
Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

INFORMATION TO USERS 

This manuscript bas been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter &ce, while others may be 

from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

mam1script and there ar.e miAAing pag~ these wiil be noted. Also, if 

unauthorized copyright material bad to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order. 

UMI 
A Bell & BowelliDformation Company 

300 Nonh 2'ab Road, Aml Aibor MI 48106-1346 USA 
JI3n61-47oo sootSli-0600 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

VEGETATION RESPONSE TO HARVESTING, HARVESTING AND 

PRESCRIBED-BURNING AND WILDFIRE IN NORTHWESTERN ONTARIO: 

PATTERNS OF REPRODUCTIVE STRATEGIES AND 

NUTRIENT ACCUMULATION 

Tanya L. Rintoul @ 

A Graduate Thesis submitted in partial 

fulfillment of the requirements for the degree of 

Master of Science in Forestry 

Faculty of Forestry 

Lakehead University 

January, 1997 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1+1 National Ubrary 
otcanada 

Bibliotheque nationafe 
duCanada 

Acquisitions and Acquisitions et 
Bibliographic Services services bibliographiques 
395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395. rue Wellington 
Ottawa ON K1A ON4 
canada 

The author has granted a non-
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
niay be printed or otherwise 
reproduced without the author's 
penmsston. 

• 

L' auteur a accorde une licence non 
exclusive permettant a Ia 
Bibliotheque nationale du Canada de 
reproduire, preter, distnbuer ou 
vendre des copies de cette these sous 
Ia forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique. 

L' auteur conserve Ia propriete du 
droit d'auteur qui protege cette these. 
Ni Ia these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou autrement reproduits sans son 
autorisation. 

0-612-33439-2 

Canada 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

iii 

ABSTRACT 

Rintoul, T. L. 1996. Vegetation response to harvesting, harvesting and 
Prescribed-burning, and wildfire in Northwestern Ontario: Patterns of 
reproductive strategies and nutrient accumulation. 150 pp. (Advisor: Dr. M. 
Johnston). 

Key Words: initial species composition, multiple successional pathways, 
propagule bank, nutrient retention 

Initial species composition was investigated on a group of boreal 
mixedwood sites that had experienced various forms of disturbance. The 
hypothesis explored was that environmental changes caused by different 
disturbances would be reflected in patterns of revegetation. The disturbance 
types were as follows: (1) Harvest, winter, full tree logged cutovers, delimbed at 
the road side; (2) Prescribed-bum, cutovers burned in early spring; (3) Rebum, 
cutovers which were Prescribed-burned and subsequently experienced a 
wildfire; (4) Wildfire, a low severity crown fire in mature forest; (5) Control, 70 
year old forest with a species composition of white spruce (Picea glauca 
(Moench)Voss), black spruce (Picea mariana (Miller) Britton), balsam fir (Abies 
balsamea (L.) Miller) and white birch (Betula papyrifera Marshall). 

Results indicated that species composition differed consistently among 
control and recently disturbed sites. Feather moss species, A. balsamea and 
Acer spicatum Lam. had significantly greater cover on Control sites. 
Prescribed-burn sites had high cover values for Polygonum convolvulus L., 
Prunus pensylvanica L.f. and Epilobium angustifolium L.. Rebum sites had 
greater cover of Geranium bicknellii Britton. Disturbance species were also 
present on Harvest and Wildfire sites but the species' relative abundance was 
not as great when considering the conditions created by these disturbances. 

Greenhouse germination experiments indicated that the seed bank on the 
harvested and adjacent undisturbed sites were similar and consistently different 
from those that had experienced any of the fire treatments. Species 
regenerating by recently dispersed seed (B. papyrifera) or rhizomes 
(Maianthemum canadense Desf. and Coptis trifolia (L.)) found on the surface 
organic layer in the Control and Harvest treatments were likely consumed by 
the fire in burned treatments. 

Plant tissue nutrient samples were taken for five species (C. canadensis 
(L), G. bicknellii, R. idaeus L., P. pensylvanica and B. papyrifera) and were 
selected to represent different understory layers and reproductive strategies. 
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Nutrient concentrations differed according to disturbance type and most 
elements had higher concentrations in the Control plots, except for nitrogen. 
Nitrogen generally increased from Control, Harvest, Rebum, Prescribed-bum to 
Wildfire. G. bickne/lii and P. pensylvanica, which revegetated by seed, 
generally had higher concentrations of nitrogen, potassium and phosphorous, 
especially on burned sites and seems to reflect nutrient concentrations of soil 
on the various treatments. This suggests that species' ability to accumulate 
nutrients following disturbance may be related to its regenerative strategy. 

Since plant species differentially absorb various nutrients, as a disturbance 
influences the initial species composition it also determines the element 
composition ·of the site and the ability of vegetation to act as a nutrient sink. 
Species composition differed and continued to diverge over the growing season 
according to disturbance type. As resource managers attempt to emulate 
natural disturbance and predict successional pathways following harvesting and 
fire a better understanding of early successional species and their role in 
nutrient retention needs to be considered. 
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1.1 INTRODUCTION 

1 

CHAPTER I 

BACKGROUND 

Change is an underlying quality of nature. Understanding the direction and 

charader of ecological change requires an awareness of evolutionary trends, 

species adaptations and environmental conditions (Van Wagner and Methven 

1980). Changes can be as subtle as plants adjusting to shifting microclimates 

or as momentous as fire returning a mature forest to the seedling stage. 

Succession describes a directional, cumulative change in the species that 

occupy an area through time (Barbour et a/. 1987). Disturbance, a more 

abrupt change, is defined as an event which results in the removal of 

organisms and the creation of space for the establishment of similar or 

different organisms (Began et a/. 1990). 

Historically, fire has been a main disturbance force in the boreal forest 

(Heinselman 1973a). Due to fire suppression and increased harvesting efforts, 

timber extraction has become a more prominent disturbance force in the 

managed forest (Ward and Tlthecott 199~). Harvesting and fire physically alter 

canopy charaderistics, and interad with propagule banks and nutrient cycles 

according to the degree of biomass removal or consumption and heat 

penetration into the soil (Mou eta/. 1993; Heinselman 1981 ). Johnston and 

Elliott (1996) found that herbaceous species compositions were more similar 
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between burned cutover and wildfire sites than burned cutover and cutover 

sites, suggesting that fire and harvesting affect the environment in different 

ways. Fire changes the physical and chemical soi! environment which, in tum, 

stimulates chemical reactions, and affects plant response (Ohmann and Grigal 

1979). To manage a forest in a sustainable manner these differences need to 

be recognized.· 

A recent environmental assessment of timber operations in northern 

C:rtario concluded that • ... Crown forests and their associated ecological 

processes and biological diversity should be conserved ... • and that forest 

practices should • ... emulate natural disturbances and landscape patterns ... • 

(Crown Forest Sustainability Act 1994, p. 1). A clear understanding of how 

natural forces influence the structure and function of forest ecosystems has yet 

to be determined. 

Prescribed-burning is a vegetation management tool that allows forest 

managers to more closely .. emulate natural forces'. Prescribed-bums are used 

to meet vegt!tation management goals while maintaining the safety of human 

life, property and resources. Managers identify the desired results, degree of 

organic layer removal and soil heating in order to determine the type of fire 

needed (Haeussler eta/. 1990). Fires are ignited under a prescription which 

stipulates acceptable ranges in temperature, relative humidity, fuel moisture 

and wind direction and speed (Fuller 1991 ). 
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1.2. PURPOSE of STUDY 

Many studies have described the diversity and species composition of 

early successional stages after fire (Methven and VanWagner 1975: 

Heinselman 1973a; Scheiner and Teeri 1981), and changes in nutrient 

availability and productivity (Ohmann and Grigal 1979; Raison 1979; Maclean 

et al. 1983). However, few studies have compared differences between burned 

and harvested sites. This study concentrated on the processes and 

mechanisms of revegetation after harvesting, harvesting combined with various 

degrees of burning, and wildfire. Data on fire characteristics, comparisons with 

unburned adjacent forest and complementary soil research helped to distinguish 

among different types of disturbance and how they influenced plant response. 

The three hypotheses of this study were that: 

1) various disturbance produce different initial species compositions; 

2) the propagule bank will differ according to the disturbance type; and 

3) nutrient concentration and allocation will differ among disturbance types for 

five selected species. 
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1.3. PROJECT DESIGN 

For ease of interpretation this project has been divided into the three 

main themes; Initial species composition, Reproductive strategies, and Nutrient 

accumulation patterns. In Chapter 2, an investigation of early plant 

revegetation over the first growing season is presented. Initial plant 

succession is determined by disturbance charaderistics and species survival 

strategies. Understanding plant responses can help identify successional 

pathways of future plant communities 

In Chapter 3, propagule bank dynamics as a mechanism that influences 

future species composition is explored. Soil disturbance brings seeds to the 

surface and fire severity influences the viability of propagules and the 

germination conditions. Studying seed/bud bank dynamics will indicate 

regeneration potential of the site and support predided changes for different 

disturbance conditions. Important concepts that are discussed include: 

dispersal patterns, germination requirements and how disturbance severity 

interacts with seed bank characteristics to determine post-disturbance species 

composition and density. 

In Chapter 4, an investigation of variations in nutrient concentrations 

among disturbance types and different species is presented. Comus 

canadensis, Geranium bicknel/ii, Rubus idaeus, Prunus pensy/vanica and 

Betula papyrifera (a complete list of species names and authorities is found in 
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Appendix A) were chosen to represent different strata and reproductive 

strategies (seed, vegetative). Revegetation is the primary biotic mechanism 

that prevents the loss of mineralized nutrients after disturbance (Marks and 

Bormann 1972). 

1.4 SITE DESCRIPTION 

The study site is located in northwestern Ontario, 240 km NW of 

Thunder Bay (Figure 1.1 ). The site is about 900 ha and varies from gently 

rolling to hummocky, and includes moderately steep slopes with mineral soil 

and organic lowland sites scattered through the area. Two landform types 

formed during the Wisconsin Glaciation period characterize the site. The 

northern area is an esker complex of sand, gravel and boulders (soil type 

SS5). To the south, aeolian deposits of fine sand and silt are found. The 

moisture regime is dry to fresh (soil type S2 Sims eta/. 1989). Lowland sites 

have varying depths of organic soil. 

Figure 1.2 indicates the spatial relation of disturbance types (Control, 

Harvested, Prescribed-bum, Rebum and Wildfire) and the distribution of 

research plots over the site. Upland sites were classified mostly as V-type 25, 

White spruce-Balsam fir I feather moss (Sims et a/. 1989) and about 50 years 

old. Lowland sites were generally V-type 33, Black spruce/feather moss and 

about 100 years old (OMNR 1995). Sites that were not cut contained 
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Figure 1.2. Plot layout. Harvested sites are shaded. Thin line represents harvested and 
Prescribed-burned sites (Prescribed-bum). Thick line oulines three wildfires, areas 
overlapping prescribed bum sites were designated Rebum and fire in surrounding forest are ' 
Wildfire sites. Control plots were placed in •undisturbed' buffer zones. 
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budworm-killed balsam fir and blowdown. Charcoal at the organic I mineral 

soil interface indicated the stand is of fire origin. 

The grouping of the Harvested treatments was unavoidable since the 

disturbances had occurred before this study was proposed. Soil textural 

differences were not significant between the northern and southern sites 

{Stronach 1-996) and soil and vegetation analysis did not separate the Control 

block located near the harvested site from the other Control blocks. Details 

about the disturbance descriptions are included in Appendix B and 

summarized in Table 1.1. In order to quantify fire behaviour, study sites were 

located close {within 20 m) to of fuel sampling plots that were established 

before the Prescribed-bum. 

The combinations of harvesting and burning disturbances on a similar 

site type provided an opportunity to study patterns of initial vegetation 

recovery. Although the Control site originated before 1934 (OMNR 1995), it 

would be inaccurate to call this site 'undisturbed" since disturbance takes many 

forms and occurs over different temporal and spatial scales (i.e. the site has 

been influenced by the spruce budworm). The Control treatment was included 

in the study to act as a benchmark indicating the nature of the original stand 

and the likely future composition of the disturbed communities. 
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Table 1.1. Summary of disturbance type characteristics. Details are given In Appendix B. 

CONTROL HARVESTED PRESCRIBED 
BURN 

70Years Full-Tree, Low Intensity Prescribed 
Picea g/auca, Abies Delimbed at Roadside Burn MAY 3,1995 
ba/samea, Moss, Winter 1992/93 
Spruce Budworm Killed Scalped 1994 

DEPTH OF ORGANIC LAYER 

7.68cm 6.1 em 

FINE FUEL CONSUMPTION 
(0-6.99 em in diameter) 

DUFF CONSUMPTION 

3.5cm 

16-48% 

4.5%-17% 

REBURN 

Prescribed Burn 
MAY3 

Wildfire 
MAY 30,1995 

2.8cm 

62-74% 

23.4-43.8% 

WILDFIRE 

Wildfire 
May 30,1995 Crown 
fire 

10 

4.5cm 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

10 

CHAPTER II 

INITIAL SPECIES COMPOSmON 

2.1 INTRODUCTION 

Initial plant establishment in the boreal forest after disturbance is the 

repair phase in a replacement cycle (Marks 1974; Halpem 1989). In the boreal 

forest. succession does not necessarily mean a change in species 

composition, but more accurately, a series of gradual shifts in a species' 

dominance (Ohmann and Grigal 1979; Halpern 1988; Brumelis and Carleton 

1989). 

Species of the boreal forest have evolved in the presence of fire 

(Heinselman 1973a). Many species have the ability to exist over many 

successional stages by sprouting from underground storage organs. Others 

have evolved to resist the stresses of disturbance either directly with thick bark 

or indirectly through abundant seed stored in the soil (Rowe 1983). Change in 

forest characteristics also involves structural changes as different species 

mature at different rates (Peet and Christensen 1980). Some sites have better 

growing conditions, so plants have the ability to mature more rapidly than on 

sites of lower productivity. As different phases of succession occur over the 

landscape, the area is maintained in a state of dynamic equilibrium (Wright and 

Heinselman 1973). 
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Harvesting and fire directly and indirectly affect the physical, chemical 

and biological environment Changes at microhabitats influence the pattern of 

initial species establishment Therefore, several potential succ::essional 

pathways can occur, a concept known as multiple pathways of succession 

(Cattelino et a/. 1979). 

In this chapter different revegetation patterns and trends in species 

composition and diversity among disturbance types are explored. Divergence 

in recovery patterns among sites suggests that species are responding to 

ecological conditions created by the disturbance types. In this study, 

vegetation was classified by regeneration strategy and shade tolerance using 

the vital attributes system (Noble and Slatyer 1980). The concepts of 

regeneration niche (Grubb 1977) and multi-path succession (Cattelino eta/. 

1979) are explored in relation to the results. Understanding establishment 

patterns of the initial species composition may give some indication of the 

productivity of the site and the successional pathway that the plant community 

will follow. 

2.2 LITERATURE REVIEW 

2 2 1 Charactedstjcs of fire-adapted species 

Many survival strategies of boreal forest species are found in plants 

living in environments where other forms of stress, such as drought and 
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herbivory, exist (Rowe 1983). Most boreal species are capable of more than 

one means of reproduction, sprouting vegetatively in mature communities and 

germinating from abundant seed when resources are liberated (Rowe 1983). 

Some plants also have a relatively large degree of phenotypic plasticity that 

allows them to adjust physiologically to a range of environmental conditions 

(Sultan 1987), from the harsh post-fire setting to nutrient poor mature forest. 

To ensure continued existence at a site, species must strike a balance 

between tolerating the present conditions while ensuring the ability to respond 

to a changing future environment (Pickett 1976). 

Noble and Slatyer (1980) developed a method of classifying species 

according to: 1) their method of arrival or persistt;nce; 2) their ability to 

establish and grow to maturity; and 3) the time it takes to reach reproductive 

maturity (Table 2.1). Since many boreal species have more than one 

reproductive method, they can fall into more than one category. 

Rowe (1983) has further classified boreal species using their vital 

atbibutes to describe how species react to fire using the following terms: 

Invaders, Evaders, Resisters, Endurers and Avoiders. Invaders (01 species, 

Table 2.1) produce abundant wind-dispersed seed and are short-lived. 

Epilobium angustifolium and Betula papyifera are examples; once established 

they flower profusely and/or spread vegetatively (Dymess 1973; Oswald and 

Brown 1993). 
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Table 2.1 Classification of VItal Attributes (modified from Noble and Slatyer 
1980) 
1. Mode of regeneration and reproduction - first vital process. 

Vegetative-based: 
V - able to resprout if burned in the juvenile stage 
W- able to resist fire in the adult stage and to continue extension 

growth after it (fire kills juveniles) 

Diss8minule-based: 
D - species with highly dispersed propagules 
S - species store long-lived propagules in the soil 
C - species store propagules in the canopy 

2. Communal relationships-second vital process 

T - tolerant species that can establish immediately after a fire and can 
persist indefinitely thereafter without further perturbations 

R - tolerant species that cannot establish immediately after fire but 
must wait until some requirement has been met (e.g. for shade) 

I - intolerant species that can only establish immediately after a fire. 
Rapid growth pioneers, they tend to die out without 
recurrent disturbance. 

3. Time scale of critical life history events - third vital process 
Measured from time zero (most recent fire) and plotted using the 
following symbols on a linear time axis: 

p - time at which propagules arrive on bumed site 
m- time at which reproductive maturity reached, production of 

propagules 
I - time at which species is lost from community by senescence 
e - time at which propagules are lost from stored sources; species is 

locally extinct 
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Evaders (SI, Cl, and ST species) use long-lived seed stored in the soil 

or the canopy to regenerate. Short-lived species deposit a .. one-shof seed 

source on the charred surface that will remain dormant until the next 

disturbance (Rowe 1983). Geranium bicknellii (Schimmel and Granstrom 

1993) and Aralia hispida are short-lived Evader species. Prunus pensylvanica 

is a species that is semi-tolerant to shade and will live for a longer period of 

time (Marks 1974). Pinus banksiana is an example of a Cl species. 

Resisters (WI species) have thick, protective bark that allows the 

species, usually a tree, to survive a fire. Pinus strobus is a species that uses 

this strategy. 

Endurers (VI and VT species) have reproductive organs below the soil 

surface which are protected from above-ground disturbance (e.g. fire or 

harvesting). Although above-ground tissue may be removed by disturbance, 

underground buds will sprout depending on the depth of disturbance. Two-

thirds to three-quarters of species found in northern forests and tundra use 

vegetative means of reproduction, so they make an important contribution to 

the plant community (Rowe 1983). Examples include Populus tremuloides, 

(shade intolerant), Comus canadensis and Pleridium aquilinum (semi-tolerant 

to shade-tolerant). 

Avoiders (DT and DR species) are late successional species that 

occupy unburned areas. They require a moist or shady environment and are 
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susceptible to fire damage but can reestablish from unburned islands (Rowe 

1983}. Abies balsamea and Unnaea borealis are Avoiders. 

2 2 2 DiversitY 

Diversity is an attribute of a community that describes both the number 

of species (richness) and their relative abundance (evenness) (Shafi and 

Yarranton 1973). A community that has a larger number of species but is 

dominated by one or two species is not as diverse as a community that has 

fewer species but all at a similar level of abundance. Alone, diversity indices 

are rather ambiguous but they are useful when comparing plant communities 

in different areas or over time. 

Maintenance of higher diversity is usually associated with periodic 

disturbance (Connell 1978; Denslow 1980). Species likely co-exist because of 

resources liberated by disturbance. rather than because they have evolved 

together (Bratton 1976). In a black spruce site in northem Quebec, Morneau 

and Payette (1989) found that species diversity increased to a maximum at 23 

years and declined to its lowest value at 250 years. After fire in black spruce 

sites in northeastern Ontario, Shafi and Yarranton (1973) found high diversity 

values for 4-11 years followed by a long decline. Diversity in northern 

ecosystems depends on scale and pattern of disturbance. Within-stand 

diversity may be low, but fire patterns over the landscape create between-site 
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diversity and a spatial mosaic of community types and ages (Shafi and 

Yarranton 1973). 

Disturbance charaderistics such as size, frequency (Miller 1982) and 

intensity (or severity when describing fire) (Malanson 1987) influence the level 

of diversity found in post-disturbance communities. The intermediate 

disturbance hypothesis suggests that species of different regeneration 

strategies should be able to coexist if a disturbance occurs in the middle range 

of size, frequency and severity gradients (Malanson 1987). 

2 2.3 Regeneration Njche and Multiple Successional PathwaY$ 

The regeneration niche encompasses all biotic and abiotic fadors 

influencing the emergent seedling or sprout and its immediate environment. 

Such fadors can include light, moisture, physical and chemical soil properties, 

type of surrounding vegetation and litter, exposure, competition and probability 

of predation (Grubb 19n; Collins and Good 1987; Farmer 1996). Since, 

unlike animals, plants require the same essential resources, Grubb (1977) 

suggests that it is the heterogenous charader of the environment that 

maintains species richness and that species diversity is more related to a 

species' regeneration requirements than the habitat niche of adults. 

After a disturbance, a community has the potential to follow a variety of 

successional paths depending on pre-disturbance species composition, 
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disturbance characteristics, different responses of the vegetation and the 

heterogeneity of the post-disturbance environment (Halpern 1988). 

Generally, annual and early successional species have similar 

responses to a broad range of environmental conditions and this tolerance 

narrows with later successional species (Bazzaz 1991). E. angustifolium, 

Calamagrostis canadensis (Landhausser and Leiffers 1994) and Polygonium 

convolvulus can germinate and become dominant over a range of soil, 

moisture and nutrient conditions if the site is competition free. Early 

successional species are often able to respond to changing conditions by 

adjusting morphologically (Sultan 1987; Bazzaz 1991 ). 

2.3 METHODS 

2 3 1 Data Collection 

Within three weeks of the wildfire (site and disturbance description are 

given in section 1.2 and Appendix B), plots were chosen subjectively to 

represent average conditions for each of the disturbance types. Fuel sample 

plots had been established before the fire to characterize the fuel complex 

(amount, size, distribution, depth of duff). Fuels data were recollected after the 

fire on the same plots and calculations of fuel consumption and duff reduction 

were made using the Canadian Forest Fire Behaviour Prediction System (Fire 

Danger Group 1991) . Results are summarized in Appendix B, Table 8.4. All 
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Prescribed-bum and Rebum vegetation blocks were established in association 

with fuel sample plots so pre-/ post-fire fuel and duff conditions could be 

quantified and related to vegetation response. 

A 10 x 10 m plot was established on which diameter at breast height 

(DBH) and condition of trees greater than 50 em in height were recorded. 

Within the 10 x 10 m plot, four 2 x 2 m shrub plots and five 1 x 1 m herb plots 

were randomly located (Figure 2.1 ). Percent cover of shrubs and trees less 

than 50 em in height and herbs was recorded. Percent cover observations 

were recorded during the third week of June, July and August 1995. 

2.3 2 pata Analysis 

Ordination analysis describes species assemblages as a continuous 

arrangement over a gradient Direct ordination uses both species and 

environmental data to arrange samples along the ordination axis (ter Braak 

1994). In this study, disturbance type was the environmental variable and herb 

or shrub abundance data were the species variable. Canonical 

correspondence analysis (CCA; ter Braak 1981) was used for ordination 

analysis. CCA arranges points in ordination space so as to maximize the 

dispersion of species scores along the first axis, while constraining species 

scores to be maximally correlated with the supplied environmental variables. 

The second and succeeding axes provide other linear combinations which 
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TREES: ONE 10m X 10m PLOT 
1m X 1m 

D SHRUBS : FOUR 2 m X 2 m PLOTS 

HERBS : FIVE 1 m X 1 m PLOTS 
2m X 2m 

10m X 10 m 

Figure 2.1. Vegetation plot layout. Herb and Shrub plots were randomly placed 
within the Tree plot. 
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maximally disperse species scores but are also uncorrelated with previous 

axes (ter Braak 1987). An eigenvalue is associated with each axis that 

identifies the percent variance explained by the axis. In the ordination 

diagram, similarities or difference among sample plots can be interpreted by 

the distance among the points or direction across the diagram (ter Braak 

1994). All ordination analyses were carried out with the program CANOCO 

(CANOnical Community Ordination) (ter Braak 1990). 

Shrub data were analyzed for the third collection period, which was 

taken to represent the sum of vegetation recovery after the growing season. 

Species data were transformed to 1+(1og abundance) to reduce the influence 

of the most abundant species. Species with a •Fif' > 15% were identified and 

included in the ordination diagram. •Fir' expresses the proportion of variance 

in species abundance accounted for in the ordination. 

Herb data were analyzed using the three sampling periods. Connecting 

temporally related vegetation blocks in the ordination diagram indicated how 

species composition changed over the growing season. Halpern (1988) used 

a similar method to display successional trends over a 21 year period. 

Distance and direction of the trajectories in the ordination field creates a visual 

representation and quantifies the divergence of plant communities. 

Differences in relative abundance of species among disturbance types 

were tested for significance using a Kruskai-Wallis test, which is a 
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nonparametric alternative to a one-way ANOVA. This test assumes the 

populations have equal means and variance but are not necessarily from a 

normal population (Norusis 1994b). The Mann-Whitney U test was also used 

as a pair-wise test to determine whether population means for the two groups 

are the same. Combined data values are ranked for two groups from which the 

average rank is derived (Norusis 1994b ). A Bonferroni correction was used 

which adjusts the observed significance level by dividing it by the number of 

comparisons being made. In this case, a comparison of 5 disturbance types 

yields a total of 10 comparisons. Therefore p= 0.05/10 =0.005 for a species 

abundance to be significant at 0.051evel (Narusis 1994b). Herb and shrub 

species were also classified by vital attributes used by Noble and Slatyer 

(1980) (Table 2.1) and related to disturbance type. 

Plant species diversity was calculated for herb and shrub strata using 

Shannon's index, H (Ludwig and Reynolds 1988). This index combines 

information on the number of species and their relative abundance. H' will 

equal zero if there is a single species in the sample; H' is greatest when all 

species have equal abundance. H is defined as: 

H = - 'fpi loge P11 

where p1 corresponds to the cover of species 1 as a proportion of the total cover 

among the n species. 
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The use of Shannon Index assumes that diversity of a natural system 

can be measured in a similar manner as information in a code or message 

(Magurran 1988). The index measures the average degree of 'uncertainty' in 

predicting to which species an individual will belong when chosen randomly 

from a collection of individuals. As the number of species increases and their 

distribution becomes even the average uncertainty will increase (Ludwig and 

Reynolds 1988). 

Hill's E5 index (Ludwig and Reynolds 1988) was used to test species 

evenness among disturbance types. This index is relatively unaffected by 

species richness. Evenness approaches zero as a species becomes more 

independent, and is defined as: 

E=(1DJ-1 = ~ 
eH'-1 N1-1 

where N2 (1/A.) is the number of very abundant species and N1 (eH') is the 

number of abundant Shannon's index was calculated using Biological Tools 

0.11 for Microsoft Excel (Hanks 1995). 

Difference in species diversity among disturbance type was tested for 

significance using a Mann-Whitney U test with a Bonferroni correction. Species 

richness and evenness values are also included and tested using ANOV A. 
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2.4 RESULTS AND DISCUSSION 

2.4 1 Initial Species Composition and thejr VItal attributes 

An adequate number of samples were taken for the herb and shrub 

data as indicated by species/sample curves (Appendix C Table C.1. and C.2.). 

Curves leveled between 9 (Wildfire) and 19 (Rebum) samples for herbs and 6 

(Harvested) and 13 (ControO samples for shrubs. 

A complete summary of species composition and their vital attributes by 

disturbance type is shown in Table 2.2 (herbs) and 2.3 (shrubs). Due to the 

distribution pattern of the vegetations early recovery and the modest sampling 

size, abundance of species is not significantly different among disturbance 

types but trends are evident Species with significantly greater cover on 

Control sites were feather moss (Pieurozium schreberi, Ptilium crista-

castrensis and Hylocomium splendens), Dicranum spp., Abies balsamea, Acer 

spicatum and Alnus crisps. These species can further be classified as 

Avoiders (VT) and Endurers (DT/DR) (Rowe 1983) and were common on 

mature sites studied by Dymess (1973), Ohmann and Grigal (1979) and 

Johnston and Elliott (1996). 

Harvested and Wildfire sites hosted a combination of shade-tolerant, 

vegetative, residual species (Endurers) and disturbance, seed species 

(Evaders and Invaders) without a strong dominance by any one species, 

resulting in higher diversity. Although species in these two disturbance types 
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Table 2.2. Relative abundance and VHal attributes (Table 2.1.) of herbs among disturbance types. Cover values 
with dissimilar letters represent significantly different species cover among disturbance types (p<0.05). Some vital 
attributes were assigned with reference to Helnselman (1981). 

SPECIES CONTROL HARVEST PRESCRIBED REBURN WILDFIRE VITAL 
-BURN ATIRIBUTE 

Aralia hlsplda 0 0 <1 <1 <1 Sl 
Aralia nudlcaulls 3 <1 <1 0 <1 VT 
Aster mactophyllus 0 3 <1 0 0 VT 
Camspp. 0 3 <1 3 3 01 
Clinton/a borealis 1 <1 <1 <1 3 VT 
Comus canadensis 10 3 3 3 3 VT 
Coptls tdfolla 3 <1 <1 <1 0 VT 
Cotydalls 0 <1 0 3 1 Sl 
sempeTVIrens 
Dlcranum spp. 1 (a) <1 (a) 0 (b) 0 (b) 0 (b) DR 
Eplloblum 0 0 6 <1 0 Vl/01 
angustlfollum 
EpHoblum 0 <1 0 <1 0 Dl 
leptophyllum 
Gaultheria hlspldula <1 0 0 0 0 VT 
Geranium blclcnel/11 0 (a) <1 (ab) <1 (ab) 3 (b) <1 (ab) Sl 

~ 
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Table 2.2. (Continued) Relative abundance and Vital attributes of herb species among disturbance types. 

SPECIES CONTROL HARVEST PRESCRIBED REB URN WILDFIRE VITAL I 

-BURN ATTRIBUTE: 
Goodyearatepens <1 0 0 0 0 VR 
Hylocomlum 
spendens, 81 (a) 1 (ab) 0 (b) 0 (b) 0 (b) DR 
P/eurozlum 
schteberl & PtHa 

I 

ct#sta-castrensls 
Unnaea borealis 5 3 0 <1 <1 VT 
Lycopodium 0 0 0 0 <1 VT ~ 
annottnum 
Malanthemum 4 1 <1 1 <1 VT 
canadense 
Polygonum 0 (a) 8 (b) 21 (b) 8 (b) 1 (b) Sl 

convolvulus 
Rubus pubescens 0 0 0 <1 4 Sl 

Streptopus roseus <1 <1 <1 <1 0 VT 
Trlenta/ls botealls 1 3 <1 <1 <1 VT 
VIola spp. 0 <1 0 0 <1 ST 

---
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Table 2.3. Relative abundance and Vital attributes of shrubs among disturbance types. Cover values with 
dissimilar letters are significantly different among disturbance types (p<0.05). Some vital attributes were assigned 
with reference to Heinselman (1981). 

SPECIES CONTRO HARVEST PRESCRIBE REBURN WILDFIRE VITAL 
L D-BURN ATIRIBUTE 

Ables balsamea 4 (a) 0 (b) 0 (b) 0 (b) 0 (b) VT 
Acer spicatum 11 (a) 4 (a) 0 (b) 0 (b) <1 (ab) DT 
Alnus crlspa 2 0 2 0 0 VT 
Betula papyrlfera <1 (a) 3 (b) 1 (b) 1 (a) 3 (b) 01/VI 
DlervHia /on/cera 0 2 0 1 0 Sl 
Ledum groenland/cum <1 0 0 0 0 VI 
PtUnuspens~an/ca 0 (a) 2 (b) 3 (b) 4 (b) 3 (b) Sl 
Populus tremuloldes 0 (a) o (a) <1 (a) 16 (b) 0 (a) VI 
Rlbesspp. 0 <1 0 0 0 ST 
Rosa ac/cularls <1 0 <1 0 <1 VI 
Rubus ldaeus 1 10 5 15 5 VI/51 
Sorbus amerfcanus 2 2 <1 0 0 ST 
SBI/x spp. 0 <1 1 <1 0 VI/SI 
Vacc/nlum angustifol/um 0 <1 0 <1 0 VI 
Vacclnlum myrti/loldes 1 3 1 1 <1 VI 

-~~-- -~-- -- ------~~- -

~ 
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show similar regeneration characteristics, the composition may have resulted 

from different causes. The wildfire occurred early in the burning season and 

the duff moisture code (DMC) was greater than that in areas that had been 

both harvested and burned (see Appendix B Table 8.2.). A moist organic layer 

would have reduced the severity of the fire and protected rhizomes. Higher 

variability and larger areas of low duff consumption would have decreased the 

dominance by seed species. Species reproducing by seed would have to 

compete against vegetatively reproducing species and those stimulated by a 

heat pulse, like G. bicknellii, may not have been able to germinate as 

successfully under these wildfire conditions. In addition, Wildfire sites were 

not recently disturbed before the fire so E. angustifolium and R. idaeus would 

not have been present to reproduce vegetatively. Harvested sites have 

exposed mineral soil and disturbance species such as P. pensy/vanica and P. 

convolvulus, but these species did not dominate the site. Harvested sites did, 

however, have significantly higher number of B. papyrifera seedlings. 

Prescribed-bum and Reburn sites were dominated by species that are 

shade-intolerant and reproduce by seed (Endurers and Invaders). Typical post-

fire species were well represented on bum plots. Abundance of E. 

angustifolium was higher on Prescribed-bum and Rebum plots and cover of G. 

bicknellii was higher on Rebum. These species are known for their dispersal 

or seed banking abilities (Archibald 1980; Heinselman 1980; Schimmel and 
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Granstrom 1993), and are able to dominate sites that are severely burned. In 

this case, it is likely that E. angustifo/ium became established after harvesting 

and rapidly reproduced vegetatively on Prescribed-bum sites. Observations 

during the seed banking portion of this study (Chapter 3) confirmed that E. 

angustifolium rhizomes were present in the soil collected in June but seed was 

not present Halpern (1988) also found that post-logging establishment of E. 

angustifolium influenced post-fire abundance. Rubus idaeus was abundant on 

all disturbed sites. R. idaeus is a seed-banker but it also likely established 

after harvesting and sprouted vegetatively after the fire. 

Some Endurers (VT) were also present but at a lower relative 

abundance, and the heat and drought of post-fire conditions caused their cover 

to decline. The fuel consumption data (Appendix B Table 8.4.), showed that a 

larger percent of duff was consumed in Rebum plots. Greater fire severity on 

these sites may have volatilized a larger portion of nutrients and created drier, 

hotter growing conditions. Schimmel and Granstrom (1993) found that post-

fire mortality was likely to be less severe if the canopy or dead trees persisted 

(e.g. wildfire sites in this study). Thus, aHhough a variety of species occurred 

on Rebumed plots, none was able to dominate. Sites that experienced !il 

combination of harvesting and fire experienced the greatest degree of soil 

disturbance, which in tum, caused the greatest change in species composition. 
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Individuals of most species were found on sites of all disturbance types, 

including the Control. Shafi and Yarranton (1973), Brumelis and Carleton 

(1989), Hughes and Fahey (1991) and Mou eta/. (1993) all noted that species 

composition was related to the heterogeneity of pre-disturbance vegetation 

and that the presence of vegetative reproduction allowed for in situ plant 

regeneration. 

2 4 3 DiversitY 

In the herb stratum, diversity was highest on Harvested, Wildfire and 

Rebum plots (Table 2.4); only Harvested and Prescribed-bum plots differed 

significantly {p<0.05). Species were more evenly distributed on the Rebumed 

and Wildfire plots than on Control and Prescribed-bum plots where moss or E. 

angustifolium and P. convovu/us dominated. Richness was significantly less 

(p<0.05) on Prescribed-bum and Rebum sites. 

In the shrub stratum, Harvested plots again displayed the greatest 

diversity and had significantly higher species richness. Evenness values were 

not significantly different among the various treatments. 

Johnston and Elliott (1996) also found that diversity was greatest on 

harvested sites compared to burned and control areas. Five years after 

disturbance, mean Shannon's H' was 2. 7 on the harvested site, 1.9 on wildfire 

sites, 1. 7 on the burned cutover sites and 1.2 on the undisturbed . They 
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Table 2.4. Species diversity (Shannon's H'), evenness, and richness 
compared among disturbance types. Values in a row followed by dissimilar 
letters are significantly different (pair-wise Mann-Whitney U test with 
Bonferonni correction; p< 0.05). 

HERBS CONTROL HARVEST PRESCRIBED- REB URN WILDFIRE 
BURN 

Species 0.9 1.3 0.8 1.1 1.1 
Diversity (±0.5) (±0.5) (±0.4) (±0.4) (±0.6) 

(ab) (a) (b) (ab) (ab) 
Evenness 0.5 0.7 0.6 0.8 0.8 

(±0.3) (±0.2) (±0.3) (±0.2) (±0.2) 
Richness 5.7 6.4 3.9 4.2 5.0 

(±2.2) (±2.7) (±1.5) (±1.6) (±2.7) 
(a) (a) (b) (b) (b) 

SHRUBS 

Species 0.5 1.3 0.5 0.4 0.5 
Diversity (±0.4) (±0.2) (±0.5) (±0.4) (±0.4) 

(a) (b) (a) (a) (a) 
Evenness 0.8 0.8 0.9 0.8 0.8 

(±0.2) (±0.1) (±0.1) (±0.3) (±0.2) 
Richness 1.9 4.9 2.5 2.3 2.1 

(±1.1) (±0.9) (±1.5) (±1.3) (±1.0) 
(a) (b) (a) (a) (a) 
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hypothesized that harvesting created environmental conditions to which 

species were not adapted, and therefore, no single species could dominate the 

plant community. In contrast. on burned sites, E. angustifolium and 

Po/ytrichum juniperinum rapidly sequestered resources not found on harvested 

sites and dominated the vegetation (Johnston and Elliott 1996). 

2.4.4 Successional Pathways 

Knowledge of vital attributes helps identify how species are able to 

survive a disturbance and suggests the conditions under which the plant is 

more likely to regenerate. This infonnation can be used to predict potential 

successional pathways that a community will follow. For example, E. 

angustifolium likely became established from seed after harvesting and 

reproduced vegetatively on Prescribed-bum sites. After flowering and 

dispersing its seed during the 1995 growing season, E. angustifolium will likely 

dominate many bumed communities in the 1996 growing season. 

Changes in species composition over time could be a reflection of how 

species are adjusting in response to their regeneration niche. Figure 2.2 

shows changes in herb species composition for the four vegetation blocks from 

each disturbance type over the growing season. Axis 1 accounts for 60% of 

the variance in overall species-environment relationship and Axis 2 expresses 

an additional12%. Axis 1 represents a soil disturbance gradient from Control 
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on the left to Harvested and Wildfire blocks in the centre and Prescribed-bum 

and Rebumed blocks on the right. The Inter-set correlation of environmental 

variables with species axis is shown in Table 2.5. The correlation also 

identifies which disturbance type is best explained by each axis (ter Braak, 

1987). Control blocks have a strong negative correlation with axis 1 that 

represents· the separation of undisturbed and disturbed vegetation from the 

disturbance blocks. The second axis represents the primary dimension of 

variability between the three burned disturbance types. 

Within each disturbance treatment there is one vegetation plot with a 

slightly dissimilar species composition. For example, a Harvested block (H1) 

happened to have some residual moss so it is found with the Control blocks. 

Over the growing season the moss dried and declined and E. angustifolium 

expanded its cover, moving this block's trajectory toward the right 

Flinn and Wein (1988) found that most species show some regrowth in 

the first month. In the first three weeks, many Harvested and some Wildfire 

blocks are situated near the origin and are associated with vegetative species 

like C. canadensis, T. borealis and C. borealis. Prescribed-bum blocks were 

associated with E. angustifolium and P. convolvulus and Rebum blocks by G. 

bicknellii and C. sempervirens. 

As the growing season progressed, movement of blocks to the right 

seems to be influenced by the increasing cover of E. angustifolium and P. 
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Table 2.5. Inter set correlations of environmental variables with species axes among the four vegetation 
blocks within each disturbance type. C, control, H, Harvest, P, Prescribed-burn, R, Raburn and W, Wildfire. 
Plots where no vegetation was present during the first sampling period are identified by 'no veg'. 

r-· 
PLOT JUNE 

AXIS 1 AXIS 2 -
C1 -.16 .26 
C2 -.18 .82 
C3 -.19 .18 
C4 -.14 .06 
H1 -.10 .71 
H2 -.20 -.98 
H3 .15 -.13 
H4 .12 -.93 
P1 .20 .14 
P2 .58 .23 
P3 .41 -.05 
P4 -.10 -.51 
R1 noveg noveg 
R2 .30 -.51 
R3 noveg noveg 
R4 .47 -.60 
W1 -.04 -.23 
W2 -.06 -.78 
W3 .03 -.34 
W4 .30 -.32 

JULY 

AXIS 1 AXIS 2 

-.97 .78 
.31 -.50 
.30 -.83 

-.02 -.93 
.36 .30 
.10 .72 
.55 .23 

-.07 -.74 
.86 .36 
.84 -.18 
.14 -.71 
.88 -.19 

-.04 -.23 
.22 -.13 
.56 -.36 
.87 -.12 

AUGUST 

AXIS 1 AXIS 2 -·--··-------·----

-.63 
.10 
.36 
.18 
.37 
.16 
.11 
.06 
.18 
.19 
.20 
.14 

-.43 
.88 
.95 
.13 

.12 

.23 
-.10 
-.73 
.31 
.11 
.74 

-.60 
.16 

-.23 
-.10 
-.90 
.00 

-.17 
-.11 
-.24 

~ 
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convolvulus to the upper right, or G. bickneflii and C. sempervirens to the lower 

right. Sites that were both harvested and burned had initial species 

compositions that were the most different and trajectories that moved the 

farthest away from their original composition (Control). The exception, a 

Wildfire block 0N1) produced very little vegetation but species that did appear 

were vegetatively regenerated, e.g. L. borealis which was strongly associated 

with Control blocks. 

In a similar analysis involving harvesting, burning and both disturbances 

over a 21 year period, Halpern {1988) found that the direction and magnitude 

of the original trajectory was related to soil disturbance. Trajectories reflected 

changes in dominance by annuals and perennials to transient and persistent 

woody vegetation. Convergence of trajectories occurred with a gradual decline 

in invading species and recovery of initial understory composition. Rapid 

change relative to undisturbed sites lasted one to two years after fire, after 

which herb dominance declined (Halpern 1988). 

Figure 2.3 and 2.4 show the spatial relation of individual herb and shrub 

sample plots based on their species composition at the end of the growing 

season. Due to the variability in fire behaviour and the short recovery period, 

sample plots were not restricted to the area around the disturbance centroid. 

However, the spatial relationship of disturbance centroids along Axis 1 does 

suggest a disturbance gradient moving from control plots right to left. The 
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general ordination pattern for herb composition is very similar to that found by 

Johnston and Elliott {1996) five years after plots had experienced harvesting, 

harvesting and fire, and wildfire. Again, Axis 1 had a strong relationship with 

Control plots and expressed 50% {herb) or 42% {shrub) of the variance in 

species-environment relationship (Table 2.6). The linear pattern found in the 

shrub strata in the Control plots {Figure 2.4) correlates with the abundance of 

Abies balsamea that occurred on the plot and with the degree of species 

richness. 

Species placement along the axes may also indicate other 

environmental gradients such as moisture, exposure and nutrient availability. 

Figure 2.5 identifies shrub species associated with the various disturbance 

types {a Fit > 15%). Species such as E. angustifo/ium {Figure 2.2), R. idaeus 

and P. pensy/vanica were associated with areas that experienced fire and are 

known for their ability to rapidly sequester resources {Marks 197 4; 

Landhausser and Ueffers 1994). This topic is explored further in Chapter 4. 

2.5 CONCLUSION 

Characteristics of the different disturbance types initiated and supported 

different species compositions. Many species were found on all sites but their 

relative abundance varied greatly according to disturbance type. Higher 

diversity was found on Harvested and Wildfire sites where plants used seed 
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Table 2.6. Inter-set correlations of environmental variables with species axes for herb and shrub 
ordinations. 

SITES HERBS SHRUBS 

AXIS 1 AXIS2 AXIS 1 AXIS2 

CONTROL .81 -.34 .84 -.15 

HARVEST .22 .09 -.53 .62 

PRESCRIBED-
BURN -.84 .61 ·.17 -.15 

REBURN -.15 -.10 -.34 ·.19 

WILDFIRE -.21 -.36 -.25 -.26 

Eigenvalues .50 .20 .42 .13 
L____ _____ 

l'S 

I 

' 



R
eproduced w

ith perm
ission of the copyright ow

ner.  Further reproduction prohibited w
ithout perm

ission.

1.5 

1 

-;;!. 0.5 ..... 
N 
en 
~ 0 

-0.5 

-1 

tf 

. 

D/erv/1/a • /on/cera 

Betula Acer • 
papytfera spicatum 

• Rubus 
Prunus ldaeus • pensylvanlca 

RD ~ 
Alnus crlsga 

¥tJ 
-1 -0.5 0 0.5 1 1.5 

Axis 1 49% 

Figure 2.5. CCA ordination of shrub data showing relationships between species abundance 
and sites; only species with a Fit> 15% are shown. Site abbreviations as In Figure 2.3. 

~ 

Ables ba/samea 
a C 

2 2.5 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

41 

and vegetative means of re-establishment, but no species were able to 

dominate these environments. 

Vrtal attributes of the regenerating plants indicated the degree of soil 

disturbance. Disturbance severity directly influenced the number of viable 

seed and rhizomes remaining in the soil. Patterns of reproductive strategies 

among different disturbance types are further explored in Chapter 3. 

AHhough the multi-path succession exercise was exploratory in nature, 

it suggests that disturbance types created different regeneration niches that 

directed the communities on different successional pathways. The initial 

species composition may reflect environmental conditions created by the 

different disturbances. Resource availability, will influence species 

composition as some species are better able to dominate nutrient rich sites 

than others (Rodenkirchen 1995). Species establishment, early growth and 

survival represent critical stages in developing community structure and 

character (Shupp 1995). Although mature species composition may be similar, 

important factors such as nutrient availability may remain different over time. 
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CHAPTER Ill 

DISTURBANCE AND REPRODUCTIVE STRATEGIES 

3.1 INTRODUCTION 

The seed and bud bank is an expression of a site's potential species 

composition (Harper 19n). Plants that arise from the propagule bank are 

influenced by both past and present selective pressures (Parker eta/. 1989). 

Species that existed on the site in the past may have deposited seeds that 

remain dormant, and present conditions will determine if the seeds will 

germinate and survive. 

Disturbance type and severity will have a large impact on the number of 

viable propagules remaining in the soil and the ability of emergents to survive 

in the post-disturbance environment. As a product of evolution, different 

species have different reproductive strategies. The purpose of this study was 

to compare the interaction of different disturbance types with the site's 

population of viable propagules. Seed banking patterns were related to 

quantified fire severity measurements and post-disturbance and post-growing 

season seed banks were compared to determine seasonal changes in 

propagule bank characteristics. Projections of future species composition 

were made by examining patterns of regeneration strategies within 

disturbance types. 
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In the boreal forest, seed densities in the soil generally decrease with 

increasing latitude (Johnson 1975; Archibald 1989}, although Fyles (1989} 

found unexpectedly high numbers at 55°N latitude. The number of viable seeds 

in the boreal forest differs according to species composition and age (Table 

3.1 }. Seed numbers decrease from a deciduous to conifer dominated forest 

(Moore and Wein 19n; Isaac 1982; Archibald 1989}. Forests dominated by 

deciduous species will create seed bank conditions that are more hospitable 

(i.e. more nutrients, less acidity}. In a mature, conifer-dominated forest, seed-

bed conditions are often dark, cold, acidic and low in available nutrients, 

leaving seeds susceptible to fungal attack, decomposition and with 

inappropriate conditions for germination. Average seed densities in the soil 

are highly variable and often bear little relation to the number of seedlings that 

actually emerged on a site (Morgan and Neuenschwander 1988), but seed 

bank composition comparisons help to identify potential dominant species. 

Species of early successional plant communities produce large numbers of 

seed capable of wide dispersal (e.g. Epilobium angustifolium) or long 

dormancy periods (e.g. Prunus pensylvanica). In later successional stages, 

species continue to deposit seed but seeds quickly lose viability. Picea glauca 

and P. mariana lose viability after 5 years and 1 0-16 months, respectively 
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Table 3.1. Summary of viable seed bank size and species richness over 
boreal forest region. Adapted and expanded from Hills and Morris (1993). 

Forest type & Age Forest Origin Viable Number Source 
location (years) seed. of 

m-2 Species 

Sweden 16 -clear cut I bum 425 10 Granstrom 
Pinus sylvetris 29 -control 240 7 (1982) 

50 -burned 730 10 
Picea abies 120 -selective felling 675 7 
Pinus-Picea-Populus 169 -fire origin 763 5 
New Brunswick Moore& 
Betula-Fagus >40 -stand replacing 3400 Wein 

fire 91 years (±910) (1977) 
Acer-Fagus >40 ago only small 1950 

fires since then. (±620) 
Acer 5 -clear cut 1390 

(±260) 
Pice a 3 -clear cut 180 

(±80) 
Acer-Abies >40 -stand replacing 1230 

fire 91 years (±260) 
Picea-Pinus >40 ago, only small 580 

fires since then. (±90) 
Picea >40 370 

{± 140) 
Northern Alberta Fyles 
Pinus banksiana 45 -fire origin 1030 7 (1989) 

(± 175) 
Pinus banksiana 85 505 8 

(± 100) 
Picea glauca 80 2650 11 

(±270) 
Pinus-Abies 145 1010 7 

(± 160) 
Northern Archibald 
Saskatchewan (1979) 
Picea-Betula-Populus 0 -burned 426 15 
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Table 3.1. (Continued) Summary of seed bank characteristics and species 
richness. 

Forest type & Age Forest Origin Viable Number Source 
Location (years) seed. of 

m-2 Species 

Northeastern Ahlgren 
Minnesota (1979a)* 
Pinus banksiana 3-13 -burned 9450 11 
Pinus banksiana 30-70 -burned 4815 17 
Pinus resiriosa and P. 200+ -fire origin 2323 11 
strobus 
Abies balsamea 80+ -budworm 7429 15 

damage 
Populus spp. 70 -fire origin 5638 11 
Pinus banksiana 12 -uncut unburn 1016 10 Ahlgren 

12 -cut unburned 2976 10 (1979b) 
12 -cut and burned 2807 7 

Pinus resinosa -unburned 392 8 Ahlgren 
-burned 2428 10 (1979c) 

Northwestern Isaac 
Ontario (1982) 
Mixedwood 55 -harvested 2157 44 
Populusspp 50 1880 41 
Picea mariana 60 1099 
Pinus banksiana 9 -fire origin 350 19 Vermeer 

14 358 19 (1984) 
70 151 12 

Mixedwood 85 1732 16 Collins 
85 1307 10 (1985) 
85 1273 13 

Populus-Pinus-Abies 50 -harvested 843 24 Qiand 
0 -clear cut Scarratt 

surface - 2 em 2430 14 (1996) 
>2cm 4110 16 

org. 0-3 em 2160 11 
min. 4-6cm 990 8 

0 -partial cut 
surface-2 em 1730 13 
>2cm 4210 15 

org. Q-3 em 2110 10 
min. 4-6 em 1120 7 

* Study involved counting seeds and did not use the germination method. 
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(Archibald 1989). Unless a site has recently experienced a good seed year, 

very little conifer seed is found in seed banks (Granstrom 1982; Fyles 1989; 

McGee and Feller 1993; Qi and Scarratt 1996). In later stages, seed input 

decreases and many species reproduce vegetatively (Ahlgren 1979a, b, c ; 

Chambers and MacMahon 1994). As a result, seed bank species composition 

rarely reflects the surrounding mature forest (Archibald 1979; Abrams and 

Dickmann1982; Granstrom 1982;Valbuena and Trabaud 1995; Qi and Scarratt 

1996) and is largely determined by seed longevity (Parker eta/. 1989). 

3.2.2 Seed Dispersal 

Seed dispersal allows a species to colonize new areas, escape 

inhospitable environments often created by parent plants, and reduces sibling 

competition and inbreeding (Harper 1977; Farmer 1996). Several factors 

influence dispersal, including: seed morphology, soil surface characteristics, 

abiotic (e.g. weather) and biotic factors (e.g. animal and bird dispersal). 

Dispersal methods include gravity, wind, water and animals as sources of 

movement. Seeds are generally equipped with wings, plumes, buoyancy 

devices. burrs or nutritional rewards to enhance the success of one of the 

above dispersal methods (Chambers and MacMahon 1994). 

Seeds are not uniformly distributed but form clumped patterns related to 

when and where the mother plant occurred in the forest community or to the 
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distribution of animal caches. Thus, seed distribution patterns in the soil vary 

horizontally, as one moves further from the mother plant, and vertically as the 

organic matter thickens with litter accumulation (Morgan and Neuenschwander 

1988). 

Most boreal tree species release seeds during late fall/ winter. Betula 

papyrifera releases most of its seed between September and late November 

(Marquis 1969),P. glauca disperses between September and January (Ahlgren 

1979a, b), while P. mariana stores mature seed in its canopy until a February 

to June dispersal period (Haavisto 1978). During favourable conditions, some 

trees can release seeds stored in the canopy. Pinus banksiana is an example, 

in which seed release is stimulated by the heat of fire which also creates 

appropriate germination conditions for the seed (Rowe 1983). 

Conifer seeds fall within 60 m of the parent tree in open areas and 

within 30 m in a closed stand, distributed in a J-shaped pattern, skewed to the 

prevailing windward side (Dobbs 1976). For Betula, dispersal is usually 

timited to two times the height of the tree (Marquis 1969). In contrast, E. 

angustifolium, Populus spp. and Salix spp. produce light fluffy seed that can 

travel on the wind up to 300 km (Haeussler eta/. 1990). 

Once a seed has landed on a surface, seed and surface characteristics 

determine the extent of horizontal and vertical movement (secondary seed 

dispersal). Smaller seeds are able to reach greater distances either by wind, 
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moving along the snow crust or percolating through the soil. Seed movement 

within the soil by water is influenced by intensity and amount of precipitation, 

slope, pore size, texture and organic matter content (Moore and Wain 19n; 

Chambers and MacMahon 1994). Soil with more varied microtopography and 

litter will capture more seed but these environments do not necessarily provide 

the best germination conditions (Lamont eta/. 1993; Chambers 1995). 

The first two centimetres of organic matter above the mineral soil 

contains the nighest concentration of seed (Moore and Wain 19n; Granstrom 

1982; Valbuena and Trabaud 1995; Qi and Scarratt 1996 ). Fewer seeds are 

found on the surface since later successional species have low seed input with 

short viability and seeds are susceptible to predation and pathogens or may 

germination. 

3.2.3 Dormancy 

A seed is considered dormant if it will not germinate when subjected to 

appropriate moisture, oxygen and temperature conditions (Murdoch and Ellis 

1992). Dormancy characteristics likely developed to ensure that seeds 

germinate under appropriate conditions. Temperature. moisture, light and 

nutrient conditions indicating that spring has arrived or that a disturbance has 

occurred are important germination cues (Murdoch and Ellis 1992). 
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Since the seeds of most boreal species are dispersed in the fall/ winter, 

they experience a conditional dormancy to ensure they will not germinate 

before winter. Conditional dormancy for conifers and B. papyrifera can be 

broken by longer photoperiods and I or higher temperatures (25-30°C) 

(Bevington 1984 in Farmer 1996). If the seeds of P. mariana (Farmer eta/. 

1983) and Alnus crispa (Farmer eta/. 1985) experience a chilling period, they 

are capable of germinating in the dark at lower temperatures (1 Q-20°C). 

Impermeable seed coats inhibit the imbibition of water and thus 

germination. Marks (197 4) found that removing the endocarp, which is 

impermeable to water and oxygen, increased the germination of P. 

pensylvanica. Endocarps can deteriorate naturally with age, and physical and 

biological weathering. Similar observations have been made for Rubus. 

idaeus (Oieskevich eta/. 1996). Both species are sensitive to temperature 

fluctuations and fertilization. 

Some species disperse seed with an immature embryo and require an 

incubation period. Dormancy of R. stigosus (a subspecies of R. idaeus) seed 

is caused by an acidic, ether-soluble, growth-inhibiting substance. A warm, 

moist stratification and prechilling were found to stimulate germination 

(Jennings 1988). 

Seed longevity is greatest under cool, dry conditions. Cool, moist 

conditions allow natural stratification and increase germination whereas 
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warm, humid conditions increase loss though decomposition and pathogens 

(Baskin and Baskin 1989). 

3.2.4. Bud Banks 

Rhizomes are an important mechanism of recolonization as they 

revegetate rapidly, retain nutrients on the site and prevent erosion by binding 

soil in root systems (Flinn and Wain 1977; Flinn and Pringle 1983). Species 

can coexist by rooting at different soil depths and by having various rooting 

morphology (e.g. fibrous roots, stolons, rhizomes· and tap roots) (Mclean 

1969). Species have different tolerances for temperature and moisture 

according to conditions found at different soil depths (Bazzaz 1991 ). 

3.2.5. Direct effects of Fire 

Seed bank size is determined by fire type, severity and frequency 

(Archibald 1989). A crown fire will not directly affect the seed bank. Although 

the canopy may be consumed, it is the surface and sub-surface fires which will 

have a direct effect on the seed bed. Since sub-surface fuels are usually 

moist. most ground cover will be consumed by smoldering combustion rather 

than the initial flaming combustion (Schimmel and Granstrom 1993). 

Therefore, fire severity, or the depth of burn, is a more accurate measure of 

how fire affects the seed bed than fire intensity (energy released). 
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Heat acts as a selective agent, causing seed scarification or death 

(Morgan and Neuenschwander 1988). Although the size of the seed bank will 

decrease as seeds are consumed by fire (Abrams and Dickmann 1982; 

Ingersoll and Wilson 1990), often more seeds are released following fire than 

on unburned areas (Ahlgren 1979a; Archibald 1989). Fire adapted species 

release seed or break dormancy in response to heat, temperature fluctuations 

and greater nutrient availability. 

Generally, rhizomes can tolerate heat up to 55-59°C and seeds up to 

60-75°C for 10 minute exposures without being killed (Granstrom and 

Schimmel1993). At 60°C, protein coagulates and causes lethal damage to 

plant tissue (Precht eta/. 1973). Moisture content of plant tissue will 

determine a planfs heat tolerance with drier tissue able to withstand higher 

temperatures for longer durations (Schimmel and Granstrom 1993). 

The temperature gradient through the organic layer and into the mineral 

soil is very steep. For example, lethal temperatures were not reached 20-30 

mm under the burned surface and did not rise above sooc below 40 mm 

(Schimmel and Granstrom 1993). Although there is variation in heat tolerance 

among species, the relationship between depth of propagule and fire severity 

is a more decisive factor in determining post-fire species composition 

(Granstrom and Schimmel 1993). Species well represented in early 

successional communities have rooting systems that are protected in the lower 
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organic or upper mineral soil (Flinn and Wein 1977). The location of 

regenerative mechanisms for some boreal species is summarized in Table 3.2. 

Sprouting and suckering in response to heat is determined by 

temperature, duration of exposure, physiological condition, season and degree 

of stored nutrient reserves {Flinn and Pringle 1983). In their study, Flinn and 

Pringle found that many species, such as Vaccinium angustifolia and Comus 

canadensis, produced significantly more shoots when exposed to heat at the 

beginning or end of the growing season. Heat causes stress on the 

cytoplasm, protein coagulation and creates toxic·substances (Flinn and Pringle 

1983). 

Geranium spp. is an example of one of the few species that requires 

heat to trigger germination; virtually no germination will occur with unheated 

seed (Abrams and Dickmann 1982; Granstrom and Schimmel 1993). Its seed 

coat is impermeable to water and seeds have exceptionally low moisture 

content, allowing it to tolerate high temperatures. Germination will 

progressively increase above 40-45°C {1 0 min. exposures), and will occur 

early and completely when exposed to temperatures between 50-80°C. 

Geranium germination was delayed by several days after being exposed to 90 

to 95°C but was nevertheless almost complete (Granstrom and Schimmel 

1993). 
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Table 3.2. Location of propagules for boreal species (s; seed; v, vegetative). 
Summarized from Flinn and Wein (19n). Flinn and Pringle (1983) and Qi and 
Scarratt (1996). 

LITTER LAYER F-H LAYER 

Gaultheria hispidula (v.s). Aralia hispida (s) 

Trientalis borealis (v,s) Diervilla lonicera (s) 

Epilobium angustifolium (s) Rubus idaeus (s) 

Maianthemum canadense Rubus pubesces (s) 

(v.s) 

Coptis trifolia (v.s) 

Betula papyrifera (s) 

Mitella nuda (v.s) 

Fragaria virginiana (v,s) 

Unnaea borealis (v,s) 

MINERAL SOIL 

Aralia nudicaulis (s) 

Lycopodium obscurum (v) 

Vaccinium angustifolium 

(v.s) 

Vaccinium myrtilloides {v.s) 

Comus canadensis {v) 

Pteridium aquilinum (v) 

Carex spp. (s) 

Geranium bicknellii (s) 

Epilobium angustifolium (v) 
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3.2.6. Indirect effects of Fire 

The type of vegetation and the degree of duff consumption will determine 

the depth and chemical content of the ash.Thomas and Wein (1990) found 

that wood ash, especially aspen, reduced and prevented germination, early 

survival and growth of Pinus banksiana seedlings. Wood ash pH ranged from 

10.6 to 12.5 because of the potassium carbonate content (Thomas and Wein 

1990). Although species' responses varied, Henig-Sever eta/. (1996) found 

percent germination declined significantly with increasing pH. Pinus 

halepensis experienced 1 OOo/o germination at a pH between 6-7 but 

germination was reduced by 88o/o at a pH of 10. Toxins and heavy metal 

concentrations, which hinder germination and growth, will eventually leach into 

the soil or off the site. The greatest leaching will occur in the first 3 to 6 months 

and the leaching pattern may last for 1 to 3 years (Thomas and Wein 1994). 

In a germination trial involving Pinus halepensis in various levels of ash, 

Ne'eman eta/. (1993) and Henig-Sever eta/. (1996) found ash levels had a 

negative effect on the germination of all species. Henig-Sever eta/. (1996) 

found a negative effect because of the high osmotic potential of ash 

preventing water uptake by the embryo. Unleached ash is more granular and 

has a lower bulk density than soil. Surface crusting and poor water 

penetration due to hydrophobic layers will cause water stress for seedlings 

(Thomas and Wein 1990). 
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Relative 'safeness' of burned sites depends on the ability to protect 

seedlings from exposure and provide adequate water availability (Lamont eta/. 

1993). The blackened surface has an albedo near zero and low thermal 

conductivity (Kimmins 1987). When air temperatures are at 38°C, surface 

temperatures can reach 73°C (Isaac 1938). Many seedlings will be lost due to 

germination and subsequent death caused by heat and drought conditions 

(Schimmel and Granstrom 1993).Species heat and moisture tolerance, post-

fire precipitation and leaching, and ash characteristics will determine 

germination response. Ne'eman eta/. (1993) suggest that ash accumulation 

results in different seed germination responses and may cause spatial 

patterns of recruitment after fire. As vegetation reestablishes on post-fire sites, 

it will ameliorate some of the extreme conditions. Eventually shading and 

competition for space become more important inhibitory factors (Trabaud 

1988). 

3.2. 7. Harvesting and Propagule banks 

Most harvesting tends to redistribute the forest floor causing vertical 

and horizontal changes in seed location. This, in turn, influences the 

conditions and rate of germination (Mou eta/. 1993). Since the organic layer 

is not removed it can hinder seedling establishment. Local heterogeneity is 

created by the variability of soil disturbance caused by harvesting methods. 
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The use of heavy machinery and intensive harvesting can cause soil crusting 

and compaction which will preclude seed entrapment and inhibit emergence 

(Chambers and MacMahon 1994). 

The removal and redistribution of the organic (litter and humus) layer 

tends to enhance germination and create a high variability in seed distribution 

(Qi and Scarratt 1993). Scarification tends to liberate buried seeds and 

rhizomes in such species as Rubus spp. and P. pensylvanica (Morgan and 

Neuenschwander 1988; Fyles 1989). 

Species composition did not vary significantly between harvested and 

control sites in a boreal mixwood stand (Qi and Scarratt 1996). Several 

species appeared in the seed banks of both sites that did not appear in the 

pre-harvest vegetation(£. angustifolium. Fragaria virginiana. Galium triflorum 

and G. bicknelli1). 

3.2.8. Methodological Considerations 

Two methods are widely used to estimate species composition and 

seed density of the soil seed bank: seeds are separated from the soil, and 

counted and identified (Marquis 1969; Johnson 1975; Ahlgren 1979a; Morgan 

and Neuenschwander 1988); or soil samples are placed in a greenhouse and 

species numbers and identity are estimated by germination. Separating the 

seed from the soil is a good method for documenting variation in seed 
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densities and distributions; however, it is labor intensive and requires a large 

seed library and viability tests (Gross 1990). This method also increased 

variability between sites and the detection of rare species that are not useful in 

comparative studies (Brown 1992). 

The second method will likely underestimate the seed population as not 

all seed will germinate under greenhouse conditions. In addition, errors 

associated with seed dormancy and germination requirements will be made 

and seedlings may die before identification. This method is recommended for 

community level studies when species numbers· are high (Simpson eta/. 1989) 

and provides an estimate of the viable fraction of the seed bank (Brown 1992). 

3.3. METHODS 

3.3. 1 . Data Collection 

Four 1 0 X 10 em propagule bank samples were taken, one from each 

side of the four vegetation blocks found in the five disturbance types described 

in Chapter 2. For each sample, the organic layer was measured for depth and 

removed and 1 0 em of mineral soil was then removed. Each soil layer was 

placed in a separate plastic bag. Samples were immediately transported and 

placed in the greenhouse. 

During the first week of October, another set of samples was collected 

adjacent to the June sampling site using the same procedure. These samples 
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were put in cold storage at 5°C for four months and then placed in the 

greenhouse. 

3.3.2. Germination Procedure 

Moss and green vegetation were carefully removed from Control 

samples. Samples were placed on a layer of peat vermiculite in 6 X 4 em peat 

pots; some samples required more than one pot. Greenhouse temperatures 

were set at 23°C during the day and 18°C at night. Daylight was enhanced by 

florescent light and lasted 16 hours; samples were watered as needed. 

Once germinants were identified according to Morton and Venn (1990), 

they were removed from the soil, taking note whether they originated by seed 

or vegetatively. This study did not include moss, liverworts, lichens or fern 

thallus. Graminoids were mainly sedges but did not produce any flowers so 

were not identified. Other unknowns died before secondary leaves could 

develop. Soil samples were stirred when germinants no longer appeared. 

When no germinants had appeared two weeks after stirring all samples, the 

experiment was terminated. The June seed bank experiment lasted 15 weeks 

and the October experiment concluded after 14 weeks. 
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3.3.3 Data Analysis 

Sample size directly affects the reliability of the study's results (Benoit 

1989). A species-area curve was constructed to determine if the study had an 

adequate sample size (Hutchings 1986). Species composition data were 

summarized by disturbance type, according to organic I mineral soil and 

reproductive strategy. 

Species' relative abundance was compared among disturbance types 

using the Kruskai-Wallis (K-W) test, a non-parametric equivalent of analysis of 

variance. Pair-wise comparisons using the Mann-Whitney U test with a 

Bonferroni correction indicated which treatments differed from one another. 

This was the same method as used for the vegetation data (Chapter 2). 

The K-W test was also used to detect differences in total number of 

germinants among disturbance type, and to determine whether the incidence 

of seed versus vegetative reproduction differed among disturbance type. 

Differences in mean species richness among disturbance type were tested 

using one-way ANOV A and LSD post-hoc test. For all tests, results were 

considered significant at the p<O.OS and all tests described above were carried 

out using SPSS, V .6.1 (Norusis 1993a). 

Species composition of the June propagule bank was compared to that 

of the vegetation present in June using the program CANOCO (CANOnical 

Community Ordination) (ter Braak 1990) to examine differences between 
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potential and actual regeneration. June seed I bud bank data were compared 

with the October data to detect seasonal changes and project species 

composition changes into the next growing season. 

3.4 RESULTS AND DISCUSSION 

Species-sample curves (Appendix E) indicated that enough samples 

were taken within each treatment. In June, curves level off at 5 samples for 

Raburn sites, 1 0 samples for Harvested and Prescribed-burn sites and 14 

samples for Wildfire and Control sites. Recently disturbed soil seemed to 

produce a higher variability in seed distribution. Zasada eta/. (1983) found 

that within a square metre, burn variability created an organic layer that 

ranged between 0 and 20 em, thus creating large micro-scale differences in 

seed bank characteristics. A greater sampling size may have reduced the 

variability of seed numbers from sample to sample but not necessarily 

increase species numbers. 

3.4.1 Post-disturbance (June) Propagule Bank Species Composition 

In Table 3.3., species composition of propagules found in the soil in 

June (immediately after the fires), is summarized according to disturbance 

type, soil horizon (mineral or organic) and species' reproductive strategy (seed 

or vegetative). Table 3.4 summarizes the different life forms represented in the 
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Table 3.3. Summary of species composition by disturbance type, soli horizon, and reproductive strategy (Sd- seed, Vg- vegetative) In 
the June propagule bank. Different letters Indicate species with significantly different (p<O.OS) number of emergents In the propagule 
bank among. disturbance types. 

SPECIES CONTROL HARVEST PRESCRIBED- REBURN WILDFIRE 
BURN 

Mineral Organic Mineral Organic Mineral Organic Mineral Organic Mineral Organic 

~g_yg_§d Vg_ Sd Vg Sd Vg Sd Vg Sd yg Sd Vg Sd Vg_ ~§g_yg_§Q_Yg_ 
Aralia hlsplda 4 1 1 2 
Aralia nud/caulls 1 
Betula papyrifera 10 104 3 a 4 2 . 59 2 b 4 c c 1 3 1 c 
Clinton/a boiHIIs 1 
CopUs frlfolla 14 8 6 9 
Comus canadensis 1 4 2 1 1 
Cof)'clalls sempetVItens 1 
Dlervllla /on/cera 9 17 1 a 1 3 12 1 a 18 3 50 b 22 1 50 b 46 2 74 1 b 
Epllobtum angusf/folum 1 4 2 3 
Getalnlum blcknellll 2 3 3 2 1 1 
Gaulfhena hlspklula 2 1 
Llnnaea boiNI/s 1 
Malanthemum canadense 1 4 16 1 8 
Plceaspp. 2 1 
Polygonum convolvulus 2 1 1 1 
Prunus pensy/Van/ca 1 2 
Rubus ldaeus 6 10 6 1 2 2 7 2 1 1 2 2 1 
Rubus pubescen~ 3 3 2 6 2 2 
Tttenralls bofUIIs 2 
VIola renlfolla 3 1 
Salixspp. 2 
Gramlnolds 31 16 a 11 17 a 2 3 c 15 b 12 15 ab 
Unl<nov.ns 3 1 _L~ 3 ___ 1 2 1 1 2 1 -- _L_J- -- - ·- --- 2 

01 -
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Table 3.4 Percentage of lifeforms represented in the June seed I bud bank among 
disturbance type. 

I 

LIFE FORM CONTROL HARVEST PRESCRIBED REBURN WILDFIRE I 

-BURN ........................................ ........... _ ............. ·········· .................................................................. ····-··-··········-·-·--·······--····-····-·--··-
Trees 43% 43% 6% 0% 3% 

I 

Shrub 19% 19% 71% 73% 65% 

Herb 18% 16% 12% 11% 8% 

Graminoid 17% 18% 5% 14% 14% 

--

~ 
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various seed and bud banks. Control and Harvested sites produced a large 

number of tree seedlings, dominated by 8. papyrifera (99%), while on the 

burned sites 8. papyrifera seed, which was dispersed the previous autumn, 

would have been consumed by the fires. Shrubs dominated burned seed 

banks with over 60% being D. lonicera. 

Other species that differed significantly by disturbance type included R. 

idaeus, and Carex spp. Moore and Wein (19n), Archibald (1979), Fyles 

(1989) and Qi and Scarratt (1996) also found B. papyrifera, Carex spp and R. 

idaeus to be a large component of the seed bank. R. idaeus seed was in 

greater numbers in Control samples than in bum samples, and has been found 

in sites that have not experienced disturbance for 80 or 1 00 years indicating 

long dormancy capabilities (Whitney 1986). There was a lack of R. idaeus 

seed in Harvested and burned soils. R. idaeus is known to respond rapidly to 

disturbance (Oieskevich eta/. 1996), establishing in the first year when 

conditions are favourable (Whitney 1986). Seed on disturbed sites were likely 

lost to germination. Significantly fewer (p<0.05) graminoids were found on 

Prescribed-burn sites and M. canadense was more frequent in Control 

samples than in burned samples, as was the case for most sprouting species. 

Organic soil had over twice as many propagules as mineral soil. The 

mineral soil, composed of very fine sand, probably did not hold seed very well. 

On Reburn sites where the average depth of the organic layer was 3.6 em, 
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68% of the emergents rose from the organic layer. In central Alberta, Fyles 

(1989) estimated that the removal of the organic layer destroyed 47-78 °/o of 

seed banks. 

3.4.2 Comparison of Prooagule bank with Vegetation Data 

Species composition (based on species occurrence) was compared to what 

actually grew after the disturbances (Figure 3.1 ). Species composition of the 

seed and bud banks was more similar among disturbance types than between 

the samples and the vegetation found on the sites, especially between Control 

vegetation and its propagule bank. In the inter-set correlation table (Table 

3.5), the vegetation of the disturbance types (environmental variables) is 

positively correlated with the first axis, especially the ControL This indicates 

that the first axis represents the separation of the vegetation and propagule 

species composition. Eigenvalues indicate that 56°/o of the variance in species 

composition is represented by the first axis and 8°/o by the second axis. 

Species with extended seed longevity, but not a wide dispersal, such as R. 

idaeus, Carex spp. and G. bicknel/ii (Schopmeyer 1974), were found in larger 

numbers in Control soil samples, although they were not found among the 

vegetation. Seeds of these species have been found in undisturbed propagule 

banks in other studies (Fyles 1989; Qi and Scarratt 1996). Tree and shrub 

species characteristic of the mature forest were not represented in the 
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Table 3.5. Inter-set correlations of environmental variables (disturbance types) with species axes for propagule 
and vegetation species composition ordinations. 

DISTURBANCE TYPE VEGETATION PROPAGULE 

AXIS 1 AXIS2 AXIS 1 AXIS2 
CONTROL .56 -.44 -.32 -.14 
HARVEST .44 -.01 -.32 -.24 
PRESCRIBED-BURN .11 .48 -.30 -.09 
REBURN .13 .16 -.20 .03 
WILDFIRE .20 .34 -.27 .19 

Eigenvalues .56 .18 
- -- --- --- -

~ 
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seed bank, especially A. balsamea, Vaccinium spp., Alnus crispa and Acer 

spicatum. In many studies, seed banks represent only about half the taxa 

found on the site (Frank and Safford 1970; Fyles 1989; McGee and Feller 

1993). 

Overall, propagule banks more closely resembled vegetation found on 

disturbed sites than that on the Control sites. Although Archibald (1980) found 

that E. angustifolium was less abundant on lightly burned sites, areas of the 

Prescribed-bum plots were dominated by this species. Post-fire soil samples 

produced little E. angustifolium but those that did emerge were vegetative in 

origin. Rhizomes of E. angus.tifolium are generally found between 2-8 em and 

respond well to heat (Moss 1936; Mclean 1969; Myerscough 1980). 

P. pensylvanica and P. convolvulus characterized the vegetation on the 

disturbance sites but were not well represented in the seed bank, suggesting 

that most viable seed had already germinated on the site. 

Conditions were hot and dry during the summer of 1995 (Appendix B, 

Table 8.1 ), and could have killed emergents during the first growing season 

(Schimmel and Granstrom 1993). Cover values for T. borealis, M. canadense 

and C. canadensis declined over the summer, especially on Harvested and 

Reburn sites. 
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3.4.3 Seasonal Changes in Propagule Bank Characteristics and Soecies 

Comoosition 

A summary of species composition by disturbance type, soil and 

reproductive strategy is shown in Table 3.6. Species composition did not 

change significantly over the season but both seed and rhizome numbers were 

greater in the October propagule bank. 

A comparison of seed bank characteristics between the June and 

October samples is shown in Table 3.7. In June, total seedling emergence 

and species richness decreased with the degree of soil disturbance. Number 

of seedlings decreased significantly (p<0.01) from Control sites to Harvested, 

Prescribed-burn and Reburned sites. In Wildfire sites much of the fuel was in 

the form of standing dead trees. The fire seemed to consume less organic 

soil, which was characterized by moss cover, than harvested and burned sites, 

allowing for a greater propagule survival. Species richness was also 

significantly greater (p<0.01) for Control and Harvest samples than for 

Prescribed-burn and Reburn. Wildfire had significantly greater species 

richness than Raburn samples (p<0.01 ). 

Referring to the literature summary of mixed-wood and Picea forests 

(Table 3.1 ), undisturbed sites and those that were just harvested were found 

to contain between 2428 seeds m -2 with 1 0 species (Ahlgren 1979c) and 350 

seeds m·2 with 19 species (Vermeer 1984). Cut and burned sites ranged from 
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Table 3.6. Species composition by disturbance types, soli horizon and reproductive strategy (Sd- seed or Vg- vegetative) In the October 
propagule bank . Different letters Indicate species with significantly different (p<0.05) number of e~ergents frequencies within the 
propagule bank among disturbance types. 

SPECIES CONTROL HARVEST PRESCRIBED REBURN WILDFIRE 
BURN 

Mineral Organic Mineral Organic Mineral Or~anlc Mineral Organic Mineral Organic 
Sd Vg Sd Vg Sd Vg_ Sd Vg Sd Vg Sd Vg Sd Vg Sd Vg Sd Vg Sd Vg__ 

Aralia hlsplda 1 1 2 1 2 
Aralia nudicaulis 2 1 1 2 
Betula papyrifera 2 68 a 2 36 2ab 3 1 36 ab 13 b 14 1 b 
Clinton/a borealis 2 2 
Coptls trifolia 1 10 3 2 
Comus canadensis 2 5 3 8 4 4 3 4 1 2 2 6 1 3 3 9 2 3 
Cotydalis sampervirens 2 1 2 
Diervi/la lonicera 7 21 2 3 7 5 2 40 1 23 27 a 23 1 89 3 b 
Epilobium angustifolium 6 a 1 160 9b 6 10 497 24c 5 36 2b 4 2 44 9 b 
Epilobium leptophyllum 8 13 3 4 65 3 a 28 2ab 
Gerainlum bick.nellil 1 
Gaultheria hispidula 4 1 1 
Maianthemum canadensa 3 27 3 1 9 3 3 11b 
Polygonum convolvulus 4 
Prunus pensylvanica 1 2 2 3 1 86 
Rubus ldaeus 5 6 13 4 5 13 37 32 12 3 1 3 29 12 16 10 14 6 10 7 
Rubus pubescens 1 2 1 2 8 
Trientalis borealis 5 1 5 
Vaccinium angustifolium 1 1 I 

Viola tenifolia 1 
Graminolds 36 5 a 13 16 a 9 13 a 2 b 21 23 a 
Unknown 1 2 1 1 1 2 1 I 

g, 
\0 
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Table 3. 7. Seed bank characteristics for June and October samples: seed densities, species richness, ratio 
of seed to vegetative reproduction and ratio of seed in organic to mineral soil. Values with dissimilar letters 
within a column are significantly different (p<0.05). 

JUNE OCTOBER 

DISTURBANCE Seeds # Seed: Org: Seeds # Seed: Org: 
m·2 Species Veg Min m·2 Species Veg Min 

1 350 15 80:20 76:24 1 075 11 73:27 74:26 
CONTROL (± 11 05) (a) (± 857) (ab) 

(a) (a) 
769 14 80:20 80:20 1 906 15 76:24 88:12 

HARVEST (± 470) (a) (±3 720) (a) 
(b) (ab) 
556 11 84:16 69:31 4 33~ 14 91:9 92:8 

PRESCRIBED- (± 480) (b) (±5 481) (a) I 

I 

BURN (b) (b) 
569 6 95:5 68:32 944 10 83:17 58:32 

REBURN (± 729) (c) (± 978) (b) 
(b) (a) 

1 100 11 87:13 62:38 1 831 17 78:22 75:25 
WILDFIRE (± 1 605) (b) (± 680) (a) 

(ab) (ab) 
------

a 
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425 seeds m -2 with 1 0 species (Granstorm 1982) to 2807 seeds m "2 with 7 

species (Ahlgren 1979b), but these sites were over 12 years old. The 

variability of seed numbers within the treatments is higher than in other studies 

reported (Table 3.1 ), indicating that the early age and the affect of soil 

disturbance may increases the clumped and uneven distribution of the seed. 

In October, Prescribed-bum sites produced 4337 seeds m·2 (± 5481), 

this was significantly greater (p<0.05) than Control (1075 seeds m·2 ± 859) and 

Rebum (944 m·2 ± 978). The large increase and associated variability can be 

attributed to the wind dispersal of E. angustifolium seed. Species richness 

also increased so that the only significant difference (p<0.05) was between 

Harvested and Rebum sites. 

In June, the importance of seed as a reproductive strategy increased 

slightly with increased soil disturbance, ranging from 80°/o for the Control and 

Harvested samples to 95o/o for Rebumed samples. Schimmel and Granstrom 

(1993) noted that severely burned sites were dominated by seed species, 

originating from the seed bank or dispersal to the site. The Control had 

significantly more vegetative growth than Reburned soil (p<O.OS). 

In October, the greater importance of E. angustifolium is reflected in the 

greater percent of the herb lifeform shown in Table 3.8. It is possible to find 

small numbers of E. angustifolium seed in the spring (Myerscough 1980) or 

directly after a fire (Archibald 1980) but generally viable seed is only found 
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Table 3.8 Percentage of lifeforms represented in the October seed I bud bank among 
disturbance types. 

LIFE FORM CONTROL HARVEST PRESCRIBED REBURN WILDFIRE 
-BURN ·--. -···--· -- ----·-·-· ·-- ·--------

Trees 29% 10% 5% 9% 4% 

Shrub 14% 26% 9% 66% 36% 

Herb 31% 57% 83% 26% 38% 

Graminoid 17% 7% 3% 1% 12% 
... ------ --

;j 
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between July and March. Since E. angustifolium is capable of producing 

76 000 seeds I plant (Myerscough 1980), and the species was well represented 

on the site, it is most likely that the seed was deposited on the site and indicates 

seasonal input. Granstom (1986) identified E. angustifolium and Betula spp. as 

the only species that were quantitatively important in seed rain during the first 

season. Archibald (1980) also found that seed from the herb stratum was high 

(63.4o/o of the vegetation) and was dominated by E. angustifolium (63°/o), and 

that B. papyrifera represented 80% of the tree life form during the first growing 

season after fire. Graminoid and shrub numbers did not change greatly over the 

season but R. idaeus emergents demonstrated more vegetative growth than 

seed. 

Vegetative emergence was significantly higher (p<0.05) in Control, 

Harvested and Prescribed-bum soils than Reburn soils and increased 

significantly {p< 0.01) from June to October samples. Flinn and Pringle (1983) 

and Zasada eta/. (1994) found that species tolerance to heat and disturbance 

varied over different seasons, being lowest during the growing season and 

highest when reserves are stored underground. Therefore, it is likely that 

rhizomes included in the October sample have higher viability than those that 

were collected in June after the fire. 
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3.4.4 Soecies' resoonse to Fire Severity 

Species composition between mineral and organic soils differed 

significantly (p<O.OS), with a higher frequency of D.lonicera, Coptis trifolia, B. 

papyrifera and A. hispida in the organic horizon. Therefore the consumption of 

the organic layer by fire will influence the initial species composition and 

species' densities. 

The germination of some species seems to be greater on burned sites 

than on unburned sites and correlates with the depth of the organic layer (Table 

1.2). This could indicate a heat interaction or the location of the propagules in 

the soil. Both rhizome and seed species, such as C. canadensis, D. lonicera 

and R. idaeus, seem to correlate with greater fire severeties (Figures 3.2 and 

3.3). Although little has been written about D. lonicera, the large numbers of 

germinants found in burned samples suggest that the seed may break dormancy 

after exposure to heat. In comparison, M. canadense did not show as clear a 

trend with organic depth. 

Seasonal changes were evident in the correlation of seed occurrence and 

soil depth for E. angustifolium and B. papyrifera (Figure 3.4. and 3.5.). In June, 

E. angustifolium reproduced vegetatively and its rhizomes were found at depths 

between 5 and 1 0 em. After seed dispersal in October, seeds were 

concentrated at depths between 0.5 and 5 em. B. papyrifera, which was 

dispersed on the forest floor, was not correlated with soil depth in June samples. 
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Figure 3.2. Number of propagules by depth of organic layer for Comus 
canadensis and Maianthemum canadensis. June and October sampling 
periods are combined. 
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By October, which is early in the 8. papyrifera seed dispersal period, seed 

distribution was concentrated on sites with soil between 0.5 and 6 em. This 

seed could have been released early from stressed Betula trees remaining on 

harvested and burned areas. 

3.4.5 Projection of Future Species Comoositions 

Although Control samples contained propagules of many species that do 

not appear in the vegetation (E. angustifolium, E. leptophyllum, D. lonicera and 

Carex spp.), it is unlikely that these species will contribute to this community until 

a disturbance releases them and creates appropriate germination conditions. 

Soil from disturbed sites seemed to contain little or no seed of P. 

convolvulus and G. bicknellii which were represented in the vegetation. Abrams 

and Dickmann (1984) found G. bicknellii represented 22°/o of the vegetation 

cover but was reduced to a few individuals the following year. G. bicknellii is 

classified as an annual or a biennial (Fernald 1950). On the study site 

Geranium did not produce flowers so it should be considered a biennial strain 

that will produce seed in the following year. Both Polygonum and Geranium are 

known for their "one-shot" contribution to the seed bank, and they require 

disturbance and areas of low competition to germinate and survive. In 

Minnesota, Ahlgren (1979a) found G. bicknellii on three- and four-year old burns. 

Either the species expresses an ecotypic difference in germination requirements 

and did not require heat to germinate (Abrams and Dickmann 1984), or perhaps 
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surface temperatures were warm enough to stimulate the seed. In any case, the 

populations of G. bicknellii and P. convolvulus are unlikely to expand beyond 

what has already been established. 

P. pensylvanica increased slightly between June and October, although 

not significantly. Auchmoody (1979) found that P. pensylvanica did not 

germinate until the second season after a nitrate fertilization treatment because 

it likely required a second chilling period. A second chilling period was also 

noted by Laidlaw (1987) after treating P. pensylvanica with drastic temperature 

fluctuations. So it is possible that P. pensylvanica will continue to germinate in 

the next growing season. Auchmoody (1979) found no germination in three-

year-old plots. possibly indicating short-lived germination stimulus. 

Once established, P. pensylvanica produces a large number of shoot 

structures per root mass (Marks 1974). Seed production becomes more 

important at four years after the disturbance when it reaches reproductive 

maturity. The importance of P. pensyvanica increases around the time that R. 

idaeus is declining, allowing these species to coexist on the same site. 

E. angustifolium, D. lonicera, Carex spp. and B. papyrifera dominated the 

seed bank, but their contribution to the vegetation will be determined by how 

severely the site was disturbed and the level of established competition (Ahlgren 

1960; Achibold 1980). D. lonicera was not well represented in the vegetation 

even though the seed bank contained large quantities of viable seed. Perhaps 

this species is similar to P. pensylvanica in that it requires a second chilling 
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period and will contribute to the vegetation in the second growing season or 

perhaps it has low survival. E. angustifolium and B. papyrifera lose viability 

within a year (Archibold 1980; Myerscough 1980), but with wide seed dispersal 

abilities, these species will continue to contribute to regeneration. 

Many species that established after the disturbance will continue to 

expand vegetatively. E. angustifolium will flower in its first year but vegetative 

reproduction will have priority over seed reproduction as has been indicated by 

resource allocation patterns (Myerscough 1980). 

R. idaeus starts producing rhizome shoots in its second year; e.g. 

Whitney (1982) found 16 shoots m·2 after three seasons. R. idaeus experiences 

an intense phase of intraspecific competition and self-thinning during which time 

dominant individuals increase seed production from 700 m·2 in the second year 

to 14 000 m·2 in the fourth year (Whitney 1982). 

3.5 CONCLUSION 

Species composition and seed bank characteristics (numbers and 

reproductive strategies) differed according to disturbance type. Characteristics 

were largely influenced by disturbance severity (depth of remaining organic 

layer). 

The species composition of Control vegetation differed the most from its 

associated propagule bank. Many seeds of 'disturbance seed-banking' species 

were present in the Control propagule bank which could indicate the dominance 
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of certain species (e.g. R. idaeus, P. convolvulus) in post-disturbance 

environment Seeds of these species were in low abundance in soils of 

harvested and I or burned sites because they had germinated. Shrub species 

were not well represented in samples. Sample size and numbers may not have 

been adequate to retrieve rhizomes. 

October samples indicated that E. angustifolium and B. papyrifera had the 

greatest contribution to seasonal inputs. An increase in the viability of 

vegetative propagules suggests that many species will expand beyond their 

current cover in the next growing season. 
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CHAPTER IV 

NUTRIENT ACCUMULATION PATTERNS IN VEGETATION 

4.1 INTRODUCTION 

Site fertility greatly determines forest diversity, productivity and stability 

(Nams eta/. 1993). Soil nutrient composition is a result of atmospheric inputs, 

weathering of parent material, and the rate and magnitude of nutrient circulation 

through the vegetation (Attwill and Adams 1993). In the boreal forest, nutrients 

become limiting as the forest matures (Maclean eta/. 1983). As the organic 

layer accumulates and soil conditions become cool and more acidic, 

decomposition and the release of nutrients slows {Krause 1991). 

Under natural conditions, fire interrupts forest succession, redistributing 

nutrients and stimulating nutrient cycling processes {Maclean eta/. 1983). Fire 

is a driving force of change as it rapidly alters light, moisture, nutrient and 

temperature conditions, influencing decomposition rates and stimulating 

different species compositions (Chapin and Van Cleve 1979). Harvesting 

directly and indirectly affects nutrient distribution and cycling, but few studies 

have compared harvesting with fire. 

Species have adapted to different resource conditions and use different 

strategies to exploit nutrient rich sites or tolerate nutrient poor environments. 

Disturbance activates the cycling of nutrients trapped in biomass so that nutrient 
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concentrations and allocation will change within the forest strata and within the 

species themselves (Ohmann and Grigal 1979). Initial regeneration plays an 

important role in capturing released nutrients and retaining elements on the site 

(Marks 1974; Vitousek and Reiner 1975; Adams and Boyle 1982). Nutrient 

content of plant tissue reflects the nutrient availability and/or the species' ability 

to accumulate and store nutrients (Garten 1978; Chapin and Tryon 1983). 

This portion of the study examined patterns of nutrient concentrations of 

nitrogen (N), potassium (K), phosphorous (P), calcium (Ca) and magnesium 

(Mg) for selected herb and shrub species after harvesting and/or fire to 

determine vegetation response to different post-disturbance environments. 

Plants were also compared to determine if concentration patterns relate to the 

species' reproductive strategy. Nutrient concentration and biomass were 

related to cover data of the vegetation (Chapter 2) to enable a nutrient mass 

(kg/ha) comparison per treatment and discuss the importance of early 

vegetation and nutrient retention. 

4.2 LITERATURE REVIEW 

4.2.1 Successional changes in Nutrient Cycling in the Boreal Forest 

Most nutrient accumulation in vegetation occurs during the first 10 years 

of forest development (Foster and Morrison 1976). Early successional 

understory species play an important role in accumulating liberated nutrients in 
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their biomass, minimizing losses after disturbance and initiating element cycling 

processes (Marks and Bormann 1972; Vltousek and Reiner 1975; Hendrickson 

1988; Mou eta/. 1993). After harvesting, Outcalt and White (1981) found that 

75% of the site's nutrients were found in herb and shrub species. Within the 

Hubbard Brook watershed, the rate of N accumulation in vegetation exceeded N 

losses in stream flow (Mou eta/. 1993). 

Early successional species demonstrate rapid growth and have nutrient 

rich tissue with a greater foliage to wood ratio (Ohmann and Grigal 1979; 

Parrish and Bazzez 1982; Mou eta/. 1993). Generally herbs increase in their 

weight per individual and standing crop m·2 over the first one-two years after 

disturbance (Ohmann and Grigal 1979). Since most early successional species 

are deciduous, nutrients are rapidly returned to the forest floor to form the 

organic layer. Litterfall is an important link for the return of Ca, N and P to the 

soil (Damman 1971; VanCleave and Noonan 1975; Chapin eta/. 1978; 

McClaugherty eta/. 1985). Decomposition of litter varies according to the 

climate (moisture, heat), species composition and litter quality, and soil micro 

flora and fauna (Matson and Vltousek 1981; Attiwill and Adams 1993). 

Early succesional species have rooting patterns that are composed of 

finely divided systems of small absorbing tips. These species are less efficient 

at nutrient use, requiring nutrients each year to produce new leaves and roots 

(Chapin 1980). As nutrients become tied up in biomass, these species are not 
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able to compete for less available nutrients. As their population declines much 

of their energy is directed to the production of seeds to be stored in the seed 

bed. 

In response to disturbance, many species exhibit plasticity or flexibility in 

their growth rates. Some plants can adjust their nutrient uptake rate, tissue 

nutrient concentration and leaf tum-over rate in response to nutrient availability 

(Maclean 1983; Chapin and Van Cleve 1979). Early successional species 

(annuals) have high phenotypic plasticity, where the environment strongly 

influences leaf size, shape, branching pattern and height (Sultan 1986). 

Certain "fire survivors' specjalize in conditions of different successional stages. 

For example, during mid-succession at around 60 years, Vaccinium and Picea 

are able to absorb greater P and can experience rapid growth (Chapin and Van 

Cleve 1979). 

Mineral soil can be influenced by nitrogen-fixing shrubs, increasing N 

from 200-300 g m·2 in the shrub stage to 500-600 g m-2 in the hardwood tree 

stage (Van Cleve and Viereck 1981). Grigal eta/. (1976) found that the 

accumulation of elements in five shrub species peaked between 1 0 and 20 

years after fire. Hardwood trees absorb nutrients at a slower rate during this 

shrub period (the first 15 years) and then accumulation increases rapidly for the 

next 10 years. During that time, 10-50% of N is found in the forest floor (Van 

Cleve and Viereck 1981). 
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Rate of nutrient accumulation, element composition and litter turnover 

differ according to the dominant species. For example, a grass community will 

contain high K and low Ca compared to a community dominated by woody 

species (Mou eta/. 1993). Populus litter of 50-1 00-year old stands has a 

turnover period of 12-13 years, while Betula litter requires 16 years (VanCleave 

and Noonan 1975). Populus litter in stands of 50 years had greater N and Ca 

than Betula which had higher Mg. VanCleave and Noonan (1975) suggest the 

difference is a reflection of microbial activity, soil aeration and the acidic nature 

of Betula litter which lowered P mobility and increased Mg availability. Soluble 

substances mineralize rapidly leaving slower acid soluble and insoluble 

chemicals, so litter lignin concentrations are good indicators of decomposition 

rates {Triska and Sedell1976; Melillo eta£1982). 

Maclean and Wein (1977) found that nutrient accumulation occurred 

much faster in hardwood stands, with 50% greater N, P and Mg and 90% 

greater K and Ca than P. banksiana forests. By 30 years, the Pinus ecosystem 

reaches a steady state of addition and decomposition of organic matter. Annual 

accumulation of nutrients is 15-19% of earlier ages even though there is greater 

litter production (Foster and Morrison 1976). 

Cycling within the ecosystem also occurs when precipitation leaches 

nutrients from leaves (throughfall) and woody material (stemflow). Potassium is 

most susceptible to leaching followed by P, N and Ca (Foster and Morrison 
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1976). Leaf characteristics that affect the loss of soluble nutrients include 

surface-area to volume ratio, texture and age. 

As a forest community matures, evergreen species that are slow growing 

and have leaves that resist nutrient leaching become more abundant. Species 

that grow in nutrient poor environments survive, reproduce and produce 

biomass with low tissue nutrient content (Krause 1991 ). In Alaska, Picea often 

represents the mature stage of succession in which a greater degree of N, P 

and K is found in above ground biomass (Van Cleve and Viereck 1981). 

Translocation of these nutrients from leaves to stem before leaf fall is an 

important method of internal nutrient cycling. Up to 40-60% of N and P are 

stored within the stem or roots for leaf production in the following year (Chapin 

and Van Cleve 1979). Conifers have high nutrient re-absorption ability and low 

leaf tum over (Waring and Schlesinger 1984). Picea mariana has the ability to 

retain needles for 3-7 years in its seedling stage and 30 years when it is mature 

(Chapin and Van Cleve 1979). 

Internal cycling of nutrients and increased nutrient-use efficiency creates 

a positive feedback system that lowers nutrient availability. Nitrogen cycling is 

highly influenced by the carbon:nitrogen ratio. Nitrogen may be released to the 

soil solution at a C:N ratio between 12-20:1 (VItousek 1982) but minimal C:N 

wiH vary depending on the microbial population and litter quality (McClaugherty 

eta/. 1985).1ncreasing soil acidity and inhibiting chemicals (e.g. tannins) are 
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associated with accumulating organic matter, high C:N ratios and lower 

microbial activity. Species adapted to poor nutrient availability can efficiently fix 

more C per unit of N, but as the C:N ratio increases N can become retained in 

the biomass intensifying theN stress (VItousek 1982). 

In Alaska, Chapin eta/. (1979) found that P is also closely controlled by 

microbial populations. Potassium can also be a limiting factor as it is supplied 

entirely by the parent material in the area, but it is very soluble and prone to 

movement out of the vegetation and, perhaps, off the site. Chapin (1980) 

suggests that greater concentrations of N in the soil can increase root capacity 

forK 10-fold. 

Even in later successional stages, understory species provide the 

greatest contribution of nutrients because of their high foliage to wood ratio 

(Waring and Schlesinger 1985). Pteridium aquilinum accumulates K, 

contributing 31 .4% of the K by litter and leachant in a Pinus banksiana stand 

(Carlisle eta/. 1967 in Maclean and Wein 1977). A Pinus forest with Cory/us 

and herbs in the understory had 1.4-2.6 times more nutrients than stands with 

pure Pinus litter which greatly influenced the turnover rate of the organic layer 

(Tappeiner and Aim 1975). In Newfoundland and northern Quebec, moss can 

account for 33-50% of above-ground biomass. The annual uptake of N, P, K, 

Ca and Mg by moss is estimated to be between 23-53% of the annual tree 

uptake. In ecosystems where the understory is dominated by moss, moss 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

90 

collects nutrients from precipitation, throughfall and stemflow and makes them 

available to trees (Damman 1971 ; Weetrnan and Temmer 1967 in Kimmins 

1987). 

4.2.2 Seasonal Changes and Spatial Patterns 

Nutrient concentrations within a plant change according to nutrient 

availability and physiological processes. A nutrient pulse occurs in the spring 

when water allows nutrients to be efficiently leached from the soil and decaying 

material. Moisture plays an important role in nutrient movement Increasing 

moisture availability along a N gradient allows trees to use N at greater 

concentrations. In Alaska, Chapin eta/. (1978) found 40% of the P was 

absorbed within 1 0 days of snowmelt. During these periods of high nutrient 

availability, some species are able to absorb an excess amount of nutrients 

(luxury consumption'). These stored nutrients can then be used later to 

support growth when nutrient supply in the soil has been exhausted (Chapin 

1980). 

Within the plant, nutrient concentrations are highest in areas of growth, 

such as root tips and foliage. Concentrations of N, P and K increase as leaves 

mature. Then Ca and Mg accumulate as photosynthetic products and structural 

tissues are produced. Grigal eta/. (1976) found these nutrient concentration 

patterns for Alnus crispa, Amelanchier spp., Salix spp. and Corylus comuta but 
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N and P concentrations changed little over the growing season. Before leaf 

abscission, many nutrients are withdrawn into the stem and roots, except Ca 

which is actively exported to the leaves (Grigal et a/1976; Waring and 

Schlesinger 1985). 

Species composition and nutrient concentration patterns will also vary 

spatially with nutrient distribution. Tilman (1987) studied patterns of species 

dominance along an experimental N gradient. After a three-year period of 

transient dominance, species distributed themselves along seven experimental 

N concentrations. Generally. early successional annuals and short-lived 

perennials that were low and spreading (e.g. Polygonum convolvulus), peaked 

at low N, while high N sites were dominated by erect, long-lived herbs and 

woody species that were tall at maturity (e.g. Rubus idaeus). Garten (1978) 

suggests that spatial and temporal separation of a species is related to the 

species adaptation to the nutrient concentration. The species' phenotypic 

variation may reflect the plant's niche size. 

4.2.3. Fire and Nutrient Cycling 

Fire affects nutrient cycling during and after the disturbance. High 

variability in plant communities, soils and disturbance characteristics make it 

difficult to generalize about the changes in post-fire soil and vegetation nutrient 

concentrations. The amount of biomass consumed, season, fire severity and 
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availability to plants. 

During a fire, unavailable minerals locked in organic matter are converted 

to soluble forms and become available to plants. Many nutrients form solid 

oxides and are deposited as ash; others (e.g. nitrogen and sulfur) become 

gaseous and may be lost from the site in smoke (Raison, 1979). Nitrogen is the 

most vulnerable to volatilization loss, occurring when temperatures reach 20o=c 

(Knight 1966). Experimental burning of Pinus litter indicated that 62% of N 

released was volatilized and would not be returned by precipitation (DeBell and 

Rulston 1970). Sulfur and P losses occurred at around 30o= C and Kat soo= C 

(Kimmins 1987). Fire can also indirectly cause nutrient loss. Severe fires can 

cause soils to become hydrophobic if soil pores become plugged, resulting in 

loss of ash in runoff (Kimmins 1987). 

Five years after vegetation establishment, Ohmann and Grigal (1979) 

found N remained constant while P, K and Ca generally increased. Other 

studies of low intensity fires have not found a decrease in N (James and Smith 

1977; Schoch and Binkley 1986). In many cases, fire may lower the total Non 

the site but will increase the available N (Maclean eta/. 1983). In a Pinus 

taeda forest, burning increased decomposition and the release of N was double 

that found on unburned sites (Schoch and Binkley 1986). 
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Rate of revegetation, post-fire weather and soil characteristics will 

determine relative amounts of nutrient retention or loss after the fire. Texture, 

porosity, organic matter and clay content of the soil and the amount of 

precipitation after the disturbance governs whether nutrients are leached away 

(Smith 1970; Grier 1975). In a fire that consumed 79-90% of the organic 

matter, the cation exchange capacity of the L-H horizon lowered and increased 

nutrient solubility causing a 48% reduction in extractable P over 15 months 

(Smith 1970). After snowmelt, Grier (1975) found that 35% of Ca, 78% of Mg, 

and 85% of K were leached from the ash layer by 67 em of percolating water, of 

which 90% of the elemen~ remained in the top 19 em of soil. 

Fire changes the soil environment, altering nutrient cycling processes. 

Soil temperatures rise as charred surfaces absorb solar radiation, stimulating 

further decomposition and micorrhizal activity (Chapin and Van Cleve 1979). 

After five years, Monleon and Cromack (1996) found a site that experienced a 

low intensity prescribed bum (300 k.W m·1 with 40-60% duff consumption) was 

still releasing significantly more N and P from current litter than unburned sites, 

indicating increased microbial activity. An increase in water soluble P, K, Ca, 

and Na can occur (Maclean eta/. 1983; Chapin and Van Cleve 1979), and in 

some cases it takes 20-30 years for these processes to return to pre-fire 

conditions (Raison 1979). 
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4.2.4 Harvesting and Nutrient Cycling 

Harvesting effects on nutrient cycling are dependent on the type of 

harvesting, equipment used, season, vegetation and soil fertility (Hendrickson 

1988; Mou eta/. 1993). Harvesting has turned away from conventional main 

stem-only utilization with long rotations to short rotations with whole-tree 

harvesting (Kimmins 1987; Mann eta/. 1988). Harvesting that removes 

biomass from the site also removes nutrients (Krause 1991 ). Hendrickson 

(1988) and Mann eta/. (1988) found that harvesting methods that left more 

slash on the site showed higher nutrient content in the vegetation after four 

years than whole-tree harvesting. Mann eta/. (1988) found a 40% loss of N for 

stem-only harvested sites compared to an 80% loss for whole-tree harvested 

sites. 

Harvesting indirectly affects nutrient cycling by changing soil conditions. 

Nutrients can also be lost through erosion and surface run-off (Vrtousek 1985; 

Mann eta/. 1988). Canopy removal increased surface temperatures, 

temperature fluctuations and alternating wetting and drying which enhanced 

decomposition (Matson and Vltousek 1981; Mou eta/. 1993). Such 

microclimate changes have been found to last 3-4 years (Covington 1981; 

Vitousek 1982). 

In a northern hardwood stand that had been clear-cut, Covington (1981) 

found that the forest floor and fine slash were important nutrient sources for the 
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first 15 years. Studies of nutrient concentration of early post-harvest succession 

indicate an increase in N, P, K, Mg, and Ca (Outcalt and White 1981; 

Hendrickson 1988; Roberts and Gillian 1995). Other studies show a net loss 

(Adams and Boyle 1982; Mann eta/. 1988) and continued decline over 6 years 

until roots had contacted nutrient rich, adjacent sites (Mou eta/. 1993). After a 

wildfire on a harvested site, Adams and Boyle (1982) found Ca, P increased 

and K and N returned to levels similar to the undisturbed forest 

Kimmins (1987) cautions against judging the fertility of a site shortly after 

harvesting. The post-harvest flush of high nutrient availability over the first few 

years allows nutrient demanding species to initially grow well but nutrient levels 

may decline below pre-logging levels. Kimmins attributes the decline to the 

high C:N ratio in the wood slash left on the site and the inability of microbes to 

decompose the slash without an adequate supply of nutrients. 

4.3. METHODS 

4.3.1 Data Collection 

Geranium bicknellii, Comus canadensis, Rubus idaeus, Prunus 

pensylvanica and Betula papyrifera were collected from around each vegetation 

block (Chapter 2). These species were the most widely distributed over the 

different treatments. G. bicknellii and P. pensy/vanica were found on all 

disturbance types and the other species were found in both disturbed and 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

96 

control areas. G. bicknellii and P. pensylvanica reproduced by seed whereas 

the other species sprouted, suckered or had rhizomatous growth. 

Percent cover was estimated on 1 x 1 m plots for herbs and 2 x 2 m plots 

for shrub and Betula suckers. Cover values were used to develop cover-

biomass prediction equations. Two to four sample sets were taken of each 

species from each site depending on the abundance of the species in the area. 

Some areas did not contain all species. 

Specimens were oven dried at 70° C and separated into stem and foliage 

tissue before weighing for biomass calculations. Each specimen was ground 

using a Wiley mill and stored in plastic containers for nutrient analysis. 

4.3.2. Nutrient Analysis 

Plant samples were analyzed for total phosphorous, total nitrogen and 

total cations (Ca, K, Mg). Total N was measured using digestion with H~04 

and catalyst followed by a distillation in alkaline medium and titration with dilute 

standardized HCI. Total Ca, Mg, K and P were analyzed using HCIIHN03 

digest on ash sample and concentrations were determined using an Inductively 

Coupled Plasma Spectrometer (ICP) (ICAP 9000 Jarrel Ash). 

During this process samples were pumped into a plasma, chemical 

bonds were broken and characteristic atomic emission lines were produced. 

The ICP Spectrometer measured the intensity of emitted light from the excited 
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neutral or ionized atomic species. The intensity of light is associated with a 

particular spectral line that is directly proportional to the number of excited 

atoms in the plasma or the concentration. The methodology is outlined in detail 

in Kalra and Maynard (1991). 

4.3.3. Data Analysis 

Results are presented as mg of element per kg of dried sample. Analysis 

of variance was used to test for differences in nutrient concentration within a 

species among disturbance types and to compare species within disturbance 

types. Differences were considered significant at a p<O.OS. 

Regression analysis of biomass (y) and the cover (x) values presented in 

Chapter 2 produced the following equations; 

Comus canadensis y=1.035 ,(>.849 R2: 0.69 

Geranium bicknel/ii y=0.940 X0.992 R2: 0.84 

Prunus pensy/vanica -leaf y=2.456 x0·965 R2: 0.84 

-stem y=O .992 :>f·978 R2: 0.67 

Rubus idaeus -leaf y=5.435 ,(>571 R2: 0.53 

-stem y=2.034 ,(>.701 R2: 0.52 

B. papyrifera was not included as individuals in the cover data originated 

mainly from seed and nutrient analysis was done on vegetative emergents. R. 

idaeus had lower R2 values due to its dense, shrubby nature. 
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4.4. RESULTS AND DISCUSSION 

4.4.1. Nutrient Concentrations between Soecies among Disturbances 

Tissue concentrations of various elements are more likely an expression 

of plant characteristics than a direct measurement of the element concentration 

available in the soil (Garten 1978), but foliar analysis can detect nutrient 

deficiencies if a species is compared across sites within a geographical range 

(Chapin and Tryon 1983). In this study, species responded differently to 

changes in nutrient availability caused by harvesting and/or fire. When 

compared, individual species also varied in their elemental composition within 

the same disturbance type. 

4.4.1.1 Comus canadensis and Geranium bicknellii 

Among disturbance types, C. canadensis had significantly higher tissue 

concentrations of Ca, K and Mg in Control sites than other disturbance types 

(Figure 4.1 ). Nitrogen concentrations were significantly higher {p<O.OS) in 

Wildfire sites than in Control, Harvested or Prescribed-burn sites. 

When Ohmann and Grigal (1979) compared C. canadensis on burned 

and unburned sites, they found that plants on unburned sites had significantly 

greater Nand K (p<0.01 ), while burned sites produced significantly greater P, 

Ca and Mg (p<0.05). The Little Sioux Fire, on which Ohmann and Grigal's 
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Figure 4.1. Comparison of nutrient concentrations of C. canadensis among different 
disturbance types. Site abbreviations: C, Control; H, Harvested; P, Prescribed-bum; R, 
Rebum; and W, Wildfire. Significant differences (p<O.OS) among treatments are represented 
by different letters. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

100 

study was based, was a spring fire in which the forest floor was still moist and 

only 1-2 centimetres of duff were consumed. Also, their comparison between 

burned and unburned vegetation was made 4 years after the fire. Different fire 

conditions caused nutrient concentration of species on bum sites to be lower in 

Ohmann and Grigal's study compared to those found in this study, especially N. 

G. bicknellii also had significantly higher (p<0.05) Ca and Mg levels in 

Harvested sites than most burned sites (Figure 4.2). When comparing C. 

canadensis and G. bicknellii (Figure 4.3), G. bicknellii contains significantly 

greater (p<0.05) K in Harvested, Prescribed-burned and Reburn sites than C. 

canadensis. Another trend between the herbs is the significantly greater 

(p<0.05) Ca and Mg content in C. canadensis. Ohmann and Grigal (1979) also 

found C. canadensis had high Ca and Mg concentrations with similar patterns 

over the five year study period. These elements are considered structural 

elements and would likely be in higher concentrations in the tougher, 'winter-

green' leaves of C. canadensis. 

Another explanation for the different concentration patterns between 

these species is their different reproductive strategies. G. bicknellii germinated 

from seed and thus relied totally on the nutrients found within its immediate 

environment. C. canadensis sprouted from rhizomes and relied on stored 

resources to establish itself. Sometimes plants that survive a disturbance 

experience a 'shock effecf that limits their growth rate and nutrient accumulation 
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Figure 4.2. Comparison of nutrient concentrations of G. bicknellii among different disturbance 
types. Site abbreviations as in Figure 4.1.; this species not found in Control sites. 
Significant differences (p<0.05) among treatments are represented by different letters. 
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Figure 4.3. Nutrient concentrations of C. canadensis (shaded) and G. bicknellii (white). 
Significant differences (p<0.05) between species within treatments are represented by 
different letters. 
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during the first year. Mou eta/. (1993) found that more severely disturbed sites 

usually showed greater nutrient concentrations in vegetation except for the first 

year after disturbance when the shock effect caused concentrations to be similar 

to those in undisturbed vegetation. Vegetative recovery varies with species. 

Calmes and Zasada (1982) exposed root cuttings to heat (25° C) and found 

Rosa acicularis emerged after seven days while Ledum groenlandicum sprouted 

after a 30 day delay. For Rubus spectabilis, shoot elongation does not occur 

until a month after bud break and continues over two months before root 

elongation can begin (Zasada eta/. 1994). Mallik (1991) found that after cutting, 

and cutting with burning, Kalmia spp. produced significantly less rhizome length 

and dry weight. Kalmia allocated photosynthate to above-ground growth at the 

expense of below-ground growth after cutting and burning. Rodenkirchen (1995) 

found shade-tolerant ground vegetation had a delayed response to fertilizer 

treatments in a mature forest. In the N-saturated Picea forest, species were 

unable to prevent nitrate losses from upper mineral soil. Calcium, Mg and K 

fluxes through the ground vegetation were elevated only after three years of 

fertilizer treatment (Rodenkirchen 1995). The delayed response of root activity 

may prevent early sprouting growth from having a crucial role in nutrient 

retention on the site (Kramer and Kozlowski 1979; Mou eta/. 1993). For C. 

canadensis, Messier and Kimmins (1991) found that large increases in leaf and 

fine root biomass occurred four to eight years after logging and burning so 

perhaps its role in nutrient retention is limited. 
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4.4. 12. Rubus idaeus and Prunus oensylvanica 

R. idaeus and P. pensylvanica are known for their favourable response to 

any disturbance that increases soil fertility (Marks 197 4; Safford and Filip 197 4; 

Hendrickson 1988). Although Mou eta/. (1993) found R. idaeus leaf 

concentrations to be 2-4 times greater than that in stems and roots, these 

patterns were not clearly seen at this time. Areas that experienced fire produced 

R. idaeus with higher concentrations of all elements than Harvested sites, 

although these differences were not always significant (Figure 4.4). Nitrogen 

concentrations in stems were significantly higher (p<0.05) on Rebum and 

Wildfire sites than on Harvested sites but not different from Control sites. 

P. pensyvanica had the greatest elemental concentrations in fire 

disturbed sites, especially Wildfire (Figure 4.5). In Wildfire sites, stem tissue 

had the highest concentrations for all elements among disturbance types, while 

leaf tissues had highest concentrations of K, Mg and N. Tissue nutrient 

concentrations in P. pensylvanica also seemed to correlate most closely with 

soils data. In June, the organic layer had significantly greater (p<O.OS) P, Mg 

and K concentrations in fire-treatments than in Control and Harvested sites 
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types. Leaf tissue is shaded while stem tissue is unshaded. Site abbreviations as in Figure 
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(Stronach 1996). P. pensy/vanica stem tissue generally showed lower element 

concentrations except for Ca due to the woody tissue's structural nature. 

Although R. idaeus resprouted vegetatively after the fires, this species is 

known for is rapid growth rate and response to available nutrients, so it likely 

does not demonstrate the delay in nutrient uptake that shade-tolerant species 

do. When comparing the R. idaeus and P. pensylvanica (Figure 4.6), R. idaeus 

leaves have significantly higher Ca levels and greater Mg concentrations on 

Prescribed-bum and Wildfire sites. Calcium and Mg were in higher 

concentrations in the June organic layer after the fires than in organic soils of 

Harvested and Control sites (Stronach 1996), but R. idaeus may have had an 

elevated level because of·root storage. Mou eta/. (1993) found that R. idaeus 

had 0.23 % dry mass of Mg in its roots which was considerably higher than other 

species (e.g. P. pensylvanica 0.09 %, Acer saccharinum 0.04 %, Aster spp. 

0.12%). 

In Rebum sites, P. pensylvanica had significantly greater K, N and P. It 

has been suggested that to lower competitive pressures, these species use 

different forms of N or that their nitrification activity peaks at different periods in 

their lifecycles (Traux eta/. 1994). Traux eta/. found that R. ideaus had a 

growth and nutrient concentration response 1 0 times greater than P. 

pensylvanica following fertilizer addition and they attributed this to higher nitrate 

reductase activity. Nitrate reductase activity refers to the first enzyme 
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associated with N~- assimilation. This high nitrification rate lasts two years 

while that of P. pensylvanica peaks at six years. Marks and Bormann (1972) 

identified ammonium as a potentially important N source for P. pensylvanica 

once soil conditions have become less favourable for R. idaeus. 

Results of this study indicated that P. pensylvanica had higher N 

concentration for all treatments; it was significantly higher on Harvested and 

Rebum sites. Since R. idaeus root N concentration is lower than P. 

pensylvanica and it sprouted vegetatively, perhaps Rubus is expressing a 

delayed response to greater N availability in the soil after fire. 

4.4.1.3 Rubus idaeus and Betula oapvrifera 

B. papyrifera had significantly lower Ca and Mg concentrations on 

disturbed sites (Figure 4.7). Burned areas produced stem tissue with 

significantly higher K and N than that found in Harvested sites and Control sites. 

Betula samples were root collar sprouts, so resources in the root system could 

have influenced the tissue nutrient concentrations more than soil differences. 

Trends in organic soil nutrient data collected in June indicated P, N, and 

cations were significantly less (p<O.OS) in Control and Harvested sites than 

burned sites, especially Prescribed-bum and Reburn sites that experienced 

severe surface fires (Stronach 1996). Nutrient availability in Control, and to 

some extent Harvested, sites would be lessened as elements are still locked in 
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living or undecomposed biomass. For those species that grew in Control sites 

(B. papyrifera, C. canadensis and some R. idaeus), nutrient concentrations were 

higher on those sites than in disturbed sites for all elements except N. In other 

studies, nutrient concentrations were similar on undisturbed and harvested sites 

for R. idaeus, P. pensylvanica and B. papyrifera but these studies were 

conducted four years (Marks 197 4; Hendrickson 1988) and six years (Mou eta/. 

1993) after· harvesting. 

R. idaeus leaf and stem tissue had significantly higher Ca on burned plots 

and Mg on Rebumed and Wildfire plots than B. papyrifera (Figure 4.8). This is 

surprising since one would expect the woody stem of birch to have more of these 

structural elements. Stem N content for both species seemed to increase on 

burned sites. 

4.4.1 .4. Prunus pensylvanica and Betula papyrifera 

A similar comparison was made for P. pensylvanica and B. papyrifera 

(Figure 4.9). In this case, P. pensylvanica had significantly higher leaf and stem 

Ca and Mg content on Rebum and Wildfire sites. Perhaps this is a reflection of 

the planfs seed origin and its ability to sequester nutrients released after the 

fires. Although Ohmann and Grigal ( 1979) did not compare these species 

directly, they found that P. pensylvanica had greater concentrations for all 

elements that B. papyrifera after fire, particularly N, P and Mg. 
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4.4.2 Biomass and Nutrients 

Since the results presented in the previous section demonstrated that 

each species is characterized by different elemental compositions, the species 

composition of the site influences which elements are retained on the site and 

the quantity and how accessible the nutrients will be as the site matures. For 

example, fire severity greatly influences whether a site would be characterized 

by C. canadensis or G. bicknellii. Given the seed or rhizome source and 

appropriate regeneration niche, either species is able to revegetate a site. On a 

site severely burned, G. bicknellii may play an important role in retaining K, N 

and, to some extent, P on the site for a couple years afterwhich its foliage 

decays and the nutrients are .returned to the soil. 

Soils data collected in June indicate that disturbance type influenced 

nutrient availability {Stronach 1996), and the vegetation reflects these patterns. 

A summary of species nutrient concentration over the different disturbance types 

is summarized in Table 4.1. Due to variability in the distribution of the biomass of 

recovering vegetation, levels of elements were not significantly different among 

disturbance types but trends in elemental distribution could still be found. 

C. canadensis had the greatest biomass on Control sites and contributed 

more Ca to the standing biomass than on Reburned sites. G. bicknellii and P. 

pensylvanica had greater biomass on burned than logged-only sites. 
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Table 4.1. Biomass and nutrient content (kg/ ha; +standard deviation) 

of individual species among disturbance types. Different letters within colomns 
indicate significant differences (p<0.05) among disturbance 
types. 

Comus canadensis 

Disturbance Biomass N p Ca Mg K 
Type 

CONTROL 64.6 1.65 0.30 327 0.61 1.00 
(±86.8) (±224) {±0.41) {±4.37) (±0.83) (±1.35) 

HARVEST 30.62 0.75 0.09 126 025 0.11 
(±36.4) (±0.94) {±0.12) {±1.50) (±028) (±0.12) 

PRESCRIBED 14.9 0.39 0.04 0.34 0.06 0.10 
-BURN (±32.3) (±0.84) (±0.09) {±0.75) (±0.14) (±0.22) 

REBURN 23.7) 0.66 0.05 0.44 0.10 0.15 
{±32.6) (±0.87) (±0.07) {±0.59) (±0.14) {±021) 

WILDFIRE 23.3 0.71 0.04 0.39 0.10 0.15 
(±32.5) (±1.00) (±0.06) (±0.57) (±0.14) (±025) 

Geranium blclcne/111 

Disturbance Biomass N p Ca Mg K 
Type 

HARVEST 0.5 0.02 0.00 0.01 0.00 0.01 
(±2.3) (±0.07) (±0.01) (±0.05) (±0.01) (±0.03) 

PRESCRIBED 4.6 0.11 0.01 0.07 0.01 0.07 
-BURN (±7.8) (±0.18) (±0.02) (:t0.11) (±0.02) (±0.12) 

REBURN 32.9 1.38 0.12 0.42 0.07 0.56 
(±66.9) (±2.77) (±0.24) (±0.85) (±0.15) (±1.16) 

WILDFIRE 4.6 0.22 0.01 0.04 0.01 0.08 
(±8.5) (±0.41) (±0.03) (:t0.09) (±0.02) (±0.19) 
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Table 4.1. continued. 

Rubus ldstlus 
leaf 

Disturbance Biomass N p Ca Mg K 
Type 

CONTROL 24.6 0.65 0.10 0.48 0.23 0.58 
(±59.3) {±2.22) (±0.26) (±1.24) {±0.59) {±1.46) 

HARVEST 160.2 5.06 0.28 1.43 0.99 1.33 
(±138.3) {±4.29) (±0.32) (±1.22) {±0.85) {±1.11) 

PRESCRIBED 98.2 4.53 0.25 1.81 0.73 0.93 
·BURN {±122.5) {±6.50) (±0.32) {±4.00) (±1.07) {±1.16) 

REBURN 157.3 11.44 0.29 1.09 0.44 1.71 
{±241.3) (±26.48) {±0.44) {±1.64) {±0.62) (±2.68) 

WILDFIRE 85.8 3.06 0.23 0.86 0.34 1.21 
{±138.7) {±3.91) {±0.37) (±1.37) {±0.60) {±2.12) 

Rubusldaeus 
stem 

Disturbance Biomass N p Ca Mg K 
Type 

CONTROL 11.6 0.22 0.05 0.18 0.10 0.27 
(±29.1) (±0.57) (±0.13) (±0.47) (±0.26) (±0.70) 

HARVEST 83.5 1.00 0.04 028 0.09 0.16 
(±87.5) (±1.04) (±0.06) (±0.41) (±0.15) (±028) 

PRESCRIBED 62.4 1.15 0.12 0.41 0.19 0.52 
·BURN (±76.1) (±1.54) (±0.15) (±0.48) (±025) (±0.74) 

REBURN 95.0 3.46 026 0.81 0.36 1.09 
(±160.3) (±6.15) (±0.46) (±1.36) (±0.61) (±1.76) 

WILDFIRE 45.3 0.94 0.08 0.34 0.14 0.58 
(±83.5) (±1.58) (±0.13) (±0.62) (±0.23) (±1.05) 
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Table 4.1. continued. 

Prunus pensylvanlcs 
leaf 

Disturbance Biomass N p ca Mg K 
Type 

HARVEST 54.1 2.39 0.20 0.64 0.29 0.73 
(±62.1) (±2.98) (±0.42) (±1.16) (±0.44) (±0.86) 

PRESCRIBED 92.9 5.40 0.22 0.54 0.29 1.20 
-BURN (±98.7) (±5.74) (±023) (±0.57) (±0.31) (±127) 

REBURN 91.0 4.95 0.28 0.62 0.35 1.53 
(±127.4) (±6.37) (±0.37) (±0.90) (±0.49) (±2.01) 

WILDFIRE 68.4 4.55 0.23 0.51 0.29 1.39 
(±67.1) (±4.37} (±023) (±0.51) (±028) (±1.49) 

Prunus pensytvan/ca 
stem 

Disturbance Biomass N p ca Mg K 
Type 

HARVEST 222 028 0.02 0.12 0.02 0.09 
(±25.8) (±0.31) (±0.02) (±0.13) (±0.02) (±0.11) 

PRESCRIBED 55.4 0.83 0.06 0.33 0.06 0.36 
·BURN (±58.5) (±0.81) (±0.06) (±0.36) (±0.07) (±0.43) 

REBURN 46.1 0.92 0.06 0.29 0.05 0.36 
(±51.6) (±0.92) (±0.06) (±0.34) (±0.05) (±0.39) 

WILDFIRE 28.2 0.66 0.05 023 0.05 0.39 
(±27.9) (±0.58) (±0.05) (±0.24) (±0.05) (±0.46) 
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Biomass trends among disturbance types for G. bicknellii and P. 

pensylvanica were similar to the values of Ohmann and Grigal (1979) one year 

after burning. G. bicknellii had quite low biomass on Harvested sites and plants 

on these sites had significantly lower (p<0.05) Mg. Biomass of P. pensylvanica 

and R. idaeuswas less than that found by Marks (1974), Safford and Filip (1974) 

and Hendrickson (1988), whose measurements were taken four to six years after 

harvesting· or fertilizer treatments. 

Element amounts in P. pensyvanica and R. idaeus were found to be lower 

than in studies by Marks (1974) and Hendrickson (1988) which involved several 

years of recovery. Safford and Filip (1974) recorded values for unfertilized sites 

that were similar to Control and some Harvested sites while fertilized sites 

resembled burned plots. Their study showed similar stem allocation patterns for 

P. pensylvanica but leaf values were lower. Concentrations will decrease as 

biomass increases. Mou eta/. (1993) found that after 2 years P. pensylvanica 

biomass had increased 14 fold but N concentrations increased only 5 fold. Very 

high standard deviations are found in biomass of Prescribed-burn and Reburned 

sites. This indicates substantial variability in regenerating vegetation likely 

related to either microsite variability or the distribution of propagules. 
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4.5 CONCLUSION 

Variation in tissue concentrations of N, Ca, P, K and Mg indicated that 

species differentially absorb, store and cycle nutrients. Therefore, the species 

composition will influence a site's elemental composition. Variation in the 

concentrations of these nutrients was influenced by the type of disturbance 

experienced by the site and perhaps, by the method of regeneration. 

Defayed or the prohibition of herb and shrub cover will increase the risk of 

nutrient loss from the site through surface runoff or leaching. Rapid regeneration 

after disturbance aids the recovery of nutrient cycling processes (Hendrickson 

1988) through the retention of elements on the site. Patterns of biomass 

accumulation may dictate the degree of nutrient uptake or the effectiveness of 

the vegetation on the site to act as a nutrient sink. Foliage characteristics of the 

vegetation will influence the decomposition of litter and thus availability of the 

nutrients for later vegetation. 
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CHAPTERV 

CONCLUSIONS AND RECOMMENDATIONS 

5.1.1. Synthesis of Study 

This study has demonstrated that disturbance plays a very important role 

in determining the initial species composition, structure and function of plant 

communities. Disturbance type interacts directly with the propagule bank and 

nutrient cycling processes. Initial species composition is influenced indirectly by 

the regeneration niche created by the disturbance. The combination of direct 

and indirect interactions allows for the potential of many different successional 

paths within the same forest stand. 

The high variability of seed I bud dispersal and disturbance intensity and 

severity over a site makes it difficult to develop detailed models of vegetation 

recovery. However, the importance of the pre-disturbance species composition 

in determining post-disturbance species composition is evident, especially on 

sites that were not severely disturbed. Residual populations dominated 

Harvested sites and were well represented on Wildfire sites. Higher disturbance 

severity increased the presence of seed banked and seed dispersed 

populations. Relative abundance of certain species was related to the 

disturbance type. E. angustifolium and P. convolvulus dominated areas of the 

Prescribed-burn plots while G. bicknellii was well represented on Reburn sites. 
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Although the divergence in species composition may only have been 

caused by a few species, these plants may have a more significant role than is 

presently understood. Studies that focus on dominant species (i.e. trees) and 

fail to incorporate understory vegetation, risk omitting important processes in 

forest recovery. Within the species studied, different ratios of the various 

nutrients accumulated. Thus, the initial species composition of a site will 

influence the element composition of the community. Utter-fall, as well as the 

species' decline and decomposition, will recontribute nutrients to the site and 

directly influence element cycling processes. 

Determination of seed densities, rate of vegetative growth, natural 

processes that stimulate regeneration and conditions to which emergent species 

are adapted allow for the projection of future changes in species composition. 

This study showed that portions of the site will likely be characterized by G. 

bicknellii and P. convolvulus tor two years, E. angustifolium and R. idaeus tor 

four to six years and P. pensylvanica tor 15 years. During this period, these 

early successional species will play an essential role in nutrient retention. 

Soils on the site were fine sands and contained limited organic matter, 

leaving them susceptible to nutrient losses by leaching. Retaining nutrients on 

these site may be critical for future forest productivity. Vegetation from 

Harvested sites generally had lower nutrient concentrations which seem to be a 

reflection of soil nutrient content (Stronach 1996). Harvested sites were also 

characterized by greater vegetative regeneration. As suggested, species 
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reproducing vegetatively may be delayed in their ability to absorb available 

nutrients directly after the disturbance as growth relies on stored reserves. 

Invader and seed-banking species were found on sites that experienced greater 

disturbance severity through harvesting and burning or wildfire and seemed to 

be composed of higher nutrient concentrations. Just as pre-disturbance species 

composition (including all species that deposited seed since the last 

disturbance) greatly influenced the post-disturbance composition, current 

changes in the successional direction will continue to influence communities 

generations from now. 

5.1 2. Future Research 

In this study, reproductive strategies should also have been determined in 

the field at the vegetation plots to confirm how the various species regenerated. 

Although fire severity was incorporated into the propagule bank study, the 

heterogeneity in organic soil depth created by fire was so diverse, even over a 

square metre, that it was difficult to generalize results. Further research to 

develop regeneration models needs to accommodate the spatial scales at which 

these processes are acting. 

This study is limited by the lack of pre-disturbance data and the short 

recovery period studied. Trends that are suggested in this study will likely 

become more evident over time. 
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A better understanding of understory autecology and response to nutrient 

conditions would be useful for interpreting site conditions. Many species are 

sensitive to changes in soil fertility, and to physiographic and edaphic 

conditions. 

5.1.3. Emulating Natural Forces 

Recent forestry practices and policies concerning vegetation 

management are tending to incorporate the goal of emulating natural forces, 

although specific objectives have not been identified. Using fire as a means of 

slash reduction and vegetation management is recognized as a method that 

more closely reflects natural processes. On the site where this study occurred, 

hot, dry conditions allowed the fire smoldering under a slash pile to spread into 

the surrounding forest creating the Wildfire component of this study. Higher duff-

moisture levels prevented the fire from greatly reducing the organic layer in 

forested areas. Some caution should be taken when interpreting this, or any 

other wildfire as 'natural', as the most important characteristic of 'natural' is 

variability. A very severe fire would have created very different results but would 

be just as 'natural'. This wildfire does have some very important characteristics 

that were absent from the other disturbance types and will be discussed 

accordingly. 

The Wildfire seemed to share regeneration characteristics with Harvested 

sites but these were likely caused by different processes. Diversity levels were 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

124 

high on both sites because of the ability of species of seed and vegetative origin 

to establish. Species that relied on seed dispersal were represented on 

Harvested sites but had not yet reached Wildfire sites which were characterized 

by seed-banking species. Plant nutrient concentrations from the two sites were 

very different which supports Johnston and Elliott's (1995) suggestion that 

Harvested sites had greater diversity because 'disturbance' species were unable 

to dominate a site that did not have high nutrient availability. 

Prescribed-bum and Reburn sites more closely resembled Wildfire sites 

in their species composition and nutrient concentrations, suggesting that the use 

of fire will more closely emulate natural processes than will harvesting alone. 

The most obvious difference between these disturbances is the presence of 

standing dead trees on Wildfire sites. These trees would moderate soil 

temperatures and moisture and perhaps provide a seed source. Picea 

germinants were found in Control and Wildfire soils. Harvesting before burning 

allowed many species to colonize the sites and revegetate rapidly after the fire. 

Harvesting can also make the surface of an area more homogeneous, especially 

when remaining slash is piled by the road. On the Wildfire site, pre-disturbance 

conditions would have allowed the fire to create a greater variety of burn 

severities. 
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5.4 Ecolooical Guidelines for Prescribed-bum Plans 

While waiting for appropriate weather conditions. there was a two year 

fire ignition delay. The Radio Lake Prescribed bum was ignited with the intention 

of controlling 'competing vegetation' and enhancing the site for artificial 

regeneration (OMNR 1995). 'Acceptable' conditions finally occurred in early 

May but these conditions only allowed for a low intensity /low severity fire. This 

prescribed bum actually stimulated vegetative reproduction of species that had 

established on the site during the two year delay (e.g. E. angustifolium, R. 

idaeus). The fire that occurred on the site later in the season (Rebum) was 

more successful at achieving a greater duff-reduction and producing less 

vegetation cover. 

In order to accomplish the intended goals a better understanding of the 

characteristics of species present on the site and the ability to burn under 

conditions that would produce greater fire severity is needed. Some 'competing' 

shrub species such as Acer spicatum and Alnus crisps were visibly reduced on 

the burned sites to date but others such as P. pensylvanica and R. idaeus were 

enhanced. To reduce shrub competition, duff reduction of 50-80% (5-8 em) is 

needed; a duff reduction that characterized the Reburn site. However, for many 

fire-adapted species, it will be difficult to suppress them unless conditions 

created are unfavourable to germination and growth for any species. Also, 

managers are presently reluctant to light prescribed fires under such conditions. 

This study demonstrated that fire and harvesting alone created different 

regeneration conditions and nutrient availability. Also the importance of early 
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revegetation in retaining nutrients on the site and contributing to the nutrient 

composition of the community was explored. If forest management goals are to 

consider ecological structure and function in order to sustainably provide timber, 

perhaps the concept of 'competing' vegetation needs to be reexamined. 
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APPENDIX A 
Table A.1. Species names and authorities. 

Species Authority Common Names other names 
Abies balsamea (L) Miller balsam fir 
Acer 
saccharinum L silver maple 
Acer spicatum Lam. mountain maple 
Alnus crispa Dryander ex green alder Alnus viridis 

Aiton 
Amelanchier red-twigged 
sanguinea. (Pursh) DC. serviceberry 
Aralia hispida Vent. bristly 

sarsaparilla 
Aralia nudicaulis L saskatoon berry 
Aster 
macrophyllus L large-leaf aster 
Betula papyrifera Marshall paper birch 
Calamagrostis 
canadensis (Michx.) Beauv. blue-joint grass 
Carex vaginata. Tausch sheathed sedge 
Clintonia borealis (Aiton) ·Raf. blue beaded lily 
Coptis trifolia (l.) goldthread Coptis 

groenlandica 
(Oeder) Hulten 

Comus 
canadensis (l.) bunch berry 
Corydalis 
sempervirens (L) Pers. pale corydalis 
Corylus cornuta Marshall beaked hazel 
Dicranum 
polysetum Sw., D. broom moss 
Diervi/la lonicera Miller bush 

honeysuckle 
Equisetum 
arvense L. horsetail 
Epilobium Chamaenerion 
angustifolium L. fireweed angustifolium 
Epilobium northern 
leptophyllum Raf. willowherb 
Fagus grandifolia Ehrh. American beech 
Fragaria 
virginiana Miller var. strawberry 
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Table A. 1. (continued) Species names and authorities 

Species Authority Common Names other names 
Gaultheria (L) Muhlenb. ex creeping 
hispidula Bigelow snowberry 
Galium triflorum Michaux sweet scented 

bedstraw 
Geranium Bicknel's 
bicknellii Britton geranium 
Goodyears rattlesnake 
repens (L) R. Br. plantains 
Hylocomium 
spendens (Hedw.) B.S.G. stairstep moss 
Kalmia 
angustifolia L sheep laurel 
Ledum 
groenlandicum Oeder Labrador tea 
Unnaea borealis L. twinflower 
Lycopodium 
annotinum L. stiff clubmoss 
Lycopocium L. L dendroideum 
obscurum ground pine Michaux. 
Maianthemum false lily-of-the-
canadense Des f. valley 
Mitella nuda L. naked miterwort 
Mniumspp. leafy moss 
Piceaabies (L) Darsten Norway spruce 
Picea glauca (Moench) Voss white spruce 
Picea mariana (Miller) Britton, black spruce 

Stems & Pogg 
Pinus banksiana Lambert jack pine 
Pinus halepensis pine 
Pinus resinosa A it. red pine 
Pinus strobus L. white pine 
Pinus sylvetris L. Scots pine 
Pinus taeda L. Loblolly pine 
Pleurozium 
schreberi (Brid.) Mitt. Schreber's moss 
Polygon urn 
convolvulus L. black bindweed 
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Table A.1 (continued). Species names and authorities. 

Species Authority Common Names other names 
Polytrichum 
juniperinum Hedw. hair cap moss 
Populus 
tremuloides Michaux trembling poplar 
Prunus 
pensylvanica Lf. pin cherry 
Pteridium 
aquilinum (L) Kuhn bracken fern 
Ptilium crista-
castrensis (Hedw.) De Not plumb moss 
Ribes hirtellum Michx. gooseberry 
Rosa acicularis Undley prickly rose 
Rubus idaeus Lspp wild red Rubus strigosus 

raspberry Michaux. 
Rubus 
pubescens Raf. dwarf raspberry 
Rubus stectabilis Pursh salmonberry 
Salix bebbiana Sarg: Bebb's willow 
Sorb us American 
american us Marshall. mountain-ash 
Streptopus 
rose us Michaux. rose twisted stalk 
Trientalis borealis Raf. spp. starflower 
Vaccinium sweet and low 
angustifolium Aiton. blueberry 
Vaccinium high bush 
myrtilloides Michaux. blueberry 
Viola renifolia A. Gray violet 
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APPENDIX B 

Disturbance Characteristics 

The northern portion of the area was harvested during the fall/winter of 

1992/93 and the southern portion during the faiVwinter of 1993/94 by Buchanan 

Forest Products. The horizontal arrangement and distribution of slash was 

characteristic of full-tree logging using feller bunchers with delimbing at the 

roadside· where there was a heavy concentrations of slash. Betula papyrifera 

and the occasional Picea and Pinus strobus remained on site. Harvested sites-

located to the north were site-prepared using a bracke scarifier during the 

autumn of 1993/94. This method removes the organic layer to expose mineral 

soil and create planting or seeding microsites. 

The goals of the prescribed bum were to: 1) prepare the site for artificial 

regeneration; 2) reduce the fine slash; 3) reduce competing vegetation; and 4) 

reduce residual competition and unmerchantable tree species. 

Eight fuel load sampling plots were established in 1993/94, of which 

seven were used in this study. The prescribed bum was ignited on May 6th, 

1995 and completed within that day. Ignition was a centre fire followed by strip 

fire beginning downwind and then strip head fires. Three weeks later, the fire 

resurfaced in three areas and was officially designated by Ontario Ministry of 

Natural Resources (MNR) as fire THU 14 on May 30th. The fires did not reach a 

significant size but did rebum areas of the prescribed burn and buffer zones 

before it was extinguished. Amount of precipitation experienced by the site 
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during the prescribed bum and wildfire are summarized in Table 8.1. Weather 

conditions and fire weather indices for the dates of both fire periods are found in 

Table 8.2. Fire behaviour data for the three fire treatments are found in Table 

8.3. 

Fuel load sampling plots were revisited and the summary of fuel and duff 

consumption is found in Table 8.4. Prescribed bums are conducted under 

carefully selected ·safe' weather conditions unlike most wildfire bums. Areas that 

were burned twice, experienced a very brief inter-fire period when vegetation 

started to grow followed by a greater degree of fuel reduction and duff removal. 
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Table 8.1. Record of rainfall from the date of the initial prescribed bum until the 
suppression of the wildfire. Fire events abbreviations: PB, Prescribed Bum; RB, 
Rebum; WF, Wildfire. 

Date 

6-May 

7-May 

8-May 

May9- 30 

31-May 

1-June 

June 2-19 

Event 

PB 

PB 

PB 

RB&WF 

RB&WF 

Rainfall 
(mm) 

0 

0 

0 

66.3 

0 

0 

25 
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Table 8.2. Weather data and fire indices for the dates of the Prescribed burn, and Wildfire at Radio Lake. 
r---

Weather Data Fire Indices 

Date Air RH Wind Wind Rain · FFMC DMC DC lSI BUI FWI 
Temp Dlr. Speed (mm) 
(oC) (%) (deg.) (krnlhr) 

Prescribed Burn I -~ 
6-May 14 31 270 4 0 80.8 12 41 1.5 14 1.4 
7-May 14 35 112 7 0 86.5 15 46 3.7 17 5.4 
8-May 18 37 270 13 0 88.8 18 52 6.9 19 10.2 

Reburn & Wildfire 

31-May 25 45 270 7 0 90.5 20 75 6.6 24 11.1 
1-June 27 49 315 4 0 90.3 24 83 5.5 28 10.4 
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Table 8.3. Fire behaviour data for the Prescribed Bum (PB). Rebum (RB). and Wildfire (WF). 
ObseNed rates of spread taken from MNR fire report 
Treatment Location Forward Rate 

PB Plot4 
PB Plot 10 
PB Plot 14 

RB PlotS 
RB Plot9 
RB Plot 12 
RB Plot 13 

WF 

of Spread 
(mlmln.) 

7-May 
02 
02 
0.1 

31-May 
1.8 
0.9 
2.4 
1.9 

1.4 

8-May 
0.5 
0.7 
0.3 

1-June 
1.4 
0.7 
1.8 
1.5 

1.1 

Frontal Fire 
Intensity 
(kW/m) 

7-May 
170 
256 
69 

8-May 
550 
827 
223 

31-May 1-June 
3753 2861 
1094 834 
6908 5267 
4316 3290 

529 434 
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Table 8.4. Summary of fuel loading and consumption by Fire event Fire event abbreviations: PB, Prescribed Bum; RB Rebum. 

Treabnent Location Slash Loading Total Slash Duff Loading Duff Depth 

& Percent Consumed Loading & Percent Consumed & Percent Reduced 

by Size Clan & Percent 

Consumed 

o -6.99 em 7+em 

(kg/m2) % (kg/m2) % (kg/m2) % (kg/m2) % (em) % 

PB Plot4 1.82 49 6.25 30 8.07 34 8.46 8 8.0 20 
I -PB Plot 10 1.18 16 3.46 16 4.64 16 18.88 17 13.4 32 ~ 

PB Plot 14 1.37 -10 2.71 57 4.08 35 24.88 5 16.0 14 

Mean 1.46 18 4.14 34 5.60 28 17.41 10 12.7 22 

RB Plot 5 3.16 62 8.75 39 11.91 45 6.27 23 6.6 39 

RB Plot 9 2.04 58 3.13 23 5.16 37 7.81 29 7.6 45 

RB Plot 12 1.34 74 2.95 40 4.29 50 22.51 33 15.0 49 

RB Plot 13 1.83 67 3.91 45 5.73 52 10.16 44 9.0 59 

Mean 2.09 65 4.69 37 6.77 46 11.69 32 9.6 84 
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