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Abstract
In this thesis w e conduct an examination o f pyramidal elements and their use as interface, 

or mortar, elements in the joining o f tetrahedral and hexahedral elements in three dimensional 
finite element meshes. Several new sets of basis functions are developed and analyzed for 
pyramidal elements having five, thirteen and fourteen nodal points. These basis functions take 
advantage o f  the symmetries o f  the element in order to give improved accuracy over 
previously studied basis functions. Evidence of this improvement in accuracy is presented in 
the form of numerical experiments.
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1. Introduction
It is a common situation in three dimensional mesh discretizations that interior regions o f  

the domain are better approximated by hexahedral elements, but tetrahedral elements are more 
suitable for geometrically complex areas, such as those near the domain boundary. Thus, it is 
desirable to construct a mesh that combines these element types so that we can achieve the best 
approximation possible. Unfortunately, hexahedral and tetrahedral elements cannot be joined  
together properly without the use o f special interface elements. The Pyramidal finite element 
is one such interface, or mortar, element, and it is an extremely useful and flexible tool for 
joining tetrahedral and hexahedral portions of a three dimensional mesh.

This work is organized as follows: First we present a history o f the finite element method, 
as well as a brief overview o f how the method can be applied to problems in science and 
engineering. In section two we conduct a detailed examination o f  the finite element method 
and its applications, as well as a theoretical justification for its validity. W e also present some 
mathematical concepts and discuss some related topics in numerical analysis, such as methods 
for solving large linear systems, that will be helpful to the understanding o f  material in later 
sections. In section three we proceed with our analysis o f  pyramidal mortar elements. 
Specifically, we examine three new symmetric elements, one five node element which has 
bilinear functions on its base and linear functions on its triangular faces, as well as thirteen and 
fourteen node pyramidal elements with biquadratic basis functions on their bases and quadratic 
functions on their triangular faces. The pyramidal element with five nodal points is most 
suitable for making connections between four node linear tetrahedral elements and eight node 
hexahedral elements, whereas the thirteen and fourteen node elements can be used for 
face-to-face connections between ten node quadratic tetrahedra and twenty node or 
twenty-seven node biquadratic hexahedral elements respectively. In section three, we also 
conduct a detailed examination o f the basis functions developed for these new pyramidal 
elements, and prove the correctness o f their construction. W e also make the claim that these 
new basis functions, which take advantage o f  the symmetry o f  the element, reduce the 
discretization error o f the mesh. In section four we outline the development o f software tools 
to be used to conduct numerical experiments measuring the accuracy o f the new elements. We 
follow  this with a presentation o f the test results from the numerical experiments showing that 
our claim is justified, and that the new symmetric pyramidal elements do in fact yield a better 
discretization error than other elements. Finally, we give some concluding remarks in section  
five, as well as considerations for possible future research in this area.

1.1 Preliminaries

History
Mathematical models for highly complex systems are regularly needed in science and 

engineering. Often these models take the form o f  differential or integral equations which are 
difficult, if not impossible to solve analytically. In the study o f such highly complicated 
systems it has become increasingly important to employ computer technology to aid us in

1
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developing and solving mathematical models. The rapid development o f computer technology 
over the past few  decades has provided us with increasingly powerful computers while the 
costs involved in computation have been reduced significantly. This environment of high 
performance but relatively cheap computational resources has further facilitated the use o f  
computer-implemented mathematical models to simulate and analyze complicated processes in 
science and engineering.

Unfortunately, even with the availability o f such computational power, it is still difficult to 
determine the exact analytical solutions for all but the simplest o f  model cases. In addition, 
numerical methods are required in order to implement mathematical models on a computer. 
Thus, we must generally rely on approximate solutions for model problems. However, 
improved numerical techniques and computational performance mean that we can find 
approximate solutions that are very close to the actual exact solution. The Finite Element 
Method (FEM) is one such technique for determining numerical solutions to the differential or 
integral equations that arise in models for systems in science and engineering.

The Finite Element Method was introduced in the early 1950s, with one o f its earliest uses 
being for the stiffness analysis o f delta airplane wings [Turner, et al., 1956], At first the 
method was thought to be a generalization o f previous methods used for structural analysis 
where the structure is subdivided into small parts, or so-called finite elements, with known 
simple behaviour. The actual term “Finite Element Method” was not adopted for the 
procedure until 1960 [Clough, I960], As the mathematics behind the method were studied 
further during the early 1960s it became clear that the method was in fact rooted in variational 
methods o f mathematics introduced at the beginning o f  the 20th century, and was a general 
technique for determining numerical solutions o f partial differential equations. Over the 
decades since, the method has been developed and refined into a general method for the 
numerical solution o f  partial differential equations and integral equations with applications in 
many areas o f science and engineering. Today, finite element methods are still used 
extensively in structural engineering; however, they are also used for problems in fluid  
mechanics, nuclear engineering, electromagnetism, wave-propagation, heat conduction, 
convection-diffusion processes, reaction-diffusion processes, aerospace structures, integrated 
circuits, and many other areas. For a more detailed and interesting account o f  the early 
development o f the method the reader is referred to [Clough, 1980],

The Method
In general terms, the idea behind any numerical method for solving differential equations is 

to discretize the given continuous problem to obtain a discrete problem. In other words, we  
must transform the continuous problem into a problem which consists o f a system o f  equations 
with a finite number of unknowns which can then be solved computationally. The difference 
method is perhaps the most classical of numerical methods for partial differential equations. In 
the difference method the discrete problem is obtained by replacing derivatives with difference 
quotients involving the values o f the unknowns at certain (finitely many) points. In the finite 
element method, the discretization process is somewhat different. The basic idea behind the 
finite element method is to reformulate the given differential equation as an equivalent 
variational problem. In order to better understand these ideas let us consider the following  
examples based on ones from [Cook, Malkus, and Plesha, 1989, pp. 1-3],

2
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X, u

Figure 1.1.
(a) A tapered bar under end load P. (b) A  model built o f four 

uniform (non-tapered) elements o f  equal length.

Figure 1.1 gives us an example o f how a continuous problem might be discretized. 
Suppose we wish to determine the displacement o f the right end o f the bar in Figure 1.1. To 
solve this problem using a more classical approach we would determine the differential 
equation o f the continuous tapered bar, solve this equation for axial displacement u as a 
function of x  and finally substitute x  =  L j  to find the required end displacement. In the finite 
element method, rather than beginning with a differential equation, the bar is discretized by 
modeling it as a series o f finite elements,  each uniform but o f a different cross-sectional area A 
(Figure 1.1b). In each element u varies linearly with x; therefore, for 0 < x < L t ,  u is a 
piecewise-smooth function o f x. The elongation of each element can be determined from the 
elementary formula PL/AE. The end displacement, at x = L t , is the sum of the element 
elongations. The accuracy o f this model improves as more elements are used.

In general, the finite element method forms a model o f a structure or system which consists 
o f  an assemblage o f small parts or elements. I f the geometry o f each element is kept simple 
then it is much easier to analyze the model than the actual structure. In essence, we 
approximate a complicated solution by a model that consists o f piecewise-continuous simple 
solutions. Elements are called “finite” to distinguish them from differential elements used in 
calculus.

In a heat transfer context, Figure 1.1 might represent a bar with insulated sides, prescribed 
temperature at the left end, and prescribed heat flow at the right end. One might ask for the 
temperature in the bar as a function o f x and time.

3
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Figure 1.2.
(a) A  plane structure o f  arbitrary shape, (b)  a possible finite element model 

o f the structure, (c) A  plane rectangular element showing nodal forces p i  and 
qi. The dashed line shows the deformation mode associated with x-direction

displacement o f node 3.

Figure 1.2 gives us a more complex example based on a plane structure. Suppose we wish  
to determine displacements and stresses caused by load L. Figure 1.2b gives a possible finite 
element model discretization of the problem. The model is constructed o f  elements that consist 
o f  plane areas, some triangular and some quadrilateral. As this example shows, it is often 
desirable to use a number of different types o f elements in the discretization. This is 
particularly true when dealing with complicated models in three dimensional problems. If 
done properly, there is no difficulty in combining different element types; however, the areas 
where these different elements join do require special considerations, as w ell as the possible 
use o f special mortar elements (see section 3). The black dots in the mesh o f Figure 1.2b are 
called nodes or nodal points and they indicate where elements are connected to one another. In 
this model each node has two degrees o f freedom (d.o.f.): that is, each node can displace in 
both th ex  and y  direction. Thus, if  there are n nodes in Figure 1.2b, there are 2 n d.o.f. in the 
model. (In the real structure there are infinitely many d.o.f. because the structure has infinitely 
many particles.) Algebraic equations that describe the finite element model are solved to 
determine the d.o.f. U se o f only 2n d.o.f. in analysis is similar to use o f the first 2n terms o f  a 
convergent infinite series. (In heat transfer, each node has only one d.o.f. -  the temperature o f  
the node. Thus, a finite element model for heat transfer o f n nodes has n d.o.f.) W e see that in 
going from Figure 1.2a to 1.2b the distributed load L has been converted to concentrated forces 
at nodes. The analysis procedure gives a prescription for making this conversion, as w ill be 
shown subsequently.

From Figure 1.2 it may appear that discretization is accomplished simply by sawing the 
continuum into pieces and then pinning the pieces together again at node points. But such a 
model would not deform like the continuum. Under load, strain concentrations would appear 
at the nodes, and the elements would tend to overlap or separate along the saw cuts. Clearly, 
the actual structure does not behave this way, so the elements must be restricted in their 
deformation patterns. For example, if  elements are allowed to have only such deformation 
modes as will keep edges straight (Figure 1.2c), then adjacent elements will neither overlap nor

4
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separate. In this way w e satisfy the basic requirement that deformations o f  a continuous 
medium must be compatible.

An important ingredient in a finite element analysis is the behaviour o f  the individual 
elements. A  few  good elements may produce better results than many poorer elements. W e 
can see that several element types are possible by considering Figure 1.2b. A  function <j>, 
which might represent any of several physical quantities, varies smoothly in the actual 
structure. A  finite element model typically yields a piecewise-smooth representation of (j>. 
Between elements there may be jumps in the x  and y  derivatives o f  <j). Within each element <j) 
is a smooth function that is usually represented by a simple polynomial.

5
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2. Theoretical Background

2.1. Mathematical Concepts
Before proceeding further, let us review some o f the underlying principles and concepts 

involved in the finite element method. W e will restrict ourselves to a discussion o f the finite 
element method as applied to boundary-value problems for linear elliptic equations. Also, for 
the sake of simplicity, we only consider second order problems. In particular, only Laplace’s 
operator for two and three dimensional spaces will be considered, and proofs will only be 
made for the case where the domain has a Lipschitz-continuous boundary. In addition, in order 
to avoid unnecessary overcomplication, let us concentrate on functional spaces consisting of 
piecewise polynomial functions in two or three variables. For a more comprehensive 
discussion o f  finite element theory the reader is directed to [Kardestuncer, 1987], [Johnson, 
1987], [Zienkiewicz, 1989],

W e will begin by examining the functional spaces and related properties that are needed for 
developing finite element models for elliptic problems. After this we will present an important 
formula, Green’s formula, that will be useful in our later analysis o f the method. W e will then 
turn our attention to a detailed examination o f some of the fundamental concepts o f  the 
method.

Hilbert Spaces
In our development o f variational formulations o f boundary value problems for partial 

differential equations we need to specify the functional space, V, that w e will be dealing with. 
In the cases we will be examining, it is most convenient to consider a space V that is somewhat 
larger (contains more functions) than the space o f  continuous functions with piecewise 
continuous derivatives. It will also be necessary to equip the space V with scalar products 
related to the boundary value problem. Specifically, V  will be a Hilbert space.

Before giving a precise definition o f a Hilbert space, let us review some basic principles 
from linear algebra:

For a linear space V, we say that L is a linear fo rm  on F if  L \ V -*• R, i.e., L(v) e  R  for v e  F, 
and L is linear. L is considered to be linear if we have that for all v, w e  V and (3,9 e  R :

L((3v + 6w ) = PL(v) + 6L(w).

Also, we refer to a ( . , . )  as a bilinear form  on F x F  if  a : F  x V -* R, i.e., a (y ,w )  e  R for 
v, w  e  F, and a  is linear in each argument. We consider a to be linear in each argument if  we 
have for all u,v ,w  e  F  and ft, 6 e  R\

a(u,j3v + 6 w ) = f a ( u , v )  + 6a(u,w)

a(Pu + 9v ,w ) = pa (u ,w)  + 6a(v,w).

The bilinear form a ( . , . )  on V x V is said to be symmetric if

a(v, w) = a ( w , v ) Vv,w e  V.

6
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A symmetric bilinear form a ( . ,. ) on V x V is a scalar product  on V if 

a (y ,v ) > 0  Vv e  F, v ^ 0.

The norm ||• ||a associated with a scalar product a ( . , . )  is defined by 

I M I f l  = ( a (y , v ) ) * ,  Vv e  V.

In general, i f  } is a scalar product with corresponding norm ||* ||, then we have by Cauchy’s 
inequality

|(v,w)| < ||v|| • | |w|j.

A  space V is said to be a Hilbert space if V is a linear space with a scalar product and
corresponding norm ||-||, and V is also complete. A space is considered to be complete if
every Cauchy sequence with respect to the norm ||* || converges.

W e will now define some Hilbert spaces which are useful for variational formulations of 
the type o f boundary value problems considered here. For simplicity, let us start with the 
one-dimensional case. Let /  = (a, b)  be an interval, and define:

{ v :  v is defined o n /a n d  J v 2dx < co (i.e., the integral exists)^ .

In other words Z2 OO is the space o f square integrable functions on I. I f  we equip Z2 C/) with
the scalar product

(v,w) = j f vw dx 

and the corresponding norm (the Z,2 -norm):

IMUc/) = Jjfv2 dx = (v,v)±
W e have by Cauchy’s inequality

|(v,w)|  < l|v||i2ml|w||i2(/).

Observe that the scalar product (v ,w) is well defined since the integral (v,w) exists, if 
v, w e  Z2 (/)■ Thus, we have that the space L j i f )  is a Hilbert space.

W e will also define some other Hilbert spaces that will prove useful in the upcoming 
discussion. Define

H X{I) -  { v  : v and v 1 belong to 

and equip this space with the scalar product 

( v ,w ) Hl{[) = l r(yw + v'w')dx 

and the corresponding norm

= ^  j ( y 2 +  ( y ' ) 2d x .

Note: here w e use u' to denote the first derivative o f u. Thus, the space H l ( /) is comprised of  
the functions, v, which are defined on /  and together with their first derivatives are 
square-integrable. In the consideration o f boundary value problems of the form

-u" - f  on I  =  (a , b )

with boundary conditions

u(a)  = u{b) = 0

7
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it is convenient to define the space

H l(I )  =  { v  g H \ I ) ,  v(a) = v(6) = 0 }

and equip it with the same scalar product and norm as TV1 (7).

These concepts are easily extended to cases o f higher dimensionality. For instance, let Cl 
be a bounded domain in R d, d  =  2 or 3, and define

L 2(Cl) = { v  : v is defined on Cl and v 2dx < co -̂ 

H l (CT) = { v  g I 2(Q ) : -g - g L2(Q), z = l , . . . , d }  

with the corresponding scalar products and norms

(v, w)  = vw dx

»v « i . ( 0 ) = o

(v’w )h\ q) =  j j v w  + VvVw]dx

IIv II//‘(D) = ( j a [v2 + |Vv|2]r & )2

where Vv denotes the gradient o f v, i.e., Vv = f ° r d  = 2. Furthermore, we define
the space

Hl(Cl)  -  { v  g ^ ( Q )  : v = 0 on T }

where T  is used to denote the boundary o f  Cl. W e also equip H\(Cl)  with the same scalar 
product and norm as H x(Cl).

Green’s Formula
Let us now mention a certain Green’s formula which will be useful in the sections that 

follow. Starting with divergence theorem (for two dimensional space) we have for a domain £1 
with boundary T :

[ div A dx = f A • n ds Jo Jr
where A = ( A i ,A 2) is a vector valued function defined on Cl,

div A = +
OX\ d x  2

and n =  (n i ,n 2) is the outward unit normal to T. In this case dx denotes the element o f  area 
R 2 and ds the element o f arc length along T. Applying the divergence theorem to A = (vw, 0) 
and A =  (0, vw), we have:

f w ~ -  + v ~ ~ d x  = f vwnidsJd ox j jp

and

f w —  + v ~ d x  =  f vwnids  J n  ex 2 dx2 J r

respectively. Adding these two equations and rearranging terms, we have: 

f w-jr-  + w-jr- dx + f v^p- + v -^ -dx  = f v w n \ + v w n 2 ds.JD dx ( dx2 Jn o x ) dx2 Jf

I f  we let w = -|j-, and denote by Vv the gradient o f  v, i.e., Vv = "&t ) ’ we t îen §et
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following Green’s formula:

f - f ^ # -  + dx = f V v V w A
J Q  ox i dxi dx2 ox2 J Q

= f v - j ^ m + v - ^ - m d s - l  v -pL + -1 r  dxi 1 dx2 J q  8 x l
82w
dx2

dx

= l r < ! > + - t " i ) d s -  f / ( f r + - & )  *
= f v ^ -  ds -  f vAw dx

J r  8n J o

or,

[ Vv • Vw dx =  f v ^ d s -  f VAw d x  (2 .1 .1 )
J q  J r  8n j  n

where we have used the short form, = -f^ n i + - 4 - « 2  for the normal derivative, i.e., the’ dn dx i & 2

derivative in the outward normal direction to the boundary F.

2.2. The Finite Element Model
In order to further aid our understanding and analysis o f the method let us now consider 

some model problems. In the process we will also examine some well known results 
concerning the regularity o f the solution, and some fundamental results concerning piecewise 
polynomial functions. For the time being we restrict ourselves to two dimensional space; 
however, these principals extend naturally to problems in three dimensional space. Also, 
unless specifically stated otherwise, it will be assumed throughout the following that the 
boundary T is Lipschitz-continuous.

Let Q be a bounded convex plane domain with Lipschitz-continuous boundary T, and 
consider the boundary value problem:

-A  u = f  

u =  0

in Q 

on r
(2. 2 . 1)

where A is the Laplacian operator, i.e., Au = (This is the classical Dirichlet

problem for Poisson’s equation with homogeneous boundary conditions.) To help us in our 
discussion o f the properties o f the solution to this problem and others, we introduce some 
notation. Denote by | H | 0 the ^ 2 -norm over Cl and by ||*||fc that in the Hilbert space H k(C2). 
Thus, for real-valued functions v,

IMIo = ( ! Qy2dx) 2

and for k  a positive integer,

HvlU= Z l l ^ v l
\\a\<k

where a is a multi-index (that is, a = (a 1, 0 :2 ), with a \  and a. 2  nonnegative integers),

For example,|ct| = cti + ai,  a „ d D « v .

Ml 2 -  (llvllo + l & T  | | 0 + l i f e - + d2v
8x1

8 2 v

dx \d x2 | |  0

32v
dx2dx\ + 8 2 v

8x1 y0 j

9
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From a mathematical standpoint results for the finite element method are most easily 
derived using as our norms the 77* (£2/norm s. From a computational standpoint, pointwise 
estimates for the error are often more interesting, but they are much more difficult to prove 
than the average estimates provided by the //*(Q)-norms.

The following lemma provides us with an important fact, which will be useful later in 
proving error estimates, it gives us a precise statement o f  what smoothness w e may expect for 
the solution u o f (2 .2 .1 )  given a certain degree o f smoothness o f /

Lemma 2,1
Given any nonnegative integer k, there is a constant C such that f o r  any f  e  H k(Ci) with u the 
corresponding solution o f  (2.2 .1),  we have

CIl/lI k

Hence u e  H k+1(€l).

This fact can be found in [Johnson, 1987, pp.93], it states a well known regularity property 
associated with elliptic equations.

Also consider the following model Neumann problem:

- A u + u = f  in Q.
(2 .2 . 2 )

#  = 0 on ron

where is the outward normal derivative on T. Corresponding to this problem w e have the 
following smoothing property [Kardestuncer, 1987, pp. 1.157],

Lemma 2.2
Given any nonnegative integer k, there is a constant C such that f o r  any f  e  H k{Ci) with u the 
corresponding solution o f  (2 .2.2) ,  we have

< c m „

Hence u e  H k+2(Q.).

These fundamental facts concerning the regularity o f  solutions o f elliptic boundary-value 
problems will provide us with the tools w e need for analyzing the properties of the errors in 
finite element approximations.

In general, we want to approximate the solutions o f (2 .2 .1 )  and (2 .2 .2 )  by certain 
piecewise polynomial functions defined on f l  To avoid overcomplicating matters we will, for 
the time being, concentrate on piecewise linear functions.

Before determining the approximate solutions o f (2 .2 .1 )  and (2 .2 .2 ) ,  let us examine the 
problem o f  approximation o f smooth functions on Q. First we consider smooth functions 
which vanish on T, o f  which the solution u o f  (2 .2 .1 )  is a member. Let us proceed then by 
considering the construction o f a finite dimensional subspace Vh o f  F, consisting o f  a 
triangulation o f  Q. For simplicity we assume that T is a polygonal curve, in which case Q is a 
polygonal domain. If this is not the case, i.e., if  T is curved, we may first approximate T with a 
polygonal curve.
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Figure 2.1.
Triangulation o f  a convex domain Q.

Let Th =  { t i ,  .. .  , T m }  denote a partitioning o f  Q into non-overlapping triangles r„ such that no 
vertex o f any triangle lies on a side o f another triangle and such that the union of the triangles 
determines a polygonal domain fit, a  Q (w here Q is con vex) whose boundary vertices lie on 
T (Figure 2.1). In other words, we have that

& h  =  ( J  "T =  T i  u 7 2  u. • - U t ot .
r e Th

Let h denote the maximal length o f a side in the triangulation Th, i.e., the length o f the longest 
side for the triangle r with the longest side in Th, or

h = ma x(diam(z) )
re  Th

where diam(z ) = diameter o f r = longest side o f t .  Thus, h is a parameter which decreases as 
the triangulation is made finer. Let us assume that the angles o f the triangulation are bounded 
below, independently o f  h and also that the triangulations are quasi-uniform in the sense that 
the triangles r of Th are o f essentially the same size, which may be expressed by demanding 
that the area o f any triangle r  in Th is bounded below by ch2 with c > 0 independent o f  h. 
N ow  define

Vh = { v  : v is continuous on Clh, v |T is linear for t  g Th, v = 0 on T }

where v|T denotes the restriction o f  v to triangle r, i.e., the function defined on r agreeing with 
v on r. The space Vh consists o f all continuous functions that are linear on each triangle r and 
vanish on T. Note that Vh cz V. Let Nh be the number o f interior vertices in the triangulation 
o f  Q, and let be the interior vertices o f Th (we exclude the boundary nodes, since v =  0
on T). A function in v e  Vh is uniquely determined by its value, v(Pj),  at the points Pj  and 
thus depends on Nh parameters. Let <j)j be a function in Vh which takes the value 1 at Pj  but 
vanishes at the other vertices, i.e.,

f  1 if  i = j
M P i )  =*<! = {  n . . .  . . , AT

(  0 i f r  ± j  1 ,J  =  1 , . . . ,N h  

It can be seen that the support o f (j)j (the set o f points x for which <f>j(x) ±  0) consists o f  the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



triangles with the common node Pj. 
admits the representation:

Thus, {$/}^* forms a basis for Vh, and every % in Vh

N h

X(x)  =  £ « / # / ( * )  with aj  =  x (Pj ) ,  x  e  Q h U F.

Given a smooth function v on Q which vanishes on T, we can interpolate v into Vh by defining 
the interpolant of v, h v  in Vh as that function in Vh satisfying

Ihv(Pj)  = v{Pj)  fory = . ,N h

Hence
Nh

h v ( x )  = ^v(Pj)<j)j(x).
/= i

The following error estimates for the interpolant h v  are well known [Johnson, 1987], 
[Bramble and Zlamal, 1970], For a triangulation Th and piecewise polynomials o f degree 
r  > 1, we have

| |7/iV-v| |0 < Chr+1\\v\\ , (2 .2 .3a)

and

where,

\ \Vhv  — Vv|| 0 < Chr||v | r+ 1 (2 .2 .3  b)

IIVvL = gv
dx\

+ dv
dX2 7

and we assume that v is sufficiently regular so that | |v| |2 is finite. The orders of these 
estimates, 0 ( h 2) and 0 ( h ) ,  respectively are the optimal orders to which the functions and their 
gradients can be approximated in Vh in the sense that the powers o f h in (2 .2 .3a)  cannot be 
increased with (2 .2 .3b)  remaining valid for a fixed C and all v e  H 2(Q ) vanishing on T. W e 
will soon see that the piecewise linear Galerkin approximation to the solution o f (2 .2 .1 )  
satisfies similar inequalities.

In considering the approximation o f  the solution o f (2 .2 .2 )  we must consider sets of 
functions Vh which do not necessarily vanish on T. However, details o f such functions and 
their properties are beyond the scope o f  this paper. Please refer to [Zienkiewicz, 1989], 
[Kardestuncer, 1987] for a more complete discussion.

The Ritz Approximation for Dirichlet’s Problem
Let us take note o f the fact that in simple cases o f elliptic equations the variational problem  

can also be considered as a minimization problem corresponding to the classical Ritz-Galerkin 
method that goes back to the beginning o f the 20th century. In the case o f more general 
formulations they correspond to Galerkin methods. In the case o f elliptic equations, for 
example, this variational problem in basic cases is a minimization problem o f  the form:

(M)  Find u g  V such that F(u) < F(v)  for all v g  V

where V is a given set o f  admissible functions and F  : V -+ R is a functional (i.e., F(v)  e  R for 
all v g  V with R  denoting the set o f  real numbers). As we have seen, the functions v in V often 
represent a continuously varying quantity such as displacement in an elastic body, a

12
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temperature, etc. F (v) is the total energy associated with v and (M ) corresponds to an 
equivalent characterization o f  the solution o f  the differential equation as the function in V that 
minimizes the total energy o f  the considered system. In general the dimension of V is infinite 
(i.e., the functions in V cannot be described by a finite number of parameters) and thus in 
general the problem (M)  cannot be solved exactly. To obtain a problem that can be solved  
computationally we replace the set V with a set Vh which consists o f  simple functions 
dependent on only finitely many parameters. This leads to a finite-dimensional minimization 
problem o f the form:

(Mh) Find Uh e  Vh such that F(uh) < F(v)  for all v e  Vh.

This problem is equivalent to a large linear or nonlinear system o f  equations. The hope is 
now  that the solution Uh o f  (Mh ) is a sufficiently good approximation o f  the solution u o f (M),  
the original partial differential equation. Generally Vh is chosen to be a subset o f V, in other 
words Vh c  V, i.e., if  v <= Vh then v e  V. In this case (Mh) corresponds to the classical 
Ritz-Galerkin method. The special feature o f a finite element method as a particular 
Ritz-Galerkin method is the fact that the functions in V h are chosen to be piecewise  
polynomial. One may also start from more general variational formulations than the 
minimization problem (M)  and this corresponds to the so-called Galerkin methods.

To define a Ritz approximation o f (2 .2 .1 )  we first multiply the equation by a smooth 
function 0 which vanishes on T,

-A  u<j) =  f(j>

now integrate over Q,

-  J Au<j> dx = Jf<j> dx.

N ext we apply Green’s formula (2 .1.1) ,

- J  Au<l> dx = |Vw • dx =  J /0  dx

since u and <j) vanish on T. Thus, we obtain, for all such <j>, with (v,w) denoting the inner 
product vw dx in L 2 ( G ),

(Vm, V 0 ) = (f,  0 ) .  (2 .2 .4 )

W e may then pose the approximate problem to find Uh in Vh such that

( y u h, V * )  = ( f , x )  for all x  e  Vh. (2 .2 .4b)

In terms o f the basis introduced above, we may restate the problem as follows:

Find the coefficients £ 1, . . .  ,%nh defining 
N h

H h(x) =
>1

such that
N h

V 0*) = (f, h )  k = \ , . . . , N h  (2 .2 .5 )
j=  1

which is a linear system with Nh equations in Nh unknowns, <; 1, . . . ,  C N h . In matrix form we
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have

A£ = b (2 . 2 . 6 )

with symmetric Nh x Nh matrix A = (ajk) with ajk = (y<t>j, V</>k), vector b =  (bk) with 
bk =  (f,  <l>k), and vector % = (gk) with components %k = (Uh(Pk))• The matrix A  is 
commonly referred to as the stiffness matrix, and the vector b is termed the load vector. When 
the bilinear form is symmetric, as it is in our case, the matrix A is symmetric and 
positive-definite, and thus non-singular so that (2 .2 .6 )  admits a unique solution % (we will 
examine this further in a moment). (Contrast this to matrices arising from finite-difference 
methods over other than rectangular regions.) This is an advantage for the numerical solution  
o f  system (2.2 .6) .  In the choice o f the basis it is o f  paramount importance, again
from a numerical standpoint, that the resulting matrix possess as many zeros as possible.

In practice the elements ajk = (V 0;-, o f  stiffness matrix A are computed by summing 
the contributions from the different triangles:

(V0; , V<t>k) = E ( V f c ,  V 0*)
r eTh

where

(y<j)j, |  V(pj-V(f>k dx.

Note that (^<t>jN(t>k)z = 0 unless Pi  and Pj  are both vertices o f r. Thus, A is also a sparse 
matrix. Let P t, Pj, Pk be the vertices o f  triangle r. Then the 3 x 3 matrix:

W , V ^ ) T ( V 0 i , V ^ ) r (V 0 ,- ,V 0 i)T

W j M A  W j , v f a \  >

sym (V0/t,V0*:)T

is the element stiffness matrix for r. Thus, the global stiffness matrix A can be computed by 
first computing each element stiffness matrix and summing the contributions for each triangle. 
To compute the element stiffness matrix we work with the restrictions o f the basis functions 
(j>i, (j)j and to the triangle r. Denote these restrictions on x as y y/j, y/k, so that each y/ is a 
linear function on r that takes the value one at one vertex and zero at the other two vertices. 
The functions y/i, y/j, y/k then form the basis functions on triangle r. Thus, a linear function w 
on r has the representation

w(x)  =  w{Pi)y/i{x) + w(Pj)y/j(x) + w{Pk)y/k{x) x e  r.

Let us now prove that ( 2 .2 .4b)  has a unique solution Uh in Vh. Consider two solutions u\  
and u\  o f (2 .2 .4b).  Then we have

(V «{ , V * )  =  (f ,  %)  fo r al1 X e  y h

(Vw*, V z )  =  (f ,  z )  fo r a11 X e  Vh

Subtracting these, and choosing % = u\ -  u\ e  Vh, we have

VwjVz dx -  j n V u ^ X  dx = ( f ,  £ )  -  ( f ,  z )

\ QV ( u \ - u h2y j ( u \ - u h2) d x  =  0.

14
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It follows that (ui -  U2 )(x) is constant on Q. This, along with the boundary condition 
u i ~ u 2 =  0 on T gives us u\(x) -  w^OO, Vx e Q, and so the solution is unique. This further 
proves that the matrix A in (2 .2 .6 )  is nonsingular so that (2. 2. 6 )  is uniquely solvable, given  
any right-hand side b.

Since (2 .2 .6 )  is uniquely solvable we can compare the finite element solution

Uh = YjUh(Pi)<i>i{x) 
i= 1

with the solution u o f (2 .2 .1 ) .  From (2. 2 .6) ,  we know that

£  =  \ u h ( P \ )  U h ( P l )  ... U h ( P N h ) Y ,

can be obtained by solving the Nh * Nh matrix equation (2 .2.6) .  Thus, once the matrix 
equation is solved, Uh can easily be determined. The easiest comparison between Uh and u is 
given with respect to the norm [| * [| x. Before we make this comparison, we present the 
following theorem from [Kardestuncer, 1987, pp. 1.160],

Theorem 2.1
\\V(uh — w)II0 < O F -1 I N ,  f o r s  = 1,2.

Two important facts that this theorem gives us are as follows:
1. The finite element solution Uh is the best approximation in Vh (in the sense o f the norm 

|| V * |[ 0 on Vh) o f  the function w; in other words, Uh is the orthogonal projection o f  u onto 
Vh (with norm ||V • ||0).

2. The finite element solution Uh may be computed directly from the “data”/

The above theorem shows that the Ritz approximation Uh imitates the optimality property 
o f the interpolant (2.2. 3b),  which is, o f  course, natural in v iew  o f  fact 1. Note here the fact 
that u minimizes the functional y | |Vv | |o  -  (f,v)  for all v in H l (Q )  which vanish on T. This 
property is imitated by Uh in that Uh minimizes the same functional for functions in Vh- N ow  
let us examine a result presented in [Kardestuncer, 1987, pp.1.161] which show that the Ritz 
approximation has an optimality property with respect to the I,2(f2)-norm. Thus, the Ritz 
approximation has a property analogous to (2. 2 .3a).

Theorem 2.2
\\uh - u \ \ 0 < Chs \\u\\s f o r s  = 1,2.

2.3. Finite Element Spaces
Let us now examine some common finite element spaces Vh. These spaces will consist o f  

piecew ise polynomial functions on subdivisions, or “triangulations”, Th = {r}  o f a bounded 
domain Q c  R d, d  =  1,2,3, into elements r. For d  =  1, the elements t  are intervals, for 
<7=2,  triangles or quadrilaterals, and for <7=3,  tetrahedra and hexahedra.

The finite element space will need to satisfy either Vh c: H l (Q.) or Vh ci i / ( Q )  
corresponding to either second order or fourth order boundary value problems, respectively.
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Since the space Vh consists o f piecewise polynomials, w e have 

Vh c  H \ Q . )  o  Vh c  C°(T2) (2 .3 .1 )

Vh cz FE (Q ) o  Vh c  C ^IY ) (2 .3 .2 )

where, Q = Q U T and

C °(Q  ) = { v  : i ’ is a continuous function defined on

C l ( Q )  = {v e  C°(TT) : D av e  C ° ( Q ) , | a |  =  1 _
(i.e., first derivative is continuous on Q)}.

Thus, Vh cz H l (Cl ) i f  and only if  the functions v e  Vh are continuous, and Vh cz H7(Q.) if  and 
only if  the functions v e  Vh and their first derivatives are continuous. The equivalence (2 .3 .1 )  
depends on the fact that functions v in Vh are polynomials on each r so that if v is continuous 
across the common boundary o f adjoining elements, then the first derivatives, D av,\ct\ =  1, 
exist and are piecewise continuous so that v e  H l (Q). On the other hand, if  v is not 
continuous across a certain inter-element boundary, i.e., v g C ° ( Q ), then the derivatives 
D av,\a\ = 1 do not exist as functions in 1 -2 (0 ) and thus v g /E (Q ). (If v is discontinuous 
across an element side S, then D av, |a| = 1, would be a 5-function supported by S which is not 
a square-integrable function.) In a similar way we see that (2 .3 .2 )  holds.

Until now we have mentioned only triangles when dealing with the subdivision o f the 
domain, but there is no reason why we cannot use elements o f other shapes as well. Although 
w e will continue to deal with triangles in the following, we will be discussing other element 
types in future. Thus, we will now use K  rather then r to denote individual elements in the 
subdivision Th o f Q. (K  is used to denote the more general convex hull.) Let us now turn to 
the task of constructing a finite element space.

To define a finite element space Vh we must specify:
1. The subdivision (triangulation) Th = { K }  o f  domain Q.
2. The nature o f the functions v e  Vh on each K.
3. The parameters used to describe the functions in Vh-

^-Simplex Elements
As was the case previously, when triangles were used, the domain Q c z R n with boundary 

T is subdivided by Th = { K \ , . o f  non-overlapping elements K iy such that

n h =  U  K  = K i  u  k 2 u . .. UK m
Ke Th

with Qh cz Q.

Although other types o f functions are possible it is advisable to restrict ourselves to using 
polynomials. There are two reasons for this: First, this fact was used previously in proving the 
convergence o f  the method, and secondly, this yields a simple calculation for the coefficients 
o f  the linear system. Also, up to this point, w e have only discussed linear polynomials; 
however, there is no reason why we should restrict ourselves to polynomials o f the first degree. 
Thus, we introduce the following notation:

P m  = { v : v is a polynomial o f  degree < r on K y ,  for r = 1,2, . . .

16
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Thus, P i (K ) is the now familiar space o f  linear functions on K,  o f  the form 

v(x) = aoo + aioxi + a 01X2 , x e  K  where ay  e  R.

Further we see that P i ( K )  is the space o f quadratic functions on K. In general, we have:

P r (K ) = {  v : v(x) = 2  dyx\xb2 for x e  K,  where ay  e  r \
0<i+j<r

Note that

d im (P * )=  ( f  )  

where ( ™ ) is given by

( "  )
m\

r\ (m -  r)\ ’

and dim denotes the dimension o f  a linear space. In the linear case, we see that 
{ w  1 , W2 , V ^y ,  where y/i (x) = 1, 1//2 CO = x\ ,  y/s(x) -  X2 , is a basis for Pi (K ) ,  and that 
dim Pi(^f) = 3.

Recall that in R", a n-simplex is a convex hull K o f  n + 1 points a; = ( a y ) ni= 1 G which  
are then called the vertices o f the n-simplex, provided the matrix

A =

a  11 a 12 

<?21 «22

# l n + l

Cl2n+l

d n \  d n2 flnn+1

(2 .3 .3 )

1 1 ••• 1

is regular (equivalently, the n + 1 points a,- are not contained in a hyperplane). Thus,

{ n+l n+l 'I

x = S V i i  0 < X j < 1, 1 < j  < n + 1, = 1 j .

Notice that a 2-simplex is a triangle and a 3-simplex is a tetrahedron. The barycentric 
coordinates Xj = Xj(x), 1 < j  < n + 1, o f any point x & R n with respect to the n + l points aj 
are the unique solutions o f the linear system

n+l

y^ayXj = Xi 1 < i < n
M
n+l

H h  = 1
+1

whose matrix is precisely the matrix A o f  (2 .3 .3 ) .  By inverting this linear system, we see that 
the barycentric coordinates are affine functions o f Xi,Xi, . . . , x n :

n

Xi = 'YjbijXj + b in+1 1 < i < n + l
M

where the matrix B = (by)  is the inverse o f the matrix A in (2. 3. 3). Since Ar(a; ) = Sy, 1 < i,
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j  < n + 1, we have the identity
n+l

P  = for a l lp  & P i .
1=1

Therefore, a polynomial o f  degree < 1 is uniquely determined by its values at the n + l  points 
dj. This observation leads to the definition o f the simplest finite element which we shall call 
n-simplex o f  type 1. In this case the space P k is P i ,  and the set Z k o f  degrees o f freedom, i.e., 
those parameters which uniquely define a function in the space P k , consists o f the values at 
the vertices, which we write symbolically as I k  = -{p{cti), I < i < n + l } ;  see Figure 2.2 for 
the case where n =  2.

Px= P. ;dim P„= 3 
I K={pfa.J,1</<3}

Figure 2.2. Triangle o f type 1.

W e now consider the case where the space o f function is Pi .  Let us define a,y = as
the midpoints o f the edges o f  the n-simplex K. Since Xk{ay) = + <5#), we can establish
the identity

rt+1
P = JL h(2Xi  -  1 )p(di) + XJ 4XiXjp(ay) for a llp  g P 2-

i= 1 i<j
This yields the definition o f a finite element, called the n-simplex o f type 2: the space P k is 
Pi ,  and the set I *  consists o f the values at the vertices and at the midpoints o f  the edges. See 
Figure 2.3 for the case where n = 2.

{ /J= P2; dim PK= 6
£ k  = { P(3f), 1 ^ / ^ 3 ;  

P f a j ) .  1 s / < i s 3 )

a 2

Figure 2.3. Triangle o f type 2

Similarly we can deduce a definition for the n-simplex o f type 3 having two points along 
each edge between the vertices, as well as a point in the centre o f a face. In the case where 
n = 2 we have a triangle with a total o f 10 points.
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With a given triangulation, we now associate in a natural way a space Vh with each type of 
finite element. With triangles o f type 1, a function of Vh is:

1. In the space P k  = P i  for each K  e  Th.
2. Completely determined by its values at all the vertices o f the triangulation, by definition.

Likewise, for triangles o f type 2, a function o f Vh is:
1. In the space P k  = P i  for each K  e  T h .

2. Completely determined by its values at all the vertices and all the edge midpoint o f the 
triangulation.

In other words, a function in Vh is specified by a set I  h o f  degrees o f freedom, the 
function’s values at all the vertices for triangles o f type 1, vertices and edge midpoints for 
triangles o f type 2, etc., in such a way that

u  = (J
KeTf,

Let us now consider an example o f how  to determine the nodal basis functions for P i ( K )  
associated with the degrees o f freedom, i.e., the basis function <j>i e  P i (K ) ,  i = 1,2,3,  such 
that

1 if  i = j

0 if  i * j  i, j  -  1,2,3.

A function v e  P \ ( K )  then has the representation
3

v{x)  = Y j V(a i)(t>i(X) x € K.
(=1

Consider the following example from [Kwon and Bang, 1997, p86-88] with triangular 
elements defined on the x ,y  plane. The linear triangular element shown in Figure 2.4 has three 
nodes, one at each o f the vertices o f the triangle, and the variable interpolation within the 
element is linear in x  andy, i.e.,

v = a i + ajx  + a 3y  

or, equivalently,

(2.3.4)

a i

a 3

a3

(2 .3 .5 )

where, a,- are constants to be determined. The interpolation function (2.3.4) ,  should represent 
the nodal variables at the three nodal points. Substituting the x ,y  values at each nodal point 
gives:

V i

V2 =

V3

1 x i  y i

1 x 2 y i  

l x 3 y 3

fli

a 3

as

(2 .3 .6 )

where, x,- and y* are the coordinate values at the zth node and v, is the nodal variable as seen in 
Figure 2.4.
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Figure 2.4.

Inverting the matrix and rewriting (2 .3 .6 )  gives

X2F3-X3F2 x i y \ - x \ y i  x i y 2 - x 2yi  

y 2 - y 3  y 3 - y i  y i - y 2  

* 3  - X 2  X I  - X s  X 2 - X \

a i
_ 1 

2ACl2

a 3

Vi

V2

V3

(2 .3 .7 )

where

A = y  det

1 x\ y i 

1 x 2 y 2 

1 x 3 y 3

Thus, the magnitude o f A is equal to the area o f the triangular element. (Note that its value is 
positive if the node numbering is counter-clockwise and negative otherwise.) For the finite 
element computation, the element nodal sequence must be in the same direction for every 
element in the domain. Substitution o f (2 .3 .7)  into (2.3. 5) gives

v = <t>i(x,y)vi + (j>2 (x ,y )v2 + 0 3(x,y)v3

where <j>i(x,y), i =  1 ,2 ,3 are the shape functions for a linear triangular element:

h ( x , y )  = - ^ - [ (xxy i  - x 3y 2) + &  - y*)x + f a  - x 2)y] 

fa (x ,y )  = -  w )  + 0 3 - y i ) x  + (xi  - x 3)y]

f a f a y ) 2A [ (xi y2 - x 2y i )  + (yi - y 2) x +  (x2 - x i ) y ]

The functions <pi(x,y) then satisfy the conditions

M W )  =  5 ‘j

and

I >  = 1
i= 1
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For example, if  the triangle K  has vertices at: (1 ,0 ), (0 ,1 ) and (0 ,0 )  then 

0  l = x 

fa =y
03 =  1 - x - y  

since A =  y .

Hypercube Elements
Another useful shape for finite elements in two dimensional space is the rectangle. In 

particular, if  it so happens that the set Q is a rectangle then it may be conveniently 
“triangulated” by finite elements which are rectangles with sides parallel to the sides of Q .  In 
the case of three dimensional space, these ideas extend naturally to hexahedral elements. For 
simplicity w e will restrict our discussion to hypercubes (squares in two dimensional space, 
cubes in three dimensional space).

In the following we let Qk denote the space o f all polynomials o f  degree < k with respect to 
each o f the n variables Xi,X2 , ... ,x«; i.e., a polynom ialp  e  Qk is o f the form

p(x  l , X 2 , . . . , X „ )  = Yl, a «iai---a„xV X2 1 ■ ■ - Xu" ! < / < « ,  Y a i ^  k

Observe that d im (2,t) = (k + 1)" and that we have the inclusions

Pk  c: Q k

Note that, for example when k =  1, we call the functions in Pi  linear functions o f Xi,X2 , .. .  , x n 
and the functions in Q\  bilinear functions o f X\,X2 , . . .  , x n. Denoting by K  the unit hypercube 
[0,1 ]” o f R", we define its subset

we deduce the definition o f finite elements which we call hypercubes o f type k. The following  
figures show the cases k =  1 ,2 with n -  2, as well as the notation used for the points o f the 
corresponding sets 3*.

for any given integer k  >  1. In view  o f  the identity

r  \
for all p  e  Qk
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Figure 2.5. Square o f type 1.

a3

\  PK-  Q2: dim §  = 9 
^  I K = {p{a;), 1 < / s 9 )

as

a2

Figure 2.6. Square o f type 2.

For example, le tK be a square with vertices a,, i = 1, . . .  ,4 , and define

Q \ ( K ) = {v : v is bilinear on K, i.e.,

v(x ) =  aoo + # 10X 1 +  a o i^ 2  +  # 11X 1X2 , x e  if, and a,y e  i?}

Then a function v e  Q i( K )  is uniquely determined by the values v(# ,), i =  1, . . .  ,4. Further, if 
i f i  and K 2 are two squares in Th with the common side S  and the functions Vil^ and V2 Ik 2 
agree at the end points o f S then Vi -  V2 = 0 on S since Vi -  V2 varies linearly on S. W e may 
now define

Vh = { v  g  C ° ( Q )  : v\K g  S i  ( if), V if  g  Th}

assuming that Th = {K }  is a subdivision o f Q into non-overlapping squares such that no vertex 
o f  any square lies on a side o f  another square. Thus, values at the nodes may be used as global 
degrees o f freedom.
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General Properties of F inite Elements
With the previous examples in mind, w e can now give a general definition o f a finite 

element. A finite element in R n is a triple (A ,P ,Z ) where the data K, P,  and E have the 
following significant relationships:

1. A  is a compact subset o ff? ” with a non-empty interior and a Lipschitz-continuous 
boundary.

2. P  is a finite-dimensional space o f real-valued functions defined over the set K, of 
dimension N.

3. E is a set o f  N  linear forms <p,, 1 < i < N, defined over the space P,  in such a way that the 
set I  is / ’-unisolvent in the sense that given any real scalars a;, 1 < i < N, there exists a 
unique function p  e  P  which satisfies

(piip) = cti 1 < i < N

Equivalently, there exist N  functions p,- g F , 1 < i < N, which satisfy

<Pj(Pi) = <5y \ < i < N

which are called the basis functions o f the finite element, since we have the identity
N

P  = Yh<Pi(p)Pi for a llp  £ P
f= l

In light o f the definition o f  a finite element, let us go back over the examples seen  
previously. W e have seen that K  could be a n-simplex in R n, i.e., a triangle in R 2 or a 
tetrahedron in f?3, or K  could be a hypercube in R", i.e., a square in R 2 or a cube in f?3. These 
are special cases o f straight finite elements, i.e., finite elements for which the set is a 
polyhedron in R n. There exist also curved finite elements, i.e., those whose boundary is 
composed o f curved surfaces; however such elements are beyond the scope o f this work. 
Commonly, the sets 2  o f degrees o f  freedom consist o f the linear forms:

<Py ■ P -+ P ( “ ij)
where the points ay  are the points belonging to the finite element. For example, in the case of 
the linear triangle we have 1 < i <  3, and the index j  is dropped. For the quadratic triangle we 
again have 1 < i <  3 for the vertices, and we have 1 < i < j  <  3 for the midpoints o f edges. 
Similarly, for the rectangular elements we have 0 < i, j  < 1, and 0 < /, j  <  2, for the linear 
and quadratic cases respectively. Note that degrees o f freedom can also be associated with 
partial derivatives on the element. Such elements are referred to as Hermite finite elements. 
However, in this work we confine ourselves to only Lagrange finite elements, elements not 
consisting o f partial derivatives at the points. W e refer to the points ay  as the nodes o f  the 
finite element.

The Lagrange finite elements ( K , P k , ^ k )  which we have considered all share the following  
crucial property: Let <pi e  Ek  be o f the form <p,- : p  -» p (a ,). Then the associated basis 
function pi  is identically zero on any side o f  the finite element which does not contain the node 
a t. This fact has the following three important consequences:

1. Let A denote a face o f K. Then the restriction to A  o f a function in P k  solely depends 
upon the degrees of freedom whose associated nodes are on A.

2. Any basis function in Vh constructed from the basis functions o f the finite elements is
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automatically continuous over Q.
3. If  we are to construct a subspace o f H q(C1), then it suffices that we equate to zero the 

degrees o f freedom whose associated nodes are boundary nodes, i.e., those which lie on T. 
In other words, if  we let Vh denote the finite element subspace “without boundary 
condition”, i.e., Vh is an approximation o f the space then the space

Voh = { v  £ Vh; Va g  E0/, = ^ n f ,  v(a) =  0 }

is an approximation of the space H q(C1), where w e have identified I/, with the set o f all 
nodes o f Th. As an important consequence, the ^-interpolate o f  a sufficiently smooth 
function v vanishing on the boundary T is also the Voh-interpolate o f v.

Continuity o f Basis Functions in Pk
Let us show that the functions in Vh are continuous over the set Cl. W e will consider the 

case o f triangular meshes and quadratic polynomial basis functions, but a similar argument can 
be used to show continuity for other cases. Since the function v e  Vh is already continuous in 
the interior o f each element, it it is sufficient to check two functions v| k x and v| k2 across a 
common inter-element side S  o f  two adjacent triangles K \  and K 2 . Let t denote the abscissa 
along an axis containing the segment S =  \_bi, bk~\. The two functions v \k i  and v \k 2 along S 
are quadratic polynomials o f  t whose values coincide at the three points bi, bj, bk\ therefore, 
they are identical and we conclude that v e  C°(C1).

Affine Transformations and Reference Elements
W e now come to an essential idea which we will apply to an example. Consider a family 

o f triangular elements o f  type 2 (quadratic). Our aim is then to describe such a family as
A  ^

simply as possible. Let A  be a triangle with vertices a, and midpoints o f the sides 

fly = (a'̂ ay), 1 < i < j  <  3, and let

£  = {p(jOi), 1 <  / < 3, pia t j ) ,  1 < i < j  < 3 } ,

K,P,  E j with P  = P 2 is also a triangular element o f type 2.

Given any finite element in the family, there exists a unique invertible affine mapping 

F k  : x  g R 2 -*• F k (x ) = Bk X + e  R 2,

i.e., with Bk  an invertible matrix and br. a vector inf?2, such that 

FK(ai)  = di 1 < i < 3.

Then it automatically follows that

FK(aij) = fly I < i < j  <  3.

This is so because the property for a point to be the midpoint o f  a segment is preserved by an
^  A  ^

affine mapping. Once we have established a bijection x  e  K  -> F k ( x )  g  A  between the points
A

of the sets K  and K, it is natural to associate the space 

P k  =  : K  -*• R; p  = p  ° F ^ ,  p  e  P  j>
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/ \ _
with the space P. Then it follows that 

P k  =  Pi.
In other words, rather than prescribe such a family by the data ( K , P k , ^ k ) ,  it suffices to give

/ A  A  A \

only one reference finite element I K,P,~L ] and the affine mappings F k occurring in the 

family. Then we have the following relations 

K  = F k ( k )

Zk  =  { p { F Km \  1 <  i <  3, p ( F K(aij)),  l < i < j < 3 }

P k =  ^ p  : K  ->  R, p  =  p  o f £ ,  p  g  

From this example, let us now derive the following general definition. Two finite elements
/  A  A  A \

I K,P,  I ) and (K,P ,Y .) as defined in above are affine-equivalent if  there exists an invertible 

affine mapping

F  : x  e  R n F ( x )  =  Bx +  b g R n 

such that the following relations hold 

K  = f ( k )  

ay = F(ai j )
A

whenever the nodes ay and ay  occur in the definition o f the set E or Z, respectively. Also,

P  =  ^ p  . K  -+  R\ p  =  p  o F ^ x, p  g  

W e shall constantly use the bijections
A

x g  K  -*■ x  g  K  where x = F(x )
A  ^  i

p  g  P  -> p  g  P  where p  = p  ° F~L

p(x )  -  p ( x )  for all x = F (x )

between the points and functions associated with two affine-equivalent finite elements

(a  a  a \

K,P,Y,  J and (K , P , I .). A  family of finite elements is called an affine family if  all its finite

elements are affine-equivalent to a single representative finite element, which is then called the 
reference finite element o f the family.
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a1 a12 a2

Figure 2.7. Two affine-equivalent triangles.

Let us again consider the construction o f the subspace Vh. For the sake o f brevity, our 
discussion will be essentially concerned with the two dimensional case, but all the subsequent 
considerations apply equally well to arbitrary dimensions. Consider a triangulation Th o f  a 
polynomial domain Q  in i?2, consisting of finite elements ( K , P k , ^ k ) ,  K  e  T h ,  which are all 
o f  the same (affine-equivalent) type. For instance, consider a triangulation consisting o f  
triangles o f type 1. A  space Vh is then associated with such a triangulation. O f course, if  K\  
and K i  are two adjacent finite elements, some compatibility conditions must be satisfied by the 
two sets Z^, and Z^2, if  we are to define unambiguously a set Z/, o f  degrees o f freedom o f  the 
space Vh, which are now linear functions over the space Vh such that

Z* = (J  Z*.
K e T h

When the degrees o f freedom are element nodal points, then the degrees o f freedom o f  the 
space Vh are o f the following form:

(pj,h : v -> v(bj),

where the points bj are called the nodes o f space Vh (to be distinguished from the vertices o f  
the triangulation). If we write the set Zh as

2 * =
then the basis functions Wj, 1 < j  < M,  o f the space Vh are naturally defined by the relations

<Pi,h(Wj) = Sy 1 < i < M.

The basis functions Wj o f  the space Vh can now  be derived by “patching together” the basis 
functions o f each finite element. And as we have seen, if  the triangulation consists entirely of 
elements from the same affine family, only the basis functions for a single reference element 
are needed to accomplish this.
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Three Dimensional Elements
As stated previously, the concepts that have been presented for the two dimensional case 

can be easily extended to three dimensional space. Without restating the theory, we will now  
briefly examine two o f the most common three dimensional shapes for finite elements, 
analogous to the two dimensional triangle and rectangle elements, the tetrahedron and the 
hexahedron respectively.

Mirroring the two dimensional case, we have that a finite element in R 3 is a triple 
(K ,P k , ^ k ) where the data K, P k , and Ea; are defined as follows:

1. K  is a compact subset o f R 3 with a non-empty interior and a Lipschitz-continuous 
boundary.

2. Pa; is a finite-dimensional space o f real-valued functions defined over the set K,  of 
dimension N.

3. Ea; is a set consisting of the degrees o f freedom for the element. In our case, since we 
continue to work with only Lagrange elements, the degrees o f freedom are function values 
at the nodes o f the element.

Tetrahedral Elements

The extension o f 2-simplex (triangular) elements to three dimensional space leads to 
3-simplex (tetrahedral) elements. For the simplest o f such elements, which we will call the 
3-simplex o f type 1 or 4-node linear tetrahedral element, we have that P k  is P i, and Ex 
consists o f the values at the four vertices o f K, i.e.,/> (a,), 1 < i <  4, (Figure 2.8).

P k  =  P i; dim(PA:) = 4 

Zk  = { p (a ,) ,  1 < i <  4 }

Figure 2.8.

If we also consider the nodes ay  at the midpoints o f edges between nodes a,- and 0 / we 
come to the next type o f tetrahedral element, the 3-simplex o f type 2, or 10-node quadratic 
tetrahedral element. In this case P k  is P i ,  and E a; consists o f the values at the four vertices, 
i.e., p(at) ,  1 < i < 4, as well as the values p{ay ) ,  1 < i < j  <  4 at the edge midpoints (Figure 
2.9).
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f  P k =  ^ 2 ; dimCPx) = 10 

< 1 K = { p (a i ), 1 < i < 4;

p ( a ? ) , l  <  i < j  <  4>

Figure 2.9.

Hexahedral Elements
We now turn our attention to the extension of two dimensional rectangular elements to the 

three dimensional hexahedral elements. For simplicity, we will only consider the case of 
hypercubes. For the simplest o f such elements, which we will call the cube o f type 1 or 8-node 
linear hexahedral element, we have that Q k  i s  Q\,  and T-k  consists o f the values at the eight 
vertices o f K, i.e.,/j(a,-), 1 < i < 8, (Figure 2.10).

f  Qk  = Q u  dim (QK) = 8

I k =  { p { d i ), 1 <  i <  8 }

■1. 1

. - 1 )

Figure 2.10.

In the case o f the hypercube o f type 2, or 27-node quadratic hypercube, we add not only 
nodes at the midpoints o f edges, but also nodes at the middle o f each o f  the six square faces of 
the element, as well as a node at the centre o f gravity o f  the element (centre of the interior of 
the element). For simplicity we shall just number these nodes from 1 to 27, following a
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counter-clockwise order starting on the base. In this case Q k  is Qi,  and Z k  consists o f  the
values at the twenty-seven nodes, i .e . ,p(ai),  1 < i <  27 (Figure 2.11).J Q k  =  Qi ,  dim {Qk ) =  27

I s  K = { p(a«), 1 < i <  2 7 }

17*

10 "

2

Figure 2.11.

2.4 Solving Linear Systems
For the problems we have discussed, the discretization o f partial differential equations 

using the finite element method leads to a linear system o f  equations. In particular, the use of 
localized basis functions in the finite element approach results in a matrix for the system which  
is sparse, as well as positive definite. W e now turn our attention to methods for solving such 
systems. W e also note that sparsity o f the system can be exploited to reduce the storage and 
work required for solving the systems for two and three dimensional problems to much less 
than the 0 ( n 2) and 0 ( n 3), respectively, that might be expected in a more naive approach. W e 
will begin our discussion of solvers with an examination o f  direct methods, specifically we 
will look at Gaussian elimination and Cholesky factorization. Following this, we will turn our 
attention to iterative methods, the Gauss-Seidel and conjugate gradient methods in particular. 
During our discussion we will also point out special considerations for improving efficiency 
based on the properties o f the linear systems involved. Before proceeding, we mention that 
other methods for solving linear systems, such as Multigrid [McCormick, 1989], [Douglas,
1997] and Fourier methods [Henrici, 1979], [Swarztrauber, 1984], are also applicable to 
solving the systems in question. Although these methods can achieve near optimal 
computational efficiency, a detailed discussion o f their theory and implementation is beyond 
the scope o f this thesis. For a further examination of methods for solving linear systems the 
reader is directed to [Johnson, 1987], or general texts on numerical methods or scientific 
computing such as [Rao, 2002], and [Heath, 2002],
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Direct Methods - Sparse Factorization Methods
First we briefly consider direct methods for solving large sparse linear systems. Gaussian 

elimination and its variants such as Cholesky factorization for symmetric positive definite 
matrices are applicable in our case, but special considerations should be made in order to make 
the solution process as efficient as possible. In particular, since the matrix is sparse, we should 
take care to only store and operate on the nonzero entries o f the matrix. Thus, the standard 
two-dimensional array, often used for dense matrices, is not suitable in our case. Instead, 
special data structures are needed for efficient storage o f  the system matrix.

For one-dimensional problems, the equations and unknowns can usually be ordered so that 
the nonzeros are concentrated in a relatively narrow band, which can be stored efficiently in a 
rectangular two-dimensional array by diagonals. Algorithms are available for reducing the 
bandwidth, if necessary, by reordering the rows and columns o f the matrix. But for problems 
in higher dimensional spaces, even the narrowest possible band often contains mostly zeros, 
and hence any type o f two-dimensional array storage would be prohibitively wasteful. In 
general, sparse systems require data structures in which individual nonzero entries are stored, 
along with the indices required to identify their locations in the matrix. Explicitly storing their 
indices not only incurs additional storage overhead but also makes arithmetic operations on the 
nonzeros less efficient due to the indirect addressing required to access the operands. Thus, 
such a representation is worthwhile only if  the matrix is sufficiently sparse, which is often the 
case for very large problems arising from partial differential equations (PDEs) and many other 
applications.

When applied to a sparse matrix, L U  or Cholesky factorization can be carried out in the 
usual manner, but taking linear combinations o f  rows and columns to annihilate nonzero 
entries can introduce new nonzeros in locations in the matrix that were initially zero. Such 
new nonzeros, called fill, must then be stored and, depending on their locations, may 
eventually be annihilated themselves in order to obtain the triangular factors. In any case, the 
resulting triangular factors can be expected to contain at least as many nonzeros as the original 
matrix and usually a significant amount o f fill as well. The amount o f fill incurred is very 
sensitive to the order in which the rows and columns o f the matrix are processed. Different 
enumerations o f the nodes may give different degrees o f fill. Thus, one o f the central problems 
in sparse factorization is to reorder the original matrix to limit the amount o f fill that the matrix 
suffers during the factorization. Exact minimization o f the fill turns out to be a very hard 
combinatorial problem (NP-complete), but heuristic algorithms are available that do a good job  
o f limiting fill for many types o f problems. To illustrate sparse factorization, consider the 
following simple example. Suppose a two-dimensional problem is discretized over a 3 x 3 grid 
consisting o f four square elements (Figure 2.12). If a pair of nodes in the mesh are neighbours 
(are connected by a line or edge), then both appear in the same equation in the system.
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Figure 2.12. 3 x 3  grid mesh
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Figure 2.13. Example o f nonzero patterns for sparse 
matrix, A, and fill patterns for its Cholesky factor L.

x

x

This connection can be seen by the nonzero pattern in the matrix A in Figure 2.13, where x 
represents a nonzero value. The diagonal entries o f  the matrix correspond to the nodes in the 
mesh, and the nonzero off-diagonal entries correspond to the edges in the mesh (i.e., ay  *  0 iff  
nodes i and j  are neighbours). Note that the matrix is banded, but it also has many zero entries 
inside the band. Specifically, the matrix is block tridiagonal, with each nonzero block being 
either tridiagonal or diagonal, as expected for a row- or column-wise ordering o f a 
two-dimensional grid. Cholesky factorization of the matrix in this ordering fills in the band 
almost completely, as shown by matrix L in the above figure, where fill entries (new nonzeros) 
are indicated by +.
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Gaussian Elimination and Cholesky’s Method

W e begin our examination o f  direct methods by recalling that using Gaussian elimination 
to solve a linear system produces a LU-factorization of A, i.e.,

A = L U ,  ( 2 . 4 . 1)

where L = {Uj) is a lower triangular M  x M  matrix (i.e., l l} =  0 if  j  > i), and U = (u,j) is an 
upper triangular matrix (i.e., =  0 if  j  < i).

From the factorization (2 . 4 .1)  it is easy to solve the system At, = b by using forward and 
backward substitution to solve the triangular systems:

Lrj =  b,

m  = n.
Recall that for Gaussian elimination, XJ = A ^  where the matrices A /k), k -  1 , . . . M,  are 
successively computed as follows:

(i) A (1) = A,

(li) Given A'k) o f the form

a (k)a u

0's

a ik)a kk

,{k)
a nk

a {k)a \n

l {k)l kn

a {k)Unn

determine A ̂ +1) = as follows

(k+l)  (it)
a  ■■ =  a  ■■

lJ  u  ’

(k)
(k+ d  (k) _  a ik (k)

u ij u ij , k) u kj
a kk

(*)

i =  or

j  = 1 , . . . , k -  1,

i = k + 1 , . . . ,  M, and

j  = k , . . . ,M ,

under the assumption that a kk ±  0 

Also recall that L = (/y-), where

la = 1,

l i k  =

(k)
<Ak

(/t) ’
akk

Uk  =  0 ,

i =  1 , . . . , M,

i = k + \ , . . . , M ,  k = \ , . . . , M ,  

if  i < k.

It can be shown, [Wendroff, 1966, pp. 124-125], that if  A is a symmetric positive definite 
matrix then A has a triangular decomposition which can be obtained by Gaussian elimination
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and a** > 0, k =  1 . Thus, Gaussian elimination can be performed without pivoting. In
addition, it is not necessary to perform pivoting to prevent numerical instability due to small 
pivot elements a**. Also, w e may perform the Gaussian elimination in any desired order. We 
w ill see that different direct methods for solving the linear system of equation (2 .2 .6)  
essentially differ in the choice o f the order o f the elimination. Alternatively, in the case where 
w e perform the elimination according to the ordering o f the nodes, these methods only differ in 
their choice o f enumeration o f the node.

Since A is symmetric positive definite we may alternatively factor A as 

A = BB t

with B = DL  and where D  is a diagonal matrix with diagonal elements

dkk = J a $ , k =  1

and L and af^ are obtained through Gaussian elimination as above. Here B T denotes the 
transpose o f the matrix B. The elements by  o f  matrix B can alternatively be determined using 
Cholesky’s method as follows:

b n  =  

b n  =

f a n  > 
an
b  i i

and fory = 2 , . . . ,  M,
M

b j j  =  %  -  b jk

a y -  zL bikbjk

b Jj

Efficiency Considerations - Operation Counts and Band Matrices

To see this, let us analyze a somewhat more straightforward
The number o f arithmetic operations to obtain an LU-factorization o f a dense M  x M

JY3
matrix is o f the order ^in

version of the algorithm for Gaussian elimination:

A lgorith m  LUFactorization by Gaussian Elimination
(1) f o r  k = \ t o m - 1
(2) i f  akk = 0 then stop
(3) f o r  i = k +  1 to m
(4) lik =  a i f  akk
(5) end-for
(6) f o r  j  -  k + 1  to m
(7) f o r  i = k + 1  to m
(8) ay likakj
(9) end-for

(10) end-for
(11) end-for

(loop over columns)
(halt algorithm i f  pivot  is zero) 

(compute multipliers f o r  
current column)

(apply transformation to 
remaining submatrix)
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Since the time required for a computer to carry out floating-point multiplications and 
divisions is much greater than that needed for additions and subtractions we will confine 
ourselves to counting only the number of multiplicative operations. Firstly, let us analyze the 
division that occurs at line (4). The first time we go through the for-loop (at line (3)) k  w ill 
equal 1, so line (4) will be executed m -  1 times. The next time through the algorithm k  will be 
2, so line (4) will be executed m -  2 times, and so on until the last time when it is only 
executed once. Thus, the total number o f divisions is:

( OT- l )  + ( m - 2 ) + . . . + 2  + l =  Z i  =
i= 1 2

Now, let us consider the number o f times the multiplication on line (8) is done. Again we note 
that the first time we get to the for-loop at line (6) k will equal 1, so this loop will execute 
m -  1 times. In addition, the loop at line (7) will also be executed m -  1 times the first time it 
is encountered. However, since the loops are nested, the division at line (8) will in fact be 
executed a total o f (m -  1 )(m  -  1) times. Following the same argument as above, we see that 
the total number of multiplications is:

(m _ 1 f  + (M _ 2)2 +, .. +2; + 1 ̂  g  fl = - -1 Wm -  1) I 1) .
1=1 6

Finally, adding the two equations we have

( m - \ ) m  m ( m -  l ) ( 2 ( m -  1 ) +  1) m{m  -  \ ) { m  + 1) 0 (m 3)
2 + 6 " 3  3 ’

giving the expected order o f operations.

I f  the matrix is sparse, then it is possible to greatly reduce the number o f operations by 
taking advantage o f  the sparsity. This is particularly easy to do if  the matrix A is a band matrix 
(Figure 2.14), i.e., there is a number d, the band width, such that

a.ij =  0 if |i -  j \  > d.

Q‘s

M x M
d

Figure 2.14. Sparse matrix with bandwidth d.

To factor a n i l f x M  matrix with band width d  one only needs o f order M d 2 operations.
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When aij = a(<pi ,(pj) ,  where a ( . ) is a bilinear form and {q> \ i s  a basis for a 
finite element space Vh,  we have that

d  = max{|z -  j |: <p( and cpj are associated with degrees o f  freedom

belonging to the same element}.

Thus, we see that the bandwidth depends on the chosen enumeration o f  the nodes in the finite 
element mesh. In order to make the Gaussian elimination as efficient as possible the nodes 
should be enumerated in such a way as to minimize the bandwidth of the system matrix.

For example, consider the node enumeration for the mesh in Figure 2.15:

5

4

3

2

Figure 2.15

With nodes enumerated in this manner we have a bandwidth o f  d  = 6 (which is the minimal 
bandwidth for this case, assuming only one degree o f freedom per node). If, on the other hand, 
w e were to enumerate the nodes in a horizontal manner, we would have a bandwidth o f  
d  =  11. A number o f methods, such as the Frontal method [Duff, 1996], [Irons, 1970] and the 
Nested Dissection method [George, 1973], are available which attempt to enumerate the nodes 
and perform the elimination process as efficiently as possible.

Efficiency Considerations - Sparse Matrix Storage

Also note that if  the matrix A is a symmetric matrix then only the upper or lower triangular 
portion o f A  needs to be stored. Thus, if  A = (ay)  is a symmetric band matrix with a 
bandwidth of, for example, 2, then one method o f  storage is to store A as a vector a = (a t ) 
with the entries of the columns in the band stored in consecutive order. For example, consider 
the following case where the entries o f A have been renumbered according to the sequence in 
which they would be stored as a vector.
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fll fl2 fl4 0 0 0

<33 fl5 fl7  0  0

as as 0

a9 '• <3«-2

,sym <3n-i 

<3 n

O f course, in order to properly reconstruct the matrix A, we would also need to store 
information regarding where the columns o f A begin and end. One way to accomplish this is 
to store a second vector c =  (c*) which consists o f indices indicating the entries o f a which 
correspond to the first entries of a column in A. For the above example we would have:

-[ 1 2  4 7 n - 2  ]•

W e would also need to store some additional information, such as the bandwidth number, in 
order to properly reconstruct the columns o f A. Also note that this method would not be 
suitable if there were a large number o f  zero entries within the band. If this were the case, then 
w e would store only the nonzero entries in a, and w e would require a third vector r =  (r*) to 
store the row indices of the nonzero elements. This more general case corresponds to the 
Harwell-Boeing format for sparse matrix storage [Duff, Grimes, and Lewis, 1992],

Iterative Methods For Linear Systems
The direct methods considered above compute the exact solution of the problem, subject 

only to the effects o f rounding error, in a finite number of steps. This seems a desirable 
property, but the price paid in work and storage can be prohibitive for very large linear 
systems. By contrast, iterative methods for solving linear systems begin with an initial 
estimate for the solution, x (0), and successively improve on it until the solution is as accurate 
as desired. (Note that we will use parenthesized superscripts for the iteration index.) In 
theory, an infinite number of iterations might be required to converge to the exact solution, but 
in practice the iteration terminates when some measure o f the error, typically some norm o f  the 
residual, is as small as desired. Providing they converge rapidly enough, iterative methods 
have several significant advantages over direct methods.

The simplest type o f iterative method for solving a linear system Ax = b has the form

x (A+1) = G x ^  + c

where the matrix G and vector c are chosen so that a fixed point o f  the equation x  =  Gx + c is a 
solution o f Ax = b. Such a method is said to be stationary if  G  and c  are constant over all 
iterations.

One way to obtain a suitable matrix G is by splitting, in which the matrix A  is written as 

A = M - N

with M  nonsingular. We can then take G  =  M'~1N  and c = M~lb, so that the iteration scheme 
becomes

x (k+1) = m - in x W + M~lb
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or equivalently,
M xm )  = NxW  + b

so that we solve a linear system with matrix M  at each iteration. Formally this splitting scheme 
is a fixed-point iteration with iteration function

g{x)  = M~lNx + M r xb

whose Jacobian matrix is

G(x) = M - lN.

Thus, the iteration scheme is convergent if the spectral radius

p ( G )  = p(M~lN)  < 1,

and the smaller p(G) ,  the faster the convergence.

For rapid convergence, we should choose M  and N  so that p(M~lN ) is as small as possible. 
There is a trade-off, however, as the cost per iteration is determined by the cost o f solving a 
linear system with matrix M. As an extreme example, i f  M  = A, then the scheme converges in 
a single iteration, but that one iteration may be prohibitively expensive. In particular, M  is 
chosen to approximate A in some sense, but is usually constrained to have some simple form, 
such as diagonal or triangular, so that the linear system at each iteration is easy to solve.

Gauss-Seidel Method
The Gauss-Seidel method has an advantage over some other iterative methods, e.g., Jacobi 

method, in that, as each new component o f the solution x f +^ is computed for the Gauss-Seidel 
method, it is immediately used in the next equation to determine additional values. Thus, 
if  the solution is converging, the best estimate will always be employed. The process starts by 
choosing an initial guess for x°. Generally, the initial guess will simply be the zero vector, 
unless some approximation o f x is known a priori. With the initial vector chosen, subsequent 
x ’s are computed by:

(£+1) j< i  j > ‘ ■ 1r- =  ------- ------------------- -------------  1 = 1  n1 an 1

or, using matrix notation for the system  

Ax = b

we have:

*(*+1) = £ -1 (6  _  £x(*+i> -  Ux{k))

= (D + L)~l ( b -  U x& )

where,

D  is the matrix consisting o f  the diagonal entries o f A.

L is the matrix consisting strictly o f the lower triangular portion o f A.

U  is the matrix consisting strictly o f the upper triangular portion of A.

This process for calculating x ^  is repeated until the solution converges to a prespecified
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tolerance percentage e s- i.e., the process repeats until

100% < £*\£a. i \  —
X <J)

Y (J)x i
for all i, where j  and j  — 1 are the present and previous iterations respectively.

In addition to a fast rate o f convergence, the Gauss-Seidel method has the added benefit 
that duplicate storage is not needed for the vector x, since the newly computed component 
values can overwrite the old ones immediately.

Convergence Criterion for Gauss-Seidel Method
Note that the Gauss-Seidel Method can sometimes suffer the problem o f  nonconvergence, 

or sometimes it will only converge very slowly. A  sufficient but not necessary condition for 
convergence is that the system be diagonally dominant, i.e.,

n

\ a u | >
j=  i

That is, the diagonal element must be greater than the off-diagonal elements for each row.

Conjugate Gradient Method

We now turn from stationary iterative methods to methods based on optimization. If A is 
an n x n symmetric positive definite matrix, then the quadratic function (where we use v T to 
denote the transpose o f  vector v)

<j)(x) = - jXTAx -  x Tb

attains a minimum precisely when Ax = b. Thus, we can apply optimization methods to obtain 
a solution o f  the corresponding linear system. In general, optimization methods progress from  
one iteration to the next by performing a one-dimensional search along som e search direction 
s k̂\  so that

Xk+ 1 =  Xk + ask
where a is a linear search parameter that is chosen to minimize the objective function 
<j)(Xk + ask)  along Sk.

We note some special features o f such a quadratic optimization problem. First, the 
negative gradient is simply the residual vector:

-V^»(x) = b -  Ax = r.

Second, for any search direction Sk, we need not perform a line search, because the optimal 
choice for a  can be determined analytically. Specifically, the minimum over a  occurs when  
the new residual is orthogonal to the search direction:

0 = ^ ( * * + 1 ) = VfaLi-hxkk i  = (Axk+i - b ) r -£(Xk + a s k) = - r Tk+ls k.

Since the new residual can be expressed in terms of the old residual and the search direction,

r k+1 =  b - A x k +1 = b - A ( x k  + ask)  = (b - A x k ) -  aAsk = r k -  aAsk,
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we can solve for

a = - p ~ -s kAsk
Taking these properties into account, we obtain the conjugate gradient method, or CG method, 
for solving symmetric positive definite linear systems:

A lgorith m  Conjugate Gradient Method  

xo = initial guess  

ro = b -  Ax o 

■so =  r0

f o r  k = 0 , 1 , 2 , . . .

a k = rf r—  {compute search parameter)
s kAsk

xk-\ = xk + a ksk {update solution)

rk+ 1 = rk -  a kAsk {compute new residual)

o k̂+Ck+X
Pk+l ---------r-----

r { r k

Sk+1 =  nt+i + pic+\sk {compute new search direction) 

end-for

It turns out that in the quadratic case, the error at each step o f CG is minimal (with respect 
to the norm induced by A) over the space spanned by the search directions generated so far. 
Since the search directions are A-orthogonal (vectors y  and z  are /4-orthogonal if  y TAz  = 0), or 
conjugate, and hence linearly independent, this property implies that after, at most, n steps, the 
solution is exact, because the n search directions must span the whole space. Thus, in theory, 
CG is a direct method, but in practice rounding, error causes a loss o f orthogonality, thus 
spoiling its finite termination property. As a result, CG is usually used in an iterative manner 
and halted when the residual, or some other measure o f  the error, is sufficiently small. In 
practice, the method often converges in far fewer than n iterations.

Preconditioning

Unfortunately, the conjugate gradient method can still converge very slowly if the matrix A 
is ill-conditioned. However, convergence can often be substantially accelerated by 
preconditioning, which can be thought o f as implicitly multiplying A by M _1, where M  is a 
matrix for which systems of the form Mz — y  are easily solved, and whose inverse 
approximates A, so that M~lA is relatively well-conditioned. Technically, to preserve 
symmetry, w e should apply CG to M lAL~T instead o f M~lA, where M  = LLT. However, the 
algorithm can be suitably rearranged so that only M  is used and the corresponding matrix L  is 
not required explicitly. The resulting preconditioned conjugate gradient method is given in the 
following algorithm.
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A lgorith m  Conjugate Gradient Method with Preconditioning

Xq = initial guess  

r 0 = b -  Ax o
so  =  M “ V 0 
f o r  k = 0 , 1, 2 , . . .

 ̂t*lr
ak = —̂ -------  {compute search parameter}

s kAsk

xk+\ =  xk + akSk {update solution}

rk~\ = rk -  akAsk {compute new residual} 

rk+\M~l rk+\
r TkM~l rk

P k+1 y

Sk+i = M  Vjt+i + pk+iSk {compute new search direction} 

end-for

The choice o f an appropriate preconditioner depends on the usual trade-off between the 
gain in the convergence rate and the increased cost per iteration that results from applying the 
preconditioner. A  wide variety o f  preconditioners have been proposed, and this topic remains 
an active area o f research. Some o f the most common preconditioners are:

• Diagonal (also known as Jacobi): M  is taken to be a diagonal matrix with diagonal entries 
equal to those o f  A

• Block Diagonal (or block Jacobi): If the indices 1 , . . . ,  n are partitioned into mutually 
disjoint subsets, then m y = a $ if  i and j  are in the same subset, and m tJ = 0 otherwise. 
Natural choices include partitioning along lines or planes in two- or three-dimensional 
grids, respectively, or grouping together physical variables that correspond to a common 
node, as in many finite element problems.

• Symmetric Successive Over-Relaxation (SSOR): Using a matrix splitting o f  the form 
A  = L + D  + L T, we can take M  = {D + L)D~l (D  + L ) T, or, introducing the SSOR  
relaxation parameter co,

M(o>) = ^ ( i D  + I ) ( i B ) - 1( i D  + £ ) r

With the optimal choice o f co, the SSOR preconditioner is capable o f reducing the 
condition number to cond(M~1A)  = O^Jcond^A)  ) ,  but determining this optimal value 
may be impractical.

• Incomplete factorization: Ideally, one would like to solve the linear system directly using 
the Cholesky factorization A =  LLT, but as noted earlier this m aj incur unacceptable fill. 
One may instead compute an approximate factorization A «  LL that allows little or no fill 
(e.g., restricting the nonzero entries o f L to be in the same positions as those o f the lower 
triangle o f A), and then use M  =  LL  as a preconditioner.

• Polynomial: In this case M r1 is taken to be a polynomial in A that approximates A~l . One 
way to obtain a suitable polynomial is to use a fixed number of steps o f a stationary 
iterative method to solve the preconditioning system M z k = rk at each conjugate gradient 
iteration.
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• Approximate inverse: M  1 is determined by using an optimization algorithm to minimize 
the residual

\ \ I - A M ~ X || or \ \ I - M ~ lA\\ 

in some norm, with M ~1 restricted to have a prescribed pattern o f nonzero entries.

A  significant amount o f work is required to compute some o f these preconditioners, and 
this work must also be included in the cost trade-off mentioned earlier. The conjugate gradient 
method is rarely used without some form o f preconditioning. Since diagonal preconditioning 
requires almost no extra work or storage, at least this much preconditioning is generally 
advisable, and more sophisticated preconditioners are often worthwhile.

The conjugate gradient method is generally applicable only to symmetric positive definite 
systems. If the matrix A is indefinite or nonsymmetric, then the algorithm may break down 
both theoretically (i.e., the corresponding optimization problem may not have a minimum) and 
practically (i.e., the formula for a  may fail). W e also note that first order hyperbolic problems 
typically lead to non-symmetric linear systems o f equations. In this case there is no associated 
minimization problem (unless a least-squares formulation is used) and it is not clear how  to 
construct efficient iterative methods for general classes o f non-symmetric problems. Thus, for 
such problems Gaussian elimination (with pivoting) is often used.
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3. Pyramidal Elements
As we have seen, three dimensional problems can be discretized over a mesh constructed 

from hexahedral or tetrahedral elements. Both o f these element types have a number of  
advantages and disadvantages, particularly when it comes to adaptive mesh generation.

The basic idea behind a mesh adaptation scheme is to carry out a process whereby elements 
at crucial regions are subdivided into smaller elements to create a finer mesh in these regions 
and improve the accuracy o f  the overall model. However, if  we confine ourselves to only one 
element type, then the subdivision process can lead to problems. For instance, repeated 
anisotropic subdivision of tetrahedral elements can cause serious grid deficiency. This loss o f  
mesh quality can lead to inaccurate solutions when directional flow field features are present. 
In fact, it has been shown that in order to maintain mesh quality for arbitrary refinement levels, 
isotropic subdivision is required for tetrahedral meshes [Biswas, Strawn, 1996], Hexahedral 
meshes, on the other hand, do not suffer from this problem as a hexahedron can be subdivided 
anisotropically in any of the three directions and yield child elements whose face angles are 
similar to their parent. Another potential drawback to tetrahedral meshes is their storage 
requirements. In general, tetrahedral meshes require more than twice the amount o f storage as 
hexahedral meshes due to the greater number o f  edges involved [Aftosmis, Gaitonde, and 
Travares, 1994], Despite having more edges in the mesh, tetrahedral meshes do not appear to 
give more accurate solutions than their hexahedral counterparts. In fact, under certain 
circumstances, such as displacement and stress calculations in elastic and elastic plastic 
analysis, hexahedra perform substantially better [Benzley, et al., 1995], Although hexahedral 
meshes may appear to be superior, they too have their shortcomings. Hexahedral adaptation 
schemes tend to generate “hanging” vertices when a hexahedron cannot be split into smaller 
hexahedra without continuously propagating the mesh refinement into regions where it is not 
desired.

In order to overcome som e of these deficiencies, we can construct a mesh using both 
hexahedral and tetrahedral elements. Combining the element types allows us to maximize the 
advantages o f both while minimizing their disadvantages at the same time. For example, 
hexahedra can be used to fill in geometrically simple regions o f the domain where no sharp 
corners or curves exist. Hexahedra may also be better suited for critical regions where more 
accurate results are sought, such as boundary layers or regions o f high stress. Tetrahedral 
elements can then be used to fill in remaining, more geometrically complex, regions that are 
not suitable for hexahedral refinement. Unfortunately, combining tetrahedral and hexahedral 
elements in a mesh can lead to another problem, as illustrated by the following example.
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e

Figure 3.1. Two- and three-dimensional non-conforming meshes
[source: Owen, and Saigal, 2001]

Geometrically, since two tetrahedra faces are required to interface with a single 
hexahedron, discontinuities will arise at the boundary between the two element types. 
Traditional uses o f  the finite element method require that elements conform. In 
two-dimensions, this principal implies that no single element edge w ill have more 
than two elements adjacent. In three-dimensions, no single face w ill have more than 
two adjacent elements. (In general, the two-dimensional case is easily avoidable, but 
here it serves to better illustrate the point.) Edge a -  b and face c -  d  -  e - f  in 
(Figure 3.1) have more than the maximum two adjacent elements, thus rendering the 
mesh mathematically deficient for finite element analysis. [Owen, and Saigal, 2001]

Although techniques for interfacing hexahedra and tetrahedra directly have been proposed 
and implemented [Bretl, 1984], a more promising solution is the formation of pyramid and 
prism elements at the interface between hexahedra and tetrahedra. Indeed, the use o f such 
elements can eliminate the need for tetrahedra altogether, as they can be used to fill in regions 
of a hexahedral mesh without unnecessarily propagating the grid refinement [Biswas, Strawn,
1998], In other words, pyramids and prisms can be used to “connect up” the hanging vertices 
that might be created during a hexahedral mesh refinement. When used as interface elements 
between hexahedral and tetrahedral portions o f a mesh, pyramidal and prismatic elements are 
often referred to as “mortar” elements, since they act like a glue joining the other element 
types together.

Although pyramids are ideal shapes for interfacing between tetrahedra and hexahedra, the 
development o f basis functions for pyramidal elements has proven to be problematic. In 
particular, it can be shown [Wieners, 1997] that no polynomial shape functions exist for 
pyramids. The solution presented in [Wieners, 1997] is to split the pyramid in half and 
develop piecewise polynomial basis functions on the composite element. Unfortunately, this 
composition introduces an artificial anisotropy in solving isotropic problems. Another method 
for constructing pyramidal elements is to form a degenerate hexahedron where the nodes on 
one face are collapsed down to a single point [Owen, and Saigal, 2001], [Gradinaru and 
Hiptmair, 1999], Although this form o f construction is commonly used in commercial finite 
element codes, it is hardly an ideal solution to the problem. In addition, the quadratic 
pyramidal elements studied to date are 13-node quadratic elements which lack a node at the 
centre point o f the base, and are not suited for face-to-face connections with 27-node 
hexahedra.
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These issues will be addressed in the upcoming sections o f this work. In sections 3.1 and 
3.2 we present work already published [Liu, Davies, Yuan, and Krizek, 2004] which addresses 
the problem of artificial anisotropy in the composite pyramidal elements introduced by 
[Wieners, 1997], In particular, section 3.1 will deal with the problem of artificial anisotropy 
by developing a new linear pyramidal element which possesses greater symmetry than the 
previous elements. In section 3.2 these ideas are extended in order to develop a more 
symmetric 13-node quadratic pyramidal element. The development o f a new, highly 
symmetric, 14-node quadratic pyramidal element will be the focus o f section 3.3.

3.1 The Five Node Pyramidal Element
As we have seen above, pyramidal elements can be used for a face-to-face connection of  

tetrahedral finite elements with hexahedral elements (Figure 3.2). These elements provide us 
with a very useful tool for joining three dimensional tetrahedral meshes with hexahedral 
meshes.

- ■- *-----

Figure 3.2.
Pyramidal elements as interface elements between 

hexahedra and tetrahedra.

This has many practical applications in conforming finite element discretizations o f  
domains where only part o f the domain can be decomposed into blocks by hexahedra (Figure 
3.3).

Figure 3.3.
Example domain decomposed by 

tetrahedra, hexahedra and pyramids.

In [Wieners, 1997], Christian Wieners presents a special family o f  mortar pyramidal finite 
elements (see also [Zgainski, et al., 1996]). Wieners proves that it is impossible to define
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polynomial finite element shape functions, which would attain five given values at five  
vertices and which would be linear on all triangular faces and bilinear on the base o f the 
pyramidal element. However, he shows that it is possible to define piecewise polynomial basis 
functions on the composite pyramidal element (see Figure 3.4) having the above-mentioned 
properties. According to [Krizek, Liu, and Neittaanmaki, 2001], these functions are piecewise 
harmonic. This gives us some advantages in practical computation [Hlavacek, Krizek, 2001], 
W ieners’ pyramidal elements, composed of two tetrahedra, cause an artificial anisotropy in 
solving isotropic problems (compare with [Krizek, and Neittaanmaki, pp. 38]). The aim o f  the 
remainder o f this section, and o f section 3.2, is to derive new pyramidal elements, which are 
composed o f  four tetrahedra and which have more symmetries and the same number of degrees 
o f  freedom as elements from [Wieners, 1997], The degrees o f freedom for the first type of 
pyramidal element are function values at vertices, and for the second type, are values at 
vertices and midpoints o f edges.

(0 , 0 , 1)

( 1, 1,0)

Figure 3.4. Reference element K.

5-node Pyramidal Finite Element Basis Functions
Let conv stand for the convex hull. Then W ieners’ trilinear finite element basis functions 

are defined on the reference pyramid,

K  = c o n v { A o ,A i ,A 2,A 3, A 4 }  = conv { (0,0 ,0) ,  (1,0,0) ,  (1,1,0) ,  ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) , } ,

f  (1 -  x ) ( l  -  y )  + z ( y  -  1) for x > y  

(1 - x ) ( l  - y )  + z ( x  -  1) f o r x < y

I x ( l  - y ) - z y  f o r x  > y  

1 x ( l  - y ) - z x  for x < y

{ x y  - b z y  for x > y  

x y  + z x  for x < y

45

as follows:

p 0( x , y , z ) =

p i ( x , y , z )  = 

p 2{ x , y , z )  =
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Observe fbaXp^Aj) = 8y  for i, j  =  0 ,__ ,4.

In order to derive the new pyramidal finite element basis functions, we make use o f the 
following mapping:

: ( x , y , z )  -> (x ,y , 2 )

where

F k ( x ^ = B X + b .

This represents a linear affine mapping from the reference pyramid K  into the new reference 
pyramid (see Figure 3.5 and compare with any pyramid of Figure 3.2):

K  = conv{A o ,A i ,A2,A 3 ,A4}
= c o n v { ( - 1 , - 1 , 0 ) , ( 1 , - 1 , 0 ) ,  ( 1 , 1 , 0 ) , ( - 1 , 1 , 0 ) , ( 0 , 0 , 1 ) } .

W e easily find that

x

y
z

= F K( T j  =

2  0  1 X -1

0  2  1 y + -1 (3.1 .1)

0  0  1 z 0

i.e.,
x =  2x + z  -  1 

y  = 2y  + z  -  1

z  =  z.

It can be directly checked that F k  ̂ 4 / )  = Aj for j  -  1,2,3,4.  From (3 .1 .1) we see

X f X - 1
1
2 0 1

2 X  +  1

y =  B~l y - - 1 = 0 1
2

1
2 y +  1

z V z 0
) 0 0 1 z

i.e.,

x = ± ( x - z  + 1)

y  = - j ( y ~ z  + 1)
z  = z.
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A 0 (-1.-1,o) A 1 d ,- i .° )

Figure 3.5. Reference element K.

From the linear affine transformation we find that the basis functions on the new reference 
pyramid K  are o f the form:

■j(x -  z  -  \ ) ( y - z  -  1) + j f z ( y  -  z  -  \ )  for x > y

-jQc - z  -  l ) ( y  - z  -  1) + Y z (x ~ z  -  1) f ° r x < y

- j ( x - z  + 1 ) ( -y  + z  +  1) -  - j z ( y  -  z  + 1) for x > y  

- j ( x - z +  1 ) ( -y  +  z +  1) -  - j z ( x  - z +  1 )  for x <  y

p o ( x , y , z )  =

P i ( x , y , z )

p 2 ( x , y , z )

p 3 [ x , y , z )  =

P 4 \ X , y , z )

4  ~  j  2 .

■j(x - z  + l ) ( y  — z + 1) + - j z ( y  - z  +  1) for x > y  

• j ( x - z +  l ) ( y - z +  1) + y z (x  - z  +  1) f o r x < y

\ { - x  + z  + 1 )(y - z  + 1) -  \ z ( y  -  z  + 1) f o r x > y  

■j (—x + z  + \ )(y -  z  + I) -  \ z { x  — z + 1) f o r x < y

Lemma 3.1.1
The basis functions pa , .. .  ,pa satisfy the following conditions:

1. p f A f  =  5 ^  i j  =  0 ,1 ,2 ,3 ,4 .
2. Each basis function is bilinear on the base o f K  (contained in the plane z = 0).
3. Each basis function is linear on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundary o f  K  (contained in the

plane x = y).
5. The sum o f the basis functions is unity at any point in the pyramid (i.e., ^2p i (x ,y , z )  = 1, 

i -  0, . . .  ,4).
6. The basis functions pi , i =  0 , . . . ,  4 vanish on all faces not containing node i.

Proof :
1. This can be easily verified by direct calculation.
2. Setting z = 0, we immediately see that pi , i = 0 , . . .  , 4  are bilinear, for instance,

Po(x,y ,0 ) = | ( x -  l ) ( y -  1).
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3. On the face A 0A 1A 4 , which is contained in the plane y  =  z  -  1, we have
pQ{x,y)\{x>y} = -  j - (x  + z -  1)

Pl(X,y)j{x>y} = j ( x - Z +  1)

p i ( x , y ) \ {x>y} = P 3 (x ,y) \{x>y} =  0 

P 4 (x ,y) \{x>y} = z.
On the faces A \ A 2A 4, A 2A j A 4, and A0A3A4  this can be done similarly.

4. B y setting x -  y,  we can easily see that the functions pi ,  i -  0 , . . . ,  4 are continuous in the 
x -  y  plane.

5. This can be verified by summing the basis functions. For instance, in the case o f x > y
w e have:

4

2^P*'(x,y)l{r>.y} = j - ( x - z - l ' ) ( y - z - l )  + j - z ( y - z - l )
1=0

+ \ { x  -  z  + 1 ) { - y  + Z +  1) -  j - z ( y  - z +  1)

+ j - ( x - z +  l ) ( y - z  +  1) + j - z ( y - z +  1)

+ j - ( - x  + z +  l ) ( y - z +  1 ) -  \ z ( y - z +  1)

+ z  
s  1.

Similarly, w e find that ^2pi(x,y)\{x<y} = 1, i =  0 , . . . , 4 .
6. This can be verified by a quick calculation. For instance the two faces that do not contain 

node A 0 are the face A \A2A 4 contained in the plane z = 1 -  x, and the face ^ 2^ 3^14 

contained in the plane z  =  1 -  y. In the case o f A \ A 2A 4 we have:
Po(x ,y ) \{x>y} = | ( x - ( l  - x ) -  1 ) 0  —(1 - x ) -  1) + -i-(l - x ) ( y -  (1 - x ) -  1) =  0.

Similarly, on the face A 2A 2A4i

P o ( x , y ) | ^ >  =  | ( x - ( l  - y ) -  1 ) 0 -  (1 - y ) -  1) + ± ( 1  - y ) ( x -  (1 - y ) -  1) =  0.

Similar calculations for the remaining basis functions and appropriate faces yield the same 
result. □

To get more symmetries, we now take the average o f the basis functions pu  i = 0 , 1 ,2 ,3 ,  
with their mirror images. Namely, we consider the mirror image mapping

M  : (x ,y , z )  -  (~x,y ,z)

and define

T o  ( x , y , z )  = P i (~x ,y , z )  

~Pi (x,y , z)  = p o ( - x , y , z )  

~p2(x ,y , z)  = p 3( -x , y , z )  

- p 2(x ,y , z)  = p 2( -x ,y , z ) .

(3 . 1 . 3)

Setting

P f m = - j iPi  + P d  fori  = 0 , 1 ,2 ,3  (3 1 4 )
sym

P  4 = P 4
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w e find that
r

P 0 (x ,y,z)

pT " ( x ,y , z ) =

p {  (x , y , z ) =  <

P~i (x,y ,z)  =  <

* ( * -

t ( * ~
\ ( x -

t O +

■4 (x +

} ( x  + 

i(x + 

i(x +
■4 (x +

| ( x + 

| ( x  +

t ( ~ *  + 

-J-(-x +

* ( - *  +

! ( - *  +

\ ) ( y - z - l ) - ± z  for |x|> y

l ) ( y - z -  1) +  ± z ( x + y - 2 )  f o r x  >  [y| 

l ) ( y  +  2 —1) for |x|< y

l ) ( y - z -  1) + ± z ( x - y - 2 )  f o r x < \y\

l ) ( - y  +  z  +  1 ) -  j ; z  for \x\> y

l ) ( - y  +  z  +  1) -  - jz (x  + y  + 2) f o r x  >  \y\ 

l ) ( - y - z + l )  f o r | x | < y

l ) ( - y  +  z  +  1) -  j - z ( x - y  + 2)  f o r x < | y |

1 ) 0 - 2  +  1) for |x|> y

1 ) 0 - 2 +  1) +  - j z ( x + y )  f o r x  >  0|  
1) 0 - 2 + l )  +  y x z  f o r | x | < y  

1) 0 - 2 + 1) +  j - z ( x - y )  f o r x  <  |y|

) 0  — 2 +  1) f o r | x | > y

) (y -  z  + 1) - -%-z(x + y )  f o r x > \y\ 

) 0 - 2 + l ) - y X Z  for|x|<>>

) 0 - 2 +  1) -  - f z ( x - y )  f o r x < \ y \

p T ( x , y , z ) =  z.

Theorem 3.1.1

The basis functions p f m, i =  0 , . . . ,  4, satisfy the following conditions:

1. p sr ( A j ) = 5 ij, i J  = 0 ,1,2,3,4.
2. Each basis function is bilinear on the base o f  K  (contained in the plane z = 0).
3. Each basis function is linear on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundaries o f K  (contained in the 

planes x = y  and x = -y).
5. The sum of the basis functions is unity at any point in the pyramid (i.e.,

T Jp f m(.x,y,z) = 1, z = 0, . . . , 4) .
6. The basis functions p f m, i = 0 , . . . ,  4 vanish on all faces not containing node i.

Proof :
The proof is an immediate consequence o f (3.1.  3),  (3 .1 .4) ,  and Lemma 3.1.1. □

This averaging helps us in reducing the discretization error coming from anisotropy of 
W ieners’ composite elements. The new basis functions are now more symmetric on K  and the 
number o f degrees o f  freedom is five as for the simplest W ieners’ element.
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3.2 The Thirteen Node Pyramidal Element

( 0 , 0, 1)

04) >

a 3^-------
/  ( 0 , 1, 0)

A

Figure 3.6. 13-node quadratic reference element K.

13-node Pyramidal Finite Element Basis Functions
We will now extend the ideas presented in the previous section to the case o f quadratic 

basis functions and construct a more complicated pyramidal finite element with 13 degrees o f  
freedom. The triquadratic finite element basis functions from [Wieners, 1997] are defined on

A

the reference pyramid K  (see Figure 3.6) as follows:

( (1  -  x ) ( l  -  y )  +  z ( y  -  1 ) ) ( 1  -  25c -  2 y  -  2 z )  for x  >  y  

( (1  -  x ) ( l  -  y )  +  z (x  -  1 ) ) ( 1  -  25c -  2 y  -  2 z )  for x  <  y

{ x { \ - y ) - z y ) ( 2 x - 2 y - \ )  fo r 5 c > y  

(5c (1 -  y )  -  z5c)(25c -  2y  -  1) f o r x < y

(5cy  + z y ) ( 2 x  + 2 y  + 2z -  3) for 5c > y  

( x y  + zx)(25c + 2 y  + 2z -  3) for 5c < y

((1 -  x ) y  -  z y ) ( 2 y  -  25c -  1) f o r x > y  

((1 -  x ) y  -  z x )(2 y  -  2x -  1) f o r x < y  

= z (2 z  -  1)

45c((1 -  x ) ( l  -  y )  + z ( y  -  1)) -  2 y z ( \  -5c -  z )  for x > y  

45c ((1 -  x ) ( l  -  y )  + z (x  -  1)) -  25cz(l -  y  -  z )  f o r x < y

q 0 ( x , y , z )  =

? i ( x , y , z )

q 2 ( x , y , z )

q 3 ( x , y , z )  =

?01
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q ^ { x , y , z )

<7n ( x , y , z )

q m( x , y , z )

Q(u(x , y , z )

Q u ( x , y , z )

Q24 ( x , y , z )

q ^ ( x , y , z )  =

4 y (x ( l  -  y )  -  z y )  + 2 y z ( l  - x - z )  for x > y

4y (x ( l  - y ) ~  z x ) + 2 x z ( l  - y - z )  for x < y

4 x ( ( l  -  x )y  -  z y ) + 2 y z ( l  - x - z )  for x > y

4 x ( ( l  -  x )y  -  z x )  + 2 x z ( l  - y - z )  for x < y

4>r((l  -  x ) ( l  - y )  + z (y  -  1 )) -  2 y z ( l  - x - z )  for x >

4 y ( ( l  -  x ) ( l  - y )  + z ( x  -  1)) -  2 x z ( l  - y - z )  for x <

4 z ( ( l  -  x ) ( l  -  y )  + z (y  -  1)) fo rx  > y

4 z ( ( l  -  x ) ( l  - y )  + z (x  -  1)) f o r x < y

4 z ( x ( l  -  y )  -  z y )  f o r x > y  

4 z (x ( l  -  y )  -  z x )  f o r x < y

4 z (x y  + z y )  for x > y  

4 z (x y  + z x )  for x < y

4 z ( ( l  -  x ) y  -  z y )  for x > y  

4 z ( ( l  -  x )y  -  z x )  f o r x < y

^ / \  f / \  \
where corresponds to node A y located at the midpoint o f the edge ( Ai,Aj  ).

A  4  m v

24

( - 1, 1, 0)

04

A 0 V n .O )

Figure 3.7. 13 -node reference element K.

By again applying the linear affine transformation defined by (3 .1 .1)  we find that piecewise 
basis functions on the new reference pyramid K  (see Figure 3.7) are o f the form
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qo(x , y , z ) =

£ i(x , y , z )  ■■

qi (x , y , z )  ■■

q < x , y , z )  ■■ 

Q4 (x,y, z)  ■■ 

qoi(x,y, z)

Qn(x,y , z )  

q n  (x,y, z)  

qm(x,y , z )  

q M(x,y,z)  

q u ( x , y , z ) 

q 2 4 (x,y,z)  

q 3 4 (x,y,z)

■j (x + y  + 1 )(x + z  -  1 ) ( - y  + z + 1) for x > y  

■ j ( x + y +  l ) ( - x  + z + l ) ( y  + z -  1) f o r x ^ y

4- (x -  _y -  1 )[(x  + z + 1 ) { - y  + z +  1) -  4z]  for x > y

■ j ( x - y -  l ) ( x - z  + l ) ( - y - z  + 1) f o r x < y

- j (x  + y  -  l ) ( x  + z  + \ ) ( y  -  z  + 1) forx>>>  

■ j ( x + y - l ) ( x - z + l ) ( y  + z + l )  f o r x < j

■ j ( x ~ y +  l ) (x  + z -  \ ) ( y - z +  1) f o r x > > '

\ ( x - y +  1 )[(x — z — 1 ){y + z  + 1) + 4z]  for x < y

■ z(2z -  1)

y ( x  + z  -  l ) [ ( y - z  -  l ) (x  + 1) + 2z\  f o r x > y  

y ( x - z  + \ ) { y  + z -  l ) ( x -  1) f o r x < ^

—j ( y ~ z +  l ) [ (x  + z +  l ) ( y -  1) + 2z\  f o r x > y  

- y ( x - z +  l ) ( y  + z -  \ ) { y  + 1) f o r x < y

—j ( y ~ z +  l ) ( x  + z -  l ) ( x +  1) f o r x > y  

- y ( x - z  + l) [ (y  + z + l ) ( x -  1) + 2z] f o r x < y

y ( y - z + l ) ( x  + z - l ) ( y - l )  f o r x > y

\ ( y  + z -  l ) [ ( x - z -  l ) (y  + 1) + 2z\  fo r x < y

= <
z ( y  -  z -  l ) (x  + z -  l )  for x > y  

z(x - z - l ) ( y  + z -  l )  for x < y

—z[(x + z + 1 )(y -  z  -  1) + 4z] for x > y  

—z(x -  z + l ) ( y  + z -  l )  for x < y

z ( y - z  + l ) (x  + z +  1 ) forx>>>  

z(x -  z + 1 )(y + z + 1 ) for x < y

- z ( y - z +  l ) ( x + z -  1 ) forx  > 7

- z [ ( y  + z + 1 )(x -  z -  1) + 4z] for x < y
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Lemma 3.2.1
The basis functions qo , . . . ,  q*, qo\, ■ ■ ■, <734 satisfy the fo llow ing  conditions:

1. q f A f  =  5y, i j  g { 0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } .
2. Each basis function is biquadratic on the base o f K  (contained in the plane z =  0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundary of K  (contained in the

plane x = y).
5. The sum o f  the basis functions is unity at any point in the pyramid (i.e., ^j q f x , y , z ) =  1, 

i g {0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } ) .
6. The basis functions g,, i g {0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 }  vanish on all faces 

not containing node i.

Proof :
1. This can be easily verified by direct calculation.
2. Setting z = 0, we immediately find that qo , . . . ,  <?4 , <7 0 1 , ■ • •, <734 are biquadratic, for 

instance, qo(x, y ,0)  = ( x + y +  l ) ( x -  l ) ( - y +  1 )/4.
3. On the face AoA 1A 4 , which is contained in the plane z  =  1 + y:

q 2 (x,y) \ {x>y} =  q 3 (x,y) \ {x>y} =  q n ( x , y ) \ {x>y} =  q23(x,y)\{x>y} =  0 
qo3(x,y)\{x>y} = q 24(x,y) \ {x>y} = q34(x,y)\ {x>y} =  0 

do(x,y) \ {x>y} = j - ( x + y + l ) ( x + y )

Qi(x,y) \ {x>y} = \ { x - y - \ ) ( x - y )  

q 4 (x,y) \ {x>y} =  (1  + y ) ( l + 2 y )  

qoi (x,y) \ {x>y} = ( x + y ) ( - x + y )

Qo4 (x,y) \ {x>y} =  - 2 ( 1  + y ) ( x + y )  

q \ 4 (x,y) \ {x>y} = 2 ( 1  + y ) ( x - y ) .

On the faces A 1A 2A 4 , 412^ 3 ^ 4  and A 0A 3A 4 this can be done similarly.
4. By setting x = y,  we can easily see that the functions qo , . . . ,  q 4 , qoi, ■ ■ ■, # 3 4  are 

continuous in the plane x = y.
5. This can be verified by summing the basis functions. For instance, in the case o f x > y  

we have:
52qi(x,y)\{x>y} = j - ( x + y + l X x  + z - l ) ( - y  + z  + l )

+ i ( x - y  -  1 )[(* + Z + 1 ) ( -y  + z + 1) -  4z]

+ t ( x + y -  l ) (x  + z +  l ) ( y - z +  1 )

+ \ { x - y +  l ) (x  + z -  l ) ( y - z +  1)

+ z(2 z -  1 )
+ y ( x  + z -  1 ) [ ( y - z -  l ) ( x +  1) + 2z]

-  j - ( y - z +  l ) [ (x  + z +  1 ) 0  — l )  + 2z]

-  - L ( y - z +  l) (x  + z -  l ) ( x +  1)

+ \ ( y - z  + l ) (x  + z -  1 ) 0  — 1)

+ z ( y - z -  1) (x + z — 1)
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-  z[(x + z +  l ) ( y - z - l )  + 4 z]
+ z(y - z + l ) ( x  + z + l )
-  z(y - z + l ) ( x  + z -  l )

s  1.

Similarly, w e find that j ) |  {x<y} = 1, i e  {0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } .
6. This can be verified by a quick calculation. For instance, the two faces that do not

contain node A 0 are the face A \ A2A 4 contained in the plane z = 1 -  x, and the face A 2A 3A 4 

contained in the plane z = 1 -  y. In the case o f A \A2A 4 we have:

qo(x,y) \ {x>y} = j ( x + y +  l ) (x  + ( l  - x )  -  l ) ( - y  + (1 - x )  + 1) = 0 

Similarly, on the face A 2A 3A 4 :

qo(x,y) \ {x<yy =  i ( *  + y +  i ) ( - x  +  ( i - y )  +  i ) ( y  +  (1 - y ) - 1) =  0.
Similar calculations for the remaining basis functions and appropriate faces yield the same 
result. □

In order to get more symmetries, we again take the averages o f the basis functions,

qi, i e  {0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } , with their mirror images. In other words, we  
again consider a mirror image mapping

M  : (x , y , z ) -+ ( -x ,y ,z )

and define

T o  (x,y, z)  = q \ ( - x , y , z )

T i t > , y , z )  = qo(~x,y , z )

-q 2 i x , y , z ) = q i ( - x , y , z )

T s t X } ^ )  = q i ( - x , y , z )

T o \ ( x , y , z )  = qo i ( -x , y , z )

? i 2 ( x j , z )  = qo3(-x,y, z)

T 23 (x,y , z )  = q n ( r x , y , z )

~q 03(x,y,z) = g i2(-x,y,z)

T o 4 (x,y , z )  = q u ( - x , y , z )

T  m O w )  = Qo4(-x,y,z)

T 24(x.T>z) = q34(-x,y, z)

T 3 4 G W )  = q7A<rx,y,z).

Setting

? r  = K ^ + T / )  fo r i g { 0 ,1 ,2 ,3 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 }
jym C * • )

0« = ^ 4

(3 .2 .2)
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we find that

q r i x , y , z )  =  S

q f m(x,y,z)

q T ( x , y , z )  = <

qT(x,y,z)

qs%m{x ,y ,z)  = z(2z ■

q soT (x ,y ,z) = <

q\y2m(x,y,z) = i

i ( x + y  + )[(~y  + z + 1 )(x -  1) + 2z] for x|> y

j ( x + y  + ) ( x + z -  l ) ( - y  + 1) forx  > \y\

1  (x+y + )(y + z -  1)(—x + 1) for |x|< y

i ( x + y  + ) [ ( -x  + z + 1 ) 0 -  1) + 2z] forx  < |y|

i ( x - y - ) [ ( -y  + z + l ) ( x +  1)-- 2z] for |x|> y

T  ( x - y - )[(x  + z + 1)(—y + 1) - 2 z] forx  > |y|

i  ( x - y - ) ( - y - z  + l) (x  + 1) for |x|< y

i ( x - y - ) ( x - z +  l ) ( - y  + 1) forx  < |y\

i ( x + y - ) ( y - z +  l ) ( x +  1) for |x|> y

t  ( x + y - )[(x + z + 1 ) 0  + 1 ) “ 2z] forx  > \y\

T  ( x + y - )[(y + z  +  l ) (x  + 1) - 2z] for |x|< y

j - ( x + y - ) ( x - z +  1 ) 0 +  1) forx  < |y|

i ( x - y  + ) ( y - z +  l ) ( x -  1) for |x|> y

i ( x - y  + )(x + z -  1 ) 0 + 1 ) for x > |y|

T  ( x - y  + ) [ 0  + z + l) (x  -  1) + 2z] for |x|< y

\ ( x - y  + )[(x  -  z -  1 ) 0  + 1) + 2z] forx  < [y|

- 1 )

y  (y + z - )[(x  + 1 )(x — 1 ) + z] --zx2 for |x|> y

| ( x  + z - ) [ (x +  1 ) 0 -  1) + z ] forx  > ly|

i ( y + z ~ )[(x + l ) ( x -  l ) + z ] for |x|< y

y  (x -  z + ) [ ( x -  1 ) 0 -  ! ) - z ] forx  < |y|

- j - ( y - z  + l) [ (x  + 1 ) 0 -  l )  + z] for |x|> y

- j - ( x - z +  1 ) [ 0  + 1 ) 0 -  1) + ]̂ - z y 2 for x > \y\

- j - i y - h z - l ) [ ( x +  1 ) 0 +  l ) - z ] for |x|< y

- | ( x - z  + i ) [ ( y +  i ) ( y -  i )  + z\ forx  < [yl
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023 (x,y,z) =  <

- y ( y - z + l ) [ ( x + l ) ( x - l )  + z] fo r |x |> y

- y ( x  + z -  l) [ (x  + l) (y  + 1 ) - z ]  f o r x > [ y |

- y  (y -  z + l)[ (x  + l) (x  -  1 ) + z] -  zx2 for |x|< y

- y ( x - z +  l ) [ ( x - l ) ( y +  l )  + z] forx  < \y\

q sm ( x , y , z )  =  •<

y ( y - z +  1 )[(x — l ) ( y -  1 ) -  z] for |x|> y

y ( x  + z -  l ) [ ( y +  l ) ( y -  1 ) +z ]  for x > |y|

f ( y  + z -  l ) [ ( x - l ) ( y +  1 ) + z] for |x|< y

004 Q w )

0 f 4m(x,y ,z) =  <(

024 (*>>>,z ) =  <

y ( x  + z -  l ) [ (y +  l ) ( y -  1) + z ] - z y 2 f o r x < [ y |

z[(y - z  -  l ) (x  -  1) -  2z] for |x|> y  

z(x + z  -  1 )(y  — 1) f o r x > [ y |

z(y + z - l ) ( x - 1) for |x|< y

z [ ( x - z -  l ) ( y -  1) -  2z] f o r x < | y |

-z [(y  - z -  l) (x  + 1) + 2z] for |x|> y  

- z [ ( x +  z + l) (y  -  1) + 2z] forx  > \y\

-z (y  + z -  l ) ( x +  1) fo r |x |< y

—z(x — z + 1 )(y — 1) forx  < [y|

z ( y - z  + l) (x  + 1) for |x|> y

z[(x + z + l) (y  + 1) -  2z] forx  > \y\ 

z[(y + z + l ) ( x + 1) -  2z] for |x|< y  

z ( x - z +  l) (y  + 1) f o r x < [ y |

z ( y - z  + l ) ( - x  + 1) for |x|> y

z(—x — z + 1 )(y + 1) forx  > |_y|

z[(y + z + l ) ( - x + 1) -  2z] for |x|< y  

z [ ( - x +  z + l ) ( y  + 1) -  2z] forx  < [y|.

Theorem 3.2.i

77te ha.y/5  functions q f m, q f m, qs< f f , q f f  satisfy the fo llow ing conditions:
1. q ? m{Aj) = 5ij, i j  e  { 0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } .
2. Each basis function is biquadratic on the base o f K  (contained in the plane z = 0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundaries o f  K  (contained in the

planes x = y  and x = -y).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. The sum o f the basis functions is unity at any point in the pyramid (i.e.,
Z Q f m(x,y, z)  = 1, i £ { 0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } ) .

6. The basis functions q f " , i <= { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 04 , 14 , 24 , 34}  vanish on all faces 
not containing node i.

Proof :
The proof is an immediate consequence o f (3.2.1) ,  (3 .2 .2) ,  and Lemma 3.2.1. □

3.3 The Fourteen Node Pyramidal Element
In this section w e will present the basis functions for a 14-node pyramidal finite element. 

These elements, with nine nodes on the square base and six nodes on each triangular face, 
provide us with a useful tool for interfacing between ten node tetrahedral elements and 
twenty-seven node hexahedral elements. This is in contrast to the thirteen node pyramidal 
elements discussed in the previous section which are not suitable for a face-to-face connection 
with a twenty-seven node hexahedron.

4 (0,0,1)

,23__(-’1,1,0)

( 1. 1 ,0)

A,01

Figure 3.8. 14-node reference element K.

Development o f Basis Functions
In the case of the fourteen node element we consider a total o f  four sets o f basis functions.

A

The first set is developed on a reference element with the same coordinates as K  introduced in 
section 3.1, and then mapped to a reference element K  (Figure 3.8) using the affine 
transformation (3.1.1) .  The second set o f basis functions are developed directly on the 
element K  in order to reduce any unnecessary complexity in the equations. However, we shall 
see that several o f the functions are common between the two sets, as the choice is limited due 
to the constraints involved. In particular, the functions at the peak o f the pyramid as well as 
those at the midpoints o f the edge between the base and the peak are identical, and are also the 
same as those used in the case o f the thirteen node element. Note, in fact that these five  
particular functions are similar to the five functions defining a linear element, only differing by 
a constant and a factor o f z  (the equation for the base o f the pyramid). The process introduced 
in section 3.1 o f  averaging the functions with their mirror images is then applied to each of  
these sets in order to develop two more sets o f highly symmetric basis functions. During the 
development o f the different cases o f basis functions for the 14-node element, great care was
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taken to ensure that the functions would produce the most accurate results. The two cases 
presented here represent the best two sets o f functions out o f several sets o f  functions that were 
considered. They also serve to better illustrate the fact that changing the basis functions o f an 
element alters the accuracy o f the element.

14-node Pyramidal Finite Element Basis Functions

Case I Basis Functions:
W e define the following piecewise basis functions on the composite reference pyramidal

A

element K :

r 0( x , y , z )  =
(x + z -  1 )(y  -  1 )(2 y  -  1 )(2x  + 2z -  1) for x > y

(y + z  -  1 )(x  -  1 )(2y  + 2z -  1 )(2x  -  1) for x < y

- ( 2.x + 2z -  1 )(2y  -  l ) ( x ( l  -  y )  -  z y )  -  2 z (x  -  y ) for x > y

- ( 2 y  + 2z -  1 )(2x -  l ) ( x ( l  -  y )  -  z x )  for x < y

(x + z )(2x + 2z -  1 ) y ( 2 y  -  1) for x > y  

( y  + z ) { 2 y  + 2z -  l)x (2 x  -  1) f o r x ^ y

- ( 2 y  -  l ) (2 x  + 2z -  1)((1 -  x ) y  -  z y )  for x > y

- (2 x  -  l ) (2 y  + 2z -  1)((1 -  x ) y  -  z x )  + 2  z ( x  - y )  for x < y

? 4( x , y , z )  = z (2 z  -  1)

4 x ( ( l  -  x ) ( l  -  y ) (2 y  -  1) 4- z (y  -  l ) (2 y  -  1 ))  for x > y 

4 x ( ( l  -  x ) ( l  -  y ) (2 y  -  1) + z (x  -  l ) (2 y  -  1 )) for x < y

? i ( x , y , z )  = <

? 2( x , y , z )  =

r 3( x , y , z )  =

? o i ( x , y , z )

r 12( x , y , z )  = «< 

? 23( x , y , z )  = 

ros ( x , y , z )  = 

? 02( x , y , z )  = 

? 04 ( x , y , z )  =

4 y (x ( l  -  y ) (2 x  + 2z -  1) -  z y (2 x  + 2z -  1 )) for x > y 

4 y (x ( l  -  y  )(2x + 2z -  1) -  z x (2 x  + 2z -  1 )) for x < y
(3 .3 .1)

4x ( ( l  -  x )(2 y  + 2z -  1 )y -  z y (2 y  + 2z -  1 )) for x > y  

4 x ( ( l  -  x ) (2 y  + 2z -  l ) y  -  z x (2 y  + 2z -  1 )) for x < y

- 4 y ( ( l  -  x ) ( l  -  y  )(2x -  1) + z (y  -  l ) ( 2x  -  1) )  for x > y  

- 4 y ( ( l  -  x ) ( l  - y ) ( 2 x  -  1) + z ( x  -  l) (2 x  -  1 )) for x < y

16x(x + z -  l ) y ( y  -  1) + 4 y z ( x  + z -  l ) ( 2x  + 3 -  2 y )  for x > y  

16x(x -  l)y (y  + z -  1) + 4 x z ( y  + z -  l ) ( 2 y  + 3 -  2 x )  for x < y

4 z ( ( l  - x ) ( l  - y )  + z ( y -  1) )  f o r x > y  

4 z ( ( l  -  x ) ( l  - y )  + z ( x  -  1))  f o r x < y
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? i 4( x , y , z )  =  «

r 24 ( x , y , z )  =

4 z ( x ( l  -  y )  -  z y )  for x > y  

4 z ( x ( l  -  y )  -  z x )  f o r x < y

4 z ( x y  + z y )  f o r x > y  

4 z ( x y  + z x )  f o r x < y

? 34(x ,  y , z )
A z { ( \ - x ) y - z y )  f o r x > y  

4 z ( ( l  -  x ) y  -  z x )  forx

B y again applying the affine transformation F k ^X^ =  B X  + b defined by (3. 2.1) ,  we find that 

the basis functions on the reference element K  take the form:

■j(x + z — l ) ( y - z -  l ) ( y - z ) ( x  + z)  i f x  > y  

\ { y  + z -  l ) ( x - z -  \ ) { y  + z ) ( x - z )  i f x < y

d - ( z - y ) ( x  + z )(x ( 1 -  y )  + z ( z  + x - y  -  2 ) -  y  + \ ) - z ( x  - y )  i fx  > y  

■jiy  + z ) ( x - z ) ( - l  + y  + z )(x  - z +  1) i f x < y

- b ( l + x + z ) ( x  + z ) ( - y  + z - l ) ( z - y )  i f x > y  

d-(y + z +  l ) ( y  + z ) ( x - z +  l ) ( x - z )  i f x < y

ro (x,y,z)

r x(x,y, z)  =

r2(x,y, z)  =

r3(x ,y ,z) = <
d - ( z - y ) ( x  + z ) ( - y  + z -  ! ) (x  + z -  ! ) ifx  > y

4 - ( y+  z ) ( x - z ) ( z ( - z  + x - - y + 2)  + x(y + 1) -  y -  1) + z ( x - y )  i f x  < y

r4(x,y ,z) = z(2z -  1)

- y ( x - z +  l ) ( y - z ) ( y - z -  l ) ( x  + z -  1) i f x > y  

- y ( x - z +  l ) ( y  + z -  l ) ( y - z ) ( x - z -  1) i f x < y

- - b ( - y  + z -  l ) ( x  + z )((z  + x -  y - 2 ) z  + x ( l - y ) - y + l )  i fx  > y 

y ( - y  + z -  l ) (x  + z)(x  -  z + 1 ) ( - l  + y  + z )  i fx  < y

y ( x - z  + l ) ( y +  z ) ( - y +  z -  l ) ( x  + z -  1) i f x  > y

- y ( x - z +  l ) ( y +  z ) ( ( - z  + x - y +  2)z + x(y + 1) -  y -  1) i fx  < y

—j ( ~ y  + z ~ l ) (x  + z -  1 )(x - z ) ( - y  + 1 + z )  ifx  > y

y ( - y  + z -  1 )(x - z ) ( x  -  z -  1) ( -1 + y  + z)  i fx  < y

r0i (x,y, z)

r n (x,y, z)

r 2s(x,y, z)

r02(x,y, z)

foi (x,y , z)  =
- ( - y  + z -  1 )(x + z -  1 )((y  -  1 )x + z(z -  2y + 3) + y  -  1) if x > y 

- ( - 1  + y  + z ) (x -  z  + l ) ( z ( - z  + 2 x - 3 ) - x ( l + y ) + y + l )  if x  <  y
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z ( y - z -  l ) ( x  + z -  1 ) f o r x > > ’
r04(x,y,z) = {

z(x -  z  -  l ) ( y  + z -  1 ) for x < y  

-z ((x  + z +  l ) ( y - z - l )  + 4z) forx  > y
r l4 {x,y, z)  = {

- z ( x - z +  l ) ( y  + z -  1 ) f o r x < y

r 2 4 ( x , y , z )  =

r 3 4 ( x , y , z )  =

z ( y - z  + l ) ( x  + z + 1 ) f o r x > y  

z ( x - z + l ) ( y  + z + 1 ) f o r x < y

- z ( y - z  + l ) ( x  + z -  1 ) forx  > 7  

-z ((y  + z + l ) ( x - z  -  1) + 4z) f o r x < y

Lemma 3.3.1
The basis functions ro, . . . ,  r 4, ro i , . . . ,  r34 satisfy the fo llow ing conditions:

1. n( Aj )  = 5 y, i j  e  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .

2. Each basis function is biquadratic on the base o f K  (contained in the plane z =  0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundary o f K  (contained in the

plane x = y).
5. The sum o f  the basis functions is unity at any point in the pyramid (i.e., 'V\ r f x , y , z )  =  1, 

i e  { 0 ,1 ,2 ,3 ,4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} ) .
6. The basis functions r,, i <= { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}  vanish on all faces 

not containing node i.

Proof :
1. This can be easily verified by direct calculation.
2. Settingz = 0, we immediately seethatr,-, i e  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 3 4}  

are biquadratic, for instance, ro(x,y,  0) =  d-(x -  1 ) (y  -  1 )yx.

3. On the face A qA \ A4, which is contained in the plane y  = z -  1, we have
ro(x,y)\ {x>y} =  ^-(x + z - l ) ( x  + z)  

r\(x,y)\{x>y} = y ( z  —x -  l ) ( z - x )  

r 2 {x,y)\ {K>y} =  n ( x , y ) \ {x>y} = 0, 

roi(x,,y)|{*>;,> = ( z - x -  l ) ( x + z -  1) 

r04(x,y)|{x>^> = -2 z(x  + z -  1) 

ru(x,y) \  { x > y }  = 2  z(x -  z + 1) 

rn(x,y)\{x>y} = r23(x ,y ) |{̂ >  = r03(x ,y ) \{x>y}
= rai(x,y) \ {x>y} =  r 2 4 (x,y) \ {x>y}

= r i 4 (x,y) \ {x>y} =  0 

r 4 (x,y)\{x>y} =  z(2z -  1).
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4. By setting x = y,  we can easily see that the functions
r,-,z e  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}  are continuous in the x = y  plane.

5. This can be verified by summing the basis functions. For instance, in the case o f x > y  
we have:

{x>y} = ( i x + z -  1 ) ( y - z -  1 ) ( y - z ) ( x + z ) )

+ j - ( z - y ) ( x  + z ) (x( l  -  y ) + z ( z  + x - y - 2 ) - y + l ) ~ z ( x - y ))

+ 1 ( 1  + x + z ) (x + z ) ( - y  + Z  -  l ) ( z  - y ) )

+ ~ y ) ( x  + z ) ( - y  + z  -  l ) ( x  + z -  1) )

+ z ( 2 z -  1 ))
+ - y ( x - z +  1 ) ( y - z ) ( y - z -  l ) ( x + z - D )
+ - j - ( - y + z -  l ) ( x  + z ) ( ( z  + x - y - 2 )z + x( l  - y ) - y + 1))
+ y ( x - z +  1 ) (y  + z ) ( - y  + z  -  l ) (x  + z - 1))
+ - j - ( - y  + z -  1 )(x + z -  1 )(x -  z ) ( - y  +  1 + z ) )

+ - ( - y  + z -  l ) ( x  + z -  l )((y  -  1 )x + z(z -~ 2 y  3) + y - 1 ) )
+ z ( y - z -  1) (x + z — 1))
+ -z ((x  + z +  l ) ( y - z - l )  + 4 z ) )
+ z(y - z  +  l ) ( x  +  z +  1))
+ - z ( y - z  +  1 )(x +  z —  1 ) )

3  1.
Similarly, we find that ^  n (x ,y )| {x<y} = 1, 
i e  {0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .

This can be verified by quick calculation. For instance, the two faces that do not contain 
node Ao are the face A 1A 2A 4 contained in the plane z = 1 -  x, and the face A 2A 3A 4 

contained in the plane z = 1 -  y. In the case o f A 1A 2A 4 we have:
ro(x,y) \ {x>y} =  ■J-(x + ( l - x ) - l ) ( y - ( l - x ) - l ) ( y - ( l - x ) ) ( x  + ( l - x ) )  = 0

Similarly, on the face A 2A 3A 4 :

^o(x,y)|{<y> = y ( y  + ( l  - y ) -  l ) ( x -  (1 - y )  -  l ) ( y  + (1 - y ) ) ( x -  (1 - y ) )  = 0.

Similar calculations for the remaining basis functions and appropriate faces yield the same 
results. □

In order to develop a more symmetric element, w e again apply the process o f taking the 
averages o f the basis functions r;, i e  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} ,  with their 
mirror images. Specifically, we consider the mirror image mapping

M  : (x,y , z )  -  (~x,y, z )

and define
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~ o ( x , y , z )  =  
~ i ( x , y , z )  =  

“ 2 (x,y, z)  = 

— 3(x,y, z)  = 

“ 01 (x,y, z)  

~  n i x , y , z )  

“ 23 (x,y, z)  

“ o 3{x,y, z)  

~ o i i x , y , z ) 

T 04 (x, y,z)

t  H (x,y,z)

— 24(x,>',z) 

“T 34(x,y,z)

n ( - x ,y ,z )  

r 0( -x , y , z )  

r 3( - x , y , z ) 

r 2( rx , y , z )

= r 0i ( - x , y , z )  

= rra z) 

=  r23( - x , y , z ) 

= r n ( - x , y , z )  

= r02( - x , y , z )  

= r u { - x , y , z )  

=  rM( - x , y , z )  

= r34( - x , y , z )  

= r24{ - x , y , z )

( 3 . 3 . 2)

Setting

/ T  = i ( n  + T , )
sym 

Ti = ?4

we find that

for / e  { 0 , 1 , 2 , 3 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}

(x,y,z)

r r c w )  = *

sym (x,y, z)  = «<

j - ( z  -  y) ( z (z (z  -  y )  -  z  + x( l  + x ) ) - x ( x y - x  +  1 - y ) )  -  j - z ( - x - y )  

-t-(x + z)(x + z -  1 )(y2 + z 2 - y )

-t-0  + z)(y + z -  1 )(x2 + z2 -  x)

■j(x -  z ) ( y ( - x  + xy -  y  + 1) + z { x z - y 2 + z(l -  z ) - y ) )  -  y  z { - x - y ]

4-(z -y)(z(z(z  -  1 - y ) + x ( x -  l ) ) + x ( x +  1 - x y - y ) )  -  j - z ( x - y )  

± ( x  + z ) ( z ( x z + y ( y +  1 ) + z ( z -  l ) ) + y ( x y - x -  1 + y ) ) -  y z ( x - y )  

i 0  + z ) 0  + z -  l)(x  + x2 + z 2)

- i - (x -z  + l ) ( x - z ) ( y 2 + z2 - y )

i ( z - > ;)(-^  + z -  l ) (z 2 + x2 + x)

j - (x + z ) (y(y + x + x y +  1) + z(z(z + x -  1) + y ( y -  1)))  + ^ - z ( -x -y )  

^•(y + z)(z(z(z + y -  l ) + x ( x -  l ) ) + x ( x ( l  + y ) +  1 + y ) ) +  y z ( - x -  

i ( y 2 + y  + z2) ( x - z +  l ) ( x - z )
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(3.3 .3)

for |x| > _y 

forx  > [y| 

for |x| < y  

) forx  < [y|

for |x| > y  

forx > [y| 

for |x| < y  

forx < \y\

for |x| > y  

i forx  > [y| 

y )  for |x| < y  

forx  < |y|
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r T i w )

± ( z  - y ) { - y  + z -  l ) (z 2 - x  + x2)

4-(y2 + y  + z 2)(x + z){x + z -  1)

4-(y + z)(z(z(z + y -  l )  + x(l + x ) )  + x ( x ( y +  1 ) -  1 - y ) )  + ± z ( x -  

4- ( x - z ) ( z ( z ( x - z  + \ ) + y ) + y ( y ( x - z -  l )  + x -  l ) )  + - W x - y )

r4 (x,y,z)  = z (2 z -  1)

r ^ { x , y , z ) = <

r { f { x , y , z )  = <

rr i ( x , y , z )  =  <

- j ( x  - z  + l)(z  - y X - y  + z + l)(x  + z -  1) for |x| > 7

y ( z - ^ ) ( x  + z -  l ) ( x y - x  + z 2 -  1 + y )  forx  > [y|

■jiy + z -  l ) ( z - y ) ( z 2 + x2 -  1) for |x| < y

j - ( z ~ y ) ( x - z  +  1 ) ( x y - x - z 2 + 1 - y )  fo rx  < [y|

—j ( . ~y  + z -  1 )(* + z ) ( x( - y  + z +  l ) - y - z + l )  for |x| > y

j - ( - y  + z -  1 )(x + z)(y(x + z + l ) - x  -  1 + z )  forx > [y|

j - ( y  + z -  1 )(-y  + z -  1 )(x + 1 )(x + z) for |x| < y

j - ( y -  \ ) { - y  + z -  l )(x  + z ) ( x - z +  1) forx  < \y\

j - (x  -  z  + 1 )(y + z ) ( - y  + z -  1 )(x + z -  1)

--L(y + z)(x + z -  l)(x(y+  1 ) + z ( z - 2 )  + y +  1)

for \x\ > y  

for x > \y\

-4-(y + z)(z(z(z -  3 + y )  + x2 + 3 ) - y  -  1 + x(x + xy)) forlx| < y

-y (y  + z ) ( x - z +  i)(x(>+ 1) + z(2 - z ) - y ~  1) forx  < \y]

rs0̂ ( x , y , z )

-  j ( - y  + z -  1 )(x - z)(xz + z -  xy + x + y  -  1) for |x| > y

7 O -  l ) ( - y  +  z -  l ) (x  + z -  1 ) ( x - z )

2-(z + y -  l ) ( -y  + z -  l ) ( x -  1 ) (x - 

4-(-y + z -  1 )(x -  z )(-z  -  z y + x y -

for x > [y| 

z) for |x| < ^

x - y +  1) forx < [y|

r ^ ( w )  = <

rsdT{x, y, z )

f  14 (x,y,  z) = <<

- ( - y  + z -  l)(z(z(z+ 2 -  2y) -  4 + 3y) + 1 + x (x (y -  1)) - y )

- (x  + z -  l)(x + z(z(x + z ~ y  + 2 ) -  4 + x ( y -  2))  + 1 + y ( y ( z -  1 -
- ( z + y -  1 )(z(z(z + 2 ) -  4 - y) + 1 + y + x(x(2z - y -  1)))

- (x  + 1 -  z)(x + z(z(y + x -  z -  2) + x (y -  2 ) + 4) -  1 + y(y( 1 -  z -

z[(y -  z -  1 )(x -  1) — 2z] fo r |x |>y  

z(x + z - l ) ( y - 1) f o r x > ly |

z(y + z -  l ) ( x -  1) for |x|< y

z [ ( x - z -  1 ) 0  — 1) — 2z] fo rx < [y |

- z [ ( y - z -  l ) ( x + l )  + 2z] for |x[> y  

- z[ (x + z + 1 )(y -  l )  + 2z] fo rx > [y |

- z ( y  + z -  l ) (x +  1) fo r |x |<y

- z ( x - z + l ) ( y - 1) forx  < [y|
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for |x| > y  

forx > [y| 

y )  for |x[ < y  

forx < [y|

for |x| > y  

x) + z)) f o rx > [y |  

for |x| < y  

x) - z ) )  fo rx  < ly|
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sym
24 (x,y,z) = ^

sym
' 3 4 (x,y,z)

z ( y - z +  l)(x + 1) for |x\> y

z[(x + z + 1 ) 0 +  1 ) - 2z] f o rx > [y |  

z[(y + z + l ) ( x + l ) - 2 z ]  fo r |x |< y  

z(x -  z + l ) ( y  + 1) f o r x < |y |

z ( y - z  + I )(—x + 1) for |x|> y

z ( - x - z + l ) ( y  + 1) f o r x > ly |

z[(y + z +  l ) ( -x +  1 ) -  2z] for |x|< 

z[(-x + z +  l)(y + 1) -  2z] forx  < [y|.

Theorem 3.3.1
The basis functions r%m, . . . ,  r f n, r f n, i f f  satisfy the fo llow ing conditions:

1. r f m{Aj)  =  8 ih i j  e  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .
2. Each basis function is biquadratic on the base o f K  (contained in the plane z =  0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundaries o f  K  (contained in the 

planes x  =  y  and x = -y).
5. The sum o f  the basis functions is unity at any point in the pyramid (i.e.,

X > r ( x ,y , z )  . 1 , 1 6  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} ) .
6. The basis functions r f m, i £  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}  vanish on all 

faces not containing node i.

Proof :
The proof is an immediate consequence o f  (3 .3 .1) ,  (3.3.2) ,  and Lemma 3.3.1.

Case II Basis Functions:
W e now examine an alternate set o f  basis functions defined on pyramid element K.  These 

function are o f the form

-h(x + z — l ) ( y  —z — l ) ( x  + z ) ( y - z )  f o r x > y

j ( y  + z -  l ) ( x - z -  l ) ( y +  z ) ( x - z )  f o r x < y

- j-(x + z) (y -  z)((x + z  +  l ) ( - y  + z + 1) -  4z) -  z(x -  y )  for x > y

-d-(x - z) (y + z)(x - z  +  l ) ( - y - z +  1) f o r x < y

■ j ( y ~ z +  l ) ( x  + z +  l ) ( x  + z ) ( y - z )  f o r x > y  

- h ( x - z +  l ) ( y  + z +  l ) ( x - z ) ( y  + z)  f o r x < y

j ( x  + z ) ( y - z ) ( x + z  -  l ) ( y - z  + 1) f o r x > y

j ( x  -  z) (y  + z)((x -  z  -  l ) ( y  + z + 1) + 4z) + z (x  - y )  for x < y

S4 (x,y,z)  = z ( 2 z -  1)

S o ( x , y , z )

s i (x , y , z )

S2 {x, y, z )

ss(x, y , z )  = {
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Soi(x,y,z) =

Sn(x ,y ,z )  =

s 2i (x ,y , z )  =  ^

so3(x,y,z) =

SQ2(x,y,z) = 

s 04 (x,y,z) = 

su (x ,y , z )  = 

S2t (x ,y ,z)  = 

S34(x,y,z)  =

-y-(x + z -  \ ) ( ( ( y - z -  l ) ( x  + l ) y - z )  + z(2x + 1 )) fo rx  > y  

- y - ( x - z +  l ) ( y  + z -  l ) ( x -  l ) j  f o r x < y

- ^ - ( y - z  + l ) ( ( ( x  + z + l ) ( y -  l ) x - z )  + z ( 2 y +  1) )  forx  > y  

(y + z - l ) ( y + l ) x  for x < y

(x + z -  1 )(x + 1 )y  for x > y

(((y  + z + 1 )(x -  1 )y -  z )  + z(2x + 1 )) for x < y

(x + z -  1 )(y -  1 )x for x > y

( ( ( x - z  -  l ) ( y  + l ) x - z )  + z(2y + 1 )) forx  < y

( y - z  + l ) ( x  + z -  l ) ( ( y -  l ) ( x  + 1) + z ( x - y  + z + 1) )  fo rx  > y 

( x - z + l ) ( y  + z -  l )((y  + 1 )(x -  1) -  z(x -  z -  y  -  1 )) for x < y

z ( y - z -  l ) ( x  + z -  1) f o r x > y  

z ( x - z - l ) ( y  + z - 1) f o r x < y

-z ((x  + z + 1 )(y — z -  1) + 4z) for x > y  

- z ( x - z +  l ) ( y  + z -  1) f o r x < y

z ( y - z + l ) ( x  + z + 1) f o r x > y  

z ( x - z + l ) ( y  + z + 1) f o r x < y

- z ( y - z + l ) ( x +  z - 1) f o r x > y

-z ( (y +  z + l ) ( x - z - 1) + 4z)  f o r x < y

( 3 . 3 . 4 )

Lemma 3.5.2
T’/re basis functions s 0 , . . . ,  .s'4 ,.Voi, •.. , ^ 3 4  satisfy the fo llow ing conditions:

1. Jf( 4 0  = i f  e  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .
2. Each basis function is biquadratic on the base o f i f  (contained in the plane z = 0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundary o f  K  (contained in the 

plane x = y).
5. The sum o f the basis functions is unity (i.e., ^~^Si(x,y,z) = 1, 

i e {0 ,1 ,2 ,3 ,4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} ) .
6. The basis functions Si, i g { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}  vanish on all faces 

not containing node i.

Proof :
The method o f  the proof is identical to that for Lemma 3.3.1.
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Following the same procedure as in Case I, we can develop a more symmetric element by 
taking the averages o f the basis functions Si, i e  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} ,  
with their mirror images. For the sake o f simplicity, we shall omit the redundant information 
and only consider those functions that differ from Case I above

t O - j O W X  1 - y  + z)  + 1 - y )  + z (z (z -  1 - y ) - x ) ) -  4- z ( x - y )  for hi > y

sym (x,y,z)
4-(x + z)(y(y(z + x + 1) - x  -  1 ) + z (z (z -  1 + x )  + y ))  -  4- z ( x - y )  forx  > [y|

-(x + x2 + z2)(y + z -  1 ){y + z) 

- ( z - x  -  1 ) ( z - x ) ( y 2 - y  + z 2)

sr (x , y , z )  = <<

4-(x2 -  x + z2)(z - y  -  1 )(z —y)  

4-(x + z -  l)(x  + z)(y + y 2 + z 2)

for |x| < y  

for x <\y\

for |x| > y  

for x > [y|

SoT(x,y,z) = <

4-(y + z)(x(x(y + z + \ ) - y  -  1 ) + z ( z (z -  1 +y )  + x ) )  + 4-z(x - y )  for |x| < y 

4 - ( z - x)(y(y(z +  1 - x ) +  1 - x )  + z ( z ( z -  1 - x ) - y ) )  + 4 - z ( x - y )  fo rx  < \y\

4 - (y ( y -  1 + z ( z - y ) )  + x ( x ( y - 2 z  + y ( z - y ) ) ) )  for |x| > y  

- 4 -(x + z -  1 )(xz + y(y(x + 1) -  x -  1)) fo rx  > ly|

-4 -y (x 2 + z -  l ) (y  +  z -  1) for |x| < y

4 - ( z - x  -  l) (xz  + y ( l  - x + y ( x -  1 )))  f o rx  < [y|

4 - 0 - Z +  l ) (x ( l  - y  + x ( l  - y ) ) - y z )  fo r |x |  > y

T (x ,y ,z )  =
- 2 (x(-X'
-4-O + z-

1 +z(z + x))  + y(y(2z + x(x + z + 1))))  forx  > [y| 

l)(x(x + xy + 1 + y )+ y z )  f o r | x |< y

forx  < [y|4-x(z + y 2 -  1 )(z -  x -  1)

>23 ‘(x,y,z) = <

4-y(z + x2 

-4 - (x  + z-

-1  ) ( z - y -  l )

1 )0(y(x  + l ) + l + x) + xz)

for |x| > y 

forx  > [y|

>03 (x,y,z) = <

- 4-(x(x((z + y +  l)y  + 2z))+y(z(z  + y ) - y -  1)) for|x| < y  

4- ( z - x - l ) ( y ( y ( x - 1 ) + x - 1 ) + xz) forx  < [y|

4- 0 - Z +  1) (x(x( 1 - y ) + y -  l ) - y z )

- 4-x(z + y 2 -  1 )(x + z -  1)

- 4 - ( y  + z -  l)(yz  + x(x + x y - y -  1))

for |x| > y 

for x > [y| 

for |x| < y

4-(x(x(l —y ) ( l  + y )  -  1 + z(z -  x)) + y(y(z(x -  2) + x )) )  f o r x <  [y|

>02 (x,y,z)

( z - y -  l ) ( y - z ( z ( z - y ) - 2  + 2y) + x(x(l - y - z ) ) -  1) for |x| > y  

(x + z -  1 )(z(2 -  z(z + x) + 2x) +y(y( 1 + x - z ) ) - l - x )  forx  > [y| 

(y + z -  l ) ( z ( 2 - z ( z + y )  + 2y) + x(x(l + y - z ) ) -  1 - y )  for |x| < y  

( z - x  -  l )(x  + z (2 -  2x - z ( z - x ) )  +y(y(l -  x - z)) -  1) fo rx  < ly|

For the remaining cases we have
sym   sym

$0 -  r0 
sym __ sym 

‘y2 -  r2
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Theorem 3.3.2

The basis functions s f n, . . . ,  s f m, s f f , s f f  satisfy the fo llow ing conditions:

1. s sr { A j )  =  S9, i j  e  {0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .
2. Each basis function is biquadratic on the base o f  K  (contained in the plane z = 0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundaries o f K  (contained in the

planes x = y  and x  =  -y).
5. The sum o f  the basis functions is unity (i.e., ' J2sfm(x,y, z )  =  1, 

i g { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} ) .
6. The basis functions s f m, i e  { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}  vanish on all 

faces not containing node i.

Proof :
The proof is an immediate consequence o f the mirror image mappings and Lemma 3.3.2.
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4. Software Implementation and Numerical
Experiments

Numerical experiments were carried out to test the accuracy o f all the pyramidal elements 
presented in the previous section. In order to conduct the tests, software was developed to 
discretize the domain with a pyramidal mesh, calculate the system stiffness matrix and load 
vector, and solve the resulting linear system o f equations. Below, we describe the procedure o f  
the experiments and the development o f the software by breaking the process down into a 
natural subdivision o f  tasks. W e note that, in general, all software for the finite element 
method would follow  a similar process and can be broken in to similar subprocesses.

4.1 FEM Software Development

Mesh Construction
The first step is to discretize the domain Cl. In our case, since we want to measure the 

accuracy o f the elements, we desire a simple domain so we can compare the approximate 
solution Uh to a known solution u. Thus, we choose as our domain Q = (0,1)  x (0,1)  x (0,1) ,  
and in all cases the experiment conducted was to solve Poisson’s equation with Dirichlet 
boundary conditions:

< 0  + f ^  + ! ? O ^ W )  ( W ) S n ' (4.1.1)
u = 0 on dCl

where Q = (0 ,1)  x ( 0 , 1)  x (0,1).  The true solution chosen for the experiments was: 

u = sin(7rx)sin(2^y)sin(3^z).

In order to discretize Cl by a three dimensional pyramidal mesh we first construct a mesh 
consisting o f  cubes, with an equal number o f  cubes along each axis. The number o f cubes 
along an axis, N, is an input parameter so that we can control grid "fineness" or "coarseness" 
o f  the mesh. Each o f the N 3 cubes is then divided into six equal sized pyramidal elements 
(Figure 4.1).

Figure 4.1.
Cube decomposed into six pyramids.
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Thus, we have a system consisting o f 6 N 3 pyramidal elements. The number o f nodes in the 
system is then determined depending on the type o f pyramidal element being used. During the 
mesh construction we also calculate and store the global coordinate locations o f  all the nodes. 
N ote that although each element has 5, 13, or 14 nodes depending on the element type, many 
o f  the nodes are common to multiple elements. In order to reduce the storage space needed for 
the mesh, we only store a node and its coordinates once. With each element we only store 
references to the nodes that make up its construction. To accomplish this we use two arrays, 
the first one, Nodeinfo, contains the nodal x , y , z  coordinates in three dimensional space, and 
the second, Elemlnfo, an array of elements, contains appropriate references into the array o f  
nodes. Before we can do this however, w e need to determine a convenient enumeration o f  
elements and nodes for the overall mesh, as well as a local enumeration o f the nodes for an 
element. Figure 4.2 shows an example o f  the global node numbering used for the linear
5-node pyramidal elements and a mesh parameter o f N  =  2. (Note that pyramid boundary lines 
have been removed in order to present a clearer view  o f the nodes.)

(1.1.0 )(0.1.0 )

20
( U 1 )

32
(0 .1.1)

25'

ie

29

22 ]

(1.0 .0 )

2026 27
(0 .0 .1) (1.0 .1)

Figure 4.2.
Global node numbering for linear case with N  = 2. 

The associated nodal array structure for this case is then:

Node: 0 1 2 34

Coordinates: (0 ,0 ,0) (0 . 5 , 0 , 0 ) (1 ,0 ,0) (1 ,1 ,1)

We adopt a similar numbering scheme for the elements; however we treat the six elements 
o f  a cube as a group, counting them together before enumerating the next group. For example, 
for the mesh in Figure 4.2 we have a total o f eight cubes and 48 pyramids, with the pyramids
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numbered 0-47. The first cube is the cube with corners ( 0 , 0 ,0)  and (0. 5,0. 5,0. 5) and it 
consists o f pyramids 0 - 5 ,  the second cube has corners at (0. 5 , 0 , 0 )  and (1,0. 5 , 0 . 5 )  and 
consists o f  pyramids 6 - 1 1 ,  the 3rd cube has corners at (0. 5 , 0 , 0 )  and (0 5 , 1 , 0 . 5 )  and 
consists o f pyramids 12 -  17,... the last cube has corners at (0. 5,0. 5,0. 5), (1 ,1 ,1)  and consists 
o f pyramids 42 -  47. Within each cube the numbering sequence o f the pyramids is as follows: 
the first pyramid is the pyramid with its base on the base o f  the cube (th ey  = 0 plane in Figure 
4.2), the second is the pyramid with its base on the right face o f the cube (i.e., a 90° 
counter-clockwise rotation from the first element), the third is the pyramid with its base on the 
top face o f the cube (i.e., a 90° counter-clockwise rotation from the previous element), the 
fourth has its base on the left face o f  the cube (i.e., another 90° counter-clockwise rotation 
from the previous element), the fifth is the pyramid with its base on the front face o f  the cube, 
and the final sixth pyramid is the one having as its base the back face o f  the cube. Lastly, the 
node numbering sequence local to an element will follow  that given in the previous section’s 
discussion. Thus, the element array structure associated with the mesh in Figure 4.2 is:

Elemlnfo =

Element: 0 1 2 3 4 5 47

Node 0: 13 14 17 16 16 0 17

Node 1: 14 17 16 13 17 1 18

Node 2: 1 4 3 0 14 4 21

Node 3: 0 1 4 3 13 3 20

Node 4: 9 9 9 9 9 9 25

Clearly, we can now use the entries in the Elemlnfo array as references into the Nodeinfo  
array to obtain the global coordinates o f  the nodes for a given element. In other words, we can 
find the coordinates o f  they'-th node for a given element i using the relation:

NodeInfo\_ElemInfo[j, i] ].

During mesh construction we can also store other relevant information associated with 
individual nodes or elements. For instance, we can indicate whether or not a node is a 
boundary node with a simple modification to the Nodeinfo  array as follows:

Nodeinfo =

Node: 0 1 9 34

Coordinates: (0 ,0 ,0) ( 0 . 5 , 0 , 0 ) ( 0 . 25 , 0 . 25 , 0 . 25) ( 1 , 1 ,1)
Node Type: Boundary Boundary Internal Boundary

Note that, in our case, since the boundary conditions are the same on all boundaries o f the 
domain, we need only to mark a node as being on the boundary or not being on the boundary; 
w e do not need to store information indicating to which boundary the node belongs. Thus, we  
would actually require only one additional bit o f storage per node to store this information. 
Although this information could always be calculated based on the node’s coordinates, using a 
small amount of additional storage such as this will save on tedious and unnecessary 
computations later. W e do point out, however, that the storage space required for even simple 
structures such as these can become prohibitive for even moderate values o f N. As stated 
earlier, since we are working in three dimensional space, the number o f pyramidal elements in 
the mesh is 6 N 3. The number o f nodes in the mesh also grows at a 0 ( N 3) rate. For example, 
in the linear case, with five nodes per element, we have a total o f  (N + l ) 3 + N 3 nodes, since
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we only store a node once. Thus, a mesh with a seemingly small TV value such as N  = 32 will 
yield a mesh with almost 200,000 elements, and over 68,000 nodes!

Generation o f Stiffness Matrix and Load Vector
Once the domain has been discretized and the mesh has been constructed, the system  

stiffness matrix and system load vector can be generated. In order to reduce the space required 
to store these entities we start by removing boundary nodes from consideration for the time 
being. Since their values are known we do not need to include them in the system to be 
solved; their values can simply be placed back into the solution vector at a later time. W e also 
note that, in order to save storage space, the stiffness matrix is stored in a sparse format. Let us 
first examine the stiffness matrix generation process. To generate the stiffness matrix, A, each 
element in the system is checked in turn, and pairs o f nodes that are part o f  that element are 
compared. If both nodes are internal to the system (where boundary conditions do not apply) 
the value o f the integral over the element is approximated, and this value is added to the 
stiffness matrix entry associated with the two nodes o f that element. Using the linear case as an 
example, this procedure can be summarized as follows:

Let afj represent the system matrix entry associated with the z'-th and y'-th nodes o f element 
K,  and let N  be the mesh parameter described above.

Then we check the pairs o f  nodes associated with each element in the system by looping 
over all the elements:

for K  = 1 to 6N3 (number of elements in system) 
for i = 1 to 5 (number of nodes per element) 

for j = 1 to 5 (number of nodes per element) 
if both node i and node j of element K  are not 

boundary nodes then
4  -  o f + ! , ( £ ■  • % + TT • t  + ^  • tty***

end-if 
end-for 

end-for
end-for
where y/m, m =  1 , . . . , 5  are the basis functions o f the pyramidal element, and numerical 

cubature formulae are employed in order to evaluate the integral over the element. W e will 
discuss how the numerical integration is implemented in a moment, but first w e examine how  
the load vector is generated.

The procedure for calculating the entries o f the load vector involves looping over all the 
elements in the system and checking the nodes of each element. If the node is a boundary node 
then we ignore it for the time being; if, however, the node is an internal node then we calculate 
the value o f the integral over the element and add it to the associated entry in the load vector. 
Continuing with the linear case as an example, this procedure can be summarized as follows:

Let b f  be the load vector entry associated with the z-th node o f element K,  and again let N
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be the mesh parameter. Then w e have

f o r  K -  1  t o  6 N 3 (num ber o f  e l e m e n t s  i n  s y s t e m )  

f o r  i =  1 t o  5 (n u m b er o f  n o d e s  p e r  e l e m e n t )

i f  n o d e  i o f  e l e m e n t  K i s  n o t  a  b o u n d a r y  n o d e  t h e n  

b f  =  b f  + 1 f y / i  dxdydz (4.1.3)* K
e n d - i f  

e n d - f o r  

e n d - f o r

where y/m, m =  1 , . . . ,  5 are the basis functions o f the pyramidal element and /  is the function 
from (4.1.1) .

In order to integrate over the pyramidal elements, each pyramidal element is first divided 
into two or four tetrahedra depending on whether we are applying the extra symmetries to the 
basis functions for the element (Section 3.1-3.4). Once the pyramid is divided into tetrahedra 
we use Gaussian cubature formulae for tetrahedra [Keast, 1986], [Maeztu, Maza, 1995], 
[Cools, and Rabinowitz, 1993], [Cools, 1999], [Stroud, 1971] to approximate the values o f the 
integrals. The values o f the integrals for each tetrahedron are then summed to determine the 
integral over the composite pyramidal element. However, since the basis functions are given
in terms o f only a single reference element, and since these functions are defined in terms o f
local coordinates, we must carry out a transformation before approximating the integrals.

Coordinate Transformations
Since the points o f integration as well as the basis functions themselves are defined in 

terms o f coordinates local to the element, w e can define a method o f mapping between the 
global nodal coordinates and the local element coordinates. Let ( )  represent a point in 
the local element coordinates. In particular, we will see that these points are associated with 
the integration. W e then let (x,y , z )  represent a point in the global system. Fortunately the 
basis functions themselves provide us with a convenient method o f establishing a coordinate 
transformation. For each element we have:

x = y/iXi + y i x i  +. . .  +if/mXm =  y Tx

y  =  y/iyi  + y i y i  +--.+Vmym =  v ry (4 .1 .4)

Z =  y/ 1Z1 + I//2Z2 +. . . + f mZm = Z

where vj/=[y/i  y/ 2 --.V/ m]  , i  =  1,2, . . .  ,m are the element basis functions given in terms o f  the 

local coordinates (<̂ ,77, f ) ,  and x = [x i  x 2 ... xm] r, y  = [ y i  y 2 ... ym~\T, z = [ z i  z 2 ... z m~\T are 
the global coordinates o f the nodes for the element. In the integration o f  (4 .1 .2)  we are 
concerned with partial derivatives, so we consider the following relations:
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dy/ i

d $

dy/ i
dr]

dy / i

%

d x
d$

dx.
drj

dx

%

drj

dy_

d z
dd,

d z
drj

d z

dC

dy / i dy/ i

d x d x

dy / i
= J

dy/ i

d y d y

dy / i dy/ i
d z d z

( 4 . 1 . 5)

In this equation, the left-hand side can be evaluated as the functions y/,• are specified in local 
coordinates. The matrix J  is the Jacobian matrix. Thus, in order to find the global derivatives 
w e invert J  to get

dy/ i dy/ i

dx

dy/ i dy/ i

d y drj

dy/ i dy/ i
d z %

In terms o f the shape functions defining the coordinate transformation \|/ we have

J  =

£  % - y ,

Z dy/  i 
~aTy‘

V  ^ - L 7la dip

v 1 dy/i
E  a r  '

Z dy/1

i r z '

(4.1.6)

d y / 1 dy/2 dy/m i- - i

■ d $ XI y i z \

d y / i dy / 2 dy/m X2 T2 Z2

drj drj dr]

d y / 1 dy/2 dy/m Xm ym Zm
% ac • ■ dt;

To transform the variables and the region with respect to which the integration is made, a 
standard process will be used which involves the determinant o f  J. Thus, for instance a 
volume element becomes

dxdydz =  dotJdqdqdC,.

This type o f  transformation is valid irrespective o f the number o f  coordinates used. For a more 
detailed examination o f  coordinate transformations and the use o f reference elements in the 
finite element method please refer to [Zienkiewicz, 1989, pp. 181-191],  or [Kardestuncer, 1987, 
pp. l . 139-1.152],
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Numerical Integration
Gaussian cubature formulae for tetrahedra are used to evaluate the above integrals. An 

in-depth discussion o f numerical integration methods is beyond the scope o f  this work. For 
more information please refer to texts on numerical integration [Stroud, 1971], [Stroud, 1974], 
the finite element method [Zienkiewicz, 1989], [Kardestuncer, 1987], or general texts on 
numerical methods or scientific computing [Rao, 2002], [Heath, 2002], The general idea 
behind Gaussian quadrature is to approximate the integration o f a function over a domain by 
summation. At each step o f  the summation the function is evaluated at given points, the 
Gaussian points, and the results are weighted by given values, the Gaussian weights. In other 
words,

\ j{x ,y ,z )d x d y d z  «  J2 w iK^,r],Oi,
i=l

where,

Wi is the weight to be used for point i,

( £ ,  77, O f i s  point given by the quadrature formula being used,

Q is the number of points to be used in the given quadrature formula.

Based on this and the above discussion on coordinate transformations, we may now proceed 
and evaluate the integrals ( 4 . 1 . 2)  and (4.1.3) .

For stiffness matrix integrals we proceed as follows. Firstly, we take partial derivatives o f  
the basis functions for the particular element in question. For example, in the 5-node pyramid
case, before applying the symmetries (3 . 1 . 4)  and using as our variables (£ ,77, 0 , we have:

dy/o dpo(Z,Ti , 0  \| - I C C - 7 + 1 ) for x  > y

dd, |L T f o  + £ - l ) for x  < y

dy/o _ d P o (Z , r i , 0  _  ]f  -{■(£ +  £ - 1 ) for x > y

drj dr] |[  - i i C - 4  + D for x < y

dy/o d p o ( Z , r ] , 0  1f  - } ( % - / ]  + 2 0 forx  > y

% K  |[  - 1 (7 7 - 1  + 2 0 for x  < y

d y / i d p i ( Z , r ] , 0  Jr  t  ( c - 7 + i ) for x > y

d% 1 - T ^  + f - 1) for x < y

dy/4 =  d p i ( £ , r i , 0  = ,
dC dQ

For each quadrature point (£ , 1 , 0 ,  we evaluate the partial derivatives to obtain the matrix
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oy/o ,r ^  dy/i ,r dy/4 ,, ^
-Q £ -(£ ,n ,O i  - Q j r i ^ O i  ■■■ -Q g - te ,n ,O i

dy/o , ,  ,s dy/i  ( . dy/ 4

drj

dy/p

K

dr; drj (&T7,Oi

(S’V’Oi ^ -(6 *7,0 , ■■■ ^Hr&ri-Ot
% d i

(4 .1 .7)

W e then compute the Jacobian matrix using (4.1.6) .  Finally, we extract the z-th and y'-th 
columns o f ( 4 . 1 . 7)  and multiply them by the inverse o f  the Jacobian in order to obtain the 
derivatives in (4.1.2) .  In other words we calculate the integral o f our pyramidal element as 
follows:

f ( & L
J k \  dx> K \

T Q

El
t=\ 9=1

8Wj dvj_ t dVj 8vj_ m Syj
dx dy dy dz dz

^dxdydz

dy dz ■(«?)) detJ,

where,

T  is the number o f tetrahedra that make up our pyramidal element (two before applying 
symmetries, four after),

Q  is the number o f cubature points for the given tetrahedra cubature formula,

w q is the weight to be used for cubature point q,

a q = (£, Tj,C)q ^  the y-th cubature point for the given tetrahedra cubature formula,
dy/ j dy/j dy/, 
dx ’ dy ’ dz

multiplying them by the inverse o f  the Jacobian, i.e
dx ’ l y ’’ d t ,e ĉ -> are f ° unh by extracting the z-th and y-th columns o f (4 .1 .7)  and

1 1 dy/i r ,

dy/i
dy

dy/i
a„

11

■ 
—

1

* 
^

1

"  ^ « . * A  ‘

dy/j
dy = /-! n Odtj Uh)ci

11

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Similarly, for the load vector entries (4. 2 . 3 )  we have 

\  Kfyf i dxdydz «
T Q

2  2  v* O qA x ,y ,z ) ')
t= 1 q= 1

where,

T7 is the number of tetrahedra that make up our pyramidal element (two before applying 
symmetries, four after),

Q  is the number o f cubature points for the given tetrahedra cubature formula,

w q is the weight to be used for cubature point q,

is the q -th cubature point for the given tetrahedra cubature formula,

(x,y, z)  are determined by the relation (4.1.4) .

Solution o f System
Once the system stiffness matrix and load vector have been generated, we may proceed to 

solving the linear system o f  equations. Three different solvers were implemented in the 
software used for the experiments. Firstly, Gaussian elimination was chosen, since it generates 
the most accurate results and is generally the most reliable solution method. Secondly, 
Gauss-Seidel was implemented in order to increase efficiency. Lastly, to further reduce 
computational costs for larger test cases, the conjugate gradient method with preconditioning 
was employed to solve the system. In this case, incomplete Cholesky factorization was used as 
the preconditioner.

4.2 Computational Results
Three different sets o f  experiments were performed, corresponding to the three basic types 

o f pyramidal elements presented in section 3. For each type o f  element, experiments were 
performed to check the accuracy o f  the elements by varying the mesh parameter N, and by 
testing cases before and after the mirror image mappings were made to gain more symmetry.

In the five node element case, experiments were conducted for values o f N  ranging from 4 
to 128. Table 4.1 summarizes the results for the basis functions both before and after the 
mirror image mappings were made. For each value o f N,  the table lists values for (i) h = UN; 
(ii) the 1 ,2 -norms o f u -  Uh and u -  uu, where u is the true solution, Uh is the finite element 
solution corresponding to W ieners’ transformed basis functions (3 .1 .2)  and Uh is the finite 
element solution corresponding to the new symmetric basis functions (3.1.5) .  From Table 
4.1, we see that the symmetrized elements yield a better result than the non-symmetrized 
elements, even though the number o f  degrees o f freedom is the same. W e also note that in 
both cases the element achieves the optimal approximation order o f 0 (h2).
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h = UN IIW — Uh |! o II“- “2aII0 
II “- “A II 0 || tl tlh |j q ll«-«2h llo 

II«-«A llo

1/4 6.10e-2 None 5.83e-2 None

1/8 1.62e-2 3.775 1.51e-2 3.871

1/16 4.08e-3 3.966 3.78e-3 3.987

1/32 1.02e-3 3.992 9.45e-4 3.997

1/64 2.55e-4 3.998 2.36e-4 3.999

1/128 6.39e-5 3.999 5.91e-5 4.000

Table 4.1. Test results for 5-node 
pyramidal element before and after symmetries are applied.

Similar experiments were conducted for the thirteen and fourteen node elements presented 
in sections 3.2 and 3.3. The results for the 13-node pyramidal element are summarized in 
Table 4.2. In this case we see a substantial improvement over the non-symmetric basis 
functions. The discretization error is almost 3 .5  times better on the finest mesh where 
h =  1/64. W e note that the rate o f  convergence for the non-symmetric basis functions is still 
o f order 0 (h2), but for the new symmetric basis functions the rate o f convergence is in the 
order higher than 0 (h2), though it is less than the order o f  0 (h3) that one might expect.

r***HII

l l « - « * l l o
!I«-«2aII0
II«-«aII0 IÎ  — Uh || o II«-«2aII0 

II“- “A llo
1/4 9.80e-3 None 8.68e-3 None

1/8 1.49e-3 6.571 1.08e-3 8.074

1/16 2.93e-4 5.093 1.48e-4 7.251

1/32 6.72e-5 4.356 2.37e-5 6.249

1/64 1.64e-5 4.097 4.73e-6 5.016

Table 4.2. Test results for 13-node 
pyramidal element, before and after symmetries are applied.

Tests on the 14-node pyramidal element were conducted using the two sets o f basis 
functions presented in Section 3.3 (Case I and Case II). The results o f these experiments are 
summarized in Tables 4.3 and 4.4. We note that the Case II basis functions give an 
improvement over the Case I functions, with a discretization error that is over twice as good on 
the finest mesh with h =  1/64. Since the basis functions (3. 3 . 1)  and (3.3.  4)  for the 14-node 
element were carefully developed to yield highly accurate results, the application o f the extra 
symmetries results in a less dramatic improvement than was found for the previous element 
cases.
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h = UN \ \ U - U h \\0
II ̂  2̂h II o 
IIw— uh II o || U Uh || g

ll“—«2A II o 
ll«-“&llo

1/4 3.42e-3 None 3.07e-3 None

1/8 8.51e-4 4.019 7.62e-04 4.029

1/16 2.13e-4 3.995 1.92e-4 3.969

1/32 5.72e-5 3.724 5.02e-5 3.825

1/64 1.37e-5 4.175 1.20e-5 4.183

Table 4.3. Test results for 14-node pyramidal element 
with Case I basis functions, before and after symmetries are applied.

11 \ \ u - U h \ \ Q
l|w-“2A llo 
II II o \ \ u - U h \ \ Q

II “- “a. llo
\W~ui, | o

1/4 1.61e-3 None 1.58e-3 None

1/8 3.77e-4 4.278 3.69e-4 4.273

1/16 9.23e-5 4.086 9.04e-5 4.084

1/32 2.30e-5 4.013 2.25e-5 4.018

1/64 5.73e-6 4.014 5.61e-6 4.011

Table 4.4. Test results for 14-node pyramidal element 
with Case II basis functions, before and after symmetries are applied.

From Tables 4.3 and 4.4, w e see that the rate o f  convergence for the symmetric and 
non-symmetric basis functions for both Case I and Case II is o f order 0 ( h 2), again less than the 
order 0 ( h 3) that one might expect. Since the application o f the extra symmetries requires a 
non-trivial amount o f additional computation, effectively doubling the number o f basis 
function evaluations needed, we must also consider the efficiency o f the method used. From  
the test results we see that adding symmetries to the Case II basis for the 14-node pyramidal 
element gives only a slight improvement in accuracy. Thus, we can conclude that for the 
14-node element, best overall performance is achieved by the Case II basis without the extra 
symmetries applied.
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5. Conclusion
The finite element method provides us with a very powerful tool for approximating highly 

complex systems in science and engineering. Developed initially as an engineering tool for 
structural analysis, the method has since found widespread acceptance in many areas o f  
applied science. The method consists o f  discretizing a continuous problem over a grid, or 
mesh, composed of simple geometric shapes, or “elements”. The most commonly used 
elements are simple intervals in the one dimensional case, triangles or quadrilaterals for two  
dimensional space, and tetrahedra or hexahedra in the case o f three dimensions.

When we consider the three dimensional case, we note that both hexahedral and tetrahedral 
elements have a number o f  advantages and disadvantages, particularly when it comes to 
adaptive mesh generation. For instance, repeated anisotropic subdivision o f tetrahedral 
elements can cause serious loss o f  mesh quality leading to inaccurate solutions. Although 
hexahedra can be subdivided anisotropically without loss of quality, hexahedral adaptation 
schemes tend to generate “hanging” vertices when a hexahedron cannot be split into smaller 
hexahedra without continuously propagating the mesh refinement into regions where it is not 
desired. One way to overcome these deficiencies is to construct a mesh which consists o f both 
hexahedral and tetrahedral elements. A mesh constructed in this manner would use hexahedra 
to fill in geometrically simple regions o f  the domain where no sharp corners or curves exist, 
while tetrahedra would be used to fill in the remaining, more geometrically complex, regions 
where hexahedra refinement is less suitable. Unfortunately, when using both tetrahedra and 
hexahedra in the same mesh, problems arise at the areas where the two types o f  elements must 
be joined together since the element types do not conform. Thus, another type o f element is 
needed to properly connect hexahedral and tetrahedral portions o f a mixed finite element mesh. 
A pyramidal element is an ideal element type for making these types o f connections between  
hexahedra and tetrahedra.

In this work, we have examined new pyramidal mortar elements which are highly 
symmetric in nature. This high degree o f symmetry reduces the artificial anisotropy present in 
previous pyramidal elements and leads to a pyramidal element which produces superior 
accuracy. W e first studied a five-node pyramidal element suitable for connections between 
four node linear tetrahedra and eight node bilinear hexahedra. Then we examined a thirteen 
node element most suited for joining ten node quadratic tetrahedral elements to twenty node 
hexahedra. Next, we considered the case o f  a new fourteen node pyramidal element that is 
ideal for interfacing ten node tetrahedral elements and twenty-seven node hexahedral elements. 
In all cases the basis functions for these elements and the process o f their construction was 
examined in detail and proof o f their theoretical correctness was also given. Finally, computer 
software was developed and used to conduct numerical experiments which illustrated the 
improvements these elements offer. As a result o f these experiments we can conclude that the 
new symmetric basis functions always yield a better discretization error than their less 
symmetric counterparts.
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Areas For Further Research
The problem o f finding a pyramidal element which is proven to achieve the optimal rate o f  

convergence for the quadratic case, a rate o f  0 { h 3), is an open problem. The development o f  
pyramidal elements with piecewise polynomial basis functions which are cubic, or higher in 
degree, is another area o f possible future study. Additional testing o f these elements as 
interface elements in mixed hexahedral and tetrahedral meshes, under more applied 
circumstances, could also be conducted in order to compare them further with other interfacing 
methods.
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Appendix I: 
Basis Functions for Common Reference 

Elements
For convenience, w e briefly summarize some o f the more common reference elements and 

their basis function. For a more comprehensive listing please refer to [Kardestuncer, 1 9 8 7 ,  p. 
2 . 1 2 1 - 2 . 1 3 1 ] ,

A1.1. Two-dimensional reference elements

3-node Linear Triangle
Let^Tbe a triangle in the x ,y  plane with vertices a \ =  ( 0 , 0 ) ,  a 2 = ( 1 , 0 ) ,  as = ( 0 , 1 ) .  Then 
the basis functions (p e  P k  -  P i are:

(pi = 1 - x - y

<p2 = X

(p3 = y .

6-node Quadratic triangle
Let K  be a triangle in the x, y  plane with vertices a\  -  ( 0 , 0 ) ,  a 2 = ( 1 , 0 ) ,  as =  ( 0 , 1), and edge 
midpoints at a n  =  ( y , 0 ) ,  a n  =  ( 0 ,  y ) ,  fl23 =  ( y , y ) .  Then the basis functions 
(p e P K = P i  are:

(pi = (1 - x - y ) ( l  -  2 x -  2 y )

(p2 = x( 2 x -  1)

(ps = y ( 2 y - l )

(p 12 = 4x (l -  x - y )

(p 13 = 4 y (l -  x - y )

(p2s = 4 xy.

4-node Bilinear Quadrilateral
Let K  be a square in the x ,y  plane with vertices a \ = ( - 1 , - 1 ) ,  a 2 =  ( 1 , - 1 ) ,  as = ( 1 , 1 ) ,  

« 4  = ( - 1 , 1 ) .  Then the basis functions (p £ Q k = Q i are:
(pi = 4 -(l - x ) ( l  - y )

9 2  = f ( x  + 1)(1 - y )

(P3 = j ( x +  l ) ( y +  1 )

Al-1
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(p4 =  j ( l  ~ x ) ( y +  1).

8-node Biquadratic Quadrilateral
Let K  be a square in the x , y  plane with vertices a \ -  ( - 1 , - 1 ) ,  a.2 = ( 1 , - 1 ) ,  a 3 =  (1 ,1 ) ,  
a 4 = ( - 1 , 1 ) ,  edge midpoints as =  ( 0 , - 1 ) ,  ae =  (1 ,0) ,  an =  (0 ,1),  a 8 = ( -1 ,0 ) .  Then the 
basis functions q> e  Qk  = Qi  are:

<pi = - t ( 1 ~ x ) 0 - y ) ( x + y + 1 )

<P2 = j ( * +  1)(1 - y ) ( x - y - l )

<P3 = j ( x  + l ) ( y +  l ) ( x + r -  1 )

<P4 = — ~ x ) ( y +  1)(X - T +  1)
<ps =  y ( l  - x) (x  + 1 )(1 - y )

<p6 =  -y (x + 1 ) ( 1  - y ) ( y +  1 ) 

q>7 = j- (x  + 1 ) ( 1  - x ) ( y  + 1 ) 

p 8 = y ( l  ~ x ) ( y +  1 ) ( 1  - y ) .

9-node Biquadratic Quadrilateral

Let K  be a square in the x, y  plane with vertices a i = ( - 1 , - 1 ) ,  as -  ( 1 , - 1 ) ,  <23 -  (1 ,1 ) ,  
a 4 =  ( - 1 , 1 ), edge midpoints a 5 =  (0 , - 1 ), a 6 =  ( 1 , 0 ), an =  (0 , 1 ), a% =  ( - 1 , 0 ), and a 
central node a$ = (0 ,0) .  Then the basis functions <p <= Q k =  Qs are:

<p 1 = t C 1 - x ) ( 1 ~ y ) %y  

<pi = -q -(x + i ) ( i  - y ) * y

<P3 = j- (x  + l ) ( y +  \ ) xy  

<P4 = —5-O - x ) ( y + \ ) x y  

(ps  = - y ( l  - x ) ( l - y ) ( x  + \ ) y  

<p6 =  y ( x  + 1 ) ( 1  - y ) ( y + l ) x  

<p7 = y ( *  + 1 ) 0  + 1 ) ( 1  - x ) y  

(p% = - y ( l  - x ) ( y  +  1 ) ( 1  - y ) x  

<p9 = ( x +  1 ) ( 1  - x ) ( y  + 1 ) ( 1  - y ) .

A1.2. Three-dimensional elements

4-node Linear Tetrahedron
Let K  be a tetrahedron in x, y , z  with vertices a\  = (0 ,0 ,0 ) ,  as  = (1 ,0 ,0 ) ,  as = (0 ,1 ,0 ) ,  
a 4 =  (0 ,0 ,1) .  Then the basis functions q> & P K = P 1 are:

cp 1 = 1 - x - y - z

A l-2
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(P 2 =  X

(P3 = y

(p4 =  Z.

10-node Quadratic Tetrahedron
Let K  be a tetrahedron in x , y , z  with vertices a x =  ( 0 , 0 , 0 ) ,  a 2 =  ( 1 , 0 , 0 ) ,  a 3 =  ( 0 , 1 , 0 ) ,  

a 4 =  ( 0 , 0 , 1 ) ,  and edge midpoint nodes a x2 =  ( y , 0 , 0 ) ,  a n  =  ( 0 ,  y , 0 ) ,  a x4 =  ( 0 , 0 , y ) ,  

£23 =  ( y , y , 0 ) ,  a 24 =  ( y , 0 ,  y ) ,  <234 =  ( 0 ,  y , y ) .  Then the basis functions cp e  P k  =  P i  

are:

cpi -  ( 1  — x  — y  — z ) ( l  - 2x - 2y -  2z )

(p2 =  x ( 2x  -  1 )
<p 3 = y(2y - 1)
(p4 =  z ( 2z  -  1 )
(p 12 =  4 x ( l  - x - y - z )  

cp 13 =  4y ( l  - x - y - z )  

cp 14 =  4 z ( l  - x - y - z )

(P23 =  4  x y

(P24 =  4X Z

(P34 =  4y z .

8-node Trilinear Hexahedron
Let Z  be a hexahedron in x,.y,z with vertices a  i = (— 1,—1, — 1), a 2 =  (1 ,—1,—1),  
a 3 =  ( l , l , - l ) ,  a-4 =  (—1,1,  —1),  a s =  ( - l , - U ) ,  a 6 =  ( 1 , - 1 , 1 ) ,  a 7 =  ( 1 , 1 , 1 ) ,
a% =  ( - 1 , 1 , 1 ) .  Then the basis functions cp <= Q k =  Q\  are:

<Pi =  j ( l  - x ) ( l - y ) ( l - z )

(pi = y ( x +  1)(1 - y ) (  1 - z )

<P3 = y ( x  + 1 ) 0 +  1)(1 - z )

q>4 =  y ( l  - x ) ( y  +  1) (1 - z )
< P 5 =  y  (1 - x ) ( l  — y ) ( z  +  1 )
<P6 = y ( x +  1)(1 - y ) ( z +  1)
(jo? =  y ( x +  1 ) 0 +  l ) ( z +  1)

=  y ( l  - x ) ( y +  l ) ( z +  1).

27-node Triquadratic Hexahedron
Let K  be a hexahedron in x , y , z  with comer vertices a x =  (—1,—1 ,  —1 ), a 2 =  ( 1 , - 1 , —1 ),

A l - 3
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a s  =  ( 1 , 1 , —1 ) ,  07  =  ( - 1 , 1 , - 1 ), 019 =  ( - 1 , - 1 , 1 ) ,  021 =  ( 1 , - 1 , 1 ) ,  023 = ( 1 , 1 , 1 ),
025 = ( - 1 , 1 , 1 ).  Then the basis functions for Q k in Oi  are:

(pi =  - j ( l  - x ) ( l  - > 0 ( 1  - z ) x y z

<p2 = j ( l  - x ) 0  + *)(1 -T)(l  ~ z ) y z

(pi  =  T - ( l  +  x ) ( l  - > 0 ( 1  - z ) x y z

<p4 =  - J - ( l  +  x ) ( l - y ) (  1 +  >0(1  - z ) x z

<P5 =  - y ( l  + x ) ( l  + y ) ( l  - z ) x > z

(p(> =  ~ t ( 1  + ^ ) ( 1  - * ) ( i  +  > 0(1  - z ) > *

<p7 =  y ( l  - x ) ( 1  +  >0(1  - z ) x y z

<p% =  -{-( l  - x ) ( l  + > 0 ( i  - y ) ( l  - z ) x z

<p9 =  - y ( l  +  x ) ( l  - x ) ( l  + y ) ( l  - > 0 ( 1  - z ) z

<Pio =  y ( l  - * ) ( !  - > 0 ( 1  - z ) (1  + z > T

<Pn =  - y ( l  — x ) ( l  +  x ) ( l  - y ) {  1 — z ) ( l  + z ) y

(p 12 =  - y ( l  + x ) ( l  - > 0 ( 1  - z ) ( l  + z ) x y

( p n  =  y ( l  + x ) ( l  - > 0 ( 1  + > 0 ( 1  - * ) ( 1  + z >

(p 14 =  y ( l  + x ) ( l  +  >0(1 — z ) ( l  +  z)x>>

(Pis = | ( 1  + x ) ( l  — x ) ( l  + y ) (  1 - z ) (  1 + z ) y

<E»16 =  - | ( 1  - * ) 0  + T ) ( 1  - z ) ( 1 + z ) x y

<p 17 =  — 2"(1 - x ) ( l  +  >0 ( 1  - > 0 ( 1  - z ) ( l  +  z ) x

<pw  =  (1 + x ) ( l  — x ) ( l  +  >0(1 ~ y ) (  1 - z ) ( l  + z )

V 19 =  y ( l  - * ) 0  - > 0 ( 1  + Z > ^ z

(P20 =  - y ( l - x ) ( l  + x ) ( l  - > 0 ( 1  +  z ) > z

<P2i =  - y ( l  + x ) ( l  - y ) ( l  + z ) x y z

(P22 =  y ( l  + x ) ( l  - y ) (  1 + > 0 ( 1  + 2 ) x z

^23 =  y ( l  +  x ) ( l  +  >0(1  + z ) x y z

(p24 =  y ( l  + x ) ( l  — x ) ( l  + y ) (  1 + z ) y z

<P25 =  - 7 ( 1  — x ) ( l  +  >0 ( 1  + z ) x y z

(p26 =  “ (1 - X ) ( l  +  >0 ( 1  - > 0 ( 1  + z ) x z

(P21 =  y ( l  + X )(1  - x ) ( l  + > 0 ( 1  - > 0 ( 1  + z ) z .

Al-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix II: 
Program Source Code Listings

The following C program is used to test the properties o f the different pyramidal elements 
presented in section three. Note that the Meschach code library [Stewart, Leyk, 1994] is 
required in order to compile this program.

/**********************************************************************
* Programmer: Kevin Davies
* File: pyrprog.c
* Version: 4.0
* Date last modified: Dec 12, 2004
* Description: This is the top-level program for testing pyramidal
* elements. When run, the user is prompted to select element type
* (5-node linear, 13-node or 14-node quadratic), symmetry settings
* true solution, solver method, and to enter the mesh control
* paremeter N.
* The user can also select whether to run the profram as a
* background process or interactively. Some options for output
* are also available.
*
* Note: This Program uses routines for sparse matrices from
* the Meschach code Library by David E. Steward & Zbigniew Leyk
* * * * ★ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ★ * * * * * * * * * * * * * * * * * * * * * * ★ * * * * * * * /

#include <stdio.h> 
ttinclude <stdlib.h> 
ttinclude <math.h>
#include <time.h>

// following includes needed to spawn new processes 
#include <sys/types.h>
#include <unistd.h>

// Meschach file includes: 
ttinclude "../meschach/matrix.h" 
ttinclude "../meschach/matrix2.h"
#include "../meschach/sparse.h" 
ttinclude "../meschach/sparse2.h" 
ttinclude "../meschach/iter.h"
j  **★*** + *•*•★** Don s tants *********** j
// Boundry condition for all boundry nodes 
ttdefine BOUNDRY 0
// value assigned to all node with unknowns 
ttdefine INTERNAL -2 00
// output file containing true & approx. solution and error vectors
ttdefine PYR5 1
ttdefine PYR13 2
ttdefine PYR14_CASE_I 3
ttdefine PYR14 CASE II 4
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ttdefine SYMMETRIC 1 
ttdefine NONSYMMETRIC 2 
ttdefine GAUSS_ELIM 1 
ttdefine GAUSS_SEIDEL 2 
ttdefine CG 3 
// Absolute Size limit 
ttdefine MAXSIZE 128 
ttdefine CUBESIZE 1.0 
ttdefine SOLFILE "solution.txt" 
ttdefine MATFILE "matrix.m" 
ttdefine TEMPFILE "matrix.temp"
// Log file containinig final errors and solution times 
ttdefine LOGFILE "result-ctri-dec04-18.txt"

// Type definition for program timing structure 
typedef struct {

clock_t begin_clock, 
save_clock; 

time_t begin_time, 
save_time;

} time_keeper,-
■ A - * * * * * * * * * * * * * * * * * * * * * * * *

11 ;
31;

/
const int quadDeg4pts 
const int quadDeg7pts 
int **elements; 
double **nodeCors; 
int **nodeTypes; 
int noElemts, noCubes, noNodes,

Glabal variables * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/ /
/ /
/ /

int background; 
int symBasis;

int pyrType; 
int nodesPerElm; 
double pi; 
time_keeper tk;

// number of points for degree 4 quadrature
// number of points for degree 7 quadrature

array for elements
array for node coordinates
array for node types and boundry condition
unknowns = 0;

// true if spawning background process 
// true if applying symmetries to basis functions,

// false otherwise 
// type of pyramid to be used for calculation 

// number of nodes per element

// timing variable

// constants for booleans 
const int trueVal = 1; 
const int falseVal = 0;

// include files containing basis functions and derivatives 
ttinclude "pyrSbasis.c" 
ttinclude "pyrl3basis.c" 
ttinclude "pyrl4basis.c"
// include file contaiing true solutions 
ttinclude "solution.c"
// include file for 11 point, degree 4 gaussian cubeature 
ttinclude "cubeature4.c"
//' include file for 24 point, degree 6 gaussian cubeature 
ttinclude "cubeature6.c"
// include file for 31 point, degree 7 gaussian cubeature 
ttinclude "cubeature7.c"
// include file for 45 point, degree 8 gaussian cubeature 
ttinclude "cubeatureS.c"
// include file for 87 point, degree 11 gaussian cubeature 
ttinclude "cubeaturell.c "

// include files for constructing mesh and linear system
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ttinclude "mesh_gen.c" 
ttinclude "entry_intgrls.c "
// include file containing linear system solvers 
ttinclude "solvers.c"
/*********** Function Prototypes ***********/ 
void init(int size);
void matrixGen(SPMAT *A, VEC *rhsv); 
double det3x3(MAT *A); 
void v_abs(VEC *v);
double rhs_entry(int i, MAT *X, double detj); 
double elm_entry(int i, int j, MAT *X, double detj); 
double solution(double x, double y, double z) ,- 
double 12IntegNorm(VEC *uh);
double elemnlnteg(int elem, MAT *X, VEC *uh, double detj); 
void start_time(void);
void stop_time(double *user_t, double *real_t);

int main(void) {

int size = 2 ;  // (default) size of mesh (number of small cubes along
one side)

int selection; // variable to hold user selections
SPMAT *A, *LLT; // A is system matrix, LLT used in solving system
VEC *f, *U, *u_approx, ‘error, *uh; // f: RHS vector, U: true sol'n vector

// u_approx: approx sol'n vector,
// error: error vector 

int save; // true/false save matrix & solution to files
int solverType; // Type of solver to be used
int cld; // child ID for forking backgroung process 
int num_steps, i, j ;
double maxError, rowsum, L2norm; // variables for error 
double user_time, real_time; // variables used for timing 
int c;
char saveResponce, junk; // variabls to hold user selections 
FILE *solOfp, *matOfp, *tempFile, *errorOfp,- // output files

// temp variables
int rowCount = 0, rowNonzeros = 0, totNonzeros = 0;

US03T Xnput * * * * * * * * * * * * * * * * * * * * * * * * * * * * j

printf("\t Pyramidal Element - Test Program\n");
printf("\t Please select Element T y p e ------ \n")
printf("\t 5-Node Pyramid Element (l)\n")
printf("\tl3-Node Pyramid Element (2)\n")
printf("\tl4-Node Pyramid Element (3)\n")
printf("\tExit program (4)\n\t-> "),-
scanf("%d", &selection);
if ( (selection <1) || (selection >3)) {

printf("Exiting program...\n"); 
exit (1);

}
else

if(selection =  1) {
pyrType = PYR5;

}
else

if(selection =  2) {
pyrType = PYR13;
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}
else

i f (selection =  3) {
printf("\t PYR-14 - test program\n");
printf ("\t---------- Please make a selection--------- \n");
printf("\tCase I Basis functions (l)\n");
printf("\tCase II Basis functions (2)\n\t-> ");
scanf("%d", ^selection); 
if (selection =  1)

pyrType = PYR14_CASE_I; 
else

if(selection =  2)
pyrType = PYR14_CASE_II; 

else {
printf("Invalid selection, Exiting program...\n"); 
exit(1);

}
}

if (pyrType =  PYR5)
printf("\t PYR-5 - test program\n");

else
if(pyrType =  PYR13)

printf ("\t PYR-13 - test program\n");
else

if(pyrType =  PYR14_CASE_I) {
printf("\t PYR-14 - test program\n");
printf("\t Case I basis functions\n");

-}else {
printf("\t PYR-14 - test program\n");
printf("\t Case II basis functions\n");

}
printf ("\t----------Please make a selection---------\n")
printf("\tApply standard basis functions (1)\n")
printf("\tApply extra symmetries (2)\n")
printf("\tExit program (3)\n\t-> ");
scanf("%d", ^selection); 
if(selection = 1 )  {

symBasis = falseVal;
printf("\tApplying standard basis functions\n");

}
else {

if(selection == 2) {
symBasis = trueVal;
printf("\tApplying extra symmetries\n");

}
else {

printf("Exiting program...\n"); 
exit (1);

}
}
printf("\t-----  Please select Solver Method  \n")
printf("\tGaussian Elimination (l)\n")
printf("\tGauss-Seidel (2)\n")
printf("\tPreconditioned Conjugate Gradient (3)\n\t->
scanf("%d", &selection); 
if(selection —  1)

SOlverType = GAUSS_ELIM; 
else
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if(selection =  2)
solverType = GAUSS_SEIDEL; 

else
solverType = CG; //use CG by default

printf("\tPlease enter size of mesh (N-value)\n\t-> "); 
scanf("%d", &size);
if ((size > MAXSIZE) || (size < 2)) {

printf("Cannot support mesh with N-value of: %d. Program halted\n", 
size);

exit(1);
}printf("\tSave matrix and solution to files? (y/n)\n\t-> "); 
scanf("%c%c", &junk, &saveResponce); 
i f ((saveResponce =  'y') || (saveResponce =  'Y'))

save = 1; 
else

save = 0;
printf("\tSpawn background process? (y/n)\n\t-> "); 
scanf("%c%c", &junk, ksaveResponce) ; 
i f ((saveResponce =  'y') || (saveResponce =  'Y'))

background = 1; 
else

background = 0 ;

if(background) {
printf("Spawning child process for calculations\n"); 
printf("Results will be writen to: %s\n", LOGFILE); 
if ( (cld = forkO) != 0) {

printf("child pid: %d\n", cld); 
return 0;

}
}

y******************* Gsn02T3.ts System ***★**★*'******'*★**★***'*•***★ j
init(size) ;
makeMesh(size); // #of unknowns not known until this done

// Allocate matrix and vectors 
A = sp_get (unknowns, unknowns, 27); 
f = v_get(unknowns);
U = v_get(unknowns); 
error = v_get(unknowns);
// printf("generating system matrix and RHS...\n");

matrixGen(A, f) ; 
if (save) {

tempFile = fopen (TEMPFILE, "w"),- 
i f (!tempFile)

printf("Unable to save to matrix file\n"); 
else {

printf("Saving matrix to file %s\n", MATFILE) ; 
for(i = 0 ;  i< unknowns; i++) {

for (j = 0; j< unknowns; j++) {
if(sp_get_val(A, i, j) != 0.0) {

fprintf(tempFile, "%d,%d,%.lOf\n",i ,j ,sp_get_val(A, i, j)); 
rowCount++;

}
}
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if(rowCount > rowNonzeros) 
rowNonzeros = rowCount; 

totNonzeros += rowCount; 
rowCount = 0;

}
printf("the most non-zero entries in a row is: %d\n", rowNonzeros);
printf("Total non-zero entries is: %d\n", totNonzeros);
fclose(tempFile);
matOfp = fopen(MATFILE, "w");
tempFile = fopen(TEMPFILE, "r");
i f (!tempFile || ImatOfp)

printf("Unable to save to matrix file\n"); 
else {

fprintf(matOfp, "%d,%d,%d\n", unknowns, unknowns, totNonzeros); 
c = getc(tempFile); 
while (c != EOF) { 

putc(c, matOfp); 
c = getc(tempFile);

}
fclose(matOfp); 
fclose (tempFile) ,-

}remove(TEMPFILE);

★★★★★★★★★★★★★★★★★★★★★★★★★ Solve System

u_approx = v_get(A->m);

// Start timer 
start_time();
if(solverType == GAUSS_ELIM) { 

naiveGauss(A, f, u_approx);
}
else

if(solverType == GAUSS_SEIDEL) { 
for(i = 0; i < A->m; i++)

u_approx->ve[i] = 0.0; // Use zero vector as initial guess
GaussSeidel(A, f, u_approx, 100, 0.000001, 1.0);

}
else

if(solverType =  CG) {
LLT = sp_copy(A); 
spICHfactor(LLT);
iter_spcg(A, LLT, f ,le-7, u_approx, 1000, &num_steps);

}
// stop timer

stop_time(&user_time, &real_time);

// *** Done solving ***

f o r d  = 0; i < noNodes; i++) {
if (nodeTypes[i][1] < 0)

U->ve[nodeTypes [i] [0]-1] = solution(nodeCors [i] [0],
nodeCors [i] [1], nodeCors[i] [2]);

}

y'************ Calculate eiriroir ■*★★****★*********★*★*★★**★ j
v_sub(U, u_approx, error);
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maxError = v_norm_inf(error);

i f (!save) {
V_FREE(U);
V_FREE(error);

}
uh = v_get(noNodes);
for(i = 0 ;  i < noNodes; i++) {

if (nodeTypes [i] [1] =  BOUNDRY) { 
uh->ve [i] = 0 .0;

}
else {

uh->ve[i] = u_approx->ve [nodeTypes [i] [0]-1] ;
}

}
L2norm = 12IntegNorm(uh);

w^its to output files + j

i f (Ibackground) {
printf("Maximum error for size %d mesh: %.10f\n", size, maxError); 
printf("L2 norm of error for size %d mesh: %.10f\n", size, L2norm); 
printf("User time to solve system: %.10f sec.\n", user_time); 
printf("Real time to solve system: %.10f sec.\n", real_time);

}
errorOfp = fopen(LOGFILE, "a"); 
if(errorOfp) {

switch(pyrType) { 
case PYR5:

fprintf(errorOfp, "Results for 5-node Pyramidal Element:\n") ; 
break; 

case PYR13:
fprintf(errorOfp, "Results for 13-node Pyramidal Element:\n"); 
break; 

case PYR14_CASE_I:
fprintf(errorOfp, "%s\n",

"Results for 14-node Pyramidal Element, and Case I Basis:")
break; 

case PYR14_CASE_II:
fprintf(errorOfp, "%s\n",

"Results for 14-node Pyramidal Element, and Case II Basis:"
}
if(symBasis)

fprintf(errorOfp, "%s\n",
"Applying extra symmetries to basis functions results in:")

else
fprintf(errorOfp,"Applying standard basis functions results in:\n 

fprintf(errorOfp, "Maximum error for size %d mesh: %.10f\n",
size, maxError);

fprintf(errorOfp, "L2 norm of error for size %d mesh: %.10f\n",
size, L2norm); 

switch(solverType) { 
case GAUSS_ELIM:

fprintf(errorOfp, "Solution time using Gaussian Elimination:\n"); 
break; 

case GAUSS_SEIDEL:
fprintf(errorOfp, "Solution time using Gauss-Seidel:\n"); 
break; 

case C G :
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fprintf(errorOfp, "%s\n",
"Solution time using Conjugate Gradient with preconditioning:")

}
fprintf(errorOfp,"User time to solve system: %.10f sec.\n",user_time); 
fprintf(errorOfp,"Real time to solve system: %.10f sec.\n",real_time),• 
fclose(errorOfp);

}
if(save) {

solOfp = fopen(SOLFILE, "w"); 
i f (!solOfp)

printf("Unable to write to output file\n"); 
else {

fprintf(solOfp, "Node # True Sol'n Approx. Sol'n Error\n"); 
for(i = 0 ;  i < noNodes; i++) {

if (nodeTypes [i] [1] == BOUNDRY) {
fprintf(solOfp, "%d %f %f %f\n", i, 0.0, 0.0, 0.0);

}
else {

fprintf(solOfp, "%d %f %f %f\n",i ,U->ve[nodeTypes[i] [0]-1] 
u_approx->ve[nodeTypes [i] [0]-1] , 
error->ve[nodeTypes [i] [0]-1]) ;

}
}

}
fclose(solOfp);

}
return 0;

} //end main

★
* Initialization function to allocate memory and set global variables
★

void init(int size) { 

int i;
noElemts = 6.0 * pow(size, 3); 
noCubes = pow(size, 3); 
if(pyrType =  PYR5) {

noNodes = pow(size+l, 3) + pow(size, 3); 
nodesPerElm = 5;

}
else

if(pyrType =  PYR13) {
noNodes = 13.0*pow(size, 3) + 9.0*pow(size, 2) + 6.0*size + 1; 
nodesPerElm = 13;

}
else { // Assume 14-node

noNodes = 16.0*pow(size, 3) + 12.0*pow(size, 2) + 6.0*size + 1; 
nodesPerElm = 14;

}

pi = 4.0 * atan (1.0);

elements = malloc(sizeof(int*) * noElemts); // one row per element 
if (elements =  NULL) {

printf("Memory allocation error -- program halted\n"); 
exit(1) ;
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f o r d  = 0; i < noElemts; i++) {
elements[i] = malloc(sizeof(int) * nodesPerElm); 
if (elements [i] == NULL) {

printf("Memory allocation error -- program halted\n"); 
exit(1);

}
}
nodeCors = malloc (sizeof(double*) * noNodes); // one row per node 
if (nodeCors =  NULL) {

printf("Memory allocation error -- program halted\n"); 
exit(1);

}
for(i = 0 ;  i < noNodes; i++) {

nodeCors[i] = malloc(sizeof(double) * 3); //three corrdinates per node 
if (nodeCors [i] =  NULL) {

printf("Memory allocation error -- program halted\n"); 
exit (1) ;

}
}
nodeTypes = malloc(sizeof(int*) * noNodes); // one row per node 
if (nodeTypes =  NULL) {

printf("Memory allocation error -- program halted\n"); 
exit(1);

}
for(i = 0 ;  i < noNodes; i++) {

nodeTypes [i] = malloc(sizeof(int) * 2 ) ;  // two entries per node
if (nodeTypes [i] =  NULL) {

printf("Memory allocation error -- program halted\n"); 
exit (1);

}
}

// Generate system matrix and RHS vector 
void matrixGen(SPMAT *A, VEC *rhsv) {

int firstTime = TRUE, i, j, k, 1, m, Ai, A j , ri; 
double tempi, temp2, detj;

MAT *X, *Jac; // X; matrix containing x,y,z coordinates,
// Jac: Jacobian matrix

X = m_get(nodesPerElm, 3);
Jac = m_get(3,3);

for(k = 0 ;  k < noElemts; k++) {

i f (Ibackground) { // show progress
i f ((k % (noElemts/10)) =  0)

printf("building element entry %d of %d total entries\n", 
k, noElemts);

}
for(i = 0; i < nodesPerElm; i++) {

if (nodeTypes(elements[k][i]][1] < 0) {
for(l = 0 ;  1 < nodesPerElm; 1++) {

for(m = 0 ;  m < 3; m++)
X->me[1] [m] = nodeCors[elements [k] [1]] [m] ;

}
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if (firstTime =  TRUE) { 
jacob(X, Jac) ; 
detj = det3x3(Jac); 
firstTime = FALSE;

}
tempi = rhs_entry(i, X, detj); 
ri = nodeTypes[elements[k] [i]] [0]-1; 
rhsv->ve[ri] = rhsv->ve[ri] + tempi; 
for(j = 0; j < nodesPerElm,- j++) {

if (nodeTypes[elements[k][j]][1] < 0) {
temp2 = elm_entry(i, j, X, detj);
Ai = nodeTypes[elements[k] [i]] [0]-1;
Aj = nodeTypes[elements[k] [j]] [0]-1;
temp2 = temp2 + sp_get_val (A, Ai, Aj ) ,- 
sp_set_val(A, Ai, A j , temp2);

}
}

}
}

}
M_FREE(X);
M_FREE (Jac) ;

}

// Function to calculate deteminant of 3x3 matrix 
double det3x3(MAT *A) {

double det;

det=(A->me[0] [0]*A->me[1][1]*A->me[2] [2]- 
A->me[0] [0]*A->me[1] [2]*A->me [2] [1]) - 
(A->me[0] [l]*A->me[l] [0]*A->me[2] [2]- 
A->me [0] [l]*A->me[l] [2]*A->me[2] [0]) +
(A->me [0] [2]*A->me[l] [0]*A->me[2] [1]- 
A->me[0] [2]*A->me[1] [1]*A->me[2] [0] ) ; 

return det;
}

// Function to make vector absolute value 
void v_abs(VEC *v) {

int i;

for(i = 0 ;  i < v->dim; i++) {
if(v->ve[i] < 0.0)

v->ve[i] = -1.0 * v->ve[i] ;
}

}

* Author: Kevin Davies
* Description: function for finding a single RHS load vector entry.
* inputs:
* X - a matrix of global coordinates, s.t.
* the first column consists of the x coordinate values, the second
* column consists of y values, and the third consists of z values.
* i - element node index
* detj - determinant of Jacobian matrix
* outputs:
* returns value to be added to RHS vector entry
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double rhs_entry(int i, MAT *X, double detj) { 
int j ;
double vol = 1.0/3.0, ui = 0.0;

if(symBasis) {
for(j = 1; j <=4; j++) {

ui = ui + rhs_tet(X, i, j);
}

}
else {

vol = 2.0/3.0;
for(j = 1; j <=2; j++) {

ui = ui + rhs_tet(X, i, j);
}

}
ui = (ui * detj * vol); 
return ui;

}

% Function: elm_entry
% Description: function to find value of i,j-th entry of the element 
% matrix.
% inputs:
% X - a matrix of global coordinates, s.t.
% the first column consists of the x coordinate values, the second
% column consists of y values, and the third consists of z values.
% i,j - the i,j index values indicating the current entry in the
% element matrix.

double elm_entry(int i, int j, MAT *X, double detj) { 
double aij = 0.0, vol = 1.0/3.0; 
int k;
if(symBasis) {

for(k = 1; k <= 4; k++) {
aij = aij + tet(X, i, j, k) ;

}
}
else {

vol = 2.0/3.0;
f or (k = 1 ;  k <= 2 ; k++) {

aij = aij + tet(X, i, j, k);
}

}
aij = (aij * detj * vol); 
return aij;

}

/

Funtion for calculating L_2 Norm of error 
(i.e., ||u-u_h||_{L_2} )

double 12IntegNorm(VEC *uh) {
double 12norm = 0.0, elemSum = 0.0;
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int firstTime = TRUE, i, j, k, 1, m; 
double detj;

MAT *X, *Jac; // X: matrix containing x,y,z coordinates,
// J a c : Jacobian matrix 

X = m_get(nodesPerElm,3);
Jac = m_get(3,3);
for(k = 0; k < noElemts; k++) {

for(l = 0; 1 < nodesPerElm,- 1++) {
for(m = 0 ;  m < 3; m++)

X->me[l] [m] = nodeCors [elements[k] [1]] [m];
}
if (firstTime =  TRUE) { 

jacob(X, Jac); 
detj = det3x3(Jac); 
firstTime = FALSE;

}
elemSum = elemSum + elemnlnteg(k, X, uh, detj);

}
M_FREE(X);
M_FREE(Jac);
12norm = sqrt(elemSum); 
return 12 norm,-

}

/*************★*************★**★***********************************
★
* Support function for calculating error norm, find integral
* over element.
*
*******************************************************************
double elemnlnteg(int elem, MAT *X, VEC *uh, double detj) { 

int tet, noTets; 
double tetlnteg = 0.0, vol;
MAT *N, *A, *K ;
VEC *Q;
int k, m, i, quadPoints; 
double temp = 0.0, temp2, wi;
N = m_get(1,nodesPerElm);
A = m_get(3,4);
K = m_get (1,3) ;
Q = v_get (3); 
switch(pyrType) {

case PYR5:
quadPoints = quadDeg4pts; 
break; 

case PYR13 •.
quadPoints = quadDeg7pts; 
break; 

case PYR14_CASE_I:
quadPoints = quadDeg7pts; 
break; 

case PYR14_CASE_II:
quadPoints = quadDeg7pts;

}
if(symBasis) { 

vol = 1.0/3.0; 
noTets = 4;

}
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vol = 2.0/3.0; 
noTets = 2;

}
for(tet = 1; tet <= noTets; tet++) { 

getTetPoints(A, tet); 
for(k = 0 ;  k < quadPoints; k++) {

switch(pyrType) { 
case PYR5:

cubature4(A, k+1, Q, &wi) ; 
break; 

case PYR13:
cubature7(A, k+1, Q, &wi); 
break; 

case PYR14_CASE_I:
cubature7(A, k+1, Q, &wi) ; 
break; 

case PYR14_CASE_II:
cubature7(A, k+1, Q, &wi);

}
for(m = 1 ;  m <= nodesPerElm; m++) {

if(symBasis) {
switch(pyrType) { 
case PYR5:

N->me[0][m-1] = pyrSsymBasis(m-1, Q->ve[0],
Q->ve [1], Q->ve[2]);

break; 
case PYR13 :

N->me[0] [m-1] = pyrl3symBasis (m-1, Q->ve[0],
Q->ve [1], Q->ve[2] );

break; 
case PYR14_CASE_I:

N->me[0][m-1] = pyrl4ClsymBasis(m-1, Q->ve[0],
Q->ve [1] , Q->ve[2])

break; 
case PYR14_CASE_II:

N->me[0][m-1] = pyrl4C2symBasis(m-1, Q->ve[0],
Q->ve [1] , Q->ve[2])

}
}
else {

switch(pyrType) { 
case PYR5:

N->me[0][m-1] = pyrSbasis(m-1, Q->ve[0],
Q->ve [1] , Q->ve [2]);

break; 
case PYR13;

N->me [0] [m-1] = pyrl3basis (m-1, Q->ve[0],
Q->ve[1] , Q->ve[2]);

break; 
case PYR14_CASE_I:

N->me[0][m-1] = pyrl4Clbasis(m-1, Q->ve[0],
Q->ve[1] , Q->ve [2] ) ;

break; 
case PYR14_CASE_II:

N->me[0][m-1] = pyrl4C2basis(m-1, Q->ve[0],
Q->ve[1], Q->ve[2]);

}
}
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m_mlt(N, X, K); 
temp = 0.0;
for(i = 0 ;  i < nodesPerElm; i++) {

if(symBasis) {
switch(pyrType) { 
case PYR5:

temp = temp + uh->ve[elements [elem] [i]] *
pyrSsymBasis (i, Q->ve [0], Q->ve[l], Q->ve [2]) ;

break; 
case PYR13 :

temp = temp + uh->ve[elements [elem] [i]] *
pyrl3symBasis(i, Q->ve[0], Q->ve[1], Q->ve[2]);

break; 
case PYR14_CASE_I:

temp = temp + uh->ve[elements [elem] [i]] *
pyrl4ClsymBasis(i, Q->ve[0], Q->ve [1], Q->ve[2])

break; 
case PYR14_CASE_II:

temp = temp + uh->ve[elements[elem] [i]] *
pyrl4C2symBasis(i, Q->ve[0], Q->ve [1], Q->ve[2])

}

}
else {

switch(pyrType) { 
case PYR5:

temp = temp + uh->ve[elements[elem] [i]] *
pyr5basis(i, Q->ve [0], Q->ve[1] , Q->ve[2]);

break; 
case PYR13:

temp = temp + uh->ve[elements [elem] [i]] *
pyrl3basis (i, Q->ve[0], Q->ve[1], Q->ve[2]);

break; 
case PYR14_CASE_I:

temp = temp + uh->ve[elements [elem] [i]] *
pyrl4Clbasis (i, Q->ve[0], Q->ve[1], Q->ve[2]);

break; 
case PYR14_CASE_II:

temp = temp + uh->ve[elements [elem] [i]] *
pyrl4C2basis (i, Q->ve[0], Q->ve[1], Q->ve[2]);

}

}
}temp2 = solution(K->me[0][0], K->me[0][1], K->me[0][2]) - temp;
tetlnteg = tetlnteg + wi * pow(temp2, 2);

}
}
M_FREE(N);
M_FREE(A);
M_FREE(K);
V_FREE(Q);
return (tetlnteg * vol * detj);

}

★
* Timing functions to start/stop test clock
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void start_time(void) {
t k .begin_clock = t k .save_clock = clock (); 
t k .begin_time = tk.save_time = time(NULL);

}

void stop_time(double *user_t, double *real_t) { 
t k .save_clock = clock(); 
tk.save_time = time(NULL);
*user_t = (tk.save_clock - tk.begin_clock) / (double) CLOCKS_PER_SEC; 
*real_t = difftime(tk.save_time, tk,begin_time);

}
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* Author: Kevin Davies
* File mesh_gen.c
* Version: 4.0
* Date last modified: Dec 15, 2004
* Description: functions for forming correspondence between element
* nodes numbers and global node numbering, as well as calculating
* global nodal coordinate values.

* 5-Node Pyramid Case

void pyr5mesh(int size) {
int i,j,k, index, size_sq, size_pl_sq; 
int l,m; // variables for testing

size_sq = pow(size, 2); 
size_pl_sq = pow(size+l, 2);
for(i = 0; i < size,- i++) { // each layer of cubes

for(j = 0 ;  j < size; j++) { // each row of cubes
for(k = 0 ;  k < size; k++) { // each column of cubes

// 1st (bottom) element of the cube 
index = (i*size*size+j*size+k)*6; 
elements[index] [0] = (size_pl_sq + size_sq) *

(i+1) + (size+1) * j + k; 
elements[index] [1] = (size_pl_sq + size_sq) *

(i+1) + (size+1) * j + k+ 1; 
elements[index] [2] = (size_pl_sq + size_sq) * i +

(size+1) * j + 1 + k; 
elements[index] [3] = (size_pl_sq + size_sq) *

i + (size+1) * j + k;
elements[index][4] = size_pl_sq * (i+1) + size_sq

* i +  (size) * j + k ;
// 2nd (right-side) element of the cube

[0] = (size_pl_sq + size_sq) *
(i+1) + (size+1) * j + k+ 1;

[1] = (size_pl_sq + size_sq) * (i+1)
+ (size+1) * j + k+ 1 + size+1;

[2] = (size_pl_sq + size_sq) * i+(size+l)*
j + 1 + k+ size+1;

[3] = (size_pl_sq + size_sq) * i+(size+l)* 
j + 1+ k;

[4] = size_pl_sq * (i+l)+size_sq * i+(size) 
j + k;

element of the cube
[0] = (size_pl_sq+size_sq) * (i+1)+ (size+1) 

j + k+ 1 + size+1;
[1] = (size_pl_sq+size_sq) * (i+1) + (size+1) 

j + k+ size+1;
[2] = (size_pl_sq+size_sq) * i+(size+1)* 

j + k+ size+1;
[3] = (size_pl_sq+size_sq) * i+(size+l)* 

j + k+ 1 + size+1;
[4] = size_pl_sq * (i+l)+size_sq * i+(size) 

j + k;
side) element of the cube 
[0] = (size_pl_sq+size_sq) * (i+1)+ (size+1)

elements [index+1

elements [index+1

elements [index+1

elements [index+1

elements [index+1

// 3rd (top)
elements [index+2

elements [index+2

elements [index+2

elements [index+2

elements [index+2

// 4th (left- 
elements[index+3
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elements[index+3 

elements[index+3 

elements[index+3 

elements[index+3

// 5th (front 
elements[index+4

elements[index+4

elements[index+4

elements[index+4

elements[index+4

// 6th (back) 
elements[index+5

elements[index+5

elements[index+5

elements[index+5

elements[index+5

j + k+ size+1;
1] = (size_pl_sq+size_sq) * (i+l)+(size+1)*

j+ k;
2] = (size_pl_sq+size_sq) * i+(size+1)*

j+ k;
3] = (size_pl_sq+size_sq) * i+(size+l)*

j + k+ size+1;
4] = size_pl_sq * (i+l)+size_sq * i+(size)*

j + k; 
element o f  the cube
0] = (size_pl_sq+size_sq) * (i+l)+(size+1)*

j + k+ size+1;
1] = (size_pl_sq+size_sq) * (i+1) + (size+1) *

j + k+ 1 + size+1;
2] = (size_pl_sq+size_sq) * (i+1)+ (size+1)*

j + k+ 1 ;
3] = (size_pl_sq+size_sq) * (i+1)+ (size+1)*

j+ k;
4] = size_pl_sq * (i+1)+size_sq * i+(size)*

j + k ; 
element o f  the cube
0] = (size_pl_sq + size_sq) * i+(size+l)*

j+ k;
1] = (size_pl_sq + size_sq) * i+(size+l)*

j + k+ 1;
2] = (size_pl_sq + size_sq) * i+(size+l)*

j + k+ 1 + size+1;
3] = (size_pl_sq + size_sq) * i+(size+1)*

j + k+ size+1;
4] = size_pl_sq * (i+1)+size_sq * i+(size)*

j + k ;

}

void pyrSmapping(int size) { 
int nodeindex, i, j, k;

// calculate x,y,z coordinates for corner nodes of small cubes
f o r d  = 0; i < size+1; i++) { // each layer of cubes

for(j = 0 ;  j < size+1; j++) { // each row of cubes
for(k = 0 ;  k < size+1; k++) { // each column of cubes

nodeindex = (int) (pow(size+l, 2) + pow(size, 2))*i+(size+1)*j+k; 
nodeCors[nodeindex][0] = (double) k*CUBESIZE/size; 
nodeCors[nodeindex][1] = (double) j*CUBESIZE/size 
nodeCors[nodeindex][2] = (double) i*CUBESIZE/size

}
}

// calculate x,y,z coordinates for centre nodes of cubes 
for(i = 0; i < size; i++) { // each layer of cubes

for(j = 0 ;  j < size; j++) { // each row of cubes
for(k = 0 ;  k < size; k++) { // each column of cubes

nodeIndex=(int)pow(size+1,2 ) * (i+1)+ (int)pow(size , 2 )  *i+(size)*j+k; 
nodeCors [nodeIndex] [0] = (double)k*CUBESIZE/size+CUBESIZE/(size*2) ; 
nodeCors [nodeindex] [l] = (double)j*CUBESIZE/size+CUBESIZE/(size*2) ; 
nodeCors[nodeIndex] [2] = (double)i*CUBESIZE/size+CUBESIZE/(size*2);

A2-17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



}
}

}
f o r d  = 0; i < noNodes;i++) {

// determine surface nodes for
if ((nodeCors[i][0] == 0 . 0 )  ||

(nodeCors [i] [1] =  0.0)
(nodeCors [i] [2] =  0.0)

nodeTypes [i] [0] = 0;
nodeTypes [i] [1] = BOUNDRY;

(nodeCors[i] [ 0]  = 1 . 0 )  | |
| (nodeCors[i] [ 1 ]  =  1 . 0 )  | | 
j (nodeCors[i] [ 2 ]  =  1 . 0 ) )  {

}
}

}
else {

nodeTypes [i] [0] = ++unknowns; 
nodeTypes [i] [1] = INTERNAL;

}

* 13-Node Pyramid Case *

void pyrl3mesh(int size) {
int i,j,k, index, size_sq, layerOffset; 
int l,m; // variables for testing

size_sq = (int)pow(size, 2); 
layerOffset = 13.0*size_sq + 6.0*size + 2; 
f o r d  = 0; i < size; i++) { // each layer of cubes

for(j = 0; j < size; j++) { // each row of cubes
for(k = 0 ;  k < size; k++) { // each column of cubes

// 1st (bottom) element of the cube 
index = (i*size*size+j*size+k)*6;
elements[index] [0] = (i+1)*layerOffset +j* (3*size+2) +2*k;
elements[index] [1] = (i+1)*layerOffset +j* (3*size+2) +2*k +1;
elements[index] [2] = (i+1)*layerOffset +j* (3*size+2) +2*k +2;
elements [index] [3] = i*layerOffset 

+ 4*size +2;
+j* (2 *si

elements [index] [4] = i*layerOffset +j* (3 *si
elements [index] [5] = i*layerOffset +j* (3 *si
elements [index] [6] = i*layerOffset +j* (3 *si
elements [index] [7] = i*layerOffset 

+ 4*size + 1;
+j* (2 *si

elements [index] [8] = i*layerOffset 
+ 6*size + 2;

+j* (4*si

elements [index] [9] = i*layerOffset 
+ 6*size +3;

+j* (4*si

elements [index] [10] = i*layerOffse 
+ 4*size +2;

t +j * (4*s

elements [index] [11] = i*layerOffset +j * (4*s
+ 4*size +1;

elements [index] [12] = i*layerOffset +j * (2*s
+ 5*size +2;

// 2nd (right-si de) element of the cube
index++;
elements[index] [0] = (i+1)*layerOffset +j*(3*size+2) +2*k+2;
elements[index] [1] = (i+1)*layerOffset +j* (3*size+2)+k+2*size+2;
elements[index] [2] = (i+1)*layerOffset + (j+1)* (3*size+2)+2*k +2;
elements[index] [3] = i*layerOffset + (j+1)* (2*size+l)+k+7*size_sq
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elements [index]
elements [index]
elements [index]
elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

// 3rd (top)
index++;
elements [index]
elements [index]
elements [index]
elements [index]

elements [index]
elements [index]
elements [index]
elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

// 4th (left
index++;
elements [index]
elements [index]
elements [index]
elements [index]

elements [index]
elements [index]
elements [index]
elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

+ 4*size +2;
4] = i*layerOffset +(j+1)* (3*size+2) +2*k +2;
5] = i*layerOffset +j*(3*size+2) +k +2*size +2;
6] = i*layerOffset +j* (3*size+2) +2*k +2;
7] = i*layerOffset +j*(2*size+l) +k +7*size_sq

+ 4*size +2;
i] = i*layerOffset +j*(4*size) +2*k +9*size_sq 

+ 6*size +3 ;
)] = i*layerOffset +j*(4*size) +2*k +9*size_sq 

+ 8*size +3;
10] = i*layerOffset +j*(4*size) +2*k +3*size_sq

+ 6*size +2;
11] = i*layerOffset +j*(4*size) +2*k +3*size_sq

+ 4*size +2;
12] = i*layerOffset +j* (2*size+l) +k +7*size_sq

+ 5*size +2; 
element of the cube

0] = (i+1)*layerOffset +(j+1)* (3*size+2)+2*k+2;
1] = (i+1)*layerOffset +(j+1)* (3*size+2)+2*k +1;
2] = (i+1)*layerOffset + (j+1)* (3*size+2)+2*k;
3] = i*layerOffset +(j+1)* (2*size+l)+k+7*size_sq

+ 4*size + 1;
4] = i*layerOffset+(j+1)* (3*size+2)+2*k;
5] = i*layerOffset+(j+1)* (3*size+2)+2*k +1;
6] = i*layerOffset+(j+1)*(3*size+2)+2*k +2;
7] = i*layerOffset+(j+1)* (2*size+l)+k+7*size_sq

+ 4*size +2;
8] = i*layerOffset +j* (4*size)+2*k+9*size_sq

+ 8*size + 3;
9] = i*layerOffset +j* (4*size)+2*k+9*size_sq

+ 8*size + 2;
10] = i*layerOffset +j* (4*size)+2*k+3*size_sq

+ 6*size + 1;
11] = i*layerOffset +j* (4*size)+2*k+3*size_sq

+ 6*size + 2 ;

12] = i*layerOffset +j* (2*size+l)+k+7*size_sq
+ 5*size + 2; 

side) element of the cube

0] = (i+1)*layerOffset+(j+1)* (3*size+2) +2*k;
1] = (i+1)*layerOffset+j* (3*size+2)+k+2*size+l;
2] = (i+1)*layerOffset+j* (3*size+2)+2*k;
3] = i*layerOffset + j* (2*size+l)+k+7*size_sq

+ 4*size + 1;
4] = i*layerOffset+j* (3*size+2)+2*k;
5] = i*layerOffset+j* (3*size+2)+k+2*size+l;
6] = i*layerOffset+(j+1)* (3*size+2)+2*k;
7] = i*layerOffset+(j+1)* (2*size+l)+k+7*size_sq

+ 4*size + 1;
8] = i*layerOffset +j*(4*size) +2*k +9*size_sq

+ 8*size + 2;
9] = i*layerOffset +j*(4*size) +2*k +9*size_sq

+ 6*size + 2;
10] = i*layerOffset +j* (4*size)+2*k+3*size_sq

+ 4*size + 1;
11] = i*layerOffset +j*(4*size) +2*k +3*size_sq

+ 6*size + 1;
12] = i*layerOffset +j* (2*size+l) +k +7*size_sq

A2-19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



// 5th (frort) 
index-H-;
elements[index][0] 
elements[index] [l] 
elements[index][2] 
elements[index] [3] 
elements[index] [4] 
elements[index] [5] 
elements[index] [6] 
elements[index] [7] 
elements[index][8]

+ 5*size + 2; 
element of the cube

(i+1) *layerOf f set-1- (j+1) * (3♦size+2)+2♦k; 
(i+1)*layerOffset+(j+1)* (3*size+2)+2*k +1; 
(i+1)*layerOffset+(j+l)*(3*size+2)+2*k +2; 
(i+1)*layerOffset+ j * (3*size+2)+k+2*size+2; 

* layerOffset+ j * (3*size+2)+2*k+2;

elements[index] [9] = i +

elements[index] [10]
+  J

= i 
+  *

elements[index] [11] = i
+ i

= i 
+ :

elements[index] [12]

// 6th (back) elemen 
i ndex++;
elements[index] [0] -  i*;
elements[index] [1] = i*;
elements[index] [2] = ± * [

elements[index] [3] = i*:
elements[index] [4] = i*
elements[index] [5] = i *
elements[index] [6] —  i*;
elements[index] [7] = i*
elements[index] [8] = i* 

+ ■
elements[index] [9] - i*'

elements[index] [10]
+

= i 
+ ■

elements[index] [11] = i 
+

elements[index] [12] = i 
+

( i + 1 )
(i+1)* layerOffset+ j * (3*size+2)+2*k+1;
(i+1)* layerOffset+ j * (3*size+2)+2*k;
(i+1)*layerOffset+ j * (3*size+2)+k+2*size+l; 
i*layerOffset +j* (4*size)+2*k+9*size_sq 
+ 8*size + 2;

layerOffset +j*(4*size) +2*k +9*size_sq 
8*size + 3;
♦layerOffset +j* (4*size)+2*k+9*size_sq 
6*size + 3;
♦layerOffset +j♦ (4isize)+2ik +9^size_sq 
6♦size + 2; 

i^layerOffset +j♦ (2^size+l) +k +7tsize_sq
5^size + 
t of the

2 ;
cube

layerOffset 
layerOffset 
layerOffset 
layerOffset 
layerOffset 
layerOffset 
layerOffset 
layerOffset 

i^layerOffset

+j♦(3♦size+2) +2♦k;
+j♦(3♦size+2) +2^k +1;
+j+ (3^size+2) +2♦k +2;
+j♦(3♦size+2) +k+ 2+size +2, 
+ (j+1)♦ (3^size+2)+2^k +2;
+ (j+1)♦ (3^size+2)+2^k +1;
+ (j+1)♦ (3^size+2)+2^k;
+j♦ (3♦size+2) + k+2 + size+l; 
+j4 (4^size) +2^k+3^size_sq

4^size + 1; 
i^layerOffset+j♦ (4tsize)+2^k+3ysize_sq 

4♦size + 2; 
i^layerOffset+j♦(4♦size)+2ik+3isize_sq 
6♦size + 2; 

i^layerOffset+j♦(4♦size)+2^k+3tsize_sq 
6♦size + 1;

= i^layerOffset+j♦ (2isize+l)+k+7^size_sq 
5+size + 2;

void pyrl3mapping(int size) {
int nodeindex, offset, size_sq, i, j, k;

// calculate x,y,z coordinates for 
size_sq = (int)pow(size, 2); 
offset = 13 ♦ size_sq + 6 ♦ size + 
for(i = 0; i < size+1; i++) {

for(j = 0 ;  j < size+1; j++) {
for(k = 0 ;  k < size+1; k++)
// node 3

nodeindex = i^offset + j 
nodeCors[nodeindex] [0] = 
nodeCors[nodeindex] [1] =

corner nodes of small cubes

2 ;
// each layer of 

// each row of 
{ // each

cubes 
cubes 

column of cubes

(3♦size+2) + 2^k; 
(double) k/size; 
(double) j/size;
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nodeCors[nodeindex] [2] = (double) i/size; 
i f (i < size) {
// node 03

nodeindex = i*offset + 
nodeCors[nodeindex][0] 
nodeCors[nodeindex][1] 
nodeCors[nodeindex][2]

7*size_sq+4*size+l+j *(2 *size+1)+k; 
= (double) k/size;
= (double) j/size;
= (double) i/size + 1.0/(2.0*size)

if(k < size) {
// node 23

nodeindex = i*offset + 
nodeCors [nodeindex] [0] 
nodeCors [nodeindex] [1] 
nodeCors[nodeindex][2]

j*(3*size+2) + 2*k + 1;
= (double) k/size + 1.0/(2.0*size); 
= (double) j/size;
= (double) i/size;

}
i f (j < size) {
// node 23 in 90 degree _clockwise_ rotation

nodeindex = i*offset + j*(3*size+2) + k + 2*size+l;
nodeCors[nodeindex][0] = (double) k/size;
nodeCors[nodeindex][1] = (double) j/size + 1.0/(2.0*size)

}
if

nodeCors[nodeindex][2] = (double) i/size;

&& (j < size) && (k < size))( (i < size) && (j < size) && (k < size)) {
// node 34

nodeindex = i*offset + 3*size_sq + 4*size+l+j* (4*size)+2*k; 
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(4.0*size);
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4.0*size);

// node 14
nodeindex = i*offset +3*size_sq +4*size+l+j* (4*size)+2*k+l; 
nodeCors [nodeindex] [0] = (double) k/size + 3.0/(4.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(4 . 0*size);
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4.0*size);

// node 02 in 180 degree flip
nodeindex = i*offset +3*size_sq +6*size+l +j* (4*size)+2*k; 
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 3.0/(4.0*size);
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4 . 0*size);

// node 03 in 180 degree flip
nodeindex = i*offset +3*size_sq +6*size+l +j*

(double)
(double)

k/size + 3. 
j/size + 3. 
i/size + 1.

(4*si 
0/ (4. 
0/ (4 . 
0/ (4 .

ze)+2*k+l; 
0*size) 
0*size) 
0*size)

nodeCors[nodeindex][0] 
nodeCors [nodeindex] [l] 
nodeCors[nodeindex][2] = (double)

// node 4 (centre)
nodeindex = i*offset + 
nodeCors[nodeindex][0] = (double) 
nodeCors[nodeindex][1] = (double) 
nodeCors [nodeindex] [2] = (double)

// node 04
nodeindex = i*offset + 9*size_sq + 6*size+2 + j* (4*size)+2*k;

7*size_sq + 5*size+2 + 
k/size + 1. 
j/size + 1. 
i/size + 1.

j * (2 
0 /  (2 . 
0 / (2 . 
0 / (2 .

*size+1)+k; 
0*size); 
0*size); 
0*size);

nodeCors[nodeindex] [0] = (double) k/size + 1 .■ 0/ (4. 0* size) ;
nodeCors[nodeindex] [1] = (double) j/size + 1 .,0/ (4 .0* size);
nodeCors[nodeindex] [2] = (double) i/size + 3 ..0/ (4 .0* size);
node 14
nodeindex = i*offset +9*s ize_sq +6 *size+2 +j* (4’ksi ze )+2 *k+l;
nodeCors[nodeindex] [0] = (double) k/size + 3 .■ 0/ (4 .0* size);
nodeCors[nodeindex] [1] = (double) j/size + 1 .■ 0/ (4. 0* size);
nodeCors[nodeindex] [2] = (double) i/size + 3 ..0/ (4 .0* size);

// node 14 in 180 degree flip
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nodeindex = i*offset + 9*size_sq + 8*size+2 + j* (4*size)+2*k;
nodeCors [nodeindex] [0] = (double) 
nodeCors[nodeindex][1] = (double) 
nodeCors[nodeindex] [2] = (double) 

// node 04 in 180 degree flip
nodeindex = i*offset + 9*size_sq 
nodeCors[nodeindex] [0] = (double) 
nodeCors[nodeindex][1] = (double) 
nodeCors[nodeindex] [2] = (double)

k/size + 1.0/(4.0*size) 
j/size + 3.0/(4.0*size) 
i/size + 3.0/(4.0*size)

+ 8*size+2+j*(4*size)+2*k+l; 
k/size + 3.0/ (4 . 0*size) 
j/size + 3.0/ (4 . 0*size) 
i/size + 3.0/(4.0*size)

}
}
for(i = 0;i < noNodes;i++) {

// determine surface nodes for assigning boundry conditions
(nodeCors [i] [0] =  1.0)
| (nodeCors[i] [1] =  1.0 
| (nodeCors[i][2] =  1.0 ) )  {

if ((nodeCors[i][0] = 0 . 0 )  |
(nodeCors[i][1] = 0 . 0 )

(nodeCors[i][2] =  0.0) 
nodeTypes[i] [0] = 0; 
nodeTypes[i] [1] = BOUNDRY;

}
else {

nodeTypes [i] [0] = ++unknowns; 
nodeTypes[i] [1] = INTERNAL;

}
}

}

* 14-Node Pyramid Case ***★*****★*★*★**★★*★*****+*★*★**★***★★★***★★**★★★***+★*★***★*****★****★**★★ j
void pyrl4mesh(int size) {

int i,j,k, index, size_sq, layerOffset; 
int l,m; // variables for testing

size_sq = (int)pow(size, 2); 
layerOffset = 16.0*size_sq + 8.0*size + 2; 
for(i = 0; i < size; i++) { // each layer of cubes

for(j = 0; j < size; j++) { // each row of cubes
for(k = 0 ;  k < size; k++) { // each column of cubes

// 1st (bottom) element of the 
index = (i*size*size+j*size+k)*6;

cube

elements[index] [0] 
elements[index][1] 
elements[index] [2] 
elements[index] [3]

(i+1)*layerOffset 
(i+1)*layerOffset 
(i+1)*layerOffset

j * (4*size+2) 
j * (4*size+2) 
j * (4*size+2)

+2  * k ; 
+2*k +1; 
+2 *k +2;

elements[index] 
elements[index] 
elements[index] 
elements[index]

[4]
[5]
[6 ] 
[ 7 ]

i*layerOffset+j * (4*size+2)+2*k+8*size_sq 
+ 4*size + 3; 

i*layerOffset+j * (4*size+2)+2*k +2;
(4*size+2)+2*k +1; 
(4*size+2)+2*k;
(4 * si ze+2)+2 *k+8 * s ize_sq

i*layerOffset+j 
i*layerOffset+j 
i*layerOffset+j *

+ 4*size + 1;
[8] = i*layerOffset+j* (4*size+2)+2*k+8*size_sq 

+ 4 *size + 2;
[9] = i*layerOffset+j*

+ 8*size + 2; 
elements[index] [10] = i*layerOffset+j

+ 8*size + 3;
elements[index] [11] = i*layerOffset+j* (4*size)+2*k+4*size_sq

+ 4*size + 2;

elements[index] 

elements[index] (4*size)+2*k+12*size_sq 

* (4*size)+2*k+12*size_sq
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elements [index] [12] = i*layerOffset+j* (4*size)+2*k+4*size_sq
+ 4*size + 1;

elements[index][13] = i*layerOffset+j*(4*size+2)+2*k+8*size_sq
+ 6*size + 3;

// 2nd (right-side) element of the cube 
index++;

(i+1)*layerOffset+j *(4*size+2)+2*k+2;
(i+1)*layerOffset+j* (4*size+2)+2*k+2*size+3; 
(i+1)*layerOf fset+(j+1)*(4*size+2)+2 *k+2; 
i*layerOffset + (j+1)* (4*size+2) + 2*k 

+ 8*size_sq + 4*size + 3; 
i*layerOffset+(j + 1)* (4*size+2)+2 *k+2; 
i*layerOffset+j * (4*size+2)+2*k+2*size+3; 
i*layerOffset+j *(4*size+2)+2*k+2; 
i*layerOffset+j * (4*size+2)+2*k+8*size_sq 

+ 4*size + 3; 
i*layerOffset+j * (4*size+2)+2*k+8*size_sq 

+ 6*size + 4; 
i*layerOffset+j * (4*size)+2*k+12*size_sq 

+ 8*size + 3;
= i*layerOffset+j* (4*size)+2*k+12*size_sq 

+ 10*size + 3;
= i*layerOffset+j* (4*size)+2*k+4*size_sq 

+ 6*size + 2;
= i*layerOffset+j* (4*size)+2*k+4*size_sq 

+ 4*size + 2;
= i*layerOffset+j* (4*size+2)+2*k+8*size_sq 

+ 6*size + 3; 
element of the cube

elements[index][0] 
elements[index][1] 
elements[index][2] 
elements[index][3]

elements[index][4] 
elements[index][5] 
elements[index][6] 
elements[index][7]

elements[index][8] : 

elements[index][9] ; 

elements[index][10] 

elements[index][11] 

elements[index][12] 

elements[index][13] 

(top)// 3rd 
index++;
elements[index][0] : 
elements[index][1] = 
elements[index] [2] : 
elements[index][3] :

elements[index] [4] : 
elements[index][5] : 
elements[index] [6] : 
elements[index][7] ;

elements[index][8] :

elements[index] [9] :

elements[index][10]

elements[index][11]

elements[index][12]

elements[index][13]

// 4th (left-side
index++;
elements [index] [0]
elements [index] [1]
elements [index] [2]
elements [index] [3]

: (i+1)*layerOffset+(j+1)* (4*size+2)+2*k+2;
• (i+1) *layerOffset+ (j+1)*(4*size+2)+2*k+l;
; (i+1)*layerOffset+(j+1)*(4*size+2)+2*k;
: i*layerOffset+(j+1)* (4*size+2) +2*k 
+ 8*size_sq +4*size +1;

; i*layerOffset+(j+1)* (4*size+2)+2*k;
: i*layerOffset+(j+1)* (4*size+2)+2*k+l;
! i*layerOffset+(j+1)* (4*size+2)+2*k+2;
: i*layerOffset+(j+l)* (4*size+2)+2*k 
+ 8*size_sq +4*size + 3;

: i*layerOffset+(j+1)* (4*size+2)+2*k 
+ 8*size_sq +4*size +2;

: i*layerOffset+j* (4*size)+2*k+12*size_sq 
+ 10*size + 3;

= i*layerOffset+j* (4*size)+2*k+12*size_sq 
+ 10*size + 2;

= i*layerOffset+j* (4*size)+2*k+4*size_sq 
+ 6*size + 1;

= i*layerOffset+j* (4*size)+2*k+4*size_sq 
+ 6*size + 2;

= i*layerOffset+j* (4*size+2)+2*k+8*size_sq 
+ 6*size + 3; 
element of the cube

■ (i+1)*layerOffset+(j+1)* (4*size+2)+2*k;
: (i+1)*layerOffset+j * (4*size+2)+2*k+2*size+1;
• (i+1)*layerOffset+j *(4*size+2)+2 *k;
: i*layerOffset+j* (4*size+2)+2*k+8*size_sq 
+ 4*size + 1;
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elements [index] [4] = i'
elements [index] [5] = i'
elements [index] [6] = i'
elements [index] [7] = i' 

+
elements [index] [8] = i1 

+
elements [index] [9] = i' 

+
elements [index] [10]

+
elements [index] [11]

+
elements [index] [12]

+
elements [index] [13]

+
// 5th (front) elemi 

index++;
elements [index] [0] = (:
elements [index] [1] = (:
elements [index] [2] = (:
elements [index] [3] = (: 

+
elements [index] [4] = (:
elements [index] [5] = (:
elements [index] [6] = (:
elements [index] [7] = (: 

+
elements [index] [8] = (: 

+
elements [index] [9] = i1 

+
elements [index] [10]

+
elements [index] [11]

+
elements [index] [12]

+
elements [index] [13]

+
// 6th (back) eleme: 

index++;
elements [index] [0] = i
elements [index] [1] = i'
elements [index] [2] = i
elements [index] [3] = i ■
elements [index] [4] = i ■
elements [index] [5] = i1
elements [index] [6] = i'
elements [index] [7] = i'
elements [index] [8] = i'
elements [index] [9] = i1 

+
elements [index] [10]

+
elements [index] [11]

+
elements [index] [12]

layerOffset+j * (4*size+2)+2*k; 
i*layerOffset+j * (4*size+2)+2*k+2*size+l; 
i*layerOffset+(j+1)* (4*size+2)+2*k; 
i*layerOffset+(j+1)*(4*size+2)+2*k 

size_sq + 4*size + 1; 
i*layerOffset+j * (4*size+2)+2*k+8*size_sq 
+ 6*size + 2;
i*layerOffset+j* (4*size)+2*k+12*size_sq 
+ 10*size + 2; 
i*layerOffset+j * (4*size)+2*k+12*size_sq 
8*size + 2;

= i*layerOffset+j * (4*size)+2*k+4*size_sq 
+ 4*size + 1;

♦layerOffset+j *(4 *size)+2*k+4*size_sq 
6*size + 1;
♦layerOffset+j *(4*size+2)+2*k+8*size_sc 

+ 6*size + 3;

(i+1)*layerOf fset+(j+1)*(4 *size+2)+2 *k; 
(i+1)*layerOffset+(j+1)* (4*size+2)+2*k+l; 
(i+1)*layerOffset+(j+1)* (4*size+2)+2*k+2; 
(i+1)*layerOffset+j * (4*size+2) +2*k 
+ 2*size + 3;
(i+1)*layerOffset+j * (4*size+2)+2*k+2;
(i+1)*layerOffset+j*(4*size+2)+2 *k+l;
(i+1)*layerOffset+j* (4*size+2)+2 *k;
(i+1)*layerOffset+j* (4*size+2)+2*k 
+ 2*size+1;
(i+1)*layerOffset+j * (4*size+2)+2*k 
2*size + 2; 

i*layerOffset+j * (4*size)+2*k+12*size_sq 
+ 10*size + 2;

= i*layerOffset+j*(4*size)+2*k+12*size_sq 
10*size + 3;

= i*layerOffset+j*(4*size)+2*k+12*size_sq 
8*size + 3; 

i*layerOffset+j*(4 *size)+2*k+12 *size_sq 
8*size + 2; 

i*layerOffset+j*(4 * size+2)+2*k+8*size_sq 
6*size + 3;

i*layerOffset+j *(4*size+2)+2 *k; 
i*layerOffset+j * (4*size+2)+2*k+l; 
i*layerOffset+j *(4*size+2)+2*k+2; 
i*layerOffset+j*(4*size+2)+2 *k+2*size+3; 
i*layerOffset+(j+1)* (4*size+2)+2*k+2; 
i*layerOffset+(j+1)* (4*size+2)+2*k+l; 
i*layerOffset+(j+1)* (4*size+2)+2*k;
♦layerOffset+j * (4* size+2 ) +2 *k+2*S ize+l
♦layerOffset+j * (4* size+2 ) +2 *k+2*s ize+2
♦layerOffset+j * (4* size)+ 2* k+4*si ze_sq
4*size + 1;

i*layerOffset+j * (4♦size) +2* k+4*si ze_sq
4*size + 2;

i*layerOffset+j * (4♦size) +2* k+4*si ze_sq
6*size + 2;

i*layerOffset+j * (4♦size) +2* k+4*si ze_sq
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+ 6*size + 1;
elements[index] [13] = i*layerOffset+j* (4*size+2)+2*k+8*size_sq

+ 6*size + 3;
}

}
}

}

void pyrl4mapping(int size) {
int nodeindex, offset, size_sq, i, j, k;

// calculate x,y,z coordinates for corner nodes of small cubes
size_sq = (int)pow(size, 2);
offset = 16 * size_sq + 8 * size + 2;
for(i = 0; i < size+1; i++) { // each layer of cubes

f or(j = 0 ;  j < size+1; j++) { // each row of cubes
for(k = 0 ;  k < size+1; k++) { // each column of cubes
// node 3 (node 6)

nodeindex = i*offset + j*(4*size+2) + 2*k; 
nodeCors[nodeindex][0] = (double) k/size;
nodeCors[nodeindex] [1] = (double) j/size;
nodeCors[nodeindex] [2] = (double) i/size;
if (i < size) {
// node 03 (node 7)

nodeindex = i*offset+8*size_sq+4*size+l+j* (4*size+2)+2*k; 
nodeCors[nodeindex][0] = (double) k/size;
nodeCors[nodeindex][1] = (double) j/size;
nodeCors[nodeindex] [2] = (double) i/size +1.0/(2 . 0*size);

}
if(k < size) {
// node 2 3 (node 5)

nodeindex = i*offset + j*(4*size+2) + 2*k + 1; 
nodeCors[nodeindex] [0] = (double) k/size +1.0/(2.0*size); 
nodeCors [nodeindex] [1] = (double) j/size;
nodeCors[nodeindex] [2] = (double) i/size;

}
if(j < size) {
// node 23 in 90 degree _clockwise_ rotation (node 5, elm #3) 

nodeindex = i*offset + j*(4*size+2) + 2*k + 2*size+l; 
nodeCors[nodeindex] [0] = (double) k/size;
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(2.0*size);
nodeCors[nodeindex][2] = (double) i/size;

}
if ((i < size) && (k < size)) {
// node 02 (node 8)

nodeindex = i*offset +8*size_sq+4*size+2+j* (4*size+2)+2*k; 
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(2.0*size);
nodeCors[nodeindex][1] = (double) j/size;
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(2.0*size) ;

}
if ((i < size) && (j < size)) {
// node 02 in 90 degree clockwise rotation about z(node 8,elm #3)

nodeindex = i*offset + 8*size_sq +6*size+2+j* (4*size+2)+2*k; 
nodeCors[nodeindex][0] = (double) k/size;
nodeCors[nodeindex][1] = (double) j/size + 1.0/(2.0*size);
nodeCors [nodeindex] [2] = (double) i/size + 1.0/(2.0*size) ;

}
if ((k < size) && (j < size)) {
// node 02 in 90 degree clockwise rotation about x
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// (node 8,elm #5 (back))
nodeindex = i*offset + 2*size+2 + j*(4*size+2)+2*k;
nodeCors[nodeindex][0] = (double) k/size + 1.0/(2.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(2.0*size);
nodeCors[nodeindex][2] = (double) i/size,-

}
if ( (i < size) && (j < size) && (k < size)) {
// node 34 (node 12)

nodeindex = i*offset +4*size_sq +4*size+l+j* (4*size)+2*k; 
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size)
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(4.0*size)
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4.0*size)

// node 24 (node 11)
nodeindex = i*offset +4*size_sq +4*size+l+j * (4*size) +2 *k+l ,- 
nodeCors[nodeindex][0] = (double) k/size + 3.0/(4.0*size); 
nodeCors[nodeindex] [1] = (double) j/size + 1.0/ (4 . 0*size);
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4.0*size);

// node 04 in 180 degree flip (node 11, ele 2)
nodeindex = i*offset +4*size_sq +6*size+l +j* (4*size)+2*k; 
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size)
nodeCors [nodeindex] [1] = (double) j/size + 3.0/(4 . 0*size)
nodeCors[nodeindex] [2] = (double) i/size + 1. 0/(4.0*size)

// node 03 in 180 degree flip (node 12, elm 2)
nodeindex = i*offset+4*size_sq +6*size+l +j* (4*size)+2*k+l; 
nodeCors [nodeindex] [0] = (double) k/size + 3.0/(4 . 0*size); 
nodeCors[nodeindex] [1] = (double) j/size + 3.0/(4 . 0*size);
nodeCors [nodeindex] [2] = (double) i/size + 1. 0/(4 . 0*size) ,-

// node 4 (centre, node 13)
nodeindex = i*offset +8*size_sq+6*size+3+j* (4*size+2)+2*k; 
nodeCors[nodeindex][0] = (double) k/size + 1.0/(2.0*size) 
nodeCors[nodeindex] [1] = (double) j/size + 1. 0/(2.0*size)
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(2 . 0*size)

// node 04 (node 9)
nodeindex = i*offset +12*size_sq +8*size+2 +j* (4*size)+2*k; 
nodeCors [nodeindex] [0] = (double) k/size + 1.0/(4 . 0*size);
nodeCors[nodeindex] [l] = (double) j/size + 1.0/(4 . 0*size);
nodeCors[nodeindex] [2] = (double) i/size + 3.0/ (4 . 0*size);

// node 14 (node 10)
nodeindex = i*offset +12*size_sq+8*size+2+j* (4*size)+2*k+l ; 
nodeCors[nodeindex] [0] = (double) k/size + 3.0/(4.0*size)
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(4.0*size)
nodeCors[nodeindex] [2] = (double) i/size + 3.0/(4 . 0*size)

// node 14 in 180 degree flip (node 10, elm 2)
nodeindex = i*offset +12*size_sq+10*size+2+j* (4*size)+2*k; 
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size)
nodeCors[nodeindex] [1] = (double) j/size + 3.0/(4.0*size)
nodeCors[nodeindex] [2] = (double) i/size + 3.0/(4 . 0*size)

// node 04 in 180 degree flip (node 9, elm 2)
nodeindex = i*offset+12*size_sq+10*size+2+j* (4*size)+2*k+l; 
nodeCors[nodeindex][0] = (double) k/size + 3.0/(4.0*size); 
nodeCors[nodeindex] [1] = (double) j/size + 3.0/(4 . 0*size);
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nodeCors[nodeindex] [2] = (double) i/size + 3.0/(4.0*size)
}

}
}

}
for(i = 0;i < noNodes;i++) {

// determine surface nodes for assigning boundry conditions 
if ((nodeCors [ i] [ 0] =  0.0) || (nodeCors [ i] [ 0] =  1.0) ||

(nodeCors[i] [1] =  0.0) | | (nodeCors[i] [1] =  1.0) | |
(nodeCors [i] [2] =  0.0) || (nodeCors[i] [2] =  1.0)) {

nodeTypes [i] [0] = 0; 
nodeTypes [i] [1] = BOUNDRY;

}
else {

nodeTypes [i] [0] = ++unknowns; 
nodeTypes [i] [1] = INTERNAL;

}
}

}

★
* Control function, calls appropriate mesh generation functions
*

void makeMesh(int size) {

if(pyrType =  PYR5) { 
pyr5mesh(size); 
pyrSmapping(size);

}
else {

if(pyrType =  PYR13) {
pyrl3mesh(size); 
pyrl3mapping(size);

}
else {

if((pyrType =  PYR14_CASE_I) ||(pyrType =  PYR14_CASE_II)) {
pyrl4mesh(size); 
pyrl4mapping(size);

}
else {

printf("%s\n",
"Error in: makeMeshO, Invalid mesh type for mesh generation 
printf("Program Halted...\n") ; 
exit(1) ;

}
}

}
}
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* Author: Kevin Davies
* File entry_intgrls.c
* Version: 4.0
* Date last modified: Dec 15, 2004
* Description: functions for calculating integral values for system
* matrix and load vector entries.

* Function to get vertex points of tetrahedra 
*******************************************************************
void getTetPoints(MAT *A, int i) {

switch (i) {
case 1:

// set vertex coordinates for tetrahedron #1 
if(symBasis) {

A->me [0] [0] = -1.0
A->me [1] [0] = -1.0
A->me [2] [0] = 0 . 0

A->me [0] [1] = 1.0
A->me [1] [1] = -1.0
A->me [2] [1] = 0.0

A->me [0] [2] = 0 . 0
A->me [1] [2] = 0.0
A->me [2] [2] = 1.0

A->me [0] [3] = 0.0
A->me [1] [3] = 0.0
A->me [2] [3] = 0.0

se {
A->me [0] [0] = 1. 0
A->me [1] [0] = -1.0
A->me [2] [0] 0.0

A->me [0] [1] 1.0
A->me [1] [1] = 1 . 0
A->me [2] [1] = 0.0

A->me [0] [2] 0.0
A->me [1] [2] = 0.0
A->me [2] [2] = 1.0

A->me [0] [3] -1.0
A->me [1] [3] = -1.0
A->me [2] [3] = 0 . 0

eak; 
2 :
set vertex coordin
(symBasis 
A->me[0]

)
[0]

{
1 . 0

A->me [1] [0] = -1 . 0
A->me [2] [0] = 0 . 0
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A->me [0] [1] = 1. 0
A->me[1] [1] = 1. 0
A->me [2] [1] = 0 . 0

A->me [0] [2] = 0 . 0
A->me [1] [2] = 0 . 0
A->me [2] [2] 1.0

A->me [0] [3] = 0 . 0
A->me [1] [3] = 0 . 0
A->me[2] [3] = 0 . 0

se {
A->me [0] [0] = 1. 0
A->me [1] to] = 1.0
A->me [2] [0] = 0 . 0

A->me [0] [1] -1.0
A->me [1] [1] = 1. 0
A->me [2] [1] = 0.0

A->me[0] [2] = 0.0
A->me [1] [2] = 0 . 0
A->me [2] [2] = 1.0

A->me [0] [3] = -1.0
A->me[1] [3] = -1.0
A->me [2] [3] = 0 . 0

}
break; 

case 3:
// set vertex coordinates for tetrahedron #3 
A->me [0] [0] = 1.0,
A->me[l][0] = 1.0
A->me[2] [0] = 0.0

A->me[0 
A->me[1 
A->me[2

A->me[0 
A->me[1 
A->me [ 2

A->me[0 
A->me[1 
A->me[2

[1 ]
[ 1 ]
[ 1 ]

=  - 1 . 0  
=  1 . 0
=  0 . 0

[ 2 ] = 0 . 0
[ 2 ] =  0 . 0
[2 ] =  1 . 0

A->me[0] [3] = 0.0
A->me[1][3] = 0.0
A->me[2] [3] = 0.0
break; 

case 4:
// set vertex coordinates for tetrahedron #4 
A->me[0][0] = -1.0 
A->me[1] [0] = 1.0
A->me[2] [0] = 0.0

[1 ]
[1]
[ 1 ] =  0 . 0

A->me[0][2] = 0.0;

A2-29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A->me[1] [2] = 0.0; 
A->me[2][2] = 1.0;

}
}

A->me[0] [3] = 0.0
A->me[1] [3] = 0.0
A->me[2] [3] = 0.0;
break; 

default:
printf("Invalid tet #\n");

% Author: Kevin Davies
% Description: function to find jacobian matrix, ie. N*X 
% inputs:
% X - a matrix of global coordinates, s.t.
% the first column consists of the x coordinate values, the second
% column consists of y values, and the third consists of z values.
% outputs:
% J - Jacobian matrix 
%

void jacob(MAT *X, MAT *J) {
MAT *N, *A;
VEC *Q; 
int tip-
double x,y,z, wi, h = 0.000001;
N = m_get (3 , nodesPerElm) ,- 
A = m_get (3,4) ,- 
Q = v_get(3) ;

getTetPoints(A, 1); 
switch(pyrType) { 
case PYR5:

cubature4(A, 1, Q, &wi) ; 
break; 

case PYR13:
cubature4(A, 1, Q, &wi) ; 
break ,- 

case PYR14_CASE_I:
cubature4 (A, l, Q, &wi) ,- 
break; 

case PYR14_CASE_II:
cubature4(A, 1, Q, &wi);

}
x = Q->ve [0] ; 
y  = Q->ve [1]; 
z = Q->ve [2] ; 
i f (!symBasis) {

switch(pyrType) { 
case PYR5:

for( m = 0; m < nodesPerElm,- trH-+) {
N->me [0] [m] = pyr5basis_dx (m,x,y, z) ,- 
N->me[l][m] = pyr5basis_dy(m,x,y,z);
N->me[2][m] = pyr5basis_dz(m,x,y,z);

}
break,- 

case PYR13:
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for( m = 0; m < nodesPerElm; rm-+) {
N->me[0] [m] = pyrl3basis_dx(m,x,y, z);
N->me[1] [m] = pyrl3basis_dy(m, x,y,z) ;
N->me[2][m] = pyrl3basis_dz(m,x,y,z);

}
break;

case PYR14_CASE_I: // Approximations to Partial dirivatives
for( m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = (pyrl4Clbasis(m, x+h,y,z)-pyrl4Clbasis(m,x,y,z))/h;
N->me[1] [m] = (pyrl4Clbasis(m,x,y+h, z)-pyrl4Clbasis(m,x,y,z))/h;
N->me[2] [m] = (pyrl4Clbasis(m, x,y,z+h)-pyrl4Clbasis(m,x,y,z))/h;

}
break; 

case PYR14_CASE_II:
for( m = 0; m < nodesPerElm; m++) {

N->me[0][m] = pyrl4C2basis_dx(m,x,y, z);
N->me[1][m] = pyrl4C2basis_dy(m,x,y,z);
N->me[2][m] = pyrl4C2basis_dz(m,x,y,z);

}
}

}
else {

switch(pyrType) { 
case PYR5:

for( m = 0; m < nodesPerElm; m++) {
N->me[0][m] = pyr5symBasis_dx(m,x,y,z);
N->me[1][m] = pyr5symBasis_dy(m,x,y, z);
N->me[2][m] = pyr5symBasis_dz(m,x,y,z);

}
break; 

case PYR13:
for( m = 0; m < nodesPerElm; m++) {

N->me[0][m] = pyrl3symBasis_dx(m,x,y,z);
N->me[l][m] = pyrl3symBasis_dy(m,x,y,z);
N->me[2][m] = pyrl3symBasis_dz(m,x(y,z);

}
break;

case PYR14_CASE_I: // Approximations to Partial dirivatives
for( m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = (pyrl4ClsymBasis(m,x+h,y, z)-pyrl4ClsymBasis(m,x,y,z))/h 
N->me[1] [m] = (pyrl4ClsymBasis(m,x,y+h, z)-pyrl4ClsymBasis(m,x,y,z))/h 
N->me[2][m]= (pyrl4ClsymBasis(m,x,y,z+h)-pyrl4ClsymBasis(m,x,y,z))/h

}
break; 

case PYR14_CASE_II:
for( m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = pyrl4C2symBasis_dx(m,x,y,z);
N->me[l][m] = pyrl4C2symBasis_dy(m,x,y,z);
N->me[2][m] = pyrl4C2symBasis_dz(m,x,y,z);

}
}

}
m_mlt(N, X, J ) ;
M_FREE(N);
M_FREE(A);
V_FREE(Q);

}

A2-31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



* Author: Kevin Davies
* Description: function for integrating over tetrahedra for a system
* matrix entry.
* inputs:
* X - a matrix of global coordinates, s.t.
* the first column consists of the x coordinate values, the second
* column consists of y values, and the third consists of z values.
* i - index of first node in element
* j - index of second node in element
* tetNo - tetrahedra index
* outputs:
* returns quadrature over tetrhedral portion of element
*

double tet(MAT *X, int i, int j, int tetNo) {
MAT *N, *A, *K, *J, *Jinv;
VEC *Ni, *Nj, *v , *Q; 
int k,m;
double x,y,z, t = 0.0, wi, quadPoints, h = 0.000001; 
N = m_get(3,nodesPerElm);
A = m_get(3,4)
K = m_get(1,3)
J = m_get(3,3)
Jinv = m_get(3,3);
Ni = v_get (3) ,•
Nj = v_get(3); 
v = v_get(3);
Q = v_get(3);

switch(pyrType) { 
case PYR5:

quadPoints = quadDeg4pts; 
break; 

case PYR13:
quadPoints = quadDeg4pts; 
break; 

case PYR14_CASE_I:
quadPoints = quadDeg4pts; 
break; 

case PYR14_CASE_II:
quadPoints = quadDeg4pts,-

}getTetPoints(A, tetNo); 
for(k = 0 ;  k < quadPoints; k++) 

switch(pyrType) { 
case PYR5:

cubature4 (A, k+1, Q, &wi); 
break; 

case PYR13:
cubature4(A, k+1, Q, &wi); 
break; 

case PYR14_CASE_I:
cubature4(A, k+1, Q, &wi); 
break; 

case PYR14_CASE_II:
cubature4 (A, k+1, Q, &wi);
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}
x = Q->ve [0] ; 
y = Q->ve [ 1] ; 
z = Q->ve [2] ; 
i f (!symBasis) {

switch(pyrType) { 
case PYR5:

f o r ( m = 0; m < nodesPerElm; m++) {
N->me[0][m] = pyr5basis_dx(m,x,y,z);
N->me[l] [m] = pyr5basis_dy(m,x,y,z);
N->me[2] [m] = pyr5basis_dz(m,x,y,z);

}
break; 

case PYR13:
fort m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = pyrl3basis_dx(m,x,y,z);
N->me [1] [m] = pyrl3basis_dy(m,x,y,z);
N->me[2] [m] = pyrl3basis_dz(m,x,y,z);

}
break;

case PYR14_CASE_I: // Approximations to Partial dirivatives
for( m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = (pyrl4Clbasis(m,x+h,y,z)-pyrl4Clbasis(m,x,y,z))/h 
N->me[1] [m] = (pyrl4Clbasis(m,x,y+h,z)-pyrl4Clbasis(m,x,y, z))/h 
N->me[2][m]= (pyr!4Clbasis(m,x,y,z+h)-pyrl4Clbasis(m,x,y,z))/h

}break; 
case PYR14_CASE_II:

fort m = 0; m < nodesPerElm; m++) {
N->me[0] [m] = pyrl4C2basis_dx(m,x,y,z);
N->me[l][m] = pyrl4C2basis_dy(m/x,y,z);
N->me[2] [m] = pyrl4C2basis_dz(m,x,y,z);

}
}

}
else {

switch(pyrType) { 
case PYR5:

fort m = 0; m < nodesPerElm; m++) {
N->me[0] [m] = pyr5symBasis_dx (m, x, y, z) ;
N->me[l][m] = pyr5symBasis_dy(m,x,y,z);
N->me[2] [m] = pyr5symBasis_dz(m,x,y,z);

}
break; 

case PYR13 :
for( m = 0; m < nodesPerElm; m++) {

N->me[0][m] = pyrl3symBasis_dx(m,x,y,z);
N->me[l] [m] = pyrl3symBasis_dy (m, x, y, z)
N->me[2] [m] = pyrl3symBasis_dz(m,x,y,z);

}break;
case PYR14_CASE_I: // Approximations to Partial dirivatives

fort m = 0; m < nodesPerElm; m++) {
N->me[0] [m] = (pyrl4ClsymBasis(m,x+h,y,z) -

pyrl4ClsymBasis(m,x,y,z)) / h;
N->me[l] [m] = (pyrl4ClsymBasis(m, x,y+h,z) -

pyrl4ClsymBasis(m,x,y,z)) / h;
N->me[2] [m] = (pyrl4ClsymBasis(m,x,y,z+h) -

pyr14ClsymBasis(m,x,y,z)) / h;
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o\° 
o\° 

o\o 
o\° 

o\° 
o\° 

o\° 
o\° 

o\° 
o\°

b reak,- 
case PYR14_CASE_II:

f o r ( m = 0,- m < nodesPerElm; m++) {
N->me[0][m] = pyrl4C2symBasis_dx(m,x,y,z),- 
N->me[l][m] = pyrl4C2symBasis_dy(m,x,y, z) ;
N->me[2][m] = pyrl4C2symBasis_dz(m,x,y,z);

}
}

}
m_mlt(N, X, J); 
m_inverse(J, Jinv),- 
get_col(N, i, v) ,- 
mv_mlt(Ji nv, v , Ni); 
get_col(N, j , v ) ; 
mv_mlt(Jinv, v, Nj) ,-
t =t+wi*(Ni->ve[0]*Nj->ve[0]+Ni->ve[1]*Nj->ve[l]+Ni->ve[2]*Nj->ve[2] ) ;

}
M_FREE(N);
M_FREE(A);
M_FREE(K);
M_FREE(J);
M_FREE(Jinv);
V_FREE (Ni) ;
V_FREE(Nj);
V_FREE(Q);
V_FREE (v) ; 
return t;

}

Description; function for forming rhs vector from tetrahedra 
inputs;

X - a matrix of global coordinates, s.t.
the first column consists of the x coordinate values, the second 
column consists of y values, and the third consists of z values, 

i - element node index(0-4) 
j - tetrahedra index(1-4) 

outputs:
returns quadrature over j-th tetrhedral portion of element

double rhs_tet(MAT *X, int i, int j) {
MAT *N, *A, *K;
VEC *Q; 
int k, re
double t = 0.0, wi, quadPoints,- 
N = m_get (1, nodesPerElm) ,- 
A = m_get(3,4);
K = m_get(1,3);
Q = v_get(3);

switch(pyrType) { 
case PYR5;

quadPoints = quadDeg4pts; 
break; 

case PYR13:
quadPoints = quadDeg7pts,- 
break;
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case PYR14_CASE_I:
quadPoints = quadDeg7pts,- 
break; 

case PYR14_CASE_II:
quadPoints = quadDeg7pts;

}
getTetPoints(A, j);
for(k = 0; k < quadPoints ; k++) {

switch(pyrType) { 
case PYR5;

cubature4(A, k+1, Q, &wi) ; 
break; 

case PYR13:
cubature7(A, k+1, Q, &wi) ; 
break; 

case PYR14_CASE_I;
cubature7(A, k+1, Q, &wi) ; 
break; 

case PYR14_CASE_II:
cubature7(A, k+1, Q, &wi);

}
if(symBasis) {

switch(pyrType) { 
case PYR5:

for(m = 1; m <= nodesPerElm; m++)
N->me[0] [m-1] = pyrBsymBasis(m-1, Q->ve[0],

Q->ve[1], Q->ve [2]) ;
break; 

case PYR13:
for(m = 1; m <= nodesPerElm; m++)

N->me [0] [m-1] = pyrl3symBasis (m-1, Q->ve[0],
Q->ve [1] , Q->ve[2]);

break; 
case PYR14_CASE_I:

f or (m = l; m <= nodesPerElm; ro++)
N->me[0] [m-1] = pyrl4ClsymBasis(m-1, Q->ve[0],

Q->ve[1], Q->ve[2])
break; 

case PYR14_CASE_II:
for(m = 1 ;  m <= nodesPerElm; m++)

N->me [0] [m-1] = pyrl4C2symBasis (m-1, Q->ve[0],
Q->ve [1], Q->ve[2])

}
}
else {

switch(pyrType) { 
case PYR5;

for(m = 1; m <= nodesPerElm; m++)
N->me[0] [m-1] = pyrSbasis(m-1, Q->ve[0] ,

Q->ve[1], Q->ve [2]);
break; 

case PYR13 :
for(m = 1; m <= nodesPerElm; m++)

N->me [0] [m-1] = pyrl3basis(m-1, Q->ve[0],
Q->ve[1], Q->ve[2]);

break; 
case PYR14_CASE_I:

for(m = 1; m <= nodesPerElm; m++)
N->me [0] [m-1] = pyrl4Clbasis(m-1, Q->ve[0],
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Q->ve [ 1 ] ,  Q - > v e [ 2 ] ) ;
break; 

case PYR14_CASE_II:
for(m = 1; m <= nodesPerElm; m++)

N->me[0][m-1] = pyrl4C2basis(m-1, Q->ve[0],
Q->ve[1], Q->ve [2]);

}
}
m_mlt (N, X, K) ; 
if(symBasis) {

switch(pyrType) { 
case PYR5:

t = t + wi* ( pyr5symBasis (i, Q->ve[0], Q->ve[1], Q->ve[2]) * 
func(K->me [0] [0], K->me[0] [1], K->me [0] [2]) )

break; 
case PYR13 :

t = t + wi* ( pyrl3symBasis(i , Q->ve[0], Q->ve[l], Q->ve[2])* 
func(K->me[0] [0], K->me[0] [1], K->me [0] [2]) )

break; 
case PYR14_CASE_I:

t = t + wi* ( pyrl4ClsymBasis (i, Q->ve[0], Q->ve[l], Q->ve[2]) 
func(K->me [0] [0], K->me[0] [1], K->me [0] [2]) )

break; 
case PYR14_CASE_II:

t = t + wi* ( pyrl4C2symBasis(i, Q->ve[0], Q->ve[l], Q->ve[2]) 
func(K->me[0] [0], K->me[0] [1], K->me [0] [2]) )

}
}
else {

switch(pyrType) { 
case PYR5:

t = t + wi* ( pyr5basis(i, Q->ve[0] , Q->ve[1], Q->ve[2]) *
func(K->me[0][0], K->me[0][l], K->me[0][2]) )

break; 
case PYR13:

t = t + wi* ( pyrl3basis(i, Q->ve[0] , Q->ve[1], Q->ve[2]) *
func(K->me[0] [0], K->me[0] [1], K->me [0] [2]) )

break; 
case PYR14_CASE_I:

t = t + wi* ( pyrl4Clbasis (i, Q->ve[0], Q->ve[l], Q->ve[2]) * 
func(K->me [0] [0], K->me[0] [1], K->me[0] [2]) )

break; 
case PYR14_CASE_II :

t = t + wi* ( pyrl4C2basis (i, Q->ve[0], Q->ve[1], Q->ve[2]) * 
func(K->me[0][0], K->me[0][l], K->me[0][2]) )

M_FREE(N) 
M_FREE(A) 
M_FREE(K) 
V_FREE(Q) 
return t;

}
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* Programmer: Kevin Davies
* File: pyr5basis.c
* Version: 2.3
* Date last modified: Aug 25, 2004
* Description: Linear basis functions and their partial derivatives.
*

*********************************************************************

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* Basis functions based on transformation of Wieners' basis functions
* (Before symmetries) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

double pyrSbasis(int i, double x, double y, double z) { 
double f ;

switch(i) {
case 0:

if (x > y )
f = 0.25*

else
f = 0.25*

break;
case 1:

if (x > y )
f = 0.25*

else
f = 0.25*

break;
case 2 :

if (x > y )
f = 0.25*

else
f = 0.25*

break;
case 3 :

if (x > y )
f = 0.25*

else
f = 0.25*

break;

0.25*(x-z+1.0)*(-y+z+1.0) - 0.5*z*(y-z+1.0);

}

0.25*(-x+z+1.0)*(y-z+1.0) - 0.5*z*(x-z+1.0);
c;

case 4 :
f  =  Z ;
break; 

default:
printf("invalid case detected\n") ;

}
return f;

double pyr5basis_dx(int i, double x, double y, double z) { 
double f ;

switch (i) {
case 0 :

if(x > y)
f = 0.25*(y-z-1.0); 

else
f = 0.25*(y+z-1.0);
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break;
case 1;

if (x > y)
f = o . 25* (-y+z+1.0)

else
f = o . 25* (-y-z+1.0)

break;
case 2 :

if (x > y)
f = o . 25* (y-z+1.0);

else
f = 0. 25* (y+z+1.0) ;

break;
case 3:

if (x > y)
f = o . 25* (-y+z-1.0)

else
f = 0 . 25* (-y-z-1.0)

break;
case 4 :

f = 0.0; 
break; 

default:
printf("invalid case detected\n");

}
return f;

double pyr5basis_dy(int i, double x, double y, double z) { 
double f

switch(i) { 
case 0 ;

if(x > y)
f = 0.25*(x+z-1.0); 

else
f = 0.25*(x-z-1.0); 

break; 
case 1:

if(x > y)
f = 0.25*(-x-z-1.0); 

else
f = 0.25*(-x+z-1.0); 

break; 
case 2 :

if(x > y)
f = 0.25*(x+z+1.0) ; 

else
f = 0.25*(x-z+1.0); 

break; 
case 3 :

if(x > y)
f = 0.25* (-x-z+1.0) ; 

else
f = 0.25* (-x+z+1. 0 ) ; 

break; 
case 4 ;

f = 0.0; 
break;
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default:
printf("invalid case detected\n");

}
return f;

}

double pyr5basis_dz(int i, double x, double y, double z) { 
double f;

switch(i) { 
case 0:

if(x > y)
f = 0.25*(y-x) - 0 . 5 * z; 

else
f = 0.25* (x-y) - 0 . 5 * z;

break; 
case 1:

if(x > y)
f = 0.25*(-y+2.0*z+x-2.0); 

else
f = 0.25*(y+2.0*z-x-2.0); 

break; 
case 2:

if(x > y)
f = 0.25*(y-2.0*z-x); 

else
f = 0.25*(-y-2.0*z+x); 

break; 
case 3:

if(x > y)
f = 0.25*(-y+2.0*z+x-2.0); 

else
f = 0.25* (y+2.0*z-x-2.0) ; 

break; 
case 4:

f = 1.0; 
break; 

default:
printf ("invalid case detected\n")

}
return f;

}

* Basis functions and partial derivatives
* with symmetries about x and y axis 
*******************************************************************

* Basis functions and partial derivatives
* with symmetries about x axis 
**********************************************************************

double pyr5symBasis(int i, double x, double y, double z) { 
double f ;

switch(i) { 
case 0 :

f = pyr5basis(0,x,y,z) + pyr5basis(1,-x,y,z);
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f = f/2.0; 
break; 

case 1:
f = pyrSbasis(1, x, y, z) + pyrsbasis(0,-x,y,z) 
f = f/2.0; 
break; 

case 2 :
f = pyrsbasis(2,x,y,z) + pyrsbasis(3,-x,y,z) 
f = f/2.0; 
break; 

case 3 :
f = pyrsbasis(3,x,y,z) + pyrsbasis(2,-x,y,z) 
f = f/2.0; 
break; 

case 4 :
f = pyrsbasis(4,x,y,z); 
break; 

default:
printf("invalid case detected\n");

}
return f;

double pyr5symBasis_dx(int i, double x, double y, 
double f;

switch (i) {
case 0:

f = pyr5basis_dx (0,x,y,z) - pyr5basis_dx(1, ■ 
f = f/2.0; 
break; 

case 1:
f = pyr5basis_dx(l,x,y,z) - pyr5basis_dx(0, • 
f = f/2.0; 
break; 

case 2:
f = pyr5basis_dx(2,x,y,z) - pyr5basis_dx(3, ■ 
f = f/2.0; 
break; 

case 3 :
f = pyr5basis_dx(3,x,y,z) - pyr5basis_dx(2, 
f = f/2.0; 
break; 

case 4:
f = pyr5basis_dx(4,x,y,z); 
break; 

default:
printf("invalid case detected\n");

}
return f;

}
double pyr5symBasis_dy(int i, double x, double y, 

double f;

switch(i) { 
case 0:

f = pyr5basis_dy(0,x,y,z) + pyr5basis_dy(1, • 
f = f/2.0; 
break;
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case 1:
f = pyr5basis_dy(1,x,y,z) + pyr5basis_dy(0,-x,y,z); 
f = f/2.0; 
break; 

case 2:
f = pyr5basis_dy(2,x,y,z) + pyr5basis_dy(3,-x, y, z) ; 
f = f/2.0; 
break; 

case 3 :
f = pyr5basis_dy(3,x ,y,z) + pyr5basis_dy(2,-x,y,z); 
f = f/2.0; 
break; 

case 4:
f = pyr5basis_dy(4,x,y, z) ; 
break; 

default:
printf("invalid case detected\n");

}
return f;

double pyr5symBasis_dz(int i, double x, double y, double z) { 
double f ;

switch(i) { 
case 0:

f = pyr5basis_dz(0,x,y,z) + pyr5basis_dz(1,-x,y,z); 
f = f/2.0; 
break; 

case 1:
f = pyr5basis_dz(1,x,y,z) + pyr5basis_dz(0,-x,y,z); 
f = f/2.0; 
break; 

case 2:
f = pyr5basis_dz(2,x,y,z) + pyr5basis_dz(3,-x,y,z); 
f = f/2.0; 
break; 

case 3 ;
f = pyr5basis_dz(3,x,y,z) + pyr5basis_dz(2,-x,y,z); 
f = f/2.0; 
break; 

case 4:
f = pyr5basis_dz(4,x,y,z); 
break; 

default:
printf("invalid case detected\n");

}
return f;

}
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* Programmer: Kevin Davies
* File: pyrl3basis.c
* Version: 3.3
* Date last modified: Aug 25, 2004
* Description: Pyr-13 Quadratic basis functions and their partial
* derivatives.
*

*********************************************************************

* Basis functions based on transformation of Wieners' basis functions
* (Before symmetries)

double pyrl3basis(int i, double x, double y, double z) { 
double f;

switch(i) {
case 0 : // node 0A*M-1-H y )

f = 
else

0.25*(x+y+1.0)*(x+z-1.0)*(-y+z+1.0);

f = 
break;

0.25* (x+y+1.0 )*(-x+z+1.0)*(y+z-1.0);

case 2 : // node 1
if (x > y )

f = 
else

0.25* (x-y-1.0 ) * ( (x+z+1.0) * ( -y+z+1.0) -  4.0*z)

f = 

break;
0.25*(x-y-1.0 ) * (x-z+1.0)* (-y-z+1.0) ;

case 4 : // node 2
if (x > y )

f = 

else
0.25*(x+y-1.0 )* (x+z+1.0)* (y-z+1.0) ;

f = 
break;

0.25*(x+y-1.0 )* (x-z+1.0)*(y+z+1.0) ;

case 6 : // node 3
if (x > y )

f = 
else

0.25*(x-y+1.0 )*(x+z-1.0)*(y-z+1.0);

f = 
break;

0.25*(x-y+1.0 )*((x-z-1.0)*(y+z+1.0) + 4.0*z);

case 12: // node 4
f = 

break;
z*(2.0*z-l.0) /

case l : // midpoint node, between corner nodes 1 and
if (x > y )

f = 
else

0.5*(x+z-1.0) * ( (y-Z-1.0)* (x+1.0) + 2.0 * z) ;

f = 
break;

0.5*(x-z+1.0) * (y+z-1.0)*(x-1.0) ;

case 3 : // midpoint, between corner nodes 1 and 2
if (x > y )

f = -0.5*(y-z+1.0 )*((x+z+1.0)*(y-1.0) + 2.0*z) ;
else

f = 
break;

-0.5*(x-z+1.0 )* (y+z-1.0)*(y+1. 0) ;

case 5 : // midpoint, between corner nodes 3 and 2
if (x > y )
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f = -0.5*(y-z+1.0)*(x+z-1.0)*(x+1.0); 
else

f = -0.5*(x-z+1.0)*((y+z+1.0)*(x-1.0) +2.0*z); 
break;

case 7: // midpoint, between corner nodes 3 and 0
if(x > y)

f = 0.5*(y-z+1.0)*(x+z-1.0)*(y-1.0); 
else

f = 0.5*(y+z-1.0)*((x-z-1.0)*(y+1.0) +2.0*z); 
break;

case 8: // midpoint, between corner nodes 4 and 0
if(x > y)

f = z *(y -z-1.0)* (x+z-1.0); 
else

f = z*(x-z-1.0)*(y+z-1.0); 
break;

case 9: // midpoint, between corner nodes 4 and 1
if(x > y)

f = -z*((x+z+1.0)*(y-z-1.0) + 4.0* z) ; 
else

f = -z*(x-z+1.0)*(y+z-1.0); 
break;

case 10: // midpoint, between corner nodes 4 and 2
if(x > y)

f = z*(y-z+1.0)* (x+z+1.0) ; 
else

f = z* (x-z+1. 0 )* (y+z+1. 0) ,- 
break;

case 11: // midpoint, between corner nodes 4 and 3
if(x > y)

f = -z*(y-z+1.0)* (x+z-1.0) ; 
else

f = -z*((y+z+1.0)*(x-z-1.0) +4.0*z) ; 
break;

default:
printf("invalid case detected for basis functions\n");

}
return f;

double pyrl3basis_dx(int i, double x, double y, double z) { 
double f;

switch (i) {
case 0: // node 0

if(x > y)
f = 0.25*(x+z-1.0)*(-y+z+1.0) + 0.25*(x+y+1.0)*(-y+z+1.0); 

else
f = 0.25* (-x+z+1.0)*(y+z-1.0) - 0.25*(x+y+1.0)*(y+z-1.0);

break ,-
case 1: // midpoint node, between corner nodes 1 and 0

if(x > y)
f = 0.5*((y-z-1.0)*(x+1.0) + 2.0*z) + 0.5*(x+z-1.0)*(y-z-1.0); 

else
f = 0.5*(y+z-1.0)*(x-1.0) + 0.5*(x-z+1.0)*(y+z-1.0); 

break; 
case 2: // node 1

if(x > y)
f = 0.25* ( (x+z+1.0)*(-y+z+1.0) -4.0*z) +0.25*(x-y-1.0)* (-y+z+1.0) ;
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else
f = 0.25*(x-z+1.0)*(-y-z+1.0) + 0 . 2 5 * (x-y-1.0)*(-y-z+1.0); 

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = -0.5*(y-z+1.0)*(y-1.0); 

else
f = -0 . 5 * (y+z-1.0)*(y+1.0) ; 

break;
case 4: // node 2

if(x > y)
f = 0.25*(x+z+1.0)*(y-z+1.0) + 0.25*(x+y-1.0)*(y-z+1.0); 

else
f = 0.25*(x-z+1.0)*(y+z+1.0) + 0.25*(x+y-1.0)*(y+z+1.0); 

break;
case 5: // midpoint node, between corner nodes 2 and 3

if(x > y)
f = -0.5*(y-z+1.0)*(x+1.0) - 0.5*(y-z+1.0)*(x+z-1.0); 

else
f = -0.5*((y+z+1.0)*(x-1.0) +2.0*z) - 0.5*(x-z+1.0)*(y+z+1.0);

break;
case 6: // node 3

if(x > y)
f = 0.25*(x+z-1.0)*(y-z+1.0) + 0.25*(x-y+1.0)*(y-z+1.0); 

else
f = -0.25*((-x+z+1.0)*(y+z+1.0)-4.0*z)-0.25*(-x+y-1.0)*(y+z+1.0); 

break;
case 7: // midpoint node, between corner nodes 0 and 3

if(x > y)
f = 0.5*(y-z+1.0)*(y-1.0); 

else
f = 0.5*(y+z-1.0)*(y+1.0); 

break;
case 8: // midpoint node, between corner nodes 0 and 4

if(x > y)
f = z*(y-z-1.0); 

else
f = z * (y+ z -1. 0) ; 

break;
case 9 :  // midpoint node, between corner nodes 1 and 4

if(x > y)
f = -z*(y-z-1.0); 

else
f = -z*(y+z-1.0); 

break;
case 10: // midpoint node, between corner nodes 2 and 4

if(x > y)
f = z*(y-z+1.0); 

else
f = z*(y+z+1.0); 

break;
case 11: // midpoint node, between corner nodes 3 and 4

if(x > y)
f = -z*(y-z+1.0); 

else
f = -z*(y+z+1.0); 

break;
case 12: // node 4

f = 0.0;
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break; 
default;

printf("invalid case detected for basis functions\n") ;
}
return f;

}

double pyrl3basis_dy(int i, double x, double y, double z) { 
double f;

switch (i) {
case 0: // node 0

if(x > y)
f = 0.25*(x+z-1.0)*(-y+z+1.0) - 0.25*(x+y+1.0)*(x+z-1.0) ;

else
f = 0.25*(-x+z+1.0)*(y+z-1.0) + 0.25*(x+y+1.0)*(-x+z+1.0); 

break;
case 1: // midpoint node, between corner nodes 0 and 1

if(x > y)
f = 0.5*(x+z-1.0)*(x+1.0); 

else
f = 0.5*(x-z+1.0)*(x-1.0); 

break,- 
case 2: // node 1

if(x > y)
f = - 0.25*((x+z+1.0)*(-y+z+1.0)-4.0*z) -0.25*(x-y-1.0)* (x+z+1.0) ; 

else
f = -0.25*(x-z+1.0)*(-y-z+1.0)-0.25*(x-y-1.0)*(x-z+1.0); 

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = -0.5*((x+z+1.0)*(y-1.0) +2.0*z) -0.5*(y-z+1.0)*(x+z+1.0); 

else
f = -0.5*(x-z+1.0)*(y+1.0) - 0.5*(x-z+1.0)*(y+z-1.0); 

break; 
case 4: // node 2

if(x > y)
f = 0.25*(x+z+1.0)*(y-z+1.0) +0.25*(x+y-1.0)*(x+z+1.0); 

else
f = 0.25*(x-z+1.0)*(y+z+1.0) +0.25*(x+y-1.0)*(x-z+1.0); 

break;
case 5: // midpoint node, between corner nodes 2 and 3

if(x > y)
f = -0.5*(x+z-1.0) * (x+1.0); 

else
f = - 0.5*(x-z+1.0)*(x-1.0); 

break; 
case 6: // node 3

if(x > y)
f = - 0.25*(x+z-1.0)*(y-z+1.0) + 0.25 * (x-y+1.0)*(x+z-1.0) ; 

else
f = 0.25*((-x+z+1.0)*(y+z+1.0)-4.0*z)+0.25*(-x+y-1.0)* ( -x+z+1.0) ; 

break;
case 7: // midpoint node, between corner nodes 0 and 3

if (x > y)
f = 0.5*(x+z-1.0)*(y-1.0) + 0.5*(y-z+1.0)*(x+z-1.0); 

else
f = 0.5*((x-z-1.0)*(y+1.0) +2.0*z) + 0.5*(y+z-1.0)*(x-z-1.0); 

break;
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case 8: // midpoint node, between corner nodes 0 and 4
if(x > y)

f = z*(x+z-1. 0) ; 
else

f = z*(x-z-1.0); 
break;

case 9: // midpoint node, between corner nodes 1 and 4
if(x > y)

f = -z*(x+z+1.0); 
else

f = -z*(x-z+1.0); 
break;

case 10: // midpoint node, between corner nodes 2 and 4
if(x > y)

f = z*(x+z+1.0); 
else

f = z*(x-z+1.0); 
break;

case 11: // midpoint node, between corner nodes 3 and 4
if(x > y)

f = -z*(x+z-1.0); 
else

f = -z* (x-z-1.0) ; 
break;

case 12: // node 4
f = 0.0; 
break;

default:
printf("invalid case detected for basis functions\n");

}
return f ;

double pyrl3basis_dz(int i, double x, double y, double z) { 
double f ;

switch(i) { 
case 0: // node 0

if(x > y)
f = 0.2 5 * (x+y+1.0)*(-y+z+1.0) + 0.25*(x+y+1.0)* (x+z-1.0) ; 

else
f = 0.25*(x+y+1.0)*(y+z-1.0) + 0.25*(x+y+1.0)*(-x+z+1.0); 

break;
case 1: // midpoint node, between corner nodes 0 and 1

if(x > y)
f = 0.5*((y-z-1.0)*(x+1.0)+2.0*z) + 0.5*(x+z-1.0)*(-x+1.0); 

else
f = -0.5*(y+z-1.0)*(x-1.0) + 0.5*(x-z+1.0)*(x-1.0); 

break; 
case 2: // node 1

if(x > y)
f = 0.25*(x-y-1.0)*(2.0*z -2.0 + x - y ) ; 

else
f = -0.25*(x-y-1.0)*(-y-z+1.0) - 0.25*(x-y-1.0)*(x-z+1.0);

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = 0.5*( (x+z+1.0)*(y-1.0) +2.0*z) - 0.5*(y-z+1.0)*(y+1.0);

else
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f = 0.5*(y+z-1.0)*(y+1.0) - 0.5* (x-z+1.0)*(y+1.0); 
break;

case 4: // node 2
if(x > y)

f = 0.25*(x+y-1.0)*(y-z+1.0) - 0.25*(x+y-1.0)*(x+z+1.0);
else

f = -0.25 * (x+y-1.0)*(y+z+1.0) + 0.25*(x+y-1.0)* (x-z+1.0); 
break;
case 5: // midpoint node, between corner nodes 2 and 3

if(x > y)
f = 0.5*(x+z-1.0)*(x+1.0) - 0.5*(y-z+1.0)*(x+1.0); 

else
f = 0.5*( (y+Z+1.0)*(x-1.0) +2.0*z) - 0.5*(x-z+1.0)*(x+1.0) ;

break;
case 6: // node 3

if(x > y)
f = 0.25*(x-y+1.0)*(y-z+1. 0) - 0.25*(x-y+1.0)*(x+z-1.0); 

else
f = 0.25*(-x+y-1.0)*(y+2.0*z -x -2.0); 

break;
case 7: // midpoint node, between corner nodes 0 and 3

if(x > y)
f = -0.5*(x+z-1.0)*(y-1.0) + 0.5*(y-z+1.0)*(y-1.0); 

else
f = 0.5*((x-z-1.0)*(y+1.0) +2.0* z) + 0.5*(y+z-1.0)*(-y+1.0) 

break;
case 8: // midpoint node, between corner nodes 0 and 4

if(x > y)
f = (y-z-1.0)*(x+z-1.0) - z*(x+z-1.0) + z*(y-z-1.0); 

else
f = (x-z-1.0)*(y+z-1.0) - z*(y+z-1.0) + z*(x-z-1.0); 

break;
case 9; // midpoint node, between corner nodes 1 and 4

if(x > y)
f = (-x-z-1.0)*(y-z-1.0) -4.0*z +z*(x-y-2.0+2.0*z); 

else
f = (-x+z-1.0)*(y+z-1.0) +z*(y+z-1.0) -z*(x-z+1.0);

break;
case 10: // midpoint node, between corner nodes 2 and 4

if(x > y)
f = (y-z+1.0)*(x+z+1.0) -z*(x+z+1.0) +z*(y-z+1.0); 

else
f = (x-z+1.0)*(y+z+1.0) -z*(y+z+1.0) +z*(x-z+1.0); 

break;
case 11: // midpoint node, between corner nodes 3 and 4

if(x > y)
f = (-y+z-1.0)*(x+z-1.0) +z* (x+z-1.0) -z*(y-z+1.0); 

else
f = (-y-z-1.0)*(x-z-1.0) -4.0*z -z*(x-y -2.0*z + 2.0); 

break;
case 12: // node 4

f = 4.0*z - 1.0; 
break;

default:
printf("invalid case detected for basis functions\n");

}
return f;
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* Basis functions and partial derivatives
* with symmetries about x and y axis*************************************************************************** j

/*****************★**★********************+******************************
* apply symmetries by using transformed basis functions
**★*****************************************★************★*************★*/

double pyrl3symBasis(int i, double x, double y, double z) { 
double f ;

switch(i) { 
case 0: // node 0

f = pyrl3basis(0,x,y,z) + pyrl3basis(2,-x,y,z) ; 
f = f/2.0; 
break; 

case 2: // node 1
f = pyrl3basis(2,x,y, z) + pyrl3basis(0,-x,y, z) ; 
f = f/2.0; 
break; 

case 4: // node 2
f = pyrl3basis(4,x,y,z) + pyrl3basis(6,-x,y,z); 
f = f/2.0; 
break,• 

case 6: // node 3
f = pyrl3basis(6,x,y,z) + pyrl3basis(4,-x,y,z); 
f = f/2.0; 
break; 

case 12: // node 4
f = pyrl3basis(12,x, y, z) ; 
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl3basis(l,x,y,z) + pyrl3basis(1,-x,y,z); 
f = f/2.0; 
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl3basis(3,x,y,z) + pyrl3basis(7,-x,y,z); 
f = f/2.0; 
break;

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl3basis(5,x,y,z ) + pyrl3basis(5,-x,y,z); 
f = f/2.0; 
break;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl3basis(7,x,y,z) + pyrl3basis(3,-x,y,z); 
f = f/2.0; 
break;

case 8: // midpoint, between corner nodes 4 and 0
f = pyrl3basis(8,x,y,z) + pyrl3basis(9,-x,y,z); 
f = f/2.0; 
break;

case 9: // midpoint, between corner nodes 4 and 1
f = pyrl3basis(9,x,y,z) + pyrl3basis(8,-x,y,z); 
f = f/2.0; 
break;

case 10: // midpoint, between corner nodes 4 and 2
f = pyrl3basis(10,x,y,z) + pyrl3basis(11,-x,y,z); 
f = f/2.0;
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break;
case 11: // midpoint, between corner nodes 4 and 3

f = pyrl3basis (11, x,y, z) + pyrl3basis(10,-x, y, z) ; 
f = f/2.0; 
break; 

default:
printf("invalid case detected for basis functions\n");

}
return f;

double pyrl3symBasis_dx(int i, double x, double y, double z) { 
double f ;

switch(i) { 
case 0: // node 0

f = pyrl3basis_dx(0,x,y,z) - pyrl3basis_dx(2,-x,y, z);
f = f/2.0;
break;

case 1: // midpoint, between corner nodes 0 and 1
f = pyrl3basis_dx(1,x,y,z) - pyrl3basis_dx(1,-x,y,z); 
f = f/2.0; 
break; 

case 2: // node l
f = pyrl3basis_dx(2,x,y,z) - pyrl3basis_dx(0,-x,y,z);
f = f/2.0;
break;

case 3 : // midpoint, between corner nodes 1 and 2
f = pyrl3basis_dx(3,x,y,z) - pyrl3basis_dx(7,-x,y,z); 
f = f/2.0; 
break; 

case 4: // node 2
f = pyrl3basis_dx (4, x, y, z) - pyrl3basis_dx (6 ,-x, y, z) ,-
f = f/2.0;
break;

case 5: // midpoint, between corner nodes 2 and 3
f = pyrl3basis_dx(5,x,y,z) - pyrl3basis_dx(5,-x,y,z); 
f = f/2.0; 
break; 

case 6: // node 3
f = pyrl3basis_dx(6,x,y,z) - pyrl3basis_dx(4,-x,y,z);
f = f/2.0;
break;

case 7: // midpoint, between corner nodes 0 and 3
f = pyrl3basis_dx(7,x,y,z) - pyrl3basis_dx(3,-x,y,z); 
f = f/2.0; 
break;

case 8: // midpoint, between corner nodes 0 and 4
f = pyrl3basis_dx(8,x,y,z) - pyrl3basis_dx(9,-x,y,z); 
f = f/2.0; 
break;

case 9: // midpoint, between corner nodes 1 and 4
f = pyrl3basis_dx(9,x,y,z) - pyrl3basis_dx(8,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 2 and 4
f = pyrl3basis_dx(10,x,y,z) - pyrl3basis_dx(11,-x,y,z); 
f = f/2.0; 
break;
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case 11: // midpoint, between corner nodes 3 and 4
f = pyrl3basis_dx(11,x,y,z) - pyrl3basis_dx(10,-x,y,z); 
f = f/2.0; 
break; 

case 12: // node 4
f = 0.0; 
break; 

default:
printf("invalid case detected for basis functions\n");

}
return f ;

}

double pyrl3symBasis_dy(int i, double x, double y, double z) { 
double f ;

switch(i) { 
case 0: // node 0

f = pyrl3basis_dy(0,x,y,z) + pyrl3basis_dy(2,-x,y,z);
f = f/2.0;
break;

case 1: // midpoint, between corner nodes 0 and 1
f = pyrl3basis_dy(1,x,y,z) + pyrl3basis_dy(1,-x,y,z); 
f = f/2.0; 
break; 

case 2: // node 1
f = pyrl3basis_dy (2 , x, y, z) + pyrl3basis_dy (0,-x, y, z) ,-
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 1 and 2
f = pyrl3basis_dy(3,x,y,z) + pyrl3basis_dy(7,-x,y,z); 
f = f/2.0; 
break; 

case 4: // node 2
f = pyrl3basis_dy(4,x,y,z) + pyrl3basis_dy(6,-x,y,z);
f = f/2.0;
break;

case 5: // midpoint, between corner nodes 2 and 3
f = pyrl3basis_dy(5,x,y, z) + pyrl3basis_dy (5,-x,y, z) 
f = f/2.0; 
break ,- 

case 6: // node 3
f = pyrl3basis_dy(6,x,y, z) + pyrl3basis_dy(4,-x,y, z) ;
f = f/2.0;
break;

case 7: // midpoint, between corner nodes 0 and 3
f = pyrl3basis_dy(7,x,y,z) + pyrl3basis_dy(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint, between corner nodes 0 and 4
f = pyrl3basis_dy (8,x,y, z) + pyrl3basis_dy (9,-x, y, z) ,-
f = f/2.0;
break;

case 9: // midpoint, between corner nodes 1 and 4
f = pyrl3basis_dy(9,x,y,z) + pyrl3basis_dy(8,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 2 and 4
f = pyrl3basis_dy(10,x,y,z) + pyrl3basis_dy(11,-x,y,z);
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f = f/2.0; 
break;

case 11; // midpoint, between corner nodes 3 and 4
f = pyrl3basis_dy(11,x,y,z) + pyrl3basis_dy(10,-x,y,z); 
f = f/2.0; 
break; 

case 12: // node 4
f = 0.0; 
break; 

default:
printf("invalid case detected for basis functions\n");

}
return f;

double pyrl3symBasis_dz(int i, double x, double y, double z) { 
double f ;

switch(i) {
case 0; // node 0

f = pyrl3basis_dz(0,x,y,z) + pyrl3basis_dz(2,-x,y,z); 
f = f/2.0; 
break;

case 1: // midpoint, between corner nodes 0 and 1
f = pyrl3basis_dz(1,x,y,z) + pyrl3basis_dz(1,-x,y,z); 
f = f/2.0; 
break; 

case 2: // node 1
f = pyrl3basis_dz(2,x,y,z) + pyrl3basis_dz(0,-x,y,z); 
f = f/2.0; 
break;

case 3; // midpoint, between corner nodes 1 and 2
f = pyrl3basis_dz(3,x,y,z) + pyrl3basis_dz(7,-x,y,z); 
f = f/2.0; 
break; 

case 4 ; // node 2
f = pyrl3basis_dz (4, x, y, z) + pyrl3basis_dz (6,-x, y, z) ,-
f = f/2.0;
break;

case 5; // midpoint, between corner nodes 2 and 3
f = pyrl3basis_dz(5,x,y,z) + pyrl3basis_dz(5,-x,y,z); 
f = f/2.0; 
break; 

case 6; // node 3
f = pyrl3basis_dz(6,x,y,z) + pyr13basis_dz(4,-x,y,z); 
f = f/2.0; 
break;

case 7; // midpoint, between corner nodes 0 and 3
f = pyrl3basis_dz(7,x,y,z) + pyrl3basis_dz(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint, between corner nodes 0 and 4
f = pyrl3basis_dz(8,x,y,z) + pyrl3basis_dz(9,-x,y,z);
f = f/2.0;
break;

case 9; // midpoint, between corner nodes 1 and 4
f = pyrl3basis_dz(9,x,y,z) + pyrl3basis_dz(8,-x,y,z);
f = f/2.0;
break;
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case 10: // midpoint, between corner nodes 2 and 4
f = pyrl3basis_dz(10,x,y,z) + pyrl3basis_dz(11,-x,y,z);
f = f/2.0;
break;

case 11: // midpoint, between corner nodes 3 and 4
f = pyrl3basis_dz(ll,x,y,z) + pyrl3basis_dz(10,-x,y,z); 
f = f/2.0; 
break; 

case 12: // node 4
f = pyrl3basis_dz(12,x,y,z); 
break; 

default:
printf("invalid case detected for basis functions\n");

}
return f ;

A2-52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



* Programmer: Kevin Davies
* File: pyrl4basis.c
* Version: 3.0
* Date last modified: Dec 12, 2004
* Description: Quadratic basis functions and their partial derivatives
* for 14 node pyramidal element.
*

*

* Case I for 14-Node Pyramidal Element
★

double pyrl4Clbasis(int i, double x, double y, double z) { 
double f ;

switch(i) { 
case 0: // node 0

if(x > y)
f = 0 . 25* (x+z) * (y-z) * (x+z-1. 0) * (y-z-1. 0) ; 

else
f = 0.25*(x-z)* (y+z)* (x-z-1.0)*(y+z-1.0); 

break;
case 1: // midpoint node, between corner nodes 1 and 0

if(x > y)
f = -0.5* (x+z-1.0)*(y-z-1.0)*(x-z+1.0)*(y-z) ; 

else
f = -0.5*(x-z+1.0)*(y+z-1.0)*(x-z-1.0)*(y-z); 

break; 
case 2: // node 1

if(x > y)
f = 0.25* (x+z)* (z-y)* (x*(1.0-y) +z*(z+x-y-2.0) -y +1.0) -z*(x-

else
f = 0.25*(x-z)* (y+z)* (y+z-1.0)*(x-z+1.0); 

break;
case 3: // midpoint, between corner nodes 1 and 2

if(x > y)
f = -0.5*(-y+z-1.0)*(x+z)*((z+x-y-2.0)*z + x * (1.0-y) -y +1.0); 

else
f = 0.5 * (x-z+1.0)*(y+z-1.0)*(-y+z-1.0)*(x+z) ; 

break; 
case 4: // node 2

if(x > y)
f = 0.25* (x+z)* (y-z)* (y-z+1.0)*(x+z+1.0) ; 

else
f = 0.25*(x-z)* (y+z)* (x-z+1.0)*(y+z+1.0); 

break;
case 5: // midpoint, between corner nodes 3 and 2

if(x > y)
f = 0.5 * (x-z+1.0)*(-y+z-1.0)*(x+z-1.0)*(y+z) ; 

else
f = -0.5* (x-z+1.0)*(y+z)* ( (-z+x-y+2.0)*z +x*(y+1.0) -y -1.0); 

break; 
case 6 : // node 3

if(x > y)
f = 0.25*(x+z)* (z-y)*(-y+z-1.0)*(x+z-1.0);
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else
f = 0.25*(x-z)* (y+z)* (z*(x-z-y+2.0) +x*(y+1.0) -y -1.0) +z*(x-y); 

break;
case 7: // midpoint, between corner nodes 3 and 0

if(x > y)
f = -0.5*(-y+z-1.0)*(x+z-1.0)*(-y+z+1.0)*(x-z); 

else
f = 0.5*(-y+z-1.0)*(x-z)* (x-z-1.0)*(y+z-1.0); 

break;
case 8: // midpoint, between corner nodes 2 and 0

if(x > y)
f = -(-y+z-1.0)*(x+z-1.0)*((y-1.0)*x +z*(z-2.0*y+3.0) +y-1.0); 

else
f = - (x-z+1.0)*(y+z-1.0) *(z * (-z+2.0*x-3.0) -x*(1.0+y) +y+1.0); 

break;
case 9: // midpoint, between corner nodes 4 and 0

if(x > y)
f = z* (y-z-1. 0) * (x+z-1. 0) ; 

else
f = z*(x-z-1.0)*(y+z-1.0); 

break;
case 10: // midpoint, between corner nodes 4 and 1

if(x > y)
f = -z*((x+z+1.0)*(y-z-1.0) + 4.0 * z); 

else
f = -z*(x-z+1.0)*(y+z-1.0); 

break;
case 11: // midpoint, between corner nodes 4 and 2

if(x > y)
f = z*(y-z+1.0)*(x+z+1.0); 

else
f = z*(x-z+1.0)*(y+z+1.0); 

break;
case 12: // midpoint, between corner nodes 4 and 3

if(x > y)
f = -z*(y-z+1.0)*(x+z-1.0) ; 

else
f = -z*((y+z+1.0)*(x-z-1.0) +4.0*z); 

break;

case 13: // node 4
f = z*(2.0*z-1.0); 

break;
default:

printf("invalid case detected for basis functions\n");
}
return f;

}

* Apply Extra symmetries to basis functions

double pyrl4ClsymBasis(int i, double x, double y, double z) {
double f;

switch (i) {
case 0: // node 0
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f = pyrl4Clbasis(0,x,y,z) +
f = f/2.0;
break;

case 2: // node 1
f = pyrl4Clbasis(2,x,y,z) +
f = f/2.0;
break;

case 4: // node 2
f = pyrl4Clbasis(4,x,y,z) +
f = f/2.0;
break;

case 6: // node 3
f = pyrl4Clbasis(6,x,y,z) + 
f = f/2.0; 
break;

case 13: // node 4
f = pyrl4Clbasis(13,x,y,z); 
break;

case 1: // midpoint, between
f = pyrl4Clbasis(l,x,y,z) + 
f = f/2.0; 
break;

case 3: // midpoint, between
f = pyrl4Clbasis(3,x,y,z) + 
f = f/2.0; 
break;

case 5: // midpoint, between
f = pyrl4Clbasis(5,x,y,z) + 
f = f/2.0; 
break;

case 7: // midpoint, between
f = pyrl4Clbasis(7,x,y,z) + 
f = f/2.0; 
break;

case 8: // midpoint on base,
f = pyrl4Clbasis(8,x,y,z) + 
f = f/2.0; 
break;

case 9: // midpoint, between
f = pyrl4Clbasis(9,x,y,z) + 
f = f/2.0; 
break;

case 10: // midpoint, between
f = pyrl4Clbasis(10,x,y,z) + 
f = f/2.0; 
break;

case 11: // midpoint, between
f = pyrl4Clbasis(11,x,y,z) + 
f = f/2.0; 
break;

case 12: // midpoint, between
f = pyrl4Clbasis(12,x,y,z) + 
f = f/2.0; 
break;

default:
printf("invalid case

}
return f ;

p y r l 4 C l b a s i s ( 2 , - x , y , z ) ;

pyrl4Clbasis(0,-x, y,z);

pyrl4Clbasis(6,-x,y,z);

pyrl4Clbasis(4,-x,y,z);

corner nodes 1 and 0 
pyrl4Clbasis(1,-x, y, z) ;

corner nodes 2 and 1 
pyrl4Clbasis (7 , -x, y, z) ,-

corner nodes 3 and 2 
pyrl4Clbasis(5,-x,y,z);

corner nodes 3 and 0 
pyrl4Clbasis(3,-x,y,z);

between corner nodes 2 and 0 
pyrl4Clbasis(8,-x,y,z);

corner nodes 4 and 0 
pyrl4Clbasis(10,-x,y,z);

corner nodes 4 and 1 
pyrl4Clbasis(9,-x,y,z);

corner nodes 4 and 2 
pyrl4Clbasis(12,-x,y, z);

corner nodes 4 and 3 
pyrl4Clbasis(11, -x, y, z);

functions\n");detected for pyrl4Clbasis
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/ ★ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

★
* Case II for 14-Node Pyramidal Element
*
*************************************************************************^

double pyrl4C2basis(int i, double x, double y, double z) { 
double f;

switch(i) { 
case 0: // node 0

if(x > y)
f = 0.25*(x+z)* (y-z)* (x+z-1.0)*(y-z-1.0) ; 

else
f = 0.25*(x-z)* (y+z)* (x-z-1.0)*(y+z-1.0); 

break;
case 1: // midpoint node, between corner nodes 1 and 0

if(x > y)
f = -0.5*(x+z-1.0)*(((y-z-1.0)* (x+1.0)*y -z) + z * (2.0*x+l.0)); 

else
f = -0.5* (x-z+1.0)*(y+z-1.0)*(x-1.0)*y; 

break; 
case 2: // node 1

if (x > y)
f = -0.25*(x+z)* (y-z)* ( (x+z+1.0) *(-y+z+1.0) -4.0*z) -z*(x-y);

else
f = -0.25*(x-z)* (y+z)*(-y-z+1.0)*(x-z+1.0); 

break;
case 3: // midpoint, between corner nodes 1 and 2

if(x > y)
f = -0.5* (y-z+1.0)*(((x+z+1.0)*(y-1.0)*x -z) + z * (2.0*y+l.0)); 

else
f = -0.5*(x-z+1.0)*(y+z-1.0)*(y+1.0)*x; 

break; 
case 4: // node 2

if(x > y)
f = 0.25*(x+z)* (y-z)* (y-z+1.0)*(x+z+1.0); 

else
f = 0.25*(x-z)* (y+z)* (x-z+1.0)*(y+z+1.0) ; 

break;
case 5; // midpoint, between corner nodes 3 and 2

if(x > y)
f = -0.5*(x+z-1.0)*(y-z+1.0)*(x+1.0)*y; 

else
f = -0.5* (x-z+1.0)*(((y+z+1.0)*(x-1.0)*y -z) + z * (2.0*x+l.0)); 

break; 
case 6: // node 3

if(x > y)
f = 0.25*(x+z)* (y-z)* (y-z+1.0)*(x+z-1.0); 

else
f = 0.25*(x-z)* (y+z)* ( (x-z-1.0)*(y+z+1.0) +4.0*z) +z*(x-y); 

break;
case 7: // midpoint, between corner nodes 3 and 0

if (x > y)
f = -0.5*(y-z+1.0)*(x+z-1.0)*(y-1.0)*x; 

else
f = -0.5*(y+z-1.0)*(((x-z-1.0)*(y+1.0)*x -z) + z * (2.0*y+l.0) ) ; 

break;
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case 8: // midpoint, between corner nodes 2 and 0
if(x > y)

f = (y-z+1.0)*(x+z-1.0)*(y-1.0)*(x+1.0)
+ z*(x+z-1.0)*(y-z+1.0)*(x-y+z+1.0);

else
f = (x-z+1.0)*(y+z-1.0)*(x-1.0)*(y+1.0)

- z*(x-z+1.0)*(y+z-1.0) * (x-y-z-1.0) ;
break;

case 9: // midpoint, between corner nodes 4 and 0
if(x > y)

f = z*(y-z-1.0)*(x+z-1.0); 
else

f = z*(x-z-1.0)*(y+z-1.0); 
break;

case 10: // midpoint, between corner nodes 4 and 1
if(x > y)

f = -z * ((x+z+1.0)*(y-z-1.0) + 4.0*z) ; 
else

f = -z*(x-z+1.0)*(y+z-1.0); 
break;

case 11: // midpoint, between corner nodes 4 and 2
if(x > y)

f = z*(y-z+1.0)*(x+z+1.0); 
else

f = z*(x-z+1.0)*(y+z+1.0); 
break;

case 12: // midpoint, between corner nodes 4 and 3
if(x > y)

f = -z*(y-z+1.0)* (x+z-1.0); 
else

f = -z * ((y+z+1.0)*(x-z-1.0) +4.0 * z) ; 
break,•

case 13: // node 4
f = z * (2.0*z-l.0) ; 

break; 
default:

printf("invalid case detected for basis functions: i = %d\n",
}
return f ;

double pyrl4C2basis_dx(int i, double x, double y, double z) { 
double f ;

switch (i) {
case 0: // node 0

if(x > y)
f = 0.25*(y-z)* (y-z-1.0)*(2.0*x+2.0*z-l.0); 

else
f = 0.25* (y+z)* (y+z-1.0)*(2.0*x-2.0*z-l.0) ; 

break;
case 1: // midpoint node, between corner nodes 1 and 0

if(x > y)
f = -0.5*((y-z-1.0)*(x+1.0)*y -z +z * (2.0*x+l.0)) 

-0.5*(x+z-1.0)*((y-z-1.0)*y +2.0*z);
else

f = 0.5*y*(y+z-1.0)*(z-2.0*x); 
break;
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case 2: // node 1
if(x > y)

f = -0.25*(y-z)*(((x+z+1.0)*(-y+z+1.0)-4.0*z)+(x+z)*(-y+z+1.0 ) )-z ; 
else

f = 0.25*(y+z)* (y+z-1.0)*(2.0*x-2.0*z+1.0); 
break;

case 3: // midpoint node, between corner nodes l and 2
if(x > y)

f = 0.5*(-y+z-1.0)*(y-1.0)*(2.0*x+z+l.0); 
else

f = 0.5*(y+1.0)*(y+z-1.0)*(z-2.0*x-1.0); 
break;

case 4: // node 2
if(x > y)

f = 0.25*(y-z)* (y-z+1.0)*(2.0*x+2.0*z+1.0); 
else

f = 0.25*(y+z)* (y+z+1.0)*(2.0*x-2.0*z+1.0); 
break;

case 5: // midpoint node, between corner nodes 2 and 3
if(x > y)

f = 0.5*y*(-y+z-1.0)*(2.0*x+z); 
else

f = -0.5*((y+z+1.0)*(x-1.0)*y -z + z * (2.0*x+l.0))
-0.5*(x-z+1.0)*((y+z+1.0)*y +2 . 0*z) ;

break;
case 6: // node 3

if(x > y)
f = 0.25*(z-y)* (z-y-1.0)*(2.0*x+2.0*z-l.0); 

else
f = 0.25*(y+z)*(((x-z-1.0)* (y+z+1.0)+4.0*z) + (x-z)* (y+z+1.0))+z; 

break;
case 7: // midpoint node, between corner nodes 0 and 3

if(x > y)
f = 0.5*(y-1.0)*(-y+z-1.0)*(2.0*x+z-1.0); 

else
f = 0.5 * (y+z-1.0)*(y+1.0)*(-2.0*x+z+l.0) ; 

break;
case 8: // midpoint node, between corner nodes 0 and 2

if(x > y)
f = (y-z+1.0)*((y-1.0)*(x+1.0)+(x+z-1.0)*(y-1.0)

+z*(x-y+z+1.0)+z*(x+z-1.0));
else

f = (y+z-1.0)*((y+1.0)*(x-1.0)+(x-z+1.0)*(y+1.0)
-z*(x-z-y-1.0)-z*(x-z+1.0));

break;
case 9: // midpoint node, between corner nodes 0 and 4

if(x > y)
f = z*(y-z-1.0); 

else
f = z*(y+z-1.0); 

break;
case 10: // midpoint node, between corner nodes 1 and 4

if(x > y)
f = -z*(y-z-1.0); 

else
f = -z*(y+z-1.0); 

break;
case 11: // midpoint node, between corner nodes 2 and 4

if(x > y)

A2-58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f = z*(y-z+1.0); 
else

f = z*(y+z+1.0) ; 
break;

case 12; // midpoint node, between corner nodes 3 and 4
if(x > y)

f = -z*(y-z+1. 0) ; 
else

f = -z* (y+z+1.0) ; 
break; 

case 13; // node 4
f = 0.0; 
break; 

default:
printf("invalid case detected for basis functions: i = %d\n", i);

}
return f;

double pyrl4C2basis_dy(int i, double x, double y, double z) { 
double f ;

switch(i) { 
case 0: // node 0

if(x > y)
f = 0.25*(x+z)* (x+z-1.0)*(2.0*y-2.0*z-l. 0) ; 

else
f = 0.25*(x-z)* (x-z-1.0)* (2.0*y+2.0*z-l.0) ; 

break;
case 1: // midpoint node, between corner nodes 0 and 1

if(x > y)
f = -0.5* (x+z-1.0)* (x+1.0)*(2.0*y-z-1.0) ; 

else
f = 0.5*(x-1.0)*(-x+z-1.0)*(2.0*y+z-l.0); 

break; 
case 2: // node 1

if(x > y)
f = - 0.25 * (x+z)*(((x+z+1.0)*(-y+z+1.0)-4.0*z) - (y-z)* (x+z+1.0)) + z ;

else
f = 0.25*(x-z)* (x-z+1.0)*(2.0*y+2.0*z-1.0); 

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = -0.5*((x+z+1.0)*(y-1.0)*x -z +z* (2.0*y+l.0))

-0.5*(y-z+1.0)*((x+z+1.0)*x +2.0* z) ;
else

f = 0.5*x*(-x+z-1.0)*(2.0*y+z); 
break; 

case 4: // node 2
if(x > y)

f = 0.25* (x+z)* (x+z+1.0)*(2.0*y-2.0*z+1.0) ; 
else

f = 0.25*(x-z)* (x-z+1.0)*(2.0*y+2.0*z+1.0); 
break;

case 5: // midpoint node, between corner nodes 2 and 3
if(x > y)

f = 0.5*(x+1.0)*(x+z-1.0)*(z-2.0*y-1.0); 
else

f = 0.5*(-x+z-1.0)*(x-1.0)*(2.0*y+z+l.0) ;
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break; 
case 6: // node 3

if(x > y)
f = -0.25*(x+z)* (x+z-1.0)*(-2.0*y+2.0*z-1.0) ; 

else
f = 0.25*(x-z)*(((x-z-1.0)*(y+z+1.0)+4.0*z) + (y+z)* (x-z-1.0)' 

break;
case 7: // midpoint node, between corner nodes 0 and 3

if(x > y)
f = 0.5*x*(x+z-1.0)*(-2.0*y+z); 

else
f = -0.5*((x-z-1.0)*(y+1.0)*x -z +z*(2.0*y+l.0)) 

-0.5*(y+z-1.0)*((x-z-1.0)*x +2.0*z);
break;

case 8: // midpoint node, between corner nodes 0 and 2
if(x > y)

f = (x+z-1.0)*((y-1.0)* (x+1.0) + (y-z+1.0)*(x+1.0)
+z*(x-y+z+1.0)-z*(y-z+1.0));

else
f = (x-z+1.0)*((y+1.0)*(x-1.0)+(y+z-1.0)*(x-1.0)

-z* (x-z-y-1.0)+z*(y+z-1. 0) ) ;
break;

case 9: // midpoint node, between corner nodes 0 and 4
if(x > y)

f = z*(x+z-1.0); 
else

f = z*(x-z-1.0); 
break;

case 10: // midpoint node, between corner nodes 1 and 4
if(x > y)

f = -z*(x+z+1.0); 
else

f = -z*(x-z+1.0); 
break;

case 11: // midpoint node, between corner nodes 2 and 4
if(x > y)

f = z*(x+z+1.0); 
else

f = z*(x-z+1.0); 
break;

case 12: // midpoint node, between corner nodes 3 and 4
if(x > y)

f = -Z*(x+Z-1.0);
else

f = -z* (x-z-1. 0) ,- 
break; 

case 13: // node 4
f = 0.0; 
break; 

default:
printf("invalid case detected for basis functions: i = %d\n", i)

}
return f;

}

double pyrl4C2basis_dz(int i, double x, double y, double z) { 
double f ;

switch(i) {
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case 0: // node 0
if (x > y)

f = 0.25*(y-z-1.0)* ( (x+z)* (y-z) + (x+z-1.0)* (y-z)-(x+z-1.0)*(x+z))
-0.25*(x+z-1.0)*(x+z)* (y-z);

else
f = 0.25*(x-z-1.0)*( (y+z)*(x-z) + (y+z-1.0)*(x-z)-(y+z-1.0)*(y+z))

-0.25*(y+z-1.0)*(y+z)* (x-z),-
break;

case 1: // midpoint node, between corner nodes 0 and 1
if(x > y)

f = -0.5*((y-z-1.0)*(x+1.0)*y -z + z * (2.0*x+l.0))
-0.5*(x+z-1,0)*(-(x+1.0)*y +2.0 *x) ;

else
f = 0.5*y*(x-1.0)*(-x+y+2.0*z-2 . 0) ; 

break; 
case 2: // node 1

if (x > y)
f = -0.25*(y-z)*((x+z+1.0)*(-y+z+1.0)-4.0*z) +0.25*(x+z)*

( ( (x+z+1.0) * (-y+z+1. 0) -4 . 0*z) - (y-z)* (-y+2 . 0*z+x-2 . 0 ) ) -x+y;
else

f = 0.25*(y+z)* (x-z+1.0)*(-y-z+1.0) -0.25*(x-z)*
((x-z+1.0)*(-y-z+1.0)-(y+z)*(-y-z+1.0)-(y+z)* (x-z+1.0));

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = 0.5*( (x+z+1.0)*(y-1.0)*x -z + z * (2.0*y+l.0))

-0.5*(y-z+1.0)*((y-1.0)*x +2.0*y);
else

f = 0.5*x*(y+1.0)*(-x+y+2.0*z-2.0) ; 
break; 

case 4: // node 2
if(x > y)

f = -0.25*(x+z+1.0)*((x+z)*(y-z)-(y-z+1.0)*(y-z)+(y-z+1.0)*(x+z)) 
+0.25*(y-z+1.0)*(x+z)* (y-z);

else
f = -0.25*(y+z+1.0)*((x-z)*(y+z)+(x-z+1.0)*(y+z)- (x-z+1.0)*(x-z)) 

+0.25*(x-z+1.0)*(x-z)*(y+z);
break;

case 5: // midpoint node, between corner nodes 2 and 3
if(x > y)
f = 0.5*y*(x+1.0)*(-y+2.0*z+x-2.0); 

else
f = 0.5*((y+z+1.0)*(x-1.0)*y -z + z * (2.0*x+l.0))

-0.5*(x-z+1.0)*((x-1.0)*y +2.0 *x);
break; 

case 6: // node 3
if(x > y)

f = 0.25*(y-z)* (x+z-1.0)*(y-z+1.0) -0.25*(x+z)*
((x+z-1.0)*(y-z+1.0)-(y-z)* (y-z+1.0) + (y-z)*(x+z-1.0)) ;

else
f = -0.25 * (y+z)*((x-z-1.0)* (y+z+1.0)+4.0*z) +0.25*(x-z)*

(((x-z-1.0)*(y+z+1.0)+4.0* z) + (y+z)*(-y-2.0* z+2.0+x))+x-y;
break;

case 7: // midpoint node, between corner nodes 0 and 3
if(x > y)

f = 0.5*x*(y-1.0)*(-y+2.0*z-2.0+x); 
else

f = -0.5*((x-z-1.0)*(y+1.0)*x -z + z * (2.0*y+l.0))
-0.5*(y+z-1.0)*(2.0*y-x*y-x);

A2-61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



break;
case 8: // midpoint node, between corner nodes 0 and 2

if(x > y)
f = (y-z+1. 0)*((y-1.0)*(x+1.0)+z*(x-y+z+1.0)) + (x+z-1.0)*

((y-z+1.0)*(x-y+z+1.0)-z*(x-y+z+1.0)-(y-1.0)*(x+1.0)+z*(y-z+1.0));
else

f = (x-z+1.0)*((y+1.0)*(x-1.0)-z*(x-z-y-1.0))+(y+z-1.0)*
(z* (x-z+1.0)-(y+1.0)*(x-1.0)-(x-z+1.0)*(x-z-y-1.0)+z*(x-z-y-1.0) ) ; 

break;
case 9: // midpoint node, between corner nodes 0 and 4

if(x > y)
f = (y-z-1.0)*(x+z-1.0) -z*(x+z-1.0) +z*(y-z-1.0); 

else
f = (x-z-1.0)*(y+z-1.0) -z*(y+z-1.0) +z*(x-z-1.0); 

break;
case 10: // midpoint node, between corner nodes 1 and 4

if(x > y)
f = - (x+z+1.0)*(y-z-1.0) - 4.0 * z -z*(y+2.0-2.0*z-x) ; 

else
f = - (x-z+1.0)*(y+z-1.0) + z * (2.0*z+y-2.0-x); 

break;
case 11: // midpoint node, between corner nodes 2 and 4

if(x > y)
f = (y-z+1.0)*(x+z+1.0) +z*(-2.0*z-x+y); 

else
f = (x-z+1.0)*(y+z+1.0) -z*(2.0*z+y-x); 

break;
case 12: // midpoint node, between corner nodes 3 and 4

if (x > y)
f = - (y-z+1.0)*(x+z-1.0) -z*(-2.0*z-x+2.0+y); 

else
f = - (y+z+1.0) * (x-z-1.0) -4.0*z -z*(x-2.0*z +2.0-y); 

break;
// new basis functions 

case 13: // node 4
f = 4.0*z - 1.0; 
break; 

default:
printf("invalid case detected for basis functions: i = %d\n", i);

}
return f;

}

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ★ * * * * * * * * * * * * ★ * * * * * * * * * * * * * * * * * * * * * * *

* Apply Extra symmetries to basis functions

double pyrl4C2symBasis(int i, double x, double y, double z) { 
double f ;

switch(i) { 
case 0: // node 0

f = pyrl4C2basis(0,x,y,z) + pyrl4C2basis(2,-x,y,z); 
f = f/2.0; 
break; 

case 2: // node 1
f = pyrl4C2basis(2 , x,y, z) + pyrl4C2basis(0,-x,y,z) ;
f = f/2.0;
break;
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case 4: // node 2
f = pyrl4C2basis(4,x, y,z) + pyrl4C2basis(6,-x, y, z) ; 
f = f/2.0; 
break; 

case 6; // node 3
f = pyrl4C2basis(6,x, y,z) + pyrl4C2basis(4,-x,y,z); 
f = f/2.0; 
break; 

case 13: // node 4
f = pyrl4C2basis(13,x,y,z); 
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl4C2basis(l,x,y,z) + pyrl4C2basis (1,-x, y, z) ,- 
f = f/2.0; 
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl4C2basis(3,x,y,z) + pyrl4C2basis(7,-x,y,z); 
f = f/2.0; 
break;

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl4C2basis(5,x,y,z) + pyrl4C2basis(5,-x,y,z); 
f = f/2.0; 
break;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl4C2basis(7,x,y,z ) + pyrl4C2basis(3,-x,y,z); 
f = f/2.0; 
break;

case 8: // midpoint on base, between corner nodes 2 and 0
f = pyrl4C2basis(8,x,y,z ) + pyrl4C2basis(8,-x,y,z); 
f = f/2.0; 
break;

case 9: // midpoint, between corner nodes 4 and 0
f = pyrl4C2basis(9,x,y,z) + pyrl4C2basis(10,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 4 and 1
f = pyrl4C2basis(10,x,y,z) + pyrl4C2basis(9,-x,y,z); 
f = f/2.0; 
break;

case 11: // midpoint, between corner nodes 4 and 2
f = pyrl4C2basis(11, x, y, z) + pyrl4C2basis(12,-x,y,z) ;
f = f/2.0;
break;

case 12: // midpoint, between corner nodes 4 and 3
f = pyrl4C2basis(12,x,y,z) + pyrl4C2basis(11,-x,y,z); 
f = f/2.0; 
break; 

default:
printf("invalid case detected for pyrl4Clbasis functions\n");

}
return f;

}

double pyrl4C2symBasis_dx(int i, double x, double y, double z) { 
double f;

switch(i) { 
case 0: // node 0

f = pyrl4C2basis_dx(0,x,y,z) - pyrl4C2basis_dx(2,-x,y,z);
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f = f/2.0; 
break ■, 

case 2; // node 1
f = pyrl4C2basis_dx(2,x,y,z) - pyrl4C2basis_dx(0,-x,y,z); 
f = f/2.0; 
break; 

case 4: // node 2
f = pyrl4C2basis_dx(4, x,y, z) - pyr!4C2basis_dx(6,-x, y,z); 
f = f/2.0; 
break; 

case 6: // node 3
f = pyrl4C2basis_dx(6,x,y,z) - pyrl4C2basis_dx(4,-x,y,z); 
f = f/2.0; 
break,- 

case 13: // node 4
f = pyrl4C2basis_dx (13, x,y, z) ,- 
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl4C2basis_dx(1,x,y,z) - pyrl4C2basis_dx(1,-x,y,z);
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl4C2basis_dx(3,x,y,z) - pyrl4C2basis_dx(7,-x,y,z); 
f = f/2.0; 
break ,-

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl4C2basis_dx(5,x,y,z) - pyrl4C2basis_dx(5,-x,y,z); 
f = f/2.0; 
break;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl4C2basis_dx(7,x,y,z) - pyrl4C2basis_dx(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint on base, between corner nodes 2 and 0
f = pyrl4C2basis_dx(8,x,y,z) - pyrl4C2basis_dx(8,-x,y,z); 
f = f/2.0; 
break;

case 9: // midpoint, between corner nodes 4 and 0
f = pyrl4C2basis_dx(9,x,y,z) - pyrl4C2basis_dx(10,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 4 and 1
f = pyrl4C2basis_dx(10,x,y,z) - pyrl4C2basis_dx(9,-x,y,z);
f = f/2.0;
break;

case 11: // midpoint, between corner nodes 4 and 2
f = pyrl4C2basis_dx(11,x,y,z) - pyrl4C2basis_dx(12,-x,y,z);
f = f/2.0;
break;

case 12: // midpoint, between corner nodes 4 and 3
f = pyrl4C2basis_dx(12,x,y,z) - pyrl4C2basis_dx(11,-x,y,z); 
f = f/2.0; 
break; 

default:
printf ("invalid case detected for basis functions\n");

}
return f;

}
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double pyrl4C2symBasis_dy(int i, double x, double y, double z) { 
double f;

switch(i) { 
case 0: // node 0

f = pyrl4C2basis_dy(0,x,y,z) + pyrl4C2basis_dy (2 ,-x, y, z) ,- 
f = f/2.0; 
break; 

case 2: // node 1
f = pyrl4C2basis_dy(2,x,y,z) + pyrl4C2basis_dy(0,-x,y,z) ; 
f = f/2.0; 
break; 

case 4: // node 2
f = pyrl4C2basis_dy(4,x,y,z) + pyrl4C2basis_dy(6,-x,y,z); 
f - f/2.0; 
break; 

case 6: // node 3
f = pyrl4C2basis_dy(6,x,y,z) + pyrl4C2basis_dy(4,-x,y,z); 
f = f/2.0; 
break; 

case 13: // node 4
f = pyrl4C2basis_dy(13,x,y,z); 
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl4C2basis_dy(1,x,y,z) + pyrl4C2basis_dy(1,-x,y,z);
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl4C2basis_dy(3,x,y,z) + pyrl4C2basis_dy(7,-x,y,z);
f = f/2.0;
break;

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl4C2basis_dy(5,x,y,z) + pyrl4C2basis_dy(5,-x,y,z);
f = f/2.0;
break;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl4C2basis_dy(7,x,y,z) +■ pyrl4C2basis_dy(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint on base, between corner nodes 2 and 0
f = pyrl4C2basis_dy(8,x,y,z) + pyrl4C2basis_dy(8,-x,y,z); 
f = f/2.0; 
break;

case 9: // midpoint, between corner nodes 4 and 0
f = pyrl4C2basis_dy(9,x,y,z) + pyrl4C2basis_dy(10,-x,y,z); 
f = f/2.0; 
break ,-

case 10: // midpoint, between corner nodes 4 and 1
f = pyrl4C2basis_dy(10,x,y,z) + pyrl4C2basis_dy(9,-x,y,z);
f = f/2.0;
break;

case 11: // midpoint, between corner nodes 4 and 2
f = pyrl4C2basis_dy(ll,x,y,z) + pyrl4C2basis_dy(12,-x, y, z);
f = f/2.0;
break;

case 12: // midpoint, between corner nodes 4 and 3
f = pyrl4C2basis_dy(12,x,y,z) + pyrl4C2basis_dy(11,-x,y,z); 
f = f/2.0; 
break;
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default:
printf("invalid case detected for basis functions\n");

}
return f;

double pyrl4C2symBasis_dz(int i, double x, double y, double z) { 
double f;

switch (i) {
case 0: // node 0

f = pyrl4C2basis_dz(0,x,y, z) + pyrl4C2basis_dz(2,-x,y,z); 
f = f/2.0; 
break; 

case 2: // node 1
f = pyrl4C2basis_dz(2,x,y,z) + pyrl4C2basis_dz(0,-x,y,z); 
f = f/2.0; 
break; 

case 4: // node 2
f = pyrl4C2basis_dz(4,x,y,z) + pyrl4C2basis_dz(6,-x,y,z); 
f = f/2.0; 
break; 

case 6: // node 3
f = pyrl4C2basis_dz(6,x,y,z) + pyrl4C2basis_dz(4,-x,y,z); 
f = f/2.0; 
break; 

case 13: // node 4
f = pyrl4C2basis_dz(13,x,y,z); 
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl4C2basis_dz(1,x,y,z) + pyrl4C2basis_dz(1,-x, y,z) ;
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl4C2basis_dz(3,x,y,z) + pyrl4C2basis_dz (7,-x,y,z) ; 
f = f/2.0; 
break;

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl4C2basis_dz(5,x,y,z) + pyrl4C2basis_dz(5,-x, y, z); 
f = f/2.0; 
break ;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl4C2basis_dz (7, x, y, z) + pyrl4C2basis_dz (3,-x, y, z) ,-
f = f/2.0;
break;

case 8: // midpoint on base, between corner nodes 2 and 0
f = pyrl4C2basis_dz(8,x,y,z) + pyrl4C2basis_dz(8,-x,y,z); 
f = f/2.0; 
break;

case 9: // midpoint, between corner nodes 4 and 0
f = pyrl4C2basis_dz(9,x,y,z) + pyrl4C2basis_dz(10,-x,y,z); 
f = f/2.0; 
break;

case 10: // midpoint, between corner nodes 4 and 1
f = pyrl4C2basis_dz(10,x,y,z) + pyrl4C2basis_dz(9,-x,y,z);
f = f/2.0;
break;

case 11: // midpoint, between corner nodes 4 and 2
f = pyrl4C2basis_dz(ll,x,y,z) + pyrl4C2basis_dz(12,-x, y, z) ;

A2-66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f = f/2.0; 
break;

case 12; // midpoint, between corner nodes 4 and 3
f = pyrl4C2basis_dz(12,x,y,z) + pyrl4C2basis_dz(11,-x,y,z); 
f = f/2.0; 
break; 

default:
printf("invalid case detected for basis functions\n");

}
return f;
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* Author-. Kevin Davies
* File solution.c
* Version: 4.0
* Date last modified: Dec 15, 2004
* Description: functions for true solution and its 2nd order derivatives 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* True solution function
*

double solution(double x, double y, double z) { 
double u;

// Possible alternate solutions 
// alternate sol'n #1
// u = sin(pi*x)*sin(pi*y)*sin(pi*z);

// alternate sol'n #2
u = sin(pi*x)*sin(2.0*pi*y)*sin(3.0*pi*z);

// original sol'n
// u = x*y*z*(1.0-x)*(1.0-y)* (1.0-z);

// alternate #4
// u = x*y*z*sin(pi*x)* sin(pi*y)* sin(pi*z);

// alternate #5
// u = pow(x,2)*pow(y,2)*pow(z,2)*(1.0-x)*(1.0-y)*(1.0-z); 

return u;
}

* 2nd order derivatives of true solution function
★

double func(double x, double y, double z) { 
double f;
double x2 , y2 , z2, xml, yml, zml ,•

x2 = pow(x,2); 
y2 = pow(y,2);
Z 2  = p o w (Z ,2); 
xml = 1.0-x; 
yml = 1.0-y;
zml = L. 0 -z ;
double siny, sin
siny = sin (Pi *y)
sinz = sin (pi *z)
sinx = sin (pi *x)
cosx = cos (Pi *x)
cosy = cos (Pi *y)
cosz = cos (pi *z)

// Possible alternate solutions 
// alternate sol'n #1
// f = 3.0*pi*pi*sin(pi*x)*sin(pi*y)*sin(pi*z) ;
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// alternate sol'n #2
f = 14.0*pi*pi*sin(pi*x)*sin(2.0*pi*y)*sin(3.0*pi*z);

// original sol'n
// f = 2.0*(z*(1.0-z)* (y*(1.0-y) + x*(1.0-x)) + x*y*(1.0-x)* (1.0-y) );

// alterante sol'n #4
// f = p i * (-2.0*y*z*cosx*siny*sinz+3.0*pi*x*y*z*sinx*siny*sinz 
// -2.0 *x* z* sinx*cosy* sinz-2.0 *x*y* sinx* siny*cosz);

// alternate #5
/* f = -(2.0*y2*z2*xml*yml*zml-4.0*x*y2*z2*yml*zml+2.0*x2*z2*xml*yml*zml 

- 4.0*x2*y*z2*xml*zml+2.0*x2*y2*xml*yml*zml-4.0*x2*y2*z*xml*yml);
* /

return f;
}

/***************************************************************★*********
Gaussian Elimination solver (without pivoting)
Inputs: A - Matrix

b - RHS vector
x - vector to be solved for (must be allocated) 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

void naiveGauss(SPMAT *A, VEC *b, VEC *x) {
int i,j,k,n; 
double sum, xmult;

n = A->m;
for(k = 0;k < n - 1; k++) {

for(i = k+1; i < n; i++) {
xmult = sp_get_val(A, i,k) / sp_get_val(A, k,k); 
sp_set_val(A, i,k, xmult); 
for(j = k+1; j < n; j++) {

sp_set_val(A,i,j ,sp_get_val(A,i,j )-sp_get_val(A,k,j)*xmult);
}
b->ve[i] = b->ve[i] - b->ve[k] * xmult;

}
}
x->ve[n-l] = b->ve[n-1]/sp_get_val(A, n-l,n-l); 
f o r d  = n-2; i > = 0 ;  i--) {

sum = b->ve[i]; 
for(j = i+1; j < n ;j ++) {

sum = sum - sp_get_val(A, i ,j )*x->ve[j];
}
x->ve[i] = sum/sp_get_val(A, i,i);

}
}

Gauss Seidel Method with relaxation 
Inputs:

A - Matrix 
b - RHS vector
x - vector to be solved for (must be allocated), and 

contain initial guess, 
maxlter - maximum number of iterations
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tol - tolerance: stop iterating if converges to within this value 
lambda - relaxation value: such that: 0 <= lambda <= 2 
used to weight average of results to control convergence, 

x_new = lambda*x_new + (1-lambda)*x_old 
Thus,

0 <= lambda < 1: underrelaxation 
lambda = l : No relaxation
1 < lambda <= 2: overrelaxation 

Return values:
0: Method converged to within tolerance 

-1: Method did not converge within specified number of iterations 
-2: Error, mothod halted due to error in inputs, etc.

int GaussSeidel(SPMAT *A,VEC *b,VEC *x,int maxlter,
double tol,double lambda) { 

int i, j, n, itr = 1, done = 0, retval = 0; 
double temp, sum, oldx, err;

n = A->m;
for(i = 0 ;  i < n;i++) {

temp = sp_get_val(A, i,i); 
for (j = 0; j < n,- j++)

sp_set_val(A, i ,j , sp_get_val(A, i,j)/temp); 
b->ve [i] = b->ve[i]/temp;

}
for(i = 0 ;  i < n; i++) {

sum = b->ve[i]; 
for(j = 0; j < n; j++) {

if (i ! = j )
sum = sum - sp_get_val(A, i ,j) * x->ve[j];

}
x->ve[i] = sum;

}
while(Idone) {

for(i = 0 ;  i < n; i++) {
oldx = x->ve[i]; 
sum = b->ve[i]; 
for(j = 0 ;  j < n; j++) {

if(i != j )
sum = sum - sp_get_val(A, i,j) * x->ve[j];

}
x->ve[i] = lambda*sum + (1.0 - lambda)*oldx; 
if((!done) && (x->ve [i] != 0.0))

err = fabs ( (x->ve [i]-oldx) / x->ve[i]),- 
if(err < tol) 

done = 1;
}
itr++;
if(itr > maxlter) { 

done = 1; 
retval = -1;

}
}
return (retval);
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//(Note: only the code for degree 7 quadrature is presented 
// here, other cases follow a similar method.)

* function to determine integration points using 31-point,
* degree 7 quadrature for a tetrahedron.
* I/O: A: 3x4 matrix containing tet coordinate points as column
* vectors.
* p: the number of the point (1-31)
* X: 1x3 vector that will contain coordinates for this point
* (must have been previously allocated).
* w: varable that will contain the weight for the point.
** + ★*★★*★******■******★***★******★*****★★★ + **★*★★★**★★*★****■*'★*★*★★ j

void cubature7(MAT *A, int p, VEC* X, double *w) {
double alpha, beta, gamma;

if ( (p >= 1) && (p <= 6) ) {
// midside points(6)
*w = 0.000970017636684296702; 
alpha = 0.5; 
beta = 0.0;

}
else

if (p =  7) {
// centre point(1)
* w = 0.0182642234661087939; 
alpha = 1.0/4.0 ;

}
else

if ( (p >= 8) && (p <= 11)) {
// 1st set of vertex points(4)
* w = 0.0105999415244141609; 
alpha = 0.765360423009044044; 
beta = 0.0782131923303186549;

}
else

if ( (p >= 12) && (p <= 15) ) {
// 2nd set of centre points(4)
*w = -0.0625177401143299494; 
alpha = 0.634470350008286765; 
beta = 0.121843216663904411;

}
else

if ( (p >= 16) S c & (p <= 19) ) {
// 3rd set of centre points(4)
*w - 0.00489142526307353653; 
alpha = 0.00238250666073834549; 
beta = 0.332539164446420554;

}
else {

// edge-midsid points(12)
* w = 0.0275573192239850917 ; 
alpha = 0.2; 
beta = 0.1; 
gamma = 0.6;

}
switch(p) {
// midside points (6)
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case l :
X->ve[0]=alpha*(A->me[0 
x->ve[1]=alpha*(A->me[l 
X->ve[2]=alpha*(A->me[2 
break; 

case 2:
X->ve[0]=alpha*(A->me[0 
x->ve[1]=alpha*(A->me[l 
X->ve[2]=alpha*(A->me [ 2  

break; 
case 3:

X->ve[0]=alpha*(A->me[0 
x->ve [1]=alpha*(A->me[l 
X->ve[2]=alpha*(A->me[2 
break; 

case 4:
X->ve [0]=alpha*(A->me[0 
x->ve[1]=alpha*(A->me[l 
X->ve [2]=alpha*(A->me[2 
break; 

case 5:
X->ve[0]=alpha*(A->me[0 
X->ve[1]=alpha*(A->me[1 
x->ve[2]=alpha*(A->me[2 
break; 

case 6 :
X->ve[0]=alpha* (A->me [0 
X->ve[1] =alpha*(A->me[1 
x->ve[2]=alpha*(A->me[2 
break;

// centeriod 
case 7 ;

X->ve [0]=alpha*(A->me[0 
X->ve[1]=alpha*(A->me[1 
x->ve [2]=alpha*(A->me[2 
break;

// vertex-centroid points 
case 8 :

X->ve[0]=alpha*A->me [0] 
X->ve[1]=alpha*A->me[1] 
x->ve[2]=alpha*A->me[2] 
break; 

case 9:
X->ve [0]=alpha*A->me[0] 
x->ve[1]=alpha*A->me[1] 
X->ve[2]=alpha*A->me[2] 
break; 

case 10:
X->ve[0]=alpha*A->me[0] 
x->ve[l]=alpha*A->me[l] 
x->ve[2]=alpha*A->me[2] 
break; 

case 11:
x->ve [0]=alpha*A->me[0] 
X->ve [1]=alpha*A->me[1] 
x->ve [2]=alpha*A->me[2] 
break;

// vertex-centroid points 
case 12 :

[0]+A->me[0] [1 )+beta*(A->me[0 [2 ] +A->me [0] [3]
[0]+A->me[1] [1 )+beta*(A->me[1 [2] +A->me [1] [3]
[0]+A->me[2] [1 )+beta*(A->me[2 [2] +A->me [2] [3]

[0]+A->me[0] [2 )+beta*(A->me[0 [1]+A->me [0] [3]
[0]+A->me[1] [2 )+beta*(A->me[1 [1]+A->me[1] [3]
[0]+A->me[2] [2 )+beta*(A->me[2 [1]+A->me[2] [3]

[0]+A->me[0] [3 )+beta*(A->me[0 [1]+A->me[0] [2]
[0]+A->me[1] [3 )+beta*(A->me[l [1]+A->me[1] [2]
[0]+A->me[2] [3 )+beta*(A->me[2 [1]+A->me[2] [2]

[1]+A->me[0] [2 )+beta*(A->me[0 [0]+A->me[0] [3]
[1]+A->me[1] [2 )+beta*(A->me[l [0]+A->me [1] [3]
[l]+A->me[2] [2 )+beta*(A->me[2 [0]+A->me[2] [3]

[l]+A->me[0] [3 )+beta*(A->me[0 [0]+A->me[0] [2]
[1]+A->me[1] [3 )+beta*(A->me[1 [0]+A->me[1] [2]
[1]+A->me[2] [3 )+beta*(A->me[2 [0]+A->me [2] [2]

[2]+A->me[0] [3 )+beta*(A->me[0 [0]+A->me [0] [1]
[2]+A->me[1] [3 )+beta*(A->me[1 [0]+A->me [1] [1]
[2]+A->me[2] [3 )+beta*(A->me[2 [0]+A->me [2i [1]

[0]+A->me[0] [1 +A->me[0] [2]+A->me[0] [3]);
[0]+A->me[1] [1 +A->me[1] [2]+A->me[1] [3]) ;
[0]+A->me[2] [1 +A->me[2] [2]+A->me[2] [3] ) ;

set#l (4)

0] +beta* (A->me [0] [1] +A->me [0] [2] +A->me [0] [3] )
0]+beta* (A->me [1] [l]+A->me[l] [2]+A->me[l] [3]);
0]+beta* (A->me [2] [l]+A->me[2] [2]+A->me[2] [3] ) ;

1]+beta*(A->me[0] [0]+A->me[0] [2]+A->me[0] [3]);
1]+beta*(A->me[1] [0]+A->me[l] [2]+A->me[l][3]);
l]+beta* (A->me[2] [0]+A->me[2] [2]+A->me[2] [3] ) ;

2]+beta*(A->me[0] [0]+A->me[0] [l]+A->me[0] [3]);
2]+beta*(A->me[1] [0]+A->me[l] [l]+A->me[l] [3]);
2]+beta*(A->me [ 2 ]  [0]+A->me [ 2 ]  [1]+A->me[2] [3]);

3]+beta*(A->me[0] [0]+A->me[0] [1]+A->me[0][2]);
3]+beta*(A->me[1] [0]+A->me[l] [1]+A->me[1][2]);
3]+beta*(A->me[2] [0]+A->me[2] [l]+A->me[2] [2]);

set#2 (4)
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X->ve[0]=alpha*A->me[0] [0]+beta*
X->ve [1]=alpha*A->me[1] [0]+beta* 
x->ve[2]=alpha*A->me[2] [0]+beta* 
break; 

case 13:
x->ve[0]=alpha*A->me[0] [1]+beta*
X->ve[1]=alpha*A->me[1] [1]+beta* 
x->ve[2]=alpha*A->me[2] [l]+beta* 
break; 

case 14:
x->ve[0]=alpha*A->me[0] [2]+beta* 
x->ve[1]=alpha*A->me[1] [2]+beta* 
x->ve[2]=alpha*A->me[2] [2]+beta* 
break; 

case 15:
X->ve[0]=alpha*A->me[0] [3]+beta*
X->ve[1]=alpha*A->me[1] [3]+beta*
X->ve[2]=alpha*A->me[2] [3]+beta* 
break;

// vertex-centroid points set#3 (4 
case 16:

x->ve [0]=alpha*A->me[0] [0]+beta*
X->ve[1]=alpha*A->me[1] [0]+beta* 
x->ve[2]=alpha*A->me[2] [0]+beta* 
break; 

case 17 :
X->ve[0]=alpha*A->me[0] [1]+beta*
X->ve[1]=alpha*A->me[1] [1]+beta*
X->ve[2]=alpha*A->me[2] [1]+beta* 
break; 

case 18:
x->ve[0]=alpha*A->me[0] [2]+beta* 
x->ve[l]=alpha*A->me[1][2]+beta* 
x->ve[2]=alpha*A->me[2] [2]+beta* 
break; 

case 19:
X->ve[0]=alpha*A->me[0][3]+beta* 
x->ve[1]=alpha*A->me[1][3]+beta*
X->ve[2]=alpha*A->me[2] [3]+beta* 
break;

// edge-midsid points(12) 
case 20:

X->ve[0]=alpha*A->me[0][0]+gamma*A 
beta*(A->me[0][2]+A->me 

X->ve[1]=alpha*A->me[1] [0]+gamma*A 
beta*(A->me[1][2]+A->me 

X->ve[2]=alpha*A->me[2][0]+gamma*A 
beta*(A->me[2][2]+A->me

break; 
case 21:

X->ve[0]=alpha*A->me[0] [0] +gamma*A->me[0] 
beta*(A->me[0][l]+A->me[0] [3]) 

x->ve[1]=alpha*A->me[1][0]+gamma*A->me[1] 
beta*(A->me[1][1]+A->me[1] [3]) 

X->ve [2]=alpha*A->me[2] [0]+gamma*A->me[2] 
beta*(A->me[2][1]+A->me[2] [3]);

break; 
case 2 2 :

X->ve[0]=alpha*A->me[0] [0] +gamma*A->me[0] [3] +

(A->me [0] [1]+A->me 0] [2]+A->me 0] [
(A->me [ 1 ] [1]+A->me 1] [2]+A->me 1] t
(A->me [2] [1]+A->me 2] [2]+A->me 2] [

(A->me [0] [0]+A->me 0] [2]+A->me 0] [
(A->me [1] [0]+A->me 1] [2]+A->me ;i] t
(A->me [2] [0]+A->me 2] [2]+A->me 2] t

(A->me [0] [0]+A->me 0] [1]+A->me 0] [
(A->me [1] [0]+A->me 1] [1]+A->me 1] t
(A->me [2] [0]+A->me 2] [1]+A->me 2] [

> 1 V 3 CD [0] [0]+A->me 0] [1]+A->me 0] [
(A->me [1] [0]+A->me 1] [1]+A->me 1] t
(A->me [ 2 ] [0]+A->me 2] [1]+A->me 2] [

(A->me [0] [1]+A->me 0] [2]+A->me 0] [
(A->me [1] [1]+A->me 1] [2]+A->me 1] t
(A->me [2] [1]+A->me 2] [2]+A->me 2] [

(A->me [0] [0]+A->me 0] [2]+A->me 0] [
(A->me [1] [0]+A->me 1] [2]+A->me 1] t
(A->me [2] [0]+A->me 2] [2]+A->me 2] [

(A->me [0] [0]+A->me 0] [1]+A->me 0] [
(A->me [1] [0]+A->me 1] [1]+A->me 1] [
(A->me [2] [0]+A->me 2] [1]+A->me 2] [

(A->me [0] [0]+A->me 0] [1]+A->me 0] [
(A->me [1] [0]+A->me 1] [1]+A->me 1] t
(A->me [2] [0]+A->me 2] [l]+A->me 2] [

->me [0]
[0] [3] ) 

i->me [1]
[1] [3] ) 
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[2] [3] )

[1 ] +
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[2 ] + 
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3]
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3]
3]

3]
3]
3]

2 ]
2 ]
2 ]

3]
3]
3]

3]
3]
3]

3]
3]
3]

2 ]
2 ]
2 ]

A2-73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



beta*(A->me 0] 11]+A->me 0] [2] )
x->ve[l] =alpha*A->me[1] [0] +gamma*A- > m e [1] [3] +

beta*(A->me 1] 11]+A->me 1] [2] )
x->ve[2 ]=alpha*A->me[2] [0] +gamma*A- >me [2 ] t3] +

beta*(A->me 2] 1]+A->me 2] [2] )
break;

case 23:
X->ve [0] =alpha*A->me[0] [1] +gamma*A- >me [0] [2] +

beta*(A->me 0] 10] +A->me 0] [3] )
X->ve[1] =alpha*A->me[1] [1] +gamma*A- >me [1] [2] +

beta*(A->me 1] 0]+A->me 1] [3] )
x~>ve [2] =alpha*A->me[2] [1] +gamma*A- >me [2] [2] +

beta*(A->me 2] 0]+A->me 2] [3] )
break;

case 24:
X->ve[0] =alpha*A->me[0] [1] +gamma*A- >me [0] [3] +

beta*(A->me 0] 10] +A->me 0] [2] )
X->ve [1] =alpha*A->me[1] [1] +gamma*A- > m e [1] [3] +

beta*(A->me 1] 0]+A->me l] [2] )
X->ve[2] =alpha*A->me[2] [1] +gamma*A- > m e [2] [3] +

beta*(A->me 2] 10] +A->me 2] [2] )
break;

case 25:
x->ve [0] =alpha*A->me[0] [2] +gamma*A- > m e [0] [3] +

beta*(A->me 0] 10]+A->me 0] [1] )
x->ve[1] =alpha*A->me[1] [2] +gamma*A- >me [l] [3] +

beta*(A->me 1] 10]+A->me 1] [1] )
x->ve[2 ]=alpha*A->me[2] [2] +gamma*A- > m e [2] [3] +

beta*(A->me 2] 10]+A->me 2] [l] )
break;

case 26:
X->ve [0] =alpha*A->me[0] [1] +gamma*A- > m e [0] [0] +

beta*(A->me 0] 2]+A->me 0] [3] )
X->ve [1] =alpha*A->me[1] [1] +gamma*A- > m e [1 ] to] +

beta*(A->me 1] 2]+A->me 1] [3] )
X->ve[2] =alpha*A->me[2] [1] +gamma*A- >me [2 ] [0] +

beta*(A->me 2] 12]+A->me 2] [3] )
break;

case 27:
X->ve [0] =alpha*A->me[0] [2] +gamma*A- > m e [0] [0] +

beta*(A->me 0] 11]+A->me 0] [3] )
x->ve [1] =alpha*A->me[1] [2] +gamma*A- > m e [1] t0] +

beta*(A->me 1] 11] +A->me 1] [3] )
x->ve [2] =alpha*A->me[2] [2] +gamma*A- >me [2] tO] +

beta*(A->me 2] 1]+A->me 2] [3] )
break;

case 28:
X->ve [0] =alpha*A->me[0] [3] +gamma*A- > m e [0] [0] +

beta*(A->me 0] 1] +A->me 0] [2] )
X->ve [ 1] =alpha*A->me[1] [3] +gamma*A- >me [1] [0] +

beta*(A->me 1] 11]+A->me 1] [2] )
X->ve [2] =alpha*A->me[2] [3] +gamma*A- >me [2 ] [0] +

beta*(A->me 2] 11]+A->me 2] [2] )
break;

case 29:
X->ve [01 =alpha*A->me[0] [2] +gamma*A- >me [ 0] [1] +

beta*(A->me 0] 10]+A->me 0] [3] );
X->ve[1] =alpha*A->me[1] [2] +gamma*A- > m e [1] [1] +

beta*(A->me 1] 10]+A->me 1] [3] );
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X->ve[2]=alpha*A->me[2][2]+gamma*A->me[2][l]+ 
beta*(A->me[2][0]-t-A->me[2] [3]);

break; 
case 30:

X->ve [0] =alpha*A->me [0] [3]+gamma*A->me [0] [114- 
beta* (A->me [0] [0]4-A->me [0] [2] ) ;

X->ve[1]=alpha*A->me[1] [3] 4-gamma*A->me [1] [114- 
beta* (A->me [l] [0]4-A->me [1] [21);

x->ve [21 =alpha*A->me [21 [3]4-gamma*A->me [2] [114- 
beta* (A->me [2] [014-A->me [2] [ 2 ]  ) ;

break; 
case 31:

X->ve [0] =alpha*A->me [0] [3]4-gamma*A->me [0] [2]-t- 
beta*(A->me[01 [0]+ A - > m e [0] [1]);

X->ve [1] =alpha*A->me [l] [3]4-gamma*A->me [1] [214- 
beta* (A->me [1] [0]4-A->me [l] [1] ) ;

X->ve [2] =alpha*A->me [21 [3] +gamma*A->me [2] [214- 
beta* (A->me [2] [0] 4-A->me [2) [11 ) ;

break; 
default:

printf("error in cubature: invalid point #\n");
}
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