
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Three Dimensional Symmetric
Pyramidal Finite Elements

A thesis submitted to
Lakehead University

in partial fulfillment o f the requirements
for the degree o f

Master o f Science

by
Kevin B. Davies

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 W ellington S treet
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue W ellington
O ttawa ON K1A 0N4
C anada

Your file Votre reference
ISBN: 0-494-10653-0
Our file Notre reference
ISBN: 0-494-10653-0

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract
In this thesis w e conduct an examination o f pyramidal elements and their use as interface,

or mortar, elements in the joining o f tetrahedral and hexahedral elements in three dimensional
finite element meshes. Several new sets of basis functions are developed and analyzed for
pyramidal elements having five, thirteen and fourteen nodal points. These basis functions take
advantage o f the symmetries o f the element in order to give improved accuracy over
previously studied basis functions. Evidence of this improvement in accuracy is presented in
the form of numerical experiments.

(11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements
I would like to express my most sincere gratitude to my supervisor, Professor Liping Liu,

for her advice, encouragement and generous support during the preparation o f this thesis. I
would also like to thank Professor Michal Krizek (Academy o f Sciences, Czech Republic),
K ewei Yuan and Professor Liu for their collaboration on the material in sections 3.1 and 3.2. I
also wish to take this opportunity to express my gratitude to Mrs. Uta Hickins for her kindness
and help during my years at Lakehead University.

M y thanks go to Lynn Gollat and the rest o f the staff at the office o f graduate studies at
Lakehead University for their assistance on numerous occasions. I would also like to extend
my gratitude to the staff at the interlibrary loans department o f the Chancellor Paterson Library
for their resourcefulness and efficient delivery o f research documents. I am also extremely
grateful to the Natural Science and Engineering Research Council o f Canada (NSERC) for
providing me with financial support.

With my deepest appreciation I would like to acknowledge all the nurture, love and support
my mother Freda Davies and grandmother Freda Kamstra have given me over all the years.
Without their continued assistance this work would have never been completed. Finally, I
would like to express my most heartfelt appreciation to my fiancee Li Fong Yong, to whom
this thesis is dedicated, for all her patience, love and encouragement during my work on this
project.

Kevin Davies
December 2004

(m)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication:

For Li Fong

(IV)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents
1. Introduction 1

1.1 Preliminaries 1

History 1

The Method 2

2. Theoretical Background 6

2.1. Mathematical Concepts 6

Hilbert Spaces 6

Green’s Formula 8

2.2. The Finite Element M odel 9

The Ritz Approximation for Dirichlet’s Problem 12

2.3. Finite Element Spaces 15

n-Simplex Elements 16

Hypercube Elements 21

General Properties o f Finite Elements 23

Continuity o f Basis Functions in Pk 24

Affine Transformations and Reference Elements 24

Three Dimensional Elements 27

Tetrahedral Elements 27

Hexahedral Elements 28

2.4 Solving Linear Systems 29

Direct Methods - Sparse Factorization Methods 30

Gaussian Elimination and Cholesky’s Method 32

Efficiency Considerations - Operation Counts and Band matrices 33

Efficiency Considerations - Sparse Matrix Storage 35

Iterative Methods For Linear Systems 36

Gauss-Seidel Method 37

Convergence Criterion for Gauss-Seidel Method 38

Conjugate Gradient Method 38

Preconditioning 39

(v)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Pyramidal Elements 42

3.1 The Five Node Pyramidal Element 44

5-node Pyramidal Finite Element Basis Functions 45

3.2 The Thirteen Node Pyramidal Element 50

13-node Pyramidal Finite Element Basis Functions 50

3.3 The Fourteen Node Pyramidal Element 57

Development o f Basis Functions 57

14-node Pyramidal Finite Element Basis Functions 58

4. Software Implementation and Numerical Experiments 68

4.1 FEM Software Development 68

Mesh Construction 68

Generation of Stiffness Matrix and Load Vector 71

Coordinate Transformations 72

Numerical Integration 74

Solution o f System 76

4.2 Computational Results 76

5. Conclusion 79

Areas For Further Research 80

Bibliography 81

Appendix I: Basis Functions for Common Reference Elements A1 -1

A l . l . Two-dimensional reference elements A1 -1

3 -node Linear Triangle A1 -1

6-node Quadratic triangle A1 -1

4-node Bilinear Quadrilateral A l-1

8-node Biquadratic Quadrilateral A l-2

9-node Biquadratic Quadrilateral A l-2

A1.2. Three-dimensional elements A l-2

4-node Linear Tetrahedron A1 -2

10-node Quadratic Tetrahedron A1 -3

8-node Trilinear Hexahedron A l-3

27-node Triquadratic Hexahedron A l-3

Appendix II: Program Source Code Listings A2-1

(vi)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction
It is a common situation in three dimensional mesh discretizations that interior regions o f

the domain are better approximated by hexahedral elements, but tetrahedral elements are more
suitable for geometrically complex areas, such as those near the domain boundary. Thus, it is
desirable to construct a mesh that combines these element types so that we can achieve the best
approximation possible. Unfortunately, hexahedral and tetrahedral elements cannot be joined
together properly without the use o f special interface elements. The Pyramidal finite element
is one such interface, or mortar, element, and it is an extremely useful and flexible tool for
joining tetrahedral and hexahedral portions of a three dimensional mesh.

This work is organized as follows: First we present a history o f the finite element method,
as well as a brief overview o f how the method can be applied to problems in science and
engineering. In section two we conduct a detailed examination o f the finite element method
and its applications, as well as a theoretical justification for its validity. W e also present some
mathematical concepts and discuss some related topics in numerical analysis, such as methods
for solving large linear systems, that will be helpful to the understanding o f material in later
sections. In section three we proceed with our analysis o f pyramidal mortar elements.
Specifically, we examine three new symmetric elements, one five node element which has
bilinear functions on its base and linear functions on its triangular faces, as well as thirteen and
fourteen node pyramidal elements with biquadratic basis functions on their bases and quadratic
functions on their triangular faces. The pyramidal element with five nodal points is most
suitable for making connections between four node linear tetrahedral elements and eight node
hexahedral elements, whereas the thirteen and fourteen node elements can be used for
face-to-face connections between ten node quadratic tetrahedra and twenty node or
twenty-seven node biquadratic hexahedral elements respectively. In section three, we also
conduct a detailed examination o f the basis functions developed for these new pyramidal
elements, and prove the correctness o f their construction. W e also make the claim that these
new basis functions, which take advantage o f the symmetry o f the element, reduce the
discretization error o f the mesh. In section four we outline the development o f software tools
to be used to conduct numerical experiments measuring the accuracy o f the new elements. We
follow this with a presentation o f the test results from the numerical experiments showing that
our claim is justified, and that the new symmetric pyramidal elements do in fact yield a better
discretization error than other elements. Finally, we give some concluding remarks in section
five, as well as considerations for possible future research in this area.

1.1 Preliminaries

History
Mathematical models for highly complex systems are regularly needed in science and

engineering. Often these models take the form o f differential or integral equations which are
difficult, if not impossible to solve analytically. In the study o f such highly complicated
systems it has become increasingly important to employ computer technology to aid us in

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

developing and solving mathematical models. The rapid development o f computer technology
over the past few decades has provided us with increasingly powerful computers while the
costs involved in computation have been reduced significantly. This environment of high
performance but relatively cheap computational resources has further facilitated the use o f
computer-implemented mathematical models to simulate and analyze complicated processes in
science and engineering.

Unfortunately, even with the availability o f such computational power, it is still difficult to
determine the exact analytical solutions for all but the simplest o f model cases. In addition,
numerical methods are required in order to implement mathematical models on a computer.
Thus, we must generally rely on approximate solutions for model problems. However,
improved numerical techniques and computational performance mean that we can find
approximate solutions that are very close to the actual exact solution. The Finite Element
Method (FEM) is one such technique for determining numerical solutions to the differential or
integral equations that arise in models for systems in science and engineering.

The Finite Element Method was introduced in the early 1950s, with one o f its earliest uses
being for the stiffness analysis o f delta airplane wings [Turner, et al., 1956], At first the
method was thought to be a generalization o f previous methods used for structural analysis
where the structure is subdivided into small parts, or so-called finite elements, with known
simple behaviour. The actual term “Finite Element Method” was not adopted for the
procedure until 1960 [Clough, I960], As the mathematics behind the method were studied
further during the early 1960s it became clear that the method was in fact rooted in variational
methods o f mathematics introduced at the beginning o f the 20th century, and was a general
technique for determining numerical solutions o f partial differential equations. Over the
decades since, the method has been developed and refined into a general method for the
numerical solution o f partial differential equations and integral equations with applications in
many areas o f science and engineering. Today, finite element methods are still used
extensively in structural engineering; however, they are also used for problems in fluid
mechanics, nuclear engineering, electromagnetism, wave-propagation, heat conduction,
convection-diffusion processes, reaction-diffusion processes, aerospace structures, integrated
circuits, and many other areas. For a more detailed and interesting account o f the early
development o f the method the reader is referred to [Clough, 1980],

The Method
In general terms, the idea behind any numerical method for solving differential equations is

to discretize the given continuous problem to obtain a discrete problem. In other words, we
must transform the continuous problem into a problem which consists o f a system o f equations
with a finite number of unknowns which can then be solved computationally. The difference
method is perhaps the most classical of numerical methods for partial differential equations. In
the difference method the discrete problem is obtained by replacing derivatives with difference
quotients involving the values o f the unknowns at certain (finitely many) points. In the finite
element method, the discretization process is somewhat different. The basic idea behind the
finite element method is to reformulate the given differential equation as an equivalent
variational problem. In order to better understand these ideas let us consider the following
examples based on ones from [Cook, Malkus, and Plesha, 1989, pp. 1-3],

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X, u

Figure 1.1.
(a) A tapered bar under end load P. (b) A model built o f four

uniform (non-tapered) elements o f equal length.

Figure 1.1 gives us an example o f how a continuous problem might be discretized.
Suppose we wish to determine the displacement o f the right end o f the bar in Figure 1.1. To
solve this problem using a more classical approach we would determine the differential
equation o f the continuous tapered bar, solve this equation for axial displacement u as a
function of x and finally substitute x = L j to find the required end displacement. In the finite
element method, rather than beginning with a differential equation, the bar is discretized by
modeling it as a series o f finite elements, each uniform but o f a different cross-sectional area A
(Figure 1.1b). In each element u varies linearly with x; therefore, for 0 < x < L t , u is a
piecewise-smooth function o f x. The elongation of each element can be determined from the
elementary formula PL/AE. The end displacement, at x = L t , is the sum of the element
elongations. The accuracy o f this model improves as more elements are used.

In general, the finite element method forms a model o f a structure or system which consists
o f an assemblage o f small parts or elements. I f the geometry o f each element is kept simple
then it is much easier to analyze the model than the actual structure. In essence, we
approximate a complicated solution by a model that consists o f piecewise-continuous simple
solutions. Elements are called “finite” to distinguish them from differential elements used in
calculus.

In a heat transfer context, Figure 1.1 might represent a bar with insulated sides, prescribed
temperature at the left end, and prescribed heat flow at the right end. One might ask for the
temperature in the bar as a function o f x and time.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

! y>v i

Hole

X.U

Figure 1.2.
(a) A plane structure o f arbitrary shape, (b) a possible finite element model

o f the structure, (c) A plane rectangular element showing nodal forces p i and
qi. The dashed line shows the deformation mode associated with x-direction

displacement o f node 3.

Figure 1.2 gives us a more complex example based on a plane structure. Suppose we wish
to determine displacements and stresses caused by load L. Figure 1.2b gives a possible finite
element model discretization of the problem. The model is constructed o f elements that consist
o f plane areas, some triangular and some quadrilateral. As this example shows, it is often
desirable to use a number of different types o f elements in the discretization. This is
particularly true when dealing with complicated models in three dimensional problems. If
done properly, there is no difficulty in combining different element types; however, the areas
where these different elements join do require special considerations, as w ell as the possible
use o f special mortar elements (see section 3). The black dots in the mesh o f Figure 1.2b are
called nodes or nodal points and they indicate where elements are connected to one another. In
this model each node has two degrees o f freedom (d.o.f.): that is, each node can displace in
both th ex and y direction. Thus, if there are n nodes in Figure 1.2b, there are 2 n d.o.f. in the
model. (In the real structure there are infinitely many d.o.f. because the structure has infinitely
many particles.) Algebraic equations that describe the finite element model are solved to
determine the d.o.f. U se o f only 2n d.o.f. in analysis is similar to use o f the first 2n terms o f a
convergent infinite series. (In heat transfer, each node has only one d.o.f. - the temperature o f
the node. Thus, a finite element model for heat transfer o f n nodes has n d.o.f.) W e see that in
going from Figure 1.2a to 1.2b the distributed load L has been converted to concentrated forces
at nodes. The analysis procedure gives a prescription for making this conversion, as w ill be
shown subsequently.

From Figure 1.2 it may appear that discretization is accomplished simply by sawing the
continuum into pieces and then pinning the pieces together again at node points. But such a
model would not deform like the continuum. Under load, strain concentrations would appear
at the nodes, and the elements would tend to overlap or separate along the saw cuts. Clearly,
the actual structure does not behave this way, so the elements must be restricted in their
deformation patterns. For example, if elements are allowed to have only such deformation
modes as will keep edges straight (Figure 1.2c), then adjacent elements will neither overlap nor

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

separate. In this way w e satisfy the basic requirement that deformations o f a continuous
medium must be compatible.

An important ingredient in a finite element analysis is the behaviour o f the individual
elements. A few good elements may produce better results than many poorer elements. W e
can see that several element types are possible by considering Figure 1.2b. A function <j>,
which might represent any of several physical quantities, varies smoothly in the actual
structure. A finite element model typically yields a piecewise-smooth representation of (j>.
Between elements there may be jumps in the x and y derivatives o f <j). Within each element <j)
is a smooth function that is usually represented by a simple polynomial.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Theoretical Background

2.1. Mathematical Concepts
Before proceeding further, let us review some o f the underlying principles and concepts

involved in the finite element method. W e will restrict ourselves to a discussion o f the finite
element method as applied to boundary-value problems for linear elliptic equations. Also, for
the sake of simplicity, we only consider second order problems. In particular, only Laplace’s
operator for two and three dimensional spaces will be considered, and proofs will only be
made for the case where the domain has a Lipschitz-continuous boundary. In addition, in order
to avoid unnecessary overcomplication, let us concentrate on functional spaces consisting of
piecewise polynomial functions in two or three variables. For a more comprehensive
discussion o f finite element theory the reader is directed to [Kardestuncer, 1987], [Johnson,
1987], [Zienkiewicz, 1989],

W e will begin by examining the functional spaces and related properties that are needed for
developing finite element models for elliptic problems. After this we will present an important
formula, Green’s formula, that will be useful in our later analysis o f the method. W e will then
turn our attention to a detailed examination o f some of the fundamental concepts o f the
method.

Hilbert Spaces
In our development o f variational formulations o f boundary value problems for partial

differential equations we need to specify the functional space, V, that w e will be dealing with.
In the cases we will be examining, it is most convenient to consider a space V that is somewhat
larger (contains more functions) than the space o f continuous functions with piecewise
continuous derivatives. It will also be necessary to equip the space V with scalar products
related to the boundary value problem. Specifically, V will be a Hilbert space.

Before giving a precise definition o f a Hilbert space, let us review some basic principles
from linear algebra:

For a linear space V, we say that L is a linear fo rm on F if L \ V -*• R, i.e., L(v) e R for v e F,
and L is linear. L is considered to be linear if we have that for all v, w e V and (3,9 e R :

L((3v + 6w) = PL(v) + 6L(w).

Also, we refer to a (. , .) as a bilinear form on F x F if a : F x V -* R, i.e., a (y ,w) e R for
v, w e F, and a is linear in each argument. We consider a to be linear in each argument if we
have for all u,v ,w e F and ft, 6 e R\

a(u,j3v + 6 w) = f a (u , v) + 6a(u,w)

a(Pu + 9v ,w) = pa (u ,w) + 6a(v,w).

The bilinear form a (. , .) on V x V is said to be symmetric if

a(v, w) = a (w , v) Vv,w e V.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A symmetric bilinear form a (. ,.) on V x V is a scalar product on V if

a (y ,v) > 0 Vv e F, v ^ 0.

The norm ||• ||a associated with a scalar product a (. , .) is defined by

I M I f l = (a (y , v)) * , Vv e V.

In general, i f } is a scalar product with corresponding norm ||* ||, then we have by Cauchy’s
inequality

|(v,w)| < ||v|| • | |w|j.

A space V is said to be a Hilbert space if V is a linear space with a scalar product and
corresponding norm ||-||, and V is also complete. A space is considered to be complete if
every Cauchy sequence with respect to the norm ||* || converges.

W e will now define some Hilbert spaces which are useful for variational formulations of
the type o f boundary value problems considered here. For simplicity, let us start with the
one-dimensional case. Let / = (a, b) be an interval, and define:

{ v : v is defined o n /a n d J v 2dx < co (i.e., the integral exists)^ .

In other words Z2 OO is the space o f square integrable functions on I. I f we equip Z2 C/) with
the scalar product

(v,w) = j f vw dx

and the corresponding norm (the Z,2 -norm):

IMUc/) = Jjfv2 dx = (v,v)±
W e have by Cauchy’s inequality

|(v,w)| < l|v||i2ml|w||i2(/).

Observe that the scalar product (v ,w) is well defined since the integral (v,w) exists, if
v, w e Z2 (/)■ Thus, we have that the space L j i f) is a Hilbert space.

W e will also define some other Hilbert spaces that will prove useful in the upcoming
discussion. Define

H X{I) - { v : v and v 1 belong to

and equip this space with the scalar product

(v ,w) Hl{[) = l r(yw + v'w')dx

and the corresponding norm

= ^ j (y 2 + (y ') 2d x .

Note: here w e use u' to denote the first derivative o f u. Thus, the space H l (/) is comprised of
the functions, v, which are defined on / and together with their first derivatives are
square-integrable. In the consideration o f boundary value problems of the form

-u" - f on I = (a , b)

with boundary conditions

u(a) = u{b) = 0

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it is convenient to define the space

H l(I) = { v g H \ I) , v(a) = v(6) = 0 }

and equip it with the same scalar product and norm as TV1 (7).

These concepts are easily extended to cases o f higher dimensionality. For instance, let Cl
be a bounded domain in R d, d = 2 or 3, and define

L 2(Cl) = { v : v is defined on Cl and v 2dx < co -̂

H l (CT) = { v g I 2(Q) : -g - g L2(Q), z = l , . . . , d }

with the corresponding scalar products and norms

(v, w) = vw dx

»v « i . (0) = o

(v’w)h\ q) = j j v w + VvVw]dx

IIv II//‘(D) = (j a [v2 + |Vv|2]r &)2

where Vv denotes the gradient o f v, i.e., Vv = f ° r d = 2. Furthermore, we define
the space

Hl(Cl) - { v g ^ (Q) : v = 0 on T }

where T is used to denote the boundary o f Cl. W e also equip H\(Cl) with the same scalar
product and norm as H x(Cl).

Green’s Formula
Let us now mention a certain Green’s formula which will be useful in the sections that

follow. Starting with divergence theorem (for two dimensional space) we have for a domain £1
with boundary T :

[div A dx = f A • n ds Jo Jr
where A = (A i ,A 2) is a vector valued function defined on Cl,

div A = +
OX\ d x 2

and n = (n i ,n 2) is the outward unit normal to T. In this case dx denotes the element o f area
R 2 and ds the element o f arc length along T. Applying the divergence theorem to A = (vw, 0)
and A = (0, vw), we have:

f w ~ - + v ~ ~ d x = f vwnidsJd ox j jp

and

f w — + v ~ d x = f vwnids J n ex 2 dx2 J r

respectively. Adding these two equations and rearranging terms, we have:

f w-jr- + w-jr- dx + f v^p- + v -^ -dx = f v w n \ + v w n 2 ds.JD dx (dx2 Jn o x) dx2 Jf

I f we let w = -|j-, and denote by Vv the gradient o f v, i.e., Vv = "&t) ’ we t îen §et

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

following Green’s formula:

f - f ^ # - + dx = f V v V w A
J Q ox i dxi dx2 ox2 J Q

= f v - j ^ m + v - ^ - m d s - l v -pL + -1 r dxi 1 dx2 J q 8 x l
82w
dx2

dx

= l r < ! > + - t " i) d s - f / (f r + - &) *
= f v ^ - ds - f vAw dx

J r 8n J o

or,

[Vv • Vw dx = f v ^ d s - f VAw d x (2 .1 .1)
J q J r 8n j n

where we have used the short form, = -f^ n i + - 4 - « 2 for the normal derivative, i.e., the’ dn dx i & 2

derivative in the outward normal direction to the boundary F.

2.2. The Finite Element Model
In order to further aid our understanding and analysis o f the method let us now consider

some model problems. In the process we will also examine some well known results
concerning the regularity o f the solution, and some fundamental results concerning piecewise
polynomial functions. For the time being we restrict ourselves to two dimensional space;
however, these principals extend naturally to problems in three dimensional space. Also,
unless specifically stated otherwise, it will be assumed throughout the following that the
boundary T is Lipschitz-continuous.

Let Q be a bounded convex plane domain with Lipschitz-continuous boundary T, and
consider the boundary value problem:

-A u = f

u = 0

in Q

on r
(2. 2 . 1)

where A is the Laplacian operator, i.e., Au = (This is the classical Dirichlet

problem for Poisson’s equation with homogeneous boundary conditions.) To help us in our
discussion o f the properties o f the solution to this problem and others, we introduce some
notation. Denote by | H | 0 the ^ 2 -norm over Cl and by ||*||fc that in the Hilbert space H k(C2).
Thus, for real-valued functions v,

IMIo = (! Qy2dx) 2

and for k a positive integer,

HvlU= Z l l ^ v l
\\a\<k

where a is a multi-index (that is, a = (a 1, 0 :2), with a \ and a. 2 nonnegative integers),

For example,|ct| = cti + ai, a „ d D « v .

Ml 2 - (llvllo + l & T | | 0 + l i f e - + d2v
8x1

8 2 v

dx \d x2 | | 0

32v
dx2dx\ + 8 2 v

8x1 y0 j

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From a mathematical standpoint results for the finite element method are most easily
derived using as our norms the 77* (£2/norm s. From a computational standpoint, pointwise
estimates for the error are often more interesting, but they are much more difficult to prove
than the average estimates provided by the //*(Q)-norms.

The following lemma provides us with an important fact, which will be useful later in
proving error estimates, it gives us a precise statement o f what smoothness w e may expect for
the solution u o f (2 .2 .1) given a certain degree o f smoothness o f /

Lemma 2,1
Given any nonnegative integer k, there is a constant C such that f o r any f e H k(Ci) with u the
corresponding solution o f (2.2 .1), we have

CIl/lI k

Hence u e H k+1(€l).

This fact can be found in [Johnson, 1987, pp.93], it states a well known regularity property
associated with elliptic equations.

Also consider the following model Neumann problem:

- A u + u = f in Q.
(2 .2 . 2)

= 0 on ron

where is the outward normal derivative on T. Corresponding to this problem w e have the
following smoothing property [Kardestuncer, 1987, pp. 1.157],

Lemma 2.2
Given any nonnegative integer k, there is a constant C such that f o r any f e H k{Ci) with u the
corresponding solution o f (2 .2.2) , we have

< c m „

Hence u e H k+2(Q.).

These fundamental facts concerning the regularity o f solutions o f elliptic boundary-value
problems will provide us with the tools w e need for analyzing the properties of the errors in
finite element approximations.

In general, we want to approximate the solutions o f (2 .2 .1) and (2 .2 .2) by certain
piecewise polynomial functions defined on f l To avoid overcomplicating matters we will, for
the time being, concentrate on piecewise linear functions.

Before determining the approximate solutions o f (2 .2 .1) and (2 .2 .2) , let us examine the
problem o f approximation o f smooth functions on Q. First we consider smooth functions
which vanish on T, o f which the solution u o f (2 .2 .1) is a member. Let us proceed then by
considering the construction o f a finite dimensional subspace Vh o f F, consisting o f a
triangulation o f Q. For simplicity we assume that T is a polygonal curve, in which case Q is a
polygonal domain. If this is not the case, i.e., if T is curved, we may first approximate T with a
polygonal curve.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1.
Triangulation o f a convex domain Q.

Let Th = { t i , .. . , T m } denote a partitioning o f Q into non-overlapping triangles r„ such that no
vertex o f any triangle lies on a side o f another triangle and such that the union of the triangles
determines a polygonal domain fit, a Q (w here Q is con vex) whose boundary vertices lie on
T (Figure 2.1). In other words, we have that

& h = (J "T = T i u 7 2 u. • - U t ot .
r e Th

Let h denote the maximal length o f a side in the triangulation Th, i.e., the length o f the longest
side for the triangle r with the longest side in Th, or

h = ma x(diam(z))
re Th

where diam(z) = diameter o f r = longest side o f t . Thus, h is a parameter which decreases as
the triangulation is made finer. Let us assume that the angles o f the triangulation are bounded
below, independently o f h and also that the triangulations are quasi-uniform in the sense that
the triangles r of Th are o f essentially the same size, which may be expressed by demanding
that the area o f any triangle r in Th is bounded below by ch2 with c > 0 independent o f h.
N ow define

Vh = { v : v is continuous on Clh, v |T is linear for t g Th, v = 0 on T }

where v|T denotes the restriction o f v to triangle r, i.e., the function defined on r agreeing with
v on r. The space Vh consists o f all continuous functions that are linear on each triangle r and
vanish on T. Note that Vh cz V. Let Nh be the number o f interior vertices in the triangulation
o f Q, and let be the interior vertices o f Th (we exclude the boundary nodes, since v = 0
on T). A function in v e Vh is uniquely determined by its value, v(Pj), at the points Pj and
thus depends on Nh parameters. Let <j)j be a function in Vh which takes the value 1 at Pj but
vanishes at the other vertices, i.e.,

f 1 if i = j
M P i) =*<! = { n , AT

(0 i f r ± j 1 ,J = 1 , . . . ,N h

It can be seen that the support o f (j)j (the set o f points x for which <f>j(x) ± 0) consists o f the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

triangles with the common node Pj.
admits the representation:

Thus, {$/}^* forms a basis for Vh, and every % in Vh

N h

X(x) = £ « / # / (*) with aj = x (Pj) , x e Q h U F.

Given a smooth function v on Q which vanishes on T, we can interpolate v into Vh by defining
the interpolant of v, h v in Vh as that function in Vh satisfying

Ihv(Pj) = v{Pj) fory = . ,N h

Hence
Nh

h v (x) = ^v(Pj)<j)j(x).
/= i

The following error estimates for the interpolant h v are well known [Johnson, 1987],
[Bramble and Zlamal, 1970], For a triangulation Th and piecewise polynomials o f degree
r > 1, we have

| |7/iV-v| |0 < Chr+1\\v\\ , (2 .2 .3a)

and

where,

\ \Vhv — Vv|| 0 < Chr||v | r+ 1 (2 .2 .3 b)

IIVvL = gv
dx\

+ dv
dX2 7

and we assume that v is sufficiently regular so that | |v| |2 is finite. The orders of these
estimates, 0 (h 2) and 0 (h) , respectively are the optimal orders to which the functions and their
gradients can be approximated in Vh in the sense that the powers o f h in (2 .2 .3a) cannot be
increased with (2 .2 .3b) remaining valid for a fixed C and all v e H 2(Q) vanishing on T. W e
will soon see that the piecewise linear Galerkin approximation to the solution o f (2 .2 .1)
satisfies similar inequalities.

In considering the approximation o f the solution o f (2 .2 .2) we must consider sets of
functions Vh which do not necessarily vanish on T. However, details o f such functions and
their properties are beyond the scope o f this paper. Please refer to [Zienkiewicz, 1989],
[Kardestuncer, 1987] for a more complete discussion.

The Ritz Approximation for Dirichlet’s Problem
Let us take note o f the fact that in simple cases o f elliptic equations the variational problem

can also be considered as a minimization problem corresponding to the classical Ritz-Galerkin
method that goes back to the beginning o f the 20th century. In the case o f more general
formulations they correspond to Galerkin methods. In the case o f elliptic equations, for
example, this variational problem in basic cases is a minimization problem o f the form:

(M) Find u g V such that F(u) < F(v) for all v g V

where V is a given set o f admissible functions and F : V -+ R is a functional (i.e., F(v) e R for
all v g V with R denoting the set o f real numbers). As we have seen, the functions v in V often
represent a continuously varying quantity such as displacement in an elastic body, a

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

temperature, etc. F (v) is the total energy associated with v and (M) corresponds to an
equivalent characterization o f the solution o f the differential equation as the function in V that
minimizes the total energy o f the considered system. In general the dimension of V is infinite
(i.e., the functions in V cannot be described by a finite number of parameters) and thus in
general the problem (M) cannot be solved exactly. To obtain a problem that can be solved
computationally we replace the set V with a set Vh which consists o f simple functions
dependent on only finitely many parameters. This leads to a finite-dimensional minimization
problem o f the form:

(Mh) Find Uh e Vh such that F(uh) < F(v) for all v e Vh.

This problem is equivalent to a large linear or nonlinear system o f equations. The hope is
now that the solution Uh o f (Mh) is a sufficiently good approximation o f the solution u o f (M),
the original partial differential equation. Generally Vh is chosen to be a subset o f V, in other
words Vh c V, i.e., if v <= Vh then v e V. In this case (Mh) corresponds to the classical
Ritz-Galerkin method. The special feature o f a finite element method as a particular
Ritz-Galerkin method is the fact that the functions in V h are chosen to be piecewise
polynomial. One may also start from more general variational formulations than the
minimization problem (M) and this corresponds to the so-called Galerkin methods.

To define a Ritz approximation o f (2 .2 .1) we first multiply the equation by a smooth
function 0 which vanishes on T,

-A u<j) = f(j>

now integrate over Q,

- J Au<j> dx = Jf<j> dx.

N ext we apply Green’s formula (2 .1.1) ,

- J Au<l> dx = |Vw • dx = J /0 dx

since u and <j) vanish on T. Thus, we obtain, for all such <j>, with (v,w) denoting the inner
product vw dx in L 2 (G),

(Vm, V 0) = (f, 0) . (2 .2 .4)

W e may then pose the approximate problem to find Uh in Vh such that

(y u h, V *) = (f , x) for all x e Vh. (2 .2 .4b)

In terms o f the basis introduced above, we may restate the problem as follows:

Find the coefficients £ 1, . . . ,%nh defining
N h

H h(x) =
>1

such that
N h

V 0*) = (f, h) k = \ , . . . , N h (2 .2 .5)
j= 1

which is a linear system with Nh equations in Nh unknowns, <; 1, . . . , C N h . In matrix form we

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have

A£ = b (2 . 2 . 6)

with symmetric Nh x Nh matrix A = (ajk) with ajk = (y<t>j, V</>k), vector b = (bk) with
bk = (f, <l>k), and vector % = (gk) with components %k = (Uh(Pk))• The matrix A is
commonly referred to as the stiffness matrix, and the vector b is termed the load vector. When
the bilinear form is symmetric, as it is in our case, the matrix A is symmetric and
positive-definite, and thus non-singular so that (2 .2 .6) admits a unique solution % (we will
examine this further in a moment). (Contrast this to matrices arising from finite-difference
methods over other than rectangular regions.) This is an advantage for the numerical solution
o f system (2.2 .6) . In the choice o f the basis it is o f paramount importance, again
from a numerical standpoint, that the resulting matrix possess as many zeros as possible.

In practice the elements ajk = (V 0;-, o f stiffness matrix A are computed by summing
the contributions from the different triangles:

(V0; , V<t>k) = E (V f c , V 0*)
r eTh

where

(y<j)j, | V(pj-V(f>k dx.

Note that (^<t>jN(t>k)z = 0 unless Pi and Pj are both vertices o f r. Thus, A is also a sparse
matrix. Let P t, Pj, Pk be the vertices o f triangle r. Then the 3 x 3 matrix:

W , V ^) T (V 0 i , V ^) r (V 0 ,- ,V 0 i)T

W j M A W j , v f a \ >

sym (V0/t,V0*:)T

is the element stiffness matrix for r. Thus, the global stiffness matrix A can be computed by
first computing each element stiffness matrix and summing the contributions for each triangle.
To compute the element stiffness matrix we work with the restrictions o f the basis functions
(j>i, (j)j and to the triangle r. Denote these restrictions on x as y y/j, y/k, so that each y/ is a
linear function on r that takes the value one at one vertex and zero at the other two vertices.
The functions y/i, y/j, y/k then form the basis functions on triangle r. Thus, a linear function w
on r has the representation

w(x) = w{Pi)y/i{x) + w(Pj)y/j(x) + w{Pk)y/k{x) x e r.

Let us now prove that (2 .2 .4b) has a unique solution Uh in Vh. Consider two solutions u\
and u\ o f (2 .2 .4b). Then we have

(V «{ , V *) = (f , %) fo r al1 X e y h

(Vw*, V z) = (f , z) fo r a11 X e Vh

Subtracting these, and choosing % = u\ - u\ e Vh, we have

VwjVz dx - j n V u ^ X dx = (f , £) - (f , z)

\ QV (u \ - u h2y j (u \ - u h2) d x = 0.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It follows that (ui - U2)(x) is constant on Q. This, along with the boundary condition
u i ~ u 2 = 0 on T gives us u\(x) - w^OO, Vx e Q, and so the solution is unique. This further
proves that the matrix A in (2 .2 .6) is nonsingular so that (2. 2. 6) is uniquely solvable, given
any right-hand side b.

Since (2 .2 .6) is uniquely solvable we can compare the finite element solution

Uh = YjUh(Pi)<i>i{x)
i= 1

with the solution u o f (2 .2 .1) . From (2. 2 .6) , we know that

£ = \ u h (P \) U h (P l) ... U h (P N h) Y ,

can be obtained by solving the Nh * Nh matrix equation (2 .2.6) . Thus, once the matrix
equation is solved, Uh can easily be determined. The easiest comparison between Uh and u is
given with respect to the norm [| * [| x. Before we make this comparison, we present the
following theorem from [Kardestuncer, 1987, pp. 1.160],

Theorem 2.1
\\V(uh — w)II0 < O F -1 I N , f o r s = 1,2.

Two important facts that this theorem gives us are as follows:
1. The finite element solution Uh is the best approximation in Vh (in the sense o f the norm

|| V * |[0 on Vh) o f the function w; in other words, Uh is the orthogonal projection o f u onto
Vh (with norm ||V • ||0).

2. The finite element solution Uh may be computed directly from the “data”/

The above theorem shows that the Ritz approximation Uh imitates the optimality property
o f the interpolant (2.2. 3b), which is, o f course, natural in v iew o f fact 1. Note here the fact
that u minimizes the functional y | |Vv | |o - (f,v) for all v in H l (Q) which vanish on T. This
property is imitated by Uh in that Uh minimizes the same functional for functions in Vh- N ow
let us examine a result presented in [Kardestuncer, 1987, pp.1.161] which show that the Ritz
approximation has an optimality property with respect to the I,2(f2)-norm. Thus, the Ritz
approximation has a property analogous to (2. 2 .3a).

Theorem 2.2
\\uh - u \ \ 0 < Chs \\u\\s f o r s = 1,2.

2.3. Finite Element Spaces
Let us now examine some common finite element spaces Vh. These spaces will consist o f

piecew ise polynomial functions on subdivisions, or “triangulations”, Th = {r} o f a bounded
domain Q c R d, d = 1,2,3, into elements r. For d = 1, the elements t are intervals, for
<7=2, triangles or quadrilaterals, and for <7=3, tetrahedra and hexahedra.

The finite element space will need to satisfy either Vh c: H l (Q.) or Vh ci i / (Q)
corresponding to either second order or fourth order boundary value problems, respectively.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the space Vh consists o f piecewise polynomials, w e have

Vh c H \ Q .) o Vh c C°(T2) (2 .3 .1)

Vh cz FE (Q) o Vh c C ^IY) (2 .3 .2)

where, Q = Q U T and

C °(Q) = { v : i ’ is a continuous function defined on

C l (Q) = {v e C°(TT) : D av e C ° (Q) , | a | = 1 _
(i.e., first derivative is continuous on Q)}.

Thus, Vh cz H l (Cl) i f and only if the functions v e Vh are continuous, and Vh cz H7(Q.) if and
only if the functions v e Vh and their first derivatives are continuous. The equivalence (2 .3 .1)
depends on the fact that functions v in Vh are polynomials on each r so that if v is continuous
across the common boundary o f adjoining elements, then the first derivatives, D av,\ct\ = 1,
exist and are piecewise continuous so that v e H l (Q). On the other hand, if v is not
continuous across a certain inter-element boundary, i.e., v g C ° (Q), then the derivatives
D av,\a\ = 1 do not exist as functions in 1 -2 (0) and thus v g /E (Q). (If v is discontinuous
across an element side S, then D av, |a| = 1, would be a 5-function supported by S which is not
a square-integrable function.) In a similar way we see that (2 .3 .2) holds.

Until now we have mentioned only triangles when dealing with the subdivision o f the
domain, but there is no reason why we cannot use elements o f other shapes as well. Although
w e will continue to deal with triangles in the following, we will be discussing other element
types in future. Thus, we will now use K rather then r to denote individual elements in the
subdivision Th o f Q. (K is used to denote the more general convex hull.) Let us now turn to
the task of constructing a finite element space.

To define a finite element space Vh we must specify:
1. The subdivision (triangulation) Th = { K } o f domain Q.
2. The nature o f the functions v e Vh on each K.
3. The parameters used to describe the functions in Vh-

^-Simplex Elements
As was the case previously, when triangles were used, the domain Q c z R n with boundary

T is subdivided by Th = { K \ , . o f non-overlapping elements K iy such that

n h = U K = K i u k 2 u . .. UK m
Ke Th

with Qh cz Q.

Although other types o f functions are possible it is advisable to restrict ourselves to using
polynomials. There are two reasons for this: First, this fact was used previously in proving the
convergence o f the method, and secondly, this yields a simple calculation for the coefficients
o f the linear system. Also, up to this point, w e have only discussed linear polynomials;
however, there is no reason why we should restrict ourselves to polynomials o f the first degree.
Thus, we introduce the following notation:

P m = { v : v is a polynomial o f degree < r on K y , for r = 1,2, . . .

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, P i (K) is the now familiar space o f linear functions on K, o f the form

v(x) = aoo + aioxi + a 01X2 , x e K where ay e R.

Further we see that P i (K) is the space o f quadratic functions on K. In general, we have:

P r (K) = { v : v(x) = 2 dyx\xb2 for x e K, where ay e r \
0<i+j<r

Note that

d im (P *)= (f)

where (™) is given by

(")
m\

r\ (m - r)\ ’

and dim denotes the dimension o f a linear space. In the linear case, we see that
{ w 1 , W2 , V ^y , where y/i (x) = 1, 1//2 CO = x\ , y/s(x) - X2 , is a basis for Pi (K) , and that
dim Pi(^f) = 3.

Recall that in R", a n-simplex is a convex hull K o f n + 1 points a; = (a y) ni= 1 G which
are then called the vertices o f the n-simplex, provided the matrix

A =

a 11 a 12

<?21 «22

l n + l

Cl2n+l

d n \ d n2 flnn+1

(2 .3 .3)

1 1 ••• 1

is regular (equivalently, the n + 1 points a,- are not contained in a hyperplane). Thus,

{ n+l n+l 'I

x = S V i i 0 < X j < 1, 1 < j < n + 1, = 1 j .

Notice that a 2-simplex is a triangle and a 3-simplex is a tetrahedron. The barycentric
coordinates Xj = Xj(x), 1 < j < n + 1, o f any point x & R n with respect to the n + l points aj
are the unique solutions o f the linear system

n+l

y^ayXj = Xi 1 < i < n
M
n+l

H h = 1
+1

whose matrix is precisely the matrix A o f (2 .3 .3) . By inverting this linear system, we see that
the barycentric coordinates are affine functions o f Xi,Xi, . . . , x n :

n

Xi = 'YjbijXj + b in+1 1 < i < n + l
M

where the matrix B = (by) is the inverse o f the matrix A in (2. 3. 3). Since Ar(a;) = Sy, 1 < i,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j < n + 1, we have the identity
n+l

P = for a l lp & P i .
1=1

Therefore, a polynomial o f degree < 1 is uniquely determined by its values at the n + l points
dj. This observation leads to the definition o f the simplest finite element which we shall call
n-simplex o f type 1. In this case the space P k is P i , and the set Z k o f degrees o f freedom, i.e.,
those parameters which uniquely define a function in the space P k , consists o f the values at
the vertices, which we write symbolically as I k = -{p{cti), I < i < n + l } ; see Figure 2.2 for
the case where n = 2.

Px= P. ;dim P„= 3
I K={pfa.J,1</<3}

Figure 2.2. Triangle o f type 1.

W e now consider the case where the space o f function is Pi . Let us define a,y = as
the midpoints o f the edges o f the n-simplex K. Since Xk{ay) = + <5#), we can establish
the identity

rt+1
P = JL h(2Xi - 1)p(di) + XJ 4XiXjp(ay) for a llp g P 2-

i= 1 i<j
This yields the definition o f a finite element, called the n-simplex o f type 2: the space P k is
Pi , and the set I * consists o f the values at the vertices and at the midpoints o f the edges. See
Figure 2.3 for the case where n = 2.

{ /J= P2; dim PK= 6
£ k = { P(3f), 1 ^ / ^ 3 ;

P f a j) . 1 s / < i s 3)

a 2

Figure 2.3. Triangle o f type 2

Similarly we can deduce a definition for the n-simplex o f type 3 having two points along
each edge between the vertices, as well as a point in the centre o f a face. In the case where
n = 2 we have a triangle with a total o f 10 points.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With a given triangulation, we now associate in a natural way a space Vh with each type of
finite element. With triangles o f type 1, a function of Vh is:

1. In the space P k = P i for each K e Th.
2. Completely determined by its values at all the vertices o f the triangulation, by definition.

Likewise, for triangles o f type 2, a function o f Vh is:
1. In the space P k = P i for each K e T h .

2. Completely determined by its values at all the vertices and all the edge midpoint o f the
triangulation.

In other words, a function in Vh is specified by a set I h o f degrees o f freedom, the
function’s values at all the vertices for triangles o f type 1, vertices and edge midpoints for
triangles o f type 2, etc., in such a way that

u = (J
KeTf,

Let us now consider an example o f how to determine the nodal basis functions for P i (K)
associated with the degrees o f freedom, i.e., the basis function <j>i e P i (K) , i = 1,2,3, such
that

1 if i = j

0 if i * j i, j - 1,2,3.

A function v e P \ (K) then has the representation
3

v{x) = Y j V(a i)(t>i(X) x € K.
(=1

Consider the following example from [Kwon and Bang, 1997, p86-88] with triangular
elements defined on the x ,y plane. The linear triangular element shown in Figure 2.4 has three
nodes, one at each o f the vertices o f the triangle, and the variable interpolation within the
element is linear in x andy, i.e.,

v = a i + ajx + a 3y

or, equivalently,

(2.3.4)

a i

a 3

a3

(2 .3 .5)

where, a,- are constants to be determined. The interpolation function (2.3.4) , should represent
the nodal variables at the three nodal points. Substituting the x ,y values at each nodal point
gives:

V i

V2 =

V3

1 x i y i

1 x 2 y i

l x 3 y 3

fli

a 3

as

(2 .3 .6)

where, x,- and y* are the coordinate values at the zth node and v, is the nodal variable as seen in
Figure 2.4.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.4.

Inverting the matrix and rewriting (2 .3 .6) gives

X2F3-X3F2 x i y \ - x \ y i x i y 2 - x 2yi

y 2 - y 3 y 3 - y i y i - y 2

* 3 - X 2 X I - X s X 2 - X \

a i
_ 1

2ACl2

a 3

Vi

V2

V3

(2 .3 .7)

where

A = y det

1 x\ y i

1 x 2 y 2

1 x 3 y 3

Thus, the magnitude o f A is equal to the area o f the triangular element. (Note that its value is
positive if the node numbering is counter-clockwise and negative otherwise.) For the finite
element computation, the element nodal sequence must be in the same direction for every
element in the domain. Substitution o f (2 .3 .7) into (2.3. 5) gives

v = <t>i(x,y)vi + (j>2 (x ,y)v2 + 0 3(x,y)v3

where <j>i(x,y), i = 1 ,2 ,3 are the shape functions for a linear triangular element:

h (x , y) = - ^ - [(xxy i - x 3y 2) + & - y*)x + f a - x 2)y]

fa (x ,y) = - w) + 0 3 - y i) x + (xi - x 3)y]

f a f a y) 2A [(xi y2 - x 2y i) + (yi - y 2) x + (x2 - x i) y]

The functions <pi(x,y) then satisfy the conditions

M W) = 5 ‘j

and

I > = 1
i= 1

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, if the triangle K has vertices at: (1 ,0), (0 ,1) and (0 ,0) then

0 l = x

fa =y
03 = 1 - x - y

since A = y .

Hypercube Elements
Another useful shape for finite elements in two dimensional space is the rectangle. In

particular, if it so happens that the set Q is a rectangle then it may be conveniently
“triangulated” by finite elements which are rectangles with sides parallel to the sides of Q . In
the case of three dimensional space, these ideas extend naturally to hexahedral elements. For
simplicity w e will restrict our discussion to hypercubes (squares in two dimensional space,
cubes in three dimensional space).

In the following we let Qk denote the space o f all polynomials o f degree < k with respect to
each o f the n variables Xi,X2 , ... ,x«; i.e., a polynom ialp e Qk is o f the form

p(x l , X 2 , . . . , X „) = Yl, a «iai---a„xV X2 1 ■ ■ - Xu" ! < / < « , Y a i ^ k

Observe that d im (2,t) = (k + 1)" and that we have the inclusions

Pk c: Q k

Note that, for example when k = 1, we call the functions in Pi linear functions o f Xi,X2 , .. . , x n
and the functions in Q\ bilinear functions o f X\,X2 , . . . , x n. Denoting by K the unit hypercube
[0,1]” o f R", we define its subset

we deduce the definition o f finite elements which we call hypercubes o f type k. The following
figures show the cases k = 1 ,2 with n - 2, as well as the notation used for the points o f the
corresponding sets 3*.

for any given integer k > 1. In view o f the identity

r \
for all p e Qk

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5. Square o f type 1.

a3

\ PK- Q2: dim § = 9
^ I K = {p{a;), 1 < / s 9)

as

a2

Figure 2.6. Square o f type 2.

For example, le tK be a square with vertices a,, i = 1, . . . ,4 , and define

Q \ (K) = {v : v is bilinear on K, i.e.,

v(x) = aoo + # 10X 1 + a o i^ 2 + # 11X 1X2 , x e if, and a,y e i?}

Then a function v e Q i(K) is uniquely determined by the values v(# ,), i = 1, . . . ,4. Further, if
i f i and K 2 are two squares in Th with the common side S and the functions Vil^ and V2 Ik 2
agree at the end points o f S then Vi - V2 = 0 on S since Vi - V2 varies linearly on S. W e may
now define

Vh = { v g C ° (Q) : v\K g S i (if), V if g Th}

assuming that Th = {K } is a subdivision o f Q into non-overlapping squares such that no vertex
o f any square lies on a side o f another square. Thus, values at the nodes may be used as global
degrees o f freedom.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

General Properties of F inite Elements
With the previous examples in mind, w e can now give a general definition o f a finite

element. A finite element in R n is a triple (A ,P ,Z) where the data K, P, and E have the
following significant relationships:

1. A is a compact subset o ff? ” with a non-empty interior and a Lipschitz-continuous
boundary.

2. P is a finite-dimensional space o f real-valued functions defined over the set K, of
dimension N.

3. E is a set o f N linear forms <p,, 1 < i < N, defined over the space P, in such a way that the
set I is / ’-unisolvent in the sense that given any real scalars a;, 1 < i < N, there exists a
unique function p e P which satisfies

(piip) = cti 1 < i < N

Equivalently, there exist N functions p,- g F , 1 < i < N, which satisfy

<Pj(Pi) = <5y \ < i < N

which are called the basis functions o f the finite element, since we have the identity
N

P = Yh<Pi(p)Pi for a llp £ P
f= l

In light o f the definition o f a finite element, let us go back over the examples seen
previously. W e have seen that K could be a n-simplex in R n, i.e., a triangle in R 2 or a
tetrahedron in f?3, or K could be a hypercube in R", i.e., a square in R 2 or a cube in f?3. These
are special cases o f straight finite elements, i.e., finite elements for which the set is a
polyhedron in R n. There exist also curved finite elements, i.e., those whose boundary is
composed o f curved surfaces; however such elements are beyond the scope o f this work.
Commonly, the sets 2 o f degrees o f freedom consist o f the linear forms:

<Py ■ P -+ P (“ ij)
where the points ay are the points belonging to the finite element. For example, in the case of
the linear triangle we have 1 < i < 3, and the index j is dropped. For the quadratic triangle we
again have 1 < i < 3 for the vertices, and we have 1 < i < j < 3 for the midpoints o f edges.
Similarly, for the rectangular elements we have 0 < i, j < 1, and 0 < /, j < 2, for the linear
and quadratic cases respectively. Note that degrees o f freedom can also be associated with
partial derivatives on the element. Such elements are referred to as Hermite finite elements.
However, in this work we confine ourselves to only Lagrange finite elements, elements not
consisting o f partial derivatives at the points. W e refer to the points ay as the nodes o f the
finite element.

The Lagrange finite elements (K , P k , ^ k) which we have considered all share the following
crucial property: Let <pi e Ek be o f the form <p,- : p -» p (a ,). Then the associated basis
function pi is identically zero on any side o f the finite element which does not contain the node
a t. This fact has the following three important consequences:

1. Let A denote a face o f K. Then the restriction to A o f a function in P k solely depends
upon the degrees of freedom whose associated nodes are on A.

2. Any basis function in Vh constructed from the basis functions o f the finite elements is

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

automatically continuous over Q.
3. If we are to construct a subspace o f H q(C1), then it suffices that we equate to zero the

degrees o f freedom whose associated nodes are boundary nodes, i.e., those which lie on T.
In other words, if we let Vh denote the finite element subspace “without boundary
condition”, i.e., Vh is an approximation o f the space then the space

Voh = { v £ Vh; Va g E0/, = ^ n f , v(a) = 0 }

is an approximation of the space H q(C1), where w e have identified I/, with the set o f all
nodes o f Th. As an important consequence, the ^-interpolate o f a sufficiently smooth
function v vanishing on the boundary T is also the Voh-interpolate o f v.

Continuity o f Basis Functions in Pk
Let us show that the functions in Vh are continuous over the set Cl. W e will consider the

case o f triangular meshes and quadratic polynomial basis functions, but a similar argument can
be used to show continuity for other cases. Since the function v e Vh is already continuous in
the interior o f each element, it it is sufficient to check two functions v| k x and v| k2 across a
common inter-element side S o f two adjacent triangles K \ and K 2 . Let t denote the abscissa
along an axis containing the segment S = _bi, bk~\. The two functions v \k i and v \k 2 along S
are quadratic polynomials o f t whose values coincide at the three points bi, bj, bk\ therefore,
they are identical and we conclude that v e C°(C1).

Affine Transformations and Reference Elements
W e now come to an essential idea which we will apply to an example. Consider a family

o f triangular elements o f type 2 (quadratic). Our aim is then to describe such a family as
A ^

simply as possible. Let A be a triangle with vertices a, and midpoints o f the sides

fly = (a'̂ ay), 1 < i < j < 3, and let

£ = {p(jOi), 1 < / < 3, pia t j) , 1 < i < j < 3 } ,

K,P, E j with P = P 2 is also a triangular element o f type 2.

Given any finite element in the family, there exists a unique invertible affine mapping

F k : x g R 2 -*• F k (x) = Bk X + e R 2,

i.e., with Bk an invertible matrix and br. a vector inf?2, such that

FK(ai) = di 1 < i < 3.

Then it automatically follows that

FK(aij) = fly I < i < j < 3.

This is so because the property for a point to be the midpoint o f a segment is preserved by an
^ A ^

affine mapping. Once we have established a bijection x e K -> F k (x) g A between the points
A

of the sets K and K, it is natural to associate the space

P k = : K -*• R; p = p ° F ^ , p e P j>

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ \ _
with the space P. Then it follows that

P k = Pi.
In other words, rather than prescribe such a family by the data (K , P k , ^ k) , it suffices to give

/ A A A \

only one reference finite element I K,P,~L] and the affine mappings F k occurring in the

family. Then we have the following relations

K = F k (k)

Zk = { p { F Km \ 1 < i < 3, p (F K(aij)), l < i < j < 3 }

P k = ^ p : K -> R, p = p o f £ , p g

From this example, let us now derive the following general definition. Two finite elements
/ A A A \

I K,P, I) and (K,P ,Y .) as defined in above are affine-equivalent if there exists an invertible

affine mapping

F : x e R n F (x) = Bx + b g R n

such that the following relations hold

K = f (k)

ay = F(ai j)
A

whenever the nodes ay and ay occur in the definition o f the set E or Z, respectively. Also,

P = ^ p . K -+ R\ p = p o F ^ x, p g

W e shall constantly use the bijections
A

x g K -*■ x g K where x = F(x)
A ^ i

p g P -> p g P where p = p ° F~L

p(x) - p (x) for all x = F (x)

between the points and functions associated with two affine-equivalent finite elements

(a a a \

K,P,Y, J and (K , P , I .). A family of finite elements is called an affine family if all its finite

elements are affine-equivalent to a single representative finite element, which is then called the
reference finite element o f the family.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a1 a12 a2

Figure 2.7. Two affine-equivalent triangles.

Let us again consider the construction o f the subspace Vh. For the sake o f brevity, our
discussion will be essentially concerned with the two dimensional case, but all the subsequent
considerations apply equally well to arbitrary dimensions. Consider a triangulation Th o f a
polynomial domain Q in i?2, consisting of finite elements (K , P k , ^ k) , K e T h , which are all
o f the same (affine-equivalent) type. For instance, consider a triangulation consisting o f
triangles o f type 1. A space Vh is then associated with such a triangulation. O f course, if K\
and K i are two adjacent finite elements, some compatibility conditions must be satisfied by the
two sets Z^, and Z^2, if we are to define unambiguously a set Z/, o f degrees o f freedom o f the
space Vh, which are now linear functions over the space Vh such that

Z* = (J Z*.
K e T h

When the degrees o f freedom are element nodal points, then the degrees o f freedom o f the
space Vh are o f the following form:

(pj,h : v -> v(bj),

where the points bj are called the nodes o f space Vh (to be distinguished from the vertices o f
the triangulation). If we write the set Zh as

2 * =
then the basis functions Wj, 1 < j < M, o f the space Vh are naturally defined by the relations

<Pi,h(Wj) = Sy 1 < i < M.

The basis functions Wj o f the space Vh can now be derived by “patching together” the basis
functions o f each finite element. And as we have seen, if the triangulation consists entirely of
elements from the same affine family, only the basis functions for a single reference element
are needed to accomplish this.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Three Dimensional Elements
As stated previously, the concepts that have been presented for the two dimensional case

can be easily extended to three dimensional space. Without restating the theory, we will now
briefly examine two o f the most common three dimensional shapes for finite elements,
analogous to the two dimensional triangle and rectangle elements, the tetrahedron and the
hexahedron respectively.

Mirroring the two dimensional case, we have that a finite element in R 3 is a triple
(K ,P k , ^ k) where the data K, P k , and Ea; are defined as follows:

1. K is a compact subset o f R 3 with a non-empty interior and a Lipschitz-continuous
boundary.

2. Pa; is a finite-dimensional space o f real-valued functions defined over the set K, of
dimension N.

3. Ea; is a set consisting of the degrees o f freedom for the element. In our case, since we
continue to work with only Lagrange elements, the degrees o f freedom are function values
at the nodes o f the element.

Tetrahedral Elements

The extension o f 2-simplex (triangular) elements to three dimensional space leads to
3-simplex (tetrahedral) elements. For the simplest o f such elements, which we will call the
3-simplex o f type 1 or 4-node linear tetrahedral element, we have that P k is P i, and Ex
consists o f the values at the four vertices o f K, i.e.,/> (a,), 1 < i < 4, (Figure 2.8).

P k = P i; dim(PA:) = 4

Zk = { p (a ,) , 1 < i < 4 }

Figure 2.8.

If we also consider the nodes ay at the midpoints o f edges between nodes a,- and 0 / we
come to the next type o f tetrahedral element, the 3-simplex o f type 2, or 10-node quadratic
tetrahedral element. In this case P k is P i , and E a; consists o f the values at the four vertices,
i.e., p(at) , 1 < i < 4, as well as the values p{ay) , 1 < i < j < 4 at the edge midpoints (Figure
2.9).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f P k = ^ 2 ; dimCPx) = 10

< 1 K = { p (a i), 1 < i < 4;

p (a ?) , l < i < j < 4>

Figure 2.9.

Hexahedral Elements
We now turn our attention to the extension of two dimensional rectangular elements to the

three dimensional hexahedral elements. For simplicity, we will only consider the case of
hypercubes. For the simplest o f such elements, which we will call the cube o f type 1 or 8-node
linear hexahedral element, we have that Q k i s Q\, and T-k consists o f the values at the eight
vertices o f K, i.e.,/j(a,-), 1 < i < 8, (Figure 2.10).

f Qk = Q u dim (QK) = 8

I k = { p { d i), 1 < i < 8 }

■1. 1

. - 1)

Figure 2.10.

In the case o f the hypercube o f type 2, or 27-node quadratic hypercube, we add not only
nodes at the midpoints o f edges, but also nodes at the middle o f each o f the six square faces of
the element, as well as a node at the centre o f gravity o f the element (centre of the interior of
the element). For simplicity we shall just number these nodes from 1 to 27, following a

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

counter-clockwise order starting on the base. In this case Q k is Qi, and Z k consists o f the
values at the twenty-seven nodes, i .e . ,p(ai), 1 < i < 27 (Figure 2.11).J Q k = Qi , dim {Qk) = 27

I s K = { p(a«), 1 < i < 2 7 }

17*

10 "

2

Figure 2.11.

2.4 Solving Linear Systems
For the problems we have discussed, the discretization o f partial differential equations

using the finite element method leads to a linear system o f equations. In particular, the use of
localized basis functions in the finite element approach results in a matrix for the system which
is sparse, as well as positive definite. W e now turn our attention to methods for solving such
systems. W e also note that sparsity o f the system can be exploited to reduce the storage and
work required for solving the systems for two and three dimensional problems to much less
than the 0 (n 2) and 0 (n 3), respectively, that might be expected in a more naive approach. W e
will begin our discussion of solvers with an examination o f direct methods, specifically we
will look at Gaussian elimination and Cholesky factorization. Following this, we will turn our
attention to iterative methods, the Gauss-Seidel and conjugate gradient methods in particular.
During our discussion we will also point out special considerations for improving efficiency
based on the properties o f the linear systems involved. Before proceeding, we mention that
other methods for solving linear systems, such as Multigrid [McCormick, 1989], [Douglas,
1997] and Fourier methods [Henrici, 1979], [Swarztrauber, 1984], are also applicable to
solving the systems in question. Although these methods can achieve near optimal
computational efficiency, a detailed discussion o f their theory and implementation is beyond
the scope o f this thesis. For a further examination of methods for solving linear systems the
reader is directed to [Johnson, 1987], or general texts on numerical methods or scientific
computing such as [Rao, 2002], and [Heath, 2002],

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Direct Methods - Sparse Factorization Methods
First we briefly consider direct methods for solving large sparse linear systems. Gaussian

elimination and its variants such as Cholesky factorization for symmetric positive definite
matrices are applicable in our case, but special considerations should be made in order to make
the solution process as efficient as possible. In particular, since the matrix is sparse, we should
take care to only store and operate on the nonzero entries o f the matrix. Thus, the standard
two-dimensional array, often used for dense matrices, is not suitable in our case. Instead,
special data structures are needed for efficient storage o f the system matrix.

For one-dimensional problems, the equations and unknowns can usually be ordered so that
the nonzeros are concentrated in a relatively narrow band, which can be stored efficiently in a
rectangular two-dimensional array by diagonals. Algorithms are available for reducing the
bandwidth, if necessary, by reordering the rows and columns o f the matrix. But for problems
in higher dimensional spaces, even the narrowest possible band often contains mostly zeros,
and hence any type o f two-dimensional array storage would be prohibitively wasteful. In
general, sparse systems require data structures in which individual nonzero entries are stored,
along with the indices required to identify their locations in the matrix. Explicitly storing their
indices not only incurs additional storage overhead but also makes arithmetic operations on the
nonzeros less efficient due to the indirect addressing required to access the operands. Thus,
such a representation is worthwhile only if the matrix is sufficiently sparse, which is often the
case for very large problems arising from partial differential equations (PDEs) and many other
applications.

When applied to a sparse matrix, L U or Cholesky factorization can be carried out in the
usual manner, but taking linear combinations o f rows and columns to annihilate nonzero
entries can introduce new nonzeros in locations in the matrix that were initially zero. Such
new nonzeros, called fill, must then be stored and, depending on their locations, may
eventually be annihilated themselves in order to obtain the triangular factors. In any case, the
resulting triangular factors can be expected to contain at least as many nonzeros as the original
matrix and usually a significant amount o f fill as well. The amount o f fill incurred is very
sensitive to the order in which the rows and columns o f the matrix are processed. Different
enumerations o f the nodes may give different degrees o f fill. Thus, one o f the central problems
in sparse factorization is to reorder the original matrix to limit the amount o f fill that the matrix
suffers during the factorization. Exact minimization o f the fill turns out to be a very hard
combinatorial problem (NP-complete), but heuristic algorithms are available that do a good job
o f limiting fill for many types o f problems. To illustrate sparse factorization, consider the
following simple example. Suppose a two-dimensional problem is discretized over a 3 x 3 grid
consisting o f four square elements (Figure 2.12). If a pair of nodes in the mesh are neighbours
(are connected by a line or edge), then both appear in the same equation in the system.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.12. 3 x 3 grid mesh

A =

x

x

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X X

L =

X

X X

X X

+ + X

X + X X

X + X X

X + + X

X + X

X +

Figure 2.13. Example o f nonzero patterns for sparse
matrix, A, and fill patterns for its Cholesky factor L.

x

x

This connection can be seen by the nonzero pattern in the matrix A in Figure 2.13, where x
represents a nonzero value. The diagonal entries o f the matrix correspond to the nodes in the
mesh, and the nonzero off-diagonal entries correspond to the edges in the mesh (i.e., ay * 0 iff
nodes i and j are neighbours). Note that the matrix is banded, but it also has many zero entries
inside the band. Specifically, the matrix is block tridiagonal, with each nonzero block being
either tridiagonal or diagonal, as expected for a row- or column-wise ordering o f a
two-dimensional grid. Cholesky factorization of the matrix in this ordering fills in the band
almost completely, as shown by matrix L in the above figure, where fill entries (new nonzeros)
are indicated by +.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gaussian Elimination and Cholesky’s Method

W e begin our examination o f direct methods by recalling that using Gaussian elimination
to solve a linear system produces a LU-factorization of A, i.e.,

A = L U , (2 . 4 . 1)

where L = {Uj) is a lower triangular M x M matrix (i.e., l l} = 0 if j > i), and U = (u,j) is an
upper triangular matrix (i.e., = 0 if j < i).

From the factorization (2 . 4 .1) it is easy to solve the system At, = b by using forward and
backward substitution to solve the triangular systems:

Lrj = b,

m = n.
Recall that for Gaussian elimination, XJ = A ^ where the matrices A /k), k - 1 , . . . M, are
successively computed as follows:

(i) A (1) = A,

(li) Given A'k) o f the form

a (k)a u

0's

a ik)a kk

,{k)
a nk

a {k)a \n

l {k)l kn

a {k)Unn

determine A ̂ +1) = as follows

(k+l) (it)
a ■■ = a ■■

lJ u ’

(k)
(k+ d (k) _ a ik (k)

u ij u ij , k) u kj
a kk

(*)

i = or

j = 1 , . . . , k - 1,

i = k + 1 , . . . , M, and

j = k , . . . ,M ,

under the assumption that a kk ± 0

Also recall that L = (/y-), where

la = 1,

l i k =

(k)
<Ak

(/t) ’
akk

Uk = 0 ,

i = 1 , . . . , M,

i = k + \ , . . . , M , k = \ , . . . , M ,

if i < k.

It can be shown, [Wendroff, 1966, pp. 124-125], that if A is a symmetric positive definite
matrix then A has a triangular decomposition which can be obtained by Gaussian elimination

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and a** > 0, k = 1 . Thus, Gaussian elimination can be performed without pivoting. In
addition, it is not necessary to perform pivoting to prevent numerical instability due to small
pivot elements a**. Also, w e may perform the Gaussian elimination in any desired order. We
w ill see that different direct methods for solving the linear system of equation (2 .2 .6)
essentially differ in the choice o f the order o f the elimination. Alternatively, in the case where
w e perform the elimination according to the ordering o f the nodes, these methods only differ in
their choice o f enumeration o f the node.

Since A is symmetric positive definite we may alternatively factor A as

A = BB t

with B = DL and where D is a diagonal matrix with diagonal elements

dkk = J a $, k = 1

and L and af^ are obtained through Gaussian elimination as above. Here B T denotes the
transpose o f the matrix B. The elements by o f matrix B can alternatively be determined using
Cholesky’s method as follows:

b n =

b n =

f a n >
an
b i i

and fory = 2 , . . . , M,
M

b j j = % - b jk

a y - zL bikbjk

b Jj

Efficiency Considerations - Operation Counts and Band Matrices

To see this, let us analyze a somewhat more straightforward
The number o f arithmetic operations to obtain an LU-factorization o f a dense M x M

JY3
matrix is o f the order ^in­

version of the algorithm for Gaussian elimination:

A lgorith m LUFactorization by Gaussian Elimination
(1) f o r k = \ t o m - 1
(2) i f akk = 0 then stop
(3) f o r i = k + 1 to m
(4) lik = a i f akk
(5) end-for
(6) f o r j - k + 1 to m
(7) f o r i = k + 1 to m
(8) ay likakj
(9) end-for

(10) end-for
(11) end-for

(loop over columns)
(halt algorithm i f pivot is zero)

(compute multipliers f o r
current column)

(apply transformation to
remaining submatrix)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the time required for a computer to carry out floating-point multiplications and
divisions is much greater than that needed for additions and subtractions we will confine
ourselves to counting only the number of multiplicative operations. Firstly, let us analyze the
division that occurs at line (4). The first time we go through the for-loop (at line (3)) k w ill
equal 1, so line (4) will be executed m - 1 times. The next time through the algorithm k will be
2, so line (4) will be executed m - 2 times, and so on until the last time when it is only
executed once. Thus, the total number o f divisions is:

(OT- l) + (m - 2) + . . . + 2 + l = Z i =
i= 1 2

Now, let us consider the number o f times the multiplication on line (8) is done. Again we note
that the first time we get to the for-loop at line (6) k will equal 1, so this loop will execute
m - 1 times. In addition, the loop at line (7) will also be executed m - 1 times the first time it
is encountered. However, since the loops are nested, the division at line (8) will in fact be
executed a total o f (m - 1)(m - 1) times. Following the same argument as above, we see that
the total number of multiplications is:

(m _ 1 f + (M _ 2)2 +, .. +2; + 1 ̂ g fl = - -1 Wm - 1) I 1) .
1=1 6

Finally, adding the two equations we have

(m - \) m m (m - l) (2 (m - 1) + 1) m{m - \) { m + 1) 0 (m 3)
2 + 6 " 3 3 ’

giving the expected order o f operations.

I f the matrix is sparse, then it is possible to greatly reduce the number o f operations by
taking advantage o f the sparsity. This is particularly easy to do if the matrix A is a band matrix
(Figure 2.14), i.e., there is a number d, the band width, such that

a.ij = 0 if |i - j \ > d.

Q‘s

M x M
d

Figure 2.14. Sparse matrix with bandwidth d.

To factor a n i l f x M matrix with band width d one only needs o f order M d 2 operations.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When aij = a(<pi ,(pj) , where a (.) is a bilinear form and {q> \ i s a basis for a
finite element space Vh, we have that

d = max{|z - j |: <p(and cpj are associated with degrees o f freedom

belonging to the same element}.

Thus, we see that the bandwidth depends on the chosen enumeration o f the nodes in the finite
element mesh. In order to make the Gaussian elimination as efficient as possible the nodes
should be enumerated in such a way as to minimize the bandwidth of the system matrix.

For example, consider the node enumeration for the mesh in Figure 2.15:

5

4

3

2

Figure 2.15

With nodes enumerated in this manner we have a bandwidth o f d = 6 (which is the minimal
bandwidth for this case, assuming only one degree o f freedom per node). If, on the other hand,
w e were to enumerate the nodes in a horizontal manner, we would have a bandwidth o f
d = 11. A number o f methods, such as the Frontal method [Duff, 1996], [Irons, 1970] and the
Nested Dissection method [George, 1973], are available which attempt to enumerate the nodes
and perform the elimination process as efficiently as possible.

Efficiency Considerations - Sparse Matrix Storage

Also note that if the matrix A is a symmetric matrix then only the upper or lower triangular
portion o f A needs to be stored. Thus, if A = (ay) is a symmetric band matrix with a
bandwidth of, for example, 2, then one method o f storage is to store A as a vector a = (a t)
with the entries of the columns in the band stored in consecutive order. For example, consider
the following case where the entries o f A have been renumbered according to the sequence in
which they would be stored as a vector.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fll fl2 fl4 0 0 0

<33 fl5 fl7 0 0

as as 0

a9 '• <3«-2

,sym <3n-i

<3 n

O f course, in order to properly reconstruct the matrix A, we would also need to store
information regarding where the columns o f A begin and end. One way to accomplish this is
to store a second vector c = (c*) which consists o f indices indicating the entries o f a which
correspond to the first entries of a column in A. For the above example we would have:

-[1 2 4 7 n - 2]•

W e would also need to store some additional information, such as the bandwidth number, in
order to properly reconstruct the columns o f A. Also note that this method would not be
suitable if there were a large number o f zero entries within the band. If this were the case, then
w e would store only the nonzero entries in a, and w e would require a third vector r = (r*) to
store the row indices of the nonzero elements. This more general case corresponds to the
Harwell-Boeing format for sparse matrix storage [Duff, Grimes, and Lewis, 1992],

Iterative Methods For Linear Systems
The direct methods considered above compute the exact solution of the problem, subject

only to the effects o f rounding error, in a finite number of steps. This seems a desirable
property, but the price paid in work and storage can be prohibitive for very large linear
systems. By contrast, iterative methods for solving linear systems begin with an initial
estimate for the solution, x (0), and successively improve on it until the solution is as accurate
as desired. (Note that we will use parenthesized superscripts for the iteration index.) In
theory, an infinite number of iterations might be required to converge to the exact solution, but
in practice the iteration terminates when some measure o f the error, typically some norm o f the
residual, is as small as desired. Providing they converge rapidly enough, iterative methods
have several significant advantages over direct methods.

The simplest type o f iterative method for solving a linear system Ax = b has the form

x (A+1) = G x ^ + c

where the matrix G and vector c are chosen so that a fixed point o f the equation x = Gx + c is a
solution o f Ax = b. Such a method is said to be stationary if G and c are constant over all
iterations.

One way to obtain a suitable matrix G is by splitting, in which the matrix A is written as

A = M - N

with M nonsingular. We can then take G = M'~1N and c = M~lb, so that the iteration scheme
becomes

x (k+1) = m - in x W + M~lb

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or equivalently,
M xm) = NxW + b

so that we solve a linear system with matrix M at each iteration. Formally this splitting scheme
is a fixed-point iteration with iteration function

g{x) = M~lNx + M r xb

whose Jacobian matrix is

G(x) = M - lN.

Thus, the iteration scheme is convergent if the spectral radius

p (G) = p(M~lN) < 1,

and the smaller p(G) , the faster the convergence.

For rapid convergence, we should choose M and N so that p(M~lN) is as small as possible.
There is a trade-off, however, as the cost per iteration is determined by the cost o f solving a
linear system with matrix M. As an extreme example, i f M = A, then the scheme converges in
a single iteration, but that one iteration may be prohibitively expensive. In particular, M is
chosen to approximate A in some sense, but is usually constrained to have some simple form,
such as diagonal or triangular, so that the linear system at each iteration is easy to solve.

Gauss-Seidel Method
The Gauss-Seidel method has an advantage over some other iterative methods, e.g., Jacobi

method, in that, as each new component o f the solution x f +^ is computed for the Gauss-Seidel
method, it is immediately used in the next equation to determine additional values. Thus,
if the solution is converging, the best estimate will always be employed. The process starts by
choosing an initial guess for x°. Generally, the initial guess will simply be the zero vector,
unless some approximation o f x is known a priori. With the initial vector chosen, subsequent
x ’s are computed by:

(£+1) j< i j > ‘ ■ 1r- = ------- ------------------- ------------- 1 = 1 n1 an 1

or, using matrix notation for the system

Ax = b

we have:

(+1) = £ -1 (6 _ £x(*+i> - Ux{k))

= (D + L)~l (b - U x&)

where,

D is the matrix consisting o f the diagonal entries o f A.

L is the matrix consisting strictly o f the lower triangular portion o f A.

U is the matrix consisting strictly o f the upper triangular portion of A.

This process for calculating x ^ is repeated until the solution converges to a prespecified

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tolerance percentage e s- i.e., the process repeats until

100% < £*\£a. i \ —
X <J)

Y (J)x i
for all i, where j and j — 1 are the present and previous iterations respectively.

In addition to a fast rate o f convergence, the Gauss-Seidel method has the added benefit
that duplicate storage is not needed for the vector x, since the newly computed component
values can overwrite the old ones immediately.

Convergence Criterion for Gauss-Seidel Method
Note that the Gauss-Seidel Method can sometimes suffer the problem o f nonconvergence,

or sometimes it will only converge very slowly. A sufficient but not necessary condition for
convergence is that the system be diagonally dominant, i.e.,

n

\ a u | >
j= i

That is, the diagonal element must be greater than the off-diagonal elements for each row.

Conjugate Gradient Method

We now turn from stationary iterative methods to methods based on optimization. If A is
an n x n symmetric positive definite matrix, then the quadratic function (where we use v T to
denote the transpose o f vector v)

<j)(x) = - jXTAx - x Tb

attains a minimum precisely when Ax = b. Thus, we can apply optimization methods to obtain
a solution o f the corresponding linear system. In general, optimization methods progress from
one iteration to the next by performing a one-dimensional search along som e search direction
s k̂\ so that

Xk+ 1 = Xk + ask
where a is a linear search parameter that is chosen to minimize the objective function
<j)(Xk + ask) along Sk.

We note some special features o f such a quadratic optimization problem. First, the
negative gradient is simply the residual vector:

-V^»(x) = b - Ax = r.

Second, for any search direction Sk, we need not perform a line search, because the optimal
choice for a can be determined analytically. Specifically, the minimum over a occurs when
the new residual is orthogonal to the search direction:

0 = ^ (* * + 1) = VfaLi-hxkk i = (Axk+i - b) r -£(Xk + a s k) = - r Tk+ls k.

Since the new residual can be expressed in terms of the old residual and the search direction,

r k+1 = b - A x k +1 = b - A (x k + ask) = (b - A x k) - aAsk = r k - aAsk,

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we can solve for

a = - p ~ -s kAsk
Taking these properties into account, we obtain the conjugate gradient method, or CG method,
for solving symmetric positive definite linear systems:

A lgorith m Conjugate Gradient Method

xo = initial guess

ro = b - Ax o

■so = r0

f o r k = 0 , 1 , 2 , . . .

a k = rf r— {compute search parameter)
s kAsk

xk-\ = xk + a ksk {update solution)

rk+ 1 = rk - a kAsk {compute new residual)

o k̂+Ck+X
Pk+l ---------r-----

r { r k

Sk+1 = nt+i + pic+\sk {compute new search direction)

end-for

It turns out that in the quadratic case, the error at each step o f CG is minimal (with respect
to the norm induced by A) over the space spanned by the search directions generated so far.
Since the search directions are A-orthogonal (vectors y and z are /4-orthogonal if y TAz = 0), or
conjugate, and hence linearly independent, this property implies that after, at most, n steps, the
solution is exact, because the n search directions must span the whole space. Thus, in theory,
CG is a direct method, but in practice rounding, error causes a loss o f orthogonality, thus
spoiling its finite termination property. As a result, CG is usually used in an iterative manner
and halted when the residual, or some other measure o f the error, is sufficiently small. In
practice, the method often converges in far fewer than n iterations.

Preconditioning

Unfortunately, the conjugate gradient method can still converge very slowly if the matrix A
is ill-conditioned. However, convergence can often be substantially accelerated by
preconditioning, which can be thought o f as implicitly multiplying A by M _1, where M is a
matrix for which systems of the form Mz — y are easily solved, and whose inverse
approximates A, so that M~lA is relatively well-conditioned. Technically, to preserve
symmetry, w e should apply CG to M lAL~T instead o f M~lA, where M = LLT. However, the
algorithm can be suitably rearranged so that only M is used and the corresponding matrix L is
not required explicitly. The resulting preconditioned conjugate gradient method is given in the
following algorithm.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorith m Conjugate Gradient Method with Preconditioning

Xq = initial guess

r 0 = b - Ax o
so = M “ V 0
f o r k = 0 , 1, 2 , . . .

 ̂t*lr
ak = —̂ ------- {compute search parameter}

s kAsk

xk+\ = xk + akSk {update solution}

rk~\ = rk - akAsk {compute new residual}

rk+\M~l rk+\
r TkM~l rk

P k+1 y

Sk+i = M Vjt+i + pk+iSk {compute new search direction}

end-for

The choice o f an appropriate preconditioner depends on the usual trade-off between the
gain in the convergence rate and the increased cost per iteration that results from applying the
preconditioner. A wide variety o f preconditioners have been proposed, and this topic remains
an active area o f research. Some o f the most common preconditioners are:

• Diagonal (also known as Jacobi): M is taken to be a diagonal matrix with diagonal entries
equal to those o f A

• Block Diagonal (or block Jacobi): If the indices 1 , . . . , n are partitioned into mutually
disjoint subsets, then m y = a $ if i and j are in the same subset, and m tJ = 0 otherwise.
Natural choices include partitioning along lines or planes in two- or three-dimensional
grids, respectively, or grouping together physical variables that correspond to a common
node, as in many finite element problems.

• Symmetric Successive Over-Relaxation (SSOR): Using a matrix splitting o f the form
A = L + D + L T, we can take M = {D + L)D~l (D + L) T, or, introducing the SSOR
relaxation parameter co,

M(o>) = ^ (i D + I) (i B) - 1(i D + £) r

With the optimal choice o f co, the SSOR preconditioner is capable o f reducing the
condition number to cond(M~1A) = O^Jcond^A)) , but determining this optimal value
may be impractical.

• Incomplete factorization: Ideally, one would like to solve the linear system directly using
the Cholesky factorization A = LLT, but as noted earlier this m aj incur unacceptable fill.
One may instead compute an approximate factorization A « LL that allows little or no fill
(e.g., restricting the nonzero entries o f L to be in the same positions as those o f the lower
triangle o f A), and then use M = LL as a preconditioner.

• Polynomial: In this case M r1 is taken to be a polynomial in A that approximates A~l . One
way to obtain a suitable polynomial is to use a fixed number of steps o f a stationary
iterative method to solve the preconditioning system M z k = rk at each conjugate gradient
iteration.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Approximate inverse: M 1 is determined by using an optimization algorithm to minimize
the residual

\ \ I - A M ~ X || or \ \ I - M ~ lA\\

in some norm, with M ~1 restricted to have a prescribed pattern o f nonzero entries.

A significant amount o f work is required to compute some o f these preconditioners, and
this work must also be included in the cost trade-off mentioned earlier. The conjugate gradient
method is rarely used without some form o f preconditioning. Since diagonal preconditioning
requires almost no extra work or storage, at least this much preconditioning is generally
advisable, and more sophisticated preconditioners are often worthwhile.

The conjugate gradient method is generally applicable only to symmetric positive definite
systems. If the matrix A is indefinite or nonsymmetric, then the algorithm may break down
both theoretically (i.e., the corresponding optimization problem may not have a minimum) and
practically (i.e., the formula for a may fail). W e also note that first order hyperbolic problems
typically lead to non-symmetric linear systems o f equations. In this case there is no associated
minimization problem (unless a least-squares formulation is used) and it is not clear how to
construct efficient iterative methods for general classes o f non-symmetric problems. Thus, for
such problems Gaussian elimination (with pivoting) is often used.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Pyramidal Elements
As we have seen, three dimensional problems can be discretized over a mesh constructed

from hexahedral or tetrahedral elements. Both o f these element types have a number of
advantages and disadvantages, particularly when it comes to adaptive mesh generation.

The basic idea behind a mesh adaptation scheme is to carry out a process whereby elements
at crucial regions are subdivided into smaller elements to create a finer mesh in these regions
and improve the accuracy o f the overall model. However, if we confine ourselves to only one
element type, then the subdivision process can lead to problems. For instance, repeated
anisotropic subdivision of tetrahedral elements can cause serious grid deficiency. This loss o f
mesh quality can lead to inaccurate solutions when directional flow field features are present.
In fact, it has been shown that in order to maintain mesh quality for arbitrary refinement levels,
isotropic subdivision is required for tetrahedral meshes [Biswas, Strawn, 1996], Hexahedral
meshes, on the other hand, do not suffer from this problem as a hexahedron can be subdivided
anisotropically in any of the three directions and yield child elements whose face angles are
similar to their parent. Another potential drawback to tetrahedral meshes is their storage
requirements. In general, tetrahedral meshes require more than twice the amount o f storage as
hexahedral meshes due to the greater number o f edges involved [Aftosmis, Gaitonde, and
Travares, 1994], Despite having more edges in the mesh, tetrahedral meshes do not appear to
give more accurate solutions than their hexahedral counterparts. In fact, under certain
circumstances, such as displacement and stress calculations in elastic and elastic plastic
analysis, hexahedra perform substantially better [Benzley, et al., 1995], Although hexahedral
meshes may appear to be superior, they too have their shortcomings. Hexahedral adaptation
schemes tend to generate “hanging” vertices when a hexahedron cannot be split into smaller
hexahedra without continuously propagating the mesh refinement into regions where it is not
desired.

In order to overcome som e of these deficiencies, we can construct a mesh using both
hexahedral and tetrahedral elements. Combining the element types allows us to maximize the
advantages o f both while minimizing their disadvantages at the same time. For example,
hexahedra can be used to fill in geometrically simple regions o f the domain where no sharp
corners or curves exist. Hexahedra may also be better suited for critical regions where more
accurate results are sought, such as boundary layers or regions o f high stress. Tetrahedral
elements can then be used to fill in remaining, more geometrically complex, regions that are
not suitable for hexahedral refinement. Unfortunately, combining tetrahedral and hexahedral
elements in a mesh can lead to another problem, as illustrated by the following example.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e

Figure 3.1. Two- and three-dimensional non-conforming meshes
[source: Owen, and Saigal, 2001]

Geometrically, since two tetrahedra faces are required to interface with a single
hexahedron, discontinuities will arise at the boundary between the two element types.
Traditional uses o f the finite element method require that elements conform. In
two-dimensions, this principal implies that no single element edge w ill have more
than two elements adjacent. In three-dimensions, no single face w ill have more than
two adjacent elements. (In general, the two-dimensional case is easily avoidable, but
here it serves to better illustrate the point.) Edge a - b and face c - d - e - f in
(Figure 3.1) have more than the maximum two adjacent elements, thus rendering the
mesh mathematically deficient for finite element analysis. [Owen, and Saigal, 2001]

Although techniques for interfacing hexahedra and tetrahedra directly have been proposed
and implemented [Bretl, 1984], a more promising solution is the formation of pyramid and
prism elements at the interface between hexahedra and tetrahedra. Indeed, the use o f such
elements can eliminate the need for tetrahedra altogether, as they can be used to fill in regions
of a hexahedral mesh without unnecessarily propagating the grid refinement [Biswas, Strawn,
1998], In other words, pyramids and prisms can be used to “connect up” the hanging vertices
that might be created during a hexahedral mesh refinement. When used as interface elements
between hexahedral and tetrahedral portions o f a mesh, pyramidal and prismatic elements are
often referred to as “mortar” elements, since they act like a glue joining the other element
types together.

Although pyramids are ideal shapes for interfacing between tetrahedra and hexahedra, the
development o f basis functions for pyramidal elements has proven to be problematic. In
particular, it can be shown [Wieners, 1997] that no polynomial shape functions exist for
pyramids. The solution presented in [Wieners, 1997] is to split the pyramid in half and
develop piecewise polynomial basis functions on the composite element. Unfortunately, this
composition introduces an artificial anisotropy in solving isotropic problems. Another method
for constructing pyramidal elements is to form a degenerate hexahedron where the nodes on
one face are collapsed down to a single point [Owen, and Saigal, 2001], [Gradinaru and
Hiptmair, 1999], Although this form o f construction is commonly used in commercial finite
element codes, it is hardly an ideal solution to the problem. In addition, the quadratic
pyramidal elements studied to date are 13-node quadratic elements which lack a node at the
centre point o f the base, and are not suited for face-to-face connections with 27-node
hexahedra.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These issues will be addressed in the upcoming sections o f this work. In sections 3.1 and
3.2 we present work already published [Liu, Davies, Yuan, and Krizek, 2004] which addresses
the problem of artificial anisotropy in the composite pyramidal elements introduced by
[Wieners, 1997], In particular, section 3.1 will deal with the problem of artificial anisotropy
by developing a new linear pyramidal element which possesses greater symmetry than the
previous elements. In section 3.2 these ideas are extended in order to develop a more
symmetric 13-node quadratic pyramidal element. The development o f a new, highly
symmetric, 14-node quadratic pyramidal element will be the focus o f section 3.3.

3.1 The Five Node Pyramidal Element
As we have seen above, pyramidal elements can be used for a face-to-face connection of

tetrahedral finite elements with hexahedral elements (Figure 3.2). These elements provide us
with a very useful tool for joining three dimensional tetrahedral meshes with hexahedral
meshes.

- ■- *-----

Figure 3.2.
Pyramidal elements as interface elements between

hexahedra and tetrahedra.

This has many practical applications in conforming finite element discretizations o f
domains where only part o f the domain can be decomposed into blocks by hexahedra (Figure
3.3).

Figure 3.3.
Example domain decomposed by

tetrahedra, hexahedra and pyramids.

In [Wieners, 1997], Christian Wieners presents a special family o f mortar pyramidal finite
elements (see also [Zgainski, et al., 1996]). Wieners proves that it is impossible to define

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

polynomial finite element shape functions, which would attain five given values at five
vertices and which would be linear on all triangular faces and bilinear on the base o f the
pyramidal element. However, he shows that it is possible to define piecewise polynomial basis
functions on the composite pyramidal element (see Figure 3.4) having the above-mentioned
properties. According to [Krizek, Liu, and Neittaanmaki, 2001], these functions are piecewise
harmonic. This gives us some advantages in practical computation [Hlavacek, Krizek, 2001],
W ieners’ pyramidal elements, composed of two tetrahedra, cause an artificial anisotropy in
solving isotropic problems (compare with [Krizek, and Neittaanmaki, pp. 38]). The aim o f the
remainder o f this section, and o f section 3.2, is to derive new pyramidal elements, which are
composed o f four tetrahedra and which have more symmetries and the same number of degrees
o f freedom as elements from [Wieners, 1997], The degrees o f freedom for the first type of
pyramidal element are function values at vertices, and for the second type, are values at
vertices and midpoints o f edges.

(0 , 0 , 1)

(1, 1,0)

Figure 3.4. Reference element K.

5-node Pyramidal Finite Element Basis Functions
Let conv stand for the convex hull. Then W ieners’ trilinear finite element basis functions

are defined on the reference pyramid,

K = c o n v { A o ,A i ,A 2,A 3, A 4 } = conv { (0,0 ,0) , (1,0,0) , (1,1,0) , (0 , 1 , 0) , (0 , 0 , 1) , } ,

f (1 - x) (l - y) + z (y - 1) for x > y

(1 - x) (l - y) + z (x - 1) f o r x < y

I x (l - y) - z y f o r x > y

1 x (l - y) - z x for x < y

{ x y - b z y for x > y

x y + z x for x < y

45

as follows:

p 0(x , y , z) =

p i (x , y , z) =

p 2{ x , y , z) =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Observe fbaXp^Aj) = 8y for i, j = 0 ,__ ,4.

In order to derive the new pyramidal finite element basis functions, we make use o f the
following mapping:

: (x , y , z) -> (x ,y , 2)

where

F k (x ^ = B X + b .

This represents a linear affine mapping from the reference pyramid K into the new reference
pyramid (see Figure 3.5 and compare with any pyramid of Figure 3.2):

K = conv{A o ,A i ,A2,A 3 ,A4}
= c o n v { (- 1 , - 1 , 0) , (1 , - 1 , 0) , (1 , 1 , 0) , (- 1 , 1 , 0) , (0 , 0 , 1) } .

W e easily find that

x

y
z

= F K(T j =

2 0 1 X -1

0 2 1 y + -1 (3.1 .1)

0 0 1 z 0

i.e.,
x = 2x + z - 1

y = 2y + z - 1

z = z.

It can be directly checked that F k ̂ 4 /) = Aj for j - 1,2,3,4. From (3 .1 .1) we see

X f X - 1
1
2 0 1

2 X + 1

y = B~l y - - 1 = 0 1
2

1
2 y + 1

z V z 0
) 0 0 1 z

i.e.,

x = ± (x - z + 1)

y = - j (y ~ z + 1)
z = z.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A 0 (-1.-1,o) A 1 d ,- i .°)

Figure 3.5. Reference element K.

From the linear affine transformation we find that the basis functions on the new reference
pyramid K are o f the form:

■j(x - z - \) (y - z - 1) + j f z (y - z - \) for x > y

-jQc - z - l) (y - z - 1) + Y z (x ~ z - 1) f ° r x < y

- j (x - z + 1) (-y + z + 1) - - j z (y - z + 1) for x > y

- j (x - z + 1) (-y + z + 1) - - j z (x - z + 1) for x < y

p o (x , y , z) =

P i (x , y , z)

p 2 (x , y , z)

p 3 [x , y , z) =

P 4 \ X , y , z)

4 ~ j 2 .

■j(x - z + l) (y — z + 1) + - j z (y - z + 1) for x > y

• j (x - z + l) (y - z + 1) + y z (x - z + 1) f o r x < y

\ { - x + z + 1)(y - z + 1) - \ z (y - z + 1) f o r x > y

■j (—x + z + \)(y - z + I) - \ z { x — z + 1) f o r x < y

Lemma 3.1.1
The basis functions pa , .. . ,pa satisfy the following conditions:

1. p f A f = 5 ^ i j = 0 ,1 ,2 ,3 ,4 .
2. Each basis function is bilinear on the base o f K (contained in the plane z = 0).
3. Each basis function is linear on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundary o f K (contained in the

plane x = y).
5. The sum o f the basis functions is unity at any point in the pyramid (i.e., ^2p i (x ,y , z) = 1,

i - 0, . . . ,4).
6. The basis functions pi , i = 0 , . . . , 4 vanish on all faces not containing node i.

Proof :
1. This can be easily verified by direct calculation.
2. Setting z = 0, we immediately see that pi , i = 0 , . . . , 4 are bilinear, for instance,

Po(x,y ,0) = | (x - l) (y - 1).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. On the face A 0A 1A 4 , which is contained in the plane y = z - 1, we have
pQ{x,y)\{x>y} = - j - (x + z - 1)

Pl(X,y)j{x>y} = j (x - Z + 1)

p i (x , y) \ {x>y} = P 3 (x ,y) \{x>y} = 0

P 4 (x ,y) \{x>y} = z.
On the faces A \ A 2A 4, A 2A j A 4, and A0A3A4 this can be done similarly.

4. B y setting x - y, we can easily see that the functions pi , i - 0 , . . . , 4 are continuous in the
x - y plane.

5. This can be verified by summing the basis functions. For instance, in the case o f x > y
w e have:

4

2^P*'(x,y)l{r>.y} = j - (x - z - l ') (y - z - l) + j - z (y - z - l)
1=0

+ \ { x - z + 1) { - y + Z + 1) - j - z (y - z + 1)

+ j - (x - z + l) (y - z + 1) + j - z (y - z + 1)

+ j - (- x + z + l) (y - z + 1) - \ z (y - z + 1)

+ z
s 1.

Similarly, w e find that ^2pi(x,y)\{x<y} = 1, i = 0 , . . . , 4 .
6. This can be verified by a quick calculation. For instance the two faces that do not contain

node A 0 are the face A \A2A 4 contained in the plane z = 1 - x, and the face ^ 2^ 3^14

contained in the plane z = 1 - y. In the case o f A \ A 2A 4 we have:
Po(x ,y) \{x>y} = | (x - (l - x) - 1) 0 —(1 - x) - 1) + -i-(l - x) (y - (1 - x) - 1) = 0.

Similarly, on the face A 2A 2A4i

P o (x , y) | ^ > = | (x - (l - y) - 1) 0 - (1 - y) - 1) + ± (1 - y) (x - (1 - y) - 1) = 0.

Similar calculations for the remaining basis functions and appropriate faces yield the same
result. □

To get more symmetries, we now take the average o f the basis functions pu i = 0 , 1 ,2 ,3 ,
with their mirror images. Namely, we consider the mirror image mapping

M : (x ,y , z) - (~x,y ,z)

and define

T o (x , y , z) = P i (~x ,y , z)

~Pi (x,y , z) = p o (- x , y , z)

~p2(x ,y , z) = p 3(-x , y , z)

- p 2(x ,y , z) = p 2(-x ,y , z) .

(3 . 1 . 3)

Setting

P f m = - j iPi + P d fori = 0 , 1 ,2 ,3 (3 1 4)
sym

P 4 = P 4

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w e find that
r

P 0 (x ,y,z)

pT " (x ,y , z) =

p { (x , y , z) = <

P~i (x,y ,z) = <

* (* -

t (* ~
\ (x -

t O +

■4 (x +

} (x +

i(x +

i(x +
■4 (x +

| (x +

| (x +

t (~ * +

-J-(-x +

* (- * +

! (- * +

\) (y - z - l) - ± z for |x|> y

l) (y - z - 1) + ± z (x + y - 2) f o r x > [y|

l) (y + 2 —1) for |x|< y

l) (y - z - 1) + ± z (x - y - 2) f o r x < \y\

l) (- y + z + 1) - j ; z for \x\> y

l) (- y + z + 1) - - jz (x + y + 2) f o r x > \y\

l) (- y - z + l) f o r | x | < y

l) (- y + z + 1) - j - z (x - y + 2) f o r x < | y |

1) 0 - 2 + 1) for |x|> y

1) 0 - 2 + 1) + - j z (x + y) f o r x > 0|
1) 0 - 2 + l) + y x z f o r | x | < y

1) 0 - 2 + 1) + j - z (x - y) f o r x < |y|

) 0 — 2 + 1) f o r | x | > y

) (y - z + 1) - -%-z(x + y) f o r x > \y\

) 0 - 2 + l) - y X Z for|x|<>>

) 0 - 2 + 1) - - f z (x - y) f o r x < \ y \

p T (x , y , z) = z.

Theorem 3.1.1

The basis functions p f m, i = 0 , . . . , 4, satisfy the following conditions:

1. p sr (A j) = 5 ij, i J = 0 ,1,2,3,4.
2. Each basis function is bilinear on the base o f K (contained in the plane z = 0).
3. Each basis function is linear on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundaries o f K (contained in the

planes x = y and x = -y).
5. The sum of the basis functions is unity at any point in the pyramid (i.e.,

T Jp f m(.x,y,z) = 1, z = 0, . . . , 4) .
6. The basis functions p f m, i = 0 , . . . , 4 vanish on all faces not containing node i.

Proof :
The proof is an immediate consequence o f (3.1. 3), (3 .1 .4) , and Lemma 3.1.1. □

This averaging helps us in reducing the discretization error coming from anisotropy of
W ieners’ composite elements. The new basis functions are now more symmetric on K and the
number o f degrees o f freedom is five as for the simplest W ieners’ element.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 The Thirteen Node Pyramidal Element

(0 , 0, 1)

04) >

a 3^-------
/ (0 , 1, 0)

A

Figure 3.6. 13-node quadratic reference element K.

13-node Pyramidal Finite Element Basis Functions
We will now extend the ideas presented in the previous section to the case o f quadratic

basis functions and construct a more complicated pyramidal finite element with 13 degrees o f
freedom. The triquadratic finite element basis functions from [Wieners, 1997] are defined on

A

the reference pyramid K (see Figure 3.6) as follows:

((1 - x) (l - y) + z (y - 1)) (1 - 25c - 2 y - 2 z) for x > y

((1 - x) (l - y) + z (x - 1)) (1 - 25c - 2 y - 2 z) for x < y

{ x { \ - y) - z y) (2 x - 2 y - \) fo r 5 c > y

(5c (1 - y) - z5c)(25c - 2y - 1) f o r x < y

(5cy + z y) (2 x + 2 y + 2z - 3) for 5c > y

(x y + zx)(25c + 2 y + 2z - 3) for 5c < y

((1 - x) y - z y) (2 y - 25c - 1) f o r x > y

((1 - x) y - z x)(2 y - 2x - 1) f o r x < y

= z (2 z - 1)

45c((1 - x) (l - y) + z (y - 1)) - 2 y z (\ -5c - z) for x > y

45c ((1 - x) (l - y) + z (x - 1)) - 25cz(l - y - z) f o r x < y

q 0 (x , y , z) =

? i (x , y , z)

q 2 (x , y , z)

q 3 (x , y , z) =

?01

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

q ^ { x , y , z)

<7n (x , y , z)

q m(x , y , z)

Q(u(x , y , z)

Q u (x , y , z)

Q24 (x , y , z)

q ^ (x , y , z) =

4 y (x (l - y) - z y) + 2 y z (l - x - z) for x > y

4y (x (l - y) ~ z x) + 2 x z (l - y - z) for x < y

4 x ((l - x)y - z y) + 2 y z (l - x - z) for x > y

4 x ((l - x)y - z x) + 2 x z (l - y - z) for x < y

4>r((l - x) (l - y) + z (y - 1)) - 2 y z (l - x - z) for x >

4 y ((l - x) (l - y) + z (x - 1)) - 2 x z (l - y - z) for x <

4 z ((l - x) (l - y) + z (y - 1)) fo rx > y

4 z ((l - x) (l - y) + z (x - 1)) f o r x < y

4 z (x (l - y) - z y) f o r x > y

4 z (x (l - y) - z x) f o r x < y

4 z (x y + z y) for x > y

4 z (x y + z x) for x < y

4 z ((l - x) y - z y) for x > y

4 z ((l - x)y - z x) f o r x < y

^ / \ f / \ \
where corresponds to node A y located at the midpoint o f the edge (Ai,Aj).

A 4 m v

24

(- 1, 1, 0)

04

A 0 V n .O)

Figure 3.7. 13 -node reference element K.

By again applying the linear affine transformation defined by (3 .1 .1) we find that piecewise
basis functions on the new reference pyramid K (see Figure 3.7) are o f the form

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

qo(x , y , z) =

£ i(x , y , z) ■■

qi (x , y , z) ■■

q < x , y , z) ■■

Q4 (x,y, z) ■■

qoi(x,y, z)

Qn(x,y , z)

q n (x,y, z)

qm(x,y , z)

q M(x,y,z)

q u (x , y , z)

q 2 4 (x,y,z)

q 3 4 (x,y,z)

■j (x + y + 1)(x + z - 1) (- y + z + 1) for x > y

■ j (x + y + l) (- x + z + l) (y + z - 1) f o r x ^ y

4- (x - _y - 1)[(x + z + 1) { - y + z + 1) - 4z] for x > y

■ j (x - y - l) (x - z + l) (- y - z + 1) f o r x < y

- j (x + y - l) (x + z + \) (y - z + 1) forx>>>

■ j (x + y - l) (x - z + l) (y + z + l) f o r x < j

■ j (x ~ y + l) (x + z - \) (y - z + 1) f o r x > > '

\ (x - y + 1)[(x — z — 1){y + z + 1) + 4z] for x < y

■ z(2z - 1)

y (x + z - l) [(y - z - l) (x + 1) + 2z\ f o r x > y

y (x - z + \) { y + z - l) (x - 1) f o r x < ^

—j (y ~ z + l) [(x + z + l) (y - 1) + 2z\ f o r x > y

- y (x - z + l) (y + z - \) { y + 1) f o r x < y

—j (y ~ z + l) (x + z - l) (x + 1) f o r x > y

- y (x - z + l) [(y + z + l) (x - 1) + 2z] f o r x < y

y (y - z + l) (x + z - l) (y - l) f o r x > y

\ (y + z - l) [(x - z - l) (y + 1) + 2z\ fo r x < y

= <
z (y - z - l) (x + z - l) for x > y

z(x - z - l) (y + z - l) for x < y

—z[(x + z + 1)(y - z - 1) + 4z] for x > y

—z(x - z + l) (y + z - l) for x < y

z (y - z + l) (x + z + 1) forx>>>

z(x - z + 1)(y + z + 1) for x < y

- z (y - z + l) (x + z - 1) forx > 7

- z [(y + z + 1)(x - z - 1) + 4z] for x < y

52

(3 . 2 . 1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 3.2.1
The basis functions qo , . . . , q*, qo\, ■ ■ ■, <734 satisfy the fo llow ing conditions:

1. q f A f = 5y, i j g { 0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } .
2. Each basis function is biquadratic on the base o f K (contained in the plane z = 0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundary of K (contained in the

plane x = y).
5. The sum o f the basis functions is unity at any point in the pyramid (i.e., ^j q f x , y , z) = 1,

i g {0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 }) .
6. The basis functions g,, i g {0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } vanish on all faces

not containing node i.

Proof :
1. This can be easily verified by direct calculation.
2. Setting z = 0, we immediately find that qo , . . . , <?4 , <7 0 1 , ■ • •, <734 are biquadratic, for

instance, qo(x, y ,0) = (x + y + l) (x - l) (- y + 1)/4.
3. On the face AoA 1A 4 , which is contained in the plane z = 1 + y:

q 2 (x,y) \ {x>y} = q 3 (x,y) \ {x>y} = q n (x , y) \ {x>y} = q23(x,y)\{x>y} = 0
qo3(x,y)\{x>y} = q 24(x,y) \ {x>y} = q34(x,y)\ {x>y} = 0

do(x,y) \ {x>y} = j - (x + y + l) (x + y)

Qi(x,y) \ {x>y} = \ { x - y - \) (x - y)

q 4 (x,y) \ {x>y} = (1 + y) (l + 2 y)

qoi (x,y) \ {x>y} = (x + y) (- x + y)

Qo4 (x,y) \ {x>y} = - 2 (1 + y) (x + y)

q \ 4 (x,y) \ {x>y} = 2 (1 + y) (x - y) .

On the faces A 1A 2A 4 , 412^ 3 ^ 4 and A 0A 3A 4 this can be done similarly.
4. By setting x = y, we can easily see that the functions qo , . . . , q 4 , qoi, ■ ■ ■, # 3 4 are

continuous in the plane x = y.
5. This can be verified by summing the basis functions. For instance, in the case o f x > y

we have:
52qi(x,y)\{x>y} = j - (x + y + l X x + z - l) (- y + z + l)

+ i (x - y - 1)[(* + Z + 1) (-y + z + 1) - 4z]

+ t (x + y - l) (x + z + l) (y - z + 1)

+ \ { x - y + l) (x + z - l) (y - z + 1)

+ z(2 z - 1)
+ y (x + z - 1) [(y - z - l) (x + 1) + 2z]

- j - (y - z + l) [(x + z + 1) 0 — l) + 2z]

- - L (y - z + l) (x + z - l) (x + 1)

+ \ (y - z + l) (x + z - 1) 0 — 1)

+ z (y - z - 1) (x + z — 1)

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- z[(x + z + l) (y - z - l) + 4 z]
+ z(y - z + l) (x + z + l)
- z(y - z + l) (x + z - l)

s 1.

Similarly, w e find that j) | {x<y} = 1, i e {0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } .
6. This can be verified by a quick calculation. For instance, the two faces that do not

contain node A 0 are the face A \ A2A 4 contained in the plane z = 1 - x, and the face A 2A 3A 4

contained in the plane z = 1 - y. In the case o f A \A2A 4 we have:

qo(x,y) \ {x>y} = j (x + y + l) (x + (l - x) - l) (- y + (1 - x) + 1) = 0

Similarly, on the face A 2A 3A 4 :

qo(x,y) \ {x<yy = i (* + y + i) (- x + (i - y) + i) (y + (1 - y) - 1) = 0.
Similar calculations for the remaining basis functions and appropriate faces yield the same
result. □

In order to get more symmetries, we again take the averages o f the basis functions,

qi, i e {0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } , with their mirror images. In other words, we
again consider a mirror image mapping

M : (x , y , z) -+ (-x ,y ,z)

and define

T o (x,y, z) = q \ (- x , y , z)

T i t > , y , z) = qo(~x,y , z)

-q 2 i x , y , z) = q i (- x , y , z)

T s t X } ^) = q i (- x , y , z)

T o \ (x , y , z) = qo i (-x , y , z)

? i 2 (x j , z) = qo3(-x,y, z)

T 23 (x,y , z) = q n (r x , y , z)

~q 03(x,y,z) = g i2(-x,y,z)

T o 4 (x,y , z) = q u (- x , y , z)

T m O w) = Qo4(-x,y,z)

T 24(x.T>z) = q34(-x,y, z)

T 3 4 G W) = q7A<rx,y,z).

Setting

? r = K ^ + T /) fo r i g { 0 ,1 ,2 ,3 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 }
jym C * •)

0« = ^ 4

(3 .2 .2)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we find that

q r i x , y , z) = S

q f m(x,y,z)

q T (x , y , z) = <

qT(x,y,z)

qs%m{x ,y ,z) = z(2z ■

q soT (x ,y ,z) = <

q\y2m(x,y,z) = i

i (x + y +)[(~y + z + 1)(x - 1) + 2z] for x|> y

j (x + y +) (x + z - l) (- y + 1) forx > \y\

1 (x+y +)(y + z - 1)(—x + 1) for |x|< y

i (x + y +) [(-x + z + 1) 0 - 1) + 2z] forx < |y|

i (x - y -) [(-y + z + l) (x + 1)-- 2z] for |x|> y

T (x - y -)[(x + z + 1)(—y + 1) - 2 z] forx > |y|

i (x - y -) (- y - z + l) (x + 1) for |x|< y

i (x - y -) (x - z + l) (- y + 1) forx < |y\

i (x + y -) (y - z + l) (x + 1) for |x|> y

t (x + y -)[(x + z + 1) 0 + 1) “ 2z] forx > \y\

T (x + y -)[(y + z + l) (x + 1) - 2z] for |x|< y

j - (x + y -) (x - z + 1) 0 + 1) forx < |y|

i (x - y +) (y - z + l) (x - 1) for |x|> y

i (x - y +)(x + z - 1) 0 + 1) for x > |y|

T (x - y +) [0 + z + l) (x - 1) + 2z] for |x|< y

\ (x - y +)[(x - z - 1) 0 + 1) + 2z] forx < [y|

- 1)

y (y + z -)[(x + 1)(x — 1) + z] --zx2 for |x|> y

| (x + z -) [(x + 1) 0 - 1) + z] forx > ly|

i (y + z ~)[(x + l) (x - l) + z] for |x|< y

y (x - z +) [(x - 1) 0 - !) - z] forx < |y|

- j - (y - z + l) [(x + 1) 0 - l) + z] for |x|> y

- j - (x - z + 1) [0 + 1) 0 - 1) +]̂ - z y 2 for x > \y\

- j - i y - h z - l) [(x + 1) 0 + l) - z] for |x|< y

- | (x - z + i) [(y + i) (y - i) + z\ forx < [yl

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

023 (x,y,z) = <

- y (y - z + l) [(x + l) (x - l) + z] fo r |x |> y

- y (x + z - l) [(x + l) (y + 1) - z] f o r x > [y |

- y (y - z + l)[(x + l) (x - 1) + z] - zx2 for |x|< y

- y (x - z + l) [(x - l) (y + l) + z] forx < \y\

q sm (x , y , z) = •<

y (y - z + 1)[(x — l) (y - 1) - z] for |x|> y

y (x + z - l) [(y + l) (y - 1) +z] for x > |y|

f (y + z - l) [(x - l) (y + 1) + z] for |x|< y

004 Q w)

0 f 4m(x,y ,z) = <(

024 (*>>>,z) = <

y (x + z - l) [(y + l) (y - 1) + z] - z y 2 f o r x < [y |

z[(y - z - l) (x - 1) - 2z] for |x|> y

z(x + z - 1)(y — 1) f o r x > [y |

z(y + z - l) (x - 1) for |x|< y

z [(x - z - l) (y - 1) - 2z] f o r x < | y |

-z [(y - z - l) (x + 1) + 2z] for |x|> y

- z [(x + z + l) (y - 1) + 2z] forx > \y\

-z (y + z - l) (x + 1) fo r |x |< y

—z(x — z + 1)(y — 1) forx < [y|

z (y - z + l) (x + 1) for |x|> y

z[(x + z + l) (y + 1) - 2z] forx > \y\

z[(y + z + l) (x + 1) - 2z] for |x|< y

z (x - z + l) (y + 1) f o r x < [y |

z (y - z + l) (- x + 1) for |x|> y

z(—x — z + 1)(y + 1) forx > |_y|

z[(y + z + l) (- x + 1) - 2z] for |x|< y

z [(- x + z + l) (y + 1) - 2z] forx < [y|.

Theorem 3.2.i

77te ha.y/5 functions q f m, q f m, qs< f f , q f f satisfy the fo llow ing conditions:
1. q ? m{Aj) = 5ij, i j e { 0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 } .
2. Each basis function is biquadratic on the base o f K (contained in the plane z = 0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundaries o f K (contained in the

planes x = y and x = -y).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. The sum o f the basis functions is unity at any point in the pyramid (i.e.,
Z Q f m(x,y, z) = 1, i £ { 0 ,1 ,2 ,3 ,4 ,0 1 ,1 2 ,2 3 ,0 3 ,0 4 ,1 4 ,2 4 ,3 4 }) .

6. The basis functions q f " , i <= { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 04 , 14 , 24 , 34} vanish on all faces
not containing node i.

Proof :
The proof is an immediate consequence o f (3.2.1) , (3 .2 .2) , and Lemma 3.2.1. □

3.3 The Fourteen Node Pyramidal Element
In this section w e will present the basis functions for a 14-node pyramidal finite element.

These elements, with nine nodes on the square base and six nodes on each triangular face,
provide us with a useful tool for interfacing between ten node tetrahedral elements and
twenty-seven node hexahedral elements. This is in contrast to the thirteen node pyramidal
elements discussed in the previous section which are not suitable for a face-to-face connection
with a twenty-seven node hexahedron.

4 (0,0,1)

,23__(-’1,1,0)

(1. 1 ,0)

A,01

Figure 3.8. 14-node reference element K.

Development o f Basis Functions
In the case of the fourteen node element we consider a total o f four sets o f basis functions.

A

The first set is developed on a reference element with the same coordinates as K introduced in
section 3.1, and then mapped to a reference element K (Figure 3.8) using the affine
transformation (3.1.1) . The second set o f basis functions are developed directly on the
element K in order to reduce any unnecessary complexity in the equations. However, we shall
see that several o f the functions are common between the two sets, as the choice is limited due
to the constraints involved. In particular, the functions at the peak o f the pyramid as well as
those at the midpoints o f the edge between the base and the peak are identical, and are also the
same as those used in the case o f the thirteen node element. Note, in fact that these five
particular functions are similar to the five functions defining a linear element, only differing by
a constant and a factor o f z (the equation for the base o f the pyramid). The process introduced
in section 3.1 o f averaging the functions with their mirror images is then applied to each of
these sets in order to develop two more sets o f highly symmetric basis functions. During the
development o f the different cases o f basis functions for the 14-node element, great care was

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

taken to ensure that the functions would produce the most accurate results. The two cases
presented here represent the best two sets o f functions out o f several sets o f functions that were
considered. They also serve to better illustrate the fact that changing the basis functions o f an
element alters the accuracy o f the element.

14-node Pyramidal Finite Element Basis Functions

Case I Basis Functions:
W e define the following piecewise basis functions on the composite reference pyramidal

A

element K :

r 0(x , y , z) =
(x + z - 1)(y - 1)(2 y - 1)(2x + 2z - 1) for x > y

(y + z - 1)(x - 1)(2y + 2z - 1)(2x - 1) for x < y

- (2.x + 2z - 1)(2y - l) (x (l - y) - z y) - 2 z (x - y) for x > y

- (2 y + 2z - 1)(2x - l) (x (l - y) - z x) for x < y

(x + z)(2x + 2z - 1) y (2 y - 1) for x > y

(y + z) { 2 y + 2z - l)x (2 x - 1) f o r x ^ y

- (2 y - l) (2 x + 2z - 1)((1 - x) y - z y) for x > y

- (2 x - l) (2 y + 2z - 1)((1 - x) y - z x) + 2 z (x - y) for x < y

? 4(x , y , z) = z (2 z - 1)

4 x ((l - x) (l - y) (2 y - 1) 4- z (y - l) (2 y - 1)) for x > y

4 x ((l - x) (l - y) (2 y - 1) + z (x - l) (2 y - 1)) for x < y

? i (x , y , z) = <

? 2(x , y , z) =

r 3(x , y , z) =

? o i (x , y , z)

r 12(x , y , z) = «<

? 23(x , y , z) =

ros (x , y , z) =

? 02(x , y , z) =

? 04 (x , y , z) =

4 y (x (l - y) (2 x + 2z - 1) - z y (2 x + 2z - 1)) for x > y

4 y (x (l - y)(2x + 2z - 1) - z x (2 x + 2z - 1)) for x < y
(3 .3 .1)

4x ((l - x)(2 y + 2z - 1)y - z y (2 y + 2z - 1)) for x > y

4 x ((l - x) (2 y + 2z - l) y - z x (2 y + 2z - 1)) for x < y

- 4 y ((l - x) (l - y)(2x - 1) + z (y - l) (2x - 1)) for x > y

- 4 y ((l - x) (l - y) (2 x - 1) + z (x - l) (2 x - 1)) for x < y

16x(x + z - l) y (y - 1) + 4 y z (x + z - l) (2x + 3 - 2 y) for x > y

16x(x - l)y (y + z - 1) + 4 x z (y + z - l) (2 y + 3 - 2 x) for x < y

4 z ((l - x) (l - y) + z (y - 1)) f o r x > y

4 z ((l - x) (l - y) + z (x - 1)) f o r x < y

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

? i 4(x , y , z) = «

r 24 (x , y , z) =

4 z (x (l - y) - z y) for x > y

4 z (x (l - y) - z x) f o r x < y

4 z (x y + z y) f o r x > y

4 z (x y + z x) f o r x < y

? 34(x , y , z)
A z { (\ - x) y - z y) f o r x > y

4 z ((l - x) y - z x) forx

B y again applying the affine transformation F k ^X^ = B X + b defined by (3. 2.1) , we find that

the basis functions on the reference element K take the form:

■j(x + z — l) (y - z - l) (y - z) (x + z) i f x > y

\ { y + z - l) (x - z - \) { y + z) (x - z) i f x < y

d - (z - y) (x + z)(x (1 - y) + z (z + x - y - 2) - y + \) - z (x - y) i fx > y

■jiy + z) (x - z) (- l + y + z)(x - z + 1) i f x < y

- b (l + x + z) (x + z) (- y + z - l) (z - y) i f x > y

d-(y + z + l) (y + z) (x - z + l) (x - z) i f x < y

ro (x,y,z)

r x(x,y, z) =

r2(x,y, z) =

r3(x ,y ,z) = <
d - (z - y) (x + z) (- y + z - !) (x + z - !) ifx > y

4 - (y+ z) (x - z) (z (- z + x - - y + 2) + x(y + 1) - y - 1) + z (x - y) i f x < y

r4(x,y ,z) = z(2z - 1)

- y (x - z + l) (y - z) (y - z - l) (x + z - 1) i f x > y

- y (x - z + l) (y + z - l) (y - z) (x - z - 1) i f x < y

- - b (- y + z - l) (x + z)((z + x - y - 2) z + x (l - y) - y + l) i fx > y

y (- y + z - l) (x + z)(x - z + 1) (- l + y + z) i fx < y

y (x - z + l) (y + z) (- y + z - l) (x + z - 1) i f x > y

- y (x - z + l) (y + z) ((- z + x - y + 2)z + x(y + 1) - y - 1) i fx < y

—j (~ y + z ~ l) (x + z - 1)(x - z) (- y + 1 + z) ifx > y

y (- y + z - 1)(x - z) (x - z - 1) (-1 + y + z) i fx < y

r0i (x,y, z)

r n (x,y, z)

r 2s(x,y, z)

r02(x,y, z)

foi (x,y , z) =
- (- y + z - 1)(x + z - 1)((y - 1)x + z(z - 2y + 3) + y - 1) if x > y

- (- 1 + y + z) (x - z + l) (z (- z + 2 x - 3) - x (l + y) + y + l) if x < y

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

z (y - z - l) (x + z - 1) f o r x > > ’
r04(x,y,z) = {

z(x - z - l) (y + z - 1) for x < y

-z ((x + z + l) (y - z - l) + 4z) forx > y
r l4 {x,y, z) = {

- z (x - z + l) (y + z - 1) f o r x < y

r 2 4 (x , y , z) =

r 3 4 (x , y , z) =

z (y - z + l) (x + z + 1) f o r x > y

z (x - z + l) (y + z + 1) f o r x < y

- z (y - z + l) (x + z - 1) forx > 7

-z ((y + z + l) (x - z - 1) + 4z) f o r x < y

Lemma 3.3.1
The basis functions ro, . . . , r 4, ro i , . . . , r34 satisfy the fo llow ing conditions:

1. n(Aj) = 5 y, i j e { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .

2. Each basis function is biquadratic on the base o f K (contained in the plane z = 0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundary o f K (contained in the

plane x = y).
5. The sum o f the basis functions is unity at any point in the pyramid (i.e., 'V\ r f x , y , z) = 1,

i e { 0 ,1 ,2 ,3 ,4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}) .
6. The basis functions r,, i <= { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} vanish on all faces

not containing node i.

Proof :
1. This can be easily verified by direct calculation.
2. Settingz = 0, we immediately seethatr,-, i e { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 3 4}

are biquadratic, for instance, ro(x,y, 0) = d-(x - 1) (y - 1)yx.

3. On the face A qA \ A4, which is contained in the plane y = z - 1, we have
ro(x,y)\ {x>y} = ^-(x + z - l) (x + z)

r\(x,y)\{x>y} = y (z —x - l) (z - x)

r 2 {x,y)\ {K>y} = n (x , y) \ {x>y} = 0,

roi(x,,y)|{*>;,> = (z - x - l) (x + z - 1)

r04(x,y)|{x>^> = -2 z(x + z - 1)

ru(x,y) \ { x > y } = 2 z(x - z + 1)

rn(x,y)\{x>y} = r23(x ,y) |{̂ > = r03(x ,y) \{x>y}
= rai(x,y) \ {x>y} = r 2 4 (x,y) \ {x>y}

= r i 4 (x,y) \ {x>y} = 0

r 4 (x,y)\{x>y} = z(2z - 1).

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. By setting x = y, we can easily see that the functions
r,-,z e { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} are continuous in the x = y plane.

5. This can be verified by summing the basis functions. For instance, in the case o f x > y
we have:

{x>y} = (i x + z - 1) (y - z - 1) (y - z) (x + z))

+ j - (z - y) (x + z) (x(l - y) + z (z + x - y - 2) - y + l) ~ z (x - y))

+ 1 (1 + x + z) (x + z) (- y + Z - l) (z - y))

+ ~ y) (x + z) (- y + z - l) (x + z - 1))

+ z (2 z - 1))
+ - y (x - z + 1) (y - z) (y - z - l) (x + z - D)
+ - j - (- y + z - l) (x + z) ((z + x - y - 2)z + x(l - y) - y + 1))
+ y (x - z + 1) (y + z) (- y + z - l) (x + z - 1))
+ - j - (- y + z - 1)(x + z - 1)(x - z) (- y + 1 + z))

+ - (- y + z - l) (x + z - l)((y - 1)x + z(z -~ 2 y 3) + y - 1))
+ z (y - z - 1) (x + z — 1))
+ -z ((x + z + l) (y - z - l) + 4 z))
+ z(y - z + l) (x + z + 1))
+ - z (y - z + 1)(x + z — 1))

3 1.
Similarly, we find that ^ n (x ,y)| {x<y} = 1,
i e {0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .

This can be verified by quick calculation. For instance, the two faces that do not contain
node Ao are the face A 1A 2A 4 contained in the plane z = 1 - x, and the face A 2A 3A 4

contained in the plane z = 1 - y. In the case o f A 1A 2A 4 we have:
ro(x,y) \ {x>y} = ■J-(x + (l - x) - l) (y - (l - x) - l) (y - (l - x)) (x + (l - x)) = 0

Similarly, on the face A 2A 3A 4 :

^o(x,y)|{<y> = y (y + (l - y) - l) (x - (1 - y) - l) (y + (1 - y)) (x - (1 - y)) = 0.

Similar calculations for the remaining basis functions and appropriate faces yield the same
results. □

In order to develop a more symmetric element, w e again apply the process o f taking the
averages o f the basis functions r;, i e { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} , with their
mirror images. Specifically, we consider the mirror image mapping

M : (x,y , z) - (~x,y, z)

and define

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~ o (x , y , z) =
~ i (x , y , z) =

“ 2 (x,y, z) =

— 3(x,y, z) =

“ 01 (x,y, z)

~ n i x , y , z)

“ 23 (x,y, z)

“ o 3{x,y, z)

~ o i i x , y , z)

T 04 (x, y,z)

t H (x,y,z)

— 24(x,>',z)

“T 34(x,y,z)

n (- x ,y ,z)

r 0(-x , y , z)

r 3(- x , y , z)

r 2(rx , y , z)

= r 0i (- x , y , z)

= rra z)

= r23(- x , y , z)

= r n (- x , y , z)

= r02(- x , y , z)

= r u { - x , y , z)

= rM(- x , y , z)

= r34(- x , y , z)

= r24{ - x , y , z)

(3 . 3 . 2)

Setting

/ T = i (n + T ,)
sym

Ti = ?4

we find that

for / e { 0 , 1 , 2 , 3 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}

(x,y,z)

r r c w) = *

sym (x,y, z) = «<

j - (z - y) (z (z (z - y) - z + x(l + x)) - x (x y - x + 1 - y)) - j - z (- x - y)

-t-(x + z)(x + z - 1)(y2 + z 2 - y)

-t-0 + z)(y + z - 1)(x2 + z2 - x)

■j(x - z) (y (- x + xy - y + 1) + z { x z - y 2 + z(l - z) - y)) - y z { - x - y]

4-(z -y)(z(z(z - 1 - y) + x (x - l)) + x (x + 1 - x y - y)) - j - z (x - y)

± (x + z) (z (x z + y (y + 1) + z (z - l)) + y (x y - x - 1 + y)) - y z (x - y)

i 0 + z) 0 + z - l)(x + x2 + z 2)

- i - (x -z + l) (x - z) (y 2 + z2 - y)

i (z - > ;)(-^ + z - l) (z 2 + x2 + x)

j - (x + z) (y(y + x + x y + 1) + z(z(z + x - 1) + y (y - 1))) + ^ - z (-x -y)

^•(y + z)(z(z(z + y - l) + x (x - l)) + x (x (l + y) + 1 + y)) + y z (- x -

i (y 2 + y + z2) (x - z + l) (x - z)

62

(3.3 .3)

for |x| > _y

forx > [y|

for |x| < y

) forx < [y|

for |x| > y

forx > [y|

for |x| < y

forx < \y\

for |x| > y

i forx > [y|

y) for |x| < y

forx < |y|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r T i w)

± (z - y) { - y + z - l) (z 2 - x + x2)

4-(y2 + y + z 2)(x + z){x + z - 1)

4-(y + z)(z(z(z + y - l) + x(l + x)) + x (x (y + 1) - 1 - y)) + ± z (x -

4- (x - z) (z (z (x - z + \) + y) + y (y (x - z - l) + x - l)) + - W x - y)

r4 (x,y,z) = z (2 z - 1)

r ^ { x , y , z) = <

r { f { x , y , z) = <

rr i (x , y , z) = <

- j (x - z + l)(z - y X - y + z + l)(x + z - 1) for |x| > 7

y (z - ^) (x + z - l) (x y - x + z 2 - 1 + y) forx > [y|

■jiy + z - l) (z - y) (z 2 + x2 - 1) for |x| < y

j - (z ~ y) (x - z + 1) (x y - x - z 2 + 1 - y) fo rx < [y|

—j (. ~y + z - 1)(* + z) (x(- y + z + l) - y - z + l) for |x| > y

j - (- y + z - 1)(x + z)(y(x + z + l) - x - 1 + z) forx > [y|

j - (y + z - 1)(-y + z - 1)(x + 1)(x + z) for |x| < y

j - (y - \) { - y + z - l)(x + z) (x - z + 1) forx < \y\

j - (x - z + 1)(y + z) (- y + z - 1)(x + z - 1)

--L(y + z)(x + z - l)(x(y+ 1) + z (z - 2) + y + 1)

for \x\ > y

for x > \y\

-4-(y + z)(z(z(z - 3 + y) + x2 + 3) - y - 1 + x(x + xy)) forlx| < y

-y (y + z) (x - z + i)(x(>+ 1) + z(2 - z) - y ~ 1) forx < \y]

rs0̂ (x , y , z)

- j (- y + z - 1)(x - z)(xz + z - xy + x + y - 1) for |x| > y

7 O - l) (- y + z - l) (x + z - 1) (x - z)

2-(z + y - l) (-y + z - l) (x - 1) (x -

4-(-y + z - 1)(x - z)(-z - z y + x y -

for x > [y|

z) for |x| < ^

x - y + 1) forx < [y|

r ^ (w) = <

rsdT{x, y, z)

f 14 (x,y, z) = <<

- (- y + z - l)(z(z(z+ 2 - 2y) - 4 + 3y) + 1 + x (x (y - 1)) - y)

- (x + z - l)(x + z(z(x + z ~ y + 2) - 4 + x (y - 2)) + 1 + y (y (z - 1 -
- (z + y - 1)(z(z(z + 2) - 4 - y) + 1 + y + x(x(2z - y - 1)))

- (x + 1 - z)(x + z(z(y + x - z - 2) + x (y - 2) + 4) - 1 + y(y(1 - z -

z[(y - z - 1)(x - 1) — 2z] fo r |x |>y

z(x + z - l) (y - 1) f o r x > ly |

z(y + z - l) (x - 1) for |x|< y

z [(x - z - 1) 0 — 1) — 2z] fo rx < [y |

- z [(y - z - l) (x + l) + 2z] for |x[> y

- z[(x + z + 1)(y - l) + 2z] fo rx > [y |

- z (y + z - l) (x + 1) fo r |x |<y

- z (x - z + l) (y - 1) forx < [y|

63

for |x| > y

forx > [y|

y) for |x[< y

forx < [y|

for |x| > y

x) + z)) f o rx > [y |

for |x| < y

x) - z)) fo rx < ly|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sym
24 (x,y,z) = ^

sym
' 3 4 (x,y,z)

z (y - z + l)(x + 1) for |x\> y

z[(x + z + 1) 0 + 1) - 2z] f o rx > [y |

z[(y + z + l) (x + l) - 2 z] fo r |x |< y

z(x - z + l) (y + 1) f o r x < |y |

z (y - z + I)(—x + 1) for |x|> y

z (- x - z + l) (y + 1) f o r x > ly |

z[(y + z + l) (-x + 1) - 2z] for |x|<

z[(-x + z + l)(y + 1) - 2z] forx < [y|.

Theorem 3.3.1
The basis functions r%m, . . . , r f n, r f n, i f f satisfy the fo llow ing conditions:

1. r f m{Aj) = 8 ih i j e { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .
2. Each basis function is biquadratic on the base o f K (contained in the plane z = 0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundaries o f K (contained in the

planes x = y and x = -y).
5. The sum o f the basis functions is unity at any point in the pyramid (i.e.,

X > r (x ,y , z) . 1 , 1 6 { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}) .
6. The basis functions r f m, i £ { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} vanish on all

faces not containing node i.

Proof :
The proof is an immediate consequence o f (3 .3 .1) , (3.3.2) , and Lemma 3.3.1.

Case II Basis Functions:
W e now examine an alternate set o f basis functions defined on pyramid element K. These

function are o f the form

-h(x + z — l) (y —z — l) (x + z) (y - z) f o r x > y

j (y + z - l) (x - z - l) (y + z) (x - z) f o r x < y

- j-(x + z) (y - z)((x + z + l) (- y + z + 1) - 4z) - z(x - y) for x > y

-d-(x - z) (y + z)(x - z + l) (- y - z + 1) f o r x < y

■ j (y ~ z + l) (x + z + l) (x + z) (y - z) f o r x > y

- h (x - z + l) (y + z + l) (x - z) (y + z) f o r x < y

j (x + z) (y - z) (x + z - l) (y - z + 1) f o r x > y

j (x - z) (y + z)((x - z - l) (y + z + 1) + 4z) + z (x - y) for x < y

S4 (x,y,z) = z (2 z - 1)

S o (x , y , z)

s i (x , y , z)

S2 {x, y, z)

ss(x, y , z) = {

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Soi(x,y,z) =

Sn(x ,y ,z) =

s 2i (x ,y , z) = ^

so3(x,y,z) =

SQ2(x,y,z) =

s 04 (x,y,z) =

su (x ,y , z) =

S2t (x ,y ,z) =

S34(x,y,z) =

-y-(x + z - \) (((y - z - l) (x + l) y - z) + z(2x + 1)) fo rx > y

- y - (x - z + l) (y + z - l) (x - l) j f o r x < y

- ^ - (y - z + l) (((x + z + l) (y - l) x - z) + z (2 y + 1)) forx > y

(y + z - l) (y + l) x for x < y

(x + z - 1)(x + 1)y for x > y

(((y + z + 1)(x - 1)y - z) + z(2x + 1)) for x < y

(x + z - 1)(y - 1)x for x > y

(((x - z - l) (y + l) x - z) + z(2y + 1)) forx < y

(y - z + l) (x + z - l) ((y - l) (x + 1) + z (x - y + z + 1)) fo rx > y

(x - z + l) (y + z - l)((y + 1)(x - 1) - z(x - z - y - 1)) for x < y

z (y - z - l) (x + z - 1) f o r x > y

z (x - z - l) (y + z - 1) f o r x < y

-z ((x + z + 1)(y — z - 1) + 4z) for x > y

- z (x - z + l) (y + z - 1) f o r x < y

z (y - z + l) (x + z + 1) f o r x > y

z (x - z + l) (y + z + 1) f o r x < y

- z (y - z + l) (x + z - 1) f o r x > y

-z ((y + z + l) (x - z - 1) + 4z) f o r x < y

(3 . 3 . 4)

Lemma 3.5.2
T’/re basis functions s 0 , . . . , .s'4 ,.Voi, •.. , ^ 3 4 satisfy the fo llow ing conditions:

1. Jf(4 0 = i f e { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .
2. Each basis function is biquadratic on the base o f i f (contained in the plane z = 0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundary o f K (contained in the

plane x = y).
5. The sum o f the basis functions is unity (i.e., ^~^Si(x,y,z) = 1,

i e {0 ,1 ,2 ,3 ,4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}) .
6. The basis functions Si, i g { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} vanish on all faces

not containing node i.

Proof :
The method o f the proof is identical to that for Lemma 3.3.1.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Following the same procedure as in Case I, we can develop a more symmetric element by
taking the averages o f the basis functions Si, i e { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} ,
with their mirror images. For the sake o f simplicity, we shall omit the redundant information
and only consider those functions that differ from Case I above

t O - j O W X 1 - y + z) + 1 - y) + z (z (z - 1 - y) - x)) - 4- z (x - y) for hi > y

sym (x,y,z)
4-(x + z)(y(y(z + x + 1) - x - 1) + z (z (z - 1 + x) + y)) - 4- z (x - y) forx > [y|

-(x + x2 + z2)(y + z - 1){y + z)

- (z - x - 1) (z - x) (y 2 - y + z 2)

sr (x , y , z) = <<

4-(x2 - x + z2)(z - y - 1)(z —y)

4-(x + z - l)(x + z)(y + y 2 + z 2)

for |x| < y

for x <\y\

for |x| > y

for x > [y|

SoT(x,y,z) = <

4-(y + z)(x(x(y + z + \) - y - 1) + z (z (z - 1 +y) + x)) + 4-z(x - y) for |x| < y

4 - (z - x)(y(y(z + 1 - x) + 1 - x) + z (z (z - 1 - x) - y)) + 4 - z (x - y) fo rx < \y\

4 - (y (y - 1 + z (z - y)) + x (x (y - 2 z + y (z - y)))) for |x| > y

- 4 -(x + z - 1)(xz + y(y(x + 1) - x - 1)) fo rx > ly|

-4 -y (x 2 + z - l) (y + z - 1) for |x| < y

4 - (z - x - l) (xz + y (l - x + y (x - 1))) f o rx < [y|

4 - 0 - Z + l) (x (l - y + x (l - y)) - y z) fo r |x | > y

T (x ,y ,z) =
- 2 (x(-X'
-4-O + z-

1 +z(z + x)) + y(y(2z + x(x + z + 1)))) forx > [y|

l)(x(x + xy + 1 + y)+ y z) f o r | x |< y

forx < [y|4-x(z + y 2 - 1)(z - x - 1)

>23 ‘(x,y,z) = <

4-y(z + x2

-4 - (x + z-

-1) (z - y - l)

1)0(y(x + l) + l + x) + xz)

for |x| > y

forx > [y|

>03 (x,y,z) = <

- 4-(x(x((z + y + l)y + 2z))+y(z(z + y) - y - 1)) for|x| < y

4- (z - x - l) (y (y (x - 1) + x - 1) + xz) forx < [y|

4- 0 - Z + 1) (x(x(1 - y) + y - l) - y z)

- 4-x(z + y 2 - 1)(x + z - 1)

- 4 - (y + z - l)(yz + x(x + x y - y - 1))

for |x| > y

for x > [y|

for |x| < y

4-(x(x(l —y) (l + y) - 1 + z(z - x)) + y(y(z(x - 2) + x))) f o r x < [y|

>02 (x,y,z)

(z - y - l) (y - z (z (z - y) - 2 + 2y) + x(x(l - y - z)) - 1) for |x| > y

(x + z - 1)(z(2 - z(z + x) + 2x) +y(y(1 + x - z)) - l - x) forx > [y|

(y + z - l) (z (2 - z (z + y) + 2y) + x(x(l + y - z)) - 1 - y) for |x| < y

(z - x - l)(x + z (2 - 2x - z (z - x)) +y(y(l - x - z)) - 1) fo rx < ly|

For the remaining cases we have
sym sym

$0 - r0
sym __ sym

‘y2 - r2

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 3.3.2

The basis functions s f n, . . . , s f m, s f f , s f f satisfy the fo llow ing conditions:

1. s sr { A j) = S9, i j e {0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} .
2. Each basis function is biquadratic on the base o f K (contained in the plane z = 0).
3. Each basis function is quadratic on all triangular faces o f K.
4. Each basis function is continuous on the interelement boundaries o f K (contained in the

planes x = y and x = -y).
5. The sum o f the basis functions is unity (i.e., ' J2sfm(x,y, z) = 1,

i g { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34}) .
6. The basis functions s f m, i e { 0 , 1 , 2 , 3 , 4 , 01 , 12 , 23 , 03 , 02 , 04 , 14 , 24 , 34} vanish on all

faces not containing node i.

Proof :
The proof is an immediate consequence o f the mirror image mappings and Lemma 3.3.2.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Software Implementation and Numerical
Experiments

Numerical experiments were carried out to test the accuracy o f all the pyramidal elements
presented in the previous section. In order to conduct the tests, software was developed to
discretize the domain with a pyramidal mesh, calculate the system stiffness matrix and load
vector, and solve the resulting linear system o f equations. Below, we describe the procedure o f
the experiments and the development o f the software by breaking the process down into a
natural subdivision o f tasks. W e note that, in general, all software for the finite element
method would follow a similar process and can be broken in to similar subprocesses.

4.1 FEM Software Development

Mesh Construction
The first step is to discretize the domain Cl. In our case, since we want to measure the

accuracy o f the elements, we desire a simple domain so we can compare the approximate
solution Uh to a known solution u. Thus, we choose as our domain Q = (0,1) x (0,1) x (0,1) ,
and in all cases the experiment conducted was to solve Poisson’s equation with Dirichlet
boundary conditions:

< 0 + f ^ + ! ? O ^ W) (W) S n ' (4.1.1)
u = 0 on dCl

where Q = (0 ,1) x (0 , 1) x (0,1). The true solution chosen for the experiments was:

u = sin(7rx)sin(2^y)sin(3^z).

In order to discretize Cl by a three dimensional pyramidal mesh we first construct a mesh
consisting o f cubes, with an equal number o f cubes along each axis. The number o f cubes
along an axis, N, is an input parameter so that we can control grid "fineness" or "coarseness"
o f the mesh. Each o f the N 3 cubes is then divided into six equal sized pyramidal elements
(Figure 4.1).

Figure 4.1.
Cube decomposed into six pyramids.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, we have a system consisting o f 6 N 3 pyramidal elements. The number o f nodes in the
system is then determined depending on the type o f pyramidal element being used. During the
mesh construction we also calculate and store the global coordinate locations o f all the nodes.
N ote that although each element has 5, 13, or 14 nodes depending on the element type, many
o f the nodes are common to multiple elements. In order to reduce the storage space needed for
the mesh, we only store a node and its coordinates once. With each element we only store
references to the nodes that make up its construction. To accomplish this we use two arrays,
the first one, Nodeinfo, contains the nodal x , y , z coordinates in three dimensional space, and
the second, Elemlnfo, an array of elements, contains appropriate references into the array o f
nodes. Before we can do this however, w e need to determine a convenient enumeration o f
elements and nodes for the overall mesh, as well as a local enumeration o f the nodes for an
element. Figure 4.2 shows an example o f the global node numbering used for the linear
5-node pyramidal elements and a mesh parameter o f N = 2. (Note that pyramid boundary lines
have been removed in order to present a clearer view o f the nodes.)

(1.1.0)(0.1.0)

20
(U 1)

32
(0 .1.1)

25'

ie

29

22]

(1.0 .0)

2026 27
(0 .0 .1) (1.0 .1)

Figure 4.2.
Global node numbering for linear case with N = 2.

The associated nodal array structure for this case is then:

Node: 0 1 2 34

Coordinates: (0 ,0 ,0) (0 . 5 , 0 , 0) (1 ,0 ,0) (1 ,1 ,1)

We adopt a similar numbering scheme for the elements; however we treat the six elements
o f a cube as a group, counting them together before enumerating the next group. For example,
for the mesh in Figure 4.2 we have a total o f eight cubes and 48 pyramids, with the pyramids

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

numbered 0-47. The first cube is the cube with corners (0 , 0 ,0) and (0. 5,0. 5,0. 5) and it
consists o f pyramids 0 - 5 , the second cube has corners at (0. 5 , 0 , 0) and (1,0. 5 , 0 . 5) and
consists o f pyramids 6 - 1 1 , the 3rd cube has corners at (0. 5 , 0 , 0) and (0 5 , 1 , 0 . 5) and
consists o f pyramids 12 - 17,... the last cube has corners at (0. 5,0. 5,0. 5), (1 ,1 ,1) and consists
o f pyramids 42 - 47. Within each cube the numbering sequence o f the pyramids is as follows:
the first pyramid is the pyramid with its base on the base o f the cube (th ey = 0 plane in Figure
4.2), the second is the pyramid with its base on the right face o f the cube (i.e., a 90°
counter-clockwise rotation from the first element), the third is the pyramid with its base on the
top face o f the cube (i.e., a 90° counter-clockwise rotation from the previous element), the
fourth has its base on the left face o f the cube (i.e., another 90° counter-clockwise rotation
from the previous element), the fifth is the pyramid with its base on the front face o f the cube,
and the final sixth pyramid is the one having as its base the back face o f the cube. Lastly, the
node numbering sequence local to an element will follow that given in the previous section’s
discussion. Thus, the element array structure associated with the mesh in Figure 4.2 is:

Elemlnfo =

Element: 0 1 2 3 4 5 47

Node 0: 13 14 17 16 16 0 17

Node 1: 14 17 16 13 17 1 18

Node 2: 1 4 3 0 14 4 21

Node 3: 0 1 4 3 13 3 20

Node 4: 9 9 9 9 9 9 25

Clearly, we can now use the entries in the Elemlnfo array as references into the Nodeinfo
array to obtain the global coordinates o f the nodes for a given element. In other words, we can
find the coordinates o f they'-th node for a given element i using the relation:

NodeInfo_ElemInfo[j, i]].

During mesh construction we can also store other relevant information associated with
individual nodes or elements. For instance, we can indicate whether or not a node is a
boundary node with a simple modification to the Nodeinfo array as follows:

Nodeinfo =

Node: 0 1 9 34

Coordinates: (0 ,0 ,0) (0 . 5 , 0 , 0) (0 . 25 , 0 . 25 , 0 . 25) (1 , 1 ,1)
Node Type: Boundary Boundary Internal Boundary

Note that, in our case, since the boundary conditions are the same on all boundaries o f the
domain, we need only to mark a node as being on the boundary or not being on the boundary;
w e do not need to store information indicating to which boundary the node belongs. Thus, we
would actually require only one additional bit o f storage per node to store this information.
Although this information could always be calculated based on the node’s coordinates, using a
small amount of additional storage such as this will save on tedious and unnecessary
computations later. W e do point out, however, that the storage space required for even simple
structures such as these can become prohibitive for even moderate values o f N. As stated
earlier, since we are working in three dimensional space, the number o f pyramidal elements in
the mesh is 6 N 3. The number o f nodes in the mesh also grows at a 0 (N 3) rate. For example,
in the linear case, with five nodes per element, we have a total o f (N + l) 3 + N 3 nodes, since

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we only store a node once. Thus, a mesh with a seemingly small TV value such as N = 32 will
yield a mesh with almost 200,000 elements, and over 68,000 nodes!

Generation o f Stiffness Matrix and Load Vector
Once the domain has been discretized and the mesh has been constructed, the system

stiffness matrix and system load vector can be generated. In order to reduce the space required
to store these entities we start by removing boundary nodes from consideration for the time
being. Since their values are known we do not need to include them in the system to be
solved; their values can simply be placed back into the solution vector at a later time. W e also
note that, in order to save storage space, the stiffness matrix is stored in a sparse format. Let us
first examine the stiffness matrix generation process. To generate the stiffness matrix, A, each
element in the system is checked in turn, and pairs o f nodes that are part o f that element are
compared. If both nodes are internal to the system (where boundary conditions do not apply)
the value o f the integral over the element is approximated, and this value is added to the
stiffness matrix entry associated with the two nodes o f that element. Using the linear case as an
example, this procedure can be summarized as follows:

Let afj represent the system matrix entry associated with the z'-th and y'-th nodes o f element
K, and let N be the mesh parameter described above.

Then we check the pairs o f nodes associated with each element in the system by looping
over all the elements:

for K = 1 to 6N3 (number of elements in system)
for i = 1 to 5 (number of nodes per element)

for j = 1 to 5 (number of nodes per element)
if both node i and node j of element K are not

boundary nodes then
4 - o f + ! , (£ ■ • % + TT • t + ^ • tty***

end-if
end-for

end-for
end-for
where y/m, m = 1 , . . . , 5 are the basis functions o f the pyramidal element, and numerical

cubature formulae are employed in order to evaluate the integral over the element. W e will
discuss how the numerical integration is implemented in a moment, but first w e examine how
the load vector is generated.

The procedure for calculating the entries o f the load vector involves looping over all the
elements in the system and checking the nodes of each element. If the node is a boundary node
then we ignore it for the time being; if, however, the node is an internal node then we calculate
the value o f the integral over the element and add it to the associated entry in the load vector.
Continuing with the linear case as an example, this procedure can be summarized as follows:

Let b f be the load vector entry associated with the z-th node o f element K, and again let N

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be the mesh parameter. Then w e have

f o r K - 1 t o 6 N 3 (num ber o f e l e m e n t s i n s y s t e m)

f o r i = 1 t o 5 (n u m b er o f n o d e s p e r e l e m e n t)

i f n o d e i o f e l e m e n t K i s n o t a b o u n d a r y n o d e t h e n

b f = b f + 1 f y / i dxdydz (4.1.3)* K
e n d - i f

e n d - f o r

e n d - f o r

where y/m, m = 1 , . . . , 5 are the basis functions o f the pyramidal element and / is the function
from (4.1.1) .

In order to integrate over the pyramidal elements, each pyramidal element is first divided
into two or four tetrahedra depending on whether we are applying the extra symmetries to the
basis functions for the element (Section 3.1-3.4). Once the pyramid is divided into tetrahedra
we use Gaussian cubature formulae for tetrahedra [Keast, 1986], [Maeztu, Maza, 1995],
[Cools, and Rabinowitz, 1993], [Cools, 1999], [Stroud, 1971] to approximate the values o f the
integrals. The values o f the integrals for each tetrahedron are then summed to determine the
integral over the composite pyramidal element. However, since the basis functions are given
in terms o f only a single reference element, and since these functions are defined in terms o f
local coordinates, we must carry out a transformation before approximating the integrals.

Coordinate Transformations
Since the points o f integration as well as the basis functions themselves are defined in

terms o f coordinates local to the element, w e can define a method o f mapping between the
global nodal coordinates and the local element coordinates. Let () represent a point in
the local element coordinates. In particular, we will see that these points are associated with
the integration. W e then let (x,y , z) represent a point in the global system. Fortunately the
basis functions themselves provide us with a convenient method o f establishing a coordinate
transformation. For each element we have:

x = y/iXi + y i x i +. . . +if/mXm = y Tx

y = y/iyi + y i y i +--.+Vmym = v ry (4 .1 .4)

Z = y/ 1Z1 + I//2Z2 +. . . + f mZm = Z

where vj/=[y/i y/ 2 --.V/ m] , i = 1,2, . . . ,m are the element basis functions given in terms o f the

local coordinates (<̂ ,77, f) , and x = [x i x 2 ... xm] r, y = [y i y 2 ... ym~\T, z = [z i z 2 ... z m~\T are
the global coordinates o f the nodes for the element. In the integration o f (4 .1 .2) we are
concerned with partial derivatives, so we consider the following relations:

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dy/ i

d $

dy/ i
dr]

dy / i

%

d x
d$

dx.
drj

dx

%

drj

dy_

d z
dd,

d z
drj

d z

dC

dy / i dy/ i

d x d x

dy / i
= J

dy/ i

d y d y

dy / i dy/ i
d z d z

(4 . 1 . 5)

In this equation, the left-hand side can be evaluated as the functions y/,• are specified in local
coordinates. The matrix J is the Jacobian matrix. Thus, in order to find the global derivatives
w e invert J to get

dy/ i dy/ i

dx

dy/ i dy/ i

d y drj

dy/ i dy/ i
d z %

In terms o f the shape functions defining the coordinate transformation \|/ we have

J =

£ % - y ,

Z dy/ i
~aTy‘

V ^ - L 7la dip

v 1 dy/i
E a r '

Z dy/1

i r z '

(4.1.6)

d y / 1 dy/2 dy/m i- - i

■ d $ XI y i z \

d y / i dy / 2 dy/m X2 T2 Z2

drj drj dr]

d y / 1 dy/2 dy/m Xm ym Zm
% ac • ■ dt;

To transform the variables and the region with respect to which the integration is made, a
standard process will be used which involves the determinant o f J. Thus, for instance a
volume element becomes

dxdydz = dotJdqdqdC,.

This type o f transformation is valid irrespective o f the number o f coordinates used. For a more
detailed examination o f coordinate transformations and the use o f reference elements in the
finite element method please refer to [Zienkiewicz, 1989, pp. 181-191], or [Kardestuncer, 1987,
pp. l . 139-1.152],

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Numerical Integration
Gaussian cubature formulae for tetrahedra are used to evaluate the above integrals. An

in-depth discussion o f numerical integration methods is beyond the scope o f this work. For
more information please refer to texts on numerical integration [Stroud, 1971], [Stroud, 1974],
the finite element method [Zienkiewicz, 1989], [Kardestuncer, 1987], or general texts on
numerical methods or scientific computing [Rao, 2002], [Heath, 2002], The general idea
behind Gaussian quadrature is to approximate the integration o f a function over a domain by
summation. At each step o f the summation the function is evaluated at given points, the
Gaussian points, and the results are weighted by given values, the Gaussian weights. In other
words,

\ j{x ,y ,z)d x d y d z « J2 w iK^,r],Oi,
i=l

where,

Wi is the weight to be used for point i,

(£ , 77, O f i s point given by the quadrature formula being used,

Q is the number of points to be used in the given quadrature formula.

Based on this and the above discussion on coordinate transformations, we may now proceed
and evaluate the integrals (4 . 1 . 2) and (4.1.3) .

For stiffness matrix integrals we proceed as follows. Firstly, we take partial derivatives o f
the basis functions for the particular element in question. For example, in the 5-node pyramid
case, before applying the symmetries (3 . 1 . 4) and using as our variables (£ ,77, 0 , we have:

dy/o dpo(Z,Ti , 0 \| - I C C - 7 + 1) for x > y

dd, |L T f o + £ - l) for x < y

dy/o _ d P o (Z , r i , 0 _]f -{■(£ + £ - 1) for x > y

drj dr] |[- i i C - 4 + D for x < y

dy/o d p o (Z , r] , 0 1f - } (% - /] + 2 0 forx > y

% K |[- 1 (7 7 - 1 + 2 0 for x < y

d y / i d p i (Z , r] , 0 Jr t (c - 7 + i) for x > y

d% 1 - T ^ + f - 1) for x < y

dy/4 = d p i (£ , r i , 0 = ,
dC dQ

For each quadrature point (£ , 1 , 0 , we evaluate the partial derivatives to obtain the matrix

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oy/o ,r ^ dy/i ,r dy/4 ,, ^
-Q £ -(£ ,n ,O i - Q j r i ^ O i ■■■ -Q g - te ,n ,O i

dy/o , , ,s dy/i (. dy/ 4

drj

dy/p

K

dr; drj (&T7,Oi

(S’V’Oi ^ -(6 *7,0 , ■■■ ^Hr&ri-Ot
% d i

(4 .1 .7)

W e then compute the Jacobian matrix using (4.1.6) . Finally, we extract the z-th and y'-th
columns o f (4 . 1 . 7) and multiply them by the inverse o f the Jacobian in order to obtain the
derivatives in (4.1.2) . In other words we calculate the integral o f our pyramidal element as
follows:

f (& L
J k \ dx> K \

T Q

El
t=\ 9=1

8Wj dvj_ t dVj 8vj_ m Syj
dx dy dy dz dz

^dxdydz

dy dz ■(«?)) detJ,

where,

T is the number o f tetrahedra that make up our pyramidal element (two before applying
symmetries, four after),

Q is the number o f cubature points for the given tetrahedra cubature formula,

w q is the weight to be used for cubature point q,

a q = (£, Tj,C)q ^ the y-th cubature point for the given tetrahedra cubature formula,
dy/ j dy/j dy/,
dx ’ dy ’ dz

multiplying them by the inverse o f the Jacobian, i.e
dx ’ l y ’’ d t ,e ĉ -> are f ° unh by extracting the z-th and y-th columns o f (4 .1 .7) and

1 1 dy/i r ,

dy/i
dy

dy/i
a„

11

■
—

1

*
^

1

" ^ « . * A ‘

dy/j
dy = /-! n Odtj Uh)ci

11

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly, for the load vector entries (4. 2 . 3) we have

\ Kfyf i dxdydz «
T Q

2 2 v* O qA x ,y ,z) ')
t= 1 q= 1

where,

T7 is the number of tetrahedra that make up our pyramidal element (two before applying
symmetries, four after),

Q is the number o f cubature points for the given tetrahedra cubature formula,

w q is the weight to be used for cubature point q,

is the q -th cubature point for the given tetrahedra cubature formula,

(x,y, z) are determined by the relation (4.1.4) .

Solution o f System
Once the system stiffness matrix and load vector have been generated, we may proceed to

solving the linear system o f equations. Three different solvers were implemented in the
software used for the experiments. Firstly, Gaussian elimination was chosen, since it generates
the most accurate results and is generally the most reliable solution method. Secondly,
Gauss-Seidel was implemented in order to increase efficiency. Lastly, to further reduce
computational costs for larger test cases, the conjugate gradient method with preconditioning
was employed to solve the system. In this case, incomplete Cholesky factorization was used as
the preconditioner.

4.2 Computational Results
Three different sets o f experiments were performed, corresponding to the three basic types

o f pyramidal elements presented in section 3. For each type o f element, experiments were
performed to check the accuracy o f the elements by varying the mesh parameter N, and by
testing cases before and after the mirror image mappings were made to gain more symmetry.

In the five node element case, experiments were conducted for values o f N ranging from 4
to 128. Table 4.1 summarizes the results for the basis functions both before and after the
mirror image mappings were made. For each value o f N, the table lists values for (i) h = UN;
(ii) the 1 ,2 -norms o f u - Uh and u - uu, where u is the true solution, Uh is the finite element
solution corresponding to W ieners’ transformed basis functions (3 .1 .2) and Uh is the finite
element solution corresponding to the new symmetric basis functions (3.1.5) . From Table
4.1, we see that the symmetrized elements yield a better result than the non-symmetrized
elements, even though the number o f degrees o f freedom is the same. W e also note that in
both cases the element achieves the optimal approximation order o f 0 (h2).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

h = UN IIW — Uh |! o II“- “2aII0
II “- “A II 0 || tl tlh |j q ll«-«2h llo

II«-«A llo

1/4 6.10e-2 None 5.83e-2 None

1/8 1.62e-2 3.775 1.51e-2 3.871

1/16 4.08e-3 3.966 3.78e-3 3.987

1/32 1.02e-3 3.992 9.45e-4 3.997

1/64 2.55e-4 3.998 2.36e-4 3.999

1/128 6.39e-5 3.999 5.91e-5 4.000

Table 4.1. Test results for 5-node
pyramidal element before and after symmetries are applied.

Similar experiments were conducted for the thirteen and fourteen node elements presented
in sections 3.2 and 3.3. The results for the 13-node pyramidal element are summarized in
Table 4.2. In this case we see a substantial improvement over the non-symmetric basis
functions. The discretization error is almost 3 .5 times better on the finest mesh where
h = 1/64. W e note that the rate o f convergence for the non-symmetric basis functions is still
o f order 0 (h2), but for the new symmetric basis functions the rate o f convergence is in the
order higher than 0 (h2), though it is less than the order o f 0 (h3) that one might expect.

r***HII

l l « - « * l l o
!I«-«2aII0
II«-«aII0 IÎ — Uh || o II«-«2aII0

II“- “A llo
1/4 9.80e-3 None 8.68e-3 None

1/8 1.49e-3 6.571 1.08e-3 8.074

1/16 2.93e-4 5.093 1.48e-4 7.251

1/32 6.72e-5 4.356 2.37e-5 6.249

1/64 1.64e-5 4.097 4.73e-6 5.016

Table 4.2. Test results for 13-node
pyramidal element, before and after symmetries are applied.

Tests on the 14-node pyramidal element were conducted using the two sets o f basis
functions presented in Section 3.3 (Case I and Case II). The results o f these experiments are
summarized in Tables 4.3 and 4.4. We note that the Case II basis functions give an
improvement over the Case I functions, with a discretization error that is over twice as good on
the finest mesh with h = 1/64. Since the basis functions (3. 3 . 1) and (3.3. 4) for the 14-node
element were carefully developed to yield highly accurate results, the application o f the extra
symmetries results in a less dramatic improvement than was found for the previous element
cases.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

h = UN \ \ U - U h \\0
II ̂ 2̂h II o
IIw— uh II o || U Uh || g

ll“—«2A II o
ll«-“&llo

1/4 3.42e-3 None 3.07e-3 None

1/8 8.51e-4 4.019 7.62e-04 4.029

1/16 2.13e-4 3.995 1.92e-4 3.969

1/32 5.72e-5 3.724 5.02e-5 3.825

1/64 1.37e-5 4.175 1.20e-5 4.183

Table 4.3. Test results for 14-node pyramidal element
with Case I basis functions, before and after symmetries are applied.

11 \ \ u - U h \ \ Q
l|w-“2A llo
II II o \ \ u - U h \ \ Q

II “- “a. llo
\W~ui, | o

1/4 1.61e-3 None 1.58e-3 None

1/8 3.77e-4 4.278 3.69e-4 4.273

1/16 9.23e-5 4.086 9.04e-5 4.084

1/32 2.30e-5 4.013 2.25e-5 4.018

1/64 5.73e-6 4.014 5.61e-6 4.011

Table 4.4. Test results for 14-node pyramidal element
with Case II basis functions, before and after symmetries are applied.

From Tables 4.3 and 4.4, w e see that the rate o f convergence for the symmetric and
non-symmetric basis functions for both Case I and Case II is o f order 0 (h 2), again less than the
order 0 (h 3) that one might expect. Since the application o f the extra symmetries requires a
non-trivial amount o f additional computation, effectively doubling the number o f basis
function evaluations needed, we must also consider the efficiency o f the method used. From
the test results we see that adding symmetries to the Case II basis for the 14-node pyramidal
element gives only a slight improvement in accuracy. Thus, we can conclude that for the
14-node element, best overall performance is achieved by the Case II basis without the extra
symmetries applied.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Conclusion
The finite element method provides us with a very powerful tool for approximating highly

complex systems in science and engineering. Developed initially as an engineering tool for
structural analysis, the method has since found widespread acceptance in many areas o f
applied science. The method consists o f discretizing a continuous problem over a grid, or
mesh, composed of simple geometric shapes, or “elements”. The most commonly used
elements are simple intervals in the one dimensional case, triangles or quadrilaterals for two
dimensional space, and tetrahedra or hexahedra in the case o f three dimensions.

When we consider the three dimensional case, we note that both hexahedral and tetrahedral
elements have a number o f advantages and disadvantages, particularly when it comes to
adaptive mesh generation. For instance, repeated anisotropic subdivision o f tetrahedral
elements can cause serious loss o f mesh quality leading to inaccurate solutions. Although
hexahedra can be subdivided anisotropically without loss of quality, hexahedral adaptation
schemes tend to generate “hanging” vertices when a hexahedron cannot be split into smaller
hexahedra without continuously propagating the mesh refinement into regions where it is not
desired. One way to overcome these deficiencies is to construct a mesh which consists o f both
hexahedral and tetrahedral elements. A mesh constructed in this manner would use hexahedra
to fill in geometrically simple regions o f the domain where no sharp corners or curves exist,
while tetrahedra would be used to fill in the remaining, more geometrically complex, regions
where hexahedra refinement is less suitable. Unfortunately, when using both tetrahedra and
hexahedra in the same mesh, problems arise at the areas where the two types o f elements must
be joined together since the element types do not conform. Thus, another type o f element is
needed to properly connect hexahedral and tetrahedral portions o f a mixed finite element mesh.
A pyramidal element is an ideal element type for making these types o f connections between
hexahedra and tetrahedra.

In this work, we have examined new pyramidal mortar elements which are highly
symmetric in nature. This high degree o f symmetry reduces the artificial anisotropy present in
previous pyramidal elements and leads to a pyramidal element which produces superior
accuracy. W e first studied a five-node pyramidal element suitable for connections between
four node linear tetrahedra and eight node bilinear hexahedra. Then we examined a thirteen
node element most suited for joining ten node quadratic tetrahedral elements to twenty node
hexahedra. Next, we considered the case o f a new fourteen node pyramidal element that is
ideal for interfacing ten node tetrahedral elements and twenty-seven node hexahedral elements.
In all cases the basis functions for these elements and the process o f their construction was
examined in detail and proof o f their theoretical correctness was also given. Finally, computer
software was developed and used to conduct numerical experiments which illustrated the
improvements these elements offer. As a result o f these experiments we can conclude that the
new symmetric basis functions always yield a better discretization error than their less
symmetric counterparts.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Areas For Further Research
The problem o f finding a pyramidal element which is proven to achieve the optimal rate o f

convergence for the quadratic case, a rate o f 0 { h 3), is an open problem. The development o f
pyramidal elements with piecewise polynomial basis functions which are cubic, or higher in
degree, is another area o f possible future study. Additional testing o f these elements as
interface elements in mixed hexahedral and tetrahedral meshes, under more applied
circumstances, could also be conducted in order to compare them further with other interfacing
methods.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography
Aftosmis, M., Gaitonde, D., and Travares, T. S., “On the Accuracy, Stability, and

Monotonicity o f Various Reconstruction Algorithms for Unstructured M eshes”,
AIA A-94-0415, In Proc. o f 32nd AIAA Aerospace Sciences M eeting and Exhibit, 1994.

Benzley, Steven E., Perry, E., Merkley, K., Clark, B., and Sjaardama, G, “A Comparison o f All
Hexagonal and All Tetrahedral Finite Element Meshes for Elastic and Elasto-plastic
Analysis”, In Proc. 4th International Meshing Roundtable, Albuquerque, N ew M exico, pp.
179-192, 1995.

Biswas, Rupak, and Strawn, Roger C., “M esh Quality Control for Multiply-refined Tetrahedral
Grids", A pplied Numerical Mathematics, Vol. 20, No. 4, pp. 337-348, 1996.

Biswas, Rupak, and Strawn, Roger C., “Tetrahedral and Hexahedral M esh Adaptation for CFD
Problems”, Applied Numerical Mathematics, Vol. 26, No. 1-2, pp. 135-151, 1998.

Bramble, James H., Zlamal, M ilos, “Triangular Elements in the Finite Element Method”,
M athematics o f Computation, Vol. 24, No. 112, pp. 809-820, 1970.

Bretl, John L., “Connecting Solid Finite Element M odels That Have Dissimilar M eshes on the
Mating Surface”, In Proc. MSC/NASTRAN User Conference, 1984.

Clough, R. W., “The Finite Element Method in Plane Stress Analysis”, In Proc. 2nd ASCE
Conference on Electronic Computation, Pittsburg, Pennsylvania, Sept. 1960.

Clough, R. W ., “The Finite Element Method After Twenty-five Years: A Personal V iew ”,
Computers and Structures, Vol. 12, No. 4, pp. 361-370, 1980.

Cook, Robert D., Malkus, David S., and Plesha, M ichael E. Concepts and Applications o f
Finite Element Analysis. N ew York: John W iley & Sons, 1989.

Cools, Ronald, and Rabinowitz, Philip, “Monomial Cubature rules since “Stroud”: A
Compilation”, Journal o f Computational and A pplied M athematics, Vol. 48, pp. 309-326,
1993.

Cools, Ronald, “Monomial Cubature rules since “Stroud”: A Compilation - part 2”, Journal o f
Computational and A pplied Mathematics, Vol. 112, pp. 21-27, 1999.

Douglas, C. C., “Multigrid methods in science and engineering”, IEEE Computational Science
and Engineering, Vol. 3, N o.4, pp. 55-68, 1997.

Duff, Iain S., Grimes, Roger G., and Lewis, G., “U sers’ Guide for the Harwell-Boeing Sparse
Matrix Collection (Release I)”, Tech. Rep. RAL 92-086, Chilton, Oxon, England, 1992.

Duff, Ians S. “A Review o f Frontal Methods for Solving Linear System s”, Computer Physics
Communications, Vol. 97, No. 1-2, pp. 45-52, 1996.

George, Alan, “Nested Dissection of a Regular Finite Element M esh”, SIAM Journal o f
Numerical Analysis, Vol. 10, No. 2, pp. 345-363, 1973.

Gradinaru, V., and Hiptmair, R , “Whitney Elements on Pyramids”, Electronic Transactions on
Numerical Analysis, Vol. 8 , pp. 154-168, 1999.

Heath, M. T. Scientific Computing: An Introductory Survey, 2nd ed. Boston: McGraw-Hill,
2002

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Henrici, P., “Fast Fourier Methods in Computational Complex Analysis”, SIAM Review, Vol.
21, pp. 418-527, 1979.

Hlavacek, I., and Krizek, M., “On Exact Results in the Finite Element Method”, Appl. Math.,
46, pp. 467-478, 2001.

Irons, B.M., “A Frontal Solution Program for Finite Element Analysis”, International Journal
fo r Numerical M ethods in Engineering, Vol. 2 , pp. 5-32, 1970.

Johnson, Claes. Numerical solution o fpartia l differential equations by the fin ite element
method. Cambridge: Cambridge University Press, 1987.

Kardestuncer, FI, ed. Finite Element Handbook. N ew York: McGraw-Hill, 1987.

Keast, Patrick, “Moderate Degree Tetrahedral Quadrature Formulas”, Computer M ethods in
A pplied M echanics and Engineering, Vol. 55, pp. 339-348, 1986.

Krizek, M, Liu, L, and Neittaanmaki, P., “On Harmonic and Biharmonic Finite Elements”,
GAKUTO Internat. Ser. Math. Sci. Appl., Gakkotosho, Tokyo, 15, pp. 146-154, 2001.

Krizek, M, and Neittaanmaki, P. Finite Element Approximation o f Variational Problems and
Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 50,
Longman Scientific & Technical, Harlow, 1990.

Kwon, Y. W. and Bang, H. The Finite Element M ethod using MATLAB. N ew York: CRC
Press, 1997.

Liu, Liping, Davies, Kevin, Yuan, Kewei and Krizek, Michal, “On Symmetric Pyramidal
Finite Elements”, Dynamics o f Continuous D iscrete and Impulsive Systems, Series B:
Applications and Algorithm s, Vol. 11, N o 1-2, pp. 213-227, 2004.

Maeztu, Jose, and Maza, Eduardo, “An Invariant Quadrature rule o f Degree 11 for the
Tetrahedron”, Comptes rendus de VAcademie des sciences, Serie I: Mathematique, Vol.
321, No. 9, pp. 1263-1267, 1995.

McCormick, Stephen F. M ultilevel Adaptive M ethods fo r P artia l Differential Equations.
Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 1989.

Owen, Steven J. and Saigal, Sunil, “Formation o f Pyramidal Elements for Hexahedra to
Tetrahedra Transitions”, Computer M ethods in A pplied Mechanics and Engineering, Vol.
190, pp. 4504-4518, 2001.

Rao, S. S. A pplied Numerical Methods fo r Engineers and Scientists. Upper Saddle River, NJ:
Prentice-Hall, 2002.

Stewart. David E. and Leyk, Zbigniew, “M eschach Library”, version 1.2b, April 1994.
Available at the Netlib Repository, <http://www.netlib.n0 /netl1b/c/meschach/readme>

Stroud, A.H.. Approximate Calculation o f M ultiple Integrals. Englewood Cliffs, NJ:
Prentice-Hall, 1971.

Stroud, A. H. Numerical quadrature and solution o f ordinary differential equations : a
textbook fo r a beginning course in numerical analysis. N ew York : Springer, 1974.

Swarztrauber, Paul N., “Fast Poisson Solvers”, In Studies in Numerical Analysis, Golub, G. H.
ed., Vol. 24, pp. 319-370, Washington, DC: Math. Assoc. America, 1984.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.netlib.n0/netl1b/c/meschach/readme

Turner, M. J., Clough, H., Martin, H. C., and Topp, J. L. “Stiffness and Deflection Analysis o f
Complex Structures”, Journal o f the Aeronautical Sciences, Vol. 23, No. 9, pp. 805-823,
1956.

Wendroff, Burton. Theoretical Numerical Analysis. N ew York: Academic Press, 1966.

Wieners, C., “Conforming Discretizations on Tetrahedrons, Pyramids, Prisms and
Hexahedrons”, Univ. Stuttgart, Bericht, 97/15, 1-9, 1997.

Zienkiewicz, 0 . C. The Finite Element Method, 3rded. N ew York: McGraw-Hill, 1989.

Zgainski, F.X., Coulomb, J.L., Marechal, Y., Claeyssen, F., and Brunotte, X., “A N ew Family
o f Finite Elements : The Pyramidal Elements”, IEEE Transactions on M agnetics, Vol.32,
No.3, pp. 1393-1396, 1996.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix I:
Basis Functions for Common Reference

Elements
For convenience, w e briefly summarize some o f the more common reference elements and

their basis function. For a more comprehensive listing please refer to [Kardestuncer, 1 9 8 7 , p.
2 . 1 2 1 - 2 . 1 3 1] ,

A1.1. Two-dimensional reference elements

3-node Linear Triangle
Let^Tbe a triangle in the x ,y plane with vertices a \ = (0 , 0) , a 2 = (1 , 0) , as = (0 , 1) . Then
the basis functions (p e P k - P i are:

(pi = 1 - x - y

<p2 = X

(p3 = y .

6-node Quadratic triangle
Let K be a triangle in the x, y plane with vertices a\ - (0 , 0) , a 2 = (1 , 0) , as = (0 , 1), and edge
midpoints at a n = (y , 0) , a n = (0 , y) , fl23 = (y , y) . Then the basis functions
(p e P K = P i are:

(pi = (1 - x - y) (l - 2 x - 2 y)

(p2 = x(2 x - 1)

(ps = y (2 y - l)

(p 12 = 4x (l - x - y)

(p 13 = 4 y (l - x - y)

(p2s = 4 xy.

4-node Bilinear Quadrilateral
Let K be a square in the x ,y plane with vertices a \ = (- 1 , - 1) , a 2 = (1 , - 1) , as = (1 , 1) ,

« 4 = (- 1 , 1) . Then the basis functions (p £ Q k = Q i are:
(pi = 4 -(l - x) (l - y)

9 2 = f (x + 1)(1 - y)

(P3 = j (x + l) (y + 1)

Al-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(p4 = j (l ~ x) (y + 1).

8-node Biquadratic Quadrilateral
Let K be a square in the x , y plane with vertices a \ - (- 1 , - 1) , a.2 = (1 , - 1) , a 3 = (1 ,1) ,
a 4 = (- 1 , 1) , edge midpoints as = (0 , - 1) , ae = (1 ,0) , an = (0 ,1), a 8 = (-1 ,0) . Then the
basis functions q> e Qk = Qi are:

<pi = - t (1 ~ x) 0 - y) (x + y + 1)

<P2 = j (* + 1)(1 - y) (x - y - l)

<P3 = j (x + l) (y + l) (x + r - 1)

<P4 = — ~ x) (y + 1)(X - T + 1)
<ps = y (l - x) (x + 1)(1 - y)

<p6 = -y (x + 1) (1 - y) (y + 1)

q>7 = j- (x + 1) (1 - x) (y + 1)

p 8 = y (l ~ x) (y + 1) (1 - y) .

9-node Biquadratic Quadrilateral

Let K be a square in the x, y plane with vertices a i = (- 1 , - 1) , as - (1 , - 1) , <23 - (1 ,1) ,
a 4 = (- 1 , 1), edge midpoints a 5 = (0 , - 1), a 6 = (1 , 0), an = (0 , 1), a% = (- 1 , 0), and a
central node a$ = (0 ,0) . Then the basis functions <p <= Q k = Qs are:

<p 1 = t C 1 - x) (1 ~ y) %y

<pi = -q -(x + i) (i - y) * y

<P3 = j- (x + l) (y + \) xy

<P4 = —5-O - x) (y + \) x y

(ps = - y (l - x) (l - y) (x + \) y

<p6 = y (x + 1) (1 - y) (y + l) x

<p7 = y (* + 1) 0 + 1) (1 - x) y

(p% = - y (l - x) (y + 1) (1 - y) x

<p9 = (x + 1) (1 - x) (y + 1) (1 - y) .

A1.2. Three-dimensional elements

4-node Linear Tetrahedron
Let K be a tetrahedron in x, y , z with vertices a\ = (0 ,0 ,0) , as = (1 ,0 ,0) , as = (0 ,1 ,0) ,
a 4 = (0 ,0 ,1) . Then the basis functions q> & P K = P 1 are:

cp 1 = 1 - x - y - z

A l-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(P 2 = X

(P3 = y

(p4 = Z.

10-node Quadratic Tetrahedron
Let K be a tetrahedron in x , y , z with vertices a x = (0 , 0 , 0) , a 2 = (1 , 0 , 0) , a 3 = (0 , 1 , 0) ,

a 4 = (0 , 0 , 1) , and edge midpoint nodes a x2 = (y , 0 , 0) , a n = (0 , y , 0) , a x4 = (0 , 0 , y) ,

£23 = (y , y , 0) , a 24 = (y , 0 , y) , <234 = (0 , y , y) . Then the basis functions cp e P k = P i

are:

cpi - (1 — x — y — z) (l - 2x - 2y - 2z)

(p2 = x (2x - 1)
<p 3 = y(2y - 1)
(p4 = z (2z - 1)
(p 12 = 4 x (l - x - y - z)

cp 13 = 4y (l - x - y - z)

cp 14 = 4 z (l - x - y - z)

(P23 = 4 x y

(P24 = 4X Z

(P34 = 4y z .

8-node Trilinear Hexahedron
Let Z be a hexahedron in x,.y,z with vertices a i = (— 1,—1, — 1), a 2 = (1 ,—1,—1),
a 3 = (l , l , - l) , a-4 = (—1,1, —1), a s = (- l , - U) , a 6 = (1 , - 1 , 1) , a 7 = (1 , 1 , 1) ,
a% = (- 1 , 1 , 1) . Then the basis functions cp <= Q k = Q\ are:

<Pi = j (l - x) (l - y) (l - z)

(pi = y (x + 1)(1 - y) (1 - z)

<P3 = y (x + 1) 0 + 1)(1 - z)

q>4 = y (l - x) (y + 1) (1 - z)
< P 5 = y (1 - x) (l — y) (z + 1)
<P6 = y (x + 1)(1 - y) (z + 1)
(jo? = y (x + 1) 0 + l) (z + 1)

= y (l - x) (y + l) (z + 1).

27-node Triquadratic Hexahedron
Let K be a hexahedron in x , y , z with comer vertices a x = (—1,—1 , —1), a 2 = (1 , - 1 , —1),

A l - 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a s = (1 , 1 , —1) , 07 = (- 1 , 1 , - 1), 019 = (- 1 , - 1 , 1) , 021 = (1 , - 1 , 1) , 023 = (1 , 1 , 1),
025 = (- 1 , 1 , 1). Then the basis functions for Q k in Oi are:

(pi = - j (l - x) (l - > 0 (1 - z) x y z

<p2 = j (l - x) 0 + *)(1 -T)(l ~ z) y z

(pi = T - (l + x) (l - > 0 (1 - z) x y z

<p4 = - J - (l + x) (l - y) (1 + >0(1 - z) x z

<P5 = - y (l + x) (l + y) (l - z) x > z

(p(> = ~ t (1 + ^) (1 - *) (i + > 0(1 - z) > *

<p7 = y (l - x) (1 + >0(1 - z) x y z

<p% = -{-(l - x) (l + > 0 (i - y) (l - z) x z

<p9 = - y (l + x) (l - x) (l + y) (l - > 0 (1 - z) z

<Pio = y (l - *) (! - > 0 (1 - z) (1 + z > T

<Pn = - y (l — x) (l + x) (l - y) { 1 — z) (l + z) y

(p 12 = - y (l + x) (l - > 0 (1 - z) (l + z) x y

(p n = y (l + x) (l - > 0 (1 + > 0 (1 - *) (1 + z >

(p 14 = y (l + x) (l + >0(1 — z) (l + z)x>>

(Pis = | (1 + x) (l — x) (l + y) (1 - z) (1 + z) y

<E»16 = - | (1 - *) 0 + T) (1 - z) (1 + z) x y

<p 17 = — 2"(1 - x) (l + >0 (1 - > 0 (1 - z) (l + z) x

<pw = (1 + x) (l — x) (l + >0(1 ~ y) (1 - z) (l + z)

V 19 = y (l - *) 0 - > 0 (1 + Z > ^ z

(P20 = - y (l - x) (l + x) (l - > 0 (1 + z) > z

<P2i = - y (l + x) (l - y) (l + z) x y z

(P22 = y (l + x) (l - y) (1 + > 0 (1 + 2) x z

^23 = y (l + x) (l + >0(1 + z) x y z

(p24 = y (l + x) (l — x) (l + y) (1 + z) y z

<P25 = - 7 (1 — x) (l + >0 (1 + z) x y z

(p26 = “ (1 - X) (l + >0 (1 - > 0 (1 + z) x z

(P21 = y (l + X)(1 - x) (l + > 0 (1 - > 0 (1 + z) z .

Al-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix II:
Program Source Code Listings

The following C program is used to test the properties o f the different pyramidal elements
presented in section three. Note that the Meschach code library [Stewart, Leyk, 1994] is
required in order to compile this program.

/**
* Programmer: Kevin Davies
* File: pyrprog.c
* Version: 4.0
* Date last modified: Dec 12, 2004
* Description: This is the top-level program for testing pyramidal
* elements. When run, the user is prompted to select element type
* (5-node linear, 13-node or 14-node quadratic), symmetry settings
* true solution, solver method, and to enter the mesh control
* paremeter N.
* The user can also select whether to run the profram as a
* background process or interactively. Some options for output
* are also available.
*
* Note: This Program uses routines for sparse matrices from
* the Meschach code Library by David E. Steward & Zbigniew Leyk
* * * * ★ * ★ * ★ * * * * * * * /

#include <stdio.h>
ttinclude <stdlib.h>
ttinclude <math.h>
#include <time.h>

// following includes needed to spawn new processes
#include <sys/types.h>
#include <unistd.h>

// Meschach file includes:
ttinclude "../meschach/matrix.h"
ttinclude "../meschach/matrix2.h"
#include "../meschach/sparse.h"
ttinclude "../meschach/sparse2.h"
ttinclude "../meschach/iter.h"
j **★*** + *•*•★** Don s tants *********** j
// Boundry condition for all boundry nodes
ttdefine BOUNDRY 0
// value assigned to all node with unknowns
ttdefine INTERNAL -2 00
// output file containing true & approx. solution and error vectors
ttdefine PYR5 1
ttdefine PYR13 2
ttdefine PYR14_CASE_I 3
ttdefine PYR14 CASE II 4

A2-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ttdefine SYMMETRIC 1
ttdefine NONSYMMETRIC 2
ttdefine GAUSS_ELIM 1
ttdefine GAUSS_SEIDEL 2
ttdefine CG 3
// Absolute Size limit
ttdefine MAXSIZE 128
ttdefine CUBESIZE 1.0
ttdefine SOLFILE "solution.txt"
ttdefine MATFILE "matrix.m"
ttdefine TEMPFILE "matrix.temp"
// Log file containinig final errors and solution times
ttdefine LOGFILE "result-ctri-dec04-18.txt"

// Type definition for program timing structure
typedef struct {

clock_t begin_clock,
save_clock;

time_t begin_time,
save_time;

} time_keeper,-
■ A - *

11 ;
31;

/
const int quadDeg4pts
const int quadDeg7pts
int **elements;
double **nodeCors;
int **nodeTypes;
int noElemts, noCubes, noNodes,

Glabal variables *

/ /
/ /
/ /

int background;
int symBasis;

int pyrType;
int nodesPerElm;
double pi;
time_keeper tk;

// number of points for degree 4 quadrature
// number of points for degree 7 quadrature

array for elements
array for node coordinates
array for node types and boundry condition
unknowns = 0;

// true if spawning background process
// true if applying symmetries to basis functions,

// false otherwise
// type of pyramid to be used for calculation

// number of nodes per element

// timing variable

// constants for booleans
const int trueVal = 1;
const int falseVal = 0;

// include files containing basis functions and derivatives
ttinclude "pyrSbasis.c"
ttinclude "pyrl3basis.c"
ttinclude "pyrl4basis.c"
// include file contaiing true solutions
ttinclude "solution.c"
// include file for 11 point, degree 4 gaussian cubeature
ttinclude "cubeature4.c"
//' include file for 24 point, degree 6 gaussian cubeature
ttinclude "cubeature6.c"
// include file for 31 point, degree 7 gaussian cubeature
ttinclude "cubeature7.c"
// include file for 45 point, degree 8 gaussian cubeature
ttinclude "cubeatureS.c"
// include file for 87 point, degree 11 gaussian cubeature
ttinclude "cubeaturell.c "

// include files for constructing mesh and linear system

A2-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ttinclude "mesh_gen.c"
ttinclude "entry_intgrls.c "
// include file containing linear system solvers
ttinclude "solvers.c"
/*********** Function Prototypes ***********/
void init(int size);
void matrixGen(SPMAT *A, VEC *rhsv);
double det3x3(MAT *A);
void v_abs(VEC *v);
double rhs_entry(int i, MAT *X, double detj);
double elm_entry(int i, int j, MAT *X, double detj);
double solution(double x, double y, double z) ,-
double 12IntegNorm(VEC *uh);
double elemnlnteg(int elem, MAT *X, VEC *uh, double detj);
void start_time(void);
void stop_time(double *user_t, double *real_t);

int main(void) {

int size = 2 ; // (default) size of mesh (number of small cubes along
one side)

int selection; // variable to hold user selections
SPMAT *A, *LLT; // A is system matrix, LLT used in solving system
VEC *f, *U, *u_approx, ‘error, *uh; // f: RHS vector, U: true sol'n vector

// u_approx: approx sol'n vector,
// error: error vector

int save; // true/false save matrix & solution to files
int solverType; // Type of solver to be used
int cld; // child ID for forking backgroung process
int num_steps, i, j ;
double maxError, rowsum, L2norm; // variables for error
double user_time, real_time; // variables used for timing
int c;
char saveResponce, junk; // variabls to hold user selections
FILE *solOfp, *matOfp, *tempFile, *errorOfp,- // output files

// temp variables
int rowCount = 0, rowNonzeros = 0, totNonzeros = 0;

US03T Xnput * j

printf("\t Pyramidal Element - Test Program\n");
printf("\t Please select Element T y p e ------ \n")
printf("\t 5-Node Pyramid Element (l)\n")
printf("\tl3-Node Pyramid Element (2)\n")
printf("\tl4-Node Pyramid Element (3)\n")
printf("\tExit program (4)\n\t-> "),-
scanf("%d", &selection);
if ((selection <1) || (selection >3)) {

printf("Exiting program...\n");
exit (1);

}
else

if(selection = 1) {
pyrType = PYR5;

}
else

if(selection = 2) {
pyrType = PYR13;

A2-3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
else

i f (selection = 3) {
printf("\t PYR-14 - test program\n");
printf ("\t---------- Please make a selection--------- \n");
printf("\tCase I Basis functions (l)\n");
printf("\tCase II Basis functions (2)\n\t-> ");
scanf("%d", ^selection);
if (selection = 1)

pyrType = PYR14_CASE_I;
else

if(selection = 2)
pyrType = PYR14_CASE_II;

else {
printf("Invalid selection, Exiting program...\n");
exit(1);

}
}

if (pyrType = PYR5)
printf("\t PYR-5 - test program\n");

else
if(pyrType = PYR13)

printf ("\t PYR-13 - test program\n");
else

if(pyrType = PYR14_CASE_I) {
printf("\t PYR-14 - test program\n");
printf("\t Case I basis functions\n");

-}else {
printf("\t PYR-14 - test program\n");
printf("\t Case II basis functions\n");

}
printf ("\t----------Please make a selection---------\n")
printf("\tApply standard basis functions (1)\n")
printf("\tApply extra symmetries (2)\n")
printf("\tExit program (3)\n\t-> ");
scanf("%d", ^selection);
if(selection = 1) {

symBasis = falseVal;
printf("\tApplying standard basis functions\n");

}
else {

if(selection == 2) {
symBasis = trueVal;
printf("\tApplying extra symmetries\n");

}
else {

printf("Exiting program...\n");
exit (1);

}
}
printf("\t----- Please select Solver Method \n")
printf("\tGaussian Elimination (l)\n")
printf("\tGauss-Seidel (2)\n")
printf("\tPreconditioned Conjugate Gradient (3)\n\t->
scanf("%d", &selection);
if(selection — 1)

SOlverType = GAUSS_ELIM;
else

A2-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(selection = 2)
solverType = GAUSS_SEIDEL;

else
solverType = CG; //use CG by default

printf("\tPlease enter size of mesh (N-value)\n\t-> ");
scanf("%d", &size);
if ((size > MAXSIZE) || (size < 2)) {

printf("Cannot support mesh with N-value of: %d. Program halted\n",
size);

exit(1);
}printf("\tSave matrix and solution to files? (y/n)\n\t-> ");
scanf("%c%c", &junk, &saveResponce);
i f ((saveResponce = 'y') || (saveResponce = 'Y'))

save = 1;
else

save = 0;
printf("\tSpawn background process? (y/n)\n\t-> ");
scanf("%c%c", &junk, ksaveResponce) ;
i f ((saveResponce = 'y') || (saveResponce = 'Y'))

background = 1;
else

background = 0 ;

if(background) {
printf("Spawning child process for calculations\n");
printf("Results will be writen to: %s\n", LOGFILE);
if ((cld = forkO) != 0) {

printf("child pid: %d\n", cld);
return 0;

}
}

y******************* Gsn02T3.ts System ***★**★*'******'*★**★***'*•***★ j
init(size) ;
makeMesh(size); // #of unknowns not known until this done

// Allocate matrix and vectors
A = sp_get (unknowns, unknowns, 27);
f = v_get(unknowns);
U = v_get(unknowns);
error = v_get(unknowns);
// printf("generating system matrix and RHS...\n");

matrixGen(A, f) ;
if (save) {

tempFile = fopen (TEMPFILE, "w"),-
i f (!tempFile)

printf("Unable to save to matrix file\n");
else {

printf("Saving matrix to file %s\n", MATFILE) ;
for(i = 0 ; i< unknowns; i++) {

for (j = 0; j< unknowns; j++) {
if(sp_get_val(A, i, j) != 0.0) {

fprintf(tempFile, "%d,%d,%.lOf\n",i ,j ,sp_get_val(A, i, j));
rowCount++;

}
}

A2-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(rowCount > rowNonzeros)
rowNonzeros = rowCount;

totNonzeros += rowCount;
rowCount = 0;

}
printf("the most non-zero entries in a row is: %d\n", rowNonzeros);
printf("Total non-zero entries is: %d\n", totNonzeros);
fclose(tempFile);
matOfp = fopen(MATFILE, "w");
tempFile = fopen(TEMPFILE, "r");
i f (!tempFile || ImatOfp)

printf("Unable to save to matrix file\n");
else {

fprintf(matOfp, "%d,%d,%d\n", unknowns, unknowns, totNonzeros);
c = getc(tempFile);
while (c != EOF) {

putc(c, matOfp);
c = getc(tempFile);

}
fclose(matOfp);
fclose (tempFile) ,-

}remove(TEMPFILE);

★★★★★★★★★★★★★★★★★★★★★★★★★ Solve System

u_approx = v_get(A->m);

// Start timer
start_time();
if(solverType == GAUSS_ELIM) {

naiveGauss(A, f, u_approx);
}
else

if(solverType == GAUSS_SEIDEL) {
for(i = 0; i < A->m; i++)

u_approx->ve[i] = 0.0; // Use zero vector as initial guess
GaussSeidel(A, f, u_approx, 100, 0.000001, 1.0);

}
else

if(solverType = CG) {
LLT = sp_copy(A);
spICHfactor(LLT);
iter_spcg(A, LLT, f ,le-7, u_approx, 1000, &num_steps);

}
// stop timer

stop_time(&user_time, &real_time);

// *** Done solving ***

f o r d = 0; i < noNodes; i++) {
if (nodeTypes[i][1] < 0)

U->ve[nodeTypes [i] [0]-1] = solution(nodeCors [i] [0],
nodeCors [i] [1], nodeCors[i] [2]);

}

y'************ Calculate eiriroir ■*★★****★*********★*★*★★**★ j
v_sub(U, u_approx, error);

A2-6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maxError = v_norm_inf(error);

i f (!save) {
V_FREE(U);
V_FREE(error);

}
uh = v_get(noNodes);
for(i = 0 ; i < noNodes; i++) {

if (nodeTypes [i] [1] = BOUNDRY) {
uh->ve [i] = 0 .0;

}
else {

uh->ve[i] = u_approx->ve [nodeTypes [i] [0]-1] ;
}

}
L2norm = 12IntegNorm(uh);

w^its to output files + j

i f (Ibackground) {
printf("Maximum error for size %d mesh: %.10f\n", size, maxError);
printf("L2 norm of error for size %d mesh: %.10f\n", size, L2norm);
printf("User time to solve system: %.10f sec.\n", user_time);
printf("Real time to solve system: %.10f sec.\n", real_time);

}
errorOfp = fopen(LOGFILE, "a");
if(errorOfp) {

switch(pyrType) {
case PYR5:

fprintf(errorOfp, "Results for 5-node Pyramidal Element:\n") ;
break;

case PYR13:
fprintf(errorOfp, "Results for 13-node Pyramidal Element:\n");
break;

case PYR14_CASE_I:
fprintf(errorOfp, "%s\n",

"Results for 14-node Pyramidal Element, and Case I Basis:")
break;

case PYR14_CASE_II:
fprintf(errorOfp, "%s\n",

"Results for 14-node Pyramidal Element, and Case II Basis:"
}
if(symBasis)

fprintf(errorOfp, "%s\n",
"Applying extra symmetries to basis functions results in:")

else
fprintf(errorOfp,"Applying standard basis functions results in:\n

fprintf(errorOfp, "Maximum error for size %d mesh: %.10f\n",
size, maxError);

fprintf(errorOfp, "L2 norm of error for size %d mesh: %.10f\n",
size, L2norm);

switch(solverType) {
case GAUSS_ELIM:

fprintf(errorOfp, "Solution time using Gaussian Elimination:\n");
break;

case GAUSS_SEIDEL:
fprintf(errorOfp, "Solution time using Gauss-Seidel:\n");
break;

case C G :

A2-7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fprintf(errorOfp, "%s\n",
"Solution time using Conjugate Gradient with preconditioning:")

}
fprintf(errorOfp,"User time to solve system: %.10f sec.\n",user_time);
fprintf(errorOfp,"Real time to solve system: %.10f sec.\n",real_time),•
fclose(errorOfp);

}
if(save) {

solOfp = fopen(SOLFILE, "w");
i f (!solOfp)

printf("Unable to write to output file\n");
else {

fprintf(solOfp, "Node # True Sol'n Approx. Sol'n Error\n");
for(i = 0 ; i < noNodes; i++) {

if (nodeTypes [i] [1] == BOUNDRY) {
fprintf(solOfp, "%d %f %f %f\n", i, 0.0, 0.0, 0.0);

}
else {

fprintf(solOfp, "%d %f %f %f\n",i ,U->ve[nodeTypes[i] [0]-1]
u_approx->ve[nodeTypes [i] [0]-1] ,
error->ve[nodeTypes [i] [0]-1]) ;

}
}

}
fclose(solOfp);

}
return 0;

} //end main

★
* Initialization function to allocate memory and set global variables
★

void init(int size) {

int i;
noElemts = 6.0 * pow(size, 3);
noCubes = pow(size, 3);
if(pyrType = PYR5) {

noNodes = pow(size+l, 3) + pow(size, 3);
nodesPerElm = 5;

}
else

if(pyrType = PYR13) {
noNodes = 13.0*pow(size, 3) + 9.0*pow(size, 2) + 6.0*size + 1;
nodesPerElm = 13;

}
else { // Assume 14-node

noNodes = 16.0*pow(size, 3) + 12.0*pow(size, 2) + 6.0*size + 1;
nodesPerElm = 14;

}

pi = 4.0 * atan (1.0);

elements = malloc(sizeof(int*) * noElemts); // one row per element
if (elements = NULL) {

printf("Memory allocation error -- program halted\n");
exit(1) ;

A2-8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o r d = 0; i < noElemts; i++) {
elements[i] = malloc(sizeof(int) * nodesPerElm);
if (elements [i] == NULL) {

printf("Memory allocation error -- program halted\n");
exit(1);

}
}
nodeCors = malloc (sizeof(double*) * noNodes); // one row per node
if (nodeCors = NULL) {

printf("Memory allocation error -- program halted\n");
exit(1);

}
for(i = 0 ; i < noNodes; i++) {

nodeCors[i] = malloc(sizeof(double) * 3); //three corrdinates per node
if (nodeCors [i] = NULL) {

printf("Memory allocation error -- program halted\n");
exit (1) ;

}
}
nodeTypes = malloc(sizeof(int*) * noNodes); // one row per node
if (nodeTypes = NULL) {

printf("Memory allocation error -- program halted\n");
exit(1);

}
for(i = 0 ; i < noNodes; i++) {

nodeTypes [i] = malloc(sizeof(int) * 2) ; // two entries per node
if (nodeTypes [i] = NULL) {

printf("Memory allocation error -- program halted\n");
exit (1);

}
}

// Generate system matrix and RHS vector
void matrixGen(SPMAT *A, VEC *rhsv) {

int firstTime = TRUE, i, j, k, 1, m, Ai, A j , ri;
double tempi, temp2, detj;

MAT *X, *Jac; // X; matrix containing x,y,z coordinates,
// Jac: Jacobian matrix

X = m_get(nodesPerElm, 3);
Jac = m_get(3,3);

for(k = 0 ; k < noElemts; k++) {

i f (Ibackground) { // show progress
i f ((k % (noElemts/10)) = 0)

printf("building element entry %d of %d total entries\n",
k, noElemts);

}
for(i = 0; i < nodesPerElm; i++) {

if (nodeTypes(elements[k][i]][1] < 0) {
for(l = 0 ; 1 < nodesPerElm; 1++) {

for(m = 0 ; m < 3; m++)
X->me[1] [m] = nodeCors[elements [k] [1]] [m] ;

}

A2-9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (firstTime = TRUE) {
jacob(X, Jac) ;
detj = det3x3(Jac);
firstTime = FALSE;

}
tempi = rhs_entry(i, X, detj);
ri = nodeTypes[elements[k] [i]] [0]-1;
rhsv->ve[ri] = rhsv->ve[ri] + tempi;
for(j = 0; j < nodesPerElm,- j++) {

if (nodeTypes[elements[k][j]][1] < 0) {
temp2 = elm_entry(i, j, X, detj);
Ai = nodeTypes[elements[k] [i]] [0]-1;
Aj = nodeTypes[elements[k] [j]] [0]-1;
temp2 = temp2 + sp_get_val (A, Ai, Aj) ,-
sp_set_val(A, Ai, A j , temp2);

}
}

}
}

}
M_FREE(X);
M_FREE (Jac) ;

}

// Function to calculate deteminant of 3x3 matrix
double det3x3(MAT *A) {

double det;

det=(A->me[0] [0]*A->me[1][1]*A->me[2] [2]-
A->me[0] [0]*A->me[1] [2]*A->me [2] [1]) -
(A->me[0] [l]*A->me[l] [0]*A->me[2] [2]-
A->me [0] [l]*A->me[l] [2]*A->me[2] [0]) +
(A->me [0] [2]*A->me[l] [0]*A->me[2] [1]-
A->me[0] [2]*A->me[1] [1]*A->me[2] [0]) ;

return det;
}

// Function to make vector absolute value
void v_abs(VEC *v) {

int i;

for(i = 0 ; i < v->dim; i++) {
if(v->ve[i] < 0.0)

v->ve[i] = -1.0 * v->ve[i] ;
}

}

* Author: Kevin Davies
* Description: function for finding a single RHS load vector entry.
* inputs:
* X - a matrix of global coordinates, s.t.
* the first column consists of the x coordinate values, the second
* column consists of y values, and the third consists of z values.
* i - element node index
* detj - determinant of Jacobian matrix
* outputs:
* returns value to be added to RHS vector entry

A2-10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double rhs_entry(int i, MAT *X, double detj) {
int j ;
double vol = 1.0/3.0, ui = 0.0;

if(symBasis) {
for(j = 1; j <=4; j++) {

ui = ui + rhs_tet(X, i, j);
}

}
else {

vol = 2.0/3.0;
for(j = 1; j <=2; j++) {

ui = ui + rhs_tet(X, i, j);
}

}
ui = (ui * detj * vol);
return ui;

}

% Function: elm_entry
% Description: function to find value of i,j-th entry of the element
% matrix.
% inputs:
% X - a matrix of global coordinates, s.t.
% the first column consists of the x coordinate values, the second
% column consists of y values, and the third consists of z values.
% i,j - the i,j index values indicating the current entry in the
% element matrix.

double elm_entry(int i, int j, MAT *X, double detj) {
double aij = 0.0, vol = 1.0/3.0;
int k;
if(symBasis) {

for(k = 1; k <= 4; k++) {
aij = aij + tet(X, i, j, k) ;

}
}
else {

vol = 2.0/3.0;
f or (k = 1 ; k <= 2 ; k++) {

aij = aij + tet(X, i, j, k);
}

}
aij = (aij * detj * vol);
return aij;

}

/

Funtion for calculating L_2 Norm of error
(i.e., ||u-u_h||_{L_2})

double 12IntegNorm(VEC *uh) {
double 12norm = 0.0, elemSum = 0.0;

A2-11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int firstTime = TRUE, i, j, k, 1, m;
double detj;

MAT *X, *Jac; // X: matrix containing x,y,z coordinates,
// J a c : Jacobian matrix

X = m_get(nodesPerElm,3);
Jac = m_get(3,3);
for(k = 0; k < noElemts; k++) {

for(l = 0; 1 < nodesPerElm,- 1++) {
for(m = 0 ; m < 3; m++)

X->me[l] [m] = nodeCors [elements[k] [1]] [m];
}
if (firstTime = TRUE) {

jacob(X, Jac);
detj = det3x3(Jac);
firstTime = FALSE;

}
elemSum = elemSum + elemnlnteg(k, X, uh, detj);

}
M_FREE(X);
M_FREE(Jac);
12norm = sqrt(elemSum);
return 12 norm,-

}

/*************★*************★**★***********************************
★
* Support function for calculating error norm, find integral
* over element.
*

double elemnlnteg(int elem, MAT *X, VEC *uh, double detj) {

int tet, noTets;
double tetlnteg = 0.0, vol;
MAT *N, *A, *K ;
VEC *Q;
int k, m, i, quadPoints;
double temp = 0.0, temp2, wi;
N = m_get(1,nodesPerElm);
A = m_get(3,4);
K = m_get (1,3) ;
Q = v_get (3);
switch(pyrType) {

case PYR5:
quadPoints = quadDeg4pts;
break;

case PYR13 •.
quadPoints = quadDeg7pts;
break;

case PYR14_CASE_I:
quadPoints = quadDeg7pts;
break;

case PYR14_CASE_II:
quadPoints = quadDeg7pts;

}
if(symBasis) {

vol = 1.0/3.0;
noTets = 4;

}

A2-12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vol = 2.0/3.0;
noTets = 2;

}
for(tet = 1; tet <= noTets; tet++) {

getTetPoints(A, tet);
for(k = 0 ; k < quadPoints; k++) {

switch(pyrType) {
case PYR5:

cubature4(A, k+1, Q, &wi) ;
break;

case PYR13:
cubature7(A, k+1, Q, &wi);
break;

case PYR14_CASE_I:
cubature7(A, k+1, Q, &wi) ;
break;

case PYR14_CASE_II:
cubature7(A, k+1, Q, &wi);

}
for(m = 1 ; m <= nodesPerElm; m++) {

if(symBasis) {
switch(pyrType) {
case PYR5:

N->me[0][m-1] = pyrSsymBasis(m-1, Q->ve[0],
Q->ve [1], Q->ve[2]);

break;
case PYR13 :

N->me[0] [m-1] = pyrl3symBasis (m-1, Q->ve[0],
Q->ve [1], Q->ve[2]);

break;
case PYR14_CASE_I:

N->me[0][m-1] = pyrl4ClsymBasis(m-1, Q->ve[0],
Q->ve [1] , Q->ve[2])

break;
case PYR14_CASE_II:

N->me[0][m-1] = pyrl4C2symBasis(m-1, Q->ve[0],
Q->ve [1] , Q->ve[2])

}
}
else {

switch(pyrType) {
case PYR5:

N->me[0][m-1] = pyrSbasis(m-1, Q->ve[0],
Q->ve [1] , Q->ve [2]);

break;
case PYR13;

N->me [0] [m-1] = pyrl3basis (m-1, Q->ve[0],
Q->ve[1] , Q->ve[2]);

break;
case PYR14_CASE_I:

N->me[0][m-1] = pyrl4Clbasis(m-1, Q->ve[0],
Q->ve[1] , Q->ve [2]) ;

break;
case PYR14_CASE_II:

N->me[0][m-1] = pyrl4C2basis(m-1, Q->ve[0],
Q->ve[1], Q->ve[2]);

}
}

A2-13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m_mlt(N, X, K);
temp = 0.0;
for(i = 0 ; i < nodesPerElm; i++) {

if(symBasis) {
switch(pyrType) {
case PYR5:

temp = temp + uh->ve[elements [elem] [i]] *
pyrSsymBasis (i, Q->ve [0], Q->ve[l], Q->ve [2]) ;

break;
case PYR13 :

temp = temp + uh->ve[elements [elem] [i]] *
pyrl3symBasis(i, Q->ve[0], Q->ve[1], Q->ve[2]);

break;
case PYR14_CASE_I:

temp = temp + uh->ve[elements [elem] [i]] *
pyrl4ClsymBasis(i, Q->ve[0], Q->ve [1], Q->ve[2])

break;
case PYR14_CASE_II:

temp = temp + uh->ve[elements[elem] [i]] *
pyrl4C2symBasis(i, Q->ve[0], Q->ve [1], Q->ve[2])

}

}
else {

switch(pyrType) {
case PYR5:

temp = temp + uh->ve[elements[elem] [i]] *
pyr5basis(i, Q->ve [0], Q->ve[1] , Q->ve[2]);

break;
case PYR13:

temp = temp + uh->ve[elements [elem] [i]] *
pyrl3basis (i, Q->ve[0], Q->ve[1], Q->ve[2]);

break;
case PYR14_CASE_I:

temp = temp + uh->ve[elements [elem] [i]] *
pyrl4Clbasis (i, Q->ve[0], Q->ve[1], Q->ve[2]);

break;
case PYR14_CASE_II:

temp = temp + uh->ve[elements [elem] [i]] *
pyrl4C2basis (i, Q->ve[0], Q->ve[1], Q->ve[2]);

}

}
}temp2 = solution(K->me[0][0], K->me[0][1], K->me[0][2]) - temp;
tetlnteg = tetlnteg + wi * pow(temp2, 2);

}
}
M_FREE(N);
M_FREE(A);
M_FREE(K);
V_FREE(Q);
return (tetlnteg * vol * detj);

}

★
* Timing functions to start/stop test clock

A2-14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void start_time(void) {
t k .begin_clock = t k .save_clock = clock ();
t k .begin_time = tk.save_time = time(NULL);

}

void stop_time(double *user_t, double *real_t) {
t k .save_clock = clock();
tk.save_time = time(NULL);
*user_t = (tk.save_clock - tk.begin_clock) / (double) CLOCKS_PER_SEC;
*real_t = difftime(tk.save_time, tk,begin_time);

}

A2-15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Author: Kevin Davies
* File mesh_gen.c
* Version: 4.0
* Date last modified: Dec 15, 2004
* Description: functions for forming correspondence between element
* nodes numbers and global node numbering, as well as calculating
* global nodal coordinate values.

* 5-Node Pyramid Case

void pyr5mesh(int size) {
int i,j,k, index, size_sq, size_pl_sq;
int l,m; // variables for testing

size_sq = pow(size, 2);
size_pl_sq = pow(size+l, 2);
for(i = 0; i < size,- i++) { // each layer of cubes

for(j = 0 ; j < size; j++) { // each row of cubes
for(k = 0 ; k < size; k++) { // each column of cubes

// 1st (bottom) element of the cube
index = (i*size*size+j*size+k)*6;
elements[index] [0] = (size_pl_sq + size_sq) *

(i+1) + (size+1) * j + k;
elements[index] [1] = (size_pl_sq + size_sq) *

(i+1) + (size+1) * j + k+ 1;
elements[index] [2] = (size_pl_sq + size_sq) * i +

(size+1) * j + 1 + k;
elements[index] [3] = (size_pl_sq + size_sq) *

i + (size+1) * j + k;
elements[index][4] = size_pl_sq * (i+1) + size_sq

* i + (size) * j + k ;
// 2nd (right-side) element of the cube

[0] = (size_pl_sq + size_sq) *
(i+1) + (size+1) * j + k+ 1;

[1] = (size_pl_sq + size_sq) * (i+1)
+ (size+1) * j + k+ 1 + size+1;

[2] = (size_pl_sq + size_sq) * i+(size+l)*
j + 1 + k+ size+1;

[3] = (size_pl_sq + size_sq) * i+(size+l)*
j + 1+ k;

[4] = size_pl_sq * (i+l)+size_sq * i+(size)
j + k;

element of the cube
[0] = (size_pl_sq+size_sq) * (i+1)+ (size+1)

j + k+ 1 + size+1;
[1] = (size_pl_sq+size_sq) * (i+1) + (size+1)

j + k+ size+1;
[2] = (size_pl_sq+size_sq) * i+(size+1)*

j + k+ size+1;
[3] = (size_pl_sq+size_sq) * i+(size+l)*

j + k+ 1 + size+1;
[4] = size_pl_sq * (i+l)+size_sq * i+(size)

j + k;
side) element of the cube
[0] = (size_pl_sq+size_sq) * (i+1)+ (size+1)

elements [index+1

elements [index+1

elements [index+1

elements [index+1

elements [index+1

// 3rd (top)
elements [index+2

elements [index+2

elements [index+2

elements [index+2

elements [index+2

// 4th (left-
elements[index+3

A2-16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elements[index+3

elements[index+3

elements[index+3

elements[index+3

// 5th (front
elements[index+4

elements[index+4

elements[index+4

elements[index+4

elements[index+4

// 6th (back)
elements[index+5

elements[index+5

elements[index+5

elements[index+5

elements[index+5

j + k+ size+1;
1] = (size_pl_sq+size_sq) * (i+l)+(size+1)*

j+ k;
2] = (size_pl_sq+size_sq) * i+(size+1)*

j+ k;
3] = (size_pl_sq+size_sq) * i+(size+l)*

j + k+ size+1;
4] = size_pl_sq * (i+l)+size_sq * i+(size)*

j + k;
element o f the cube
0] = (size_pl_sq+size_sq) * (i+l)+(size+1)*

j + k+ size+1;
1] = (size_pl_sq+size_sq) * (i+1) + (size+1) *

j + k+ 1 + size+1;
2] = (size_pl_sq+size_sq) * (i+1)+ (size+1)*

j + k+ 1 ;
3] = (size_pl_sq+size_sq) * (i+1)+ (size+1)*

j+ k;
4] = size_pl_sq * (i+1)+size_sq * i+(size)*

j + k ;
element o f the cube
0] = (size_pl_sq + size_sq) * i+(size+l)*

j+ k;
1] = (size_pl_sq + size_sq) * i+(size+l)*

j + k+ 1;
2] = (size_pl_sq + size_sq) * i+(size+l)*

j + k+ 1 + size+1;
3] = (size_pl_sq + size_sq) * i+(size+1)*

j + k+ size+1;
4] = size_pl_sq * (i+1)+size_sq * i+(size)*

j + k ;

}

void pyrSmapping(int size) {
int nodeindex, i, j, k;

// calculate x,y,z coordinates for corner nodes of small cubes
f o r d = 0; i < size+1; i++) { // each layer of cubes

for(j = 0 ; j < size+1; j++) { // each row of cubes
for(k = 0 ; k < size+1; k++) { // each column of cubes

nodeindex = (int) (pow(size+l, 2) + pow(size, 2))*i+(size+1)*j+k;
nodeCors[nodeindex][0] = (double) k*CUBESIZE/size;
nodeCors[nodeindex][1] = (double) j*CUBESIZE/size
nodeCors[nodeindex][2] = (double) i*CUBESIZE/size

}
}

// calculate x,y,z coordinates for centre nodes of cubes
for(i = 0; i < size; i++) { // each layer of cubes

for(j = 0 ; j < size; j++) { // each row of cubes
for(k = 0 ; k < size; k++) { // each column of cubes

nodeIndex=(int)pow(size+1,2) * (i+1)+ (int)pow(size , 2) *i+(size)*j+k;
nodeCors [nodeIndex] [0] = (double)k*CUBESIZE/size+CUBESIZE/(size*2) ;
nodeCors [nodeindex] [l] = (double)j*CUBESIZE/size+CUBESIZE/(size*2) ;
nodeCors[nodeIndex] [2] = (double)i*CUBESIZE/size+CUBESIZE/(size*2);

A2-17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
}

}
f o r d = 0; i < noNodes;i++) {

// determine surface nodes for
if ((nodeCors[i][0] == 0 . 0) ||

(nodeCors [i] [1] = 0.0)
(nodeCors [i] [2] = 0.0)

nodeTypes [i] [0] = 0;
nodeTypes [i] [1] = BOUNDRY;

(nodeCors[i] [0] = 1 . 0) | |
| (nodeCors[i] [1] = 1 . 0) | |
j (nodeCors[i] [2] = 1 . 0)) {

}
}

}
else {

nodeTypes [i] [0] = ++unknowns;
nodeTypes [i] [1] = INTERNAL;

}

* 13-Node Pyramid Case *

void pyrl3mesh(int size) {
int i,j,k, index, size_sq, layerOffset;
int l,m; // variables for testing

size_sq = (int)pow(size, 2);
layerOffset = 13.0*size_sq + 6.0*size + 2;
f o r d = 0; i < size; i++) { // each layer of cubes

for(j = 0; j < size; j++) { // each row of cubes
for(k = 0 ; k < size; k++) { // each column of cubes

// 1st (bottom) element of the cube
index = (i*size*size+j*size+k)*6;
elements[index] [0] = (i+1)*layerOffset +j* (3*size+2) +2*k;
elements[index] [1] = (i+1)*layerOffset +j* (3*size+2) +2*k +1;
elements[index] [2] = (i+1)*layerOffset +j* (3*size+2) +2*k +2;
elements [index] [3] = i*layerOffset

+ 4*size +2;
+j* (2 *si

elements [index] [4] = i*layerOffset +j* (3 *si
elements [index] [5] = i*layerOffset +j* (3 *si
elements [index] [6] = i*layerOffset +j* (3 *si
elements [index] [7] = i*layerOffset

+ 4*size + 1;
+j* (2 *si

elements [index] [8] = i*layerOffset
+ 6*size + 2;

+j* (4*si

elements [index] [9] = i*layerOffset
+ 6*size +3;

+j* (4*si

elements [index] [10] = i*layerOffse
+ 4*size +2;

t +j * (4*s

elements [index] [11] = i*layerOffset +j * (4*s
+ 4*size +1;

elements [index] [12] = i*layerOffset +j * (2*s
+ 5*size +2;

// 2nd (right-si de) element of the cube
index++;
elements[index] [0] = (i+1)*layerOffset +j*(3*size+2) +2*k+2;
elements[index] [1] = (i+1)*layerOffset +j* (3*size+2)+k+2*size+2;
elements[index] [2] = (i+1)*layerOffset + (j+1)* (3*size+2)+2*k +2;
elements[index] [3] = i*layerOffset + (j+1)* (2*size+l)+k+7*size_sq

A2-18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elements [index]
elements [index]
elements [index]
elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

// 3rd (top)
index++;
elements [index]
elements [index]
elements [index]
elements [index]

elements [index]
elements [index]
elements [index]
elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

// 4th (left
index++;
elements [index]
elements [index]
elements [index]
elements [index]

elements [index]
elements [index]
elements [index]
elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

elements [index]

+ 4*size +2;
4] = i*layerOffset +(j+1)* (3*size+2) +2*k +2;
5] = i*layerOffset +j*(3*size+2) +k +2*size +2;
6] = i*layerOffset +j* (3*size+2) +2*k +2;
7] = i*layerOffset +j*(2*size+l) +k +7*size_sq

+ 4*size +2;
i] = i*layerOffset +j*(4*size) +2*k +9*size_sq

+ 6*size +3 ;
)] = i*layerOffset +j*(4*size) +2*k +9*size_sq

+ 8*size +3;
10] = i*layerOffset +j*(4*size) +2*k +3*size_sq

+ 6*size +2;
11] = i*layerOffset +j*(4*size) +2*k +3*size_sq

+ 4*size +2;
12] = i*layerOffset +j* (2*size+l) +k +7*size_sq

+ 5*size +2;
element of the cube

0] = (i+1)*layerOffset +(j+1)* (3*size+2)+2*k+2;
1] = (i+1)*layerOffset +(j+1)* (3*size+2)+2*k +1;
2] = (i+1)*layerOffset + (j+1)* (3*size+2)+2*k;
3] = i*layerOffset +(j+1)* (2*size+l)+k+7*size_sq

+ 4*size + 1;
4] = i*layerOffset+(j+1)* (3*size+2)+2*k;
5] = i*layerOffset+(j+1)* (3*size+2)+2*k +1;
6] = i*layerOffset+(j+1)*(3*size+2)+2*k +2;
7] = i*layerOffset+(j+1)* (2*size+l)+k+7*size_sq

+ 4*size +2;
8] = i*layerOffset +j* (4*size)+2*k+9*size_sq

+ 8*size + 3;
9] = i*layerOffset +j* (4*size)+2*k+9*size_sq

+ 8*size + 2;
10] = i*layerOffset +j* (4*size)+2*k+3*size_sq

+ 6*size + 1;
11] = i*layerOffset +j* (4*size)+2*k+3*size_sq

+ 6*size + 2 ;

12] = i*layerOffset +j* (2*size+l)+k+7*size_sq
+ 5*size + 2;

side) element of the cube

0] = (i+1)*layerOffset+(j+1)* (3*size+2) +2*k;
1] = (i+1)*layerOffset+j* (3*size+2)+k+2*size+l;
2] = (i+1)*layerOffset+j* (3*size+2)+2*k;
3] = i*layerOffset + j* (2*size+l)+k+7*size_sq

+ 4*size + 1;
4] = i*layerOffset+j* (3*size+2)+2*k;
5] = i*layerOffset+j* (3*size+2)+k+2*size+l;
6] = i*layerOffset+(j+1)* (3*size+2)+2*k;
7] = i*layerOffset+(j+1)* (2*size+l)+k+7*size_sq

+ 4*size + 1;
8] = i*layerOffset +j*(4*size) +2*k +9*size_sq

+ 8*size + 2;
9] = i*layerOffset +j*(4*size) +2*k +9*size_sq

+ 6*size + 2;
10] = i*layerOffset +j* (4*size)+2*k+3*size_sq

+ 4*size + 1;
11] = i*layerOffset +j*(4*size) +2*k +3*size_sq

+ 6*size + 1;
12] = i*layerOffset +j* (2*size+l) +k +7*size_sq

A2-19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// 5th (frort)
index-H-;
elements[index][0]
elements[index] [l]
elements[index][2]
elements[index] [3]
elements[index] [4]
elements[index] [5]
elements[index] [6]
elements[index] [7]
elements[index][8]

+ 5*size + 2;
element of the cube

(i+1) *layerOf f set-1- (j+1) * (3♦size+2)+2♦k;
(i+1)*layerOffset+(j+1)* (3*size+2)+2*k +1;
(i+1)*layerOffset+(j+l)*(3*size+2)+2*k +2;
(i+1)*layerOffset+ j * (3*size+2)+k+2*size+2;

* layerOffset+ j * (3*size+2)+2*k+2;

elements[index] [9] = i +

elements[index] [10]
+ J

= i
+ *

elements[index] [11] = i
+ i

= i
+ :

elements[index] [12]

// 6th (back) elemen
i ndex++;
elements[index] [0] - i*;
elements[index] [1] = i*;
elements[index] [2] = ± * [

elements[index] [3] = i*:
elements[index] [4] = i*
elements[index] [5] = i *
elements[index] [6] — i*;
elements[index] [7] = i*
elements[index] [8] = i*

+ ■
elements[index] [9] - i*'

elements[index] [10]
+

= i
+ ■

elements[index] [11] = i
+

elements[index] [12] = i
+

(i + 1)
(i+1)* layerOffset+ j * (3*size+2)+2*k+1;
(i+1)* layerOffset+ j * (3*size+2)+2*k;
(i+1)*layerOffset+ j * (3*size+2)+k+2*size+l;
i*layerOffset +j* (4*size)+2*k+9*size_sq
+ 8*size + 2;

layerOffset +j*(4*size) +2*k +9*size_sq
8*size + 3;
♦layerOffset +j* (4*size)+2*k+9*size_sq
6*size + 3;
♦layerOffset +j♦ (4isize)+2ik +9^size_sq
6♦size + 2;

i^layerOffset +j♦ (2^size+l) +k +7tsize_sq
5^size +
t of the

2 ;
cube

layerOffset
layerOffset
layerOffset
layerOffset
layerOffset
layerOffset
layerOffset
layerOffset

i^layerOffset

+j♦(3♦size+2) +2♦k;
+j♦(3♦size+2) +2^k +1;
+j+ (3^size+2) +2♦k +2;
+j♦(3♦size+2) +k+ 2+size +2,
+ (j+1)♦ (3^size+2)+2^k +2;
+ (j+1)♦ (3^size+2)+2^k +1;
+ (j+1)♦ (3^size+2)+2^k;
+j♦ (3♦size+2) + k+2 + size+l;
+j4 (4^size) +2^k+3^size_sq

4^size + 1;
i^layerOffset+j♦ (4tsize)+2^k+3ysize_sq

4♦size + 2;
i^layerOffset+j♦(4♦size)+2ik+3isize_sq
6♦size + 2;

i^layerOffset+j♦(4♦size)+2^k+3tsize_sq
6♦size + 1;

= i^layerOffset+j♦ (2isize+l)+k+7^size_sq
5+size + 2;

void pyrl3mapping(int size) {
int nodeindex, offset, size_sq, i, j, k;

// calculate x,y,z coordinates for
size_sq = (int)pow(size, 2);
offset = 13 ♦ size_sq + 6 ♦ size +
for(i = 0; i < size+1; i++) {

for(j = 0 ; j < size+1; j++) {
for(k = 0 ; k < size+1; k++)
// node 3

nodeindex = i^offset + j
nodeCors[nodeindex] [0] =
nodeCors[nodeindex] [1] =

corner nodes of small cubes

2 ;
// each layer of

// each row of
{ // each

cubes
cubes

column of cubes

(3♦size+2) + 2^k;
(double) k/size;
(double) j/size;

A 2-20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodeCors[nodeindex] [2] = (double) i/size;
i f (i < size) {
// node 03

nodeindex = i*offset +
nodeCors[nodeindex][0]
nodeCors[nodeindex][1]
nodeCors[nodeindex][2]

7*size_sq+4*size+l+j *(2 *size+1)+k;
= (double) k/size;
= (double) j/size;
= (double) i/size + 1.0/(2.0*size)

if(k < size) {
// node 23

nodeindex = i*offset +
nodeCors [nodeindex] [0]
nodeCors [nodeindex] [1]
nodeCors[nodeindex][2]

j*(3*size+2) + 2*k + 1;
= (double) k/size + 1.0/(2.0*size);
= (double) j/size;
= (double) i/size;

}
i f (j < size) {
// node 23 in 90 degree _clockwise_ rotation

nodeindex = i*offset + j*(3*size+2) + k + 2*size+l;
nodeCors[nodeindex][0] = (double) k/size;
nodeCors[nodeindex][1] = (double) j/size + 1.0/(2.0*size)

}
if

nodeCors[nodeindex][2] = (double) i/size;

&& (j < size) && (k < size))((i < size) && (j < size) && (k < size)) {
// node 34

nodeindex = i*offset + 3*size_sq + 4*size+l+j* (4*size)+2*k;
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(4.0*size);
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4.0*size);

// node 14
nodeindex = i*offset +3*size_sq +4*size+l+j* (4*size)+2*k+l;
nodeCors [nodeindex] [0] = (double) k/size + 3.0/(4.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(4 . 0*size);
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4.0*size);

// node 02 in 180 degree flip
nodeindex = i*offset +3*size_sq +6*size+l +j* (4*size)+2*k;
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 3.0/(4.0*size);
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4 . 0*size);

// node 03 in 180 degree flip
nodeindex = i*offset +3*size_sq +6*size+l +j*

(double)
(double)

k/size + 3.
j/size + 3.
i/size + 1.

(4*si
0/ (4.
0/ (4 .
0/ (4 .

ze)+2*k+l;
0*size)
0*size)
0*size)

nodeCors[nodeindex][0]
nodeCors [nodeindex] [l]
nodeCors[nodeindex][2] = (double)

// node 4 (centre)
nodeindex = i*offset +
nodeCors[nodeindex][0] = (double)
nodeCors[nodeindex][1] = (double)
nodeCors [nodeindex] [2] = (double)

// node 04
nodeindex = i*offset + 9*size_sq + 6*size+2 + j* (4*size)+2*k;

7*size_sq + 5*size+2 +
k/size + 1.
j/size + 1.
i/size + 1.

j * (2
0 / (2 .
0 / (2 .
0 / (2 .

*size+1)+k;
0*size);
0*size);
0*size);

nodeCors[nodeindex] [0] = (double) k/size + 1 .■ 0/ (4. 0* size) ;
nodeCors[nodeindex] [1] = (double) j/size + 1 .,0/ (4 .0* size);
nodeCors[nodeindex] [2] = (double) i/size + 3 ..0/ (4 .0* size);
node 14
nodeindex = i*offset +9*s ize_sq +6 *size+2 +j* (4’ksi ze)+2 *k+l;
nodeCors[nodeindex] [0] = (double) k/size + 3 .■ 0/ (4 .0* size);
nodeCors[nodeindex] [1] = (double) j/size + 1 .■ 0/ (4. 0* size);
nodeCors[nodeindex] [2] = (double) i/size + 3 ..0/ (4 .0* size);

// node 14 in 180 degree flip

A2-21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodeindex = i*offset + 9*size_sq + 8*size+2 + j* (4*size)+2*k;
nodeCors [nodeindex] [0] = (double)
nodeCors[nodeindex][1] = (double)
nodeCors[nodeindex] [2] = (double)

// node 04 in 180 degree flip
nodeindex = i*offset + 9*size_sq
nodeCors[nodeindex] [0] = (double)
nodeCors[nodeindex][1] = (double)
nodeCors[nodeindex] [2] = (double)

k/size + 1.0/(4.0*size)
j/size + 3.0/(4.0*size)
i/size + 3.0/(4.0*size)

+ 8*size+2+j*(4*size)+2*k+l;
k/size + 3.0/ (4 . 0*size)
j/size + 3.0/ (4 . 0*size)
i/size + 3.0/(4.0*size)

}
}
for(i = 0;i < noNodes;i++) {

// determine surface nodes for assigning boundry conditions
(nodeCors [i] [0] = 1.0)
| (nodeCors[i] [1] = 1.0
| (nodeCors[i][2] = 1.0)) {

if ((nodeCors[i][0] = 0 . 0) |
(nodeCors[i][1] = 0 . 0)

(nodeCors[i][2] = 0.0)
nodeTypes[i] [0] = 0;
nodeTypes[i] [1] = BOUNDRY;

}
else {

nodeTypes [i] [0] = ++unknowns;
nodeTypes[i] [1] = INTERNAL;

}
}

}

* 14-Node Pyramid Case ***★*****★*★*★**★★*★*****+*★*★**★***★★★***★★**★★★***+★*★***★*****★****★**★★ j
void pyrl4mesh(int size) {

int i,j,k, index, size_sq, layerOffset;
int l,m; // variables for testing

size_sq = (int)pow(size, 2);
layerOffset = 16.0*size_sq + 8.0*size + 2;
for(i = 0; i < size; i++) { // each layer of cubes

for(j = 0; j < size; j++) { // each row of cubes
for(k = 0 ; k < size; k++) { // each column of cubes

// 1st (bottom) element of the
index = (i*size*size+j*size+k)*6;

cube

elements[index] [0]
elements[index][1]
elements[index] [2]
elements[index] [3]

(i+1)*layerOffset
(i+1)*layerOffset
(i+1)*layerOffset

j * (4*size+2)
j * (4*size+2)
j * (4*size+2)

+2 * k ;
+2*k +1;
+2 *k +2;

elements[index]
elements[index]
elements[index]
elements[index]

[4]
[5]
[6]
[7]

i*layerOffset+j * (4*size+2)+2*k+8*size_sq
+ 4*size + 3;

i*layerOffset+j * (4*size+2)+2*k +2;
(4*size+2)+2*k +1;
(4*size+2)+2*k;
(4 * si ze+2)+2 *k+8 * s ize_sq

i*layerOffset+j
i*layerOffset+j
i*layerOffset+j *

+ 4*size + 1;
[8] = i*layerOffset+j* (4*size+2)+2*k+8*size_sq

+ 4 *size + 2;
[9] = i*layerOffset+j*

+ 8*size + 2;
elements[index] [10] = i*layerOffset+j

+ 8*size + 3;
elements[index] [11] = i*layerOffset+j* (4*size)+2*k+4*size_sq

+ 4*size + 2;

elements[index]

elements[index] (4*size)+2*k+12*size_sq

* (4*size)+2*k+12*size_sq

A2-22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elements [index] [12] = i*layerOffset+j* (4*size)+2*k+4*size_sq
+ 4*size + 1;

elements[index][13] = i*layerOffset+j*(4*size+2)+2*k+8*size_sq
+ 6*size + 3;

// 2nd (right-side) element of the cube
index++;

(i+1)*layerOffset+j *(4*size+2)+2*k+2;
(i+1)*layerOffset+j* (4*size+2)+2*k+2*size+3;
(i+1)*layerOf fset+(j+1)*(4*size+2)+2 *k+2;
i*layerOffset + (j+1)* (4*size+2) + 2*k

+ 8*size_sq + 4*size + 3;
i*layerOffset+(j + 1)* (4*size+2)+2 *k+2;
i*layerOffset+j * (4*size+2)+2*k+2*size+3;
i*layerOffset+j *(4*size+2)+2*k+2;
i*layerOffset+j * (4*size+2)+2*k+8*size_sq

+ 4*size + 3;
i*layerOffset+j * (4*size+2)+2*k+8*size_sq

+ 6*size + 4;
i*layerOffset+j * (4*size)+2*k+12*size_sq

+ 8*size + 3;
= i*layerOffset+j* (4*size)+2*k+12*size_sq

+ 10*size + 3;
= i*layerOffset+j* (4*size)+2*k+4*size_sq

+ 6*size + 2;
= i*layerOffset+j* (4*size)+2*k+4*size_sq

+ 4*size + 2;
= i*layerOffset+j* (4*size+2)+2*k+8*size_sq

+ 6*size + 3;
element of the cube

elements[index][0]
elements[index][1]
elements[index][2]
elements[index][3]

elements[index][4]
elements[index][5]
elements[index][6]
elements[index][7]

elements[index][8] :

elements[index][9] ;

elements[index][10]

elements[index][11]

elements[index][12]

elements[index][13]

(top)// 3rd
index++;
elements[index][0] :
elements[index][1] =
elements[index] [2] :
elements[index][3] :

elements[index] [4] :
elements[index][5] :
elements[index] [6] :
elements[index][7] ;

elements[index][8] :

elements[index] [9] :

elements[index][10]

elements[index][11]

elements[index][12]

elements[index][13]

// 4th (left-side
index++;
elements [index] [0]
elements [index] [1]
elements [index] [2]
elements [index] [3]

: (i+1)*layerOffset+(j+1)* (4*size+2)+2*k+2;
• (i+1) *layerOffset+ (j+1)*(4*size+2)+2*k+l;
; (i+1)*layerOffset+(j+1)*(4*size+2)+2*k;
: i*layerOffset+(j+1)* (4*size+2) +2*k
+ 8*size_sq +4*size +1;

; i*layerOffset+(j+1)* (4*size+2)+2*k;
: i*layerOffset+(j+1)* (4*size+2)+2*k+l;
! i*layerOffset+(j+1)* (4*size+2)+2*k+2;
: i*layerOffset+(j+l)* (4*size+2)+2*k
+ 8*size_sq +4*size + 3;

: i*layerOffset+(j+1)* (4*size+2)+2*k
+ 8*size_sq +4*size +2;

: i*layerOffset+j* (4*size)+2*k+12*size_sq
+ 10*size + 3;

= i*layerOffset+j* (4*size)+2*k+12*size_sq
+ 10*size + 2;

= i*layerOffset+j* (4*size)+2*k+4*size_sq
+ 6*size + 1;

= i*layerOffset+j* (4*size)+2*k+4*size_sq
+ 6*size + 2;

= i*layerOffset+j* (4*size+2)+2*k+8*size_sq
+ 6*size + 3;
element of the cube

■ (i+1)*layerOffset+(j+1)* (4*size+2)+2*k;
: (i+1)*layerOffset+j * (4*size+2)+2*k+2*size+1;
• (i+1)*layerOffset+j *(4*size+2)+2 *k;
: i*layerOffset+j* (4*size+2)+2*k+8*size_sq
+ 4*size + 1;

A2-23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elements [index] [4] = i'
elements [index] [5] = i'
elements [index] [6] = i'
elements [index] [7] = i'

+
elements [index] [8] = i1

+
elements [index] [9] = i'

+
elements [index] [10]

+
elements [index] [11]

+
elements [index] [12]

+
elements [index] [13]

+
// 5th (front) elemi

index++;
elements [index] [0] = (:
elements [index] [1] = (:
elements [index] [2] = (:
elements [index] [3] = (:

+
elements [index] [4] = (:
elements [index] [5] = (:
elements [index] [6] = (:
elements [index] [7] = (:

+
elements [index] [8] = (:

+
elements [index] [9] = i1

+
elements [index] [10]

+
elements [index] [11]

+
elements [index] [12]

+
elements [index] [13]

+
// 6th (back) eleme:

index++;
elements [index] [0] = i
elements [index] [1] = i'
elements [index] [2] = i
elements [index] [3] = i ■
elements [index] [4] = i ■
elements [index] [5] = i1
elements [index] [6] = i'
elements [index] [7] = i'
elements [index] [8] = i'
elements [index] [9] = i1

+
elements [index] [10]

+
elements [index] [11]

+
elements [index] [12]

layerOffset+j * (4*size+2)+2*k;
i*layerOffset+j * (4*size+2)+2*k+2*size+l;
i*layerOffset+(j+1)* (4*size+2)+2*k;
i*layerOffset+(j+1)*(4*size+2)+2*k

size_sq + 4*size + 1;
i*layerOffset+j * (4*size+2)+2*k+8*size_sq
+ 6*size + 2;
i*layerOffset+j* (4*size)+2*k+12*size_sq
+ 10*size + 2;
i*layerOffset+j * (4*size)+2*k+12*size_sq
8*size + 2;

= i*layerOffset+j * (4*size)+2*k+4*size_sq
+ 4*size + 1;

♦layerOffset+j *(4 *size)+2*k+4*size_sq
6*size + 1;
♦layerOffset+j *(4*size+2)+2*k+8*size_sc

+ 6*size + 3;

(i+1)*layerOf fset+(j+1)*(4 *size+2)+2 *k;
(i+1)*layerOffset+(j+1)* (4*size+2)+2*k+l;
(i+1)*layerOffset+(j+1)* (4*size+2)+2*k+2;
(i+1)*layerOffset+j * (4*size+2) +2*k
+ 2*size + 3;
(i+1)*layerOffset+j * (4*size+2)+2*k+2;
(i+1)*layerOffset+j*(4*size+2)+2 *k+l;
(i+1)*layerOffset+j* (4*size+2)+2 *k;
(i+1)*layerOffset+j* (4*size+2)+2*k
+ 2*size+1;
(i+1)*layerOffset+j * (4*size+2)+2*k
2*size + 2;

i*layerOffset+j * (4*size)+2*k+12*size_sq
+ 10*size + 2;

= i*layerOffset+j*(4*size)+2*k+12*size_sq
10*size + 3;

= i*layerOffset+j*(4*size)+2*k+12*size_sq
8*size + 3;

i*layerOffset+j*(4 *size)+2*k+12 *size_sq
8*size + 2;

i*layerOffset+j*(4 * size+2)+2*k+8*size_sq
6*size + 3;

i*layerOffset+j *(4*size+2)+2 *k;
i*layerOffset+j * (4*size+2)+2*k+l;
i*layerOffset+j *(4*size+2)+2*k+2;
i*layerOffset+j*(4*size+2)+2 *k+2*size+3;
i*layerOffset+(j+1)* (4*size+2)+2*k+2;
i*layerOffset+(j+1)* (4*size+2)+2*k+l;
i*layerOffset+(j+1)* (4*size+2)+2*k;
♦layerOffset+j * (4* size+2) +2 *k+2*S ize+l
♦layerOffset+j * (4* size+2) +2 *k+2*s ize+2
♦layerOffset+j * (4* size)+ 2* k+4*si ze_sq
4*size + 1;

i*layerOffset+j * (4♦size) +2* k+4*si ze_sq
4*size + 2;

i*layerOffset+j * (4♦size) +2* k+4*si ze_sq
6*size + 2;

i*layerOffset+j * (4♦size) +2* k+4*si ze_sq

A2-24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ 6*size + 1;
elements[index] [13] = i*layerOffset+j* (4*size+2)+2*k+8*size_sq

+ 6*size + 3;
}

}
}

}

void pyrl4mapping(int size) {
int nodeindex, offset, size_sq, i, j, k;

// calculate x,y,z coordinates for corner nodes of small cubes
size_sq = (int)pow(size, 2);
offset = 16 * size_sq + 8 * size + 2;
for(i = 0; i < size+1; i++) { // each layer of cubes

f or(j = 0 ; j < size+1; j++) { // each row of cubes
for(k = 0 ; k < size+1; k++) { // each column of cubes
// node 3 (node 6)

nodeindex = i*offset + j*(4*size+2) + 2*k;
nodeCors[nodeindex][0] = (double) k/size;
nodeCors[nodeindex] [1] = (double) j/size;
nodeCors[nodeindex] [2] = (double) i/size;
if (i < size) {
// node 03 (node 7)

nodeindex = i*offset+8*size_sq+4*size+l+j* (4*size+2)+2*k;
nodeCors[nodeindex][0] = (double) k/size;
nodeCors[nodeindex][1] = (double) j/size;
nodeCors[nodeindex] [2] = (double) i/size +1.0/(2 . 0*size);

}
if(k < size) {
// node 2 3 (node 5)

nodeindex = i*offset + j*(4*size+2) + 2*k + 1;
nodeCors[nodeindex] [0] = (double) k/size +1.0/(2.0*size);
nodeCors [nodeindex] [1] = (double) j/size;
nodeCors[nodeindex] [2] = (double) i/size;

}
if(j < size) {
// node 23 in 90 degree _clockwise_ rotation (node 5, elm #3)

nodeindex = i*offset + j*(4*size+2) + 2*k + 2*size+l;
nodeCors[nodeindex] [0] = (double) k/size;
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(2.0*size);
nodeCors[nodeindex][2] = (double) i/size;

}
if ((i < size) && (k < size)) {
// node 02 (node 8)

nodeindex = i*offset +8*size_sq+4*size+2+j* (4*size+2)+2*k;
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(2.0*size);
nodeCors[nodeindex][1] = (double) j/size;
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(2.0*size) ;

}
if ((i < size) && (j < size)) {
// node 02 in 90 degree clockwise rotation about z(node 8,elm #3)

nodeindex = i*offset + 8*size_sq +6*size+2+j* (4*size+2)+2*k;
nodeCors[nodeindex][0] = (double) k/size;
nodeCors[nodeindex][1] = (double) j/size + 1.0/(2.0*size);
nodeCors [nodeindex] [2] = (double) i/size + 1.0/(2.0*size) ;

}
if ((k < size) && (j < size)) {
// node 02 in 90 degree clockwise rotation about x

A2-25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// (node 8,elm #5 (back))
nodeindex = i*offset + 2*size+2 + j*(4*size+2)+2*k;
nodeCors[nodeindex][0] = (double) k/size + 1.0/(2.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(2.0*size);
nodeCors[nodeindex][2] = (double) i/size,-

}
if ((i < size) && (j < size) && (k < size)) {
// node 34 (node 12)

nodeindex = i*offset +4*size_sq +4*size+l+j* (4*size)+2*k;
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size)
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(4.0*size)
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4.0*size)

// node 24 (node 11)
nodeindex = i*offset +4*size_sq +4*size+l+j * (4*size) +2 *k+l ,-
nodeCors[nodeindex][0] = (double) k/size + 3.0/(4.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 1.0/ (4 . 0*size);
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(4.0*size);

// node 04 in 180 degree flip (node 11, ele 2)
nodeindex = i*offset +4*size_sq +6*size+l +j* (4*size)+2*k;
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size)
nodeCors [nodeindex] [1] = (double) j/size + 3.0/(4 . 0*size)
nodeCors[nodeindex] [2] = (double) i/size + 1. 0/(4.0*size)

// node 03 in 180 degree flip (node 12, elm 2)
nodeindex = i*offset+4*size_sq +6*size+l +j* (4*size)+2*k+l;
nodeCors [nodeindex] [0] = (double) k/size + 3.0/(4 . 0*size);
nodeCors[nodeindex] [1] = (double) j/size + 3.0/(4 . 0*size);
nodeCors [nodeindex] [2] = (double) i/size + 1. 0/(4 . 0*size) ,-

// node 4 (centre, node 13)
nodeindex = i*offset +8*size_sq+6*size+3+j* (4*size+2)+2*k;
nodeCors[nodeindex][0] = (double) k/size + 1.0/(2.0*size)
nodeCors[nodeindex] [1] = (double) j/size + 1. 0/(2.0*size)
nodeCors[nodeindex] [2] = (double) i/size + 1.0/(2 . 0*size)

// node 04 (node 9)
nodeindex = i*offset +12*size_sq +8*size+2 +j* (4*size)+2*k;
nodeCors [nodeindex] [0] = (double) k/size + 1.0/(4 . 0*size);
nodeCors[nodeindex] [l] = (double) j/size + 1.0/(4 . 0*size);
nodeCors[nodeindex] [2] = (double) i/size + 3.0/ (4 . 0*size);

// node 14 (node 10)
nodeindex = i*offset +12*size_sq+8*size+2+j* (4*size)+2*k+l ;
nodeCors[nodeindex] [0] = (double) k/size + 3.0/(4.0*size)
nodeCors[nodeindex] [1] = (double) j/size + 1.0/(4.0*size)
nodeCors[nodeindex] [2] = (double) i/size + 3.0/(4 . 0*size)

// node 14 in 180 degree flip (node 10, elm 2)
nodeindex = i*offset +12*size_sq+10*size+2+j* (4*size)+2*k;
nodeCors[nodeindex] [0] = (double) k/size + 1.0/(4.0*size)
nodeCors[nodeindex] [1] = (double) j/size + 3.0/(4.0*size)
nodeCors[nodeindex] [2] = (double) i/size + 3.0/(4 . 0*size)

// node 04 in 180 degree flip (node 9, elm 2)
nodeindex = i*offset+12*size_sq+10*size+2+j* (4*size)+2*k+l;
nodeCors[nodeindex][0] = (double) k/size + 3.0/(4.0*size);
nodeCors[nodeindex] [1] = (double) j/size + 3.0/(4 . 0*size);

A2-26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodeCors[nodeindex] [2] = (double) i/size + 3.0/(4.0*size)
}

}
}

}
for(i = 0;i < noNodes;i++) {

// determine surface nodes for assigning boundry conditions
if ((nodeCors [i] [0] = 0.0) || (nodeCors [i] [0] = 1.0) ||

(nodeCors[i] [1] = 0.0) | | (nodeCors[i] [1] = 1.0) | |
(nodeCors [i] [2] = 0.0) || (nodeCors[i] [2] = 1.0)) {

nodeTypes [i] [0] = 0;
nodeTypes [i] [1] = BOUNDRY;

}
else {

nodeTypes [i] [0] = ++unknowns;
nodeTypes [i] [1] = INTERNAL;

}
}

}

★
* Control function, calls appropriate mesh generation functions
*

void makeMesh(int size) {

if(pyrType = PYR5) {
pyr5mesh(size);
pyrSmapping(size);

}
else {

if(pyrType = PYR13) {
pyrl3mesh(size);
pyrl3mapping(size);

}
else {

if((pyrType = PYR14_CASE_I) ||(pyrType = PYR14_CASE_II)) {
pyrl4mesh(size);
pyrl4mapping(size);

}
else {

printf("%s\n",
"Error in: makeMeshO, Invalid mesh type for mesh generation
printf("Program Halted...\n") ;
exit(1) ;

}
}

}
}

A2-27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Author: Kevin Davies
* File entry_intgrls.c
* Version: 4.0
* Date last modified: Dec 15, 2004
* Description: functions for calculating integral values for system
* matrix and load vector entries.

* Function to get vertex points of tetrahedra

void getTetPoints(MAT *A, int i) {

switch (i) {
case 1:

// set vertex coordinates for tetrahedron #1
if(symBasis) {

A->me [0] [0] = -1.0
A->me [1] [0] = -1.0
A->me [2] [0] = 0 . 0

A->me [0] [1] = 1.0
A->me [1] [1] = -1.0
A->me [2] [1] = 0.0

A->me [0] [2] = 0 . 0
A->me [1] [2] = 0.0
A->me [2] [2] = 1.0

A->me [0] [3] = 0.0
A->me [1] [3] = 0.0
A->me [2] [3] = 0.0

se {
A->me [0] [0] = 1. 0
A->me [1] [0] = -1.0
A->me [2] [0] 0.0

A->me [0] [1] 1.0
A->me [1] [1] = 1 . 0
A->me [2] [1] = 0.0

A->me [0] [2] 0.0
A->me [1] [2] = 0.0
A->me [2] [2] = 1.0

A->me [0] [3] -1.0
A->me [1] [3] = -1.0
A->me [2] [3] = 0 . 0

eak;
2 :
set vertex coordin
(symBasis
A->me[0]

)
[0]

{
1 . 0

A->me [1] [0] = -1 . 0
A->me [2] [0] = 0 . 0

A2-28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A->me [0] [1] = 1. 0
A->me[1] [1] = 1. 0
A->me [2] [1] = 0 . 0

A->me [0] [2] = 0 . 0
A->me [1] [2] = 0 . 0
A->me [2] [2] 1.0

A->me [0] [3] = 0 . 0
A->me [1] [3] = 0 . 0
A->me[2] [3] = 0 . 0

se {
A->me [0] [0] = 1. 0
A->me [1] to] = 1.0
A->me [2] [0] = 0 . 0

A->me [0] [1] -1.0
A->me [1] [1] = 1. 0
A->me [2] [1] = 0.0

A->me[0] [2] = 0.0
A->me [1] [2] = 0 . 0
A->me [2] [2] = 1.0

A->me [0] [3] = -1.0
A->me[1] [3] = -1.0
A->me [2] [3] = 0 . 0

}
break;

case 3:
// set vertex coordinates for tetrahedron #3
A->me [0] [0] = 1.0,
A->me[l][0] = 1.0
A->me[2] [0] = 0.0

A->me[0
A->me[1
A->me[2

A->me[0
A->me[1
A->me [2

A->me[0
A->me[1
A->me[2

[1]
[1]
[1]

= - 1 . 0
= 1 . 0
= 0 . 0

[2] = 0 . 0
[2] = 0 . 0
[2] = 1 . 0

A->me[0] [3] = 0.0
A->me[1][3] = 0.0
A->me[2] [3] = 0.0
break;

case 4:
// set vertex coordinates for tetrahedron #4
A->me[0][0] = -1.0
A->me[1] [0] = 1.0
A->me[2] [0] = 0.0

[1]
[1]
[1] = 0 . 0

A->me[0][2] = 0.0;

A2-29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A->me[1] [2] = 0.0;
A->me[2][2] = 1.0;

}
}

A->me[0] [3] = 0.0
A->me[1] [3] = 0.0
A->me[2] [3] = 0.0;
break;

default:
printf("Invalid tet #\n");

% Author: Kevin Davies
% Description: function to find jacobian matrix, ie. N*X
% inputs:
% X - a matrix of global coordinates, s.t.
% the first column consists of the x coordinate values, the second
% column consists of y values, and the third consists of z values.
% outputs:
% J - Jacobian matrix
%

void jacob(MAT *X, MAT *J) {
MAT *N, *A;
VEC *Q;
int tip-
double x,y,z, wi, h = 0.000001;
N = m_get (3 , nodesPerElm) ,-
A = m_get (3,4) ,-
Q = v_get(3) ;

getTetPoints(A, 1);
switch(pyrType) {
case PYR5:

cubature4(A, 1, Q, &wi) ;
break;

case PYR13:
cubature4(A, 1, Q, &wi) ;
break ,-

case PYR14_CASE_I:
cubature4 (A, l, Q, &wi) ,-
break;

case PYR14_CASE_II:
cubature4(A, 1, Q, &wi);

}
x = Q->ve [0] ;
y = Q->ve [1];
z = Q->ve [2] ;
i f (!symBasis) {

switch(pyrType) {
case PYR5:

for(m = 0; m < nodesPerElm,- trH-+) {
N->me [0] [m] = pyr5basis_dx (m,x,y, z) ,-
N->me[l][m] = pyr5basis_dy(m,x,y,z);
N->me[2][m] = pyr5basis_dz(m,x,y,z);

}
break,-

case PYR13:

A2-30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(m = 0; m < nodesPerElm; rm-+) {
N->me[0] [m] = pyrl3basis_dx(m,x,y, z);
N->me[1] [m] = pyrl3basis_dy(m, x,y,z) ;
N->me[2][m] = pyrl3basis_dz(m,x,y,z);

}
break;

case PYR14_CASE_I: // Approximations to Partial dirivatives
for(m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = (pyrl4Clbasis(m, x+h,y,z)-pyrl4Clbasis(m,x,y,z))/h;
N->me[1] [m] = (pyrl4Clbasis(m,x,y+h, z)-pyrl4Clbasis(m,x,y,z))/h;
N->me[2] [m] = (pyrl4Clbasis(m, x,y,z+h)-pyrl4Clbasis(m,x,y,z))/h;

}
break;

case PYR14_CASE_II:
for(m = 0; m < nodesPerElm; m++) {

N->me[0][m] = pyrl4C2basis_dx(m,x,y, z);
N->me[1][m] = pyrl4C2basis_dy(m,x,y,z);
N->me[2][m] = pyrl4C2basis_dz(m,x,y,z);

}
}

}
else {

switch(pyrType) {
case PYR5:

for(m = 0; m < nodesPerElm; m++) {
N->me[0][m] = pyr5symBasis_dx(m,x,y,z);
N->me[1][m] = pyr5symBasis_dy(m,x,y, z);
N->me[2][m] = pyr5symBasis_dz(m,x,y,z);

}
break;

case PYR13:
for(m = 0; m < nodesPerElm; m++) {

N->me[0][m] = pyrl3symBasis_dx(m,x,y,z);
N->me[l][m] = pyrl3symBasis_dy(m,x,y,z);
N->me[2][m] = pyrl3symBasis_dz(m,x(y,z);

}
break;

case PYR14_CASE_I: // Approximations to Partial dirivatives
for(m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = (pyrl4ClsymBasis(m,x+h,y, z)-pyrl4ClsymBasis(m,x,y,z))/h
N->me[1] [m] = (pyrl4ClsymBasis(m,x,y+h, z)-pyrl4ClsymBasis(m,x,y,z))/h
N->me[2][m]= (pyrl4ClsymBasis(m,x,y,z+h)-pyrl4ClsymBasis(m,x,y,z))/h

}
break;

case PYR14_CASE_II:
for(m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = pyrl4C2symBasis_dx(m,x,y,z);
N->me[l][m] = pyrl4C2symBasis_dy(m,x,y,z);
N->me[2][m] = pyrl4C2symBasis_dz(m,x,y,z);

}
}

}
m_mlt(N, X, J) ;
M_FREE(N);
M_FREE(A);
V_FREE(Q);

}

A2-31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Author: Kevin Davies
* Description: function for integrating over tetrahedra for a system
* matrix entry.
* inputs:
* X - a matrix of global coordinates, s.t.
* the first column consists of the x coordinate values, the second
* column consists of y values, and the third consists of z values.
* i - index of first node in element
* j - index of second node in element
* tetNo - tetrahedra index
* outputs:
* returns quadrature over tetrhedral portion of element
*

double tet(MAT *X, int i, int j, int tetNo) {
MAT *N, *A, *K, *J, *Jinv;
VEC *Ni, *Nj, *v , *Q;
int k,m;
double x,y,z, t = 0.0, wi, quadPoints, h = 0.000001;
N = m_get(3,nodesPerElm);
A = m_get(3,4)
K = m_get(1,3)
J = m_get(3,3)
Jinv = m_get(3,3);
Ni = v_get (3) ,•
Nj = v_get(3);
v = v_get(3);
Q = v_get(3);

switch(pyrType) {
case PYR5:

quadPoints = quadDeg4pts;
break;

case PYR13:
quadPoints = quadDeg4pts;
break;

case PYR14_CASE_I:
quadPoints = quadDeg4pts;
break;

case PYR14_CASE_II:
quadPoints = quadDeg4pts,-

}getTetPoints(A, tetNo);
for(k = 0 ; k < quadPoints; k++)

switch(pyrType) {
case PYR5:

cubature4 (A, k+1, Q, &wi);
break;

case PYR13:
cubature4(A, k+1, Q, &wi);
break;

case PYR14_CASE_I:
cubature4(A, k+1, Q, &wi);
break;

case PYR14_CASE_II:
cubature4 (A, k+1, Q, &wi);

A2-32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
x = Q->ve [0] ;
y = Q->ve [1] ;
z = Q->ve [2] ;
i f (!symBasis) {

switch(pyrType) {
case PYR5:

f o r (m = 0; m < nodesPerElm; m++) {
N->me[0][m] = pyr5basis_dx(m,x,y,z);
N->me[l] [m] = pyr5basis_dy(m,x,y,z);
N->me[2] [m] = pyr5basis_dz(m,x,y,z);

}
break;

case PYR13:
fort m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = pyrl3basis_dx(m,x,y,z);
N->me [1] [m] = pyrl3basis_dy(m,x,y,z);
N->me[2] [m] = pyrl3basis_dz(m,x,y,z);

}
break;

case PYR14_CASE_I: // Approximations to Partial dirivatives
for(m = 0; m < nodesPerElm; m++) {

N->me[0] [m] = (pyrl4Clbasis(m,x+h,y,z)-pyrl4Clbasis(m,x,y,z))/h
N->me[1] [m] = (pyrl4Clbasis(m,x,y+h,z)-pyrl4Clbasis(m,x,y, z))/h
N->me[2][m]= (pyr!4Clbasis(m,x,y,z+h)-pyrl4Clbasis(m,x,y,z))/h

}break;
case PYR14_CASE_II:

fort m = 0; m < nodesPerElm; m++) {
N->me[0] [m] = pyrl4C2basis_dx(m,x,y,z);
N->me[l][m] = pyrl4C2basis_dy(m/x,y,z);
N->me[2] [m] = pyrl4C2basis_dz(m,x,y,z);

}
}

}
else {

switch(pyrType) {
case PYR5:

fort m = 0; m < nodesPerElm; m++) {
N->me[0] [m] = pyr5symBasis_dx (m, x, y, z) ;
N->me[l][m] = pyr5symBasis_dy(m,x,y,z);
N->me[2] [m] = pyr5symBasis_dz(m,x,y,z);

}
break;

case PYR13 :
for(m = 0; m < nodesPerElm; m++) {

N->me[0][m] = pyrl3symBasis_dx(m,x,y,z);
N->me[l] [m] = pyrl3symBasis_dy (m, x, y, z)
N->me[2] [m] = pyrl3symBasis_dz(m,x,y,z);

}break;
case PYR14_CASE_I: // Approximations to Partial dirivatives

fort m = 0; m < nodesPerElm; m++) {
N->me[0] [m] = (pyrl4ClsymBasis(m,x+h,y,z) -

pyrl4ClsymBasis(m,x,y,z)) / h;
N->me[l] [m] = (pyrl4ClsymBasis(m, x,y+h,z) -

pyrl4ClsymBasis(m,x,y,z)) / h;
N->me[2] [m] = (pyrl4ClsymBasis(m,x,y,z+h) -

pyr14ClsymBasis(m,x,y,z)) / h;

A2-33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o\°
o\°

o\o
o\°

o\°
o\°

o\°
o\°

o\°
o\°

b reak,-
case PYR14_CASE_II:

f o r (m = 0,- m < nodesPerElm; m++) {
N->me[0][m] = pyrl4C2symBasis_dx(m,x,y,z),-
N->me[l][m] = pyrl4C2symBasis_dy(m,x,y, z) ;
N->me[2][m] = pyrl4C2symBasis_dz(m,x,y,z);

}
}

}
m_mlt(N, X, J);
m_inverse(J, Jinv),-
get_col(N, i, v) ,-
mv_mlt(Ji nv, v , Ni);
get_col(N, j , v) ;
mv_mlt(Jinv, v, Nj) ,-
t =t+wi*(Ni->ve[0]*Nj->ve[0]+Ni->ve[1]*Nj->ve[l]+Ni->ve[2]*Nj->ve[2]) ;

}
M_FREE(N);
M_FREE(A);
M_FREE(K);
M_FREE(J);
M_FREE(Jinv);
V_FREE (Ni) ;
V_FREE(Nj);
V_FREE(Q);
V_FREE (v) ;
return t;

}

Description; function for forming rhs vector from tetrahedra
inputs;

X - a matrix of global coordinates, s.t.
the first column consists of the x coordinate values, the second
column consists of y values, and the third consists of z values,

i - element node index(0-4)
j - tetrahedra index(1-4)

outputs:
returns quadrature over j-th tetrhedral portion of element

double rhs_tet(MAT *X, int i, int j) {
MAT *N, *A, *K;
VEC *Q;
int k, re­
double t = 0.0, wi, quadPoints,-
N = m_get (1, nodesPerElm) ,-
A = m_get(3,4);
K = m_get(1,3);
Q = v_get(3);

switch(pyrType) {
case PYR5;

quadPoints = quadDeg4pts;
break;

case PYR13:
quadPoints = quadDeg7pts,-
break;

A2-34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case PYR14_CASE_I:
quadPoints = quadDeg7pts,-
break;

case PYR14_CASE_II:
quadPoints = quadDeg7pts;

}
getTetPoints(A, j);
for(k = 0; k < quadPoints ; k++) {

switch(pyrType) {
case PYR5;

cubature4(A, k+1, Q, &wi) ;
break;

case PYR13:
cubature7(A, k+1, Q, &wi) ;
break;

case PYR14_CASE_I;
cubature7(A, k+1, Q, &wi) ;
break;

case PYR14_CASE_II:
cubature7(A, k+1, Q, &wi);

}
if(symBasis) {

switch(pyrType) {
case PYR5:

for(m = 1; m <= nodesPerElm; m++)
N->me[0] [m-1] = pyrBsymBasis(m-1, Q->ve[0],

Q->ve[1], Q->ve [2]) ;
break;

case PYR13:
for(m = 1; m <= nodesPerElm; m++)

N->me [0] [m-1] = pyrl3symBasis (m-1, Q->ve[0],
Q->ve [1] , Q->ve[2]);

break;
case PYR14_CASE_I:

f or (m = l; m <= nodesPerElm; ro++)
N->me[0] [m-1] = pyrl4ClsymBasis(m-1, Q->ve[0],

Q->ve[1], Q->ve[2])
break;

case PYR14_CASE_II:
for(m = 1 ; m <= nodesPerElm; m++)

N->me [0] [m-1] = pyrl4C2symBasis (m-1, Q->ve[0],
Q->ve [1], Q->ve[2])

}
}
else {

switch(pyrType) {
case PYR5;

for(m = 1; m <= nodesPerElm; m++)
N->me[0] [m-1] = pyrSbasis(m-1, Q->ve[0] ,

Q->ve[1], Q->ve [2]);
break;

case PYR13 :
for(m = 1; m <= nodesPerElm; m++)

N->me [0] [m-1] = pyrl3basis(m-1, Q->ve[0],
Q->ve[1], Q->ve[2]);

break;
case PYR14_CASE_I:

for(m = 1; m <= nodesPerElm; m++)
N->me [0] [m-1] = pyrl4Clbasis(m-1, Q->ve[0],

A2-35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Q->ve [1] , Q - > v e [2]) ;
break;

case PYR14_CASE_II:
for(m = 1; m <= nodesPerElm; m++)

N->me[0][m-1] = pyrl4C2basis(m-1, Q->ve[0],
Q->ve[1], Q->ve [2]);

}
}
m_mlt (N, X, K) ;
if(symBasis) {

switch(pyrType) {
case PYR5:

t = t + wi* (pyr5symBasis (i, Q->ve[0], Q->ve[1], Q->ve[2]) *
func(K->me [0] [0], K->me[0] [1], K->me [0] [2]))

break;
case PYR13 :

t = t + wi* (pyrl3symBasis(i , Q->ve[0], Q->ve[l], Q->ve[2])*
func(K->me[0] [0], K->me[0] [1], K->me [0] [2]))

break;
case PYR14_CASE_I:

t = t + wi* (pyrl4ClsymBasis (i, Q->ve[0], Q->ve[l], Q->ve[2])
func(K->me [0] [0], K->me[0] [1], K->me [0] [2]))

break;
case PYR14_CASE_II:

t = t + wi* (pyrl4C2symBasis(i, Q->ve[0], Q->ve[l], Q->ve[2])
func(K->me[0] [0], K->me[0] [1], K->me [0] [2]))

}
}
else {

switch(pyrType) {
case PYR5:

t = t + wi* (pyr5basis(i, Q->ve[0] , Q->ve[1], Q->ve[2]) *
func(K->me[0][0], K->me[0][l], K->me[0][2]))

break;
case PYR13:

t = t + wi* (pyrl3basis(i, Q->ve[0] , Q->ve[1], Q->ve[2]) *
func(K->me[0] [0], K->me[0] [1], K->me [0] [2]))

break;
case PYR14_CASE_I:

t = t + wi* (pyrl4Clbasis (i, Q->ve[0], Q->ve[l], Q->ve[2]) *
func(K->me [0] [0], K->me[0] [1], K->me[0] [2]))

break;
case PYR14_CASE_II :

t = t + wi* (pyrl4C2basis (i, Q->ve[0], Q->ve[1], Q->ve[2]) *
func(K->me[0][0], K->me[0][l], K->me[0][2]))

M_FREE(N)
M_FREE(A)
M_FREE(K)
V_FREE(Q)
return t;

}

A2-36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Programmer: Kevin Davies
* File: pyr5basis.c
* Version: 2.3
* Date last modified: Aug 25, 2004
* Description: Linear basis functions and their partial derivatives.
*

y *

* Basis functions based on transformation of Wieners' basis functions
* (Before symmetries)
* *

double pyrSbasis(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0:

if (x > y)
f = 0.25*

else
f = 0.25*

break;
case 1:

if (x > y)
f = 0.25*

else
f = 0.25*

break;
case 2 :

if (x > y)
f = 0.25*

else
f = 0.25*

break;
case 3 :

if (x > y)
f = 0.25*

else
f = 0.25*

break;

0.25*(x-z+1.0)*(-y+z+1.0) - 0.5*z*(y-z+1.0);

}

0.25*(-x+z+1.0)*(y-z+1.0) - 0.5*z*(x-z+1.0);
c;

case 4 :
f = Z ;
break;

default:
printf("invalid case detected\n") ;

}
return f;

double pyr5basis_dx(int i, double x, double y, double z) {
double f ;

switch (i) {
case 0 :

if(x > y)
f = 0.25*(y-z-1.0);

else
f = 0.25*(y+z-1.0);

A2-37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

break;
case 1;

if (x > y)
f = o . 25* (-y+z+1.0)

else
f = o . 25* (-y-z+1.0)

break;
case 2 :

if (x > y)
f = o . 25* (y-z+1.0);

else
f = 0. 25* (y+z+1.0) ;

break;
case 3:

if (x > y)
f = o . 25* (-y+z-1.0)

else
f = 0 . 25* (-y-z-1.0)

break;
case 4 :

f = 0.0;
break;

default:
printf("invalid case detected\n");

}
return f;

double pyr5basis_dy(int i, double x, double y, double z) {
double f

switch(i) {
case 0 ;

if(x > y)
f = 0.25*(x+z-1.0);

else
f = 0.25*(x-z-1.0);

break;
case 1:

if(x > y)
f = 0.25*(-x-z-1.0);

else
f = 0.25*(-x+z-1.0);

break;
case 2 :

if(x > y)
f = 0.25*(x+z+1.0) ;

else
f = 0.25*(x-z+1.0);

break;
case 3 :

if(x > y)
f = 0.25* (-x-z+1.0) ;

else
f = 0.25* (-x+z+1. 0) ;

break;
case 4 ;

f = 0.0;
break;

A2-38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

default:
printf("invalid case detected\n");

}
return f;

}

double pyr5basis_dz(int i, double x, double y, double z) {
double f;

switch(i) {
case 0:

if(x > y)
f = 0.25*(y-x) - 0 . 5 * z;

else
f = 0.25* (x-y) - 0 . 5 * z;

break;
case 1:

if(x > y)
f = 0.25*(-y+2.0*z+x-2.0);

else
f = 0.25*(y+2.0*z-x-2.0);

break;
case 2:

if(x > y)
f = 0.25*(y-2.0*z-x);

else
f = 0.25*(-y-2.0*z+x);

break;
case 3:

if(x > y)
f = 0.25*(-y+2.0*z+x-2.0);

else
f = 0.25* (y+2.0*z-x-2.0) ;

break;
case 4:

f = 1.0;
break;

default:
printf ("invalid case detected\n")

}
return f;

}

* Basis functions and partial derivatives
* with symmetries about x and y axis

* Basis functions and partial derivatives
* with symmetries about x axis
**

double pyr5symBasis(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0 :

f = pyr5basis(0,x,y,z) + pyr5basis(1,-x,y,z);

A2-39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f = f/2.0;
break;

case 1:
f = pyrSbasis(1, x, y, z) + pyrsbasis(0,-x,y,z)
f = f/2.0;
break;

case 2 :
f = pyrsbasis(2,x,y,z) + pyrsbasis(3,-x,y,z)
f = f/2.0;
break;

case 3 :
f = pyrsbasis(3,x,y,z) + pyrsbasis(2,-x,y,z)
f = f/2.0;
break;

case 4 :
f = pyrsbasis(4,x,y,z);
break;

default:
printf("invalid case detected\n");

}
return f;

double pyr5symBasis_dx(int i, double x, double y,
double f;

switch (i) {
case 0:

f = pyr5basis_dx (0,x,y,z) - pyr5basis_dx(1, ■
f = f/2.0;
break;

case 1:
f = pyr5basis_dx(l,x,y,z) - pyr5basis_dx(0, •
f = f/2.0;
break;

case 2:
f = pyr5basis_dx(2,x,y,z) - pyr5basis_dx(3, ■
f = f/2.0;
break;

case 3 :
f = pyr5basis_dx(3,x,y,z) - pyr5basis_dx(2,
f = f/2.0;
break;

case 4:
f = pyr5basis_dx(4,x,y,z);
break;

default:
printf("invalid case detected\n");

}
return f;

}
double pyr5symBasis_dy(int i, double x, double y,

double f;

switch(i) {
case 0:

f = pyr5basis_dy(0,x,y,z) + pyr5basis_dy(1, •
f = f/2.0;
break;

A2-40

double z) {

x, y, z) ;

x,y, z) ;

x, y,z) ;

x, y, z) ;

double z) {

x, y, z) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 1:
f = pyr5basis_dy(1,x,y,z) + pyr5basis_dy(0,-x,y,z);
f = f/2.0;
break;

case 2:
f = pyr5basis_dy(2,x,y,z) + pyr5basis_dy(3,-x, y, z) ;
f = f/2.0;
break;

case 3 :
f = pyr5basis_dy(3,x ,y,z) + pyr5basis_dy(2,-x,y,z);
f = f/2.0;
break;

case 4:
f = pyr5basis_dy(4,x,y, z) ;
break;

default:
printf("invalid case detected\n");

}
return f;

double pyr5symBasis_dz(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0:

f = pyr5basis_dz(0,x,y,z) + pyr5basis_dz(1,-x,y,z);
f = f/2.0;
break;

case 1:
f = pyr5basis_dz(1,x,y,z) + pyr5basis_dz(0,-x,y,z);
f = f/2.0;
break;

case 2:
f = pyr5basis_dz(2,x,y,z) + pyr5basis_dz(3,-x,y,z);
f = f/2.0;
break;

case 3 ;
f = pyr5basis_dz(3,x,y,z) + pyr5basis_dz(2,-x,y,z);
f = f/2.0;
break;

case 4:
f = pyr5basis_dz(4,x,y,z);
break;

default:
printf("invalid case detected\n");

}
return f;

}

A2-41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Programmer: Kevin Davies
* File: pyrl3basis.c
* Version: 3.3
* Date last modified: Aug 25, 2004
* Description: Pyr-13 Quadratic basis functions and their partial
* derivatives.
*

* Basis functions based on transformation of Wieners' basis functions
* (Before symmetries)

double pyrl3basis(int i, double x, double y, double z) {
double f;

switch(i) {
case 0 : // node 0A*M-1-H y)

f =
else

0.25*(x+y+1.0)*(x+z-1.0)*(-y+z+1.0);

f =
break;

0.25* (x+y+1.0)*(-x+z+1.0)*(y+z-1.0);

case 2 : // node 1
if (x > y)

f =
else

0.25* (x-y-1.0) * ((x+z+1.0) * (-y+z+1.0) - 4.0*z)

f =

break;
0.25*(x-y-1.0) * (x-z+1.0)* (-y-z+1.0) ;

case 4 : // node 2
if (x > y)

f =

else
0.25*(x+y-1.0)* (x+z+1.0)* (y-z+1.0) ;

f =
break;

0.25*(x+y-1.0)* (x-z+1.0)*(y+z+1.0) ;

case 6 : // node 3
if (x > y)

f =
else

0.25*(x-y+1.0)*(x+z-1.0)*(y-z+1.0);

f =
break;

0.25*(x-y+1.0)*((x-z-1.0)*(y+z+1.0) + 4.0*z);

case 12: // node 4
f =

break;
z*(2.0*z-l.0) /

case l : // midpoint node, between corner nodes 1 and
if (x > y)

f =
else

0.5*(x+z-1.0) * ((y-Z-1.0)* (x+1.0) + 2.0 * z) ;

f =
break;

0.5*(x-z+1.0) * (y+z-1.0)*(x-1.0) ;

case 3 : // midpoint, between corner nodes 1 and 2
if (x > y)

f = -0.5*(y-z+1.0)*((x+z+1.0)*(y-1.0) + 2.0*z) ;
else

f =
break;

-0.5*(x-z+1.0)* (y+z-1.0)*(y+1. 0) ;

case 5 : // midpoint, between corner nodes 3 and 2
if (x > y)

A2-42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f = -0.5*(y-z+1.0)*(x+z-1.0)*(x+1.0);
else

f = -0.5*(x-z+1.0)*((y+z+1.0)*(x-1.0) +2.0*z);
break;

case 7: // midpoint, between corner nodes 3 and 0
if(x > y)

f = 0.5*(y-z+1.0)*(x+z-1.0)*(y-1.0);
else

f = 0.5*(y+z-1.0)*((x-z-1.0)*(y+1.0) +2.0*z);
break;

case 8: // midpoint, between corner nodes 4 and 0
if(x > y)

f = z *(y -z-1.0)* (x+z-1.0);
else

f = z*(x-z-1.0)*(y+z-1.0);
break;

case 9: // midpoint, between corner nodes 4 and 1
if(x > y)

f = -z*((x+z+1.0)*(y-z-1.0) + 4.0* z) ;
else

f = -z*(x-z+1.0)*(y+z-1.0);
break;

case 10: // midpoint, between corner nodes 4 and 2
if(x > y)

f = z*(y-z+1.0)* (x+z+1.0) ;
else

f = z* (x-z+1. 0)* (y+z+1. 0) ,-
break;

case 11: // midpoint, between corner nodes 4 and 3
if(x > y)

f = -z*(y-z+1.0)* (x+z-1.0) ;
else

f = -z*((y+z+1.0)*(x-z-1.0) +4.0*z) ;
break;

default:
printf("invalid case detected for basis functions\n");

}
return f;

double pyrl3basis_dx(int i, double x, double y, double z) {
double f;

switch (i) {
case 0: // node 0

if(x > y)
f = 0.25*(x+z-1.0)*(-y+z+1.0) + 0.25*(x+y+1.0)*(-y+z+1.0);

else
f = 0.25* (-x+z+1.0)*(y+z-1.0) - 0.25*(x+y+1.0)*(y+z-1.0);

break ,-
case 1: // midpoint node, between corner nodes 1 and 0

if(x > y)
f = 0.5*((y-z-1.0)*(x+1.0) + 2.0*z) + 0.5*(x+z-1.0)*(y-z-1.0);

else
f = 0.5*(y+z-1.0)*(x-1.0) + 0.5*(x-z+1.0)*(y+z-1.0);

break;
case 2: // node 1

if(x > y)
f = 0.25* ((x+z+1.0)*(-y+z+1.0) -4.0*z) +0.25*(x-y-1.0)* (-y+z+1.0) ;

A2-43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else
f = 0.25*(x-z+1.0)*(-y-z+1.0) + 0 . 2 5 * (x-y-1.0)*(-y-z+1.0);

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = -0.5*(y-z+1.0)*(y-1.0);

else
f = -0 . 5 * (y+z-1.0)*(y+1.0) ;

break;
case 4: // node 2

if(x > y)
f = 0.25*(x+z+1.0)*(y-z+1.0) + 0.25*(x+y-1.0)*(y-z+1.0);

else
f = 0.25*(x-z+1.0)*(y+z+1.0) + 0.25*(x+y-1.0)*(y+z+1.0);

break;
case 5: // midpoint node, between corner nodes 2 and 3

if(x > y)
f = -0.5*(y-z+1.0)*(x+1.0) - 0.5*(y-z+1.0)*(x+z-1.0);

else
f = -0.5*((y+z+1.0)*(x-1.0) +2.0*z) - 0.5*(x-z+1.0)*(y+z+1.0);

break;
case 6: // node 3

if(x > y)
f = 0.25*(x+z-1.0)*(y-z+1.0) + 0.25*(x-y+1.0)*(y-z+1.0);

else
f = -0.25*((-x+z+1.0)*(y+z+1.0)-4.0*z)-0.25*(-x+y-1.0)*(y+z+1.0);

break;
case 7: // midpoint node, between corner nodes 0 and 3

if(x > y)
f = 0.5*(y-z+1.0)*(y-1.0);

else
f = 0.5*(y+z-1.0)*(y+1.0);

break;
case 8: // midpoint node, between corner nodes 0 and 4

if(x > y)
f = z*(y-z-1.0);

else
f = z * (y+ z -1. 0) ;

break;
case 9 : // midpoint node, between corner nodes 1 and 4

if(x > y)
f = -z*(y-z-1.0);

else
f = -z*(y+z-1.0);

break;
case 10: // midpoint node, between corner nodes 2 and 4

if(x > y)
f = z*(y-z+1.0);

else
f = z*(y+z+1.0);

break;
case 11: // midpoint node, between corner nodes 3 and 4

if(x > y)
f = -z*(y-z+1.0);

else
f = -z*(y+z+1.0);

break;
case 12: // node 4

f = 0.0;

A2-44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

break;
default;

printf("invalid case detected for basis functions\n") ;
}
return f;

}

double pyrl3basis_dy(int i, double x, double y, double z) {
double f;

switch (i) {
case 0: // node 0

if(x > y)
f = 0.25*(x+z-1.0)*(-y+z+1.0) - 0.25*(x+y+1.0)*(x+z-1.0) ;

else
f = 0.25*(-x+z+1.0)*(y+z-1.0) + 0.25*(x+y+1.0)*(-x+z+1.0);

break;
case 1: // midpoint node, between corner nodes 0 and 1

if(x > y)
f = 0.5*(x+z-1.0)*(x+1.0);

else
f = 0.5*(x-z+1.0)*(x-1.0);

break,-
case 2: // node 1

if(x > y)
f = - 0.25*((x+z+1.0)*(-y+z+1.0)-4.0*z) -0.25*(x-y-1.0)* (x+z+1.0) ;

else
f = -0.25*(x-z+1.0)*(-y-z+1.0)-0.25*(x-y-1.0)*(x-z+1.0);

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = -0.5*((x+z+1.0)*(y-1.0) +2.0*z) -0.5*(y-z+1.0)*(x+z+1.0);

else
f = -0.5*(x-z+1.0)*(y+1.0) - 0.5*(x-z+1.0)*(y+z-1.0);

break;
case 4: // node 2

if(x > y)
f = 0.25*(x+z+1.0)*(y-z+1.0) +0.25*(x+y-1.0)*(x+z+1.0);

else
f = 0.25*(x-z+1.0)*(y+z+1.0) +0.25*(x+y-1.0)*(x-z+1.0);

break;
case 5: // midpoint node, between corner nodes 2 and 3

if(x > y)
f = -0.5*(x+z-1.0) * (x+1.0);

else
f = - 0.5*(x-z+1.0)*(x-1.0);

break;
case 6: // node 3

if(x > y)
f = - 0.25*(x+z-1.0)*(y-z+1.0) + 0.25 * (x-y+1.0)*(x+z-1.0) ;

else
f = 0.25*((-x+z+1.0)*(y+z+1.0)-4.0*z)+0.25*(-x+y-1.0)* (-x+z+1.0) ;

break;
case 7: // midpoint node, between corner nodes 0 and 3

if (x > y)
f = 0.5*(x+z-1.0)*(y-1.0) + 0.5*(y-z+1.0)*(x+z-1.0);

else
f = 0.5*((x-z-1.0)*(y+1.0) +2.0*z) + 0.5*(y+z-1.0)*(x-z-1.0);

break;

A2-45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 8: // midpoint node, between corner nodes 0 and 4
if(x > y)

f = z*(x+z-1. 0) ;
else

f = z*(x-z-1.0);
break;

case 9: // midpoint node, between corner nodes 1 and 4
if(x > y)

f = -z*(x+z+1.0);
else

f = -z*(x-z+1.0);
break;

case 10: // midpoint node, between corner nodes 2 and 4
if(x > y)

f = z*(x+z+1.0);
else

f = z*(x-z+1.0);
break;

case 11: // midpoint node, between corner nodes 3 and 4
if(x > y)

f = -z*(x+z-1.0);
else

f = -z* (x-z-1.0) ;
break;

case 12: // node 4
f = 0.0;
break;

default:
printf("invalid case detected for basis functions\n");

}
return f ;

double pyrl3basis_dz(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0: // node 0

if(x > y)
f = 0.2 5 * (x+y+1.0)*(-y+z+1.0) + 0.25*(x+y+1.0)* (x+z-1.0) ;

else
f = 0.25*(x+y+1.0)*(y+z-1.0) + 0.25*(x+y+1.0)*(-x+z+1.0);

break;
case 1: // midpoint node, between corner nodes 0 and 1

if(x > y)
f = 0.5*((y-z-1.0)*(x+1.0)+2.0*z) + 0.5*(x+z-1.0)*(-x+1.0);

else
f = -0.5*(y+z-1.0)*(x-1.0) + 0.5*(x-z+1.0)*(x-1.0);

break;
case 2: // node 1

if(x > y)
f = 0.25*(x-y-1.0)*(2.0*z -2.0 + x - y) ;

else
f = -0.25*(x-y-1.0)*(-y-z+1.0) - 0.25*(x-y-1.0)*(x-z+1.0);

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = 0.5*((x+z+1.0)*(y-1.0) +2.0*z) - 0.5*(y-z+1.0)*(y+1.0);

else

A2-46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f = 0.5*(y+z-1.0)*(y+1.0) - 0.5* (x-z+1.0)*(y+1.0);
break;

case 4: // node 2
if(x > y)

f = 0.25*(x+y-1.0)*(y-z+1.0) - 0.25*(x+y-1.0)*(x+z+1.0);
else

f = -0.25 * (x+y-1.0)*(y+z+1.0) + 0.25*(x+y-1.0)* (x-z+1.0);
break;
case 5: // midpoint node, between corner nodes 2 and 3

if(x > y)
f = 0.5*(x+z-1.0)*(x+1.0) - 0.5*(y-z+1.0)*(x+1.0);

else
f = 0.5*((y+Z+1.0)*(x-1.0) +2.0*z) - 0.5*(x-z+1.0)*(x+1.0) ;

break;
case 6: // node 3

if(x > y)
f = 0.25*(x-y+1.0)*(y-z+1. 0) - 0.25*(x-y+1.0)*(x+z-1.0);

else
f = 0.25*(-x+y-1.0)*(y+2.0*z -x -2.0);

break;
case 7: // midpoint node, between corner nodes 0 and 3

if(x > y)
f = -0.5*(x+z-1.0)*(y-1.0) + 0.5*(y-z+1.0)*(y-1.0);

else
f = 0.5*((x-z-1.0)*(y+1.0) +2.0* z) + 0.5*(y+z-1.0)*(-y+1.0)

break;
case 8: // midpoint node, between corner nodes 0 and 4

if(x > y)
f = (y-z-1.0)*(x+z-1.0) - z*(x+z-1.0) + z*(y-z-1.0);

else
f = (x-z-1.0)*(y+z-1.0) - z*(y+z-1.0) + z*(x-z-1.0);

break;
case 9; // midpoint node, between corner nodes 1 and 4

if(x > y)
f = (-x-z-1.0)*(y-z-1.0) -4.0*z +z*(x-y-2.0+2.0*z);

else
f = (-x+z-1.0)*(y+z-1.0) +z*(y+z-1.0) -z*(x-z+1.0);

break;
case 10: // midpoint node, between corner nodes 2 and 4

if(x > y)
f = (y-z+1.0)*(x+z+1.0) -z*(x+z+1.0) +z*(y-z+1.0);

else
f = (x-z+1.0)*(y+z+1.0) -z*(y+z+1.0) +z*(x-z+1.0);

break;
case 11: // midpoint node, between corner nodes 3 and 4

if(x > y)
f = (-y+z-1.0)*(x+z-1.0) +z* (x+z-1.0) -z*(y-z+1.0);

else
f = (-y-z-1.0)*(x-z-1.0) -4.0*z -z*(x-y -2.0*z + 2.0);

break;
case 12: // node 4

f = 4.0*z - 1.0;
break;

default:
printf("invalid case detected for basis functions\n");

}
return f;

A2-47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Basis functions and partial derivatives
* with symmetries about x and y axis*** j

/*****************★**★********************+******************************
* apply symmetries by using transformed basis functions
★*★************★*************★*/

double pyrl3symBasis(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0: // node 0

f = pyrl3basis(0,x,y,z) + pyrl3basis(2,-x,y,z) ;
f = f/2.0;
break;

case 2: // node 1
f = pyrl3basis(2,x,y, z) + pyrl3basis(0,-x,y, z) ;
f = f/2.0;
break;

case 4: // node 2
f = pyrl3basis(4,x,y,z) + pyrl3basis(6,-x,y,z);
f = f/2.0;
break,•

case 6: // node 3
f = pyrl3basis(6,x,y,z) + pyrl3basis(4,-x,y,z);
f = f/2.0;
break;

case 12: // node 4
f = pyrl3basis(12,x, y, z) ;
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl3basis(l,x,y,z) + pyrl3basis(1,-x,y,z);
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl3basis(3,x,y,z) + pyrl3basis(7,-x,y,z);
f = f/2.0;
break;

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl3basis(5,x,y,z) + pyrl3basis(5,-x,y,z);
f = f/2.0;
break;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl3basis(7,x,y,z) + pyrl3basis(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint, between corner nodes 4 and 0
f = pyrl3basis(8,x,y,z) + pyrl3basis(9,-x,y,z);
f = f/2.0;
break;

case 9: // midpoint, between corner nodes 4 and 1
f = pyrl3basis(9,x,y,z) + pyrl3basis(8,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 4 and 2
f = pyrl3basis(10,x,y,z) + pyrl3basis(11,-x,y,z);
f = f/2.0;

A2-48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

break;
case 11: // midpoint, between corner nodes 4 and 3

f = pyrl3basis (11, x,y, z) + pyrl3basis(10,-x, y, z) ;
f = f/2.0;
break;

default:
printf("invalid case detected for basis functions\n");

}
return f;

double pyrl3symBasis_dx(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0: // node 0

f = pyrl3basis_dx(0,x,y,z) - pyrl3basis_dx(2,-x,y, z);
f = f/2.0;
break;

case 1: // midpoint, between corner nodes 0 and 1
f = pyrl3basis_dx(1,x,y,z) - pyrl3basis_dx(1,-x,y,z);
f = f/2.0;
break;

case 2: // node l
f = pyrl3basis_dx(2,x,y,z) - pyrl3basis_dx(0,-x,y,z);
f = f/2.0;
break;

case 3 : // midpoint, between corner nodes 1 and 2
f = pyrl3basis_dx(3,x,y,z) - pyrl3basis_dx(7,-x,y,z);
f = f/2.0;
break;

case 4: // node 2
f = pyrl3basis_dx (4, x, y, z) - pyrl3basis_dx (6 ,-x, y, z) ,-
f = f/2.0;
break;

case 5: // midpoint, between corner nodes 2 and 3
f = pyrl3basis_dx(5,x,y,z) - pyrl3basis_dx(5,-x,y,z);
f = f/2.0;
break;

case 6: // node 3
f = pyrl3basis_dx(6,x,y,z) - pyrl3basis_dx(4,-x,y,z);
f = f/2.0;
break;

case 7: // midpoint, between corner nodes 0 and 3
f = pyrl3basis_dx(7,x,y,z) - pyrl3basis_dx(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint, between corner nodes 0 and 4
f = pyrl3basis_dx(8,x,y,z) - pyrl3basis_dx(9,-x,y,z);
f = f/2.0;
break;

case 9: // midpoint, between corner nodes 1 and 4
f = pyrl3basis_dx(9,x,y,z) - pyrl3basis_dx(8,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 2 and 4
f = pyrl3basis_dx(10,x,y,z) - pyrl3basis_dx(11,-x,y,z);
f = f/2.0;
break;

A2-49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 11: // midpoint, between corner nodes 3 and 4
f = pyrl3basis_dx(11,x,y,z) - pyrl3basis_dx(10,-x,y,z);
f = f/2.0;
break;

case 12: // node 4
f = 0.0;
break;

default:
printf("invalid case detected for basis functions\n");

}
return f ;

}

double pyrl3symBasis_dy(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0: // node 0

f = pyrl3basis_dy(0,x,y,z) + pyrl3basis_dy(2,-x,y,z);
f = f/2.0;
break;

case 1: // midpoint, between corner nodes 0 and 1
f = pyrl3basis_dy(1,x,y,z) + pyrl3basis_dy(1,-x,y,z);
f = f/2.0;
break;

case 2: // node 1
f = pyrl3basis_dy (2 , x, y, z) + pyrl3basis_dy (0,-x, y, z) ,-
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 1 and 2
f = pyrl3basis_dy(3,x,y,z) + pyrl3basis_dy(7,-x,y,z);
f = f/2.0;
break;

case 4: // node 2
f = pyrl3basis_dy(4,x,y,z) + pyrl3basis_dy(6,-x,y,z);
f = f/2.0;
break;

case 5: // midpoint, between corner nodes 2 and 3
f = pyrl3basis_dy(5,x,y, z) + pyrl3basis_dy (5,-x,y, z)
f = f/2.0;
break ,-

case 6: // node 3
f = pyrl3basis_dy(6,x,y, z) + pyrl3basis_dy(4,-x,y, z) ;
f = f/2.0;
break;

case 7: // midpoint, between corner nodes 0 and 3
f = pyrl3basis_dy(7,x,y,z) + pyrl3basis_dy(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint, between corner nodes 0 and 4
f = pyrl3basis_dy (8,x,y, z) + pyrl3basis_dy (9,-x, y, z) ,-
f = f/2.0;
break;

case 9: // midpoint, between corner nodes 1 and 4
f = pyrl3basis_dy(9,x,y,z) + pyrl3basis_dy(8,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 2 and 4
f = pyrl3basis_dy(10,x,y,z) + pyrl3basis_dy(11,-x,y,z);

A2-50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f = f/2.0;
break;

case 11; // midpoint, between corner nodes 3 and 4
f = pyrl3basis_dy(11,x,y,z) + pyrl3basis_dy(10,-x,y,z);
f = f/2.0;
break;

case 12: // node 4
f = 0.0;
break;

default:
printf("invalid case detected for basis functions\n");

}
return f;

double pyrl3symBasis_dz(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0; // node 0

f = pyrl3basis_dz(0,x,y,z) + pyrl3basis_dz(2,-x,y,z);
f = f/2.0;
break;

case 1: // midpoint, between corner nodes 0 and 1
f = pyrl3basis_dz(1,x,y,z) + pyrl3basis_dz(1,-x,y,z);
f = f/2.0;
break;

case 2: // node 1
f = pyrl3basis_dz(2,x,y,z) + pyrl3basis_dz(0,-x,y,z);
f = f/2.0;
break;

case 3; // midpoint, between corner nodes 1 and 2
f = pyrl3basis_dz(3,x,y,z) + pyrl3basis_dz(7,-x,y,z);
f = f/2.0;
break;

case 4 ; // node 2
f = pyrl3basis_dz (4, x, y, z) + pyrl3basis_dz (6,-x, y, z) ,-
f = f/2.0;
break;

case 5; // midpoint, between corner nodes 2 and 3
f = pyrl3basis_dz(5,x,y,z) + pyrl3basis_dz(5,-x,y,z);
f = f/2.0;
break;

case 6; // node 3
f = pyrl3basis_dz(6,x,y,z) + pyr13basis_dz(4,-x,y,z);
f = f/2.0;
break;

case 7; // midpoint, between corner nodes 0 and 3
f = pyrl3basis_dz(7,x,y,z) + pyrl3basis_dz(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint, between corner nodes 0 and 4
f = pyrl3basis_dz(8,x,y,z) + pyrl3basis_dz(9,-x,y,z);
f = f/2.0;
break;

case 9; // midpoint, between corner nodes 1 and 4
f = pyrl3basis_dz(9,x,y,z) + pyrl3basis_dz(8,-x,y,z);
f = f/2.0;
break;

A2-51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 10: // midpoint, between corner nodes 2 and 4
f = pyrl3basis_dz(10,x,y,z) + pyrl3basis_dz(11,-x,y,z);
f = f/2.0;
break;

case 11: // midpoint, between corner nodes 3 and 4
f = pyrl3basis_dz(ll,x,y,z) + pyrl3basis_dz(10,-x,y,z);
f = f/2.0;
break;

case 12: // node 4
f = pyrl3basis_dz(12,x,y,z);
break;

default:
printf("invalid case detected for basis functions\n");

}
return f ;

A2-52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Programmer: Kevin Davies
* File: pyrl4basis.c
* Version: 3.0
* Date last modified: Dec 12, 2004
* Description: Quadratic basis functions and their partial derivatives
* for 14 node pyramidal element.
*

*

* Case I for 14-Node Pyramidal Element
★

double pyrl4Clbasis(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0: // node 0

if(x > y)
f = 0 . 25* (x+z) * (y-z) * (x+z-1. 0) * (y-z-1. 0) ;

else
f = 0.25*(x-z)* (y+z)* (x-z-1.0)*(y+z-1.0);

break;
case 1: // midpoint node, between corner nodes 1 and 0

if(x > y)
f = -0.5* (x+z-1.0)*(y-z-1.0)*(x-z+1.0)*(y-z) ;

else
f = -0.5*(x-z+1.0)*(y+z-1.0)*(x-z-1.0)*(y-z);

break;
case 2: // node 1

if(x > y)
f = 0.25* (x+z)* (z-y)* (x*(1.0-y) +z*(z+x-y-2.0) -y +1.0) -z*(x-

else
f = 0.25*(x-z)* (y+z)* (y+z-1.0)*(x-z+1.0);

break;
case 3: // midpoint, between corner nodes 1 and 2

if(x > y)
f = -0.5*(-y+z-1.0)*(x+z)*((z+x-y-2.0)*z + x * (1.0-y) -y +1.0);

else
f = 0.5 * (x-z+1.0)*(y+z-1.0)*(-y+z-1.0)*(x+z) ;

break;
case 4: // node 2

if(x > y)
f = 0.25* (x+z)* (y-z)* (y-z+1.0)*(x+z+1.0) ;

else
f = 0.25*(x-z)* (y+z)* (x-z+1.0)*(y+z+1.0);

break;
case 5: // midpoint, between corner nodes 3 and 2

if(x > y)
f = 0.5 * (x-z+1.0)*(-y+z-1.0)*(x+z-1.0)*(y+z) ;

else
f = -0.5* (x-z+1.0)*(y+z)* ((-z+x-y+2.0)*z +x*(y+1.0) -y -1.0);

break;
case 6 : // node 3

if(x > y)
f = 0.25*(x+z)* (z-y)*(-y+z-1.0)*(x+z-1.0);

A2-53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else
f = 0.25*(x-z)* (y+z)* (z*(x-z-y+2.0) +x*(y+1.0) -y -1.0) +z*(x-y);

break;
case 7: // midpoint, between corner nodes 3 and 0

if(x > y)
f = -0.5*(-y+z-1.0)*(x+z-1.0)*(-y+z+1.0)*(x-z);

else
f = 0.5*(-y+z-1.0)*(x-z)* (x-z-1.0)*(y+z-1.0);

break;
case 8: // midpoint, between corner nodes 2 and 0

if(x > y)
f = -(-y+z-1.0)*(x+z-1.0)*((y-1.0)*x +z*(z-2.0*y+3.0) +y-1.0);

else
f = - (x-z+1.0)*(y+z-1.0) *(z * (-z+2.0*x-3.0) -x*(1.0+y) +y+1.0);

break;
case 9: // midpoint, between corner nodes 4 and 0

if(x > y)
f = z* (y-z-1. 0) * (x+z-1. 0) ;

else
f = z*(x-z-1.0)*(y+z-1.0);

break;
case 10: // midpoint, between corner nodes 4 and 1

if(x > y)
f = -z*((x+z+1.0)*(y-z-1.0) + 4.0 * z);

else
f = -z*(x-z+1.0)*(y+z-1.0);

break;
case 11: // midpoint, between corner nodes 4 and 2

if(x > y)
f = z*(y-z+1.0)*(x+z+1.0);

else
f = z*(x-z+1.0)*(y+z+1.0);

break;
case 12: // midpoint, between corner nodes 4 and 3

if(x > y)
f = -z*(y-z+1.0)*(x+z-1.0) ;

else
f = -z*((y+z+1.0)*(x-z-1.0) +4.0*z);

break;

case 13: // node 4
f = z*(2.0*z-1.0);

break;
default:

printf("invalid case detected for basis functions\n");
}
return f;

}

* Apply Extra symmetries to basis functions

double pyrl4ClsymBasis(int i, double x, double y, double z) {
double f;

switch (i) {
case 0: // node 0

A2-54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f = pyrl4Clbasis(0,x,y,z) +
f = f/2.0;
break;

case 2: // node 1
f = pyrl4Clbasis(2,x,y,z) +
f = f/2.0;
break;

case 4: // node 2
f = pyrl4Clbasis(4,x,y,z) +
f = f/2.0;
break;

case 6: // node 3
f = pyrl4Clbasis(6,x,y,z) +
f = f/2.0;
break;

case 13: // node 4
f = pyrl4Clbasis(13,x,y,z);
break;

case 1: // midpoint, between
f = pyrl4Clbasis(l,x,y,z) +
f = f/2.0;
break;

case 3: // midpoint, between
f = pyrl4Clbasis(3,x,y,z) +
f = f/2.0;
break;

case 5: // midpoint, between
f = pyrl4Clbasis(5,x,y,z) +
f = f/2.0;
break;

case 7: // midpoint, between
f = pyrl4Clbasis(7,x,y,z) +
f = f/2.0;
break;

case 8: // midpoint on base,
f = pyrl4Clbasis(8,x,y,z) +
f = f/2.0;
break;

case 9: // midpoint, between
f = pyrl4Clbasis(9,x,y,z) +
f = f/2.0;
break;

case 10: // midpoint, between
f = pyrl4Clbasis(10,x,y,z) +
f = f/2.0;
break;

case 11: // midpoint, between
f = pyrl4Clbasis(11,x,y,z) +
f = f/2.0;
break;

case 12: // midpoint, between
f = pyrl4Clbasis(12,x,y,z) +
f = f/2.0;
break;

default:
printf("invalid case

}
return f ;

p y r l 4 C l b a s i s (2 , - x , y , z) ;

pyrl4Clbasis(0,-x, y,z);

pyrl4Clbasis(6,-x,y,z);

pyrl4Clbasis(4,-x,y,z);

corner nodes 1 and 0
pyrl4Clbasis(1,-x, y, z) ;

corner nodes 2 and 1
pyrl4Clbasis (7 , -x, y, z) ,-

corner nodes 3 and 2
pyrl4Clbasis(5,-x,y,z);

corner nodes 3 and 0
pyrl4Clbasis(3,-x,y,z);

between corner nodes 2 and 0
pyrl4Clbasis(8,-x,y,z);

corner nodes 4 and 0
pyrl4Clbasis(10,-x,y,z);

corner nodes 4 and 1
pyrl4Clbasis(9,-x,y,z);

corner nodes 4 and 2
pyrl4Clbasis(12,-x,y, z);

corner nodes 4 and 3
pyrl4Clbasis(11, -x, y, z);

functions\n");detected for pyrl4Clbasis

A2-55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ ★ *

★
* Case II for 14-Node Pyramidal Element
*
***^

double pyrl4C2basis(int i, double x, double y, double z) {
double f;

switch(i) {
case 0: // node 0

if(x > y)
f = 0.25*(x+z)* (y-z)* (x+z-1.0)*(y-z-1.0) ;

else
f = 0.25*(x-z)* (y+z)* (x-z-1.0)*(y+z-1.0);

break;
case 1: // midpoint node, between corner nodes 1 and 0

if(x > y)
f = -0.5*(x+z-1.0)*(((y-z-1.0)* (x+1.0)*y -z) + z * (2.0*x+l.0));

else
f = -0.5* (x-z+1.0)*(y+z-1.0)*(x-1.0)*y;

break;
case 2: // node 1

if (x > y)
f = -0.25*(x+z)* (y-z)* ((x+z+1.0) *(-y+z+1.0) -4.0*z) -z*(x-y);

else
f = -0.25*(x-z)* (y+z)*(-y-z+1.0)*(x-z+1.0);

break;
case 3: // midpoint, between corner nodes 1 and 2

if(x > y)
f = -0.5* (y-z+1.0)*(((x+z+1.0)*(y-1.0)*x -z) + z * (2.0*y+l.0));

else
f = -0.5*(x-z+1.0)*(y+z-1.0)*(y+1.0)*x;

break;
case 4: // node 2

if(x > y)
f = 0.25*(x+z)* (y-z)* (y-z+1.0)*(x+z+1.0);

else
f = 0.25*(x-z)* (y+z)* (x-z+1.0)*(y+z+1.0) ;

break;
case 5; // midpoint, between corner nodes 3 and 2

if(x > y)
f = -0.5*(x+z-1.0)*(y-z+1.0)*(x+1.0)*y;

else
f = -0.5* (x-z+1.0)*(((y+z+1.0)*(x-1.0)*y -z) + z * (2.0*x+l.0));

break;
case 6: // node 3

if(x > y)
f = 0.25*(x+z)* (y-z)* (y-z+1.0)*(x+z-1.0);

else
f = 0.25*(x-z)* (y+z)* ((x-z-1.0)*(y+z+1.0) +4.0*z) +z*(x-y);

break;
case 7: // midpoint, between corner nodes 3 and 0

if (x > y)
f = -0.5*(y-z+1.0)*(x+z-1.0)*(y-1.0)*x;

else
f = -0.5*(y+z-1.0)*(((x-z-1.0)*(y+1.0)*x -z) + z * (2.0*y+l.0)) ;

break;

A2-56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 8: // midpoint, between corner nodes 2 and 0
if(x > y)

f = (y-z+1.0)*(x+z-1.0)*(y-1.0)*(x+1.0)
+ z*(x+z-1.0)*(y-z+1.0)*(x-y+z+1.0);

else
f = (x-z+1.0)*(y+z-1.0)*(x-1.0)*(y+1.0)

- z*(x-z+1.0)*(y+z-1.0) * (x-y-z-1.0) ;
break;

case 9: // midpoint, between corner nodes 4 and 0
if(x > y)

f = z*(y-z-1.0)*(x+z-1.0);
else

f = z*(x-z-1.0)*(y+z-1.0);
break;

case 10: // midpoint, between corner nodes 4 and 1
if(x > y)

f = -z * ((x+z+1.0)*(y-z-1.0) + 4.0*z) ;
else

f = -z*(x-z+1.0)*(y+z-1.0);
break;

case 11: // midpoint, between corner nodes 4 and 2
if(x > y)

f = z*(y-z+1.0)*(x+z+1.0);
else

f = z*(x-z+1.0)*(y+z+1.0);
break;

case 12: // midpoint, between corner nodes 4 and 3
if(x > y)

f = -z*(y-z+1.0)* (x+z-1.0);
else

f = -z * ((y+z+1.0)*(x-z-1.0) +4.0 * z) ;
break,•

case 13: // node 4
f = z * (2.0*z-l.0) ;

break;
default:

printf("invalid case detected for basis functions: i = %d\n",
}
return f ;

double pyrl4C2basis_dx(int i, double x, double y, double z) {
double f ;

switch (i) {
case 0: // node 0

if(x > y)
f = 0.25*(y-z)* (y-z-1.0)*(2.0*x+2.0*z-l.0);

else
f = 0.25* (y+z)* (y+z-1.0)*(2.0*x-2.0*z-l.0) ;

break;
case 1: // midpoint node, between corner nodes 1 and 0

if(x > y)
f = -0.5*((y-z-1.0)*(x+1.0)*y -z +z * (2.0*x+l.0))

-0.5*(x+z-1.0)*((y-z-1.0)*y +2.0*z);
else

f = 0.5*y*(y+z-1.0)*(z-2.0*x);
break;

A2-57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 2: // node 1
if(x > y)

f = -0.25*(y-z)*(((x+z+1.0)*(-y+z+1.0)-4.0*z)+(x+z)*(-y+z+1.0))-z ;
else

f = 0.25*(y+z)* (y+z-1.0)*(2.0*x-2.0*z+1.0);
break;

case 3: // midpoint node, between corner nodes l and 2
if(x > y)

f = 0.5*(-y+z-1.0)*(y-1.0)*(2.0*x+z+l.0);
else

f = 0.5*(y+1.0)*(y+z-1.0)*(z-2.0*x-1.0);
break;

case 4: // node 2
if(x > y)

f = 0.25*(y-z)* (y-z+1.0)*(2.0*x+2.0*z+1.0);
else

f = 0.25*(y+z)* (y+z+1.0)*(2.0*x-2.0*z+1.0);
break;

case 5: // midpoint node, between corner nodes 2 and 3
if(x > y)

f = 0.5*y*(-y+z-1.0)*(2.0*x+z);
else

f = -0.5*((y+z+1.0)*(x-1.0)*y -z + z * (2.0*x+l.0))
-0.5*(x-z+1.0)*((y+z+1.0)*y +2 . 0*z) ;

break;
case 6: // node 3

if(x > y)
f = 0.25*(z-y)* (z-y-1.0)*(2.0*x+2.0*z-l.0);

else
f = 0.25*(y+z)*(((x-z-1.0)* (y+z+1.0)+4.0*z) + (x-z)* (y+z+1.0))+z;

break;
case 7: // midpoint node, between corner nodes 0 and 3

if(x > y)
f = 0.5*(y-1.0)*(-y+z-1.0)*(2.0*x+z-1.0);

else
f = 0.5 * (y+z-1.0)*(y+1.0)*(-2.0*x+z+l.0) ;

break;
case 8: // midpoint node, between corner nodes 0 and 2

if(x > y)
f = (y-z+1.0)*((y-1.0)*(x+1.0)+(x+z-1.0)*(y-1.0)

+z*(x-y+z+1.0)+z*(x+z-1.0));
else

f = (y+z-1.0)*((y+1.0)*(x-1.0)+(x-z+1.0)*(y+1.0)
-z*(x-z-y-1.0)-z*(x-z+1.0));

break;
case 9: // midpoint node, between corner nodes 0 and 4

if(x > y)
f = z*(y-z-1.0);

else
f = z*(y+z-1.0);

break;
case 10: // midpoint node, between corner nodes 1 and 4

if(x > y)
f = -z*(y-z-1.0);

else
f = -z*(y+z-1.0);

break;
case 11: // midpoint node, between corner nodes 2 and 4

if(x > y)

A2-58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f = z*(y-z+1.0);
else

f = z*(y+z+1.0) ;
break;

case 12; // midpoint node, between corner nodes 3 and 4
if(x > y)

f = -z*(y-z+1. 0) ;
else

f = -z* (y+z+1.0) ;
break;

case 13; // node 4
f = 0.0;
break;

default:
printf("invalid case detected for basis functions: i = %d\n", i);

}
return f;

double pyrl4C2basis_dy(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0: // node 0

if(x > y)
f = 0.25*(x+z)* (x+z-1.0)*(2.0*y-2.0*z-l. 0) ;

else
f = 0.25*(x-z)* (x-z-1.0)* (2.0*y+2.0*z-l.0) ;

break;
case 1: // midpoint node, between corner nodes 0 and 1

if(x > y)
f = -0.5* (x+z-1.0)* (x+1.0)*(2.0*y-z-1.0) ;

else
f = 0.5*(x-1.0)*(-x+z-1.0)*(2.0*y+z-l.0);

break;
case 2: // node 1

if(x > y)
f = - 0.25 * (x+z)*(((x+z+1.0)*(-y+z+1.0)-4.0*z) - (y-z)* (x+z+1.0)) + z ;

else
f = 0.25*(x-z)* (x-z+1.0)*(2.0*y+2.0*z-1.0);

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = -0.5*((x+z+1.0)*(y-1.0)*x -z +z* (2.0*y+l.0))

-0.5*(y-z+1.0)*((x+z+1.0)*x +2.0* z) ;
else

f = 0.5*x*(-x+z-1.0)*(2.0*y+z);
break;

case 4: // node 2
if(x > y)

f = 0.25* (x+z)* (x+z+1.0)*(2.0*y-2.0*z+1.0) ;
else

f = 0.25*(x-z)* (x-z+1.0)*(2.0*y+2.0*z+1.0);
break;

case 5: // midpoint node, between corner nodes 2 and 3
if(x > y)

f = 0.5*(x+1.0)*(x+z-1.0)*(z-2.0*y-1.0);
else

f = 0.5*(-x+z-1.0)*(x-1.0)*(2.0*y+z+l.0) ;

A2-59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

break;
case 6: // node 3

if(x > y)
f = -0.25*(x+z)* (x+z-1.0)*(-2.0*y+2.0*z-1.0) ;

else
f = 0.25*(x-z)*(((x-z-1.0)*(y+z+1.0)+4.0*z) + (y+z)* (x-z-1.0)'

break;
case 7: // midpoint node, between corner nodes 0 and 3

if(x > y)
f = 0.5*x*(x+z-1.0)*(-2.0*y+z);

else
f = -0.5*((x-z-1.0)*(y+1.0)*x -z +z*(2.0*y+l.0))

-0.5*(y+z-1.0)*((x-z-1.0)*x +2.0*z);
break;

case 8: // midpoint node, between corner nodes 0 and 2
if(x > y)

f = (x+z-1.0)*((y-1.0)* (x+1.0) + (y-z+1.0)*(x+1.0)
+z*(x-y+z+1.0)-z*(y-z+1.0));

else
f = (x-z+1.0)*((y+1.0)*(x-1.0)+(y+z-1.0)*(x-1.0)

-z* (x-z-y-1.0)+z*(y+z-1. 0)) ;
break;

case 9: // midpoint node, between corner nodes 0 and 4
if(x > y)

f = z*(x+z-1.0);
else

f = z*(x-z-1.0);
break;

case 10: // midpoint node, between corner nodes 1 and 4
if(x > y)

f = -z*(x+z+1.0);
else

f = -z*(x-z+1.0);
break;

case 11: // midpoint node, between corner nodes 2 and 4
if(x > y)

f = z*(x+z+1.0);
else

f = z*(x-z+1.0);
break;

case 12: // midpoint node, between corner nodes 3 and 4
if(x > y)

f = -Z*(x+Z-1.0);
else

f = -z* (x-z-1. 0) ,-
break;

case 13: // node 4
f = 0.0;
break;

default:
printf("invalid case detected for basis functions: i = %d\n", i)

}
return f;

}

double pyrl4C2basis_dz(int i, double x, double y, double z) {
double f ;

switch(i) {

A2-60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 0: // node 0
if (x > y)

f = 0.25*(y-z-1.0)* ((x+z)* (y-z) + (x+z-1.0)* (y-z)-(x+z-1.0)*(x+z))
-0.25*(x+z-1.0)*(x+z)* (y-z);

else
f = 0.25*(x-z-1.0)*((y+z)*(x-z) + (y+z-1.0)*(x-z)-(y+z-1.0)*(y+z))

-0.25*(y+z-1.0)*(y+z)* (x-z),-
break;

case 1: // midpoint node, between corner nodes 0 and 1
if(x > y)

f = -0.5*((y-z-1.0)*(x+1.0)*y -z + z * (2.0*x+l.0))
-0.5*(x+z-1,0)*(-(x+1.0)*y +2.0 *x) ;

else
f = 0.5*y*(x-1.0)*(-x+y+2.0*z-2 . 0) ;

break;
case 2: // node 1

if (x > y)
f = -0.25*(y-z)*((x+z+1.0)*(-y+z+1.0)-4.0*z) +0.25*(x+z)*

(((x+z+1.0) * (-y+z+1. 0) -4 . 0*z) - (y-z)* (-y+2 . 0*z+x-2 . 0)) -x+y;
else

f = 0.25*(y+z)* (x-z+1.0)*(-y-z+1.0) -0.25*(x-z)*
((x-z+1.0)*(-y-z+1.0)-(y+z)*(-y-z+1.0)-(y+z)* (x-z+1.0));

break;
case 3: // midpoint node, between corner nodes 1 and 2

if(x > y)
f = 0.5*((x+z+1.0)*(y-1.0)*x -z + z * (2.0*y+l.0))

-0.5*(y-z+1.0)*((y-1.0)*x +2.0*y);
else

f = 0.5*x*(y+1.0)*(-x+y+2.0*z-2.0) ;
break;

case 4: // node 2
if(x > y)

f = -0.25*(x+z+1.0)*((x+z)*(y-z)-(y-z+1.0)*(y-z)+(y-z+1.0)*(x+z))
+0.25*(y-z+1.0)*(x+z)* (y-z);

else
f = -0.25*(y+z+1.0)*((x-z)*(y+z)+(x-z+1.0)*(y+z)- (x-z+1.0)*(x-z))

+0.25*(x-z+1.0)*(x-z)*(y+z);
break;

case 5: // midpoint node, between corner nodes 2 and 3
if(x > y)
f = 0.5*y*(x+1.0)*(-y+2.0*z+x-2.0);

else
f = 0.5*((y+z+1.0)*(x-1.0)*y -z + z * (2.0*x+l.0))

-0.5*(x-z+1.0)*((x-1.0)*y +2.0 *x);
break;

case 6: // node 3
if(x > y)

f = 0.25*(y-z)* (x+z-1.0)*(y-z+1.0) -0.25*(x+z)*
((x+z-1.0)*(y-z+1.0)-(y-z)* (y-z+1.0) + (y-z)*(x+z-1.0)) ;

else
f = -0.25 * (y+z)*((x-z-1.0)* (y+z+1.0)+4.0*z) +0.25*(x-z)*

(((x-z-1.0)*(y+z+1.0)+4.0* z) + (y+z)*(-y-2.0* z+2.0+x))+x-y;
break;

case 7: // midpoint node, between corner nodes 0 and 3
if(x > y)

f = 0.5*x*(y-1.0)*(-y+2.0*z-2.0+x);
else

f = -0.5*((x-z-1.0)*(y+1.0)*x -z + z * (2.0*y+l.0))
-0.5*(y+z-1.0)*(2.0*y-x*y-x);

A2-61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

break;
case 8: // midpoint node, between corner nodes 0 and 2

if(x > y)
f = (y-z+1. 0)*((y-1.0)*(x+1.0)+z*(x-y+z+1.0)) + (x+z-1.0)*

((y-z+1.0)*(x-y+z+1.0)-z*(x-y+z+1.0)-(y-1.0)*(x+1.0)+z*(y-z+1.0));
else

f = (x-z+1.0)*((y+1.0)*(x-1.0)-z*(x-z-y-1.0))+(y+z-1.0)*
(z* (x-z+1.0)-(y+1.0)*(x-1.0)-(x-z+1.0)*(x-z-y-1.0)+z*(x-z-y-1.0)) ;

break;
case 9: // midpoint node, between corner nodes 0 and 4

if(x > y)
f = (y-z-1.0)*(x+z-1.0) -z*(x+z-1.0) +z*(y-z-1.0);

else
f = (x-z-1.0)*(y+z-1.0) -z*(y+z-1.0) +z*(x-z-1.0);

break;
case 10: // midpoint node, between corner nodes 1 and 4

if(x > y)
f = - (x+z+1.0)*(y-z-1.0) - 4.0 * z -z*(y+2.0-2.0*z-x) ;

else
f = - (x-z+1.0)*(y+z-1.0) + z * (2.0*z+y-2.0-x);

break;
case 11: // midpoint node, between corner nodes 2 and 4

if(x > y)
f = (y-z+1.0)*(x+z+1.0) +z*(-2.0*z-x+y);

else
f = (x-z+1.0)*(y+z+1.0) -z*(2.0*z+y-x);

break;
case 12: // midpoint node, between corner nodes 3 and 4

if (x > y)
f = - (y-z+1.0)*(x+z-1.0) -z*(-2.0*z-x+2.0+y);

else
f = - (y+z+1.0) * (x-z-1.0) -4.0*z -z*(x-2.0*z +2.0-y);

break;
// new basis functions

case 13: // node 4
f = 4.0*z - 1.0;
break;

default:
printf("invalid case detected for basis functions: i = %d\n", i);

}
return f;

}

/ * ★ * * * * * * * * * * * * ★ *

* Apply Extra symmetries to basis functions

double pyrl4C2symBasis(int i, double x, double y, double z) {
double f ;

switch(i) {
case 0: // node 0

f = pyrl4C2basis(0,x,y,z) + pyrl4C2basis(2,-x,y,z);
f = f/2.0;
break;

case 2: // node 1
f = pyrl4C2basis(2 , x,y, z) + pyrl4C2basis(0,-x,y,z) ;
f = f/2.0;
break;

A2-62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 4: // node 2
f = pyrl4C2basis(4,x, y,z) + pyrl4C2basis(6,-x, y, z) ;
f = f/2.0;
break;

case 6; // node 3
f = pyrl4C2basis(6,x, y,z) + pyrl4C2basis(4,-x,y,z);
f = f/2.0;
break;

case 13: // node 4
f = pyrl4C2basis(13,x,y,z);
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl4C2basis(l,x,y,z) + pyrl4C2basis (1,-x, y, z) ,-
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl4C2basis(3,x,y,z) + pyrl4C2basis(7,-x,y,z);
f = f/2.0;
break;

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl4C2basis(5,x,y,z) + pyrl4C2basis(5,-x,y,z);
f = f/2.0;
break;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl4C2basis(7,x,y,z) + pyrl4C2basis(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint on base, between corner nodes 2 and 0
f = pyrl4C2basis(8,x,y,z) + pyrl4C2basis(8,-x,y,z);
f = f/2.0;
break;

case 9: // midpoint, between corner nodes 4 and 0
f = pyrl4C2basis(9,x,y,z) + pyrl4C2basis(10,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 4 and 1
f = pyrl4C2basis(10,x,y,z) + pyrl4C2basis(9,-x,y,z);
f = f/2.0;
break;

case 11: // midpoint, between corner nodes 4 and 2
f = pyrl4C2basis(11, x, y, z) + pyrl4C2basis(12,-x,y,z) ;
f = f/2.0;
break;

case 12: // midpoint, between corner nodes 4 and 3
f = pyrl4C2basis(12,x,y,z) + pyrl4C2basis(11,-x,y,z);
f = f/2.0;
break;

default:
printf("invalid case detected for pyrl4Clbasis functions\n");

}
return f;

}

double pyrl4C2symBasis_dx(int i, double x, double y, double z) {
double f;

switch(i) {
case 0: // node 0

f = pyrl4C2basis_dx(0,x,y,z) - pyrl4C2basis_dx(2,-x,y,z);

A2-63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f = f/2.0;
break ■,

case 2; // node 1
f = pyrl4C2basis_dx(2,x,y,z) - pyrl4C2basis_dx(0,-x,y,z);
f = f/2.0;
break;

case 4: // node 2
f = pyrl4C2basis_dx(4, x,y, z) - pyr!4C2basis_dx(6,-x, y,z);
f = f/2.0;
break;

case 6: // node 3
f = pyrl4C2basis_dx(6,x,y,z) - pyrl4C2basis_dx(4,-x,y,z);
f = f/2.0;
break,-

case 13: // node 4
f = pyrl4C2basis_dx (13, x,y, z) ,-
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl4C2basis_dx(1,x,y,z) - pyrl4C2basis_dx(1,-x,y,z);
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl4C2basis_dx(3,x,y,z) - pyrl4C2basis_dx(7,-x,y,z);
f = f/2.0;
break ,-

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl4C2basis_dx(5,x,y,z) - pyrl4C2basis_dx(5,-x,y,z);
f = f/2.0;
break;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl4C2basis_dx(7,x,y,z) - pyrl4C2basis_dx(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint on base, between corner nodes 2 and 0
f = pyrl4C2basis_dx(8,x,y,z) - pyrl4C2basis_dx(8,-x,y,z);
f = f/2.0;
break;

case 9: // midpoint, between corner nodes 4 and 0
f = pyrl4C2basis_dx(9,x,y,z) - pyrl4C2basis_dx(10,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 4 and 1
f = pyrl4C2basis_dx(10,x,y,z) - pyrl4C2basis_dx(9,-x,y,z);
f = f/2.0;
break;

case 11: // midpoint, between corner nodes 4 and 2
f = pyrl4C2basis_dx(11,x,y,z) - pyrl4C2basis_dx(12,-x,y,z);
f = f/2.0;
break;

case 12: // midpoint, between corner nodes 4 and 3
f = pyrl4C2basis_dx(12,x,y,z) - pyrl4C2basis_dx(11,-x,y,z);
f = f/2.0;
break;

default:
printf ("invalid case detected for basis functions\n");

}
return f;

}

A2-64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double pyrl4C2symBasis_dy(int i, double x, double y, double z) {
double f;

switch(i) {
case 0: // node 0

f = pyrl4C2basis_dy(0,x,y,z) + pyrl4C2basis_dy (2 ,-x, y, z) ,-
f = f/2.0;
break;

case 2: // node 1
f = pyrl4C2basis_dy(2,x,y,z) + pyrl4C2basis_dy(0,-x,y,z) ;
f = f/2.0;
break;

case 4: // node 2
f = pyrl4C2basis_dy(4,x,y,z) + pyrl4C2basis_dy(6,-x,y,z);
f - f/2.0;
break;

case 6: // node 3
f = pyrl4C2basis_dy(6,x,y,z) + pyrl4C2basis_dy(4,-x,y,z);
f = f/2.0;
break;

case 13: // node 4
f = pyrl4C2basis_dy(13,x,y,z);
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl4C2basis_dy(1,x,y,z) + pyrl4C2basis_dy(1,-x,y,z);
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl4C2basis_dy(3,x,y,z) + pyrl4C2basis_dy(7,-x,y,z);
f = f/2.0;
break;

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl4C2basis_dy(5,x,y,z) + pyrl4C2basis_dy(5,-x,y,z);
f = f/2.0;
break;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl4C2basis_dy(7,x,y,z) +■ pyrl4C2basis_dy(3,-x,y,z);
f = f/2.0;
break;

case 8: // midpoint on base, between corner nodes 2 and 0
f = pyrl4C2basis_dy(8,x,y,z) + pyrl4C2basis_dy(8,-x,y,z);
f = f/2.0;
break;

case 9: // midpoint, between corner nodes 4 and 0
f = pyrl4C2basis_dy(9,x,y,z) + pyrl4C2basis_dy(10,-x,y,z);
f = f/2.0;
break ,-

case 10: // midpoint, between corner nodes 4 and 1
f = pyrl4C2basis_dy(10,x,y,z) + pyrl4C2basis_dy(9,-x,y,z);
f = f/2.0;
break;

case 11: // midpoint, between corner nodes 4 and 2
f = pyrl4C2basis_dy(ll,x,y,z) + pyrl4C2basis_dy(12,-x, y, z);
f = f/2.0;
break;

case 12: // midpoint, between corner nodes 4 and 3
f = pyrl4C2basis_dy(12,x,y,z) + pyrl4C2basis_dy(11,-x,y,z);
f = f/2.0;
break;

A2-65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

default:
printf("invalid case detected for basis functions\n");

}
return f;

double pyrl4C2symBasis_dz(int i, double x, double y, double z) {
double f;

switch (i) {
case 0: // node 0

f = pyrl4C2basis_dz(0,x,y, z) + pyrl4C2basis_dz(2,-x,y,z);
f = f/2.0;
break;

case 2: // node 1
f = pyrl4C2basis_dz(2,x,y,z) + pyrl4C2basis_dz(0,-x,y,z);
f = f/2.0;
break;

case 4: // node 2
f = pyrl4C2basis_dz(4,x,y,z) + pyrl4C2basis_dz(6,-x,y,z);
f = f/2.0;
break;

case 6: // node 3
f = pyrl4C2basis_dz(6,x,y,z) + pyrl4C2basis_dz(4,-x,y,z);
f = f/2.0;
break;

case 13: // node 4
f = pyrl4C2basis_dz(13,x,y,z);
break;

case 1: // midpoint, between corner nodes 1 and 0
f = pyrl4C2basis_dz(1,x,y,z) + pyrl4C2basis_dz(1,-x, y,z) ;
f = f/2.0;
break;

case 3: // midpoint, between corner nodes 2 and 1
f = pyrl4C2basis_dz(3,x,y,z) + pyrl4C2basis_dz (7,-x,y,z) ;
f = f/2.0;
break;

case 5: // midpoint, between corner nodes 3 and 2
f = pyrl4C2basis_dz(5,x,y,z) + pyrl4C2basis_dz(5,-x, y, z);
f = f/2.0;
break ;

case 7: // midpoint, between corner nodes 3 and 0
f = pyrl4C2basis_dz (7, x, y, z) + pyrl4C2basis_dz (3,-x, y, z) ,-
f = f/2.0;
break;

case 8: // midpoint on base, between corner nodes 2 and 0
f = pyrl4C2basis_dz(8,x,y,z) + pyrl4C2basis_dz(8,-x,y,z);
f = f/2.0;
break;

case 9: // midpoint, between corner nodes 4 and 0
f = pyrl4C2basis_dz(9,x,y,z) + pyrl4C2basis_dz(10,-x,y,z);
f = f/2.0;
break;

case 10: // midpoint, between corner nodes 4 and 1
f = pyrl4C2basis_dz(10,x,y,z) + pyrl4C2basis_dz(9,-x,y,z);
f = f/2.0;
break;

case 11: // midpoint, between corner nodes 4 and 2
f = pyrl4C2basis_dz(ll,x,y,z) + pyrl4C2basis_dz(12,-x, y, z) ;

A2-66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f = f/2.0;
break;

case 12; // midpoint, between corner nodes 4 and 3
f = pyrl4C2basis_dz(12,x,y,z) + pyrl4C2basis_dz(11,-x,y,z);
f = f/2.0;
break;

default:
printf("invalid case detected for basis functions\n");

}
return f;

A2-67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Author-. Kevin Davies
* File solution.c
* Version: 4.0
* Date last modified: Dec 15, 2004
* Description: functions for true solution and its 2nd order derivatives
* *

* True solution function
*

double solution(double x, double y, double z) {
double u;

// Possible alternate solutions
// alternate sol'n #1
// u = sin(pi*x)*sin(pi*y)*sin(pi*z);

// alternate sol'n #2
u = sin(pi*x)*sin(2.0*pi*y)*sin(3.0*pi*z);

// original sol'n
// u = x*y*z*(1.0-x)*(1.0-y)* (1.0-z);

// alternate #4
// u = x*y*z*sin(pi*x)* sin(pi*y)* sin(pi*z);

// alternate #5
// u = pow(x,2)*pow(y,2)*pow(z,2)*(1.0-x)*(1.0-y)*(1.0-z);

return u;
}

* 2nd order derivatives of true solution function
★

double func(double x, double y, double z) {
double f;
double x2 , y2 , z2, xml, yml, zml ,•

x2 = pow(x,2);
y2 = pow(y,2);
Z 2 = p o w (Z ,2);
xml = 1.0-x;
yml = 1.0-y;
zml = L. 0 -z ;
double siny, sin
siny = sin (Pi *y)
sinz = sin (pi *z)
sinx = sin (pi *x)
cosx = cos (Pi *x)
cosy = cos (Pi *y)
cosz = cos (pi *z)

// Possible alternate solutions
// alternate sol'n #1
// f = 3.0*pi*pi*sin(pi*x)*sin(pi*y)*sin(pi*z) ;

A2-68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// alternate sol'n #2
f = 14.0*pi*pi*sin(pi*x)*sin(2.0*pi*y)*sin(3.0*pi*z);

// original sol'n
// f = 2.0*(z*(1.0-z)* (y*(1.0-y) + x*(1.0-x)) + x*y*(1.0-x)* (1.0-y));

// alterante sol'n #4
// f = p i * (-2.0*y*z*cosx*siny*sinz+3.0*pi*x*y*z*sinx*siny*sinz
// -2.0 *x* z* sinx*cosy* sinz-2.0 *x*y* sinx* siny*cosz);

// alternate #5
/* f = -(2.0*y2*z2*xml*yml*zml-4.0*x*y2*z2*yml*zml+2.0*x2*z2*xml*yml*zml

- 4.0*x2*y*z2*xml*zml+2.0*x2*y2*xml*yml*zml-4.0*x2*y2*z*xml*yml);
* /

return f;
}

/***★*********
Gaussian Elimination solver (without pivoting)
Inputs: A - Matrix

b - RHS vector
x - vector to be solved for (must be allocated)

* *

void naiveGauss(SPMAT *A, VEC *b, VEC *x) {
int i,j,k,n;
double sum, xmult;

n = A->m;
for(k = 0;k < n - 1; k++) {

for(i = k+1; i < n; i++) {
xmult = sp_get_val(A, i,k) / sp_get_val(A, k,k);
sp_set_val(A, i,k, xmult);
for(j = k+1; j < n; j++) {

sp_set_val(A,i,j ,sp_get_val(A,i,j)-sp_get_val(A,k,j)*xmult);
}
b->ve[i] = b->ve[i] - b->ve[k] * xmult;

}
}
x->ve[n-l] = b->ve[n-1]/sp_get_val(A, n-l,n-l);
f o r d = n-2; i > = 0 ; i--) {

sum = b->ve[i];
for(j = i+1; j < n ;j ++) {

sum = sum - sp_get_val(A, i ,j)*x->ve[j];
}
x->ve[i] = sum/sp_get_val(A, i,i);

}
}

Gauss Seidel Method with relaxation
Inputs:

A - Matrix
b - RHS vector
x - vector to be solved for (must be allocated), and

contain initial guess,
maxlter - maximum number of iterations

A2-69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tol - tolerance: stop iterating if converges to within this value
lambda - relaxation value: such that: 0 <= lambda <= 2
used to weight average of results to control convergence,

x_new = lambda*x_new + (1-lambda)*x_old
Thus,

0 <= lambda < 1: underrelaxation
lambda = l : No relaxation
1 < lambda <= 2: overrelaxation

Return values:
0: Method converged to within tolerance

-1: Method did not converge within specified number of iterations
-2: Error, mothod halted due to error in inputs, etc.

int GaussSeidel(SPMAT *A,VEC *b,VEC *x,int maxlter,
double tol,double lambda) {

int i, j, n, itr = 1, done = 0, retval = 0;
double temp, sum, oldx, err;

n = A->m;
for(i = 0 ; i < n;i++) {

temp = sp_get_val(A, i,i);
for (j = 0; j < n,- j++)

sp_set_val(A, i ,j , sp_get_val(A, i,j)/temp);
b->ve [i] = b->ve[i]/temp;

}
for(i = 0 ; i < n; i++) {

sum = b->ve[i];
for(j = 0; j < n; j++) {

if (i ! = j)
sum = sum - sp_get_val(A, i ,j) * x->ve[j];

}
x->ve[i] = sum;

}
while(Idone) {

for(i = 0 ; i < n; i++) {
oldx = x->ve[i];
sum = b->ve[i];
for(j = 0 ; j < n; j++) {

if(i != j)
sum = sum - sp_get_val(A, i,j) * x->ve[j];

}
x->ve[i] = lambda*sum + (1.0 - lambda)*oldx;
if((!done) && (x->ve [i] != 0.0))

err = fabs ((x->ve [i]-oldx) / x->ve[i]),-
if(err < tol)

done = 1;
}
itr++;
if(itr > maxlter) {

done = 1;
retval = -1;

}
}
return (retval);

A2-70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//(Note: only the code for degree 7 quadrature is presented
// here, other cases follow a similar method.)

* function to determine integration points using 31-point,
* degree 7 quadrature for a tetrahedron.
* I/O: A: 3x4 matrix containing tet coordinate points as column
* vectors.
* p: the number of the point (1-31)
* X: 1x3 vector that will contain coordinates for this point
* (must have been previously allocated).
* w: varable that will contain the weight for the point.
** + ★*★★*★******■******★***★******★*****★★★ + **★*★★★**★★*★****■*'★*★*★★ j

void cubature7(MAT *A, int p, VEC* X, double *w) {
double alpha, beta, gamma;

if ((p >= 1) && (p <= 6)) {
// midside points(6)
*w = 0.000970017636684296702;
alpha = 0.5;
beta = 0.0;

}
else

if (p = 7) {
// centre point(1)
* w = 0.0182642234661087939;
alpha = 1.0/4.0 ;

}
else

if ((p >= 8) && (p <= 11)) {
// 1st set of vertex points(4)
* w = 0.0105999415244141609;
alpha = 0.765360423009044044;
beta = 0.0782131923303186549;

}
else

if ((p >= 12) && (p <= 15)) {
// 2nd set of centre points(4)
*w = -0.0625177401143299494;
alpha = 0.634470350008286765;
beta = 0.121843216663904411;

}
else

if ((p >= 16) S c & (p <= 19)) {
// 3rd set of centre points(4)
*w - 0.00489142526307353653;
alpha = 0.00238250666073834549;
beta = 0.332539164446420554;

}
else {

// edge-midsid points(12)
* w = 0.0275573192239850917 ;
alpha = 0.2;
beta = 0.1;
gamma = 0.6;

}
switch(p) {
// midside points (6)

A2-71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case l :
X->ve[0]=alpha*(A->me[0
x->ve[1]=alpha*(A->me[l
X->ve[2]=alpha*(A->me[2
break;

case 2:
X->ve[0]=alpha*(A->me[0
x->ve[1]=alpha*(A->me[l
X->ve[2]=alpha*(A->me [2

break;
case 3:

X->ve[0]=alpha*(A->me[0
x->ve [1]=alpha*(A->me[l
X->ve[2]=alpha*(A->me[2
break;

case 4:
X->ve [0]=alpha*(A->me[0
x->ve[1]=alpha*(A->me[l
X->ve [2]=alpha*(A->me[2
break;

case 5:
X->ve[0]=alpha*(A->me[0
X->ve[1]=alpha*(A->me[1
x->ve[2]=alpha*(A->me[2
break;

case 6 :
X->ve[0]=alpha* (A->me [0
X->ve[1] =alpha*(A->me[1
x->ve[2]=alpha*(A->me[2
break;

// centeriod
case 7 ;

X->ve [0]=alpha*(A->me[0
X->ve[1]=alpha*(A->me[1
x->ve [2]=alpha*(A->me[2
break;

// vertex-centroid points
case 8 :

X->ve[0]=alpha*A->me [0]
X->ve[1]=alpha*A->me[1]
x->ve[2]=alpha*A->me[2]
break;

case 9:
X->ve [0]=alpha*A->me[0]
x->ve[1]=alpha*A->me[1]
X->ve[2]=alpha*A->me[2]
break;

case 10:
X->ve[0]=alpha*A->me[0]
x->ve[l]=alpha*A->me[l]
x->ve[2]=alpha*A->me[2]
break;

case 11:
x->ve [0]=alpha*A->me[0]
X->ve [1]=alpha*A->me[1]
x->ve [2]=alpha*A->me[2]
break;

// vertex-centroid points
case 12 :

[0]+A->me[0] [1)+beta*(A->me[0 [2] +A->me [0] [3]
[0]+A->me[1] [1)+beta*(A->me[1 [2] +A->me [1] [3]
[0]+A->me[2] [1)+beta*(A->me[2 [2] +A->me [2] [3]

[0]+A->me[0] [2)+beta*(A->me[0 [1]+A->me [0] [3]
[0]+A->me[1] [2)+beta*(A->me[1 [1]+A->me[1] [3]
[0]+A->me[2] [2)+beta*(A->me[2 [1]+A->me[2] [3]

[0]+A->me[0] [3)+beta*(A->me[0 [1]+A->me[0] [2]
[0]+A->me[1] [3)+beta*(A->me[l [1]+A->me[1] [2]
[0]+A->me[2] [3)+beta*(A->me[2 [1]+A->me[2] [2]

[1]+A->me[0] [2)+beta*(A->me[0 [0]+A->me[0] [3]
[1]+A->me[1] [2)+beta*(A->me[l [0]+A->me [1] [3]
[l]+A->me[2] [2)+beta*(A->me[2 [0]+A->me[2] [3]

[l]+A->me[0] [3)+beta*(A->me[0 [0]+A->me[0] [2]
[1]+A->me[1] [3)+beta*(A->me[1 [0]+A->me[1] [2]
[1]+A->me[2] [3)+beta*(A->me[2 [0]+A->me [2] [2]

[2]+A->me[0] [3)+beta*(A->me[0 [0]+A->me [0] [1]
[2]+A->me[1] [3)+beta*(A->me[1 [0]+A->me [1] [1]
[2]+A->me[2] [3)+beta*(A->me[2 [0]+A->me [2i [1]

[0]+A->me[0] [1 +A->me[0] [2]+A->me[0] [3]);
[0]+A->me[1] [1 +A->me[1] [2]+A->me[1] [3]) ;
[0]+A->me[2] [1 +A->me[2] [2]+A->me[2] [3]) ;

set#l (4)

0] +beta* (A->me [0] [1] +A->me [0] [2] +A->me [0] [3])
0]+beta* (A->me [1] [l]+A->me[l] [2]+A->me[l] [3]);
0]+beta* (A->me [2] [l]+A->me[2] [2]+A->me[2] [3]) ;

1]+beta*(A->me[0] [0]+A->me[0] [2]+A->me[0] [3]);
1]+beta*(A->me[1] [0]+A->me[l] [2]+A->me[l][3]);
l]+beta* (A->me[2] [0]+A->me[2] [2]+A->me[2] [3]) ;

2]+beta*(A->me[0] [0]+A->me[0] [l]+A->me[0] [3]);
2]+beta*(A->me[1] [0]+A->me[l] [l]+A->me[l] [3]);
2]+beta*(A->me [2] [0]+A->me [2] [1]+A->me[2] [3]);

3]+beta*(A->me[0] [0]+A->me[0] [1]+A->me[0][2]);
3]+beta*(A->me[1] [0]+A->me[l] [1]+A->me[1][2]);
3]+beta*(A->me[2] [0]+A->me[2] [l]+A->me[2] [2]);

set#2 (4)

A2-72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X->ve[0]=alpha*A->me[0] [0]+beta*
X->ve [1]=alpha*A->me[1] [0]+beta*
x->ve[2]=alpha*A->me[2] [0]+beta*
break;

case 13:
x->ve[0]=alpha*A->me[0] [1]+beta*
X->ve[1]=alpha*A->me[1] [1]+beta*
x->ve[2]=alpha*A->me[2] [l]+beta*
break;

case 14:
x->ve[0]=alpha*A->me[0] [2]+beta*
x->ve[1]=alpha*A->me[1] [2]+beta*
x->ve[2]=alpha*A->me[2] [2]+beta*
break;

case 15:
X->ve[0]=alpha*A->me[0] [3]+beta*
X->ve[1]=alpha*A->me[1] [3]+beta*
X->ve[2]=alpha*A->me[2] [3]+beta*
break;

// vertex-centroid points set#3 (4
case 16:

x->ve [0]=alpha*A->me[0] [0]+beta*
X->ve[1]=alpha*A->me[1] [0]+beta*
x->ve[2]=alpha*A->me[2] [0]+beta*
break;

case 17 :
X->ve[0]=alpha*A->me[0] [1]+beta*
X->ve[1]=alpha*A->me[1] [1]+beta*
X->ve[2]=alpha*A->me[2] [1]+beta*
break;

case 18:
x->ve[0]=alpha*A->me[0] [2]+beta*
x->ve[l]=alpha*A->me[1][2]+beta*
x->ve[2]=alpha*A->me[2] [2]+beta*
break;

case 19:
X->ve[0]=alpha*A->me[0][3]+beta*
x->ve[1]=alpha*A->me[1][3]+beta*
X->ve[2]=alpha*A->me[2] [3]+beta*
break;

// edge-midsid points(12)
case 20:

X->ve[0]=alpha*A->me[0][0]+gamma*A
beta*(A->me[0][2]+A->me

X->ve[1]=alpha*A->me[1] [0]+gamma*A
beta*(A->me[1][2]+A->me

X->ve[2]=alpha*A->me[2][0]+gamma*A
beta*(A->me[2][2]+A->me

break;
case 21:

X->ve[0]=alpha*A->me[0] [0] +gamma*A->me[0]
beta*(A->me[0][l]+A->me[0] [3])

x->ve[1]=alpha*A->me[1][0]+gamma*A->me[1]
beta*(A->me[1][1]+A->me[1] [3])

X->ve [2]=alpha*A->me[2] [0]+gamma*A->me[2]
beta*(A->me[2][1]+A->me[2] [3]);

break;
case 2 2 :

X->ve[0]=alpha*A->me[0] [0] +gamma*A->me[0] [3] +

(A->me [0] [1]+A->me 0] [2]+A->me 0] [
(A->me [1] [1]+A->me 1] [2]+A->me 1] t
(A->me [2] [1]+A->me 2] [2]+A->me 2] [

(A->me [0] [0]+A->me 0] [2]+A->me 0] [
(A->me [1] [0]+A->me 1] [2]+A->me ;i] t
(A->me [2] [0]+A->me 2] [2]+A->me 2] t

(A->me [0] [0]+A->me 0] [1]+A->me 0] [
(A->me [1] [0]+A->me 1] [1]+A->me 1] t
(A->me [2] [0]+A->me 2] [1]+A->me 2] [

> 1 V 3 CD [0] [0]+A->me 0] [1]+A->me 0] [
(A->me [1] [0]+A->me 1] [1]+A->me 1] t
(A->me [2] [0]+A->me 2] [1]+A->me 2] [

(A->me [0] [1]+A->me 0] [2]+A->me 0] [
(A->me [1] [1]+A->me 1] [2]+A->me 1] t
(A->me [2] [1]+A->me 2] [2]+A->me 2] [

(A->me [0] [0]+A->me 0] [2]+A->me 0] [
(A->me [1] [0]+A->me 1] [2]+A->me 1] t
(A->me [2] [0]+A->me 2] [2]+A->me 2] [

(A->me [0] [0]+A->me 0] [1]+A->me 0] [
(A->me [1] [0]+A->me 1] [1]+A->me 1] [
(A->me [2] [0]+A->me 2] [1]+A->me 2] [

(A->me [0] [0]+A->me 0] [1]+A->me 0] [
(A->me [1] [0]+A->me 1] [1]+A->me 1] t
(A->me [2] [0]+A->me 2] [l]+A->me 2] [

->me [0]
[0] [3])

i->me [1]
[1] [3])
->me [2]
[2] [3])

[1] +

[1] +

[1] +
r

[2] +

[2] +

[2] +

3]
3]
3]

3]
3]
3]

3]
3]
3]

2]
2]
2]

3]
3]
3]

3]
3]
3]

3]
3]
3]

2]
2]
2]

A2-73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

beta*(A->me 0] 11]+A->me 0] [2])
x->ve[l] =alpha*A->me[1] [0] +gamma*A- > m e [1] [3] +

beta*(A->me 1] 11]+A->me 1] [2])
x->ve[2]=alpha*A->me[2] [0] +gamma*A- >me [2] t3] +

beta*(A->me 2] 1]+A->me 2] [2])
break;

case 23:
X->ve [0] =alpha*A->me[0] [1] +gamma*A- >me [0] [2] +

beta*(A->me 0] 10] +A->me 0] [3])
X->ve[1] =alpha*A->me[1] [1] +gamma*A- >me [1] [2] +

beta*(A->me 1] 0]+A->me 1] [3])
x~>ve [2] =alpha*A->me[2] [1] +gamma*A- >me [2] [2] +

beta*(A->me 2] 0]+A->me 2] [3])
break;

case 24:
X->ve[0] =alpha*A->me[0] [1] +gamma*A- >me [0] [3] +

beta*(A->me 0] 10] +A->me 0] [2])
X->ve [1] =alpha*A->me[1] [1] +gamma*A- > m e [1] [3] +

beta*(A->me 1] 0]+A->me l] [2])
X->ve[2] =alpha*A->me[2] [1] +gamma*A- > m e [2] [3] +

beta*(A->me 2] 10] +A->me 2] [2])
break;

case 25:
x->ve [0] =alpha*A->me[0] [2] +gamma*A- > m e [0] [3] +

beta*(A->me 0] 10]+A->me 0] [1])
x->ve[1] =alpha*A->me[1] [2] +gamma*A- >me [l] [3] +

beta*(A->me 1] 10]+A->me 1] [1])
x->ve[2]=alpha*A->me[2] [2] +gamma*A- > m e [2] [3] +

beta*(A->me 2] 10]+A->me 2] [l])
break;

case 26:
X->ve [0] =alpha*A->me[0] [1] +gamma*A- > m e [0] [0] +

beta*(A->me 0] 2]+A->me 0] [3])
X->ve [1] =alpha*A->me[1] [1] +gamma*A- > m e [1] to] +

beta*(A->me 1] 2]+A->me 1] [3])
X->ve[2] =alpha*A->me[2] [1] +gamma*A- >me [2] [0] +

beta*(A->me 2] 12]+A->me 2] [3])
break;

case 27:
X->ve [0] =alpha*A->me[0] [2] +gamma*A- > m e [0] [0] +

beta*(A->me 0] 11]+A->me 0] [3])
x->ve [1] =alpha*A->me[1] [2] +gamma*A- > m e [1] t0] +

beta*(A->me 1] 11] +A->me 1] [3])
x->ve [2] =alpha*A->me[2] [2] +gamma*A- >me [2] tO] +

beta*(A->me 2] 1]+A->me 2] [3])
break;

case 28:
X->ve [0] =alpha*A->me[0] [3] +gamma*A- > m e [0] [0] +

beta*(A->me 0] 1] +A->me 0] [2])
X->ve [1] =alpha*A->me[1] [3] +gamma*A- >me [1] [0] +

beta*(A->me 1] 11]+A->me 1] [2])
X->ve [2] =alpha*A->me[2] [3] +gamma*A- >me [2] [0] +

beta*(A->me 2] 11]+A->me 2] [2])
break;

case 29:
X->ve [01 =alpha*A->me[0] [2] +gamma*A- >me [0] [1] +

beta*(A->me 0] 10]+A->me 0] [3]);
X->ve[1] =alpha*A->me[1] [2] +gamma*A- > m e [1] [1] +

beta*(A->me 1] 10]+A->me 1] [3]);

A2-74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X->ve[2]=alpha*A->me[2][2]+gamma*A->me[2][l]+
beta*(A->me[2][0]-t-A->me[2] [3]);

break;
case 30:

X->ve [0] =alpha*A->me [0] [3]+gamma*A->me [0] [114-
beta* (A->me [0] [0]4-A->me [0] [2]) ;

X->ve[1]=alpha*A->me[1] [3] 4-gamma*A->me [1] [114-
beta* (A->me [l] [0]4-A->me [1] [21);

x->ve [21 =alpha*A->me [21 [3]4-gamma*A->me [2] [114-
beta* (A->me [2] [014-A->me [2] [2]) ;

break;
case 31:

X->ve [0] =alpha*A->me [0] [3]4-gamma*A->me [0] [2]-t-
beta*(A->me[01 [0]+ A - > m e [0] [1]);

X->ve [1] =alpha*A->me [l] [3]4-gamma*A->me [1] [214-
beta* (A->me [1] [0]4-A->me [l] [1]) ;

X->ve [2] =alpha*A->me [21 [3] +gamma*A->me [2] [214-
beta* (A->me [2] [0] 4-A->me [2) [11) ;

break;
default:

printf("error in cubature: invalid point #\n");
}

A 2-75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

