.3) we obtain
no3 jyn
b .(t) =
e (8) mgo k—m+3((“‘ RICIEY v(x)) ("2 %)
(m)

. an_k(.x)cb(k, m+3; u(x))(v(x))t ’

which on dropping the k index of summation by Jj gives

n=j n-j -1 m+]
b ;) = mgo kgm((u(x” v(X)(n 3) (k+3)(
(m)

. an (x)<b(k+3, m+7; u(X))(V(x)) .

By rearranging the sum's using formula (A.l1.4) this is

n-j k '
3.6.5) b .(t) =7 J |wen™e] ® ™3
a3 k=0 m=0 (n') (k+3)(
ca L 6k, m ue)) v x) ™

n-

It is easy to see that equation (3.6.5) is the same as equation
(3.2.7). 1In exactly the same way equation (3.2.7) was shown to be

equation (3.2.10), we obtain that equation (3.6.5) is
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n-j n—g—k -1

(3.6.6) b .(t) =
n-=j

-1
(u(x))nv(x)) (n-3)! (k!m! (n-k-m) !)
k=0 m=0

© a (x)3! ¢ (n-k-m, j; u(X))(V(X))On) .

Lemma (3.6.1). Let n be a positive integer and let u(x)

and v(x) both be non-vanishing functions on [a, b] such that
u&)ecmih,ﬂ and v&)eCﬁa,M. The P(u(x), v(x))
transform of equation (3.6.1) is the same as the S(v(x))oT(u(x))

transform of equation (3.6.1).

Proof: The proof follows immediately by comparing equation
(3.2.4) with equation (3.6.4). These equations are the same since
the bn_j(t)'s of equation (3.6.4) are given by equation (3.6.6).

Q.E.D.

Some authors have used S(v(x))oT(u(x)) transforms to obtain
their results while others have used P(u(x), v(x)) transforms or
T(u(x))os(v(x)) transforms. For example Brioschi [6] used
P(u(x), v(x)) transforms while Laguerre [25] used S(v(x))oT(u(x))
transforms. As we saw earlier t = Iu(x)dx = h(x) , where h(x)
is a monotone increasing or decreasing function on [a, b] . The
inverse of t. exists and can be written as x =h (t) . We have
that v{x) = v(h_l(t)) . Rather than writing v(h"l(t)) Laguerre

[25] misleadingly writes v(t)
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(3.7) The Laguerre-Forsyth Form. In section (3.3) we showed

that every differential equation of the type we are considering can
be reduced to a P equivalent differential equation which is in
reduced normal form, that is bl(x) %= 0 . We now assume that this

reduction has been effected and we consider the equation

n
(3.7.1) k%Ji)bmkw”Y“”OQ==°' (b, (x) =1, b (x) = 0) .

We show that equation (3.7.1) can be transformed, by a P(u(x), v(x))
transformation, into an equation of the form

n
n oy (k) - -
(3.7.2) kgo (%) cpge @) @en ) =0, (G, (£) =1, ¢ (£) = e, (t)

t 0)

That is, we show that the coefficients of the second and third highest
order derivatives of the dependent variable can be made equal to zero.
Cockle [13] first discovered this result for the case n = 3 .
Laguerre [26] gave the general case and Forsyth [18] gave a clearer

presentation of it (see also Wilczynski [41]).

Definition (3.7.1). A differential equation
n .
k
) (n)cn_k(t)(z(t))é Y=o,
k=0 K
is said to be in Laguerre-Forsyth form if cott) 1 and

cl(t) = cz(t) =0 .
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The Pu(x), v(x)) transform of equation (3.7.1) is
n
(3.7.3) I (p] came®) zen ™ =0, (cy &) = 1) ,
k=0

where

lnsns;i

(3.7.4)  c___(t) = n—s)l((u(x)) v(x)) (j'k'(n-'-k)!)

—0 k-O

+ b, st 6 (n—j-k, s; ux)) (vix)) &,

1 and

1]

for s =0,1, ..., n . Using the facts that b0 (x)
b, (x) = 0, we apply equations (3.7.4), (2.4.3), (2.4.4), (2.4.5)

and (2.4.6) to find that

(3.7.5) Co(t) =1 ’

(3.7.6) <, (t) = E;—l—u_zu(l) + (uv)_lv(l) R

‘ 4y = o2 (n-2) (n=3) -4] ()% | n-2 -3 (2)
(3.7.7) cz(t) =u bz(x) + 7 U (u ) +—5-uu

+ u—zv_lv(z) + _____n;z u_3u(1)v(1)

and

3 (n-3) b (x)u—”u(l) + yié_u'uu(s)

‘ _ -3
(3.7.8) ca(t) = u b3(x) + 5 N

- 3
4 n=3) (n-4) -5 (1) (2)  (n-3) (n-4) (n-5) G(u(l))

2 ‘ 8

- - - - 2
3_(1) 3(n-3) (n-4) u Sv(l)(u(l)}
4v

a3 -2 ) 3n=3) - (1) (2) =3 -1 (3)
v 2v ‘
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If cl(t) = 0 we find from equation (3.7.6) that

G ly) _lmm )
2u

where as usual v(x) is not zero on [a, b] . Integrating this

equation we obtain'that
2
£n v(x) = £n{(u(x)) +c,
where ¢ 1is a constant of integration. We have that

l-n

(u(x)) 2 explc)

v (x)
1-n

clulx)) 2 ,

where C is a non-zero constant. From equation (3.7.4) it is
obvious that we can assume that C. = 1 without loss of generality.

We have that ¢, (t) =0 if and only if

1-n
(3.7.9) vx) = (ux) *
which is

-2
(3.7.10) ax) = (vt

Since bo(x) = 1 and bl(x) Z 0 the case for n =1 is trivial.

‘For mn =1 equation (3.7.1) is

R

-
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By equations (3.7.3), (3.7.5) and (3.7.6) the Pulx), v(x))

transform of gz-= 0 is
: X

2 4 @eove) ™ v

(l)z(t) =0 .

We want the coefficient of =z (t) to be zéro, hence we let v(x) be

any non-zero constant. This agrees with equation (3.7.9) which for

£.= l' gives vix) =1 .

For n> 1 cl(t) £ 0 if and only if equation (3.7.10) holds,

hence we find that if cl(t) = 0 then
-n-1
. 1 - ‘n- 1
(3.7.11) @) M = =2 woe) o wen @),
-n-1 “=2n )
(3.7.12) w2 —:2-[v n-1 (), n-l  n-1 (V(I)J ]
n-1 -n-1
and
“n-1 -2n
(3.7.13) u®® - -'—2[v n-1 () ) 3(a-l) -l (0 (2)
n-1 -n-1
-3n+1

- — 3
+ 2(n2 + n)(n - 1) 2 v sl [v(l)) ] .

For n > 1 cl(t) = 0 implies that equations (3.7.9) to (3.7.13)

hold. Assuming that cl(t) Z 0 these equations show that

4 . , §-2n
(3.7.14) c, (t) = vt b, (x) + (0 - n - 2) (-3(-1)7) (v(”] v ™t
5-n

n+l n-=1

(2)
3(n-1) ¥

+ A\'4

and
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6 -n+7 —n+7
=1 6 n-1 _(1) , _n+tl _ n-1 (3)
(3.7.15) c (t) =v b, (x) + ;:i-bz(x)v v * Sy Y v
~2n+8

+ %?—(n—3)(n+l)(n—l)—2v n-1 V(I)V(Z)

-3n+9 3
+ (n-1) "3 (n-2) (n-3) (n+1)v -l ()

We now find a u({x) and v(x) such that both cl(t) and
c, (t) are zero.

If cl(t) = 0 ‘then cz(t) is given by equation (3.7.14),
hence we wish to find a v(x) such that cz(t) given by equation

(3.7.14) is zero. As Forsyth [18] did, we make the substitution
. - ' n-1
(3.7.16) v(x) = (E(x)) .

where §&(x) 1is some non-vanishing function on [a, b] . From

equation (3.7.16) we easily obtain

(3.7.17) we) M = @1 ™ 2emn Y,

(2) n-2_1(2)

- 2
3.7.18) (wx) 2 = (1™ % @) L (n-1) (n-2)E" 3(5‘1’)

and

(3) n-2,_(3)

(3.7.19) (v(x)) = (n-1)E ‘& n-3. (1), (2)

+ 3(n-1) (n-2)¢ "E "¢

= 3
+ (=) m-2) (a-36"7 [ )7

Substituting equations (3.7.16), (3.7.17) and (3.7.18) into equation

(3.7.14) we easily find
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(3.7.20) ¢, (t) = (E(x))ubz(x) + 3 e @ mn P,

provided that cl(t) Z 0 . Since &(x) is non-vanishing on [a, b]

we see from equation (3.7.20) that cz(t) = 0 if and only if

(2)

) -1

(3.7.21) (& (x)) + 3(n+1) bz(x)i(x) =0

and cl(tlwi 0 .__ That is, ifmmcl(t)nE 0 we can make cgit) = 07 by
letting v(x) = (E(x))n_l , where §&(x) 1is any non-trivial solution

of (3.7.21) on [a, b] . Since cl(t) £ 0 if and only if equation

(3.7.10) holds, we need only let

(3.7.22) vix) = (€N
and

-2
(3.7.23) ux) = (Ex))"2,

0 , where £&(x) is any non-trivial

11

to make gl(t) = cz(t)

solution of (3.7.21) on [a, b]

Definition (3.7.2). Let £(x) be a non-trivial solution of

equation (3.7.21) on [a, b] . The P((g(x))—z, (g(x))n—l) transform

of equation (3.7.1) is called the Laguerre-Forsyth transform of

equation (3.7.1).
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Theorem (3.7.1). Let the order of the differential equation

(3.7.1) be greater than 1. If &(x) is a solution of the differential

equation

Yo 2o e =0,

(2
(Ex))+ == b,

such that £(x) does not vanish on [a, b] and E(x) € C'[a, b] ,
then the Laguerre-Forsyth transform of equation (3.7.1) is a

differential equation having the Laguerre-Forsyth form.

Proof: The proof follows immediately from the definition of
Laguerre-Forsyth form, definition (3.7.1).
Q.E.D.
We now prove the following theorem which was done by Combescure

[15] for the case n = 3 .

Theorem (3.7.2). ILet n > 1 and let u(x) and v(x) be non-

vanishing functions on [a, b] such that u(x) € Cn-l[a, b] and

vix) € Cn[a, b] . Moreover let u(x) and v(x) be related by
-2

(v (x))*?

Il

(3.7.24) u(x)

The P(u(x), v(x)) transform of equation (3.7.1) is given by the

equations (3.7.3) and (3.7.4), where in particular we have
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cl(t) =0
4 -1 » 6-2n 5-n
_ .n=1 v 12 2__ 1) n-1 n+l (2)_n-1
cz(t) =V bz(X) + (~3(n 1) ) (n"=n 2)(V ) v HEYCS T
and
5
_3 M _ 13 ay _
(3.7.25) o, () =3 (e, en ) - v (2 (b, (x)) b3(X), .

Proof: Since eq;;tion’(3.7.24) holds, the P(u(x), v(x))
transform of equation (3.7.1) has cl(t) =0, and cz(t) and
c3(t) are given by equations (3.7.14) and (3.7.15) respectively.
It remains to show that c3(t) is given by equation (3.7.25).

Differentiating equation (3.7.14) with respect to x we find that

4 5-n
(c, (£)) 1) _ ol (b, Y+ a@-nv™t v(”b2 (x)
7-3n
L8722 ey Ty P (V(1))3
6-2n

5-n
+ n+l vn—l
3 (n-1)

v(s) - (n—l)—z(n—3)(n+l)v n-1 v(l)v(Z)

Using this equation we express equation (3.7.15) as
2 4

4
_ n-113 (1) _ 3 n-1 (1) n-1
ca(t) = v [2 (cz(t)) 5 v (bz(x)) + v ba(x)} .

(1)

Recalling that (t(x)) = u(x) , equation (3.7.24) gives
-2
1 -1
(ke P =™

hence we easily find that

5 _
(1) _ vn—-l
t

=3 3 ) _
Ca(t) =3 (cz(t)) 5 (bz(X)) batx)

Q.E.D.
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In view of Theorem (3.7.1) an immediate corollary to' Theorem

(3.7.2) is the following.

Corollary. Let n > 1 and let &(x) be any solution of the

differential equation

(2)

Ex) 2+ 3(n+1>‘1b2(x>£(x) =0,

such that £(x) does not vanish on [a, b] and £(x) ¢ C"[a, b] .
The Laguerre-Forsyth transform of equation (3.7.1) is given by

-2
equations (3.7.3) and (3.7.4) with u({x) = (£(x)) and

v(x) = (E(x))n—l . In particular we have

cl(t) = cz(t) =0

and

(1)

6
cy(e) = =(E6)” (5 (o, ) - b)) .

For n = 2 the above corollary can be stated as the following

theorem which was originally given by Laguerre [25].

Theorem (3.7.3). Let &(x) be any solution of

(2)

(E(x)) + Db, x)E{x) =0,

such that E(x) does not vanish on [a, b] and £(x) €'C2[a, b] .

The Laguerre-Forsyth transform, with n = 2 , of the equation
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(2) + b (x)y(x) =0

(3.7.26) (y (x))
2

is

(Z(t))éz) =0 .

Consider an arbitrary second order differential equation

- 2 .. - SRR - —
k=0

By Lemma (3.3.2), equation (3.7.27) is reduced, by the transformation

yx) = exp(—Jal(x)dx)§1x) , to an equivalent equation of the form

(3.7.28) '3'{'(2)(x) + b, (x)¥(x) =0 .

We also have that y(x) of equation (3.7.27) is connected to ¥ (x)

of equation (3.7.28) by

(3.7.29) yv({x) = exp(—[al(x)dx)YTX) .

Suppose that a non-trivial solution yl(x) of equation (3.7.27) is

known. By equation (3.7.29) a non-trivial solution E£{(x) of equation

(3.7.28) is
(3.7.30) E(x) = exp(Jal(x)dx)yl(x) .

It follows from Theorem (3.7.3) and the definition of Laguerre-

that the solutions of equation

2
(3.7.28) are related to those of (z(t))é ) o .,

Forsyth transform (for n = 2) ,
by ¥(x) = £(x)z(t)
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-2
where t = J(E(x)) dx . Two linearly independent solutions of

2 .
(z(t))é ) 0 are ¢ and c,t , where c; and c, are arbitrary

non-zero constants, hence the general solution of equation (3.7.28)

is

yix) = £x)z(t)

€ (x) (c;+c,t)

=2
cl«E(X) + czi (x) J(E(x)) dax .

Using this equation in equation (3.7.29) we find that the general

solution of equation (3.7.27) is

¥ (x) exp(-Ja1 (x)dx)[clg(x) + c2£<x)J(£(x))'2dx] :
By equation (3.7.30) this is

v (x) ="cly1(x) + czyl(xijexp(—ZJal(x)dX)(yl(x))-zdx .

We have proven the following theorem.

Theorem (3.7.4). Let yl(x) be a non-trivial solution of
equation (3.7.27), then a second linearly independent solution of

s

equation (3.7.27) is
yz(x) = yl(x)Jexp(-ZJal(x)dx)(yl(x))-zdx .

Remark. Theorem (3.7.4) is a well known result (see for

example Ross [37] , p. 91).
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Chapter 4

Theory of Invariants

(4.1) 1Introduction. This chapter is a prelude to the next

chapter where we find a canonical transform (see definition (1.4.6))

for the equation
k
(4.1.1) ( | 2y &) ——k-y(X) ;L (apx) = 1) .
- - "~ k=0

In sections (4.2) and (4.3) we find semi-canonical S(v(x))
and T(u(x)) transforms of equation (4.1.1). That is, we find
canonical transforms for the special cases where only the dependent
variable, or independent variable is transformed. In section (4.4)
we show that the function Vs(ai(x)) , mentioned in section (1.4),
obeys a certain invariance relation. This invariance relation will

enable us to find the canonical transform in Chapter 5.

(4.2) 1Invariants Under Changes of the Dependént Variable. 1In

section (3.3) we saw that the S(v(x)) transform of

&
(4.2.1) ( ) (x) ——"-y(x) =0, (ao(x) 1),
X
is
(4.2.2) ( ) b__ (x) (y(x))( D Z g, (b, (x) = 1) ,
wherg
(4.2.3) b &) = ( 3) (x)v_lv(k) .
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We also saw by Lemma (3.3.1) that the S(v(x)) transform of

equation (4.2.1) is the special case of the P(u(x), vi(x)) transform
of equation (4.2.1) where u(x) = 1 . By definition (1.4.3) every
equation that is a S(v(x)) transform of equation (4.2.1) is P

equivalent to equation (4.2.1).

Definition (4.2.1). Any equation

n
n — (k) - =
kgo (%) Pa ) @™ =0, (bg (x) = 1) ,

that is a S(v(x)) transform of equation (4.2.1), is called S

equivalent to equation (4.2.1).

Note that every equation that is S equivalent to equation
(4.2.1) is obtainable from equation (4.2.1) by transforming the
dependent variable of equation (4.2.1), by means of a transform of
the form y(x) = v(x)y(x) .

Recalling equation (1.4.12) of definition (1.4.4) we have that

M is the set of all matrices of the form

ao(x) al(x) o an(x)
dao(x) dal(x) dan(x)
< ‘dx dx te dx
al
— a_. (x) = . . .
axt J
(n+l) X (n+1) .
dnao (x) a"a (x)
n
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We now make the following definition.

Definition (4.2.2). Let v{(x) be an arbitrary non-vanishing

function on [a, b] such that v(x) ¢ C'[a, b] . Let I be a

map from M to the set of all complex valued functions with domain

[a, b] . Let aj(x), j=0,1, ..., n, be the coefficients of
equation (4.2.1) and let _bj(x), j-= 0, 1, ~.s;7—h ,~ be the coefficients’
of the S(v(x)) transform of equation (4.2.1). If for all x € [a, b]

and for all v(x) as defined above we have the identity

i i
1| |-3+ a. (x) = 1|2 b, %) .
_ (n+1) % (n+1) ' (n+1)x (n+1)

then the function I is called an absolute S semi-invariant of

equation (4.2.1).

From this definition we see that an absolute S semi-invariant
of equation (4.2.1j is a function of the coefficients ai(x) of
equation (4.2.1) and their derivatives with respect to x . This
function has the property that for all x ¢ [a, b] it has the same
value as the same function formed from the coefficients of any
arbitrary equation which is S equivalent to equation (4.2.1).

An absolute S semi-invariant is a function that is invariant only
with respect to changes of the dependent variable, hence the prefix

"semi" (see [17], [26], [34] and [41]).



-86-

Definition (4.2.3). A differential equation

n
(4.2.4) ! (p)epa@@en® -0,  wmim=zv,
k=0

that is S equivalent to equation (4.2.1), is called a semi-canonical

S transform of equation (4.2.1) if each bi(x) of equation (4.2.4)
is an absolute S semi-invariant of equation (4.2.1).

A semi-canonical S transform of equation (4.2.1) is an
equation that is obtainable from equation (4.2.1) by transforming
only its dependent variable.

We now prove the follpwing theorem originally done by Cockle
[12] in 1870 (see also [4], [26], [28], [32], [38] and [41]). That
is, we show that the S(exp[—Jal(x)dx)) transform of equation (4.2.1)
is a semi-canonical S transform of equation (4.2.1). First we
make a comment about constants of integration. If, for example,
al(x) = x , then the S(exp(-Jal(x)dx)} = S(exp{-Jx dx)) transform

of equation (4.2.1) is defined by

y(x) = exp -Jal (x) ax) ¥ 6x)

= exp —Jx dx)?Yx)

2
= exp|- %;'—>c)?1x) ’
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where ¢ is a constant of integration. We always take the constant
of integration ¢ , that stems from integrating al(x) with respect
to x , to be zero. That is, in the above example we have

2
yx) = expl- x? ¥x) .

Taking the constant of integration to be zero results in no loss of

generality since we are only interested in finding one particular

semi-canonical S transform.

Theorem (4.2.1). Let al(x) of equation (4.2.1) be non-

vanishing on [a, b] . The s exp{djal(x)dx}) transform of equation

(4.2.1) is a semi-canonical S transform of equation (4.2.1).

Proof: Let the defining equation of the S(exp(-JaI(x)dx))

transform of equation (4.2.1) be
(4.2.5) y(x) = exp(—Jal(x)dx)?Tx) .

Note that we are taking the constant of integration, that stems froﬁ

integrating altx) with respect to x , to be zero.

The S exp(-jal(x)dx)) transform of equation (4.2.1) is
E n dj
(4.2.6) P (x) —zy&x) =0, (byx) = 1) ,
3=0 (J) n=J dxj

where
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(k)

n-j .
_ n-3
(4.2.7) b G0 = kzo( y )an_k_j (x) exp

Jal(x)dX) exp(—Jal(X)dx))

Each bn—j(x) is a function of the aj(x)'s and their derivatives

with respect to x , hence in the notation of definition (1.4.4)

we can write

i
= 4a , -
(4.2.8) bk(x) = Bk ( T aj(x)) , k=0,1,...,n .
(n+1)% (n+1)

To be finished we need to show for k = 0,1,...,n , that for all
di

——I-aj(X)) ‘

dx (n+1) x (n+1)

value as the same function formed from the coefficients of any

x € [a, b] the function B has the same

k

arbitrary equation which is S equivalent to equation (4.2.1).
Let vVv(x) be an arbitrary non-vanishing function on [a, b]
such that wv(x) ¢ Cn[a, b] . The 8S(v(x)) transform of equation
(4.2.1), defined by
yx) = vix)z(x) ,

is

n
(3) _
(4.2.9) FJ (%) e )z =0, (c.(x) = 1),
j_.o (]} n-=3} 0

where

) -1 (k)
(4.2.10) c .(x) = J ( a . L (x) (vE) Hve) Y.
n-j k=0 k n-k-j
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The coefficients cj(x) of equation (4.2.9) represent the coefficients

‘of any arbitrary equation that is S equivaleht to equation (4.2.1).
Hence to complete the proof we need to show that for all x € [a, b]

di
i

dx

i
——i‘c.(x) '

J
dx (n+1)x (n+1)

By

aj(x)

(4.2.11) Bk (
(n+l) X (n+1)

,_.__.k.-_‘o'l,.. O 2 DA

where the function B is defined by equations (4.2.7) and (4.2.8).

k

1
Clearly the B t——— c.(x))
KHlaxt 3 ) (n+1)% (n+l)

of the S(exp(—jcl(x)dx) transform of equation (4.2.9). Letting

's are just the coefficients

the defining equation of this transform be
z(x) = exp(-fcl(x)dx)zxx) ,

we find that the S

exp(~Jc1(x)dx}) transform of equation (4.2.9)

is

n
oy (3) -
(4.2.12) F [P)ae .x@Exn? =0, (d,(x) = 1) ,
520 (J) n-j 0

where

nS3 (k)
(4.2.13) 4 (x) = kzo ( n ) Sy (%) exP

cl(x)dx}

exp‘-Jcl(x)dx})

Note that we are taking the constant of integration, that stems
from integrating cl(x) with respect to x , to be zero. It is
important that this constant be taken to be zero since we took the

constant of integration when integrating al(x) to be zero. By
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equation (4.2.10) we have that
o, () = a () + (&) vix)) L)

Integrating this equation, taking the constant of integration to

be zero, we obtain that-
(4.2.14) cl(x) = Jal(x)dx + £n v(x) .

By equations (4.2.7), (4.2.8) and (4.2.13) we have as expected

that
di
(4.2.15) Bk ;;I cj(x)) = dk(x) R k=0,1,...,n .

(n+1)* (n+l)

To show that the required identity (4.2.11) is true, it suffices to

show that for all x ¢ {a, b]
bk(x) = dk(x) ’ k=0,,..., n,

(see equations (4.2.8) and (4.2.15)). That is, to be finished we

need only show that the differential equations (4.2.6) and (4.2.12)

are the same. First we show that they have the same linearly

.independent solutions.

From equation (4.2.5) we have that the n linearly independent

solutions of equation (4.2.6) are related to those of equation

(4.2.1) by

(4.2.16) yi(x) = exp(Jal(x)dx)yi(x) ’ i=1l,..., n.
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We also have that y{(x) = v{x)z(x) and ez(x) = exp(—fcl(x)dx)ilx) '

hence we easily find that
-1
(4.2.17) Em)=amU%bmkyy&H y&x) .

Making use of equation (4.2.14) we find from equation (4.2.17)
that the n linearly independent solutions of equation (4.2.12) are

“related to those of equation (4.2.1) by

(4.2.18) Z, %) = exp(jal(x)dx)yi(x) ' i=1,...,n.

Comparing equation (4.2.18) with equation (4.2.16) we see that the
differential equations (4.2.6) and (4.2.12) have the same n linearly
indepenéent solutions. We now use this fact to show that the dif-
ferential equations (4.2.6) and (4.2.12) are the same. Subtracting
equation (4.2.12) from equation (4.2.6) we obtain that
(4.2.19) nfl (".‘)(b (x) - d_ . (x) - z(x) =0,

j=0 J n-=j n-=j dxj
where we have let z(x) be the dependent variable of both the
differential equations (4.2.6) and (4.2.12). Since equations (4.2.6)
and (4.2.12) have the same n linearly independent solutions, call
them. zi(x), i=1,...,n, it is obvious that the differential
equation (4.2.19) also has the n linearly independent solutions
zi(x) , i=1,...,n , for xe¢[a, b] . However, equation (4.2.19)
is of order at most n - 1 , hence it can haveat most n - 1

linearly independent solutions on [a, b] . That is, we have a
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contradiction unless the left side of equation (4.2.19) is

identically zero, hence we have that bk(x) = dk(x), k=1,2,...,n

for all x € [a, b] . Recalling that bo(x) = do(x) 1 , we have

for all x € [a, b] that
b (x) =4, x) , k =0,1,...,n .

Q.E.D.
Note that we can alsc prove Theorem (4.2.1) by directly showing

that for all x ¢ [a, b]

o,1,...,n .

bk(x) = dk(x) ’ k

Let k be an arbitrary integer such that 0 < k< n . We
must show that for all x € [a, b]

L L)

(4.2.20) Z a (x) epra (x)dx
£=0 (f,) k=L 1

exp(—Jal(x)dx})

exp Hcl (x)dx) )m ,

_ ¥ (k
= zZo (ﬁ) ck_z(x)(exp(Jcl(x)dx)

where the ci(x)'s are given by equation (4.2.10). By equation

(4.2.14) we have that
exp(—Jcldx) = (w&) exp Hal () ax|

Using this equation and equation (4.2.10) in equation (4.2.20) it

follows that we need to show that
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(4.2.21) Lgo (z) ak_z(x)exp(-jal(x)dx)be)

)

K o Lo (Z)( j a_pg_ j(x)v(j)(v leXP( Ja (X)dx))
=0 j=

Denote the left hand side of equation (4.2.21) by L(4.2.21). We

have that

ﬁ(l;;.wz».zl‘)l Ry ( ) a_ z(x)(v v .exp( Ja (x)ax))“"

Using Leibnitz's rule for. product differentiationvthis is
(K j) (3)
L(4.2.21) = Z Z _ (X) ( exp —Ja (x)ax )
By rearranging the sums using formula (A.1.2) this is
X okg J £+5 i
3 @O -1 _ (3)
L(4.2.21) = Z (£+J}( ) Kelm J(x)v (v exp( Jal(x)dx))
oi’.o
Letting j > £ and £ + j we easily find that
k
L(4.2.21) = (E)( _ﬂ) a _p_ (x)v(J)(v exp( Ja (x)dx))(z)
£030 -3
This eguation shows that equation (4.2.21) is true. We are done

since k was arbitrary.
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Note that the coefficients b, (x) , given by equation (4.2.7),
are functions of the ai(x)'s of equation (4.2.1) and their derivative
with respect to x , that contain no integrations. That is, for
each k the term exp(Jal(x)dx)(eXP(—Jal(x)dx))(k) , of equation

(4.2.7), results in an expression containing no integrations. For

example if k = 1 the expression is just -al(x) .

Theorem (4.2.2). Let al(x) of equation (4.2.1) be non-
vanishing on [a, b] . There exists a constant coefficient differential
equation of the form
(4.2.22) ( ) e (—i—x—J—y(x) =0, (cg = 1)
that is S equivalent to equation (4.2.1), if and only if the
S(exp‘—Jal(x)dx)) transform of equation (4.2.1) is a constant

coefficient differential equation of the form of equation (4.2.22).

Proof: The sufficiency is obvious from the definition of S
equivalent. The necessity follows immediately from Theorem (4.2.1).

The S(expl—]al(x)dx)) transform of equation (4.2.1) is

n .
(4.2.23) ) (’J‘) b5 () e 3 o, (by(x) = 1) ,

where the bj(x)'s are absolute § semi-invariants of equation

(4.2.1) given by
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(k)

n-j n—j f
(4.2.24) b (x) = kzo ( . ) 3k (,x)exp(ra1 (x)dx)(exp -la, (x)dx})

j =0,1,...,n . Now suppose that there is a S(v(x)) transform of
equation- (4.2.1) that is a constant coefficient differential equation
‘of the form of equation (4.2.22). That is, we are supposing that
equation (4.2.22) is S .equivalent to equation (4.2.1). By the
definition of absolute. _S semi-invariant, definition -(4.2.1), we
have that the function bn_j(x) given by egquation (4.2.24) has the
same value as the same function formed from the constant coefficients

of equation (4.2.22). That is, we have that
n-j .
- n-j o _ (k)
(4.2.25) bn_j(x) Z ( K )cn_k_j(expjcldx)(exp Jcldx)) i
k=0
for j =0,1,...,n , where the ck's are the constant coefficients

of equation (4.2.22). Equation (4.2.25) easily reduces to

n-j .
- n-j — 1K .
bn_j(x) = kgo ( " ) cn-k-j( cl) ' 3 0,1,...,n .

From this equation it is obvious that \bn_j(x) is a constant for
j =0,1,...,n . Moreover since c0 = 1 we have that bo(x) = 1.

Q.E.D.

Theorem (4.2.3). Let al(x) of equation (4.2.1) be identically
zero on [a, b] . There exists a constant coefficient differential
equation, that is S equivalent to equation (4.2.1), if and only if

equation (4.2.1) is a constant coefficient differential equation.
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Proof: The sufficiency is obvious since equation (4.2.1) is
equivalent to itself. To prove the necessity we suppose that there
exists a constant coefficient differential equation that is S
equivalent to equation (4.2.1). That is, we suppose that there
exists a v(x) such that the S(v({x)) trgnsform of equation (4.2.1)
is a constant coefficient differential equation. By equation (3.3.7)

of Theorem (3.3.1) we must have that

_J .
n-=j -1 (k) .
4.2.26 . = s = 0,1,...,n-1 ,
( ) kzo{ ) Bngeg 00 N T v ) Cnns 3 n

where the c¢_ .'s are constants. Letting j = n - 1 in equation

(4.2.26) and recalling that al(x) = 0 by hypothesis, we have that

wenTwen M =6,

where c1 is some constant. If c1 = 0. then we are done since
v(x) must be a constant, which says that equation (4.2.1) must

have been a constant coefficient differential equation to start

with. If ¢, # 0 then

vix) =C exp(clx) ,

where C is a non-zero constant. It is easy to see from eguation
(4.2.26) that we can assume without loss of generality that C =1 ,

hence

(4.2.27) vx) = exp(clx) .
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Letting j = n - 2 in equation (4.2.6) we use equation (4.2.7)

and the fact that al(x) = 0 to obtain

2
<+ =
az(x) c, C, s
which is
(4.2.8) a, (x) = Eé ,
- 2 . . .
where c, 1s the constant c, = c1 . Letting j =n =3 1in

equation (4.2.6) we use equations (4.2.7) and (4.2.8), and the fact
that al(x) =0, to find that aa(x) is also a constant.
Continuing in this manner we find/that each aj(x) is a constant.

Q.E.D.

(4.3) Invariants Under Changes of the Independent Variable.

In section (3.4) we saw that the T(u(x)) transform of

(4.3.1) Z ( ) (%) —:—k—y(x) =0, (ag(x) = 1) ,
is

(4.3.2) mg (;) b (t) (z(t))ém) _ o, (b (t) =1,
where

(4.3.3) b (tx)) =
n-m

-1
n) (i) a _ (X ek, m; ulx)) .
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We also saw by Lemma (3.4.1) that the T(u(x)) transform of equation
(4.3.1) is the special case of the P(u(x), v(x)) transform of
equation (4.3.1) where v(x) = 1 . By definition (1.4.3) every
equation that is a T(u(x)) transform of equation (4.3.1) is P

equivalent to equation (4.3.1).

Definition (4.3.1). Any equation

(m)
t

n
I (a) Pan(® @ ™ =0, (by () = 1) ,
m=0 m

that is a T(u(x)) transform of equation (4.3.1), is called T
equivalent to equation (4.3.1).

Note that every equation that is T equivalent to equation
(4.3.1) is obtainable from equation (4.3.1) by transforming the
independent variable of equation (4.3.1), by means of a transform
of the form g§-= u(x) .

Recalling equation (1.4.12) of definition (1.4.4) we have that

M 'is the set of all matrices of the form

ao(x) al(x) .o an(x)
dao(x) dal(x) dan(x)
. dx dax cer ax

al

—7 2, (x) = . .

ax> .

(n+1) %X (n+1)
a"a (x) dnan(x)v
n
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We now make the following definition.

Definition (4.3.2). Let u(x) be an arbitrary non-vanishing

Cn_l[a, b] . Let I bea

function on [a, b] such that u(x) ¢
map from M to the set of all complex valued functions with domain

[a, b] . Let aj(x) , j=0,1,...,n , be the coefficients of )
equation (4.3.1) and let bj(t) + 3 =0,1,...,n , Dbe the coefficients
of the T(u(x)) transform of equation (4.3.1). If for all x € [a, b]

and for all wu(x) as defined above wé have the identity

i i
1 —d—.a-(x)) i —d-.—b.(t)) ,

i ™) v 1]
dax (p+1)x(n+l) dat (n+l)X (n+1)

where %§-= u(x) , then the function I is called an absolute T

semi-invariant of equation (4.3.1).

From this definition we see that an absolute T semi-invariant
of equation (4.3.1) is a function of the coefficients ai(x) of
equation (4.3.1) and their derivatives with respect to x . This
functionjhas the property that for all x € [a, b] it has the same
value as the same function formed from the coefficients of any
arbitrary equation which is T egquivalent to equation (4.3.1). An
absolute T semi-invariant function is a function that is invariant
only with respect to changes of the independent variable, hence the‘

3

prefix "semi" (see [17], [26], [34], [41]).
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Note that in the identity given in definition (4.3.2) the
derivatives in the left hand side of the identity are taken with
respect to x , while the derivatives in the right hand side are

taken with respect to t .

Definition (4.3.3). A differential equation

n
nt. (m)_ =
(4.3.4) _mzo (m) b (8)(z(t) =0, (b, (£) = 1) ,

that is T equivalent to equation (4.3.1), is called a semi-canonical

T transform of equation (4.3;1) if each b, (t) of (4.3.4) is an
absolute T semi-invariant of equation (4.3.1).

A semi-canonical T transform of equation (4.3.1) is an equation
that is obtainable from equation (4.3.1) by transforming only the
independent variable.

We now prove the following theorem done originally by Peyovitch
[34] in 1923 (see also [32]). The proof is similar to that of
Theorem (4.2.1). In the proof we will use the usual notation that
subscripting by a variable indicates the variable that differentiétion
is with respect to, if it is other than x . For example ¢r indicates
that the derivatives in Fad de Bruno's Formula, given by equation

(1.3.7), are to be taken with respect to T rather than x . The

2
1 -

theorem says that the T(exp( o Jal(x)dx)) transform of equation
(4.3.1) is a semi-canonical T transform of equation (4.3.1).

Before proving the theorem we make a comment about constants of
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integration. 1If, for example, al(x) =x and n = 3 then the
T(exp(—Jal(x)dx)) = T(éxp(—Jx dx,) transform of equation (4.3.1)

is defined by

% = .exp(—Ja'1 (x)dx)
= exp(—Jx dx’
-
= exp|- = - c) '

where ¢ 1is a constant of integration. We always take the constant
of integration ¢ , that stems from integrating al(x) with respect

to x , to be zero. That is, in the above example we have
2

D
2 )'

Taking the constant of integration to be zero results in no loss of

g..t—.=ex
ax P

generality since we are only interested in finding one particular

semi-canonical T transform.

Theorem (4.3.1). Let the order of equation (4.3.1) be greater

than one and let al(x) of equation (4.3.1) be non-vanishing on

2
l-n

[a, b] . The T(exp( Jal(x)dx)) transform of equation (4.3.10)

is a semi-canonical T transform of equation (4.3.1).
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Proof: Let the defining equations of the T exp(l f a Jal(x)dx))

transform of equation (4.3.1) be

2

(4.3.5) —

?é: exp( n Jal(x)d")

and
y(x) = §(t) .

Note that we are taking the constant of integration, that stems

from integrating al(x) with respect to x , to be zero.

The T(expll E = Ial(x)dx)

transform of equation (4.3.1) is

n .
(4.3.6) I [a) Pam® @™ =0, e =1,
m=0
where
° n 2 -1 n
(4.3.7) bn—m(t) - kzm((m)exP(l - n Jal(x)dx)) (k)an-k(x)

. ¢(k, m; exp(l f m Jal(x)dx))

Each bk(t) is a function of the ai(x)'s and their derivatives
with respect to x , hence in the notation of definition (1.4.4)

we can write

i
d
(4.3.8) bk(t) = Bk (;;I-aj(x)) ’ k=0,1,...,n .
(n+1)x (n+1)
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To be done we need to show for k = 0,1,...,n , that for all

x € [a, b] the function B, has the same

(n+l)x(n+1))
value as the same function formed from the coefficients of any

E&%“ﬂ

arbitrary equation whi¢h is T equivalent to equation (4.3.1).

Let u{(x) be an arbitrary non-vanishing function on [a, b]

such that u(x) € Cn—l[a, b] . The T(u(x)) transform, defined by
drt
ax T ™

and

yx) = z(t) ,

of equation (4.3.1) is

° Iny (m) -
(4.3.9) 2 epomm za@n ™ =0, (cp (1) = 1) ,
m=0

where
n -1
(4.3.10) c___ (1) = kzm((;)(u(x>)n)~ ‘E)an_k(x)¢(k. m; u(x)), m=0,1,...,n .

The coefficients cm(T) of equation (4.3.9) represent the coefficients
of any arbitrary equation that is T equivalent to equation (4.3.1).

To complete the proof we need to show that for all x € [a, b]

d't1

1
d
| | Bk (—- cj (T)) ,
(n+1) % (n+1) (n+1) X (n+l)

di
(4.3.11) Bk ;;I-aj(x)
k=0,1,...,n,

where g§-= u({x) and the function By is defined by equations

(4.3.7) and (4.3.8).
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Note that derivatives and integrations are taken with respect
to the independent variable of the function in guestion. Clearly

— c. (T) 's
{ { 3 } (n+1)x (n+l))
(exp(l —y CI(I)dI)) transform of equation (4.3.9). Letting the

are just the coefficients of the

defining equations of this transform be

ds _ 2 '
ar -~ exp(l ~ n Jcl de)
and

z(t) = Z(s) ,

1 E a ICI(T)GI)

we find that the T(expl transform of equation

(4.3.9) is given by

n
(4.3.12) ! (a) a_=@EEN™ =0, (d(s) = 1) ,
mn=

where
-1

( ;:)cn—k

(4.3.13) a _(s) = krgm([;)exp(fr_l . Icl (t)df) (1)

n-m
* ¢ {k m; exp( 2 Jc (T)dT))
3 SR 1-n)1

for m=0,...,n .

Note that we are taking the constant of integration, that stems
from integrating cl(T) with respect to T , to be zero. It is
important that this constant of integration be taken to be zero since
we took the constant of integration when integrating al(x) with
respect to x to be zero. By equations (4.3.10), (2.4.3) and (2.4.4)

we have that
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a, (x)
_ n-1 -2 (1)
Ql(T) = Tm + > (u(x)) “(u(x)) .

Recalling that g§-= u(x) we integrate cl(r) with respect to T ,

taking the constant of integration to be zero, to obtain

(4.3.14) J°1 (t)dr .Jcl (t)u(x)dx

nfl
2

}Hbﬂdxd+ An(u(x)) .

By equations (4.3.7), (4.3.8) and (4.3.13) we have as expected

that

i
(4.3.15) Bk (—gv-c.(r)) = dk(s) ' k=20,1,...,n .
art ' '
(n+1)x (n+1) |
To show that the required identity (4.3.11) is true, it suffices to

show that for all x ¢ [a, b]
bk(t) =dk(S) 7 k= 0,1,...,1’1 r

(see equations (4.3.8) and (4.3.15)). That is, to be finished we
need only show that the differential equations (4.3.6) and (4.3.12)
are the same. First we show that they have the same linearly
independent solutions.

Recall that y(x) = y(t) , hence the n linearly independent
solutions of equation (4.3.6) are related to those of equation (4.3.1)

by

(4.3.16) ?i(t) =y,;(x) , i=1l,...,n.



We also have that y(x) = z(t) and z(t) = Z(s) , hence we have

that y(x) = Z(s)

of equation (4.3.12) are related to those of equation (4.3.1) by
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. That is, the n 1linearly independent solutions

Ei(s) = yi(x) ’ i=1,...,n .

Comparing this equation with equation (4.3.16) we see that the

differential equations (4.3.6) and (4.3.12) have the same n

linearly independent solutions.

We now show that the independent variables t and s , of

equations (4.3.6)

. dt _
Since = u (x)

equation (4.3.14)

ds _dtds _
dx =~ dx 4t
That is,
(4.3.17)

ds

and (4.3.12) respectively, are related by —=—— =1

dt

ds _ (__2_.__
and aT exp 1 -1 Jcl(T)dT) we can use

to obtain

u(x)exp[l E n,(Jallx)dx + B ; 10 u(xd]

exp(l — Jal(x)dx) .

%« el 2y Ja c0a]

Comparing equation (4.3.17) with equation (4.3.5), that is
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we have that %% =1 , which is what we wanted to show.

We now show that the differential equations (4.3.6) and (4.3.12)

are the same. Since §§_= 1l , we have that

dt
& & |
——E'= % k=0,1,...,n
ds dat
k dk
Using the relation —% = "k We can subtract equation (4.3.12)
. ds dat .
from equation (4.3.6) obtaining
n-1 n am
(4.3.18) ) (m“bn_m(t) - dn_m.(s)] < z(x) =0,
m=0 dt

where we have let 2z(x) be the dependent variable of both the
differen£ial equations (4.3.6) and (4.3.12). Since equatioﬁs (4.3.6)
and (4.3.12) have the same n 1linearly ihdependent solutions, call
them zi(x) ,1i=1,...,n , it is obvious that the differential
equation (4.3.18) has the n linearly independent solutions

zi(x) s i=1,...,n, for all x € [a, b] . Equation (4.3.18) can
have at most n - 1 linearly.independent solutions for x € [é, b]
since it is of order at most n - 1 . We have a contradiction
unless equation (4.3.18) has bk(t) = dk(s) + k=1,...,n , for

x € [a, b] . That is, recalling that bo(t) =d (s) =1, we have

0
for all x € [a, b] that

bk(t(x)) = dk(s(T(x))) ’ k=20,1,...,n .

Q.E.D.
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Note that we can also prove Theorem (4.3.1) by directly showing

that for all x € [a, b]
b _(ex)) = dn_m(S(T(x))) ; m=0,1,...,n.

Let m be an arbitrary integer such that 0 <m < n . We

must show that for x ¢ [a, D]

(4.3.19) krgm ( (;}exp(-i—f—n-g Jal (x)dx) )_1 ( ;:)an-'-k(X)
. ¢(k, m; exp(l E = Ial (x)dx))

(:;}exp(l fnn J‘cl (T)d'r) )

. ¢T(k, m; exp(l f o jcl (T)d'l'}) '

1 ( ;)cn—k(T)

k=m

where the cy (t)'s are given by equation (4.3.10). By equation (4.3.14)

we have that

Jcl (t)dt = Jal (x)dx + n ; 1 £n u(x) .

Using this equation and equation (4.3.10) in equation (4.3.19) it

follows, after easy simplications, that we need to show that

I (Reantosfer m els2s o, 000

. ) - -1 .
kl?)an_j (x)d (3, k; u(x))d)T(k, m; u 1exp(2(1 - n) Jaldx)) .

IQM:’

{(atl=]

J
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Letting £ be an arbitrary integer such that m < £ < n , it suffices
to show that the coefficients of a g (x) of each side of this eq_uation

are equal. That is, it suffices to show that

ol L, m; exp(2(l - n)—ljaldx)}

n
= 1 ¢ ki ulx))e,

k=m

X, m; u_lexp(2(1 - n)—ljaldx)) .

By equation (2.2.5) ¢(£, k; u(x)) = 0 for k > £ , hence the index
of summation in the right hand side of this equation can be stopped
at k = £ . similarily '¢T(k, m;'u—lexp 2(1 - n)_IJaIdX)) = 0 for
k <m , -hence the same index of summation can be started at k = 0 .

Thus we must show that

¢(£, m; exp(1 E = Jaldx))

i . ,
k, m; u exp(m Jaldx)) .

= 1 ¢, ki u(x))o
k=0

‘This equation follows immediately from equation (2.5.3) with )

ux)gh(x)) = exp(l E.n‘Jaldx) , £t =T and g(t) = u-lexp(i%;-faldx) ,
hence we are done.
Note that the coefficients bm(t) , 9given by equation (4.3.7)},
do contain integrations. It is the presence of these integrations
that prevents us from proving a result analogous to Theorems (4.2.2)

and (1.4.2). This is the case since the integral of a non-zero

constant is not a constant.
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We now prove Theorem (3.4.1), for the case n =2, in a

manner similar to what Peyovitch [34] did.

Theorem. (4.3.2). Let

2
(4.3.20) I (2)amuen® =0, @w=n,
k=0

be a second order linear differential equation such that al(x) and
az(x) are non-vanishing on [a, b] . There exists a T(u(x)) trans-
form of equation (4.3.20) that is a constant coefficient differential

equation of the form

2 k-
2 a
(4.3.21) ) c., . ——z(t) =0, (¢, = 1) ,
Koo (k) 2-k 4.k 0
if and only if
(4.3.22) (a2(x))(1) + 4a, (x)a, (x) + v(a, (x))3/2 =0,

where Y is some constant. Moreover if the condition given by

1
equation (4.3.22) holds, then u(x) can be taken to be (az(x)) /2 .

Proof: First we show the necessity. Suppose that there exists
a T((x)) transform of equation (4.3.20) that is a constant coefficient
differential equation of the form of equation (4.3.21). Thus we are
sﬁpposing that there exists .a u(x) such that the constant coefficients

of equation (4.3.21) are given by

2 -1
2 2 2 =
(4.3.23) ¢, = k-Z—-m( (m)(u(x)) ) (k)az_k(xm(k, m; u(x)) , m=0,1,2 .
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By Theorem (4.3.1) the T exp(—ZJal(x)dx’} transform -of equation

(4.3.20), defined by §£-= exp(—zjal(x)dx) and y(x) = y(t) , is

a semi-canonical T transform of equation (4.3.20). It is given

by
B 2 — (m) _
(4.3.24) z (m) bz_m(t)(_y(t))t =0 , (bo(t) = 1) ,
m=0
where o o -

22 =1 i
(4.3.25) b2<m(t) = kz;i(m)exp(-4Jal(x)dx)) (k)az_k(x)%(k,m;exp(—zfal(x)dx)’,

m=0,1,2 . As usual we are taking the constant of integration,
that stems from integrating al(x) ;, to be zero.

We now find the T exp(-zjcldr]) transform of equation (4.3.21),

defined by

ds _
(4.3.26) = - exp( zjcldt)
and

z(t) = z(s) .

As usual we take the constant of integration, that stems from
integrating c; » to be zero. That is, the constant of integration

is taken to be zero since we took the constant of integration when
integrating al(x) to be zero. Since <, is a constant by hypothesis,

we have that

IcldT = clr ’

hence equation (4.3.26) is
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(4.3.27) £ = exp (-2¢,T) .

The T(exp(—2JcldT))

is given by

T exp(—ZCIT)) transform of equation (4.3.21)

2 .
(4.3.28) I (2 e een® =0, @e =1,

k=0 k s

where

2 -1
(4.3.29) a4, (s) = kzm((i]exp(—4clt)) (i)cz_k¢T(k,m;exp{—2clT,} ,

m=0,1,2 . From Theorem (4.3.1) (see its proof) it is obvious

that
(4.3.30) b () = dk(s> , k =0,1,2,
and
ds
4.3. —_— = .
( 31) =1

We have shown that the equations (4.3.30) give necessary con-
‘ditions that there exists a constant coefficient differential equation
that is T equivalent to equation (4.3.20). We now use these
conditions to derive the condition (4.3.22).

By equations (4.3.25), (4.3.29), (4.3.30), (2.4.3), (2.4.4)

and (2.4.5) we have that
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I
[

bo (t) dO (S) ’

I
@)

b, (t) 4, (s)

and
(4.3.32) b, (t) = a, (x)exp(tljal (x)dx) = d,(s) = c expl4c;T) .

The first two of these conditions, given'ﬁy equatidns 1413.30), are
independent of the coefficients’ ai(x) of equation (4.3.20). That
is, only the equation b2(t) = dz(s) can be used to find a condition,
on the a;(x)'s of equation (4.3.20), that must be satisfied if there
is to be a constant coefficient differential equation that is a
T(u(x)) transform of equation (4.3.20). By equation (4.3.32) the

equation bz(t) = dz(s) is
(4.3.33) az(x)exp(4ja1(x)dx) = czexp(4clt) .

We now use equation (4.3.33) to derive the condition (4.3.22).

Integrating equation (4.3.27) we find that
: -1
s = (-201) exp(—2c1T) +C,
where C 1is a constant. It follows that

-1
exp(4c11) = (40?(5 - C)z) !

Hence equation (4.3.33) becomes

c,

a, (x)exp 4Ja xX)d&x| = —5mm™——
2 ( L ) 4c§(s - C)2



-114-

That is
A
(4.3.34) az(x)exp(4jal(x)dx] = >
(@ + Bs)
where A, a, and B are constants.
By equation (4.3.31) %% = 1 , hence we can differentiate

the left side of equation (4.3.34) with respect to t , and at the

same time differentiate its right side with respect to s , to

obtain

dx d d A

T G- | 2 ) exp 4Ja (x)dax = — ———2) .

dt dx ( 1 ] ds @ + Bs)
Si %E = 2 (x)dx btai h
ince = exp(— a1 X) , , Wwe obtain that

(1) ‘ -3

(4.3.35) exp(GJal(x)dx)[4a1(x)a2(x) + (az(x)) J = -2AB (a0 + Bs) .

We can now eliminate s between the equations (4.3.34) and (4.3.35)
to find the condition (4.3.22) that we have been trying to derive.

From equation (4.3.34) it follows that

-3
A /2

as (x)

(o + Bs)_3 = ( exp{6ja1(x)dx) .

-3
Substituting this expression for (o + Bs) into equation (4.3.35)

it follows that s has been eliminated and

4a, (x)a, (x) + (a,(x)) = -2A B(a, (x)) '

which is
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/2

) 4a )2 () + vl 60) 72 =0
1 2 via, !

(4.3.36) (az(X))

where

Equation (4.3.36) gives the condition (4.3.22) that we have been
___trying to derive, hence the necessity part of the proof is complete. _
We now prove the sufficiency part of the proof.

Suppose that the condition (4.3.22) holds. Integrating this

Bernoulli differential equation (4.3.22) gives

-2
- _ Y - '
az(x) = exp( 4Ja1dx)(c + Jexp( 2Ja1dx)dx}
where ¢ is a constant. That is, equation (4.3.20) is of the form

a a 172
3.7 SXD ¢ 20, 0 G+ o -afaax][o + § fore(2faax]a | oo <o

2
dx

It is easy to verify that the

'r((az (x))_l-/z) - T( expl-ZJaldx)‘c + L JeXP(-ZJaldx]dx)-l) transform

of equation (4.3.37), defined by

-1
dt Y .
= - exp(—ZJaldx’(c + = Jexp‘—2ja1dx)dx)
and y(x) = z(t) , 1is a constant coefficient differential equation
of the form of equation (4.3.21). The sufficiency is proven and
moreover if the condition given by equation (4.3.22) holds, we see
/2

1
that the u(x) of the hypothesis can be taken to be (az(x)) .

Q.E.D.
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We now compare Theorem (3.4.1) with Theorem (4.3.2). For the
case’ n = 2 we consider the conditions of Theorem (3.4.1) that are
given by equation (3.4.9). Recalling that the u(x) of the hypothesis

ly
2

of Theorem (3.4.1) can be taken as (az(x)) when n =2 , we

see that the conditions given by equation (3.4.9) are

-1 1
v : 2 _
(i)az_k(x)¢‘k, m; (a,(x)) 2 2 ¢ '

(;) a, (x)

2
)
k=m

m=20,1,

where < and c are some constants. Using equations (2.4:.3),

2
-1
(2.4.4) and (2.4.5), recalling that (-3j!) = 0 for positive

integer 3 , we see that these conditions are

1=02
and
“ly, =3/, (1)
al(X)(az(X)) + z-(az(X)) (az(x)) =c, -

The first of these conditions is independent of the ai(x)'s , hence

vacuously it always holds. Easily the second condition is

(1) 3/2

(az(x)) + 4a1(x)a2(x) - 4c1(a2(x)) =0,

which is the same as the condition given by equation (4.3.22) of

Theorem (4.3.2) since c, and Y are just some constants. We have
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shown that for the case n = 2 Theorem (3.4.1) can be derived
from invariance considerations. Theorem (4.3.2) can be generalized
(see Peyovitch [34]) to find the conditions of Theorem (3.4.1) for
higher orders. Since Theorem (3.4.1) is just the normarlized form

of Theorem (l1.4.1), we see that Breuer and Gottlieb's [5] conditions,
¢

for at least the case n = 2 , were obtained previously using '

invariance considerations (see also [17],7[29], [32] and [33]). Breuer
and Gottlieb's direct derivation of these conditions is much simpler

than the derivation that makes use of invariance arguments.

(4.4) The Fundamental Relative Invariant. 1In this section we

consider the function V3(ai(x)) that was mentioned in section (1.4).
The function V3(ai(x)) , Fformed from the coefficients ai(x) of

the differential equation

T |n (k) -
(4.4.1) I o] 2pa® e ™ =0, @ie = 1),
=0
is defined by
(4.4.2) v @) = - )P e 3@ e - 28 @ e

3
- 2(a3(x) - 3a1(x)a2(X) + 2(a1(x)) ) .

Let u(x) and v(x) be arbitrary non-vanishing functions on
[a, b] such that u(x) € Cn-l[a, b] and v(x) € Cn[a, b] , where
n is the order of the differential equation (4.4.1) (we are assuming

that n 2 3). The P(u(x), v(x)) transform of (4.4.1), defined by
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%=u(x) and y({x) =v(x)z(t) , is

n
(k)
(4.4.3) I (o) 0) (z(e))
k=0 (k) n-k t

where

n -1 PzS n-s-k -1
(4.4.4) Db___(t) = (n-s)!(u v) } Y k!tn-k-3)1) "a, (x)s!
n-s k=0 §=0 'k

. pln-k-3, s; ulx)) (wix)) I,
and ¢ is defined by equation (1.3.7).

Using equations (2.4.3) to (2.4.6), and equation (4.4.4) we

find that

(1)

- -1 -
u 1al(x) + (2u2) {(n-1)u + (uv) lv(l)

b_(t)
1

4

- 2
u 2az(x) + u 3(n-2)a1(x)u (1)

(1) )

u-l
+ (4u') (n-2)(n-3)(u

b, (t)

-1
+ (uzv) v(2)

1 (1)

(2) w2v) 2a, (x)v

+

-1
(3ud)  (n-2)u

-1
(uav) (n_z)u(l)v(l)

+

’

and

2

(1)

- -1
) (a®) 3(0-3) (-da G0 (D)

-3 N 1
u a3(x) + (2u’) 3(n—3)a2(x)u

ba(t)

-1 -1
) (3) (1), (2)

+ (@) @3»u + (20°)  (0-3) (n-4)u

+

u-u(n-3)a1(x)u(2

-1 3 -1
(8u®)  (n-3) (n-4) (0-5) 1Y) + Iv)  3a, v Y

+

-1
(4u5v) (n-3)(n-4)3v(1)

+

L2 -1 (2) _(1)

( ) o+ (u“v) (n-3)u v

-1 (2)

-1
¥ 38, v (1), (2)

+ (2u'v)  3(n-3)u

+

-1 -1
(u3v) v(3) + (uqv) 3(n—3)a1(x)u(1)v(})

+
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We now form the same function of these bi(t)'s that ’Va(ai(x)) is

of the ai(x)'s , that is

(2
t

(1)
t

. (1)
- 2b1(t)(b1(t))t

i o )

(4.4.5)  Vy(b; () = =, (£)) ) + 30, (&)
3

+ (-2)(b3(t) - 3b (t)b, (t) + 2(b, (£)) ] )

Recalling that §§’§ u(x) we see that _

4a _d 4 _ -1 4
dt 4t ax dx
and
a2 a8 ) -3 a
at? ax? dx

Using these formulas in equation (4.4.5) we find that
V. (b, (£) = ((x)) "V, (a, (x))
NCH = (u(x 5 (ay (x .

That is, we have proven the following lemma which was originally

published by Laguerre [25] for only the case n = 3 .

Lemma (4.4.1). ILet

_ @ (1) _
V3(ai(x)) = a1 + 3(a2 2a_a

(1)
11

) - 2(a- - 3a a + 233)
3 1 2 1

be a function of the ai(x)'s of equation (4.4.1). Let

n
n (k) . =
1 [&) o ® 2N [ =0, g0 = 1),
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be the P(u(x), v(x)) transform of equation (4.4.1), where u(x)

and v(x) are arbitrary non-vanishing functions on [a, b] such
n-1 n .

that u(x) € C [a, b] and v(x) € C'[a, b] . The function

Vs(ai(x)) is related to the function V3(bi(t)) , which is given

by equation (4.4.5), by.
-3
(4.4.6) V3(bi(t)) = (u(x)) V3(ai(x)) .

Lemma (4.4.1) guarantees that Va(bi(t(x))) is non-vanishing
for x € [a, b] if V3(ai(x)) is non-vanishing on [a, b] . We
have used this fact in Theorem (1.4.2).

Recalling equation (1.4.12) of definition (1.4.4) we have that

M is the set of all matrices of the form

ao(x) al(x) . . an(x)
dao(x) dal(x) dan(x)
i dx ax. - ax
(—d-l- ay (x) = . :
dx (n+1) % (n+1)
:1:2 a; (x) d—i;— a_ (x)

We now make the following definition.

Definition (4.4.1). Let u({x) and v(x) be arbitrary non-

vanishing functions on [a, b] such that u(x) € Cn_l[a, b] and
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vix) € C"[a, b] . Let R be a map from M to the set of all complex
valued functions with domain [a, b] . Let ay (x) , 3=0,1,...,n ,

be the coefficients of equation (4.4.1) and let bj(t) , 3 =0,1,...,n ,
be the coefficients of the P(u(x), v(x)) transform of equétion
(4.4.1). If there exists an integer j , such that for all x ¢ [a, b]

and for all u(x) and v(x) as defined above we have the identity

i -
(u(x)) R (——d; bj(t)) ,
(n+1)x (n+l) dt (n+1)x (n+1) |

~ i
(4.4.7) R (d. a.(x))

ax®

where g§-= u(x) , then the function R is called a relative

invariant of weight j of equation (4.4.1).

Remark. We have that a relative invariant of equation (4.4.1)
is a function of the coefficients ai(x) of equation (4.4.1) and
their derivatives with respect to x . This function has the property
that for all x € [a, b] it has the same value as the product of
the same function formed from the coefficients of any arbitrary
equation which is P equivalent to equation (4.4.1), with an integral
power of u(x) . Recall that u({x) connects the independent variables

X and t of equations (4.4.1) and (4.4.3) respectively, by

dt

ax = u(x) .

Note that in the left hand side of the identity (4.4.7) the
derivatives are with respect to x , while in the right hand side

they are with respect to t .
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Definition (4.4.2). A relative invariaﬁt of the differential

equation (4.4.1) is called a fundamental relative invariant if it

is independent of the order n of equation (4.4.1).

We formed equation (4.4.3) by letting u(x) and v(x) be
arbitrary functions, hence the bi(t)'s of equation (4.4.3)
represent the coefficients of an arbitrary equation which is P
equivalent to equation (4.4.1). In view of the two definitions just
- given, we see that the function Vs(ai(x)) is a fundamental relative
invariant of weight 3 of equation (4.4.1).

In lieu of giving the motivation for Lemma (4.4.1) the author
refers the reader to the works [4], [6], [7], [14], [15]; [18], [19],
[20], [30],.[31] and [41], which deal with fihding relative invariants
and other related problems. From these works it is evident that it
is possible, in theory at least, to find n - 3 other relative
invariants of equation (4.4.1), of weights 4 to n . Call these
other relative invariants Vj(ai(x)) r 3 =4,...,n . By definition

they have the property that

Vyiby(0) = () v ay x)) j=4,...m,
where as usual the bi(t)'s are the coefficients of an arbitrary
P(u(x), v(x)) transform of equation (4.4.1). Note that derivatives

in Vj(bi(t)) are taken with respect to t , where as usual

at

= - u(x) . The relative invariants Vj(ai(x)) r 3 =4,...,n , are

not fundamental relative invariants, that is they depend on the order
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of the differential equation (4.4.1). All of the relative invariants
Vj(ai(x)) r J=3,...,n , of agiven differential equation (4.4.1)
of order n 2 3 , are independent in the sense that if one of them
is identically zero, this does not necessarily mean that any of
the others are also identically zero. As we will see in the next
chapter the relative invariants Vj(ai(x)) rJ =3,...,n , are

- important-since they can be uséd to define canonical transforms of

equation (4.4.1).
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Chapter 5

Canonical Transformations

(5.1) Introduction. By definition (1.4.6), any differential

equation P equivalent to
k
(5.1.1) ( ) 2, 0 ———-y(x) =0, (ay (x) = 1) ,

that has the property that each of its coefficients is an absolute
invariant of equation (5.1.1), is called a canonical transform of
equation (5.1.1).

In section (5.2) we find a canonical transform of equation
(5.1.1). This canonical transform is defined in terms of the
fundamental relative invariant Va(ai(x)) , which we saw in section
(4.4). In section (5.3) we find other canonical transforms of
equation (5.1.1), that are defined in terms of the relative invariants
Vj(ai(x)) y J=4,...,n . The canonic§l transforms we give were first
studied by Halphen [19].

In section (5.4) we prove the following theorem.

Let

(2) (1)

v, ta; ) = —(a 60 @ 4 3@ e - 2a 60 @ ) D)

3
- 2(a (x) - 3a1(x)a2(x) + 2(aI(X)) )
be a function of the ai(x)'s of

3
(5.1.2) z (i, a3_k(x)(y(x))(k) =0, (ap(x) = 1) .
k=0
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If Va(ai(x)) 2 0 on [a, b] then the general solution of equation

(5.1.2) is

yx) = exp(-Ja1 (x)dx)(&(x)]z‘ o, + cZJ(«s(x))-zdx +,c3U{g<x>) 'zdx)z) ,

where c1 ' 02 and c3 are arbitrary non-zero constants and & (x)

is any non-trivial solution of

(e@)® « $ 3,00 - @ en? - @en®)ew =0

In section (5.5) we'give explicit expressions for some of the

absolute invariants of equation (5.1.1).

(5.2) The Fundamental Canonical Transform. Recall that the

Plu(x), v(x)) transform of

n n _dk
(5.2.1) kzo %) 2o Xy = o, (ag(x) = 1) ,
is

n n dk
(5.2.2) kgo (k) Bk (®) Tzt =0 (by () = 1) ,
where

n -1 n-£ n-£-k a, (x)£1
(5.2.3) b__,(t) = (@v) (-0)t } ]
k=0 j=0

¢(n—k—j,ﬂ;u)v(j) .

k!j! (n-k-j)!

for £ =0,1,...,n .
We now prove the following theorem that has already been referred
to in section (1.4). The proof is similar to that of Theorems (4.2.1)

and (4.3.1). In the proof we will as usual use the notation that
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subscripting by a variable indicates the variable that differentiation
is with respect to, if it is other than x . For example ¢T indicates
that derivatives in Faa de Bruno's Formula, given by equation (1.3.7),

are to be taken with respect to T rather than x . The theorem says
1-n

that the P( lV3 (ai(x))c—l) /3, exp(-Ja1 (x)dx](v3(ai(x))c7l)T) trans-
form of equation (5.2.1) is a canonical transform of equation (5.2.1),
where V3(ai(x)) is the fundamental relative invariant we saw in
section L4.4) and C 1is an arbitrary non-zeroc constant. Before
proving the theorem we again make a comment about constants of

integration. If, for example, al(x) = x thén the
—1) /3 : 1 i-n

2 [v, (a; ))c | 7, exp(-Ja rax)| v, a; xc |57 -

P [Vs(ai(x))c ) ’ exp[- x dx)(Vs(ai(x))C 1) 6 transform of

equation (5.2.1) is defined by

X (vs (aj.L(x))c'l]l/3

and
1-n

exp(-Jx dx){v3 (a (x))c'llT z (t)

y (%)

2 1-n

exp(- %5-— c)(vs(ai(x))c-ll—g—.z(t) '

il

where ¢ is a constant of integration. We always take the constant
of integration ¢ , that stems from integrating al(x) with respect

to x , to be zero. That is, in the above example we have
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1-n
6 z(t) .

x2 -1
yx) = exp(- ——2-)(V3 (a; x))C

Taking the constant of integration to be zero results in no loss of
generality since we are only interested in finding one particular

canonical transform.

Theorem (5.2.1). Let the order of equation (5.2.1) be 3 or

greater. Assume that the function

(2) (1) (1) ' , 3

a. E - - - +
Vg(al(x)) a, + 3(a2 2a1a1 ) 2(a3 3a1a2 2a1)
is non-vanishing on [a, b] . Moreover let C be an arbitrary

non-zero constant. Under these assumptions the

1/3 in
P‘(V3(ai(x))c ) ’ exp(-Jal(x)dx)(va(ai(x))c ) transform
of equation (S.Z.L)'is a canonical transform of equation (5.2.1).

Proof: The defining equations of the 1
- -n

-1 1/3 -1
P (Vs(ai(x))c ) ’ exp(~Jal(x)dx)(va(ai(x))c ) 6 ) transform of

equation (5.2.1) are
1/3
at _ -1

ax - (Vs(ai(x))c )

and
l-n
. . -1 6 _
(5.2.4) y(x) = exp(—Jal(x)dx)lv3(ai(x))c , vt) .
Note that we are taking the constant of integration, that stems

from integrating al(x) with respect to x , to be zero.
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The P(lV3(ai(x))C-1) /3’ exP('Jaj(x)dx)(V (aiﬂx))é_l)léﬂj

transform of equation (5.2.1) is

n
(5.2.5) ) (z) b (oFen* <o, (by (£) = 1) ,
k=0
where
-1-n

-1
(5.2.6) bn-ﬂ(t) = expugl(x)dx)(va(ai(x))c ) 6 (n-£) 1

n=f n-L-k a L1

k=0 jzo k!j! (n-k-j)! ¢(n—k-3: ; (V3(ai(x))c J

1ep | ()

. expl—Jal(x)dx) Va(ai(x))c-l

for £ =0,1,...,n . Each b, (t) is a function of the a; (x)'s
and their derivatives with respect to x , hence in the notation
of definition (1.4.4) we can write

i
_'q_-'a.(x) ’ k=0,l,...,n .

(5.2.7) bk(t) = Bk T 3y
(n+1) %X (n+1l)

dx
To be done we need to show for k = 0,1,...,n , that for all

i
x € [a, b] the function Bk((—gz-aj(x)) has the same
dx

A (n+1)x(n+l))

value as the same function formed from the coefficients of any

arbitrary equation which is P equivalent to equation (5.2.1).
Let wu(x) and v(x) be arbitrary non-vanishing functions on

[a, b] such that ul(x) € Cn-l[a, b] and v(x) ¢ Cn[a, b] . The

P(u(x), v(x)) transform, defined by
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= u(x)

&5

and
yx) = vix)z(t) ,
of equation (5.2.1) is
. - dk -
(5.2.8) ( ) e m kM =0, (co(m) = 1),

dt

where

n -1 n-£ n-£-k ak(x)ﬂl
5.2.9 = -L - -
( ) e _p(D) = (@v)  (n-O)1 kzo L w3

¢ (n‘k;j ,E;u)v(j) v

for £ =0,1,...,n . The coefficients cnéﬁ(T) of equation (5.2.8)
represent the coefficients of any arbitrary equation that is P
equivalent to equation (5.2.1). To complete the proof we need to
show that for allv x € [a, b]

i
(5.2.10) (-—-———a (x)) =B, (—‘ii—c.m) :
| art 3
(n+1)x (n+1) ’ (n+1})x (n+l1)

k = 0,1‘,...,1’1 ’

LI u(x) and the function Bk is defined by equations

d
where ax

(5.2.7) and (5.2.6). Note that derivatives and integrations are
taken with respect to the independent variable of the function in

question. Clearly the Bk (—QI'C.(T)) 's are just the
(n+1)x (n+1)
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_ 1/3 _.1.;&
coefficients of the P(lvg(ci(r))c ll . exp(—Jcl(T)dTl(Va(ci(T))C 1 6 )

transform of equation (5.2.8), where

(2
T

n _ 2c1(r)(clxr)>‘1’)

T T

vy te; () = =(e, () ) 4+ 3{e, (1)

3
- 2(c3(1) - 3¢, (D)c, (1) + 2(c, (1)) ) )

Letting the defining equations of this transform be

1/3

ds _ -1

T (Va(ci(T))C )

and

in
-1 —
z(T) = exp(—jcl(r)dr)(vacci(r))c ) 6 Zs) ,

1-n

}1/3' exp('Jcl(T)dT)(V3(ci(T))c'l)—g_

we find that the P((Vg(ci('r))cu1
transform of equation (5.2.8) is given by

E n) dk
(5.2.11) el (s) —— Z(s) =0 , (d.(s) =1} ,
k=0 (k n-k 0 ggF 0
where
~1l=-n
(5.2.12) dn—ﬁ(s) = epr;l(T)dT)(V3(ci(T))C ] (n-£)1
n-£ n-£-k ck(r)zl

) . :
K=o =0 Kiil(n=k=3)1 )

_11/3‘ : . =1 -:Lé-r_l-
. ¢T(n-k-j, K;( Va(ci(T))C ] )(exp(—Jcl(T)dr)(vs(ci(r))c )

T

for £ =0,1,...,n .
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Note that we are taking the constant of integration, that stems
from integrating Cl(T) with respect to T , to be zero. It is
important that this constant of integration be taken to be zero
since we took the constant of integration when integrating al(x)
to be zero. By equations (5.2.9), (2.4.3) and (2.4.4) we have that

a, (x) _ - -
LI n‘g“l(U(x))mz(u(x))g) + )vED et

cl(T) =

Recalling that g£-= u(x) we integrate Cl(T) with respect to T ,

taking the constant of integration to be zero, to obtain

(5.2.13) JCI(T)dT Jcl(T)u(x)dx

Jal(x)dx + Egi-ﬂn u(x) + £n v(x) .

By equations (5.2.6), (5.2.7) and (5.2.12) we have as expected

that
di

(5.2.14) Bk k;jr cj(T) = dk(s) ’ k=0,1,...,n .
T

(n+1)% (n+1)

To show that the required identity (5.2.10) is true, it suffices to

show that for all x € [a, b]
bk(t) = dkﬂs) ’ k=0,1,...,n,

(see equations (5.2.7) and (5.2.14)). That is, to be done we need
only show that the differential equations (5.2.5) and (5.2.11) are
the same. First we show that they have the same linearly independent

solutions.
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By equation (5.2.4) the n linearly independent solutions
Yj (¢ , j=1,...,n , of equation (5.2.5) are related to the n
linearly independent solutions Yy x) , J=1,...,n, of equation

(5.2.1) by

-1} 6 i
V3(ai(x))c ) yj(x) ’ j=1,...,n .

(5.2.15) f?‘j (t) = exp”a1 (x)dx)

We also have that vy(x) = vx)z(r) and
l-n

z(t) = exp(-Jcl (T)d‘[) A (Ci(T))C_l © Z(s) , hence

(5.2.16) Z(s) = (v(;'c))‘lexp”cl ('r)dT)(V3 (ci(r))c'l) y (x)

From equation (5.2.13) it follows that
n-1

(5.2.17) exp”c1 (T)d'l',' = expﬂa1 (x)dx) {u (x))Tv (x) .

In section (4.4) we saw that V3 (ai (x)) 1is related to V3 (ci,(T))

by
-3
(5.2.18) V3(ci('r)) = (u(x)) V3 (a; (x))

Using equations (5.2.17) and (5.2.18) in equation (5.2.16) we obtain

n-1

! -1
Zz(s) = exp|la, (x)dx]|V_(a.: (x))C 6 y(x) .
1 3 1

It follows that the n linearly independent solutions 'z_j (s),
j=1,...,n , of equation (5.2.11) are related to the n linearly

independent solutions yj (x) , 3=1,...,n , of equation (5.2.1) by
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n-1

-1l 6 .
ESLS) = exp“%l(x)dx)(va(ai(x))c ) yj(x) ' j=l,...,n .

Comparing this equation with equation (5.2.15) we see that the
differential equations (5.2.5) and (5.2.11) have the same n linearly
independent solutions.

We now show that the independent variables t and s , of

_equations (5.2.5) and (5.2.11l) respectively, are related by g%—= 1.

1/3
-1
Since §§-= (V3(ci(T))C ) we can use equation (5.2.18) and

dt _ . .
= u(x) to obtain that
ds _ dt ds
dx dx d4art
-1 -3)/3
= u(x)(Vs(ai(x))C (u(x))
INRYE
= (Vs(ai(x))c .
That is
1/3
ds -1
ax V3(ai(x))C ) .
dt -1 1/3
Comparing this equation with ax = Vs(ai(x))c » Wwe see that
g%-= 1l , which is what we wanted to show.

Using exactly the same argument that we used in Theorem (4.3.1)

We have for all x ¢ [a, b] that
b (tx)) = g (s(1(x))) , k=0,1,...,n .

Q.E.D.
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Note that in a manner analogous to the direct proofs of Theorems
(4.2.1) and (4.3.1) (see the remarks following those theorems), it
is possible to prove Theorem (5.2.1) directly. This alternate proof,
which makes use of the convolution Theorems (2.5.1) and (2.5.2), is
extremely lengthy and it is omitted.

Halphen [19] omitted entirely his proof of Theorem (5.2.1),

saying only that it was obvious.

Remark. The canonical transform, given by equation (5.2.5), of

equation (5.2.1) depends on the fundamental relative invariant

Va(ai(x)) , hence it is referred to as the fundamental canonical

transform.

(5.3) oOther Canonical Transforms. We now assume that we can

find, besides V3(ai(x)) , the n - 3 other relative invariants
Vj(ai(x)) +r J=4,...,n , of equation (5.2.1). These functions

have the property that
vyle; (1)) = e vyGa; )

where §£-= u(x) and the Ci(T)'S are the coefficients of an

arbitrary P(u(x), v(x)) transform of equation (5.2.1). Note that

derivatives in Vj(ci(T)) are taken with respect to T , where

dr

dx=u(x) .
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We have the following theorem.

Theorem (5.3.1). Let the order n of equation (5.2.1) be 3

or greater. Assume that Vj(ai(x)) is the first non-vanishing
relative invariant of equation (5.2.1) on [a, b] where 3 < j < n .

Moreover let C be a?y non~zero constant. Under thesi assumptions
/5 -n

the P (Vjﬂai(g))cfl) ’ exp(:[aiix)dx](va(ai(x))c‘ll—if) transform

of equation (5.2.1) is a canonical transform of equation (5.2.1).

Proof: The proof follows exactly that of Theorem (5.2.1).

Q.E.D.

Remark. The case j = 3 of Theorem (5.3.1) is precisely

Theorem (5.2.1).

Theorem (5.3.2). Let the order n of equation (5.2.1) be

3 or greater. Assume that Vj(ai(x)) is the first non-vanishing
relative invariant of equation (5.2.1) on [a, b] , where 3 < j <n .
Moreover let C be an arbitrary non-zero constant. Under these
assumptions there exists a constant coefficient differential equation

of the form
% n dk

(5.3.1) ( ] c . 2L 2wy =0, (c.=1) ,
x=o 'Kl nk 4k 0

that is P equivalent to equation (5.2.1), if and only if the
1/. 1l-n
J

P(lvj(ai(x))c-l) ’ exp(-Jal(x)dx)‘Vj(ai(X))C-l)_E?J' transform of

equation (5.2.1) is a constant coefficient differential equation of

the form of equation (5.3.1).
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=1 l/j . -l:lénT
Proof: Since the P {Vj(ai(x))c ) ’ exp(-Jal(x)dx)(Vj(ai(x))C } J

transform of equation (5.2.1) is a canonical transform of equation

(5.2.1) the proof follows that of Theorem (1.4.2).
Q.E.D.

Remark. The case j = 3 of Theorem (5.3.2) is precisely
Theorem (1.4.2).

For an example consider the nth order Euler differential
equation

? n k-n dk
(5.3.2) X —— y(x) =0 .
k=0 (k) ' ax®

For this differential equation ai(x) =x , hence we find that
-3 , .

Va(ai(x)) = =2x . That is, Vs(ai(x)) of equation (5.3.2) is
non-vanishing for any real interval [a, b] , however the singularity
x =0 of V3(ai(x)) requires that we only consider intervals that
exclude x = 0 . Letting the arbitrary constant in Theorem (5.3.2)

_ /3 -1 .
be C= -2, we find that (V3(ai(x))(-2) = X , and

-1 _1/3 .

exp(— al(x)dx)lv3(ai(x))(-2) ) = exp(-£n x)x = 1 . Hence by
Theorem (5.3.2) there exists a constant coefficient differential
equation that is P equivalent to equation (5.3.2), if and only if
the P(x-l, 1) transform of equation (5.3.2) is-a constant coefficient
differential equation. The defining equations of this transform are
g§-= %- and y({x) = z(t) , from which t =4fn x . It is well known
that the transform defined by letting t = £n x takes Euler differential

equations to constant coefficient differential equations.
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Theorem (5.3.2) suggestsﬁa method of handling the exceptional
case of Theorem (1.4.2) where V3(ai(x)) 0 on [a, b] and
n >3 . When Va(ai(x)) = 0 on [a, b] we cannot use V3(ai(x))
to define a canonical transform of equation (5.2.1). We may however
be able to find another canonical transform of equation (5.2.1) such
that if equation (5.2.1) is P equivalept to a constant coefficient

differential equation, then this canonical transform of equation

(5.2.1) will be a constant coefficient differential equation. By
Theorem (5.3.2) we see that we can determine such a canonical
transform if we can find a relative invariant Vj(ai(x)) , 4< 3<n,
such that Vj(ai(x)) does not vanish on [a, b] . As mentioned in
section (4.4) reference material concerning the problem of finding
these Vj(ai(x))'s can be found in [4], [6], [7], [14], [15], [18],

[19], [20], [30], [31] and [41].

(5.4) The Third Order Exceptional Case. In this section we

consider the third order exceptional case to Theorem's (1.4.2) and

(5.3.2). That is, we consider the differential equation

5.4.1 f Na  wyen® =o (a (x) = 1)
(5.4.1) Lo (k), 3.k X) (¥ (x)) =0, a,(x) = '

where Vg(ai(x)) Z0 on [a,b] .
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Theorem (5.4.1). Let ai(x) , 1i=20,1,2,3 ,

be the coefficients

of equation (5.4.1) and let c1 ’ c2 and c3 be arbitrary non-zero

constants. If the function

_ (2) (1) _ (1)
(5.4.2) V3 (a; X)) = (al (x)) + 3 (a2 (x)) 2a1 (x) (a1 (x)) )

_ _ 3
2[a, ) - 33 &, G + 262 )

is identically zero on [a, b] , then the general solution of equation

(5.4.1) is

2 , "2 -2 2)
(5.4.3) vix) = exp(-Jal(x)dx}(E(x)) (cl + CZJ[E(X)) dx + cs(J‘E(x)) dx)
where £ (x) is any non-trivial solution of the differential equation

a0 (e v 2 (a0 - @ e? - @ e P)ew =0,

Proof: In section (3.3) we saw that the S

exp—Jallx)dx))
transform of equation (5.4.1), defined by

y(x) = exp (-Jal (x)dx)?(X) ’

is
(5.4.5) % (3 b, 0 Fen ™ =0 (b_(x) = 1)
e k! 23k ’ 0 = ’
k=0

where
bl(x) =0,

(5.4.6) b (x) =a (x) - (a (x))2 - (a (x))(l)
2 2 1 1
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and

(5.4.7) b (x) = a (x) - 3a_(x)a (x) + 2(a (x))3 - {a (x))(Z)
: 3 3 1 2 1 1

If we let t = x and

y(x) = exp(-J'a1 (x)dX)Y(t) = exp(-Ja1 (‘x)dX) vix) ,

transform of equation (5.4.1) is

we see that the— S(exp(—fél(x)dx)
the same as the P(l, exp(- al(x)dx)) transform of equation (5.4.1)

(see Lemma (3.3.1)). Since t = x it follows that =u(x) =1,

at
dx
hence equation (4.4.6) of Lemma (4.4.1) gives that

V3(ai(x)) V3(bi(x))

(1) (1)

(2) .
- x)) 2) 3{(192 @) P - 26 () (b ()
- 2(b x) - 3b. (x) . (x) + 2(b (x))3)
3 1 2 1

Using thé fact that bl(x) 0 , this reduces to

(1)

(5.4.8) Va(ai(x)) =V (bi(x)) = 3(b2(x)) - 2b3(x) :

Equation (5.4.8) can be verified directly using equations (5.4.2),
(5.4.6) and (5.4.7). By hypothesis V3(ai(x)) Z 0 on [a, b] ,

hence equation (5.4.8) gives that

)

(5.4.9) 3(102(::))(1 - 2, (x) =0, (x € [a, b])
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-2 2
By the corollary to Theorem (3.7.2) the P((E(x)) ' (E(X)) )

transform of equation (5.4.5), defined by

(5.4.10) gx—t= (-E(x))‘2
and

(5.4.11) voo = (e 2
is

(3
t

(1)

(5.4.12) N ) - 2{e00) *(3m, 60 P - 2w 0]ze) =0,

where £(x) 1is any solution of

(5.4.13) e ])® +2b wee =0,

that does not vanish on [a, b] . By equation (5;4.9) we see that

equation (5.4.12) is

() =0 .

The general solution of this differential equation is
(5.4.14) (t) = + €t + t2
4. z =c, c2 c3 ’

where c, s Gy and Cq are arbitrary non-zero constants. Using

equations (5.4.10), (5.4.11) and (5.4.14) it follows that the general

solution of equation (5.4.5) is
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<
)
"

2 2
[g60) 1o, + eyt + e

[z 0 Z(c1 + CZHE(x))-ZdX + CSU(scx)}_zdx)z) :

exp[— a, (x)dx) y(x) it follows that the general

Since y (x)

solution of equation (5.4.1) is given by equation (5.4.3). Using
equation (5.4.6) we see that equation (5.4.13) is equation (5.4.4).

Q.E.D.

Remark. Theorem (5.4.1) was known to Laguerre [25], Brioschi
(see [6] and [7]), Halphen (see [19] and [20]) and Wilczynski [41].
It has also been proven independently by Kostenko [24].

It can be shown (see [7] and [41]) that if all the relative

~invariants Vj(ai(x)) r 3 =3,4,...,mn , of

T n (k) -
(5.4.15) L %) 2ac@ e ™ =0, (ag(x) = 1) ,
k=0

are identically zero on [a, b] , then the general solution of

equation (5.4.15) is

n-1 n -2 A=l
y{x) = exp(-Jal(x)dx)(E(X)) _Zl Ci(I(E(x)) dx) ’

1=

where §&(x) is any non-trivial solution of
1
[0)® + Zrla,00 - @ en® - @ e Ve <o,

and Cy i=1,...,n, are arbitrary non-zero constants.
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We now illustrate Theorem (5.4.1) with an example. Consider
the differential equation
3

(5.4.16) I |
k=0

3
k

| e ™ <o, x ¢ [a, B]) .

For equation (5.4.16) we have that ai(x) = x* , 1=0,1,2,3 . We

easily find that Vs(ai(x)) =0 for x € [a, b] , where [a, b]

is any real interval. We also have that

) - (@ @) - (@ e =

a, a (x (a, (x =
By Theorem (5.4.1) the general solution of equation (5.4.16) is
o : -2 -2\ 2
y(x) .= exp(—Jx dx)(E(x)) (c1 + CZJ(E(X)) ax + CS‘J(g(x)) ’
where & (x) 1is any non-trivial solution of
2) 3

[t ) 2em = 0.

A non-trivial solution of this equation is

E(x) = exp (Lj—x) ’

hence the general solution of equation (5.4.16) is

2 2
y (x) exp(- J—(:2—-)exp(/§'x)(cl + czjexp(-/g-x)dx + ca(fexp(—/g x)dx) )

ek ng.x - x2 c +c exp {- Y3 x) e exp(-2¢§-x
P 2 17 %

-3 3 3
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That is, the general solution of equation (5.4.16) is of the form

2 .
(5.4.17) y (x) =~exp(— %;-)(clexp(/E-x) + Eé + Es eXp(-/E x)) ’

where cy v Eé and Eé are arbitrary non-zero constants.

Note that the general solution of equation (5.4.16), given by
equation (5.4.1?), could also have been found by applying Theorem

(4.2.2) to equation (5.4.16). That is, the

exp(-JaICx)dx)) =S

S transform of equation (5.4.16) is

ex|- 2|

a constant coefficient differential equation.

(5.5) Some Absolute Invariants. Let us assume that C is an

arbitrary non-zero constant and that the fundamental relative invariant

(2) (1)
a1 + 3(a2 - 2a.a

_ (1)
(5.5.1) v, (a;(x) = .3

3
- 2(a_ - 3a.a + 2a
) (3 172 1)'
of

v o , (k) _
(5.5.2) I %) 2 ® e ™ =0, (a,(x) = 1) ,

k=0 k

is non-vanishing on [a, b] . 1In section (5.2) wi saw that the
)1/3 _n

1 . exp(-Jal(x)dx)(va(ai(x))c-l)—g_) transform of

P( (V3 (ai(x))c

equation (5.5.2) is a canonical transform of equation (5.5.2). It

is given by

(5.5.3) 7 [%) o) N ) = 0 (b, (£) = 1)
. . k=0 k n‘-k t ’ 0 r
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where
-1-n

(5.5.4)  b___(£) = (n-—s)'(V (a (x))c-l) ® exp(Ja (x)ax

n-s 13 1 '
n-s n-s-j aj(x)s!
) Lo koo IKIMIR)Y
] i-n (k)
- -1\1/3 -1)—8—)
s ¢{n-j-k, s; V3(ai(x))c exp(—Jal(x)dx)vs(ai(x))c ,

s =0,1,...,n . Recall that t and x are related by

. _11/3
(5.5.5) dt | ax) = (V3(ai(x))c 1)

dx

By definition (1.4.6), of canonical transform, we have that each

bk(t) given by equation (5.5.4) is an absolute invariant of equation
(5.5.2). We now give explicit expressions, in terms of the ai(x)'s
of equation (5.5.2), for the absolute invariants bi(t) , 1=20,1,2,3 .

Making use of equations (5.5.4), (2.4.3) and (2.4.4) we obtain

(5.5.6) bo(t) =1
and
(5.5.7) bl(t) =0

‘We have that bo(t) and bl(t) are constants, hence they are
trivially absolute invariants of equation (5.5.2). Using equations

(5.5.4), (2.4.3), (2.4.4) and (2.4.5) we obtain
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(5.5.8) b (t) = C2/3(27(V3(ai(x)))8/3)fl[27(V3(ai(x))]2(a2 - ai - afl))

+ L‘%ﬂl((v3(ai(x>>) ‘“)2 - 9—‘-112’*—1’—v3(ai(x))( v, (ai(x)))(Z):[

Recalling that Vs(ai(x)) is a fundamental relative invariant

of weight 3 (see equations (4.4.6) and (5.5.5)), we have that

=3
1/3

Y3 (bi(t)) = (Va_(ai(x) ),C__l) V_3 (ai(x)) =-C ,

where

(2)

_ . (1)
V(b (£)) = =(b (£))

N (14

+ 3( (b, () M = 2b. (8) (B (£))

: : 3
- 2{b3(t) - 3b, ()b, (£) + 2(b (£)) ) :

By the identity (5.5.7) bl(t(x)) =0 for x e [a, b] , hence

(1)

V3(bi(t)) = 3(b2(t))t

- 2b3(t) =C .

We have that

__1 _ (1)
b3(t) = 5 | C 3(b2(t))t )
ol _ 3 (1)
= -3 |C -3 3¢ b)) )
-1/3 ‘
__1 _ . -1 (1)
= -ic-slv,@ e o, wn |

where we have made use of equation (5.5.5).
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That is

-1/3

1 (1)

1 -
(5.5.9) b3(t) = - —-(C - 3(V3(ai(x))c (bz(t)) '

2

where b, (t) is given by equation (5.5.8).

Note that although it is much more difficult, we could have
found equation (5.5.9) directly from equation (5.5.4) on making use
of equations (2.,4.3) to (2.4.6).

Equations (5.5.8) and (5.5.9) illustrate the complicated structure
that absolute invariants have.

Halphen [19] gave the absolute invariants bz(t) and b3(t)

for the case Cc =1 .
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ahapter 6

Appliéations

(6.1) Introduction. In section (6.2) we find the solutions to

the differential equation

) (%) 2aac®® (v = o (a, (x) = 1)
k=0 k n-k 0

when it is S equivalent, T equivalent and/or P equivalent to

a constant coefficient differential equation. Section (6.3) contains

a detailed look at 3rd order linear differential equations that are

P equivalent to constant coefficient differential equations. 1In
section (6.4) we give some examples of nth order differential equations
that are P equivalent to constant coefficient differential equations.

(6.2) Solutions of Differential Equations that are Eguivalent
to Constant Coefficient Differential Equations.

We now find the solutions of the differential equation

(k)

n.
(6.2.1) T (2] a , x)(yx) 0, (a (x) = 1) ,
k=0 ‘k) n-k 0

when it is S equivalent, T equivalent and/or P equivalent to
constant coefficient differential equations.

By Theorem (4.2.2), there exists a constant coefficient differential
equation

n n dk
(6.2.2) ) c ., ——y(x) =0, (c 1) ,
k=0 (k] n-kdxk 0
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that is S equivalent to equation (6.2.1), if and only if the

S

exp(-Jal(x)dx)) transform of equation (6.2.1) is a constant
coefficient differential equation of the form of equation (6.2.2).

We have the following theorem.

Theorem (6.2.1). Let a,(x) of equation (6.2.1) be non-ﬁanishing

on [a, b] . If there exists a constant coefficient differential
equation that is S equivalent to equation (6.2.l1), then the general
solution of equation (6.2.1) is
m k
£-1
(6.2.3) yx) =) V8 exp(-a (x)dx,x exp (A, X) ,
74 1 kK
k=1 £=1
m
where Z r. = n and the Bkﬂ's are arbitrary non-zero constants.
k=1 K
The rk's are the multiplicities of the roots Ak of the charac-

teristic equation of equation (6.2.2).

Proof: The theorem follows immediately from Theorem (4.2.2)
since the solutions yi(x) s, i=1,...,n , of equation (6.2.1l) are
related to the solutions ?i(x) ,1=1,...,n, of equation (6.2.2)

by

It

yi(x) exp(—Jal(x)dx)§i(x) '

exp(-Jal(x)dx)exp(Aix) R i=1,...,n.

Note that if the characteristic equation of equation (6.2.2) has
£-1

no multiple roots, then r = l, k=1,...,n , and the term x
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in equation (6.2.3) is unity. We are done.
By Theorem (3.4.1), there exists a constant coefficient

differential equation

k

n
n d _
(6.2.4) ZO (k) ®nk K z(t) =0, (cy = 1),

that is T egquivalent to equation (6.2.1), if and only if the
1 ~ -

T~(an(x)) /n} transform of equation (6.2.1) is a constant coefficient

differential equation of the form of equation (6.2.4). We have the

following theorem which was proven in [5] by Breuer and Gottlieb.

Theorem (6.2.2). Let an(x) -of. equation: (6.2.1) be non-vanishing

on [a, b] . If there exists a constant coefficient differential
equation that is T equivalent to equation (6.2.1), then the general

solution of equation (6.2.1) is

r
m k 1/n £-1 1/
(6.2.5) yx) = ) ] B ( (a_ (x)) dx) eprk (a_(x)) “Vax| ,
kL n n
k=1 £=1
m
where Z r =n and the B, ,'s are arbitrary non-zero constants.
k=1 * i
The rk's are the multiplicities of the roots Xk of the characteristic

equation of equation (6.2.4).

Proof: The theorem follows immediately from Theorem (3.4.1)
since the solutions yi(x) , 1i=1,...,n , of equation (6.2.1) are
related to the solution zi(t) , 1=1,...,n , of equation (6.2.4)

by
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vy, (x) z; (t)

exp(Ait)

il

1
exp(kif(an(x)) /ndx) ’ i=1l,.e.,n .

Note that if the characteristic equation of equation (6.2.4)
has no multiplezroots, then r = l1,k=1,...,n, and the term
(J(an(X))l/ndx e in equation (6.2.5) is unity. We are done.

Let Vj(aitx)) be the first non-vanishing relative invariant
of equation (6.2.1) on [a, b] , where 3 < j < n . By Theorem
(5.3.2), there exists a constant coefficient differential equation

k

n
d
(6.2.6) Y [P)e [ —zt) =0, (c, =1) ,
=0 (k) n-kdtk 0 ;

that is P equivalent to equation (6.2.1), if and only if the
1-n

P {Vj(ai(x)))ilj, exp(-Jal(x)dx)(vj(ai(x)))_igq transform of

equation (6.2.1) is a constant coefficient differential equation
of the form of equation (6.2.6). Note that we have taken the
arbitrary constant C , of Theorem (5.3.2), to be 1. We have the

following theorem (see [3], p. 4).

Theorem (6.2.3). Let the order of equation (6.2.1) be 3 or

greater and assume that Vj(ai(x)) is the first non-vanishing
relative invariant of equation (6.2.1) on f{[a, b] , where

3 < 3j<n. If there exists a constant coefficient differential
equation that is P equivalent to equation (6.2.1) then the general

solution of equation (6.2.1) is
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1-n

¥ 23

X .
k
(6.2.7) yix) = )} ) B, ,exp -Ja (x)dx ‘V.(a.(x)))
ko1 fop KL ( 1 )Jl

. ”(Vj (ai(x)))l/jaxr—lexp Ak“Vj (ai(xn)l/jdx) .

m
where z r. . =n and the Bkﬂls are arbitrary non-zero constants.

k=1
The rk‘s are the multiplicities of the roots Ak of the characteristic

equation of equation (6.2.6).

Proof: The theorem follows immediately from Theorem (5.3.2)
since the solutions yi(x) , 1=1,...,n , of equation (6.2.1)

are related to the solutions zi(t) , 1i=1;...,n , of equation

(6.2.6) by
in
y; (x) = exp(-ja1 (x)dxHVj (ai(x))) 23 z; (£)

l-n

exp(;Jai(x)dx,(vj(ai(x)))—ag.exp(lit)

1-n

exp{-Ja1 () ax '(vj (a, (x) ))—’3 exp( A i“vj (a; ()] Y jdx)

Note that if the characteristic equation of equation (6.2.6)

1 /- £2-1
has no multiple roots, the term J{Vj(ai(x)) /de) in equation

(6.2.7) is unity. We are done.

(6.3) Third Order Differential Equations that are Equivalent
to Constant Coefficient Differential Equations.

In this section we consider the third order differential equation

3
(6.3.1) I 3] s een™ =0, @ =1 .
k=0
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Theorem (6.3.1). . Let the relative invariant

(1)

(2 (1 ))

_ )

v, (a;60) = —(a )+ 3@, 60 - 2a 60 @) )
3

- z(as(x) - 3a1(x)a2(x) + 2(a1(x)) ) , of equation (6.3.1), be

non-vanishing on [a, b] . There exists a constant coefficient

differential equation that is P equivalent to equation (6.3.1),

if and only if

(6.3.2) 27|v, (a; 6 ) *[a, =) - (@, x)? - (al(x))(l)}

+ 7

UVs(ai(x)))(l))z) R AT

_ c27(V3(ai(x)))8/3 ,

where ¢ is some constant.

Proof: By Theorem (5.3.2), there exists a constant coefficient

differential equation that is P equivalent to equation (6.3.1), if

and only if the P (Vs(ai(X))C—I)I/a:(eXP ”Jal(X)dx){va(ai(X))C-l)-l/s)

transform oflequation (6.3.1) is a constant coefficient differential
equation, where C is an arbitrary non-zero constant. This

-1 173 -11"1/3
P (Vs(ai(x))c ) P exp(-Jal(x)dx)(Va(ai(x))C ) transform of
equation (6.3.1l) is given by (see equation (5.5.3) to (5.5.9) with

n = 3)

3
(6.3.3) I 3] ey @en® <o,
k=0
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where
b,(t) =1,
bl(t) zZ0,
6:3-9 b, (£) = C2/3( 27{V3 (ai(x)))8/3)-l
- [é?[v3 (_ai(x_)‘))Z{;Z(x)_- a, 2 - A('al o )
+ 7 (v3cai(x))](1))2 - 6V, (ai(x))(V3(ai(x))(2)]
and
b (t) = - ']2—'(0 - 3(v3 (a:.L(x))c’l)—l/3 (b, (£)) (1))

NN

Clearly bs(t) reduces to the constant - when bz(t) is a
constant, hence we see that equation (6.3.3) is a constant coefficient
differential equation if and only if b2(t) is a constant. The
condition given by equation (6.3.2) now follows immediately from
equation (6.3.4).
0.E.D.

We now consider some examples, taken from [23], of third order

differential equations that are P equivalent to constant coefficient

differential equations.

The differential equation

(3)

(6.3.5) e - x % =0,
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has aICX)

11}

az(x) =0, a3(x) = —1-:--6 and V3(ai(x)) = 2x = .

I

Letting C 2 in Theorem (5.3.2), we find that equation (6.3.5)

is P equivalent to the constant coefficient differential equation

(3)

(6.3.6) (z(t))t

-z(t) =0.
Equation (6.3.6) has the characteristic equation
(6.3.7) A ~-1=0.

Letting Ak » k=1,2,3 be the distinct roots of equation (6.3.7),
the general solution of equation (6.3.5) is given by (see Theorem
(6.2.3))
3 2 -1
y(x) = ] B xexp(-Ax ).
k=1 k k

This solution is valid on any interval [a, b] not including x = 0 .

Consider the differential equation

(3) ax?+1-v2 (1) bx>+a(v-1)x2V4vi-1
+3 Sy o+ 3

3x b 4

(6.3.8) (y (x)) y{x) =0,

where a, b and Vv are constants and b # 0 . For this equation

2v 2 3v 2v, 2
+1- + - +u° =
a (x) 20, a (x) =2 ¥V 4 =bx Falb-l)x v -1,
1 2 3 2 3 3
3v-3 ¥ x
V3(ai(x)) = -2bx . Letting C = -2b in Theorem (5.3.2), we

find that equation (6.3.8) is P equivalent to the constant

coefficient differential equation

(3) (1)

(6.3.9) (z(t))t + a(z(t))t + bz(t) = 0 .
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Equation (6.3.9) has the characteristic equation

3
(6.3.10) A +al +b=0.

By Theorem (6.2.3), the general solution of equation (6.3.8) is

m Tk v £-1 v
1-vf x X
v = 1L e (5] e 3]

k=1 £=1
- P m-- - s -
where z r,. =3 and the A 's are the roots, of multiplicities

k=1
This solution is valid for any interval

T . of equation (6.3.10).
[a, b] not including x = 0 .

Consider the differential equation

32 gen® 43 L yen® vy =0,

(6.3.11) (y (x))

b4
. e . 2
where a is a non-zero constant. For this equation al(x) =5
a, (x) = JE., a {x) =a and V (a.(xj) = -2a . Letting C = =-2a
2 xz 3 3771
P equivalent

. in Theorem (5.3.2), we find that equation (6.3.11) is

to the constant coefficient differential equation

e +az@) = o0 .

(6.3.12) n

Equation®(6.3.12) has the characteristic equation

(6.3.13)

Letting Ak + k=1,2,3 , be the distinct roots of equation (6.3.13),

the general solution of equation (6.3.11l) (see Theorem (6.2.3)) is
3

-2
yx) = z B.x exp(A x) .
k=1 k K
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This solution is valid for any interval [a, b] not including x = 0

The following two examples illustrate the fact that a given

differential equation may be P equivalent to more than one constant

coefficient differential equation.

-1
The P(x , x) transform of

(6.3.14) (y(x))(s) - %x':’y(x) =0,

defined by

b
;:

(6.3.15)
and
(6.3.16) y({x) = xz(t) ,

is

@) zen -2 =0

(6.3.17) (z () N

The T(x_l) transform of equation (6.3.14), defined by

(6.3.18) -g—:% = x!

and

(6.3.19) y(x) = £(t) ,
is

(6.3.200 (€N - 3N v 2@en - 3 ew

=0 .
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By Lemma (3.4.2) equation (6.3.20) is the same as the P(x_l, 1)
transform of equation (6.3.14), hence from equations (673.17) and
(6.3.20) we see that equation (6.3.14) is P equivalent to more
than one constant coefficient differential equation. From equations
(6.3.15), (6.3.16) and (6.3.17) we find that the solutions of

equation (6.3.14) are

y(x) = xz(t)

x exp(Akt)

b'e exp(kkﬂn x)

Ak+l
= x ’

where Ak s k=1,2,3 , is a root of

3
(6.3.21) A -A-%=0.
That is
AL
(6.3.22) yvix) = x R k=1,2,3.

From equations (6.3.18), (6.3.19) and (6.3.20) we find that the

solutions of equation (6.3.14) are also given by
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yx) = £(t)

exp (rkt)

exp (rkln X)

X
k
= X ’

where Ty s k=1,2,3 , is a root of

3 2 1
(6.3.23) r - 3r + 2r - -2—= 0.
That is
Tx
(6.3.24) y(x) = x R k=1,2,3

From equations (6.3.22) and (6.3.24) we expect that r = A 1,

k

which is easy to verify. That is, equation (6.2.23) becomes equation

(6.3.21) where r is replaced by A + 1 .
2
2/3 x - X ))
2

The Plexp(-V3 x), exp transform of

(6.3.25) (v P w3k e ® + 3P v Py =0,
defined by

(6.3.26) % = exp(-Y3 x)

and

2/3 x - x°

(6.3.27) y(x) = exp( > X 2w ,
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(see section (5.4)) is

(6.3.28) (z(t))és) =0 .

2
The S(exp {- %r)) transform of equation (6.3.25), defined by

2
(6.3.29) y(x) = exp(- E;-,?Tx) '
is }
(6.3.30) (?‘(x))(” - 3(9‘(x))“’ =0 .

By Lemma (3.3.1) equation (6.3.30) is the same as the P(l, exp{— Ei )
transform of equation (6.3.25), hence from equations (6.3.28) and
(6.3.30) we see that equation (6.3.25) is P eguivalent to more

than one constant coefficient differential equation. From equations
(6.3.26), (6.3.27) and (6.3.28) we find that the solutions of

equation (6.3.25) are

2
y (x) EE@il%;Lji_) z (t)

exp(

2/3 x - x2 j
0 c— t

exp(zJE‘x;— xz)( exp(—ig-x)Jj’ 5= 0,1,2

-3

The factor (—/33_3 can be replaced by one without loss of generality,

hence

(6.3.31) y(x) = exp[&é—_—xinexp(—@ x)}j , J=o0,1,2.
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From equations (6.3.29) and (6.3.30) we find that the solutions of

equation (6.3.25) are also given by

2
X —
y(x) = exp(- —2—)y(X)
2
= (- X (A, x)
exp 5 | exp (A
2
_ (ZAkx - x )
= exp -__—5—-——
where Ak , k=1,2,3 , 1is a root of
3
(6.3.32) A =32 =0 .
Equation (6.3.32) has the 3 distinct roots Xl =3 ’ Az = 0 and
Aa = -V/3 , hence
2>\kx - X
(6.3.33) y(x) = exp(———z———),

where Al =3 p Az = 0 and Ag = /3, Comparing equation (6.3.33)
with equation (6.3.31) we see that we have obtained the same solutions
of equation (6.3.25) by transforming it to two different constant
coefficient differential equations.

(6.4) Nth oOrder Differential Equations that are Equivalent to
‘Constant Coefficient Differential Equations. '

We now give some examples of nth order differential equations,

° n (k)
I (%) 2@ e ™ =0, (3, (x) = 1) ,

k=0 '¥
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that are P equivalent to constant coefficient differential equations.
-1
As noted in section (5.3) it is well known that the P(x ,; 1)
transform of the Euler differential equation (5.3.2),

n
(6.4.1) D[R] # P wen®™ =0,
k=0

is a constant coefficient differential equation. The solutions of

equation (6.4.1) ‘are of the form y(x) = kk where A is a constant.

We now consider the differential equation

(k)

), nil (E)(n SR+ ) () =0 .
k=0 x

(6.4.2) (y(x))

This equation has ai(x) = it (1 + i-) , 1 =1,2,3 , hence Vs(ai(x))

is easily found to be -4. Letting the arbitrary constant in Theorem
1/3
(5.3.2) be C= -4, we find that (Va(ai(x))(—4) 1] = 1 .and

1-n
-1) 6

exp(-falcx))

_ exp(-j(l + ;)dx)

_ exp(-x)

X

exp(—Jal(x)dx)(Vs(ai(X))(—4)

By Theorem (5.3.2), there exists a constant coefficient differential
equation that is P equivalent to equation (6.4.2), if and only if
the P(l, 2§2£:§L) transform of equation (6.4.2) is a constant

coefficient differential equation. Recalling that

P(l, §§E£:§L) = S(E§££:511 (see Lemma (3.3.1)), we find that the
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P(l, EEEﬁzﬁl) transform of equation (6.4.2), defined by

y(x) = §§E£:§l-y1x) , 1s a constant coefficient differential
equation. That is, ¥{({x) is of the form exp(Ax) , hence the
solutions of equation (6.4.2) are of the form y({x) = EEEiiilllil ’

where A 1is a constant.

We now consider the differential equation

n
(6.4.3) ¥ (2)(1 + % ey ® 2o .
k=0

(n) in equation (6.4.3) is (1 + x)n R

The coefficient of (y(x))
hence we must divide equation (6.4.3) through by (1 + x)" to
normalize its leading coefficient to 1. Carrying out this division

we find that equation (6.4.3) is equivalent to

n n x n-k (k)
(6.4.4) I (Rl | wen®™ =0,
: T+ x
k=0
% i
which has ai(x) = (l " x) . We easily find that V3(ai(x)) of
equation (6.4.4) is ————2——3-. Letting the arbitrary constant C
in Theorem (5.3.2) be C =2 , we find that (V3(ai(x))2 ) = (1l4x)
and
1-n n-1
exp|-|a, ax|[v_(a, x)27'] & = -2 ax )@+
P( 1 )( 31 —exP( 14x )
n-1

expl—l-x-kﬁn(l + xﬂ(l + x)

n+l

exp(=(1L + x)) (L + x) 2 .
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By Theorem (5.3.2), there exists a constant coefficient differential
equation that is P equivalent to equﬁ}ion (6.4.4), if and only if
the P((l + x)—l, exp(-(1 + x)) (1 + x)—a—j transform of equation
(6.4.4) is a constant coefficient differentii% equation. Assuming
that the P((l + x)_l, exp(-(1 + x)) (1 + x)mi-) transform of

equation (6.4.4) is a constant coefficient differential equation,

with deéendent variable z(t) , we must have that
n+l

y(x) = exp(-(1 + x)) (1 + x) 2 z(t) .

By assumption z(t) is the solution of a constant coefficient
differential equation, where t = J(l + x)—ldx , hence we have that

z(t) is of the form

exp (At)

z (t)

expO\J (L + x)“ldx)

«(1+x)>\ ’

where A is a constant. We must have that

n+l

exp(=(L + x)) (L +x) 2 (1 +x"

n+l1+2\

exp(-1)exp(-x) (1 + x) 2 .

y (x)

Since the factor exp(-1l) is a constant, it can be replaced by one,

hence we see that y(x) is of the form
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(6.4.5) v(x) = exp(-x) (1 + X)r '

if equation (6.4.4) is P equivalent to a constant coefficient
differential equation. The solutions vy(x) , of equations (6.4.3)
and (6.4.4), are known to be of the form given by equation (6.4.5)
(see Allaway [1]), where r is a root of the Poisson-Charlier
polynomial {cn(r; 1)} defined by (see Szegd [40, p. 35])

o

exp(-x) (1 + x)r = Lz cz(r; 1) %T
=0 *

n+l1

Clearly our assumption, that the P{(1 + x)_l, exp(-(l + x))(l + Xx)
transform of equation (6.4.4) is a constant coefficient différential
equation, was justified. Note that to actually effect this trans-
formation of equation (6.4.4), for arbitrarily high n , is not
practical because of the computations that would be involved. That
is, although Theorem (5.4.2) is true for arbitrarily high n it

is not practical, in general, to try and effect P(u(x), v(x))

transforms of differential equations of orders greater than 3 or 4.
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Appendix

Interchange of Summation Formulas

Rainville [36], p. 57, shows that

o0 k - oo
(A.1.1) Y I Pk, 3) =) T Pkk+3, 3 ,
k=0 j=0 k=0 j=0

where P 1is a function of k and j .

—We.;ésily obtain the following lemma from equation (A.1l.1).

Lemma (A.l1.1). Let n be a positive integer and let P be a

function of k and 3j , then

n k n n-j
(A.1.2) Y ) Pk, j) Y Y P+ 3,3 .
k=0 j=0 j=0 k=0

Proof: Letting

1 k £n
}\k= ’
0 k >n
we have
n k o k
I I Pk, =] F AP O3 .
k=0 j=0 k=0 j=0

By equation (A.l1.1) this becomes

n k

z 2 Pk, j) =
k=0 3=0 k=0 3j=0

Ak+j P(k+ 3, 3) .

&~ 8
| ~1 8
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where
1 k+3j<n
(A.1.3) Ak+j =
0 k+3J>n
It is easy to see that the infinite k and
be interchanged, hence
n k o o
I oY e = Lo
k=0 j=0 j=0 k=0
By equation (A.l1.3) this becomes
n k n n-=j
} ) Pk, )= ) ) PB(
k=0 j=0 =0 k=0
Corollary.
n k n n
(A.1.4) } 1 Pk, 3=} )
k=0 j=0 j=0 k=3
Proof: Raising the k

of equation (A.1.2) by Jj

j summations above can

Q.E.D.

P(k, 3)

index of sumation in the right hand side

we immediately obtain equation (A.1.4).

Q.E.D.
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