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Abstract

Power awareness in networking has been a vital area of research in wireless networks but, until recently, has

been largely ignored in wired networks. In wireless applications, the amount of power utilized by transmission

is of vital importance since it will limit factors such as battery life and transmission range. In wired networks,

the power issues of wireless networks do not arise since the wired networks receive their power from the power

grid. However, the problem of operational costs and the environmental impact of wired networks have become

increasingly important issues in recent years.

This thesis proposes a power e�cient routing scheme to address the environmental and operational cost

issues. The operational costs of a wired network can be reduced by reducing the amount of power the network

utilizes. The proposed power e�cient routing scheme utilizes a demand prediction algorithm to determine a

set of expected future tra�c. The set of expected tra�c is then assigned paths in the network using an energy

e�cient routing algorithm. The paths that are assigned to the predicted tra�c are used to assign paths to the

real tra�c as it enters the network. By continuously updating the set of expected tra�c, and the paths that are

assigned to the expected tra�c, the energy e�cient routing algorithm can maintain an energy e�cient routing

solution over time, and thus, power e�ciency is achieved.

The work in this thesis focuses on the energy e�cient routing algorithms that are used in the power e�cient

routing scheme. Three energy e�cient routing algorithms are proposed. Each of the algorithms uses p-cycles to

plan the routes that tra�c will take through the network. Traditionally, p-cycles are groups of links that form

a circular path that are used to plan backup routes for demands. In this work, p-cycles are used to plan both

the working and backup paths for each demand. In this way, tra�c will be routed around straddling links and

encompassed nodes so that they can be put into o�ine mode (turned o�). Straddling links are not a part of

the cycle but connect two nodes that are a part of the cycle and encompassed nodes are nodes that are not on



a cycle but are part of a path between two nodes that are on the cycle.

In house Matlab simulations were used to compare the bandwidth and energy e�ciency performance of

the three proposed algorithms with two established benchmark algorithms used for survivability. These two

algorithms represent both the best and worst cases for bandwidth e�ciency. Through a comparison with the

benchmark algorithms, it will be shown that the proposed algorithms provide an energy e�cient set of paths

for a given set of tra�c. This proves the feasibility of the power e�cient routing scheme since the proposed

algorithms can provide a set of energy e�cient paths for the tra�c for varying network loads.
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Chapter 1

Introduction

1.1 Power Minimization

Traditionally, less attention is given to power awareness in optical networks compared to copper or wireless

networks. Fibre networks use less power than copper wire networks and, unlike many wireless devices, they

are plugged into the grid. For this reason, power hasn't been a major concern when designing optical networks

[2, 5]. Some have even viewed the topic of power in optical networking controversial [11] in the past. The main

driving force of the growth of networks such as the internet has been the number and size of demands, and

therefore, customers that can be provided service. The growth of the number of users and network speeds has

led to an exponential increase in bandwidth demand [12, 13, 14]. This is because the operating costs of the

network (OPEX) are shared by the users and the growth of the number of users caused the price per bit of data

to decrease. The lower cost of using networks further fueled their growth, and therefore, the cost of transmission

and switching equipment was considered one of the major barriers of growth to large networks like the Internet

[4].

Advances in technology have allowed networks to support more and larger demands. As a result, networks

have had no trouble meeting the growing demands. Network designers have traditionally relied on advances in

technology to increase performance and lower the capitol costs (CAPEX) [6] to keep the costs to the users low

[12]. Components are clocked faster, have a higher degree of parallelization, are physically smaller, and have a

lower supply voltage than their older counterparts. According to Moore's Law, the number of transistors per
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square inch on integrated circuits doubles every year and therefore, the performance of those components shows

a similar increase [15, 16]. Advances in IC technologies have allowed supply voltages to be lowered as well. The

power used by ICs is measured as: Power = CapacitiveLoad×V oltage2×Frequency
2 [15, 16]. The decrease in supply

voltage has a greater in�uence on power than the frequency increase does so, with new advances in technology,

networking devices became more power e�cient. However, we are reaching the limit of our ability to miniaturize

components and the supply voltage can no longer be decreased. Increasing the frequency of operation will cause

an increase in power utilization. Increasing power utilization will also increase the heating of the components,

and we have reached the limit of our ability to dissipate the heat from high frequency processors [12]. This

phenomenon is called The Power Wall [15, 16]. Because of the power wall, network designers can no longer rely

on advances in technology alone to keep networks a�ordable as demand continues to grow in the future. As a

result, the future growth of large networks such as the Internet is in jeopardy [13].

The power density and utilization of a network increases with user demand. The wired networks buy their

power from electrical companies and, due to rising electrical costs, power utilization is becoming a signi�cant

factor in OPEX [1, 4, 6, 9]. Another source of rising OPEX costs is from the component heating caused by

power utilization. As stated above, an increase in power utilization also causes a rise in the heat generated by

components. This increase in heating could cause large scale networks like the Internet to require expensive

cooling equipment [12]. The cost of installing, powering, and operating such cooling equipment will drastically

increase OPEX costs. Thus, by lowering the power utilized by the network, the OPEX costs can be lowered.

The lowering of OPEX costs causes the network to be more a�ordable to its users, and the future networks can

be kept more a�ordable.

Aside from lowering OPEX costs, there are four other reasons for power e�cient routing in wired networks:

• Lowering current power ine�ciencies. [11]

• Enable greater deployment. [11]

• Bene�ts in the event of a disaster. [11]

• Lesser environmental impact. [1, 2, 4, 6, 8]
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The current methodology of maximizing throughput and minimizing latency during network design is power

ine�cient. Network components are turned on at full power 24/7 regardless of the tra�c load or, in the case of

backup resources, if they aren't in use. Add to this the fact that network designers over-provision the resources

to account for future rapid growth, and it can be seen that there is a large amount of power waste [11, 5]. This

waste is further compounded by the fact that the components will generate heat while active. Heating equipment

requires power to operate and, the more heat that needs to be dissipated, the higher the power expended in

removing it from the system. Cooling systems can possibly double the power consumption of a network [8].

One of the barriers of Internet deployment in some parts of the world is the scarcity and cost of electricity

[11]. High energy costs increase the cost of accessing the Internet to users and high costs cause the demand to

stay low from lack of new users. The network providers in an area with high energy costs will have little reason

to expand the capacity and reach of their network to meet the demands of new users. Areas with frequent power

outages or where there simply isn't enough power to spare for a network with high power consumption would

also bene�t from power e�ciency. The backup power supplies can keep the networks running longer or with

less equipment during power outages. Power e�ciency also allows a larger and higher capacity network to be

built that puts a lower strain on the power grid in an area where a lot of power isn't available. In the event of

a disaster, low power equipment is extremely useful. Parts of a network, or the entire network, require backup

power sources to keep them operational. Emergency services would bene�t from having access to their networks

for longer and share data to help handle the disaster situation.

Another important issue that has been gaining more attention recently is the environmental impact of large

scale networks [1, 2, 6, 8, 10]. The e�ects of greenhouse gas emissions have been linked to global warming and

climate change. The full e�ect of climate change due to global warming has been an issue of rising concern. The

environmental impact of a network is measured in terms of its carbon footprint. The term �carbon footprint�

is used to describe the amount of carbon dioxide (CO2) emitted during a one year period. CO2 is the primary

greenhouse gas that causes global warming and so reducing CO2 emission is an important step in combating

climate change. The carbon footprint of any system can be either direct, such as from car exhaust, or indirect,

such as e�ects on other direct sources like in power. Many power plants use fossil fuels to generate electricity and

emit CO2 as a byproduct. The amount of electricity required, and therefore, the amount of fossil fuels burned

is directly related to the users of the electricity. Because of the relation between users and fossil fuels burned

by power plants, the CO2 emissions are divided up among the customers. This �divided up� CO2 makes up
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part of the carbon footprint of any given company or even individual household. Therefore, reducing the carbon

footprint of a network can be achieved by reducing its power usage.

The issues discussed above provide a strong case for more power e�cient networking. Besides the bene�ts

to the continued growth and deployment of already existing optical networks, the establishment of new optical

networks in areas where power is scarce is possible. The power savings to already existing networks helps

reduce their carbon footprint and will also help take some of the demand o� of the power grid. However, power

awareness in network design introduces a new set of challenges for network designers. It requires changes to the

way networks are designed and operated at three levels [11, 12, 3]:

• The individual switch level

• The network level

• In the topology level

As discussed above, network resources are over utilized. Devices are turned on at full power regardless of

the tra�c load. Tra�c load is not constant with time and exhibits burstiness. It has idle periods and nightly

variations [2]. When the tra�c is idle, the switching components are on at full power as if the tra�c is still

present. This problem is further compounded when considering backup resources. Backup resources are idle

until needed. However, the system will act as if the resources assigned for backup bandwidth are active even

when those resources are not (i.e. no working path failures have occurred and the backup resources are not in

use). To avoid this issue it has been suggested to put components in o�ine mode or sleep mode [13, 12, 11, 10, 8].

There are two types of power consumption [10]. The static or �idle�power consumption, which is the power

used by components when no tra�c is being processed and is independent of the tra�c load, and the tra�c

dependent type which is determined by the power consumption of switching equipment, conversion/regeneration,

ampli�ers, etc. Energy e�cient design aims to reduce the idle power of components by turning them o� or putting

them into sleep mode. Energy e�cient design aims to be more e�cient at one given time in the network. This

is important to power e�ciency since, by aiming to keep energy e�cient at all times, the system will be more

power e�cient as well. Turning components o� (o�ine mode) would obviously provide the best power savings

but, in the case of resources assigned for providing backup in case of a failure, would take too long to power
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up again to provide adequate protection when a failure occurs. Components in a low power state (sleep mode)

would be able to switch back on in a timely manner when a failure occurs. This does not mean that o�ine

mode for components is not useful. During low tra�c periods, it is possible to route tra�c so that some links

and nodes are not being utilized. When not being utilized, the resources for ampli�cation, sending tra�c down

the link in question, etc. can be powered o�. Likewise, nodes that are not being utilized can be switched o� as

well. Currently, components (line cards, switches, etc.) do not support sleep mode operation. One of the goals

of the IEEE 802.3az Task Force is to compose a set of standards to support selective sleep mode for networking

components [17, 5]. However, in order to get the most bene�t from sleep/o�ine mode resources, the way tra�c is

routed has to be altered in order to try to maximize the amount of resources that can be placed into sleep/o�ine

mode. Therefore, changes at the network level have to be made.

Aggregating tra�c along similar routes and along as few routes as possible will maximize the number of idle

resources available that can be switched into a low power or o�ine state. Backup routes can also be aggregated

together in order to maximize the amount of backup resources available to be put into sleep mode. However,

care has to be taken when aggregating backup routes since, with too much aggregation, the risk of connections

being lost during a failure increases. For example, consider two demands, each sharing the same backup path

and bandwidth. If one demand fails, then the second demand will not have a backup path available and will

be disconnected if a link on its working path fails. The same issue can occur when aggregating the backup

bandwidth of groups of demands. Higher aggregation will lead to a lower resistance to multiple failures.

Network resources are often assigned to handle twice the expected peak demand in order to cope with future

growth [2]. However, since network tra�c is bursty and has high and low periods, energy e�ciency can be

achieved by altering the Internet topology to allow for route adaptation under a wide range of network loads.

When network tra�c is low, the routes can be planned to allow for more components to be switched into

sleep mode or even switched o� and when tra�c is high, the routes can be planned to allow for more tra�c

to be accommodated and more components to be switched on. In the case of new networks, the designers

can speci�cally plan the network layout so that it is more compatible with the power e�cient paradigm. For

example, a network could be made with more links so that there are more paths available for demands between

any given node or increase the capacity of certain links in the network. Having more available paths provides

more opportunities to aggregate tra�c. If certain links have more bandwidth available than others, the paths

that tra�c is aggregated over can be controlled by the network designers. Larger bandwidth links will have more
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tra�c placed over them than the lower bandwidth links during aggregation since they have more space for more

demands. Both cases would be used to make it easier to aggregate backup tra�c over similar links since there

would be more potential paths available or more bandwidth available on selected links. Having more potential

paths available or having links with more bandwidth strategically placed throughout the network will provide

more opportunities for aggregation of bandwidth and also for sleep/o�ine mode.
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1.2 Thesis Contributions

The contribution in this thesis is in the introduction of a power e�cient routing scheme that operates in three

stages:

1. Prediction Stage

2. Path Finding Stage

3. Operation Stage

During the prediction stage, a prediction algorithm is used to generate a set of expected demands for a given

period of time, called the prediction period. An energy e�cient set of paths for the predicted tra�c is then

found during the path �nding stage. These paths are stored for use with the real tra�c as it enters the network

during the operation stage. During the operation stage, the real tra�c is assigned paths in the network and

the demands for the next prediction period are predicted and assigned paths. This is done so that the next set

of demands and paths are ready for use when the current operation stage ends. By continuously updating the

set of demand predictions, and the paths for the predicted demands, an energy e�cient routing solution can be

maintained inde�nitely as demand conditions in the network change, and thus, power e�ciency can be achieved.

This thesis focuses on the energy e�cient algorithms used during the path �nding stage. The use of p-cycles

to �nd a set of energy e�cient paths for network demands is explored and the feasibility of the power e�cient

routing scheme is proven by illustrating that energy e�ciency can be provided at various levels of network load.

Network tra�c prediction is introduced in this thesis, however, discovery of an appropriate prediction algorithm

is left to a future work.

Three energy e�cient routing algorithms are proposed in this thesis:

1. Hybrid Shared

2. Modi�ed Hybrid Shared

3. Power E�cient Growing Cycles
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The Hybrid Shared algorithm was designed to increase the number of links and nodes that can be put into

o�ine mode and maximize the number of links and nodes that can be put into sleep mode. The algorithm utilizes

p-cycles to plan working and backup paths for tra�c so that backup paths for tra�c will follow the same routes.

This causes the number of links and nodes that have only backup paths routed over them to increase. Links and

nodes that are only used for backup bandwidth can be put into sleep mode so the number of sleep mode links

and nodes increases. The backup paths are planned by routing tra�c over the common links of cycles. Links

that are shared by two or more cycles are called common links. However, routing backup paths over as many

common links as possible can lead to working paths that are longer than necessary. Since demands cannot share

working bandwidth, longer working paths leads to more bandwidth usage. This can also lead to more energy

usage because links and nodes that make up a demands working path need to be in online mode. The results

will show that in networks with a high degree of connectivity the Hybrid Shared algorithm leads to a higher

number of links and nodes in sleep mode. However, the larger number of links and nodes in online mode wind

up negating any bene�ts resulting from the increase in sleep mode links and nodes.

The Modi�ed Hybrid Shared algorithm addresses the bandwidth and energy issues of the Hybrid Shared

algorithm. This algorithm does not attempt to maximize the number of links and nodes that can be put into

sleep mode. The working paths are the shortest possible so the bandwidth and energy issues of the Hybrid

Shared algorithm are avoided. As the size of a backup path increases, the chances a link in the backup path

being a common link increases. Therefore, there are still opportunities for links that can be put into sleep mode

to arise but the algorithm does not attempt to guarantee that they will arise. The results will show that this

algorithm will provide a large energy e�ciency with a large bandwidth e�ciency loss.

The Power E�cient Growing Cycles algorithm provides an algorithm that does not require a set of predicted

demands to operate. If a set of predicted demands does not exist, paths are assigned to the demands as they

enter the network. If a set of predicted demands exists, paths are assigned to the predicted demands one by one

as if they were entering the network one at a time. The results will show that this algorithm will provide a little

energy e�ciency with a little bandwidth e�ciency loss.

Each of the proposed algorithms is compared to two benchmark algorithms. The Benchmark algorithms

are the Dijkstra Shared Backup Paths and Dijkstra Dedicated Backup Paths algorithms. The Dijkstra Shared
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Backup Paths algorithm is a twin shortest length paths algorithm that allows backup bandwidth sharing between

demands and the Dijkstra Dedicated Backup Paths algorithm is a twin shortest length paths algorithm that does

not allow backup bandwidth sharing between demands. Together the benchmark algorithms represent both a best

and worst case of bandwidth e�ciency as well as a baseline for energy e�ciency. The tradeo� of energy/power

e�ciency is bandwidth e�ciency. In house Matlab simulations are used to compare the bandwidth and energy

e�ciency of the proposed algorithms and the benchmark algorithms using the following metrics.

Resource Usage:

• Average Working Path Length

• Average Backup Path Length

• Average Link Load

Network Performance:

• Demand Rejection

Energy E�ciency:

• Links in Sleep Mode

• Links O�ine

• Nodes in Sleep Mode

• Nodes O�ine

The results will show the proposed algorithms do provide an energy e�cient solution for each level of simulated

tra�c. Since energy e�ciency can be achieved for any given network load, it is possible to achieve power e�ciency

with the proposed power e�cient routing scheme provided an accurate demand prediction algorithm is utilized.
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1.3 Thesis Outline

This thesis is outlined as follows. Chapter 2 introduces p-cycles, and network tra�c prediction. The chapter

opens with an introduction to the p-cycle concept. The discussion on p-cycles provides the background knowledge

necessary to understand the concept of using p-cycles for power e�ciency discussed in Chapter 3. The chapter

closes with a discussion on network tra�c prediction, why it is important, and how it can be achieved.

Chapter 3 introduces and discusses previous work in the �eld of power e�ciency and the contributions of this

work. The chapter opens with a brief discussion of some previous studies of power e�ciency. Following this is a

discussion on how the p-cycles concept is modi�ed for this thesis to achieve power e�ciency. The chapter closes

with a discussion of the three proposed energy e�cient routing schemes that use p-cycles and how they can be

used for power e�ciency.

In Chapter 4, the proposed energy e�cient algorithms are compared with a set of benchmark algorithms

through the use of in house Matlab simulations. The chapter opens with an explanation of the benchmark

algorithms and their operation. Following the introduction to the benchmark algorithms is a discussion of the

performance metrics used in the comparison of the algorithms and a discussion of the three network topologies

used in the simulations. The chapter closes with a presentation of the results and a discussion on the behaviour

of each of the algorithms.

Chapter 5 discusses some future avenues of research and a proposal for future research in the area of power

e�ciency with p-cycles. This thesis concludes in Chapter6 with a discussion of the results of the simulations.
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Chapter 2

Theory

2.1 P-Cycles

P-Cycles were discovered by Grover and Stamatelakis [20, 30] and are a way of providing �ring like speed

with mesh like e�ciency� [19, 22, 25, 30]. P-Cycles are closed loops of pre-con�gured backup capacity. They are

similar to self healing rings but they protect their straddling links as well as their on cycle links. On cycle links

are are a part of the cycle itself and straddling links connect two nodes that are on the cycle but not a part of

the cycle (Figure 2.1.1).

Figure 2.1.1: Example of on cycle and straddling links: Links 1-3, 3-4, 4-6, 2-6, 2-5, and 1-5 are on cycle links
and links 3-5, 4-5, 5-6 and 1-2 are straddling links of the cycle shown.

Consider the cycle shown in Figure 2.1.2 A, if an on-cycle link fails (dotted link 2-3 in Figure 2.1.2 B) then

one backup path can be provided by the cycle (dashed line; 2-6-5-3). If a straddling link fails (dotted link 6-3
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shown in Figure 2.1.2 C) then two backup paths are available (shown in dashed lines). If a link that is not

an on-cycle or straddling link fails (dotted link 5-4 shown in Figure 2.1.2 D), then no paths are available for

restoration.

Figure 2.1.2: Example of failures in p-cycle networks: (A) The cycle being considered. (B) On-cycle link failure.
(C) Straddling link failure. (D) Failure of link that is not an on-cycle or straddling link.

When using p-cycles for link protection, it is possible to achieve recovery times between 50 and 150 ms

[20, 24]. This is because only the two nodes on either side of the failing link need to do any switching since the

recovery path for the failed link is pre-con�gured prior to the failure. Since the two nodes on either side of a

failure are the only nodes performing any switching action; the need for complicated signaling schemes to switch

from working to backup path is eliminated. Since cycles are able to protect both on-cycle and straddling links,

and protection capacity on a cycle is shared by more than one link (either on cycle or straddling), it is possible

to achieve 100% restorability from any single failure with less than 100% redundancy [19, 20, 22, 24, 27]. For

example, three p-cycles are used to protect the network shown in Figure 2.1.3 (A) for the two demands shown

in Figure 2.1.3 (B). If any of the links in the working path for demand 1 fails, the three cycles provide backup

paths for each as shown with dashed lines in Figure 2.1.3 (C). These backup paths are pre-con�gured prior to

any failure in the working path. This means that the paths are determined and the resources necessary for the

working links to be restored is reserved before transmission begins. If both demands 1 and 2 are being protected,

they can share resources over links 3-5 and 5-6 on the backup paths shown in Figure 2.1.3 (D). The sharing of

backup resources over links 3-5 and 5-6 make it possible to protect demand 2 and, over link 2-3, demand 1 with

less than 100% redundancy but only in the case of a single failure.
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Figure 2.1.3: Example of p-cycle link protection: (A) A test network with 3 p-cycles for link protection. (B)
Two example demands. (C) Backup paths in the case of link failure events on single demand. (D) Backup paths
in case of link failure on both test demands.

P-Cycles can be used to protect [25, 29]:

• Individual links - An individual link in a path between two nodes. The working path for Demand 1 in

Figure 2.1.3 (B) is made up of the three individual links, 1-2, 2-3, and 3-4. The three cycles shown in

Figure 2.1.3 (B) protect each of the links in the working path for Demand 1.

• Entire paths/�ows - The path is a group of links that make up the route the data will take between a

source and destination node. The path for Demand 1 in Figure 2.1.3 (B) will be 1-2, 2-3, and 3-4. A path

for a demand is also known as a �ow and it is possible for a path/�ow to be made up of a single link.

• Flow segments - A path/�ow can be broken down into multiple pieces. These pieces can be made up of

any number of links. For example: Demand 1 in Figure 2.1.3 (B) can be broken down into 2 or three �ow

segments. These possible segments are shown in Table below:

Flow 1 1-2
Flow 2 2-3 3-4

Set 1

Flow 1 1-2 2-3
Flow 2 3-4

Set 2

Flow 1 1-2
Flow 2 2-3
Flow 3 3-4

Set 3

Table 2.1: Three possible sets of �ow segments for Demand 1 in Figure 2.1.3 (B)
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As described above; p-cycles protect individual links that are either on-cycle or straddling links. However, if

protection of a multilink path is desired, the link protection concept has to be modi�ed to account for paths or

path segments. Instead of individual links being protected, the entire path can be protected by a single cycle or

parts of the path (also called a �ow) can be protected by multiple cycles. Path and �ow protecting p-cycles are

similar to link protecting p-cycles except that �ows and paths are dealt with instead of links. The straddling

links become straddling spans and the on-cycle links become on-cycle paths or on-cycle �ows. A span is a set of

links that make up either a path or a �ow. For example, in Figure 2.1.4 two cycles protect the network. The

path between nodes 1 and 6 (dashed line) is divided up into two �ows. One �ow between nodes 1 and 3 is an

on cycle �ow and protected by Cycle 1 and the other �ow between nodes 3 and 6 is protected by Cycle 2. The

path between nodes 2 and 4 (dotted line) can be protected by cycle 2, and therefore, is path protected. Node 5

is encompassed by Cycle 2 and entirely protected from failure. Path 3-5-6 is seen as a straddling span.

Figure 2.1.4: Example of Flow/Path protecting Cycles: Cycles 1 and two are shown on the left. On the right,
two example paths.

Flow/path protection has the advantage of being able to protect nodes or groups of nodes that are encom-

passed by the cycle from failure. In Figure 2.1.5 (A), if link protection is used, the shaded node (node 7) will

not be protected by the cycle since it is not an on-cycle node. The dotted line links (2-7, 3-7, 5-7, and 6-7) will

not be protected either because they will pass through node 7 to form straddling spans and not straddling links.

If the cycle were to pass through each node in the network, as shown in Figure 2.1.5 (B), then a single cycle can

protect all nodes and links in the network from any single failure. For �ow and path protection, the cycle shown

in Figure 2.1.5 (A) is adequate for protecting all links and nodes because paths between nodes 2, 3, 5, and 6 that

�ow through node 7 are straddling spans. Node 7 is also protected from a failure since, any path or �ow that

passes through node 7, will be protected by the cycle. The cycle does not have to pass through every link in the
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network to provide protection for every link and node in the network in the case of path and �ow protection.

Figure 2.1.5: Protection of Encompassed Nodes: P-cycles are shown in dashed lines. (A) With link protection,
the shaded node and dotted links cannot be protected by the cycle. (B) The Hamiltonian cycle is able to protect
all links and nodes.

Another advantage of �ow/path protecting p-cycles is that they can better coordinate resource sharing

between demands. An example is shown in Figure 2.1.6. A network with two cycles to protect it is shown

in Figure 2.1.6 (A). Figure 2.1.6 (B) shows two demands. One between nodes 1 and 6 (dashed line), and another

between nodes 2 and 4 (dotted line). If link 1-3 were to fail, cycle 1 (1-2-3-1) would restore tra�c for link 1-3.

If node 5 were to fail, cycle 2 (2-3-4-7-6-2) would restore tra�c between nodes 3 and 6 and the tra�c between

nodes 2 and 4 and the bandwidth for the backup path can be shared between the upper and lower cycles over

link 2-3. If links 1-3 and node 5 were to both fail, the tra�c would be restored by both cycles. The backup

paths for the case of links 1-3 and node 5 in the example network is shown in Figure 2.1.6 (C). The dashed

lines show the two backup paths necessary to restore tra�c to the demand between nodes 1-6. The dotted line

shows the backup path necessary to restore tra�c between nodes 2 and 4. The demand between nodes 1 and 6

is broken up into two paths (two dashed paths shown in Figure 2.1.6 (C)). These paths cannot share bandwidth

since they are part of the same demand. However, the dotted path on cycle 2 and the dashed path on cycle 1

can share their bandwidth over link 2-3. In this way, cycles are able to share backup bandwidth between each

other. Alternatively, the dotted and dashed paths on cycle 2 can share bandwidth over link 2-3.
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Figure 2.1.6: Resource sharing among demands and a failure event: (A) A network with its two cycles. (B) The
working paths for two demands: 1-6, and 2-4. (C) Cycles can protect against single link and node failures.

There are two types of p-cycles: Hamiltonian and non-Hamiltonian [20, 21, 29, 30]. Hamiltonian cycles are

cycles that traverse every node in the network once. Non-Hamiltonian p-cycles, which are referred to as just

�p-cycles� in the literature, can be any size but do not go through every node in the network (Figure 2.1.7).

Figure 2.1.7: Types of P-Cycles: (A) A Hamiltonian cycle. (B) A non-Hamiltonian.

Hamiltonian cycles are useful for protecting every link in the network simultaneously. However, their re-

dundancy is not as good as non-Hamiltonian cycles since they are less resistant to link failures. Hamiltonian

cycles are good for making backup path computation quicker since there are fewer of them than there are non-

Hamiltonian cycles. However, non-Hamiltonian cycles allow for better protection from failures since more than

one cycle is being used for planning backup paths. Figure 2.1.8 shows a network with both Hamiltonian cycles

and non Hamiltonian cycles. With Hamiltonian p-cycles, the network can be protected by a single cycle (Figure

2.1.8 (A)). When a single failure occurs, the cycle can provide a recovery path for it (Figure 2.1.8 (C)). However,

when more than one failure occurs, the cycle can provide a path for only one of the failures (Figure 2.1.8 (E)).

For non-Hamiltonian p-cycles (Figure 2.1.8 (B)) the network cannot be protected by only one cycle. However,

when a failure occurs, only one of the cycles is necessary to provide a backup path for the failed link (Figure
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2.1.8 (D)). When more than one failure occurs, there will be more than one cycle available to provide backup

paths and so they can all be restored (Figure 2.1.8 (F)).

Figure 2.1.8: P-Cycles when a failure occurs for Hamiltonian and regular p-cycles: (A) A Hamiltonian cycle
protecting the network. (B) Non-Hamiltonian cycles protecting network. (C) Restoration of a failure with
a Hamiltonian cycle. (E) Multiple failures with a Hamiltonian cycle. (D) Restoration of a failure with non-
Hamiltonian cycles with link 3-5 not restored. (F) Multiple failures with non-Hamiltonian cycles.

2.1.1 Cycle Discovery

The �rst step in survivable network design with p-cycles is cycle discovery. Cycle discovery can be performed

online or o�ine. In order to keep path computation fast, cycle discovery is usually performed o�ine. However, if

a purely dynamic solution is desired, cycles can be discovered online as well [19, 23]. O�ine calculation will �nd

every possible cycle in the network before any cycles are needed while online calculation will �nd cycles only when

they are needed. Online calculation is used when the network tra�c is not known in advance (through historical

data and forecasting) and so the p-cycles are assigned to demands dynamically. One way to dynamically assign
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p-cycles to demands is described in [19]. The current cycles, which are cycles that are already assigned to a

demand, are checked to see if one can provide a backup path for the new demand. If one isn't found, a new

cycle is selected. This concept is expanded upon in the Power E�cient Growing Cycles algorithm by allowing

the current cycles to be grown to accommodate the new demand. For example, three demands are shown in

Figure 2.1.9 (A). When Demand 1 enters the network, the cycle shown in Figure 2.1.9 (B) is used to provide

backup paths. One of the nodes for Demand 2 is an on cycle node for the cycle shown in Figure 2.1.9 (B) so it

is grown when Demand 2 enters the network. The grown cycle is shown in Figure 2.1.9 (C). The cycle is grown

by removing the dotted link and adding the dashed links. When Demand 3 enters the network, it is protected

by the new cycle shown in Figure 2.1.9 (D) since neither its source or destination node is on the current cycle

shown in Figure 2.1.9 (C).

Figure 2.1.9: Growing cycles: (A) Three example demands. (B) Cycle used to protect Demand 1. (C) Result
of growing the cycle shown in (B) so that it can protect Demand 2. (D) A new demand is used for Demand 3
rather than growing the cycle in (C).

Three common ways to �nd p-cycles are [18]:

• Circuit Vector Space Method

• Backtracking Algorithms

• Straddling Link Method
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The Circuit Vector Space Method is the simplest of the three methods. It involves �nding a simple set of

base cycles and then combining them to �nd the rest of the possible cycles in the network. Two cycles can be

combined if they have one or more common links (links that are part of both cycles). The cycles are then stored

in a look-up table for later use. The two cycles shown in Figure 2.1.10 (A) have the common links 3-7 and 6-7

so they can be combined to form a new cycle. The new cycle will be made up of all of the links in both cycles

minus the common links. The new cycle will be made up of the dashed links shown in Figure 2.1.10 (B) and will

not include the dotted links. The resultant new cycle is shown in Figure 2.1.10 (C).

Figure 2.1.10: Combining two cycles: (A) Two cycles to be combined with common links 3-7 and 6-7. (B) Dashed
links will make up new cycle while dotted links are excluded. (C) Result of combining the two cycles shown in
(A).

This method is the slowest to run since it will �nd every possible cycle in the network so it is run o�ine.

Figure 2.1.11 (A) shows an example network and all of its base cycles. Combination of the base cycles by growing

yields the two cycles shown in Figure 2.1.11 (B). Finally, combining either of the cycles in Figure 2.1.11 (B) with

either base cycle (1-2-4-1) or (4-5-6-4) will yield the cycle shown in Figure 2.1.11 (C). Thus, after combining the

base cycles with each other to form new cycles, more cycles can be found by combining the newly found cycles

with more base cycles.
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Figure 2.1.11: Circuit Vector Space Method Example: (A) An example network and all of its base cycles. (B)
Combination of base cycles yields two new cycles. (C) Cycle that is formed from combinations of discovered
cycles in (B) with base cycles in (A).

The Backtracking Algorithms are modi�ed versions of a shortest path algorithm. It starts by �nding the

shortest path from any given node itself (i.e. source and destination node is the same). Once the destination

node is found the algorithm backs up by one link and looks for another way to complete the path. This is done

until there are no more unique paths available (i.e. starting from the �rst link in the searching process and

no paths are available to the destination). A new node is selected and the process repeats until all nodes are

searched. For example, in Figure 2.1.12 (A), a circular path through the network is found using a path �nding

algorithm. The algorithm then backs up by one link and looks for another way to complete the path that does

not use the link just used (Figure 2.1.12 (B)). One isn't found so it backs up by one more link (Figure 2.1.12

(C)) and then looks for another path that does not use the link just used (dotted link) to complete the cycle

(Figure 2.1.12 (D)).
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Figure 2.1.12: Example of Backtracking Algorithms: (A) A circular path through the network is found. (B) The
algorithm then backs up by one link and tries to �nd a new path. (C) A new path isn't found so the algorithm
backs up by one more link. (D) Algorithm looks for another path.

The Straddling Link method attempts to �nd straddling links and then form the cycles using a twin disjoint

paths algorithm. When considering a source and destination pair, a cycle can be bisected into two halves. These

halves are the two possible paths between the source and destination nodes that the cycle can provide. By �nding

two disjoint paths between a source and destination node, a cycle can be formed. However, in many applications,

it is desirable to have a cycle with a straddling span because a cycle can provide two potential backup paths to

any working paths that �ow over its straddling span. The straddling link method, when possible, tries to �nd

cycles with straddling links. If the source and destination nodes have a degree of three or more than a shortest

path algorithm is used to �nd a direct path between the source and destination nodes. This path becomes the

straddling span. Two more disjoint paths are then found to build the cycle. There are some instances where

the source node, destination node, or both will have a degree of only two. In that case, there will only be two

possible paths between the source and destination nodes and no straddling span will be possible. When only two

paths are possible between source and destination nodes; �nding the two disjoint paths between the two nodes

will yield the two necessary halves of a new cycle. For example, in Figure 2.1.13, node 1 and node 5 want to

communicate. In Figure 2.1.13 (A), node 1 has a degree of 2 and node 5 has a degree of 3. The degree of a node

is the number of links connected to it. In this case, two disjoint paths are found between nodes 1 and 5. The
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cycle is then formed from the two paths. In Figure 2.1.13 (B), node 2 and node 4 want to communicate. Both

nodes have a degree of 3 and so three paths should be available between the two. The shortest path between the

source and destination nodes (the straddling span of the cycle) is found �rst. Next, two more disjoint paths are

found to make up the two halves of the cycle being constructed. The new cycle is shown in Figure 2.1.13 (C).

However, it is possible for two nodes, each with a degree of two or more, to have only two possible paths between

them like in the case of nodes 2 and 5 in the network of Figure 2.1.13 (note: a p-cycle cannot pass through the

same node twice). In this case, the twin disjoint paths are found and those two paths are then used to create

the cycle.

Figure 2.1.13: Straddling Link Method: (A) Cycle formed from two disjoint paths between nodes 1 and 5. (B)
Three possible disjoint paths between nodes 2 and 4. (C) Path 1 and Path 2 are combined to form a new cycle.

Unlike the Circuit Vector Space Method and the Backtracking Algorithms, which �nd all the possible p-cycles

in a network at one time, the Straddling link method can be run on demand. This means that a cycle can be

found when a new one is needed for a demand rather than having to �nd the entire list of possible cycles prior to

network operation. In the Backtracking Algorithms and the Circuit Vector Space Method, the number of cycles

found increases exponentially as the number of links and nodes in a network increases [18, 25]. Because of this

increase in the number of cycles found, it is necessary to select a set of best candidate cycles that can be used so

the list of cycles used by the network to plan backup routes is smaller, and the routing decision takes less time.
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Best candidate cycles are selected using an e�ciency metric [19, 25, 26, 30]. Two common e�ciency metrics are

the topological score (TS) and the apriori e�ciency (AE) [25, 30]. TS(j) =
∑
iεS

xi,jWhere S is a set of links,

xi,j = 1 if link i is part of cycle j, xi,j = 2 if link i straddles cycle j, and xi,j = 0 otherwise. The apriori e�ciency

metric adds a distance cost to the topological score. AE(j) = TS(j)∑
(iεS|xij=1)

Ci
Where Ci is the cost or distance of

span i. However, since the e�ciency metric for selecting the best candidate cycles will be dependent on the

desired operation of the network, choice of an appropriate e�ciency metric is left up to the network designer.

2.1.2 P-Cycle Implementation

Once the cycles are discovered it is time to decide how to utilize them. There are two approaches to p-cycle

deployment for protection [20, 21, 25]:

• Non-joint approach

• Joint approach

In the non-joint approach, the working paths for all of the demands are found �rst. Then, after every demand

is assigned a working path, the p-cycles are used to determine the best set of backup paths for the demands. In

the joint approach, the working and backup paths for each demand are found at the same time. The backup

paths are also determined using the p-cycles in the joint approach. The non-joint approach usually provides a less

optimal solution than the joint approach. This is because the joint approach allows the algorithm to ensure that

as many working paths as possible are over straddling links. Straddling links provide more backup paths than

on cycle links and so more backup paths are available to demands. An example network with three wavelengths

available on all links and the working paths for two demands is shown in Figure 2.1.14 (A). In the non-joint

approach, the demands are assigned wavelengths independently of each other and their backup paths. Working

paths are free to take whichever wavelength(s) that they want without considering the e�ect they will have on

other demands. In Figure 2.1.14 (A), the demands have taken di�erent wavelengths. The possible backup paths

that the cycles shown in Figure 2.1.14 (B) can provide for Demand 1 are shown in Figure 2.1.14 (C) and the

backup paths for Demand 2 are shown in Figure 2.1.14 (D). Path 2 has wavelengths 1 and 3 available to it while

Path 1 has all three available. Path 3 has wavelengths 2 and 3 available to it. If Path 1 is chosen for the backup

path to Demand 1 then, in order to share backup resources with Path 3, Wavelength 3 would have to be used.

This causes the links in Cycle 2 to utilize three wavelengths. The more e�cient way to assign the bandwidth

23



would be to assign both Demands 1 and 2 to the same wavelength on their working paths as shown in Figure

2.1.14 (E). The joint approach will consider the working paths at the same time. Since they are disjoint, they

can be assigned the same wavelength over their working links as shown in Figure 2.1.14 (E) (Wavelength 2 was

chosen for this example). Backup paths 2 and 3 are free to take either wavelength 1 or 3 as shown in Figure

2.1.14 (F) (for this example, Wavelength 3 was chosen), causing Cycle 2 to be utilizing only two wavelengths.

One wavelength is entirely unused over all the links on Cycle 2.

Figure 2.1.14: Example of joint and non-joint cycle assignment: (A) An example network with three wavelengths
available on all links, the working paths for two example demands, and the wavelengths chosen for the working
paths with the non-joint approach. (B) Two cycles used to provide backup paths for the network. (C) Two
backup paths available for Demand 1 using cycles 1 and 2. (D) Backup path available to Demand 2 using Cycle
2. Cycle 1 cannot provide a backup path for Demand 2. (E) Working paths for the two example demands
with their assigned wavelengths with the joint approach. (F) Backup paths for Demands 1 and 2 with the joint
approach.

P-cycles are usually used for minimizing link cost [25, 30] or for e�cient utilization of network resources

[20, 30, 31]. However, they can be used for other optimization problems. One such problem is in optimal

placement of wavelength converters and also planning where to do signal regeneration [20, 24, 28]. In a network
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without wavelength conversion/regeneration, it is necessary to have clear paths (paths that utilize the same

wavelength through every link in the path) between source and destination in order to transmit data. This leads

to ine�ciencies since paths, that could be available if conversion was allowed, would be considered unusable.

The path size is also limited since attenuation/degradation of the signal becomes a problem and regeneration is

necessary. In Figure 2.1.15 (A), four demands, their working paths, and their required wavelengths are shown.

Demand 1 is from node 1 to node 7, Demand 2 is from node 6 to node 2, Demand 3 is from node 6 to node

2, and Demand 4 is from node 6 to node 4. Demands 1, 3, and 4 have clear paths between their source and

destination nodes. However, since Demand 1 is already using wavelength 1 over link 2-7, Demand 2 does not have

a clear path between the source and destination nodes and cannot transmit. If the signal is converted at node

7 to another wavelength as shown in Figure 2.1.15 (B), the path for Demand 2 can be completed. An example

of regeneration is shown in Figure 2.1.15 (C). A demand between nodes 3 and 7 enters the network. However,

node 7 is not in range of node 3 and the signal degrades after node 6 (shown as a dotted line). Therefore, it is

necessary for node 6 to decode the signal in order to send it to node 7 (regenerate the signal) to complete the

path (Figure 2.1.15 (D)).

Figure 2.1.15: Conversion and Regeneration: (A) An example network and four demands: 6-4, 6-2, 6-2, and 1-7.
(B) Conversion is necessary in order to transmit the data over link 2-7. (C) node 7 out of range of node 3. (D)
Conversion of signal at node 6 so nodes 3 and 7 can communicate.

However, wavelength conversion and regeneration requires conversion of the signal from optical to electrical
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and back to optical again (OEO conversion). OEO conversion is expensive both equipment and power wise so

most networks have partial wavelength conversion (wavelength converters at selected nodes rather than every

node). In networks with partial wavelength conversion, the problem is where to place the converters and how

many to use. The placement and number of converters are dependent on how the network plans its connections.

P-Cycles can solve this problem in two ways [20, 24, 28]. The working and backup paths can be assigned the

same wavelength(s) and conversion is unnecessary in the case of a failure. Converters are then only needed when

the working path and p-cycle use di�erent wavelengths. Furthermore, because the working and backup paths

are the same wavelength(s), the assignment of resources is more uniform, less converters are needed, and the

chances of wavelength blocking from broken up paths lowers. The other way to solve the converter problem is to

have the working path use one wavelength and then convert only at the access points of the cycle. A node that is

attached to a link that is a common link between two or more cycles is called an access point. For example, node

2 in Figure 2.1.16 (A) is an access point between Cycles 1 and 2. Having the working path use one wavelength

and converting only at access points of a cycle allows the cycle to support multiple demands at the cost of having

a little more converters. In the case of both schemes, paths would be planned so that regenerators are placed

where converters are needed. Since conversion and regeneration are performed by the same device, power and

component costs are minimized. The example network shown in Figure 2.1.16 (A) has three cycles, each with a

di�erent wavelength. Three demands are shown in Figure 2.1.16 (B). Demand 1 is protected by Cycle 1, Demand

2 is protected by Cycle 2, and Demand 3 is protected by Cycle 3. The demands can take any wavelength they

want but, by taking the same wavelength as the cycle that will protect them, it is not necessary to convert to

the protecting cycles wavelength in the event of a failure. No wavelength conversions are necessary in this case.

However, there are cases where a demand will cross from one cycle to another as shown in Figure 2.1.16 (C),

in these cases, the working path is broken into sections. Each section is protected by a di�erent cycle and is

converted to that cycles wavelength at the appropriate access point. Demand 3 in Figure 2.1.16 (C) is broken

into two sections. Section 3-1 is protected by Cycle 1 and converted to Wavelength 1 at the access point between

cycles 1 and 2 (Node 2), Section 3-2 is protected by Cycle 2 and is transmitted on Wavelength 2. Demand

4 in Figure 2.1.16 (C) is broken into two sections. Section 4-1 is protected by Cycle 2 and is transmitted on

Wavelength 2, Section 4-2 is protected by Cycle 3 and converted to Wavelength 3 at the access point between

cycles 2 and 3 (Node 6). To cover the entire network in Figure 2.1.16, it is necessary to have converters at nodes

2, 4, 6, and 8. This is more desirable than having them at every node.
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Figure 2.1.16: Example of the two schemes for minimizing converters needed in a network: (A) An example
network with three cycles, each of a di�erent wavelength. (B) The working paths for three demands and the
wavelengths they will be transmitted on. (C) Working paths for two demands. (D) Conversion of the working
paths for Demands 3 and 4 at nodes 2 and 6.

2.2 Network Tra�c Prediction

Network tra�c prediction is a subject that has been gaining increasing attention. Prior knowledge of the

behaviour of network tra�c can be very useful in network planning. If the tra�c is known before the resources

are needed, the best con�guration of the network for the tra�c can be planned before the tra�c arrives. This

is very useful since the discovery of an optimal solution is di�cult in a purely dynamic case where only the

demands that are in the network are known.

Traditionally, network tra�c prediction used a Poisson process. However, it was discovered that this process
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did not provide a good estimate of real tra�c [34]. As a result, tra�c measurement studies were performed to

determine the nature of network tra�c. The most prominent of the studies was performed by Leland and Wilson

[36]. In this study, measurements of packet tra�c on the Bellcore network were taken over a period of three

years. The packet measurements were then studied to determine the behaviour of network tra�c. The results

of this study showed that network tra�c is bursty and that it is self similar in nature. The Poisson process

model, which assumes that the aggregate tra�c becomes less bursty as the number of tra�c sources increases,

is inaccurate [36]. Further study has shown that this self similar, �bursty�, nature is also present in tra�c at the

call level [2, 34]. This behaviour is due to the actions of the transmitter (i.e. the users) and not the nature of

the network itself [35].

A process is self similar if its future values or outcomes are dependent on past measured values or outcomes.

In other words, outcomes measured over a certain period of time behaves the same as the outcomes measured

over a di�erent time scale (appropriately scaled) [35]. A self similar process can be either short term dependent or

long term dependent. Short term dependent processes are dependent on recent behaviour (recently occurred or

short term outcomes), and long term dependent processes are dependent on both recent and long term behaviour

(long term outcomes). Network tra�c is long term dependent [33, 34, 35, 36, 37]. It has high and low periods and

night time variations [2, 5]. These variations repeat themselves over a larger time scale so that daily, monthly, or

even yearly patterns can be predicted. The only limit of prediction algorithms is the size of the samples needed

in order to project the future behaviour of the network tra�c and the choice of prediction method. The choice

of prediction method will a�ect the prediction interval, the error, and the computational cost [32]. The interval

is important since, if it is too small, the network will not predict the tra�c properly and, if it is too large, it will

require more complex computation than necessary. The error is a�ected by the prediction interval the algorithm

uses (some algorithms will have error in them since there is no such thing as a perfect prediction algorithm), and

the amount of change that occurs in the system. Networks are constantly growing and the number of customers

is constantly increasing. This results in a constant change in the behaviour of network tra�c. This change can

also be predicted by modeling the new customer demands with time, but that methodology will be very complex

since more than one model has to be developed to predict the network tra�c over the long term. Therefore,

prediction algorithms usually include an over-estimate or margin of error to allow for future changes in the tra�c

behaviour.

There are many di�erent prediction algorithms for self similar networks and many possible combinations of
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those algorithms [32, 38, 39, 40]. For simplicity, only the main techniques will be discussed here. There are four

main algorithms for predicting self similar processes:

• FARIMA/ARIMA [32, 38, 40]

• Arti�cial Neural Networks (ANN) [32, 40]

• Wavelet based predictors [32]

• Genetic Algorithms [39]

The Fractional AutoRegressive Integrated Moving Average (FARIMA) model creates a time series out of past

values that is used to project future values. The larger the time series is, the more accurate the model. The

FARIMA model is capable of capturing long term dependence, and is more accurate than the ARIMA model,

but is much more complex than ARIMA. The ARIMA model can be seen as a special case of the FARIMA

model that can only capture short term dependence. It is useful in cases where predictions in the short term

are necessary and the long term dependent model isn't necessary. The ARIMA and FARIMA models have the

advantage of being easily adjusted to match changes in the behaviour of the process by adjusting the time series

used to form the predictions. These adjustments are made by measuring the di�erence in the predicted value

and the actual value as it occurs and then adjusting the formula accordingly. Obviously, this cannot be done

with every prediction but the error can be monitored until it reaches a certain threshold value and then the

polynomial can be adjusted to account for it.

Arti�cial Neural Networks are modeled with an input layer, an output layer, and some intermediate layers.

The intermediate layers are connected together by �neurons�. Each layer can be connected to any other layer

using these neurons and, as a result, the neural network can capture the behaviour of complex phenomenon

[40]. In order to predict any process, the neural network needs to be trained using historical data. This is

done by feeding historical data into the input of the system and using the output to adjust each layer of the

neural network to obtain the known output values. This process takes a number of steps to perform and can be

time consuming. Another disadvantage is that, if the behaviour of the process changes, the network has to be

re-trained.
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Wavelet based predictors take the original time series and decompose it into varying frequency components

via the Wavelet transform. These components are then used to predict the future behaviour of the time series.

The high frequency components are used to predict short term behaviour and the low frequency components

predict the long term behaviour.

The Genetic algorithms follow a similar route as evolution to predict future behaviour. The algorithm

produces a set of possible solutions called a population. Each solution is called an individual and individuals

are grouped together into chromosomes. The solution space is searched to �nd the best solution by assigning

each chromosome a �tness value. The criterion for setting the �tness value is set by the designer. The current

population is evolved to create a new population with a higher �tness through two operations: Crossover, where

two individuals are mated together in order to exchange genetic information, and Mutation, which is a random

change to the chromosome which enables new avenues of the solution space to be included in a given set of

solutions. Each generation is created from the last using the evolution operators and the process terminates

when a new generation is the optimal solution.

A study of these prediction algorithms and how they apply to network tra�c prediction is left to a future

work. However, where needed, it is assumed that a suitable network prediction scheme is in place to provide a

list of expected demands.
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Chapter 3

Power E�cient Routing With P-Cycles

3.1 Background and Previous Work

As discussed in Section 1.1, power e�ciency has become an important issue in modern networks. Lowering

power usage can reduce operational costs, lower the strain on the power grid, and can lower the environmental

impact of the network. Most work has focused on �nding the minimum power solution [1, 2, 4, 7, 9, 10, 13, 14].

However, this comes at a cost of increased bandwidth usage and loss of the shortest length path. Therefore, a

middle ground should be found that will provide both power and bandwidth e�ciency rather than one or the

other.

Power e�ciency can be achieved by aggregating tra�c onto similar paths. Aggregation of tra�c makes it

possible to minimize power consumption by allowing resources to be switched o� or into a low power state. Links

and nodes have three modes:

• Online mode - When a node or a link is in use for transmitting data it is said to be in �online mode�.

• O�ine mode - When a node has no tra�c passing through it, and is not a source or destination node for

tra�c, it can be powered down. Similarly, if a link has no tra�c �owing through it, the resources necessary

for operating that link (lasers, switching architecture, etc.) can be powered down. When a node is powered

down or the resources necessary for operating a link are powered down, the node or link is said to be in

�o�ine mode�.
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• Sleep mode - When only backup routes pass through a node, that node can be put into a low power state.

Similarly, when a link only has backup routes over it, the resources necessary for operating that link (lasers,

switching architecture, etc.) can be put into a low power state. When a node is in a low power state or

the resources necessary for operating a link are in a low power state, the node or link is said to be in �sleep

mode�.

Obviously, the o�ine mode is more power e�cient. However, survivability is also important so backup

resources also have to be considered. Unless 1+1 protection is used, nodes and links that have only backup

paths routed over them can be put into a low power or sleep state until needed. Standardization e�orts by the

IEEE, discussed in Section 1.1, aim to introduce a selective sleep mode for internal components of routers. So

components such as line cards and cross connects can be switched o� or into a sleep (low power) state to conserve

power. If backup paths are routed over the similar paths like the working resources; nodes and links that only

have backup paths routed through them begin to emerge. This is called path aggregation. The example network

in Figure 3.1.1 (A) shows a network without aggregation. In this network, there are four links that are always

online (1-2, 2-4, 1-3, and 3-7), one link in sleep mode (4-7), and six o�ine links (2-3, 3-6, 4-6, 4-5, 5-6, and 6-7).

There are �ve online nodes (1, 2, 3, 4, and 7), no sleep mode nodes, and two o�ine nodes (5 and 6). Figure 3.1.1

(B) shows an example network with aggregation of backup resources. In this case, there are three links that are

always online (1-2, 2-4, and 2-7), three links in sleep mode (1-3, 3-7, and 4-7), and six o�ine links (2-3, 3-6, 4-6,

4-5, 5-6, and 6-7). There are four online nodes (1, 2, 4, and 7), one sleep mode node (3), and two o�ine nodes (5

and 6). With aggregation, more links and nodes that only have backup bandwidth routed over them are present

in the network. More links and nodes in sleep mode lead to power savings.

Figure 3.1.1: Example of sleep/o�ine mode: (A) An example of a network without aggregation. (B) An example
network with aggregation of backup resources.

Previous works focused on using wavelength grooming or employed a shortest path discovery algorithm

32



to achieve aggregation of working/backup paths. In [1], ILP formulations were developed to minimize power

consumption in networks with dedicated path protection and have sleep mode support, and for networks that do

not support sleep mode. In the case of networks with sleep mode support, the algorithm would �nd the solution

that provided paths for all demands that utilized the least number of links for working paths. Links that are

already in use for working paths for other demands are preferred when setting up a working path for a new

demand. In this way, the working paths for demands will follow similar routes through a network. This will keep

the number of links that have working tra�c over them to a minimum and maximize the number of potential

links that can be put into sleep mode or o�ine mode. Similarly, backup paths from each demand are routed

over the same links wherever possible. This will keep the number of potential links that can be put into o�ine

mode and at a maximum. Maximizing the number of links that can be put into o�ine mode is desirable over

maximizing the number of links that can be put into sleep mode because o�ine mode is more power e�cient

than sleep mode. The number of links in sleep mode and o�ine mode is maximized but at a cost of paths with

a greater number of links (i.e. longer paths). In the case of networks without sleep mode support, the algorithm

would �nd the solution that provides paths to all demands and also utilizes the least number of links. This work

aimed to provide optimum power e�ciency but did not consider capacity usage.

In [10], ILP formulations were developed to minimize the total energy consumption as well as the total

capacity usage. The algorithm would �nd paths for all demands that will minimize the number of working and

backup wavelengths. The working paths can be routed over the same or di�erent routes and the backup routes

are shared wherever possible. This work considers both energy and capacity usage but it does not factor in power

consumption. It �nds the optimal energy use by considering the optimal con�guration for a set of demands at

one given point in time but does not consider the e�ect of changing demands. For example, if the network is

con�gured for optimal energy e�ciency, as long as the demands stay exactly the same, the network will also be

con�gured for optimal power e�ciency. However, power is the average energy expended over time. If some of

the demands enter or leave the network or their bandwidth requirement changes, the con�guration necessary for

minimum energy e�ciency will change. If changes in network demands are not taken into account, the network

will not be operating in the most energy e�cient way at all times, and therefore, it will not be operating in the

most power e�cient way.

In [2], [9], and [14], the tra�c grooming concept was studied to show its e�ects on power e�ciency. In

[2] and [14], studies were performed to �nd the e�ect on selectively switching sub components (such as line
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cards, electrical cross connects, etc) into sleep/o�ine mode. Grooming is the grouping of tra�c bound for the

same or a similar destination (i.e. the paths share a number of links in common). Grooming can occur at the

waveband level, the wavelength level, and the sub-wavelength level. Sub-wavelengths are grouped under the

same wavelength, wavelengths are grouped under the same wavebands, and wavebands are grouped under the

same �bre. When tra�c is groomed, the network requires fewer resources to transmit data than in networks that

do not use grooming. For example, consider the multi-layer optical cross connect architecture shown in Figure

3.1.2. This architecture is similar to that found in [42] and [43] but with an added electrical cross connect for

conversion and regeneration like the architectures found in [44]. A network without grooming is shown in Figure

3.1.2 (A). The two signals shown use separate wavelengths during transmission and it is necessary to switch the

signals at the wavelength cross connect (WXC). A network with grooming, as shown in Figure 3.1.2 (B) and

(C), will switch the two wavelengths onto the same waveband at an intermediary node (shown in Figure 3.1.2

(B)) and each node the data travels to afterward (shown in Figure 3.1.2 (C)) will only have to switch the signals

at the waveband cross connect (BXC), using fewer resources.

Figure 3.1.2: Example of Grooming: (A) A network that does not utilize grooming. (B) A node in network with
grooming where the grooming occurs. (C) A node in a network with grooming where grooming is unnecessary
due to grooming occurring at an earlier node.

By grooming, it is possible to lower the number of sub-components necessary to perform switching at each

node and, therefore, unneeded components can be switched o�. By ensuring that working tra�c and backup

tra�c are kept separate then it can be possible to extend the power savings to include o�ine mode for sub

components that are assigned to handle backup bandwidth only. In [9], the time aware tra�c grooming concept

34



was introduced. Adding time awareness to tra�c grooming means that the time a demand is in a network as

well as its source and destination are taken into account when making a routing decision. New demands are

groomed onto an existing lightpath with a longer remaining holding time whenever possible while also keeping

the total length of the path (number of hops) as low as possible. This method does not consider the capacity

usage while making routing decisions.

ILP formulations can be complex, require lots of time to solve, and require lots of computing power. De-

pending on the formulation, the speed problem can be solved by simplifying the ILP problem but at a cost of

optimality [10]. Each of the previous works assumed a static routing condition such as the Scheduled Tra�c

model. The problem with this assumption is, as stated before, it will only give an example of minimizing energy

at one given moment and not power which is an average over time.
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3.2 Power E�cient P-Cycles

It is possible to extend the static routing model by using network tra�c prediction. In this way, the changes

to tra�c with time can be accounted for by predicting tra�c over a large time period. The energy e�cient

solution for the predicted tra�c can then be used to achieve energy e�ciency for the real tra�c. The predictions

can be continuously updated and, therefore, the energy e�cient set of paths for the demands can also be updated.

In this way, energy e�ciency is maintained regardless of changes in the network tra�c and power e�ciency is

achieved. However, this will lead to a large demand set for the static routing problem, and therefore, a very

complex ILP. More complex ILP problems require more computer power and time to solve, leading to a higher

power usage. Furthermore, since network tra�c depends on the number of customers and their bandwidth

demand, the tra�c on the network will, on average, increase with time as the number of customers and their

bandwidth demand increases. The result of the average increase is an introduced error to the prediction that

increases with time. This error can be accounted for by monitoring the real tra�c data and comparing it to the

predicted tra�c. The di�erences can then be used to correct the prediction algorithm (see Section 2.2).

Assuming a static routing algorithm, every time the prediction algorithm is corrected or a new set of predic-

tions for the tra�c is generated, the routing algorithm has to be run to plan the energy e�cient routes for the

new set of tra�c. This is a problem if the routing algorithm is very complex and takes a lot of time to complete.

Heuristic algorithms are less complex than ILP formulations but do not present the optimal solution. They have

the advantage of completing faster then ILP and require less computing power. A heuristic algorithm can be

run whenever a new set of tra�c is generated without the resource and time problems of ILP.

This work assumes that an adequate prediction algorithm is in place and focuses on the assignment of

resources. The set of predicted demands, and the error in prediction, will increase the further into the future

the prediction algorithm generates data for. The error is the di�erence between the predicted outcome and the

actual outcome. To keep the error as small as possible, the demands should be predicted for a shorter period

of time. The prediction algorithm can then be run whenever a new set of predicted demands is needed. The

algorithms presented in this work �nd an energy e�cient routing scheme for a predicted set of demands. When

the predicted set of demands changes, the algorithms have to be re-run for the new set of predicted demands.

Once the routes for the predicted demands are found, they are stored for later use as the actual demands enter
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the network.

3.2.1 Power E�cient Routing Scheme

The path �nding algorithms in this work �nd an energy e�cient way to route a given set of demands. If

the network tra�c never changed over time, the energy e�cient routing method would also be power e�cient.

However, as discussed in section 1.1, network tra�c is bursty and changes over time. Once the network tra�c

changes, the most energy e�cient way to route that tra�c also changes. Over time, if the routing method does

not change as the network tra�c changes, the network will not perform in a power e�cient way. Therefore, a

power e�cient routing scheme has to continuously change its routing table as the tra�c changes. Operation of

the power e�cient routing scheme takes place in three stages:

• Prediction Stage

• Path Finding Stage

• Operation Stage

During the prediction stage, a prediction algorithm is run to determine the future demands. The prediction

algorithm can be run in the background as the network is in the operation stage to save time and to utilize

measured data to determine, and correct for, error that occurs with time. For short term (near future) predictions,

care has to be taken to ensure that the prediction algorithm will predict tra�c far enough into the future that

there will be enough time to predict the next set of data. For long term (far future) predictions, care has to be

taken to ensure that the time scale isn't so large that an unacceptable amount of error occurs. The ideal size of

the time scale is dependent on the individual network and beyond the scope of this work. Therefore, the tra�c

for the simulations was generated o�ine.

During the path �nding stage, the routing algorithms are run and the paths for the predicted tra�c are found.

These paths are then stored for use during the operation stage when the real demands enter the network. These

paths could be stored in a look-up table for each source destination pair. When a demand enters the network,

the routing decision becomes a matter of looking up which paths to use from the look-up table. Alternatively,

just the cycles that will provide the paths for the demands can be stored in the look-up table. However, this
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would require a path �nding algorithm to �nd a set of paths for the demands as they enter the network during

the operation stage.

The operation stage is when the paths assigned during the path �nding stage are utilized for real tra�c.

When a demand enters the network, the look-up table found during the path �nding stage is used to �nd which

paths should be used for the demand in question. The operation stage will continue until the end of the prediction

time scale is reached. Once this occurs it is necessary to obtain a new set of demand predictions and a new set of

�nd paths for the new demands. These new demands and their paths can be obtained while the old predictions

and paths are being utilized. This enables the network to operate continuously without blocking all demands

while a new set of predictions is made.

During operation, the network will experience high and low periods of tra�c. These high and low periods are

what a�ects the ideal size of the time scale of the demand prediction. An e�cient set of paths for one load may

not be e�cient for another. The decision to change the routing table is dependent on how long the high or low

period lasts and how bursty the tra�c is. With very bursty tra�c it would be better to just keep one routing

table and not update it as the expected tra�c changes. For example, for the predicted tra�c in Figure 3.2.1, the

routing table could be changed between points a and b since the expected tra�c isn't very bursty and changes

slowly. However, the tra�c is very bursty and changes rapidly between points c and d so the routing table

would be selected for the highest demand and left that way until the nature of the expected tra�c changes. The

decision on the minimum length of a high or low period to warrant a change in the routing table is dependent

on the network in question and the decision of the length is left up to the designer.

Figure 3.2.1: Decision to change the routing table
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3.2.2 Energy E�ciency With P-Cycles

P-cycles are normally used for planning backup paths and sharing backup resources. Previous works have

shown that p-cycles provide the restoration speed of rings and the resource e�ciency of mesh networks. The

resource e�ciency comes from the cycles ability to protect both on-cycle and straddling links/paths. However,

the p-cycle concept can provide power e�ciency as well. By using p-cycles to provide both working and backup

paths for tra�c, the straddling links/paths are left with no tra�c routed over them and can be switched into

o�ine mode. For example, a network with two cycles is shown in Figure 3.2.2 (A). Three demands are shown in

Figure 3.2.2 (B). If the working paths are routed around the cycles as shown in Figure 3.2.2 (C), and the backup

paths are routed around the cycles as shown in Figure 3.2.2 (D), then 4 links and 1 node can be put into o�ine

mode, and three links can be put into sleep mode. Note that the working paths of demands 1 and 2 are not

disjoint so they cannot share backup resources over any backup links they share. However, Demand 3 is disjoint

from Demands 1 and 2 so it can share backup resources with either Demand 1 or 2 over link 1-4. If the working

paths are routed over the shortest paths as shown in Figure 3.2.2 (E), and the backup paths are routed over the

shortest paths as shown in Figure 3.2.2 (F), then four links can be put into o�ine mode, one node can be put

into sleep mode, and four links can be put into sleep mode. Components in o�ine mode will utilize less energy

than components in sleep mode so routing the paths around the cycles like in Figure 3.2.2 (C) and (D) is more

energy e�cient than routing them over the shortest paths as in Figure 3.2.2 (E) and (F).
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Figure 3.2.2: Use of straddling link and straddling path for power e�ciency: (A) An example network with two
cycles. (B) Three example demands. (C) Working paths for Demands 1, 2, and 3 using p-cycles. (D) Backup
paths for Demands 1, 2, and 3 using p-cycles. (E) Shortest working paths for Demands 1, 2, and 3. (F) Shortest
backup paths for Demands 1, 2, and 3.

The backup resource sharing ability of cycles can also be taken advantage of. The backup resources between

cycles can be shared over common links provided there are no working paths over those links. If there are working

paths over the common links, care has to be taken to ensure that the working paths of the demands are disjoint

in order to share bandwidth. If the working paths are not disjoint, the backup paths could be shared but not

the bandwidth. When a demand is assigned paths using a cycle, the demand is said to be assigned to that cycle.

Figure 3.2.3 (A) shows an example network with two cycles with common links 1-5 and 4-5. A demand between

nodes 2 and 4 is assigned to Cycle 1 and a demand between nodes 1 and 6 is assigned to Cycle 2. In Figure

3.2.3 (B), the working path for the demand assigned to Cycle 1 is routed over the common links. Because the

working path for the demand assigned to Cycle 1 is over the common links, the demand assigned to Cycle 2

cannot share backup bandwidth with the demand assigned to Cycle 1. In Figure 3.2.3 (C), the backup path for
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the demand assigned to Cycle 1 is routed over the common links. The backup path for the demand assigned to

Cycle 2 is also routed over the common links. The demand assigned to Cycle 1 can share backup bandwidth

with the demand assigned to Cycle 2. In Figure 3.2.3 (D), the working path for the demand assigned to Cycle

2 is over common link 1-5. If a demand assigned to Cycle 1 uses common link 1-5 as its working path, then the

demand cannot share its backup bandwidth with the demand assigned to Cycle 2.

Figure 3.2.3: Resource Sharing Over Common Links: (A) An example network with 2 cycles, with common links
1-5 and 4-5. (B) The working path for a demand between nodes 2 and 4 are routed over the common links. (C)
The backup paths for demands between nodes 2 and 4 and nodes 1 and 6 are over the common links 1-5 and
4-5. (D) Common link 1-5 is used for working tra�c for a demand between nodes 5 and 6.

Path �nding by using p-cycles is relatively simple. The cycles themselves are used to determine the working

and backup paths so, unlike the traditional method of p-cycle protection which �nds a working path �rst and

then uses the cycles to �nd a backup path, the working and backup paths are both provided by the cycle. A

cycle is said to be able to support a demand if both the source and destination nodes of that demand are on the

cycle. Once a cycle that can support a demand is found, the working and backup paths for that demand can be

determined by using the links in the cycle itself since only two paths are available on any given cycle between

source and destination nodes. The complexity of the routing problem will grow with the number of cycles since

it is possible for multiple cycles to be able to support a demand. This problem is solved by �rst scoring the

cycles with an appropriate metric to limit the list of potential cycles that need to be checked when path �nding.
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3.2.3 Proposed Algorithms

Three algorithms are proposed in this work:

• Hybrid Shared

• Modi�ed Hybrid Shared

• Power E�cient Growing Cycles

The Hybrid Shared and Modi�ed Hybrid Shared algorithms assume that a tra�c prediction algorithm is

available and requires the demands to be known in advance. The Power E�cient Growing Cycles algorithm is a

dynamic routing algorithm that will work in both systems with demand prediction and systems without demand

prediction. When tra�c prediction is being used, all three algorithms will work during the path �nding stage.

The algorithms will �nd an energy e�cient way to route the predicted demands. During the operation stage,

the assigned routes for the predicted demands will be used to assign routes to the real demands as they enter

the network. In order to achieve power e�ciency, the demand prediction has to be updated as tra�c conditions

in the network (i.e. the demands) change. By continuously updating the tra�c prediction, and the paths for the

predicted tra�c, a power e�cient routing scheme can be maintained over time and, therefore, power e�ciency

is achieved.

The power e�cient growing cycles algorithm has the advantage of not requiring the tra�c to be predicted

before �nding paths for a set of demands. When demand prediction is not being used, the network does not

have to go through a prediction stage or a path �nding stage, the algorithm will assign demands a working and

backup path dynamically. This means that, when being operated dynamically, the power e�cient growing cycles

algorithm will continuously maintain an energy e�cient routing scheme and therefore, achieves power e�ciency.

How the power e�cient growing cycles algorithm assigns demands their paths and how it handles tra�c already

in the network when a new demand is being assigned a path is discussed in Section 3.2.3.3.
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3.2.3.1 Hybrid Shared Algorithm

This algorithm derives its name from how it allocates backup bandwidth. It is similar to the shared backup

scheme with a few changes. It assumes that backup bandwidth can be shared between demands of di�erent

cycles, provided the working paths are disjoint. Backup bandwidth between demands that are on the same cycle

as can never be shared. So the algorithm will dedicate bandwidth to on cycle demands and it will allow demands

to share bandwidth only with demands that are assigned to other cycles.

Stage 1:

In this stage, the algorithm will assign groups of demands from set DM to as many cycles from set CY as

possible. CY is a set of all p-cycles for the network and is predetermined prior to operation of the algorithm,

and DM is a set of all demands that need to be assigned paths. When �nding a group of demands to assign to

a cycle, it is necessary for the algorithm to perform the following two steps:

1. The cycles in set CY are scored.

2. The scored cycles are assigned demands.

In step 1, every cycle in set CY is assigned a score based on the size number of links in the cycle, and the

number of demands that the cycle can potentially support. A cycle can 'potentially support' a demand if both

the source and destination nodes of the demand are on the cycle. The score for a given cycle is calculated as

shown in Equation 3.2.1, where NLc is the number of links in cycle c, ND is the number of demands in set DM ,

and Di,c, given in Equation 3.2.2, indicates if both the source and destination nodes of a demand are on cycle c.

Sc =

ND∑
i=1

Di,c

NLc
(3.2.1)

Di,c =


0 If the source or destination node of demand i is not on cycle c.

1 If the source and destination nodes of demand i are both on cycle c.

(3.2.2)

Each demand that has a Di,c = 1 is stored in set DSc. Set DSc, also called the demand set for cycle c, is a

set of all demands that cycle c can potentially support.
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Once each cycle is scored, they are assigned demands. The cycles are checked, one by one, from highest

scoring cycle to lowest scoring cycle to determine if they can support the demands in their demand sets. The

cycle can support the demands in its demand set if a cycle has enough bandwidth on each of its links to support

the demands in its demand set. When determining if a cycle can support the demands in its demand set, the

algorithm will:

1. Find the total bandwidth required by the demands in the cycles demand set that are not already assigned

to another cycle.

2. Ensure there is enough bandwidth on each link that makes up the cycle for the demands in the cycles

demand set.

3. If the cycle can support the demands in its demand set, reserve the necessary bandwidth for the demands

in the cycles demand set on each link of the cycle.

When assigning demands to a cycle, it is necessary to ensure that there is enough bandwidth on the links in

the cycle to support the demands. The total bandwidth required by the demands in a cycles demand set is given

in Equation 3.2.4, where bi is the bandwidth required for demand i, Bc,i is the bandwidth required for demand

i if it will be assigned to cycle c, BRc is the total bandwidth required by all demands in the demand set of cycle

c (DSc), N c is the number of demands in set DSc, and BRc, given in Equation 3.2.4, is the bandwidth required

for a demand if it will be assigned to cycle c.

Bc,i =


bi If demand i is in both set DSc and set DM .

0 Otherwise.

(3.2.3)

BRc =

Nc∑
iεDSc

Bc,i (3.2.4)

Once the total bandwidth needed for the demands in a cycles demand set is determined, each link that makes

up the cycle is checked to ensure that they have enough bandwidth to support the demands.
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If all of the links that make up the cycle do not have enough free bandwidth for the demand, the next cycle

is checked. If all of the links that make up the cycle have enough free bandwidth for the demand, the demands

are assigned to the cycle. Three things occur when a demand is assigned to a cycle during this stage:

1. The demands that are in both the demand set of the cycle and set DM are stored in set S1c and the cycle

is stored in set UC. Set S1c is called a Stage 1 demand set for cycle c and is a set of all demands assigned

to cycle c during Stage 1. Set UC is a set of all cycles that have been assigned demands during Stage 1

and Stage 2.

2. All demands that are in both the demand set of the cycle and set DM are removed from set DM .

3. The total bandwidth required for the demands in the cycles demand set is subtracted from the free band-

width on the cycles links. No paths are assigned during this stage. The path �nding for the cycles found

during this stage is performed during Stage 3. Because the backup bandwidth between demands on the

same cycle cannot share bandwidth, the bandwidth necessary for the demands on each cycle can be reserved

during this stage even though the paths are not yet known.

Stage 1 ends when all cycles in set CY have been checked or there are no demands left in set DM .

Stage 2:

If there are no demands in set DM when this stage starts, the algorithm moves on to Stage 3. If there are

demands left in set DM , then the algorithm will attempt to assign the demands, one at a time, to the cycles in

set CY .

For every demand in set DM , it is necessary to perform the following two steps:

1. The cycles in set CY are scored for the demand being considered (also known as the current demand).

2. Each cycle in set CY is checked, from highest score to lowest score, until a cycle that can provide a working

and backup path for the current demand that has enough bandwidth on its links to provide a working path

for the current demand is found. If there are no cycles in set CY with a score greater than 0, the current

demand is rejected, removed from set DM , and the next demand in set DM is considered.

The score assigned to the cycles during this stage is based on the following four criteria:
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1. The number of demands that the cycle can provide paths for.

2. The number of links in the cycle.

3. The number of common links the cycle has with cycles that have already been assigned demands. The

cycle being scored is not included in this consideration since a cycle cannot have a common link with itself.

4. Whether or not the cycle has already been considered for the current demand.

The number of common links a cycle has with cycles that have already been assigned demands is given as

shown in Equation 3.2.5, where TCLc is the total number of common links that cycle c has with the cycles in

set UC, NC is the number of cycles in set UC, NLc is the number of links in cycle c, and CLc,j,k, given in

Equation 3.2.6, indicates if link j on cycle c is a common link with one of the links in cycle k from set UC.

TCLc =

NLc∑
j=1

NC∑
k=1

CLc,j,k (3.2.5)

CLc,j,k =


1 If link j from cycle c is a common link with one of the

links in cycle k from set UC and cycle k is not cycle c.

0 Otherwise.

(3.2.6)

The score for each cycle for a given current demand is calculated as shown in Equation 3.2.7, where SSc,d

is the score assigned to cycle c for current demand d, Di is given above in Equation 3.2.2, ND is the number

of demands in set DM , NLc is the number of links in cycle c, TCLc is the total number of common links that

cycle c has with the cycles in set UC, and Fd, also called the Failed set for cycle d, is a set containing all cycles

that were already checked for demand d but did not support it. Fd is initially empty but can have cycles added

to it during this stage and Stage 3.

SSc,d =



ND∑
i=1

Di+TCLc

NLc
If cycle c is not in set Fd and both the source and destination nodes

for demand d are on the cycle.

0 Otherwise.

(3.2.7)
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Once the cycles have been scored, each cycle is checked, from highest scoring cycle to lowest scoring cycle.

All of the links in both of the possible paths that the cycle being considered can provide to the current demand

are checked to see if one of them has enough free bandwidth to support the current demand. If neither of the

two paths have enough bandwidth on each of its links for the current demand, the cycle being considered is

added to the Failed set for the current demand and the next highest scoring cycle is checked. If one, or both, of

the paths has enough bandwidth for the current demand, it is assigned to the cycle. Two things occur when a

current demand is assigned to a cycle during this stage:

1. The demands stored in set S2c and the cycle is stored in set UC. Set S2c is called a Stage 2 Demand set

for cycle c and is a set of all demands assigned to cycle c during Stage 2.

2. The current demand is removed from set DM .

The next demand in set DM is then considered. Stage 2 continues until all demands in set DM have been

considered.

Stage 3:

During this stage, the paths and resources are allocated to the demands that were assigned to the cycles in

set UC during Stage 1 and Stage 2. The demands assigned to cycles during Stage 1 are assigned bandwidth �rst.

Each cycle in set UC is checked to see if it has any demands stored in its Stage 1 Demand set. If a cycle from

set UC that has demands in its Stage 1 Demand set is found, the demands are assigned paths in the network.

Since the bandwidth necessary for the demands that were assigned to cycles during Stage 1 was checked during

that stage, it is only necessary to assign a working and backup path to demands that were assigned to cycles

during Stage 1.

For each demand in the Stage 1 Demand set for the cycle, the two paths that the cycle can provide for the

demand are scored based on the number of links in the path and the number of common links the path has with

cycles in set UC. The score for each path is given in equation 3.2.8, where PSc,d,k is the path score for path k

of demand d that was assigned to cycle c, Lc,i indicates if link i is a common link with any cycle in set UC but

is not a part of cycle c, and NPk is the number of links in path k.
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PSc,d,k =

NPk∑
i=i

Lc,i

NPk
(3.2.8)

Lc,i =


0 If link i is not a common link with any cycle in set UC that is not assigned to cycle c.

1 If link i is a common link with any cycle in set UC that is not assigned to cycle c.

(3.2.9)

The path with the most common links will have a higher Path Score and will be assigned as the backup path.

The working path is the path with the lowest Path Score. Once a demand is assigned its paths, it is removed

from the cycles Stage 1 Demand set, and the next demand is assigned its paths.

Once every cycle stored in set UC has been checked for demands stored in their Stage 1 Demand sets, the

cycles are re-checked to see if they have any demands stored in their Stage 2 Demand sets. If a cycle from set UC

that has demands in its Stage 2 Demand set is found, the algorithm attempts to assign paths to its demands.

The two possible paths that the cycle can provide to each demand is scored using Equation 3.2.8. The

lowest scoring path becomes the working path candidate and the highest scoring path becomes the backup path

candidate. The candidate paths are then checked to ensure that each of their links have enough bandwidth to

support the demand.

If each of the links in the working path candidate has enough unused bandwidth for the demand, the working

path candidate can support the demand. If one or more of the links in the working path candidate does not have

enough bandwidth for the demand, the working path candidate cannot support the demand.

The bandwidth available on links in the backup path candidate is calculated as shown in equation 3.2.10,

where BBd,l is the total backup bandwidth available on link l for demand d, FBl is the amount of free bandwidth

on link l, bi is the amount of bandwidth required for demand i, and BAd,i,l , which is given in Equation (3.2.11),

is the amount of bandwidth available on link l for sharing with demand d, and Ml is the number of demands

that have link l as a part of their backup path.
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BBd,l = FBl +

Ml∑
i=1

BAd,i,l (3.2.10)

BAd,i,l =



bi If demand i has link l in its backup path, is assigned to a di�erent cycle than

demand d, and has a working path that is disjoint from the working path

candidate of demand d.

0 Otherwise.

(3.2.11)

If there is enough bandwidth available on all links in the backup path candidate for the demand, the backup

path candidate can support the demand. If one of more of the links in the backup path candidate does not have

enough bandwidth for the demand, the backup path candidate cannot support the demand.

If both the working path candidate and the backup path candidate can support the demand, the demand is

accepted onto the candidate paths. When the demand is accepted, it is removed from the cycles Stage 2 Demand

set, assigned its paths and bandwidth on the network, and the next demand in the cycles Stage 2 Demand set

is checked.

If either the working path candidate or the backup path candidate cannot support the demand, the working

and backup path candidates are swapped and checked again to see if they will support the demand. If both

candidate paths can support the demand, the demand is accepted onto the candidate paths. If one of the

candidates cannot support the demand, the demand is removed from the cycles Stage 2 Demand set and added

set DM .

Once all of the demands in the cycles Stage 3 demand set have been checked, the next cycle in set UC is

checked. Stage 3 ends once all the cycles in set UC have been checked. If there are any demands in set DM

when Stage 3 completes, set UC is emptied and Stage 2 is run again to �nd a new set of cycles that could

potentially provide paths for the demands. If set DM is empty when Stage 3 completes, all demands have either

been rejected during Stage 2 or accepted onto the network during Stage 3 and the algorithm completes.
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3.2.3.2 Modi�ed Hybrid Shared Algorithm

This algorithm is a simpli�ed version of the Hybrid Shared algorithm. The Hybrid Shared algorithm assigns

demands to cycles prior to path and resource assignment. However, there is no consideration of how much

bandwidth each demand uses when it is assigned to links and paths during Stage 2 of the Hybrid Shared

algorithm and it is possible for a cycle to be assigned more demands than its links have bandwidth to support.

Stage 3 of the Hybrid Shared algorithm deals with the problem by checking the links in the path to ensure they

have enough bandwidth to support each demand and, if the links do not have enough bandwidth, return the

demand to set DM so it can be assigned another cycle or rejected if all cycles that could provide a working

and backup path to the demand have been considered. Therefore, Stage 2 and Stage 3 of the Hybrid Shared

algorithm will run multiple times, leading to an algorithm that takes a long time to solve. Stage 1 of the Hybrid

Shared algorithm can also lead to bandwidth ine�ciencies. Resources are subtracted from all of links in a cycle

when a demand is assigned to it. Therefore, demands assigned to cycles in Stage 1 are assigned resources as

if dedicated backup path protection is being used. Since sharing isn't considered between demands assigned

to cycles during Stage 1, more bandwidth is used for backup paths than is necessary. The Modi�ed Hybrid

Shared algorithm eliminates the time and bandwidth problems of the Hybrid Shared algorithm by only scoring

the cycles once and then assigning paths to each demand, one at a time. The Modi�ed Hybrid Shared algorithm

also assigns the shortest of the two paths provided by a cycle to the working path.

The Modi�ed Hybrid Shared algorithm has two stages. In Stage 1, the cycles in set CY that will provide

paths to each demand in set DM are scored. In Stage 2, each of the demands is assigned to a cycle, the working

and backup paths are determined, and the bandwidth is assigned. Set CY is a set of all p-cycles for the network

and is predetermined prior to operation of the algorithm, and set DM is a set of all demands that need to be

assigned paths.

Stage 1:

Each cycle in set CY is assigned a score based on the number of links in the cycle and the number demands

in set DM the cycle can provide paths for. The score for a given cycle is calculated as shown in Equation 3.2.12,

where NLc is the number of links in cycle c, ND is the number of demands in set DM , and Di,c, given in

Equation 3.2.13, indicates if both the source and destination nodes of a demand are on cycle c.
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Sc =

ND∑
i=1

Di,c

NLc
(3.2.12)

Di,c =


0 If the source or destination node of demand i is not on cycle c.

1 If the source and destination nodes of demand i are both on cycle c.

(3.2.13)

Each demand that has a Di,c = 1 is stored in set DSc. Set DSc, also called the demand set for cycle c, is a

set of all demands that cycle c can potentially support.

Stage 1 ends once all cycles in set CY have been assigned scores.

Stage 2:

During this stage, the demands are assigned paths and resources on the network. For each demand, the cycles

are checked from highest scoring cycle to lowest scoring cycle until a cycle is found that has both the source and

destination nodes for the demand. This cycle, called a candidate cycle, is then checked to see if it can support

the demand.

The cycle can support a demand if it has enough bandwidth on its links to provide both a working path and a

backup path for the demand. The two paths the cycle can provide are found and the shortest path is considered

the working path candidate and the longest path is considered the backup path candidate. The candidate paths

are then checked to ensure that each of their links have enough bandwidth to support the demand. If each

of the links in the working path candidate has enough unused bandwidth for the demand, the working path

candidate can support the demand. If one or more of the links in the working path candidate does not have

enough bandwidth for the demand, the working path candidate cannot support the demand.

Because the backup bandwidth can be shared among demands that are assigned to di�ering cycles, the

bandwidth available on links in the backup path candidate is higher than the working path candidate. The

bandwidth available on links in the backup path candidate is calculated as shown in equation 3.2.14, where

BBd,l is the total backup bandwidth available on link l for demand d, FBl is the amount of free bandwidth on

link l, bi is the amount of bandwidth required for demand i, and BAd,i,l , which is given in Equation (3.2.15), is
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the amount of bandwidth available on link l for sharing with demand d, and Ml is the number of demands that

have link l as a part of their backup path.

BBd,l = FBl +

Ml∑
i=1

BAd,i,l (3.2.14)

BAd,i,l =



bi If demand i has link l in its backup path, is assigned to a di�erent cycle than

demand d, and has a working path that is disjoint from the working path

candidate of demand d.

0 Otherwise.

(3.2.15)

If there is enough bandwidth available on all links in the backup path candidate for the demand, the backup

path candidate can support the demand. If one of more of the links in the backup path candidate does not have

enough bandwidth for the demand, the backup path candidate cannot support the demand.

If both the working path candidate and the backup path candidate can support the demand, the demand

is accepted. When the demand is accepted, it is removed from set DM , the bandwidth on its working path

candidate and backup path candidate are assigned to the demand, and the next demand is checked.

If either the working path candidate or the backup path candidate cannot support the demand, they are

switched with each other. The working path candidate becomes the longer path and the backup path candidate

becomes the shorter path. The paths are then checked again to see if they have enough bandwidth on each of

their links to support the demand.

If both the working path candidate and the backup path candidate can support the demand, the demand is

accepted, removed from set DM , and the bandwidth on its working path candidate and backup path candidate

are assigned to the demand. If either the working path candidate or the backup path candidate cannot support

the demand, the demand is rejected and removed from set DM , and the next demand is checked.

The algorithm completes set DM is empty. When set DM is empty, all demands have either been assigned

paths and bandwidth on the network or rejected.
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3.2.3.3 Power E�cient Growing Cycles

The Power E�cient Growing Cycles algorithm operates di�erently from the Hybrid Shared and Modi�ed

Hybrid Shared algorithms. It can be operated in both a static (predicted demands) and dynamic (no prediction

so �rst come, �rst serve) situation. Each time a demand enters the network, this algorithm is run to assign the

demand a set of paths and bandwidth on the network. If multiple demands enter the network at once, or a list

of prede�ned demands exists, the demands are considered one at a time and the algorithm will be run for each.

The algorithm goes through three steps when assigning paths and bandwidth to a demand:

1. The current cycles, which are cycles that have demands assigned to them already, are checked to see if any

of them can support the demand. A demand can be supported by a cycle if the cycle can provide both

a working and backup path for the demand and the links in each path have enough bandwidth for the

demand.

2. If no current cycle can support the demand, the algorithm checks the current cycles to see if any of them

can be grown to be able to accept the demand.

3. If no current cycle can accept the demand and no current cycle can be grown to accept the demand, the

algorithm looks for the smallest new cycle that can accept the demand.

Step 1:

When a new demand enters the network, the algorithm will search through set CR to see if any of the cycles

stored in the set can support the new demand. Set CR is a set of all cycles that have been assigned demands.

In order to support a new demand, a current cycle has to meet the following two criteria:

1. Both the source and destination nodes of the new demand have to be on the current cycle.

2. The links in the current cycle have to have enough bandwidth for the new demand.

Both the source and destination nodes of the demand have to be on the current cycle. If the source and

destination nodes are not on the current cycle, the current cycle cannot provide paths for the new demand and

the next cycle in set CR is checked. If both the source and destination nodes are on the current cycle, the current
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cycle can provide a working path candidate and a backup path candidate for the new demand. The shortest path

the current cycle can provide becomes the working path candidate and the longest path the current cycle can

provide becomes the backup path candidate. Both the working and backup path candidates are then checked to

see if they have enough bandwidth for the new demand.

The working path candidate can support the new demand if each link on the working path candidate has to

have enough unused bandwidth to dedicate to the new demand. The links in the backup path candidate have

more bandwidth available for the new demand than the working path candidate. This is because demands can

share backup bandwidth among each other. The amount of bandwidth available for the new demand over each

of the links in its backup path candidate is shown in Equation 3.2.16, where BBd,l is the total backup bandwidth

available on link l for demand d, FBl is the amount of free bandwidth on link l, bi is the amount of bandwidth

required for demand i, and BAd,i,l , which is given in Equation 3.2.17, is the amount of bandwidth available on

link l for sharing with demand d, and Ml is the number of demands that have link l as a part of their backup

path.

BBd,l = FBl +

Ml∑
i=1

BAd,i,l (3.2.16)

BAd,i,l =



bi If demand i has link l in its backup path, is assigned to a di�erent cycle than

demand d, and has a working path that is disjoint from the working path

candidate of demand d.

0 Otherwise.

(3.2.17)

The backup path candidate can support the new demand if each of its links have enough bandwidth for

the new demand. If both the working path candidate and the backup path candidate can support the new

demand, the new demand is accepted, the bandwidth on its working path candidate and backup path candidate

are assigned to the new demand, and the algorithm completes.

If either the working path candidate or the backup path candidate cannot support the new demand, they are

switched with each other. The working path candidate becomes the longer path and the backup path candidate

becomes the shorter path. The paths are then checked again to see if they have enough bandwidth on each
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of their links to support the new demand. If both the working path candidate and the backup path candidate

can support the new demand, the new demand is accepted, the bandwidth on its working path candidate and

backup path candidate are assigned to the new demand, and the algorithm completes. If either the working

path candidate or the backup path candidate cannot support the new demand, the algorithm continues to look

through set CR.

If all cycles in set CR have been checked, and no current cycle that can support the demand has been found,

the algorithm moves to Step 2.

Step 2:

During this stage, the current cycles are checked to see if any can be grown to provide paths for the new

demand. If either the source or the destination node of a new demand, but not both, is on a current cycle, it is

possible to grow the cycle to include the missing node. For example, if the source node of a new demand is on

a current cycle but the destination node is not, the current cycle may be grown, by adding links, to include the

destination node of the new demand.

The algorithm searches through set CR until a current cycle with either the source or destination node for

the new demand, but not both, is found. Set CY , a set of all possible cycles in the network, is then searched for

all cycles that meet the following criteria:

• Cycle contains both the source and destination nodes of the new demand.

• Cycle contains at least one of the links in the current cycle.

Each cycle that meets the above two criteria is added to set GC. Set GC is a set of all cycles that can be

grown from a current cycle.

Once all cycles in set CY have been checked, the algorithm then goes through the cycles in set GC to check

if the current cycle being considered (called the original cycle) can be replaced by one of the cycles in set GC.

Two conditions need to be met when switching growing the original cycle to the grown cycle:

• Only the backup paths for the demands assigned to the original cycle can be changed.
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• The grown cycle needs to have enough bandwidth on all of its links for all of the demands that were

assigned to the original cycle and the new demand.

Only the backup path can be changed when moving demands onto a new cycle. All of the working path links

for the demands assigned to the original cycle have to be on the grown cycle so that moving the demands will

not a�ect service to the customers. If all of the working path links of all of the demands assigned to the original

cycle are not in the grown cycle, the next cycle in GC is checked. If the working path links of all of the demands

on the original cycle are in the grown cycle, the demands could possibly be moved onto the grown cycle and the

�rst condition is met.

If the grown cycle has enough bandwidth on its links for all of the demands assigned to the current cycle and

also the new demand, the demands assigned to the current cycle can be moved onto the grown cycle and the

new demand can be accepted onto the cycle. To check if enough bandwidth is available on the grown cycle, the

two paths that the grown cycle can provide to the new demand are found �rst. The shortest path is considered

the working path candidate and the longest path is considered the backup path candidate.

The working path candidate can support the new demand if there is enough unused bandwidth on each of

its links to dedicate to the new demand. The working path candidate cannot support the new demand if there

is not enough bandwidth on each of its links to dedicate to the new demand.

The working paths for the demands assigned to the original cycle are not considered since they are already

accepted on their working path links. They are not changed and already assigned resources so it is unnecessary

to check them when checking the bandwidth of the grown cycle.

To calculate the backup bandwidth necessary on the grown cycle, the backup path candidates for each of the

demands assigned to the current cycle have to be found. The working path candidate of the demands assigned

to the original cycle are obviously the working paths that are already assigned to the demands. Therefore, the

backup path candidates are the second path the grown cycle can provide to each of the demands.

Once the backup path candidates for the demands assigned to the original cycle are found, the backup

bandwidth needed on each of the links of the grown cycle is determined. The backup bandwidth required on a
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given link on the grown cycle is then given as shown in Equation 3.2.18, where BGl is the backup bandwidth

needed on link l, BN is the amount of bandwidth needed by the new demand, DC is the number of demands

that are assigned to the original cycle, and BCi,l is the amount of bandwidth needed for demand i on link l and

is given in Equation 3.2.19, where bi is the bandwidth needed for demand i.

BGl = BN +
DC∑
i=1

BCi,l (3.2.18)

BCi,l =


bi If link l is in the backup path candidate for demand i and not in the original

backup path for demand i.

0 Otherwise.

(3.2.19)

Once the bandwidth needed on each link is calculated, the total backup bandwidth available on each link is

calculated. The demands assigned to the current cycle and the new demand are stored in set DG. Set DG is

a set of all demands that are going to be assigned to the grown cycle. The amount of backup bandwidth on

each of the links is shown in Equation 3.2.20, where BRd,l is the total backup bandwidth available on link l for

the demands in set DG, FBl is the amount of free bandwidth on link l, bi is the amount of bandwidth required

for demand i, and BLi,l , which is given in Equation 3.2.21, is the amount of bandwidth available on link l for

sharing with demand d, and Ml is the number of demands that have link l as a part of their backup path.

BRl,d = FBl +

Ml∑
i=1

BLi,l,d (3.2.20)

BLd,i,l =



bi If demand i has link l in its backup path and has a working path that

is disjoint from the working path candidates of all of the demands in

set DG.

0 Otherwise.

(3.2.21)

If the total backup bandwidth available on the grown cycle less than the amount of bandwidth needed on

any of the links in the grown cycle, the next cycle in set GC is checked. If the total backup bandwidth available

on the grown cycle is greater than the amount of bandwidth needed on every link in the grown cycle, the new

demand is accepted, the bandwidth on its working path candidate and backup path candidate are assigned to
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the new demand, the demands assigned to the original cycle are moved to the grown cycle, the original cycle is

removed from set CR, the grown cycle is added to set CR, and the algorithm completes.

To move the demands from the current cycle to the grown cycle, the demands are removed from the original

backup paths that were assigned by the original cycle, and then the demands are assigned bandwidth on the

backup path candidates that the grown cycle can provide.

If either the working path candidate or the backup path candidate cannot support the new demand, they are

switched with each other. The working path candidate becomes the longer path and the backup path candidate

becomes the shorter path. The paths are then checked again to see if they have enough bandwidth on each of

their links to support the new demand. If both the working path candidate and the backup path candidate can

support new cycle and the demands assigned to the current cycle, the new demand is accepted, the bandwidth on

its working path candidate and backup path candidate are assigned to the new demand, the demands assigned

to the current cycle are moved to the grown cycle, the current cycle is removed from set CR, and the grown

cycle is added to set CR, and the algorithm completes. If either the working path candidate or the backup path

candidate cannot support the new demand, the algorithm continues to look through set GC.

If all cycles in set GC have been checked, the next cycle in set CR is considered. If all cycles in set CR have

been checked, and no current cycle can be grown to support the new demand, the algorithm moves to Step 3.

Step 3:

If no current cycle can accept the new demand, and no current cycle can be grown to accept the new demand,

the algorithm looks for the smallest new cycle that can support the new demand. Each cycle in set CY is checked

to see if any of them can support the new demand. The cycles in CY are assigned scores based on if they have

been checked already in the previous two steps and the number of links in each cycle. The cycle score for each

cycle is given in Equation 3.2.22, where GSc is the cycle score for cycle c, NLc is the number of links in cycle c,

and CR is a set of all cycles that are already assigned demands.

GSc =


NLc If cycle c is not in set CR.

0 Otherwise.

(3.2.22)

The cycles are then checked, from lowest scoring cycle to largest scoring cycle, to �nd a cycle that can support
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the new demand. In order to support a new demand, a cycle has to meet the following two criteria:

1. Both the source and destination nodes of the new demand have to be on the cycle.

2. The links in the cycle have to have enough bandwidth for the new demand.

If both the source and destination nodes of the new demand are on a cycle, that cycle is called a candidate

cycle. The candidate cycle is then checked to determine if it has enough bandwidth on each of its links to support

the new demand. Out of the two paths the candidate cycle can provide for the new demand, the shortest path

is considered the working path candidate and the longest path is considered the backup path candidate.

The working path candidate can support the new demand if it has enough unused bandwidth available on

each of its links. If the working path candidate does not have enough unused bandwidth on each of its links, it

cannot support the new demand.

The backup path candidate can support the new demand if it has enough backup bandwidth on each of its

links for the new demand. If the backup path candidate does not have enough bandwidth on each of its links

for the new demand, the backup path candidate cannot support the new demand. The amount of bandwidth

available for the new demand over each of the links in its backup path candidate is shown in Equation 3.2.23,

where BBd,l is the total backup bandwidth available on link l for demand d, FBl is the amount of free bandwidth

on link l, bi is the amount of bandwidth required for demand i, and BAd,i,l , which is given in Equation 3.2.24,

is the amount of bandwidth available on link l for sharing with demand d, and Ml is the number of demands

that have link l as a part of their backup path.

BBd,l = FBl +

Ml∑
i=1

BAd,i,l (3.2.23)

BAd,i,l =



bi If demand i has link l in its backup path, is assigned to a di�erent cycle than

demand d, and has a working path that is disjoint from the working path

candidate of demand d.

0 Otherwise.

(3.2.24)

If both the working path candidate and the backup path candidate can support the new demand, the new
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demand is accepted, the bandwidth on its working path candidate and backup path candidate are assigned to

the new demand, the candidate cycle is added to set CR, and the algorithm completes.

If either the working path candidate or the backup path candidate cannot support the new demand, they are

switched with each other. The working path candidate becomes the longer path and the backup path candidate

becomes the shorter path. The paths are then checked again to see if they have enough bandwidth on each of

their links to support the new demand.

If both the working path candidate and the backup path candidate can support the new demand, the new

demand is accepted, the bandwidth on its working path candidate and backup path candidate are assigned to

the new demand, the candidate cycle is added to set CR, and the algorithm completes. If either the working

path candidate or the backup path candidate cannot support the new demand, the algorithm continues to look

through set CY .

If all cycles in set CY have been checked, and no current cycle that can support the demand has been found,

the demand is rejected and the algorithm completes.
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Chapter 4

Simulation

4.1 Benchmark Algorithms

Two standard algorithms were used for comparison in this work. The Shared Backup Path Protection al-

gorithm utilizes shared backup path protection and the Dedicated Backup Path Protection algorithm utilizes

dedicated backup path protection. Path �nding for the Shared Backup Path Protection algorithm is performed

with the Dijkstra Least Cost Path algorithm and path �nding for the Dedicated Backup Path Protection algo-

rithm is performed with the Modi�ed Dijkstra Least Cost Path algorithm.

4.1.1 Shared Backup Path Protection

The Shared Backup Path Protection algorithm uses the Dijkstra Least Cost Path algorithm to �nd two

disjoint paths between the source and destination nodes. This algorithm has two steps.

Step 1:

Each link is checked to ensure that they have enough bandwidth to support the demand. If they do not, they

are assigned a cost of in�nity. If they do have enough bandwidth to support the demand, they are assigned a

cost that depends on the network planners preference. For example, the cost could be dependent on the physical

length of the link, or it could be set to 1 if the minimum hop path is desired, or it could be based on something

more complex like a cost dependent on how much tra�c is desired over each link. In this work, the cost was set
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to 1 so that the paths with the shortest paths (minimum number of hops) are found. When the costs are set,

the Dijkstra algorithm is run, and the least cost path is found.

Step 2:

The working path is found �rst. Each link is checked to ensure that they have enough bandwidth to support

the demand. If there is enough bandwidth available, the link is assigned a cost of 1, if there isn't enough

bandwidth available, the link is assigned a cost of ∞ (Equation 4.1.1).

Cj =


1 If bi < Baj

∞ If bi > Baj

(4.1.1)

Where Cj is the cost of link j, bi is the bandwidth demand of demand i, and c.

Once the costs are assigned to all of the links, the Dijkstra Least Cost Path algorithm is run to �nd the least

cost path between source and destination nodes. This path is the working path of the demand. After the working

path is found, the links are assigned a cost based on if there is enough bandwidth available for use by backup

tra�c. The bandwidth available for backup path links is equal to the sum of the total amount of bandwidth

available to share and the total free bandwidth available over the link (Equation 4.1.2).

BWDd,j = Baj +
D∑
i=1

BADi,j (4.1.2)

Where BWDd,j is the bandwidth on link j for demand d that is assigned to demands that have disjoint

working paths from demand d. Baj is the free bandwidth on link j, D is the number of demands on link j, and

BADi,j is the bandwidth of demands that use link j as a backup path and have working paths that are disjoint

from demand d.

The cost of each link for backup path assignment is shown in Equation 4.1.3

Cj =


1 If bi < BWDd,j

∞ If bi > BWDd,j

∞ If the link is one of the links in the working path demand d.

(4.1.3)
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After the costs are assigned, the Dijkstra algorithm is run again and the second path is found. The second

path is the backup path for the demand.

4.1.2 Dedicated Backup Path Protection

The Dedicated Backup Path Protection algorithm used in this work uses the Modi�ed Dijkstra algorithm to

�nd two disjoint paths between the source and destination node in the network. The Dijkstra algorithm is useful

for �nding a single least cost path between any given pair of nodes. However, if the network contains any links

with a negative cost, the algorithm can fail to �nd the shortest length path. Negative link cost can occur due to

either the network design or as a result of simultaneous discovery of multiple disjoint paths.

When discovering multiple disjoint paths it is possible for the �rst path to block any further paths from

being found. For example, if two disjoint paths between nodes A and E are desired in Figure 4.1.1 (A), The

Dijkstra algorithm will �rst �nd path A-C-D-E as the least cost path. This path is then set to have a cost of

in�nity (Figure 4.1.1 (B)) and the algorithm will look for another least cost path. However, since there are no

more paths available between nodes A and E, the algorithm has e�ectively blocked any further paths from being

found. This is called the Trap Topology.

Figure 4.1.1: Example of Trap Topology

A way to avoid the trap topology, in the case of twin disjoint paths, is to �nd both paths at once rather than

one at a time[41]. This is done by �rst �nding two candidate paths (that may not be disjoint) and combining

them into two new paths (that will be disjoint). The combination is performed by erasing the interlacing parts

of the two candidate paths [41].

The dedicated path protection algorithm is a three step algorithm. Two paths between the source and
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destination nodes are found and then combined to �nd two disjoint paths.

Step 1:

The links in the network are assigned a cost using the same cost function that was used used in the Shared

Backup Path algorithm to �nd working paths, Equation 4.1.1 on page 62.

Step 2:

The �rst least cost path is found using the Modi�ed Dijkstra Algorithm (see Section 4.1.4) and stored in set

CP1. CP1 is a set of links in the �rst least cost path found.

Step 3:

The links in the �rst least cost path are assigned a negative cost and also converted into unidirectional links

that �ow toward the source node. A unidirectional link only allows tra�c to �ow in one direction. A second

least cost path is then found using the Modi�ed Dijkstra Algorithm (see Section 4.1.4) on the new graph and

stored in set CP2. CP2 is a set of links in the second least cost path found.

Step 4:

The two paths stored in CP1 and CP2 are combined by removing the common links (this is exactly like the

Straddling Link Method for �nding p-cycles discussed in Section 2.1.1 on page 18 but applied to two sets of

non-circular paths rather than circular paths like cycles are). CP1 and CP2 are searched and a new set, CP3, is

created. CP3 is a set containing all the links in CP1 and CP2 that are not common between sets CP1 and CP2.

Just like a p-cycle, set CP3 contains links for two unique paths. These unique paths are found using the

Dijkstra algorithm. The two unique paths then become the working and backup paths for the demand. The

shortest of the two paths is the working path and the longest is the backup path.

Example:

Consider the network in Figure 4.1.2 on the following page. Two disjoint paths between nodes A and E

are desired. In Step 1 the algorithm would �nd the path: A-C-D-E as the shortest path (Figure 4.1.2 on the

next page (A)). The links A-C, C-D, and D-E are made into unidirectional links that �ow toward node A and

have negative costs. The algorithm then �nds a second least cost path: A-B-F-D-C-G-H-E (Figure 4.1.2 on the

following page (B)). The two paths are then combined and the links that overlap are removed from the new set.
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CP3 = {A-B, B-F, F-D, D-E, A-C, C-G, G-H, H-E}(Figure 4.1.2 (C)). The two paths can be taken from CP3

and are: A-B-F-D-E and A-C-G-H-E.

Figure 4.1.2: Finding Disjoint Paths With Modi�ed Dijkstra Algorithm

4.1.3 Dijkstra Least Cost Path Algorithm

The Dijkstra Algorithm is a fast and e�cient way of �nding the least cost path from one node to any other

node in the network. The algorithm will �nd the shortest route to each node until it reaches the destination

node. The network is compiled into a graph that contains each node and each link. Each edge has an associated

cost which is used while �nding the path. The cost can be based on any cost such as the physical length of the

path, the cost of transmission over that link, etc. The Dijkstra algorithm can also be used to �nd the minimum

number of hops between a source and destination by setting every link to have the same cost. The following

pseudo code (Algorithm 4.1), reproduced from [41], describes the basic operation of the Dijkstra Algorithm:

Algorithm 4.1 Dijkstra Least Cost Path Algorithm

Step 1: Start with d(A) = 0,

d(i) =

{
l(Ai) if i εΓA

∞ otherwise

Γi = set of neighbour nodes of node i, lij = length of the path from node i to node j.
Assign S = V − {A}, where V is the set of nodes in the given graph.
Assign P (i) = A∀ i ε S.

Step 2: a) Find j ε S such that d(j) = min d(i), i ε S.
b) Set S = S − {j}.
c) If j = Z (the destination node), END; otherwise, go to Step 3.

Step 3: ∀ i εΓj and iεS, if d(j) + l(ji) < d(i), set d(i) = d(j) + l(ji), P (i) = j.
Go to Step 2.

d(i)is the cost of node i(i ε V ) from the source node A. It is the sum of the costs of each link in the path from
node A to node i. P (i) is the predecessor of node i on the same path.

Example:
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Consider the network shown in Figure 4.1.3 on the following page. If a least cost path between nodes A and

G is desired, the Dijkstra algorithm would yield:

Step 1: i = A V = {A,B,C,D,E, F,G} ΓA = {B,C,D} S = {B,C,D,E, F,G}
i d(i) = l(Ai) P (i)
A 0 A
B 1 A
C 2 A
D 4 A
E ∞ A
F ∞ A
G ∞ A

Step 2: j = B S = {C,D,E, F,G}
Step 3:

ΓB = {C,F}
i d(i) = d(B) + l(Bi) P (i)
C 1 + 1 = 2 -
F 1 + 4 = 5 B

Step 2: j = C S = {D,E, F,G}
Step 3:

ΓC = {E} i d(i) = d(C) + l(Ci) P (i)
E 2 + 7 C

Step 2: j = D S = {E,F,G}
Step 3:

ΓD = {E,G}
i d(i) = d(D) + l(Di) P (i)
E 4 + 1 = 5 D
G 4 + 2 = 6 D

Step 2: j = E S = {F,G}
Step 3:

ΓE = {F,G}
i d(i) = d(E) + l(Ei) P (i)
F 5 + 2 = 7 -
G 5 + 6 = 11 -

Step 2: j = F S = {G}
Step 3:

ΓF = {G} i d(i) = d(F ) + l(Fi) P (i)
G 5 + 6 = 11 -

Step 2: j = G S = { }; END
Least Cost Path: {A,D,G}
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j A B C D E F G
i d(i) P (i) d(i) P (i) d(i) P (i) d(i) P (i) d(i) P (i) d(i) P (i) d(i) P (i)
A 0 A 0 A 0 A 0 A 0 A 0 A 0 A
B 1 A 1 A 1 A 1 A 1 A 1 A 1 A
C 2 A 2 A 2 A 2 A 2 A 2 A 2 A
D 4 A 4 A 4 A 4 A 4 A 4 A 4 A
E ∞ ∞ ∞ ∞ 9 C 5 D 5 D 5 D 5 D
F ∞ ∞ 5 B 5 B 5 B 5 B 5 B 5 B
G ∞ ∞ ∞ ∞ ∞ ∞ 6 D 6 D 6 D 6 D

Figure 4.1.3: Dijkstra Example
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4.1.4 Modi�ed Dijkstra Least Cost Path Algorithm

The Modi�ed Dijkstra Algorithm is a way of �nding least cost paths in networks that have some negative cost

links. Like the Dijkstra algorithm, this algorithm will �nd the shortest route to each node until it reaches the

destination node. The network is compiled into a graph that contains each node and each link . Each link has

an associated cost which is used while �nding the path. The cost can be based on any cost such as the physical

length of the path, the cost of transmission over that link, etc. The Modi�ed Dijkstra algorithm can also be

used to �nd the minimum number of hops between a source and destination by setting every link to have the

same cost. If all of the links in the network and have non-negative costs, there will be no di�erence in operation

between the Dijkstra and Modi�ed Dijkstra algorithms. The following pseudo code (Algorithm 4.2), reproduced

from [41], describes the basic operation of the Modi�ed Dijkstra Algorithm:

Algorithm 4.2 Modi�ed Dijkstra Least Cost Path Algorithm

Step 1: Start with d(A) = 0,

d(i) =

{
l(Ai) if i εΓA

∞ otherwise

Γi = set of neighbour nodes of node i, lij = length of the path from node i to node j.
Assign S = V − {A}, where V is the set of nodes in the given graph.
Assign P (i) = A∀ i ε S.

Step 2: a) Find j ε S such that d(j) = min d(i), i ε S.
b) Set S = S − {j}.
c) If j = Z (the destination node), END; otherwise, go to Step 3.

Step 3: ∀ i εΓj if d(j) + l(ji) < d(i)
set d(i) = d(j) + l(ji), P (i) = j.
set S = S ∪ {i}.
Go to Step 2.

d(i)is the cost of node i(i ε V ) from the source node A. It is the sum of the costs of each link in the path from
node A to node i. P (i) is the predecessor of node i on the same path.

Example:

Consider the network shown in Figure 4.1.4 on page 70. If a least cost path between nodes A and G is desired,

the Modi�ed Dijkstra algorithm would yield:
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Step 1: i = A V = {A,B,C,D,E, F,G} ΓA = {B,C,D} S = {B,C,D,E, F,G}
i d(i) = l(Ai) P (i)
A 0 A
B 4 A
C ∞ A
D 3 A
E ∞ A
F ∞ A
G ∞ A

Step 2: j = D S = {B,D,E, F,G}
Step 3:

ΓD = {E,G}
S = {B,D,E, F,G}

i d(i) = d(D) + l(Di) P (i)
E 3 + 4 = 7 D
G 3 + 6 = 9 D

Step 2: j = E S = {B,C, F,G}
Step 3:

ΓE = {E}
S = {D,C, F,G}

i d(i) = d(E) + l(Ei) P (i)
C 7− 9 = −2 E
D 7 + 4 = 11 -
F 7 + 3 = 10 E

Step 2: j = C S = {B,D,F,G}
Step 3: ΓC = {B,E}

S = {B,D,F,G}
i d(i) = d(C) + l(Ci) P (i)
B −2 + 3 = 1 C

Step 2: j = B S = {D,F,G}
Step 3: ΓB = {F,G}

S = {D,F,G}
i d(i) = d(B) + l(Bi) P (i)
F 1 + 3 = 4 B

Step 2: j = D S = {F,G}
Step 3:

ΓD = {G}
S = {E,F,G}

i d(i) = d(D) + l(Di) P (i)
E 3 + 4 = 7 -
G 3 + 6 = 9 -

Step 2: j = F S = {E,G}
Step 3:

ΓF = {G}
S = {E,G}

i d(i) = d(F ) + l(Fi) P (i)
E 4 + 3 = 7 -
G 4 + 2 = 6 F

Step 2: j = G S = { }; END
Least Cost Path: {A,D,E,C,B, F,G}

j A D E C B D F
i d(i) P (i) d(i) P (i) d(i) P (i) d(i) P (i) d(i) P (i) d(i) P (i) d(i) P (i)
A 0 A 0 A 0 A 0 A 0 A 0 A 0 A
B 4 A 4 A 4 A 1 C 1 C 1 C 1 C
C ∞ A ∞ A -2 E -2 E -2 E -2 E -2 E
D 3 A 3 A 3 A 3 A 3 A 3 A 3 A
E ∞ A 7 D 7 D 7 D 7 D 7 D 7 D
F ∞ A ∞ A 10 E 10 E 4 B 4 B 4 B
G ∞ A 9 D 9 D 9 D 9 D 9 D 6 F
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Figure 4.1.4: Modi�ed Dijkstra Example

4.2 Simulation

4.2.1 Performance Metrics

The performance metrics compare the algorithms based on:

• Resource Usage

• Network Performance

• Energy E�ciency

The Resource Usage metrics are designed to illustrate the performance of the algorithms with respect to

bandwidth e�ciency. Measurements of average link load and path lengths (in number of hops) were taken to

compare how the algorithms load the network and utilize the links. Of the two benchmark algorithms, the Shared

Backup Path Protection algorithm (Section 4.1.1 on page 61) is the most bandwidth e�cient, and the Dedicated

Backup Path Protection algorithm (Section 4.1.2) is the least bandwidth e�cient. The di�erence in bandwidth

e�ciencies of the two benchmark algorithms is due to the sharing of backup bandwidth between demands. It is

possible for multiple demands to be protected by the same resources so less than 100% redundancy is necessary

to protect the network from any single failure. In the case of dedicated protection, the network has to dedicate

backup resources to each demand, and 200% redundancy is required to protect the network from any single

failure. The energy e�cient and power e�cient algorithms will utilize more bandwidth than the Shared Backup

Path Protection benchmark algorithm. However, since they also utilize shared backup path protection, they
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should use less bandwidth than the Dedicated Backup Path Protection benchmark algorithm. Average link load,

the average amount of bandwidth used by all of the demands assigned to the network, is used to compare the

bandwidth e�ciency of the algorithms and is de�ned in Equation 4.2.1, where N is the number of links in the

network, BWj is the used bandwidth on link j, and Cj is the total capacity of link j.

ALL =

N∑
j=1

BWj

N∑
j=1

Cj

(4.2.1)

The other Resource Usage metrics are measurements of the average length of the working and backup paths.

These metrics illustrate the di�erence between the average lengths of the working and backup paths assigned to

the demands by the algorithms. These measurements are important since, one of the tradeo�s of energy and

power e�ciency is an increased path length. An algorithm should be power/energy e�cient but also not increase

the path lengths too much. The average working and backup path lengths are de�ned in Equations 4.2.2 and

4.2.4 respectively, here N is the number of links in the network, TD is the number of demands in the network,

WPCd,i indicates if link i is in the working path of demand d and is given in Equation 4.2.3, TD is the number

of demands in the network, and BPCd,i indicates if link i is in the backup path of demand d and is given in

Equation 4.2.5.

AWP =

TD∑
d=1

N∑
i=1

WPCd,i

TD
(4.2.2)

WPCd,i =


0 if link i is not in the working path of demand d.

1 if link i is in the working path of demand d.

(4.2.3)

ABP =

TD∑
d=1

N∑
i=1

BPCd,i

TD
(4.2.4)

BPCd,i =


0 if link i is not in the backup path of demand d.

1 if link i is in the backup path of demand d.

(4.2.5)
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The Network Performance metric is a measurement of the amount of the demands that are rejected by the

routing algorithm. Demand rejection is important since an algorithm that leads to a high number of rejected

demands will not support as many customers as an algorithm that leads to a low number of rejected demands.

The number of rejected demands will increase with the bandwidth usage of the algorithm. This means that

algorithms that tend to use more bandwidth to assign a set of demands to a network will reject more demands

than algorithms that use less bandwidth for the same set of demands. Therefore, the Dedicated Backup Path

Protection benchmark algorithm will reject more demands than the Shared Backup Path Protection benchmark

algorithm. The energy and power e�cient algorithms should reject less demands than the Dedicated Backup

Path Protection benchmark algorithm but will reject more than the Shared Backup Path Protection benchmark

algorithm. The demand rejection metric is given as shown in Equation 4.2.6, where RD is the number of demands

that were rejected and TDS is the total number of demands that needed to be assigned paths and bandwidth

in the network.

DRM =
RD

TDS
(4.2.6)

The Energy E�ciency metrics are used to compare the energy e�ciency of each of the algorithms. As

discussed above in Section 3.2, the algorithms will �nd an energy e�cient solution for a given set of demands.

These demands are provided by a demand prediction algorithm. Power e�ciency is obtained by maintaining

energy e�ciency over time. An exact comparison of energy e�ciency is di�cult when using a simulation. It is

dependent on the equipment used, if that equipment supports sleep mode or not, if the nodes support wavelength

conversion or not, etc. However, by focusing on the three states of links and nodes, a relative comparison of the

performance of the algorithms can be provided that is independent of the equipment used to build the network.

As discussed above in Section 3.1, the three states of links and nodes are: Sleep mode, Online mode, and O�ine

mode. Online mode links and nodes will obviously use the most energy since the components are online and

active. O�ine mode links and nodes will use the least energy since the components are completely powered

down or switched o�. Sleep mode links and nodes will use an amount of energy that is between Online and

O�ine mode. Comparing the number of links and nodes that are online, o�ine, and in sleep mode between the

algorithms will provide a good comparison of how the algorithms perform energy e�ciency wise. The Energy

E�ciency metrics used here are:

• Links in Sleep Mode
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• Links O�ine

• Nodes in Sleep Mode

• Nodes O�ine

Each of these metrics is simply the number of links/nodes that are in o�ine/sleep mode. All of the metrics

are plotted against Tra�c Demand in graphs. Tra�c Demand was chosen because the performance of each

algorithm, on the same set of demands, was being compared. The Tra�c Demand will be the same for each

of the algorithms since the demand for each network load was used for each algorithm in each simulation, thus

providing a common variable for use in comparison of the algorithms. The network load, measured in Gb/s, is

the total amount of bandwidth that each set of demands required and is shown in Equation 4.2.7, where TDS is

the number of demands that needed to be assigned paths and bandwidth in the network and bi is the bandwidth

required for demand i.

TRD =

TDS∑
i=1

bi (4.2.7)

4.2.2 Test Demands and Networks

Three test networks were used to compare the performance of all of the algorithms:

• Global Crossing Network

• Kaleidoscope Network

• Random Layout Network

The Global Crossing Network is based on the North American portion of the Global Crossing Network. The

network, shown in Figure 4.2.1, consists of 27 nodes, with an average nodal degree of 2.6, and 38 links. The

Global Crossing network was selected to compare the algorithms performance on a real topology. The Shared

Backup Path protection algorithm was implemented �rst. The network was then loaded to a link load of 0.8 in

steps of 0.1. These demands were stored and used with each of the other algorithms. Demands were randomly

assigned a bandwidth of either 200Gb/s, 100Gb/s, 50Gb/s, 20Gb/s, or 10Gb/s. These demands had a random
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source and destination node assigned to them that could be any node in the network except for a small group

of �forbidden nodes� which are shown in grey in Figure 4.2.1. If every node could potentially be a source or a

destination node, then it would be possible to have every node in Online mode since a node that is a source or a

destination for tra�c must be online to transmit/receive the tra�c. However, at low tra�c periods, it is possible

that some nodes will not be either a source or destination node for demands. Therefore, it was necessary to

insure some nodes would not be a source or destination node and could be turned o�.

Figure 4.2.1: Global Crossing Network

The Kaleidoscope Network derives its name from its topology and how the network is used in the simulation.

Three simulations with identical demands were run and the network topology itself was altered instead of the

demands in order to better illustrate how the three energy e�cient algorithms, operate relative to each other.

Each of the topologies of the network are shown in Figure 4.2.3 on the next page. The way the network changes

as the nodes and links are added, is similar to a kaleidoscope image in appearance.

With self similar tra�c, at low points in network load, it is possible for tra�c to become isolated in small

pockets of nodes in a network as shown in Figure 4.2.2 (A). Tra�c is isolated to nodes 1, 2, 3 and 4, 5, and 6.

Even in a network where tra�c between most of the nodes will exist, even in low load conditions, it is possible

for the majority of tra�c to become isolated in small pockets of nodes in a network as shown in Figure 4.2.2 (B).
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Figure 4.2.2: Example of tra�c isolation: (A) Example network with isolated pockets of tra�c shown in dashed
lines. (B) Example network with majority of tra�c in isolated pockets and some other demands shown in dashed
lines.

This simulation will create a small pocket of nodes with varying amounts of tra�c between them. Each

network topology will add more nodes and links to the network, but the tra�c will remain unchanged so it

will be between the nodes that were in the original topology. The demands, each requiring the same amount

of bandwidth, were assigned random sources and destinations. Demands were added into the First Network

(Figure 4.2.3 (A)) and assigned paths by the Shared Backup Path Protection algorithm until it was loaded to

0.8 link load. This set of demands was then used on the second (Figure 4.2.3 (B)) and third (Figure 4.2.3 (C))

con�gurations.

Figure 4.2.3: Kaleidoscope Network: (A) First Con�guration. (B) Second Con�guration with added nodes shown
in white and added links shown as dashed lines. (C) Third Con�guration with added nodes shown in white and
added links shown as dashed lines.

The Random Layout Network, shown in Figure 4.2.4, is a random topology that consists of 19 nodes, with an

average nodal degree of 3.6, and 38 links. This network is a random topology with a higher degree of connectivity

75



than the Global Crossing Network. This network was selected to greater illustrate the e�ect of the algorithms

on networks with a high degree of connectivity. With very little connectivity, there is a limited number of

paths between any given source and destination node. This means that the network will become 'saturated'

with working paths (working paths assigned to every link and node in the network) at lower tra�c loads than

a network with a higher degree of connectivity would. The higher connectivity network will have many more

potential paths between any source and destination pair. Thus, more opportunities to route working tra�c

around nodes will arise. The network test demands were generated using the same method as for the Global

Crossing Network discussed above. The forbidden nodes are shown in grey in Figure 4.2.4.

Figure 4.2.4: Random Layout Network

For each of the simulations, the length of each link is assumed to be the same. This will a�ect the total

size of any given cycle (measured in links instead of a unit of distance) but it will have a negligible e�ect on

the performance of the algorithms. Each node has full conversion/regeneration capabilities, but it is assumed in

these simulations that the path length is short enough that regeneration is unnecessary.
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4.3 Results

The results of the simulations run on each of the test networks is presented and discussed in this section. Four

simulations were run on each test network. Each simulation had an individual set of demands and the average

of the results is provided in each of the graphs. The experiments were run to compare the energy e�ciency of

each of the algorithms under di�erent levels of tra�c demand.

4.3.1 Global Crossing Network

The average link load for each algorithm is shown in Figure 4.3.1. At low network loads, the Power E�cient

Growing Cycles and Modi�ed Hybrid Shared algorithms load the links more than the Dijkstra Shared Backup

Paths algorithm but less than the Dijkstra Dedicated Paths algorithm. This behaviour, discussed above in

Section 4.2.1, is expected when using energy e�cient routing algorithms.

Figure 4.3.1: Average Link Load vs Tra�c Demand (Global Crossing Network)

One of the tradeo�s of energy e�ciency is a loss of bandwidth e�ciency. However, since the energy e�cient

algorithms allow the sharing of backup bandwidth, they should be more bandwidth e�cient than dedicated

backup path protection algorithms. At all levels of network load, the Hybrid Shared algorithm utilizes more

bandwidth than the Dijkstra Dedicated Paths protection algorithm. This is because of the longer length working
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paths that are assigned by the Hybrid Shared algorithm. Bandwidth assigned for working paths cannot be

shared among demands so, longer working path lengths will lead to bandwidth ine�ciencies. As discussed in

Section 3.2.3.2, the Modi�ed Hybrid Shared algorithm �xes the path assignment problems of the Hybrid Shared

algorithm and is much more bandwidth e�cient.

At lower tra�c demand levels, the Power E�cient Growing Cycles algorithm had short working paths and

at higher tra�c demands it had long working paths while the backup path lengths stayed nearly the same at

every tra�c demand level (See Figures 4.3.2 and 4.3.3 on the next page). The Modi�ed Hybrid Shared algorithm

had working path lengths that were nearly the same at every tra�c demand level while the backup paths were

longer at low tra�c demand levels and shorter at high tra�c demand levels (See Figures 4.3.2 and 4.3.3 on the

following page). The increase in longer working paths at higher tra�c demand levels is why the Power e�cient

growing cycles algorithm loads the links more than the Dijkstra Dedicated Backup Paths protection algorithm

at higher tra�c demand levels.

Figure 4.3.2: Working Path Lengths vs Tra�c Demand (Global Crossing Network)
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Figure 4.3.3: Backup Path Lengths vs Tra�c Demand (Global Crossing Network)

The Demand Rejection Metric vs Tra�c Demand is shown below in Figure 4.3.4 on the next page. The

Hybrid Shared and Modi�ed Hybrid Shared algorithms operate as expected. As discussed in Section 4.2.1,

the energy e�cient algorithms should reject more demands than the Dijkstra Shared Backup Paths algorithm

and less than the Dijkstra Dedicated Paths algorithm. However, the Power E�cient Growing Cycles algorithm

rejected fewer demands than the Dijkstra Shared Backup Paths protection algorithm. This behaviour occurs

because the Dijkstra Shared Backup Paths protection algorithm is not designed to deal with the trap topology.

In networks with a low degree of connectivity like in the Global Crossing Network, the number of times the

trap topology occurs is much higher than in a network with a high degree of connectivity. Algorithms that use

P-Cycles to plan both working and backup paths are not a�ected by the trap topology since there are always

two possible paths available between two on cycle nodes. At higher tra�c demand levels, the Modi�ed Hybrid

Shared algorithm rejects an increasingly larger number of demands than the Dijkstra Shared Backup Paths

protection algorithm. This is the reason the Modi�ed Hybrid Shared algorithm loads the network less than the

Dijkstra Shared Backup Paths protection algorithm. The Modi�ed Hybrid Shared algorithm is not assigning

more demands onto the network, and therefore, it is not loading the network more at higher tra�c demand

levels.
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Figure 4.3.4: Demand Rejection Metric vs Tra�c Demand (Global Crossing Network)

The number of links in sleep mode is shown in Figure 4.3.5 on the following page. At low tra�c demand

levels, the Dijkstra Shared Backup Paths and Dijkstra Dedicated Paths algorithms have more links in sleep mode

than the energy e�cient algorithms. As the tra�c demand levels increase, the energy e�cient algorithms begin

to have more sleep mode links than the Dijkstra Dedicated Paths algorithm. However, with the exception of

the Modi�ed Hybrid Shared algorithm, and one level of tra�c demand with the Hybrid Shared algorithm, the

Dijkstra Shared Backup Paths algorithm has more sleep mode links. This isn't necessarily an indication that the

benchmark algorithms are more energy e�cient. The number of links in o�ine mode is shown in Figure 4.3.6 on

page 82. O�ine links use far less energy than sleep mode links so, even though the benchmark algorithms have

more links in sleep mode, the energy e�cient algorithms will be more energy e�cient since they have more links

in o�ine mode.
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Figure 4.3.5: Links in Sleep Mode vs Tra�c Demand (Global Crossing Network)

The energy e�cient algorithms have more links o�ine than the benchmark algorithms. The Hybrid Shared

algorithm does not have more links o�ine for all tra�c demand levels and is not as e�cient as the other energy

e�cient algorithms. The Modi�ed Hybrid Shared algorithm is clearly the best as it has by far the most links

in o�ine mode. For the Modi�ed Hybrid Shared algorithm, there is a low number of links in sleep mode but a

higher number of links in o�ine mode at low tra�c demands. As the tra�c demand increases, more demands

enter the network there will be fewer opportunities to put links in o�ine mode but, since more tra�c is in

the network, the chances to increase the number of links in sleep mode increases as well. As can be seen in

Figure 4.3.5, the number of sleep mode links increases at high tra�c demand levels while the number of o�ine

mode links decreases (shown in Figure 4.3.6 on the next page).

In the Power E�cient Growing Cycles algorithm, the number of links in o�ine and sleep mode lowers as

the tra�c demand increases. This behaviour is due to the algorithm not selecting cycles prior to routing tra�c.

Each cycle is chosen and grown based on each individual demand as they enter the network whereas the Hybrid

Shared and Modi�ed Hybrid Shared algorithms take all the expected demands into account when selecting cycles.

Taking all the expected demands into account before hand will enable the algorithm to select better cycles for

the task of routing tra�c while maintaining a higher energy e�ciency but at the cost of requiring an accurate

prediction of network tra�c. The prediction of network tra�c has to be continuously updated so that, in order
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to achieve power e�ciency, the energy e�ciency can be maintained over time.

Figure 4.3.6: Links O�ine vs Tra�c Demand (Global Crossing Network)

The nodes in sleep and o�ine mode o�er the most energy savings. When a link is placed in sleep or o�ine

mode, the resources inside of the nodes required to transmit data over the link are either placed in sleep mode or

o�ine mode. However, when a node is placed into sleep mode or o�ine mode, all of the resources in that node

are placed in sleep mode or o�ine mode, thus o�ering much more energy savings over placing links into sleep

mode or o�ine mode. The nodes in sleep mode vs tra�c demand for the algorithms is shown in Figure 4.3.7

on the following page and the o�ine nodes vs tra�c demand for the algorithms is shown in Figure 4.3.8 on

the next page. With the exception of the Modi�ed Hybrid Shared algorithm, the energy e�cient algorithms

provided the same number of nodes in sleep mode and nodes in o�ine mode as the benchmark algorithms at

high tra�c demand levels while providing less nodes o�ine and in sleep mode at low tra�c demand levels. This

behaviour occurs because the benchmark algorithms select the shortest possible paths through the network for

the demands. In networks with a low nodal degree, and therefore, a low number of potential paths for demands,

the routing scheme that has the lowest number of paths will often lead to the greatest number of nodes that

do not have tra�c �owing through them or only have backup tra�c �owing through them. In the case of the

Modi�ed Hybrid Shared algorithm, the paths are longer, but they were selected in order to best service the

demands. Multiple demands share the same paths through the network and, the lower the number of unique
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paths assigned to demands, the lower the number of nodes that will be needed to route the tra�c through the

network. However, routing a greater number of demands over the same paths can lead to longer length paths

than is necessary for the demands.

Figure 4.3.7: Nodes in Sleep Mode vs Tra�c Demand (Global Crossing Network)

Figure 4.3.8: Nodes O�ine vs Tra�c Demand (Global Crossing Network)
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4.3.2 Kaleidoscope Network

Resource Usage

The results of the Kaleidoscope network simulations for the Power E�cient Growing Cycles, Hybrid Shared,

and Modi�ed Hybrid Shared algorithms are shown in this section. The results for the Demand Rejection metric

are not presented since none of the demands were rejected for any of the con�gurations of the network during

the simulation. The results for Average Link Load for each con�guration of the network are shown in Figure

4.3.9. The Modi�ed Hybrid Shared and Power E�cient Growing Cycles algorithms have similar behaviour when

loading the network and the Hybrid Shared algorithm consistently loads the network more than the other two

algorithms.

Figure 4.3.9: Average Link Load vs Tra�c Demand (Kaleidoscope Network)

However, the working path lengths assigned by the Hybrid Shared algorithm are not signi�cantly longer than

the Power E�cient Growing Cycles and Modi�ed Hybrid Shared algorithms (see Figure 4.3.10 on the following

page). In the case of the �rst con�guration of the network, the average working path lengths assigned by the

Hybrid Shared algorithm are shorter than the other algorithms for higher network loads but the average link

84



load is still higher. The average backup path lengths assigned by the Hybrid Shared algorithm are shorter than

the Power E�cient Growing Cycles and Modi�ed Hybrid Shared algorithms (see Figure 4.3.11 on the next page).

Having shorter backup paths for demands leads to fewer opportunities for backup bandwidth sharing and, since

working paths require dedicated bandwidth, having working paths that are too long leads to wasteful usage of

bandwidth. The working paths assigned by the Modi�ed Hybrid Shared algorithm take the shortest length path.

The longer backup paths assigned by the Modi�ed Hybrid Shared algorithm provides more opportunities to

share backup bandwidth between demands, and therefore, the average link load for the Modi�ed Hybrid Shared

algorithm is lower than the Hybrid Shared algorithm.

Figure 4.3.10: Average Working Path Length vs Tra�c Demand (Kaleidoscope Network)
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Figure 4.3.11: Average Backup Path Length vs Tra�c Demand (Kaleidoscope Network)

The number of links in sleep mode and the links in o�ine mode for each algorithm on each network con�gura-

tion are shown in Figure 4.3.12 and Figure 4.3.13 on page 88 respectively. For the �rst and third con�gurations,

the Hybrid Shared algorithm has more links in sleep mode than the Modi�ed Hybrid Shared and Power E�-

cient Growing Cycles algorithms. In the second con�guration, the Hybrid Shared algorithm has, on average,

fewer links in sleep mode than the Power E�cient Growing Cycles algorithm. The Hybrid Shared algorithm has

more links in sleep mode than the Modi�ed Hybrid Shared algorithm in each of the network con�gurations but

Modi�ed Hybrid Shared algorithm has more links in o�ine mode.
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Figure 4.3.12: Links in Sleep Mode vs Tra�c Demand (Kaleidoscope Network)
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Figure 4.3.13: Links O�ine vs Tra�c Demand (Kaleidoscope Network)

The number of nodes in sleep mode and o�ine mode for each algorithm on each network con�guration are

shown in Figure 4.3.14 on the next page and Figure 4.3.15 on the following page respectively. The Modi�ed

Hybrid Shared algorithm has the most nodes o�ine while the Hybrid Shared algorithm has the least nodes

o�ine. The Power E�cient Growing Cycles algorithm has, on average, more nodes in sleep mode than the

Hybrid Shared algorithm in the second con�guration but the Hybrid Shared algorithm has more nodes in sleep

mode for the third con�guration.
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Figure 4.3.14: Nodes in Sleep Mode vs Tra�c Demand (Kaleidoscope Network)

Figure 4.3.15: Nodes O�ine vs Tra�c Demand (Kaleidoscope Network)
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The Modi�ed Hybrid Shared algorithm has the most links and nodes o�ine, and the least links and nodes in

sleep mode for each con�guration while the number of links and nodes in o�ine mode for the Modi�ed Hybrid

Shared algorithm on each con�guration is far higher than the number of links and nodes in sleep mode for the

Hybrid Shared and Power E�cient Growing Cycles algorithms. Since o�ine links and nodes are more energy

e�cient than links and nodes in sleep mode, the Modi�ed Hybrid Shared algorithm is more energy e�cient than

the Hybrid Shared and Power E�cient Growing Cycles algorithms. The Hybrid Shared algorithm is the least

energy e�cient of the algorithms since it has the least links and nodes in o�ine mode and the number of links

and nodes in sleep mode is much smaller than the number of links and nodes in o�ine mode for the Modi�ed

Hybrid Shared and Power E�cient Growing Cycles algorithms.
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4.3.3 Random Layout Network

The Results for the Random Layout Network are presented in this section. The performance of the Modi�ed

Hybrid Shared algorithm and the Power E�cient Growing Cycles algorithm is compared to the two benchmark

algorithms on a large network with a high degree of connectivity. Since the Hybrid Shared algorithm has thus

far shown far less energy performance than the Modi�ed Hybrid Shared and Power E�cient Growing Cycles

algorithms, and the Modi�ed Hybrid Shared algorithm was designed to address the bandwidth issues of the

Hybrid Shared algorithm (see Section 3.2.3.2), the Hybrid Shared algorithm was not tested on the Random

Layout Network.

The average link load for each of the algorithms is given below in Figure 4.3.16. The Power E�cient Growing

Cycles algorithm loads the network as expected (see Section 4.2.1). It loads the links more than the Dijkstra

Shared Backup Paths algorithm and less than the Dijkstra Dedicated Paths algorithm. The Modi�ed Hybrid

Shared algorithm performs as expected for low tra�c demand levels but loads the links less than all of the other

algorithms at higher link loads.

Figure 4.3.16: Link Load vs Tra�c Demand (Random Layout Network)

The average working path lengths and backup path lengths are shown in Figures 4.3.17 and 4.3.18 on the

following page respectively. The lengths for both the working and backup paths are much higher for the Modi�ed
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Hybrid Shared algorithm then the other algorithms. The lengths of the working and backup paths for the Power

E�cient Growing Cycles algorithm are higher than the benchmark algorithms and the di�erence in the working

path lengths between the Power E�cient Growing Cycles algorithm and the benchmark algorithms increases at

higher link loads. This di�erence in path lengths is the cause for the increase in the di�erence between link loads

of the Power E�cient Growing Cycles algorithm and the Dijkstra Shared Backup Paths algorithm.

Figure 4.3.17: Working Path Lengths vs Tra�c Demand (Random Layout Network)

Figure 4.3.18: Backup Path Lengths vs Tra�c Demand (Random Layout Network)
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As shown in Figure 4.3.19, the Modi�ed Hybrid Shared algorithm rejects far more demands than the other

algorithms. The higher number of rejected demands is the cause of the lower link loads at higher tra�c demand

levels since the algorithm is not accepting any more demands onto the network.

Figure 4.3.19: Demand Rejection Metric vs Tra�c Demand (Random Layout Network)

The average number of links in sleep mode and o�ine mode are shown in Figures 4.3.20 and 4.3.21 on the

following page respectively. The Dijkstra Shared Backup Paths and the Dijkstra Dedicated Paths algorithms

have more links in sleep mode than the Power E�cient Growing Cycles algorithm. However, this does not mean

they are more energy e�cient. The di�erence in the average number of links in sleep mode is, at maximum,

approximately 3.2 for the Dijkstra Shared Backup Paths algorithm and approximately 1.5 for the Dijkstra

Dedicated Paths algorithm. On the other hand, the Power E�cient Growing Cycles algorithm has more links in

o�ine mode than the Dijkstra Dedicated Paths and Dijkstra Shared Backup Paths algorithms. The di�erence

in the average number of links in o�ine mode is, at minimum, approximately one node and, at maximum,

approximately three nodes. Since links in o�ine mode use less energy than links in sleep mode, and the di�erence

in the number of links o�ine and links in sleep mode between the Power E�cient Growing Cycles algorithm and

the benchmark algorithms is small, the Power E�cient Growing Cycles algorithm is more energy e�cient than

the benchmark algorithms when considering only links. The Modi�ed Hybrid Shared Algorithm has, on average,

fewer links in sleep mode than the Dijkstra Dedicated Paths algorithm and only has more links in sleep mode

than the Dijkstra Shared Backup Paths algorithm at high tra�c demand levels. The number of links o�ine for
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the Modi�ed Hybrid Shared algorithm is far higher than the number of links o�ine for the other algorithms

at low tra�c demand levels. At higher tra�c demand levels, the number of links o�ine is still higher but the

di�erence is much smaller than at low tra�c demand levels. When considering only links, the Modi�ed Hybrid

Shared algorithm is the most energy e�cient of the algorithms.

Figure 4.3.20: Links in Sleep Mode vs Tra�c Demand (Random Layout Network)

Figure 4.3.21: Links O�ine vs Tra�c Demand (Random Layout Network)
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The number of nodes in sleep mode and o�ine mode are shown in Figure 4.3.22 and Figure 4.3.23 on the next

page respectively. Except for one tra�c demand level, the Dijkstra Shared Backup Paths algorithm has more

nodes in sleep mode. At low tra�c demand levels, the Modi�ed Hybrid Shared algorithm has more nodes in

o�ine mode than the other algorithms. The high number of nodes in sleep mode for the Modi�ed Hybrid Shared

algorithm that happens at 3240 Gb/s tra�c demand is due to how the Modi�ed Hybrid Shared algorithm routs

tra�c. Since the cycles used in determining the paths for the demands depends on the tra�c being assigned

paths and bandwidth in the network, the paths the demands are assigned will change with the tra�c. Therefore,

it is possible for the number of nodes in sleep mode to be very di�erent from one tra�c demand level to another.

The backup paths are very long in at 3240Gb/s and get shorter at higher tra�c demand levels. This means that

very large cycles are being used (approximately 14.2 links long when adding working and backup path lengths).

Cycles that large are going to include a lot of the links and nodes from the edge of the network graph. Therefore,

most of the tra�c is being routed over the edge of the network graph and not much is being routed through

the inside of the network. Many of the nodes on the outside of the network graph have three links connected

to them and one only has two. Many of the backup paths are routed through the nodes on the outside of the

network graph but do not pass back into the inside of the network and only use two of the three links available

to them. This leaves the third link unused. Thus the nodes wind up in sleep mode. As the tra�c demand

level increases, the path lengths decrease and smaller cycles start being used that overlay the larger cycles. This

causes more tra�c to be routed through the inside links and nodes of the network and so the number of nodes

in sleep mode decreases back to zero. The Power E�cient Growing Cycles algorithm has more nodes in o�ine

mode than the benchmark algorithms at low tra�c demand levels. At high tra�c demand levels, the number of

nodes in o�ine mode falls to the same level as the benchmark algorithms. O�ine nodes utilize far less energy

than sleep mode nodes so, even though the Dijkstra Shared Backup Paths protection algorithm has more nodes

in sleep mode than the number of nodes in o�ine mode for the Modi�ed Hybrid Shared algorithm; the Modi�ed

Hybrid Shared algorithm is more energy e�cient than the Dijkstra Shared Backup paths algorithm when only

considering nodes.
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Figure 4.3.22: Nodes in Sleep Mode vs Tra�c Demand (Random Layout Network)

Figure 4.3.23: Nodes O�ine vs Tra�c Demand (Random Layout Network)

In the Random Layout Network, the Modi�ed Hybrid Shared algorithm was the most energy e�cient while the

Power E�cient Growing Cycles algorithm was less energy e�cient than the Modi�ed Hybrid Shared algorithm but

still more energy e�cient than the benchmark algorithms. Even though the Modi�ed Hybrid Shared algorithm

also had the longest path lengths and rejected the most demands. It was the most bandwidth ine�cient. The

Power E�cient Growing Cycles algorithm had longer paths than the benchmark algorithms and the amount of
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rejected demands was close to the Dijkstra Shared Backup Paths algorithm. However, the energy e�ciency of

the Power E�cient Growing Cycles algorithm was close to, but still higher than, the Dijkstra Shared Backup

Paths algorithm. Thus, the tradeo� between energy e�ciency and bandwidth e�ciency is apparent. The higher

the energy e�ciency the lower the bandwidth e�ciency and vice-versa.
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Chapter 5

Future Work

This thesis focused on the Path Finding Stage of the power e�cient routing scheme. The proposed algorithms

were used to �nd an energy e�cient routing solution for a given set of demands and their performance was

compared with two common benchmark algorithms. The feasibility of the power e�cient routing scheme is

proven since p-cycles can be used to �nd the energy e�cient set of paths for each of the di�erent levels of

network load. However, due to the focus on the Path Finding Stage, this thesis did not have the opportunity to

explore the other stages of the power e�cient routing scheme. These stages are:

• Prediction Stage

• Operation Stage

A study of the four algorithms for prediction of self similar processes, discussed in Section 2.2, has to be

performed in order to determine how well they predict the behaviour of real network tra�c, how di�cult it is

to update the prediction algorithm to meet the changes to the tra�c pattern that occur as the network grows

in size and number of customers, the speed the algorithms can predict a set of tra�c, and the ideal size of the

time period the algorithm will predict tra�c for. It is important for a prediction algorithm to be accurate but

also execute quickly. However, shorter execution times come with a loss in prediction accuracy so it is important

to ensure that an algorithm will execute quickly but not have an unacceptable amount of error. With time,

a network prediction algorithm will begin to have errors that are introduced by changes in the network itself.

As the network grows and more customers are added, the behaviour of the tra�c will also change, and it is
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necessary to choose a prediction algorithm that will be easy to update so that it will continue to accurately

predict the behaviour of tra�c as it changes. The ideal size of the time period the algorithm predicts tra�c for is

also important. The predictions will become more inaccurate the farther into the future the algorithm predicts.

However, since the length of time the Operation Stage runs for is the same as the size of the time period the

tra�c is predicted for, it is also important to make sure that the time period is su�ciently large to allow for

the next set of predictions to be made and the set of paths for the demands of the next set of predictions to be

found.

Another important area for further study is in how to handle resident demands when the paths are found

for a set of predicted demands. An important issue when switching routing tables is how to handle the resident

tra�c. Tra�c that is still in the network when the table is switched is known as resident tra�c. There are three

ways to handle the resident tra�c:

• Ignore Resident Tra�c

• Include Resident Tra�c

• Adjust Resident Tra�c Paths

When ignoring resident tra�c, the path �nding stage runs without considering the resident tra�c (i.e. it

acts as if it isn't there). Changing the routing table in this stage will have no e�ect on the service of customers

since the resident tra�c is left alone. If the resident tra�c has a low holding time, it will leave the network

quickly enough that it wouldn't raise any signi�cant power e�ciency issues. However, if the resident tra�c has

a long holding time, it can cause the routing algorithm to �nd a less energy e�cient solution than it would if

the resident tra�c were considered when routing. If this occurs every time the routing table is generated during

the path �nding stage, the power consumption will also increase. Consider the network shown in Figure 5.0.1.

Two cycles used to protect the network are shown in Figure 5.0.1 (A), and the demands that will be assigned

to the network, including a resident demand, are shown in Figure 5.0.1 (B). Demands 1 and 3 are assigned to

Cycle 1 while Demand 2 is assigned to Cycle 2. The working paths for these demands is shown in Figure 5.0.1

(C). The resident demand is left alone and not assigned to any cycles. The backup paths are routed around the

cycles as shown in Figure 5.0.1 (D). There is one link with no tra�c on it that can be put into o�ine mode and

there are four links that have only backup tra�c routed over them that can be put into sleep mode. Link 6-2

is in online mode (it has working paths over it) and link 5-6 is in sleep mode (only backup paths are assigned
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to it). However, if the resident demand was not in the network, both links would have been in o�ine mode. In

fact, if the resident tra�c is considered during the path �nding stage as it is in the cases discussed below, the

energy e�ciency can be improved.

Figure 5.0.1: Ignoring Resident Tra�c: (A) Two cycles protecting an example network. (B) A resident demand
and three new demands. (C) Working paths for the demands. (D) Backup paths for the demands. Note that
the working and backup paths for the resident demand are not assigned by Cycle 1 or Cycle 2.

Including resident tra�c will �x the energy issue if the resident tra�c has a long holding time and will be in

the network long after the routing table changes. In this case, the resident tra�c is added to the projected tra�c

when altering the routing table, but it is considered �xed. This means that the paths for the resident tra�c

cannot be changed. The cycles used by resident tra�c are known as resident cycles. The resident cycles would

then be given a higher weight when assigning scores to the cycles so that they will most likely be considered �rst

over the non resident cycles. In this way, the new tra�c will be grouped with the resident tra�c and there will

not be any issues associated with switching resident tra�c onto a new path. Consider again the example and

network discussed above in Figure 5.0.1. The network, reproduced in Figure 5.0.2 (A), is protected by Cycles 1

and 2. The resident cycle is the cycle that was assigned to the resident demand in a previously run path �nding

stage (Figure 5.0.2 (B)). Also shown are three demands that need to be assigned paths in the current path �nding

stage. The paths for the resident tra�c do not change but, unlike in the case where resident tra�c is ignored,

the demands can now be assigned to the resident cycle as well as Cycles 1 and 2. The working paths for the
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demands are shown in Figure 5.0.2 (C) and the backup paths for the demands are shown in Figure 5.0.2 (D).

Demands 1 and 2 are assigned to the resident cycle and Demand 3 is assigned to Cycle 1. There are two links

with no tra�c on them that can be put into o�ine mode and there are three links that have only backup tra�c

routed over them that can be put into sleep mode. This is an improvement over the example case discussed

above, where resident tra�c is ignored.

Figure 5.0.2: Including Resident Tra�c: (A) Two cycles protecting an example network. One cycle that was
used for the Resident Demand is also shown. (B) A resident demand and three new demands. (C) Working
paths for the demands. (D) Backup paths for the demands. Note that the working and backup paths for non
resident demands can be assigned to the resident cycle.

The resident tra�c paths could also be adjusted. This means that the resident tra�c is added to the projected

tra�c when altering the routing table and the tra�c is not considered �xed. This means that the paths for the

resident tra�c can be changed and it is considered the same as non resident tra�c. Consider again the example

and network discussed above in Figure 5.0.1. The network, reproduced in Figure 5.0.3 (A), is protected by two

cycles. The demands are also reproduced in Figure 5.0.3 (B). Demands 1 and 3 are assigned to Cycle 1 and

Demand 2 is assigned to Cycle 2. Unlike in the cases discussed above, the paths for the resident tra�c are treated

like the regular demands (Demands 1, 2, and 3), and are assigned to one of the cycles protecting the network

(Cycle 1 in this example). The working paths are shown in Figure 5.0.3 (C) and the backup paths are shown in

Figure 5.0.3 (D). There are three links with no tra�c on them that can be put into o�ine mode and there are
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two links that have only backup tra�c routed over them that can be put into sleep mode. Adjusting the paths

of resident tra�c can lead to the most energy e�cient solution. However, changing the paths of resident tra�c

raises the issue of how to switch the paths without interrupting service to the users who are the source of that

tra�c. A method to handle this is to purposely interrupt the working path. Then, while the tra�c is restored on

its backup path, change the working path to the new one. Once the new working path is completed, the backup

path is restored onto the new working path and the backup path is updated. This method comes at the cost of

a short interruption to the resident tra�c while the paths are updated. However, since p-cycles have a very fast

restoration time, this interruption is extremely small.

Figure 5.0.3: Adjusting Resident Tra�c Paths: (A) Two cycles protecting an example network. (B) A resident
demand and three new demands. (C) Working paths for the demands. (D) Backup paths for the demands. Note
that the working and backup paths for the resident demand can be assigned to Cycle 1 and Cycle 2 (Cycle 1 in
this example).

The e�ect on the energy e�ciency of each method of handling resident tra�c has to be explored. In the case

of Adjusting Resident Tra�c Paths, the e�ect on service to customers needs to be checked as well. When the

resident tra�c paths are changed, the old working path is interrupted, and the tra�c is restored onto the old

backup path. The demand is assigned the new working path and the tra�c is restored onto the new working

path. The old backup path is then replaced by the new backup path. When the old working path is interrupted,
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there will be a very brief interruption in the service for the resident tra�c that is having its working and backup

paths changed. This interruption in service needs to be studied to determine if it will be long enough to be

problematic to customers.

Another area for further study was found in the results of this thesis. The Modi�ed Hybrid Shared algorithm

provided an energy e�cient set of paths for each network load in the simulations. However, the large amount of

energy e�ciency gained came at a cost of a very large loss in bandwidth e�ciency. This was due to the size of

the cycles used for assigning paths to the demands. If the size of the cycles is lowered, the bandwidth e�ciency

of the Modi�ed Hybrid Shared algorithm can be increased at the cost of some of the energy e�ciency.

The Power E�cient Growing Cycles algorithm provided a small increase in energy e�ciency at the cost of a

small loss in bandwidth e�ciency. If the size the cycles could be grown to is changed, the energy e�ciency of

the Power E�cient Growing Cycles algorithm can be increased at the cost of some of the bandwidth e�ciency.

The ideal number of links the cycles can be grown to is dependent on the network in question and the nature of

the tra�c.

The Power E�cient Growing Cycles provided better energy/power e�ciency in a large network with a high

degree of connectivity and high tra�c demand levels. The Modi�ed Hybrid Shared algorithm provided better

energy/power e�ciency in a large network with a high degree of connectivity and low tra�c demand levels and

in networks with demands that are isolated between small pockets of nodes. Using the Modi�ed Hybrid Shared

algorithm for low tra�c periods or where demands are isolated between small pockets of nodes, and the Power

E�cient Growing Cycles algorithm for high tra�c periods, may provide a more power e�cient solution than

using only the Modi�ed Hybrid Shared algorithm or the Power E�cient Growing Cycles algorithm would. The

Power E�cient Growing Cycles algorithm was also limited to one size for grown cycles. In this work, a cycle

could not be grown to have more than �ve links. If a cycle that was larger than �ve links was needed it was

assigned when the Power E�cient Growing Cycles algorithm looked for the smallest cycle that could support

the demand. A study on the e�ect of the size a cycle could be grown to will provide more insight into the

performance of the Power E�cient Growing Cycles algorithm and at what tra�c demand levels would be best to

switch between the Power E�cient Growing Cycles algorithm and Modi�ed Hybrid Shared algorithm to achieve

the best energy/power e�ciency.
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Lastly, a set of self similar test demands has to be calculated for a large time period, such as a few weeks, so

that the power e�cient routing scheme can be tested as a whole.
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Chapter 6

Conclusions

6.1 Summary of Results

For the Global Crossing Network, which is a small network with a low degree of connectivity and a small

number of cycles, the Modi�ed Hybrid Shared algorithm performed the best and loaded the links as expected.

The working paths were longer than the backup paths in order to increase the chances of sharing over links. This

is much di�erent from the Hybrid Shared algorithm which attempts to route backup paths for demands assigned

to a cycle over the common links. By forcing as much backup tra�c to �ow over as many common links as

possible, the number of links in sleep mode should increase. In large networks with tra�c isolated between small

pockets of nodes, like in the Kaleidoscope network simulation, the Hybrid Shared algorithm lead to the most

links in sleep mode. In networks with tra�c between all nodes, the Hybrid Shared algorithm has fewer links in

sleep mode than the Dijkstra Shared Backup Paths protection benchmark algorithm. Therefore, routing backup

paths over common links does not lead to more links in sleep mode when there are large levels of tra�c between

every node in the network. However, routing backup paths over common links does guarantee that there will

be bandwidth for sharing with demands on other cycles, but can result in longer working paths than routing

the working paths over the shortest possible paths would. Longer working paths leads to more bandwidth usage

since, working bandwidth cannot be shared with other demands, and requires more links and nodes in online

mode to handle the longer working paths. The Modi�ed Hybrid Shared algorithm was created to address the

bandwidth and longer working path issues of the Hybrid Shared algorithm. In networks with high levels of tra�c

between all nodes, allowing the working paths to �ow over the shortest paths possible leads to shorter working
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paths and also lower bandwidth usage than the Hybrid Shared algorithm. In networks with high levels of tra�c

between all nodes, the Modi�ed Hybrid Shared algorithm leads to far fewer links in sleep mode than the Hybrid

Shared algorithm. However, the Modi�ed Hybrid Shared algorithm has far more links in o�ine mode than the

Hybrid Shared algorithm and, therefore, is more energy/power e�cient than the Hybrid Shared algorithm. The

Modi�ed Hybrid Shared algorithm successfully addresses the issues of the Hybrid Shared algorithm.

The Power E�cient Growing Cycles algorithm showed similar link loading characteristics to the Dijkstra

Shared Backup Paths algorithm at low loads, loaded the links more than the Dijkstra Shared Backup Paths

algorithm at higher loads and, as expected, the Power E�cient Growing Cycles algorithm had longer path

lengths than the benchmark algorithms. In the Global Crossing Network, the Power E�cient Growing Cycles

algorithm rejected fewer demands than the Dijkstra Shared Backup Paths algorithm. In the Random Topology

Network, the Power E�cient Growing Cycles algorithm and the Dijkstra Shared Backup Paths algorithm had

similar rejection characteristics. At low loads, the Power E�cient Growing Cycles and the Dijkstra Shared

Backup Paths algorithms rejected the same number of demands. At higher loads the Power E�cient Growing

Cycles algorithm rejected more demands than the Dijkstra Shared Backup Paths algorithm. The Power E�cient

Growing Cycles algorithm has more links in o�ine mode than the benchmark algorithms. This is because the

Power E�cient Growing Cycles algorithm routes demands around the straddling links of the cycles that are used

to determine paths for tra�c. The straddling links are then left free of tra�c and placed into o�ine mode.

Therefore, more links can be put into o�ine mode but at a cost of longer paths and lower bandwidth e�ciency.

Another important characteristic of the three proposed algorithms is their ability to route tra�c around

nodes. In order to illustrate this ability, the Global Crossing and Random Topology networks were out�tted

with �forbidden nodes� which could not be the source or destination for tra�c. In both the Global Crossing

and the Random Topology network simulations, the Modi�ed Hybrid Shared algorithm had the most nodes in

o�ine mode. The Power E�cient Growing Cycles algorithm had more nodes in o�ine mode than the benchmark

algorithms in the Random Topology Network and the same number of nodes in o�ine mode as the benchmark

algorithms in the Global Crossing Network. The number of nodes in o�ine mode was either the same or less

than the benchmark algorithms in the Global Crossing Network. With the exception of one tra�c demand level

where the Modi�ed Hybrid Shared algorithm had the most nodes in o�ine mode, the nodes in o�ine mode for

the proposed algorithms were the same as the Dijkstra Dedicated Backup Paths algorithm and less than the

Dijkstra Shared Backup Paths algorithm. The Modi�ed Hybrid Shared algorithm had more nodes in o�ine
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mode then the other algorithms because it takes all expected demands into account prior to selecting cycles

and assigning the paths to the demands. The Power E�cient Growing Cycles and the benchmark algorithms

assign paths based on a �rst come, �rst serve basis and do not bene�t from knowing all demands in advance.

Knowing the demands in advance enabled the Modi�ed Hybrid Shared algorithm to select the cycles that were

absolutely necessary to service all of the demands and minimized the overall number of links and nodes used

for assigning paths and bandwidth to the demands. The Hybrid Shared algorithm did not have a signi�cant

di�erence in nodes in sleep mode and nodes in o�ine mode than the benchmark algorithms. In the Kaleidoscope

Network simulation, the Modi�ed Hybrid Shared algorithm had the most nodes in o�ine mode and the Hybrid

Shared algorithm had the least nodes in o�ine mode. The Hybrid Shared algorithm had the most nodes in sleep

mode with the third con�guration but less than the Power E�cient Growing Cycles algorithm with the second

con�guration and the Modi�ed Hybrid Shared algorithm had no links in sleep mode for any of the con�gurations

of the Kaleidoscope Network.

The Hybrid Shared algorithm was the least e�cient of the proposed algorithms and, due to the bandwidth and

working path issues, sacri�ces too much bandwidth e�ciency for the small increase in energy/power e�ciency

it can provide over the benchmark algorithms. The Modi�ed Hybrid Shared algorithm solves the bandwidth

and working path issues of the Hybrid Shared algorithm and e�ectively replaces it. In small networks with

low connectivity such as the Global Crossing Network, networks with tra�c that is isolated to small pockets

of nodes in the network, and large networks with a high degree of connectivity but low tra�c demand levels,

the Modi�ed Hybrid Shared algorithm is the most energy/power e�cient. The number of links and nodes in

o�ine mode was much higher for the Modi�ed Hybrid Shared algorithm than the number of links and nodes in

sleep mode for the other algorithms in the Global Crossing Network and Kaleidoscope Network simulations at

all tra�c demand levels, and the Random Con�guration Network simulation at low tra�c demand levels. Since

components in o�ine mode utilize much less power than components in sleep mode, the energy/power e�ciency

of the Modi�ed Hybrid Shared algorithm is much higher. The Power E�cient Growing Cycles algorithm is

the most energy/power e�cient for large networks with a high degree of connectivity at high tra�c demand

levels and also rejects fewer demands than the Modi�ed Hybrid Shared algorithm. Therefore, both the Modi�ed

Hybrid Shared algorithm and the Power E�cient Growing Cycles algorithm are useful for achieving energy/power

e�ciency but choice of which algorithm to use depends on the network and the expected tra�c.

In small networks with a low degree of connectivity, the Modi�ed Hybrid Shared algorithm would perform
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best. In large networks with a high degree of connectivity and a large number of demands, the Power E�cient

Growing Cycles algorithm is preferred. In large networks with a low number of demands, the Modi�ed Hybrid

Shared algorithm has the highest energy/power e�ciency over the Power E�cient Growing Cycles algorithm.

Network Tra�c, as discussed in Section 2.2, varies over time and has high and low periods. With the use of

network tra�c prediction, the high and low periods of tra�c can be known in advance and the appropriate

algorithm to best handle the tra�c can be selected.
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