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Late August, given heavy rain and sun 
For a full week, the berries would ripen.
At first, just one, a ÿossy purple dot 
Among others, red, green, hard as a knot 
You ate that first one and its flesh was sweet 
Like thickened wine: summer’s blood was in it 
Leaving stains upon the tongue and lust for 
Picking. Then red ones inked up and that hunger 
Sent us out with mOk-cans, pea-tins, jam-pots 
Where briars scratched and wet grass bleached our 
boots.

Round hayfidds, comfidds and potato-drflls 
We trekked and picked until the cans were full.
Until the tinkling bottom had been covered 
With green ones, and on top big dark blobs burned 
Like a plate of ̂ es. Our hands were peppered 
With thorn pricks, our palms sticlqr as Bluebeard’s.

We hoarded the fresh berries in the byre.
But when the bath was filled we found a fur,
A rat-grey fungus, glutting on our cache.
The juice was stinking too. Once off the bush 
The fruit fermented, the sweet flesh would turn sour. 
I always fdt like crying. It wasn’t fair 
That all the lovdy canfuls smdt of rot.
Each year I hoped they’d keep, knew they would not

- Seamus Heaney
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Abstract

Moola, F.M. 1997. Yield and morphological responses of wild blueberry {Vaccinium 
spp.) to forest harvesting and conifer release treatment, northwestern Ontario. 
Master of Science thesis, Lakehead University, Thunder Bay, Ontario.

This thesis synthesizes three papers on the effects of forestry practices on the growth and

fruit production of lowbush {V. angustifolium) and velvet leaf (V. myrtilloides) blueberry in i)

young jackpine, ii) boreal mixedwood and iii) lowland black spruce plantations in northwestern

Ontario. The main objectives of the three papers were to investigate: i) the impacts of forest

herbicide and alternative conifer release treatments on the growth and fruit production of

Vaccinium spp.; ii) the phenology of Vaccinium spp. in order to determine an optimal spray time

that might reduce susceptibility of blueberry to herbicide injury and iii) the morphological plasticity

of velvet leaf blueberry bushes growing in clearcut, partial cut and uncut second-growth boreal

mixedwood forests.

i) It was shown that application of Vision® herbicide significantly affects the abundance, growth 

and reproductive performance of Vaccinium spp. in treated clearcuts. Compared with untreated 

areas, fruit productivity of Vaccinium spp. in Vision® treated plantations was reduced by as much 

as 58 % three years after disturbance. Reductions in berry production were attributed to toxic 

effects of the herbicide to stems and below-ground reproductive tissue. Conversely, percent cover 

and the number, dry weight and fresh weight of berries increased significantly after brushsaw 

cutting.

ii) Patterns of leaf development in V. angustifolium and V. myrtilloides indicated that selective 

control of competing vegetation in plantations with reduced damage to Vaccinium spp. may be
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possible with herbicide application before active growth of new blueberry shoots (i.e. early May) 

or during leaf senescence and abscission (i.e. September to October). Foliage of blueberry turned 

colour in late August with about 30 % abscission by the last week of September. With most of the 

foliage lost by early autumn, application of foliar herbicides at this time may have limited effects 

upon blueberry growth and fruit production, since without leaves, little herbicide can be absorbed 

or translocated to below-ground vegetative organs.

iii) V. myrtilloides was able to persist in both open and closed habitats in boreal mixedwood forests 

managed for commercial timber exploitation. Persistence under heavy shade conditions was 

attributed to plasticity in morphological and biomass allocation. Specific leaf area, individual leaf 

weight, number of berries, number of reproductive shoots and the proportion of total biomass in 

stems and foliage changed along a gradient in understory light ( % PPFD) from 0 % to 67 % PPFD 

in forests harvested by clearcutting and shelterwood logging. Reproductive performance of V. 

myrtilloides was best under the partial shade conditions associated with shelterwood cutting.

The results of this thesis indicate that clearcut logging and silvicultural strategies of weed 

suppression such as herbicide application can adversely affect both the berry production and 

vegetative growth of Vaccinium spp. in northwestern Ontario. Conversely, partial cutting and 

conifer release with brushsaw cutting offer a silvicultural alternative that is less destructive to 

blueberrv.
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Introduction

Blueberry plants {Vaccmitim spp.) are deciduous ericaceous shrubs endemic to the 

boreal forest region of Canada (Hall et al. 1979; Vander Kloet and Hall 1981). The range 

of the velvet leaf blueberry (K myrtilloides) extends from central Labrador to Vancouver 

Island (Vander Kloet and Hall 1981). The ecological range of the lowbush bluebeny (K 

angustifolhim) is more restricted. In Canada it is found from the east coast of 

Newfoundland to Lake Winnipeg in Manitoba (Hall et al. 1979). Both species provide a 

major food source for black bear (L/rsus americamis Pallas) in late summer (Rogers 1976, 

1987; Arimond 1979). Major weight gains of bears coincide with the maturation and 

ripening o f fruits in July-August and the reproductive success o f individual female bears is 

highly associated with fruit yield (Rogers 1976). Black bears typically exploit areas with 

dense concentrations o f blueberries and there is evidence that bear-human conflicts are 

most likely to occur during years of poor berry production (Zager 1980). In addition to 

bears, many woodland and moorland animals and many species of birds depend upon the 

berries (Martin et al. 1951) which are high in carbohydrates and total energy content (Usui 

et al. 1994).

Although berry productivity is often variable from year to year (Vander Kloet and 

Hill 1994), several authors have reported that yields increase significantly following forest 

disturbances such as fire and clear-cutting (Peters 1958; Vander Kloet and Hall 1981; 

Minore 1984; Usui 1994). Usui et al. (1994) reported that V. angustifolium production in 

young clearcuts in northern Ontario was approximately 2300 kg per hectare. Commercial 

cultivation o f both species o f blueberry is important to the economies of Quebec and the 

Atlantic provinces of Canada and in the northwestern and lake states o f the United States
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(Hoefs and Shay 1980). Open field cultivation of blueberries in Nova Scotia generated 

over 30 million dollars for the province in 1993 (Lynch 1995). Similar large-scale 

cultivation has not proven as successful in northwestern Ontario or Manitoba (Hoefs and 

Shay 1980), although wild berry picking from forest openings is an important pass-time 

for many rural people in the provinces. The demand for wild berries in jams, jellies, juices, 

finit leathers, liquors and wines has received increasing commercial attention as a non­

timber “special” forest product (Kardell 1980; Minore 1984; Freed 1995). The sale of 

wild blueberries in jams, jellies, pies and cakes is practiced by at least one native-Canadian 

run business near Kenora, northwestern Ontario (M. Kenney, personal communication).

Because forest fire is actively prevented today, clearcut logging is the main 

disturbance affecting Vaccinium in boreal forests (Atlegrim and Sjoberg 1996). 

Certain Vaccinium species (e.g. V. angustifolium Ait.; V. myrtilloides Michx..; V. 

myrtillus L.; V. alaskanense How.; V. ovalifolium Smith; V. parvifolium Sm.; V. vitis- 

idaea L.) have been reported to be particularly sensitive to some forestry practices such as 

clearcutting and herbicide treatment (Lund-Hoie and Gronvold 1987; Balfour 1989; 

Hamilton et al. 1991; Freedman et al. 1993; Atlegrim and Sjoberg 1996; Hannerz and 

Hânell 1997). The use of clearcutting in association with silvicultural treatments such as 

conifer release with herbicides and artifical reforestation has led to declines in Vaccinium 

spp. abundance and finit production in conifer plantations in boreal forest areas of Canada, 

Fennoscandia and Eastern Europe (Stoyanov 1986; Lund-Hoie and Gronvold 1987; 

Balfour 1989; Hamilton et al. 1991; Freedman et al. 1993; Atlegrim and Sjoberg 1996; 

Hannerz and Hânell 1997). Kardell (1979) reported an 80 % decrease in bilberry (V. 

myrtillus) and 10 % drop in lingonberry (F. vitis-idaea) finit yields during the first decade
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after clearcutting of coniferous forests in Sweden. Conversely, Arimond (1979), 

Lautenschlager (1993) and Newton et al. (1989) have argued that commercial forestry 

practices can be used to increase the abundance and fruit yields of understory shrubs, 

including Vaccinium spp., in the management of food resources for wildlife. Arimond 

( 1979) has suggested that thinned boreal forest stands with low tree density create better 

black bear ((/. americamis) habitat, in part due to the greater availability of blueberries. 

Similarly, Newton et al. (1989) have argued that herbicide treatment for conifer release on 

young plantations may benefit understory shrubs such as Vaccinium spp., by releasing 

them from competition from taller hardwood species; for the benefit of snow-shoe hare 

{Lepus americamis Allen), white-tailed deer {Odocoileus virginiamis Boddaert) and 

moose {Alces alces Clinton). To date, minimal data has been gathered on the impacts of 

logging and silvicultural treatments such as herbicide spraying on the lowbush and velvet 

leaf blueberry to support the hypothesis that Vaccinium spp. will benefit from forest 

management.

The objective of this thesis was to investigate whether boreal forests managed for 

commercial timber production may also conserve Vaccinium spp. that are important for 

wildlife and berry pickers. As noted by Reader and Bricker (1992), the impacts of logging 

on understory vegetation that are economically less important than timber, have not been 

examined in detail. This is especially so for Vaccinium spp. which are a dominant 

understory component o f many boreal forests that are exploited for commercial logging 

(Hall et al. 1979; Vander Kloet and Hall 1981; Atlegrim and Sjoberg 1996; Hannerz and 

Hânell 1997). The effects of forestry practices on billberry (F. myrtillus) have been 

recently investigated in Sweden (Atlegrim and Sjoberg 1996; Hannerz and Hânell 1997)
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and there is strong evidence that logging can significantly reduce abudance and berry 

production as a result o f mechanical damage to above-ground stems, intense competition 

from early-successional species, susceptibility to fi"ost in clearings, and greater sensitivity 

to microclimatic change resulting from canopy removal (e.g. increased solar radiation, 

decreased humidity, higher ground temperature). Much less is known about the effects of 

commercial forestry practices on the lowbush and velvet leaf blueberry in Canada.
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This thesis is presented in the form of three separate papers detailing the impacts 

of conventional and alternative harvesting and conifer release practices on V. 

angustifolium and V. myrtilloides in northwestern Ontario. The investigations were 

performed at three experimental sites: i) representing young regenerating jack pine (Pinus 

banksiana Lamb.) plantation, ii) boreal mixedwood forest dominated by white spruce 

(Picea glauca [Moench] Voss); black spruce (P. mariana [Mill.] BSP.) and trembling 

aspen {Poptdus tremuloides Michx.) and iii) lowland black spruce {P. mariana) plantation 

near Atikokan, Nipigon, and Thunder Bay, respectively. The main objectives o f  the three 

papers in this thesis are:

i) Paper Onex to determine the growth and fruit production of V. angustifolium  and V. 

myrtilloides following operational herbicide (Vision®) and alternative conifer release 

treatments in a young jack pine plantation near Atikokan, northwestern Ontario.

ii) Paper Two: to document the phenological events of V. angustifolium  and V. 

myrtilloides in a young lowland black spruce plantation near Thunder Bay, northwestern 

Ontario. The vegetative and generative phenology of Vaccinium spp. were discussed in 

relation to the optimal timing of herbicide (Vision ®) application to reduce damage to 

blueberry plants.

iii) Paper Three: to determine whether changes in light intensity following clearcutting 

and shelterwood logging affect abundance, growth, morphological plasticity, biomass 

allocation and fruit production of V. myrtilloides in a 55 year old boreal mixedwood forest 

near Nipigon, northwestern Ontario.

The field investigations that comprise this thesis were conducted during the 

growing seasons of 1994, 1995 and 1996.
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Effects of conifer release treatments on the growth and fruit production of Vaccinium 
spp. in northwestern Ontario

Moola, F.M.^, Mallik, A.U.* and Lautenschlager, RA.^

‘ Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada, P7B5E1 
' Ontario Forest Research Institute, P.O Box 969, Sault Ste. Marie, Ontario, Canada, P6A SN5

Abstract: Berry production and vegetative recovery of lowbush blueberry (Vaccinium 

angustifolium Ait.) and velvet leaf blueberry {Vaccinium myrtilloides Michx.) were documented for 

three growing seasons (1994, 1995, 1996) after manual brushsaw cutting, single operational and 

multiple non-operational Vision® herbicide (a.i., glyphosate), and control treatments in a young jack 

pine (Pinus banksiana Lamb.) plantation near Atikokan, northwestern Ontario. Number of berries per 

hectare (both species combined) was significantly reduced (by 34% and 58%, 1995 and 1996 

respectively) following operational single Vision® treatment. The single Vision® treatment also 

reduced fi-esh weight and dry weight of berries by 39 % and 19 %, respectively in 1995 and 69 % and 

80 %, respectively in 1996. However, V. angustifolium was more sensitive to the herbicide treatments 

than V. myrtilloides. Fruit production of V. angustifolium was consistantly lower in both the single and 

multiple Vision® treatments in all three years of the study. Berry number of V. myrtilloides in 1994, 

1995, and 1996 was significantly reduced by 87, 100 and 100% percent respectively only by the 

multiple Vision® treatment. The pubescent foliage of V. myrtilloides might have hindered absorption 

of glyphosate and thus decreased its sensitivity to single Vision® treatment.

At the end of the 1996 growing season the cover of V. angustifolium and V. myrtilloides, 

respectively, were highest on the brushsaw (16.6 % and 16.7 %) and control (14.0 % and 18.1 %)
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plots, intermediate in the operational Vision® treated plots (0.6 %, 5.6 %), and lowest on the multiple 

herbicide treated plots (0.2 %, 0.4 %). Compared with controls, the reductions in cover of both 

blueberry species were only significant following herbicide application. Four growing seasons post­

treatment, neither K angustifolhim nor V. myrtilloides benefited fi"om the more open conditions 

(increased available light, and reduced overtopping cover) created by the conifer release treatments.

Discriminant Analysis of 11 vegetative parameters (height, number of unaffected, partially 

defoliated, severely defoliated and dead stems, dry weight of live and dead stems, dry weight of 

rhizomes and leaves, leaf area and leaf weight) of the two Vaccinium spp. suggests that the recovery 

of both species of blueberry was significantly lower in Vision® treated plots compared to the brushsaw 

and control plots. Both species exhibited greater stem defoliation and mortality, lower percent cover 

and lower leaf area in the single and multiple Vision® treatments.
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Introduction

Production of wild blueberries (Vaccinium spp.) in northern ecosystems is important to 

commercial growers and harvesters, a variety of wildlife. First Nations, and other berry pickers. 

Conifer release with herbicides can damage blueberry plants and reduce cover (Balfour 1989; Freedmat 

et al. 1993) and fruit quality (Roy et al. 1989) in treated areas. During the last three decades conifer 

release with herbicides has become increasingly common in northern ecosystems (Kuhnke and Brace 

1986; Maass 1989; Campbell 1990). This practice, coupled with increasing public concern about 

chemicals in the environment (Johnson et al. 1995), stimulated controversy (Freedman 1991) and in 

Ontario led to the development of the Vegetation Management Alternatives Program (Wagner et al. 

1995). Public concern arose over both presumed toxic effects and the potential of changing wildlife 

habitat (Lautenschlager 1993). At recommended rates and under normal use scenarios, herbicides used 

for conifer release in northern ecosystems pose minimal toxicologjcal hazard for terrestrial vertebrates 

and pose no risk of bioaccumulation in the environment (Morrison and Meslow 1983; Newton et al. 

1984). They do, however affect populations indirectly by changing their habitat (Lautenschlager 1993) 

and wildlife species that are sensitive to microhabitat changes may be vulnerable (Runciman and 

Sullivan 1996).

We initiated this study because of concerns expressed that conifer release with the broad 

spectrum herbicide glyphosate^ might significantly reduce short-term blueberry production in treated 

areas which may have adverse effects on the physical condition and reproductive potential of black bear

 ̂ Vision® commercial formulation containing glyphosate, 356 g/L present as isopropylamine salt.
8
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{Ursus americamis Pallas). Major weight gains in bears coincide with periods of fruit maturation and 

ripening (July-August). Rogers (1976, 1987) reported that blueberry production in northern 

Minnesota was critical for black bear growth and reproductive success. Others (Arimond 1979; 

Kolenosky and Stratheam 1987) have drawn similar conclusions. Although late summer blueberry 

crops seem to be an important food source for black bears, Martin et al. (1951) listed 32 other species 

of wildlife including, grouse (Tetraonidae), willow ptarmigan (Lagopiis lagopus alleni L ), red fox 

{Vtilpes vulpes Desmarest), black-tailed deer (Odocoileus hemiomis Boddaert), American Robin 

{Turdus migratorius L ), thrushes (Turdinae, Muscicapidae), chipmunk (Eutamias spp ), eastern 

cottontail (Sylvilagus floridamis Allen) and porcupine {Erethizon dorsatiim L.) that commonly eat 

fruits of this genus.

Several Vaccinium spp. are susceptible to glyphosate, although no study has documented 

elimination of the species from sprayed plots. Moderate to severe damage to foliage and aerial shoots 

as well as reduced cover has been reported in V. angustifolium and V. myrtilloides in Nova Scotia 

(Freedman et. al. 1993), V. myrtillus L. in Sweden (Lund-Hoie and Gronvold 1987), and V. 

alaskanense How., V. ovalifolium Smith, and V. parvifolium Sm. in British Columbia (Balfour 1989) 

following silvicultural use of the herbicide in forest plantations. Conversely, the lignonberry (V. vitis- 

idea L.) is extremely tolerant to glyphosate (Lund-Hoie and Gronvold 1987), perhaps owing to the 

leathery nature of its leaves which may hinder absorption of the herbicide. In Vaccinium spp. that are 

susceptible to glyphosate, maximum effects are observed in the first or second post-spray growing 

season (Freedman et al. 1993) and vegetative recovery can be slow (Lund-Hoie and Gronvold 1987).
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Freedman et al. (1993) reported a progressive increase in cover of Vaccinium spp. during succession 

six years after a spray solution containing glyphosate was aerially applied on regenerating clearcuts in 

Nova Scotia; however, blueberry cover did not reach the pre-treatment level within the experimental 

period.

Although reductions in Vaccinium spp. cover and shoot damage associated with herbicide 

spray solutions containing glyphosate have been found, data documenting direct effects of this 

herbicide on berry production are not available. The objective of this study was to document, 2, 3, and 

4 growing seasons post-treatment, growth and fruit production of lowbush (F. angustifolium) and 

velvet leaf (F. myrtilloides) blueberry following operational Vision®, multiple Vision®, brushsaw 

cutting, and no treatment (control) in a young jack pine (Pimis banksiana) plantation. En order to 

determine if cover and fruit production of F. angustifolium and F. myrtilloides benefited from the more 

open conditions associated with these conifer release alternatives, available light (% PPFD^) and cover 

of vegetation overtopping Vaccinium spp. following these treatments were also assessed 4 growing 

seasons after treatment.

As it is unlikely that black bears or other 'wildlife can distinguish between F angustifolium and 

F  myrtilloides in their foraging efforts (Arimond 1979), the influence of conifer release treatments on 

the combined fiuit production of both species is discussed with reference to the potential impacts on 

wildlife.

■ Photosynthetic photon flux density (PPFD: 400-700 nm).
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Study Area

The study area was located in the Boreal Forest Zone (Rowe 1972), approximately 53 km 

north of Atikokan, northwestern Ontario, near the southwest shore of Clearwater Lake (49°00°N, 

9rS7°W). Prior to harvesting the stand was dominated by jack pine, which was harvested using chain 

saws and skidders in 1986/87. The area was mechanically site prepared in the fall of 1987 with heavy 

drags of barrels and chains, and planted with jack pine (3000 seedlings/ha) in the spring of 1988. When 

the study was initiated (August 1992), the young jack pine were overtopped by a combination of 

trembling aspen {Populns trermloides Michx.), green alder {Almis crispa [Ait.] Pursh), pin cherry 

{Prumispennsylvanica L.f), beaked hazel (Corylus cormita Marsh.), and willow {^Salix spp ). Ground 

vegetation consisted mostly of bunchberry {Connis canadensis L ), creeping snowberry (Gaidtheria 

hispidiila [L.] Muhl), large-leaved aster {Aster macrophyllus L.), red raspberry {Rttbtis ideaus L ), 

bluebead lilly {Clintonia borealis [Ait] Raf), violets {Viola spp ), and lowbush blueberry {Vaccinium 

angustifolium), and velvet leaf blueberry {Vaccinium myrtilloides). The soil had a thin organic layer 

(mean thickness = 4.16 cm) over fresh, deep sand and cobbles. Prior to conifer release treatment in 

1992, the average cover and height of Vaccinium spp. (both species combined) in the study area was 

16.9 % and 23.64 cm, respectively (Brian PolhilP, unpublished data). Daily temperature and rainfall 

data measured at 18:00 hr from April 23 to September 29, 1994, 1995, and 1996, was obtained from a 

weather station approximately 65 km southeast of the treatment plots. With the exception of brushsaw 

cut plots, where Vaccinium spp. cover was significantly lower than in the single and multiple Vision®

 ̂ Brian Polhill, Renewal Specialist, Ontario Ministry of Natural Resources, Northwest Science 
and Technology, Thunder Bay, Ontario.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



plots, treament plots did not differ significantly in blueberry abundance.
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Materials and Methods 

Experimental design

The experiment used a completely randomized design with 4 replicates of the following 

treatments: (1) manual cutting of non-pine woody vegetation that overtopped Vaccinhan spp. with 

brushsaws after maximum leaf flush (between late June and early July 1993), (2) operational (single) 

aerial treatment in late August 1992 with a spray solution containing Vision® (glyphosate - 1.5 kg 

a.i./ha) herbicide, (3) non-operational multiple Vision® treatments — the operational aerial Vision® 

treatment (August 1992), followed by annual backpack (1993, 1994, 1995) Vision® treatments and 

(4) untreated control.

Berry Production

In August 1994 (2 growing seasons post-treatment) berries of both V. angustifolium  and V. 

myrtilloides were collected from 6 randomly placed 2 x 2 m quadrats which were placed within each 

treatment plot replicate. This produced 24 quadrats per treatment (6 x 4); a total of 96 (24 x 4) 

quadrats were examined. In 1995 and 1996 (3 and 4 growing seasons post-treatment) berries were 

collected from 9, rather than 6, randomly placed 2 x 2 m quadrats within each treatment replicate for a 

total of 144 quadrats examined. The harvested berries were frozen after picking and brought to the 

laboratory. All berries were thawed, counted and weighed fresh and again after drying at 70° C for 36 

hours.
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Leaf area and specific leaf area

Ten mature leaves of V. angustifolium and V. myrtilloides were harvested at random in August 

1996 from nine 2 x 2 m quadrats of each treatment plot. Harvested leaves were flattened and then 

immediately placed in plant presses in the field. The leaves were brought to the laboratory and their 

area determined using a Delta T, MK2 leaf area meter (Delta-T Devices Ltd. Burwell, Cambridge, 

England). Dry biomass of the harvested leaves was determined after oven drying at 70°C for 24 hours. 

Specific leaf area was calculated by dividing the measured leaf area by the oven dry weight (Mallik 

1994).

Vegetative characteristics

Pre-treatment blueberry {Vaccinhan spp.) height and cover data at the genus level were 

obtained from the Northwest Science and Technology unit of the Ontario Ministry of Natural 

Resources (Brian Polhill, personal communication). Measurements were taken in the summer of 1992 

from 20 crop-tree centered 1.13 m radius circular plots located within each treatment plot.

The vegetative recovery of Vaccinium bushes was examined in 1996 in all the treatment plots. 

Percentage cover, density and average height of V. angustifolium and V. myrtilloides bushes were 

recorded in nine 2 x 2 m quadrats randomly located in each treatment plot. Vegetative characteristics 

of both blueberry species were determined by excavating one bush from each 2 x 2 m quadrat. Bush 

size was standardized by including all connecting rhizomes and above ground stems from a 40 x 40 cm 

flame randomly located within the quadrat. Dry weights of live and dead stems, leaves and rhizomes 

of each excavated bush were determined after oven drying at 70° C for 48 hours. The amount of

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



injury suffered by K angtistifolitm  and V. myrtilloides plants was estimated by counting the number of 

live, partially defoliated, severely defoliated and dead bushes within each 2 x 2  m quadrat.

Percent photosynthetic photon flux density (% PPFD) and cover of vegetation overtopping 

Vaccinium spp.

An estimate of the percentage of full sunlight (% PPFD) available to Vaccinium  spp. in 

each treatment plot was measured above 10 randomly chosen blueberry bushes using a Sunfleck 

PAR ceptometer (Decagon Devices, Inc. Pullman, Washington, USA) following the methodology 

of Messier and Puttonen (1995a). On a completely overcast day, the mean o f five instantaneous 

light measurements was recorded above each blueberry bush (Jit). Ambient overstory PPFD 

(pmol-m~--s”') (/o) conditions were measured with a quantum sensor linked to a LI-1000 

datalogger (LI-COR, Lincoln, NE, USA) placed in an open gravel pit adjacent to the treatment 

plots. The data logger was programmed to compute the mean PPFD every 5 sec. over a 1 min 

period. Dividing instantaneously taken readings of lu  by lo  provided a measurement of the 

percent of above canopy PPFD (% PPFD) transmitted above each blueberry bush at a given time.

The cover of non-crop tree vegetation that overtopped Vaccinium spp. was measured in 

the treatment plots in 1996. The abundance of vegetation taller than Vaccinium  spp., such as 

trembling aspen (P. tremuloides), green alder (A. crispa), pin cherry (P. pensylvanica), beaked hazel 

(C. cormita), and willow (Salix spp.) was estimated as the proportion of blueberry canopy obscured by 

a perpendicular projection of the foliage of overtopping vegetation. The abundance of vegetation
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above Vaccinium spp. was assessed from within nine 2 x 2 m quadrats, randomly located in each of the 

treatment plots.

Data Analysis

The data did not meet the assumptions required for the use of a one-way analysis of variance, 

since the samples were not taken from normally distributed populations of blueberry. Therefore, 

nonparametric analysis was employed to determine whether reproductive and vegetative parameters of 

Vaccinhan spp. differed among treatments. Moreover, the sample size for each treatment was small 

and some samples had outliers. Since the Mann-Whitney and Kruskal-Wallis tests involve rank 

comparisons, outliers were less influential on the test results (Norusis 1995). Following the detection 

of significant differences among means with the Kruskal-Wallis test, a series of Mann-Whitney tests 

was employed for the pair-wise comparison o f the different treatment means This was done in order 

to identify which treatments were significantly different from each other. The observed significance 

level for the Mann-Whitney test was adjusted with the Bonferroni procedure; for 6 comparisons, the 

observed significance level for each comparison had to be less than 0.05/6, or 0.008, for the difference 

to be significant at the 0.05 level. Discriminant Analysis was initially performed on 13 vegetative 

characteristics o f Vaccinium spp.: height, cover, number of unaffected, partially defoliated, severely 

defoliated and dead stems, dry weight of five and dead stems, dry weight of rhizomes and leaves, leaf 

area, inividual leaf weight and specific leaf area. The data were log transformed prior to analysis since 

the vegetative parameters did not meet the criterion of homogeneity of variance. The percent cover 

and specific leaf area variables were removed from the analysis after they were found to be highly
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correlated with the number of unaffected bushes and leaf area variables respectively, the data were then 

re-analyzed with the remaining 11 variables.
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Results

Fruit production of Vaccinium spp.

When compared with, control means, the number of berries per hectare (both species 

combined) 3- (1995) and 4- (1996) growing seasons post-treatment (Tables 2,3) was reduced by 34 % 

and 58 %, respectively following the operational Vision® treatment. The operational Vision® 

treatment also reduced fresh weight and dry weight of berries by 39 % and 19 %, respectively 3 

growing seasons post-treatment (Table 2) and 69 % and 80 %, respectively 4 growing seasons post­

treatment (Table 3). However, V. angustifolium was more sensitive to the herbicide treatments than V. 

myrtilloides. Its berry production (berry number, fresh weight and dry weight) were consistantly lower 

in both the single and multiple Vision® treatments in all three years of the study (Tables 1, 2, 3). 

Berry number, of V. myrtilloides in 1994, 1995, and 1996 was significantly reduced by 87, ICO and 

ICO percent respectively only by the multiple Vision® treatment (Tables 1, 2, 3). Similarly, only the 

multiple Vision® treatment adversely affected the fresh weight and dry weight of V.myrtilloides fiuit in 

1994, 1995 and 1996. The brushsaw treatment had no significant effect on the fruit production 

(number, fresh weight and dry weight of berries) of either blueberry species individually, or their 

combined fiuit yield in all years (Tables 1,2, 3).

Cover of Vaccinium spp.

Blueberry cover consisted entirely of discrete ramets connected underground by creeping 

rhizomes. No evidence of regeneration by seed was observed in any of the treatment plots.
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At the end of the 1996 growing season the cover of V. angustifolhim  (Table 5) and V. 

myrtilloides (Table 6), respectively, were highest on the brushsaw (16.6 % and 16.7 %) and control 

(14.0 % and 18.1 %) plots and lowest on the multiple herbicide treated plots (0.2 %, 0.4 %). 

Compared with the controls, reduction in cover for both blueberry species was only significant 

following herbicide application. Single herbicide Vision® treatment reduced V. angustifolium  cover by 

95.9 % and V. myrtilloides cover by 67.3 %. The multiple herbicide treatment reduced the cover of 

V.angustifolium and V.myrtilloides by 98.7 % and 98.0 %, respectively.

Further evidence of the adverse eflfect of herbicide application on Vaccinium spp. cover is seen 

when pre-treatment cover in 1992 (Brian Polhill, unpublished data) and post-treatment cover in 1996 

are compared. That comparison shows that treatments reduced Vaccinium spp. cover by an average of 

67.2 % on the single Vision® plots and 97.2 % on the multiple Vision® treated plots. Conversely, 

mean Vaccinium spp. cover increased fi"om 12.1 % prior to brushsawing, to 33.3 % 3 growing seasons 

post-treatment, a change of approximately 63.6 %, on the bmshsaw treated plots. This was similar to 

the mean increase in blueberry cover on the control plots (above 50.0 %) during the same period.

Leaf area, dry leaf weight, and specific leaf area

Both V. angustifolium  and V. myrtilloides responded to herbicide treatment with significant 

changes in leaf morphology (Table 4). Leaves of both blueberry species in the control plots were 

significantly larger than those fi"om the single Vision® and multiple Vision® treated plots but not the 

brushsaw treated plots. There was no statistical diflference in the dry weight of individual leaves 

produced by V. angustifolium  among treatments. Conversely, mean dry leaf weight of V. myrtilloides
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was highest in the control, and significantly less in the brushsaw and all herbicide treated plots. 

Specific leaf area (SLA = leaf area/dry leaf weight) among the treatments was less variable in V. 

angustifolium  than V. myrtilloides. In V. angustifolium, specific leaf area was only reduced by the 

multiple Vision® treatment. Values for V. myrtilloides in the control were significantly less in the single 

Vision® and multiple Vision® treated sites, but not the brushshaw sites.

Injury to foliage and stems

Many of the blueberry plants receiving herbicide treatments were top-killed and malformed. 

The single and multiple herbicide treatments resulted in significant injury to the foliage and stems of 

both blueberry species; a large proportion of V. angustifolium  bushes in the single herbicide treated 

plots had defoliated, deformed or dead stems (Table 5). The adverse effects were more pronounced in 

the multiple herbicide treatment plots. Many of the affected plants in the multiple sprayed plots 

produced small roseate leaves or were almost totally defoliated; 98 % of plants were either severely 

defoliated or dead by the end of the 1996 growing season. In comparison, 92 % and 97 % of K 

angustifolium  bushes in the control and brushsaw treatments were uninjured, respectively. Comparable 

morphological abnormalities were exhibited by V. myrtilloides following herbicide treatment (Table 6). 

Similar to V. angustifolium, the highest number of severely defoliated and dead bushes were obtained 

in the multiple herbicide treated plots. Significantly fewer bushes were adversely affected by the single 

herbicide treatment and far fewer in the brushsaw and control plots; 23 %, 2 % and 4 %, respectively. 

Leaves of both blueberry species were normal in appearance in the brushsaw and control plots.
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Discriminant Analysis of vegetative parameters of Vaccinium spp.

The results of significance tests for univariate equality of group means indicated that of the 11 

vegetative parameters investigated in the Discriminant Analysis, 10 were significantly different amongst 

the treatment groups for V. angustifolhim and all H for K myrtilloides. The treatment means for 

height, and number of unaffected, severely defoliated and dead stems, dry weight of live and dead 

stems, dry weight of rhizomes and leaves, leaf area and individual leaf weight were significantly 

different among the 4 treatments (Tables 5, 6). The number of partially defoliated V. angustifolium 

bushes was not affected by the conifer release treatments. Discriminant Analysis confirmed the 

separation of the 144 K angustifolium and V. myrtilloides samples into 4 groups (Figs. 1 and 2) with 

93.06 % and 92.31 % accuracy respectively. Two of the three discriminant functions obtained fi"om 

the analysis explained 97.38 % of the variance with the first discriminant function accounting for 

slightly over 94.3% of the variance in V. angustifolium (Table 7). In V. myrtilloides, the first two 

discriminant functions accounted for 96.9 % of the variance; 92.08 % of this was explained by 

discriminant function 1 (Table 7). For both Vaccinium spp., function 1 was highly correlated with leaf 

area, dry weight of leaves, and dry weight of dead stems; this indicates that these vegetative parameters 

are likely the best predictor variables for the separation of the 4 treatment groups on the basis of 

vegetative recovery following the conifer release treatments. As displayed in the ordination diagram 

(Figs. 1 and 2), Vaccinium spp. recovery was significantly different in clearcuts that were sprayed with 

the multiple Vision® herbicide as compared to the brushsaw and control treatments. Quadrats fi"om 

the brushsaw and control clearcuts formed one group in the ordination diagram and were separate fi’om
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the multiple herbicide treated plots. Conversely, the recovery of single herbicide bushes of both 

blueberry species did not appear to be as adversely affected (Figs. I and 2).

Percent PPFD and cover of vegetation overtopping Vaccinium spp.

The percent of full sunlight transmitted above Vaccinium spp. (% PPFD) was significantly 

greater in the study plots that had received conifer release treatment than in the control plots, in which 

an average of only 11.4 % o f full sunlight reached the level of blueberry foliage (Table 9). Highest light 

availability was measured in the multiple Vision® (71.9 % PPFD) and single Vision® (56.3 % PPFD) 

treated plots. However, there was no significant difference in % PPFD between the two herbicide 

treatments. Similarly, the brushsaw treatment (45.4 % PPFD) provided as significant an increase in the 

availability of sunlight above the Vaccinium spp. bushes, as the single Vision® treatment.

The cover of vegetation overtopping Vaccinium spp. was greatest in the control (71 %) , 

intermediate in the brushsaw cut (42 %) and operational Vision® (53 %) treated plots, and lowest on 

the multiple Vision® (20 %) treated plots. Percent cover was significantly different between all the 

release treatments and the control, but did not differ between the brushsaw and single Vision® 

treatment plots (Table 9).
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Discussion

Blueberry fruit production was highly variable in time and space and consequently these results 

are dfficult to interpret, primarily because o f the high degree of variability associated with some of the 

measurements. This is a common observation in studies of Vaccinium species (Vander Kloet and Hill 

1994). High variability in fruit production among quadrats was particularly evident in the single 

Vision® sprayed plots, in which some quadrats had low yields while others had relatively high yields. 

The high berry production of some blueberry bushes in the single Vision® treated plots might have 

resulted from reduced exposure to the herbicide due to physical shielding from taller, overtopping 

vegetation (Freedman et al. 1993). This is a common phenomenon observed following glyphosate 

spraying (Lund-Hoie 1985; Freedman et al. 1993). Despite the difficulties in estimating berry yield, the 

results of this three year study suggest that conifer release treatment with Vision® herbicide in forest 

ecosystems can adversely affect the morphology, growth and fruit production of wild blueberry. 

However, the response to single Vision® treatment appears to be species specific. Unlike the lowbush 

blueberry, wild patches of velvet leaf blueberry did not appear to be as adversely affected by the single 

Vision® treatment. Indeed, in all three seasons (1994, 1995, 1996) we failed to find any statistically 

significant differences in the dry weight, fresh weight or number of finits produced in the single 

Vision® sprayed plots, compared to the control. The variable sensitivity of the two blueberry species to 

single Vision® treatment may be due to differences in the degree to which glyphosate was absorbed by 

the foliage of exposed bushes (Grossbard and Atkinson 1985). Extensive injury or the death of 

vegetation treated with foliar-applied herbicides, such as Vision® depends upon the rapid absorption of
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the active ingredient in sufficient quantity before the herbicide is washed off by rain (Neal et al. 1985). 

The presence o f pubescence or a waxy cuticle on the foliage of exposed plants, however, may 

decrease cuticular permeability to the herbicide, resulting in a lower absorption (Neal et al. 1985). The 

velvet leaf blueberry is metabolically susceptible to the toxic effects of glyphosate, given the extensive 

injury and death of aerial shoots that were observed following single Vision® treatment in this study 

and by Freedman et al. (1993). However, the chemical must be absorbed in order to cause such 

effects. It appears that under operational spay conditions, the pubescent foliage of V. myrtilloides may 

restrict the amount of glyphosate that is absorbed to levels that are insufficient to kill the entire plant. 

Although many aerial sprouts were extensively defoliated or killed by spraying, some survived and 

continued to produce fruit. These sprouts are expected to progressively develop a larger foliar area 

(Freedman et al. 1993). Therefore, fruit production by V. myrtilloides in single Vision® clearcuts will 

likely remain high.

Nevertheless, although V. myrtilloides was less susceptible to glyphosate than V. 

angustifolium, the significant reduction in berry production by V. angustifolium contributed to an 

overall drop in the availability of blueberries on sprayed clearcuts in all three years of the study. In 

clearcuts where V. angustifolium forms a major component of the Vaccinium spp. cover, the short­

term reduction in fi-uit availability in sprayed areas may be important.

Fruit production of V. angustifolium  and V. myrtilloides were not assessed in this study prior 

to application of the treatments. Since the magnitude and direction of changes in berry production 

reflect the amount of foliage that was available prior to treatment (Hamilton et al. 1991), the dissimilar
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responses of the two blueberry species to single Vision® application may not be as great as they 

appear, if the two species differed in their fruit production before the treatments were applied.

Although the reduction in lowbush blueberry yield associated with the multiple Vision® 

treatment was dramatic, this was an experimental treatment and is unlikely to be used operationally for 

conifer release. The reduction in fruit yield caused by the multiple Vision® treatment was likely due to 

the excessive injury and mortality of reproductive shoots. Compared with the control, blueberry cover 

of both species was significantly reduced in the multiple Vision® treated plots, and almost all plants 

producing abnormal foliage were defoliated completely or killed. In addition, lower finit production 

might have been due to the fact that the regeneration of blueberry sprouts from surviving rhizomes and 

stem bases likely reduced allocation of biomass to sexual organs. Vila and Terradas (1995) have 

attributed similar reductions in the biomass of reproductive structures in burned patches of Erica 

multiflora L. to the cost of vegetative recovery.

Discriminant Analysis of 11 vegetative parameters (height, number of unaffected, partially 

defoliated, severely defoliated and dead stems, dry weight of live and dead stems, dry weight of 

rhizomes and leaves, leaf area and leaf weight) of the two Vaccinium spp. suggests that the growth of 

both blueberry species was significantly reduced in Vision® treated plots compared to the brushsaw 

and control plots. Both species exhibited greater stem defoliation and mortality, lower percent cover 

and reduced leaf area in the single and multiple Vision® treatments. The minimal vegetative recovery 

of blueberry species, especially by V. angustifolium, following Vision® treatments, observed in this 

study and elsewhere (Freedman et al. 1993; Lund-Hoie and Gronvold 1987) was likely due to reduced
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potential for clonal revegetation. Like most ericaceous shrubs, Vaccinhtm spp. are able to recover 

quickly after disturbances such as fire and manual cutting (Yarborough et al. 1986) that destroy above­

ground stems and foliage, by re-sprouting from buds at the base of surviving stumps or fi"om 

underground rhizomes (Mallik 1991, 1993). Similar rapid revegetation of Vision® treated areas was 

not observed in this study especially by V. angiistifolhinr, this was perhaps due to the toxicity of the 

herbicide to perennating tissues (Freedman et al. 1993). With sufficient absorption and subsequent 

translocation to below-ground components, glyphosate can cause significant injury to meristematic 

tissues or kill the entire rhizome of exposed plants (Sprankle et al. 1975). As recovery of Vaccinium 

spp. fi"om seed is unlikely due to the paucity of seedling regeneration (Vander Kloet and Hill 1994), 

extensive injury or mortality of rhizomes may delay revegetation of sprayed areas for several years 

compared to the brushsaw cut plots (Lund-Hoie and Gronvold 1987).

Of the vegetative parameters examined in the Discriminant Analysis, leaf area was the most 

important variable explaining the separation of sprayed and unsprayed plots. The herbicide effects on 

leaf morphology should be investigated further to determine if reduced yield is due to leaf 

abnormalities. Inefficient photosynthesis in abnormal leaves might explain the poor berry production in 

severely affected bushes found in the multiple herbicide treated plots.

Results of this study suggest that finit production by Vaccinium spp. is not consistent with 

Lautenschlagefs (1993) conceptual model of the effect of no treatment and conifer release treatment 

with herbicides on browse biomass. Neither V. angustifolium nor V. myrtilloides benefited fi’om the 

open conditions created by conifer release treatments with Vision® in the first four years after the
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treatment. Compared with the controls, even brushsaw cutting failed to increase fruit yields by either 

blueberry species despite the increased availability of light. Although there is evidence that finit 

production by Vaccinium spp. can benefit from silvicultural treatments that reduce or eliminate 

overstory cover in more mature, closed forests (Minore 1984), our results suggest that increased 

availability of light following brushsaw cutting and Vision® treatments did not increase blueberry 

production above that in controls in young jack pine plantations in northwestern Ontario. This may 

reflect the ability of Vaccinium spp. to exploit small gaps within the canopy of forest plantations, 

where the transmission of light to the understory is higher. In addition, both blueberry species are 

relatively shade tolerant (Vander Kloet 1988) and there is evidence that fiuit production in V. 

angustifolium  and V. myrtilloides may benefit from intermediate levels of shade (Hoefs and Shay 

1981). Similar to other shade-tolerant ericaceous plants such as Kalmia. angustifolia var. angustifolia 

(Mallik 1994), V. ovalifolium (Alaback and Tappeiner 1991) and Gaidtheria shallon Pursh. (Bunnell 

1989; Messier 1992; Huffinan et al. 1994), V. angustifolium and V. myrtilloides can persist under 

shade by producing taller aerial shoots and developing larger leaves. The possession of these traits may 

facilitate the capture of light under conditions of above-ground competition from invading hardwoods, 

with little cost to fiuit production in young forest plantations.

Our results show that year to year variation in berry production by V. angustifolium  and V. 

myrtilloides in northwestern Ontario clearcuts is high regardless of treatment. Fruit production in all 

treatment plots was significantly lower in 1995 than that in 1994 and 1996. The poor berry yields in 

1995 may have been a result of the unfavourable weather conditions which characterized much of the
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summer growing season; in particular, abnormally high daytime temperatures and a severe deficit in 

precipitation. The influence of meteorological conditions on annual fiuit production in wild Vaccinium 

spp. is well known (Minore 1984; Hoefs and Shay 1981). Reductions in fiuit production at moderate 

levels of moisture stress have been attributed to the high stomatal resistance of Vaccinium spp. at 

reduced water potentials (Davies and Johnson 1982), as well the absence of adaptive traits for drought 

tolerance such as a high leaf diffusive resistance (Erb et al. 1988). The drop in berry production in 

1995 was less drastic in the control plots than that in the Vision® treated plots, perhaps due to the 

presence of more favourable near-ground microclimatic conditions (e.g., cooler daytime temperatures, 

higher relative humidity and lower, duff temperatures; Reynolds et al. 1997) for blueberry growth 

(Hoefs and Shay 1981).
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Conclusions and Management Implications

Silvicultural treatment of clearcuts with spray solutions containing Vision® herbicide affected 

both berry production and vegetative growth of Vaccmium spp. in northwestern Ontario clearcuts. 

Although the velvet-leaf blueberry (K myrtilloides) was less susceptible to Vision® than the lowbush 

blueberry {V. angustifolium), the significant reduction in berry production by V. angustifolium 

contributed to an overall drop in the availability of blueberries on sprayed clearcuts in 1994, 1995 and 

1996. Berry production by Vaccmium spp. is extremely variable from year to year and complete 

fruiting failure is not uncommon (Vander Kloet and Hill 1994). Consequently, the adverse effects of 

Vision® treatment on blueberry fruit production may be minimal for those wildlife species that have a 

diverse diet, and presumably are well adapted to extreme seasonal fluctuations in the availability of 

berries. Usui et al. (1994) suggested that other fiuit yielding species such as bunchberry (C. 

canadensis), red elderberry (Sambuais puhens Michx.), wild rose (Rosa spp ), and pin cherry (P. 

pensylvanica) may be eaten by wildlife during natural periods of reduced blueberry availability. With 

the exception of Pnimts spp., little data is available on the effects of Vision® treatment on fiuit 

production of these other species. The manufacturer of Vision® (Monsanto Canada, INC.) reports 

significant control of cherry (Pnimis spp.) in clearcuts sprayed with solutions containing Vision®. 

Hence the importance of Prumis spp. and other fiuit yielding vegetation as substitutes for blueberry in 

Vision® treated areas should not be over-emphasized.

Species with large foraging ranges, such as bears, may abandon glyphosate treated clearcuts, 

presumably to forage in nearby untreated forest cutovers or gaps within uncut forests (Hamilton et al.
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1991). Reduced use of glyphosate treated clearcuts due to berry failure by shrubs such as Vaccinium 

spp. has been observed in radio-collared grizzly bears (Ursus arctos L.) (Hamilton et al. 1991). 

Although bears are likely to forage in nearby untreated areas, their emmigration from sprayed clearcuts 

may have adverse impacts on bear populations that are close to human settlements. Evidence of 

increased incidence of conflict with humans has been reported during periods of natural blueberry 

failure (Zager 1980). Forest managers therefore may want to consider the consequences of Vision® 

herbicide treatments on bears and other wildlife using regenerating clearcuts close to human 

communities. Brushsaw cutting could be used as an alternative in these areas since it has no detrimental 

effect on growth and fioit production of Vaccinium spp. and is more acceptable to the public than the 

silvicultural use of herbicides such as Vision® (Johnson et al. 1995).

Although the brushsaw treatment did not have a stimulating effect on blueberry production, 

increased vegetative regeneration (Lund-Hoie and Gronvold 1987) and higher fruit yields may be 

possible if blueberry stems were physically cut along with competing vegetation, rather than simply 

released from competition. Commercial blueberry growers have long known that the cultural practice 

of pruning blueberry fields by fire or mowing increases finit yields (Yarborough et al. 1986). These 

practices effectively remove older, less productive stems while stimulating the development of taller, 

branched shoots with more reproductive buds (Trevett 1962). Brushsaw cutting for silvicultural 

purposes may have indirect benefits for wildlife and berry pickers by stimulating vegetative 

regeneration and promoting greater finit production in wild patches of Vaccinium spp.
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Table 1. Means (and standard errors) of fruit production in 1994 by V. angustifolium, V. myrtiiioides and both species
combined following conifer release treatments

Vaccinium angustifoiium 
berries

Vaccinium myrtiiioides 
berries

Total berry yield 
(both species combined)

Treatment Number

(/ha)

Fresh
weight
(g/ha)

Dry
weight
(g/ha)

Number

(/ha)

Fresh
weight
(g/ha)

Dry
weight
(g/ha)

Number

(/ha)

Fresh
weight
(g/ha)

Dry
weight
(g/ha)

Control 32600a
(21793)

4595a
(3509)

544a
(395)

64687a
(34035)

7502a
(4413)

1126a
(363)

97287a
(55828)

12097a
(7922)

1670a
(758)

Brushsaw 10325ab
(5434)

131lab 
(698)

188ab
(100)

61563a
(26063)

13853a
(8385)

1444a
(555)

71888a
(31497)

15164a
(9083)

1632a
(655)

Single
herbicide

7567bc
(6895)

391bc
(308)

77bc
(29)

75909a
(41839)

8048a
(4451)

1230a
(688)

83476a
(48734)

8439a
(4759)

1307a
(717)

Multiple
herbicide

1425c
(1424)

180c
(180)

23c
(23)

10937b
(9820)

593b
(498)

108b
(27)

12362b
(11244)

773b
(678)

131b
(50)

■D
CD

Note: Unlike letters in a column Indicate values significantly different at 0.05 level determined by the Mann- 
Whitney nonparametric test. Observed significance level was adjusted with the Bonferroni procedure; (P<0.008).
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Table 2. Means (and standard errors) of fruit production In 1995 by V. angustifolium, V. myrtiiioides and both species
combined following conifer release treatments

Vaccinium
angustifoiium

Vaccinium
myrtiiioides

Total berry yield 
(both species combined)

Treatment Number 
of berries

(/ha)

Fresh
weight

(g/ha)

Dry
weight

(g/ha)

Number 
of berries

(/ha)

Fresh • 
weight

(g/ha)

Dry
weight

(g/ha)

Number 
of berries

(/ha)

Fresh
weight

(g/ha)

Dry
weight

(g/ha)

Control 4722a 239a 64a 25347a 1329a 307a 30069a 1568a 371a
(2193) (94) (26) (9648) (534) (118) (11841) (628) (144)

Brushsaw 12292a 777a 172a 42500a 2658a 484a 54792a 3435a 656a
(6173) (394) (66) (15336) (934) (154) (21509) (1328) (220)

Single 1250b 26b 110b 18611a 933a 192a 19861b 959b 302b
herbicide (1250) (25) (11) (8290) (423) (82) (9540) (448) (93)

Multiple Oc Oc Oc Ob Ob Ob Oc Oc Oc
herbicide (0) (0) (0) (0) (0) (0) (0) (0) (0)

■D
CD

C/)
C/)

Note: Unlike letters in a column indicate values significantiy different at 0.05 level determined by the Mann- 
Whitney nonparametric test. Observed significance level was adjusted with the Bonferroni procedure (P<0.008).
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Table 3. Means (and standard errors) of fruit production in 1996 by V. angustifolium, V. myrtiiioides and both species
combined following conifer release treatments

Vaccinium 
angustifoiium ̂

Vaccinium
myrtiiiokles

Total berry yield 
(both species combined)

Treatment Number 
of berries 

(/ha)

Fresh
weight
(g/ha)

Dry
weight
(g/ha)

Number 
of berries 

(/ha)

Fresh
weight
(g/ha)

Dry
weight
(g/ha)

Number 
of berries 

(/ha)

Fresh
weight
(g/ha)

Dry
weight
(g/ha)

Control 219931a 48771a 6361a 315030a 51579a 6786ab 534961a 100350a 13148a
(56719) (12985) (1812) (80325) (14014) (1899) (137044) (26999) (3711)

Brushsaw 373066a 56025a 7675a 433125a 55106a 12106a 806181a 111132a 19980a
(84860) (12907) (1736) (144434) (17046) (3886) (229294) (29953) (5622)

Single 2778b 261b 22b 221181a 30347a 2582b 223959b 30608b 2604b
herbicide (1584) (141) (15) (76961) (10584) (1089) (78545) (10725) (1104)

Multiple Oc Oc Oc Ob Ob Oc Oc Oc Oc
herbidde (0) (0) (0) (0) (0) (0) (0) (0) (0)

O
c

" O
CD

Note: Unlike letters in a column indicate values significantly different at 0.05 level determined by the Mann-Whitney 
nonparametric test. Observed significance level was adjusted with the Bonferroni procedure; (P<0.008).

(/)(/)

33



CD
■ D

O
Q .
C

8
Q .

■D
CD

C/)
C/)

8■D

3.
3"
CD

CD■D
O
Q .
C

aO3
"O
O

CD
Q .

■D
CD

C/)
C/)

Table 4. Means (and standard errors) of leaf characteristics measured from V. angustifolium and V. myrtiiioides
plants following conifer release treatments

Vaccinium angustifolium Vaccinium myrtiiioides

Treatment leaf area 
(cm*)

dry weight 
(g/leaf)

specific leaf area 
(cm*/g)

leaf area 
(cm*)

dry weight 
(g/leaf)

specific leaf area 
(cm*/g)

Control 2.06a 0.039a 57.28a 2.53a 0.039a 71.68a
(0.13) (0.003) (3.75) (0.15) (0.003) (5.72)

Brushsaw 1.59a 0.027a 59.95a 1.85b 0.028b 67.76ab
(0.08) (0.002) (1.78) (0.08) (0.002) (2.14)

Single 0.69b 0.014a 57.27a 1.19c 0.020c 65.96b
herbicide (0.06) (0.002) (2.96) (0.09) (0.002) (2.77)

Multiple 0.21c 0.009a 30.21b 0.45d 0.016d 48.18c
herbicide (0.03) (0.002) (4.06) (0.06) (0.005) (4.24)

Note; Unlike letters in a column indicate values significantly different at the 0.05 level determined by the 
Mann-Whitney nonparametric test. Observed significance ievel was adjusted with the Bonferroni procedure 
(P<_0.008).
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Table 5. Means (and standard errors) of percent cover, aerial shoot and rhizome characteristics of V. angustifolium
bushes in 1996 following conifer release treatments
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■D
O

Treatment Cover
(%)

Height
(cm)

Number of bushes/m* Dry weight (g)

Unaffected Partially
defoliated

Severely
defoliated

Dead Live
stem

Dead
stem

Rhizome Leaf

Control 13.97a 21.27a 2.31a 0.13a 0.007a 0.06a 11.27a 0.23a 9.33a 4.35a
(3.38) (0.66) (0.76) (0.05) (0.007) (0.04) (0.98) (0.09) (0.98) (0.50)

Brushsaw 16.61a 16.82b 2.34a 0.03a Oa 0.04a 15.08a Oa 12.58a 5.41a
(3.41) (0.56) (0.50) (0.02) (0) (0.02) (1.33) (0) (1.05) (0.37)

Single 0.67b 17.35c 0.15b 0.06b 0.09b 0.33b 5.43b 1.49b 8.65a 1.47b
herbicide (0.19) (0.36) (0.05) (0.04) (0.07) (0.13) (0.38) (0.24) (0.49) (0.14)

Multiple 0.18b 16.26d Oc 0.04c 0.67c 1.31c 2.77c 3.45c 8.93a 0.43c
herbicide (0.06) (0.59) (0) (0.02) (0.15) (0.29) (0.09) (0.15) (0.29) (0.02)

CDÛ. Note; Unlike ietters in a ooiumn indicate vaiues significantly different at 0.05 ievel determined by the Mann-Whitney nonparametric test. Observed 
significance ievel was adjusted with the Bonferroni procedure; (P<0.008).
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Table 6. Means (and standard errors) of percent cover, aerial shoot and rhizome chracteristlcs of V. myrtilloldes bushes
in 1996 following conifer reiease treatments
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Treatment Cover
1%)

Height
(cm)

Number of bushes/m* Dry weight (g)

Unaffected Partially
defoliated

Severely
defoliated

Dead Uve
stem

Dead
stem

Rhizome Leaf

Control 18.14a 23.97a 1.99a 0.04a 0.02a 0.07a 12.85a 0.12a 12.88a 3.25a
(3.36) (1.02) (0.40) (0.03a) (0.02) (0.03) (0.58) (0.03) (1.11) (0.27)

Brushsaw 16.71a 22.78a 1.81a Oa Oa 0.05a 10.57a Ob 13.68a 4.30b
(3.69) (1.03) (0.41) (0) (0) (0.03) (0.65) (0) (1.04) (0.25)

Single 5.94b 20.10a 0.69b 0.63b 0.17b 0.24a 5.34b 1.76c 10.69a 1.73c
herbicide (2.14) (0.89) (0.15) (0.27) (0.06) (0.08) (0. 40) (0.28) (0.58) (0.18)

Multiple 0.36b 17.80b 0.04b 0.07b 0.17b 1.33b 5.42b 4.08d 10.32a 0.98d
herbicide (0.08) (0.95) (0.01)

r - - ,T --

(0.03) (0.06)

'.T...... ..... -.....

(0.28) (0.54) (0.35) (0.54) (0.09)

Note: Unlike letters In a column indicate values significantly different at 0.05 level determined by the Mann-Whitney nonparametric test. Observed 
significance level was adjusted with the Bonferroni procedure; (P^O.008).
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Table 7. Summary of discriminant analysis of eleven vegetative ctiaracteristics of V. angustifolium and V.
myrtilioides

Function Eigenvalue % Variance Canonical correlation df Significance

V.angustifollum 1 18.2095 94.3 0.9736 33 0.0000

2 0.5944 3.1 0.6106 20 0.0000

3 0.506 2.6 0.5796 9 0.0000

V.myrtilloldes 1 12.9374 92.1 0.9635 33 0.0000

2 0.6776 4.8 0.6355 20 0.0000

3 0.4350 3.1 0.5506 9 0.0000
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Table 8. Pooled within-group correlations among discriminating variables and canonical discriminant functions of eleven
vegetative characteristics of V. angustifolium and V. myrtiiioides

Vegetative parameters

V.angustiMlum V.myrtilloldes

Function
1

Function
2

Function
3

Function
1

Function
2

Function
3

Height 0.06533 0.39301 0.47202 0.09749 0.05382 0.14541

Number of unaffected bushes 0.20924 0.24709* 0.12147 0.11607 0.15804 0.24461

Number of partially defoliated bushes 0.00556 0.09934 0.29740 0.11546 0.48312* 0.06273

Number of severely defoliated bushes 0.20148 0.40290* 0.31462 0.14755 0.01605 0.04385

Number of dead bushes 0.18698 0.30032* 0.20717 0.16133 0.31751* 0.02357

Dry weight of live stems/bush 0.28261* 0.17576 0.10386 0.23963 0.27626 0.42795

Dry weight of dead stems/bush 0.44242 0.38056 0.05644 0.57331* 0.23561 0.13419

Dry weight of leaves/bush 0.39448* 0.13077 0.13438 0.32370* 0.10321 0.17946

Dry weight of rhizomes/bush 0.02039 0.31550* 0.20157 0.05290 0.03194 0.08508

Leaf area 0.38702* 0.31925 0.13393 0.34567* 0.41039 0.51748

individual leaf weight 0.23290 0.08622 0.58634 0.16180 0.00070 0.44107

' denotes largest absolute correlation between each variable and any discriminant function.
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Table 9. Means (and standard errors) of percent cover of vegetation overtopping
Vacdnium spp. and percent PPFD in treatment plots

Treatment Cover (%) of vegetation 
overtopping Vaccinium 

spp.

Percent PPFD

Control 70.9a 11.43a
(4.51) (2.21)

Brushsaw 42.0b 45.45b
(3.86) (4.7)

Single 53.19b 56.34bc
herbicide (4.62) (4.98)

Multiple 20.06c 71.86c
herbicide (2.44) (5.48)

Note: Unlike letters In a column indicate values significantly different at 0.05 level 
determined by the Mann-Whitney nonparametric test. Observed significance level was 
adjusted with the Bonferroni procedure; (P<0.008). PPFD refers to the percent photon flux 
density transmitted above Vaccinium spp. in the treatment plots.
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Fig. 1. Ordination diagram of Discriminant Analysis using 11 vegetative characteristics of V. angustifolium
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The phenology of Vaccinium spp. in northwestern Ontario: implications 
for the timing of forest herbicide treatments

F.M. Moola and A.U. Mallik

Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada, P7B- 
5E1

Abstract: Concerns about adverse ecological impact of herbicides on the environment 

and human health have encouraged silviculturalists to develop integrated vegetation 

management (IVM) practices that minimize damage to noncrop species that are o f wildlife 

and/or economic importance. Consistent with the goal of IVM is the need for a better 

understanding of the phenology of these species, since susceptibility of plants to foliar 

herbicides has been shown to be related to the timing o f lifecycle events. Reduced damage 

to Vaccinium spp. may be possible if treatments were timed to take advantage of 

phonological periods when blueberry plants are less susceptible to uptake and 

translocation of the herbicide.

This study reports on the phenology of 180 vegetative and 180 reproductive 

shoots of lowbush blueberry (Vaccinium angustifolium) and velvet leaf blueberry (V. 

myrtilioides) in a young black spruce (Picea mariana [Mill.] BSP.) plantation near 

Thunder Bay, northwestern Ontario. Leaves of both species emerged in mid-May and 

remained uniformly green until mid-August. By late August, the majority of tagged shoots 

had turned red and were beginning to deteriorate. Approximately 30 % of tagged shoots 

lost their leaves by September 25 in both V. angiistifolium and V. myrtilioides. Flowering 

in V. angustifolium began in late May and flowers remained on reproductive shoots for 

approximately three weeks. Green fruits were first observed on 13 % o f tagged V.
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angustifolium shoots on June 26. The number of fruiting stems declined progressively 

after June 26 with the complete disappearance of fruit from tagged shoots by September 

11. Fruit set occurred in 30 % of tagged V. myrtilioides shoots with complete 

disappearance of berries by September 11 as well.

Patterns o f leaf development in V. angustifolium and V. myrtilioides suggest that 

Vaccinium spp. species may be less susceptible to foliar applied herbicides if applications 

are made during or following the period of leaf senescence (i.e., between late August and 

late September).
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Introduction

During the past 30 years many young forest plantations in Canada have been treated 

with foliar herbicides to control competing vegetation and release conifers (Kuhnke and Brace 

1986; Maass 1989; Wagner 1993). The most popular herbicide prescribed for the silvicultural 

suppression of competing vegetation in Canadian forests is glyphosate (Vision® commercial 

formulation containing glyphosate, 356 g/L present as isopropylamine salt) (Cambell 1990). In 

1996, approximately 72,000 ha of new plantations in Ontario were treated with Vision® 

herbicide for vegetation management purposes (Roy Maid, Forestry Specialist, Monsanto 

Canada Inc., personal communication). As a broad-spectrum herbicide, this chemical is 

effective in supressing many common competing species in young conifer plantations, such as 

trembling aspen (Populus trermiloides Michx ), green alder (Alnus crispa [Ait.] Pursh), pin 

cherry {Pnimis pensylvanica L.f), beaked hazel (Coryhis cormita Marsh ), willow {Salix spp), 

Canada blue-joint grass {Calamagrostis canadensis Michx. Beauv.) and red raspberry (Rubiis 

idaetis L. var. strigosus Michx. Maxim.) (Sutton 1984; Lund-Hoie and Gronvold 1987; 

Freedman et al. 1993; Bell et al. 1996, submitted).

Although often not the intended target of vegetation management practices, 

several fruit producing shrub species, such as blueberry {Vaccinitan angustifolium Ait., V. 

myrtilioides Michx.) that are important to wildife and humans are adversely affected by 

Vision® (Balfour 1989; Freedman et al. 1993; Moola et al. 1997, submitted). Significant 

foliar damage, reduced cover and lower fruit yields o f the wild lowbush blueberry (V. 

angustifolium) have been observed for up to four years following operational Vision® 

treatment to regenerating clearcuts (Freedman et al. 1994; Moola et al. 1997, submitted).
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Fruit production by the velvet leaf blueberry (K myrtilioides) is less sensitive to Vision®, 

although reduced cover and significant damage to aerial stems have also been observed 

(Freedman et al. 1993; Moola et al. 1997, submitted). Since foliar applications of the 

herbicide are typically made in mid- to late-summer when blueberries are ripe, wildlife and 

berry pickers may be accidentally exposed to residues of the herbicide through 

consumption of contaminated finit. Residues of Vision® remain above permissible levels 

(0.01 ppm) established by the Health and Welfare Canada, Food and Drug Regulation 

(1980) for up to 60 days after application (Roy et al. 1989). At the recommended rates 

and under normal use, vegetation management with herbicides such as Vision® pose 

minimal toxicological hazards for terrestrial vertebrates and pose no risk of 

bioaccumulation in the environment (Morrison and Meslow 1983; Newton et al. 1984). 

Nevertheless, public concerns about the adverse impact of forest herbicides on the 

environment and human health continues to generate controversy (Johnson et al. 1995). 

Due to social pressure, the silvicultural use of forest herbicides has been restricted in five 

Canadian provinces and in several regions of the USDA Forest Service, and they are 

currently banned in Sweden (Wagner 1993).

Extensive injury or the death of vegetation treated with foliar-applied herbicides, such 

as Vision®, depends upon the rapid foliar absorption and subsequent translocation of the 

herbicide to perennating tissues (Neal et al. 1985). For this reason, selective control of 

competing vegetation with minimal damage to Vaccinium spp. may be possible if spraying 

occurs at a time when leaves are not present on blueberry bushes. The effect that time of 

herbicide application has on the severity of injury to blueberry bushes in regenerating forests ig
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unknown. However, research in commercial blueberry (K angustifolhmi) fields has shown 

that later applications of the fbliar herbicides, 2,4-D and 2,4,5-T during leaf senescence results 

in significantly reduced damage to aerial shoots (Trevett 1961). T r e d u c e d  damage 

associated with delayed spraying has been attributed to the limited absorption of foliar 

herbicides by blueberry stems during this period (Trevett 1961).

The objective of the present study was to document the phenological events of the 

lowbush (V. angustifolium) and velvet leaf blueberry (V. myrtilioides) in a young black spruce 

{P. mariana [Mill.] BSP.) plantation in northwestern Ontario. Phenological diagrams 

detailing leaf emergence, senesence and abcission were used to determine the period when 

blueberry plants may be less susceptible to foliar applied herbicides such as Vision®. 

Knowledge of the duration of fiuiting may also assist forest managers to spray within the 

“window” of time when berries are not present on blueberry bushes.
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Study area

Phenology of V. angustifolium and V. myrtilioides was examined in three adjacent 

strip cuts, 50 X 100 m in size, located beside highway 527, approximately 60 km northeast 

o f Thunder Bay, Ontario. Prior to harvesting, the forest was a black spruce - feather moss 

type, approximately 80 years of age. Soils were shallow and moist over scattered rocks 

and frequent stones. Topography was flat to gently rolling.

Mature black spruce was fiill-tree harvested in February 1984 and the area 

mechanically site prepared with a Bracke-skidder in the fall of 1987. The strip cuts were 

planted with black spruce paper pot seedlings (2470 seedlings/ha), spaced 0.8 x 1.8 m 

apart in June 1988. At the time the study was initiated (May 1995) the sites were open 

(91.0 % PPFD, 30 cm above the ground) with little overstory development; black spruce 

> 2 m tall were present at < 10 % cover. The dominant vegetation was low ericaceous 

shrubs (< 2m) such as Ledum groenlandicum Oeder (9.9 % cover), V. angustifolium  

(27.2 % cover), and V. myrtilioides (8.8 % cover). Ground vegetation consisted mostly 

o f Sphagmim magellanicum Brid., S. fitscum  (Schimp.) Klinggr., G. hispidula (L.) Muhl., 

Arctostaphylos tiva-ursi (L.) Spreng. and Carex spp. Patches of bare ground and exposed 

bedrock were common and the microptopography consisted of low to intermediate 

hummocks with hollows.
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Materials and methods

Vegetative and reproductive phenology

Before the onset of leaf development in May 1995, three reproductive and three 

vegetative shoots were tagged with coloured plastic bands on twentv randomly chosen V. 

angustifolium and V. myrtilioides bushes in three adjacent strip cuts. The three areas 

were treated as replicates. A total of 180 vegetative and IM  reproductive shoots were 

tagged in each blueberry species (20 plants x 3 shoots x 3 replicates). The stage of 

development for both vegetative and reproductive shoots was recorded weekly from May 

15th, 1995 to October 2nd, 1995.

Daily rainfall (mm/24 hours) and air temperature (°C taken at 13:00 hr.) was 

obtained from the Ontario Ministry of Natural Resources. Weather data was measured at 

the Hick’s Lake Weather station located approximately 8 km from the study sites.
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Results

Figures 1,2 ,3  and 4 show the vegetative, flowering and fruiting phenologies of V. 

angustifolium and V. myrtilioides, respectively. The lines indicate periods during which 

leaves, flowers or fruits were found on the bushes in the study site. Both species of 

blueberry displayed similar fl"uiting phenologies and retained their foliage until 

approximately the same date. Vegetative buds which were formed in 1994 were swollen 

by mid May of 1995; emerging leaves were first observed in both blueberry species on 

May 15. Leaves had fully unfolded by late May and they remained uniformly green until 

mid August. By late August, the leaves on 82 % of tagged vegetative shoots in V. 

angustifolium had turned red and were beginning to deteriorate. A lower percentage of 

tagged vegetative shoots of V. myrtilioides had changed colour by the end of August (69 

%). Approximately 40 % of V. angustifolium and 32 % of V. myrtilioides shoots had lost 

their leaves by October 2 (Figs. 1 and 2).

In V. angustifolium reproductive buds were strongly swollen by May 22 and 

flowering began soon thereafter. Flower set was relatively high as 82 % of the tagged 

reproductive shoots had produced flowers by June 5. Flowering continued until the 

middle of June.

Green fruit was first observed on 13 % of tagged V. angustifolium reproductive 

shoots on June 26. Peak fhaiting occurred on July 3 at which time 14 % of reproductive 

shoots had developed berries. The number of fruiting stems declined progressively after 

July 3, with the complete disappearance of fruit from tagged shoots by the first week of 

September (Fig. 3).
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Reproductive bud burst and flowering occurred approximately a week later in V. 

myrtilioides than in K angustifolium. Flowers of V. myrtilioides were first observed on 

June 5, and by June 19 were present on 49 % of reproductive shoots. Flowers had 

completely faded by the end o f June.

Fruit first appeared on June 19 and remained on tagged shoots until September 11 

(Fig. 4). At peak fruiting, 30 % of tagged V. myrtilioides shoots had developed berries.

The death of tagged shoots was relatively high in both blueberry species. By 

October 2, 24 % of V. angustifolium and 31 % o f V. myrtilioides vegetative shoots had 

died. Extensive mortality of tagged vegetative shoots (>11 %) was first observed on 

August 22 and July 24 in V. angustifolium and V. myrtilioides, respectively (Figs. 1 and 

2). The mortality rate of reproductive shoots was not recorded.
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Discussion

Although Vaccinium spp. are common in the understory of young conifer 

plantations (Hamilton et al. 1991; Freedman et al. 1993; Usui et al. 1994; Moola et al. 

1997, submitted), their limited root system and short stature make them poor competitors 

with planted or naturally occurring conifer seedlings for moisture, nutrients, or light. A 

possible exception may be in conifer plantations on northern Vancouver Island that are 

dominated by V. ovalifolium  Smith (C. Prescott, personal communication). Furthermore, 

unlike other ericaceous understory plants of temperate forests such as Kalmia angustifolia 

var. angustifolia L. (Mallik 1993, 1994), Calluna vulgaris. Erica cinerea (Gimingham, 

1972; Mallik and Gimingham 1983, 1985), Gaultheria shallon Pursh. (Bunnell 1990), or 

Ledum groenlandicum (Indeijit and Mallik 1996), evidence of allelopathic growth 

inhibition of conifer seedlings has not been established in Vaccinium spp. (A.U. Mallik, 

personal communication). In conifer plantations Waccinium spp. are not considered 

undesirable species that require suppression (Haeussler et al. 1990). Conversely, their 

presence following clearcutting may be desirable. No beneficial effects of Vaccinium spp. 

on planted or naturally occurring conifer seedlings have been reported in the literature. 

However, Vaccinium spp. may contribute to soil stability due to their dense network of 

roots and rhizomes (Vander BCloet and Hall 1981; Haeussler et al. 1990), provide wildlife 

browse (Martin et al. 1951; Peters 1958; Rogers 1976; Arimond 1979) and have potential 

commercial value as a non-timber forest product (Minore et al. 1979; Freed 1995).

Given the importance of V. angustifolium and V. myrtilioides to wildlife and berry 

pickers, it is important that foliar herbicide treatment be timed to take advantage of 

phenological periods when blueberry plants are less susceptible to uptake and
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translocation of the herbicide. The results of this study suggest that herbicide application 

before active growth of new shoots (i.e. early May) or during the period of leaf 

senescence and abscission (i.e. September to October) may reduce the susceptibility of 

Vaccinium spp. to foliar herbicides such as Vision®. Foliage of both V. angustifolium  and 

V. myrtilioides significantly changed colour late in August with about 30 % abscission by 

the last week of September (Figs. 1 and 2). With most of the foliage lost by early autumn, 

application of foliar herbicides at this time may have negligible effects upon blueberry 

growth and fruit production, since without leaves, little herbicide can be absorbed and 

translocated to perennating tissues (Trevett 1961). Reduced herbicide damage in 

commercial blueberry fields has been reported with autumn applications of the foliar 

herbicides 2,4-D and 2,4,5-T (Trevett 1961).

The interaction between seasonal timing of herbicide treatments and the effective 

control of competing vegetation in conifer plantations is poorly documented and 

incomplete phenological data is available for some competing species in northwestern 

Ontario (Bell 1992). Nevertheless, there is evidence that while delayed spraying may 

protect Vaccinium spp., it will likely reduce the effective control of undesirable species 

whose foliage, like blueberry, deteriorates in late summer. The Vision® label suggests that 

maximum control of mixed hardwoods, raspberry (Rubus spp.), alder (Alnus spp.) and 

perennial grasses is achieved with treatment to green or slightly coloured foliage, prior to 

the onset of leaf abscission. In northwestern Ontario, this is usually during the period 

from August to early-September under normal weather conditions. Similar results have 

been found by Bell et al. (1992) for the optimal suppression of red raspberry (R. idaeus) in
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northwestern Ontario and by LePage and Pollack (1988) for the control of thimbleberry 

(R. parviflonis) in British Columbia. These findings suggest that the optimal suppression 

of competing vegetation and the preservation of Vaccinium spp., may be conflicting 

objectives if pursued on the same site, since blueberry is susceptible to injury during spray 

periods that maximize herbicide efficacy. A possible exception may be on sites dominated 

by C. canadensis, since this species remains susceptible to Vision® until significantly later 

in the season (Bell at al. 1996, submitted).

Roy et al. (1989) reported that although residues of Vision® progressively 

declined with time in treated plantations, traces of the chemical on ripe blueberries 

remained above permissible levels for up to 60 days following spraying. Our results 

indicate that fruit remains on lowbush and velvet leaf blueberry bushes from mid-June 

until the end of August (Figs. 3 and 4). Delaying herbicide treatment until after berries 

have dropped by early September may minimize the ingestion of contaminated fruits by 

humans and wildlife. Considering the significant public concern over the perceived 

toxicological effects o f forest herbicides (Johnson et al. 1995), timing the treatments to 

avoid the period when fruits are available for consumption may be more socially 

acceptable.

The high percentage o f dead shoots in V. angustifolium and V. myrtilioides by 

mid-August may have been a result of the unfavourable weather conditions which 

characterized much of the summer growing season in 1995 (Fig. 5). In particular, 

abnormally high afternoon temperatures and a severe deficit in precipitation may have 

induced drought stress in developing blueberry shoots. The influence of meteorological
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conditions on the growth and fruit production of wild Vaccinium spp. is well known 

(Minore 1984; Hoefs and Shay 1981). Poor water efficiency has been reported for 

unshaded V. angustifolium  bushes colonizing clearcuts in eastern Manitoba (Hoefs and 

Shay 1981). The susceptibility of Vaccinium spp. to drought stress has been attributed to 

the absence of adaptive traits for drought tolerance such as a high leaf diffusive resistance 

(Erb et al. 1988). Northwestern Ontario has a sunny, dry, continental climate and moisture 

shortage may be a limiting factor for the growth of Vaccinium spp. on some logged sites 

characterized by a sparse canopy of overtopping vegetation (Moola and Mallik, 

unpublished data).
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Morphological plasticity and regeneration strategies of velvet leaf blueberry 
(Vaccinium myrtilioides) following canopy disturbance in the management of boreal 
mixedwood forests

Moola, F.M. and Mallik, A.U.

Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada, P7B 
5E1

ABSTRACT: The effects of canopy disturbance on the abundance, growth, 

morphological plasticity, biomass allocation and fmit production of velvet leaf blueberry 

(Vaccinium myrtilioides) were examined in 1996 in a second-growth boreal mixedwood 

forest near Nipigon, northwestern Ontario that had been logged by either shelterwood 

cutting or clearcutting in 1993.

We found that V. myrtilioides was able to persist in both open and closed canopy 

boreal mixedwood forests managed for commercial timber extraction. Persistence under 

heavy shade conditions was accompanied by significant morphological and biomass 

allocation plasticity. Specific leaf area, leaf area, individual leaf weight, and the proportion 

of total biomass in stems and foliage changed along an understory light gradient from 0 % 

to 67 % PPFD (percent photon flux density). The degree of above-ground morphological 

plasticity may explain blueberry’s ability to survive under low light conditions.

Reproductive performance o f V. myrtilioides was greatest under the partial shade 

conditions associated with shelterwood cutting. Blueberry bushes growing in clearcuts 

overgrown with three-year old aspen (Populous tremuloides Michx.) saplings remained 

mostly vegetative whereas the number, fresh weight and dry weight o f berries in 

shelterwood cuts was 94 % greater than that produced after clearcutting. We attributed
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the lower fruit yields in the clearcuts to heavy shading from regenerating hardwoods, and 

mechanical damage to above-ground biomass.

The paucity of seedling regeneration as well as extensive mechanical damage to 

above-ground stems by logging equipment delayed vegetative regeneration of V. 

myrtilloides in large canopy openings of the clearcut blocks. Unlike other more aggressive 

ericaceous species (e.g. Kalmia angiistifolia, Gaiiltheria shallori), V. myrtilloides was 

unable to resist invasion from faster growing hardwood species (e.g. P. tremtiloides) and 

was rapidly overtopped. V. myrtilloides plants in the uncut control blocks received 3.9 % 

of full sunlight, whereas those growing in the partial cut and clearcut blocks received an 

average of 25.3 % and 32.5 % PPFD, respectively. Cover of vegetation over-topping 

blueberry plants was highest in the uncut forest (90.3 %), but was not significantly 

different between the partial cut (45.5 % ) and clearcut (50.1 %) treatment blocks.
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Introduction

Many ericaceous understory plants of temperate forests such as Kalmia 

angiistifolia var. angnstifolia L. (Mallik 1994), Gaiiltheria shallon Pursh. (Bunnell 1990), 

and Ledum groenlandicum Oeder (Inderjit and Mallik 1996) exhibit vigorous growth and 

spread following disturbances such as forest fire and logging (Mallik 1995). The 

aggressive and opportunistic response of these species to forest disturbance has been 

explained in terms of rapid demographic (A.U. Mallik, unpublished data; Hufl&nan et al. 

1994), morphological (Messier and Kimmins 1991; Mallik 1992; Messier 1992) and 

physiological acclimation (Marshall and Waring 1984) to increased light availability 

following the removal of forest canopy. The most aggressive ericaceous species in 

temperate forests (e.g. K. angiistifolia, G. shallon) respond to overstory removal with a 

survival strategy linked by life-history traits (Grime 1979) that promote rapid site 

colonization and resistance to invasion by other species (Messier and Kimmins 1991; 

Mallik 1995). These life history traits include; continuous recruitment of new shoots from 

stem bases (Mallik 1992); underground rhizomes (Bunnell 1990, Mallik 1992) and/or 

layered stems (Calmes and Zasada 1982; Moola and Mallik, unpublished data); high fruit 

and seed production (Bunnell 1990; Mallik 1994); rapid vegetative expansion (Bunnell 

1990); and increased allocation of biomass to organs that maximize the capture of above- 

and below-ground resources (Messier and Kimmins 1991). The possession of these life- 

history traits by certain ericaceous plants delays and in many areas prevents conifer 

regeneration following canopy removal by clearcut logging (Weetman et al. 1990; Messier 

and Kimmins 1991; Mallik 1995).

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In contrast, some ericaceous species such as the lowbush {Vaccinium 

angustifolhim Ait.), velvet leaf, (K myrtilloides Michx.) and Alaskan blueberry (K 

alaskaense How.), bilberry (V. myrtillus L.) and early huckleberry {V. ovalifolium  Smith) 

respond less aggressively to the sudden increase in light availability associated with 

overstory removal, even when present in the understory prior to disturbance (Hall 1955; 

La Roi 1967; Stoyanov 1986; Alaback and Tappeiner 1991). After canopy removal due to 

clearcutting, minimal recovery by certain Vaccinium species has been attributed to poor 

seedling regeneration (Vander Kloet and Hill 1994); sensitivity to sudden microclimatic 

changes (Hoefs and Shay 1981; Atlegrim and Sjoberg 1996); mechanical damage to aerial 

stems (Zager 1980; Atlegrim and Sjoberg 1996); increased susceptibility to damaging 

frosts (Hoefs and Shay 1981) and intense competition from fast growing species 

(Stoyanov 1986; Atlegrim and Sjoberg 1996). Alternatively, the poor ability of certain 

Vaccinium spp. to form a dense understory following canopy removal may reflect a more 

conservative life history strategy than that of more aggressive ericaceous plants such K. 

angustifolia, L. groenlandicum and G. shallon. For example, the slow establishment of V. 

ovalifolium in canopy openings following windthrow has been attributed to trade-offs in 

biomass allocation that favour storage of photosynthate in rhizomes and roots at the 

expense of aboveground stems and foliage (Alaback and Tappeiner 1991). In other forest 

plants such as tanoak {Lithocarpus densifloms [Hook and Am] Rhed) the investment of 

starch and other nutrients in below-ground biomass may contribute to long-term survival 

despite costs to reproductive and vegetative performance (Tappeiner and MacDonald 

1984). This survival strategy in many ways corresponds to Grime’s (1977) conceptual
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model o f stress-tolerance during succession and may explain Vaccinium species’ long-term 

persistence in the understory of many second-growth forests under extremely low light 

conditions (Alaback and Tappeiner 1990; Atlegrim and Sjoberg 1996). With the closing 

o f the overstory canopy during secondary succession, many species lacking the biomass 

allocation plasticity associated with a “stress-tolerant” life history (e.g. red raspberry, 

Rubiis idaeus L.) are eliminated, despite their often significant abundance immediately 

after canopy removal (Ricard and Messier 1996).

Velvet leaf blueberry {V. myrtilloides) has been reported to be quite shade tolerant 

(Vander Kloet and Hill 1981) and is common in the understory of second-growth forests 

in northwestern Ontario (Usui et al. 1994; Moola et al. 1997, submitted). Unlike its 

congeners V. vitis-idaea and V. .angustifolhim, V. myrtilloides is able to persist in closed- 

canopy forests, although in a depauperate form. After overstory removal by logging and 

fire, V. myrtilloides bushes flower and produce abundant fruits (Vander Kloet and Hill

1981). Many wildlife species feed on the fiuit and foliage (Martin 1951; Rogers 1976, 

1987; Arimond 1979; Vander Kloet and Hill 1981) including black bear (JJrsus 

americamis Pallas), American robin {Turdus migratorius L ), white-tailed deer 

iOdocoileous virginiamis) and eastern cottontail {Sylvilagusfloridamis Allen).

Because fire is actively prevented today, clearcutting is the main disturbance 

affecting Vaccinium spp. in boreal forests (Atlegrim and Sjoberg 1996). However, the 

negative perception of clearcutting among the public (Hannerz and Hânell 1997) as well as 

pressure to maintain the coniferous composition of mixedwood forests (Scarratt 1996) has 

focused attention on alternative harvesting techniques that more closely mimic natural
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disturbances (Johnston 1996). Several authors have reported that partial canopy removal 

by shelterwood logging is less damaging to understory vegetation, including Vaccinium 

spp., than clearcutting. Hence, it may be a better alternative than clearcutting for the 

conservation o f understory species during timber harvesting (Reader and Bricker 1992; 

Atlegrim and Sjoberg 1996; Hannerz and Hânell 1997).

This study documents the relationships between understory light availability and V. 

myrtilloides growth and fruit production in a second growth boreal mixedwood forest 

following different intensities of canopy removal by clearcutting and shelterwood 

harvesting. The main objectives of the study were to; (a) determine if changes in light 

intensity following partial and full canopy removal affect abundance, growth, 

morphological plasticity, biomass allocation and fruit production of V. myrtilloides.-, and 

(b) interpret such changes in terms of the concept of life history strategies (Grime 1979).
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Study Area

The study area was located in the Black Sturgeon Boreal Mixedwood Research 

Forest, approximately 120 km northeast of Thunder Bay, Ontario. Established in 1993, 

this experimental area consists of a second-growth boreal mixedwood forest about 55 

years of age that was previously horse-logged between 1939 and 1942. The most recent 

forest inventory was conducted in 1975. At that time, the stand comprised primarily of 

balsam poplar (Popiilus balsamifera L.), trembling aspen (P. tremuloides Michx.) and 

balsam fir {Abies balsamea [L.] Mill.) and to a lesser extent black spruce (Picea mariana 

[Mill.] B.S.P.), white spruce {Picea glaiica [Moench] Voss) with isolated pockets of 

white birch {Betula papyrifera Marsh) and/or jack pine {Pimts banksiana Lamb ). 

However, pre-harvest data collected in 1993 indicates that significant changes in the 

overstory composition of the area has occurred since the 1975 inventory; in part due to a 

ten-year spruce budworm {Choristoneura fumiferana Clem.) infestation that killed many 

balsam fir and white spruce trees (Scarratt 1996). Presently, much of the mature balsam 

fir and white spruce trees are either dead or moribund in the treatment area (Scarratt 

1996).

The present experiment used a completely randomized design with three replicates 

in each o f the following two harvesting treatments; i) uncut forest as a control and ii) 

clearcut by conventional feller-buncher and grapple skidder (full-tree extraction); and two 

replications of iii) high intensity shelterwood cut by conventional feller-buncher and 

grapple skidder (fiill-tree extraction, hereafter referred to as partial cut). All treatment 

blocks were 10 ha in size with 100 m-wide uncut buffer strips between them.
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Approximately two-thirds of the merchantable trees were removed from the partial cut 

blocks, leaving an overstory canopy that in 1996 (three growing seasons post-treatment) 

consisted primarily of trembling aspen with scattered white spruce (2 - 3 / ha) and black 

spruce trees (Scarratt 1996). The clearcut and partial cut blocks were not site prepared 

nor did they receive any form of conifer release treatment. The clearcut blocks were 

planted with overwintered containerized (Styroplug) black spruce seedlings in June 1996.

The soils of the treatment blocks were fresh, well-drained, and fertile and 

supported a diverse assemblage of herbs, graminoids and shrubs. When the study was 

initiated (August 1996) the clearcut blocks were dominated by young hardwoods such as 

trembling aspen and white birch that overtopped V. myrtilloides and other ground 

vegetation. Ground vegetation in the clearcut and partial cut blocks consisted mostly of 

large-leaved aster {Aster macrophyllus L ), raspberry {Rubus spp.), bush honeysuckle 

{Diervilla lonicera Mill.), velvet leaf blueberry (K myrtilloides Michx.), violets {Viola 

spp.), mountain maple {Acer spicatum Lam.), twinflower {Linnaea borealis L.), and 

sedges {Carex spp ). The understory species composition of the uncut blocks did not 

differ significantly from the harvested blocks, with the exception of a greater abundance of 

mosses such as Pleurozium schrebeh (Brid.) Mitt, and Ptilium crista-castrensis (Hedw.) 

De Not.
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Materials and Methods 

Experimental design

Destructive and non-destructive sampling of V. myrtilloides as well as 

measurements of PPFD* were made from twelve 2 x 2 m systematically placed sample 

plots from within each 10 ha treatment block. With the treatment blocks replicated three 

times, this produced 36 sample plots in the uncut and clearcut blocks (3 x 12). In the 

shelterwood blocks, twenty-four sample plots were examined since this treatment was 

replicated two times (12 x 2). Ninety-six sample plots were examined in total.

Berry production and the number reproductive shoots

In August 1996 berries of V. myrtilloides were collected from each 2 x 2 m sample 

plot in each treatment block. The harvested berries were frozen after picking and brought 

to the laboratory. All berries were thawed, counted and weighed fresh and again after 

drying at 70° C for 36 hours.

The number of reproductive shoots o f V. myrtilloides was counted in each 2 x 2 m 

sample plot. The identification of reproductive shoots was based on evidence of 

reproductive buds, faded flowers, or fruit.

Leaf area and specific leaf area

Ten mature leaves of V. myrtilloides were harvested at random in August 1996 

from all the 2 X 2 m sampling plots. Harvested leaves were flattened and then immediately 

placed in plant presses in the field. The leaves were brought back to the laboratory and 

their area determined using a Delta-T, MK2 leaf area meter (Delta-T Devices, Ltd.

* Photosynthetic photon flux density (PPFD; 400-700 nm).
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Burwell, Cambridge, England). Dry biomass of the harvested leaves was determined after 

oven drying at 70° C for 36 hours. Specific leaf area was calculated by dividing leaf area 

by oven dry weight.

Vegetative characteristics

The cover and average height of F. myrtilloides was measured in each of the 

sample plots at the end of August 1996. Above-ground stems and foliage were examined 

in greater detail from two randomly sampled bushes clipped at ground level from each 2 x 

2 m sample plot. Bush size was standardized by including all above-ground stems that 

were connected below-ground within a 40 x 40 cm frame randomly located in each sample 

plot. The above-ground biomass of each harvested bush was divided into foliage and 

stem components and oven-dried at 70°C for 48 hours. The age of individual harvested 

bushes was estimated by counting the number of annual rings present on the base of the 

oldest cut stems using a dissecting mircroscope at 10 x magnification. In estimating the 

age o f the harvested bushes it was assumed that the oldest stem on a shrub represented 

the maximum age of the entire ramet. This assumption may not be valid (Harper 1977), 

especially among species that can re-sprout from surviving rhizomes or stem bases 

following the destruction of aerial biomass after fire or some other disturbance (Luken 

1988). Although there was no evidence of recent fire in any of the treatment blocks, 

extensive mortality of above-ground stems in the clearcut blocks was observed in this 

study and elsewhere (Zager 1980; Atlegrim and Sjoberg 1996). For this reason, the age 

estimates derived from harvested aerial stems may not reflect the actual age of blueberry
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ramets in the clearcut blocks. Rather, it represents the maximum age of emergent stems 

originating from older below-ground rhizomes or surviving stem bases.

Percent photosynthetic photon flux density (% PPFD) and cover of overtopping 

vegetation

An estimate of sunlight (% PPFD) available to blueberry bushes was measured 

above the 108 2 x 2 m plots using a Sunfleck PAR ceptometer (Decagon Devices, Inc. 

Pullman, Washington, USA) following the methodology of Messier and Puttonen (1995a). 

On a completely overcast day, the mean of five instantaneous light measurements was 

recorded above the blueberry canopy in each 2 x 2 m plot {lu). In sample plots without V. 

myrtilloides present, light measurements were taken from a height of approximately 25 cm 

above the ground. This height corresponds to approximately the average height of 

blueberry observed in the study plots. Ambient overstory PPFD (pmol m"-s"') (/o) 

conditions were measured with a quantum sensor linked to a LI-1000 datalogger (LI- 

COR, Lincoln, NE, USA) placed in an open parking area adjacent to the treatment plots. 

The data logger was programmed to compute the mean PPFD every 5 sec. over a 1 min 

period. Dividing instantaneously taken readings of hi by lo  provided an estimation of the 

percent of above canopy PPFD (% PPFD) transmitted above the blueberry canopy in each 

2 X 2 m sample plot.

The cover of vegetation that overtopped V. myrtilloides was measured in all the 

sample plots in late August. The abundance of vegetation taller than blueberry, such as 

trembling aspen, white birch, balsam fir and black spruce was estimated as the proportion
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o f the blueberry canopy obscured by a perpendicular projection of the foliage of 

overtopping vegetation.
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Data Analysis

The data did not meet the assumptions required for the use of a one-way analysis of 

variance, since the samples were not taken from normally distributed populations of blueberry. 

Therefore, nonparametric analysis was employed to determine the differences among the 

reproductive and vegetative characteristics of V. myrtilloides. Moreover, the sample size for 

each case was small and some samples had outliers. Since the Mann-Whitney and Kruskal- 

Wallis tests involve rank comparisons, outliers were less influential on the test results (Norusis

1995). Following the detection of significant differences among means with the ECruskal- 

Wallis test, a series of Mann-Whitn^r tests were employed for the pair-wise comparison of 

treatment means. This was done in order to identify which treatments were significantly 

different from each other. The observed significance level for the Mann-Whitney test was 

adjusted with the Bonferroni procedure; for 3 comparisons, the observed significance level for 

each comparison had to be less than 0.05/3, or 0.02 for the difference to be significant at the 

0.05 level.

Discriminant Analysis was initially performed on 12 vegetative and reproductive 

characteristics of V. myrtilloides. (height, % cover, number of reproductive shoots/m-, dry 

weight of stems and leaves, age, leaf area, individual leaf dry weight and specific leaf area, and 

the number, dry weight and fresh weight of berries/m-). The data were log transformed prior 

to analysis since it did not meet the criterion of homogeneity of variance. The number and 

fresh weight of berries variables were removed from the analysis after they were found to be 

highly correlated with the dry weight of berries. The data were then re-analyzed with the 

remaining 10 variables.
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Linear regression was employed to examine the relationships between % PPFD (the 

independent variable) and V. myrtilloides cover, growth, fruit production, leaf morphology and 

biomass allocation (the dependent variables). Percent PPFD; number, dry and fresh weight of 

berries and specific leaf area variables were log transformed prior to regression analysis.
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Results

Percent PPFD and cover of vegetation overtopping V. myrtilloides

Canopy removal significantly affected the amount of full sunlight (% PPFD) that 

reached the level of blueberry foliage in the treatment blocks (Table 1). V. myrtilloides 

plants in the uncut control blocks received only 3.9 % of full sunlight, whereas those 

growing in the partial cut and clearcut blocks received an average o f 25.3 % and 32.5 % 

PPFD, respectively. Although the two harvesting treatments differed in the intensity of 

canopy removal, clearcutting did not increase the amount of sunlight reaching the field 

layer over that of partial cutting three-growing seasons after the treatments. This was due 

to the rapid re-establishment of an immature tree canopy in the clearcut blocks by 

regenerating hardwood species, such as aspen {P. tremuloides). Regenerating hardwood 

stems in the clearcuts shaded blueberry bushes to the same extent as the older 

conifer/hardwood overstory left standing in the partial cut blocks. Cover of vegetation 

over-topping blueberry plants was highest in the uncut forest (90.3 %), but was not 

significantly different between the partial cut (45.5 % ) and clearcut (50.1 %) treatment 

blocks (Table 1).

Abundance of V. myrtilloides

Blueberry cover consisted entirely of discrete ramets. Bushes were for the most 

part relatively small in diameter and evidence of extensive underground networks of 

connected rhizomes was not found. Regeneration was entirely from either basal sprouting 

or buried rhizomes. No evidence of regeneration by seed was observed in any of the 

treatment blocks. At the end of the 1996 growing season (three growing seasons post-
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treatment) the cover of V. myrtilloides was highest in the partial cuts but not statistically 

different between the uncut and clearcut blocks (Table 2). Similarly, the density of bushes 

was greatest in the partial cuts intermediate on the clearcut blocks and lowest on the uncut 

blocks; although the differences were not statistically significant.

The density (P > 0.05, = 0.0002) and cover (P > 0.05, R- = 0.02) o f V.

myrtilloides was not related to understory light availability (% PPFD).

Fruit production and number of fruiting shoots of V. myrtilloides

When compared with the uncut blocks, the number, fresh weight and dry weight of 

berries significantly increased following partial cut and clearcut harvesting, three growing 

seasons after treatment (Table 3). The highest fruit yields per hectare was obtained in the 

partial cut blocks where the number, fresh weight and dry weight of berries were 

approximately 94 % greater than that o f the clearcut blocks. Similarly, V. myrtilloides 

produced a far greater number of fixiiting shoots per m- in the partial cuts compared to the 

clearcutand uncut treatment blocks (Table 3).

Fruit number (P < 0.001; R= = 0.20), fresh weight of berries (P < 0.001; R= = 0.20) 

and dry weight of berries (P < 0.001; R- = 0.20) increased slightly with greater light 

availability (Fig. 1). There was a moderate relationship (P < 0.001; R- = 0.37) between 

the number of fruiting shoots and % PPFD (Fig. 2). Although, above 30 % PPfD, the 

number and weight of finits (Fig. 1) as well as the number of fruiting shoots (Fig. 2.) 

increased dramatically.
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Leaf morphology

V. myrtilloides responded to overstory removal with significant changes in leaf 

morphology. Leaves of V. myrtilloides bushes in the uncut blocks were significantly larger 

in size but smaller in dry weight than those from the partial cut and clearcut blocks (Table 

4). Leaves produced by blueberry bushes in the uncut forests were 54 % and 59 % higher 

in specific leaf area than those produced in the partial cut and clearcut blocks, respectively. 

However, the differences in leaf parameters between the harvesting treatments were not 

statistically significant.

Differences in leaf morphology of V. myrtilloides between the cut and uncut 

treatments were partially related to the change in % PPFD following the canopy removal. 

There was a logarithmic relationship between specific leaf area ( P < 0.0001, R- = 0.50) of 

V. myrtilloides foliage and increasing % PPFD. Leaves from bushes receiving more than 

10 % PPFD were progressively smaller in specific leaf area (Fig. 3).

Height and biomass allocation

Canopy removal by partial cutting and clearcutting had no significant effect on the 

height of V. myrtilloides. However, the blueberry bushes responded to canopy removal 

with significant changes in the dry weight of above-ground biomass (Table 2). A 

significantly higher investment o f biomass in stems and leaves was found in the partial cut 

and clearcut blocks, as compared to the uncut blocks, in which many blueberry bushes 

were depauperate and showed evidence of etioloation. The intensity of canopy removal 

(i.e. partial cutting vs. clearcutting) did not have any significant effect on dry weight of
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stems. Conversely, blueberry foliage dry weight in the clearcut blocks was 49 % greater 

than that in the partial cut blocks (Table 2).

The greater above-ground biomass of F. myrtilloides in the clearcut blocks 

compared to uncut blocks was related to the change in % PPFD resulting from canopy 

removal. Both the dry weight of stems ( P < 0.001, R- = 0.36 ) and leaves ( P < 0.001, R- 

= 0.57) were strongly limited below 10 % PPFD, but that increased linearly in response to 

greater light availability to the understory (Fig 4.)

The proportion of total above-ground biomass allocated between leaves (P < 

0.001, R- = 0.33) and stems (P < 0.001, R- = 0.33) was related to light availability in the 

forest understory (Fig. 4). F. myrtilloides allocated proportionately more biomass to stems 

(82.5 %) compared to leaves (17.5 %) under deep shade associated with the uncut blocks 

where PPFD was below 20 %. However, in sample plots receiving more than 30 % PPFD 

(predominately in the clearcut and partial cut blocks), the relative investment of biomass in 

stems (58.2 %) and leaves (41.7 %) was more equitable.

Age of F. myrtilloides bushes

F. myrtilloides bushes in the clearcut blocks were much younger in age compared 

to those in the partial cut and uncut treatments (Fig. 5). Eighty percent of bushes sampled 

from clearcut treatment were three years old or younger, and no bushes older than four 

years were found. Conversely, in the uncut and partial cut blocks, the majority o f bushes 

were between three and nine years with an average age of six years. This was significantly 

different from the clearcut blocks, where the mean age of harvested bushes was three 

years. Stem replacement by F. myrtilloides was slow in the uncut and partial cut blocks, as
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less than 5 % and 0 %, respectively, of stems were < two years. Conversely, 

approximately 17 % of blueberry stems in the clearcut blocks were < two years.
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Discriminant Analysis of V. myrtilloides

The results of significance tests for univariate equality of means indicated that of the 10 

vegetative and reproductive parameters investigated in the Discriminant Analysis, nine were 

significantly different among the treatment groups. The treatment means for age, dry weight of 

berries, number of fruiting shoots, height, leaf area and weight, specific leaf area, and the dry 

weight of leaves and stems were significantly different amongst the three treatments (Tables 2, 

3, 4). The cover of V. myrtilloides was not significantly affected by partial cutting or 

clearcutting. Discriminant Analysis confirmed the separation of the 96 sample plots into three 

groups (Fig. 6) with 95.8 % accuracy. The first discriminant function accounted for 94.8 % of 

the variance (Table 5). Function 1 was highly correlated with the biomass o f leaves and stems, 

leaf area, specific leaf area and age, indicating that these morphological and demographic 

characteristics are likely the best predictor variables for the separation of the three treatment 

groups on the basis of differences in V. myrtilloides growth in logged and uncut forests. 

Function 2 accounted for slightly over 5 % of the variance and was strongly correlated with the 

dry weight of berries, height and the number of finiting shoots (Table 6).

As displayed in the ordination diagram (Fig. 6), above-ground biomass, finit 

production, leaf morphology and age of V. myrtilloides were significantly affected by both 

partial cutting and clearcutting. Plots from the uncut blocks formed one group in the 

ordination diagram quite separate from plots that were either partially cut or clearcut. 

Blueberry bushes growing under deep shade of the uncut blocks were distinct from those in the 

partial cut and clearcut blocks primarily by their older age, smaller above-ground biomass, large 

leaves and absence of finiting.
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Discussion

Response to canopy disturbance

As with other ericaceous species, the performance of V. myrtilloides following 

canopy removal depends upon both the duration and intensity of increased light availability 

(Bunnell 1990; Smith 1990; Huffman et al. 1994; Luken et al. 1995). However, our 

results suggest that following logging of mixedwood boreal forests in northwestern 

Ontario, both of these factors are limited as a result of rapid canopy re-establishment from 

regenerating hardwoods, particularly trembling aspen. On our sites, the early dominance of 

hardwood stems in the partial cut and clearcut blocks may account for the minimal 

response of V. myrtilloides that we observed in both small (i.e. partial cut) and large (i.e. 

clearcut) canopy openings. Compared to the uncut blocks, the cover of V. myrtilloides did 

not increase following partial or full canopy removal, even though it was present in the 

understory prior to canopy disturbance. The suppression of understory species in clearcuts 

and partial cuts due to intense competition from hardwood species has been observed in 

other boreal mixedwood forests in Ontario (La Roi 1967; Hendrickson 1988; Groot et al.

1995). Hendrickson (1988) attributed the poor growth of non-woody species in 

regenerating mixedwood clearcuts in north-central Ontario to rapid occupancy by aspen 

suckers and red maple sprouts.

Although above-ground biomass of V. myrtilloides increased following partial cut 

and clearcut harvesting, this response was not associated with the greater availability of 

sunlight in canopy openings. We failed to find any significant relationship between 

understory light availability and V. myrtilloides cover. The understory PPFD explained
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only 19-22 % of the total variability in above-ground biomass. The remaining variability 

may be attributed to several other factors associated with logging (Ricard and Messier

1996) such as mechanical stimulation of sprouting (Bunnell 1990), higher soil 

temperatures (Groot et al. 1995) and improved nutrient conditions for growth due to 

increased mineralization (Vitousek et al. 1982). However, the latter factor may have been 

o f lesser importance, as many Vaccinium spp. have been found to respond only slightly to 

increases in nutrient availability (Hester et al. 1991; Eaton 1994; Atlegrim and Sjoberg

1996).

The young age of blueberry stems (one to four years) in the clearcut blocks 

indicates that V. myrtilloides doesn’t rely on the growth and spread o f existing stems from 

uncut forests to quickly colonize the above-ground environment in second-growth forests. 

No blueberry stems > four years were observed in the three year old clearcuts; older stems 

were presumably destroyed by logging. Conversely, the older age of bushes in the three 

year old partial cut blocks (three to fourteen years) indicates that a majority of bushes 

growing there (mean = six years) had been established before partial canopy removal. 

Extensive damage to above-ground biomass following clearcutting has been observed in V. 

angustifolhim (Hoefs and Shay 1979; Moola and Mallik, submitted), V. myrtillus 

(Atlegrim and Sjoberg 1996) and V. myrtilloides (Moola and Mallik, submitted) and has 

been attributed to sudden microclimatic changes (Hoefs and Shay 1981; Atlegrim and 

Sjoberg 1996), mechanical damage to aerial stems from logging equipment (Zager 1980; 

Atlegrim and Sjoberg 1996) and increased susceptibility to drought and spring frosts 

(Hoefs and Shay 1981). In regenerating patch cuts approximately 100 km west of the
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study area, 31 % of tagged one-year old V. myrtilloides shoots died in the first growing 

season (Moola and Mallik, submitted). However, despite the heavy initial mortality of 

above-ground stems, Vaccinium spp. are generally tolerant of logging due to their ability 

to regenerate vegetatively from persistent underground bud-banks (Calmes and Zasada 

1982; Matlack et al. 1993). In this study, re-sprouting of V. myrtilloides fi*om the base of 

surviving stumps and/or from underground rhizomes was extensive in the clearcuts. This is 

a common observation in other ericaceous species (Mallik 1991, 1993). Nevertheless, the 

inability to immediately rely on advanced regeneration for photosynthesis and above­

ground colonization, and the subsequent delay in establishing new photosynthetic biomass, 

was problematic in an environment marked by intense above-ground competition for light. 

Indeed, the suppression of V. myrtilloides by faster-growing tree species may be due to its 

inability to rapidly establish photosynthetic biomass in the above-ground environment or 

resist being overtopped by fast growing competing vegetation whose regeneration 

strategies facilitate the pre-emption of available resources. Tilman and Wedin (1991) have 

shown that in asymmetric competition for light among grasses, species which established 

photosynthetic biomass early in competition grew much faster and ultimately suppressed 

their shorter, slower-growing neighbours. In regenerating mixedwood clearcuts, 

competition for light between aggressive hardwood species such as aspen and slower- 

growing blueberry clones results in a similar outcome.
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Persistence in the uncut forest

A “stress-tolerator” strategy may be adaptive for V. myrtilloides in an environment 

marked by intense above-ground competition for light. Indeed, persistence in a 

depauperate vegetative form may enable V. myrtilloides to maintain a long-term presence 

in second-growth forests until self-thinning occurs and the canopy eventually opens up 

(Alaback and Tappeiner 1991; Messier and Mitchell 1994). Of particular importance to the 

“stress-tolerator” strate^  of V. myrtilloides is its ability to modify its leaf morphology and 

biomass allocation in response to heavy shading. A high degree of phenotypic plasticity in 

response to differences in the growth habitats of forest environments likely accounts for V. 

myrtilloides ability to survive in all stages of secondary forest succession (Moola and Mallik, 

unpublished data). In this study, le^  morphology and the proportion of biomass allocated to 

stem and foliage varied significantly along the light gradient. This indicates that blueberry can 

express a high degree o f morphological and allocation plasticity in response to changes in 

understory irradiance. Such plasticity has been suggested to enhance the ability of shade- 

tolerant species to survive for long periods under low light conditions (Chazdon 1985; Messier 

1992; Messier and Puttonen 1995b). The plasticity of V. myrtilloides is reflected in the 

discriminant analysis. In shaded conditions of the uncut blocks, bushes of V. myrtilloides 

remained smaU, produced significantly less above-ground biomass, refi-ained from costly sexual 

reproduction, and developed leaves lower in weight but higher in individual leaf area and 

specific leaf area. Specific leaf area is an indication of photosynthetic efficiency of plants (Hunt

1982). By producing large, thin leaves, V. myrtilloides was able to improve the capture of
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photon energy. As indicated by regression analysis, the expression of these particular traits 

were significantly correlated with decreasing light availability.

Populations of V. myrtilloides in uncut forests were also older and had a higher 

proportion of biomass in non-photosynthetic tissue. The greater relative allocation of biomass 

in stems as opposed to leaves has not been observed in other ericaceous shrubs in forest 

habitats (Messier 1992; Alaback and Tappeiner 1991) and would appear counter-productive in 

light of the need to maximize the capture of light under conditions of heavy shading (Messier 

and Puttonen 1995). This may explain the minimal growth of V. myrtilloides at low light 

levels. Given blueberry’s deciduous nature, investment of photosynthates in leaves is costly 

due to the loss of foliage after one growing season. Although it has been established in V. 

angitstifolhtm that nutrients such as nitrogen are translocated from leaves to woody tissue prior 

to leaf drop in autumn (Eaton and Patriquin 1990), some resources are retained in the foliage 

and forfeited by the plant with leaf abscission (Karlsson 1985). The proportional decrease in 

leaf biomass of V. myrtilloides with increasing shade may be an adaptation to minimize this loss 

by allocating photosynthates preferentially in longer-living woody stems. Assimilates invested 

in woody tissue can be utilized in subsequent growing seasons for the development and 

maintenance of new foliage and shoots (Karlsson 1985).
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Management Implications: effect of canopy removal on fruit production

Dramatic increases in vegetative and reproductive performance of many 

understory shrubs have been observed in tree canopy openings (Minore 1984; Alaback and 

Herman 1988; Luken 1988; Alaback and Tappeiner 1991; Hughes and Fahey 1991; 

Matlack et al. 1993; Clinton and Boring 1994). Consequently, canopy gaps may be 

essential for the maintenance of forest biodiversity and wildlife habitat values in boreal 

mixedwood forests (Hanley and McKendrick 1985; Alaback and Tappeiner 1991). In 

mature temperate forests, mortality of individual trees from wind, disease and insects 

creates a heterogeneous mosaic o f gaps (Frelich and Reich 1995; Johnston 1996) into 

which new stems of blueberry can emerge from underground rhizomes or buried seeds 

(Tappeiner and Alaback 1989; Eriksson and Froberg 1996). However, in second-growth 

forest plantations similar small-scale disturbances, essential for the creation of canopy 

openings are usually infrequent (Alaback and Tappeiner 1991). The abundant overstory 

tree canopy and low availability o f light in the understory (3 - 10 % PPFD) of the uncut 

blocks of this study are characteristic of many second-growth forests 20 - 55 years old 

(Alaback and Tappeiner 1991; Messier and Puttonen 1995; Lieffers et al. 1996). 

Measurements o f light transmission to the understory of older boreal mixedwood stands 

indicates that irradiance needed for shrubs and herbs may remain low for many decades 

(Lieffers et al. 1996). Furthermore, as our results indicate, opportunities for the 

exploitation of available gaps by blueberry are short-lived due to intense competition from 

fast growing stems and suckers o f hardwood species that rapidly form secondary canopy 

layers, consequently reducing understory light availability. Evidence of this has been
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reported for V. ovalifolium in the succession of second-growth western hemlock (Tsugua 

heterphylla (Raf.) Sarg.) forests following windthrow and thinning (Farr and Harris 1971; 

Alaback and Herman 1989; Alaback and Tappeiner 1991).

The suppression of fruiting shrubs, especially Vaccinium spp. in second growth 

forests is a management concern in some areas due to the decline in fruit availability for 

wildlife (e.g. bears) and berry pickers (Minore 1984; Hanley and McKendrick 1985; 

Alaback and Tappeiner 1991; Hamilton et al. 1991). A number o f silvicultural techniques 

for the artificial creation of canopy gaps such as lower stocking standards, pre-commercial 

cutting, prescribed burning, pruning, biological control of canopy vegetation and herbicide 

application have been suggested for the promotion of understory shrub abundance 

(Minore 1984; Tappeiner and Alaback 1989; Alaback and Tappeiner 1991; Hamilton et al. 

1991; Lautenschlager 1993). The results of this study indicate that berry production by V. 

myrtilloides does improve significantly following artificial canopy disturbance; especially 

with partial cutting of the forest. This positive effect may be in response to increased light 

availability in canopy openings as indicated by the relationship between berry production 

and the number of reproductive shoots and % PPFD. However, increased fruit yields will 

likely be temporary due to rapid canopy closure by regenerating hardwood species (e.g. 

aspen). Consequently, in order to maintain understory fruit production by blueberry ramets 

colonizing second-growth mixedwood forests, artificial canopy openings will likely require 

regular treatment to suppress secondary canopy development by regenerating hardwood 

species. The observation that reproductive vigour is encouraged through the suppression 

o f successional changes such as canopy development has been reported for a number o f
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species. A three-fold increase in fruit yield was reported by Smith (1972) in wild 

strawberries {Fragaria viginiana Duchesne) following experimental removal of 

competitors. Similarly, traditional methods o f commercial blueberry management on 

abandoned agricultural land (Hall 1959), and clearcuts have depended upon the use of 

burning and mowing for the creation of early successional conditions that promote 

fruiting (Yarborough et al. 1986). Despite its apparent conservative response to canopy 

disturbance, the spread and dominance of V. myrtilloides has been reported in post­

disturbance habitats with minimal or non-existent canopy development (Hall and Alders 

1968; Vander Kloet and Hall 1981). These include managed blueberry barrens in Nova 

Scotia, New Brunswick, and Maine (Vander Kloet and Hall 1981; Yarborough et al. 

1986), as well as nutrient poor ericaceous heathlands in Newfoundland that are 

inhosptiable for tree colonization and growth (A.U. Mallik, personal communication). 

Our results suggest that in the absence of silvicultural suppression of regenerating 

hardwood species, similar expansion and dominance of V. myrtilloides in the understory of 

second-growth boreal mixedwood forests is unlikely.
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Table 1. Means (and standard errors) of percent cover of vegetation overtopping
V. myrtilloides and percent PPFD in treatment plots

Treatment Percent 
cover of vegetation 

overtopping V. myrtilloides

Pecent PPFD 
transmitted above V. 

myrtilloides.

Uncut 90.3a 3.9a
(2.02) (0.79)

Partial Cut 45.5b 25.3b
(5.27) (2-57)

Clearcut 50.1b 32.5b
(3.98) (2.64)

Note: Unlike letters in a column indicate values significantly different at 0.05 level determined 
by the Mann-Whitney nonparametric test. Observed significance level was adjusted with the 

Bonferroni procedure; (P<0.02).
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Table 2. Means (and standard errors) of V. m yrtilloides abundance, height, age
and above-ground biomass following canopy removal

Treatment Cover
(%)

Height
(cm)

Age 
(in years)

Dry weight 
of stems

(g)

Dry weight 
of leaves

(g)

Uncut 5 .2a 23 .9a 6.0a 0.94a 0 .20a
(0.78) (1.89) (0.3) (0.19) (0.03)

Partial Cut 6 .8a 28 .8a 6.0a 2.87b 1.24b
(1.86) (1.07) (0.7) (0.49) (0.19)

Clearcut 5 .1a 26 .5a 3.0b 3.44b 2 .47c
(1.23) (0.71) (0.2) (0.39) (0.31)

Note: Unlike letters in a column indicate values significantly different at 0.05 level determined by the 
Mann-Whitney nonparametric test. Observed significance level was adjusted with the Bonferroni 
procedure; (P<0.02).
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Table 3. Means (and standard errors) of fruit production in 1996 by V.
myrtilloides following canopy removal

Treatment Number 
of berries 

(/ha)

Fresh weight 
of berries 

(g/ha)

Dry weight 
of berries 

(g/ha)

Number of 
reproductive 
shoots (/m )̂

Uncut Oa Oa Oa Oa
(0) (0) (0) (0)

Partial Cut 122604b 21592b 3191b 7.6b
(74558) (12686) (1907) (3.26)

Clearcut 7431c 1413c 232c 1.2c
(4182) (945) (150) (0.64)

Note: Unlike letters in a column indicate values significantly different at 0.05 level 
determined by the Mann-Whitney nonparametric test. Observed significance level was 
adjusted with the Bonferroni procedure; (P<0.02).
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Table 4. Means (and standard errors) of leaf characteristics measured fromV.
myrtilloides plants following canopy removal treatments

Treatment leaf
area
(cm*)

dry
weight
(g/leaf)

specific leaf 
area 

(cm*/g)

Uncut 2.73a 0.0076a 400a
(0.18) (0.00076) (21.16)

Partial 1.88b 0.0108b 185b
Cut (0.17) (0.00108) (13.17)

Clearcut 1.65b 0.0105b 166b
(0.10) (0.00075) (9.06)

Note; Unlike letters in a column indicate values significantly 
different at the 0.05 level determined by the Mann-Whitney 
nonparametric test. Observed significance level was adjusted with 
the Bonferroni procedure (P<0.02).
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Table 5. Values of discriminant functions of ten characteristics of V.
myrtilloides

Function Eigenvalue % Variance Canonical
Correlation

df Significance

1 12.9873 94.80 0.9636 20 0.0000

2 0.7130 5.20 0.6452 9 0.0000
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Table 6. Pooled wrthin-group correlations between discriminating variables and 
canonical discriminant functions often vegetative and reproductive 

characteristics of V.myrtilloides

Vegetative and reproductive 
parameters

Function
1

Function
2

Cover (%) 0.03463 0.15426

Height 0.10802 0.39025*

A ge (in years) 0.25804* 0.69191

Dry weight of stem s (g) 0.27653* 0.16822

Dry weight of leaves (g) 0.56670* 0.12746

Dry weight of berries (g) 0 .07457 0.57354*

Number of reproductive sh oots per 
m*

0.07952 0.48844*

Leaf area (cm) 0.22090* 0.09120

Individual leaf dry weight (g) 0.14081 0.17370

Specific leaf area (g/cm*) 0.42627* 0.34109

* denotes largest absolute correlation between each variable and 
any discriminant function.
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General Discussion

While little is presently known about the effects of management intervention on wild 

blueberry patches, the results of this thesis suggest that clearcut logging and silvicultural 

strategies of weed suppression such as herbicide application can adversely affect both the berry 

production and vegetative growth of Vaccinium spp. in northwestern Ontario. Conversely, 

partial cutting and conifer release with brushsaw cutting offer a silvicultural alternative that is 

less destructive to blueberry. This may be attributed to the “intermediate rate of disturbance” 

(Huston 1994) associated with partial cutting and brushsaw treatment which doesn’t 

significantly damage or kill aerial stems (Atlegrim and Sjpberg 1996) nor change microclimatic 

conditions to the same extent as clearcutting and/or herbicide application (Groot et al. 1995; 

Hannerz and Hânell 1997; Reynolds et al. 1997). From a conservation perspective, these 

practices are more consistent with the goal o f protecting biodiversity and managing for the 

sustainability of less economically important ‘forest values’ (Reader and Bricker 1992) 

that are promoted in Ontario by the Crown Forest Sustainability Act 1994 (Baker et al. 

1995). In fact, the significant increases in fruit production associated with both partial 

cutting and brushsaw treatment indicate that these silvicultural practices would be well 

suited for potential agroforestry initiatives in the management of boreal forests in 

northwestern Ontario. Unfortunately, there is little documentation on the economic 

significance of berry harvesting in boreal forest ecosystems. Minore (1972) estimated the 

economic and recreational value of huckleberries {V. membranacetim Dougl. ex. Hook.) in 

Oregon and Washington, U.S.A. Kardell (1979) reported that wild berries formed a 

significant portion of the export of agricultural produce from Poland and to a lesser extent
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Lithuania and Byelorussia. Although there are no reliable statistics on the economic 

contribution of wild berry harvesting to rural communities, berry picking provides 

supplementary income for people living in rural areas in many boreal forest regions of 

North America, Fennoscandia and Eastern Europe (Minore 1972; Saastamoinen 1977; 

Kardell 1979). The sale of wild blueberries from the road-side and in local grocery shops 

was observed by the author in several northwestern Ontario communities close to the 

study areas.

The response of Vaccinium spp. to operational herbicide (Vision®) application appears 

to be species specific. Unlike the lowbush blueberry {V. angustifolium \ wild patches of velvet 

leaf blueberry (V. myrtilloides) do not appear to be as adversely affected by operational 

Vision® treatment. Nevertheless, the significant reduction in berry production by V. 

angustifolium can contribute to an overall drop in the availability of blueberries in sprayed 

clearcuts. The significant reductions in total blueberry yield following herbicide spraying could 

affect resident bear (JJ. americanus) populations and other wild animals that feed heavily on 

wild berries (Rogers 1976). Reduced use of Vision® treated clearcuts due to berry failure by 

shrubs such as Vaccinium spp. have been observed in radio-collared grizzly bears {Ursus 

arctos L.) in British Columbia (Hamilton et al. 1991). The direct effects of reduced blueberry 

availability on wildlife use of forest plantations in northwestern Ontario has yet to be examined.

Reproductive yields of both V. angustifolium and V. myrtilloides will progressively 

decline with forest succession after logging (Newton et al. 1989; Hamilton et al. 1991; 

Lautenschlager 1993). This may be especially true on mixedwood boreal sites as documented 

in Paper 3, given the speed at which plantations become dominated by regenerating
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hardwoods, particularly P. tremuloides, which can deprive blueberry of sunlight. These sites 

may even develop into non-productive blueberry habitats altogether given the apparent ‘stress- 

tolerator’ strategy (e.g. increased investment of assimilates in woody tissue at the expense of 

sexual effort) of Vaccinium spp. in response to heavy shading as well as the limited canopy gap 

openings in second-growth forests (Alaback and Tappeiner 1991). Evidence for a shift in 

reproductive strategies of understory species during succession has been reported in other 

ericaceous shrubs such as Gaultheria Shallon Pursh. (Bunnell 1990), Kalmia angustifolia var. 

angustifolia L. (Mallik 1994) and V. ovalifolium Smith (Alaback and Tappeiner 1991). 

Similarly, Newall and Tramer (1978) reported a decrease in reproductive effort with increasing 

successional maturity of old-held communities.

Berry yields would likely be maintained over a longer period of time in brushsaw 

treated plantations than on untreated or herbicided areas. Consistent with Lautenschlagefs 

(1993) conceptual model o f the effect of no treatment and conifer release on browse biomass, 

the non-toxic brushsaw treatment may maintain high berry productivity for several years after 

logging. Silvicultural suppression of regenerating hardwood species would delay overstory 

development and increase transmission of light to the understory. With increased availability of 

light, photosynthetic efficiency of Vaccinium spp. would be much greater. Hence, more 

photosynthate would be available for allocation to all plant functions, and internal competition 

amongst the various sinks (growth and maintenance, sexual and asexual proliferation) would be 

reduced (Weiner 1988). Evidence that reproductive vigour is encouraged through the 

suppression of successional changes such as canopy development have been reported for a 

number of species. A three-fold increase in sexual reproductive effort was reported by Smith
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(1972) in wild strawberries (Fragaria virginaina Duchesne) following the experimental 

removal of competitors. Similarly, commercial blueberry growers have long known that the 

cultural practice of pruning blueberry fields by fire, or by mowing, keeps patches in an early 

successional stage, and hence stimulates reproductive effort (Yarborough et al. 1986).

The need for silvicultural suppression of regenerating hardwoods in order to promote 

blueberry abundance and productivity may not be necessarry on sites where canopy closure is 

slower to occur as reported in Paper 1 and Vaccinium spp. have an opportunity to become 

established in the understory prior to significant overstory development. In the Maritime 

provinces, where it can take up to 30 years or longer for the forest canopy to re-establish after 

overstory removal, Vacciniixm clones may grow up to 10 m in diameter before being 

overtopped by regenerating tree species (Vander Kloet and Hall 1981).

To better understand the response of Vaccinium spp. to successional changes in light 

availability initiated by overstory removal, the apparent trade-offs between reproductive effort 

and allocation of energy for growth and maintenance needs to be investigated. This can be 

studied at different successional stages for example one year, 10 years, and 20 years after 

clearcutting and in mature forest. Such an investigation may shed light on how carbon 

partitioning in blueberry plants can be manipulated through silvicultural treatments to obtain a 

more desirable investment of resources into sexual reproduction for the maintenance of 

abundant finit production for wildlife. Scottish moors have been intensively managed since the 

thirteenth century for the maintenance of peak food production for domestic herbivores and 

game animals (Gimingham 1972). Traditional systems of Scottish heathland management since 

the 1850's have depended upon the use of burning and to a much lesser extent brushsawing for
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the (Teation of successional conditions that promote the development of oicaceous browse 

(e g. green shoots, flowers and fiuit) for red grouse, Lagopus lagcpus scoticus L. fo Canada, 

the burning of wild Vaccinium fields was under consideration in the 19S0's for the promotion 

of Newfoundland's willow ptarmigan (fjagopus logeants alleni L.) populations (Peters 1958). 

My results suggest that similar management o f Vaccinium patches through partial cutting and 

brushsaw treatment may prove to be successfiil in focilitating greater fisod production for bears 

and other wildlife in boreal forests managed for timbar production.

The results o f this thesis indicate that regardless o f treatment, berry productivity is 

often quite variable from year to year as reported by Eaton (1994). Research into 

commercial cultivation has revealed that in addition to management factors such as disease 

and insect control, fire pruning, open-field cultivation, irrigation and fertilization, climatic 

fectors such as drought, early frost and severe winter temperatures can influence yields 

(Hoefs and Shay 1981; Eaton 1993). Poor berry yield in 1995 compared to 1994 and 1996 

may be attributed to the adverse weather conditions that characterized that summer 

season. In particular, abnormally high afternoon temperatures and a severe deficit in 

precipitation might have induced drought stress in reproductive shoots. The detrimental 

effects of moisture shortage on growth and berry yield have been reported for wild 

blueberry patches in Manitoba and Alberta, which like northwestern Ontario, experience a 

suimy, dry, continental climate (Hoefe and Shay 1981). Unlike blueberry varieties o f the 

Atlantic regions which experience frequent precipitation and lower exposure to sunlight 

due to fog, blueberries growing in open conditions in clearcuts o f central Canada are often 

susceptible to drought stress given the high summer insolation, high ground temperatures
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and reduced soil moisture conditions that are created following the removal o f the 

overstory canopy (Hannerz and Hânell 1997). The high fruit yields of blueberry observed in 

clearcuts treated with brushsawing and forests harvested with partial cutting may be due to the 

presence of more favourable near-ground microclimatic conditions; for example, cooler 

daytime temperatures, higher relative humdity and lower duff temperatures (Reynolds et al. 

1997; Hannerz and Hânell 1997) for blueberry growth (Hoefs and Shay 1981). Nevertheless, 

the results of this thesis conifirm Vander Kloet and Hill’s (1994) conclusion that Vaccinhm  

spp. exhibit dramatic fluctuations in annual berry yield due to sensitivity to prevailing weather 

conditions.
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