
INFORMATION TO USERS

This manuscript has been reproduced from the m icrofilm  master. U M I 

film s the text directly from  the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from  any type o f computer printer.

The quality o f th is reproduction is dependent upon the qua lity o f the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction.

In  the unlikely event that the author did not send U M I a complete 

manuscript and there are missing pages, these w ill be noted. Also, i f  

unauthorized copyright material had to be removed, a note w ill indicate 

the deletioiL

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, b^inn ing at the upper left-hand comer and 

continuing from le ft to right in equal sections w ith small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form  at the back o f the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6 ”  x  9”  black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy fo r an additional charge. Contact U M I directly to 

order.

UMI
A Bell & Howell hifonnation Conqiany 

300 NoithZed> Road, Ann Aibor MI 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



ontrol of Flexible-Link 
Manipulator

SichengYu ©  

November 20,1997

This thesis is accepted 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 
REQUIREMENTS OF THE M.Sc.Eng. DEGREE

IN
CONTROL ENGINEERING 

FACULTY OF ENGINEERING 
LAKEHEAD UNIVERSITY 

THUNDER BAY, ONTARIO 
CANADA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 ^ 1 National Library 
of Canada

Acquisitions and 
Bibliographic Services
395 Wellington Street 
Ottawa ON K1A0N4 
Canada

Bibliothèque nationale 
du Canada

Acquisitions et 
services bibliographiques
395. me Wellington 
Ottawa ON K1A0N4 
Canada

Your file  Votr9 référence

Our file Notre référence

The author has granted a non­
exclusive Hcence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author’s 
permission.

L ’auteur a accordé une hcence non 
exclusive permettant à la 
Bibhothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
électronique.

L ’auteur conserve la propriété du 
droit d’auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation.

0-612-33472-4

CanadS
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

Flexible-Iink manipulator has many advantages over classic rig id  body manipulator in 
industrial and space applications. However, it  also poses high requirements on controller 
design, to ensure the accurate tip  position tracking and suppression o f tip 
deflection/vibration.

This thesis sets up the model, both linear sections and nonlinear sections, fo r a typical 
apparatus. It  discusses, by simulations and experiments, the solutions fo r these control 
problems. PD controller plus conditional I  control is found elective on rigid body 
tracking control, and P controller w ith second-order lowpass filte r proves effective on the 
suppression o f deflection/vibration. Optimized PIDP controllers are experimentally 
implemented and the system performances are shown.

Further this thesis discusses a LQR controller which uses a ninth-order fo il state feedback. 
Experimental results using the LQR c o n tro ll^  show an improvement over the PIDP 
controller, particularly in  the suppression o f flexible beam deflection.

u
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OVERVIEW OF THESIS

Chapter 1 has a comparative study o f previous literature on this topic after introduction o f 
the fl«dble-link manipulator. Chapter 2 introduces the experimental setup for this thesis 
and builds its linear/nonlinear model. In Chapter 3 fiirth e r exploration is undertaken to 
search fo r an optimal PIDP controller and corresponding experimental results are given. 
Chapter 4 discusses LQR controller as a straight derivation and improvement on PIDP 
controller in  Chapter 3. Also Variable Structure Sliding Mode Control (VSSMC) is 
explored briefly in  this chapter. Finally in Chapter 5 the work is summarized and 
suggestions fo r future work are presented.

Ill
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Chapter 1

Overview of Topic

This chapter introduces flexible-link manipulator control and describes problems faced. A 
literature survey to display work done already and to expose questions not yet explored in 
this area is provided. A t the end o f this chapter, an overview o f the thesis is outlined.

1.1 Flexible-Iink Manipulators

Today’s robots share a common feature o f being bulky. Such robots have several 
drawbacks: they operate at low speed; th ^  have low payload-to-weight ratio and high 
energy consumption. These drawbacks cause poor productivity and eflBciency. Growing 
number o f space and technical applications call fo r lif te r ,  smarter robots. The advantages 
o f such lightweight manipulators include faster response, lower energy consumption, 
smaller actuators, trimmer mechanical design and lower transportation costs. To satisfy 
such performance requirements, robots must be built ever lighter, and this w ill eventually 
lead to flexib ility o f links.

Controller design solutions to minimize the effects o f the elastic (flexible body) 
displacements in light robots are highly demanded in the industrial and/or space 
applications which require accurate trajectory control. This thesis discusses some
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solutions to the problem o f single flexible lin k  manipulator control. It evaluates controllers 
by experimental implementation on a flexib le-link apparatus built at Lakehead University.

Figure 1-1 shows the coordinates adopted fo r the flexible link manipulator.

Tip,Manipulator deflection
Torque rigid body part

shaft angle 6 (rigid body)

zero angle reference

Figure I - I  Coordinates o f flexible-link manipulator

1.2 Problem Description

Flexible lightweight robots, though having a series o f potential advantages over the 
conventional rig id robots, have posed more stringent requirements on their control 
systems. The problems to be solved and their causes include:

1. The bending o f a flexible beam, which makes accurate position control o f the tip 
d iffîcu lt There are highly vibratory poles w ith low damping factors in the process 
(plant) transfer function. From a system point o f view flexing manifests itse lf through 
these vibratory poles (closely packed ligh tly damped modes).

2. When flexible-link manipulators carry payloads which are unknown or varying, the 
controllers need to be tuned to maintain endpoint accuracy and performance.

3. In a single-link flexible robot arm, the sensors and actuators are located at different 
points o f the arm. They are thus noncollocated, such kinds o f systems are d ifficu lt to 
stabilize and control, and the attainable performance is lim ited [2].

1.3 Literature Survey

A t present, studies in the modeling and control o f flexible-link manipulators have reached 
a high level o f maturity. This is due prim arily to numerous works in the last four years 
from a theoretical viewpoint and due to numerous works in the last decade firom a 
simulation viewpoint and to a lesser extent experimental evaluation. Theoretical studies 
in modeling flexible-link robots abound. Some key references are found in [1 ]. M ost o f 
them consider beam models, however, the composite actuator-beam model is different 
from such beam models.
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Equally numerous are the various approaches that have appeared in the literature fo r 
controller designs [2,3,4,5,6,7]. A  great number o f these works have dealt w ith simulation 
studies only, and some have developed quite elaborate and complex control schemes [7],

On the other hand several basic laboratory setups have demonstrated the effectiveness and 
ineffectiveness o f relatively simple algorithms fo r flexible manipulator control. While most 
experimental studies have focused on single-link manipulators, or multilin k  manipulators 
w ith a single flexible link, such setups have served as valuable testbeds fo r modeling, 
system identification, and controller design. Some o f the most visible experimental efforts 
have been in the work o f Yuikovich et al. [9,10,11,12,14], Schmitz and Canon [2, 19], 
Franklin[20], Book et al. [21, 22] and several others. In  [3 ], the use o f measurements 
fi-om a linear accelerometer fo r use in vibration compensation o f the robot endpoint was 
shown to be extremely successful, proving the concepts o f acceleration feedback fo r 
flexible-link manipulator control. The use o f acceleration feedback has appeal fi'om an 
engineering design viewpoint, due to  its ease o f implementation, relatively low  cost, and 
advantages o f structiue-mounted sensing.

Other simulation and experimental studies on nonadaptive controller designs were done, 
by W. T. Qian and C. C. H. Ma [6 ]; Robert H. Cannon, and Eric Schmitz [2 ]; Y. Aoustin, 
C. Chevallereau, A. Glumineau. and C. H. Moog [4]. Controllers investigated in their 
work include: Proportional &  Derivative Control (PD), Variable Structure Sliding Mode 
Control (VSSMC), Linear Quadratic Gaussian (LQG), Linear Quadratic Regulator 
(LQR), Singular Perturbation Method (SPM) etc.. Their results reveal that simpler 
controllers, like PD and LQG, have more promise than complicated controllers like 
VSSMC in the case o f flexible-structure control [2, 4, 6]. Also Singular Perturbation 
Method is proved to be effective particulariy on trajectory tracking [4 ]. Relatively slow 
system response is a main drawback o f these results.

System identification studies have also been carried out on the flexible link manipulator. 
Besides the traditional time domain and fi’equency domain system identification methods, 
S. Yurkovich and A. P. Tzes pioneered a new method [10,11,12], called Time-varying 
Transfer Function Estimation (TTFE) developed for identification in the fi-equency 
domain. TTFE updates the frequency components in the time domain through recursive 
adaptation algorithm, such as recursive least squares or least mean squares. The adjacent 
frequency components need not necessarily be independent, so that a smoothing o f the 
transfer function is realized [12]. The main conclusion o f their work [10] is that, schemes 
based on time domain estimation methods are not particularly well-suited fo r estimation in 
flexible structure systems, prim arily due to characteristics o f lightly damped, closely- 
packed modes, the presence o f unmodeled high frequency components and requirements 
o f fast sampling.

Broadly the previous literature on flexible link control can be summarized in Figure 1-2:
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:p id

•VSSMC
•Fuzzy
jLQG

:Ref:2,4, 5, 6, 7, 
:2 l

Discrete model 
Physical model

:Ref: 1 ,2 ,4 , 6, 8, 
•16,22, 25

:RLS
:LMS
•FFT
;Bandpass
iTTFE

:Ref: 9,10,11, 12, 
:14,15,19,20

 W ....................

Identifica tion

Reference J—̂ rig id  body variables

Flexiblé body variabk
Reference

C ontroller

Identifica tion

M otor and Beam

M otor and Beam

Tuning A lgorithm

■Frequency response fitting 
;PID optimization/estimation 
|Ref: 9,15

 i ......
(Simplex algorithm. Other
•optimization algorithms....
:Ref: 24

Angle Position feedback; 
Tip acceleration feedback; 
Angle speed feedback; 
Surface Strain feedback

Ref: 2, 3 ,4 ,5 ,6

Figure 1-2 Literature survey in control o f flexible-link manipulator
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1.4 Overview of Thesis

Despite the work in the literature, experimental results on flexible link control are far from
satisfactory in the follow ing aspects;

1. Most work done in the literature is by simulation. Experimental work has to be done, in 
order to verify these models and controller designs, to take into account constraints on 
the controller effort and nonlinear effects such as friction and backlash, to provide 
more accurate control o f tip  position, faster speed o f system response and better 
control o f beam oscillations and deflection

2. Nonlinear sections in the flexible-link manipulator system, like friction and gear hitting 
due to backlash, significantly influence system behavior, models fo r this nonlinear 
sections are absent in  literature.

3. Slow system response is a common drawback o f the experimental results shown in 
previous literature. More effective controllers . fo r trajectory tracking and 
deflection/vibration suppression are s till in demand.

4. Most literature has reported work on single aspects o f the control problem, while little  
effort has been spent on assembling these into a coherent optimal combination.

Some o f these aspects w ill be studied experimentally in this thesis.
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Chapter 2

Experimental Setup and System Modeling

In  this chapter, an apparatus bu ilt a t Lakehead Universify fo r flexible-link manipulator 
research is described. Its model (both linear and nonlinear part) is obtained 
experimentally. Also the methods used to obtain this model firom experimental data are 
presented.

Later in this chapter, how the model parameters change when manipulator carries various 
payloads is studied.

2.1 Experimental setup

An apparatus was built at Lakehead University fo r flexible-link manipulator control [8]. 
Figure 2-1 shows the experimental setup.

The arm is constructed firom 6061-T6 aluminum-magnesium-silicon alloy. This is a 
balanced alloy composed o f 1.5% M gjS i, 0.25% Cu and 0.25% Cr. The alloy contains 
additions o f magnesium and silicon, which in the heat treated and aged condition 
precipitate MgzSi as a hardening phase. It is an intermediate strength, general purpose 
structural alloy and is among the most important alloys ever developed [17]. The 
chromium and copper add increased strength to the aluminum-magnesium-silicon alloy.

The beam is Im  long, 51mm wide and 3mm thick, and has a compensating weight to 
balance its rotation about the shaft The flexib ility o f this manipulator is greater than 
fle x ib ility  in current industrial robots.
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The only control input available is the motor torque at the single rotating jo in t The 
applied torque is proportional to the motor current which is controlled. A  power 
electronic amplifier converts command inputs fiom  computer to motor current. Current 
magnitude and direction control blocks are separately implemented inside the power 
am plifier. The computer interfaces to the power am plifier (through two different chaimels 
o f a D /A card) w ith voltage information for magnitude o f motor current and a logic level 
(high or low) for current direction.

The servo motor used has an integral tachometer on its shaft to measure angle speed. 
Besides, direct measurement o f shaft angle position via a potentiometer on the top o f the 
shaft (Figure 2-1) is available. A  set o f four strain gauges [18] measure the surface strain 
on the base (hereafter called “base strain gauge"). A  sim ilar set o f strain gauges measure 
the strain at approximately the middle o f arm (hereafter called “ second strain gauge” ). 
These four signals, namely angle position, angle speed, base &  2nd strain, are signal- 
processed and are acquired by the computer in the form  o f digital information through a 
multiplexed A/D converter.

The computer used to control this arm is a Pentium 166 running Windows 95. The A/D &  
D /A card is a Keithley MetraByte™ model DAS-1600, which has 2 output chaimels and 8 
bipolar input chaimels, w ith 12-bit resolution. The card can handle a maximum sampling 
rate o f 6 k samples/second.

Data
Acquisition

Card

signals from sensors

current direction

current magnitude

.....PçLY'f'Ç.Ainp.hfiçr.
motor current direction 
switch controller

motor current 
magnitude controller

sensor
information

sensor signal 
processing

arm tip

shaft angle position 
sensor (potentiometer)

-  nampolalorbeam ^  ^  Wancing

P I □
shaft

••second strain gauge 

••base strain gauge

shaft angle speed sensor (tachometer) *

motor
current

motor

Figure 2-1 Experimental setup
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Inside the power amplifier, the motor current control circuit schematic is as follows: (D, 
Dz Ds are MOSFET drawer boards)

current 
magnitude 

‘ ‘ signalcurrent
direction
signal

B

Figure 2-2 Circuits fo r motor curreta control

The circuit to process strain gauge sensor signals is an electrical bridge as follows: (R. R+ 
are strain gauges)

100kR . 10 k
VI

VO

V2

rl2v to A/D

100 k

^I2v
Figure 2-3 Strain gauge signal processing

The circuit to process tachometer output (measuring speed) and potentiometer measuring 
shaft angle are as follows:

47uF
Tachometer

15 k
100k

100k 10k
input

output

Potentiometer
+12v

output

5M

-12v

Figure 2-4 Tachometer and pot signal processing
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2.2. Modeling

Model o f above apparatus may be derived from physical principles with subsequent 
parameter identification, or it can be obtained experimentally. Models based on physical 
principles have been derived in the references [4 ,5 ,6 ].

In  this chapter, both the linear and nonlinear part o f system model are obtained 
experimentally. The schematic o f entire system is shown in  Hgure 2-5:

Computer

^computer-calculated controller digital output is 
«ffort: motor current (A) biased & saturatet

digital
output ^ D/A card

current
direction
magnitude

Power amplifie

motor
current (A)

Motor

Nonlinear sections: 
fiiction & backlash

Torque
Manipulator

shaft angle speed ^
measurement 
(rad/sec)

1/s
shaft angle positioii 

’’measurement (rad)

base strain gauge measurement (V)

second strain gauge measurement (V)

Figure 2-5 Schematic o f the flexible-link manipulator system

W ith reference to Figure 2-5, a mathematical model relating measurements, controller 
effort and system state space is represented by Equation (2-1):

output (measurements) y =
>1
yz
>3.

linear part: *u  =  Gĵ  *u

nonlinear part: Y ^= G ^(X ) (2-1)
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In Equation (2-1), Y is a 3-element output (measurements) consisting of:

yi : the rig id  body displacement (shaft angle measurement), 
yz : the base strain gauge measurement,
Y3 : the second strain gauge measurement 
and
X  : the system state vector, 
u : the motor current reference signal.

The goal o f controlling the flexible-link manipulator is to drive y, in  the commanded 
trajectory and, to ensure that yz and ys are adequately zeroed (to ensure that the arm is 
straight).

The total effective controller effort applied on manipulator consists o f torque applied by 
DC motor along with the effects due to non lin ear friction and gear backlash. Thus the 
output o f system (Y) is comprised o f two parts: linear part (Y l) and nonlinear effects 
(Yn), as stated in the firs t part o f Equation (2-1).

The second part o f Equation (2-1) presents the model’s linear part Gl: relationship 
between motor current reference u and linear part o f the system output Yl. The three 
elements o f the transfer function matrix Gl are:

G r : transfer function from effort u to shaft angle position measurement (rig id body)
Gz : transfer function from effort u to base strain gauge measurement 
G3 : transfer function from effort u to second strain gauge measurement

The third part o f Equation (2-1) presents the model’s nonlinear part Gn: the cause o f 
system nonlinear effects Yn, where X  represents the state space o f the system, (the 
manipulator position and velocity w ill influence magnitude o f gear hitting momentum due 
to backlash.)

The model’s linear part G l (G r Gz and G3) is firs t obtained experimentally in this chapter 
w ith the nonlinear part Gn presented later in  this chapter.

The methods to obtain G r Gz and G3 are theoretically sim ilar fî quency response o f G r 
Gz and G3 are identified experimentally using bandpass filte r method [15]. They are fitted 
w ith linear transfer functions o f assumed order w ith unknown parameters. The unknown 
parameters are obtained by m in im irin g  the error between the fitted and measured 
firequency response points in a least square sense using a polytope search method [24].

Following sections w ill report on G r, G z and G3, and G n one by one. Also how payloads 
influence model parameters are then discussed.

10
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2.2.1 Modeling of Rigid Body (G r) With and Without Payload

This section experim entally obtains G r : transfer function from motor current u to shaft 
angle position measurement Figure 2-6 is the schematic used fo r acquiring the response o f 
rig id body model. It is a closed-loop system w ith a PD controller.

G r : rig id  body

input r
\  error. P t(—► P effort
■ controller

p controllCT sh^t
an|Te0effort u :

shaft angleD controller speed d6/dt

Pgain=lJ3

D gain=0.62

Figure 2-6 Diagram used fo r closed-loop model identification

Note that Gi in the above figure is the transfer function from controller effort u to shaft 
angle speed, its relationship w ith G r (rigid body) is:

a , = G,
S

(2-2)

Once Gl is obtained, G r can be derived from Equation (2-2).

The applied reference input r is four periods o f square wave w ith 10s period. The slew (r) 
is 100“. The period is selected to ensure that the system settles before ±e next bump is 
applied. P gain used is 1.3 (A/rad) and D gain is 0.62 (A*sec/rad). System A/D sampling 
rate is 333 samples/second (3ms period).

Experimentally measured data includes: shaft speed dO/dt (rad/sec), shaft angle position 9 
(rad), reference input r (rad) and controller effort u (A ). Calculated data includes: error 
(rad), P effort (A) and D effort (A).

Based on the recorded data in the time-domain, the bandpass filte r method [15] is applied 
off-line to obtain system frequency responses: firstly every fiequency component o f both 
input and output signals is filtered out by bandpass filte r, then the amplitude &  phase value 
o f frequency response from input to output is calculated by comparing the frequency 
component at both sides using RLS. In Figure 2-6, the frequency response from r to 6, 
and from u to d6/dt at harmonics o f the excitation input are obtained w ith this method.

11
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G i transfer function is experimentally identified by fitting  the fiequency response from u to 
dO/dt. The steps taken to obtain the rig id body transfer function thus are;

Algorithm 1:

1. Experimentally measure and record the data in a digital computer w ith a sampling rate 
(100 samples/second) which is at least 20 times greater than the bandwidth o f the 
excitation loop;

2. Obtain frequency response from P effort to  dO/dt (G ,), and frequency response from r 
to 0 (Gb) (Figure 2-6) using bandpass filte r method. Note that G, and Gb are vectors 
containing complex numbers (amplitude and phase information) at each excitation 
harmonics;

3. Analytically calculate frequency response from controller effort u to d6/dt (Gc) based 
on Ga obtained in  step 2;

4. F it transfer function Gi to fiequency response Gc;

5. Based on G|, calculate closed-loop transfer function T, and confirm the frequency 
response with Gb;

Before fitting  G i’s linear transfer function, its order is determined. Standard models treat 
transfer function from torque command to shaft speed as a first-order linear system. 
However in the present case, the fiexibiliQ^ effects o f the beam has to be taken into 
account on the rigid body motion. As a result, a second-order structure for G| is fitted, 
as shown below:

G, = ----
â S -F O; J -F Cg

The advantages o f using second-order structure instead o f first-order can be seen in the 
following experimental results (Figure 2-7), particularly in the accuracy o f the phase 
fitting.

The coefficients bi ai az as in Equation (2-3) are obtained by using the Nelder-Mead [24] 
optimization method to fit Gi transfer function with experimentally identified frequency 
response Gc. The optimized second-order transfer function so determined is:

g  9.5097
' r"+ 4 .6645 r+4.2001

and G r is:

12
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G . = G , » i  =
9.5097

j  j^+4.6645j^ + 4.200
(2-5)

I f  Gi is chosen as first-order transfer function, then the best f it  is:

2.0817
G ,= s+0.8746

(2-6)

The fit o f these two transfer functions fo r Gi (Equation 2-4, 2-6) along w ith experimental 
data are shown in Figure 2-7:

€
Q l.flrsH  cderfitting 

^  G l.secc xl-ordarfitting 
o eifehm i ntal

-10

-20

-50

 G l, first-4 irder fitting
-100

o  expérimentai 
^ " ^ G l . secoi id-order fitting

-150

Figure 2-7 First-order (~ ) arui second-order (-) tranterfimction fitting with experimental results (o)

The second-order transfer function fits the experimental data better than the first-order 
transfer function. In the identification o f Gi under varying payloads, second-order 
structure w ill henceforth be used.

Equation (2-5) is regarded hereafter as the rigid body transfer function.

Additionally, three methods to confirm the predictive ability o f this model is provided 
below.

Firstly, the integration o f shaft speed measurement with shaft angle position measurement 
is shown in Figure 2-8. They match each other well. We thus have confidence about the 
integral relationship shown in  Figure 2-6.

13
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fitting of integration of angle speed measurement(IASM) and angle measurement(AM)

0.8

0.6

0.4

0.2

- 0.2

-0.4

- 0.6

- 0.8

20
second

2510 15 30 35 40

Figure 2-8 Matching o f shaft angle speed measurement’s integration and shetft angle position measurement

Secondly, experimentally identified Gy (Algorithm  I) is compared with calculated closed- 
loop fiequency response based on O r firom Equation (2-5), using the identical P gain(1.3) 
D gain(0.62) and schematic (Figure 2-6) as applied in experiment. The fit is shown in 
Figure 2-9:

Gb
o O

-20
calculated fromGR-30

0

-100

-200 -

-300

Second

Figure 2-9 Confirming experimental closed-loop frequency response(o) and calculated one(-) based on Gk obtained
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Thirdly, closed-loop time-domain response obtained by simulation using G r and 
experimental time-domain closed-loop response, w ith identical controller gain settings (P 
gain is 1.3 and D gain is 0.62 as in Rgure 2-6), are compared in Figure 2-10. A  step 
reference input o f 100 degree is applied:

confirming G1 : comparison of experimental and simulated time domain response

1.8
e j^rirae ra f^
sRaA ârlglê rfiéàsurëihenf1.6

1.4

1

0.8

0.6

0.4

10
Time (second)

Figure 2-10 Cortfirming o f experimental and simulated time domain response

The two curves match well, except the experimental result doesn’t have the 10% 
overshoot as the simulation does. This mismatch is caused by friction between beam and 
shaft shoulder. A fter the nonlinear models are considered (later in  this chapter), this 
mismatch w ill disappear, and a very close overlapping between the experimental and 
simulated response can be seen in Figure 2-26.

Models o f the rigid body w ith various payloads are next identified. D ifferent payloads are 
moimted on the tip  o f manipulator and system performance is experimentally observed and 
recorded. The new models w ith payloads are obtained, using the same procedures 
(Algorithm  I) described earlier to identify the model without payload.

W ith a payload o f 75g, the rig id  body transfer function Gi is:

5.6070
s^+3.5981r+4.1295

(2-7)

and its frequency response is:

15
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Figure 2-JI Gi secorui-order tranter function fitting, witha payload o f 75g

W ith a payload o f 150g, the rig id  body transfer function Gi is:

3.9938
f  ̂ 4-3.1329^+3.6671

and its fiequency response is:

rad/sec

Figure 2-12 Gi second-order tranterfunction fitting, with a payload o f ISOg
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W ith a payload o f 380g, the rig id  body transfer function Gi is:

1.0463
j^+1.5837j +I.7737

and its fiequency response is:

-20

•o
■40

-60

rad/sec
100

•a
-100

-200

(2-9)

rad/sec

Figure 2-13 Ci second-order tranter function fitting, with a payload of380g

Equation 2-4, 2-5, 2-7, 2-8, 2-9 are the results o f this section, they wül be compared in 
Section 2.2.4 and conclusions concerning the system model w ill be drawn.

2.2.2 Modeling of Beam Deflection With and Without Payloads

Strain gauge measurements reflect information on beam deflection/vibration. The goal o f 
this section is to experimentally obtain Gz and G3 (Equation 2-1), which are transfer 
functions from controller effort u to base and second strain gauge measurement 
respectively. Following Cannon [2], the general model from controller effort to strain 
gauge measurements on the flexible-link manipulator is taken to be comprised o f second- 
order transfer functions:

(2 -m

17
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where üûi is the resonant frequency o f i*** mode and Aj and ^  are the magnitude and 
damping factor o f this mode respectively.

In this section. Equation (2-10) is used as the structural model for Gz and G3 , and 
parameters o f Equation (2-10) are identified experimentally. Only the modes that are 
adequately measurable are paid attention.

The methods to obtain Gz and G3 are technically the same as that for the case o f rigid body 
model identification, except that frequency responses o f Gz and G3 are obtained more 
delicately.

The steps taken to experimentally obtain Gz and G3 are:

Algorithm  II:

1. Feed in a pure sinusoidal current reference to the m otor (current controller), o f known 
amplitude (4A) and fiequency;

2. Record four periods o f strain gauge output w ith sampling period o f 3ms, use bandpass 
filte r to extract its harmonic at the input frequency, calculate the frequency response 
(amplitude and phase) at this frequency [15]. (Note that system response is nonlinear, 
and has harmonics different from input frequency, hence the need for bandpass 
filtering.)

3. Sweep over frequency range o f sinusoidal wave by repeating step 2 on all useful 
frequency points. The frequency range swept through fo r identification is [0.5 60] Hz.

4. From the magnitude plo t o f the frequency response, determine o f the modes by 
observing peaks, and fit the plot with transfer functions in the form o f Equation 2-10. 
Parameters in Equation 2-10 are identified by the means o f optimized fitting  as before 
(Algorithm  I);

5. Confirm the transfer function obtained by computing step response from the transfer 
function and comparing it  w ith experiment.

Following four subsections apply the above steps to obtain Gz without and w ith payload, 
and then G3 without and w ith payload respectively.

2.2.2.1 G2 (Base Strain Gauge) Transfer function Without Payload

W ithout payload on the arm tip, three oscillation modes, respectively at 8.5 Hz, 22 Hz and 
46 Hz, can be observed w ithin swept frequency range.

18
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Rgure 2-14 shows the experimentally measured frequency response from motor current 
input to base strain gauge measurement and, its optimized fitting  (Equation 2-11):

20

€
-20

-40

HZ
200

O)
"o -200

-400

HZ
Figure 2-14 Fitting o f experimental results (o) with tranter function G ii-)

Optimized Gz fit:

G, Am, ,  ̂  ̂ , Am#
J^+2^,©,J+C0, +2^j(Û2^-|-©2 5 +2^3©3J-hO)

where:

(ùi=2*n*8.5, Ai=0.3594, ^i=0.0616, 

(û2=2 *71*22, A2=0.3537, ^=0.0681, 

(ù3=2*k *46, A3=0.0934, ^=0.0766. (2-11)
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Gz fits the experimental fiequency response well in Figure 2-14. Its confirmation w ith 
experimental time-domain response is shown in Figure 2-15. The experiment applies 
closed-loop PD control on rig id  body, w ith gain values as in Figure 2-6.

simulated time-domain response based on G2 obtained
3

2

1

0

-1
2 80 4 6 10

experimental base strain gauge measurement

2

1

0

1

2
0 2 4 6 8 10

second

Figure 2-15 confirming Gz with time-domain measurements

The peaks o f the curves fit very well between simulation and experimental results, as 
shown in above Figure. The dominant oscillatory fijequencies in the experimental data also 
fit the simulations quite well. The mismatch between 2 and 3 seconds in the above figure 
are due to friction and w ill be considered later in  this chapter.

2.2.2.2 G2 (Base Strain Gauge) Transfer function With Payload

Model o f Gz in the presence o f payloads are also fitted, w ith the identical method 
(Algorithm  U) as in last section. W ith a payload o f 75g, three oscillation mode can s till be 
observed at the 8.5 Hz, 22 Hz and 42 Hz respectively, but the damping factor and gains o f 
these transfer functions are changed:

(ùi-2*%*8.5. A ,=0.8464, %i=0.0394,

Gh=2*K*22, A2=0.3508. ^=0.0263,
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(ù3=2*k *42. A3=0.1203. 0.0147 (2-12)

The fit  between transfer fim ction Gz (w ith a payload o f 75g) and experimental firequency 
response is illustrated as below Rgure 2-16:

200

20

"O

-20

2•1 0 1
10 10 10 10

HZ

Q—Q_0

Figure 2-16 Fitting of experimental results (o) with tranter function C2 (-), with payload 75g

W ith a payload o f 150g, three oscillation modes can be observed at the 8 Hz, 23 Hz and 
40 Hz the damping factor and mode magnitude are now:

(ùi-2*n*8. A ,=1.0688, \i=0.0359, 

(02=2*11*23, Az=0.3901, ^=0.0233 

(ù3=2*iz*40, A3=0.0950, ^=0.0290 (2-13)

The fit  between transfer function Gz (with payload ISOg) and experimental frequency 
response is illustrated as below Figure 2-17:
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Figure 2-17 Fitting o f experimental results (o) with tranrferfunction Gz (-}, with payload I50g

W ith a payload o f 380g, three modes can be observed: 8 Hz, 23 Hz and 42 Hz. The 
parameters are now:

(0,=2*k*8, a ,=0.7330, ^,=0.0457, 

(û2=2*k*23. A2=0.7163, ^=0.0346, 

(û3=2*k*42, As=0.2292, 0.0539 (2-14)

The fit between transfer function Gz (with payload 350g) and experimental frequency 
response is illustrated as below Figure 2-18:
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Figure 2-18 Fitting of experimental results (a) with transfer function Gj (-), with payload 380g

2.2.13 Gg (2nd Strain Gauge) Transfer function Without Payload

Only two mode peaks around 8.5 Hz and 22 Hz can be observed in the frequency response 
o f second strain gauge measurement.

G] is fitted in the form below:

3 _2J +24,©,J+(0, f  4-2 ^ 2 0 )2 ^+(0 

without payload, the parameters take the follow ing value:

(ûj=2*n*8.5. Aj=-0.4975, ^,=0.0857, 

©2=2*71*27. A2-O.2 5 4 7 . ^=0.0819 (2-15)
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The methods used to fît parameters in Equation (2-15) is identical (Algorithm  II) to that 
used in the last two sections. The fît between the fiequency response obtained finom 
transfer function G3 and experimental fiequency response is illustrated in below Figure 2- 
19:

20
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HZ
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-200-
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Figure 2-19 Fitting o f experimental results (o) with tranter function G j (-), without payload

It  is observed in the above figure that the fitted model matches the experimentally 
identified fiequency response very w ell. Also the dancing factors at two modes are fairly 
close. This linear model is confirmed by comparing simulated and experimental time- 
domain response as in Figure 2-20. The experiment applies closed-loop PD control on 
rig id  body, w ith the gains setting as in Figure 2-6.
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Comparsion of simulation and experiment
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Figure 2-20 Confirming Gj with experimental time-domain measurement
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experiment
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2.2.2A Gs (2nd Strain Gauge) Transfer function With Payload

In the presence o f a payload o f 75g, the model parameters change to the follow ing value:

©;=2*Ji*8, Aj=-1.4220, ^1=0.0435,

0)2=2*71*22, A2=0.8525. ^=0.2011 (2-16)

The f it  between simulated and experimental firequency-domain response is illustrated in the 
Figure 2-21:
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Figure 2-21 Fitting of experimental results (o) with transfer function Gs (-), with payload of75g 

In the presence o f a payload o f 150g, the model parameters change to follow ing value:

cO/=2*7C*S, a ,=-1.4010, ^1=0.0426, 

(02=2*JC*2i. A2=0.8336, ^=0.2071 (2-17)

The fit between simulated and experimental firequency-domain response is illustrated in 
Figure 2-22:
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Figure 2-22 Fitting o f experimental results (o) with tranter function G j (•), with payload o f ISOg

In the presence o f a payload o f 380g, the model parameters change to follow ing value:

(ùi=2*k *Z 5. A,--2.0682. ^i=0.0406, 

(û2=2*it*23, A2=0.3669, ^=0.0607 (2-18)

The fit between simulated and experimental fiequency-domain response is illustrated in 
following Figure 2-23:
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Figure 2-23 Fitting of experimental results ( o) with tranterfunction Gj (-), with payload of380g

2.2.3 Modeling of Nonlinear Sections of the Flexible-Link 
Manipulator

Nonlinear sections, particularly static friction and gear hitting caused by backlash, 
significantly influence the system performance. The effect o f fiic tion  can be seen in the 
comparison o f simulated and experimental rig id body response in Figure 2-10: the 
experimental results and simulations d iffer around steady state without having the 
overshoot indicated by simulation. It is obvious that this is caused by friction between 
manipulator and shaft shoulder the manipulator stops moving when error is small and 
controller effort is too small to overcome friction.

A  close examination o f the comparison o f simulated and experimental strain gauge 
measurements also indicates the influence o f nonlinearities particularly backlash (see fo r 
e.g. Figure 2-15). Figure 2-24 below is the comparison o f second strain gauge response 
obtained from experiment and simulation use identical schematics. The simulation are 
done using only the linear models identified earlier

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Comparsion of simulation and experiment
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simulation based on G3
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experiment

Time (s)
Figure 2-24: Nonlinear effects: comparison of simulated &. experimental 2nd gauge response using same schematic

It is observed in Figure 2-24 that the linear model is not able to predict the 22 Hz (second 
oscillation mode) behavior o f second strain gauge response, neither can it  explain the 
experimental measurements in the first 0.5 second.

This thesis presents the models o f the two most important nonlineaiities: Coulomb friction 
(static) and gear hitting caused by backlash.

2.2.3.1 Friction

The torque caused by friction between manipulator and shaft shoulder directly applies on 
the manipulator and significantly influences the movement o f the arm.

The fiiction  consists o f both viscous fiiction and Coulomb friction. Viscous fiiction is 
proportional to relative movement velocity between manipulator and shaft shoulder, it is 
already taken into account while identifying the system linear model. Coulomb fiiction 
increases along with the increase o f DC motor controller e ffo rt so that the manipulator is 
static, beyond which it drops slightly and stays unchanged while the manipulator moves 
[16,23]. These effects o f friction are illustrated in Figure 2-25:
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Figure 2-25 Illustration o f Coulomb friction and viscous fiiction

Putting the two fiic tio n  (viscous and Coulomb) together, the total controller effort applied 
on manipulator is:

i u = u —Uf. —Uy, =u~Uf.—K * —
^ dt

(2-19)

where 6 is the shaft angle, ut is the controller effort (motor current) actually applied to the 
manipulator to accelerate it after fiic tion  is taken into account, u is the motor ciurent 
supplied to the DC motor, and uc, Uv are the motor current required to overcome the 
Coulomb fiic tio n  and viscous friction respectively. Value o f uy is proportional to angular 
speed.

As experimentally identified in the apparatus, the motor current required to overcome the 
Coulomb friction (uc) is 0.32A before moving and 0.22A after moving. The motor 
current required to overcome viscous fiic tion  (U y ) is chosen as a proportional ratio K  of
0.1A/(rad/s). K  is artificially selected very small fo r simulation since viscous fiic tio n  is 
already taken into account in linear system model.

By replacing u in the earlier simulation w ith ut o f Equation (2-19), new simulations are 
produced on both rigid body and strain gauge responses. Figure 2-26 is an updated 
version o f Figure 2-10, comparing simulated and experimental rigid body response, using 
gain setting o f P=1.2 and D=0.62:
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Figure 2-26 Comparison o f simuiated(~) and experimental(-) rigid body response, taking friction into account

As shown in above figure, simulation and experiment results overlap each other very well, 
and the mismatch o f overshoot disappears.

Also the simulation o f second strain gauge output, which takes fiic tion  effects into 
account, is compared with experimental results in  Figure 2-27:

simulationo>

2.50.5 1.5 3.5
Time (s)(V)

expenment

0.5 1 1.5 2 2.5 3
Time (s)

Figure 2-27 Comparison of simulated and experimental second strain gauge response, taking fiiction into account

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By taking friction into account, simulation is able to predict the 22 Hz vibration behavior 
o f second strain gauge. The difference between experimental measurement and simulation 
before 0.5s is caused by the gear hitting effects (due to backlash) at the very beginning of 
the setpoint change.

Based on this friction model, simulation is also performed on base strain gauge 
measurement. Figure 2-28 is an updated version o f Figure 2-15. By taking friction effects 
into account, simulation is now able to predict the measurement jump around 1.9 s before 
system settles down. This could not be explained by the linear model alone as shown in 
Figure 2-15.

3
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Figure 2-28 Comparison o f simulated and experimental base strain gauge response, taking friction into account

2.23.1 Gear Hitting Caused by Backlash

The gear chain (one pair o f gears in our case) in any mechanical system w ill unavoidably 
have backlash. The modeling of the effect o f backlash [25] on our system is described in 
this section. The backlash existing in  apparatus is illustrated in Figure 2-29:
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gears and backlash *

Figure 2-29 Backlash in the gear chain

In Figure 2-29, 0m is the angle o f the driving gear (DC motor) and 0a is the angle o f the 
driven gear (arm). It is assumed in the following that the angles and inertia involved are 
reflected to the arm side. When two gears are not engaged, 0m is different from 0a. In  this 
case, there is no interaction between the DC motor and the arm shaft And until engaging, 
they are developing their own angles obeying the follow ing two independent equations:

(2-20)

Ja^ a = -T f (2-21)

where Jm is the inertia o f motor (reflected to the arm side) and Ja is the inertia o f 
manipulator arm. Tm is the driving torque offered by motor and Tp is the friction torque 
at the shaft (we neglect the friction in the motor). Since Jm is smaller than Ja, 0m may 
develop fairly large velocity before it engages w ith the driven gear. This is the natural 
cause o f gear hitting, which results in a velocity jump o f both 0m and 0a, as shown in 
Equation (2-22) when the gears finally engage. [25]:

—
A

-0. (2-22)

In Equation 2-22 0^^ is the common velocity after the two gears are engaged.

A fter the two gear are engaged, the system can be treated as 0ĵ =d0M/dt=d0A/dt and 
0M=0A- The differential equation governing the dynamics o f the whole system becomes:

{JA + Ju )^UA~^U (2-23)

In simulation, the in itia l values o f 0a and 0m are respectively selected as -50° and -53° (fu ll 
backlash is 3°). And the Ja and Jm are selected as 0.027Kgm^ and 0.003 Kgm^ 
respectively. The schematic used to calculate this backlash nonlinearity is illustrated in 
Figure 2-30:
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Figure 2-30 schematic used to present backlash nonlinearity

When setpoint change is made, gears start from being unengaged to being engaged, the 
backlash causes a substantial velociQr hitting on the arm. Furthermore when control effort 
switches direction, the backlash causes a switch o f gear engagement from positive to 
negative or vice versa. This causes the 22 Hz oscillatory behavior after 0.5s in the strain 
gauge measurement. K  this nonlinear hitting is taken into account by combining Equation 
2-20 2-21 2-22 2-23 into the entire system model as per Figure 2-30, a new simulation o f 
second strain gauge response is produce in Figure 2-31, which better predicts the 
experimental behavior

(V)

3 )2 simulation

0.5 1.5 2.5 3.5
Time (s)

(V)

experiment

0.5 1.5 2.5 3.5
Time (s)

Figure 2-31 Comparison of simulated and experimental second strain gauge response, taking hitting into account
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2.2.4 Comparison and Conclusions

The linear models obtained in  previous sections are summarized below.

W ithout payload on the manipulator tip , Gl (linear part o f whole model) in Equation (2-1) 
is identified as Equation 2-24:

9.5097

—

j( j^  +4.6645J+4.2001) 
1025.1 6758.3 7802.3

+6.65+2852.3 5^+195+19108 5^+445+83536
-1419 4434.3

+9.1545+2852.3 5^+21.61295 + 17410

(2-24)

This transfer function matrix w ill be used throughout tins thesis and wül contribute to the 
design o f appropriate controllers.

How the parameters o f the three elements o f G l  (G r Gz and Gs) vary in the presence o f 
payloads has also been studied in the previous sections. W ith the presence o f different 
payloads, transfer function G r (from controller effort u to rigid body shaft angle position) 
is listed in Table 2-1.

Comparison o f Gr: transfer fimction from  controller effort u to shaft angle position

Payload Transfer function 
(Gr=1/s*G i )

dc gain 
(d b )o fG i

pole 2 pole 3

none 9.5097 7.0981 -3.4455 -1.2190
5(5^+4.66455+4.2001)

75g 5.6070 2.6567 -1.7990-
0.94491

-1.7990 + 
0.944915(5^+3.59815 +  4.1295)

150g 3.9938 0.7413 -1.5664 - 
1.10151

-1.5664 + 
1.101515(5^+3.13295 + 3.6671)

380g 1.0463 -4.5845 -0.7919 - 
1.07081

-0.7919 + 
1.070815(5^+1.58375+1.7737)

Table 2-1 Comparison of transfer function C i under various payloads

Several conclusions can be drawn on the change o f G r under payloads:

1. When payload increases, the dc gain o f Gi decreases;

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. When payload increases, the poles o f Gi move towards the origin;

3. When payload increases, natural ftequency o f Gi decreases;

4. When payload increases, damping factor o f G i decreases;

G i’s fiequency responses w ith and without payloads are illustrated in Figure 2-32, where 
line 0 represents no payload, line 1 represents payload o f 75g, line 2 represents payload o f 
150g and line 3 represents payload o f 380g.

comparison o f G l fiequency response under different payloads
20

CQ
T3

-20

-40

rad/sec

O)
a -100

-200

rad/sec

Figure 2-32 Comparison of Gi frequency response under various payloads, 0g(0) 75g(l) I50g(2) and 380g(3)

Gz (the transfer fimction fiom  effort u to base strain gauge measurement) is represented in 
the form o f 3 oscillation modes as per Equation 2-11. By comparing the change o f natural 
frequency, mode magnitude and damping factors, the influence o f payloads can be 
observed. Table 2-2 shows the variation o f these parameters.

Some rough conclusions can be drawn on the change o f Gz under payloads:

1. When payload increases, the damping factors o f all three modes decrease.

2. When payload increases, the gains o f a ll three modes increase.
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Comparison ofGz-’ transfer fimction from ^ o r t  u to base strain gauge measurement

Payload

1 st oscillation mode 2 nd oscillation mode 3rd oscillation mode

CÛ1 A, % Az CÛ5 A 3

0 2*ic*8.5 0.3594 0.0616 2*71*22 0.3537 0.0681 2*7c*46 0.0934 0.0766

75g 2*7C*8.5 0.8464 0.0394 2*71*22 0J508 0.0263 2*7C*42 0.1203 0.0147

150g 2*7C*8 1.0688 0.0359 2*7C*23 0.3901 0.0233 2*71*40 0.0950 0.0290

380g 2*71*8 0.7330 0.0457 2*7C*23 0.7163 0.0346 2*7C*42 0.2292 0.0539

Table 2-2 Comparison o f transferfunction under various payloads

G3 (the transfer function from effort u to second strain gauge) is represented in the form o f 
2 oscillation modes as per Equation 2-16. By comparing the change o f natural frequency, 
gains and damping factors, the influence o f payloads can be observed in Table 2-3:

Comparison o fG j: tran te r fimction from  effort u to second strain gauge

Payload

1st oscillation mode 2 nd oscillation mode

COi Ai (ÙZ Az

0 2*7C*8.5 -0.4975 0.0857 2*n*2 l 0.2547 0.0819

75g 2*7C*8 -1.4220 0.0435 2*iz*22 0.8525 0 . 2 0 1 1

150g 2*7C*8 -1.4010 0.0426 2*7C*23 0.8336 0.2071

380g 2*k *7.5 -2.0682 0.0406 2*n*23 0.3669 0.0607

Table 2-3 Comparison o f tranterfunction C3 under various payloads

The trend how payloads influence on G3 parameters is sim ilar to the one on Gz, although 
not as obvious:

1 . Roughly speaking, when payload increases, damping factor o f two modes decrease.

2 . When payload increases, absolute magnitude o f gains o f two modes increase.

3. The gain o f firs t mode takes negative value while the gain o f second mode takes 
positive value (this is different from Gz);

Nonlineaiities, particularly Coulomb fiiction, viscous fiic tio n  and gear hitting caused by 
backlash, are presented to supplement the linear transfer function. Models taking friction 
section into account produce better prediction o f rig id body response and strain gauge 
response. H itting model due to backlash also helps to explain system behavior which 
cannot be explained by linear model alone.
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Chapter 3

Exploration of PIDP Control

In  this chapter, PD controllers are considered for the flexible link manipulator control, 
based on the model obtained in Chapter 2. The controllers are optimized in the sense o f 
minimizing rigid body step response error and suppressing strain gauge measurements o f 
vibration (to zero). The whole control structure is described as a PIDP combination: PD 
controller plus conditional I  controller fo r rig id body tracking, and P controller using 
noise-flltered and lowpass-flltered information fo r vibration suppression. The use o f low- 
pass filte r on second strain gauge measurement feedback is detailed. This controller is 
implemented experimentally and the system performance is shown. Also some other 
related issues, like sensor signal prefiltering (noise filters), dither to reduce fiic tion  effects 
are discussed in this chapter.

3.1 Optimized PID Controller for Rigid Body Tracking

In Chapter 2, a PD controller is experimentally implemented to serve as the platform for 
system identification. The rig id body system performance under that PD controller is 
good: the arm tracks the reference step input well, reaches steady state w ithin 2 seconds 
and hardly produces any overshoot (see experimental results in Figure 2-10). This 
performance shows the promise o f PD controllers on flexible-link manipulator. In this 
chapter we explore design o f optimized PD controllers using the identhied linear and 
nonlinear models and study their experimental performance.
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The optimal PD gains fo r the rig id body tracking are designed using the integral absolute 
error (lAE) method fo r input step o f 100 degree. (lA E  value is calculated from simulation 
results based on system model obtained in Chapter 2.) In  addition to the minimization o f 
the lAE  criterion, practical issues and constraints are also penalized in the optimization. 
Thus the function minimized is:

F  = lAE  + Penalty _ Junction 

The practical issues considered in  penalty function are:

(3-1)

1. The motor current in  the apparatus is lim ited to a certain maximum value (5 A  in current 
case), any controller effort requiring more than this amount o f current (fo r a 100 degree 
slew in current case) w ill be not be feasible. The penalty function takes a high value in 
this case, (higher fla t area in follow ing Rgure 3-1.)

2. Any performance which shows more than 35% overshoot is eliminated by assigning 
penalty function a high value.

3. Any performance which cannot settle down w ithin 10 seconds (slow response) is 
eliminated by a high penalQr function.

To perform global searching fo r the PD gains, a surface o f the Function F o f Equation 
(3-1) is plotted and shown in Figure 3-1. The lower the F value, the better the system 
performance.

(F) w 30(\

g-100,

D gain

Figure 3-1 Global searching o f optimized P and D  gains fo r PD controller
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Figure 3-1 provides an overall idea about the PD gain effects on F value o f Equation (3 -
1). The fla t areas are eliminated by the penalQr function because controller effort is too 
large or system response is too slow etc., and only the inner triangle area is the acceptable 
gain area fo r PD controller design. See Figure 3-2  fo r a close-up view o f the inner triangle
area:

3-3 IS produced by this view

eo 2 0

P gain
D gain

Figure 3-2 The acceptable P D  gain area forms a valley

The iimer area with small F function value appears like a triangular valley as shown in 
above figure. Valley bottom (minimal errors) is on the middle line o f this triangle, and the 
bottom tends to go down while P D gains are increasing. This indicates that higher well- 
selected P D gains produce better system response. (However, it  is also revealed that 
valley bottom decreases down fast before P=3 and slow thereafter, correspondingly 
system performance is not significantly improved as we increase P and D gains to much 
higher values.). Figure 3-3 takes another profile o f the above figure and shows the 
decreasing trend with P gain o f the valley (lAE  alone was used).
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200

180

140

120
Controller effort 
needs max. of S A100

Controller effort 
needs max. of 10 A80

60

P gain
Figure 3-3 The valley bottom shown in Figure 3-2 tends to go down while P gain is increasing

Figure 3-4 shows a top view o f the triangular valley o f Figure 3-1 and its surrounding 
areas, it  illustrates how this triangle is located in  PD gain domain:

large overshoots

good P D gains

large controller effort

slow response

Pgain

Figure 3-4 A top view of good P D  gain area and surrounding areas
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As shown in Figure 3-4, the le ft area covers where response has large overshoot and the 
right area has sluggish response. On the bottom, a solid line located at P=2.9 indicates P 
gain cannot go over 2.9, because higher P gain w ill cause more than 5 A  controller effort 
at the very beginning o f the bump (w ith 100 degree slew: 5 /(100/180*pi)=2.9). The 
methods to overcome this constraint include increasing motor current lim it, or feeding in 
softer reference (trajectory) and so on.

Several cases, A  B C D E F points shown in Figure 3-4, have been simulated using rigid 
body model obtained in Chapter 2 to illustrate the effects o f P D gains on system 
performance. (To be consistent w ith experimental results, a ll the following simulations are 
using 100 degree slew.):

Case A: P=3 D=3. Since this point covers both right and bottom areas (see Figure 3-4), it 
has demerits o f both slow response and large controller effort. The reference input, rigid 
body system response and controller effort are shown in  Figure 3-5:

rigid body response when P=3 D=3
6

case A
5

4

3

2

1

0

1

0 2 4 6 8 10
Time (second)

Figure 3-5 System performance and controller effort under P=3.0 arui D=3.0
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Case B: P=1.5 D=2. This point is at the right area (see Figure 3-4) and has slow system 
response as it  is evident in  Figure 3-6:

rigid body response when P=1.5 D=2.0

caseB2.5

1.5

0.5

0 2 64 8 10
Time (second)

Figure 3-6 System performance and controller effort under P=1.5 and D -2.0

Case C: P=2.0 D=0.6. This point has large overshoot and the simulation results are
shown in Figure 3-7:

rigid body response when P=2.0 D=0.6

case C

0 2 4 6 8 10
Time (second)

Figure 3-7 System peifomumce and controller effort under f=2.0 and D=0.6
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Case D: P=1.3 D=0.62. We used this point in  Chapter 2 to identify the closed-Ioop rigid 
body system model. This point is w ithin the triangle in Figure 3-4 and has reasonable 
performance, the controller effort is small as well. This simulation is shown in Figure 3-8.

rigid body response when P=1.3 0=0.62

2.5
caseD

= 1.5

0.5

0 2 4 6 8 10
Time (second)

Figure 3-8 System performance and cotaroller effort under P=1.3 and D=0.62
Case E: P=3.0 0=1.0. This point covers both the bottom and the le ft area in Figure 3-2, 
and has the performance o f both high overshoots and high controller effort, as shown in 
Figure 3-9:

rigid body response when P=3 0=1

caseE

0 2 4 6 8 10
Time (second)

Figure 3-9 System perforrtumce and controller fffort imder P=3.0 and D=I.O
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Case F: P=2.9 D=1.4. This point is the global minimum o f a ll feasible areas. The
controller effort takes a peak at exactly 5A, and step response error is very small, as seen 
in Figure 3-10.

rigid body response when P=2.9 D=1.4

2 4 6 8 10
Time (second)

Figure 3-10 System performance and controller ̂ o rt tmder P=2.9 and D=l.4,(global feasible minimum)

By comparing the Figure 3-10 w ith Figure 3-8 (P=1.3 D=0.62 used in Chapter 2), it can 
seen that system response is about 30% faster in this case. Since this gain setting shows 
promise for practical implementation, an experiment is conducted and compared with 
simulation results in Figure 3-11. The experiment uses the same P and D gain setting [2.9 
1.4] as in simulation, a 100 degree reference step and 3 ms sampling period. The angle 
position and velocity measurements are noise-filtered before being fed back (the noise 
filte r is detailed later in  Equation 3-2.).
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Experimental and simulated rigid body response when P=2.9 D=1.4

simulation

experiment
experiment

simulation

0 2 4 6 8 10
Time (second)

Figure 3-11 Comparison o f simulated and experimental step response under P=2.9 and D = l.4

The experimental results shown in Figure 3-11 indicates PD gain setting o f [2.9 1.4] 
produces very good system performance, fo r rig id body tracking. It confirms the global 
PD gain optimization. The PD gain setting [2.9 1.4] fo r rigid body control w ill be used in 
most cases hereafter in this thesis.

Next, various PD settings are compared in the fiequency-domain. Figure 3-12 shows the 
difference in fiequency response from reference input to controller effort under different 
PD gain settings. It is obvious in this figure that greater PD gains have larger 
amplification o f high harmonics. Also it  is noticed that fiequency response peaks o f 
feasible P, D gains (up to [5 2]) are s till far away fiom  first-mode resonant frequency 
(around 8 Hz as studied in Chapter 2), therefore too weak to cause substantial first-mode 
resonance o f manipulator beam deflection.
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frequency response from r to u under different PD gains

P=2.9 D=1.4

P=1.3 0=0.62
%

-10

-20 beam’s first-mode 
resonant frequency

-30

hz
Figure 3-12 Comparison of frequency response from reference input to controller effort under different PD gains

It can be noticed in Figure 3-11 (and in  most experimental PD controlling cases) that there 
is a steady state error which is due to Coulomb fiiction  effects. A  compromise for this 
problem could be to adjust P and D gains to make controller more aggressive. Suitable P 
and D gain settings can be found such that rigid body is stopped by Coulomb friction 
exactly at steady state. For example, adjustment o f P D gain setting from [2.9 1.4] to 
[2.9, 1.2] completely cancels the steady state error shown in Figure 3-11 fo r the step o f 
100“. However, it  is not a good solution in the sense that different reference input 
magnitudes need different adjustments o f P and D gain setting (see Figure 3-15 where 
D=1.2 does not ensure good tracking fo r 60 degree slew).

It is usually possible to cancel this error by using an additional integral controller (I gain). 
However, demerits o f using “ double integrators”  (system model has its own integrator) 
have to be considered.

A fter studying the nonlinear Coulomb friction model obtained in  Chapter 2, a possible 
solution for this problem is a conditional I  gain, i.e., the I  gain and I  e ffort are activated 
only when the error o f the loop is w ithin a certain small range, beyond which the error w ill 
be compensated by the P controller alone. This conditional I  gain only handles the small 
error when corresponding P effort is too small to overcome Coulomb friction, which is the 
primary cause o f steady state error. As experimentally identified in Chapter 2 (see Figure 
2-25), Coulomb fiic tion  can only be overcome by any motor current beyond [-0.32 0.32] 
A , thus a reasonable error range would be [-0.32 0.32]/P_gain=[-0.11 0.11].
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Experimental results in Rgure 3-13 show how the conditional I  gain (1.5 in this case) 
compensates steady state error caused by static friction for a step reference o f 100°.

conditional erro r range 1

0.8

c  0.6

I effort® 0.4

o>
-0.4

S -0 .6

- 0.8

10
rigid body under conditional I gain

Figure 3-13 PD control with conditional I  gain to cancel static error caused by friction

Rgure 3-14 shows that the error eventually goes to zero over an extended time horizon. 
Small lim it cycles due to Coulomb fiic tio n  however are present

rigid body error with conditional I gain
0.06

0.05

0.04

0.03■o
S
I  0.02
m

0.01

- 0.01  -

- 0.02
20 40 60

Time(s)
80 100 120

Figure 3-14 Steady state error compensation under conditional I  gain
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One advantage o f conditional I  gain is that it suits various reference input magnitudes. 
Figure 3-15 is the experimental results for a 60 degree step reference input.

P=2.9 0=1.4 
conditional 1=1.5rigid body r y under 60 degree reference input

0.6
P=2.9 0=1.2 
no I gain

0.4
P=2.9 0=1.4 
no I gain

-  0.2 conditional 
I effort

-0.4

- 0.6

T]me(s)
Figure 3-15 Experimental system response under 60 degree r^erence input, with different gain settings

Figure 3-15 shows that, the old P D gain setting o f [2.9 1.4] w ith no I  gain has steady 
state error, and adjusted P D gain setting o f [2.9 1.2] can not solve that steady error in the 
case o f 60° slew although it  works for 100 ° case. On the other hand conditional I  gain 
works for both cases. (Note that in the case o f 60° reference input, one can select P gain 
higher than 2.9 as motor current lim it is not reached and therefore system could have even 
faster response than shown in  Figure 3-15.)

Another supplementary option, also an efScient method, fo r steady state error 
compensation in the smaller reference input cases is the addition o f dither [23], i.e. add a 
periodic signal w ith certain magnitude and frequency on the controller effort. This method 
proves to be helpful especially when reference slew is small, and has the side-effect of 
causing small beam oscillations (which is picked up by the strain gauges.).

In Figure 3-16, an experiment is conducted to show how dither improves system 
performance. P and D gains are 2.9 and 1.4 in this case, reference input is 30 degree slew 
and dither is added as a sine wave w ith m ultitude o f 0.35A and fiequency o f 11 Hz. The 
dither fiequency is selected between the first and second resonant firequencies o f beam
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oscillations (see Chapter 2 Figure 2-14 2-19), a point where dither’s effect on the strain 
picked up by the strain gauges is minimized.

Comparison of system performance with and without dither

■ J Iwithout dithei

0.4

0.2

1 with dither .

- 0.2

-0.4
20

second
25 30 40

Figure 3-16 Comparison o f system performance with and without dither

Dither is a good solution to eliminate steady state error especially at the upper direction o f 
trajectory, as shown in Figure 3-16.
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3.2 p Controller for Deflection Suppression

In Chapter 2, the goal o f flexible-link manipulator control is defined as not only to ensure 
rig id body tracking, but also that tip  deflections due to manipulator fiexibiliQr be 
suppressed. In  most industrial cases, it  is particularly desired that flexible tip  deflection 
should settle down quickly after rig id  body reaches its steady state, in  order to improve 
work efficiency (and avoid possible physical damage). Rrom an experimental point of 
view, the problem is to suppress base/second strain gauge measurements, which reflects 
stress on the beam, to zero. Section 3.1 partially solves the control problem by searching 
fo r high P and D gains fo r rig id body control, on the other hand, it also poses some severe 
problem on deflection control because high P and D gains increase oscillations. This is 
revealed by strain gauge measurements in Figures 3-17 and 3-18:

4
(V)

2 P=1.3 D=0.62

0

2
0 1 2 3 4 5

Time (s)
10

(V)

5 P=2.9 0=1.4

0

5
0 1 2 3 4 5

Time (s)

Figure 3-17 Comparison o f base strain gauge measurement under different rigid body gain settings
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P=1.3 0=0.62

2
1 4 50 2 3

Time (s)

P=2.9 0=1.4

2
20 1 3 4 5

Time (s)

Figure 3-18 Comparison o f second strain gauge measurement under different rigid body gain settings

The PD gain o f [2.9 1.4] makes second strain gauge measurement 2 times greater than the 
[1.3 0.62] gain setting, and even 3 times greater at base strain gauge measurement, as 
shown in above figures. An effective control to suppress beam tip deflection/vibration is 
highly demanded.

Previous research [3] has found that tip acceleration proportional feedback is appropriate 
for tip  deflection/vibration suppression. In our case beam strain measurements used for 
feedback performs acceleration feedback: strain gauges pick up information o f strain at 
the surface o f manipulator beam, which is proportional to stress inside the beam, which is 
in turn proportional to flexible body acceleration. Thus a proportional feedback o f 
base/second strain gauge measurement is in fact proportional feedback o f acceleration, and 
w ill be effective in suppressing tip  deflection/vibration.

However, in most flexib le-link manipulator control studies [2 ,3 ,4 ,5 ,6 ,7 , 12, 19, 20, 21], 
feedback o f strain information is either not applied or the feedback gains are very small 
because high feedback gains on strain measurements would destabilize the whole system. 
As a result, the beam deflection/vibration suppression control obtained in previous 
literature is fairly weak. How to increase beam strain feedback gains (without reducing 
the stability o f the system) to achieve high suppression o f beam tip  deflection/vibration has 
been a complicated problem in  flexible-link control.

An efficient solution to increase strain measurement feedback gains is offered in this thesis 
by using a second-order low-pass filte r on second strain gauge measurement before it is
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fed back. So the entire control design developed for the flexible-manipulator is a PIDP 
combination, as illustrated as Figure 3-19:

Set Point

motor
current

lowpass filter

shaft angle 
basestraigr  
2nd strain r

noise filter

noise filter

Manipulator

PD (and conditional 
T gain if neededi

Figure 3-19 The schematic o f the whole PIDP controller

Under such a PIDP controller, feedback gains on strain gauge measurements can take 
much higher values, and both deflection and oscillation o f manipulator are greatly 
suppressed (without reducing the performance and stability o f rig id body). An experiment 
is conducted on PIDP control w iüi low-pass filte r to illustrate its inqjrovement over PID 
control as used in Section 3.1. Figures 3-22, 3-23 and 3-24 show system performance 
under the PIDP controller (w ith strain gauge feedback) and under PID controller (no 
strain gauge feedback).

In the PIDP control case, proportional gain on base strain feedback is 0.7 and proportional 
gain on second strain gauge feedback is 1.3, both base and second strain gauge 
measurements are noise-filtered before being fed back (see noise filte r detailed later in 
Equation 3-2). And a second-order low-pass filte r is used before feeding back second 
strain gauge measurement PD controller applied on rigid body has gain setting o f [2.9 
1.2], conditional I  gain is 1.5 and sampling period is 3ms. The gain setting for the 
experiment is as shown in  Figure 3-20:

Set Point

shaft angle
motor noise filter 

0=0.5
base strait  ̂

2nd strain^

current

noise filter 
0=0.5

0.7

1.3

P=2.9 D=1.2 
conditional 1=1.5

Manipulator

2nd order
Butterworth lowpass 
filter, cut off a t 10 Hz

Figure 3-20 Gain settings fo r PIDP control experiment
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In the PID control case, PD controller and conditional I  controller have the same gain 
settings as PIDP, except proportional gains on base/second strain are not applied. Its gain 
setting is as shown in  Figure 3-21:

P=2.9 D=1.2 
conditional 1=1.5

Set Point

shaft angle
motor
current

Manipulator base straiji
2nd strait^

Figure 3-21 Gain setting fo r PID control experiment

I t  can be observed from  the experimental data that both deflection and vibration o f 
manipulator are greatly suppressed by adding strong P gains on strain measurements. 
Also the manipulator oscillations as picked up by the strain gauges takes less time to settle 
down in this case. It is also observed in experiments that the manipulator produces far less 
acoustical noise when using this kind o f strain feedback.

(V) 6

O) without strain feedback

Time (s)
(V)6

O)
with strain feedback2 -

. Time (s)
Figure 3-22 Comparison of base strain gauge measurements without (P ID  control) and with (PIDP) strain feedback
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without strain feedback

Time (s)

with strain feedback

0 1 2 3 4 5

Figure 3-23 Comparison o f 2nd strain gauge measurements without (PID control) and with (PIDP) strain feedback

0.5

without strain feedback

Time (s)

0.5

with strain feedback

Time (s)

Figure 3-24 Comparison o f rigid body response without (PID control) and with (PIDP) strain feedback
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Figure 3-25 shows the result of processing of the second strain gauge measurements.

(V) 1

I 0
■g
~-1

raw measurement

2 3
Time (s)

(V) 1

noise filtered

Time (s)
(V) 1

lowpass filteredCM

Time (s)

Figure 3-25 Information filtering o f second strain gauge measurement brfore feeding back

PIDP control has visible advantages over PID control since it uses high P gains on strain 
feedback to suppress manipulator tip  deflection/vibration, but it  is also observed in the 
experiments that the low-pass filtering is essential for the entire control structure. As 
experiments prove, system loses stability under the same feedback gain setting without 
using the low-pass filter.

Why feedback gains on strain gauge measurements can be substantially increased by using 
a low-pass filte r is now explained as follows:

W ith reference to Figure 3-19, the open-loop system fiequency response consists o f two 
parts: rig id body transfer function plus PD controller, and strain measurement transfer 
functions plus P controllers. Based on this open-loop model, system’s Nyquist plots are 
compared in Figure 3-26 (without low-pass filter) and Figure 3-27 (w ith low-pass filte r), 
the influence o f low-pass filte r in improving stabili^ margins can be seen clearly. W ithout 
low-pass filte r (i.e. proportional control is applied on strain measurements directly), 
system’s Nyquist plot under P gain o f 1.3 on second strain gauge measurement is given in 
Figure 3-26. The low phase margin in this p lot is evident Practical implementation causes 
the system to become unstable.
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Nyquist plot with P=1.3 without lowpass filter
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Figure 3-26 System’s Nyquist plot under P=1.3 without low-pass filter

On the other hand, if  the low-pass filte r is used before the P gain o f 1.3 is applied on the 
second strain gauge measurement, the system’s Nyquist plot changes to Figure 3-27.

High phase margin and good gain margin are evident firom Figure 3-27.

It is observed firom experiment that higher base strain gauge feedback gain helps to 
suppress the in itia l peak amplitude o f base/second strain (deflection magnitude), and 
higher second strain gauge feedback gain helps to suppress the oscillation magnitude o f 
base/second strain after the arm begins to move. Although the Nyquist plots reveal that 
higher P gain may be used firom stability point o f view, the rigid body motion begins to 
slow down w ith higher P gains.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Nyquist plot with P=1.3 with lowpass filter
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Figure 3-27 System's Nyquist plot under P=1.3 with low-pass filter

Also as shown in Figure 3-19, the information o f base/second strain gauge measurements 
are noise-filtered before feeding back. Noise-filtering o f sensor information, especially on 
strain gauges, helps greatly in reducing noise and improves system performance. The 
principle o f these noise-prefilter is that the filte r only partially accepts the new 
measurement as per Equation 3-2. The noise filte r serves as a first-order lowpass filte r.

X(k) = X(k-1) + a*(X(k)-X(k-D) (3-2)

The updating coefficient a  in Equation (3-2) is typically 0.5. High samplin g fiequency in 
experiments guarantees noise-filtered measurements do not lose “ true information”  albeit 
the phase shaft introduced by the noise filte r can be destabilizing.

Figure 3-28 shows the appearance o f unfiltered and noise filtered base strain gauge 
measurement w ith oc?=0.5;
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Figure 3-28 Comparison o f unfiltered and filtered base strain gauge measurement

As shown in above figure, the noise-filtered sensor information (bottom figure) doesn’t 
lose any “ true”  information from the direct measurement (upper figure).
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3.3 Discussion and Conclusions

In this chapter, a PIDP controller is implemented, and its experimental performance is 
shown. Its merits include fast rigid body response, accurate rig id body trajectory tracking, 
low overshoot ( if any) and substantial tip deflection/oscillation suppression without 
reducing rigid body response and system stability. This experimental behavior is better 
than most results in the previous literature [2 ,3 ,4 , 5, 6 ,7 ,12,19,20,21].

The key contribution o f the studies conducted in this chapter is the use o f lowpass filtering 
on the second strain gauge to improve stability robusmess which allows increased P gains 
for strain feedback. Experimental work and theoretical study show that direct feedback o f 
strain gauge measurements without prefiltering w ill constrain P gains applied and therefore 
has little  effect on deflection/vibration suppression.

Other contributions o f this chapter include global optimization o f PD control for rigid 
body motion using lA E  method; applying dither and conditional I  control to overcome 
steady state error caused by mechanical friction, particularly in  the case o f small reference 
inputs.
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Chapter 4

Exploration of LQR Control & 
VSSMC Control

In  this chapter, LQR controller and VSSMC controllers are considered fo r the flexible link 
manipulator control, to seek better system performance than PIDP controller described in 
the last chapter.

4.1 Linear-Quadratic Regulator (LQR)

The PIDP controller described in  Chapter 3 is very successful at rig id  body trajectory 
tracking and beam strain suppression. One o f its natural improvements is expected to be 
by a LQR controller. By feeding back not only direct measurements but also their 
derivatives, by designing stable controller based on the knowledge o f model, LQR 
controller is expected to be more effective.

The term “ linear-quadratic(LQ)”  is shorthand fo r “optimal linear regulator fo r a quadratic 
performance index.”  The LQ regulator is one o f the most important results o f modem 
control. Many practical problems can be cast in the LQ framework, and there are 
excellent numerical algorithms fo r the solutions to obtain the controller.

Assuming the system is expressed in  a state space form:
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X  =  AX-i-Bu

Y =  CX +  Du (4- 1)

In ±e  LQR, full-state proportional feedback is applied by: u=-K*X, where K  is designed 
by m inim izing a scalar performance index, o f the form

J =  ̂ [X^{t)QX{t)+u^it)Ru(t)]dt  (4-2)

where Q and R are symmetric matrices and positive semidefmite and positive definite 
respectively.

The problem to be solved is assumed to be a regulation problem where the objective is to 
drive the state firom some in itia l value to zero. The term X^(t)QX(t) penalizes departures 
o f X (t) firom zero. The penalty is quadratic, so large errors are penalized much more than 
small ones, and the integral term in Equation (4-2) accumulates the errors over time, so 
long-lasting departures firom X (t)=0 are penalized more than short-lived ones. The term
u^(t)Ru(t) is included to ensure that controller effort is not too high. Full-state
proportional feedback gain m atrix K  is selected under the criterion o f minimizing Equation 
(4-2).

In our case o f flexible-link manipulator LQR control, state space X in Equation (4-1) and 
(4-2) is chosen to be ninth-order, which includes the linear transfer functions o f rig id  body, 
base strain and lowpass-filtered second strain o f Equation (2-24). The states are:

•  th re e  s ta te  space v a riab les  [X ( l)  X(2) X (3)] re p re s e n t th e  th ird -o rd e r  r ig id  b o d y  lin e a r  

tra n s fe r  fu n c tio n  G r ,  w h e re  X (l)  is  th e  s h a ft a n g le  p o s itio n , X(2) is s h a ft a n g le  v e lo c ity  

a n d  X(3) is  the acc e le ra tio n ;

•  two state space variables [X (4) X (5)] represent the second-order base strain gauge 
linear transfer function Gz (firs t mode only), where X(4) is middle strain gauge 
measurement and X(5) is its derivative.

•  four state space variables [X (6) X(7) X(8) X(9)] represent the fourth-order second 
strain gauge linear transfer function which is obtained by the combination o f the first 
mode o f Gs and the second-order lowpass-filter, where X(6) is the lowpass-filtered 
second strain gauge measurement, X(7) X(8) X(9) are its first-order, second-order, 
third-order derivatives, respectively.

The lowpass filte r is included in this LQR description as it  enhanced the performance o f 
the PIDP controller described in  Chapter 3 (see Section 3.2 for detailed discussion on 
lowpass filte r on second strain gauge feedback). The objective o f continuing to use it in 
this chapter is to further improve on the PIDP controller by using LQR.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The A, B, C, D matrixes in Equation (4-1) are calculated from Equation (2-24) and the 
knowledge o f second-order lowpass-filter, their numerical values are shown in Equation 
(4-3):

'X (l) ' 0 I 0 0 0 0 0 0 0 ' X (l)‘ 0

X(2) 0 0 1 0 0 0 0 0 0 X(2) 0

X(3) 0 -4.2 -4.665 0 0 0 0 0 0 X(3) 9J097

X(4) 0 0 0 0 1 0 0 0 0 %(4) 0

x  = X(5) =  AX +  Bu — 0 0 0 -2852 —6.6 0 0 0 0 * X(5) + 1025

X(6) 0 0 0 0 0 0 1 0 0 X(6) 0

X(7) 0 0 0 0 0 0 0 1 0 X(7) 0

X(8) 0 0 0 0 0 0 0 0 1 X(8) 0

X(9) 0 0 0 0 0 -11259125 -289681 -7614 -9 8 X(9) 5601928

K =
y(i)' _ angle _  position "1 0 0 0 0 0 0 0 o'
K(2) shaft _  angle _  speed

=  CX +D u  =
0 1 0 0 0 0 0 0 0

rc3) base _ strain 0 0 0 1 0 0 0 0 0
/ {4 > lowpass _  filtered _secand _ strain_ 0 0 0 0 0 1 0 0 0

X ( l)
X(2)
X{3)
X(4)

X(5)
X(6)
%(7)
X(8)
X(9)

+ 0 * K

(4-3)

where X  is the combined 9 state space variables described above. The above system was 
discretized at 3ms and with Q and R matrices selected as:

Q =

8.4 0 1.6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1.6 0 0.4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

and R = [l] (4-

4)

The gain K  suggested by the discrete LQR algorithm is:

K=[2.72 1.29 0.40 0.0000 0.0000 1.03 0.05 0.0008 0.0000]
(4-5)
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Q matrix plays an important role to obtain K  matrix, it  is selected by tria l and error such 
that obtained K  matrix w ill not require controller effort (motor current) larger than 
feasible lim it (5A).

The first three elements o f obtained K  indicates feedback gains on rigid body, it  differs 
from the PIDP controller studied in Chapter 3 in the sense that the third element indicates 
an acceleration feedback. The fourth and fifth  elements o f K  are feedback gains on base 
strain gauge measurements. Since corresponding elements in Q are assigned as zero and 
system is adequately decoupled, they are both zero. The last four elements o f K  are 
feedback gains on lowpass-filtered second strain gauge measurements and its derivatives, 
it  differs fix)m the PIDP controller in the sense that it  feeds back the filtered strain and its 
derivatives as well. It can be seen that this LQR controller is an extension o f the PIDP 
controller.

In experiments, the in itia l state X (l)  is set as (shaft_position-reference_input), and in itia l 
states o f all other 8 elements are set as zero. The final steady states o f 9 state space 
variables are all zeros. Thus the rigid body is designed to follow  the reference input 
trajectory and beam strain is driven to zero.

Figure 4-1 illustrates the schematic o f LQR control in  experiments:

reference input-

shaft position
shaft angle speed

base strain
Manipulator

2nd strain

9 state space variablescontrol effort

noise filter lowpass filter

observer

Figure 4-1 Schematic o f LQR control

In above Figure 4-1, the noise filte r and second-order lowpass filte r are the same as used 
on PIDP control in Chapter 3 (see Figure 3-20).

The LQR controller usually requires a full-state observer to estimate the states o f the 
system. However from Equation 4-3 it  is seen that only states X(3) (rigid body 
acceleration), X(4) (derivative o f base strain gauge measurement), X(7) (derivative of 
second strain gauge measurement) are not directly available. States X(8) and X(9) are 
available as they are states o f the second order lowpass filte r which is implemented in the 
computer. Since the base strain gauge measurements are not weighted by the controller 
gains, X(5) need not be estimated. Therefore only 2 states need to be estimated and these 
are expeditiously derived as approximate derivatives o f X(2) and X(6) by computing the
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difference o f current measurement firom previous measurement and dividing by sampling 
period. The sampling frequency fo r the LQR control system is 333 Hz (as before).

Figure 4-2 shows the experimental response o f rig id body (shaft angle position) under 
LQR controller described above.

LQR Control

0.8

0.6

0.4

O)
-0.2

-0.4

- 0.6

-0.8

20 22 24
Time(s)

Figure 4-2 Rigid body response under LQR control

The speed o f this response is slightly faster than that obtained under PIDP controller 
described in Chapter 3.

Under LQR control, the beam deflection/vibration is better suppressed than under PIDP 
controller in the same circumstance. Figure 4-3 shows the comparison o f experimental 
second strain gauge measurements under LQR control and PIDP control:
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Figure 4-3 Comparison o f second strain gauge measurements under LQR and PIDP controllers

It can be seen in Figure 4-3 that beam deflection under LQR control settles down earlier 
than that under PIDP control. To settle down beam tip  deflection before or at least when 
rig id  body settles is one o f the demanding requirements in industrial applications.

As we learned in Chapter 2 and confirmed in all experiments, beam vibrations are visually 
comprised o f firs t mode (8 Hz) and second mode (22 Hz) oscillation behaviors. It can be 
noticed in Figure 4-3 that 8 Hz oscillation behavior is greatly suppressed since we take the 
firs t mode transfer function into account while constructing LQR control structure. On 
the other hand, since the second mode transfer function is omitted in LQR control 
structure to reduce complexity, second mode (22 Hz) oscillation behavior is s till active. 
This is obvious in Figure 4-3. In future research o f LQR control, taking second mode 
transfer function into account to make a more elaborate LQR controller to suppress 22 Hz 
oscillation as w ell could be a challenging topic.

The effect o f signal procesing on the second strain gauge measurement is shown in Figure 
4-4:
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Figure 4-4 Signal processing of second strain gauge measurement before feeding back in LQR control

4.2 Variable Structure Sliding Mode Control (VSSMC)

The design principle o f VSSMC [5, 6] is to establish a sliding surface in the state space o f 
the system, and drive the system state space to ‘h it’ the sliding surface, and make it  go 
down to origin (usually the final steady state) along the sliding surface (refer to Figure 4-7 
for this process).

The design o f VSSMC is divided into two steps:

1. design a stable sliding surface;

2. design a fu ll state feedback gain setting to make sure SS <Q everywhere in the state 
space, so that system can be driven to this stable sliding surface firom anywhere in the 
state space.

In step 1, a stable sliding surface may be designed by one o f these two methods:
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•  calculate a sliding surface w ith the help o f LQR theory;
•  suggest a sliding surface by minimising certain performance index and later prove this 

surface is stable;

The second method is chosen to design a sliding surface in this thesis since it  gives us 
more freedom to optimize system performance. A  preliminary design using rig id body 
transfer functions was carried out. The sliding surface S is a hyperplane in the variables 
shaft angle - reference, shaft angular velocity and shaft acceleration o f the arm. The gains 
fo r the controller, to ensure the hitting o f the sliding surface from  any in itia l conditions, 
are generated in the usual m anne r [5 , 6 ]. The approach taken herein is to use the integral 
absolute error (lA E  as used in Chapter 3) on rig id body time-domain response to 
simultaneously design the sliding surface and the gains by a sim ilar penalty function 
approach as in Chapter 3. Two issues are penalized in  the algorithm  :

•  if  any eigenvalue o f sliding  surface design is located on the right half plane (i.e. the 
sliding surface is not stable), the penalty function provides a high value;

•  if  value o f 5 5 is greater than or equal to zero at any state space (i.e. the system may 
not h it the sliding surface), the penalty function provides a high value.

A sliding surface (for rigid body VSSMC design only) is suggested by the algorithm as:

S = 1.0508*X(1)+0.2830*X(2)+0.0152*X(3) (4-6)

where X (l) X(2) X(3) represent shaft angle position - reference input, angle speed, and 
angle acceleration respectively. The eigenvalues o f this surface can be found from the 
characteristic equation 0.0152s^+0.2830s+1.0508=0 and are -13.496 and -5.1223 
indicating a stable sliding surface. The gain settings in u = K X , as suggested by the 
algorithm are:

/-0.0951 SX(1)>0 
\  0.0987 5X(1)<0

/-14.0131 SX(2)>0
\  1.4196 SX(2)<0 (4-7)

/-9.7031 SX(3)>0 
\  7.0533 SX(3)<0

Using this fu ll state feedback strategy, simulated rig id body response is shown in Figure 4- 
5, where 100 degree reference step is applied:
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Figure 4-5 Simulated rigid body response under VSSMC control

Figure 4-6 shows that sliding surface value S decreases to and stays at zero, which 
indicates the system state space hits sliding surface and stays on it.
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Figure 4-6 Sliding suiface value decreases to and stays at zero in the VSSMC control
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And simulation in Figure 4-7 shows how the VSSMC control design is realized in state 
space:

the system state starts &om in itia l state (100° slew, both speed and acceleration are 
zeroes) and is driven to h it the sliding surface S as described in Equation 4-6, then it  slides 
down to the origin (steady state) along the sliding surface.

state space variables moving trajectory under VSSMC control
‘hit’ the sliding 
surface

100

80

S 60

Ü 40

sijding surface

reach the 
steady state 
(origin)

-20

start from 4  
initial state

2 -2angle_speed angle_position-reference

Figure 4-7 State space variables moving trajectory under VSSMC control

As Figure 4-5 indicates, rigid body reaches the steady state within about 1 second (faster 
than obtained by PIDP and LQR control) and develops no overshoot. This VSSMC 
design would have been a successful controller if  the controller effort was feasible. Figure 
4-8 shows the controller effort required to perform this control:
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Figure 4-8 Sinuilated controller ejgbrf in VSSMC control

It can be seen in Figure 4-8 that the controller effect required is far beyond the motor 
current lim it in our experimental apparatus. Since VSSMC does not show promise for 
experiments in our setup, it was not further developed fo r tip  deflection/vibration control 
and was not experimentally implemented.
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Chapter 5

Summary and Future Work

This thesis discusses the modeling and control o f an experimental single flexible-link 
manipulator, and explores some important aspects which are not covered in the previous 
literature.

In  this thesis, the model fo r flexible-link manipulator is developed. It describes both linear 
and nonlinear behaviors o f the entire system. By comparing experimental results w ith 
simulations, this model is shown to be predictive o f experimental results. More detailed 
exploration also reveals the change o f model parameters in the presence o f various 
payloads. This model’s structure and the methods used to obtain this model can serve to 
model general cases o f single flexible-link manipulators.

Based on this model obtained, PIDP control is presented in this thesis as a successful 
control strategy fo r rig id body trajectory tracking and deflection/vibration suppressing. 
This control method is based on the optimization o f PD gains, conditional I  gain and the 
use o f a lowpass-filter before strain feedback. E}q)erimental Qrstem performance under 
this PIDP controller shows better performance than obtained on such structures in 
previous literature.

A  further improvement on PIDP control is considered by using LQR control. LQR 
algorithm suggests more stable and effective gains on 9 feedback variables. The 
experimental behavior is improved compared to PIDP control, particularly in the firs t 
mode deflection/vibration suppression.
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Suggestions fo r future work:

Improving system performance in terms o f eliminating nonlinear effects, like gear 
backlash induced hitting and static fiic tion , by using the nonlinear models obtained in 
this thesis;

Fast and effective system identification fo r flexible-link manipulator to identify the 
presence o f payloads. Typical changes o f model parameters under payloads are 
revealed in Chapter 2. The results o f Chapter 2 can also be used to design a simple 
robust PIDP controller or LQR controller or H-infinhy controller over the entire range 
o f pajdoads.

I f  the performance obtained fi'om  the above vdnle using a simple robust controller is 
not satisfactory then adaptive control in  the form o f gain scheduling should be tried. I f  
the performance is s till not satisfactory then further improvements using fu ll adaptive 
control may be performed.
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