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Abstract
Owing to the relatively more complicated nature of the boost converter with non-ideal 
elements and operating in continuous and discontinuous inductor current modes, a 
parsimonious large signal and small signal model for this converter, with and without 
feedback, has been lacking. In this work, a zero order hold equivalent discrete time 
model o f the boost converter for computing its small signal frequency response and 
large signal and small signal closed loop behavior is developed and experimentally 
confirmed. The Newton-Raphson technique is used to accelerate the computation of 
the frequency response from the developed discrete time model. The use of the 
discrete time model in combination with the Newton-Raphson method in predicting 
the steady-state ripple behavior o f the converter is also studied. With the intention of 
future robust control studies on the boost converter in discontinuous inductor current 
mode, an initial evaluation o f the frequency response predicted by the discrete time 
model at different operating points is presented.
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Chapter 1

Introduction

1.1 T h e overv iew  o f literatu re

Various linear time-invariant models for boost converters in continuous inductor current 

mode of operation such as state-space averaged models [1], [2] and the PWM switch 

model [3] have been developed and they yield similar results. When the boost converter 

operates in continuous and discontinuous inductor current operation modes, owing to 

the relatively more complicated nature of the boost converter with non-ideal elements, 

a parsimonious large signal and small signal model for this converter, with and without 

feedback, has been lacking. Firstly, linear time-invariant small signal state-space averaged 

model [4] and the PWM switch model [5] with ideal elements were developed and it was 

observed that [5] yields results which are different from those given by the method of [4]. 

The fundamental difference between the two methods is that state-space averaged model 

predicts that the discontinuous current state does not contribute to the order of the 

average model while the PWM switch model predicts otherwise. Later, a small-signal 

circuit model of DC-DC PWM boost converters operating in discontinuous inductor 

current mode [6 ] was derived by using the energy conservation approach [7], [8 ] to consider 

some of the non-ideal effects and [6 ] verified the results in [5]. For robust controller design 

purpose, the converter closed loop behavior is often governed by the presence of both

1
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continuous and discontinuous inductor current modes. Consequently a model which can 

handle both continuous and discontinuous inductor current modes easily is needed. In 

this thesis, a zero-order hold (ZOH) equivalent discrete time model of the boost converter 

for computing its small signal frequency response and closed loop behavior for both large 

and small signals is derived and experimentally confirmed. In this model, non-ideal effects 

can be easily taken into account in continuous and discontinuous inductor current modes. 

Earlier work done by [9] indicates that this approach can handle both continuous and 

discontinuous inductor current modes in the buck converter. In discontinuous inductor 

current mode, the use of the discrete time model in combination with a two variable 

Newton-Raphson technique with analytical Jacobian in predicting steady-state behavior 

is also studied. For robust controller design, ZOH modeling of state-space descriptions 

has the potential of developing frequency response characteristics which are obtained 

from the developed model of this thesis.

1.2 T h esis  o u tlin e

The organization of the thesis is as follows. Chapter 1 provides an introduction to the 

basic concept of the boost converter. In Chapter 2 two kinds of models are introduced. 

The models include C-code based simulation model and a discrete-time model, which is a 

ZOH model of the boost converter for both continuous and discontinuous modes of oper­

ation. In Chapter 3 the behavior of the models of Chapter 2 are observed, compared and 

experimentally verified in terms of steady-state and small signal frequency response. An 

alternative faster method using Newton-Raphson technique to accelerate the computation 

of frequency response from the developed discrete-time model is introduced. In Chapter 

4, this discrete-time model is used to predict large signal and small signal behavior when 

the converter is working in closed-loop with an analog PI controller. Experimental results 

of such large signal behavior are presented and compared to results predicted from this 

discrete-time model of Chapter 2. In Chapter 5, on the basis of Chapters 3 and 4, the

2
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behavior of the discrete-time model over different operating points is also obtained and 

experimentally confirmed. Chapter 6  suggests future work and concludes the thesis.

1.3 S w itch  m od e D C -D C  converters

Switch mode DC-DC power converters afford an efficient means of transforming power at 

one DC voltage to another desired DC voltage. The basic DC-DC conversion function is 

achieved by controlling the switch on and off durations with constant switching frequency. 

Compared with linear power supply, it has greater efficiency.

1.4 S tep -u p  (b o o st) converter

As the name implies, a boost converter produces an average output voltage Va always 

greater than the DC input voltage Vd- Fig. 1-1 shows an ideal boost converter circuit. 

When the switch is on, the diode is reversed biased, thus isolating the output stage. 

The input supplies energy to the inductor. When the switch is off, the output stage 

receives energy from the inductor as well as from the input. The output filter essentially 

guarantees a relatively low ripple voltage on the load.

1.5 C ontro l o f  b o o st converter

The output voltages Va of DC power supplies are regulated to be within a specified tol­

erance band (e.g., ± 1 % around its nominal value) in response to changes in the output 

load Rioad and input line voltage Vj. This is accomplished by using a negative-feedback 

control system, shown in Fig. 1-2. One of the methods for controlling the output volt­

age, called Pulse-width modulation (PWM) switching, employs switching at a constant 

switching frequency and adjusting the on duration of the switch in order to ensure Va =  

Vref-

3
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S w i t c h  c o n t r o l

s i g n a l

Figure 1-1: Boost converter

Duty cycle of the switch control signal is generated by comparing a control voltage 

signal vcontroi which is the output of the PI controller with a repetitive saw-tooth wave­

form of amplitude Vst as shown in Fig. 1-2. The frequency / s(=  ^-) and amplitude Vst 

of the saw-tooth waveform are constant. In terms of vcontroi and the amplitude of the

saw-tooth waveform Vst in Fig. 1-2, the duty cycle of the switch control signal can be

expressed as
i ^control  /.. -, \a =  —  ------  ( 1 .1)

Vst

1.6 M od es o f  op era tion

The operation of this converter can be divided into two modes according to ideal inductor 

current waveform. If the inductor current never falls to zero over a switching period, the 

converter is said to be working in continuous — conduction mode of operation as in Fig. 

1-3.(a). If the inductor current becomes zero for a portion in the switch off (t0/ /)  period 

as in Fig. 1-3.(b), then the converter is working in discontinuous — conduction mode. At

4
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f d T ,

n n n j ' l o a d

c o n t r o l
errorSw itch  co n tro l

C om parator
Control lersigna

S w itch ing  frequency

Figure 1-2: Controller circuit of a boost converter

o

. 1

o
o ff

( a )  I n d u c t o r  v o l t a g e  a n d  c u r r e n t

in c o n t i n u o u s - c o n d u c t i o n  m o d e

0

0

( b )  I n d u c t o r  v o l t a g e  a n d  c u r r e n t  

in d i s c o n t i n u o u s - c o n d u c t i o n  m o d e

Figure 1-3: Inductor voltage and current 

5
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the boundary between continuous and discontinuous mode, inductor current goes to zero 

exactly at the end of t0ff .  At this boundary, in the boost converter with ideal elements, 

the average inductor current is [1 ]

I lb  =  ~ f °" =  ^ d ( l  -  d)  ( 1 . 2 )

Recognizing that in a boost converter the inductor current and the input current are the 

same (id =  i i )  and using above equation, we find that average output current at the 

boundary condition is

hB  =  1 -  d f  (1.3)

and I0B has its maximum value at d =  |  =  0.333 given by,

IoB ,  m ax  =  =  0 . 0 7 4 ^  (1.4)

Therefore, if the average load current drops below IoB (and, hence, the average inductor 

current below Il b ), the inductor current will enter discontinuous-conduction mode else 

it is in continuous-conduction mode for the ideal boost converter.

6
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Chapter 2

M odels of the boost converter

In this chapter, a new discrete time model of the non-ideal boost converter for computing 

its standalone behavior in terms of steady-state and small signal frequency-response is 

developed. In Section 2.1, the basic differential equations of the boost converter are 

derived. The models discussed in following sections are all based on these equations.

2.1 D ifferen tia l eq u ation s o f a b o o st con verter

Fig. 2-1 shows the topology of the boost converter. The non-ideal elements of the 

converter are modeled as for the inductor resistance and r c for the capacitor equivalent 

series resistance (ESR). Furthermore, to more accurately model the system, the switch 

and diode are not considered as ideal components.

The non-ideal effects (conduction losses) induced by the switch and diode are taken 

into account as follows:

1) The MOSFET in the ON state is modeled by a linear resistance rDs and in the 

OFF state by an infinite resistance.

2) The diode in the ON state is modeled by a linear voltage drop VF and a resistance 

rF. The diode in the OFF state is modeled as an infinite resistance.

Implicit switching losses induced by the switch and diode can also be modeled by

7
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+

ioad

Figure 2-1: Boost converter circuit

adjusting the values of the non-ideal elements as above. It is assumed that when the 

switch is on, the diode is off and when the switch is off, the diode is on.

There are two topological modes for continuous conduction mode and three for dis­

continuous conduction mode. Fig. 2-2 shows the three topological modes of the boost 

converter operating in the discontinuous-conduction mode. The first two topological 

modes shown in Fig. 2-2 illustrate the modes in the continuous-conduction mode. The 

following equations can be derived based on Fig. 2-2,

For (I):

— Vd +  {rL +  rDS)iL(t) +  L ^   ̂ = 0 (2.1)

- v c( t ) - C ^ l r c + v0(t) = 0 (2.2)

v0{t) = - R i o a d C ^ -  (2.3)

For (II):

—Vd + {rL +  rp)ii( t)  +  L  ̂ +  Vp 4- v0{t) =  0 (2-4)

8
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(T). Switch on; Diode off

(EH). Switch off; Diode off

Figure 2-2: Three topological modes of the 
conduction mode

foad

(II). Switch off; Diode on

converter operating in discontinuous-
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- v c(t) -  C * f l '  + v0(t) =  0

Vo(t) R l o a d  ( iL(t) C
tdVcjt) 

dt

For (III):

iL(t) = 0

-vc(t) -  C dVf rc + v0(t) = 0

V0(t) R'loadC
dvc(t) 

dt

(2.5)

(2 .6 )

(2.7)

(2 .8 )

(2.9)

where is the inductor current, vc is the capacitor voltage and v0 is the voltage across 

the load. For the boost converter topology shown in Fig. 2-1, the differential equations 

governing the converter for modes I and II are written in matrix form as:

diL(t)
d t

d v c {t)
d t

= A(S )
iL(t)

vc(t)
+ B(sy, v0(t) = c(s)

iL(t) 

vc (t)
(2 .10)

where S, ( S ) is an integer variable which is 1 , (0) if the switch is on and 0, (1) if the 

switch is off. The matrices A(S), B(S), C(S) are given by:

A(S) =

B(S)  =

r L + S rDS + S r F _  n  R ioadrc
L L (rc+ R ioati )

Q R’oad
-s R,l o a d

C (rc-\-Rioa<i )

L{tc~f" Rload)
 1

C ( r c + R t 0a d )

Vd-SVp
L

0

C(S) = Qj R'load'f’c. Riload
Tr'c~^'R load r c ~\~Rload

(2 .11)

(2 .12)

During discontinuous-conduction mode of operation, for — 0, both switch and diode 

are off and (2 .1 0 ) reduces to

dvc(t) 
dt

1

C{Vc T Bload) :(*) (2.13)

10
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The output equation, for this case, remains the same as in (2.10) with =  0.

2.2 D iscre te -tim e  m od el

A new ZOH discrete-time model developed in this thesis is introduced here. Small-signal 

model [6 ] assumes that the perturbations are very small and converter always works 

in discontinuous-conduction mode or continuous-conduction mode. However for large 

perturbations on nominal operating point, converter will not operate in discontinuous 

mode only but will exhibit both continuous and discontinuous modes of operation. So 

the discrete-time model is developed based on both modes of operation and predicts the 

behavior of the converter (with and without feedback) in both modes.

2.2.1 D iscrete tim e m odel

In the development of the discrete-time model, the following assumptions are made:

The duty cycle d ( 0 < d < 1) of the switch can be affected only once every switching 

period Ts and the switching frequency is higher than the resonant frequency of the main 

inductor and capacitor of the circuit. Since in practice the switching periods are being 

pushed to smaller values, this assumption is reasonable to make for modeling purposes.

At intervals of switching period the evolution of the state vector x  =  

for all three modes of Fig. 2-2 is described by:

h{ t )  vc{t)

X(k+dk)Ts =  FiXkTs +  Gi during switch on: dkTs (2.14)

X{k+i)Ta = FzF2x {k+dk)Ts +  F3G2 during switch off: ( 1  -  dk)Ts (2.15)

where F\, F2, F$, the state transition matrices, and G i ,  G2 are obtained as per:

Fi = eA{1)dkT° Gi = (Fi -  I j A i i y ' B i l )  (2.16)

11
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0 ►  t

Figure 2-3: Inductor current and 0 in continuous-conduction mode 

F2 = if 0* > (1 -  dk)Ts

F2 = eAM** if 0 , < (1 -  dk)Ta

G2 = (F2  -  /)y l(0 )''1 -B(0)

F3 = I

f 3 =
1  0

Q  e a 2 2 { ( l - d k )Ts - i > k )

if (f>k > (1 -  dk)Ts

if 0 fc < (1 -  dk)Ta

(2.17)

(2.18)

(2.19)

(2 .20 )

(2 .21 )

where k is an integer that indexes the switching periods. In (2.21), a22 is the element in 

the second row and second column in the A(S)  matrix given in (2.11, 2.13) and (f>k is the 

time duration taken by inductor current to become zero after the switch is opened at 

time (k +  dk)Ts. If 0^ < (1 — dk)Ts, then the converter is in discontinuous-conduction 

mode else it is in continuous-conduction mode.

The terms, F2, G2, F3, and 0*, will be explained and derived in the next section.

2.2.2 C alculations o f F 2,  G i  and F3

As seen from Figs. 2-3 and 2-4, two states in the taf f  interval can be distinguished: 

one when inductor current flows (*£, > 0 , diode is on) up to the end of the switching 

period and one when inductor current goes to zero before the end of the switching period

12
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Off

Figure 2-4: Inductor current and 0 in discontinuous-conduction mode 

{ii =  0 , diode is off).

As seen in Fig. 2-3, if 4> > toff, which means the inductor current flows during f0// ,  

the converter is working in continuous-conduction mode. Thus, F'2 and F 3  in (2.15) are 

obtained as (2.17) and (2.20).

However, Fig. 2-4 illustrates the situation for 0 < tQff .  When the inductor current is 

zero for some duration in the taf f  interval, the boost converter is working in discontinuous- 

conduction mode. In this case, during the <pk interval, when i i  > 0, F2 , G2 in (2.15) are 

calculated as,
p 2 =  eA(P)<t>k

G2 = (F2 -  7)A(0)_ 1 B(0)

For the remaining part of the t0f f  interval, which is (1 — d*,)Ts — <pk, the equations for 

i i  = 0 are applied and F3 in (2.15) is calculated as,

F3 =  eA{(\-dk)Ts-<t>k) (2.22)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



W ith (2.7) holding in this interval and switch and diode off, the matrix (2.11) reduces to

A  -

Substituting (2.23) in (2.22), gives

F3 =

0

0 C(rc+Rioad) _
(2.23)

1  0

Q g022((l—d.k)T,-<j>k)

where < 2 2 2 =  — 

obtained as:

1

C{rc+Rload) ' Thus (2.14), (2.15) in discontinuous-conduction mode are

X(k+dk)Ta = FiXkTs +  Gx

X { k + d k)Ts +<!>k =  F 2 X ( k + d k )T3 +  G 2 

X ( k + 1 ) T , =  F z X { k + d k )Ts+4>k

(2.24)

(2.25)

(2.26)

Substituting X(k+dk)Ta from (2.24) into (2.25) and X(k+dk)Ts+tj>k from (2.25) into (2.26),

X(k+i)Ts — F$F2 FiXkT3 +  F3 F2 G 1 +  F3 G 2 (2.27)

2.2.3 E quation  for ( j )

Fig. 2-4 shows that while the ton interval (dTs) is a known quantity (at least for open-loop 

case), the (j> interval is as yet unknown and depends in general on both the length of the 

ton interval and other circuit parameters, and how deep in discontinuous or continuous 

conduction mode the converter is operating. Hence, determining this unknown quantity 

0 becomes an exigent problem. Unlike [9] however, the equation solving for 0 is implicit 

and can be derived using the eigenvalue and corresponding eigenvector matrix of A(0 ).

Multiplying (2.25) by a matrix C = 1  0 to obtain the inductor current which goes

14
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to zero at the end of the <f> interval, the following equation is obtained:

Cx (k+dk)Ts+4>k 1  0

lL(.k + d k ) T s +<t>k

C(k+dk)Ts + 4>k
^L{k+dk)Ts+̂ k 0

Substituting (2.18, 2.19) in above equation, gives

CeA^ x {k+dk)Ts +  C(eÂ  -  7)A (0)-1 B(0) =  0 (2.28)

Using the eigenvector and eigenvalue decomposition of A(0) with T  denoting the eigen­

vector matrix and Adenoting the diagonal eigenvalue matrix, the following equation is 

obtained,

A(0)T  =  TA

from which

A(0 ) =  T A T - 1 

matrix exponential eA^°^k is now given by [1 0 ]:

oA (0)<pk _  'j-<e A<t>k r p - l

then (2.28) becomes

{CT)eK‘t>k( T - 1X(k+dk)Ts) +  (CT)eA**A-1 T - 1 B(0) -  (CT)A_ 1 T _ 1 B(0) =  0  (2.29)

If the eigenvalues of A(0) are Ai, A2, (2.29) can be simplified as follows:

(C T )
Q

0 A 2 4>k
\T~lx (k+dk)T3 +  A_ 1 T _ 1 S(0)] =  (C T ) A -xT ~ xB{0)

15
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( ^ 1 1  ^ 1 2  ) 

( ^ 1 1  ^ 1 2  )

eXl4>k 0 

0 eX2<t>k

A2A

‘- f h
_ l21

(k + dk)Ts
_ *U

(fc+d*)Ta

A  l' c (fc+dfc)T ;

A U c( k + d k )T.

+ f t . ( 0) iS
J2J 
a2 a

( h i  t\2 ) 

=  B n ( 0)

=Ai 4>k ($22.
(k + d k ) T s

P̂2<t>k (_ h ± jr 
c  t  A  LL ( k + d k ) T s

il2.
A  Vcik+dk)T. +  B n ( Q ) x f k )

-L- 71
~  A  Uc(k + dk)Tl

h l ^ 2 2  1̂ 2 ^ 2 1

AjA A2 A

a ieAl̂  +  a2eXi*k = a 3 (2.30)

where

t*i =  h i ( ^ £ n ( 0 )  +  t22iL{kJrdk)Ts -  t\2Vc{k+dk)Ts) (2-31)

0 : 2  =  -£ i2 (-^-5n(0) +  t2iiL(k+dk)Ta ~  t n vĉ +dk)TJ  (2.32)

a 3  =  5 u ( 0 ) ( ^ - ^ )  (2.33)Ai A2

In (2.31,2.32,2.33), Uj are the elements of the eigenvector matrix T  of A(0) and 

*L(k+dk)Ts > v£(k+dk)Ts are the inductor current and capacitor voltage when the switch is 

opened and are obtainable from (2.24).

2.2.4 N ew ton-R aphson  m ethod  to  com pute </>

It can be seen from (2.30) that fa  involves an exponential function and depends on 

previous state variables. To solve this equation, one of the most widely used methods of 

all root-locating formulas, the Newton-Raphson method from the Taylor series expansion 

[11] is used. This method is quadratically convergent. The root estimate is based on a

16
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first order Taylor series expansion of a n  x 1 vector function /  (xn) in xn a n  x 1 vector. 

Suppose that xn is the initial guess at the root and xn is a better approximation.

f i x n) = f i x n + A x n) «  f ( x n) +  f ' ( x n) A x n

where /  (xn) i s a n x  n  Jacobian matrix of /  at xn and A x n denotes a n x l  increment 

vector.

f(Xn) = f(xn) + df Ax„ (2.34)

Instead of solving /  (xn) = 0 directly, which is usually impossible, linearized equation 

(2.34) can be solved at xn and rearranged to yield

A x n = f  (xn) f ( x n); f  (xn) = (2.35)

which is the Newton-Raphson formula. This will be used for solving two variables prob­

lem in Section 3.1.2 later in which both /  and x are vectors of type 2 x 1. In numerical 

computation, the scalar version of the method when applied to (2.30) is found to con­

verge to the final value of typically in four iterations with a tolerance of 10-11. This 

shows that (2.30) in combination with Newton-Raphson method can be used to efficiently 

compute 4 > for both transient and steady-state analysis.

2.3 C -cod e based  sim u lation  m od el

Based on differential equations of the boost converter in Section 2.1, a straightforward 

modeling technique, albeit computationally intensive, to obtain instantaneous values of 

inductor current, capacitor voltage and any other desired variable in the circuit is to 

solve the differential equations of the boost converter numerically in small time-steps.

This is accomplished using C programming language with Fig. 1-2 as the schematic 

diagram in this thesis and serves to cross check results from the discrete-time model by

17
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detailed simulation. While other general circuit simulation technique/program such as 

PSpice and MATLAB/Simulink etc. may be used to simulate the boost converter, C- 

code provides complete control of the simulation. For crosschecking, the code is needed 

in two forms as detailed in Section 2.3.1 and Section 2.3.2.

2.3.1 O pen-loop b oost converter operation

In order to find frequency-response of the boost converter, the boost converter in stand­

alone (open-loop) mode is simulated. The input control signal vcontroi (Fig. 1-2) is 

composed of a given DC input bias and a small sinusoidal variation whose input ampli­

tude can be given directly with the controller portion of the program turned off. At each 

time step, the simulation program does the following:

• Determines the status of the switch comparing the control signal v controi with a 

saw-tooth waveform generated in the program.

• Updates values of inductor current capacitor voltage vc and output voltage vD 

by solving the differential equations in Section 2.1 at each time step, using a fourth-order 

Runge-Kutta method.

2.3.2 C losed-loop b oost converter operation

In closed-loop situation for a boost converter with respect to Fig. 1-2 the control signal 

v c o n t r o l  is calculated using error at input of the PI controller rather than a directly given 

value and this error is obtained by subtracting the instantaneous output voltage v0  from 

V r e f  ■

For numerical precision, the time step of the code of Section 2.3.1 is set to 0.001/rs 

which is equivalent 2 0 , 0 0 0  samples per switching period for a switching frequency of f s = 

50kHz. This time step was used to ensure accurate computation of frequency-response, 

particularly for phase shift calculation. For efficiency, the time step of the code of Section

2.3.2 is set to a bigger value (0.005/zs), and there is no difference using the two different 

values of the time step in this case. The program is used to simulate the converter to

18
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steady-state of output voltage and all data files obtained are processed in MATLAB for 

graphing/other analysis.

2.4 C onclu sion

Two models of the boost converter are introduced in this chapter. C-code based simula­

tion implemented in this thesis accurately simulates the system by considering very fine 

time-steps and calculating the state variables at each time step. Both continuous and 

discontinuous inductor current modes of operation can be detected using this simulation 

tool. This however involves a time-consuming numerical technique and is not compatible 

for analytical purposes.

A new discrete-time model (state space representation) is developed in Section 2.2. 

Non-ideal components have been taken into account through various parameters (rp, 

rc, r o s , rF, and Vp) in order to obtain more accurate results using this new model. 

Compared with existing modeling methods, the new discrete-time model developed in 

Section 2.2 not only includes the advantage of C-code based simulation but overcomes 

numerical inefficiency. By computing the frequency-response from this model (Chapter 

3), it can be used for controller design and other purposes.

In the next chapter, the open-loop behavior of the models is considered through 

simulation and experimental results.

19
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Chapter 3

Steady-state behavior and 

frequency-response analysis o f the  

boost converter

In this chapter, the models of Chapter 2 are applied to a particular experimental boost 

converter with parameters in Appendix A to predict steady-state behavior and small sig­

nal frequency-response. These predicted results are compared with experimental results.

3.1 S tea d y -sta te  behavior and ripple

Calculation of steady-state operating point in electronic circuits is fundamental to  the 

subsequent small signal analysis of such circuits for controller design and performance. 

For switched power electronic circuits, the transient simulation to steady-state often 

requires brute force simulation over large number of cycles. A number of numerical 

methods are available to accelerate and solve the general steady-state problem [12], [13], 

[14] for switched networks. A comparison of some of the time-domain methods for steady- 

state computations in general power electronic switching circuits is available in [15] where 

it is shown that the Newton-Raphson algorithm with analytical Jacobian performs better

20
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than a large class of algorithms on various examples.

3.1.1 C ontinuous inductor current m ode

For continuous inductor current mode, the calculation of the state variables at the start of 

a switching cycle, in the steady-state, for the standalone boost converter is a non-iterative 

algebraic computation.

From Section 2.2.1, combining (2.14) and (2.15), the discrete representation of the 

boost converter operating in continuous-conduction mode (</>*, > (1 — dk)Ts, F 3  =  I)  at 

intervals of switching period is obtained as,

X(k+1)T3 — F2 FxXkTa +  F2 Gi -I- G2  (3.1)

where

F 1 =  eA{1)dT‘ ; Gi = (Fx -  J)A(1)_ 1 B(1)

F2 =  eA(o)(i-d)r. . G2  =  (F 2 - / ) A ( 0 ) _ 1 F(0)

Since in steady-state, xpj+pr, =  x krs, (3.1) can be written as,

x kTs = F2 F\XkTs +  F2 G\ +  G 2

that gives the periodic steady-state x kT (at constant duty cycle d) as below

x kTM= ( I - F 2 F1 ) ~ \ F 2 G 1 + G2) (3.2)

To illustrate the efficiency of this method, the steady state response of a boost con­

verter from the literature [16], [17] is computed by considering the boost converter with 

ideal elements L  =  lOOpH, C — 4.4/rF, =  5V, Rioad =  80, T  = 10_4 s, D  =  0.5. In

[17], the steady-state response is computed using an 82 order matrix representation to
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Figure 3-1: Steady-state periodic waveform for boost converter of [17]

obtain the Fourier series coefficients which are then used in the Fourier series expansion 

to compute the waveform. As opposed to this, the present formulation requires opera­

tions with 2 x 2  matrices to obtain the steady-state boundary values for the state vectors 

and thereafter the steady-state waveform (ripple) computation with the state-transition 

matrices (STMs) at fine intervals within the period. The latter operation is effectively 

carried out using the eigenvector-eigenvalue decomposition of the appropriate A(S)  ma­

trices in (2.11). The computed waveforms using the method of this thesis are shown in 

Fig. 3-1 and are comparable with those reported in the literature cited [16], [17].

3.1.2 D iscontinuous inductor current m ode

In this subsection, the steady-state behavior of the boost converter in discontinuous- 

conduction mode is predicted from the discrete-time model and compared with experi­

mental results.

The steady-state discrete representation operating in discontinuous-conduction mode 

at intervals of the switching period was obtained in (2.27) of Section 2.2.2 as,

X ( k + 1)TS =  FzFzFiXkT, +  F3 F2 G 1 +  F3 G2 

22
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The steady-state vector x  — 0 Vc the beginning of a switching period and (given

the steady-state duty cycle D) the unknowns are Vc and 4> in the steady state. Using the 

above equation the error vector xe between final state at the end of one cycle of switching 

and the state vector x  at the beginning of the next switching cycle should be driven to 

zero for computing Vc and 0 :

0 0 0

x e = F3 (D,<P)F2 (4>)F1 (D) +F3 (D,<l>)F2 (<l>)G1 (D)+F 3 (D,<i>)G2 (<l>)- —>
Vc Vc 0

(3.3)

In the literature, a scalar Newton-Raphson approach with perturbation only on Vc 

is considered with another scalar Newton-Raphson iteration (or by simulation) for each 

Vc, for determining <f> and then the relationship between <f> and Vc is used implicitly to 

compute the relevant Jacobian to obtain the steady-state Vc, [14], [15], [18]. For the 

present problem, in this work, a multivariate Newton-Raphson type numerical approach 

using two perturbations variable <fi, Vc is used to drive the 2 x 1  error vector x e to zero. 

Since the necessary Jacobian (2.35) can be worked out analytically, this is observed to 

be efficient in simultaneously computing <j) and Vc for the steady state.

The procedure, shown as a flowchart in Fig. 3-2 for solving (3.3), is begun with first 

computing the inductor current (state variable) from the continuous-conduction mode 

using (3.2). If it is negative, then the capacitor voltage also obtained from (3.2) and 

switch off time (1 — D)TS are taken as the initial values for Vc and (j) respectively for the 

Newton-Raphson numerical iterations for computing the steady-state in discontinuous- 

conduction mode. For analytical purpose, the two columns of the 2 x 2  Jacobian of (3.3) 

are derived as,
J  —  9 x e d x e 

d<p dVc

d x e
d(p

0  0 0

F2 F 1 + F2 G\ +  g 2

0  - a 2 2 ea22((1- D)7W )
. .

(3.4)
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Figure 3-2: Newton-Raphson technique to compute steady-state operating point
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Once the steady-state boundary condition state vector x  is determined, then the state 

variables in between switching periods can be computed using the discrete-time model 

with small time step. Thus, the discrete-time model can predict the average of state 

variables at steady-state as well as the ripple waveform within a switching period. As an 

example, for a boost converter with parameters given in Appendix A, the state variables 

in between switching periods are computed by discretizing (2 .1 0 ) during the switch on 

time and during switch off time with small time step (e.g. h =  0.1 /xs ). Considering x 

as initial condition, the state variables at each time step are calculated. The results of 

such computation for the boost converter with Vq = 18.8V, IF =  0.52A and D =  0.4 are 

shown in Fig. 3-3.(a).

In steady-state, 0 and Vc are calculated as 0.37867), and 18.7990V respectively. The 

iterations converge with a 2-norm tolerance on 6 S  in Fig. 3-2 of e in 6  iterations, where e 

is the default MATLAB floating point relative accuracy. For tolerance below this value, 

numerical improvement in convergence is not achieved in the current MATLAB imple­

mentation. It is noticed tha t the non-ideal components (rF,VF,rDS) involved affecting 

the tolerance setting.

For the boost converter experimental setup, Fig. 3-3.(b) shows the ripple at induc­

tor current and output voltage respectively. The ripple in those waveforms is obtained 

in open-loop situation with the nominal operating point D  =  0.4, Vo = 18.8V, and IF 

= 0.52A with the boost converter system working in discontinuous-conduction mode. 

Although the spike induced by MOSFET turn-off/Diode turn-on was shown at the rip­

ple of the experimental output voltage waveform, the linear interpolation of the output 

voltage trend backwards to switching point matches with the simulation results. The
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Figure 3-3: Steady-state ripple with DC bias removed for discrete-time model and ex­
periment

experimental current waveform in Fig. 3-3.(b) is captured by using a current probe. The 

accuracy of this probe is related to its allowable bandwidth (100kHz) and current peak. 

So for this experiment with a switching frequency ( / s =  50kHz), since only a limited 

number of harmonics (2 ) enter into the display, the error between the simulated and 

experimental ripple in the waveforms shown in the Fig. 3-3 is inevitable and reasonable.

It is to be noted that the discrete-time model accurately predicts these waveforms as 

shown in Fig. 3-3.

3.2 C -cod e b ased  sim u lation  and ex p er im en ta l frequency- 

resp on se

In this section, the frequency-response of the boost converter in discontinuous-conduction 

mode is obtained experimentally and compared with the frequency-response from C-code 

based simulation. This is done to estimate the equivalent series resistance (ESR) of the
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Figure 3-4: Magnitude and phase frequency-responses with rc — 0

capacitor in the boost converter.

The frequency-response of C-code based simulation model is obtained with a input 

control signal vcontT0 i, given in (3.5), which consists of a DC bias voltage V̂ c plus a 

sinusoidal variation of amplitude A  and frequency / .  The DC voltage is chosen to provide 

the desired output voltage and keep the converter working at the desired operating point. 

The amplitude of the sinusoidal signal is A  =  0.1V while its frequency /  varies over a 

certain range.

Vcontroi = Vdc + Msin(27r/t) /  =  10Hz to 25kHz (3.5)

For the study of small-signal behavior it naturally requires small variations of input 

duty cycle around a steady-state operating point. The sinusoidal variation of amplitude 

A  =  0.1V corresponds to a variation of ±0.01 in duty cycle and this variation on duty 

cycle is quite small (variation of 2.5%), compared to the operating duty cycle of 0.4.

Fig. 3-4 shows the comparison between the experimental system frequency-response 

and that obtained from C-code based simulation with parameters given in Appendix A 

but with rc =  0. It clearly shows that the magnitude and phase frequency-responses do 

not match well.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C-code simulation 
Experiment

co•o

co>
5

-20

-25

-30

-35

Frequency (rad/s)

■ C-code simulation 
■ Experiment

-20

-30

-60

-70

-80

-90

Frequency (rad/s)

Figure 3-5: Magnitude and phase frequency-responses with rc =  0.15H

3.2.1 Equivalent series resistance (ESR) o f capacitor

With C-code based simulation model, the values of all variables have been chosen equal 

to the component values of the experimental setup. As far as all non-ideal elements, the 

equivalent values are selected within the range specified for components in the datasheet. 

The reason for variance in the frequency-response shown in the foregoing section, might 

be due to the ESR of the capacitor, denoted by rc in Section 2 .1 , for which no data is 

available in the datasheet. In the real system rc exists, but it is not easily measurable. Fig. 

3-4 shows C-code based simulation result without considering the effect of rc compared 

to the experimental result. Obviously, the mismatch is clear. Thereafter, using C-code 

based simulation model, with different values of rc, the different frequency-responses 

are obtained and compared with the experimental frequency-response. It was found 

that for a certain value of rc, the simulation result matches the experimental result and 

this corresponding value is chosen as the ESR of the capacitor. The frequency-response 

obtained from C-code based simulation considering rc =  0.15f2 and compared with the 

experimental frequency-response is illustrated in Fig. 3-5.

The good fit is evident and this value of rc is used as the ESR of the capacitor. This
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value was also used in Section 3.1 in the steady-state computation.

3.3 F requ en cy-resp on se o f th e  d iscrete-tim e m od el

In this section, the frequency-response obtained from the new discrete-time model in 

Section 2.2 with the input signal vin given in (3.6) with an amplitude of sine-wave A  =  

0.1V, is compared with the frequency-response of C-code based simulation model with a

input control signal vcontroi given in (3.5) and the amplitude of sine-wave A  =  0.1V.

Vin — Vdc +  disin(2 A:7r/T s) /  =  10Hz to 25kHz (3.6)

With (3.6) and (1.1), the duty cycle is written as,

d-k — da +  di sin(2 /c7rf T s) (3.7)

where
j  Vin j Vdc j  j  ^dk =  ~ —> dD =  and ai =

The amplitude of 0.1V corresponds to an amplitude of di = 0.01 for Vst =  10V. As Fig.

3-6 shows, C-code based simulation and the discrete-time model based frequency-response 

do not match well especially at high frequencies in the phase response. The frequency- 

response obtained from C-code based simulation is a continuous frequency-response while 

the other one obtained from the discrete-time model is a discrete frequency-response. The 

errors between these two are obvious and it is observed that significant part of the errors 

is due to the ZOH assumption in the discrete time and this is next compensated.

The switching frequency f s of the discrete-time model can be considered as the sam­

pling rate, and by the Nyquist  Sampling Theorem  the discrete frequency-response from

this new model is valid up to a maximum frequency ^-Hz or rjk- rad /s [19].

For the boost converter example in this thesis, the sampling rate for the discrete-time
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Figure 3-6: Magnitude and phase of frequency-responses 

model (switching frequency f s) is

f s — 50kHz

The corresponding highest frequency fh, for which the frequency-response is valid,

f
fh = -̂ - = 25kHz (25k x 2tt ~  2 x 105  rad/sec)

Zi

Although the frequency-responses shown in Fig. 3-6 are plotted within the range of the 

highest frequency (between 10Hz and 25kHz), the discrepancy at higher frequencies in 

phase shift of the frequency-response can be seen.

3.4 Z ero-order hold

Zero-order hold (ZOH) is one of methods to generate a continuous input signal f ( t )  by 

holding each sample value f[kT] constant over one sample period, where T  is sampling 

time and k is sampling number. Zero-order hold accepts a sample f[kT] at t = k T  and 

holds it until the next sample f [ ( k+ 1 )T] arrives at t = kT+T .  In developing the discrete­

time model, the conversion from continuous-time to discrete-time is done assuming zero-
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order hold on duty cycle. In the frequency-response computation, the sine-wave input in 

the discrete-time frequency-response is a stepped staircase like sinusoidal waveform and 

then introduces some error between the two frequency-responses. So, the effect of the 

zero-order hold on this discrete frequency-response is studied in this section.

3.4.1 Transfer function o f th e zero-order hold

In time-domain, a zero-order hold can be given by the following piecewise function,

h ( t )  = f[kT\ k T < t < ( k  + l )T

The impulse response h{t) of the zero-order hold is expressed as,

h(t) =  u(t) — u(t — T ) (3-8)

where u(t) is unit-step function. In (3.8), taking Laplace transform, the transfer function 

is given by
1  6 ~

H M  — 7~ P -9)S S

In (3.9), substituting j w  for s, the frequency-response of ZOH can be obtained as,

\ e~iwT e~L~2~(e*~z~ — e~^~)  sin(3y-) jwr
H j w  =   --------- —  =  T --------^ = T — ^ e - ^ r  3.10

j w  j w  2 j ^ f

3.4.2 Frequency-response o f the sam pled signal

In order to compensate the frequency-response of the discretized model, the continuous 

transfer function of the zero-order hold is not sufficient. A sampled version of the zero- 

order hold should be derived. In this subsection, the relation between the frequency- 

response of a continuous signal and the frequency-response of a sampled signal is obtained 

as per [19].

A continuous signal f ( t )  is converted into a train of narrow pulses f*(t) which repre-
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sents a discrete signal resulting from sampling occurring at the sampling instances 0, T, 

2T,- • ■, kT, ■ • •, given by,

OO

r  (*) =  /(*)*r(*) =  /(*) E  ^  -  ^T ) (3-n )
k= — oo

Since the impulse train &r(£) is periodic, it can be expanded in a complex Fourier series.

1 0 0= f  E <312)
n =  —oo

where ^ • Combining (3.11) and (3.12) gives

1 °°
/•(«) =  ~  E  /(O e""”"' (3-13)T

n =  — oo

Taking Laplace transformation of (3.13) and substituting jw  for s, the frequency-response 

of f*(t) is given by,
1  0 0

F*(jw) = — E  F  [ j (w  + nws) ] (3.14)
n ——oc

By passing F*( j w  ) through an ideal lowpass filter H(jw)  given by,

1 , \w\ < ws /  2
H{jw) = {

0 , |io| > ws /  2

The base band frequency-response characteristics are obtained in the absence of aliasing 

as,

F * ( j w )  = ± F ( j w )  (3.15)

which is the same as (3.14) with n = 0.

(3.15) shows the relation between the frequency-response of a continuous signal F ( j w ) 

and the frequency-response of a sampled signal F*(jw) in the base band.
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3.4.3 Zero-order hold com pensation

(3.10) represents the continuous frequency-response of the zero-order hold. When com­

bined with (3.15), the frequency-response of the sampled zero-order hold signal in absence 

of aliasing is given by:

h *zo h ( 3 w  ) =  3 W ) =  Smi r 2  (3-16)
2

in this base band.

It can be seen that if the sampling period T  is very small the zero-order hold amplitude 

will be very close to ‘1’ and its phase will be very close to ‘O’. In other words the zero-order 

hold will have almost no effect on the frequency-response of the discretized system. But 

for bigger values of the sampling period T, the zero-order hold will have some noticeable 

magnitude and phase change that will affect the frequency-response of the discretized 

system. From (3.16) the change introduced by zero-order hold in the frequency-response 

of the discretized system is more apparent at higher frequencies.

3.5 ZOH co m p en sa ted  freq u en cy-resp on se  o f  th e  d is­

crete  tim e  m od el

If the discrete-time frequency-response obtained in Section 3.3 is denoted by Gfd(e-7U'Ts, 

da, di), using (3.16), the ZOH compensated continuous-time frequency-response G(jw,  

da, di) is given by,

G(jw, d0, d,) = Gd( e ^ T% da, d1)- : Wf Ti 2/0 , e^ 2 (3.17)
sm{wls/ 2 )

Fig. 3-7 shows the ZOH compensated magnitude and phase plots of the frequency- 

responses of the discrete-time model compared with the C-code based results respectively. 

These results compared to Fig. 3-6 clearly show that the ZOH compensation does improve
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Figure 3-7: Compensated magnitude and phase of frequency-responses

the frequency-response of the discrete-time model significantly.

It is also noticed that even after compensation there are still some error at higher 

frequencies on magnitude and phase responses. Due to aliasing, this problem will be 

reduced if higher switching frequencies (i.e. smaller switching periods) are used for the 

PWM in the boost converter. While the switching frequency of the experimental setup 

of the boost converter in this thesis is f s =  50kHz, in practice boost converters are usu­

ally designed for higher switching frequencies. For instance, when the boost converter 

is designed for a higher switching frequency f s =  400kHz, Figs. 3-8 and 3-9 illustrate 

the magnitude and phase frequency-responses of the discrete-time model before ZOH 

compensation as well as after ZOH compensation compared with C-code based simu­

lation respectively within the same frequency band. Since the operation mode of the 

system is at a different higher switching frequency, the boost converter no longer stays 

in discontinuous inductor current mode. Note that with this higher switching frequency 

f s =  400kHz, the error between the frequency-response obtained even before ZOH com­

pensation and that obtained from C-code based simulation is reduced significantly. The 

zero-order hold has only slight effect on the frequency-response of the discretized system 

at high switching rates.
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Figure 3-10: Magnitude and phase of small signal frequency-response for discrete-time 
model and experiment

3.6 Sm all s ign al behavior o f  th e  b o o st converter

The models of the boost converter for discontinuous-conduction mode in the literature 

fall into two categories: the first-order model [4] and second-order models [5], [6 ]. The 

first-order model can correctly predict the behavior of a converter in a low-frequency 

range, resulting in large approximations in the phase response. The second-order models 

result in a better approximation of the circuit frequency-response. However, some large 

discrepancies still exist at high frequencies [5].

Since a small-signal circuit model of the boost converter has been derived [6 ], the small 

signal frequency-response is obtainable from the expression for the control-to-output 

transfer function, given in (3.18), derived using the model in [6 ] in combination with the 

parameters in Appendix A.

-2.256s2 +  5.631 x 105s +  2.902 x 109

s2  +  3.584 x 105s +  1.775 x 108 '

In the light of this comparison shown in Fig. 3-10, the frequency-response obtained

from the discrete-time model predicts the small signal behavior of the boost converter in
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discontinuous-conduction mode of operation and yields same conclusions as in [5], and 

[6 ]. It is shown that this newly developed discrete-time model of this thesis is able to 

predict the small signal frequency-response.

3.7  N ew to n -R a p h so n  tech n iq u e to  a ccelera te  th e  com ­

p u ta tio n  sp eed  o f th e  freq u en cy-resp on se

Thus far, the small signal frequency-response of the boost converter operating in discon­

tinuous inductor current mode has been obtained with the discrete-time model. Even 

though the computation of the frequency-response using the discrete-time model takes 

less time than using C-code based simulation with very fine time-steps, it is still a time- 

consuming process. Since the frequency-response of the discrete-time model at any fre­

quency is achieved by comparing the magnitude at tha t frequency in the output voltage 

and its phase shift with input sinusoid, the overall frequency-response needs be done at 

each frequency. Therefore, an alternative faster method using Newton-Raphson technique 

to accelerate the computation of the frequency-response from the developed discrete-time 

model is introduced here. Note that the Newton-Raphson technique applied in this sec­

tion is discussed briefly in Sections 2.2.4 and 3.1. For discontinuous-conduction mode,

atcomputing the periodic steady-state vector starts with state vector Xkrs — 

each switching period (Ts) and the input sinusoidal waveform value (c4), then the state 

vector X(k+i)Ts at the beginning of the next switching period is computed after comput­

ing the corresponding fa  as discussed in Section 2.2.4. The procedure is repeated up 

to xp;_|-n )t s where N  is the integer ratio between the frequency at which the response is 

desired and switching frequency. Newton-Raphson technique with numerical Jacobian 

computation is needed to make the error (x^+n)t3~  Xkrs) f'end to zero to obtain the 

periodic steady-state vector. Once the periodic steady-state vector is formed, the inter­

mediate states are computed so tha t magnitude and phase response is computed at that 

frequency.
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Figure 3-11: Newton-Raphson method to accelerate the computation of the frequency- 
response

• Only input sine-wave in steady-state at that frequency is used for computing 

frequency-response of the boost converter at that frequency.

• While in the above writing, it is to be noted that this accelerated technique of 

computation presupposes that the ratio of the frequency /  =  ^ ,  at which the response 

is sought to the switching frequency f s — ^  is an integer, the method can be easily 

extended to the case when the ratio is one of rational numbers.

Fig. 3-11 shows that the accelerated approach considering one sinusoidal period 

of steady-state for the magnitude and phase frequency-response is in agreement with 

that computed from the discrete-time model approach outlined in earlier sections. The 

comparison of computing time between the previous approach using the discrete-time 

model and the Newton-Raphson method at seven frequency points at which the response 

is sought is given in Tables 3-1 and 3-2. For Table 3-2, an initial steady-state vector 

xinitial — [ 0  0  ] and a tolerance value ( 1 0 ~7) is used to detect convergence of the 

computation to the periodic steady-state vector. From the Tables, it is evident that 

the Newton-Raphson technique does accelerate the computation speed of the frequency- 

response, over the direct approach in the discrete-time model by almost six times within
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the specific frequency range (100Hz ~  10kHz).

Table 3-1 Direct frequency-response from the discrete-time model

Frequency(Hz) / 1 0 0 2 0 0 500 1 0 0 0 2 0 0 0 5000 1 0 0 0 0

Time (Sec) 39.8 39.8 39.8 39.9 40.1 40.1 40.1

Cumulative time (Sec) 279.6

Table 3-2 Newton-Raphson method of computing the frequency-response

f 3 =  50 kHz ; xinitiai =  [ 0 O f; tolerance =  10 7

Frequency(Hz) / 1 0 0 2 0 0 500 1 0 0 0 2 0 0 0 5000 1 0 0 0 0

Sampling points N  =  y 500 250 1 0 0 50 25 1 0 5

Iterations 5 1 1 27 55 1 1 0 275 550

Time (Sec) 13.5 8 . 8 5.7 4.8 4.2 4 3.9

Cumulative time (Sec) 44.9

Increasing the tolerance value, it was found that larger tolerance value requires less 

iterations (a tolerance of 10- 3  leads to results in Table 3-3). Once the DC steady-state 

operating point x initiai = [ 0  18.8 f  is taken as the initial value of the periodic steady- 

state vector at each frequency, both iterations and computation speed of convergence can 

be reduced significantly even with a small tolerance value (10~9) as shown in Table 3-4. 

Note that the selection of the initial value of the steady-state vector evidently affects the 

iterations of convergence to compute the frequency-response using the Newton-Raphson 

approach.

Table 3-3 Newton-Raphson method of computing the frequency-response

f s =  50 kHz ; Xiniuai =  [ 0 O f; tolerance =  10 3

Frequency(Hz) / 1 0 0 2 0 0 500 1 0 0 0 2 0 0 0 5000 1 0 0 0 0

Sampling points N  =  ‘j 500 250 1 0 0 50 25 1 0 5

Iterations 3 5 14 28 55 139 279

Time (Sec) 13 7.1 4.5 3.5 3.1 2 . 8 2.78

Cumulative time (Sec) 36.8

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3-4 Newton-Raphson method of computing the frequency-response

f s = 50 kHz ; xinitiai =  [ 0 18.8 f ; tolerance -  10 9

Frequency(Hz) / 1 0 0 2 0 0 500 1 0 0 0 2 0 0 0 5000 1 0 0 0 0

Sampling points N  =  ^ 500 250 1 0 0 50 25 1 0 5

Iterations 1 2 4 4 3 0 0

Time (Sec) 10.7 5.7 2 . 6 1.33 0.64 0.24 0.18

Cumulative time (Sec) 21.39

3.8 C on clu sion

The calculation of steady-state operating point and ripple in PWM DC-DC boost con­

verters using the discrete-time model of Chapter 2 which involves at most 2 x 2  matrices 

and Newton-Raphson iterations is considered in this chapter. Analytical expressions for 

the Jacobian’s needed in the Newton-Raphson iterations have been developed and used. 

This discrete-time model accurately predicts the steady-state and small signal behavior 

when compared with experimental results and published literature.

The study on steady-state behavior and small signal frequency-response considers 

the values of the non-ideal component parameters rc, ry,, rp, and Vp in simulations, 

as their effect on the boost converter behavior in this experimental system is rather 

significant.

The small signal frequency-response obtained from the discrete-time model verifies 

the same results as those given by [6 ] for discontinuous-conduction mode. Compensation 

for ZOH is necessary, due to low switching rate used in this work, especially for phase 

response. This newly developed discrete-time model however can provide large signal 

frequency-response with respect to large variations on input control signal vcontroi along 

the line of [9] and compute the response in both continuous and discontinuous modes. Due 

to the relatively big ripple in the presence of exclusively discontinuous inductor current 

mode, it is difficult to experimentally measure the large signal frequency-response in the
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experimental setup.

The use of the Newton-Raphson technique to accelerate the computation of the 

frequency-response from the developed discrete-time model has also been studied and 

shown to be superior in computational efficiency compared with direct computation of 

the response from the discrete-time model.
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Chapter 4 

Closed-loop behavior analysis

In Chapter 3, the focus of this work was mostly on the steady-state behavior of the 

standalone (open-loop) boost converter, which comprises steady-state and ripple as well 

as small signal frequency-response. In analyzing a control system, referring to Fig. 1-2 

the transient response of the system to specific test input signals is indispensable. In this 

Chapter, the models discussed in Chapter 2 are used to compute the output transient 

behavior in the case of closed-loop control system using output proportional and integral 

(PI) feedback. The circuit diagram of the experimental setup and the details of the 

circuit are given in Appendix B.

4.1 C -cod e b ased  sim u la tion  and ex p er im en ta l closed- 

loop  o u tp u t-resp o n se

In this section, the closed-loop output-response of the boost converter for a particular 

setting of PI control (Kp = 0.4; Ki =  1000 per sec in the experimental setup of Appendix 

B) is obtained experimentally and compared with the closed-loop output-response from 

C-code based simulation.

In this control system (Appendix B), the actuating error signal, which is the difference 

between the input signal and feedback signal (the output voltage in this circuit), is fed
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Figure 4-1: Closed-loop output-responses with B  =  IV. (a) C-code based simulation, (b) 
Experiment.

to an analog PI controller so as to reduce the error and bring the output voltage of the 

boost converter to a desired value Vref. For experimental purpose, the input signal Vref 

of this closed-loop control system is excited by a square-wave signal of amplitude B  = IV 

and frequency f \  =  20Hz superimposed on a nominal value of the DC output feedback 

voltage level VQ =  18.8V, which keeps the system working at the nominal operating point. 

The frequency f i  provides the system sufficient time to reach steady-state before the next 

perturbation in the set-point.

The closed-loop output-response of C-code based simulation model is obtained us­

ing the same input excitation. Fig. 4-1 shows the comparison between C-code based 

simulation and the experimental closed-loop output-response for this boost converter.

Note that since the closed-loop output-response from C-code based simulation is com­

puted with very fine time step (0.005/xs) which is far less than switching period (20/xs), 

the output-response shown in the Fig. 4-1. (a) provides instantaneous values of the output 

voltage. The experimental output-response however refers to the average output voltage 

captured with a sampling period (0.4ms) in an oscilloscope, which is much bigger than 

the switching period. This comparison in Fig. 4-1 illustrates that the result computed
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Figure 4-2: Closed-loop output-responses with B — IV. (a) Discrete-time model (in­
stantaneous values of output), (b) Discrete-time model (average values of output), (c) 
Experiment.

from C-code based simulation model manifests agreement with the experimental result 

and the output-response tracks the desired set-point changes.

It can be seen that nonlinear (large signal) behavior is present, in that the overshoot 

on the increasing perturbation is smaller than on the decreasing perturbation in the 

set-point.
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4.2 C losed -loop  ou tp u t-resp o n se  o f th e  d iscre te -tim e  

m od el

With the same excitation of the previous section, in Fig. 4-2, the closed-loop output- 

response obtained using the discrete-time model in combination with Newton-Raphson 

iterations (for <f>) is compared with the closed-loop output-response of C-code based 

simulation and experiment. W ith the quantitative comparison of the percent overshoot 

and settling time on both increasing and decreasing perturbations of the set-point in Table

4-1, it is evident that the discrete-time model shown in Fig. 4-2, makes good prediction 

of the experimental and C-code based simulation. It also captures the nonlinear behavior 

on the increasing and decreasing perturbations.

Table 4-1 Percent overshoot and settling time comparison 

________________________ with nonlinear behavior_______________________
Overshoot and settling time on the perturbation Increasing Decreasing

Discrete-time model 25%; 20ms 50%; 25ms

Experiment 20%; 15ms 50%; 20ms

4.3 N on lin ear  beh avior o f th e  b o o st converter

All closed-loop output-responses so far are obtained with the set-point changes of Section 

4.1, which corresponds to a 5% perturbation around operating point voltage of 18.8V. 

Even though this deviation on input set-point is quite small, Figs. 4-1 and 4-2 illustrate 

that there is a difference of the response on the upward and downward perturbations of 

the set-point, indicating that the converter does not behave linearly even for such a small 

perturbation.
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4.3.1 Linear behavior

As long as the system operates in discontinuous-conduction mode, no m atter what the 

amplitude of the square waveform is, the response on the upward and downward pertur­

bations of the set-point should be the same (linear behavior). But as soon as the system 

starts working in continuous and discontinuous modes at some amplitude of the square 

waveform, the response on the upward and downward perturbations of the set-point 

excitation will no longer be the same.

To give a numerical example, for the boost converter parameters (Appendix B), the 

linear model is valid for a perturbation of |B| < 0.201V around DC operating point 

voltage of 18.8V. This is a region of validity of approximately 1.07% perturbations in the 

set-point and is quite small.

The discrete-time model which includes both modes of operation predicts the large 

signal behavior of the converter quite well as seen in Fig. 4-3 where experimental and 

simulated responses for different amplitudes of the set-point waveform are given. Al­

though not clear from Fig. 4-3, it is interesting to note that for a given B  beyond the 

small signal limit (|B | > 0.201V), the converter closed-loop behavior changes from being 

entirely in discontinuous-conduction mode (small signal behavior) at small perturbations 

of amplitude B  to behavior with continuous and discontinuous modes (large signal be­

havior) at larger perturbations of amplitude B.  When the amplitude B  is at 0.1V, the 

linear behavior is seen on the response. The presence of continuous and discontinuous 

inductor current modes in any given closed-loop response for fixed B  precludes the use 

of simpler methods of computation of large signal closed-loop response.

4.3.2 Sm all signal m odel

In the literature, in discontinuous-conduction mode, the expression for the small signal 

transfer function denoted by G(s) given in (3.18) was derived in [6 ], with the assumption 

the boost converter is working around a particular discontinuous mode operating point.
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Figure 4-4: Control block

Fig. 1-2 can be simplified as the control block shown in Fig. 4-4, then the closed-loop 

transfer function between the output signal and the input signal is derived as,

C(s)  G ( s ) G e ( s )

V „ / ( s )  1 + G(s)Gc(s) 1 ' 1

where

Gc{s) = + ^

which is composed of the proportional gain kp and the integral gain fcj.

Using (4.1), the unit-step response can be obtained and compared with the small 

signal closed-loop response obtained from the discrete-time model with B  =  0.1V in 

Section 4.3.2 as well as the experiment in Fig. 4-5. With the quantitative comparison in 

Table 4-2, note that even though overshoots on increasing and decreasing perturbations 

of the set-point computed by the small signal model [6 ] and the discrete-time model 

are consistent with the experimental results, the values of the settling time computed 

from the above two models are not in agreement compared to the experimental results. 

The discrete-time model exhibits different dynamic characteristic of the settling time 

on both upward and downward perturbations of the set-point, which is not predicted 

by small signal model [6 ]. Thus, this developed discrete-time model predicts better 

performance characteristics than small signal transfer function in computing closed-loop 

output-response of the boost converter.
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time model, (c) Experiment.
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Table 4-2 Percent overshoot and settling time comparison 

__________________ with linear behavior_________________
Overshoot and settling time on the perturbation Increasing Decreasing

Small signal model in [6 ] 45%; 23ms 45%; 23ms

Discrete-time model 45%; 14ms 45%; 24ms

Experiment 42%; 13ms 42%; 21ms

4.4 C on clu sion

In this chapter, the two models proposed in Chapter 2 are used to compute closed- 

loop output-response of the boost converter. The small signal model proposed in [6 ] 

designed only for discontinuous mode, can not fully predict the system behavior at larger 

perturbations. Furthermore, while the closed-loop output-response from this small signal 

model is compared with that obtained from the discrete-time model with amplitude 

B  =  0.1V and experiment, it is found that the discrete-time model can predict it more 

accurately.

Discrete-time model overcomes the limitation by predicting the behavior in both con­

tinuous and discontinuous inductor current modes of operation and predicts the closed- 

loop behavior of the boost converter better than small signal model of [6 ].
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Chapter 5 

Different operating point

All the results presented in the foregoing chapters are obtained for constant value of the 

load and input line voltage of the boost converter at a nominal operating point. In real 

power electronic circuits, the consequences of inevitable variations in these parameters 

cause circuit operation to deviate from the nominal operating point. Any change in the 

output load or input line voltage affects the output voltages of uncontrolled DC power 

supplies. W ith the combination of two different input voltage and two different output 

loads keeping the converter in discontinuous mode in steady-state with input duty cycle 

constant, three different operating points under open-loop operation listed in Table 5-1 

are considered in this chapter. The operating point N l  represents a nominal operating 

point. The operating points N 2 and N 3 refer to the boost converter working in deeper 

discontinuous inductor current mode with higher inductor current peak.

Table 5-1 Different operating points with constant duty cycle D
Operating pt vd (y) R l o a d  ( ^ ) D V„ (V)(open loop)

N l 1 0 74.94 0.4 18.8

N  2 1 0 99.6 0.4 20.7

N3 1 2 74.94 0.4 22.7
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Figure 5-1: Magnitude response for discrete-time model and experiment with three dif­
ferent operating points.
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Figure 5-2: Phase response for discrete-time model and experiment with three different 
operating points.
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5.1 Sm all s ign al freq u en cy-resp on se

As in Chapter 3, the magnitude and phase frequency-responses of open-loop for the 

three operating points of Table 5-1 between control input and output voltage with input 

amplitude of sine-wave A = 0.1V corresponding to di =  0.01 in (3.6) are computed and 

compared with experimental results in Figs. 5-1 and 5-2 respectively.

The smallness of di =  0.01 presents considerable difficulty in measuring the frequency- 

response from the ripple and noise in the experimental system. Although the variations 

in the frequency-response are quite small to variations of input line voltage or output 

load, from Figs. 5-1 and 5-2, it can be seen that this small signal frequency-response of 

the discrete-time model is dependent on the operating point. The discrete-time model 

takes into account the operating point and reasonably accurately predicts the small signal 

frequency-response under different operating points.

5.2 C losed -loop  ou tp u t-resp o n se

In this section, under different operating points N2  and N3,  the closed-loop output- 

responses from the discrete-time model to step set-point changes are obtained and com­

pared with the experimental results. These predicted results shown in Figs. 5-3.(a) and

5-4.(a) correspond with their experimental results shown in Figs. 5-3.(b) and 5-4.(b) 

respectively. No m atter which operating point the boost converter is working at, large 

signal behavior is exhibited with increasing amplitude of the set-point changes.

Furthermore, it is seen that this discrete-time model predicts the system behavior 

with and without feedback adequately.
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Chapter 6

Future work and conclusion

6.1 R o b u st con tro l d esign  u sin g  a frequency resp on se  

tech n iq u e

The use of an appropriate model is central to the control design process in electronic 

circuits. An incomplete model may miss crucial aspects of system behavior and therefore 

lead to unsatisfactory controllers. In this thesis, a zero-order hold (ZOH) equivalent 

discrete time model of the boost converter for computing its small signal frequency- 

response and large signal and small signal closed-loop behavior over different operating 

points has been derived and experimentally confirmed. W ith this model, non-ideal effect 

and operation in both continuous and discontinuous current modes can be easily taken 

into account.

Table 6-1 Different operating points with constant output voltage Va

Operating pt K«(v) Rload. (^) D Vc (V)(open loop)

N , 1 0 74.94 0.4 18.8

n 2 1 0 99.6 0.3452 18.8

iV3 1 2 74.94 0.2972 18.8
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In contrast to Section 5.1 where the frequency-response was obtained for constant 

DC input duty cycle rather than output voltage, the study of the small signal frequency- 

response on the basis of maintaining constant output voltage is more valuable for con­

troller design point of view. W ith the intention of future robust control studies on the 

boost converter in discontinuous-conduction mode, an initial evaluation of the small 

signal frequency-response simulation predicted by the discrete-time model at different 

operating points (Table 6-1) based on keeping the output voltage of the boost converter 

always constant is presented in Figs. 6-1 and 6-2. The design of a robust controller 

for the boost converter using a frequency response technique to guarantee stability and 

performance over the entire operating range will be attempted in future work.

The robust controller design will be attempted along the line of [20] with guaranteed 

minimum gain margin and phase margin for the loop at all available operating data. The 

minimum gain and phase margin allowance is to ensure that if new operating ranges are 

encountered besides those considered in this work, the controller still has a cushion for 

loop stability. Due to time limitations, further investigation of this topic is future work 

emanating from this thesis.

6.2 C on clu sion

In this thesis, a ZOH equivalent discrete-time modeling approach to the boost converter 

is studied from the point of view of computing steady-state behavior and the small 

signal frequency-response of the boost converter considering non-ideal components. The 

study has been experimentally verified. This discrete-time model is applicable to both 

continuous and discontinuous inductor current modes. The nonlinear transient behavior 

in the closed-loop induced by output voltage feedback PI controllers for such converters 

with 5% perturbation is studied with experimental results. It is shown that the results 

so obtained using the discrete-time model provide a reasonably good approximation to 

the experimental boost converter behavior, with and without feedback.
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A ppendix A  

Frequency-response experim ental 

setup

Experimental circuit to determine the frequency-response of the boost converter is given 

in Fig. A-l.

A .l  C a lcu la tion  o f p aram eters

The boost converter parameters are calculated for a maximum output voltage of 18.8V 

at 0.4A with the following specifications, using ideal boost converter equations as shown 

below.

Input voltage Vd =  10V 

Output voltage V0  = 18.8V 

Nominal duty cycle D = 40%

Maximum output current / 0imax =  0.4A 

Switching Frequency f s =  50kHz

The converter is designed to be operating in discontinuous-conduction mode. So in 

Section 1.6, the inequality I 0 < I0g should be satisfied. Using the above mentioned value
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°f -̂ o,max and (1.3) the inequality can be written as,

0.4 < r̂ D { l - D f  
ZL/

that yields a maximum value of the inductor Lmax.

As long as L  < 67.68/rH for the boost converter with switching frequency f s =  50kHz, 

the converter would be in discontinuous-conduction mode.

Inductor value is selected to satisfy Z/max. Assuming that all the ripple current com­

ponent of the diode current ip  flows through the capacitor and its average value flows 

through the load resistor, the capacitor value is chosen to be a big value so that the ripple 

of the output can be reduced to be as small as possible. Table A-l lists the chosen values 

for L and C and other parameters that are calculated for the boost converter circuit. 

In addition, the values of the non-ideal components considered in this thesis are chosen 

within the range specified for the components in the datasheet.

Table A-l: Parameters of the boost converter
L =  58.1/rH(MPP Core) rL(dc) =  0.3fi

C  =  220^iF rDs{dc) =  0.0650

II o < rF(dc) =  0 . 1 0 2 0

V0 =  18.8V VF (dc) =  1.2V

D =  40% V *  =  10V

f s =  50kHz -  2 n '/L C  -  L41kHZ

A .2 In d u ctor

All magnetic cores exhibit some degree of hysteresis in their B  — H  characteristic. Perme­

ability /r of a particular material is defined as the ratio of magnetic flux density B  and the 

magnetic field intensity H , (/r =  jj). Permeability of magnetic materials is not constant 

but varies as a nonlinear function of B (hysteresis behavior). One of the determining
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factors in the type and value of an inductor is the permeability of the core material. If 

the core is made of linear magnetic material (i.e. with constant //), the inductor value is 

constant, otherwise the inductor’s value varies with current [2 1 ].

The inductor chosen for this experimental setup is a Talema SD series with MPP 

(Molypermalloy Powder) as core material. The use of MPP cores provides a highly 

stable inductance over a wide bias current range.

In the circuit model for the inductor, the DC resistance of the winding was con­

sidered in series with the inductor.

A .3 Load resistan ce

For this experiment, four resistors of type IRC-PW5W, 300D ±  5%, were connected in 

parallel connection and used as a 75D fixed load with additional resistances switched in 

parallel to it to step-increase and decrease load. IRC-PW series are axial leaded power 

wirewound resistors manufactured by TT electronics. Their power rating is derated with 

the case temperature in IRC-PW5 datasheet. For instance, a 75D resistor with 18.8V 

across it, needs a power rating P  =  V 2/ Ft = 4.7W. So four resistors with a rating of 5W 

of each in parallel connection withstand a maximum load power of 20W.

A .4 C ircu it n o tes

In this section some practical notes about the circuit setup are mentioned. While set­

ting up an experiment, these notes would make the work easier for determining reliable 

response of the system.

A .4.1 W iring

In experimental setup wires are chosen as short as possible because long wires in the 

circuit increase noise, resistive power losses, and add stray inductance to the circuit.
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The capacitor, diode, inductor and load resistor are therefore wired as close together as 

possible and thicker wires are used since they have smaller resistance.

A .4.2 Input power supply

Two 1000/rF electrolytic capacitors were paralleled to the input power supply to reduce 

the ripple on Vd-

A .4.3 G ate resistor

Ringing is a common problem in any circuit with very fast rise or fall times. A 100 

resistor in series with the output of the MOSFET driver is added to reduce the ringing. 

Although this reduces ringing, it also slightly increases the rise and fall times.

A .4.4 B ypassing

The rapid charging and discharging of the MOSFET gate capacitance requires very high 

current spikes from the power supply. For each IC in the circuit, the application infor­

mation was followed according to datasheets and parallel combination of capacitors with 

low impedance over a wide frequency range was used. A 4.7/xF tantalum capacitor in 

parallel with a low inductance O.l^rF capacitor is usually connected to power supplies of 

the circuit to diminish noise and handle high current spikes from the power supplies.

A .4.5 Power d issipation

Due to high switching rate, power will be dissipated on MOSFET. The MOSFET is 

mounted on a heat-sink.
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A .5 D a ta  co llectio n

Data was collected through RS232 serial interface of the oscilloscope (Fluke PM3370B). 

The default acquisition length on the oscilloscope is 512 data points for each trace. It is 

possible to increase the length of a trace from 512 points up to a maximum of 8 k points 

(without memories expansion) which is the setting used in these experiments. This results 

in a trace length of 16 screens, or 160 divisions. The sampling period depends on the 

main TIMEBASE of the oscilloscope. For example if the main TIMEBASE is 10ms the 

total time that data is collected will be 1 0 ms xl60  =  1 .6 s and the sampling period will

be ^55 =  °-2ms-

A .5.1 M agnitude calculation

The magnitude of the frequency-response is calculated by taking the FFT of the collected 

input and output data. Considering the number of samples taken through the oscilloscope 

is N  = 8 k, the sampling rate T  for each frequency should be chosen so that the frequency 

under study is an integer multiple of the FFT frequency resolution otherwise leakage 

in the desired frequency vector will lead to incorrect values.

A .5.2 P hase shift calculation

For measurement of phase shift between the input signal and the output signal of the 

circuit, they were connected on the two channels of the oscilloscope respectively. Al­

though input and output data were not collected at the same time by the scope, the 

error checked with exactly same signal collected simultaneously on the two channels of 

the oscilloscope in analog mode, is verified to be so small that it can be neglected. Since 

the 8 k acquisition memory is shared between the two channels, the maximum acquisition 

length for each trace can only now be 4k points for the oscilloscope used in experiment. 

Likewise, phase shift can be calculated using FFT. It is also noted that a low-pass digital 

Butterworth filter is essential due to the presence of ripple and noise in the experimental
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system. The smallness of the amplitude of the input sinusoidal signal A = 0.1V is the 

main source of the error, which makes considerable difficulty in measuring the phase 

response accurately.

A .6 E fficiency

Considering the discussion in the previous sections, the power conversion efficiency of 

the boost converter is calculated for the open-loop situation. The power efficiency of 

the experimental boost converter is given in Table A-2. In closed-loop case, the circuit 

efficiency is slightly less than the given value and is dependent on controller gains. It is 

also found that the efficiency of this boost converter in discontinuous-conduction mode 

decreases with increasing inductor current.

Table A-2: Efficiency of this experimental boost converter

Vi h V0 Io Efficiency

Boost converter 10.02V 0.542A 18.816V 0.254A 8 8 %
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A ppendix B  

Closed-loop experim ental setup

Experimental circuit to predict the closed-loop output-response of the boost converter is 

given in Fig. B-l.

B . l  S u b tra ctio n  circu it

The subtraction circuit used in the experimental setup is designed such that,

e = 2 x R  — V0  (B.l)

where e is the error signal sent to the input of the PI controller for desired control 

signal and the value of R  is half of the instantaneous value of the square-wave set-point 

trajectory.

B .2  C ontro ller circu it

The feedback control system is designed to maintain the output voltage at Vref. A simple 

PI controller with the following form is used to implement this closed-loop operation,

Gc{s) =  K p -|— —
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with

K  =  Xl 
p 9.819kfl

K i = --------- ----------
0.096fiF x X2

where x\  and x 2 are the values of potentiometer pofl and pot2 in kf2 which are adjusted 

to provide K p and K z gains respectively.

A particular setting of proportional gain Kp and integral gain K t is chosen as 0.4 and 

1000 per sec respectively.

B .3  D a ta  co llectio n

For closed-loop behavior, the main TIMEBASE is chosen as 20ms/Div and the acquisition 

length of this output trace is 4k data points which results in a trace length of 8 screens, 

or 80 divisions. The total time that data is collected is 20ms/Divx80 =  1.6s and the 

sampling period is A4h =  0.4ms. Hence, the closed-loop output-response captured from 

the experimental setup does not show the ripple between the switching period (Ts =  

20/xs).
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