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ABSTRACT

Electrical transport‘properties of n and p-type InSb
in the temperature range 6.2-300K have been studied under
pressures up to 15 kbar using Hall measurements.

The donor gap in n-InSb is found to increase linearly
with pressure, becoming zero at pressures of 8.4 kbar or less.
This is responsible for carrier freeze-out under pressure.
Unexpected behaviour is observed in the donor gap, as it appears
to decrease abruptly at temperatures near 100K as temperature
is lowered. This effect has been investigated and two possible
theories explaining it are examined. Mobility measurements at
Tow pressure indicate that at temperatures below 40K scattering
processes are dominated by ionized and neutral impurity scattering.
At pressures high enough to cause carrier freeze-out the mobility
decreases rapidly with temperature. High electric field measure-
ments indicate that jonized impurity scattering is the dominant

scattering mechanism in this regime.



PRESSURE DEPENDENT EXTRINSIC EFFECTS IN InSb

A member of the III-V family of semiconductors, InSb was
for many years considered a classic example of a narrow band-gap
semiconductor. Recently there has been renewed interest in the
donor states of this material, of which there is a surprisingly
limited understanding.

The effect of donor freeze-out observed in many semicon-
ductors is not seen in InSb at any temperature without the action
of a magnetic field, pressure or some other agent. The explanation
of this seems to be that the 1ow‘e1ectron effective mass 0.013'me
in InSb results in large donor orbits which overlap for even the
purest samples available (about 10!3 donors/cc) causing the donor
level to spread and overlap with the conduction band.

Magnetically induced freeze-out has been studied fairly
extensively by various workers,(1"9)' Two theories of magnetic
freeze-out are prevalent. One is that the donor levels are initially
in the conduction band or very near to it, and that a magnetic field
raises the conduction band minimum more than it does the donor level
relative to the valence band, thus increasing the donor gap.(2’3’4)
Alternatively, the donor electron wavefunctions may overlap
sufficiently to form a donor band which causes conduction at Tow

temperature.(]’ﬁ) The magnetic field compresses the donor electron



wavefunctions so that impurity band conduction is destroyed and
freeze-out is observed.

The effect of pressure induced donor freeze-out is not as
well understood as magnetic freeze-out, and less exﬁerimental
work has been done on it. Apart from some combined pressure and

(10,11) the primary researchers in

magnetic field investigations,
the field are Porowski and his co-workers.(]z']s) They have
observed strongly pressure dependent donor freeze-out in n-type
InSb, as well as an anomalous effect during freeze-out which
appears to be a sudden change of the donor gap at abolt 100°%K.
This they explain-in terms of a donor atom that can occupy non-
equivalent lattice positions with different electron energies.
Studies of acceptor levels in InSb are rare, and an
understanding of them could be helpful in elucidating some effects
in n-InSb. Because electrons in InSb are much lighter than holes
their mobility is much higher (about 80 times), consequently, in
order to appear p-type the material must be doped with enough
acceptors to override the effect of donor electrons, so p-type
InSb cannot be as pure as n-InSb.
The effect of a high electric field on mobility and carrier

number in semiconductors has been investigated experimenta]ly(]6’]7)

(18,19) 1pe etectron mobility in InSb has been

and theoretically.
given a theoretical treatment in some detail by T. Stokoe and

J. Cornwe]1.(]9) Their low temperature results will be compared



with our experimental data in the freeze-out range. Impact
ionization of donors in InSb does not seem to have received as
much theoretical attention, a1though some experimenters have
observgd it during freeze-out.experiments.(]’z’}1) Measurement
of breakdown voltages for dondrg%ﬁpact jonization can'reveai‘
the presence of more than onelddnor level by the existence of
more than one breakdown vb]tage. In cases of extreme freeze-
out the measuring fields usedicdu]d cause impact ionization and
affect the results, so it is important to know when this becomes
significant;~

Optical measurements -on semiconductors éan_pro&f&e’
informafibn onﬁenergx'géps'mOre direct1y‘thanAélectr%ca]vm¢a5ure-
ments. Anomalous optical abéorption in pure and dope& ééhﬁféé‘

of InSb have been observed by M. Tanenbaum and HQB{iBEigéé,(zo)

and by Elias Burstein(2") who explains the effect in terms of
degeneracy of conduction band electrons for high electron density.
We have observed degeneracy effects in our éambleé”étiiowa
temperatures and Tow pressure.

We have studied the Hall effect and resistivity foh“n
and p-type InSb between room temperature and 7% dt~pré§$dres.up
to 15 kbar; This thesis studies the Porowski'anomalfgﬁand
COnsiders‘altérnétiveféxplanations., FheeZesput,in-p-typejmhterial
is examined to see if a similar effect occurs there. Electron

number and mobility in the freeze-out,range~are"meaSUred,for



varying electric and magnetic fields and the results compared
with theory.

In Chapter 1 the theory of low field carrier number under
extrinsic conditions is reviewed‘énd'the effects of various doping
conditions is considered. Low and high field mobility are discussed
and the current theories of magnetic freeze-out briefly presented.
The van der Pauw method used for measurements is examined. In
Chapter 2 the sample preparationAand equipment are described. In
Chapter 3 the results are presented and discussed, and Chapter 4

contains our conclusions.



Chapter 1

Theoretical Considerations

1-1. Band Structure in InSb

There is a reasonable amount of information on the band
structure of InSb.

The maxima and minima of the valence and conduction band
r?spectively lie around ¥ = 0. The conduction band is'ﬁade'up of
two bands, the lowest of which lies at the centre of the Brillouin
zone (r point) where the band has the largest curvature, hence
the smallest electron effective mass. The band is approximately
parabolic for engrgies up to a few tens of millelectron volts at
zero pressure, and the parabolic approximatibn becomes better as
pressure increases the band gap. The band structure of?IﬁSS’is
shown graphically in Figure I.

Kane(?2) has performed detailed calculations of the band
structure of InSb and other smal]“band'gapAsemicdnductokéi?.Hé
obtains ‘the E - k relations for the conduction and vaiencé"bahds
using p, the interbandl%nteraction”matrix‘eTémehttand'A,rthé“gpin-

orbit splitting energy at k = 0.  For the conduction band (energy

measured from the top of the valence band)



Figure 1 Band structure of InSb. The dashed lines
represent the bands under a pressure of

approximately 15 kbar.
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For the valence bands (energy measured from the top of the

valence band)

E = - 5 Heavy hole banﬁ
212 ' 212 o
E=- L1 S [[E 2 - §E—k—] - E ] Light hole band

Spin-orbit split band.

Here m is the free electron mass and Eg is the valence to conduction
band gap. The parameter A occurs only in the spin-orbit split band
expression.

In the conduction band formula, if we measure energy from
the bottom of the conduction band and ignore h’k2/2m_ (since.

m, = SOm: in the conduction band), we have

| .
v 1t [e 2 4 8P%K2) 2 -
£ =1 [:{Eg + 8 gl (121-1)

fi

]

We define m¥ SﬁQEg/4p2. Putting this in (1-1-1)'and,eliminatihg

p?, one obtains

h2kz tf[i + E'/Eg] (1-1-2)



This is a hyperbolic relation between E' and k. Provided the
conduction band is not too full and the electron energies are
not too high (E' <<-Eg) the equation reduces to a parabolic

relation between E' and K:

E' ='ﬁ2k2/2m: (1-1-3)

The effect of pressure is to increase'Eg and’m: . Thus

the parabolic approximation is improved both directly by reduction
of E‘/Eg_and by the larger density of stateé, which is proportional

Yy
* /2
to mk’2 .

The L conduction band edge is estimated to lfeMO.SZ’eV
above the T conduction band minimum. The pressure derivatives of
the I and L band minima are estimated to be 14x10~3 eV/kbar and'
8.3x10"3 eV/kbar respectively.(23;24’25)

The valence bands V, and V2 are degenerate at k 0. The
hole density of states is determ1ned ma1n1y by the low curvature
heavy hole band, however, the e]ectr1ca1 propert1es are affected
by both types of holes s1nce the 11ght ho]es are more mob11e than

the,heavy holes. The split off band V3 does not contribute in

Tow electric field studies.
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1-2. Low Field Carrier Concentration,for‘Extrinsic
Semiconductors

The electron density in the conduction band for a semi-

conductor with parabolic bands is given by

n= NCF%(n) (1-2-1)
' ‘ 2 " Jede ;
her Fis = £ e 1-2-2
where 3(n) = Trexp(eon) ( )
E-Ec ¢—Ec
€ =‘.—ET—35\ n = &ETT ¢ = Fermiienergy,

3 . A
Nc = 2(2nm’ékI/h2)’5 is the effective density of states in the.
conduction band, .m; is the electron effective mass.
If there is a concentration of donor atoms N, with ionization

energy E, , the number of deionized donors will be

Nd .
Nan = (E.-%-E4 (1-2-3)
1+B exp kT
But Ng* = Ny - Nyn - (1-2-4)

d

Nd+7is:the number of ionized donors.
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For the non-degenerate case where E. - ¢ > 4kT we have

g-E
- . - __c -2-5)
n = NFs(n) = Nexp(n) = N_ exp[ KT ] (1-2-5)

Substituting (1-2-3) and (1-2-5) in (1-2-4) wé'obt;in

N N
4 e d_ - d . s
1+B-lexp ™ 1+ ﬁﬂg exp | 1T

A similar expression exists for the number of ionized acceptors.

That is
N
Ny = 52 T (1-2-7)
BN, «e"p[ﬁ]‘”
v :
| 3 L G
where Ny = 2(2nkBTm;/h2) 2 is the density of hole states in the

valence band and B is a factor that accounts fdr’possib]e_mu]ti~
plicity in atom bound states. This will be taken as 2.
To solve for the carrier concentration .in the conduction

band, two other equations are required. Ffbm charge neutrality

P + ND+ =n+ NA (1-2-8)

and the intrinsic carrier concentration of carriers excited across

the valence to conduction band gap gives:
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E

G
n = NN exp{ ] (1-2-9)
p cV kBT

where EG is the valence to conduction band gap.

The four equations (1-2-6) to (1-2-9) can be solved to find

the free electron or hole concentration for any ratio of N, and N

A D -
However, this would involve solving a fourth order equation, so it
is helpful to consider simpler cases.

If there are no compensating acceptors, the free electron

concentration is :simply

N

= - D
n=Npt = n Ep
1+ = exp|i—=
BNc [kBT]
or
1-E
n?__ D_ 2.
Nb_n BN,, exp{ kBT] (1-2-10)

In the case of a lightly compensated sample ND >> NA we can

make the approximation (in the extrinsic range)

ND+ =n+ NA (1-2-11)
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because all the acceptors will have electrons frozen onto them.

Putting this in (1-2-6) we have

n(n+NA)

N.-N,-n

p~Na kKl

-Ep
BN exp|i— (1-2-12)
‘B

This equation can give anomolous appearances. For moderate freeze-out

ND >>n >> NA ,

n(Ngtn) e

_—n .. n
ND—NA‘n ND
Therefore
-E
- 1. D 7=
n= JNCNDB exp {ZkBT] (1-2-13)

But for extreme freeze-out ND >> NA >>n ,

n(NA+n) nN
ND—n—NA ND

A

and

-E
= _D -0
n= BNcND/NA exp(kBT] . (1-2-14)

Thus the energy gap appears to double as the number of carriers

: 3
decreases past n = NA . A plot of log (n/T‘é) against 1/T will show
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two straight lines with one having twice the slope of the other
intersecting at n = NA . This has been observed experimentally
and may be used to obtain information about compensation levels

in a semiconductor.

For heavily compensated semiconductors the solution must
be obtained by solving the four equations (1-2-6) to (1-2-9)
giving

NCNV' NN nNA

D'C
-f + L= + 0
exp( FG) 2nexp(eD)+Nc n 2Ncexp(eA—eé)+n

n
(1-2-15)
where ey = ED/kBT ep = EA/kBT g = EG/kBT and we have
assumed twofold degeneracy for both donors and acceptors.

This equation gives the carrier number under all conditions

of doping and compensation.

Equations of this type can best be solved by numerical

methods. This will be discussed further in section 1-5, part III.



-]5~

1-3. Low and High Field Mobility

The mobility -of carriers in a crystal is limited by several
processes whose effects are generalﬂy dependent on lattice temperature,
carrier temperature, carrier effective mass, and ionization conditions.
The most important scattering mechanisms in InSb at temperatures below
~50% are ionized and neutral impurity scattering. At high. tempera-
ture, phonon and electron holerscéttering predominate. YThe_]ow_Field
mobility 1imits for these processes have been given in a previous
thesis by S;M.jFong.(26) The impurity scattering formulas are of
interest to us as we are cbncernea with mobilities at low temperatures,
however, the high field behaviour of’phcﬁéh'scattering*fs also 
considered as it could play a role when thé‘carrfer fémperatufe”béCOmes

eTeVated;

I. lIonized Impurity Scattering

At Tow temperatures, when phonon scattering becomes less

effective, the mobility limit may be controT1edfby ioﬁized‘5mpdrity

scattering. The mobility limit has been given as(Z7)"
. L 2 3, - | 3]
Wy = 3.2x1015[ﬁ%] ﬁ5£ﬂ;-»/£n 1.3x10‘“T2k[g}J /n|. (1-3-1)

ND and NA are the number.of ionized donors and acceptors, n is the
free carrier concentration, and k is the»dielettric constant‘of the

material,
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The units used are in the cgs system. The mobility will

be in the cm?/V-sec. We have for low fields

-y 3
UI a (m*) ‘2 T/2

The scattering time 1 giving the effective collision period is

related to carrier energy by(28)

3
o ED . (1-3-2)

Similarly, the Hall factor is

vH = 315x/512.

The ionized impurity mobility 1imit is observed to drop
rapidiy when an electric field raises the electron energy. Since
the scattering time is proportional to E%Q , an increase in the
electron's energy by the field will result in its being scattered
less so that it can increase its energy still further. The mobility
will undergo a runaway increase for a small range of field strengths
until it is limited by some other process. When freeze-out of donors
is advanced, the number of ionized impurities will be reduced. The
application of a high electric field may cause impact ionization,
increasing the ionized impurity concentration, and reducing the
mobility 1imit due to this process. Thus the field dependence of

jonized impurity scattering in a sample exhibiting extreme freeze-out

will be the difference of these two competing processes.
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II1. Neutral Impurity Scattering

Scattering by neutral impurities may be of importance in

samples experiencing a high degree of freeze-out. Erginsoy

(29)

has given a simple treatment of this process for Tow temperatures.

i
N Mo kNN

N
Again we have(28)

0
My @ m*T° and T a Eo

Here the Hall factor is YH =]

= ].4x1022k§ﬁ 1 cm?2/V-sec.

N,, = number of neutral impurities per cc.

(1-3-3)

(1-3-4)

Because the scattering time is independent of the carrier

energy, the mobility 1imit has no explicit temperature or field

dependence. Since the number of neutral impurities is temperature

dependent and may also be reduced by impact ionization, the neutral

impurity scattering process is indirectly affected by these para-

meters, and will generally become less effective when temperature

or electric field strength is raised.
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III. Phonon Scattering

+

Carriers may be scattered by lattice“vibrations or phonons.
Acoustic phonons are present in all types of lattice, while polar
optical phonons occur only in diatomic Tattices since they rely on
the relative movement of two unlike atoms. The low field mobility
Timits for optical and acoustic phonon scattering are given in
the thesis of S.M. Fong, however, they are of little concern here
because phononrscatfering, since it relies on thermal lattice
vibrations, becomes insignificant at low temperatures. When the
electron energy is raised by an electric field it may dissipate
some of this energy in the form of acoustic or optical phonons.
Thus, the high field mobility limits of these processes may be of
importance.

A theoretical treatment of high field acoustic and polar
optical scattering is given by~Seeger.(30) The mobility limit due
to acoustic phonons at high field exhibits a characteristic E"lz

field dependence

. U] l/2 1
£ o=1.81 |—| £? (1-3-4)
Ho

where uo'is the low field mobility, and Uy is the speed of sound

in the material.
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This result is verified by experimental observations of
the field dependent mobility in germanium,(17)

Polar optical scattering is also effe;tive in InSb since
it is a diatomic material. The mobility 1imit due to this process
exhibits a runaway increase at sufficiently high field strengths,
an effect that has been related to dielectric breakdown. It has
never been observed in a semiconductor because other scattering
mechanisms take over at high enough fields. D. Matz has pointed
out that the non-parabolic conduction band in InSb would prevent
the breakdown{(lg)

At low lattice temperatures (T << 6, where 8 is the Debye
temperature) the drift velocity may be limited to a nearly constant

value over a range of field strengths before the breakdown. This

would result in a mobility field dependence of approximately ™! .

IV. Combined Scattering Processes

E.M. Conwe]1(17) has measured the electron mobility in
germanium at 20°K, and observes that it rises rapidjy for a small
range of electric fields and then decreases as E‘% . For higher
temperatures the mobility is constant with field up to some point
and then decreases as E_% at high fields. She attributes this

behaviour to a combination of ionized impurity and acoustic scatter-

ing. The jonized impurity scattering limits the mobility at 20°K
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and its effect decreases rapidly with increasing field until
acoustic scattering Fakes over with its characteristic E'!5
mobility dependence. At higher temperatures (77°K) acoustic
scattering is dominant at all electric field strengths. .

In InSb, however, polar optical scattering may play an
important role since we are dealing with a diatomic material.

T.Y. Stokoe and J.F. CornWe11(]9) have analyzed high field trans-
port in n-InSb using the drifted Maxwellian approach, taking the
dielectric constant as 17.5 and the acoustic deformation potential

as -7.2 eV. They take into account in their calculations mixing

of Bloch states, spin reversal scattering, and band non-parabo1icity.

For a lattice temperature of 77% they calculate that polar
scattering is the dominant process for electron temperatures up to
400°k or more.

They also calculate the field dependence of the mobility for
lattice temperatures of 20°K, taking into account band non-parabolicity,
Bloch state mixfng,’pdlar, acousth'and ionized‘1mpurity‘scattering.
The results give a field dependence for low fields (E < 10V/cm) of

Boa 50'25 and for high fields (£ > 30V/cm) u o g0-77

These results
will be compared with some of our experimental work which was also

done near 20°K.

V. Impact Ionization

At lTow temperatures and high enough pressures most of the

electrons in n-InSb freeze out onto donors. As the electric
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field across the sample is increased, some of the free electrons
acquire sufficient energy to ionize these neutral donor atoms. For
donor levels of the Srder of 10 meV below the conduction band,
1mpact.ibnizaf1bn begins to increase the number of electrons_fOr-
fields of about 0.1 V/cm. The increase in carrier number-With
field should be exponential(3])”and'the power of'the:exponential

is\proportibnal to the mobility, i.e.
9(E) o exp(uE)

The rate‘ofiimpqct ionization can also be affected by a
‘ (32)

magnetic field. ,Z;vnqbfﬁvolskis,and A. Krotkus obseryed an
increase in ionizatioh;fot_smail,magnetic“fields,_whi]e léfgerb
fields retarded the iqnﬁzation. |

‘They exp1§in5this by magnegic cooling of the»glectrqnsiqt
high magnetic figlds,;while at 1ow-fie]ds (670 Oe) the ﬁain‘effect
of the magnetfsm}is to cause distortions in current paths, resulting
in inhomogeneous electric fields in the sample and areas of high
local ionization. 1They observe the carrier generation rate.tbbbe
exponential with eTéctric field ‘strength. \

If the electric field is increased4suffiéféht1y the
1ohization‘raté‘WiiIrenteb a region of -breakdown where the number
of carriers ihﬁréases'very°rapid1y with field untf] all the donors

are ionized, when the carrier number will become constant. If
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more than one donor level is_present a distinct breakdown should
be observed for each level. An example is zinc doped germanium
(two acceptor levels: Ep, = 33 meV, E, = 90 meV) which exhibits

2

two regio%s of breakdown in an n vs. ?’plot.

1-4. Hall Effect‘Measurement and the Van der Pauw TechﬁiqUe

(

Van der Pauw.33) has developed a method of measuring the

specific resistivity and Hall resistivity of flat samples of

arbitrary shape. This method holds if the following conditions

are met:

(a) The contacts are at the circumference of the sample.
(b) The contacts are sufficiently small.

(c) The sample is of uniform thickness.

(d) The sample has no isolated holes.

The specific;reéistivity'is given by

wrd

R .
AB,CD 1-4-1)
p - _nd_ R +» R ] f : [} ‘ (]‘4-])
2enZ  {"AB,CD ~ "BC,DA [RBC,DA]

where d is the sample thickness, Rap CD'is the resistance defined as
L]

the voltage between D and C per unit current between A and B contacts.

The resistance RBC DA is defined in a similar manner.
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The parameter f is a slowly varying function of the ratio

RAB;CD/RBC,DA . Van der Pauw gives the relation satisfied by f as

R

AB,CD ~ Rec.ap o {exp(en(2)/f) A gisi
R R , f.arc cosh > _ (1-4-2)
‘AB,CD ~ "BC,AD

This equation is consistent with. Van der Pauw's graph of f against
(Rag,co/Rec,on) -

The arrangement for measurement of specific resistivity is

shown in.Fig. 2{

Figure 2
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The Hall coefficient _RH can be determined by measuring
the change of resistivity ARBD AC when a magneticbfield‘g is applied

perpendicular to the sample. We have

R, = 4 AR

> (1‘4'3)
R[]

BD,CA

For n-type InSb the electron mobility is of the order of one
hundred times greater than hole mobility and since the number of
electrons is always equal to or greater than. the number of holes
the elecfrons dominate conduthon processes and one may as§umg single.

band conduction. Then

Y

oo d _'H 1 1ok
R, = 2 R = - (1-4-4)
where Y, = '<uh2wkuﬁ>2 . The Hall factor Y, varies from 1 to 2~

depending on :the scattering processes. ﬁlffYHgiszunknankohé~may

obtain the Hall mobility and effective carrier number Teaving Y,

undetermined.
'YH
my = Ryfe = ng] (ne ) = Yyup
(n._ = u_, B = 0) . (1-4-5)

on n

One must know Y, in order'thspecify‘the‘drift mobility.
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The apparent carrier concentration is plotted as n through-

out this thesis and is given by

e e s oy 58

For the purpose of obtaining the derivatives of n and n
with temperature, pressure,or other parameters, there is negligible
error in plotting n .. and u, instead of n and u since YH_wi1T
only vary slow]yzand over a small range.

The'situetipn is mere complex in p-type InSb. At room
temperature the material is intrinsic and the more mobile electrons
dominate all conduction procesSes.?eAs the temperature iS‘Iowered
the=§ituation changes from intrinsic to extrinsic as the probbrfion
of electrons to holes becomes smaller. The Hall resistivity in this

case is

Y
R =

H p-nb2 _ o
H e Ep+nb52 (1-4-7)

where b = y /up and p 1s the number of ho]es The Hal] res1st1v1ty
changes sign at p = nb? rather than at the 1ntr1ns1c concentratlon'
n ='p. In InSb we have b = 80 at room temperature SO the hole -
concentration must exceed the electron concentration by a factor

of 6400 for the RH.to change sign.
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In this thesis we are primarily interested in the extrinsic
behaviour of InSb, which in p-type material means that the condition
p >> nb? must be satisfied. In order to calculate how far below the
sign change of R, the temperature must be for extrinsic conditions-

to prevail we use the formula.

np = NN exp(-Eg/kpT) (1-2-9)

EG being the band gap energy. At the sign change we have p = 6400 n
which means that tﬁe concenffatiqh of holes is'extrinsfc,vi.e; equal

to the number of uncompensated acceptors.

p= NA constant

.
.
3

]

= (NNy/Ny) exp(-Eg/kpT)

We know that NN, has a T3 dependence, and the smallest
value of EG is at zero ﬁressure and 1is abbut 0.2 eV. The sign change

occurs at around T = 150°K.

ne o T3 exp(-2321/7T) = 1503exp[:§%§%},= 6.43 x 1071 .
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To ensure extrinsic conditions we specify n < nc/10
which is satisfied for T < 133%. Thus it is safe to ignore
e1ectrqn conductivity at temperatures twenty degrees or more

below the sign change in R, .

Another complication arises in extrinsic p-type InSb,
this being the two valence bands contributing heavy and light
holes, with different mobilities. A simplified expression valid

at low fields is

R _='YH uipi+idp,

Ho e (Hlplfuzpz)z

(1-4-8)

where p; and p, are the concentrations of the two hbié types, and

u; and up are their respective mobilities.

If the ratios py/ps = x.and u;/u, = b are known to be constant

with temperature then we may solve for py; or p, :

11" b2x +1

Ru® pale x+T2 (1-4-9)
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Figure 3 shows the arrangement for Hall measurements.

t‘» B ]
D ¢ ¢ D | ¢
A BNy AN
8
| B |
D 4 ¢
A B\

Figure 3
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1-5. Donor Freeze-out in InSb

I. Magnetic Freeze-out

‘At zero pressure-and magnetic field strength the effect
of donor freeze-out is not observed in InSb at any temperature.
An apparent increase in RH at temperatures of the order of 10°K can
be attributed to the onset of degeneracy of electrons in the
conduction band. Freeze-out-at Tow temperatures has been observed
when a strong magnet1c field is present, and there are two distinct
schools of thought‘as to the oause of this. R.J: Sladek(]) has
made a detai]ed study of magnetic field effects on donor levels in
InSb. He concludes that the donor levels overlap the conduct1on
band at zero field strength due to the Tow electron effect1ve mass
which causes the donor electron’ wavefunctions to over]ap ‘each other
at even the lowest ava11ab1e 1mpur1ty concentrat1ons A s1mple |
hydrogen atom model for donors in InSb g1ves an’ 1on12at1on energy
of 0.69 meV but as Keys and S]adek(3 ) po1nt out the- average d1stance
between donors is only about three times the redUéed'Bohr.radius’for
2 x 101* impurities per cubic centimeter. A.maghetiéf?ie1d would -
narrow the spread-out donoruleveis:into a donor band which would lie
below the conduction band. The effect of the field on conduction
band electrons would be to raise their‘energy‘by‘%:ﬁe; Qhere7m is
the cyclotron angular:frequency:eB/m; The energy of the donor
states would also be raised due to the compression of the donor

electron wavefunctions closer to their atoms, but the increase would
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not be as great as for conduction band eléctrons, thus the donor
gap would increase with increasing magnetic field strength,
producing freeze-out. They have observed freeze-out at temperatures
in the range of 1-10%K and magnetic fields up to 30 kG. The binding
energy of the donors appears to increase with field as predicted,
and an impurity band becomes evident at Tow temperatdre as RH
passes through a maximum and starts to decrease.

Another effect that may be responsible is the Mott transition.
Fenton and Haering(4) have analyzed this in semiconductors, in
particular InSb. The theory takes into account donor screening by
conduction band electrons. For shallow donor states the number of
electrons ionized into the conduction band could be sufficient to
réduce the donor binding energy to zero by screening, thus there
will be no bound states and no freeze-out. A magnetic field increases
the donor gap in the manner described previously, and for some critical
value of field the donor binding energy would become finite. As
electrons start to freeze-out the screening decreases, so that the
process is regenerative and a rapid decrease in the conduction band
electron density would be observed. At absolute zero the change
would become a discontinuity called a Mott transition. The field
strength required to produce this obviously depends on impurity
concentration since a greater number of impurities produces more

screening, requiring a higher field strength to produce a transition.
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M. von Orthenberg 7) has considered the problem of
magnetic freeze-out theoretically, ca]cu]ating the energy levels
of a screened hydrogen-1ike impurity centre, including screening,
non-parabolicity, and gxcited bound states. His results show

good agreement with experiment in the high magnetic field range.

II. Pressure Induced Freeze-out: Porowski's Model

S. Porowski and various co-workers first observed an anomaly

in donor freeze-out in undoped InSb(]2’13).

The transition occurs
during temperature varying, constant pressure runs when the pressure
is high enough to cause freeze-out. It has the appearance of an
abrupt change in the freeze-out rate (deprease) at about 100%K as
the temperature is lowered. Porowski and his colleagues analyzed

the apparent donor gap on both sides of the transition using the

donor energy gap formula
E. = E . + YiP (1-5-1)

With Ei as the donor energy gap at pressure P, E; is the gap above

100%K and E, the gap below 100°K. Fitting his data Porowski obtains

E
01

E
02

+85 meV- Y3

~-10.5 meV/kbar

+145 meV Y, -20.0 meV/kbar.
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Energies are measured from the bottom-of the conduction
band. The pressure dependences of the donor Tevels Y, and Y,
were seen to be close to the pressure dependence of the L and X
minima respectively; it was initially assumed that the donor levels
were associated with these minima. This simple model failed to
explain why level 1 was not being populated above 100°K or why
lTevel 2 was not populated below it.

Porowski ruled out any purely electronic model for the
transition because the involved electrostatic potentials should
lower the mobility during freeze-out, which is the opposite of
what he observed. He assumes a model in which the donor atoms can
occupy two or more positions in the lattice with different donor

jonization energies. The model is shown graphically below.

conduction band

L L s L

—_— — — —a — ——— m——

E; .. | ‘s

ion positions electron levels

Figure 4
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The barrier between sites A and B prevents ions moving
between them at temperatures below Tc = 100%°K. The donors can

occupy positions A and B-with corresponding ion energies EA and

EB . The donor electron energies in these positions are €p and
eg We assume EA < EB and € > €g - The number of ions in
positions A and B are NA and NB and NA + NB = ND = total impurity

concentration. The number of electrons on donors in states A and
B are na and ng » and the number of available A and B sites per

unit cell is GA and GB .

At thermal equilibrium the conditions for minimum free

energy, valid above the transition, give

-1

EF'EB
: GB EA-EB 1+ 2 EXPL‘T?F&
N, = N1+ exp : (1-5-2)
A GA kT _ EF"EA
1+2 exp{ KT }
: ‘ , -1
~ 1 CEA-EF
Ny = NA [1+ 5 exp [——ET—J ] (1-5-3)

ep is the Fermi energy level, and the electrons are assumed to have

twofold spin degeneracy on donors.

We have alsc

+n,+n=n (1-5-4)

p ™ Mg 0
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where n is the number of electrons in the conduction band, and
o is the total number of donor electrons available.

The formulas giving NA and N give NB and ng by simply
reversing A and B in all expressions and subscripts.

The Fermi level can be calculated from

_ _4 % kT °F _5.
Y [EG C T (1-5-5)

3
Lo’é is the generalized Fermi integral. €q is thevband gap energy.

For the extrinsic range where T > ]OOOK, Porowski calculates

that the inequality

e << € <% €p (1-5-6)

holds. The equations (1-5-2) and (1-5-3) may be simplified to

give
G eqtEo-E -Ep)
= = A BB A G -5
NB ng N1 + ZGB exp [ T ] (1-5-7)
ny =0 (1-5-8)
where Eg is the energy gap at kK =o0.

Thus for T > TC we have ions moving from sites A to B with

subsequent deionization in position B. If GA = GB
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-1
entE,-E,-E
1 [B B A G] (1-5-9)

ng = N[ T+ 5 exp T
which is the usual expression for freeze-out onto a donor level

with binding energy

+E, - E

¥ =eg T g Ep

and in the experimental results E, = ¢ .

When the temperature falls below the transition temperature
the electrostatic barrier between ion positions prevents ion transfer
from position A to B, thus NA and NB are fixed, level B will be fully
ﬁbpu1ated with frozen-out electrons, and freeze-out onto level A
begins. This will follow the normal pattern of freeze-out onto a

level with binding energy ep and density NA .

Porowski predicts relaxation time effects near the transition
as a result of the electrostatic barrier slowing the rate at which

B.(]4’]5) He also points out that the

ions can transfer from A to
freeze-out of level A below 100°K should be dependent on how the

sample reached that point, i.e. whether the sample was cooled at the
same pressure the readings are being taken at, or at some other pressure,

which should affect NA .
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III. Carrier Freeze-out Anomaly: Alternative Model

An alternative explanation of the freeze-out anomaly may
be obtained by considering compensation by acceptors in concen-
trations comparable to the donor concentration. It has been shown
in the theory that a small concentration of acceptors in an n-type
éemiconductor will cause the freeze-out rate to double when the
number of free electrons becomes less than the number of acceptors.
This effect has not been observed in our measurements for any
degree of freeze-out; the transition at 100%K is in the reverse
direction and the energy gap appears to decrease rather than increase
as the temperature is lowered. However, it seems unlikely that the
number of acceptor impurities is so small that it never exceeds the
electron concentration, especially when this is reduced by several
orders of magnitude. The possibility that a relatively large
concentration of acceptor impurities is present was considered, and
a mathematical analysis yields interesting results.

Eq. (1-2-16) gives a general solution for n under all doping
conditions. This equation can be somewhat simplified by noticing

that the term in

N N
cV
—— exp (-eG)

in Eq. (1-2-15) corresponds to intrinsic carrier concentration and

should be negligible in the temperature range of interest where the
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semiconductor is extrinsic. A trial evaluation proved this to be

the case. The equation then becomes

.
T

NN nNA

DG -
2n exp(eD)+NC 2NC exp(eA-eG)+n

=0 (1-5-10)

which can be expressed as
n3 + [NA + Nc(z exp(eA~eG) + %jexp(-eD)}] n2
ANC '
+ 7?'(NA'ND) exp(;sD) + ch exp(eA-eD-eG)] n
- 2 e - = (1-5-
NC ND exp(eA ep eG) 0 (1-5-11)

If the acceptor energy €p is small compared to the band gap

€6 then

exp(eA-eG) S exp(-eG) ~ 0

and the equation reduces to a quadratic

N NA-ND
nZ + n [NA + 7? exp(-eDi]+ —5— N_exp(-¢f) = 0

(1-5-12)
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This can be shown to be identical to Eq. (1-2-12). It
can be solved analytically, and the results are graphedvfor the

following values:

0.1 eV 1160/T = ¢ N

= = 20 /m3
Ep D D 10 /2/
= = = 1019772

EG 0.32 eV £q 377/T NC 10497
Ny = NDk/TOO

k is the parameter specifying the degree of coméensétion.

It can be seen from Fig. 5 that for small values of k (1ight
compensation) the kink predicted at n = NA occurs, and the curve
becomes steeper at that point. For heavy compensation the freeze-
out rate is almost constant over the entire range. The éffect of
increasing the acceptor concentration is merely to lower the
absolute value of n. For k values greater than 100 the solution
to the equation becomes negative. The physical reason for this is
that when there are more acceptors than donors, the material becomes
p-type.

The quadratic expression, however, only applies when one
can assume all terms containing exp(-eG) are negligible. If the
acceptor level is very high above the valence band the value
€g = €5 My be comparable to the donor gap £p- We then use Eq.

(1-5-10) which may be written as
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Figure 5 Log n vs. 1/T calculated for various values
of k ranging (from top to bottom)
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k
ND - nND'-m'“G - - 6
2 . Y :
n ﬁ; exp(eD)+1 ZNC exp(eA-eG)+n
Defining
- _C o
a ¥ exp( eD)
b = ZNC exp(eA~eG)

the equation becomes

3 _K_ 2 K _
n f’[ND 700 * b + a] nw +[Nd 6{100 . 1] + a?] n

- Nd ab= 0 (1-5-13)

For k < 100 the coefficient of n is negative, and the
equation has one Siéﬁ change.. For k > 100 the coefficient becomes
positive, and the equation still has one sign change, but the form
changes from ++-- to +++- suggesting some chanée in the character of
the solution as k passes through 100. The fact that there is one
sign change in eitﬁer case indicates the presence‘éf one positive
(35)

root by Descarte's rule of signs. It may also have two negative

roots, but these have no physical significance.
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Since Eq. (1-5-13) is a cubic it can actually be solved
analytically. However, it proved technically simpler to program
the solution as an iteration based on the Regula Falsi procedure.(36)

SoTutions\of n for a run to 1/T values were calculated for
several energy gap values, and a range of k values near 100. The
results of runs are piotted for the following energy gaps in

Fig. 6:

i
il

Er - E 238.6 meV ED +100 meV -

G A

6" Ea

it

E

129 meV E 43 meV

At high temperatures above about 100°K the slope of the
curve corresponds to an(effectiye_gnergy gép'of @2 ec(EG'EA)'¥‘ED
a"dlbéloy‘the trapsi;ibn we have ¢, = 2E; . The slope change
occurs over a temperature range'of:about 10°K,,jn;agreement;with
our experimental plots of n2/(ND-n)T§5 (Figs. 9a, 9b, 10a and 10b)
which are observed to deviate from linearity near 100°K.

The kink in the theoretical curve is observed for a range
of k values near k = 100. If k becomes too small the kink disappears,
and if it approaches 100 too closely, the curve will become identical
to the k = 100 curve which has a slope dorréSponding'tb'the upper
energy gap ¢, .

According to this theory then, the experimental results can

be interpreted in the following manner:
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Figure 6 Log n vs. 1/T calculated for two different

sets of energy gap values

129 meV

43 meV

238.6 meV
=100 meV

and various k values ranging (from top to

bottom)
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dED

2 aF

Ey = 265 Y

. dE
E2 = (EG‘EA) + E

= D
p Y2 =g ¢

(1-5-14)

dE

- (1-5-15)

where E; and E, are the experimentally observed lower and upper

temperature energy gaps, and Y; and Y, are their pressure derivatives.

M1 pressure derivatives are relative to the conduction band.
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Chapter 2

‘Sample Preparation and Experimental Techniques

Detailed descriptions of the pressure vessel and sample
preparation are to be found in the thesis of S.M..Foné?G)A brief
QCCQUnt of sample preparation and mounting wil] be-giVen here
aiong with any new techniques, and the experimental methods

discussed.

2-1. Sample Preparation

The specimens of n and p-type InSb used were cut from single
crystal ingots. They measured approxjmater 0.5x1.5x1.5 mm. [After
cleaning and etching, electrical connections were madé;to the sample
with10;003,1nch platinum wire. Copper wires;were.sdldered,tq the
p1atjnum, direct connections by copper wires wou]ﬂ result -in copper
contamination of the sample since copper has a high diffusion co-
efficient in InSb and most other semiconductors.

The_p]atinqm wires were soldered onto the samples in earlier
work using indium solder containing 2% tellurium. The tellurium
reduces the possibility of forming a p-n junction at the contact.
Soldering with this technique proved fairly difficult and the
contacts were not strong, so an alternative method was tried, namely
capacitive:discharge welding. In this method the sample is connected

electrically to a capacitor, and. the platinum wire to the other side
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of the capacitor, which is charged to an appropriate voltage. The
wire is then brought in contact'withfihessample where contact is
to be made. The energy of the discha§ge‘is deposited mostly in the
contact ‘area, resulting in melting and fusing of the wire and InSb.
The contact so produced is generally stronger than that achieved with
solder, although it muSt be tééted“to make sure it is not subject
to fatigue when the wire is bent.

The capacitor used'by us with most success was a 750 uf
120 volt electrolytic, which was charged thfough a current limiting
resistqr from a 0-70 volt variab]e'D.C,~sqpp1y; The voltage rahge
for successful welds lay between about 10 and 40 volts. ' Initial
atteﬁpts $hould be made at TOw'vbltage”to‘avoﬁdisamﬁ1e‘ddmdge by
extensiVé‘meitingl' R

In our work the sample was held in stainless steel tweezers
which were connected to ‘the capacitor. The piatinUm‘wifévﬁas"her
in a metal bit on a movable platform, and the contacting was viewed
through a microscope. “The method was suCceséfﬁfly’uséa on a véfiety
of semiconductor samples; the bnly'prdeemé”ardéé in materials with
very high resistivities which Timited the discharge of the capacitor.

After' the }éhdsvwere”attached the sample was tested’
electrically to ensureifhat there were‘no'p-ﬁ junctioh’effects at
the contacts, and that the contact symmefry was'high_enough to give
an f factor less than 2. .Both soldered and'weided coﬁtacts were

equally ‘'satisfactory in their electrical characteristics.
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2-2. Experimental Methods

Hall and resistivity measurements were made on samples
of n and p-type InSb using the Van der Pauw technique described
in section 1-4. The measuring current was passed through a 1o
standard resistor in series with the sample, and the voltage
generated across this resistor provided a measure ofAthe current.

A Hewlett-Packard Model 419A Null DC voltmeter was used to measure
both the sample voltage and the voltage across the standard
resistor.

In addition to ch&nging the lead configurations as required
by the Van der Pauw technique, the measuring current was reversed
and two sets of readings taken for Hall and resistivity measure-
ments in order to eliminate thermoelectric contact potentials. The
magnetic field was also reversed in Hall measurements and the paired
sets of data averaged. This ensured that no other thermomagnetic
effect contributed to the Hall reading, except possibly the
Ettingshausen effect. This has the same current and field dependence
as the Hall effect, but it is small compared to the Hall effect and
requires a thermal gradient, which should have been eliminated by
controlling the temperature at each setting for 10 to 30 minutes
before taking a reading.

In some of our high electric field studies (high carrier

density-high current) we encountered transient effects which we
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ascribe to sample heating. In o;der to minimize this problem,
pulse measurements were used when necessary. A Hewlett-Packard
8011A pulse generator was used as the current source, and an
oscilloscope was used to measure the pulse voltage across the
standard resistor and across the sample. This method eliminated
the need to reverse the measuring current thus halving the number
of readings to be taken. The method was successful provided the
pulse length was long enough for all LCR effects to die out since
the sample did not represent a well matched load, particularly in
the freeze-out regime where sample resistivity was very high. The
pulse length was typically 1 millisecond and the duty cycle 1
part in 100.

One of the problems in pressure measurements carried out
over a large temperature range is differential contraction pressure
loss. The contraction rate of the metal is usually less than that
of the pr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>