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Abstract 

Cloud computing is a rapidly emerging computing paradigm which replaces static and 

expensive data centers, network and software infrastructure with dynamically scalable “cloud 

based” services offered by third party providers on an on-demand basis. However, with the 

potential for seemingly limitless scalability and reduced infrastructure costs comes new issues 

regarding security and privacy as processing and storage tasks are delegated to potentially 

untrustworthy cloud providers. For the eHealth industry this loss of control makes adopting the 

cloud problematic when compliance with privacy laws (such HIPAA, PIPEDA and PHIPA) is 

required and limits third party access to patient records.  

This thesis presents a RBAC enabled solution to cloud privacy and security issues 

resulting from this loss of control to a potentially untrustworthy third party cloud provider, which 

remains both scalable and distributed. This is accomplished through four major components 

presented, implemented and evaluated within this thesis; the DOSGi based Health Cloud 

eXchange (HCX) architecture for managing and exchanging EHRs between authorized users, the 

Role Based Access Control as a Service (RBACaaS) model and web service providing RBAC 

policy enforcement and services to cloud applications, the Role Based Single Sign On (RBSSO) 

protocol, and the Distributed Multi-Authority Ciphertext-Policy Shared Attribute-Based 

Encryption (DMACPSABE) scheme for limiting access to sensitive records dependent on 

attributes (or roles) assigned to users. We show that when these components are combined the 

resulting system is both scalable (scaling at least linearly with users, request, records and 

attributes), secure and provides a level of protection from the cloud provider which preserves the 

privacy of user’s records from any third party. Additionally, potential use cases are presented for 

each component as well as the overall system. 

  



  



 

1 

Chapter 1 

1 Introduction 

The increasingly popular cloud computing paradigm brings new opportunities to 

reduce hardware, maintenance and network costs associated with the traditional 

infrastructure required to offer large scale internet based services or even smaller 

localized application and storage solutions. However, with the dynamic scalability, 

reduced risk and potential cost savings comes a loss of control that creates new 

challenges for adopting cloud based infrastructure. For the health care industry, the need 

for cost efficient and low maintenance Electronic Health Record (EHR) systems is clear 

(Urowitz, et al., 2008). However, data privacy, security and compliance with local and 

global privacy laws are significant barriers blocking adoption of public cloud offerings. 

This thesis presents work towards a potential solution to the problem of cloud privacy 

and security in public, private, and hybrid cloud environments including protection for 

transmission and storage of documents in situations where access to online services may 

be limited or impossible. Additionally, methods for adapting Distributed OSGi (DOSGi) 

for cloud based environments are detailed and a DOSGi framework for sharing health 

records is presented. 

 

1.1 Background Information 
 Subject areas including cloud computing, role based access control, and identity 

and attribute based cryptology are covered in this thesis. The following sub-sections give 



2 
 

a brief overview and background in each area as well as a description of the DOSGi 

platform used in chapter 2. 

 

1.1.1 Cloud Computing 

 Due to the increased popularity in using “cloud computing” as a buzzword for any 

web based application or service, a single unified definition of “cloud computing” has 

become increasingly hard to arrive at. Multiple differing definitions have been used in 

both scientific and business literature (Geelan, 2008) to describe both the applications 

delivered through the cloud as well as the hardware and systems that comprise it. 

However, some work has been done to come to a standardized definition, such as the 

editorial note by LM. Vaquero, et al (2008). which presented the following proposed 

definition: 

“Clouds are a large pool of easily usable and accessible virtualized resources (such 
as hardware, development platforms and/or services). These resources can be 
dynamically reconfigured to adjust to a variable load (scale), allowing also for an 
optimum resource utilization. This pool of resources is typically exploited by a pay-
per-use model in which guarantees are offered by the Infrastructure Provider by 
means of customized SLAs.” (Vaquero & al., 2008) 
 
 

For the purposes of this thesis the definition of Cloud Computing offered by R. Buyya, et 

al. (2008) will be used where Cloud Computing is concerned: 

“...a type of parallel and distributed system consisting of a collection of interconnected 
and virtualised computers that are dynamically provisioned and presented as one or 
more unified computing resources based on service-level agreements established 
through negotiation between the service provider and consumers” (Buyya, Yeo, & 
Venugopal, 2008) 
 
 

 A large driving force in the adoption of Cloud Computing is the increased interest 
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by businesses in utility computing over owning and operating their own data centres and 

computer resources. In the utility computing model, Software, Platform and 

Infrastructure are sold in a similar way as traditional utilities such as power, water, and 

gas. Businesses are charged based on the amount of resources used and the length of time 

they are utilized. An example would be Amazon's EC2 service (http://aws.amazon.com/), 

where businesses are charged based on the amount of time an instance (a virtual machine) 

is active as well as the amount of resources used (e.g. the amount of RAM, number of 

CPUs, etc. being used by an active instance). When such services are sold to the public, 

the cloud is deemed to be a “public cloud”. Offering public cloud services allows 

companies such as Amazon and Google who have vast computing and network resources 

for their core business functions, to leverage their existing infrastructure (which may be 

largely underutilized at off peak times) to businesses and organizations that have a 

limited or nonexistent infrastructure. Alternatively, organizations may operate their own 

“private cloud” for internal use or a hybrid system involving both public and private 

components. 

 For the healthcare industry, cloud computing offers the potential to enable 

patients, physicians, healthcare workers and administrators immediate access to a wide 

range of healthcare resources, applications and tools. For hospitals, physician practices 

and emergency medical service providers, the lowered initial investment and the 

elimination of data center, hardware, and related IT costs offered by cloud computing can 

help overcome the financial barriers blocking the wide adoption of EHR systems 

(Urowitz, et al., 2008) and provide the infrastructure needed to make patient accessible 

records possible in a secure manner. 
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In general, cloud computing can be subdivided into three main layers; 

Application, Platform, and Infrastructure. The Application layer consists of cloud based 

applications that provide direct services to end users, commonly over a web browser 

interface (e.g. Google Health (http://www.google.com/health/)). The Platform layer 

provides frameworks and/or services that enable developers to easily create cloud 

applications (e.g. Google's app Engine (http://code.google.com/appengine/), OSGi 

(http://www.osgi.org), Windows Azure (http://www.windowsazure.com)) and finally the 

Infrastructure layer provides the hardware and software resources that power the actual 

virtualization and serving of cloud resources (e.g. Eucalyptus 

(http://www.eucalyptus.com/), and NIMBUS (http://www.nimbusproject.org/)). When 

provided as a service, these layers are often referred to as SaaS (Software as a Service), 

PaaS (Platform as a Service) and IaaS (Infrastructure as a Service) respectively. Figure 

1.1 illustrates the main layers of any cloud computing system. 

  

Figure 1.1: Cloud computing layers. 
 

1.1.2 Distributed OSGi 

 OSGi is a dynamic service-oriented module platform for Java, maintained and 

created by the OSGi Alliance which allows service modules to be created and registered 
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with a central service registry, enabling consumer modules to find and use registered 

services. This allows for the development of very modular and reusable systems where 

service modules provide and register an interface that consumer modules may plug into 

to use the resources and functionality associated with the service. Having parts of a 

system encapsulated in their own modules provides the means for increased reusability as 

new systems may simply plug into the existing services to use and extend their 

functionality. OSGi also allows for these services to be remotely installed, uninstalled, 

started, stopped and updated without the need to restart or make manual changes to a 

given system. Consumer modules are able to detect changes in services (additions, 

removals, etc.) and respond accordingly. 

 On its own, OSGi only provides the services and registry to consumer modules 

running on the same machine, which is inadequate for use in the cloud or distributed 

systems. To resolve this, a specification for OSGi remote services and discovery was 

added to the OSGi 4.2 Compendium Specification (Chapter 

13)(http://www.osgi.org/Release4/Download/) and implemented by the Apache CXF 

Distributed OSGi (DOSGi) subproject (http://cxf.apache.org/distributed-osgi.html). 

Apache's DOSGi enables remote OGSi services through the use of web services (SOAP 

over HTTP) and discovery using Apache Hadoop's Zookeeper 

(https://zookeeper.apache.org/). This allows for OSGi services to be shared in the 

distributed environments and for consumers to dynamically discover and use services as 

they become available (or stop using them as they are lost). 

 For cloud computing, DOSGi provides a platform on which to build cloud 
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services and consumers which dynamically adapt to changes in the cloud (e.g. new 

instances coming or going offline) and allows for simple deployment of OSGi bundles to 

newly executed instances that lack persistent storage (as is common for most cloud based 

virtual machines). For these reasons the HCX system described in Chapter 2 makes heavy 

use of the DOSGi platform for connecting HCX services with HCX consumers and 

providing a scalable architecture by balancing requests between DOSGi based HCX 

services.     

 

1.1.3 Role Based Access Control 

Role based access control (RBAC) offers a more flexible and policy neutral 

alternative to  discretionary access control (DAC) and mandatory access control (MAC) 

that focuses on assigning users to roles rather than directly to permissions on operations 

or data objects. That is, rather than granting a user the right to read, write, execute, etc. a 

data object, RBAC grants a role the right to perform an operation such as add the results 

of an operation to a patient’s health record, update their contact information or view their 

insurance information (see Figure 1.2). In the RBAC model, permissions are associated 

with high level roles found in an organization and users are assigned to one or more roles 

relating to their responsibilities within the organization. Roles remove the need to directly 

map users to low level objects and allow for easy permission management through the 

creation of roles granting only the necessary access to organization operations that a user 

may be required to perform. For example an EHR information system may have a role for 

patients which grants them permissions to view their own health records, as well as a role 
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for doctors and health care professionals that grant them the ability to view and update 

records for the patients under their care. This would be in direct contrast to the access 

control list (ACL) model of access control which would have a user or group assigned 

access rights to each individual data object (in this example a health record) rather than 

enforcing a more abstract access control policy such as “patients can access an operation 

to view their own health record” or “doctors can access an operation to view their 

patients’ health records and an operation to update their patients’ health records”.  

 

 

Figure 1.2: Basic RBAC model. 
 

The RBAC model greatly simplifies the management of user permissions on large 

systems and ensures that administrators can enforce the security principles of least 

privilege and separation of duty/privilege  (Saltzer & Schroeder, 1975) as they have a 

very clear idea of the level of access a given user has by the roles they have been 

assigned. RBAC also simplifies the problem of ensuring that users are given correct 

access rights to a system. As users are assigned roles which map to permissions that in 

turn map to abstract operations on an information system, an administrator would only 

need to check that a user has been assigned the correct roles to ensure they have the 

correct access rights (assuming the roles and permissions were created correctly). 

Similarly, changing the level of access a role is given to match changes in organizational 



8 
 

policy or structure is trivial in RBAC as only the role-permission assignment would need 

to be altered to affect the access rights of every user assigned to the role. 

 

1.1.4 Identity and Attribute Based Cryptography 

 Identity based cryptography is a category of public key crypto systems where the 

public key for a corresponding private key may be any publicly known string. This 

allows for greatly simplified public key distribution as a user’s public key may be an 

existing string associated with the user such as an e-mail address, physical address, or 

host name. Most ID-based encryption schemes, such as that of Boneth and Fraklin 

(2001), require a centralized trusted authority to act as a private key generator which 

distributes private keys to users of the system. A more detailed and technical explanation 

of identity based encryption is given in subsection 4.1.3 of Chapter 4. 

 Attribute Based Encryption (ABE) (first introduced by Sahai and Waters (2005)) 

builds on the concepts of ID-based encryption and allows a cipher text to be encrypted 

such that only a user with a secret key containing the correct subset of attributes may 

decrypt the document. More recent ABE schemes such as the Key Policy ABE (Goyal, 

Pandey, Sahai, & Waters, 2006) and Cipher Text Policy ABE (Bethencourt, Sahai, & 

Waters, 2007), allow for more complex attribute based access policies to be embedded in 

the ciphertext or secret key. A more detailed and technical explanation of attribute based 

encryption is given in Chapter 4 (particularly in subsection 4.1.3, 4.2.1, 4.2.2, and 4.2.3). 

 For the cloud, ABE offers the potential to have documents protected with an 

access policy independent of the system holding them. Records encrypted with ABE are 

protected both on and off the cloud with the same policy as well as both on and off line. 
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For the health care environment, such consistent protection that extends to records both 

on and off line is critical when health services must be provided when access to EHR 

systems may be unavailable (e.g. during a disaster which compromises online EHR 

services) or in environments were a stable connection is not possible (e.g. remote areas). 

 

1.2 The Cloud Problem 
 While cloud computing may offer potential cost savings and dynamically scalable 

infrastructure, it also brings with it new security and privacy issues that need to be 

addressed: 

 

 Confidentiality: Protecting cloud based storage and network transmissions from 

possible unwanted access by cloud providers or data leakage to other cloud users. 

 Auditability: Maintaining logs of users’ actions with the system and ensuring that 

no part of the system has been tampered with or compromised.  

 Security: Preventing user credentials, which may be used for multiple services on 

and off the cloud, from being obtained by untrusted parties including the cloud 

provider or other cloud users. 

 Legal: Complying with data privacy laws that may be in effect in given geographical 

regions (eg. PIPEDA, HIPA, HIPAA, etc.). 

 

 Zhang, et al. list data security among one of the top open research problems in 

cloud computing (Zhang, Cheng, & Boutaba, 2010) while Armbrust, et al. list data 
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confidentially and auditability among the top 10 obstacles for cloud computing  

(Armbrust, et al., 2009) and for good reason; when utilizing a cloud based platform, 

potentially sensitive information must be transmitted to, and stored on, a cloud provider’s 

infrastructure. It is left to the cloud provider to properly secure their hardware 

infrastructure and isolate customer’s processing and storage tasks. This transfer of trust 

may be acceptable in most cloud use cases. However, in industries like healthcare that 

must comply with data privacy laws such as PIPEDA, HIPA and HIPAA, allowing 

sensitive information to be processed or stored on a public cloud directly may not be 

feasible. 

 While many solutions for these issues exist for traditional systems, public cloud 

infrastructure removes control of the physical infrastructure that makes it possible to 

ensure a cloud provider properly secures their services and is not performing any 

potentially malicious activities. It may seem unlikely that large public cloud operators 

would intentionally violate their user’s privacy, but external factors in some regions (such 

as legal pressure from local governments, e.g. USA PATRIOT Act) may force disclosure 

of sensitive information. Hardware based solutions, such as Trusted Platform Module 

(TPM), that would normally provide protection for a remote system, are difficult to 

implement in cloud environments due to instances being created on a number of physical 

servers that share the same hardware and lack of support from major cloud providers. 

Additionally, cloud computing has several challenges related to taking full advantage of 

the scalability gained from cloud infrastructure that limit potential solutions including: 
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 Bottlenecks: The cloud may provide seemingly limitless scalability for virtual server 

resources and storage, but any connections to systems outside of the cloud or lacking 

the same scalability quickly become a new bottleneck for the system. For example, if 

multiple machine instances are spawned to meet an increase in demand but all 

connect to the same database or authentication backend provided by the same server, 

a bottleneck will be formed that will limit the scalability of the whole system. 

 Distributed Design: While cloud computing is distinct from traditional distributed 

computing, many of the same concepts apply and must be considered in the design of 

a cloud application or platform. Cloud applications must be built to offer their 

services from multiple machine instances distributed in the same cloud rather than a 

traditional single server to client architecture.   

 Volatile Storage: Most cloud infrastructure solutions (such as Amazon’s EC2) do 

not provide persistent storage by default to their machine instances. Applications 

built upon such infrastructures need to take into account this static nature in their 

design and use additional services or solutions (such as Amazon’s S3 or EBS) for 

permanent storage. 

 Dynamic IPs: In most cases when cloud instances are launched, a public IP address 

is dynamically assigned. While this may be selected from a list of static IP addresses, 

autonomous cloud systems are often used which automatically create and destroy 

instances, each obtaining an unused address when initialized. This can create issues 

for traditional systems that expect static or unchanging addresses for servers.  
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 There are still many legal questions regarding how cloud computing fits into, and 

may comply with, the privacy laws present in most developed countries. Complicating 

matters is the global nature of the cloud, a cloud provider may offer data centers in 

multiple jurisdictions, while customers may be from another. In the European Union, 

processing and security of personal data is mainly regulated by Directive 95/46/EC, 

which outlines responsibilities of member states, data controllers (the one who 

determines the means and processes of processing personal data) and data processors (the 

one who processes personal data on behalf of the controller). In a cloud computing 

environment it is not always straightforward which actor falls under which role (Balboni, 

2010); cloud providers may have some level of control over the method in which data is 

processed which would put them in more of a controller role than a pure processor role. 

However, “regardless of whether the CSP [(cloud provider)] is to be considered a 

Controller or a Processor, the customer will have to ensure that the CSP has appropriate 

security measures in place” (Balboni, 2010). Under Directive 95/46/EC Article 17, this 

requires implementing appropriate technical and organizational security measures to 

protect personal data against accidental loss, alteration, unauthorised disclosure or access, 

as well as any other form of unlawful processing. Article 17 also requires the controller to 

choose a processor that provides sufficient guarantees with respect to the technical, 

security, and organisational measures governing the processing to be carried out while 

ensuring compliance with those measures. 

 In the United States of America data privacy falls under several acts, most notably 

the Health Insurance Portability and Accountability Act (HIPAA) which regulates the use 

and disclosure of identifiable health information by principal health care providers and 
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health plans. HIPAA requires that a covered entity must have a business associate 

agreement (§§ 164.502(e), 164.504(e)) with the cloud provider and comply with the same 

standards that apply to the entity. “A service provider cannot use or disclose health 

records in a way that conflicts with the HIPAA standards. Thus, a HIPAA-covered entity 

could violate HIPAA by storing patient records at a cloud provider with a terms of 

service that allows the provider to publish any information stored on its facilities” 

(Gellman, 2009). Additionally, many similar acts restrict the use of personal data in other 

industries, including; the Gramm-Leach-Bliley Act (15 U.S.C. § 6802) which limits 

financial institutions from disclosing financial information to third parties, the Video 

Privacy Protection Act (18 U.S.C. § 2710) and Cable Communications Policy Act (47 

U.S.C. § 551) that limit video rental records and cable television subscription records 

from disclosure to third parties, tax preparation laws (e.g. 26 U.S.C. §§ 6713, 7216; 26 

C.F.R. § 301.7216) which limit online tax preparers from sharing or storing personal 

information (such as a social security number) with/on a foreign cloud without the 

taxpayer’s consent, and federal agencies are prevented from disclosing personal 

information to third parties such as cloud providers as it would likely violate the Privacy 

Act of 1973 (U.S.C. § 552a)  (Gellman, 2009). Furthermore, it is likely that the 

Electronic Communications Privacy Act of 1986 (ECPA) provides some privacy 

protection regulations for service providers (despite being originally drafted to give 

protections against wiretapping telephone communications) and is further complicated by 

the requirements set forth by the USA PATRIOT Act, requiring the FBI to have access to 

any business record (including any record maintained by a cloud provider). 



14 
 

 In Canada, standards for the private sector’s collection, use and disclosure of 

personal information are established by the federal Personal Information Protection and 

Electronic Documents Act (PIPEDA). Beyond giving individuals the right to request 

details on what personal information relating to them an organization may have and how 

it is used, the PIPEDA requires organizations to obtain consent when personal data is 

collected, used or disclosed to a third party. This required consent would likely cause 

issues when moving to the cloud unless prior consent was obtained from all parties or 

steps were taken to ensure the data could not be accessed or disclosed to the cloud 

provider. In addition to PIPEDA, four provincial privacy laws add provincial provisions 

to protect personal information: An Act Respecting the Protection of Personal 

Information in the Private Sector (Quebec), The Personal Information Protection Act 

(Alberta), The Personal Information Protection Act (British Columbia) and The Personal 

Health Information Protection Act (Ontario). 

 In Ontario the Personal Health Information Protection Act (PHIPA), requires that 

a health information custodian (hospitals, doctors offices, etc.) and their agents (including 

companies contracted for data storage and other IT tasks) comply with the custodian’s 

information practices outlined in section 10(2) and “ensure that the records of personal 

health information that it has in its custody or under its control are retained, transferred 

and disposed of in a secure manner” (section 13 (1)). Additionally, information 

custodians are made responsible for “tak[ing] steps that are reasonable in the 

circumstance to ensure that personal health information in the custodian’s custody or 

control is protected against theft, loss and unauthorized use of modification or disposal” 

(section 12 (1)).  This would seem to imply that in a cloud environment used for health 
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care, the consumer (acting as the health information custodian) and not the cloud provider 

(acting as the custodian’s agent) would be made responsible for ensuring personal health 

information on the cloud is properly secured and disposed of. If extra steps outside of the 

services offered by the cloud provider are not taken, it is likely that meeting these 

requirements would not be possible as the consumer has no way of ensuring true disposal 

of electronic records or the security of the cloud provider’s data center or virtual 

instances. 

We categorize security on cloud based infrastructure into 6 levels, ranging from 

totally unsecure but easy to implement and process data (level 0), to highly secure but 

with a more complex implementation required (level 5): 

 Level 0: No encryption, authentication or security is used when 

communicating with, processing data on, or storing data on cloud based 

infrastructure. 

 Level 1: User authentication of some kind is required, however, no security or 

encryption is required when communicating with the cloud application, storing 

data on cloud based storage or processing data on cloud infrastructure. 

 Level 2: Same requirements as level 1 but a secure channel is required for 

communications between the cloud based application and the user (e.g. SSL). 

 Level 3: Same requirements as level 2 but all data stored on the cloud must be 

securely encrypted (e.g. encrypting data on S3 with AES encryption). 

 Level 4: Same requirements as level 3 but no unencrypted sensitive data 

should be handled by any part of the system exposed to the cloud provider (i.e. 

the cloud application/instances should not have access to the encryption keys 
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used to decrypt data stored on cloud based storage and no raw sensitive data 

should be processed by the application or cloud providers network). 

 Level 5: Same requirements as level 4 but it should be impossible for the cloud 

provider to identify the user of the system beyond an IP address and 

anonymized user ID. (i.e. the cloud provider should be unable to determine any 

potentially sensitive or identity revealing information about the user of the 

system). 

In most cases level 2 or 3 is enough to satisfy the requirements set forth by data 

privacy laws and protect against an eavesdropper not associated with the cloud provider. 

However, in cases where the cloud may not be trustworthy or could potentially become 

compromised, a level of 4 or higher would be required to fully protect sensitive 

information from an attacker with access to the cloud provider’s hardware and datacenter 

resources. Level 5 is required to ensure both the privacy and confidentiality of the data 

as well as some level of anonymity for the users of the system. This may be critical for 

applications such as patient portals which enable patients to view and possibly modify 

their health records and related medical information online. 

 

1.3 Cloud Security Approaches and Techniques 
 While the problem of cloud security and confidentiality in a public cloud is still 

largely open (Zhang, Cheng, & Boutaba, 2010), several efforts have put forth approaches 

and techniques to either minimize the issue (Pearson, Shen, & Mowbray, 2009) or used 

hardware based solutions (Itani, Kayssi, & Chehab, 2009), (Chow, et al., 2009) to regain 
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some level of control from cloud providers. To our knowledge, there is still no purely 

software based solution for providing complete confidentiality of data stored on a public 

cloud from a potentially untrustworthy cloud provider that remains scalable, distributed 

and practical in a cloud based environment. The traditional and somewhat trivial solution 

amounting to “throwing encryption at the problem” (commonly suggested as a potential 

solution (Armbrust, et al., 2009)) falls short for standard symmetric encryption methods. 

While sensitive data on cloud based storage may be encrypted, it may not be processed 

by the same provider (e.g. to serve to clients via a web based interface) without 

relinquishing the keys required to decrypt or access the data. Similarly, access policies 

enforced by cloud based systems are vulnerable to compromised or untrustworthy cloud 

providers as they ultimately control the hardware, network and virtualization resources. 

 

1.3.1 Privacy as a Service: Privacy-Aware Data Storage and Processing in Cloud 
Computing Architectures (Itani, Kayssi, & Chehab, 2009) 

1.3.1.1 Summary 

 Itanit, et al. (2009) presents a set of security protocols, named PaaS (Privacy as a 

Service), for providing privacy and security of user’s data in the cloud through the use of 

cryptographic coprocessors.  Their solution allows users to configure software and data 

privacy mechanisms which dictate how their data will be protected in the cloud as well as 

provide feedback on any potential risk that may affect the confidentiality and security of 

their sensitive information. 

 Cryptographic coprocessors (Best, 1980) (Tygar & Yee, 1994) are isolated 

“computer on a chip” systems dedicated to performing cryptographic operations separate 
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from the computer hardware/system they are installed in. Most coprocessors take the 

form of small PCI-based hardware cards which contain an independent and complete 

computing system including separate RAM, processor, networking adaptor and non-

volatile storage. The key feature that makes such coprocessors different from common 

computing systems is a specialized tamper-resistant encasing that provides several 

physical security measures against physical attacks (e.g. manually extracting data from 

the non-volatile storage). These security measures commonly include automated 

“zeroization” (overwriting memory with zeros such that it cannot be recovered) of 

volatile and non-volatile storage, tamper-detection/reporting, and authentication of both 

the software and operating system before loading/booting. 

 Itanit, et al. (2009) suggests that a trusted (to both cloud users and providers) third 

party organization could configure, install, inspect, and distribute secure cryptographic 

coprocessors to cloud providers. This trusted third party (TTP) would configure each 

coprocessor such that it could be shared among multiple virtualized systems (as a single 

coprocessor for each virtualized machine instance would quickly become 

unmaintainable) and load the private/public key pairs (PUCID/PRCID) into the non-volatile 

storage of each coprocessor as well as its own private key (KTTP). The TTP would then 

become primarily responsible for allocating each key pair to a single customer as 

requested and updating/replacing key pairs as necessary (this is possible through the use 

of the private key KTTP to authenticate as the TTP with each coprocessor).  

 Cloud users are made responsible for configuring their software application to 

support the coprocessor model by dividing their application into the logical components 

of protected and unprotected. Protected components are executed within the coprocessor 
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while unprotected components are executed in the standard virtualized environment. 

Protected components are encrypted with the customers credentials (based on 

PUCID/PRCID) and stored on the cloud provider’s storage until executed on a coprocessor. 

Data is secured based on one of three classifications; No Privacy: data is not encrypted 

and no effort is made to protect it beyond possible transmission via SSL, Privacy with 

Trusted Provider: data is encrypted with a key potentially known to the cloud provider 

and is transmitted and stored in an encrypted state, and Privacy with Non-Trusted 

Provider: data is encrypted using a secret key (KCID) shared only with the coprocessor 

(shared by authenticating with coprocessor and starting a secure session with 

PUCID/PRCID) and uploaded to standard cloud storage in the encrypted state (which may 

be accessed only by protected parts of the application on the coprocessor using KCID).  

 Privacy feedback is provided through the use of a daemon executed on the same 

coprocessor as protected application components which keeps a detailed encrypted (with 

KCID) audit log of all privacy-related operations (e.g. execution of application 

components, decryption of “Privacy with Non-Trusted Provider” data, etc.). A hash chain 

of the encrypted audit log (Schneier & Kelsey, 1999) (Itani, Kayssi, & Chehab, 2005) is 

then created by hashing the ith record (HCi) and the chain entry of the last record (HCi-1), 

making it possible to authenticate the integrity of all previous records simply by 

authenticating HCi. The audit log and chain are made available to the cloud user via a 

special application which polls and verifies the contents of the log periodically at set 

intervals. 
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1.3.1.2 Criticisms 

 While Itanit, et al. (2009) present an effective means of securing cloud 

applications and data using cryptographic coprocessors, they ignore the realities of 

current cloud offerings and assume a rather optimistic view of the financial and technical 

feasibility of incorporating large numbers of coprocessors in cloud infrastructure and 

services. The largest issue is the lack of support for any kind of tamper- proof 

coprocessor in the current cloud offerings. To date there are currently no cloud providers 

which offer cryptographic coprocessors hardware or services that the PaaS protocol 

requires. Additionally, there is little if any financial incentive for cloud providers to add 

coprocessors hardware to their existing data center infrastructure and even less incentive 

to give full access to their data centers to a third party for the required periodic 

inspection, installation and maintenance of coprocessors. 

 Another issue with Itanit, et al. (2009)’s PaaS is moving a large part of a cloud 

application’s execution from scalable cloud infrastructure to limited coprocessors 

execution. Most modern coprocessors provide only limited processing, RAM and 

persistent storage resources. However, large cloud application serving sensitive 

information to clients (such as banking or EHR systems) will require heavy use of  the 

coprocessor to encrypt/decrypt data and transmit/receive it to/from clients. While the 

PaaS system allows for a single coprocessor to be shared by multiple virtual systems, 

sharing may not be technically feasible if applications make anything but occasional use 

of protected components.  

 The sharing of coprocessors presents a potential point of attack against a cloud 

application when a malicious user is sharing the same resources. Unlike cloud processing 
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and storage resources which are strictly isolated, resources on a shared coprocessor 

would be accessible to all users on the system. While most sensitive data would be 

protected with each user’s individual secret key (KCID) and applications isolated using the 

ABYSS processor model (White & Comerford, 1990) a malicious user could still stage a 

denial-of-service type attack by having their protected applications use as much 

processing, network, storage and memory resources as possible to slow or even stop the 

execution of other protected applications sharing the same coprocessor. 

 Finally, the heavy use of a trusted third party by PaaS simply shifts the control 

from a cloud provider to the party managing and maintain the coprocessors. Since a third 

party would have full control over each coprocessor they would easily be able to extract 

the value of KCID from memory and decrypt sensitive data or simply extract the data as it 

is being processed. It may be hard to find a party that could be realistically trusted more 

than a cloud provider to perform this role. 

 

1.3.2 A Privacy Manager for Cloud Computing (Pearson, Shen, & Mowbray, 2009) 

1.3.2.1 Summary 

 S. Pearson, et al. (2009) introduces a privacy manager for cloud computing aimed 

at reducing the potential risk of sensitive data being stolen or misused on the cloud. The 

privacy manager obfuscates sensitive data for storage on the cloud and performs de-

obfuscation as needed when data is requested.  This obfuscation is performed by 

encrypting the data with a key chosen by the cloud user which is shared with the privacy 

manger but not the cloud provider. The obfuscation is based on a process where for some 
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plain text x a cloud application may only compute f(x) for some function f when given the 

cipher text but not the value of x itself. 

This obfuscation is accomplished as follows: A key k and encryption functions o1, 

.., om are picked (for some positive value of m) such that it is hard to determine x from the 

tuple o1(k,x), .. om(k,x) without k and that there is a decryption function d such that d(k, 

f1(o1(k,x)),…, fm(om(k,x))) = f(x) were f is the function for the desired calculation on x and 

f1 to fm are calculations done by the application. Obfuscation is accomplished by first 

encrypting x with each encryption function and a secret key k to produce o1(k,x), .. 

om(k,x). This tuple is then sent to the cloud application which computes the values 

f1(o1(k,x)),…, fm(om(k,x)) and sends them back to the client. The client may then use the 

decryption function d and key k to obtain the result of the function f, f(x).  

 Examples are given of how to apply this method to obfuscating patient names in 

health records (by having m=1, k being the map of patient IDs to pseudonyms o1 being 

the application of k and d the inverse map), obfuscating SQL queries and several other 

use cases.  

 

1.3.2.2 Criticisms 

 The main issue with the obfuscation method proposed by S. Pearson, et al. (2009) 

is that it only works for trust-worthy cloud providers who are unlikely to put the effort in 

to de-anonymizing or de-obfuscating records. For example, in the use case of health 

records presented where patient names are replaced with pseudonyms, it would be 

somewhat trivial for a malicious or compromised cloud provider to de-anonymize records 

by comparing the contents of the EHR to publicly available information. This could be 
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done by cross referencing emergency contact phone numbers with a phone book or 

narrowing down owners of a given record by age, past conditions/ailments, and location 

(from an address, or postal code). At a minimum, a k-Anonymity (Sweeney, 2002) type 

approach would be required to properly anonymize sensitive information. 

 Secondly, this approach only deals with the case where a client of a cloud 

application needs to send sensitive data to the application and receive the result of some 

computation. As the data is encrypted with a key known only to the client, the encrypted 

data is isolated to only that client and may not be shared or stored in a meaningful or 

unanonymized form. Similarly, this approach may not be used to share secured sensitive 

information stored on cloud storage as clients of the application would lack access to the 

key used to obfuscate the data. 

 

1.3.3 Towards Trusted Cloud Computing (Santos, Gummadi, & Rodrigues, 2009) 

1.3.3.1 Summary 

Santos, et al. (2009) proposes a design for a Trusted Cloud Computing Platform 

(TCCP) which enables cloud providers to guarantee confidential execution of cloud user 

provided virtual machines. Santos, et al. (2009) extends the idea of the trusted platform 

module (TPM) to the cloud to prevent tampering with a virtualized machine instances 

memory. TPMs are a type of cryptographic coprocessor proposed by the Trusted 

Computing Group (http://www.trustedcomputinggroup.org/) with the ability to provide 

“remote attestation” that a system is running a specified software package as its operating 

system, BIOS, bootloader, etc. at boot time. This is accomplished as follows: initially 

every TPM is assigned a public/private key pair by the manufacture for which the public 
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key is publicly known and verifiable. At boot time the TPM creates a measurement list 

containing hashes of all software involved in the boot sequence of the system, which is 

stored in the protected storage of the TPM. Once booted, a remote entity may request 

attestation of the boot software by challenging the system with a random nonce, for 

which the system must reply with the measurement list and nonce encrypted with the 

TPM’s private key. The remote system may then verify that the measurement list was 

sent by the TPM by decrypting the message with the TPM’s public key. 

 While this method serves to verify the boot sequence of server, it is not enough on 

its own to secure the virtual machines executed upon it as a system administrator may 

make changes to the system after the boot sequence, migrate the virtual machine, or 

simply not run the virtual machine on a system protected by a TPM. To solve these 

issues, Santos, et al. (2009) have created the TCCP which consists of a trusted virtual 

machine monitor (TVMM) and trusted coordinator (TC).  The TVMM consists of a host 

operating system for executing guest virtual machines which prevents privileged users 

from alerting or inspecting the state of running machine instances. The TVMM is 

installed on the cloud providers nodes equipped with a TPM module capable of proving 

attestation to the boot sequence. A trusted third party is required to run and maintain the 

TC which manages the nodes running the TVMM, recoding their TPM’s public key 

(EKpub
n) and expected measurement list (MLn) while publicly publishing its own TPM’s 

public key (EKpub
tc), expected measurement list (MLtc), and trust key (TKpub

tc). 

 Node registration occurs when a node is booted and proceeds with both the node 

and TC requesting attestation of the others boot sequence and the node generating a new 

public/private key pair (TKpub
n / TKprv

n) of which the public key is sent to the TC and 
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registered, certifying that the node is trusted. To ensure the security of the system, TKprv
n 

is to only be stored in memory on the node so that it may not be extracted from the 

node’s hard drive when offline. Upon each reboot, the registration sequence is repeated 

and a new TKpub
n / TKprv

n pair is generated. 

 To guarantee that a virtual machine is launched on a trusted node and that a 

system administrator is unable to alter its contents, TCCP requires the following protocol 

for registering and running a virtual machine. When a cloud user wishes to register a 

virtual machine image (a), they first compute a hash of the image (a#) and generate a 

session key (Kvm). They then proceed by encrypting a and a# with Kvm ({a, a#} Kvm) and 

encrypting a random nonce (n) and Kvm with TKPub
TC ({n, Kvm}TKPub

TC)and sending both 

to the cloud provider. The cloud provider may then store both ciphertexts for use when 

the user wishes to execute the image on the cloud. When the user gives such an order, the 

ciphertexts are sent to the trusted node on which the image is to be executed and the node 

requests Kvm from the TC by sending it the ciphertext {n, Kvm}TKPub
TC, and a random 

nonce (nn) encrypted with TKprv
n and appended with the nodes ID and further encrypted 

with TKPub
TC. If the request is valid (i.e. the TC is able to decrypt the cipertext containing 

nn and {n, Kvm}TKPub
TC using TKpub

n) it responds to the node with the values of nn, n, and 

Kvm (which it decrypted using TKprv
TC) encrypted with TKpub

n . Finally the node is able to 

decrypt the value of Kvm using TKprv
n and use Kvm to decrypt the machine image and hash, 

a and a#, and run the instance. Santos, et al. (2009)’s TCCP also provides similar 

methods for securing live virtual machine migration and  protecting both the machine’s 

state and image from inspection or alteration by a system administrator during migration. 
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1.3.3.2 Criticisms 

 Like Itanit, et al. (2009)’s PaaS approach (see section 1.3.1), Santos, et al. 

(2009)’s TCCP is dependent on the presence and support of an additional hardware 

component (in this case a TPM) that is not currently offered by any cloud provider. This 

brings with it similar issues resulting from lack of support making it impossible to use at 

the current time. However, unlike PaaS, TCCP does not have the same scalability and 

sharing risks as only a single TPM is needed and is only used by each node directly 

(rather than by the cloud user directly). Also, like Itanit, et al. (2009)’s approach, Santos, 

et al. (2009)’s method is dependent on a trusted third party taking control of some part of 

the cloud provider’s process/system. However, rather than simply shifting control to the 

third party, TCCP properly divides trust between the cloud provider and third party such 

that in theory, they would both need to be colluding to compromise the system. 

 One large issue with TCCP is that it is built on the assumption that a malicious 

system administrator would not have access to the hardware components in a trusted 

node. If the administrator had such access, or the whole cloud provider was 

untrustworthy, there are several avenues of attack they could attempt. With the proper 

tools, sophisticated attacks are possible to read the contents of RAM in an active system 

with only access to the hardware (Samyde, Skorobogatov, Anderson, & Quisquater, 

2003) and possibly more concerning “cold boot” attacks are possible against most types 

of RAM for a few seconds after power is lost where data may be extracted even at room 

temperature and without special tools (Halderman, et al., 2009). If a malicious 

administrator or cloud provider were able to extract TKprv
n from the RAM of a node they 

would be able to fake a trusted node and compromise the security of the whole system. 
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Furthermore, if a decrypted copy of the virtual machine image is being stored on a node’s 

hard drive even temporarily it may be possible for an attacker to extract sensitive 

information either by powering off the node while the virtual machine is active and 

extracting the information from the hard drive or setting up a hot swappable disk in a 

RAID 1 setup such that the main disk is mirrored to a second disk and may be removed 

while the machine instance is active and read without disrupting service. 

  

1.5 Towards Cloud Security and Privacy for Sharing EHRs 
 While the current hardware approaches for cloud security and confidentiality 

(Itani, Kayssi, & Chehab, 2009) (Santos, Gummadi, & Rodrigues, 2009) are promising, 

they rely on hardware components and support by cloud providers that is currently not 

offered nor necessarily desired (there is little incentive for cloud providers to install 

potentially expressive cryptologic coprocessors and hand over control to a third party). 

Current software and encryption based solutions (Pearson, Shen, & Mowbray, 2009) only 

offer partial security (e.g. data obfuscation or anonymization) and rely on a partially 

trusted cloud provider (at least one that will not extract encryption keys from a running 

virtualized machine instance). The approach presented in this thesis aims to overcome the 

limitations of a hardware based approach (i.e. requiring support from the cloud provider 

and investment in new cloud hardware infrastructure) and provide full protection of data 

both on and off the cloud (including cases were no internet or network access is possible). 

 The research put forth is a step forward towards creating a system for ensuring 

cloud security with the ultimate goal of securing an untrusted public cloud to the point 
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where it may be used for health care applications such as storing and processing EHRs. 

Such protections in a cloud environment require that several design objectives be met in a 

secure and reasonably efficient way: 

 Regulatory Compliance: A system that wishes to deal with EHRs of real 

penitent’s personal and potentially sensitive information must often meet with 

strict local laws governing the use, transmission and storage of personal health 

information. In most cases this requires that at a minimum unanonymized records 

be encrypted and protected from view by any unauthorized third party including 

the cloud provider (for a more detailed description of laws applying to EHRs see 

section 1.2). 

 Comprehensive Security: Sensitive data stored in the cloud needs to be protected 

at all points in its use. This includes enforcing access policies during storage on 

the cloud, processing in the cloud, transmission to, from and within the cloud and 

off the cloud where users may store or transmit copies locally. The access policy 

under which records are secured needs to be independent of the system on which 

they are stored and processed and consistent on all systems to which it may be 

transmitted. 

 Confidentiality: Both records and information on the system’s users should be 

isolated from outside entities (e.g. the cloud provider) as much as possible to 

avoid both the leakage of private information and the potential of an attacker 

compromising user accounts. User credentials and authentication must be isolated 

from the public cloud to avoid possible exploitation by a malicious cloud provider 

or cloud system administrator (e.g. a malicious entity with control of an 
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authentication system on a public cloud may be able obtain user credentials from 

the memory or storage of the virtual machine instance). 

 Role Based Access Policies: To provide simple administration of users and 

protection of resources that models the real life policies of organizations, a role 

based access control system is required. At a minimum, such a system should 

allow for the creation of roles that may be mapped to a set of permissions that 

dictate access to system resources. Similarly, users should be mapped to roles 

related to their real life roles in an organization to enable system access.  

 Distributed: The nature of the cloud (i.e. multiple virtualized machine instances 

which may be spawned and destroyed dynamically) requires a distributed model 

to ensure scalability and reliability. However, more importantly, administration 

and control of the system must be distributed in many scenarios. For example in 

the case of sharing EHRs on the cloud, multiple organisations (e.g. hospitals, 

doctor’s offices,  labs, etc.) will have their own sets of users, administrators and 

access policies which need to be supported and independent of other parties while 

still enabling sharing when appropriate. 

 Scalable: One of the main advantages of cloud computing is its ability to be 

dynamically scaled to meet changes in demand. In many cases this is 

accomplished by spawning new virtual machine instances containing system 

components as demand increases and destroying them as demand returns to 

normal. A system for the cloud needs to be scalable in the same way, which is, 

simply by adding more nodes. This requires at least linear scalability in the 

majority of the system to be effective. 
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These objectives are accomplished with a variety of techniques including attribute based 

encryption (to accomplish legal compliance, confidentiality of encrypted records, and 

comprehensive enforcement of access policies), a DOSGi based framework (to provide 

dynamic discovery and communication between EHR services such that they may be 

properly scaled in a distributed environment), a role based access policy model (to enable 

role based access policies on records and services) and a single sign-on protocol (to allow 

for distributed access control and the confidentiality of user credentials). 

 

1.6 Thesis Layout 
 This thesis presents four major components which, when combined, create a 

novel system for securing a potentially untrustworthy public cloud to store and distribute 

health records. These components include the Health Cloud eXchange (HCX) 

architecture, the Role Based Access Control as a Service (RBACaaS) model and access 

control system, the Role Based Single Sign-On (RBSSO) protocol and the Distributed 

Multi-Authority Ciphertext-Policy Shared Attribute-Based Encryption (DMACPSABE) 

scheme. The HCX architecture (presented in Chapter 2) provides a distributed OSGi 

(DOSGi) based architecture for storing and sharing EHRs over a public, private or 

federated cloud.  The RBACaaS model and access control system (presented in Chapter 

3) provides a model, service implementation and administration interface for providing 

role based access control to cloud applications and platforms via webserver or DOSGi 

calls. The RBSSO protocol (also presented in Chapter 3) provides a light weight and 
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scalable single sign-on protocol for cloud based applications with support for the 

RBACaaS RBAC model/system and DMACPABE based encryption policies. Finally, the 

DMACPSABE encryption scheme (presented in Chapter 4) provides extensions to the 

Ciphertext-Policy Attribute-Based Encryption model proposed by Benthencourt, et al. 

(2006) to add multiple distributed authorities which share a subset of attributes without 

the need for a user to communicate with more than one authority (or any need for inter 

authority communication). Additionally, a “not equals” operation and authority hierarchy 

is incorporated. 

 This thesis is divided into five chapters including this introduction and 

conclusion. Chapters two, three and four contain an introduction to the subject area 

covered by the chapter, background information, a review of current and relevant 

research in the area, and the presentation of at least one of the novel components which 

comprise our solution. Chapter five details how these components may be combined to 

produce a full solution to cloud security, discussion of our results, discussion of further 

work needed in this area and concluding remarks. Chapter summaries are given in Table 

1.1. 

Chapter Summary/Contents 
1. Introduction Introduction of “the cloud problem”, background information, 

current approaches to cloud security, research goals and thesis 
layout. 
 

2. Constructing A 
Cloud Based 
Infrastructure for 
Sharing Health Records 
(HCX) 

Review of existing EHR standards, presentation of the DOSGi 
based HCX architecture for sharing health records and 
implementation details for a cloud based environment. 

3. Developing a Cloud 
Based Role Based 
Access Control and 

Review of existing RBAC models, presentation of the 
RBACaaS model and access control system, review of existing 
single sign on protocols, presentation of the RBSSO protocol, 
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Single-Sign-On System performance evaluation of the RBSSO protocol as compared to 
SSL and Kerberos. 
 

4. Cloud Privacy With 
Attribute Based 
Encryption 

Review of existing identity and attribute based encryption 
schemes, presentation of the DMACPSABE scheme, and 
performance evaluation of the DMACPSABE scheme as 
compared to CP-ABE. 
 

5. Conclusions Details of how the four main components may be combined to 
create a full system, discussion of results, discussion of future 
work and concluding remarks. 
 

Table 1.1: Chapter summaries. 
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Chapter 2 

2 Constructing A Cloud Based Infrastructure 

for Sharing Health Records (HCX) 

2.1 EHR Specifications 
 

 There are many notable EHR standards for storing, processing and transmitting 

patient healthcare records such as HL7 CDA (DOLIN, ALSCHULER, BOYER, & 

BEEBE, 2006), Continuity of Care Record (CCR) (ASTM International, 2005), HL7 

Continuity of Care Document (CCD) (Health Level Seven International, 2007), DICOM 

(ftp://medical.nema.org/medical/dicom/2011/) and openEHR(http://www.openehr.org). 

The CCR and CCD standards have gained wide acceptance in the healthcare community 

due in part to the support provided by major EHR vendors including Google (via Google 

Health), and Microsoft (via Microsoft’s HealthVault(http://www.microsoft.com/en-

us/healthvault/)). With the growing number of EHR platforms, interoperability is 

becoming a major issue which the CCR and CCD standards seek to solve through a 

patient health summary which contains the most commonly used and required 

information used and stored by EHR systems. 

 

2.1.1 Continuity of Care Record 

 The Continuity of Care Record (CCR) is an XML based patient health summary 

containing the “most relevant administrative, demographic, and clinical information facts 
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about a patient's healthcare, covering one or more healthcare encounters” (ASTM 

Subcommittee: E31.25, 2005). The CCR standard was developed by the ASTM 

International E31.28 subcommittee including supporting members such as the 

Massachusetts Medical Society, the Healthcare Information and Management Systems 

Society, the American Academy of Family Physicians (AAFP), the American Academy 

of Pediatrics, the American Medical Association, the Patient Safety Institute, the 

American Health Care Association, the National Association for the Support of Long-

Term Care, the Mobile Healthcare Alliance, the Medical Group Management Association 

and the American College of Osteopathic Family Physicians.  

 The primary propose of the CCR standard is to share a point in time snapshot of a 

patient’s medical and administrative data between health information systems. This 

interchangeability is accomplished through a human and machine readable XML 

encoding comprised of three main elements: header, body, and footer. The header 

contains metadata about the document including the CCR format version, the date the 

document was created, a unique ID identifying the document and a unique id identifying 

the patient. The body of the document contains detailed information about procedures, 

immunizations, family history, insurance information, medications, vital signs, test 

results, and medical alerts of and relating to the patient. The footer contains a list of 

actors (persons, organizations and information systems) referenced throughout the 

document by an actor ID and adds additional information such as name, address, email, 

etc. Also contained in the footer section is a reference section that allows external 

documents such as DICOM images to be linked with a CCR based health care record, a 

comments selection which allows comments to be placed on different CCR elements, and 

a signatures section for digital signing of elements in a CCR document. An example CCR 

document is presented in Figure 2.1: 
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<ContinuityOfCareRecord xmlns='urn:astm-org:CCR'> 
   <CCRDocumentObjectID>Doc</CCRDocumentObjectID> 
   <Language> 
      <Text>English</Text> 
   </Language> 
   <Version>V1.0</Version> 
   <DateTime> 
      <ExactDateTime>2008</ExactDateTime> 
   </DateTime> 
   <Patient> 
      <ActorID>Patient</ActorID> 
   </Patient> 
   <Body> 
      <VitalSigns> 
         <Result> 
            <CCRDataObjectID>0001</CCRDataObjectID> 
            <Description> 
               <Text>Blood Pressure</Text> 
            </Description> 
            <Test> 
               <CCRDataObjectID>0002</CCRDataObjectID> 
               <Description> 
                  <Text>Systolic</Text> 
                  <Code> 
                     <Value>163030003</Value> 
                     <CodingSystem>SNOMEDCT</CodingSystem> 
                  </Code> 
               </Description> 
               <TestResult> 
                  <Value>120</Value> 
                  <Units> 
                     <Unit>mmHg</Unit> 
                  </Units> 
               </TestResult> 
            </Test> 
         </Result> 
      </VitalSigns> 
   </Body> 
   <Actors> 
      <Actor> 
         <ActorObjectID>Patient</ActorObjectID> 
         <Person> 
            <Name> 
               <CurrentName> 
                  <Given>John</Given> 
                  <Family>Doe</Family> 
               </CurrentName> 
           </Name> 
         </Person> 
      </Actor> 
   </Actors> 
</ContinuityOfCareRecord> 
 

Figure 2.1: Example CCR document for fictional patient John Doe containing the results of a blood 
pressure test. 
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 The CCR standard was chosen as one of the supported intermediate document 

formats in the HCX architecture as its XML nature makes it portable, easily implemented 

and provides the potential for security and privacy extensions, while still being powerful 

enough to contain most critical patient information and health history. Being XML based 

also allows CCR documents to be easily transformed into human readable documents 

using XSL transformations (as seen in Figure 2.2) and increases interoperability between 

EHR systems. The CCR standard is currently being used by multiple EHR systems 

including Google Health (https://www.google.com/health) and Microsoft‘s HealthVault 

(http://www.healthvault.com/). 

 

Figure 2.2: Example XSL transformed CCR document using XSL transformation from the CCR 
Acceleration Resources Project (http://sourceforge.net/projects/ccr-resources/). 
 

2.1.2 Continuity of Care Document 

 The Continuity of Care Document (CCD) is the result of a collaboration between 

HL7 and ASTM to integrate ASTM’s CCR and HL7’s Clinical Document Architecture 
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(CDA). The CCD specification, much like the CCR specification, describes a XML based 

patient health summary which contains the most critical and commonly needed patient 

medical and administrative information by modern EHR systems. Also akin to the CCR 

specification, the XML nature of the CCD specification allows for easy implementation, 

readability (by both humans and parsers) and interoperability between EHR systems. 

However, the CCD format has several advantages over the CCR document including 

supporting additional clinical documents outside of the patient summary (such as 

Discharge Summary which is out of the scope of the CCR document), enhancements for 

easy rendering and human readability,  support of the Reference Information Model 

(RIM), and greater acceptance including acceptance on the national level in countries 

such as Canada, France, Greece, Finland, England, and Argentina as well as efforts in the 

United States. 

 The CCD specification was chosen in addition to the CCR specification to 

increase compatibility with existing EHR systems and to take advantage of the support of 

additional clinical documents lacking in the CCR format. The XML nature of both 

formats maintains portability and interoperability while also providing a human readable 

that match well as an intermediate format for the goals of the HCX Architecture. 

2.1.3 Others 

 There are multiple EHR specifications and formats in existence and used today 

including HL7 CDA, openEHR, and e-MS Electronic Medical Summary for which 

details have been omitted for space and complexity reasons. The CCR format is an ideal 

use case for the research presented as it is simple, human readable, used by existing cloud 

PHR systems and an open standard. However, in general, if the record can be stored, 

transmitted and encrypted it may be used with the techniques introduced in the described 
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systems, models and schemes. In a real world implementation of the systems described in 

this thesis, it is likely that some standardization in the EHRs shared would be required, 

but, for simplicity sake it is assumed that the only standards being used are CCR and 

CCD. 

 

2.2 HCX Architecture 
 In this section we describe our Health Cloud eXchange (HCX) architecture for 

both sharing and storing EHRs over a public, private or federated cloud. HCX can act 

both as the middleware between existing EHR systems as well as an independent cloud 

based EHR management and storage system with the possibility of web and application 

based patient portals. Our architecture aims to accomplish the following goals in addition 

to providing cloud base EHR services: 

1. Modularity: To accommodate the changing nature of the cloud, with machine 

instances being created and destroyed based on demand, the system should be 

able to automatically adapt to HCX services coming and going off line. Also, the 

consumers should be able to automatically discover and use any HCX service that 

implements a standard interface. 

2. Interoperability: HCX should function both as an independent EHR system and 

as the middleware between existing EHR systems on and off the cloud. This 

should be accomplished with minimal changes to existing systems through the 

adoption of widely supported standards such as CCD and CCR.   

3. Loosely Coupled: Service consumers should be able to use any HCX service 

implementation assuming it follows a standard interface. From a consumer’s 

stand point, services acting as a middleware between systems should be identical 



39 
to those serving records directly from the HCX system (i.e. from a cloud based 

EHR repository). 

4. Simplicity: The HCX architecture and service interface should be as easy to 

implement as possible to allow for new HCX services and clients to be rapidly 

created that connect existing EHR systems with little effort from developers. 

5. Leverage Cloud Infrastructure: The system should take advantage of the 

dynamic scalability of the cloud and automatically adapt to creation and 

destruction on machine instances that contain HCX services. 

6. Distributed: The system should be as distributed, with few centralized points of 

failure. The failing of a single or multiple HCX services should have no effect on 

consumers beyond making their records temporarily unavailable. 

7. Extendibility: The HCX architecture should be extendable so that custom or third 

party authentication, administration, and security modules may be used in 

implementing systems. Note that HCX itself does not deal with security, 

authentication or confidentiality and that these issues are dealt with in the 

proceeding chapters (namely Chapters 3 and 4).  

 

2.2.1 Services 

 The proposed HCX architecture provides several primitive service interfaces: 

EHRProvider , EHRManager, EHRPortal, Administative and AuditLog. Any number of 

services implementing these interfaces may run within the same cloud and are registered 

upon execution with a central service registry for dynamic service discovery. Multiple 

instances of the same service may be run simultaneously, balancing the load between 

them (in cases where they provide the same services or records) and creating a shared 
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repository of health records (in cases where they provide access to different records). 

Services are provided from cloud based virtualized machine instances dynamically 

created and destroyed by a service controller application according to current levels of 

demand (see Figure 2.3). 

 

Figure 2.3: Service controller and registry interactions. Dotted arrows lines indicate interactions 
transparent to service consumers. 
 

 Once started the Service Controller spawns and initializes several machine 

instances to support the HCX architecture (Figure 2.3 part 1). Firstly, instances are 

created to host the service registry which allows for dynamic service discovery and 

utilization. Instances to host HCX services are subsequently created and initialized with a 

set of HCX services they will provide. Once initialized, services are registered with the 

service registry (Figure 2.3 part 2) and made available to consumers. Consumers may 

then query the service registry (Figure 2.3 part 3 and 4) for a listing of available HCX 

services matching set criteria and commence their requests upon the services (Figure 2.3 

part 5 and 6).  

 Service registry entries consist of the following details: 

 The service’s public location (e.g. a public IP and port). 
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 The protocol which is being used to communicate with the service (e.g. HTTP, 

SOAP, etc.). 

 The HCX interface which the service implemented (e.g. EHRProvider). 

 The interface version being used (for forward support and future backwards 

compatibility). 

 A unique ID for the service.  

 An operational ID which is identical for services of the same implementation and 

operation on the same data store (i.e. clones of services used for load balancing 

and fail over) but unique to other services. Consumers may use services with the 

same operational ID interchangeably with the same effect. 

 Shared group ID and range. To further load balance services, records may be 

divided among several services in the same shared group based on a record’s 

unique identifying quality (e.g. a patient’s ID) fitting an assigned range. (e.g. all 

IDs starting with 0-4 may be assigned to one service while 5-9 would be assigned 

to another). 

 Name of the service implementation.  

 The mode the HCX service is operating in (CloudEHR or Middleware) in the case 

of EHRProvider or EHRManager services. In the case of a service operating in 

“Middleware” mode, the unique name of the external EHR system is also listed.  

 The date and time the service was launched into the cloud. 

 Minimum set of roles a client must have active in a session to use an operation of 

this service (see Chapter 3 for details on the RBAC model being used). 

 ServiceToken (see Chapter 3 for details on the SSO model being used). 
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Details on how service registries may be effectively scaled are discussed in the HCX 

implementation details (section 2.3 HCX Implementation). The proceeding subsections 

describe each service interface supported by HCX in detail including the standard set of 

supported operations. 

 

2.2.1.1 EHRProvider 

 The EHRProvider interface is primarily designed for HCX services which provide 

read only, partial or full CCR or CCD based EHR records to EHR clients or outside EHR 

systems. An EHRProvider service may operate in one of two modes, “Middleware” or 

“CloudEHR”.  When operating in “Middleware” mode, the service acts as the 

middleware between an EHRProvider consumer and an existing external (to HCX) EHR 

system (e.g. Google Health), forwarding consumers requests to the outside system and 

responding with a CCR or CCD formatted record or listing of records. While operating in 

“CloudEHR” mode, no external EHR system is contacted and EHRs are made available 

off scalable cloud storage within the HCX implementation. The mode of operation of the 

service is transparent to the service consumer (beyond the listed mode of operation in the 

service registry). The format of consumer’s requests and the interface used to access a 

EHRProvider service running in “Middleware” mode are identical to those in 

“CloudEHR” mode. 

 

Interface 

See appendix A.1. 

 

Use Cases 

 The following are some potential use cases for EHRProvider based services: 
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1. Emergency Patient Health Summaries: In many cases of medical emergencies a 

patient will arrive in critical condition and be unable to provide a necessary 

history. EHRProvider based services would allow for EHR clients (including 

mobile clients) to be created that may request a readonly limited health record 

containing the most pertinent patient information (allergies, next of kin, blood 

type, etc.) to emergency room workers and paramedics (possibly while still on 

route through the use of mobile EHR clients). Such clients could connect to both 

an HCX based Cloud EHR system as well as external EHR systems through 

Middleware EHRProvider services, creating a network of emergency EHR 

sharing between medial institutions, hospitals, doctors offices and clinics.  

Limited read-only records reduce the chance of abuse and privacy concerns while 

still providing emergency access to front line health workers. 

2. Temporary and Limited Patient Records: In many cases segments of a 

patient’s health record are required to complete some action. For example, a 

receptionist in a doctor’s office may be required to view a patient’s insurance 

information to process a claim but it would be undesired for them to have full 

access to a patient’s health record. EHRProvider based services are ideal in such a 

case as the receptionist could be authorized to use only the EHRProvider service 

and access only the insurance segment of a resulting CCR or CCD document. The 

read-only nature of the EHRProvider service would also limit potential abuse 

resulting from unauthorized changes to health records. 

3. Sharing Records Between Institutions: In some cases it may be desired to share 

a patient’s health record between two EHR systems in a read-only fashion. For 

example, if a patient has moved and is changing family doctors an EHRProvider 

service could be used as the middleware between their existing EHR systems to 
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copy the record  between systems while leaving an unaffected archival copy in the 

original system. Another related example would be importing records into 

personal EHR clients, that are starting to become more popular, so that patients 

may view their own EHRs. 

 

2.2.1.2 EHRManager 

 The EHRManager interface provides the same search and retrieve functionality as 

the EHRProvider interface, however, it has the additional power to edit, append, delete, 

move (between EHR systems) and create health records stored both on the cloud and in 

existing outside systems. Much like the EHRProvider services, EHRManager services 

may be operated in either “CloudEHR” or “Middleware” modes. When operating in 

“CloudEHR” mode, EHRManager services provide access to health records stored on the 

cloud which HCX is operating. While operating in “Middleware” mode, EHRManager 

services are granted access to external EHR systems in accordance to service level 

agreements between EHR systems. Retrieved records are sent to EHRManager 

consumers as CCR or CCD formatted documents and changes or updates to records are 

sent to the service as requests containing the CCR or CCD XML elements that have 

changed. New records are sent as complete CCR or CCD documents which may 

optionally include attachments such as DICOM images. 

 

Interface 

See appendix A.2. 

 

Use Cases 

The following are some potential use cases for EHRManager based services: 
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1. Full EHR System: The primary purpose and main use case of EHRManager 

services is to operate as a full cloud-based EHR system. In such a setup a client 

would be created to consume the EHRManager services offered on the cloud and 

allow medical professionals to access and update the records stored on a public 

cloud. Such a system would have advantages in terms of cost and scalability, not 

requiring heavy investment in network infrastructure as services are hosted in a 

pay per use manner on a public cloud, and being easily scaled when demand or 

the amount of records increases. The large number of clinical documents covered 

by the CCD specification, combined with the ability to include attached 

documents, allows for support of fully featured EHR systems and backwards 

compatibility with older systems. 

2. EHR Middleware: The secondary purpose and second use case of EHRManager 

services is to operate as the middleware between existing EHR systems. A 

growing number of EHR related endeavours by governments and health care 

organizations to modernize their management health records, have led to a large 

number of isolated EHR systems. EHRManager services provide a means to 

transparently access, update, and attach additional clinical documents to EHRs as 

if they were part of the HCX cloud-based EHR system. This can greatly reduce 

time involved in sending clinical documents and full health records between 

systems as clients will have access to remote records as if they were local 

(assuming they have the correct permissions). 

 

2.2.1.3 EHRPortal 

 The EHRPortal service provides a patient portal in both the form of a web service 

(corresponding to the interface detailed in the proceeding subsection) and web based 
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cloud application. Patient portals are becoming a popular trend in the healthcare industry 

(Weingart, Rind, Tofias, & Sands, 2006), allowing patients to securely access their own 

personal health records over the internet as well as enabling some level of immediate 

interaction with their health care providers (e.g. messaging their family doctor, correcting 

their patient history, filling in forms, etc.). Patient portals also allow health providers to 

easily comply with freedom of information laws present in most countries that require 

patients to have access to their personal records and the ability to issue corrections. 

 The EHRPortal service exposes the patient portal as both a web based application 

and web service so that portal clients may be created which allow greater flexibility 

including mobile applications. Patients are granted access to the portal via their health 

care provider (the institution or person considered to be the owner of their health record 

in the HCX system). EHRPortal services obtain patient records by consuming 

EHRProvider services on the same cloud. This enables the EHRPortal service to provide 

portals for not just the patients who have records stored within the HCX system but any 

external system with middleware (EHRProviders operating as “Middleware”) available 

as well. 

 

Interface 

See appendix A.3. 

 

Use Cases 

1. Providing Patient’s Access to Their Health Records: EHRPortal services 

provide an easy means of allowing patients to view and request corrections to 

their EHR as well as complying with freedom of information laws (access control 

maybe based on the RBACaaS model in Chapter 3). 
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2. Centralized Patient Portal: Currently many patient portals are isolated to a 

single health care provider, leaving patients who frequent multiple providers with 

multiple portals, each showing an incomplete picture of their health history. 

EHRPortal services offer a solution to this problem by accessing both the records 

stored on the cloud as well as the external EHR systems via the middleware 

provided by EHRProvider services. 

 

2.2.1.4 Administrative 

 The Administrative interface contains operations relating to the management and 

administration of the HCX implementation itself (e.g. creating new middleware 

connections to outside systems, settings relating to load balancing and providing fail over 

of services, etc.). This is largely left as an optional service and implementation detail 

dependent on how the other HCX services are configured. 

 

2.2.1.5 AuditLog 

 The AuditLog service is used to keep and store an uneditable audit log of all 

actions that have been performed on the EHRs and services, including views, changes, 

and removal of records. These logs keep a permanent record of user’s actions that can be 

used as evidence in case an abuse of a user’s credentials occurs. The AuditLog service is 

called directly from all HCX services and is not accessible to normal users directly. The 

interface of the AuditLog has a single operation which takes the user’s request details and 

session information (essentially the AuthToken, RequestToken and summary of the 

user’s request upon the service from section 3.2 Single Sign On).  Figure 2.4 shows the 

interaction between a normal HCX service and the AuditLog service. 
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Figure 2.4: AuditLog interactions. 1. Client/Service consumer makes a request on a service. 2. The 
service sends the RequestToken, AuditToken and request summary to the AuditLog service. 3. The 
AuditLog service stores a log entry for the request on cloud storage. 
 

Interface 

See appendix A.4. 

 

2.2.2 Clients 

 HCX clients come in three main forms: existing EHR systems which use HCX to 

share records, patient portals offered through a web based or web service interface, and 

end user client software designed to act as a local EHR system for a doctor’s office, 

hospital, etc. In all cases (excluding access to a patient portal via a web browser) clients 

communicate with the HCX services either via DOSGi or web service requests. Service 

discovery is accomplished through a centralized ZooKeeper cluster (that may be located 

in the cloud) which clients connect to, to receive an updated listing of available services. 



49 
Client connections are load balanced between active HCX services of the same type (e.g. 

EHRProvider, EHRManager, etc.) to maintain scalability and reliability. 

 

2.3 HCX Implementation 
2.3.1 DOSGi Infrastructure 

 Distributed OSGi (DOSGi) provides a good basis for building the HCX system as 

its modular service based infrastructure already accomplishes several goals of the system 

(distributed, loose coupling and modularity). The distributed nature of DOSGi allows for 

a loose coupling between services and consumers through the use of a service discovery 

mechanism for finding the location and type of services currently being offered in a given 

grouping. 

Our implementation of HCX utilizes the DOSGi reference implementation, 

Apache CXF DOSGi as a foundation to build HCX services upon, as well as taking 

advantage of the DOSGi service registry to fulfill the role of the HCX service registry. 

Apache CXF DOSGi accomplishes this dynamic service discovery through the use of an 

Apache ZooKeeper based cluster which enables simple and scalable service look up and 

discovery while keeping the advantages of a distributed system (e.g. not relying on a 

single point of failure, see Figure 2.5). Service consumers are notified of new services 

becoming available or going offline (a common occurrence in a cloud based setting) and 

are able to automatically use or discontinue use of a given service. 
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Figure 2.5: The Apache CXF DOSGi Service Discovery. 
 

Several modifications were required to the base Apache CXF DOSGi 

implementation to support the full HCX service registry specification as well as to 

provide transmission security between HCX services and consumers. First, the web 

services automatically created by DOSGi to handle remote method calls were changed 

from using a plain HTTP connection to requiring transport layer security (HTTPS). 

Second, the zookeeper directory was modified to also include the service registry entries 

listed in section 2.2.1, such that HCX clients may obtain additional information about the 

service and which records it holds. 

Adapting DOSGi for use on the cloud required the creation of two Xen based 

machine images. An image was required to host a standard OSGi implementation (such 

as Eclipse Equinox, Apache Felix or Knopflerfish) upon which the Apache CXF DOSGi, 

and HCX bundles would be run to provided HCX’s services via the cloud. A second 

image was required to host ZooKeeper servers for service registry and discovery. As 

demand increases on a particular service, additional OSGi machine instances may be run 

to load balance requests between more instances of that service. As demand increases on 
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Figure 2.8: HCX Eucalyptus Private Cloud Set-up 
 

Eucalyptus is an open-source software platform that implements IaaS-style cloud 

computing using the existing Linux-based infrastructure found in the modern data center. 

Its interface is compatible with and based on the Amazon Web Service (AWS) interface 

making it possible to move workloads between AWS and a private Eucalyptus based 

cloud without significant modifications to the code that comprises them. Eucalyptus 

supports a variety of virtualization technologies including the VMware 

(http://www.vmware.com/), Xen (http://xen.org/), and KVM (http://www.linux-kvm.org) 

hypervisors for the creation and management of virtual servers. Compared to other 

private cloud frameworks, such as Nimbus and abiCloud (http://www.abiquo.com/), 

Eucalyptus was chosen as it has a stronger community support, larger amount of 

documentation and comes packaged in the easy to install Ubuntu Enterprise Cloud Linux 

distribution. 

A Service Controller application was created which sits outside of the cloud and 

manages virtual machine instance creations, destruction and initialization. This is 

accomplished through the EC2 web service API provided by Amazon AWS for public 
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cloud instances and through the Eucalyptus EC2 based API for private cloud instances. 

Further details on the role of the service controller are given in section 3.2. 

 

2.4 Conclusions 
While the DOSGi based HCX architecture presented in this chapter does not 

provide the necessary security or data privacy we desire, it does offer a scalable 

framework on which a more complex system that enforces role based security policies 

may be built. We have shown how DOSGi may be adapted to a cloud based environment 

by distributing services between machine instances and using a similar method for 

creating a zookeeper cluster for service discovery. We have also described and 

introduced a set of services for sharing EHRs, creating patient portals, maintaining an 

audit log and offering administrative functions. The proceeding chapters take the cloud 

environment and services introduced here and add systems for enforcing role based 

access policies and data privacy through attribute based encryption.  
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Chapter 3 

3 Developing a Role Based Access Control 

and Single-Sign-On System for the Cloud 

3.1 Role Based Access Control 
 Traditionally access control has been limited to discretionary access control 

(DAC) and mandatory access control (MAC) models that use access control lists (ACLs) 

to rigidly map users and groups to low level data objects. These approaches may perform 

well for controlling access on simple local systems, such as a standalone computer’s file 

system, however, it becomes increasingly difficult to maintain and manage user 

permissions when they are applied to more complex and less rigid systems. Enterprise 

and cloud environments require more flexible models of access control that are able to 

more closely represent the organizational role a user plays in these environments. Role 

based access control (RBAC) offers a more general solution that is flexible enough to 

model the real life roles and responsibilities of the members of most organizations, in fact 

it is even generic enough to enforce the traditional MAC and DAC access policies if 

needed (Osborn, Sandhu, & Munawer, 2000).       

Users of cloud based applications may require different levels of access to 

multiple cloud based services, capable of performing various abstract operations on lower 

level data objects. Managing permissions for accounts spanning services made available 

via a cloud infrastructure, requires a model that can preserve the security of traditional 

access control systems while providing a level of abstraction which allows administrators 
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to implement high level policies that are independent of the low level infrastructure that 

compose the cloud.   

 

3.1.1 RBAC Related Research 

 While much work has been done in the area of role based access control 

(Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001) (Ferraiolo & Kuhn, 1992) 

(Sandhu, Coyne, Feinstein, & Youman, 1996) (Yao, Moody, & Bacon, 2002) little has 

been done in terms of adapting this model to the cloud computing paradigm. Based on the 

identified challenges inherent to cloud computing (see section 1.2) we have identified the 

following qualities needed in a RBAC model to meet the demands of the cloud: 

1. Scalable: An RBAC system for the cloud needs to be designed to scale alongside 

the cloud or the dynamic scalability advantages gained from using cloud 

computing will be lost. This includes reducing or eliminating potential 

bottlenecks including connections to systems outside of the cloud and centralized 

services only offered from a single physical or virtual system.   

2. Distributed: A cloud based RBAC system should match the distributed nature of 

the cloud, offering services from multiple virtualized systems rather than a more 

traditional centralized server setup. A clear namespace for identifying objects, 

roles, users, etc. among different systems distributed throughout the cloud and 

client systems are required. Ideally, such a system would be able to handle the 

joining and parting of different nodes which compose the system (caused by 

machine instances being created and destroyed to meet demand) with little 

difficulty and transparently to the RBAC system’s end users. 
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3. Auditable: The RBAC systems should be capable of maintaining logs of users’ 

actions and role activations within the system and ensure that no part of the 

system has been tampered with or compromised by a malicious user or 

administrator. 

4. Confidential: A user’s identity and personal details should be kept from services 

using the RBAC system for authentication unless necessary for their function or 

authentication method. This becomes more critical on a public cloud setting 

where the cloud provider may not always be trusted.  

5. Straightforward Administration: Proper administration of an RBAC system is 

critical for ensuring the security of the systems which utilize it. Administration of 

roles, users, rules, permissions, etc. should be reasonably straightforward and well 

understood to RBAC administrators.  

6. Reliable: To maximize reliability, centralized points of failure should be 

eliminated or minimalized. Having cloud services dependent on a RBAC system 

for authentication means any failure or downtime for that system translates to 

downtime of all cloud services. If a RBAC system relies on a central server or 

service, there should be some level of failover protection to diminish the effect of 

downtime on end users and services. 

 

The following section reviews two popular and relevant RBAC models and offers 

criticism based on the qualities of an ideal cloud based RBAC system identified above.  
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3.1.1.1 The ANSI RBAC Standard 

3.1.1.1.1 Summary 

Several role based access control models have been developed in recent years that 

have expanded on and standardized the core ideas behind RBAC. One of the most 

notable is the effort by the National Institute of Standards and Technology (NIST) 

(Ferraiolo, Sandhu, Gavrila, Kuhn, & Chandramouli, 2001) to create a standardized 

template for which the majority of RBAC implementations can be based and expanded 

upon. The NIST model integrates several previously published RBAC 

models/frameworks (Sandhu, Coyne, Feinstein, & Youman, 1996) (Ferraiolo & Kuhn, 

1992) into the standard for RBAC adopted as ANSI INCITS 359-2004 (InterNational 

Committee for Information Technology Standards, 2004). This model divides RBAC into 

four functional components: Core RBAC and three optional components (Hierarchical 

RBAC, Static Separation of Duty Relations and Dynamic Separation of Duty Relations), 

which may be combined to create the basis for implementing an RBAC package. 

Core RBAC maps together the five basic elements of a role based access control 

system (users, roles, objects, operations and permissions) to assign users to roles, and 

roles to permissions, where permissions are in turn mapped between operations and 

objects. User sessions are also present in the Core RBAC model, allowing users to 

activate a subset of roles they have been assigned in a given session. Figure 3.1 illustrates 

the many-to-many mapping between these basic elements. 
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Figure 3.1: ANSI INCITS 359-2004 Core RBAC Model 
 

Hierarchical RBAC extends the Core RBAC model to add a hierarchy of roles 

which inherit their parent’s permissions. Support for both a limited inheritance (roles 

being limited to one descendent) and a general inheritance (roles with any number of 

descendents and ascendants) are given in the NIST model. Hierarchical roles allow for 

simplified management of permission assignments and more closely model the relations 

between roles in real organizations. Figure 3.2 illustrates this extension to the Core 

RBAC model. 

Static Separation of Duty (SSD) relations extend the Core RBAC model to 

enforce simple separation of duty policies during user role assignment.  Sets of two or 

more conflicting roles and the maximum cardinality of the intersection of users’ roles 

with such a set are maintained in the system to represent an organization’s SSD policy. 

For example, an organization may create a policy that limits a user to being assigned to at 

most two of three roles involved in the process of authorizing payments. The NIST model 

also allows these SSD policies to be applied to Hierarchical RBAC models, by having 
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SSD constraints inherited alongside role permissions. Figure 3.3 illustrates this extension 

to the Core RBAC model. 

Dynamic Separation of Duty (DSD) relations also extend the core RBAC model 

to enforce an organization’s separation of duty policies. However, unlike SSD, DSD 

constrains the active permissions a user may be indirectly assigned rather than their role 

assignment by limiting the roles a user may have active together in a single session. As 

with SSD, sets of conflicting roles and maximum cardinalities are used to represent the 

organization’s DSD policy. However, in this case the intersection is between the 

conflicting roles and the user’s active roles in a session rather than their overall role 

assignment. For example, if a user has both the role of patient (allowing a user to view 

their own health record) and the role of doctor (allowing a user to view their patient’s 

health records and update records to approve a treatment), DSD would not allow such a 

user to activate both their patient role and doctor role at the same time, preventing them 

from being able to approve treatments on themselves, while still giving the user the 

flexibility to view their own record and perform their job in regards to their patient’s 

records. Figure 3.4 illustrates this extension to the Core RBAC model. 
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Figure 3.2: General inheritance Hierarchical RBAC 

 

Figure 3.3: SSD RBAC 



62 

 

Figure 3.4: DSD RBAC 
 

3.1.1.1.2 Criticisms 

While the ANSI model may provide a “consistent and uniform definition of role 

based access control (RBAC) features” (InterNational Committee for Information 

Technology Standards, 2004) and a basis for developing RBAC systems, it still contains 

several issues and limitations. The standard lacks details critical to implementing a 

working RBAC system, has limitations that affect scalability, fails to be generic enough 

to apply to all cases where RBAC maybe be used and has several areas where the design 

can be improved.  

Ninghui Li, et al. (2007) offer a critique of the standard which addresses several 

key issues for which they provide possible solutions. Besides small typos and technical 

errors, the core criticism centers on the following concerns (Li, Byun, & Bertino, 2007): 

 The standard does not allow a system to limit sessions to only allowing a single 

role to be activated at a time (Single-Role Activation vs. Multi-Role Activation). 
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 Having Hierarchical RBAC use a partial order creates issues when updating the 

role hierarchy. 

 Ambiguity of the role hierarchy. 

Single-Role Activation (SRA), limiting sessions to a single role, provides several 

advantages over the Multi-Role Activation (MRA) endorsed by the standard.  The most 

apparent being the simplification of enforcing the principle of least privilege (as only one 

role may be activated, it is not possible to activate conflicting roles simultaneously). 

Alternatively, MRA requires the implementation and proper configuration of additional 

mechanisms, such as dynamic separation of duty (as used in the standard), to support the 

principle. Secondly, SRA requires roles to be explicitly created to allow users to have a 

given set of permissions active at the same time. With MRA, roles must be explicitly 

excluded from being activated simultaneously, requiring role administrators to review 

each combination of roles for conflicts. This essentially boils down to a white list (SRA) 

vs. black list (MRA) approach to least privilege, placing the standard’s use of a black list 

methodology in conflict with the fail-safe defaults principle of “bas[ing] access decisions 

on permission rather than exclusion” (Saltzer & Schroeder, 1975). 

 Ninghui Li, et al. (2007) argue that the use of a partial order to maintain role 

hierarchies, such as is done in the ANSI and RBAC96 models,  negatively effects the 

excepted outcome of updates to the hierarchy in several cases. For example, in the case of 

ANSI RBAC, the General Role Hierarchy (RH) is defined as follows (directly from 

(InterNational Committee for Information Technology Standards, 2004)): 

 

With the addition and deletion of inheritances being defined as: 
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To demonstrate the issue, consider a role hierarchy A containing the roles r1, r2 and r3 

with the relations r1 >> r2 and r1 >> r3 and a role hierarchy B containing the roles r1, r2, 

r3 with only the relation r1 >> r2 (see figure Figure 3.5a). If the operation 

AddInheritance(r2, r3) is performed on both A and B, the resulting hierarchies will be 

Figure 3.5: ANSI RBAC inheritance operations on role hierarchies A and B. 
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equivalent and represented by the same partial order, with relations r1 >> r2, r2 >> r3 and 

r1 ≥ r3 (as shown in figure Figure 3.5b). As the original relations that were explicitly 

created are not persevered for further operations, this can lead to some what counter 

intuitive results. For example, if the operation DeleteInheritance(r2, r3) is performed on 

the resulting hierarchy in figure Figure 3.5b, to attempt to undo the last step, the resulting 

hierarchy in both the cases of A and B will be that shown in figure Figure 3.5c, with only 

the relation r1 >> r2. This could easily be seen as the excepted result for hierarchy B, 

however the result for hierarchy A is not equivalent to the hierarchy before the 

AddInheritance operation was performed (as shown in figure Figure 3.5c). This partial 

order method for maintaining a role hierarchy fails to handle update operations in a way 

that a role administrator would intuitively expect in many cases, leading to possible 

unexpected loss of inheritance relations as was showing in figure Figure 3.5. 

 The last major issue raised by Ninghui Li, et al. (2007) relates to the ambiguity of 

the ANSI standard’s general and limited role hierarchies. The current standard allows for 

several different interpretations of the role hierarchy including those identified by 

Ninghui Li, et al. (2007): 

 User Inheritance (UI): Users authorized for role r1 are also authorized for role 

r2 given that r1 >> r2 (i.e. a user may activate any role that is inherited by a role 

they are assigned). 

 Permission Inheritance (PI): Role r1 is authorized for all permissions role r2 is 

authorized for, given that r1 >> r2 (i.e. a role is authorized for all permissions of 

the roles which it inherits). 
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 Activation Inheritance (AI): If role r1 is activated in a session then role r2 is 

also activated given that r1 >> r2 (i.e. all roles inherited by an active role are also 

activated in the given session). 

Implementations are left to decide which interpretation (or set of interpretations) to use 

without any standardization. However, picking the wrong interpretations can have 

negative consequences on a system’s ability to enforce SSD and DSD rules. For 

example, if PI is used without UI, users may bypass SSD rules excluding the use of roles 

r1 and r2 by activating a role r3, where r3 >> r1 and r3 >> r2. Ninghui Li, et al.’s (2007) 

analysis of the issue concludes with the recommendation of “[using] UI and PI at all 

times and add AI whenever MRA is used.”. 

 In addition to the concerns raised by Ninghui Li, et al.’s (2007) critique, we have 

identified several supplementary issues with the ANSI model that will have a significant 

impact on RBAC systems both following this model and a distributed design (such as 

those implemented for the cloud). These issues fall into the following categories: 

1. Permission definition and operation-object mapping. 

2. Lack of user groups or rule based groups. 

3. Enforcing the principle of least privilege. 

4. Issues for distrusted implementations. 

5. User sessions. 

6. Updating SSD constraints. 

 

Permission Definition and Operation-Object Mapping 

 The ANSI standard defines a permission as approval to perform a given operation 

on an object (“…any system resource subject to access control, such as a file, printer, 

terminal, database record, etc.” (InterNational Committee for Information Technology 
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Standards, 2004)). However, this definition is somewhat simplistic for real world 

applications. First, limiting an object to system resources would seem to exclude meta 

structures, such as groupings of resources (e.g. a grouping of files not necessarily 

contained in the same level of a file system hierarchy or with a common attribute) or 

roles and permissions stored in the RBAC system, as well as possibly excluding 

virtualized or remote resources such as virtual drive or a remote file share. 

Second, the mapping of operations to objects largely ignores the properties of the 

object or at a minimum requires many operations and many mappings to cover most 

common permissions a system would need. For example, many file systems assign an 

owner and group to files and directories as well as a set of permissible actions. To 

emulate the same permissions with this operations-objects mapping, a permission for 

each user/group would need to be created which contains the set of all mappings of 

operations on files for which that user or group would have some level of access and 

then mapped to the appropriate roles and users, resulting in many complex relations for 

RBAC administrators to maintain. Alternatively, additional operations can be created to 

check if a user meets some requirement of the underlying files system (e.g. that the user 

is the owner of the file according to the file system), however, this removes the precise 

knowledge of what resources a given user may have access to in the RBAC system and 

breaks the operations-objects mapping as the permission only contains a set of 

operations. Additionally, there may be cases where neither the object nor the local 

system has knowledge of an object’s property for which it may be desired that 

permissions be built around. For example, a printer in an office building has the physical 

property of which floor of the building it is located on. It may be desired that a 

permission be created that limits one role to only printing on a given floor but another 

role to have full access to all printers. Traditionally, this would be accomplished by 



68 
creating a permission for each floor mapping the print operation to every printer on that 

floor. However, if a RBAC system had the capability to map properties on-to objects and 

contained more complex permissions, the permission could simply contain the rule that 

the printing is allowed if the printer contains the property of being on the given floor. 

This would allow for more natural RBAC administration, where administrators first map 

properties on to objects and then create permissions by defining rules based on the 

object’s properties and would also allow for greater reuse (e.g. if it was desired that a 

permission be created to allow a role to stop a print job on a given floor). 

The final issue with the standard’s permissions is the lack of detail on how 

implementations will reference operations. The standard defines an operation as “…an 

executable image of a program, which upon invocation executes some function for the 

user” (InterNational Committee for Information Technology Standards, 2004) which 

seems to suggest that the operation in the model’s permissions are a reference to a 

specific executable program or service on the system and may vary for each object type. 

For example, the edit operation listed for a file would be different from the edit operation 

for a database. This requires the RBAC model to have some understanding of the 

underlying system for which it provides access control and would increase the difficulty 

of generating a list of users that have access to a standard operation such as “read” across 

several different object types (e.g. a list of users that can view the content of a given set 

of files and databases) as the operations would differ. A set of standard operations such 

as “view”, “edit”, “copy”, “move”, “delete”, etc. with the option of manually adding 

additional and more specific operations would greatly simplify permission 

administration. 
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Lack of User Groups or Rule Based Groups 

The next issue with the standard is the limited assignment of roles only to users. 

Adding user groups to the model would allow for simpler RBAC administration when a 

set of roles needs to be assigned to the same group of users, or if a group of users needed 

to be temporarily assigned to a role, or required frequent changes in their assigned role. 

Furthermore rule based user groups would allow for the assignment of roles based on 

conditional rules. For example a group could be created whose members are based on an 

IP address range allowing access to select resources based on a user’s IP, allowing a 

network admin to limit access to critical objects to users on a trusted intranet. 

 

Enforcing the Principle of Least Privilege 

 While the ANSI model complies with the principle of least privilege through its 

support of per session role activation, it fails to enforce that the users of an implementing 

system abide by the principle. Although the SSD and DSD components prevent users 

from activating potentially conflicting roles, there are no mechanisms within the standard 

which prevents or discourages users from constantly activating an assigned role with 

higher than needed privileges for an assigned task. For example, if a user is assigned a 

role with the permission granting it access to view a database record as well as a role with 

permission to view and update the record, there is no mechanism to prevent or discourage 

the user from using the second more powerful role for a task that only requires viewing a 

record.  

 

Issues for Distributed Implementations 

 The ANSI standard choses to omit implementation details for how RBAC 

services might (or should) be provided in differing environments (e.g. distributed vs. 
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local), presumably to increase applicability of the model. However, many of the 

administrative functions and formal operations would be extremely costly or difficult to 

implement in anything but a centralized, server-client or local system. The administrative 

functions for adding or changing an SSD constraint (CreateSsdSet, AddSsdRoleMember, 

SetSsdSetCardinality, etc.) for example require that the resulting constraint is satisfied for 

all related user-role assignments. In a distributed RBAC system it is likely that user 

and/or roles would be distributed among multiple remote systems and such a check 

would require querying every system for user-role assignments that may violate the new 

constraint. 

 Also lacking in the standard is a standardized namespace for identifying objects, 

roles, permissions and users across multiple remote systems. Such a standardized 

namespace would be critical in a distrusted system so that elements of the RBAC could 

be properly and uniquely identified and referenced, as well as easily located despite not 

necessarily being local. Existing standards for locating and referencing resources, such as 

the Uniform Resource Identifier (URI) (RFC 3986), Uniform Resource Locator (URL) 

(RFC4266 and RFC4248), and Uniform Resource Name (URN)( RFC1737 and 

RFC2141) could possibly serve this function, however, it may be more appropriate to 

design or extend an existing naming standard around RBAC. 

  

User sessions 

 Several of the administrative functions in the standard (including DeleteUser, 

DeleteRole, AssignUser, DeassignUser, GrantPermission, and RevokePermission) leave 

the handling of active sessions as implementation specific details. For example, if a user 

has an active session when DeeleteUser is called, should the session be destroyed or 

remain active until the user logs out of the system? Leaving these decisions as 
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implementation details causes several issues. First, this creates a large discrepancy 

between systems implementing the same standard in terms of consistency when an 

administrative function is performed, and second, the issue is deserving of further 

discussion as the implications can be large for a system’s security. We have identified 

three possible methods for dealing with active sessions after a direct (e.g. 

GrantPermission, etc.) or indirect permission change (e.g. DeleteRole, AssignUser, etc.): 

1. Leave all active sessions as they are. 

2. Drop all affected user sessions. 

3. Update sessions when possible (e.g. GrantPermission, RevokePermission, etc.), 

drop when not (e.g. DeleteUser, DeassignUser, etc.). 

The three options have various advantages and disadvantages in terms of easy to 

implement, feasibility and security. The first option is the simplest to implement, works 

in distributed or centralized systems, and is easily scaled, but any administrative function 

which indirectly removes permissions from a user has the potential to leave an 

opportunity for abuse if an active session exists for any user for whom the change effects. 

For example, if a user may never be assigned roles R1 and R2 concurrently due to an 

SSD restriction and an RBAC administrator changes a user’s assigned role from R1 to R2 

while the user has an active session using role R1, the user will be able to create a second 

session using R2 and bypass the SSD restriction as long as their first session remains 

active. While Single-Role Activation or DSD could be used to prevent this case 

(assuming all SSD rules were also DSD rules), the user would still have access to the 

permissions granted to role R1 until the session expires despite the role being unassigned. 

This could be a massive security issue in distributed RBAC systems where session 

revocation is not possible or limited, and a malicious or compromised user needs to be 

removed immediately. The second option removes the security issues of the first but has 
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the potential to inconvenience users with active sessions if a change is made to a live 

system. Additionally, in distributed systems, revoking user sessions can be costly to 

scalability if remote services need to be notified or need to be constantly checking a 

session’s validity with a centralized server. The third option has the advantages of the 

second while limiting any potential inconvenience users of the system may experience. 

However, it would also present greater challenges and complexities for distributed 

systems, requiring updated session information to be synchronised with all services in the 

system.  

 

3.1.1.2 OASIS Role-Based Access Control 

3.1.1.2.1 Summary 

 OASIS role-based access control (Yao, Moody, & Bacon, 2002) provides an 

architecture and model for secure service authentication and access with an open 

distributed environment. Unlike most role based access control models, OASIS does 

away with the traditional role hierarchy and does not use role delegation but instead an 

appointment process. Rather than relying on a centralized role administrator to delegate 

roles, the OASIS model uses a credential-based system for role activation whereby users 

may activate roles based on the current credentials they possess and conditions relating to 

the systems environment (e.g. current time, current task a user is performing, etc.). 

Credentials are granted through appointments initiated by any user who is a member of 

some role which grants the appointment ability for the given credential. For example, a 

user may be granted a new credential upon obtaining a professional qualification which 

will in turn grant access to a new set of roles in the system during role activation. 
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 The OASIS model supports separation of duty constraints at the role activation 

level (similar to dynamic separation of duty in the ANSI model) as a role activation rule. 

Additional context based role activation rules beyond credentials and separation of duty 

constraints are also supported through parameters in the extended model including time 

based rules (roles only allowed during set dates or times of day), and role prerequisites (a 

session with role r1 must be active before role r2 may be active). Furthermore, many 

additional rules are supported through extensions to the basic RBAC model including 

support for workflow systems, team-based systems, and content-based access control. 

 W. Yao, et al. (2002) argue that their model of appointment has several 

advantages over the delegation model including well-defined and controlled privilege 

propagation, prevention of cascading delegation, and the ability for a user to grant 

privileges that they do not necessarily have to possess. Additionally, appointment can be 

viewed as generifying delegation as delegation becomes a special case of appointment in 

which a user grants a credential which in turn allows activation of the same role as the 

granting user. 

 The model provides three methods of credential revocation which a system may 

implement; appointer-only revocation, appointer-role revocation and system-managed 

revocation. Appointer-only revocation allows only the appointer of a credential to revoke 

it from a user; this tends to model how many organizations function in real world 

scenarios. Appointer-role revocation allows any user with the ability to grant a credential 

to also revoke it from a user; this is more preferable in cases where the original appointer 

may not always be available to revoke a credential in cases of emergency (e.g. a 

malicious user abusing the system).  Finally system-managed revocation allows the 

system to automatically revoke a credential under set conditions. Three possible 

conditions for system-managed revocation are supported; time-based revocation, task-
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based revocation and session-based revocation. Time-based system revocation forces an 

appointment to expire at a set time, task-based system revocation revokes an appointment 

once the user has completed some task (normally the task that required the appointment) 

and session-based system revocation in which appointments are revoked once the user’s 

session ends or when the appointer’s session ends.  

 

3.1.1.2.2 Criticisms 

 The OASIS RBAC model provides a new take on the role based model, replacing 

direct role delegation with automatic role appointments based on a set of rules, and a 

user’s qualifications. However, we have identified several issues with the OASIS model 

that would hinder its adoption in the cloud. These issues fall into the following 

categories: 

1. Rejection of the Role Hierarchy 

2. Scalability 

3. Appointment vs. Delegation 

4. Security 

 

Rejection of the Role Hierarchy 

 Yao, Moody, & Bacon (2002) reject the need for a role hierarchy, viewing them 

as a violation of the principle of least privilege and questioning their utility in practice, 

despite their acceptance in many common models (Ferraiolo, Sandhu, Gavrila, Kuhn, & 

Chandramouli, 2001)  (Nyanchama & Osborn, 1999) (Sandhu, Bhamidipati, & Munawer, 

1999). They base this view mostly on the criticism offered by C. Goh and A. Baldwin 

(1998) which argues that role hierarchies rarely accurately model the real world roles of 
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an organization (Goh & Baldwin, 1998).  While the role hierarchy does add additional 

complexities to a RBAC model and can in some cases affect the application of the 

principle of least privilege, we believe it is critical for several key reasons, including 

proper support of a distributed cloud RBAC. 

 First, while introducing a role hierarchy may add additional complexities during 

the systems implementation, it often simplifies role administration once the system is in 

use. Take for example the case where a system has a default user role that grants a set of 

permissions to access various subsystems (such as viewing publicly available documents 

shared by other users of the system), several other roles needing to contain all 

permissions of the user role plus additional permissions to various sub systems (such as 

viewing documents limited to select roles), and an administrator role containing the 

privileges of all other roles. Without a RBAC hierarchy, an RBAC administer would be 

left with two choices: either creating each role and manually adding the permissions of 

the lower role (e.g. each role would manually be given the permissions of the user role 

and the administrator role would be given the permissions of all other roles) or creating 

each role missing the permissions of the lower role and requiring users to activate 

multiple roles. The first choice is problematic for maintaining a role’s permission set (i.e. 

when the user role changes, every other role needs its set updated manually) and the 

creation of a large number of roles sharing the same subset of permissions is time 

consuming and error-prone. The second choice, while avoiding issues of updating all 

role’s permission sets when the user role changes, requires a RBAC system to support 

multiple role activations (which is not always desired) and additionally requires that users 

of the system activate the lower roles with the higher ones (e.g. the default user role 

would need to be activated with any more privileged role). If not automated this would 
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lower the usability of the system, requiring that users know which set of roles need to be 

activated in conjunction with a given role to perform a task.  

 Secondly, while the claim that a role hierarchy creates issues for enforcing the 

principle of least privilege is true for some cases, such as would be the case if all system 

administrators were assigned the max role (the role which inherits permissions from all 

others), it is not necessarily the case when the role hierarchy/graph is properly managed. 

In fact a hierarchy of roles can even aid in the automatic activation and deactivation of 

roles as needed. Consider the following case where role hierarchy is created such that a 

minimal role (containing only bare minimum permissions to use the system) is 

extended/inherited by each subsequent role which is in turn extended/inherited by any 

role whose permission set contains a subset equal to the permission set of another role 

until a maximum role is reached that contains the set of all permissions such that there is 

a path from the minimum role to the maximum role through all roles. In this case there is 

a clear path that role escalation can follow such that a user may start by activating the 

least privileged role (the minimum role) and move along the path of roles they are 

assigned when a higher level of privilege is needed (reversely, roles may be switched 

with lower privileged roles when the level of access is no longer needed). Proper creation 

of roles (such that they do not contain unnecessary permissions for tasks of a member of 

that role) and a mechanism to encourage users to only activate the minimum role required 

for a given task can counter most violations of the principle of least privilege that may 

occur from the use of a role hierarchy. 

 Finally, a lack of a role hierarchy may pose an issue for a distributed RBAC 

system with equal domains. In some cases it may be desired that a certain domain or 

entity “own” a role or permission, such that they are the only one authorized to make 

changes to that role or assign that permission. For example, a hospital may divide their 



77 
RBAC system into domains represented by the real departments of the organization such 

that the administration holds the main sets of permissions and common roles. The 

administration could then allow certain roles to be extended/inherited by roles of other 

specified domains such that they may assign their own permission upon it. For example, 

the administration could create a role called “accounts” which enables the holder to 

access the hospitals accounting records and grant the accounts department/domain the 

right to extended it by having a set of roles inherit its permissions. The accounts 

department could then add their own specific permissions to create fine grained access 

control to their own department’s roles (this could be accomplished either with negative 

permissions which remove permissions from a parent role or more likely by having the 

accounting system require that a user has some subset of permissions from the “accounts” 

role in addition to some subset of permissions from a child role created by the accounts 

domain to access or perform an operation on a given resource). This enables the 

administration domain to have ultimate control over their permissions while allowing 

other domains to still add fine grade control and add their own roles (Note that we present 

such a distributed RBAC system in section 3.1.2). 

 

Scalability 

 Another issue with the OASIS model is the requirement to have a notification 

system between RBAC systems, user credential database and the systems using their 

access control services. In theory the notification system provides means to notify 

services when a user’s credentials or other requirements (which determine a user’s role) 

change, are removed or new credentials are added. Additionally, this mechanism allows 

for the immediate revocation of a user’s sessions in the case of a compromised account or 

malicious behavior. While notifications allow for quicker responses to changes in a user’s 
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role sets (via changes in their credentials), it creates scalability issues for large scale 

distributed RBAC systems. In such systems, which might involve thousands of users and 

RBAC service consumers, where user and credential database updates may trigger 

notifications to a large set of services and each service needs to maintain a notification 

channel with the role issuer, scalability may quickly become an issue. As there are 

currently no large scale OASIS implementations and the notification specification is 

somewhat vague, it is currently difficult to fully evaluate the model’s scalability. 

 

Appointment vs. Delegation 

 Unlike more traditional RBAC models, OASIS uses a system of appointment 

rather than role delegation. In the OASIS model any user active in an appointment role 

may grant other users of the system credentials for which the appointment role 

authorizes. This allows for cases such as a hospital administrator granting medical 

credentials to other users (such as doctors) without themself having the given credential 

(this in opposition to delegation models where a user must have role or permission to 

further delegate it to another user). OASIS roles are then granted based on a rule set 

listing the required credentials to activate a role. While this method simplifies role 

administration (as no direct mapping of users to roles is required) it adds some 

complexities in terms of calculating a user’s possible permission set, preventing 

accidental role appointments and creating potentially complex rule sets for assigning 

roles. 

 In RBAC models such as the ANSI standard, ARBAC’96, etc. calculating the 

overall possible permission set of a user (i.e. the set of permissions a user may access 

through role activation) is somewhat trivial; the set of all roles a user may activate are 

found, and then the set of all permissions those roles are mapped to are found, which 
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together compose the user’s overall permission set. In OASIS, role appointment is based 

on potentially complex rules involving both the user’s credentials and environment 

variables such as the current date/time. This means that the set of possible permissions a 

user may access through role activation is not static but is changing based on 

environment variables that may be different on each system a user may have access to. 

While the ability to accurately calculate such a set of permissions is not critical to the 

function of such an RBAC system, it may be important for its administration (i.e. 

allowing an RBAC administer to view what permissions a user may be granted through 

role activation). 

 As no administrator is necessarily responsible for direct role assignment or 

delegation, it may quickly become confusing as to what credential may indirectly grant 

what role in large OASIS based RBAC system. A hospital administer with the ability to 

grant medical based credentials in the system may not have a full understanding of the 

effect they will have on set of roles a user may activate. In many cases a user of the 

system may come to such an administer requesting access to a particular permission (e.g. 

permission to sign off on a lab report while the normal supervisor is away), however, it 

may not necessarily be clear what credential needs to be appointed to the user to access 

this permission. This kind of role appointment also is largely dependent on an RBAC 

administer correctly identifying what credentials and rules should grant every role. For 

large organizations this may be a daunting task where simple mistakes may grant 

normally unauthorized users powerful roles. Traditional role delegation requires an 

RBAC administer to directly assign roles to users reducing the possibility of error and 

limiting its effect to a single user (or single group if roles may be delegated to groups of 

users at once). 
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Security 

 Recent work by A. Belokosztolszki and D. Eyers (2002) has identified several 

potential security weaknesses in the OASIS model when applied to a large scale system 

(Belokosztolszki & Eyers, 2002). A. Belokosztolszki, et al. (2002) suggest that a large 

scale EHR system may be a potential target for cyber-terrorism and list potential points of 

attack in the heartbeat based notification system, the threshold-based rule evaluation and 

bounded session durations (DoS type attacks against OASIS services). They also 

provided potential changes to the OASIS model to solve most of these issues.  

 

3.1.2 A New Take on RBAC (RBAC as a Service) 

3.1.2.1 Introduction 

 This section presents a new model for role based access control which aims to 

fulfill the required qualities of an RBAC system for the cloud introduced in section 3.1.1. 

That is, be scalable, distributed, auditable, enforced confidentiality, provide simple 

administration and be reliable. This is accomplished by dividing the traditionally 

centralized RBAC system among multiple system domains. Each domain is enabled to 

create and assign roles to their users, create and assign their own permissions, and more 

importantly, extend the roles and permissions of other domains via inheritance in the role 

and/or permission hierarches. 

Additionally, a system for conditional permissions and user groups is introduced. 

Users activating roles with conditional permissions are only granted the permission if set 

conditions are met at the time of role activation and the permissions use. Conditional 

groups only allow membership to a user if they meet a set condition at the time of 

authentication (e.g. a condition may require that a user be authenticating from a given 
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network or IP range). The process of user parameterization allows users to be assigned 

parameters which may be checked in these conditions. For example, a parameter may be 

created which indicates that a user has been granted some safety certificate and a 

conditional group may be created to only allow users with the corresponding parameter to 

activate a given role (e.g. a role which has permissions for accessing and using equipment 

in a lab). 

 RBAC systems implementing this model offer access control to cloud services via 

a scalable web service interface and client API. A namespace is detailed which allows 

services to distinguish between RBAC elements from different domains and prevent any 

conflicting identities from being created. A system for enforcing session revocation is 

also detailed, as are potential use cases for the system.  

 

3.1.2.2 Model Description 

 

Figure 3.6: RBACaaS Model. 
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 The Role Based Access Control as a Service (RBACaaS) model is based on the 

NIST standard and aims to resolve several of the issues with the NIST standard and 

provide distributed role based access control services from the cloud via a web service 

interface. The core model (as shown in Figure 3.6) is composed of four main elements; 

Users, Groups, Roles and Permissions. Users represent any actor in a system for which 

access control may need to be applied (e.g. web services, real persons, third party 

systems, etc.). Groups represent a subset of users which share the same roles based on 

their membership in the group. Groups allow for simplified administration when it is 

common for multiple users to fulfill the same set of roles in a system; our model also 

enables the conditional mapping of users to roles based on user and system parameters. 

All groups are part of the group tree (as shown in Figure 3.7) and inherit the roles of their 

parent group node assuming the set conditions are met.  
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Figure 3.7: Example group tree. All groups descend from the root group which contains no roles or 
conditions. 
 

 Roles provide a mapping between either a group or an individual user to a set of 

permissions. Like groups, all roles are part of the role tree (as shown in Figure 3.8) and 

inherit the permissions of their parent role. A permission in our model represents some 

level of access to a single or group of objects in the implementing system which may be 

dependent on some set of conditions evaluated at the time of access. An object may be a 

service, operation, file, physical resource, database, record, or any other physical or 

logical component to which access control may be applied. The mapping of the logical 

permission to one or more system objects is left to the implementing entity but is 
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commonly related to the permissions namespace (more details in subsection 3.1.2.2.1). 

Like roles and groups, permissions are also hierarchical in nature, however, unlike roles 

and groups, the root permission node contains all access to a given system and each child 

node refines and limits that access to a specific set of objects. Also unlike ridged tree data 

structure used by groups and roles, the permission hierarchy is enforced by the name 

space rather than the data model (see Figure 3.9 for an example permission hierarchy). 

 

 

Figure 3.8: Example role tree. All roles descend from the root role which contains no permissions. 
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Figure 3.9: Example namespace enforced permissions tree. All permissions descend from the ‘*’ 
permission node. 
 

3.1.2.2.1 Namespace 

 The following uniform resourced identifier (URI) based naming scheme is used in 

the RBACaaS model to uniquely identify members of each model element across 

multiple distributed systems: 

rbac_uri  =  “RBAC:” element_types “:” id 
   /  “RBAC:perm:” perm_id 
 

element_types  = “user” 
   / “group” 
   / “role”  
   / “cond”  
   / “const” 
   / “param” 
    
id   = domain “:” sid 
 
perm_id  = domain “:” perm_sid 
 
domain   = (ALPHA / DIGIT) *( ALPHA / DIGIT / “-“ / “.”) [“_” port] 
 
port   = ( 1-9 ) *( DIGIT ) 
 
sid   = +( ALPHA / DIGIT / “-“ / “.” / “*” / “_”) 
 
perm_sid  = “*” / ( +( ALPHA / DIGIT / “-“ / “_”) “.” perm_id ) 
 
Figure 3.10: RBAC URI grammar.  
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Element Type 

 Each model element (Users, Groups, Roles, Permissions, Conditions, 

SSDConstraints, and User Parameters) is assigned an unique type as detailed in Figure 

3.10 and used as part of the element members full URI. 

 

Examples: user,  group, role,  cond,  const,  parm,  perm 

 

Domain 

 Each system running or storing an RBACaaS component is considered to be a 

domain of that system and is assigned a unique identifier that corresponds to that 

system’s hostname on the network. Optionally, a port number may be appended to the 

host name to support multiple domains on the same system or offered on abnormal ports. 

 

Examples: lakeheadu.ca,  clutch.lakeheadu.ca,  cloud.lakeheadu.ca_3434 

 

ID 

 Each RBAC element in the system is assigned an identifier that is globally unique 

for that element type. This ID is a combination of the local system’s domain and a locally 

unique identifier (SID). As it is assumed that all domains are globally unique in a given 

RBAC system, it follows that all IDs should be globally unique if the SID is locally 

unique. For permission elements, the same ID rules apply but there are more restrictions 

placed on the SID. 

 

Examples: lakeheadu.ca:bob,  cluch.lakeheadu.ca: alice,  

cloud.lakeheadu.ca_3434:user.view.* 
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SID 

 The simple ID (SID) is a locally unique identifier for a member of an element 

within that element’s namespace. The SID may be used to refer to the member within the 

local domain, however, a full ID is required to refer to members from distributed 

systems. For permissions, special restrictions apply to SIDs to create the permission 

hierarchy such that every permission SID ends with “.*”, starts with a letter, digit or is 

simply a single ‘*’, and contains at least one digit or letter between each set of ‘.’s.  

 

Examples: bob,  alice,  user.view.* 

 

3.1.2.2.1 Parameterization and Conditions 

 The RBACaaS model allows for both a static direct assignment of roles to users 

and the dynamic assignment of roles to groups of users dependent on set conditions 

evaluated at the time of session creation. Conditions are simple Boolean expressions 

involving a constant value, user parameter or system parameter of the following 

grammar: 

 

condition =  exp [ bool_op condition ] 
 
exp  =  var op var 
  /  [“!”] bool_var 
  /  [“!”] “(“ condition “)” 
 
var  =  const 
  /  user_param 
  /  system_param 
 
bool_var = boolean 
  / user_param 
  / system_param 
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op  =  “>” / “<” / “=” / “>=” / “<=” / “!=”  
 
boolvar = “AND” / “OR” 
 
user_param =  id 
 
system_param =  “SYSTEM:” sid 
 
const  =  int 
  /  float 
  /  string 
 
int  =   [“-”] ( 1-9 ) *( DIGIT ) 
  /   “0” 
 
float  =   int “.” +( DIGIT ) 
 
string  =  “\”” *( ALPHA / DIGIT / “-“ / “.” / “*” / “_” / “:”) “\”” 
 
boolean =   “TRUE” / “FALSE” 
 
Figure 3.11: Condition grammar. 
 

User parameters are a simple mapping of a parameter name (user_param in the grammar) 

to a string, integer, boolean or floating point value (more complex types may be built 

upon these primitives, e.g. a date could be stored as an integer). This parameterization of 

users allows for RBAC administrators to tag users with values based on their profile in 

the organization and create dynamic rules granting access to different roles based on the 

user’s profile. For example, consider the use case of a lab technician at a hospital that is 

required to complete an online WHMIS safety course before they are granted the access 

role required to access any of the lab’s systems. They may be automatically granted the 

parameter “HOSPITAL_DOMAIN:WHMIS_SAFETY” with the value of “TRUE” once 

the course is completed and once combined with their membership in the 

LAB_TECHNICIAN group, this parameter may fulfill a condition granting them the role 

of “HOSPITAL_DOMAIN:LAB_ TECHNICIAN”. 

 System parameters function similarly to user parameters but have a dynamic 

value based on the current state of the system rather than being set by an RBAC 
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administrator. For example the “SYSTEM:TIME_STAMP” system parameter may 

contain the current date and time as a Unix time stamp (represented as an integer) and 

allow for the creation of groups which are only granted roles for a limited period of time 

(i.e. that expire after a set time and/or only become active after a set date). The table 

below shows the default system parameters that should be present in a given RBACaaS 

implementation: 

Parameter Name Type Perm Description 

SYSTEM:TIME_STAMP Integer ✓ The current date and time as a Unix time 
stamp. 

SYSTEM:TIME_DAY Integer ✓ A number [1, 31] representing the current day 
in the current month. Based on gregorian 
calendar and UTC. 

SYSTEM:TIME_HOUR Integer ✓ A number [0, 23] representing the current 
hour in UTC. 

SYSTEM:TIME_MINUTE Integer ✓ A number [0, 59] representing the current 
minute in UTC. 

SYSTEM:TIME_SECOND Integer ✓ A number [0, 59] representing the current 
second in UTC. 

SYSTEM:TIME_WEEK_DAY Integer ✓ The current week day represented by a 
number starting at 0 for Sunday and ending at 
6 for Saturday. Based on UTC.  

SYSTEM:TIME_MONTH Integer ✓ A number [1, 12] representing the current 
UTC gregorian calendar month  

SYSTEM:TIME_YEAR Integer ✓ A number representing the current gregorian 
calendar year in UTC. 

SYSTEM:USER_IP Integer ✓ An integer representation of the user’s 
version 4 IP at the time they authenticated 
with the server.  

SYSTEM:USER_IP_1 Integer ✓ An integer representation of the first byte of a 
user’s version 4 IP at the time they 
authenticated with the server. 

SYSTEM:USER_IP_2 Integer ✓ An integer representation of the second byte 
of a user’s version 4 IP at the time they 
authenticated with the server. 

SYSTEM:USER_IP_3 Integer ✓ An integer representation of the third byte of 
a user’s version 4 IP at the time they 
authenticated with the server. 

SYSTEM:USER_IP_4 Integer ✓ An integer representation of the fourth byte of 
a user’s version 4 IP at the time they 
authenticated with the server. 

SYSTEM:USER_HOST String  A string containing the user’s hostname at the 
time they authenticated with the server. 

SYSTEM:USER_HOST_DOMAIN String  A string containing the domain part of a 
user’s hostname at the time they 
authenticated with the server. 

SYSTEM:USER_DOMAIN String  A string containing the server’s RBACaaS 
domain name. 

SYSTEM:USER_DOMAIN_ID Integer ✓ The ID assigned to the server’s RBACaaS 
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domain. 

SYSTEM:USER_ID String  A string containing the user’s RBACaaS ID. 
SYSTEM:USER_SID String  A string containing the user’s RBACaaS SID. 
SYSTEM:USER_GID Integer ✓ The user’s RBACaaS GID. 
SYSTEM:USER_START_DATE Integer ✓ A unix time stamp containing the date the 

user’s account was activated.  
SYSTEM:USER_END_DATE Integer ✓ A unix time stamp containing the date the 

user’s account will be or was deactivated or 
“0” if no such date is set. 

SYSTEM:SESSION_START Integer ✓ A unix time stamp containing the date and 
time the user’s session was started. 

SYSTEM:SESSION_EXPIRE Integer ✓ A unix time stamp containing the date and 
time the user’s session will expire. 

SYSTEM:CLIENT_VERSION Integer ✓ An integer representation of the version 
number of the client software the user used to 
authenticate with the server. 

SYSTEM:SERVER_VERSION Integer ✓ An integer representation of the version 
number of the server software being used. 

SYSTEM:AUTH_METHOD Integer ✓ An integer representing the authentication 
method used to authorize the user. 

Table 3.1: Default system parameters. 
 

 In addition to applying conditions to group membership, the RBACaaS model 

also allows conditional permissions. Unlike group conditions that are evaluated when the 

user activates a role, permission conditions are evaluated when the user tries to access an 

object protected by the RBACaaS system. Access to encrypted resources is accomplished 

through the attribute based encryption scheme detailed in Chapter 4, with details on using 

the encryption scheme with RBACaaS given in subsection 5.1. Access to services and 

unencrypted resources is accomplished by the protected service implementing the 

RBACaaS client API and web service (detailed in Appendix B and C). 

 

3.1.2.2.2 Sessions 

 Sessions in the RBACaaS model are defined as a set containing a role SID, user 

SID, start date, expiry date, IP address (of the user during authentication), and a 

RBACaaS domain (which the user authenticated with). Sessions are limited to single role 

activation as a means to indirectly enforce separation of duty between multiple roles. For 
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example, if there existed some protected object which required permissions A and B to 

access, and role 1 granted a user permission A, and role 2 granted a user permission B, a 

user assigned to both roles 1 and 2 could access the object if they were allowed to 

activate both roles simultaneously which is likely not the intention of the RBAC 

administrator. While this issue may be solved to a degree with a dynamic separation of 

duty system (such as the one described in the NIST model), it requires additional work by 

RBAC administrators to enforce and provides little benefit to end users. As an 

alternative, users may start multiple sessions containing different roles but may not 

combine their permissions (i.e. the user in the last example could not access the projected 

object but they would still have access to objects only protected with permissions A or B 

but not both). Only allowing single role activation also helps enforce the principle of least 

privilege; rather than activating multiple or all available roles simultaneously users may 

start in their least privileged role and only activate higher roles when the privilege is 

required. 

   Sessions are granted by RBACaaS authentication services to users in the same 

domain upon presenting credentials and role activation. The authentication service issues 

an auth token (as described in section 3.2) which contains the session set, the set of 

permissions the role grants, and a digital signature ensuring it was issued by the stated 

RBACaaS server. The authtoken is then used to authenticate with and share the session 

with remote services for the stated role and permission set in accordance with the RBSSO 

protocol (section 3.2). 
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3.1.2.2.3 Constraints 

 In addition to the separation of duty protection provided by signal role activation, 

the RBACaaS model also provides tools for enforcing a static separation of duty (SSD) 

constraint on what roles a user may be granted. RBAC administrators may create 

constraints on a set of roles, limiting each user in the system to only holding at most a 

fixed number of roles in the constraint set. SSD constraints are enforced at the time of 

role assignment and include roles gained through group membership. 

 

3.1.2.2.4 Negative Permissions and Roles 

 RBACaaS has limited support for negative permissions and roles. Negative 

permissions allow RBAC administrators to remove permissions from roles that would 

otherwise be inherited from a parent role. This allows for simplified role administration 

as administrators may create roles which have the same permissions as an existing role 

(by inheriting it) but with some set of permissions removed. Similarly, negative roles 

allow for the removal of roles from a user group that would otherwise be inherited from a 

parent group. 

 

3.1.2.2.5 Revocation 

 While the RBACaaS authentication service for each domain keeps an updated 

database of users and the required credentials to authenticate them, the distributed nature 

of the system would still allow an active session to be used until the expiry date is met. 

As it may be required for sessions to be terminated sooner when sensitive data is 

involved, a revocation list is provided to list sessions which have become invalidated. 

This is accomplished through each domain publishing a public list of active session IDs 
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which correspond to sessions which should be treated as expired (despite not yet reaching 

the expiry date). The revocation of user’s attribute encryption keys is a more complex 

issue detailed in section 4.3.2.9; more details on user sessions are given in section 3.2. 

 

3.1.2.2.6 Distributed Function 

 To provide scalable RBAC services to remote systems and to allow for multiple 

parties to control their own user credentials and access rights, the RBACaaS system uses 

multiple distributed components. These components include the domain authentication 

service, the domain RBAC service, the domain administrative service, RBAC clients, and 

the user clients. Each organization or party with an independent set of users, services and 

resources they wish to protect is considered to be a unique “domain” within the system. 

For example, in a system for sharing health records a single hospital may be considered a 

domain, as would a doctor’s office, clinic or research group. Every domain is assigned a 

unique numeric ID and name string (as detailed in Figure 3.10 and normally 

corresponding to the hostname of the domains RBAC service) at the time of creation (the 

initial setup of the domain’s authentication and RBAC services).   

 

Authentication Service 

Each domain operates at least one authentication service that is responsible for 

managing user records, credentials and user authentication within that domain. Each 

authentication service handles user authentication requests (with the RBSSO protocol 

detailed in section 3.2.2) based on matching user’s presented credentials with existing 

user records in an organization’s database. The only requirements imposed by the 

authentication service on the underlining user database is that each user be assigned a 
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unique numeric ID and RBAC URI (as detailed in Figure 3.10) within the domain. Upon 

receiving a request for user authentication and role activation, the service first validates 

the user’s credentials, and then connects to the domain’s RBAC service to verify that the 

user possesses access to that role (and that all conditions are met if the role is available 

only through a group) and retrieve the set of all permissions the role grants the user and 

their conditions, as well as the set of the user’s parameters and their values. Finally, if all 

group conditions and verifications are met the service starts a user session by issuing the 

user an “auth token” containing the list of permissions, the list of parameters and a 

DMACPSABE key (section 4.3). 

Multiple authentication services may be run within the same domain to ensure 

scalability and reliability so long as the underlining user database used is properly 

synchronized within the domain (e.g. MySQL master/slave setup where services read 

from different slaves and writes are only done to the master) or the same database is used 

for all service instances.  

 

RBAC Service 

 The RBAC service is a web service that provides the core RBAC operations for a 

given domain in an RBACaaS system. The RBAC service stores the RBACaaS model 

(Figure 3.6) data being used for the domain (i.e. roles, groups, conditions, permissions, 

sessions, SSD constraints, user parameters and their maps to each other and users of the 

domain) and responds to requests from both the domain’s authentication service and 

systems implementing the RBACaaS API for protecting a resource, service or other 

object. RBAC services are also responsible for requesting information from and 

responding to requests from other domain’s RBAC services, for example each RBAC 

service contains a mapping of parameter and permission RBAC URIs to DMACPSABE 
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attribute names (see section 4.3 and 4.3.2.8) that is made available to other RBAC 

services upon request. 

 RBAC services are linked together in a hierarchical method similar to that used 

by the Domain Name System (DNS). Each RBAC service may have a parent for which it 

may extend any roles, groups or permissions (by creating new roles, groups, etc. which 

inherit a role, group, etc. owned by the parent RBAC service) and assign users to groups, 

roles and parameters owned by both itself and its ancestors. Similarly, each service may 

also have 0 or more child services. Each domain may have multiple RBAC services (to 

balance load, and increase readability) so long as they all descend from a signal RBAC 

service also within that domain (as show in Figure 3.12). Each service keeps a list of 

approved children that will receive notifications when an update is made to any RBAC 

element and the permission and role cache need updating. Child RBAC services may also 

directly request a listing of RBAC elements in their relations from their parent as well as 

their parent’s ancestors. 

For more details on the interface provided by RBAC services see Appendix B.  
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Figure 3.12: Example RBAC service hierarchy. 
 

Administrative Service 

 The administrative service is a web service paired with the RBAC service that 

offers administrative functions for the data (RBAC elements and relations) severed by the 

RBAC service. The administrative service itself is protected by the same RBACaaS 

system that it administers (permissions for administrative functions are listed in 

Appendix B.2 and exist in the system by default for each domain).  The administrative 

service interface is also further detailed in Appendix B.2 and functions listed in Appendix 

D.5.  
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RBAC Clients and API 

 RBACaaS provides an API for RBAC Clients (the systems using RBACaaS to 

protect a resource, service or object) to authenticate users (based on their provided auth 

token), validate that they should have access to a given resource based on a simple 

Boolean statement involving permissions and encrypt documents using the 

DMACPSABE scheme presented in Chapter 4. The most notable part of the API is the 

hasPermssion method which takes a Boolean statement (for which the grammar is given 

in Figure 3.13) involving one or more RBACaaS permissions with “AND” or “OR” 

operations. If hasPermssion returns true the user has passed the permission requirements 

in the Boolean statement which is determined based on the contents of the user’s auth 

token. As the auth token contains the set of permission/condition pairs for the activated 

role and the set of the user’s parameter/value pairs, the method is able to check that the 

user’s permission set meets the requirements of the statement and that if the permission is 

conditional the conditions are met by the user’s parameter/value set. Additionally the 

hasPermssion method may check the session ID against the last copy of the revocation 

list the client has obtained from the RBAC service. 

 

condition =  exp [op condition ] 
 
exp  =  perm 
  /  “(“ condition “)” 
 
op       = “AND” / “OR” 
 
perm         = “RBAC:perm:” perm_id  
 
Figure 3.13: Grammar for hasPermission Boolean statement. Note that perm_id is from Figure 3.10. 
 

 Encrypting documents using a similar method as hasPermission (similar in that 

they both take the same Boolean statement), encryptWithPermissions allows data to be 

protected with the same RBAC model, permissions and conditions in offline 
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environments which may be isolated from the RBAC service for long periods of time or 

even indefinitely. Rather than an active service which handles user authentication, the 

access policy is embedded in the ciphertext and only decryptable once the user is given 

the proper “attributes” in their DMACPSABE key which meet access policy (this is 

accomplished with the ciphertext policy attribute based encryption scheme presented in 

chapter 4 and details for its use and integration with RBACaaS are given in section 5.1). 

The encryptWithPermissions function is responsible for translating the given Boolean 

statement using permissions into a proper DMACPSABE access policy using attribute 

names (which may require a request to the RBAC service to lookup). Additional details 

on the Client API are given in Appendix C. 

 

3.1.2.2.7 Web Service Interfaces, Client API and Formal Description 

Appendix B details the RBAC web service and administrative interfaces for 

RBACaaS. Appendix C gives details on the client API services use to enable RBACaaS 

access controls. Appendix D gives a simplified formal description of the RBACaaS 

model which omits the distributed function. 

 

3.1.2.2.8 Permissions Set and Role List Caching 

 As the model in Figure 3.6 has multiple many-to-many relations between RBAC 

elements, several performance improvements are required to make the model useable and 

scalable. The first of these improvements is the permissions set cache (pset), which stores 

an updated set of permissions/condition pairs calculated using comp_role_pset (see 

Appendix D.4) when there has been an update to a role. The pset cache allows for a quick 

look up of permissions for a given role and their corresponding conditions during role 
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activation and the creation of an auth token. The second cache based improvement is the 

role list cache (rset), which stores an updated set of role/condition pairs, calculated using 

comp_group_roles (see Appendix D.4) when there has been an update to a group. The 

rset cache allows for quick look ups of roles granted by a group and the conditions that 

must be met for them to be activated by a user.  

 

3.1.2.2.9 Example Use Case 

This section introduces a health care related use case for intrahospital EHR 

protection using the RBACaaS system. In this case it is assumed that all initialization and 

setup steps have been performed (e.g. creation of user credentials, set of the RBAC and 

authentication services, DMACPSABE authority and master key generation, etc.) and the 

health records in question have already been created with the policy stated in the case. 

 

Intrahospital Protection of EHRs 

 For this case we assume a simplified view of a hospital which is divided into three 

departments; medical (consisting of doctors seeing patients), lab (consisting of lab techs 

doing work ordered by doctors) and billing/insurance (consisting of accounting clerks 

processing insurance claims, sending invoices to patients, etc.). The goal is to provide 

doctors in the medical department with access to all medical information in a given EHR 

(including lab results) while limiting their access to insurance and billing information; to 

allow lab technicians in the lab department to only view lab related parts of an EHR and 

no identifying information, billing information or unneeded medical information, and to 

allow accounting clerks to only view billing and insurance related information. 

Additionally, we want to restrict the clerks to only accessing records during business 
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hours (9am to 5pm) and doctors to only viewing records while authenticating from the 

hospital’s network. 

 The first step to accomplishing these goals is the creation of the permissions 

which enable access to the various parts of a health record. It is assumed that the EHR 

format being used is divided in to 4 parts: identification information (contact details, and 

general information about the patient), medical history (detailed medical history and 

notes, not including lab reports), lab results (results of lab work done on the patient), and 

insurance/billing information. The required permissions are displayed in the following 

table (note that the system parameters in the conditions column are from Table 5.1): 

Permission Name 
(SID) 

Conditions Description 

EHR.*  All access rights to EHR 
documents. 

EHR.view.*  Access to view any part of an 
EHR. 

EHR.edit.*  Access to edit any part of an EHR. 
EHR.view.ident.*  Access to view the identification 

information part of an EHR. 
EHR.view.medical.*  Access to view the medical history 

part of an EHR. 
EHR.view.lab.*  Access to view the lab results part 

of an EHR. 
EHR.view.insurace.*  Access to view the insurance 

information part of an EHR. 
EHR.edit.ident.*  Access to edit the identification 

information part of an EHR. 
EHR.edit.medical.*  Access to edit the medical history 

part of an EHR. 
EHR.edit.lab.*  Access to edit the lab results part 

of an EHR. 
EHR.edit.insurace.*  Access to edit the insurance 

information part of an EHR. 
EHR.view.ident. 
intranet 

SYSTEM:USER_IP_1 == 192 
AND SYSTEM:USER_IP_2 == 
168 AND (SYSTEM:USER_IP_3 
== 100 OR SYSTEM:USER_IP_3 
== 110) 

Access to view the identification 
information part of an EHR but 
only from the 192.168.100.* or 
192.168.110.* subnets. 

EHR.view.medical. 
intranet 

SYSTEM:USER_IP_1 == 192 
AND SYSTEM:USER_IP_2 == 
168 AND (SYSTEM:USER_IP_3 
== 100 OR SYSTEM:USER_IP_3 
== 110) 

Access to view the medical history 
part of an EHR but only from the 
192.168.100.* or 192.168.110.* 
subnets. 
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EHR.view.medical. 
intranet 

SYSTEM:USER_IP_1 == 192 
AND SYSTEM:USER_IP_2 == 
168 AND (SYSTEM:USER_IP_3 
== 100 OR SYSTEM:USER_IP_3 
== 110) 

Access to view the lab results part 
of an EHR but only from the 
192.168.100.* or 192.168.110.* 
subnets. 

EHR.view.insurace. 
bizhours 

SYSTEM:TIME_HOUR >= 9 AND 
SYSTEM:TIME_HOUR <= 17 

Access to view the insurance 
information part of an EHR but 
only between 9am and 5pm. 

EHR.edit.medical. 
intranet 

SYSTEM:USER_IP_1 == 192 
AND SYSTEM:USER_IP_2 == 
168 AND (SYSTEM:USER_IP_3 
== 100 OR SYSTEM:USER_IP_3 
== 110) 

Access to edit the medical history 
part of an EHR but only from the 
192.168.100.* or 192.168.110.* 
subnets. 

EHR.eidt.lab. 
intranet 

SYSTEM:USER_IP_1 == 192 
AND SYSTEM:USER_IP_2 == 
168 AND (SYSTEM:USER_IP_3 
== 100 OR SYSTEM:USER_IP_3 
== 110) 

Access to edit the medical history 
part of an EHR but only from the 
192.168.100.* or 192.168.110.* 
subnets. 

Table 3.2: Table of permissions required for 1st  RBACaaS use case. 
 

 Next, roles are created for the doctors, lab technicians, and insurance clerks and 

permissions are mapped to the roles to grant access to EHRs: 

Role Name (SID) Permissions Description 
Doctor EHR.view.ident.intranet 

 
EHR.view.medical.intranet 
 
EHR.view.lab.intranet 
 
EHR.edit.medical.intranet 
 
EHR.eidt.lab.intranet 

Doctor role with permission 
to view an EHRs 
identification, medical, and 
lab parts, and permission to 
edit the medical and lab parts. 
Permissions are only valid 
from hospital intranet (due to 
conditions on permissions). 

Technician EHR.view.lab.* 
 
EHR.edit.lab.* 

Technician role with 
permission to edit and view 
the lab portion of an EHR. 

Clerk EHR.view.insurace.bizhours Clerk role with permission to 
view an EHRs insurance 
information but only during 
business hours. 

Table 3.3: Table of roles required for 1st RBACaaS use case. 
 

 Finally, the roles are mapped appropriately to each user of the department who 

needs EHR access: users in the medical department being granted the Doctor role, users 

in the lab department being mapped the Technician role and users of the billing/insurance 

department being mapped the Clerk role. 
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 Once the described roles, permissions and conditions have been created, the 

EHRs in the system may be encrypted using the encryptWithPermission function in the 

RBACaaS client API (see Appendix C) as follows: 

EHR Section Encryption Policy 
Identification 
Information 

EHR.* OR EHR.view.* OR EHR.view.ident.* OR EHR.view.ident. 
intranet 

Medical History EHR.* OR EHR.view.* OR EHR.view.medical.* OR 
EHR.view.medical.intranet 

Lab Reports EHR.* OR EHR.view.* OR EHR.view.lab.* OR EHR.view.lab. 
intranet 

Insurance/Billing 
Information 

EHR.* OR EHR.view.* OR EHR.view.insurance.* OR 
EHR.view.insurace.bizhours 

Table 3.4: Table of encryption polices for 1st RBACaaS use case. 
 

 The encryptWithPermission function (for which more details are given in section 

5.1.1) replaces permissions with their corresponding DMACPSABE attributes and 

conditional permissions with a statement involving the condition. For example, the 

encryption policy for the insurance/billing section becomes: 

EHR.* OR EHR.view.* OR EHR.view.insurance.* OR (EHR.view.insurace.bizhours AND 

(SYSTEM:TIME_HOUR >= 9 AND SYSTEM:TIME_HOUR <= 17)) 

Additionally, the rules from Table 5.2 are appended to the policy to enforce system wide 

polices such as key expiration dates, minimum client versions, acceptable authentication 

methods, etc. 

Once protected, the EHRs may be safely moved to cloud based storage and made 

available with cloud based services such as HCX from Chapter 2. Such services enforce 

the edit permissions using the hasPermission function from the RBACaaS client API to 

check if a requesting user has the proper permissions to update a given section of a file 

(the service gets proof of a user’s permissions granted by an active role from the 

authtoken described in section 3.2.1). The user sends the service an updated ciphertext for 
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a given section of the EHR and the service runs hasPermission to check for compliance 

with the following polices:  

EHR Section Edit Policy 
Identification 
Information 

EHR.* OR EHR.edit.* OR EHR.edit.ident.* 

Medical History EHR.* OR EHR.edit.* OR EHR.edit.medical.* OR 
EHR.edit.medical.intranet 

Lab Reports EHR.* OR EHR.edit.* OR EHR.edit.lab.* OR 
EHR.edit.lab.intranet 

Insurance/Billing 
Information 

EHR.* OR EHR.edit.* OR EHR.edit.insurance.* 

Table 3.5: Table of edit polices for the 1st RBACaaS use case.  
  

As with the encryption policies and the encryptWithPermission function, conditional 

permissions are appended with their condition and all policies are appended with the 

rules from Table 5.2.  

 Hospital users of all departments may access EHRs (for which they have access) 

by authenticating with the hospital’s local authentication service using the RBSSO 

protocol (detailed in section 3.2.1) and activating a single role. Once the user is 

authenticated, the authentication service issues the user a secret DMACPSABE key 

(containing the user’s attributes) and an authtoken containing the permissions for the 

activated role, the user’s parameter name/value set, additional details described in 3.2.1 

and a digital signature proving the token came from the authentication service and has not 

been edited. To request an EHR or update a section of an EHR, the user creates a 

requesttoken and sends the request, requesttoken and authtoken to the EHR service. If all 

tokens are valid and the request meets the access policy, the EHR service either updates 

the EHR or sends the encrypted EHR to the user (depending on the request type). Users 

may decrypt sections of the EHR using the secret DMACPSABE key they received from 

the authentication service assuming their attribute set meets the policy (this is made 

possible with the DMACPSABE scheme presented in Chapter 4). 
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3.2 Single Sign On 
 A critical component for a distributed authentication system not covered by our 

RBAC as a Service model is the protocol and mechanism by which user sessions are 

authorized and securely propagated to remote services. Centralizing this task as a single 

authentication server or role server would create new bottle necks in the system and limit 

the scalability gain from using a distributed model. To solve issues relating to sessions in 

our disturbed RBAC model we have created an accompanying Single Sign On (SSO) 

model, protocol and prototype called Role Based Single Sign On (RBSSO). 

 

3.2.1 RBSSO Description 

 The RBSSO protocol attempts to accomplish the following goals in its design: 

1. Distributed: a SSO system for the cloud should ideally be distributed rather than 

centralized to match the distributed computing potential of most cloud computing 

infrastructure. The systems overall functionality should be unaffected by nodes 

coming and going on/offline at random intervals and scaled by simply adding 

additional nodes. No or few centralized points of failure should be present in the 

system. 

2. Isolated: User credentials and personal details should be isolated from the public 

and potently untrustworthy cloud. Cloud based services should only be granted 

the minimum amount of information to authenticate a user and grant access to a 

service.   

3. Scalable: The SSO system should be scalable simply by adding additional nodes 

to a public or private cloud. Costly operations such as communications between 
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virtual cloud resources and between users and cloud resources should be 

minimized to prevent network bottle necks. 

4. Secure: The SSO system should be secure enough to comply with data privacy 

laws such as PIPEDA, HIPA and HIPAA, as well as provide a reasonable level of 

assurance to users that their accounts are secure even when operating on a public 

cloud.  

5. Convenient: The system should provide maximum convenience and usability to 

both the systems users and administrators. E.g. not requiring user to sign in to 

each cloud based service individually. 

6. Compatibility: Be compatible with most common cloud computing infrastructure 

(i.e. Amazon web services and Eucalyptus) and take full advantage of the 

RBACaaS mode described before. 

The RBSSO model defines the following major components necessary for client 

single sign on authentication with cloud based services: 

1. Authentication Servers (AuthServers): Servers or nodes which handle user 

authentication requests and issue AuthTokens. AuthServers are hosted on the 

trusted network for an organization who wishes to access cloud services. 

2. RBAC Service: RBACaaS RBAC service which stores the roles and relations for 

the RBACaaS system. May be combined with an AuthServer.  

3. Cloud Based Services: Services offered on a potentially untrusted cloud and 

service clients of the RBACaaS system wishing to secure a resource. 

4. Service Controllers: Systems located on a trusted network that are responsible 

for spawning new machine instances on an untrusted cloud which run cloud base 

services and initialize them with their initial data.  
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5. End User Clients: Clients of the system and their software and hardware 

components. 

 

3.2.1.1 Authentication Servers 

 To distribute the load of user authentication, isolate user credentials to their 

organization and trusted network and keep administration of user accounts within an 

organization authority, authentication servers are distributed among the organizations that 

require access to the publicly hosted cloud based services and run on the organization’s 

presumably trusted network. Using this model, organizations are made responsible for 

their own user accounts and the scalability of their authentication services. For example, 

if a set of cloud based services were created to share electronic health records between 

hospital, clinics, doctors’ offices and emergency medical services, each would host their 

own authentication server on their own network (see Figure 3.14). 

 Before use, Authentication Servers are first initialized with two public/private key 

pairs, (AKsigpub, AKsigpri) and (AKencpub, AKencpri) which they will use through the 

future course of their operation. Also before use, the keys AKsigpub and AKencpub must 

be registered with the Service Controller network as a trusted AuthServer through a 

secure channel. The key pair (AKsigpub, AKsigpri) is used for signing user AuthTokens 

while the pair (AKencpub, AKencpri) is used as part of the encrypted communications 

with the client during an AuthRequest. Before authenticating with an AuthServer, clients 

must first obtain the keys AKsigpub and AKencpub from the service controller network. 

Once initialized, both the AuthServer and Client need not perform these steps again 

unless the AuthServer’s keypairs are compromised and revoked. 

 Authentication servers may serve as a front end to existing credential stores for an 

organization (e.g. LDAP, Kerberos, MySQL database, etc.) to provide authentication 
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using existing user credentials within the organisation or contain an isolated database of 

user credentials for use with only cloud based services. To further enhance scalability for 

large systems AuthServers may be setup in a master-slave configuration where user 

credentials are accessed from the master and replicated to slaves periodically through 

notifications of changes to user accounts (see Figure 3.14). In this case the slaves would 

contain a database containing a user’s ID, credentials and assigned RBACaaS roles 

updated based on notifications from the master which in turn obtains the details from a 

backend credential store. Both the slaves and master must have access to and use the 

same key pairs. Authentication requests are distributed among the functioning slaves in a 

round robin fashion. 

 

Figure 3.14: Example RBSSO system layout sharing several cloud based services on a public cloud 
between a hospital and doctors office. Note that the trusted network could also be located in the 
doctor’s office or hospital network. 
 

3.2.1.2 Service Controllers 

Like AuthServers, Service Controllers are initialized with a public/private key 

pair (SCpri, SCpub) for signing ServiceTokens. The key SCpub is shared and stored on 
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all clients which access the cloud based services. This key is included in the client’s 

software and only changed in the case of a compromised SCpri. Service Controllers sit 

outside the cloud on a trusted third party’s network and are responsible for interfacing 

with the public cloud’s infrastructure to control the creation and destruction of virtualized 

machine instances which run the cloud based services being provided. Additionally 

Service Controllers initialize the machine instances with SKpri (the instances private 

key), a list of all trusted Authentication Servers and their public signing keys, a 

revocation list of users and sessions, as well as a ServiceToken containing a list of 

services the instance will run and SKpub (the instances public key). Service Controllers 

may also be set up in a master-slave configuration on the trusted third party network for 

redundancy and failover protection where updated revocation lists, AuthServer lists and 

sets of services to be run are synchronized with the master.  When run in this 

configuration all service controllers use the same key pair and the master controls the 

cloud. In the event of a failure on the master the next slave in line is promoted to master 

and continues the work of the master. 

 

3.2.1.3 Cloud Based Services 

 Cloud based services are services contained in virtualized machine instances 

executed on a potentially untrustworthy cloud which use RBACaaS and RBSSO to 

authenticate requests. Once created, a machine instance is initialized with a ServiceToken 

as described in the above section and accepts requests directly from authorized clients. 

Machine instances are created and destroyed dynamically by service controllers based on 

current levels of demand. Cloud services periodically provide updated usage statistics to 

Service Controllers when it is not available or possible to obtain from the cloud provider 

(i.e. for cloud providers that do not offer services such as AWS’s CloudWatch 



109 
(http://aws.amazon.com/cloudwatch/) service). When updated revocation or AuthServer 

lists are available from the Service Controller, a notification is sent to each machine 

instance containing the changes to each list. 

 

3.2.1.4 Protocol 

Figure 3.15 displays the interactions involved in the RBSSO protocol. Each client 

is assumed to be provided with the public signing and encryption keys (AKsigpub , 

AKencpub) for their organizations authentication server, as well as the public signing key 

for the service controller (SCKsigpub). The protocol for RBSSO follows the proceeding 

steps, as shown in Figure 3.15: 

 

1. The service controller initializes machine instances with a ServiceToken (see 

Figure 3.16), a list of cloud services the instance will provide, a list of trusted 

Figure 3.15: RBSSO protocol sequence.                            
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authentication servers and their set of public keys, a list of globally black listed 

users and the instances private key, SKpri.  

 

2. The service client authenticates with their organization’s authentication server by 

generating a secret key CKsec and an AuthRequest (see Figure 3.17). The 

AuthRequest, containing the user’s credentials, the RBACaaS role they wish to 

activate and a public client key from the client public/private key pair created 

when the client program is initialized, is then transmitted to the authentication 

server.  

 

3. The authentication server decrypts the AuthRequest using AKencpri and CKsec, 

validates the user’s credentials, and checks that the time stamp and request ID are 

acceptable. Credentials may be validated against a local database of user 

credentials or existing authentication infrastructure on the same trusted network 

(eg. LDAP).  

 

4. The authentication server then makes a request on the domain’s RBAC service to 

validate that the user may activate the requested role, obtain the set of 

permission/conditions pairs, obtain the set of parameter name/value pairs and start 

an RBACaaS session. 

 

5. Once the user is validated, the authentication server issues and signs an 

AuthToken (see Figure 3.18), containing the permission and parameter sets, with 

AKsigpri for the client’s session with the cloud services. This transmission is 

appended with the DMACPSABE (see section 4.3) key for the user’s current 
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attributes and encrypted with CKsec to protect the user’s privacy (i.e. so the user 

may not be identified by outside observers).  

 

6. Before the service consumer makes a normal request upon a service it first 

extracts the DMACPSABE key from the end of the AuthToken and requests the 

service’s ServiceToken from the instance on which it resides. The service 

consumer then validates the service controller’s signature using SCKpub and 

ensures that the service is listed in the service listing and is connecting from the 

stated IP or hostname.  

 

7. The consumer may now authenticate and make a request upon any cloud service 

on the instance by generating the secret session key SEKsec and using it to 

encrypt its AuthToken, the request and a newly generated RequestToken (see 

Figure 3.20) together. SEKsec is appended with a delimiter and random number 

and encrypted with SKpub (obtained from the ServiceToken) .The ciphertexts are 

appended and transmitted to the service (see Figure 3.19).  

 

8. The service decrypts SEKsec using SKpri and decrypts the request, RequestToken 

and AuthToken using SEKsec. The service then proceeds to validate the 

signatures contained in AuthToken and RequestToken using AKsigpub and 

CKpub (from the AuthToken) and validate the fields they contain (time stamp has 

not expired, etc.). If valid, SEKsec and the AuthToken are temporarily stored for 

future requests with the instance until the session expires. 
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9. If the user has a role active which allows the request to be performed on the 

service, the service complies with the request and provides the appropriate 

response. All further communications between the consumer and service for the 

length of the session will be encrypted using SEKsec. Subsequent requests on any 

service on the instance need only to provide a RequestToken.  

 

Figure 3.16: ServiceToken protocol diagram 
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Figure 3.17: AuthRequest protocol diagram.  
 

 

Figure 3.18: AuthToken protocol diagram. 
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Figure 3.19: SessionKey protocol diagram. 
 

 

Figure 3.20: RequestToken protocol diagram 
 

3.2.2 Performance Evaluation 

To evaluate the performance of the RBSSO protocol a prototype of the 

Authentication Server and Client where created using standard Java TCP sockets. 128bit 

AES encryption was used for the symmetric encryption of the AuthRequest body and 

AuthToken body. 3072bit RSA encryption was used for the asymmetric encryption of the 

AuthRequest tail and the signature on the AuthToken. SHA-256 was used for generating 

hashes for the AuthRequest. 
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Two controls, a simple SSL based connection and Kerberos 

(http://web.mit.edu/kerberos/) (a popular SSO system), where tested under the same 

conditions for a basis of comparison. For the first control, an authentication server was 

created that replaced the encryption of the body and signature of the AuthRequest with an 

SSL connection (the tail containing CKsec and the token hash were removed from the 

SSL implementation). Secondly the RBSSO protocol was also compared against the 

performance of a Java based Kerberos client and the MIT Kerberos 5 implementation 

which retrieved a ticket granting ticket and a service ticket (somewhat equivalent to an 

AuthToken in RBSSO). The performance of all three protocols (measured in average 

time per request) was measured on both a private isolated low latency local area network 

and over a higher latency and more noisy wide area connection. Each protocol was tested 

with 10,000 authentication requests for each network in sequential runs of 1000 requests. 

The results on these tests are shown in Figure 3.21, Figure 3.22 and Figure 3.23. 

The RBSSO protocol performed approximately 38% faster on average than the 

SSL implementation on the LAN and 66% faster over the WAN connection. This is 

likely a result of the decreased number of requests involved in the RBSSO protocol (no 

handshake is required and only a single request is made containing the AuthRequest) and 

explains the difference between the LAN and WAN connections (the cost per request 

being higher on the connection with increased latency). Similarly RBSSO performed 

25% faster than Kerberos over an WAN connection but performed 21% slower over a 

LAN connection. This is also likely a result of the number of requests, Kerberos requiring 

a connection to both to a Kerberos authentication server and a ticket granting server 

before it can make a request on a service.  
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Figure 3.21: Average time (in milliseconds) required to complete and verify an authentication 
request using each protocol. Based on 10,000 requests. 

 

Figure 3.22: Average time (in milliseconds) required to complete and verify an authentication 
request over the WAN connection. Based on 1000 requests per run. 
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Figure 3.23: Average time (in milliseconds) required to complete and verify an authentication 
request over the LAN connection. Based on 1000 requests per run. 
 

 

3.3 Conclusions 
 This chapter introduced the RBACaaS model and RBSSO protocol which enables 

conditional role based policies to be enforced in a distributed environment. Organizations 

are granted their own domain and control all user authentication, credentials, RBAC 

entities (Groups, Roles, Permissions, etc.) and access policies within that domain. 

However, they are also able to share permissions, roles and groups by authorizing an 

external domain to extend the role, group or permissions in their respective hierarchy. For 

large domains, RBACaaS services may be scaled by running multiple RABC services in 

the same domain and balancing requests between them (as show in part in Figure 3.12). 

 Testing of the RBSSO protocol’s performance over a wide area network showed 

average request times which surpassed that of the Kerberos SSO protocol and SSL based 

methods. Testing on a low latency, high speed local area network still showed 
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performance gains over the SSL based method and only a minor disadvantage compared 

to Kerberos. Additional details on integrating RBACaaS and RBSSO with the HCX 

services described in Chapter 2 and the DMACPSAE encryption scheme of Chapter 4 are 

given in section 5.1. Future work, new areas of research and possible improvements are 

detailed in section 5.2. 
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Chapter 4 

4 Cloud Privacy Through Attribute Based 

Encryption 

4.1 Introduction 
4.1.1 Data Privacy on the Cloud 

Ensuring data privacy on a potentially untrustworthy public cloud is still one of 

the open research problems in cloud computing (Zhang, Cheng, & Boutaba, 2010), 

(Armbrust, et al., 2009). Common data privacy methods amounting to “throwing 

encryption at the problem” are ineffective on the cloud platform and many current 

research efforts require additional trust computing  or cryptographic coprocessors 

hardware (Itani, Kayssi, & Chehab, 2009), (Chow, et al., 2009) not yet offered by any 

public cloud provider.  

Traditional public and symmetric key encryption methods quickly run into 

problems when an untrusted third party (such as a cloud provider) is given control of all 

hardware and network resources, leaving cloud application developers to either use the 

cloud purely as a semi-public hard drive for storing encrypted data (losing most 

scalability advantages of the cloud and limiting cloud applications to simply retrieving an 

encrypted file) or handing over some level of trust and control to the cloud provider to 

enable their cloud based applications to process potentially sensitive data. Even when 

information on persistent cloud storage (such as the S3 or EBS services offered by 

Amazon’s AWS) is encrypted, cloud based applications which process and rely on the 

data may be vulnerable when run on hardware or virtual instances operated by an 
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untrustworthy cloud provider. It would be trivial for such a provider to extract sensitive 

data (including the encryption keys themselves from a virtual instance’s hard drive, 

memory or network connections. Additionally, man-in-the-middle type attacks would be 

trivial for the cloud provider as they operate both the network, hardware and IP ranges for 

the virtualized services. 

This chapter outlines a novel take on attribute encryption for protecting records both 

on and off the cloud.  Several improvements over traditional ABE schemes are added, 

including distributed attribute authorities with shared subsets of attributes. Subsections 

4.1.2 and 4.1.3 provide a background on the concepts involved in attribute based 

encryption while subsections 4.2 details current research related to attribute based 

encryption and cloud privacy. Subsection 4.3 and 4.4 detail our attribute encryption 

system, implementation and evaluation, and subsection 4.5 outlines how it may be used 

with RBACaaS, RBSSO and HCX. 
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4.1.2 Pairing-Based Cryptography 

 Pairing-base cryptography is a relatively new development in cryptography 

research (popularized by (Boneh & Franklin, 2001)‘s 2001 Identity Based Encryption 

paper) which uses a pairing between elements of multiple cryptographic groups to create 

new cryptographic systems. In most schemes this pairing takes the form of an admissible 

bilinear map (Definition 4.1, Definition 4.2) between a symmetric pairing (Definition 

4.3) of a cyclic group of prime order with itself to a second cyclic group of the same 

                

                          (     )   (   )   

Definition 4.1: Bilinear Map 
 

A bilinear map from the cyclic groups of the same order       to a cyclic 
group of the same order    is the function: 
 

 
Such that: 

 

                  (     )     

Definition 4.2: Admissible Bilinear Map 
 
A bilinear map,  , is considered to be admissible if for two generators          
of groups          : 
 

 
and e is efficiently computable. 

        

        

Definition 4.3: Symmetric Pairing 
 
A pairing of two groups           is considered to be symmetric if: 
 

such that: 
 

  



122 
order. Such pairings make it possible to reduce the Decisional Diffie-Hellman (DDH) 

problem in polynomial time (Boer, 1996), (Maurer & Wolf, 1999) to the discrete 

logarithm problem (DLP) making it “easy” for one group. However, the Computational 

Diffie-Hellman (CDH) is still considered “hard” in G (G1 or G2) and gives rise to several 

new cytological problems on which the security of most pairing-based cryptosystems is 

based: 

 Bilinear Diffie-Hellman problem: Given g, ga, gb, gc compute e(g,g)abc 

 Gap Diffie-Hellman problem: Solve CDH in G. 

 k-Bilinear Diffie-Hellman  Inversion problem: Given         
       , 

compute  (   )
 

 . 

 k-Decisional Bilinear Diffie-Hellman Inversion problem: Distinguish 

        
       ,  (   )

 

   from         
       ,  (   ) . 

That is, the security of the crypto system is based on the complexity of one of the 

problems (or its correspondent co-problems) for some group G (or the pair G1 and G2). In 

most cases the bilinear map chosen for cytological protocols is the elliptic curve based 

Weil (Miller V. , 2004) or Tate (Galbraith, Harrison, & Soldera, 2002) pairings computed 

with Miller’s algorithm (Miller, Short programs for functions on curves, 1986) (Blake, 

Murty, & Xu, 2006).  

 

4.1.3 Identity Based and Attribute Based Encryption 

 Identity based encryption (IBE) is a type of public-key encryption scheme using 

pair-based cryptography (though some schemes exist which use other methods such as 

quadratic residues (Cocks, 2001)) which uses a plain text public key such as an e-mail 

address or domain name. Ideally a trusted third party, referred to as the Private Key 
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Generator (PKG), would be tasked with generating and securely distributing private keys 

to their respective owners. For example, a PKG might be assigned to delegating private 

keys corresponding to a public key consisting of a user’s e-mail address upon request.  

 Boneh and Franklin (2001) proposed a fully functional identity-based encryption 

scheme built on pair-based cryptography using a bilinear map (using Weil pairing) 

(Boneh & Franklin, 2001). Boneh and Franklin’s construction consists of four 

randomized functions: Setup, Extract, Encrypt and Decrypt. The Setup function takes a 

security parameter        and returns a set of system parameters, P, (which includes the 

finite message space M and the finite ciphertext space C) and the master key Km . The 

Extract function takes the P, Km and an arbitrary string            as input and returns a 

private key d for the given ID. The Encrypt function takes P, ID, and      and returns 

the ciphertext     . Finally, the Decrypt function takes P, c, and d as input and returns 

m. The expected use of these functions is shown in Figure 4.1 and must follow the 

standard consistency constraint: 

             (     )                        (      ) 

 

Figure 4.1: Identity-Based Encryption cryptologic protocol.  
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 Like many other pairing-based ciphers, identity-based encryption’s security is 

dependent on the “hardness” of the Bilinear Diffie-Hellman Problem and has been proven 

semantically secure under the Bilinear Diffie-Hellman assumption (Boneh & Franklin, 

2001). Additionally, Boneh and Franklin prove how the technique from Fujiaski and 

Okamoto (1999) can be used to convert their construct to provide a chosen ciphertext 

secure IBE system in the random oracle model. 

 Several cryptosystems have been built on the concept of IBE including the 

Attribute Based Encryption (ABE) scheme first introduced by Sahai and Waters (2005) 

as part of their Fuzzy Identity-Based Encryption cryptosystem (Sahai & Waters, 2005). 

ABE allows an entity to encrypt a document such that only users with a specific set of 

attributes may decrypt the document. For example, a hospital may wish to limit access to 

a document to employees with the set of attributes {“doctor”, “ethics-committee”, 

“staff”}. This is made possible through ABE by issuing a private key (their “identity”) to 

each employee composed partially of their set of assigned attributes in such a way that 

collusion between multiple employees does not grant a key containing a larger or 

combined set of attributes. Employees are then limited to decrypting only messages 

encrypted with some subset of their attributes. For the cloud, and other untrusted storage 

environments, ABE is a significant development as it allows for the enforcement of 

access policies via the encryption used on the document rather than the system holding 

the documents. Additionally, ABE ensures that documents are protected with the same 

access policies and same level of security both on and offline, offering the potential for 

documents to be moved seamlessly from an online storage environment (e.g. a cloud 

storage service) to an offline storage environment without compromising their security 

and still allowing access to users matching the set access policy. 
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 Recent research in ABE has led to several improved schemes which enhance the 

complexity possible in ABE access policies including; enabling a limited form of role 

based access control. Key-Policy Attribute-Based Encryption (KP-ABE) (Goyal, Pandey, 

Sahai, & Waters, 2006) enables attribute based policies to be embedded in the user’s 

private key, allowing them to decrypt documents encrypted with attributes matching their 

key’s policy. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) expands on ABE 

to add variable attributes (attributes which may be assigned a value) and access policies 

embedded in the cihpertext which support fuzzy Boolean operations including greater 

than, less than, less than or equals, and greater than or equals, as well as other Boolean 

statements (equals, x of set of Boolean statements are true, AND, OR, etc.). For example, 

one user may be assigned the attribute “room = 5020” corresponding to their office 

number, while another user “room = 4005” and a document may then be encrypted with 

the policy “room > 5000 AND room < 6000” to allow only users on the 5th floor 

(assuming room numbers start with a floor number) to decrypt the document.  Expanded 

descriptions of these cryptosystems and technical details are provided in the literature 

review in section 4.2. 

 

4.2 Attribute Based Encryption Related Research 
4.2.1 Fuzzy Identity-Based Encryption (Sahai & Waters, 2005) 

4.2.1.1 Summary 

 Unlike traditional IBE schemes which use a string of characters as a user’s ID (or 

pubic key), Fuzzy Identity-Based Encryption (FIBE) (Sahai & Waters, 2005)  views a 

user’s identity as a set of descriptive attributes. Users with an assigned a set of attributes 

which composes their “identity”, w, may decrypt a given ciphertext encrypted with the 
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public key w’ only if w and w’ are within a certain distance from each other in a set 

threshold. This threshold allows for an amount of error-tolerance that allows for less 

precise attributes (such as biometric data) to be used as a user’s identity. As with most 

IBE schemes, FIBE requires a central trusted authority assigned to generating and 

delegating secret keys to users based on a given public identity. 

 The following constructs are used in FIBE, where identities are restricted to a 

length of n (i.e. the number of attributes in an identity), e is the bilinear map for      

   where g is the generator of G, d is the threshold (how many components must be 

matched to perform decryption), N will be the set of attributes of size n in   
  created with 

a collision resistant hash function H, and      is the Lagrange coefficient for      
  and 

S is a set of elements in   , defined as: 

    ( )   ∏
   

   
             

 

 
                    (   )  

                           
             
                              
       (                    ) 
          

 
Equation 4.1: FIBE Setup function  
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Equation 4.2: FIBE KeyGeneration function 
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Equation 4.3: FIBE Encryption function 
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Equation 4.4: FIBE Decryption function 
 

 Sahai and Waters (2005) prove the security of their cryptosystem by showing that 

in the Selective-ID model the “hardness” of breaking their encryption reduces to that of 

the Bilinear Diffie-Hellman problem (See pages 469 to 472 of (Sahai & Waters, 2005) 

for their proof). 

 

4.2.1.2 Criticisms 

 While Sahai and Waters FIBE scheme provided an important step forward for 

identity and attribute based encryption, it lacks many of the features that would be 

required of an encryption scheme for the cloud. Generation and distribution of a user’s 

secret key and authentication of their identity is limited to a single trusted authority which 

imposes both scalability and trust issues. If the central authority or its private key should 

become compromised, the attacker would have the ability to decrypt any document in the 

system as well as create any identity for themselves (which could be problematic if the 
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system is used for creating signatures or proving a user’s identity). A central authority 

also significantly limits scalability in systems that require a large number of user keys 

generated (for example a system which creates a new user key every session or has keys 

set to expire at a regular interval). Copying the master private key to multiple systems 

will increase scalability (by distributing user secret key generation requests among them) 

at the cost of severely compromising security (if any of the multiple key generation 

systems are compromised the whole system is compromised as the same master key is 

used). 

 An additional complication with the security in FIBE, is the lack of a revocation 

mechanism. If a user’s secret key is compromised, there is no easy way of revoking their 

key or notifying users of the system that the user’s identity has been compromised. This 

is made worse by the fact that a user’s identity may not be easily changed (e.g. if 

biometric data is used) and would forever be compromised unless every key in the system 

is disregarded and a new master private key and set of secret user keys is created for 

every user. The use of biometric data as a public key (as suggested in the paper) is also 

worrisome. The FIBE scheme may only ensure that a user with a given biometric identity 

may possesses it’s corresponding secret key, however, it still discloses that biometric 

identity in the form of a public key which may affect the security of other systems that 

rely on the secrecy of such data that is unchangeable (as it is physically part of the user). 

 Another issue with FIBE is the lack of fine grained access control. FIBE offers 

only a simple d attributes out of n based policy for encrypting documents. In real life 

such a simplistic access policy cannot fully represent organizational security policies or 

conditional role based access control. For example, a hospital may wish to encrypt a 

health record such that a patient (to whom the record belongs), a doctor who is both an 

active employee of the hospital and has a current medical licenses, a lab technician with 
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recent certification and no one in a set of persons the patient has specified, have access. 

Unless an extremely large number of attributes is created (at least one for every patient 

and possible requirement) this sort of access policy is not possible in FIBE. While 

simplistic role based access control is possible with FIBE, where each role or permission 

is simply mapped to an attribute and documents are encrypted based roles which should 

have access to the file. More modern RBAC systems which have conditional or more 

complex mappings of permissions to roles or roles to users (for example a user may only 

activate one role at a time, SSD and DSD constraints or other conditions a user must pass 

before activating a role) are not possible with FIBE. 

 Finally FIBE uses a fixed value of d, the threshold in |w ∩ w’| > d (how many 

components in the identity must be matched to allow decryption), which limits the access 

policies that maybe used. The solution to this issues presented by Sahai and Waters is 

limited to creating multiple master private keys and sets of secret keys for each user or 

adding a very large amount of “dummy” attributes that would be assigned to every user 

in the system (thus vastly increasing the size of every user’s secret key and the time to 

decrypt and encrypt a given message). 

 

4.2.2 Attribute-Based Encryption for Fine-Grained Access Control of Encrypted Data 
(Goyal, Pandey, Sahai, & Waters, 2006) 

4.2.2.1 Summary 

 Key-Policy Attribute-Based Encryption (KP-ABE) (Goyal, Pandey, Sahai, & 

Waters, 2006) is an ABE scheme which embeds access control policies in the user’s key 

rather than incorporating them into the ciphertext during encryption. KP-ABE builds 

upon the attribute encryption applications of FIBE and replaces the simplistic “d of n 

attributes” threshold access policy with a tree access structure consisting of AND and OR 
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threshold gates as nodes, and leaves are associated with attributes. Threshold gates can be 

seen as equivalent to the threshold requirement from FIBE, where an OR node consists of 

a 1 of 2 threshold and an AND gate consists of a 2 of 2 threshold. Goyal, et al. (2006) 

defines a given access tree, τ, with root node r as being satisfied when: 

  ( )      

Where    is a subtree of τ at node x,    is the set of attributes a given ciphertext is 

encrypted with and   ( ) is computed recursively as follows: If x is a non-leaf node 

compute    ( ) for all children, x’ of x.   ( ) returns 1 if 1 of 2 children return 1 for an 

OR node or 2 of 2 children return 1 for an AND node. If x is a leaf node then   ( ) 

returns 1 if      . 

Goyal, et al. (2006) present the following constructions in their paper to enable 

key generation, encryption and decryption (which are used similarly to the constructions 

from FIBE). For the following functions, G is a bilinear group of prime order p, g is a 

generator of G, e is a bilinear map for        , k is the size of the groups G and Gt, 

     is the Lagrange coefficient (defined the same as in subsection 4.2.1.1), γ is the set of 

size n elements from   
  that represent the set of attributes for which a ciphertext is 

encrypted, and Setup is done in the same manner as in Equation 4.1 to produce a master 

public key, PubKey, containing (                  ), and a master private key, 

PrivKey, consisting of the value of y from       where      . 
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Equation 4.5: KP-ABE Encryption function. 
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Equation 4.6: KP-ABE KeyGeneration function. 
 

                   (   )  
“For each node x in the tree, set the degree dx of the polynomial qx to be one less 
than the threshold value kx of that node, that is, dx = kx − 1. Now for the root node 
r, set qr(0) = y and dr other points of the polynomial qr randomly to define it 
completely. For any other node x, set qx(0) = qparent(x) (index(x)) and choose dx 
other points randomly to completely define qx.” (Goyal, Pandey, Sahai, & Waters, 
2006) 
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Equation 4.7: KP-ABE Decryption function. 
 
 
             (      )  

                     
     ( ) 
          

  
 (    

  )

 (     )
 

      



132 
     

 
      

                               (      ) 
                          
            

   ∏   
     

 ( )      

    

                 ( )      
       ( )  

     
      

   
 
Equation 4.8: KP-ABE recursive DecryptNode function. 
 
 
 Goyal, et al. (2006) also presents a means of delegating user secret keys which 

was absent from FIBE. This allows users to delegate further secret keys off their current 

key based on any access tree more restrictive than the one used in the parent key. This 

allows users to grant access to a subset of documents they may decrypt to others without 

having to share their own secret key or their full access tree. This process is detailed in 

section 6 of Goyal, et, al, (2006) and involves several operations for adding new 

threshold gates, manipulating existing threshold gates and re-randomizing the obtained 

key. 

 As with FIBE, the security of the KP-ABE scheme is proven via the hardness of 

the Bilinear Diffie-Hellman problem (proof maybe found in section 4.3 of Goyal, et al. 

(2006)). Goyal, et al. also detail how changes to their encryption and decryption functions 

may allow for CCA-Security to be achieved. 

 
 
4.2.2.2 Criticisms 

 KP-ABE provides a needed improvement to FIBE by extending the simple access 

policy structure to a policy tree which may include both AND and OR threshold gates. 

This allows for more complex and realistic policies to be implemented which more 
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closely resemble organizational policies in the real world. However, as KP-ABE is 

closely based on FIBE it shares many of the criticisms noted of FIBE. A single central 

trusted authority is still required for user key creation, which acts as both a scalability and 

trust bottle neck. Again there is no easy means of revocation for user keys; in fact the 

issue is made worse by enabling a user to further delegate their keys (a compromised key 

could make an unlimited number of new keys for the same or more restrictive access 

policy). 

 Having the access policy embedded in the key rather than the ciphertext also has 

some potential issues. Encrypting documents with a set of attributes may inadvertently 

leak potentially sensitive information about the document. For example, if a hospital 

wished to encrypt some sensitive medical document about a patient’s chemotherapy 

treatment such that only that patient, doctors belonging to the hospital staff, or a 

technician/nurse who gives the chemotherapy treatments, they may encrypt the document 

with the following set of attributes {“staff”, “patient:john doe”, “doctor”, 

“technician:chemo”}. While such attributes maybe necessary to enforce the policies in 

the user keys (for example a chemo technician in the hospital may have the policy 

amounting to “technician:chemo AND staff”, a doctor may have “staff AND doctor”, and 

the patient John Doe may have “patient:john doe”) it also leaks the sensitive information 

that the document details records about John Doe involving chemotherapy (or at least 

involving a chemotherapy technician).  

 Additionally, the key policy based access policy also has potential issues when 

designing the access policies for a system. During the encryption of documents, the 

encryptor is required to have a good understanding of all policies currently assigned to 

users to determine the set of attributes that should be used. Even assuming the encryptor 

has a list of all attributes used in all key policies, they are left adding all possible 
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attributes that may be relevant and hoping for the best. In the alterative, a ciphertext 

policy based system, the encryptor would set the access policy on each message it 

encrypts and is only left trusting that the authority has correctly assigned attributes to 

users. It stands to reason that the encryptor would have a better understanding of what 

access policy is needed at the time of encryption than the key generator, possibly months, 

if not years, in advance. 

 Finally, while KP-ABE greatly increases the possible complexity of the access 

policies used over FIBE, it is still not a complete solution. KP-ABE introduces the use of 

AND and OR gates, allowing policies such as “is_teacher OR (is_student AND has_ 

departmental_approval_to_use_lab)” but it is still incapable of policies that require 

variable attributes (attributes that may be assigned a value rather than a user merely 

having them) and compressions between them, for example “is_teacher OR (is_student 

AND year_level = 4 AND credits > 20)”. Variable attributes and the Boolean 

comparisons between them allow for even more complex policies which come even 

closer to modeling policies of real world organizations.  

 

4.2.3 Ciphertext-policy attribute-based encryption (Bethencourt, Sahai, & Waters, 2007) 

4.2.3.1 Summary 

 Ciphertext-policy attribute-based encryption (CP-ABE) (Bethencourt, Sahai, & 

Waters, 2007) offers a new encryption scheme which continues the work on attribute 

based encryption to enable a complex tree based access policy to be embedded in the 

ciphertext rather than the key as with KP-ABE. CP-ABE also introduces “variable 

attributes” which use a set of traditional attributes to represent a value that can be 

evaluated with more complex operations (including >, <, <. > and =). This is 
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accomplished as follows; for a given decimal integer between 0 and some system defined 

maximum, first, the value is converted into binary and then an attribute is created for 

each bit. For example, if the variable attribute “access_level” was to be assigned to a user 

for the value 5, the following traditional attributes would be assigned: 

access_level_flexint_0xxx 
access_level_flexint_x1xx 
access_level_flexint_xx0x 
access_level_flexint_xxx1 

 

The value of each traditional attribute may then be evaluated in an access policy similarly 

to KP-ABE. For example, “> 5” could be enforced with a policy such as “access_level  

_flexint_1xxx OR (access_level _flexint_x1xx AND (access_level _flexint_xx1x OR 

access_level _flexint_xxx1))” which creates the following access tree: 

 

 Access trees are created similarly to those in KP-ABE, where each non-leaf node 

consists of a threshold gate requiring 1 of n children to pass (for an OR gate) or n of n 

children to pass (for an AND gate) and leaf nodes of the tree represent a required 

attribute. Bethencourt, et al. (2007) define the following functions on the tree; parent(x) 

denotes the parent of node x, att(x) returns the attribute associated with the leaf node x, 

Figure 4.2: CP-ABE policy tree f or access_level > 5 
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and index(x) returns the index of the leaf node x (leaf nodes are assigned an index, 1 .. n, 

where n is the number of children the parent node of x contains). Access trees containing 

variable attributes are parsed and converted to a traditional access tree as described in the 

last paragraph. 

 Bethencourt, et al. (2007) present their constructions for setup, encryption, 

decryption and user key generation which have the same use and function as the other 

ABE schemes presented. For the following functions; G0 and G1 are the groups in the 

bilinear map e such that           , k is the size of the groups, g is the generator of 

G0,       is the Lagrange coefficient (defined the same as in subsection 4.2.1.1), H is a 

collision resistant hash function             which maps any string to a “random” 

group element, τ is the access tree for which a ciphertext is being encrypted and τr is the 

root node of that tree and S is the set of attributes for which a user key is created. 
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Equation 4.9: Setup Function 
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“Starting with the root node [τr] the algorithm sets qr (0) = s. Then, it chooses dr 
other points of the polynomial qr randomly to define it completely. For any other 
node x, it sets qx(0) = qparent(x)(index(x)) and chooses dx other points randomly to 
completely define qx.” (Bethencourt, Sahai, & Waters, 2007). 
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Equation 4.11: KeyGen Function 
 
 
         (        )  
                       (             ( )) 
                   

                     
 ̃

 (   )

 

 

              
                            
 
Equation 4.12: Decryption Function 
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Equation 4.13:  Recursive DecryptNode Function 
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 As with KP-ABE, Bethencourt, et al. (2007) provide a means of delegating new 

user keys from a subset of attributes in an existing user key. Like KP-ABE, the newly 

delegated key must be as or more restrictive than the parent key.  This is made possible 

by the value of f in the master public key: 
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Equation 4.14: Delegate Function 
 

 Bethencourt, et al. (2007) prove the security of their scheme under the generic 

bilinear group model (Boneh, Boyen, & Goh, 2005) and is shown in appendix A of 

Bethencourt, et al. (2007). As with Boneh and Franklin (2007)’s IBE scheme, CP-ABE 

can be efficiently extended to be secure against a chosen ciphertext attack by applying the 

technique from Fujisaki and Okamoto (1999). 

 
4.2.3.2 Criticisms 

 As with KP-ABE and FIBE, CP-ABE shares the same issues from using a single 

central authority for user key generation (the central authority being both a scalability and 

trust bottle neck). Also, like KP-ABE, CP-ABE can potentially expose some information 

about the contents of the document being decrypted; however, this is somewhat less than 

in the case of KP-ABE. Rather than a set of attributes which potentially describes the 

contents of the message, CP-ABE encrypts the message with an access tree that holds 
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potentially less sensitive information in some cases. For example, the case used in section 

4.2.2.2; a hospital wishing to encrypt some sensitive medical document about a patient’s 

chemotherapy treatment such that only doctors belonging to the hospital staff or a 

technician/nurse who gives the chemotherapy treatments, may encrypt the document with 

the following access policy: 

 “ (staff AND (doctor OR (technician AND department > 120 AND department < 
125))) OR (patient AND user_id = 304831)” 
 

In this case only the patient’s user_id and the fact that technicians from departments 120 

to 124 may access the document is disclosed. In some cases this may still be too much 

information and it may be possible to map the user_id back to a full name.  

 Another improvement on KP-ABE and FIBE is the possibility of User Key 

revocation which is made possible in CP-ABE through the use of variable attributes. A 

user key may be created with an expiry date (e.g. “expire = 1278176400” the unix time 

stamp for July 3rd, 2010 at noon) and files may be encrypted with an access tree structure 

containing a limit on the expiry date (e.g. “expire > 1310187600”, time stamp for July 9th 

2011 at midnight). If a CP-ABE based system is made to set this limit to the current date 

and time of the file’s encryption and the key issuer creates user keys with an expiry 

attribute at a set time in the future, it would limit users of the system to only decrypting 

documents created before the expiry date. After the expiry date, a user would be forced to 

obtain a new key or be unable to access any future documents in the system.  

 While CP-ABE adds new operations to the access tree, including greater than, less 

than, greater than or equals, less than or equals, and equals, it does not provide a not 

equals operation. Such an operation may seem unnecessary, as an attribute in a user’s key 

may simply be omitted to limit their access to a file. However, there are cases where such 

functionality is required. For example, many privacy laws (as detailed in section 1.2) 
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require that a person be able to limit access to who has access to their sensitive 

information (e.g. a patient may wish to prevent a particular doctor from accessing their 

health record which he/she would otherwise have access to). A not equals operation 

would enable this and allow for the creation of access policies such as “is_staff AND 

is_doctor AND user_id ≠ 81037”.  

 Finally, the security of CP-ABE has only been proven with the generic group 

model. Meaning that if any security vulnerability exists in the scheme, it would have to 

exploit the cryptographic hash functions used or a mathematical property of elliptic curve 

groups used in the scheme (see appendix A of Bethencourt, et al. (2007) for more 

details). Recent work in ciphertext policy based ABE has resulted in CP-ABE schemes 

proven secure under more common assumptions (Waters, 2011) without significantly 

impacting the efficiency of the system.  

 

4.2.4 Self-Protecting Electronic Medical Records Using Attribute-Based Encryption 
(Akinyele, Lehmann, Green, Pagano, Peterson, & Rubin, 2010) 

4.2.4.1 Summary 

 J. Akinyele et al. (2010) present one of the first attempts at using CP-ABE for 

protecting electronic health records in their 2010 technical report “Self- Protecting 

Electronic Medical Records Using Attribute-Based Encryption”. Their approach uses the 

somewhat naive method of directly applying an existing KP-ABE or CP-ABE scheme to 

XML formatted health records (specifically the CCR and CCD format). The novel 

contribution comes in the form of automated policy generation and visualization of EHRs 

for a KP-ABE system and extending the CCR and CCD formats to support ABE based 

encryption. J. Akinyele et al.’s (2010) policy engine is initialized with configuration 

options determining the ABE scheme to be used and a rule set dictating a high level view 
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of the encryption policies to be applied to records based on the contents. As records are 

passed to the engine, ABE policies are chosen based on the contents of each node in the 

XML record and encrypted with the specified scheme if the records’ contents are deemed 

sensitive.  

 User key generation and assignment is done through an entity entitled the “ABE 

master controller”. The ABE master controller is essentially an offline version of the user 

key generator required by most ABE schemes, in which an authorized user manually 

generates and distributes keys to hospital patients and staff. In cases where the rule set 

used by the policy engine requires both KP-ABE and CP-ABE encryption policies, 

multiple keys may be distributed to each user by the ABE master controller. 

 J. Akinyele et al. (2010) also detail how their system may be used with a mobile 

platform for decrypting and using ABE encrypted CCR/CCD health records. A python 

based implementation of their policy engine and an implementation of their iPhone 

“iHealthEMR” client is presented. Finally, it is suggested that this system could be used 

with cloud based services such as Google Health for safe online record storage.  
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Figure 4.3: Diagram of components from (Akinyele, Lehmann, Green, Pagano, Peterson, & Rubin, 
2010). 
 

4.2.4.2 Criticisms 

 While the ABE EHR system presented by J. Akinyele et al. (2010) offers a good 

solution to automatic ABE policy creation, it falls short in many other areas. Most 

notably, the offline ABE master control imposes significant limitations on the system. As 

with other ABE schemes that rely on a single trusted authority for user key generation, J. 

Akinyele et al.’s (2010) system suffers from the significant bottle neck of constraining 

key generation to one server/system. Keeping the master controller offline would seem to 

negate trust issues with a single entity controlling the master key (as the report suggests) 

however, the long term issues of this decision may present a larger security vulnerability. 

Since key distribution is performed primarily offline, requiring the patient or staff 

member to be given their key in person, it quickly becomes unreasonable to frequently 

issue new keys to users of the system, leading to longer (if any) key expiry times. This 

means that in the event that a user key is compromised, it could take a significant amount 
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of time or effort to revoke it. As it is expected that user keys will be stored on mobile 

devices in this system that can be easily lost or stolen, it seems likely that it would be 

more probable that a user key could become compromised than a secured ABE master 

controller system. 

Additionally, an offline ABE master controller also constrains the usefulness of 

the system. It seems unlikely that all patients would be able to meet with the person in 

charge of the ABE master controller in person or have the necessary knowledge to utilize 

the raw key. In an online system, a patient could download a client and supply personal 

details to be authorized for the creation and delegation of a user key over a secure 

channel (such as SSL). Such systems already exist and are used frequently which store 

and process highly confidential information over the internet such as online banking and 

tax filing software, so it would seem reasonable that with the proper security measures 

any risk an online system possesses could be minimized. Furthermore, J. Akinyele et al.’s 

(2010) system lacks any means for outside health providers to share encrypted health 

records. In many cases doctors’ offices, hospitals, specialists, researchers and outside labs 

need to communicate sensitive health information. The presented system has no means to 

enable this without in-person key delegation and is largely localized to a single 

institution. 

While an effort is made to secure the ABE master controller from compromise by 

limiting it to an offline system, little thought is given to the online policy engine system. 

In many ways the policy engine is just as vulnerable to tampering as all health records are 

processed, encrypted and sent from this system. An attacker who obtained access to the 

policy engine could easily change the rules set being used, to create a “back door” 

attribute requirement (e.g. “OR user_id = 12345” where 12345 is the attackers user_id) in 

all future ciphertexts. Additionally, an attacker with access to the policy engine system 
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could simply eavesdrop on all records sent to the policy engine as they are sent in their 

plain text CCR/CCD format. In effect, the potential vulnerabilities of a compromised 

ABE master controller are simply shifted to the policy engine system, further 

undermining the advantage of placing the controller offline. 

 Finally, the suggested use of GoogleHealth and other cloud services falls short as 

it would amount to being solely an online storage system with no processing or viewing 

capabilities when the records are encrypted and lose all privacy protections when the 

records are sent unencrypted. Even when the records are stored fully encrypted on the 

cloud there is still the potential of unintentional information leakage depending on the 

attributes or policy used to encrypt the record. As shown with KP-ABE and CP-ABE (in 

sections 4.2.3.2 and 4.2.2.2), attributes and access trees embedded in the cihpertext may 

reveal some information about the contents of the file (e.g. if the name of the patient was 

used as an attribute to encrypt the file in KP-ABE and attribute names were public). 

 

4.3 Distributed Multi-Authority Ciphertext-Policy Shared 
Attribute-Based Encryption (DMACPSABE) 
4.3.1 Introduction 

 We present a distributed multi-authority ciphertext-policy shared attribute-based 

encryption (DMACPSABE) scheme built on the work of Bethencourt, et al.’s (2007) 

Ciphertext-policy Attribute-Based Encryption (CP-ABE). Our scheme adds support for 

multiple distributed attribute authorities, capable of generating user keys, which share 

some given subset of attributes for which they are authorized. We introduce a new 

hierarchal authorization data structure (section 4.3.2.1) for attribute authorities which 

dictate the private and shared set of constant and variable attributes a given authority will 

have permission to delegate to users. A new not equals operation (section 4.3.2.6) for CP-
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ABE is detailed and its implications described, performance improvements (section 

4.4.2) are discussed and tested, and a means for creating policies based on a user’s origin 

(to which attribute authority they belong) is detailed (section 4.3.2.7). Additionally, our 

scheme provides a natural layer of anonymization for the attributes used in the access 

trees embedded in the ciphertext (an issue with traditional CP-ABE and KP-ABE) 

(section 4.3.2.8). 

 We present an implementation of our scheme (section 4.4.1) and evaluate its 

performance against Bethencourt, et al.’s (2007) CP-ABE implementation. A security 

evaluation and discussion is also presented in section 4.4.4. 

 

4.3.2 Constructions 

Our DMACPSABE encryption scheme extends the SETUP (Equation 4.9), 

ENCRYPT (Equation 4.10), DECRYPT (Equation 4.12), DELEGATE (Equation 4.14) 

and KEYGEN (Equation 4.11) functions from J. Bethencourt, et al.’s (2007) Ciphertext-

policy attribute-based encryption model to enable multi-authority user key assignment 

and delegation. Each user authority is delegated a set of attributes for which it has 

authority over (power to further delegate the attributes to users) from an offline master 

authority. The master authority is only required during the initial creation of a new user 

authority or attribute. 

The following sub-sections outline the extensions to each function. As with the J. 

Bethencourt, et al.’s (2007) constructions presented in 4.2.3,   is a bilinear group of 

prime order p and size k for which g is the generator of    and              denotes 

the bilinear map. 
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4.3.2.1 Authority Hierarchy 

 

Unlike CP-ABE’s single master authority model which places a single entity 

responsible for user attribute delegation and key creation, our scheme allows for multiple 

authorities to be created and assigned a subset of attributes for which they are granted the 

power to further delegate to users. Which subset of attributes an authority is granted is 

determined by the authority hierarchy. The authority hierarchy is a logical layout of all 

attribute authorities in the system and their parent/child relationships to each other. A 

child authority is granted all attributes of its parent and ancestors up to the root authority. 

Thus the root authority contains the subset of attributes shared by all authorities in the 

hierarchy. An example hierarchy is shown in Figure 4.4. 

Figure 4.4: Example authority hierarchy with logical authorities root, and auth2, and 
real authorities auth1, auth3 .. auth6. 
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The authority hierarchy data structure can be seen as a tree (AH) with root node 

root(AH) representing the root authority. Decedents of the root node represent authorities 

authorized to assign both attributes assigned to their ancestors (up to the root 

authority/node) and attributes from a private set available only to that authority and it’s 

decedents in the hierarchy. Each node, x, in the hierarchy tree contains a unique name 

referred to as a domain (domain(x)), the number of constant attributes (constants(x)) 

assigned to the authority, the number of variable attributes (variables(x)) assigned to the 

authority, the parent of the authority (parent(x)) and a type of “real” or “logical” 

(type(x)). Nodes of type “logical” are considered to only be place holders for attributes 

shared among their decedents. A logical authority is not granted an authority key and 

exists only in the representation of the hierarchy AS. For example, the authority “root” in 

Figure 4.4 will cause the creation of 100 constant attributes and 100 variable attributes 

which will be shared with all descendants but will not be issued an authority key. 

Authority “auth1” will be assigned 10 constant and 50 variable attributes and will inherit 

all 200 attributes from the root authority. Similar “auth3” and “auth4” will be assigned 

their designated number of attributes and inherit all attributes from “auth1” (their parent) 

and the root authority (auth1’s parent). Like the root authority, auth2 is logical and will 

not be granted an authority key but will share it’s attributes with its descendants auth5 

and auth6 (which also inherit attributes from the root authority via auth2). 

  

4.3.2.2 Setup 

 Our setup function (Equation 4.15) takes the authority hierarchy tree (AH) and 

begins as CP-ABE does, using the same master key (MK) and public (PK) definitions 

(only differing in excluding f from PK and referring to it as the delegation key) but adds 

the generation of the set of attribute authority keys (ASK) based on the attribute set 
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returned by the AuthAttSet function (Equation 4.16) for each authority in the given 

hierarchy. As with Equation 4.9,   is a chosen bilinear group of prime order p and     

are randomly generated integers in   . We define auth_index(x) as a function which 

returns an arbitrary but always unique integer greater than 0 and less than INT_MAX for 

a given authority hierarchy node x. 
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Equation 4.15: DMACPSABE Setup Function 
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Equation 4.16: Recursive DMACPSABE AuthAttSet Function 
 
 
 In addition to creating the master and public keys, the Setup function calls the 

recursive function AuthAttSet (Equation 4.16) to obtain the set (AS) containing sets for 
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each authority containing the attributes to be assigned to the respective authority. An 

authority’s attribute set is determined by recursively descending the authority hierarchy 

and creating a set of attribute names for each node (with attribute sets for descendants of 

that node being unioned with the parent node). Next the auth_key attribute is added 

(explained further in section 4.3.2.6,  4.3.2.7, and 4.3.2.9), the variable attributes are 

converted to constant attributes (via ConvertAtts(S)), the set is added to AS, and 

AuthAttSet is called on all children of the node. With the set of attribute sets complete, the 

Setup function is able to compute the set of secret keys (ASK) for each authority using the 

KEYGEN function. 

As attributes may not be initially assigned a particular meaning or purpose in the 

system, a generic attribute name is created which may be later mapped to a more 

appropriate human readable name (see section 4.3.2.8). Constant attribute names are 

created by appending the authority’s domain, the string “_c” and a number (1 through 

constants(x) inclusively). Variable attributes are named similarly (by appending the 

domain, string “_v” and a number) but are also given the value of 0 and INT_MAX 

(INT_MAX being equal to 2b - 1 and b being the number of bits allowed in the attribute 

values). 

To satisfy the policy tree during decryption, variable attributes are split into 

multiple constant attributes each representing a possible value of a single bit of the 

variable’s value (see Table 4.1). Thus assigning the same variable attribute to an 

authority with a value of 0 and INT_MAX is equivalent to assigning it the constant 

variable’s for every possible value of a bit, making up the variable attribute’s value. This 

allows an authority to assign any value for a variable attribute to a user (by delegating the 

subset of constant attributes which make up the correct value in bits for the delegated 

value) while only having to hold a key containing b * 2 constant attributes (where b is the 
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number of bits in a variable’s value). An example of this can be seen in Table 4.1 where 

an authority with the variable attributes “auth1_v0 = 0” and “auth1_v0 = 15” also 

contains the subset of constant attributes for “auth1_v0 = 10”. 

 
 
Variable Attributes Constant Attributes 
auth1_v0 = 10 auth1_v0_ flexint_1xxx 

auth1_v0_ flexint_x0xx 
auth1_v0_ flexint_xx1x 
auth1_v0_ flexint_xxx0 

auth1_v0 = 0 
auth1_v0 = 15 

auth1_v0_ flexint_1xxx 
auth1_v0_ flexint_0xxx 
auth1_v0_ flexint_x0xx 
auth1_v0_ flexint_x1xx 
auth1_v0_ flexint_xx1x 
auth1_v0_ flexint_xx0x 
auth1_v0_ flexint_xxx0 
auth1_v0_ flexint_xxx1 

Table 4.1: Table showing the equivalent constant attributes for a given set of variable attributes. 
Assuming INT_MAX of 15 (i.e. 4 bit variable values). 
 
 
4.3.2.3 User Keygen 

 Unlike in CP-ABE, a user’s key is not generated via the KEYGEN function but 

delegated off an attribute authority’s key. This process (detailed in Equation 4.17, where 

function H is a hash function,  ̃, and  ̃  are random numbers and US is the set of 

attributes to be assigned to the user) is the same as the DELEGATE function from CP-

ABE but includes the delegation key, f, since it is no longer included in the public key 

due to the changes in the Setup function. Also, unlike attribute delegation in CP-ABE, 

where a key owner may only delegate the value of an attribute variable for which they 

were assigned, an attribute authority is able to assign any value of for an assigned 

variable attribute. This is made possible due to the way variable attributes are assigned in 

our Setup function and explained at the end of section 4.3.2.2 (i.e. via the attribute 
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authority being assigned constant attributes for all possible values of bits in a variable 

attribute’s value). 
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Equation 4.17: DMACPSABE UserKeyGen Function 
 

Further delegation of attributes at the user level is controlled by limiting access to 

the delegation key. A user with the delegation key may further delegate their attributes 

into a new key using the same UserKeyGen function with their key and a subset of 

attributes from the set they were assigned, but may never add more attributes, change 

attribute values or combine the attributes with another users (the security and source of 

this protection is discussed in section 4.4.4). Allowing users to further delegate their 

attributes is no more insecure than the possibility of users sharing a key or the 

information which it decrypts but has the advantage of enabling users to share only parts 

of their key (some subset of their assigned attributes) when necessary. 

 

4.3.2.4 Encryption and Decryption 

 Encryption and decryption proceed the same as in CP-ABE but with a key 

difference from the CP-ABE implementation. As one of the performance enhancements 

presented in the CP-ABE implementation (Bethencourt, Sahai, & Waters, 2007), an 

additional constant attribute is added for each variable attribute containing the decimal 

value of the variable. For example, for the variable attribute “auth1_v0 = 10” the constant 
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attribute “auth1_v0_10” would be added. This allows for a performance increase when 

the policy tree contains an equals requirement on a variable attribute (e.g. requiring that 

auth1_v0 being equal to 10). As this would require each authority being assigned a 

constant attribute for each possible value from 0 to INT_MAX (adding significantly to 

the time to generate and the size of an authority key) we have omitted this enhancement 

and a policy tree is created which requires all attributes that make up the value in binary 

to be present (e.g. requiring that a key contains attributes for auth_flexint_1xxx, 

auth_flexint_x0xx, flexint_xx1x and flexint_xxx0 rather than just the attribute 

auth1_v0_10 being present). 

 

4.3.2.5 Adding/Removing Authorities and Attribute Sets 

 New attribute authorities may be added to the hierarchy simply by using the 

master authority to create the new attribute authority key containing the appropriate set of 

constant and variable attributes. It is expected that this operation would be performed 

offline manually and the new key would be installed on the new attribute authority 

through a secure channel. Similarly, adding attributes or making additive changes to the 

authority hierarchy may be performed by generating new attribute authority keys for the 

affected authorities. As this is a costly operation (and time consuming if done manually 

and offline) it is recommended that a large set of attributes be initially assigned to each 

authority to avoid the need to frequently create new attributes. If the changes to an 

authority’s key are purely additive (only adding new attributes and not remove any 

existing attributes in the key) all current user keys and encrypted documents are still fully 

functional and backwards compatible with the new authority key. 

 In an ideal environment, removing attributes from an authority would be done in a 

similar manner (by issuing a new key) and removing an authority would simply involve 



153 
shutting it down. However, removing attributes and authorities poses more of a challenge 

when the attribute authority may not be trusted. In such a case there is no simple way to 

guarantee that the authority will discard the old key and only use the new attribute set it is 

assigned. We do however, provide a means for revoking the old authority key (as 

explained in 4.3.2.9) for all future encrypted documents and a new authority key and 

identity (domain name) may be assigned if we wish to only replace the set of attributes. 

Revoking the authority’s key has the side effect of invalidating all user keys for which it 

delegated for future documents and is reliant on clients performing the encrypting having 

access to an updated revocation list. 

 

4.3.2.6 Not Equals 

 As detailed in section 4.2.3.2, the CP-ABE scheme presented by Bethencourt, et 

al. (2007) lacks a not equals operation. Such an operation is important for at least two 

cases; the first being excluding a particular user based on an attribute that most or all 

users possess some value for. For example if we assign every user in the system the 

variable attribute “user_id” for some unique value to that user (e.g. “user_id = 4727236”), 

not equals would then allow us to exclude a particular user from decrypting a file by 

creating an access policy such as “user_id ≠ 9833344”. This is important, as many 

privacy laws require that a person be able to exclude a specified person form viewing 

their personal information stored by an organization. The second case is for using the 

operation in user and authority key revocation. As with the first case, a policy like 

“user_id ≠ 9833344” could be added to all encrypted documents to block a known-to-be-

compromised key from accessing the file. Similarly, a statement like “auth_key ≠ 2” 

could be used to revoke access to a whole authority’s user base in the case that the given 

authority becomes compromised. 
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 For our proposes we may define “not equals” as “equal to any valid value but”, 

meaning that a user must both have the given variable attribute and it must not be equal 

to the given value to pass the access policy (users missing the attribute completely would 

also be rejected). We may construct such an access tree as follows (for the example of 

“user_id ≠ 4” and an INT_MAX of 15): 

 

That is essentially by converting the value to binary, “0100”, inverting the 1s and 0s, 

“1011”, and requiring the attribute for each bit. E.g. “1 of (user_id_flexint_1xxx, 

user_id_flexint_x0xx, user_id_flexint_xx1x, user_id_flexint_xxx1)”. 

 

4.3.2.7 User Origin 

 Our scheme provides a means of creating access policies based on a given user’s 

origin (in this case to which attribute authority they belong) via the “auth_key” attribute 

added to every authority key in the AuthAttSet function (Equation 4.16). Every authority 

in the hierarchy is assigned a unique value of auth_key during authority key creation. It is 

expected that each attribute authority includes this attribute in each user’s attribute set. 

However, even if a dishonest authority or user (via delegation of a subset of their key) 

omitted the attribute they would still fail to pass access policies requiring or excluding a 

given auth_key value (as the not equals operation requires the attribute be present and 

have at least some value). 

Figure 4.5: Access tree for user_id ≠ 4 
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As attribute authorities likely represent different institutions or departments in the 

system, this feature is useful for limiting access to or from a given institution/department 

when all other required attributes are shared and no existing attribute performs a similar 

role. Additionally, the “auth_key” attribute is used as part of our revocation system for 

revoking compromised authority keys (see section 4.3.2.9). 

 

4.3.2.8 Human Readable Attributes  

 Unlike traditional CP-ABE and KP-ABE schemes which use a hash function to 

map descriptive attribute names to attributes, our scheme delegates sets of attributes 

before their purpose is known. The result is somewhat obscured attribute 

names/identifiers being assigned to users and used in access trees such as “auth1_v1” or 

“root_c5”. This actually may be seen as a security feature as it adds a level of anonymity 

to attributes and helps prevent the information leakage possible in CP-ABE and KP-ABE. 

However, this also presents a potential problem for the encryptors of documents as they 

lack the details to determine which attributes to use in their policy. 

 The following are several potential solutions to this issue which provide, varying 

levels of attribute anonymity: 

 

Public Mapping of Attribute Names: 

 In this case an authority keeps an updated map of attribute names to identifiers 

and publicly publishes it. Users of the system would download a copy of the map 

periodically (possibly with each key request) and use it for creating access trees when 

encrypting documents. This case would provide no attribute anonymity but would easily 

allow for creating encrypted messages. 
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Private Mapping of Attribute Names: 

  In this case an authority keeps an updated map of attribute names to identifiers but 

would only provide it to users who are granted the right to create new documents in the 

system. Users only re-encrypting documents to make modifications would only need to 

use the same access tree as for which the document was encrypted (which is embedded in 

the ciphertext and no knowledge of the attributes is needed to use it). This case would 

provide attribute anonymity so long as the subset of users who may add documents can 

be trusted. 

 

Automatic Policy Generation 

 In this case, a policy engine such as that presented by Akinyele, et al. (2010) is 

used to automate policy creation during document encryption. Such an engine would be 

initialized with a rule set containing the high level institutional policies and raw 

anonymized attribute identifiers and create access tree policies based on the contents of 

the record being encrypted. This case would help ensure the anonymity of attributes as 

well as greatly simplify access tree creation, so long as a proper and reliable rule set 

could be created. 

Each attribute authority in the system and the organization/ institution/department 

it represents may independently choose to implement a different method which best 

matches their requirements as no one method of attribute name mapping is required to be 

imposed on all authorities.  
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4.3.2.9 Revocation and Expiration 

User Key Revocation and Expiration 

 As with the CP-ABE scheme presented by Bethencourt, et al. (2007), user keys 

may be set to expire by including a variable attribute, an expiry date and ensuring that all 

encrypted documents contain a policy requiring that attribute to be greater than the 

current date. This would effectively limit expired user keys to decrypting documents 

encrypted before the key expired (which may already have been decrypted/compromised 

by the user). Revoking the user key then becomes simply a case of not renewing the key. 

Additionally in cases where users have no need to view documents past a set date, a 

lower limit may be placed on the expiry attribute to limit access to old documents. 

 As our scheme adds a not equals operation we are also given the option of 

revoking access to a user by excluding an attribute value unique to that user. For 

example, if all users are given a unique value for the variable attribute “user_id” one may 

simply exclude a given user by adding a policy such as “user_id ≠ 123456” to deny a user 

with the id 123456 the ability to decrypt the document. Even if the user removed the 

“user_id” attribute from their key, they would still fail to pass the access policy due to the 

way not equals is defined (see section 4.3.2.6). 

 

Attribute Authority Revocation and Expiration 

 The addition of the “auth_key” attribute in AuthAttSet function (Equation 4.16) 

allows us to deny access to users whose key was generated by a set authority (i.e. their 

origin, see section 4.3.2.7) as we could an individual user via a “user_id” attribute.  If an 

attribute authority were to become compromised, a notice could be posted in a public 

revocation list and future documents could be encrypted with the requirement that 

“auth_key ≠ 5” for example, if the authority with an auth_index of 5was compromised. 
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This would effectively prevent any user from that authority from decrypting future 

documents. 

 As with user keys, attribute authority keys could also be created with a set expiry 

attribute which it would in turn delegate on to its users. However, unlike the user key 

expiry date, which maybe set to only days or hours in the future an authority key would 

have to be set to expire significantly longer in the future (possibly months or a year) as 

the process for creating authority keys is more costly and involves some level of manual 

intervention by a system administrator.   

 

4.3.3 Protocol 

 The following sub-sections outline the cytological protocol and processes 

involved in the setup of the master authority (labelled Trent), distribution of authority 

keys (to attribute authorities labelled auth1, auth2, auth3 and auth4), distribution of user 

keys (to users labelled Alice and Bob) and message encryption/decryption. The same 

authority hierarchy shown in Figure 4.4 is assumed to be used in all given examples. 

 

4.3.3.1 Master Initialization 

Trent (the master authority) creates an authority hierarchy containing all attribute 

authorities (in this case auth1, auth2, auth3, and auth4), the initial number of constant and 

variable attributes for each authority and the parent/child relations between each. In this 

case Trent creates the hierarchy (AH) from Figure 4.4 and assigns 1 variable and 1 

constant attribute to each node which results in the following authority attribute sets for  
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Trent proceeds to create the public key (PK), master key (MK), delegation key (f) and set 

of authority keys (ASK) by running the Setup function (Equation 4.15) with AH: 

                 (  ) 

  Trent publishes PK publicly and stores MK offline in a secure location (only 

needed for further authority and attribute creation). Trent sends each real authority in the 

hierarchy their respective authority key ASKi and the delegation key f via a secure 

channel (e.g. SSL tunnel, in person, via another secure communication system). 

 

4.3.3.2 Authority User Key Delegation 

 Attribute authorities auth1, auth3, auth4, auth5, and auth6 receive ASKi and f from 

Trent via the secure channel. Bob, a user of authority auth1, and Alice, a user of authority 

auth6, are delegated user keys as follows: 

       

                 (                   ) 

       

                   (                     ) 

 

 For this case we will assume the following attribute sets are assigned to each user: 

                                                     

                                                              

 

 auth1 and auth6 responds to Bob and Alice’s request by sending their respective 

user keys, USKBob and USKAlice, over the same secure channel. 
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4.3.3.3 Encryption 

 A person (here after referred to as Charlie) wishing to send a message, M, to any 

user who matches a given policy tree, τ, first obtains the public key of the master 

authority, PK, and creates a policy tree based on a boolean statement involving constant 

and variable attributes. For example Charlie may wish to create a policy tree to only 

allow users who have a value for the variable attribute root_v1 greater than or equal to 5: 

           

Which expands to the following boolean statement using constant variables: 

root_v1_flexint_1xxx OR (root_v1_flexint_x1xx AND (root_v1_flexint_xx1x OR 
root_v1_flexint_xxx1)) 

 

For which he creates the following policy tree: 

                               

Figure 4.6: Policy tree for root_v1 ≥ 5. 
 

and precedes to compute the cypher text, CT, using the same encryption function from 

Bethencourt, et al. (2007): 

          (      ) 
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Charlie may now transmit CT to the intended users (in this case Alice and Bob) over an 

unsecure open channel or even publish the cypher text publicly. 

 

4.3.3.4 Decryption 

 Users Alice, Bob and eavesdropping user Eve who contains the attribute set: 

                                                   

obtain CT from Charlie and attempt to decrypt the message using their user key. 

 

Alice: 

Alice decrypts CT using the decryption function from Bethencourt, et al. (2007): 

         (              ) 

This is possible since Alice’s key contains the attributes for root_v1 = 11: 

root_v1_flexint_1xxx 
root_v1_flexint_x0xx 
root_v1_flexint_xx1x 
root_v1_flexint_xxx1 

 

which satisfy the policy tree τ (Figure 4.6) used by Charlie to encrypt M: 

Figure 4.7: Policy tree requirement met by USKAlice. 
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Bob: 

Similarly Bob is able to decrypt the cypher text received from Charlie using the 

decryption function: 

         (            ) 

As USKBob contains the attributes for root_v1 = 5: 

root_v1_flexint_0xxx 
root_v1_flexint_x1xx 
root_v1_flexint_xx0x 
root_v1_flexint_xxx1 

 

which satisfy the policy tree τ (Figure 4.6) used by Charlie to encrypt M: 

 

Eve: 

Eve obtains CT, from eavesdropping on the communication between Charlie and 

Bob/Alice or through the location where Charlie publicly published the ciphertext. While 

Eve may obtain CT, PK, the decryption function and her own user key, which in this case 

contains the attributes for root_v1 = 4: 

root_v1_flexint_0xxx 
root_v1_flexint_x1xx 

Figure 4.8: Policy tree requirement met by USKBob. 
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root_v1_flexint_xx0x 
root_v1_flexint_xxx0 

 

she is unable to decrypt the message as she fails to satisfy the policy tree used to encrypt 

M: 

 

  

4.4 Implementation & Evaluation 
4.4.1 Implementation Details 

 To test and fully evaluate our DMACPSABE encryption scheme, a C++ based 

implementation was created by modifying J. Bethencourt, et al.’s (2006) CP-ABE 

implementation, to add our extended functions, features and distributed authority setup. 

As our implementation is based on the CP-ABE implementation it uses the same PBC 

library (http://crypto.stanford.edu/pbc/) for the algebraic operations and only supports 

Unix and Linux based systems.  

 Our Setup (Equation 4.15), AuthAttSet (Equation 4.16) and UserKeyGen 

(Equation 4.17) functions were added to the CP-ABE implementation. The constant 

Figure 4.9: Failure of USKEve to satisfy the policy tree τ. 
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attribute added for each variable attribute containing the decimal value of the variable 

was removed (see section 4.3.2.4) and the implementation was split into three 

components (one for the master authority, one for attribute authorities and one for the 

users of the system). A hash table was added to store all components of an authority key 

in memory (mapping an attribute name to the values of Dj and D`j (     ( )   and     

respectively)) for the attribute authority component. This allows for the authority key to 

be read into memory during the initialization of the attribute authority rather than read 

from the hard drive for each user key request. As the authority key grows linearly in size 

with the number of attributes (Figure 4.10) this becomes a required optimization for 

systems that must fulfill a large number of user key generation requests. 

 

Figure 4.10: Attribute authority key size vs number of variable and constant attributes. 
 

 Finally, a Linux daemon was created for the attribute authority component which 

listens for connections on a local socket and responds to user key generation requests. A 
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Java based client API was also created to communicate with attribute authority daemon 

as well as a Java API which uses the user component for encrypting and decrypting 

strings (both APIs are an important part of using DMACPSABE with HCX and 

RBACaaS in section 4.5). 

 

4.4.2 Performance Evaluation 

 To evaluate the performance of DMACPSABE we examined our implementation 

in terms of number of constant attributes required to represent the same variable attribute, 

the time required to generate an authority key, the time required to generate a user key, 

and the size of the resulting user and authority keys. An unmodified version of 

Bethencourt, et al.’s (2006) CP-ABE implementation is used as a control and comparison 

for our results when possible. 

 Tests for the results in the following sections were performed on a Ubuntu Linux 

based system with the following specifications: 

 CPU: Intel Core2 Quad CPU Q6700 @ 2.66GHz 
 RAM: 4GB 
 Hard Drive: 30GB 
 Network: 10/100/1000Mbps 

 

4.4.2.1 Attributes Required and Key Size 

 Unlike the keys used in CP-ABE, attribute authority keys require the attributes to 

create any possible value for a variable attribute (Table 4.1 and end of section 4.3.2.2). 

This leads too many of the performance inequities between DMACPSABE and CP-ABE 

when the size of the authority keys, or the time required to generate the authority keys, is 

compared. As shown in Figure 4.11,     more attributes are required for each variable 

attribute in an authority key than in an equivalent CP-ABE key (where b is the number of 
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bits in a variable’s value). However, the number of attributes required for a user key in 

DMACPSABE is one less than in CP-ABE. 

 

Figure 4.11: Constant attributes required to represent a given number of variable attributes in a 
DMACPSABE authority key and a CP-ABE user key. 
  

 The number of attributes is also directly proportional to the size of the authority 

and user keys as shown in Figure 4.12. As with the number of attributes, despite the large 

size of the authority key, the size of a user key in DMACPSABE is slightly smaller than 

the equivalent in CP-ABE. 
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Figure 4.12: Size of a DMACPSABE authority key vs. the size of a CP-ABE user key in megabytes for a 
INT_MAX of 264. 
 

4.4.2.2 Time Required to Generate an Attribute Authority Key  

 The time in seconds to generate an authority key is shown in Figure 4.13.  

Authority key generation is linear with the number of attributes though still significantly 

longer than CP-ABE user key generation shown in section 4.4.2.3. However, the times 

are not easily compared as authority key generation is normally only performed once 

during the initialization of the master authority, while user key generation may be 

required frequently. As expected, the time required to create authority keys containing 

only constant attributes is significantly smaller than a key containing the same number of 

variable attributes as a variable attribute may be seen as b * 2 constant attributes. 
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Figure 4.13: Time to generate an attribute authority key in seconds vs. number of variable and constant 
attribute. 
 

4.4.2.3 Time Required to Generate an User Key  

 Figure 4.14 shows that the time to generate a CP-ABE user key is almost identical 

to the time required to generate a user key by delegation from an authority key via the 

DMACPSABE UserKeyGen function. Additionally, Figure 4.15 shows that this will 

remain true despite the size of the authority key (assuming the number of attributes in the 

user key remains the same). Again the relationship between attributes and generation 

time remains linear and scalable. 
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Figure 4.14: Time to generate user key in CP-ABE and DMACPSABE in seconds vs number of variable 
attributes. 

 

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

1

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

Ti
m

e
 in

 S
e

co
n

d
s 

Variable Attributes in User Key 

Time to Generate User Key 
(for INT_MAX of 264) 

DMACPSA
BE

CPABE

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Ti
m

e
 in

 S
e

co
n

d
s 

Attributes in Attribute Authority Key 

Time to Generate User Key 
(by attributes in AA's key) 



170 
Figure 4.15: Time to generate DMACPSABE user key in seconds vs number of attributes in the authority 
key for a constant number of attributes in the user key. 
 

4.4.3 Possible Performance Improvements 

 The UserKeyGen (Equation 4.17) and KEYGEN (Equation 4.11, used by Setup 

Equation 4.15) functions lend themselves well to parallel processing as there are many 

independent calculations required in computing the values of  Di and D`i . The values of 

Di and D`i for each i in  i   US (UserKeyGen) or  i   S (KEYGEN) may be calculated 

independently and in parallel after the random value of r has been determined, so long as 

the proper order of the set is maintained. This allows for the generation of a particularly 

large attribute authority key to be set up as a massively parallel solution, reducing the 

generation time from hours to seconds. For user key delegation this allows for the use of 

multi core systems (which are becoming common place in both server and home 

hardware environments) to reduce DMACPSABLE user key generation times to lower 

than the generation times in standard CP-ABE implementation. 

 We present the following modifications (Equation 4.18 and Equation 4.20) to our 

UserKeyGen function and the CP-ABE KEYGEN function to allow for parallel 

processing. For multi core, or multi CPU systems sharing the same memory, it is 

assumed that the area in memory is large enough to fit the resulting key that is created 

(e.g. an array of structures which will hold the value of  Di and D`i) and the results are 

placed correctly within the block of memory as computed. For distributed systems it is 

assumed that a central node will create a similar block of memory and store the resulting 

values correctly as computed. In both cases this should be a constant time, O(1), 

operation (as it is the same as inserting a value into an array). 
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Equation 4.18: Parallelized version of the KEYGEN function. 
 

keygen_       (       )  
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Equation 4.19: keygen_compute function to be run in parallel. 
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Equation 4.20: Parallelized version of the UserKeyGen function. 
 
 
userkeygen_       ( ̃  ̃       )  

         ( ) 
   ̃         

 ̃    ( )  
 ̃        

  
 ̃     ̃   ̃   

 
Equation 4.21: userkeygen_compute function to be run in parallel. 
 
 
 Using the same methodology and system as in section 4.4.2, we tested and 

compared the performance of the parallelized generation functions with both the standard 

DMACPSABE and CP-ABE key generation functions. Four simultaneous threads (each 
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running on a separate CPU core) were used for the parallelized functions on the same 

Linux based system as used in section 4.4.2. The C++ POSIX threads API was used to 

provide threading functionality to our implementation. As shown in Figure 4.16 and 

Figure 4.17, the parallelization of the key generation functions provides a signification 

improvement in the time required to generate both authority and user keys. This 

improvement allows DMACPSABE key generation to be further scaled by adding 

additional CPU cores while maintaining a linear relationship with the number of 

attributes. It is likely that more modern systems with 6 or 8 CPU cores would show 

additional improvements in key generation time. 

 
 

 
Figure 4.16: Time to generate DMACPSABE authority key with standard and parallelized functions. 
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Figure 4.17: Time to generate a DMACPSABE or CP-ABE user key with standard and parallelized 
functions.  
 
 

4.4.4 Security 

As the encryption and decryption algorithms used in DMACPSABE remain the 

same as presented in Bethencourt, et al. (2007), the security of DMACPSABE may also 

be proven secure under the generic bilinear group model (Boneh, Boyen, & Goh, 2005) 

(as is shown in appendix A of Bethencourt, et al. (2007) for the decryption and 

encryption functions). As with Bethencourt, et al. (2007) and with Boneh and Franklin 

(2007)’s schemes, DMACPSABE can be extended to be secure against a chosen 

ciphertext attack by applying the techniques from Fujisaki and Okamoto (1999). 

DMACPSABE also provides a level of privacy in addition to that of CP-ABE by 

obscuring the names of the attributes in the system. In the CP-ABE scheme, the policy 

under which a given plain text is encrypted is attached, in plain text, to the ciphertext. 

This policy (containing multiple plain text attribute names) may inadvertently leak 
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additional information about the contents of the ciphertext. For example, if a health 

record is encrypted with a policy such as “is_doctor OR is_ chemotherapy_technician”, it 

is leaked that the record may have something to do with chemotherapy as the attribute 

“is_ chemotherapy_technician” is involved. 

 

4.6 Conclusions 
 This chapter introduces the DMACPSABE scheme for providing CP-ABE in a 

disturbed form where multiple authorities are granted a set of constant and variable 

attributes which they may further delegate to their users. Some subset of these attributes 

may be shared with other authorities such that access policies may be created that allow 

foreign users to decrypt documents. Additionally, a “not equals” operation is added to 

CP-ABE as well as a means for creating policies based on the user’s origin (i.e. which 

attribute authority delegated their key). Details on how revocation and expiration are 

enforced are discussed as well as how human readable attributes may be provided and 

how attribute authorities may be added or removed.  

 The performance of a prototype implementation based on CP-ABE was evaluated 

and found to scale linearly with the number of attributes. An additional improvement to 

the key generation and delegation algorithms to support distributed processing (e.g. on 

multiple CPU cores) was presented which further improved the performance of 

DMACPSABE to the point of matching the original CP-ABE implementation. The 

proceeding chapter gives details on how DMACPSABE may be used with the RBACaaS 

model to enforce role based access policies and discusses some future areas of work for 

DMACPSABE. 
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Chapter 5 

5 Conclusions 

5.1 Putting it all Together 

 When combined, the HCX, RBACaaS, RBSSO and DMACPSABE components 

create a system for securely sharing EHRs on an untrusted public cloud. However, to 

fully integrate these components there are several considerations and issues that must be 

addressed. This section gives additional details on how theses sub-systems may be 

combined and an overview of the overall system they create. 

 

5.1.1 RBACaaS Integration with DMACPSABE 

 To integrate the role based access control policies offered by RBACaaS 

with the DMACPSABE scheme (such that role based policies may be used to encrypt 

documents rather than Boolean statements involving attributes) it is first necessary to 

map both the permissions and user parameters to attribute names (as shown in the 

modified RBACaaS model in Figure 5.2). Each permission used to protect encryptable 

objects is mapped to a unique constant attribute devoted solely to that permission, while 

every user parameter that is involved in conditions which effect the protection of 

encryptable objects is mapped to a variable attribute (also devoted solely to that 

parameter). This mapping is performed at creation of the parameter or permission and the 

attribute is assigned to the same domain as the parameter or permission. 
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Figure 5.1: RBAC Service and DMACPSABE attribute hierarchies merged.  

Figure 5.2: RBACaaS model with support for DMACPSABE added. 
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As with the hierarchy of RBAC services from RBACaaS, which enable decedents 

of a service access to its elements, the logical DMACPSABE hierarchy only allows 

sharing of attributes with decedents of nodes which allows them to be combined as in 

Figure 5.1. Note that in Figure 5.1 domains auth1 and auth2 share an extra set of 

attributes from the logical domain l1 that domains auth3 and auth4 lack, enabling 

domains auth1 and auth2 to share documents encrypted with the attributes from l1 but 

also have private attributes to encrypted documents such that they may not be shared 

between domains. This is in contrast to the sharing between domains auth3 and auth4, 

where auth4 has all attributes of auth3 while auth3 only has a subset of those of auth4 

such that auth4 can issue attributes to read any document encrypted by auth3. This 

merged hierarchy keeps the attributes assigned to a given domain consistent with the 

RBAC elements accessible by that domain. 

The root DMACPSABE attribute domain is always assigned and shares the 

following variable attributes, which correspond to the RBACaaS system parameters from 

Table 3.1, with all domains: 

 

Attribute Name Type Description 

SYSTEM:TIME_STAMP Integer The date and time on the auth server when the session 
was started as a Unix time stamp. 

SYSTEM:TIME_DAY Integer A number [1, 31] representing the day when the session 
was started in the current month. Based on gregorian 
calendar and UTC. 

SYSTEM:TIME_HOUR Integer A number [0, 23] representing the hour when the 
session was started in UTC. 

SYSTEM:TIME_MINUTE Integer A number [0, 59] representing the minute the session 
was started in UTC. 

SYSTEM:TIME_SECOND Integer A number [0, 59] representing the second the session 
was started in UTC. 

SYSTEM:TIME_WEEK_DAY Integer The week day when the session was started represented 
by a number starting at 0 for Sunday and ending at 6 for 
Saturday. Based on UTC.  

SYSTEM:TIME_MONTH Integer A number [1, 12] representing the UTC gregorian 
calendar month when the session was started. 

SYSTEM:TIME_YEAR Integer A number representing the gregorian calendar year 
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when the session was started in UTC. 

SYSTEM:USER_IP Integer An integer representation of the user’s version 4 IP at 
the time they authenticated with the server.  

SYSTEM:USER_IP_1 Integer An integer representation of the first byte of a user’s 
version 4 IP at the time they authenticated with the 
server. 

SYSTEM:USER_IP_2 Integer An integer representation of the second byte of a user’s 
version 4 IP at the time they authenticated with the 
server. 

SYSTEM:USER_IP_3 Integer An integer representation of the third byte of a user’s 
version 4 IP at the time they authenticated with the 
server. 

SYSTEM:USER_IP_4 Integer An integer representation of the fourth byte of a user’s 
version 4 IP at the time they authenticated with the 
server. 

SYSTEM:USER_DOMAIN_ID  
AKA: auth_key 

Integer The ID assigned to the auth server’s domain. 

SYSTEM:USER_GID Integer The user’s GID. 
SYSTEM:USER_START_DATE Integer A unix time stamp containing the date the user’s 

account was activated.  
SYSTEM:USER_END_DATE Integer A unix time stamp containing the date the user’s 

account will be or was deactivated or “0” if no such 
date is set. 

SYSTEM:SESSION_START Integer A unix time stamp containing the date and time the 
user’s session was started. 

SYSTEM:SESSION_EXPIRE Integer A unix time stamp containing the date and time the 
user’s session will expire. 

SYSTEM:CLIENT_VERSION Integer An integer representation of the version number of the 
client software the user used to authenticate with the 
server. 

SYSTEM:SERVER_VERSION Integer An integer representation of the version number of the 
server software being used. 

SYSTEM:AUTH_METHOD Integer An integer representing the authentication method used 
to authorize the user. 

Table 5.1: Table of default attributes for the root domain. 
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Users are delegated a new DMACPSABE key by their domain’s authentication 

service through the RBSSO protocol (as described in section 3.2) each time they start a 

new session based on the role they are activating, the parameters and values they are 

assigned, the set of permissions the role grants and the current system parameters. 

Attributes are assigned as follows: 

1. The current value of all values in Table 5.1 are determined and assigned as 

variable attributes to the user’s key. 

2. For all permissions in the set of permission mapped to the active role which are 

assigned an attribute, that constant attribute is added to the user’s key. 

3. For all parameters and their values mapped to a user, a variable attribute is 

assigned with the corresponding value from the map to the user’s key.  

For cases were this set of attributes is quite large, limited caching may be possible by 

storing the random number   ̃, the value of  ̃ and the values of    ̃  and  ̃  for each 

uncommonly changing attribute k in the set of attributes US in Equation 4.17 for each 

user. Then only commonly changing attributes such as those related to system parameters 

would need to be computed at the start of each session (made possible by keeping the 

value of   ̃constant for each user until the cache is cleared). 

 RBACaaS policies are translated into DMACPSABE Boolean statements through 

the following process. First, the rules listed below are added to all statements (such that 

they are “ANDed” together): 

Rule Explanation 
( {CURRENT_DATE} < SYSTEM:SESSION_EXPIRE 
) 

“{CURRENT_DATE}” is replaced with the time 
of encryption. This prevents expired keys from 
decrypting documents created after the key’s 
expiration date. 

( SYSTEM:USER_END_DATE = 0 OR 
{CURRENT_DATE} < SYSTEM:USER_END_DATE ) 

“{CURRENT_DATE}” is replaced with the time 
of encryption. This prevents expired user 
accounts from decrypting documents created 
after the accounts expiration date. 

( {MIN_CLIENT} < SYSTEM:CLIENT_VERSION ) Optional rule for limiting client versions. 



180 
 
“{MIN_CLIENT}” is replaced with the 
minimum allowed client version to access a file. 
Allows banning of out of date clients for newly 
encrypted files. 

( {MIN_SERVER} < SYSTEM:SERVER_VERSION ) Optional rule for limiting authentication server 
versions. 
 
“{MIN_SERVER}” is replaced with the 
minimum allowed server version to access a file. 
Allows banning of out of date servers for newly 
encrypted files. 

( SYSTEM:USER_DOMAIN_ID ≠ 0 ) Ensures that an attribute for a domain is set to 
anything but 0. (Note that not equals ensures that 
the user has some value for the attribute so long 
as it is not the given constant). 

( SYSTEM:USER_GID ≠ 0 ) Ensures that an attribute for a user’s global ID is 
set to anything but 0. (Note that not equals 
ensures that the user has some value for the 
attribute so long as it is not the given constant). 

( SYSTEM:USER_GID NOT IN ( 
{USER_BLACK_LIST_SET} )) 

Optional rule for blocking a set of users from 
accessing newly encrypted files. 
 
“{USER_BLACK_LIST_SET}” is replaced with 
the set of black listed user’s GIDs, blocking them 
from accessing newly encrypted files. 

( SYSTEM:USER_DOMAIN_ID NOT IN ( 
{DOMAIN_BLACK_LIST_SET} )) 

Optional rule for blocking a set of domains from 
access newly encrypted files. 
 
“{DOMAIN_BLACK_LIST_SET}” is replaced 
with the set of black listed domains. Domains 
may be blocked from reading newly encrypted 
files in the case they are compromised. 

( SYSTEM:AUTH_METHOD NOT IN ( 
{AUTH_METHOD_BLACK_LIST_SET} )) 

Optional rule for blocking weak or compromised 
authentication methods. 
 
“{AUTH_METHOD_BLACK_LIST_SET}” is 
replaced with the set of black listed 
authentication methods.  

( SYSTEM:USER_IP NOT IN ( 
{IP_BLACK_LIST} )) 

Optional rule for blocking users by IP rather than 
GID. 
 
“{IP_BLACK_LIST}” is replaced by the set of 
IPs to be blocked from decrypting newly 
encrypted files. Blocked IPs are based on the IP 
used to authenticate with the authentication 
service. 

Table 5.2: List of rules to be added to DMACPSABE decryption policies. 
 

Next, for a given Boolean statement passed to the encryptWithPermissions function to 

encrypt a file (see sub section 3.1.2.2.6), first replace all permissions which lack 

conditions with the attribute name they map to in the modified RBACaaS model (Figure 
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5.2). Conditional permissions are then converted by replacing permission names with 

their corresponding attribute names (as with non-conditional permission) and “ANDed” 

with the set of conditions (with each parameter name replaced with the corresponding 

attribute name in the same way) such that each statement is “ANDed” together (e.g. for 

one conditional permission: “(PERM_ATT AND (CON1) AND (CON2) AND (CON3) 

…)”).  

 Once the Boolean statement from the rule set (Table 5.2) and the converted 

Boolean statement from the RBACaaS policy are compiled, they are “ANDed” together 

(i.e. “( RULES_STATMENT ) AND ( POLICY_STATMENT )”) and used with the 

DMACPSABE encryption function (Equation 4.10) to encrypt the RBACaaS protected 

object/data. For complex data structures (such as a health record) this encryption may be 

applied to the whole data structure or to individual elements according to the resulting 

policy statement (see section 5.1.4 for how we envision its use with CCR documents). 

Decryption is performed as would be expected by the system’s users, that is, using the 

secret key they received from the authentication service to decrypt a given document 

using the DMACPSABE decryption function (Equation 4.12) assuming they have the 

correct attributes. 

 

5.1.2 Searching DMACPSABE Encrypted Files (HCX Integration) 

 While the HCX architecture presented in Chapter 2 is largely independent of the 

health record format used, encrypted records may pose a problem while searching for and 

retrieving records based on a given keyword. This is problematic for two reasons: first, 

encrypted records may not be read/decrypted by the HCX service offering them limiting 

retrieval to a single key/record type mapping; and second, storing a map of plain text 
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keywords to encrypted records (or even sending the keywords to the service) would leak 

information about the contents of that record. Several solutions to this problem (searching 

encrypted files on remote systems) already exist and have been explored in detail in 

recent literature (Chang & Mitzenmacher, 2005) (Li, Wang, Wang, Cao, Ren, & Lou, 

2010) (Wang, Cao, Li, Ren, & Lou, 2010) (Ballard, Green, Medeiros, & Monrose, 2005). 

As many of these solutions are independent of the encryption system used and suitable 

for (or in many cases made for) searching encrypted files on remote systems (such that 

the remote system may not determine the keyword or hints at the files contents) we leave 

this as an implementation detail for practical systems and consider it out of the scope of 

the presented research. In cases where an additional key or map is required to be 

distributed to the system’s clients, to enable search functionality, the authentication 

service may be extended to provide this as it is isolated from the cloud and considered 

secure. 

 For our prototype, a trivial, but efficient solution of simply hashing each keyword 

with a salt was used to provide some level of obscurity to keywords. In this method every 

encrypted element of a record was mapped to a set of hashes paired with an integer 

representing the hash’s relevance to that cipher text. When a user encrypted an element of 

a record, they would be responsible for generating the hashes and relevance integer based 

on some metric such as word count, and including the map in the appropriate plain text 

section of the record. When requesting a list of records based on a given keyword (or set 

of keywords), the user would compute the hash of the keyword + salt and send it in the 

request to the HCX service. The HCX service would respond with a list of the top records 

containing the hash ordered by total relevance. While this method provides a simple 

means of performing the search, it is not correlation-resistant and fails to stop a malicious 

cloud provider or system administrator from finding identifying common keyword hashes 
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either by analyzing their use or guessing words that might appear in a health record and 

generating the corresponding hash (assuming they have the correct salt). As such this 

method is not recommended for a practical implementation on an untrusted cloud.  

 

5.1.3 HCX Integration with RBACaaS and RBSSO 

 The main task in integrating HCX with the RBACaaS system is simply creating 

permissions for each task a user may perform and using the service client API provided 

by RBACaaS to check if a requesting user has permission to perform the request. Per file 

permissions may be embedded in a given document (as described in section 5.1.4) by 

listing the Boolean permission statements for different levels of access within that 

document and only allowing authorized users to update that section of the file (i.e. 

rejecting requests which change the line without the user having the correct permission in 

their authtoken). When a record is requested, its permission statement may be checked 

against the user’s active role’s permission set and the request may be accepted or rejected 

accordingly.  

Integration with the RBSSO protocol may be accomplished by having each 

request to an HCX service accept a Request Token (as detailed in section 3.2.2.4) and 

having a simple HCX service for authenticating users as explained in section 3.2.2.4 (i.e. 

via an authtoken from the domain’s authentication service). The HCX service may then 

examine the user’s authtoken to determine the permission set their active role grants and 

the conditions on those permissions (resulting from group conditions). Additionally, the 

machine instance running HCX may occasionally query a central trusted third party (e.g. 

the service controller or authentication services) for revocation lists of users, domains, 
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authentication methods, client versions, or server versions to block their access from the 

system. 

 

5.1.4 Extensions to CCR and other XML formats  

 To allow for RBACaaS access policies to be embedded in EHRs and support the 

encryption of different EHR elements (rather than only full file encryption) some changes 

to the CCR and CCD EHR formats are required. Presented in this section is an XML 

based format for encapsulating DMACPSABE encrypted data elements and linking them 

to a BASCaaS policy which dictates a user’s rights to view, edit or change the access 

rights on that element. The following is an outline of the extension: 

<?xml version="1.0"?> 
<DMACPSABE> 
 <DMACPSABE:header> 
  <DMACPSABE:meta> 
   <DMACPSABE:versions> 
    <DMACPSABE:encryption>{ENCRYT_VER}</DMACPSABE:encryption> 
    <DMACPSABE:rbac>{RBAC_VER}</DMACPSABE:rbac> 
    <DMACPSABE:format>{FORMAT_VER></DMACPSABE:format> 

</DMACPSABE:versions> 
   <DMACPSABE:id>{RECORD_ID}</DMACPSABE:id> 
   … Other meta data needed by an implementation. … 
  </DMACPSABE:meta> 
  <DMACPSABE:permissions> 
   <DMACPSABE:view>{PERM_VIEW}</DMACPSABE:view> 
   <DMACPSABE:edit>{PERM_EDIT}</DMACPSABE:edit> 
   <DMACPSABE:perm>{PERM_PERM}</DMACPSABE:perm> 
  </DMACPSABE:permissions> 
  <DMACPSABE:keys> 
   <DMACPSABE:public> 
    {PUB_KEY} 
   </DMACPSABE:public> 
   <DMACPSABE:private> 
    ENCRYPTED WITH {PERM_EDIT} POLICY: 
    ___________________________________ 
    <DMACPSABE:id>{RECORD_ID}</DMACPSABE:id> 
    <DMACPSABE:sigkey>{PRVI_KEY}</DMACPSABE:sigkey> 
    <DMACPSABE:nonce>{NONCE}</DMACPSABE:nonce> 
    ___________________________________ 
   </DMACPSABE:private> 
  </DMACPSABE:keys> 

</DMACPSABE:header> 
<DMACPSABE:body> 

  … Any unecrypted XML data … 
  <DMACPSABE:element> 
   <DMACPSABE:permissions> 
    <DMACPSABE:view>{PERM_VIEW}</DMACPSABE:view> 
    <DMACPSABE:edit>{PERM_EDIT}</DMACPSABE:edit> 
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    <DMACPSABE:perm>{PERM_PERM}</DMACPSABE:perm> 
   </DMACPSABE:permissions> 
   <DMACPSABE:ciphertext> 

ENCRYPTED WITH {PERM_VIEW} POLICY: 
    ___________________________________ 
    … Any XML data with elements sorted alphabetically … 

<DMACPSABE:cttail> 
<DMACPSABE:id>{RECORD_ID}</DMACPSABE:id> 

     <DMACPSABE:nonce>{NONCE}</DMACPSABE:nonce> 
<DMACPSABE:cttail> 

    ___________________________________ 
   </DMACPSABE:ciphertext> 
   <DMACPSABE:signature> 
    {CIPHERTEXT_SIG} 

</DMACPSABE:signature> 
<DMACPSABE:searchindex> 
 … Optional implementation dependent search index …  
</DMACPSABE:searchindex> 

</DMACPSABE:element> 
 

… Any unecrypted XML data … 
</DMACPSABE:body> 

</DMACPSABE> 

Figure 5.3:  DMACPSABE XML Format Extension 
 

 The DMACPSBE element encapsulates the contents of the XML based document 

being encrypted. A header is added (in the DMACPSBE:header) element which includes 

meta data (the versions of the software and XML extension being used, the record’s ID  

and any other needed meta data for the system), the default/global permissions 

(permissions are stored as Boolean statements as described in Figure 3.13), and a pair of 

keys. The public/private key pair (PUB_KEY and PRVI_KEY) is used for signing and 

verifying the encrypted elements of the document. While the public key is in plain text in 

the header, the private key required for creating the signature is encrypted with the global 

edit policy, limiting signing to only those with the correct attributes. This signing ability 

will allow users to verify that no single encrypted data element has been replaced with 

another by an unauthorized user. 

 The body section of the DMACPSBE element (DMACPSABE:body) contains the 

original XML document (minus the XML header, e.g. “<?xml version="1.0"?>”) but 

with any elements containing sensitive information replaced with 
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DMACPSABE:element. DMACPSABE:element contains an optional permissions 

element (DMACPSABE:element) which overrides the documents default permissions, a 

DMACPSABE:ciphertext element that contains the encrypted XML element, a 

DMACPSABE:signature element containing a signature of the XML element using the 

PRIV_KEY from the header, and an optional DMACPSABE:searchindex element which 

contains a protected index of keywords relating to the encrypted text (as discussed in 

5.1.2). Before encryption of the protected XML element, the DMACPSABE:cttail 

element is appended to the plain text such that the authenticity of the text may be verified 

(i.e. that the nonce matches the encrypted nonce in the header and the record ID matches 

the ID used to retrieve the record). 

 For the case of a HCX service, the default view access policy in the header 

determines if a user may request the file. The edit policy of a given section determines if 

a user may update that section. The perm policy of a given section determines if a user 

may change the permissions of that section or the policy under which the data is 

encrypted. These policies are enforced by the HCX service (using the RBACaaS service 

client API), however, the ability to view a protected part of a file (i.e. decrypt it) is 

enforced by the DMACPSABE encryption scheme (such that a user must have a key 

granted by an attribute authority that meets the access policy used during encryption) 

using the view policy for a given DMACPSABE:element. The creation of the original 

policies embedded in the document is the responsibility of the document’s original 

creator (as is the generation of the private/public signing key pair and nonce). However, it 

would be trivial to create an HCX service such that a minimal access policy is enforced 

(e.g. by rejecting weak policies based on some set criteria or policies that do not enforce 

rules detailed in section 5.1.1). In a real world implementation, the appropriate default 

policies would likely be encoded into the client application, or document creation would 
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be performed by a policy engine capable of converting existing health records and/or 

automatically determining the correct policy (as described in the work by Akinyele, et al. 

(2010)). 

 While this format protects a given record from a malicious cloud provider 

changing a single protected element (or any number of elements so long as not all 

encrypted elements including the private key in the header), it does not protect against the 

provider completely changing the whole document (and generating their own private key 

and nonce). However, such an attack would not likely succeed because the provider 

would have no knowledge of the contents of the document or to whom it may pertain, 

making such changes immediately noticeable. For example, if an EHR was requested 

with an ID corresponding to John Doe, but the received EHR contained a fake record for 

the patient Joe Bloggs (note that it would not be possible to switch the EHR with another 

real EHR in the system as the record ID is included in the ciphertext) it would be 

immediately evident that the EHR had been compromised. Extending the DMACPSABE 

scheme to also support signing of documents would provide a potential fix for this 

problem (and is listed among the future areas of work in section 5.2), as would having the 

authentication authority distributing signing keys to users such that they may be used to 

authenticate documents. 

 

5.1.5 System Overview 

 The diagram presented in Figure 5.4 displays an overview of the complete system 

with all components functioning together. For any given domain, the RBAC service, 

attribute authority and authentication service would likely be combined in one server 

software package in an implementation of the system that connects to an existing 
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database with user credentials for the organization (e.g. LDAP{_footer_}). The trusted 

third party (which may be a domain trusted by the other domains to perform the role or 

an completely independent entity) would only primarily be responsible for running the 

service controller which dynamically creates and destroys the machine instances running 

the HCX services according to current levels of demand. Additionally, the trusted third 

party is responsible for the initial creation of the DMACPSABE authority keys, initial 

creation of the root roles and permissions and for publishing the public keys and 

revocation lists. 
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Figure 5.4: System Overview 
  

Clients of the system follow the RBSSO protocol to authenticate with their 

domain and gain an authtoken and decryption which allows them to access the HCX 

services on the cloud and decrypt records respectively. Once authenticated, clients may 

publish new records on to the cloud by encrypting them with the appropriate access 
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policy and uploading them to a HCX service. Reversely, clients may obtain records by 

requesting the encrypted file from a HCX service and decrypting the elements of the 

record for which they have access. Updates to records are performed by requesting the 

record, decrypting the relevant section, making the desired changes, generating a new 

keyword map (if applicable for the search method being used), and encrypting the section 

with the same access policy (a different access policy may only be used if the user has the 

correct permissions active), and finally reuploading the record to the HCX service. If the 

HCX service determines that the client has the appropriate permissions active for the 

given changes, the record is updated. 

 

5.2 Future Work 
 While the presented research is a step towards cloud privacy and security for 

EHRs, there are still many areas for improvement, future research, and open problems to 

be solved. This section identifies several of these areas and suggests potential directions 

for future research. 

 

5.2.1 Automated Policy Discovery/Creation 

 While RBACaaS, RBSSO and DMACPSABE provide the tools for creating and 

enforcing role based access policies, it is still left to the policy administrator to ensure the 

proper policies are created for a given origination’s needs and that they are correctly 

applied. Automating the process of policy discovery based on an overall set of criteria for 

an organization would indirectly improve the security of the system (if implemented 

correctly) by simplifying administration and ensuring that access policies correctly 

correspond to the requirements of the organization. Some limited research in this 
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direction currently exists for other systems (Akinyele, Lehmann, Green, Pagano, 

Peterson, & Rubin, 2010), however, creating such an automated system for RBACaaS 

would likely introduce additional challenges to support its distributed nature and 

potentially complex policies.  

 

5.2.2 Automated Role and Permission Discovery 

 As with automated policy discovery and creation, a system for automatically 

identifying roles and permissions within an organization would lead to simplified 

administrator and indirectly a potentially securer system. Such discovery would likely be 

a prerequisite for accurate automated policy discovery and would require some initial 

information about the organization’s users, protected objects/services and access policy 

requirements. Recent research into role mining, discovery and migration (Vaidya, Atluri, 

& Guo, 2007) (Kuhlmann, Shohat, & Schimpf, 2003) (Guo, Vaidya, & Atluri, 2008) 

presents a promising start for the basis of implementing such a system for RBACaaS, 

however, the automation of the discovery of RBACaaS based permissions may prove 

more challenging due to their potentially conditional nature. 

 

5.2.3 Automatic Role Activation 

 In the current RBSSO protocol a user is able to activate a single role for which 

they have been granted access at the time of authentication. However, there are many 

cases where a user using the system may wish to escalate their role to one with a greater 

or different set of permissions. Similarly, once a user has completed a task that required 

some elevated privilege they may wish to reduce their access in accordance with the 

principle of least privilege. Currently, this would require starting a new session with the 
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authentication service, which while functional may not be ideal in all cases. A system by 

which a user may seamlessly switch between roles as needed may be desired. 

Techniques, such as the “smartaccess” system proposed by R. Adaikkalavan, et al. 

(2006), may prove to increase usability of the system and reduce the occurrence of users 

running the most privileged role to avoid having to deal with multiple role activations.  

 

5.2.4 Explore Alternative Hierarchy Structures 

 For simplicity reasons and to help facilitate the distributed nature of the 

RBACaaS model (by making it easy to transverse the complete set of roles and calculate 

their permission sets), a tree based data structure was used for role, group and permission 

hierarchies. However, it is likely that a superior graph-based hierarchy that would offer 

more flexibility could be adapted to the RBACaaS model. Current graph-based RBAC 

models (Nyanchama & Osborn, 1999) (Wang & Osborn, 2006) (Wang & Osborn, 2011) 

may provide an appropriate starting point for such improvements to the RBACaaS 

hierarchy model. 

 

5.2.5 Explore Alternative Access Control Models 

 Traditionally access control has largely been limited to discretionary, mandatory 

and role based models. However, in recent years several new promising models have 

emerged in access control literature, one of the most notable being usage control (Park & 

Sandhu, 2004) (Zhang, Park, Parisi-Presicce, & Sandhu, 2004).  Usage control (UCON) 

enables more flexible access policies based on a user’s attributes and usage of resources. 

For example, a policy could be created with a user’s right to access an object is 

“consumed” once used, limiting them to viewing its contents only a set number of times. 
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Such dynamic access policies would be fitting for a health care setting, were it may be 

desired to give some (such as a lab tech) only temporary access to an EHR that is 

consumed after the access right is used. 

 Either extending or replacing the current RBACaaS and RBSSO system 

components with usage based access controls could provide more flexibility to the 

system. As the current RBACaaS model already incorporates many UCON like aspects 

(conditions, user attributes, etc.) the UCON model would be a reasonable extension in the 

same direction as the presented research. Another possibly interesting application of 

UCON for the presented research would be incorporating its use with attribute based 

encryption and the DMACPSABE scheme presented in Chapter 4. As most UCON 

models are heavily attribute based (applying attributes to both objects and subjects), ABE 

could coincide nicely with UCON policies. 

 

5.2.6 Removal of the Master Attribute Authority 

 Currently the DMACPSABE scheme relies on a cauterized authority to generate 

the initial master key and maintain each attribute authorities’ attribute set. While the 

master authority is not needed for the normal function of the system (after initialization) 

it is needed when a new attribute authority is created or updates are needed to the set of 

attributes an authority may delegate. Ideally, attribute authorities should be able to create 

their own attributes and share them with other authorities without relying on a master. 

Such an improvement would be a large step to creating a more fully distributed system. 
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5.2.7 Human Readable Attribute Names 

 As the master attribute authority must assign sets of attributes to each attribute 

authority before the purpose or meaning may be fully realized, the attributes in the 

DMACPSABE scheme are represented by an alpha numeric string consisting of the 

assigned authority’s name, a letter representing their type (variable or constant) and a 

number. This string then needs to be mapped to a more meaningful name/purpose by the 

attribute authority. A system by which each individual attribute authority could directly 

name their attributes without such a map may increase the usability of the system and 

allow searching encrypted files by attribute names and required values. However, it may 

also decrease the privacy of a system by potentially leaking information about the 

encrypted document in the access policy (normally embedded in plain text with the 

ciphertext).  

 

5.2.8 Searchable DMACPSABE 

 As brought up in section 5.1.2, a secure means for searching DMACPSABE 

encrypted documents on a remote system for a given keyword (or Boolean statement 

involving multiple keywords) may be needed for practical applications of the system. 

Recent research literature (Chang & Mitzenmacher, 2005) (Li, Wang, Wang, Cao, Ren, 

& Lou, 2010) (Wang, Cao, Li, Ren, & Lou, 2010) (Ballard, Green, Medeiros, & 

Monrose, 2005)  has presented several methods to accomplish this kind of search on a 

remote system that is independent of the encryption cipher used, however, it is likely 

additional extensions to the HCX services described or DMACPSABE scheme would be 

needed to properly support them. Which method may be most suitable for DMACPSABE 

and HCX or EHRs in general is left for future work on the system. 



195 
 

5.2.9 DMACPSABE Based Signing 

 While the DMACPSABE scheme provides a means for documents to be 

encrypted based on given Boolean access policy involving constant and variable 

attributes, a system for signing documents based on the same set of attributes the user is 

granted in their key is not available. Such a signing system would allow for proof to be 

attached to DMACPSABE encrypted EHRs that the user who last modified a given 

section was authorized to edit that section (by attaching a signature of the plain text using 

the set of attributes meeting the edit policy). Additionally if a variable attribute 

containing a user ID was assigned to each user, such a signing system would allow a user 

to attach proof of their identity to documents they sign. Several attribute based signature 

schemes currently exist (Shaniqng & Yingpei, 2008) (Li, Au, Susilo, Xie, & Ren, 2010), 

however, incorporating a similar scheme into DMACPSABE such that it may be used for 

both encryption and signing may prove challenging. 

 

5.2.10 Fully Secure XML Extensions 

 The current XML extensions for applying DMACPSABE encryption to XML 

based records presented in section 5.1.4 provides data confidentiality and assurance that a 

subset of protected elements have not been replaced or switched with another record. 

However, it does not protect from a malicious cloud provider or administrator from 

completely replacing the contents of the whole record. Potential solutions to this issue 

range from distributing signature keys to all users of the system, to creating a new 

DMACPSABE based signing mechanism to prove that data was created by an authorized 

user. As the issue is relatively minor (randomly replacing a whole health record would be 
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almost immediately noticeable, as the provider has no knowledge as to whom the record 

pertains) determining which method is most appropriate and adjusting the XML 

extensions (and possibly authentication service) to match is left to future work on the 

system. 

 

5.2.11 Mobile Support 

 While many of the DMACPSABE based operations (namely encryption, 

decryption, delegation and key generation) scale linearly with the size of the attribute set 

and document being encrypted/decrypted, the computations may still be too resource 

intensive for mobile applications. Creating a DMACPSABE prototype for mobile 

handsets may provide valuable for determining if the scheme is feasible for mobile 

applications. Additionally, the encryption/decryption overhead in the RBSSO protocol 

may prove challenging for limited mobile devices. 

 

5.2.12 Real World Implementation and Use 

 While prototypes of the system components presented in this research (HCX, 

RBACaaS, RBSSO, and DMACPSABE) have been created and evaluated individually, 

there is still a need for a large scale prototype to be created to evaluate the overall 

systems use for real world EHR applications. A limited trial of such a prototype in real 

life situations would provide valuable information about usability and user acceptance of 

the role activation paradigm in a health care setting. Additionally, such a trial may 

provide valuable data about the costs associated with a cloud based EHR solution v.s. a 

traditional centralized data center approach.  

 



197 
5.3 Conclusions 
 In the introduction of this thesis we presented a set of design objectives (section 

1.5) that any cloud based EHR system would have to fulfill to ensure security, preserve 

privacy and be feasible in a large scale distributed environment. We believe that the 

presented system accomplishes these objectives through a variety of techniques used in 

each system component. The HCX architecture provides a DOSGi based framework for 

sharing health records that enables dynamic discovery and communication between EHR 

services such that they may be properly scaled in a distributed environment. The 

RBACaaS model and system enable conditional role based access policies on records and 

services based on user parameterization and role assignment. The RBSSO protocol 

allows for distributed access control and the confidentiality of user credentials while 

connecting the other components and the DMACPSABE encryption scheme presents a 

means of embedding RBACaaS access policies in documents to accomplish legal 

compliance, confidentiality of encrypted records, and a comprehensive enforcement of 

access policies both on and off the cloud. 

 The performance of these components was evaluated and determined to meet or 

even surpass the performance of existing systems and scale linearly. For the RBSSO 

protocol, testing of the prototype implementation (see section 3.2.4) showed performance 

over a wide area network which surpassed that of Kerberos and SSL based methods, 

while testing on a faster and lower latency local area network still showed performance 

gains over the SSL based method and only a minor disadvantage compared to Kerberos. 

Testing of the DMACPSABE scheme (see section 4.4) showed that key generation and 

delegation times scaled linearly with the number of attributes with only a minor drop in 

performance when compared to CP-ABE. However, this drop in performance was 
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overcome when performance enhancements were added, including utilizing the threaded 

DMACPSABE algorithm, which made key generation time closely match that of CP-

ABE. 

The research presented in this thesis is an important step towards secure and 

confidentiality preserving usage of cloud infrastructure under an assumption where the 

cloud provider may not be trusted. Unlike most recent research into the issues which 

utilizes hardware based crypto coprocessors that are currently unavailable in almost all 

current cloud offering, the presented solution is solely software based and implementable 

on any cloud infrastructure or platform which supports DOSGi (i.e. most offerings that 

support running java applications). Once minor usability, EHR formatting and searching 

issues are resolved, we believe that this system will make storing, sharing and processing 

health records on the cloud as safe and as efficient as traditional local data center 

solutions but without the large initial investment of time and resources, making EHRs 

more accessible to smaller medical offices and healthcare facilities. 
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APPENDICES 

A. HCX Interfaces 
 The following subsections detail the web service/DOSGi based interfaces for the 

various HCX services described in section 2.2: 

A.1 EHRProvider 

Operation Description 
list_records([Filter]): list Lists record ids in this domain matching the 

optional filter rule given. If no filter rule is 
given, a full list is returned (or rather a full 
listing of records the user has permission to 
view). 

get_record(id): data Retrieves the record identified by id. 
list_attachments(id, [Filter]): list Lists the attachment_ids of all attachments 

linked to the record (or a filtered listing if a 
filter rule is given).  

get_attachment(record_id, 
attachment_id): data 

Retrieves the attachment identified by 
attachment_id on the record identified by 
record_id. 

search(keyword_set, [Filter]): list Optional function (depending on encryption 
method employed) which returns a list of 
records matching a given set of keywords. A 
filter rule may also be applied. 

get_domain(): domain Returns the domain this service is operating 
in/for. 

get_service_mode(): mode Returns the current mode this service is 
operating in. e.g. “Middleware” or 
“CloudEHR”. 

get_remote_serivce_name(): name Returns the name of the remote EHR service 
being connected to if run in “Middleware” 
mode. Otherwise returns null. 

get_service_id(): id Returns a unique id for this service (as there 
may be multiple EHRProvider services in the 
same domain). 

 

A.2 EHRManager 

Operation Description 
update_record(id, data): void Updates a record identified by id with the 

partially encrypted data from data. 
add_record(id, data): void Adds a new record to be identified by id with 
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the partially encrypted data from data. 

remove_record(id): void Removes the record identified by id. 
add_attachment(id, attachment_data): 
attachment_id 

Adds an attachment, consisting of the data in 
attachment_data to the record identified by id. 
Returns the attachments id. 

remove_attachment(record_id, 
attachment_id): void 

Removes the attachment identified by 
attachment_id from the record identified by 
record_id. 

move_record(id, new_domain): void Moves a record identified by id to a new 
domain identified by new_domain. This 
triggers a call to receive_record in an HCX 
EHRManger service in the new domain. 

receive_record(id, data): void Receives a record identified by id from a 
domain to be placed in the current domain. 
May only be called by other EHRManger 
services. 

Also includes EHRProvider functions.  
 

A.3 EHRPortal 

Note: The EHRPortal provides a web based interface for patients, the following interface is solely for 
administration of that portal. Users still need to authenticate with their authentication service, share the 
authtoken with the portal and have the correct permissions to view their own records. 

Operation Description 
start(): void Starts publicly offering the EHR portal at the 

configured URL and port. 
stop(): void Stops offering the EHR portal. 
restart(): void Restarts the portal. 
blacklist(ip_host_set): void Black lists the given set of IPs, IP ranges or 

hostnames from accessing the portal. This 
function adds to the blacklist. 

whitelist(ip_set): void Limits access to the patient portal to only the 
IPs, IP ranges and hostnames in the given set. 
This function adds the given set to the 
whitelist. 

deblacklist(ip_host_set): void Removes a set of IPs and hosts from the 
blacklist. 

dewhitelist(ip_host_set): void Removes a set of IPs and hosts from the 
whitelist. 

get_whitelist(): set Returns the set of IPs, hosts and ranges in the 
current white list or null if there is no active 
whitelist. 

get_blacklist(): set Returns the set of IPs, hosts and ranges in the 
current black list or null if there is no active 
black list. 

accept_domain(domain): void Adds the given domain to the set of domains 
for which the portal accepts users from. 

reject_domain(domain): void Removes the given domain from the set of 
domains for which the portal accepts users 
from. 

get_domains(): set Returns the set of domains for which the EHR 
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accepts users. 

 

A.4 AuditLog 

Note: The auditlog is only called from other HCX services (to add log entries) and by HCX administrators 
to view log entries. There is intently no way to edit or remove log entries, however a configuration option 
may be set to remove entries older then a set amount. 

Operation Description 
list([Filter]): list Returns a list of log entries, optionally filtered 

by a given filter rule. 
get(entry_id): LogEntry Returns an individual log entry object by a 

given id. The LogEntry object contains all 
details added by the HCX service adding the 
entry. 

put(AuthToken, RequestToken, 
RequestSummary, service_id): void 

Called by an HCX service to add a new log 
entry. The user’s auth and request tokens are 
sent to be part of the log, as well as a summary 
of the request and the services identification 
information. The auditlog service may reject a 
log request if the authtoken and/or requesttoken 
are not valid. 

 

B. RBACaaS Web Interface 
B.1 RBAC Service 

 The following operations are publicly provided to service clients and others via 

the RBAC service’s web service: 

Operation Description 
get_domain(): domain Returns the domain the RBAC service is 

in/operating for. 
get_conditions(perm_id): set Returns the set of conditions for a given 

permission id. 
get_permissions(role_id): set Returns the set of permissions for a given 

role id. 
get_revoked_sessions(): list Returns the list of revoked sessions. 

check_session(session_id): boolean Returns true if a given session id is still 
valid, otherwise false. 

get_attribute(perm_id): attribtue Returns the ABE attribute name for a given 
permission id. Use of this function may be 
restricted in some case (e.g. if attribute 
names are  not public). 

get_attribute(param_id): attribtue Returns the ABE attribute name for a given 
parameter id. Use of this function may be 
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restricted in some case (e.g. if attribute 
names are  not public). 

Note: in most cases services implementing RBACaaS access controls will not call these operations and will 

use the client API show in appendix C.  

 

 

 The following operations are provided only to other RBAC services that have 

been authorized as a child or parent of the current domain: 

Operation Description 
get_ element(id): RBACElement Returns a signal RBACElement object by 

its id. The object includes its relations to 
other objects (e.g. a user object would 
include the set of groups, roles and 
parameter/value pairs it is mapped to).  

get_ children(): list Lists the current authorized children for 
this domain. 

get_parent(): domain Returns the name of the parent domain. 
List operations from B.2.2 Selective access to the list same operations 

as provided by the administrative interface 
in appendix B.2.2 are provided to 
authorized child domains. 

 

 

B.2 Administrative Service 

B.2.1 Administrative Permissions 

 The administrative service is protected by the RBACaaS system itself, with the 

following permissions giving access to each function: 

Permission Function 
RBACAdmin.* Grants access rights to all administrative 

functions. 
RBACAdmin.user.* Grants access rights to all user related 

functions (add user, mapping user to 
roles/groups, removing user, etc.). 

RBACAdmin.user.add Grants right to add a user. 
RBACAdmin.user.remove Grants right to remove a user 
RBACAdmin.user.maprole.* Grants right to map or unmap any role to a 

user. 
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RBACAdmin.user.mapgroup.* Grants right to map or unmap any group from 

a user. 
RBACAdmin.user.maprole.{role_name} Grants the right to map or unmap the role 

{role_name} to a user. 
RBACAdmin.user.mapgroup.{group_name} Grants the right to map or unmap the group 

{group_name} to a user. 
RBACAdmin.user.addparam.* Grants the right to add any parameter/value 

pair to a user.  
RBACAdmin.user.removeparam.* Grants the right to remove any 

parameter/value pair from a user. 
RBACAdmin.user.addparam.{param_name} Grants the right to add the parameter/value 

pair for {param_name} to a user. 
RBACAdmin.user.removeparam.{param_name} Grants the right to remove the parameter/value 

pair for {param_name} from a user. 
RBACAdmin.group.* Grants all access rights on group 

functions. 
RBACAdmin.group.add Grants the right to add a user group. 
RBACAdmin.group.remove Grants the right to remove a user group. 
RBACAdmin.group.parent Grants the right to set a groups parent. 
RBACAdmin.group.mapcon.* Grants the right to add or remove a 

condition to a group. 
RBACAdmin.group.mapcon.{group_name} Grants the right to add or remove a 

condition to the group {group_name}. 
RBACAdmin.group.maprole.* Grants the right to add or remove a role to 

a group. 
RBACAdmin.group.maprole.{role_name}.* Grants the right to add or remove the role 

{role_name} to any group. 
RBACAdmin.role.* Grants all access rights on role functions. 
RBACAdmin.role.add Grants the right to add a role. 
RBACAdmin.role.remove Grants the right to remove a role. 
RBACAdmin.role.parent Grants the right to set a roles parent. 
RBACAdmin.role.mapperm.* Grants the right to map or unmap 

permission to a role. 
RBACAdmin.role.mapperm.{perm_name} Grants the right to map or unmap the 

permission {perm_name} to a role. 
RBACAdmin.perm.* Grants all rights to permission functions. 
RBACAdmin.perm.add Right to register a permission. 
RBACAdmin.perm.remove Right to unregister a permission. 
RBACAdmin.perm.mapcon.* Grants right to add or remove a condition 

to a permission. 
RBACAdmin.perm.mapcon.{perm_name} Grants right to add a condition to the 

permission {perm_name}. 
RBACAdmin.ssd.* Grants all right to SSD constraint 

functions. 
RBACAdmin.ssd.add Grants right to add an SSD constraint 
RBACAdmin.ssd.remove Grants right to remove an SSD constraint 
RBACAdmin.revoke Grants right to revoke a session. 
RBACAdmin.view.* Grants right to view all RBAC elements. 
RBACAdmin.view.user.* Grants right to view all user records. 
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RBACAdmin.view.user.{user_name} Grants right to view record for given 

{user_name}. 
RBACAdmin.view.role.* Grants right to view all role records. 
RBACAdmin.view.role.{role_name} Grants right to view record for given 

{role_name}. 
RBACAdmin.view.group.* Grants right to view all group records. 
RBACAdmin.view.group.{group_name} Grants right to view record for given 

{group_name}. 
RBACAdmin.view.con.* Grants right to view all condition records. 
RBACAdmin.view.con.{con_name} Grants right to view record for given 

{con_name}. 
RBACAdmin.view.perm.* Grants right to view all permission 

records. 
RBACAdmin.view.perm.{perm_name} Grants right to view record for given 

{perm_name}. 
RBACAdmin.view.ssd Grants right to view all ssd records. 
RBACAdmin.view.rl Grants right to view all revocation list 

records. 
RBACAdmin.view.param.* Grants right to view all parameter records. 
RBACAdmin.view.param.{param_name} Grants right to view record for given 

{param_name}. 
RBACAdmin.view.sessions Grants right to view all active sessions. 
RBACAdmin.view.log Grants right to view the auditlog. 
RBACAdmin.system.* Grants all system commands. 
RBACAdmin.system.shutdown Grants right to shut down the RBAC 

service. 
RBACAdmin.system.restart Grants right to reboot the RBAC service. 
RBACAdmin.system.setdomain Grants right to set RBAC domain name. 
RBACAdmin.system.addchilddomain Grants right to add a child domain. 
RBACAdmin.system.setparentdomain Grants right to set the domain’s parent. 
 

B.2.2 Administrative Interface 

 The administrative interface provides a web service based interface to the 

RBACaaS administrative functions listed in appendix D.5. RBAC elements (e.g. users, 

roles, etc.) are represented by an object which contains their ID, required details, and 

maps relating them to other objects. In addition to these functions the following system, 

view and search functions are provided: 

Operation Description 
search(Filter): list Return a list of RBACElements based on 

filter rules in the given Filter object. 
list_users([Filter]): list Return a list of user objects based on the 
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given filter rules.  

list_groups([Filter]): list Return a list of group objects based on the 
given filter rules. 

list_roles([Filter]): list Return a list of role objects based on the 
given filter rules. 

list_perms([Filter]): list Return a list of permission objects based on 
the given filter rules. 

list_params([Filter]): list Return a list of parameter objects based on 
the given filter rules. 

list_cons([Filter]): list Return a list of condition objects based on 
the given filter rules. 

list_ssd([Filter]): list Return a list of constraint objects based on 
the given filter rules. 

list_rl([Filter]): list Return a list of revocation list objects based 
on the given filter rules. 

list_sessions([Filter]): list Return a list of user session objects based 
on the given filter rules. 

list_log_entries([Filter]): list Returns a list of audit log entries based on 
the given filter rules. 

get_ element(id): RBACElement Returns a signal RBACElement object by 
its id.  

shutdown(): void Shuts the RBAC web service down. 
restart(): void Restarts the RBAC web service. 
set_domin(domain): void Sets the RBAC services RABC domain 

name. 
set_parent(domain): void Sets the domain’s parent domain. 
add_child(domain): void Adds a new child to this domain. 
list_ children([Filter]): list Lists the current authorized children for 

this domain. 
get_parent(): domain Returns the name of the parent domain. 
get_domain(): domain Returns the name of the current domain. 
Note: The Filter object is an object passed to the web service operation which contains 
rules for filtering out RBAC elements from a list.  
 

 

C. RBACaaS Client API 
 The following are the critical functions provided by the RBACaaS client side API 

which cloud services may use to enforce RBACaaS access controls based on a given 

Boolean permission statement (see Figure 5.5): 

Function Description 
validate(authtoken): boolean Validates a given authtoken (see section 3.2 



206 
for details on authtokens). This involves 
checking the signature, expiration dates, and 
check that the session id is not listed in the last 
revocation list. The client may occasional 
contact the RBAC service for an updated 
revocation list.  

get_permssions(authtoken): set Extracts the set of permission/condition pairs 
from an authtoken. 

get_paramters(authtoken): set Extracts the set of paramter name/value pairs 
from an authtoken. 

paramters_value(authtoken, 
param_name): value 

Returns the value corresponding to the given 
parameter name or a null value if the 
authtoken does not contain such a pairing. 

has_permssion(authtoken, perm_id): 
boolean 

Returns true if the authtoken contains a given 
permission id. 

has_parameter(authtoken, param_name): 
boolean 

Returns ture if the authtoken contains a given 
parameter pairing with the given paramter 
name. 

get_domain(authtoken): domain Returns the name of the domain who issues 
the authtoken. 

get_gid(authtoken): gid Returns the user’s GID. 
get_ expiration(authtoken): date Returns the expiration date of the authtoken 

session. 
get_session(authtoken): session_id Returns the authtoken session id. 
hasPermission(authtoken, 
perm_statment): boolean 

Returns true if the authtoken passes the 
Boolean permission statement. Normally if 
this check passes, the user is granted access to 
the service. It is up to the implementing 
service to create the correct permission 
statement to limit access. 

encryptWithPermissions(perm_statment, 
data): encrypted_data 

Uses DMACPSABE to encrypt the given data 
with the given permission statement. It may be 
necessary to call on the RBAC service for a 
mapping of permission or parameter names to 
attribute names. 

encryptFileWithPermissions(perm_statme
nt, file): void 

Uses DMACPSABE to encrypt the given file 
with the given permission statement. It may be 
necessary to call on the RBAC service for a 
mapping of permission or parameter names to 
attribute names. 

permStatmentToABEPolicy(perm_statment)
: ABE_Policy 

Translates a permissions statement into a 
DMACPSABE policy statement useable to 
encrypt data. 
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D. RBACaaS Formal Description 
 

D.1 RBAC Elements 

 Each “element” in the RBACaaS model (Figure 3.6) is referred to by a unique 

URI (as described in Figure 3.10) and is defined as follows: 

 

 USERS:  The users of the system.  

 GROUPS:  A subset of users: group ⊆ USERS 

 PARAMTERS:  A mapping of parameter names to a values for each user:  

parameter_map(name, user ⊆ USERS) → value 

 CONDITIONS: Boolean statements involving one or more parameter names, 

system properties or constants following the grammar in Figure 3.11. 

 ROLES:  The systems roles. 

 PERMISSIONS: The systems permissions strings. 

 SSDCONSTRAINTS: Parings of a subset of roles and a number limiting the number 

of roles in the set a user may be assigned: (num > 0, roles ⊆ ROLES) 

 SESSIONS: Active user sessions, the set of a user, role, and expiry date: (user 

  USERS, role   ROLES, date > 0) 

 REVOCATIONLIST: Set of sessions that have been forcibly expired: list ⊆ 

SESSIONS 

 

D.2 RBAC Relations 

 The following are the formal definitions of the relations between RBAC elements 

in the RBACaaS model: 
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 USER_ASSINGMENT (UA): The many-to-many mapping of user-to-role 

assignment relation: UA ⊆ USERS ⨯ROLES 

 GROUP_ASSINGMENT (GA): The many-to-many mapping of group-to-role 

assignment relation: GA ⊆  ROU S ⨯ROLES 

 PERM_ASSINGMENT (PM): The many-to-many mapping of 

permission/conditions pair-to-role assignment relation: PM ⊆ {(role, (perm, cons)) | 

perm   PERMSSIONS, cons ⊆ CO D  O S         ROLES} 

 ROLE_HIERARCHY (RH): RH ⊆ ROLE ⨯ ROLE              r1, is 

considered to be a descendent of role r2 if r1 contains all permissions of r2 (and 

  ’           )                                                        

permissions from any other role. Formally: parent(r1) = r2 iff  ( pset(r2) \ 

negative_perms(r1) ) ⊆ pset(r1)  and r2 ∉ decedents(r1)  

 GROUP_HIERARCHY (GH): GH ⊆  ROU  ⨯  ROU                g1, is 

considered to be a descendent of group g2 if g1 contains all roles of g2 (      ’  

ancestors) with negative roles removed and does not inherit roles from any other 

group. Formally: parent(g1) = g2 iff (rset(g2) \ negative_roles(g1) ) ⊆ rset(g1)  

and   g2 ∉ decedents(g1) 

 USER_GROUP_ASSINGMENT (UGA): The many-to-many mapping of user-to-

group assignment relation: UGA ⊆  ROU S ⨯ USERS 

 USER_PARAMETER_ASSINGMENT (UPA): The many-to-many mapping of 

user-to-name/value pair assignment relation: UPA ⊆  (PARAMETER_NAMES, 

PARAMETER_VALUES) ⨯ USERS 
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 CONDITION_GROUP_MAP (CGM): The mapping of a group onto a set of 

conditions: CGM(group) → cons ⊆ CO D  O S 

 CONDTION_PERM_MAP (CPM): The mapping of a permission onto a set of 

conditions: CPM(perm) → cons ⊆ CO D  O S 

 

D.3 Core Functions 

 The following are the core functions supporting the operation of the RBACaaS 

system and model: 

 

 pset:  The set of all permissions/conditions pairs granted by a role: pset ⊆ 

PERMISSIONS⨯ CONDITIONS 

 rset:  The set of all role/conditions pairs granted by a group: rset ⊆ 

ROLES⨯ CONDITIONS 

 type:  The type of role or permission such that a negative role or permission 

returns negative and a positive element returns positive. 

 negative_perms:  The set of all negative permissions a role is assigned: {perm  

 PERMISSIONS | type(perm) = negative} 

 negative_roles:  The set of all negative roles a group is assigned: {role   ROLES 

| type(role) = negative} 

 positive_perms:  The set of all positive permissions a role is assigned: {perm  

 PERMISSIONS | type(perm) = positive} 

 positive_roles:  The set of all positive roles a group is assigned: {role   ROLES | 

type(role) = positive} 

 parent:  The parent of a role or group in their respective hierarchy tree. 
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 children:  The set of children of a role or group in their respective hierarchy tree: 

{child   ROLES | parent(child) = role} or {child   GROUPS| parent(child) = 

group} 

 descendants:  The set of all descendants of a group or role group in their 

respective hierarchy tree. 

 ascendants: The set contacting the parent of a group or role and all parent’s 

parent and children up to the root node in the given hierarchy tree. 

 perms: The set of permission/conditions pairs a role is assigned (not including 

inherited perms): {(perm   PERMISSIONS, cons ⊆ CONDTIONS) | (role, 

(perm, cons))    PM} 

 roles:  The set of roles a group is assigned (not including inherited roles): {role  

 ROLES | (role, group)    GM} 

 create_session:  Creates a new session for a given user and role if valid: 

                       (         )  
                   (    )  

                                           
      

           
 

 user_roles:  The set of roles available to a given user: 

                   (    )  
                     | (         )      
                      | (          )       

 
                     

     (         )       (     )  
                              (              )         

                       
 

 evaluate:  Evaluates a given condition against a user’s parameters and the current 

system’s parameters. Returns TRUE if the condition’s Boolean statement is true 

with the given parameters, otherwise returns FALSE. 
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 session_perms:   The set of permission/conditions pairs granted by a given 

session: {pair   PERMISSIONS⨯ CONDITIONS | pset(role   session)} 

 user_params:    The set of parameter name/parameter value pairs for a given 

user: {(name   PARMATER_NAMES, value   PARAMTER_VALUES) | (user, 

(name, value))   UPA} 

 descendant_of:  Takes two permissions, p1 and p2, and returns true if p1 is a 

descendant of p2 such that p2 is closer to the root permission than p1. For 

example “some.permission.descendant.*” is a descendant of “some.permission.*” 

and both are descendants of “some.*” and “*”. 

 

D.4 Cache Computation Functions 

 comp_role_pset:  Computes the set of permission/conditions pairs for each role and 

that role’s children in the role hierarchy. Ran on a role when its permissions are 

updated or parent is changed. 

              ( )  
         ( )      

    ( )      (      ( )) 
      

    ( )     
 
 

     (         )       ( )  
       (    )            

    ( )       ( )   (         )  
      

    ( )       ( )    (                    ⊆          )| (      )
     ( )  

 
        (    ( )) 

 
                 ( )  

              ( ) 
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 minimize:  Takes a set of permission/condition pairs and removes any redundant 

pairings were the permission would be negated by a higher permission. For example 

(“some.permssion.*”,  ) would negate (“some.permssion.lower.*”,  ). 

        (    )  
     (         )          

     (   )         (             (      )           )    (    
             )  

            (   )  
 
 
 comp_group_rset:  Computes the set of role/conditions pairs for each group and that 

group’s children in the group hierarchy. Ran on a group when its roles are update or 

parent is changed.  

 
               ( )  

         ( )       
    ( )      (      ( )) 

      
    ( )      
 

        (     ) 
 

                 ( )  
       (    )            

    ( )      ( )   (         )  
      

    ( )       ( )    (              ⊆          )| (      )      ( )  
 

        (    ( )) 
 
                ( )  

               ( ) 
 
 

D.5 Administrative functions 

 add_user(user): Adds the given user to the set of all users such that user   

USERS. 
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 remove_user(user): Removes the given user from the set of all users, removes all 

parameters/value pairs associated with that user, removes all active sessions for 

that user, and removes all relations involving the user. 

 add_role(role, role_parent): Adds a new role and places it  in the hierarchy such 

that parent(role) = role_parent  and pset(role) = pset(role_parent).  

 remove_role(role): Removes the role only if children(role) =  . If removed, all 

relations involving the role are also removed and comp_group_rset is called on all 

groups mapped to the role. 

 add_perm(perm): Adds a new permission to the permission set such that perm   

PERMISSIONS. Note that the permission hierarchy is maintained in the name 

space and does not need to be updated.  

 remove_perm(perm): Removes the permission from the permission set and all 

relations between roles and permissions. Note that the permission hierarchy is 

maintained in the name space and does not need to be updated.  

 add_con(con): Adds a new condition to the condition set such that con   

CONDTIONS. 

 remove_con(con): Removes the condition from the condition set and all relations 

involving that condition. comp_role_pset(R) will need to be called, were R is the 

set of roles mapped to a permission with the condition con. 

 add_param(param, value, user): Adds the (param, value) pair to the UPA 

mapping for the given user. 

 remove_param(param, user): Removes the parameter name/value pair from the 

UPA mapping for the given user for the given parameter name. 
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 add_constraint(roles, num): Creates a new SSD constraint for the set of roles 

such that a user may not be assigned more than num roles in the set roles. Note: 

does not affect existing mappings of roles to users or users to groups. 

  remove_constraint(roles): Removes the SSD constraint on the given set of roles. 

 add_group(group, group_parent): Adds the given group to the set of groups such 

that group   GROUPS,  parent(group) = group_parent and rset(group) = 

rset(group_parent). 

 remove_group(group): Removes the given group only if children(group) =  . If 

removed, all relations involving the group are also removed. 

 map_user_role(user, role): Adds the given (user, role) pair to UA only if it does 

not violate an SSD constraint such that:  (user, role)   UA iff 

pass_constraints(user_roles(user)        ) == TRUE. Assuming all conditions 

are true. 

 unmap_user_role(user, role): Removes the (user,role) pair from the UA set. 

 map_group_role(group,role): Adds the given (group, role) pair to GA only if it 

does not violate an SSD constraint for any user in that group. 

comp_group_rset(group) is called. 

 unmap_group_role(group,role): Removes the (group,role) pair from the GA set. 

comp_group_rset(group) is called. 

 map_user_group(user,group): Adds the given (user, group) pair to UGA (user 

group assignment) so long as it does not violate an SSD constraint for that user. 

 unmap_user_group(user,group): Removes the (user,group) pair from the UGA 

set. 
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 map_group_con(group,con): Adds the (group, condition) pair to the CGM map 

such that con   CGM(group). comp_group_rset(group) is called. 

 unmap_group_con(group,con): The given (group, con) pair is removed from the 

CGM map. comp_group_rset(group) is called. 

 map_role_perm(role,perm): The given (role, perm) pair is added to the PM set 

and comp_group_pset(role) is called. 

 unmap_role_perm(role,perm): The given (role, perm) pair is removed from the 

PM set and comp_group_pset(role) is called. 

 map_perm_con(perm, con): The given (perm,con) pair is added to the CPM map 

such that con   CPM(perm). comp_group_pset is called on all roles that map to 

the permission. 

 unmap_perm_con(perm, con): The given (perm, con) pair is removed from the 

CPM map. comp_group_pset is called on all roles that map to the permission. 
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