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Abstract

Separation properties of the Fell topology, on the spectrum G of a locally compact group 

G, characterize important properties of G. We will develop three equivalent ways to 

describe the Fell topology on the spectrum Â  of any C* algebra A. Specifically, we 

show that both the relative weak*-topology on P(A), the set of pure states of A, and 

the Jacobson topology on Prim(A), the set of all primative ideals on A, can be mapped 

onto Â  so that both topologies agree with the Fell topology. We will also study the 

correspondences, both between the set of strongly continuous unitary representations 

of G and the irreducible representations of the group C*-algebra G*(G), and between 

the continuous functions of positive ^pe on G and the set of pure states of G*(G). As 

well, we give a survey of results outlining the characterization of G by simple separation 

properties of the Fell topology on G.
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Chapter 1

Introduction

1.1 Organization

This thesis has three main objectives. We first present a skeletal introduction to the Fell 

topology on the spectrum [or the dual space] of a general C*-algebra A. Next, we strive 

to extend this topology to the spectrum G of a locally compact group G. Then, finally, 

we give a survey of results displaying the relationship between topological properties 

of G and G. It has been an age old technique of mathematicians, that when studying 

an object having little structure [such as G] and therefore affording few tools to unlock 

the mysteries within, to instead study a "related" object [in our case GH which has more 

structure and as such is easier to work with. Indeed, this thesis outlines a living example 

of this tried and true technique. The following summarizes chapter 2 through to the 

appendix.

Chapter 2 is for the most part a technical chapter. It begins with a brief introduction 

to C*-algebras together with some examples and selective attributes of such algebras. 

Our main objective in this chapter is to introduce one of the most important concepts in 

harmonic analysis, namely representations. Following the lead of Dixmier [S] we first

1
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u .  ORGANIZATION 2

present the notion of positive linear forms and show how such forms are automatically 

continuous on involutive Banach algebras. This then leads to the Gelfand-Naimark-Segal 

construction of representations from positve forms. Our definition of representations 

is then formally given. An equivalence relation on representations is presented along 

with the definitions of cyclic vectors and nondegenerate representations. The strong 

inter-relationship between positive forms and representations is then developed. More 

importantly, in subsection 2.3, we go on to show the inter-relationship between pure 

positive forms, or equivalently the extreme points of the closed unit ball of positive forms, 

and topologically irreducible representations. In fact, it is here that we develop a well 

defined surjective map, from the set of pure forms onto the set of equivalence classes of 

topologically irreducible representations, which we make use of in chapter 3. Finally, we 

end chapter 2 with the so called equivalence theorem as found in Fell’s paper The Dual 

Spaces of C*-algebras [9]. This is a theorem about C*-algebras. It states that, if the 

kernel of a representation tt contains the intersection of the kernels of all the elements of a 

set of representaions 5, then any positive form associated with tt  is weak*-approximated 

by sums of positive forms associated with elements of S.

We begin chapter 3 by defining Â to be the set of equivalence classes of topologically 

irreducible representations of a C*-algebra A. We then show three different ways to en

dow À with a topology; i) the Fell topology obtained by defining a closure operator with 

the notion of weak equivalence, ii) by taking the quotient topology on Â of the relative 

weak*-topology on the set of pure positive forms and the surjective map described in 

chapter 2, and in) by transferring the Jacobson or huU-kemel topology from the set of 

primitive two-sided ideals of A. Due to the ground work and in particular the equiva

lence theorem in chapter 2 we proceed to show that the topologies i) and ii) coincide 

on Â. Further, by making use of preliminary woric in chapter 2 we show that the set of 

primitive two-sided ideals of a C*-algebra A  is exactly the set of kernels of the elements
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J.l. ORGANIZATION 3

of Â. From this we go on to show that the Jacobson topology transferred to Â  via this 

relationship also coincides with the Fell topology.

In chapter 4 we transport the Fell topology introduced in chapter 3 onto the spectrum 

G of a locally compact group G. We begin the chapter with the definition of unitary 

lepesentaions of a locally compact group G. We proceed to show that these unitary 

lepesentaions strongly correspond with the non-degenerate representaions of L^{G). In 

fact, this correspondence preserves irreducibility. Next we introduce functions of posi

tive type and show that when endowed with the topology of compact convergence these 

functions correspond to the positive forms on L^{G) endowed with the weak*-topology. 

Our next aim is to develop the group C*-algebra of G, denoted by G*(G), which is the 

completion of L^{G) with regard to a special norm. We then show that this comple

tion to G*(G) extends the corresponce between the unitary representations of G and the 

non-degenerated representations of L^{G) upto the representations of G*(G). As well, 

we can extend the preceeding analogy from functions of positive type endowed with the 

topology of compact convergence to positive forms on G*(G) endowed with the weak*- 

topology. Finally, we can now endow G, the set of equivalence classes of irreducible 

unitary representations of G, with the so called Fell topology by simpily importing it 

from G*(G)T via the bijective correspondence between G and C*{Gf. The chapter ends 

with a brief introduction to the reduced dual of G. This proves to be a usefuU space when 

we study the topological properties of G in chapter S.

Chapter S is presented differently than the other chapters. Whereas the bulk of the 

theory is self contained in chapters 2 through 4, in this chapter we merely give a survey 

of results, sketch proofs, and frequently cite other sources. The main aim of this chapter 

is show certain characterizations, of properties on a locally compact group G, by simple 

separtion properties on the spectrum G. We begin the chapter with a section showing 

that any spectrum of a C*-algebra paired with the Fell topology satisfies certain inherent

I
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l.L  ORGANIZATION 4

topological properties, namely every such spectrum is a quasi-compact Baire space. The 

following section breaks into two subsections. We begin by studying locally compact 

Abelian groups and then move to the general [non-Abelian] case. The aim of §5.2 is to 

show that if a locally compact group G is compact then G  is discrete. It is a corollary of 

the Pontijagin duality theorem, that for Abelian groups G discrete implies G  is compact. 

Bagget [1, theorem 3.4] improves this result to show that if G is separable [and non- 

abelian] and G is discrete then G is compact Due to P.S. Wang [19, theorem 7.7] this 

result also holds for ^-compact groups. We end this chapter with a short section of 

comments on the separation properties of G.

The first section of the appendix is presented in order to justify our assumption that 

all locally compact groups are Hausdorfr. Indeed, we show that it is essentially of no 

restriction to make this assumption. The second section introduces the involutive con- 

volutive algebra L^{G). Our aim here is merely to set the notation surrounding L^{G) 

to support chapter 4. Section three presents a definition of an approximate identity and 

the often used result that every C*-algebra possess an approximate identity. In the forth 

section we present a technical result, the so called transitivity theorem, which is vital to 

the proof of the equivalence theorem in chapter 2. In the final section, a brief glimpse of 

the theory of von Neumann algebras and the commutant of a C*-algebra is given. Here 

we touch only on what we needed to prove the equivalence theorem in chapter 2.

Finally, note that each section is ended with a list of references. The author acquiesce 

that no original work is presented here, except perhaps in the method of presentation. 

These references are therefore communicated to serve two purposes; first, to acknowl

edge the source of the ideas for parts and/or all of the proofs in the given section, and 

second, simply as references for further study.
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1.2. PRELIMINARIES 5

1.2 Preliminaries

1.2.1 Topological Groups

Definition 1.2.1 A group G equipped with a topology such that the group operations 

are continuous with respect to the given topology is called a topological group. That is, 

both the maps (x, y) xy, from G xG toG ,  and x x " \  from G to G, are continuous.

Definition 1.2.2 A locally compact group is a topological group G such that the 

topolology is locally compact. That is, G is a topological group where each point has at 

least one compact neighborhood. We will always assume that a locally compact group G 

is Hausdorff. This assumption is in fact not much of a restriction [cf §A.l].

Definition 1.23 Let /  be a function on a topological group G and y € G. Then 

the left translate of /  through y is defined by Lyf{x)  =  f{y~^x). Similarly the right 

translate of /  through y is defined by Ryf{x) =  f{xy).  Clearly we have L^y =  

and Rx\! ~  R%Ry

References: [3], [6], [10].

1.2.2 Normed involutive algebras

Definition 1.2.4 A normed algebra is an associative algebra A equipped with a norm 

on the vector space structure of A which satisfies ||xy|| < ||x||||2/|| for all x ,y  €  A. 

Moreover, if A is complete with respect to this norm metric then we say A is a Banach 

algebra.

Definition 1.2.5 Let A be an algebra over the field C of complex numbers. A mapping

X ^  X* from A into A is called an involution if it satisfies the following properties:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1.2. PRELIMINARIES 6

i) (x*)*  =  X

ii) {x + y)* =x* + y*

iii) (Ax)* =  Âx*

iv) (xy)* =  y*x*

for any x, y € A, and A € C. A is said to be an involutive algebra if it is endowed with 

an involution.

Definition 1.2.6 A normed involutive algebra is a normed algebra A endowed with 

an involution x x* such that ||x*|| =  ||x|| for all x € A. If A is also complete with 

respect to this norm metric then A is called an involutive Banach algebra.

Definition 13.7 Let A be an involutive algebra, x € A and S  c  A. x* is called the 

adjoint of x and S  is self-adjoint if 5  is closed under involution. As well, x € A is said 

to be hermitian if x =  x* and normal if xx* =  x*x. Denote the set of all hermitian 

elements of A by Ah. An idempotent hermitian element is called a projection, that is,

X =  X* =  x ^ .

A fact that we will use often is that each x € A can be uniquely written in the form 

xi +  ix2 with xi, X2 hermitian. We simply take xi =  (x +  x*)/2 and xg =  (x -  x*)/2i.

Definition 1.2.8 A multiplicative linear map tt  from an algebra A into an algebra B  is 

called a morphism. That is, vr : A B  such that

7t(x -f y) =  7r(x) +  7r(y), 7r(Ax) =  A7t(x), 7r(xy) =  7r(x)7r(y),

V X, y  €  A, A € C. If, in addition, A and B  are involutive algebras and t t  satisfies the 

additional property

7r(x*) =  7t ( x ) *
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12. PRELIMINARIES

for all X  £ A, then tt  is said to be an involutive morphism. 

References: [5], [13], [10], [6].

I  i,
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Chapter 2

C*-Algebras

2.1 C*-Algebras

Definition 2.1.1 A C*-aIgebra is an involutive Banach algebra A such that

||x||^ =  ||x*x||,Vx € A.

. Definition 2.13 If A is a C*-algebra and x =  y*y for some y £ A then we say x is a 

positive element. We will denote the set of all positive elements of A by .4+.

2.1.3 If A is a Banach algebra with an involution such that ||x|p < ||x*x|| for all 

X, then A is a C*-algebra. ||x||^ < ||x 'x|| for all x implies ||x|p < Hx'||||x|| so that 

||x|| < |lx*|| and interchanging x and x* yields ||x*|| =  ||x||. Thus

l lx f  <  llx'xil <  ||x '||||x || =  ||x |r , 

and indeed A is a C*-algebra.
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2.1. C*-ALGEBRAS 9

Example 2.1.4

i) Let A =  C and set the norm on A to be the modulus | • |. Then the map x  -> x, 

where x  is the complex conjugate, is an involution on C. By definition |x| =  |x|, 

hence A is a normed involutive algebra. In fact A is a C*-algebra since |xp =

+  6̂  =  y (a^ +  = |xx| where x =  a +  ib.

ii) Let X  be a locally compact space. The space Co(X) of continuous complex-valued 

functions vanishing at infinity on X  with the usual pointwise algebraic operations, 

the involution /  -> /  and the uniform norm ||/ | | =  sup^g^ 1/(01 is also a C*- 

algebra.

iii) Let % be a complex Hilbert space and A =  C(H), the algebra of all bounded 

linear operators on H. Then A with the operator norm and involution defined as 

the usual adjoint operation is a C*-algebra. To see this, from comment 2.1.3 we 

need only show ||T 'T || > 1|T1|2 since 1|T*T|| < ||T '||||T || =  ||T||2 always holds. 

For any unit vector u € ||T 'T || > {T*Tu,u) = {Tu, Tu)  =  l|Tu|p. Thus 

taking supremum over all such u yields ||T*T|| > l|T|p. Thus A is a C*-algebra. 

It follows that any self-adjoint norm closed subalgebra of A is also a C*-algebra.

iv) Let G be a locally compact group with left Haar measure A. Let A be the convolu

tion algebra L^(G) [cf A.l] with an involution given by/*(x) =  A(x“ ^)/(x“ ^),V/ 6 

L^(G), where A is the modular function of G. A equipped with the usual norm 

=  f c  \f\dX is an involutive Banach algebra which is not a C*-algebra.

2.1.5 If we have a family (A^jneA of C*-algebras we can define the product C*- 

algebra of the A„’s as follows. Set A =  {(x„)n€A : x« 6 A„ and sup„g^ |lx„|| < -f-oo}. 

Then A with the operations
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2.J. C*-ALGEBRAS 10

{Xn 4" î/n) — {Xfi) 4- {yn)i (A x^) =  A(Xn),

{XnVn) — (^n )(î/n )) (^ n ) ~  (Xn)

and norm

Il(x„)|| =supl|x„ ||
n

is a C*-algebra.

2.1.6 A  is said to be unital if A possesses a unit element or a multiplicative identity. 

If A is a unital Banach algebra then

^ =  | | l * l l l  =  ||l ||, hence | |1 | | =  1 o r0.

Thus for A ^  0, ||1|| =  1.

2.1.7 If A is an involutive Banach algebra then let Ai be the set of ordered pairs 

(x, A), such that x e  A and A e  C. Then A\ is easily seen to be a vector space with linear 

operations defined componentwise. Also A i is an involutive algebra if multiplication is 

defined by

(x, A)(y, p) =  (xy 4- Ay 4- px, Xp) 

and involution is defined by

( x ,A ) *  =  (x M ) .

Ai is said to be the involutive algebra obtained from A by the adjunction of an identity 

1 =  (0, 1).

The following proposition allows us the freedom to almost always assume that a C*- 

algebra is unital.

Proposition 2.1.8 Let Abe a C*-algebra. Then the norm on A can be extended to A% in 

exactly one way that makes A% a C*-algebra.
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2.1. C*-ALGEBRAS 11

Proof: Suppose A  has an identity denoted e. Then A  and C(1 — e) are complementary

self-adjoint closed subspaces of A\. So there exists an involutive algebraic isomorphism 

of Ai  onto A X C which maps A onto A x {0}. A x C can then be given the product C*- 

algebra structure 2.1.5. Then A% is isomorphic to a self-adjoint norm closed subalgebra 

of A X C and is hence aC*-algebra.

Now assume .4 does not have an identity. Consider the following semi-norm of Ai:

||(x, A)II =  sup{||xy 4- Ay|| : y € A, ||y|| < I}.

This is the operator norm on the left multiplication operator on A induced by (x, A). It is 

easily seen that ||(x, 0)|| =  ||x||, Vx G A. As well, V x, y G A and V A, p G C we have

||(x ,A )(y ,p)|| =  ||(xy4-A y4-px,A p)||

=  sup II(xy 4- Ay 4- px)z 4- Apz||
*6(A)i

=  sup ||x(yz 4- pz) 4- A(yz 4- pz)||

<  sup { ||(r , A )||||yz4-pz||}
*6(A)i

< sup {||(x,A)||||(y,p)||||x||}

=  l l ( z , A ) | | | | ( y , p ) | |

and

(x ,A n |< ||x * ||-F |A | =  ||x||-F|A| =  ||(x,A)||.

Hence||(x,A)|| =  ||(x,A)*’ || <  ||(x, A)'||,so ||(x,A)*|| =  ||(x,A)||.

To show that || || is actually a norm on Ai suppose ||(x, A)|| = 0 .  If A =  0 then 

||x|| =  II(x, 0) II = 0  which implies x =  0. If A ^  0 we can consider e =  -x /A  in .4. 

Since xy 4- Ay =  0 Vy G A we have ey = y 'iy £ A, so that e is a left identity for A.
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2.1. C*-ALGEBRAS 12

Taking adjoints we see e* is a right identity for A. Hence e =  ee* =  e* is an identity 

for A  which contradicts our assumption that A  does not have an identity. Therefore 

||(x, A)II =  0 iff ( i, A) =  (0,0), hence || || is a norm on A\.

Finally we show that

||{i,A)|p =  11(1, >)•(!, A)||, i e / t , A € C .

By 2.1.3 we need only show that

| |(x,A)|p<||(x,Ar(x,A)|| , X G A, A E C .

In fact it suffices to show this for ||(x, A)|| =  1. For each 0 < r  < 1 we can find a y G A 

such that ||y|| <  1 and ||(x, A)(y, 0)|| > r. Since each (x, A)(y, 0) belongs to [A x {0}], 

we have

||(x,A)'(x,A)|| >  ||(y,0)*(x,A)‘(x,A)(y,0)|

=  il[(a:,A)(y,0)]*[(x,A)(y,0)]||

=  llll(:c,A)(y,0)||^>

and therefore

| | (x .Ar(x,A)| |> l  =  ||(x,A)|p.

□

Theorem 2.1.9 I f  I  is a closed two-sided ideal o f a C*-algebra A, then I  is a C* 

subalgebra o f  A and the quotient A /1  is a C*-algebra under its usual operations and the 

quotient norm.

Proof: Let { e j  bean approximate identic for I  as found in section A.3. Then for all
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2.1. C*-ALGEBRAS 13

a G /  we have

l|a*ej -a* l| =  ||e,a -  a|| -> 0,

and a’ci G / , so a* G /  =  /  and hence /  is self-adjoint closed subalgebra of A. Thus /  

is a C*-subalgebra of A.

By 2.1.8, we assume A  is unital. It is easily verified that the quotient is an involutive 

Banach algebra. Hence, we need only show that the quotient norm is a C*-norm. Let 

a G A and c > 0 then we can find a 6 G /  such that ||a -f- 6|| < ||a +  I\\ 4- c/2. Since 

116 — 6{6|| 0 there exists io such that ||6 -  ei6|| < e/2 for all i > io, and therefore

||a - e ta | |  < 1|(1 -  ei)(a 4-6)||-h ||6 -  e,-6||

<  jja 4-6|| 4-1|6 -  ej6||

< | |a -F/|| 4-c/2 4-e/2.

Hence ||a 4- f|| =  lim, ||a -  e,a||. So now if a G A and 6 G / , then

l|a4-/||^ =  lim ||a-eia |p

=  l im ||( l - e t ) a * a ( I - e i ) | |

< sup ||(l -et)(a*a4-6)(l -eO ll + llrn ||( l -e i)6 (l -e i) l |

< l|a*a 4-611 4-lip  1(6 -  €<611 

=  ||a*a4-6||.

Thus, ||a -F /||^ <  Ija’a 4- f|| so by comment 2.1.3 A /1  is a C*-algebra. □

References: [5], [13], [10], [6], [16], [20].
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2.2. PO Sm VE FORMS AND REPRESENTATIONS 14

2.2 Positive Forms and Representations

The aim of this section is to study the relationship between positive forms and repre

sentations. As the reader shall see, representations give rise to positive forms in straight 

forward way [2.2.16]. However, the construction of a representation from a positive form 

is not as straight forward. The basic construction described here [2.2.5] is known as the 

Gelfand-Naimark-Segal [or GNS] construction.

Definition 23.1 Let A be a normed involutive algebra, let A' denote the algebraic 

dual of A, that is, all linear forms on A and let A* C A' denote the continuous dual of A, 

that is all continuous linear forms on A . /  € A' is said to be positive if f{x*x) > 0  for 

all X G A, or, equivalently, /(x )  > 0 for all x G A+. Set A'+ =  { / G A' : /  is positive} 

and A'+ =  { / G A* : /  is positive}. A continuous linear form /  G A'+ is called a 

state of A if | |/ | | =  1. We will denote the set of all states of A by 5(A). Further, we say 

/  G A'+ is extendable if A is unital. If /  can be extended to ay  G A/'*', where Ai is the 

involutive algebra obtained from A by the adjunction of an identity.

2.2.2 Let A be an involutive Banach algebra with approximate identity and let /  G 

A'+. We can define a sesquilinear form (x,y)-> (x|y) on A x A such that (x|y) =  

/(y*x), V X, y G A. By applying Schwarz’s inequality and the polarization identity we 

see that this form satisfies for x, y G A,

(x\y) =  f{y*x) =  /(x*y) =  (y|x), (2 .1)

l(x[y)l* =  \f{.y'x)\^ < /(x*x)/(y*y) =  (x|x)(y|y). (2 .2 )

Proposition 23.3 Let A an involutive Banach algebra with an approximate identity. 

Then A'+ =  A*+.
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2.2. POSITIVE FORMS AND REPRESENTATIONS 15

Proof: Claim: Let f  € and let a £ A be fixed. Then the linear form x  ->

f[a*xa) is an extendable element o fA ’' .̂

We can assume A  is non-unital. Clearly for any x 6  A we have f{a*x*xa) = 

f{{xa)*xa) > 0, so the map x -> f{a*xa) is an element of As well, since (A, 0) is 

a two sided ideal of A% the equation /i((x , A)) =  f{a*xa) defines a linear form f i  6  A\ 

which extends /  and /i((x , A)*(x, A)) =  f{a*x*xa) = f{{xa)*xa) > 0. So f i  € A'^. 

Claim: An extendable element o f A!'  ̂is continuous.

Suppose A is unital. If x € A is hermitian and ||x|| < 1 then 1 - x  is a positive element 

of A [5, Lemma 2.1.3], Hence, for /  e  A'+ we have / ( I  -  x) > 0 =» / ( I )  > /(x). 

Similarly - / ( x )  =  / ( - x )  < / ( I ) .  Thus |/(x )| < /( I )  for all hermitian x € A such 

that ||x|| < 1. Now for arbitrary y € A with l|y|| < 1 we have ||ÿ*î/|| < 1 [recall y*y is 

hermitian for arbitrary y], so from 2 .2 . 2  equation 2 .2

\m? < nmrv) < mf

by what was proved above. Therefore ||/ | |  < /( I ) , so /  is continuous.

Now if A is not unital then for any extendable /  € A'+ we have a positive linear 

functional in the unital algebra A% which extends / ,  and from the above argument it is 

continuous.

Claim: Lef /  6  A'+. Thenforany a, 6 e  A the linear form x  f{axb) is continuous.

^From our first two claims and in light of the polarization identity,

3
4axb = ^  i” (a +  i"6 ’)x(a +

n=0

it follows directly that x -> f{axb) is continuous.

Claim: A'+ =  A*+.

1
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L e t/  e  Since /  is linear it suffices to prove /  is continuous at 0. Let { x j  be 

an arbitrary sequence in A  such that x, -> 0. The Cohen-Hewitt factorization theorem 

[13, V.9.2] basically states that if B is a Banach algebra with an approximate identity, 

then for c  € B  there are elements a , 6  6  2) such that c  =  ab, where b belongs to 

the closed left ideal generated by c, and b is arbitrarily close to c. A corollary of this 

factorization theorem [13, V.9.3] yields a factorization of null sequences of A. This 

factorization can be used to produce a sequence {y, } in A such that y. 0 and for each 

i we have x, =  aŷ ft for fixed a,b £ A. Thus from the continuity of x -> f{axb) we have 

/(x i) =  f{ayib) -¥ 0. Therefore /  is continuous, that is, /  € □

Corollary 2.2.4 I f  A is a C*-algebra then =  A*+.

Proof: By definition A is an involutive Banach algebra and Corollary A.2.2 guarantees

the existence of an approximate identity. The result now follows directly from proposi

tion 2.2.3. □

2.2.5 [The GNS construction] ^From equation 2.2 it is easily seen that the subset 

N f  := {x £ A :  f{x*x) =  0} of A is a left ideal of A. That is, /(x*x) =  0 if and only if 

/(yx) =  0, Vy 6  A. Thus A /N f  is an inner product space constructed canonically from 

A. We will denote by H f  the Hilbert space which is the completion of A/Nf  with this 

inner product norm. Now for /  € A'+ and for x €  A define an operator 7t(x ) from A /N f  

into A /N f  such that

7r(x)(y +  Nf) = x y  + Nf. (2.3)

Claim: I f  A  is an involutive Banach algebra and tt is the operator described by 2.3,

then Tt can be uniquely extended to an involutive morphism n f  o f A into C{Hf).

Proof: For x, y € A it is easily seen that ||7r(x) (y +  Nf) |p =  / (y ’x’xy). Now assum

ing that / (y ’x’xy) ^  0 then from our above observations we have /(y*y) > 0. Define a
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2.2. PO Sm VE FORMS AND REPRESENTATIONS 17

function g : A - ^  C such that g{z) =  f{y*zy)/f{y*y)- Clearly g is positive and linear, 

so letting {e, } be the approximate identity for A  we have

||y|| =  lim y(e,) =  li?n/(y*Ciy)//(y*y) =  f { y * y ) / f { y * y )  =  1.

It follows that g{x*x) < ||x*x|| < ||x|p, so

/(y V x y )  <  \ \ x f f { y * y )  =  Hxflly +  Nf \ \ \

Combining this inequality with our initial comment yields

| | i r ( i ) ( j ,  +  A T /)II ' <  | | i | | ' | | j  +  J V , | | '  =*. | | x ( i ) | |  <  | | i | | ,

hence 7 r(x )  6  C{A/Nf),  V x  G A. Thus 7 t(x )  has a continuous extension to an operator 

7 T /(x ) €  C { H f ) .  It is readily seen that t t  is an involutive morphism of the algebraic 

structure of A into C{A/Nf)  and that the algebraic preserving properties of t t  extend 

to -Kf. Finally, if ^ £ H f  then there exists a net {ŷ  +  Nf]  in A /N f  such that (  = 

lim<(yj +  Nf). So

=  lim7r/{x)*(y< +AT/)

=  lim7r(x)*(yi 4* A/))

=  lim7r(x*)(y, 4-AT/)

=  lim7T/(x*)(y,4-AT/)

=  7r/(x*)(0.

Hence nf is an involutive morphism of A  into C(H/}. □
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Definition 2.2.6 Let A be an involutive algebra and H  a Hilbert space. A repre

sentation of A in is an involutive morphism tt of A into C{H). In other words 

TT : A ^  such that

n{x +  y) =  7 t (z )  +  7 r(y ) , 7t(A x) =  A 7 t(x ) ,  

x(xy)  =  7 r (x )7 r(y ) ,  7 t(x * ) =  7r(x )*

V X, y e  A, A G C. We will denote the set of all representaions of A by R{A). We 

will also often use to denote the Hilbert space associated with t t .  Note: Many au

thors define a representation more generally on an algebra and exclude the condition 

7t(x*) =  7t(x)*. Our definition therefore coincides with *-representations or involutive 

representations found elsewhere in the literature.

Proposition 2.2.7 Let A be an involutive Banach algebra, B  a C*-algebra and n a mor

phism o f A into B. Then l|7r(a)|| <  \\a\\forall a G A; so tt is continuous.

Proof: For any 6  G B/, we have =  ||6*6 || =  ||6 |p and hence by induction

11̂ 2" ya-" — ||5 || Then limti_̂ oo " =  ’’’{b) where r(6) is the spectral radius of 

b [20, theorem 5.5]. For any a G A we have the spectrum of 7r(a) as an element of B\ is 

contained in the spectrum of a as an element of Ai so that r{n{a)) < r(a) < ||a|| [2 0 , 

theorem 3.3]. Therefore,

||7 r(a)||2  =  ||7 r(a*a)|| = r(7 T (a * o ))  <  | |o 'o | |  <  | |o ' | | | |o | |  =

□

Corollary 2JL@ Let A be a C*-algebra. Then each t t  G B(A) is continuous.

Proof: Since C{H) is a C*-algebra [2.1.4 Hi)] the result follows directly from propo

sition 2.2.7. □
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2.2.9 ^From 2.2.5 we can see that tt/ is a representation associated with the Hilbert 

space Hf.  This representation is the so called Gelfand-Naimark-Segal representation or 

GNS representaion associated to / .

2.2.10 Let 7T, tt '  € R{A) and let H  and H' be the corresponding Hilbert spaces. We 

say 7T is equivalent to tt'  if there exists an isomorphism U from H  onto H' such that 

Un{x) =  n'{x)U, V x € A. It is easily seen that this is indeed an equivalence relation 

on R{A). Therefore we can talk about a class o f representations. We will denote the 

equivalence class of tt  by [tf] .

As well, any continuous linear operator T  : H - ^ H '  such that Tir{x) =  7t'(x)T, for 

all X  G  A, is called an intertwining operator for n  and tf ' .  The set of all intertwining op

erators for 7F and tf '  is a vector space whose dimension is called the intertwining number 

of 7F and tf ' .

Definition 2.2.11 Let S  C /2(A). Then we can construct a continuous linear operator 

7f ( x )  in which induces p(x) in each Hp since {||p(x)l| : p G 5} is bounded

for each x G A. It follows that x -¥ t f ( x )  is a representation of A in 0 pg5  Hp. We will 

denote this representation, called the Hilbert sum ofp G B, by 0 g p .

Definition 2.2.12 Let A be an involutive algebra and let tf  g /2(A).

i) If $ G then the closure of t f ( A ) ^  is a closed subpace of H. If this closure

t f ( A ) ^  =  H,f then we say that Ç is a cyclic vector for t f .

ii) We say that t f  is non-degenerate or that t f ( A )  acts non-degenerately on 72  ̂if the 

closure of the linear span of the set { tf ( x ) Ç  : x  G A, ^ G Hk} which we will 

denote as [TF(A)72,], is equal to Hk. Equivalently, t f  is non-degenerate if for each 

non-zero ^ G 7C there exists x  G A such that t f ( x ) ^  ^  0. Note: by definition any 

representation that admits a cyclic vector is non-degenerate.
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Proposition 2 J.13 Let A b e  an involutive algebra. Let t t  and n' be representations of 

A in H and H ' respectively, and let be a cyclic vector for  7r{7r'}. / / (7r(x)Ç|Ç) =  

(7t'(x)Ç'1^') Vx €  a  then n and n’ are equivalent, that is, there is a unique isomorphism 

ofH  onto H' mapping n{x) to 7t'(x) and Ç to

Proof: Suppose the conditions of the proposition are satisfied. Thus for any x ,y  £ A

we have

(7r(x)Ç|7T(y)0 = (7T(y‘x)Ç|0 = (7r'(y*x)Ç|0 = (7r'(x)('|7r'(y)(').

Since is a cyclic vector for 7r(7r'} we have 7t(A)^ {7r'(A)^'} is dense in 72{72'}. 

Thus there is an isomorphism U of H  onto H' such that U{n{x)Ç) =  7t'(x)Ç' for all 

X G A. So for any y G A we have

(Cf7r(x))(7T(y) 0  =  Un{xy)^ =  n'{xy)^' =  / ( x ) ( / ( y ) ( ')  =  {n'{x)U){n{y)Cj.

Thus Un{x) =  n'{x)U for each x G A since 7r(y)Ç are dense in H. As well we have for 

allx G A

(Â )aa = (;r(x)(i() = (cfTr(x)̂ itfo =

which implies UÇ =  Finally the uniquness of U is apparent since the values that U 

takes on 7t(A)^, which is dense in A, are predetermined. □

In the following, we continue to use the notation and the results from the GNS con

struction, 2.2.5.

Propositiom 2.2.14 Let A be an involutive Banach algebra with an approximate identity 

and f  £  S{A).  Then there exists a unique vector G 72/ such that for al lx £  A

i) f ix )  =  (x4-
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ü) 7T/(x)^/ =  x +  Nf and Çf is a unit cyclic vectorfornf.

Proof: The map x Nf f {x)  is a well defined norm-decreasing linear form on

A/ Nf  and as such can be extended to a norm-decreasing linear form on H / . Thus by the 

Riesz representation theorem there exists a unique vector Çf in Hf  such that this linear 

form maps (t/|^/) Vt/ 6  Hf.  Therefore f{x)  =  (x 4- iV/|^/) for all x  € A and is 

the desired vector for i).

Now let x ,y  £ A. Then

(y 4- Nf\nf{x)^f) =  (x*y 4- =  /(x*y) =  (y 4- Nf\x 4- Nf).

Since y was arbitrary we have 7T/(x)Ç/ =  x  4- Nf.  That nf{A)Çf =  A/ Nf  is dense in 72/ 

implies that Ç/ is cyclic for tt/. It follows that [7T/(A)Ç/] Ç [7T/(A)72/] is equal to 72/. 

That is, TT/ is non-degenerate. If {e*} is an approximate identity in A then {7T/(e )̂} is 

an approximate identity for 21(72/) and therefore converges to /, the identity in £(72/). 

Thus

II^/IP =  ((/!(/) =  l‘|n(7r/(e,)Ç/l^/) =  lim/(e*) =  ||/ || =  1 

and therefore ^/ is a unit vector. □

Propositioii 2,2.15 Let A be an involutive Banach algebra with an approximate identity. 

If n £ R{A) and ^ is a unit cyclic vector for t t  then the map /  : A -> C such that 

/ (x )  =  (tt(x)^I^) is in S{A). Moreover, we have n is equivalent to nf (see 2.2.5).

Proof: Consider

(7r(x*x)Ç|0 =  (7r(x)*7T(x)^|0 =  lk(x)(||^ > 0 ,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.3. PURE STATES AND IRREDUCIBLE REPRESENTATIONS 22

so /  6  Since tt admits a cyclic vector, namely it is non-degenerate. Thus taking 

the approximate identity {e,} for A we have that the net {7r(e,)} is strongly convergent 

to /, the identity operator in So

ll/ll =  lira /(e t)  =  li[n(7r(et)^10 =  (^10 =  I,

showing that f  £ S{A). Finally since

(7t(x)^1C) =  /(x ) =  (7T/(x)^/l^/) Vx G A

proposition 2.2.13 states tt is equivalent to tf/. □

2.2.16 Note that in the above proof we did not need Ç to be normalized or cyclic to 

show that the map x -> (tf(x)^|Ç) is in A'+. Thus for any tf g fi(A) and ^ G 72, we 

have X -> (tf(x)ÇIÇ) is in A'+. We call this map the^rm  defined by tf and Ç. If tf is fixed 

and we allow ^ to vary then we obtain the forms associated with tf.

References: [5], [8], [13], [10], [6], [16], [20].

2.3 Pure States and Irreducible Representations

In §2.2 we have shown how to associate représentions and positive forms. We now set 

out to see what type of positive forms relate specifically to irreducible representations. 

In fact, as we shall state in 3.2.1, the set of pure states is exactly the subset of the positive 

forms we desire.

Definition 23.1 Let A be a normed involutive algebra. /  G A'+ is called pure if 

/  f  0 and every g £  A'+ dominated by /  [ /  dominates y iff /  -  y G A'+] is of the form 

g =  \ f  where 0 <  A < I. P{A)  will denote the set of pure states of A.
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Lemma 2.3.2 Let Abe  a C*-algebra, f  6  P{A) and g £ such that f  dondnates g. 

Then there exists a unique operator T  in the commutant [cf. A.4.3] o/7 T / ( A )  such that 

0 < T  < I  and

g{x) =  (7r/(x )T ^ |^/), Vx £ A.

Proof: Let be the cyclic unit vector associated with the representation tt/  [2.2.14].

For x , y  £ A

<  Q{x*x)g{y*y) < f{x*x)f{y*y)  =  l|7r/(x)Ç/|pl|7r;(y)Ç/|p.

So (x +  Nf,  y + Nf)g =  g{y*x) defines a unique positive continuous sesquilinear form 

on A/Nf .  We can therefore extend ( , ), to a bounded sesquilinear form ( | )g on 72/ 

with norm < 1. Hence by [16, theorem 2.3.6] there is an operator T  on 72/ such that for 

aUe.Tj € 72/, (TÇh) =  (Ç|r?), and \\T\\ < 1 . So

y(y*x) =  (x-t- Nf\y +  Nf)g =  (T(x +  Nf)\y +  Nf)  =  {Titf{x)^f\nf{y)^f).

Hence (T(x +  Af/)|x +  Nf)  > 0, Vx € A, so T  is positive. For x , y , z  £ A, we have

{%f{x)T{y -t- Nf)\z +  Nf)  =  (T(y 4- iV/)lx*2 4- iV/) =  g{z*xy)

=  (T(xy 4- Nf)\z  4- Nf) =  (Tnf{x){y 4- Nf)\z  4- Nf)

Hence. 7T/(x ) T  =  Tnf{x)  for all x G A. Hence T is in the commutant of 7T /(A ). As 

well,

g(y*x) =  (T(x 4-  Nf)\y 4-  Nf)  =  {Tnf{x)^f\nf{y)^f) =  (T7T/(y*x)Ç/|^/); 

so if {ct} is an approximate identity for A  then y(e,x) =  (T7r/(e,-x)^/|Ç/) and taking
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limits yields g{x) = (T7T/(x)^/I^/). Finally uniquness follows because if To also satisfies 

the above conditions of T  then

{To{x +  Nf)\y +  Nf) =  (To7r/(y*x)Ç/|^/)

=  g{y*x)

= {Tnf{y*x)^f\Çf)

=  {T{x +  Nf)\y +  Nf).

for all X, y  £  A. So To =  T. □

Proposition 23.3 Let A be an involutive Banach algebra with an approximate identity.

i) The norm closed unit ball {A''^)^ of  A'"  ̂ is convex and compact in the weak*- 

topology o f A*.

ii) S{A) is convex and compact in the weak*-topology o f A*.

Hi) The set o f extreme points o f (A'+)i is equal to P{A) U{0}.

Proof: Suppose /  is in the weak*-closure of Then there is a net {/,} in

such that f iix)  - 4  /(z ) , Vx €  A. Thus for all x € A we have /(x*x) =  lim< fi{x*x) > 

0, which shows /  > 0. For all x G (A)^ we see |/(x ) | =  lim,- |/i(x)l < I. Thus /  is in 

(A'+)^,so (A'+)^ is weak* closed. Now Let y(x) =  A /i(x )-l-(l-A )/2 (x) for allx  G A, 

where / i ,  €  (A'+)^ and 0 <  A <  1. Then y(x*x) =  A/i (x'x) 4- (1 -  A) (x'x) > 0 so

g is positive. As well, |y(x)| =  |A/i(x) 4- (1 -  A)/%(x)| < A|/i(x)l 4- (1 -  A)l/2(x)| < 1 

for all X G A, so g G (A'+)^. Thus (A'+)i is convex. Since (A'+)^ is a weak*-closed 

subset of {A')I ,  by Alaoglu’s theorem (A')^ is weak*-compacL This proves i).
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With a similar argument as above and with the addition of

Urn Ig(ei)| =  lim lA/i(e<) -f (1 -  A)/%(ei)|

< A lim |/i(e<)l +  (1 -  A) lim |/ 2 (ei)l =  I

for / i ,  f i  € 5(A), and {ê } an approximate identity of A, we have g G 5(A), which 

proves ii).

To show Hi) we first show that 0 is an extreme point of (A'+)i. Suppose 0 =  A/i + 

(1 -  A)/2 , where A G (0,1) and f \ , f i  € (A'+)^. Then 0 > —A/i(x*x) =  (1 -  

A)/2(x*x) > 0 for all X g a . Hence /i  =  / j  =  0 on the positive elements of A and 

therefore on A. So 0 is an extreme point of (A'+)^.

To see that P{A)  is also contained in the set of extreme points of (A'+) j let /  G P(A) 

and suppose /  =  A/i +  (1 -  A)/2 , where 0 < A < 1 and /i ,  / 2  G (A'+)^. Then A/i is 

dominated by / ,  so A/i =  /x/ for 0 < /x <  1. Since

1 =  11/11 =  a 11/i 1I +  ( i - a ) 1 |/ 2 | |

we see that l |/ i \\ =  H/2 II =  1 . So A =  /x and / i  =  /  =  / 2 . Thus /  is an extreme point.

Finally, to see the reverse inclusion, let y be a non-zero extreme point of (A'+)^. 

Since g =  ||y||(y/|lfll|) 4- (1 -  ||g||)0 and 0,y/||y(| G (A'+)j we have ||y|| =  1. Let 

h G A'+ be non-zero and such that g strictly dominates h. Then \\h\\ G (0,1). Since 

both g and y -  h are positive, 1 -  \\h\\ =  ||y -  h\\. It follows from the facts that 

y =  (|/il|[/i/||/i||]4 -( l- ||/ i ||) [ (y - /i) / ||y - /i l |]  andy is an extreme point thaty =

Soh = l|A||y. Thus y G P(A). □

Définition 23.4 Let A be an involutive algebra. If tt G R(A), 72, ^  0, and the 

only closed subspaces of 72, invariant under 7t(A) are 0 and 72,, then n  is said to be
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topologically irreducible and we say that ir(A) acts irreducibly on 72,. Let r(  A) denote 

the set of non trivial topologically irreducible representaions of A.

Theorem 23.5 Let A be an involutive Banach algebra with an approximate identity. 

Then f  G A'+ is pure iffn j G r(A).

Proof: First, suppose /  G P(A). Then f{x)  =  (7T/(x)^/|^/). Since /(x ) #  0 for some

X G A it follows that 7T/(x) #  0; so tt/ is non-zero. Now let P  be a projection in 72/ 

which commutes with 7r/(A). Then the form y on A such that y(x) =  (7T/(x)PÇ/|Ç/) =  

(7T/(x)PÇ/|PÇ/) is in A'+. As well, for x G A

y(x*x) =  (7T/(x*x)PÇ/|PÇ/) =  lk/(x)PÇ/|p

=  < lk /(x ) £ / | | 2  =  f{x*x),

so that y is dominated by / .  Hence there exists A G [0,1] such that y =  A/ and therefore 

(TT/(x)P$/|(/) =  (A7T/(x)^/1̂ /) for all X G A. Thus

{P{x + Nf)\y + Nf) =  (P 7T/(x)Ç/l7r/(y)Ç/)

=  (P7r/(y*a:)Ç/lÇ/)

=  (ATT/(y'x)^/|^/)

=  (A(x +  N /)|y-t-N /)

for all X, y  G A. Since A /N f  is dense in 72/ we have A/ =  P  =  P^, where I  is the 

identity for 72/. Hence A =  0 or 1; so P  =  0 or 7. Thus tt/ G r(A)

Now assume tt/ g  r(A). Then there exists an x G A such that (7r/(x)^/j^/) 7  ̂ 0; 

so /  76 0. Let y G A'+ be dominated by / .  Then by lemma 2.3.2 there exists a unique 

operator T  in the commutant of 7T/(A) such that Q < T  < I  and y(x) =  (7T/(x)TÇ/|Ç/)
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2.3. PURE STATES AND IRREDUCIBLE REPRESENTATIONS 27

for all X € A. However by A.5.5 the commutant of 7T/(A) is exactly C /; so T  =  A/ for 

A 6 [0,1]. It follows that g =  A/. Hence /  6 P[A). □

Definition 23.6 Algebraic irredudbility of tt € B(A) means that the only [not 

necessarily closed] vector subspaces of 72, invariant under 7t(A) are 0 and 72,. Denote 

the set of all algebraically irreducible tt  €  R{A) by a{A). Clearly if dim72, < oo 

then all subspaces of 72, are closed so that r{A) = a{A). However if dim72, =  oo then 

algebraic irreducibility is far more restrictive then topological irreducibility. However we 

will show [cf proposition 2.3.8] that if A is a C*-algebra then algebraic and topological 

irreducibility coincide.

23.7 Note that if t t  G r(A) then t t  is non-degenerate. For if t t  G r(A), we have 

7r(A)[7r(A)72,j Ç [7t(A)72,], that is, [7r(A)72,j is invariant under 7t(A). Since t t  is not 

trivial, k(A)72,] ^  0. Hence k(A)72,] =  72, so that t t  is non-degenerate. In fact, for 

any non-zero vector Ç G 72,, the closed linear span of {7t(x)Ç : x  G .4} is non-zero and 

invariant under t t .  Therefore, if t t  G r(A) then every non-zero Ç G 72, is a cyclic vector

for TT.

Proposition 23.8 Let A be a C*-algebra. Then r(A) =  a(A).

Proof: By definition we have r(A) D a{A). To see the reverse inclusion let t t  g r(A)

and let 5  be a non-zero subspace of 72, invarient under 7r(A). Let Ç G 5  be non-zero and 

let T) G 72, be arbitrary. Then by the transitivity theorem A.4.2 there exists x G A such 

that 7t(x)^ =  |j^ , which implies g £ S. Therefore, 5  =  72, and since S  was arbitrary 

we have t t  g  a( A). □

Proposition 23.9 Let A be a C*-algebra and let f  £  P(A). Then A /N f  = 72/.

1
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Proof: We simply need to show that A /N j  is complete. By proposition 2.3.5 tt/ 6

r(A). Also TT/ G a(A) by 2.3.8. Hence the vector subspace A /N j  of 72/, which by

2.3.7 is invariant for nf{A),  must equal 0 or 72/. Since /  #  0 it follows that Nf  7̂  A. 

Therefore A / i V / =  72/. O

References: [51, [81, [13], [6], [16], [20].

2.4 Equivalence Theorem

2 .4 .1  If B is an involutive subalgebra of £(72) and ^ G 72 then the positive form 

X -> ( x ^ K )  for X  G B is denoted by /ç. Further, if A is C*-algebra, tt g B(.4) is 

nondegenerate, Ç G 72,, and /  the positive form defined by tt and Ç then

ll/ll =  lim /(e,) =  .Um(7r(ei)$|0 =  (^101*̂ 00 I—fOO

where {e,} is an approximate identity [A.3.2] for A. So if f i  and tti are the canonical 

extensions of /  and tt  to At then

/i(x) =  (7Ti(x)^10 Vx G Al.

In particular, if tt  is the non degenerate identical representation of a non-unital C*- 

subalgebra A of £(72) then the canonical extension of / ( k  is f^Ui-

2.4.2 We say that Q c  5(A) satisfies condition COND Q if Q satisfies the following: 

i f x e A f i i s  such that /(x ) >  0 for each /  €  Q then x G A+.

Lemma 2.43 Let A be a unital C*algebra, and Q C 5(A) such that Q satisfies coND

Q. Then the weak*-closed convex hull ofQ,  co(Q)'“*, is 5(A).
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2.4. EQUIVALENCE THEOREM 29

Proof: In view of proposition 2.3.3 co{Q) C 5(A) is obvious. Suppose co{Q) fi

5(A), so there is ay  G 5(A) such that y ^  co{Q) . Then by the Hahn-Banach theorem 

there exists a weak*-continuous linear form ip on 5(A), and a real number a  such that 

Re ip{g) < a  and min/gQ Re (p{f) > a. Hence, there exists an x G A, in fact, anx G A/, 

because we only look at the real part of ip, such that y(x) < a  and min/gg /(x ) > a. 

However, since Q satisfies c o n d Q  and /(x ) > a  for all /  G Q, /(x  -  oil)  > 0 for 

all /  G Q. Thus (x — orl) G A+, so y(x) > o, which contradicts the strict inequality

y(x) < a. Therefore co(Q) D 5(A). □

Lemma 2.4.4 Let Abe  a C*-algebra, and 5  C R{A). Then each f  G 5(A) such that 

ker(7r/) D Q  ker(p) is a weak*-limit o f a net {y»} in 5(A), where each y< is o f the form 

E q  f ç °  P>Q is a finite subset ofS,  p £ Q ,  and Ç G Hp.

Proof: We can assume the representation © 5  p of A in Hp is injective and therefore

A can be identified with the C*-subalgebra p(A) in C(Hp). If © 5  p is not injective, that 

is Hg ker(p) ^  0 , then we can simply identify © 5  p with the quotient representation of 

A /(fis ker(p)} in © 5  72p and therefore assume Hg ker(p) =  0.

From our comment 2.4.1 we can replace A by A\. Let Q =  {y G 5(A) : y =  

f çop ,  p G 5, $ G Hp, 11(11 =  1}. If X G A/, such that y(x) > 0 for every y G Q ,  then 

/ç(p(x)) > 0 for every p G 5  and for each unit vector (  G Hp. Thus we have p(x) > 0 

for every p G 5  which in turn implies x G A+. Therefore Q satisfies coND Q [2.4.2]. 

So we now only need to apply lemma 2.4.3. □

Theorem 2.4.5 (Equivalence Theorem) Let A be any C*-algebra, tt G R{A), and 5 c  

R{A). Then the following are equivalent:

i) ker(Tr) D  f )  ker(p) [ie. n  is weakly contained in 5, <f 3.1.2];
fiÇS
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ii) Every f  G associated with % is a weak*-limit o f linear combinations of 

positve forms associated with S;

Hi) Every f  G S{A) associated with tt is a weak*-limit o f finite sums o f h £  S[A) 

which are sums o f positive forms on A  associated with S.

Proof: Obviously we have Hi) => ii). We will now show ii) => i). To this end assume

the conditions of ii). If p(x) =  0 for each p G 5  then g{x*x) =  0 for every g G

associated with S.  Thus for any /  associated with tt we have / i s  a weak*-limit of linear

combinations of g which are associated with 5; hence f {x ' x)  =  0, which implies that

7t ( x )  =  0 => ker(Tr) D Q  ker(p).
pçs

We now show i) => m ); so assume i). Then for every /  G S{A) associated with t t  

we have ker(7T/) D  flpgs ker(p). Hence every /  G S{A) associated with t t  satisfies the 

conditions of lemma 2.4.4, which in turn implies Hi).

Moreover when tt  has a cyclic vector (, each condition of the equivalence theorem is 

equivalent to:

ii’) The form f  such that /(x ) =  (7r(x)(|() in is a weak*-limit o f linear combi

nations o f g £ A''*' associated with S.

Clearly ii) => ii'). To see the converse assume ii'). Let g £ A'"*" be associated 

with TT, that is, y(x) =  {n{x)Tj\g) for some 77 G 72, and for all x G A. For c > 0 

we can find a y  £  A  such that |k (y )( -  g\\ < c. Now define h £ A'+ such that 

h{x) — (7r(x)7r(y)(|7r(y)() =  f{y*xy). Then for each x G A

ly (x )-/i(x ) | =  \{n{x)g\g) -  {■K{x)n{y)Ç\n{y)^)\

<  l|7r(x)77||||T7-7r(y)(l|

+ | | 7 t ( x )77 -  7 r (x )7 r(y )( || | |7 r (y )( |l

< IWINIe + IWkdkll+c).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 A. EQUIVALENCE THEOREM 31

Hence h approximates g in norm and therefore also weak*-approximates g. From ii') f  

is the weak*-limit of a net {/j} of linear combinations of positive functionals associated 

with S. Letting /i,(x) =  fi{y*xy) we again have a net {hi} of linear combinations of 

positive functionals associated with 5  and h is the weak*-limit of hi. So h i ^  g.

□

References: [5], [9], [13], [7].

I
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Chapter 3

The Spectrum of a C*-Algebra

3.1 The Fell Topology

3.1.1 If A is a C*-aigebra we will denote by Â the set of eqivalence classes of r(A), 

that is, the set of equivalence classes of non-trivial topological irreducible representations 

of A.

Definition 3.13 Let A be any C*-algebra, tt  6  R{A), and S  C R{A). If tt and S  

satisfy

ker(Tr) D f |  ker(p);
p€S

then we say that t t  is weakly contained in 5. If 5  and T are subsets of B(A) then T  is 

said to be weakly contained in 5  if each tt € T  is weakly contained in 5. If 5  is also 

weakly contained in T  then S  and T  are said to be weakly equivalent.

Proposition 3.13 ThemapS from the power set o f Â into itself, where S  = { [ tt] 6

Â : [tt] is weakly contained in S} satisfies Kuratowsfd closure axioms and therefore 

defines a unique topology on A.

32
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3.2. THE WEAK* TOPOLOGY ON P{A) 33

Proof: Clearly 0 =  0 so we need only show 5  c  5, 5  =  5, and 

For [ t t ]  € 5  we obviously have ker[7r] D flwes ker[p]; so 5  C 5. Thus 5  C 5. If [ t t ]  6  5  

then ker[7r] D D[p]ggker[p] and for each [p] 6  5  we have ker[p] D Dç6 sker(C). Hence 

ker(k]) D ri[p]eg ker[p] so [ t t ]  € 5 =► 5  C 5. Combining the containments we have 

5  =  5. Since 5, C 5% (J 5% for i =  1 ,2  we have~Sl c  Si  U 5g, hence S T I j^  D

Finally to show the reverse inclusion we show the contrapositive. Suppose [tt] ^  

Si U 5a, that is, ker[7r] f> ri[p]6 S< ker[p] for z =  1 , 2 . So there must be an Xj G A such 

that 7 t ( x , )  #  0 and p(x,) =  0, V[p] G 5j for z =  1,2. We can therefore find a vector 

(  G 72 such that 7r(xi)( 7  ̂0. Since tt is irreducible and 7t(x2) ^  0 we can find a y G A 

such that 7r(x2 )7r(y)7r(xi)( ^  0 7r(x2yxi)( 7  ̂ 0 => xayxi ^  ker[7rj. However 

for all [p] G 5i U 5 2  we have p(x2yxi) =  0; thus x^yxi  G fl^ggi (j g, ker[p]. Therefore 

ker[tt] f  n ^ g g i|jg,ker[p]. S o 5 T i j ^ □

Definition 3.1.4 The topology !F associated with the above closure operator is the so 

called Fell topology [9]. Â paired with the Fell topology is called the spectrum of 

A. Unless stated otherwise, we will denote (Â, P),  the spectrum of A, simply by Â. The 

spectrum of A is also referred to in many other works as the dual or the structure space 

of A.

References: [5], [9], [101, [13].

3.2 The Weak* Topology on P(A)

3 .2 .1  Let A be a C*-algebra. We will let W* denote the relative weak*-topology on 

P(A). That is, a /  is the W’-limit of {/,} if and only if /,(x) -> /(x ) for all x G A.
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Consider the map $  : P(A) -*■ Â  such that

^ ( / )  =  k/]-

By 2.2.13 and 2.2.14 $  is well defined and 2.3.5 shows $  to be suijective.

So we can endow Â with the strongest topology, denoted , that makes $  contin

uous. In other words is the quotient topology relative to $  and W*.

The following is a corollary to the equivalence theorem presented in §2.4.

Corollary 33.2 Let A be any C*-algebra, [ t t ]  € Â, and S  C  À. Then the following are 

equivalent:

i) [tt] € S^:

ii) Every f  G  S{A) associated with [ t t ]  Is a weak*-limit o f a net {hi} in S{A) 

associated with S.

Proof: First we will show ii) => i). It is easily seen that ii) => (2.4.5 ii')} and by the

equivalence theorem (2.4.5 ii')} =» i).

Now to show i) => ii), suppose i). Then every /  G S{A) associated with [ t t ]  is such 

that ker(7r/) D ker[p]. Therefore ii) follows from lemma 2.4.4. □

Proposition 33.3 =  F

Proof: It will suffice to show that for any C* algebra A  the map $  from (P(A), W*)

onto (Â, F )  is continuous and open [14, theorem 3.8]. To this end let 5  c  Â. Then 

from corollary 3.2.2, [tt/] G 5 ^  if and only if /  is a weak*-limit of of a net {hi} in 5(A) 

where the /q are associated with 5. Hence S  = S ^  if and only if $(5) =  $ (5 ) '^  . So $  

is continuous.
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3.3. THE JACOBSON TOPOLOGY 35

Finally, to see that $  is open, let 17 6 W* and we show $(17) G F . If [tt/] g $(17) 

then

/  ^ P(A) - [ 7  =  P(A) -  17 =  $-i(A  ~  $(17)) => [tt/ ]  ^  A ~  $ ( I 7 ) )  .

Hence $(17) G F . Therefore $  is an open map. □

We can now say that the Fell topology F  is the strongest topology on À that makes 

the map $  : (P(A), W*) (.4, F ) continuous.

References: [3], [5], [8], [9], [10], [13], [14].

3.3 The Jacobson Topology

Definition 33.1 A two-sided ideal of a C*-algebra A is said to be primative if it is 

the kernel of an algebraically irreducible morphism of A into a non-zero vector space. 

We will denote the set of all primative two sided ideals of A by Prim (A).

Lemma 3 .33  Let A be a C*algebra. Then Prim{A) =  {ker(7r) : tt  g r(A)}.

Proof: Since r(A) =  a(A) from proposition 2.3.8 we need only show that any al

gebraically irreducible morphism w of A in a complex vector space V is algebraically 

equivalent to some vr G R{A) => t t  G a(A) =  r(A).

Let i/ G V be non-zero and set L =  {x G A : ra(x)u =  0}. Clearly L is a left ideal. 

Since w  is irreducible it follows that w{A)u =  V  and L is a proper left ideal. We can 

then see that the map x + £  -> from A/L to y  is an isomorphism of vector spaces 

and it identifies w  with the representation vr of A /L in  itself by left multiplication. So xu 

is algebraically equivalent to t t .  Also since to{A)i/ = V  there is at least one x q  G A such
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that tu(xo)i/ = V. Hence for all x G A

i(7(x -  xxo)u =  w{x)v  —  za{x)zo{xo)i> =  0 x —  x x q  g  L,

so L is modular. As well, suppose J  is a left ideal of A such that L is strictly contained 

in J.  Let y  £  J  '■-> L. Then za{y)i/ #  0, and since xu is irreducible we have xxj{A)u =  V.  

Hence for any x G A there exists a z  £ J  such that xv{z)i/ =  xu{x)u => xu{z — x)u =  

0 => z — X £ L C J  => X =  —(y — x) + y £ J. We have shown that if x G A 

then X £ J, thus J  = A, which shows L is maximal. Therefore L is a modular maximal 

proper left ideal of A.

Let F  =  { /  G (A'+)i : / ( x )  = 0 , Vx G L}. If /  G F  then because x*x G L for 

all X G L we have /(x*x) =  0 =» L c  Nf, so L C H f Nf-  It is easily shown that F 

is convex and weak* compact, and is therefore the weak*-ciosed convex hull of the set 

Fe of its extreme points. So for x  G A such that for every /  G Fe, /(x*x ) =  0 then we 

must have /(x*x) =  0 for all /  G F. Thus Dp, N f  =  C \ p N f  D L. As well, note that if 

any /  G F  can be written in the form a fi  +  (1 -  a ) / 2  for f i ,  J2 £ A'+ and o- G (0,1) 

then we have for all x G L

0 <  or/i(x*x) +  (1 -  Of)/2 (x*x) =  / ( x ’x) =  0 => f i {x*x)  =  / 2 (x*x) =  0;

hence by the inequality 2.2, /i(x ) =  /^(x) =  0; so f i , f 2 G F. This shows F  is a face 

of (A'+)i, and therefore Fe c  P(A) U{0}. If Fe =  {0} then F  =  {0} => L = A, 

which contradicts L is proper. Thus there must exist at least one /o G Fe fl P(A) such 

that L c  Nf^.

Finally, since L is maximal L = jV/,. Therefore by proposition 2.3.9 A / L  = A/Nf^ 

can be given a Hilbert space structure Hfo such that ?r is a representation of the C*> 

algebra A in the Hilbert space A / L  =  72/,. □
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Lemma 3.33 Jfn,  tt'  € R(A) are equivalent then ker(7r) =  ker(7r').

Proof: Recall if t t ,  t t '  g R{A) are equivalent, that is, t t '  G [ t t ] ,  then there exists a U

such that Un{x) =  n'{x)U, V x G A. Thus for all x G ker(Tr) we have Tr'(x) =  0, 

so ker(Tr) C ker(Tr'). Exchanging t t  and n' yields the reverse inclusion hence ker(Tr) =  

ker(Tr'). □

Theorem 33.4  Lef A be a C*algebra. Then Prim{A) =  {ker([7r]) : [ t t ]  g A}.

Proof: This follows directly from lemmas 3.3.2 and 3.3.3. □

3.3.5 Thus theorem 3.3.4 allows us to define a suijective map $  from A onto Prim(A) 

such that

$([7 t]) =  ker([7r]).

In general the converse of lemma 3.3.3 does not hold. Hence $  is not in general injec

tive. An example of a C*-algebra that has two [in fact many] distinct [not equivalent] 

representations with the same kemal, is the CAR (canonical anticommutation relations) 

algebra [4, p. 87].

Proposition 33 .6  The map F -¥ F from the power set o f Prim{A) into itself, where 

F = { I  £Prim{A) : X  D fliceF <tnd 0 =  0, satisfies Kuratowski closure axioms and 

therefore defines a unique topology on Prim{A).

Proof: Again, as in proposition 3.1.3, we need only show that F  c  F, F  =  F,

and Fl U =  Pi U Pa- Clearly F  c  F, F = F  and Pi U P? 3  Pi U Pa- Finally to 

show the reverse inclusion suppose T  0  Pi U Pa. that is, ker[7r] ^  Pi U Pa for some 

[perhaps more than one] [ t f ]  g Â. So similar to the proof of 3.1.3 there must be an 

X, G F i such that 7 r(x J  ^  0  for i  =  1 ,2 . We can therefore find a vector (  G 72
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such that 7 t ( x i ) (  ^  0. Since t t  is irreducible and 7 t ( x 2 )  ^  0 we can find a y  £ .4  

such that 7r(x2)Tr(y)7r(xi)( ^  0 ^  7r(x2yxi)( ^  0 =► X2yxi f  ker[7r]. However

x a y x i  6  riiceF i |J  f ,  ^  S o  ker[7r] f  fl/ceF j y  Fj ^  an d  h e n c e  X  ^  F i  U  Pa- □

Definition 33.7 The topology J  associated with the above closure operator is called 

the Jacobson topology on Prim(A) [12]. Many authors also refer to this topology as the 

hull-kemel topology.

3.3.8 We can create a topology on Â  by transfering the topology J  from Prim (A)

via the suijective map $  [3.3.5] onto À as follows: U £  iff $(C7) £ J .

Claim: F*̂  =  F

Proof: Consider F  c  Â. Then

F ^  =  { [ t t ]  €  Â  : k e r k l  D  Q  k e r [ p ] }
W 6F

=  { [ t t ]  £ Â : $ k ]  D  p )  ker[p]}
ker{p]€*(F)

=  { [ t t ]  £  À : [n]£ F ^  }

=  r "

□
So we can say that the Fell topology F  is the weakest topology on À  that makes the 

map $  : (Â, F ) -> (Prim(A), J )  continuous.

Proposition 33.9 (Prim{A), J )  is a T^-space.

Proof: Let Xi, X2 £  Prim(A) be distinct so that, say, Xi g  Z2 . Then let P  =

(X ePrim(A) : X 3  X%}. So we have Xi Ç fireF^. which implies F Ç F. So

F  =  F . Hence Xi is contained in a closed subset F  of Prim(A) and Z ^ f F .  □
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Proposition 33.10 TTie following are equivalent:

i) (Â, F ) is a To-space

ii) For any [tt] ,  [tt ' ]  € Â, //ker[7r] =  ker[7r'] then tt is equivalent to tt ' .

Hi) The map $  : (Â, F )  (Prim{A), J )  is a homeomorphism.

Proof: We’ll show ii) Hi) ^  i) = >  ii).

ii) =» Hi) If ii) holds then clearly $  is injective and thus a continous bijection.

Hi) => i) This follows directly from Proposition 3.3.9.

i) ^  ii) Suppose [ t t ] ,  [ t t ' ]  6 A and ker[7r] =  ker[7r']. Then for any (7 € F  containing

[tt] we have kerk] G $(C7) => k e rk l 6 $(C7) => k l  ^  Hence tt  is equivalent to

tt ' .  □

References: [5], [9], [10], [12], [14], [13], [16].
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Chapter 4 

The Spectrum G of a Locally Compact 

Group G

4.1 Representations of G and (G)

Definition 4.1.1 Let G be a locally compact group. A unitary representation tt of 

G is a morphism of G into the group UiH^) C C{H,r) of unitary operators on some 

Hilbert space Hn such that tt is continous in the strong operator topology.

In other words, a map vr : G -+ W(?G) such that for all x, y € G

%{xy) =  7r(x)7r(y) and 7r(x“ ‘̂ ) =  7t ( x ) " ^  = 7t ( x ) *

and X 7t(x)^ from G into is continuous for any ̂  Since the strong and weak 

operator topologies coincide on (?G) [A.S.2] the strong operator continuity condition 

can be replaced by weak operator continuity, that is, x -¥ (7r(x)Ç|r7) is continuous from 

G to C for each ^ ,t} ^  %r A(G) will denote the set of unitary representations of G.

40
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4.1.2 Most of the notions regarding representations as presented in chapter 2 can be 

carried over to R(G). Specifically we need speak of equivalent representations, class of 

representations, direct sum of representations, cyclic vector for a representation. As well, 

as in section 2.3 we say tt € R(G) is topologically irreducible if any of the following 

equivalent conditions hold;

i) the only closed subspaces invariant under 7t(G) are the trivial ones,

ii) the commutant of tt(G) in C(7U) is C l, where I  is the identity operator in C{Hk),

iii) every non-zero Ç € is a cyclic vector for tt .

In keeping with our earlier notation we will denote by r{G) the subset of all topologically 

irreducible unitary representations of R{G).

4.1.3 Let G be a locally compact group and fix now and forever the left Haar measure 

dxonG  [cf A.2.1], For x € G consider the operator 7Tj ( x )  € C{L^{G)) defined by

M x ) f) { y )  =  L J iy )  =  /(x - 'y )  /  € I '(G ) ,y  G G

where L* is the left translate of /  [1.2.2]. ni is easily shown to be in R{G). We will 

caU TTi the left regular representation of G in L^(G). As well, fo rx  G G consider the 

operator 7Tr(x) G C(L^(G)) defined by

f e Û { G ) , y e G ,

where A is the modular function of G [cf A.2.3] and Rx is the right translate [1.2.2]. 

Again it is readily seen that tt  ̂G /2(G). tt  ̂is called the right regular representation.

Proposition 4.1.4 Let% £  /2(G). For f  G L%G), define the operator n '{ f)  G C{Hn)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.1. REPRESENTATIONS OF G AND (G) 42

by

/ ( / )  = f  f{x)7T{x)dx,

where this operator valued integral is interpreted as follows: For each Ç G the

element 7t'(/)^ in 72  ̂has an inner product with t] £ Tin given by

=  f  f{x){TT{x)^\r])clx. (4.1)

Then tt' is a non-degenerate representation o fÜ  (G) in 72,.

Proof: Since (7r(x) |̂T;) is a bounded continuous function of x G G, /  / (x)(7r(x)Ç|7;)dx

is the ordinary integral of a function in L^(G). So it is easily seen that tt' is linear and 

IK ( /) (h ) l  < ll/lliKIIIWII so t t '  is bounded. As weU,

7t'(/*/i) = J j  f{y)h{y~'^x)%{x)dydx = j  J f{y)h{x)n{yx)dxdy 

=  11 /(y)h(x)7r(y)7r(x)dxdy =  / ( / ) / ( g ) ,

7r'(/') =  y* A(x“ ‘)(/(x “ ^)7r(x)dx 

=  /  [ f{xM x)Y  dx = n’i fY

Hencevr'G A(L%G)).

Finally, to show that it' is non-degenerate consider a non-zero ^ G 72,. Then by the 

continuity of tt  we can choose a compact neighborhood V of e in G such that | |7 t ( x ) ^  -

(II <  11(11 for all X G V. Then set /  =  |y|"^%y where |V| =  fy d x  and x v  is the

characteristic function of V. Clearly /  G 1%G) and

I M /) ? - ? ! !  =  1^11 <  11(11,
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so we have shown 7t'( / ) (  ^ 0 .  □

4.1.5 7t' € R(L^(G)) in the above theorem, is referred to as the representation asso

ciated with TT € R(G).

Proposition 4.1.6 € 12(1-̂  (G)) is non-degenerate then tt '  is associated with exactly

one TT G /2(G).

Proof: Uniqueness follows easily from equality 4.1 in proposition 4.1.4. If tt'  is asso

ciated with both 7T and tt2 then for all x G G and all (, t; g  Hn> we have (7r(x)(|r/) =

(7r2(x)(lT;) =► 7T(x) =  7T2(x).

To show existence let B  be the subspace of 72,, generated by t:'{L^{G))'H^. Since 

7r' is non-degenerate B  is dense in 72,,. If /  G V-iff)  and {ey} an approximate identity 

in V-{G) then

e u * f ^ f € L \ G )  =► {Lxeu) * f  = Lx{eu * f )  ^  L xf € L \G )

=> 7r'(L*ey)7r'(/)( 7 r '( I ,/) (

for all (  G 72ir'- Thus 7r'(Ixey) converges strongly on B to a well defined operator 

^(x) : B  B  such that ^(x)7t'(/)( =  n \L x f)^ . Since | |L * e y | |  < l lL * e y ||i  =  1 we 

can extend 7 t ( x )  to an operator t t  on 72,, such that l |7 r(x )|| <  1 and 7 r (x )7 r '( / )  =  z{Lxf). 

As well,

H x y )n \ f )  =  it'{Lxyf) = ir\L xL y f)  =^(x)7r'(Ly/) =7r(x)^(y)7r'(/),

7t(1) =  /  =► 11(11 =  ll7r(x"^)#(x)(ll <  ll^(x)(ll <  11(11

it then follows that x(xy) =  7r(x)7r(y) and t t  is a unitary representation of G in 72,,. 

Finally, if x,- -y x in G then L*./ -> L */ in I^ G ), so i(x,-)7r'(/) =  Tt\LxJ)
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Tr'{Lxf) =  7r(x)7r'(/) strongly. Thus -> t (x ) (  for all (  € B and since ll^(x,)H =

1 for all i it follows that 7t(x,)( -4 7r(x)( for all (  6 72,'. Therefore t t  is continuous and 

hence TT € B(G).

All that remains is to show that t t '  is precisely the representation associated with t t .  

L e t/,y G L^{G) then

=  / ( /  *g) = j  f i .yy{l 'yg)dy  =  j  f{y)Hy)Tt\g)dy 

= [ /  f{yMy)dy^ /(a) = T^ifMg)-

Again by the density of B in 72,' it follows that t t '  is the representation associated with

TT. □

4.1.7 ^Frora propsitions 4.1.4 and 4.1.6 we have shown t t  t t*  is a bijective corre

spondence between R{G) and the non-degenerate representations of V-{G).

Proposition 4.1.8 Let it £ R{G).

i) 7t(G) and 7t̂ (L̂  (G)) generate the same von Neumann algebra [cfA.5.1] in £(72,).

ii) 7t(G) and 7t'(L^(G)) have the same commutant [cf A.5.3J in £(72,).

iii) A closed subspace F  in 72, is invariant for t {G) i f  and only i f  F  is invariant 

fo r ir 'il^G )) .

Proof: i) In the proof of proposition 4.1.6 we see that each 7t(x) is the strong limit 

of Tr'(Lxey) as U -> {1}. It follows that the strong closure of the algebra generated by 

7t(G) in £(72,) is contained in the strong closure of the algebra generated by tt'{L^{G)).

Now, if /  G L^{G) then /  is the I^-limit of functions g  £ Gc(G). that is g is a 

continuous function of compact support Thus n'{f) is the norm limit hence strong
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limit, of 7r'(g) with g 6 Cc{G). Finally, if c > 0 and ( i , . . . €  72, then by the 

unifonn continuity of the maps x  g(x)7r(x)(m we can find a finite partition E  =  {Ej}

of the supp g such that ||g(x)7r(x)(m -  5(î/)7r(î/)(mll < c for m  =  1 , . . . ,  n  when x and 

y are in the same Ej.  Therefore for m  =  1 , . . . ,  n  we have || ( E j  y(xj)7r(xy) jEj | )  (m  -  

7r'(g)(,n|| <  cjsupp g\ where Xj €  Ej.  In other words, every strong neighborhood of 

7r'(g) contains sums of the form Ey g(xj)7r(xj)|Ej|. So it follows that the strong closure 

of the algebra generated by n'{L^{G)) in £(72,) is contained in the strong closure of the 

algebra generated by tt{G).

ii) T is in the commutant of 7t(G) T  commutes with every element in the von 

Neumann algebra generated by 7t ( G )  4 »  [from i ) ]  T  commutes with every element in the 

von Neumann algebra generated by n{L^{G)) T  is in the commutant of 7t ( L ^  (G)).

iii) Suppose the closed subspace F  in 72, is invariant for 7t(G). If Pp is the 

orthogonal projection onto F  then for any x  £ G, 7r(x)Pf( =  7t(x)( =  Pf7r(x)( for 

(  6  F  and since F^ is also invariant for 7t(G) we have 7t(x)Pf( =  0 =  Pf7t(x)( for 

(  G F-*-. It follows that Pp is in the commutant of 7t(G) and is therefore in the commutant 

of vr'(E^(G)) by it). Thus, if (  G F  and /  G L^{G) then 7t'(/)( =  7 t'(/)P f( =  

Ppir'if)^ £  F  so F  is invariant for 7 /(£ \G )). Now simply exchanging 7t(G) and 

71̂ (1.̂  (G)) in the above argument completes the proof. □

4.1.9 It now follows from proposition 4.1.8 that the correspondence tt -> tt'  is a 

bijection from r(G) onto r(L^(G)). Henceforth we will denote both tt G R{G) and 

non-degenerate id £ R{L^{G)) simpily by tt .

Referaices: [5], [6], [8], [10], [13].
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4.2 Functions of Positive lÿpe

Definition 4.2.1 Let G be a locally compact group. A function of positive type is a

function 0 G L°°{G) that defines a positive linear form on L^{G), that is

/ ( / •  • >  0, v / e £ '( G ) .

Vq{G) will denote the set of all functions of positve type on G. Functions of positive 

type are not in general continuous, however we shall see in proposition 4.2.6 that they 

are locally almost everywhere equal to a continous function. We will denote the set of 

all continuous functions of positive type on G by V{G).

Note that

J  ( /*  * f){x)(t>{x)dx =  J  J  A (y"^)/(y-‘) /(y " ‘x)0(x)dy dx

= j  j  f{ .y)f{yx)(t>{x)dydx

so reversing integration and substituting y~^x for x yields 0 is of positive type if and 

only if

J j  /(x )/(y )0 (y“ ^x)dydx > 0 , V / G L \G ).

Proposition 4.2.2 Let 4» £  L°^{G), and u  £  L^(G)* be defined by 0  [cfA.2.6J. Then 

0 G V{G) i f  and only i f  there exists t t  G R{G), (  G 72, such that 0(x) =  for

all X  G G.

Proof: First suppose 0 G V{G), that is /( /*  * / ) 0  >  0 for all /  G L^{G) or e-

quivalently w  G E ^ ( G ) '+ .  So we can form the representation 7t„ G R(L^(G)) and the
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vector (w [2.2.5]. From our comment 4.1.9 we can also consider 6 R(G). So for any 

/  € L^(G) we have

j  4>{x)f{x)dx  =  w ( /)  =  (7T,^(/)(wi(u,) =  j  M x ) L \ ^ u j ) f { x ) d x ,  

which implies

0 (x )  =  (7rw(x)(w|(w) lo ca lly  a lm o s t ev e ry w h ere .

In fact, this equality holds for all x € G since both 0 and (7rw(x)(wl(w) are continuous.

Conversly, suppose there exists t t  € R{G), (  € 72, such that 0(x) =  (7r(x)(|() for 

all X  € G. It follows immediately from the continuity of t t  that 0 is continuous. So for 

/  g  L^{G) we have,

f  j  f{x)f{y)<f>{y~^x)dydx =  j  j  f {x) f {y ) {T{y-^x)^\^)dydx

=  j  j /M/(y)(7r(x)(|7T(y)()dydx 

=  j  j  { f {xMx)^\ f { y )Tr {y )^)dydx  

=  (v r(/)(k (/)()  =  il7r(/)(l|2 > 0

Hence 0 G V{G). □

4.2.3 For t t  G A(G) and (  G 72, we say x (7r(x)(|() is the function of positive 

type defined by t t  and (. If we fix t t  and allow (  to vary we get the functions of positive 

type associated with t t .

4.2.4 If 0 G 7̂ 0(G) then 0 defines a a; G L^{G)*'^ [cf A.2.6] and therefore a 

pair (7Tw,(w), as seen in the proof of proposition 4.2.2, where G ,R{G) and

is a cyclic vector for 7 t « .  We will also denote this pair by Conversely if
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w € L^{GY'*' (= Z,XG)'+) then w defines a 0 € V{G), namely 0(x) =  (7rw(x)(w|(w).

As we shall see in the following proposition, analogous to proposition 2.2.13, the asso

ciated representations of 0 are characterised up to equivalence.

Proposition 4.2.5 Ifir, n' G R{G) with cyclic vectors (  and respectively, and 

(7r(x)(|() =  (7r'(x)('l(') for a llx  £ G then tt is equivalent to tt'.

Proof: Assuming the hypothesis. By 4.1.9 we have

=  / (ir{ i)( |()/W (il =  j ( /W C |C ) /W (k  =  V/ e  L \G ).

Thus from proposition 2.2.13 tt and tt' are equivalent as representations in R{L^{G)) and 

now due to 4.1.8 we can pass back to equivalence in R{G). □

Proposition 4.2.6 Let(f> £ L°°{G), and w G L^{G)* be defined by 0. Then 0 G Vq{G) 

i f  and only if<i> is equal locally almost everywhere to a ip £  V{G).

Proof: If 0 G Vq{G) then from comment 4.2.4 0 defines a pair (tt^, ( 0 ). Then as seen

in the proof of 4.2.2 0(x) =  (7r0(x)(0|(0) locally almost everywhere. Letting ip{x) =  

(7r0(x)(0|(0) then from proposition 4.2.2 ip £ V{G).

Now assume 0 is equal locally almost everywhere to some ip £ V{G). Then for 

every /  G L^{G) we have

/{ /■ •/)« >  =  / ( / • • W > 0 ;

hence 0 G 7̂ 0(G). □

4.2.7 Thus Fo(G) modulo equality locally almost everywhere is in a bijective corre

spondence with R{G) [or equivalently the set of nondegenerate representaions in R(L%G))]
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modulo equivalence. Further, we have Vq{G) modulo equality locally almost everywhere 

is in a bijective correspondence with

Now consider the set "Pi(G) =  {0 6 P(G) : 0(1) =  1 [or equivalently||0||oo =  1]}.

Claim: The preceding bijective correspondence restricted to V\ (G) has a range equal

to the state space S{L^{G)).

Proof: First let 0 € ‘Pi(G) and let w 6 f,\G)* be defined by 0. Then

||w || =  sup |w ( / ) | |  =  sup 1/ 0/ d x  <||0||oo =  l -

Now for any c > 0 by continuity of 0 there exists a neighborhood G of 1 in G such that 

0(x) > 1 -  € for all X 6 G. Hence

Iwll > /0 ( j^ X y )d x  =
\U \

> i - c ;

so ||w|| =  I => w € 5(L^(G)).

Conversly, if w 6 S{L \G ))  and 0(x) = (7rw(x)(wl(w) then 0(1) =  ((^Kw) =  

IKwll̂  =  1 [2.2.141. Hence 0 6 Pi(G). □

Lemma 4.2.8 Let f  6 L^{G) and (0»} be a net in Pi(G). (f 0, weak*-converges to 

00 € Pi(G) then f  * 0* converges to f  * (pafor the topology o f compact convergence.

Proof: We have

( /* 0 t)(x ) =  j  f { y ) 4>i{y~^x)dy = j  f { x y ) 4>i{y~^)dy

=  /  /(a:y)(7r0,(y"‘)(0,l(0j)dy =  j  /(xy)((0,l7r0^(y)(0,)dy 

=  f  f{xy)(pi{y)dy =  j  L * -x /(y )0 .(y)dy .
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Now for any compact K  c  G the set /T/ =  {L x-if : x 6 AT} is compact since 

X L x - \f  is continuous from G to L^{G). Let c >  0. By compactness there exist 

x i , . . . ,  x„ 6 AT such that the balls / ,  j)  cover K f. Thus for x € % there is some 

j  such that l|L*-i/ -  <  f. Hence, for any x 6 AT we have

| | l x - i / 0 i  — I - * - i / 0 o l |  <  | | E i - ‘ / 0 t  -  ~  +

“  £ x “ x / 0 o | |

=  l|/,x-‘/  -  i'x"*/ll 11̂*11 +  ll^xT'/ll ll<A* — <̂ o|| +

\ \ L x - . f - L , - r f \ \ m \

<  e / 3  +  | | £ x - x / | |  | |0 t  -  0 o || +  e / 3 .

Since by hypothesis 0* weak*-converges to 0o we can find a weak*-neighborhood Vj of 

00 in Vi{G) such that \\L^jif\\ ||0,- -  ^ | |  <  e/3. Set V =  fli V;. Then V is again a 

weak*-neighborhood of 0o in Pi(G) and for 0, 6 V and x € AT we have ||L x-> /^  -  

lx-x/0o|| < e which implies, due to our first equality, that | | /  ♦ 0, -  /  ♦ 0q|| < e. Thus 

since K  was arbitrary, we have /  * 0, converges to /  ♦ 0o for the topology of compact 

convergence. □

Theorem 4,2.9 On V\ (G) the relative weak*-topology a{L°°(G), (G)) coincides with

the topology o f compact convergence.

Proof: Let e >  0. If /  €  L^{G) then we can find a compact K  c  G such that

Ig~k  I/i <  e/4. Now suppose the net {0,} in Pi(G) converges to 0o 6 Pi(G) for the 

topology of compact convergence. Then we can find an io such that |0t(x) -  0o(x)| < 

e /(2 ||/ ||i)  on K  for all z > zq; so

1/ î4>i -  f  /0o| =  |y /(0t -  0o)
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-  f ^ \ f \ \ ^ i~ ^ o \+  f  | / l | 0 t - 0 o lJ tC J C^K

< ll/lli 2\\f\\i 4 4- ||0o||oo)

=  c/2 +  c/2 =  c.

Thus we see that compact convergence on G implies weak*-convergence.

Conversely, let 0o € Vi {G) and K  c G h e  compact. The idea now is to find a weak*- 

neighborhood V of 0o in Pi(G) such that for 0 6 V we have |0(x) -  0o(i)| <e + 4yfl 

on K.

First, there exists a compact neighborhood V of e  in G such that |0o(x) -  11 < c on 

V. Let V' be the weak*-neighborhood of 0o in Pi(G) such that

V -=  | «  € P,(G ) : | / ( « - « | < € | V | } .

Indeed V' is a weak*-neighborhood since 6 If 0 € V' then

t  -  l)dx| < |^ (0o(x) -  l)dz| +  |^ (0 (x ) -  0o(x))dz| < 2c|V|.

Moreover, for 0 6 V' and x 6 G we have

\xv * 0(x) -  lV^|0(x)| =  1 ^  [0(y"^x) -  0(x)] dy| < |0(y~‘x) -  0(x)| dy

=  -  7T0 (x)](0 |(0 )| dy

=  |((^ lk 0 (x-^y) -  7T0 (x-^)](0 )| dy

<  l |7 T 0 ( x - ^ y ) ( 0  -  7 T 0 ( x - ^ ) ( 0 | |d y

=  J^[2 -  2Re(7T0(x"V)(0|7r0(x"^)(0)]^/^dy 

=  -  2Re(7r0(y)(0|W]'/'dy =  ^ [ 2  -  2Re0(y)]^/2^y
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1/2
< ( / [ 2  -  2Reÿ(ÿ)l<iï) \V\'!'‘ < 2|V|,Æ,

where the last inequality follows from f. By lemma 4.2.8 we can find a weak*-neighborhood 

V  of 00 in Pi(G) such that for all 0 6 V" we have \xv  * 0  —Xv*0o| < c|V| on K.

We now claim that V =  V' fl V" is the desired weak*-ncighborhood. For any 0 6 V  

and any x 6 AT we have

I 0 ( x ) - 0 o ( x ) l  1V| <  l | V | 0 ( x ) - X v * 0 W I  +  | X v * 0 - X v * 0 o l  +

|X v*0o(x )  -  lV|0o(x)l

< 2 |V |\/; +  |c +  2 |V |v ; =  (€ +  4V;)|V|.

□

Definition 4.2.10 Let 0 6 V{G) then 0 is said to be pure if 6 r(G). The set of all 

pure functions in V\{G) will be denoted by Vp{G).

4.2.11 Let 0 6 V{G) and u  6 L^{G)* be defined by 0. Note that 0 6 V{G) is pure 

if and only if 6 r{G) if and only if [4.1.9] 7r« 6 r{L^{G)) if and only if [proposition 

2.3.5] w is pure. Combining the fact that 0 6 V{G) is pure if and only if w is pure and 

our claim in 4.2.7 yields a bijective correspondence between Vp{G) and P(L^(G)), the 

set of pure states of Ü  (G). Thus analogous to proposition 2.3.3 we have Vp{G) U{0} is 

the set of extreme points of Vi{G).

References: [5], [8], [10], [13], [14].
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4.3 The Enveloping C*-algebra

Proposition 43.1 Let A be an involutive Banach algebra with an approximate identity. 

Then we have

sup i|7r(x)|i =  sup il7r(x)l| =  sup / ( x ’x)*/* =  sup / ( x ’x)'^",
ir6r(>l) /€(A*+)i f€P(A)

and denoting this common value by ||x|l', we have ||x||' < ||x||. Moreover, the map 

X ||x||' is a seminorm on A such that

iixyir < iixirw. iix*ir=iixir, nx-xn = nxir

for any x ,y  £ A

Proof: Claim sup,gy%(x) Ik  Wit < suP/e(X'+)i /(x*x)^/^. If tt € R{A) then from

our remark 2.2.16 all /  £  (.4*+) i associated with tt are of the form /(x*x) =  (7r(x)(l7r(x)(), 

where(  € 72, and ||(|| <  1. Hence lk(x)|p =  suPt|(n<ikW (k(x)() =  sup„(|,<i /(x*x). 

where /  € is associated with tt. Since the set of all /  6 associated with

Trisa subset of (A*+)i the inequality follows.

Claim sup/g(^.+)j /(x'x)^/^ < sup^-gp^ ĵ f{x* x fl^ . F o r/ £  (A'+)i and any x £

A by definition /(x*x) >  0. As well from 2.3.3 we have /(x*x) < suppgp(^) g{x*x).

Claim sup/gp(x) / ( x ’x)^/^ < sup,g^(A) lk (z)||. If /  €  P(A) then tp/ £ r{A) by 

proposition 2.3.5 and hence the proof of the first claim yeilds /(x*x) <  |k /(x)||^.

Claim sup,g^(x) lk(x)|| < sup,gB(^j |k (x )||. This is obvious since r{A) c  R{A).

The four claims above show that indeed | |x||' has a common value and since | |7r(x) || < 

||x|| for all 7r € R{A) we have ||x||' <  ||x||. Moreover, x lk(x)|l is a seminorm on 

A, so X ||x||' is also a seminorm on A. As well, for each vr £ R{A) and x ,y  £ A w e  

have
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l|7r(x*)ll =  ||7r(x)l| => ||x*ir =  l|x |r,

|l7r(x*x)|| =  IKx)!!^ => ||x*xir =  l l x f ,

|k (x y ) || =  H x ) | | |k ( y ) | |  =>. Ilxyir =  ||x |r ||y |r .

□

Definition 43.2 Let AT =  {x €  A : ||x ||' =  0} then clearly AT is a closed self-adjoint 

two-sided ideal of A. x  4- jV —̂ ||x  -I- N||' is a norm on the involutive algebra A /N  such 

that II(x +  N)*{x 4- iV)|| =  II(x 4- iV)|p. Thus the completion B  of A /N  with regard to 

this norm is a C*-algebnL B  is called the enveloping C**algebra of A.

Definition 4.33 Let G be a locally compact group. L^{G) is an involutive Banach 

algebra with an approximate identity [A.3.1] and as such we can form its enveloping C* 

algebra. We call this C*-algebra the group C* algebra of G and denote it by G* (G).

43.4 For /  € L^{G) set | | / | | '  =  sup |k ( /) || < | |/ | |i ,  where we take the supremum 

as TT runs over the non-degenerate representations of L^{G) or equivalently R{G). Then 

/  ll/ir is & seminorm on L%G) [4.3.1]. In fact, we claim /  -4 | |/ | | ' is a norm on 

L^{G). To see this, suppose | |/ | | ' =  0 then it{f) =  0 for every tt € R{G). However 

taking the left regular representation tti € R{G) as found in 4.1.3 then 7r,(/) is the 

operator g f  * g in L^(G) and we have for all g 6 L^(G), 0 =  nt{f)g  =  /  * g. 

Thus when g is an approximate identity in L^{G) we have /  =  0. In other words iti 6 

R{L^{G)) is an injective representation. Hence G*(G) is just the completion of L^{G) 

for this norm.

Proposition 43.5 Let A be an involutive Banach algebra with an approximate identity 

and let k be the canonical map o f A into B, the enveloping C*-algebra o f A  I f  it 6  R{A)
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then there is exactly one p € R{B) such that % = po  k and p(B) is the C*-algebra 

generated by tt(A).

Proof: Let TT 6 R{A) then, in the notation of 4.3.2, x 6 iV  if and only if 7t(x) =  0

and TT defines a representation tt' € R{A/N) such that ||7r'(y 4- N)\\b < ||y 4- N\\b  for 

y £ A. Hence tt' extends to a p 6  R{B) such that it = p o  k. Since k{A) is dense 

in B  it follows that p is unique and that 7t(A) is operator-norm dense in p ( B ) .  Finally, 

since B  is a C*-algebra p ( B )  is also a C*-algebra, hence the C*-algebra p ( B )  must be 

the C*-algebra generated by vr(A). □

43.6  Using the notation of proposition 4.3.5 it is clear that the map tt - 4  p  is a bijec

tion from R{A) onto R{B) that preserves non-degeneracy and topological irreducibility.

43.7 It now follows from proposition 4.3.5 that the bijective correspondence tt -> tt' 

from R{G) onto the non-degenerate representations in R{L^{G)) can be extended to a 

bijective correspondence from R{G) onto R{C*{G)). Moreover, the bijective correspon

dence TT -4 tt' from r(G) onto r(L' (G)) [4.1.9] can be extended to a bijective correspon

dence from r(G) onto r(G*(G)). In fact, we can now replace L^{G) by G*(G) in section 

4.1.

Proposition 43.8 Let A be an involutive Banach algebra with an approximate identity 

and let k be the canonical map o f A into B. the enveloping C*-algebra o f A  I f f  £ 

then there exists a unique g £  B '+ such that f  = go  k and ||g|| =

Proof: Clearly if such a g € B '+  exists it must be unique since k{A) is dense in B. So 

we need only show existence. Let /  6  and {eJ be an approximate identity for A 

then for each x  £ A,

|/(x )p  =  lim|/(xe<)p <  /(x*x)ïîm/(e;ei) < l|/||/(x*x) <  ||/ |M |x |r ,
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so there is a g 6 B* such that /  =  g o « and ||g|| < ||/ ||. Since for any y 6 B there exists 

a net {x<} in A such that /c(x,) -4 y we have

9{y*v) =lijn/(x,*Xi) > 0 ,

so g € B"+. As well, i fx  £ A such that ||x|| < 1 then

I /M l  =  |g(«(x))| < ||g |||k(x)|| < ||g||||x|| < ||g||,

therefore | |/ | |  < ||g||. □

4.3 j) /.From proposition 4.3.8 it follows that the map /  -> g of A*'*' onto B*+ is a 

bijection. Moreover, if M C A'+ and N  is its image under the map /  -4 g then clearly 

the restriction of /  -> g from M to Af is bicontinuous for the relative weak*-topologies 

a{A*,A) on A'+, and ct(B*, «(A)) on B*+. If further M  c  A*+ is bounded then AT is 

bounded, since the map f  g is norm preserving. Therefore since «(A) is dense in B 

then the relative weak*-topologies a(B*, «(A)) and a(B*, B) coincide on N.

4.3.10 Specifically we now have a bijective correspondence between and

C*(G)*+. We are now able replace by G*(G)'+ in section 4.2.

As well, since V\{G) cooresponds to the bounded subset of S{L^{G)) [4.2.7] and 

hence 5(G* (G)), this bijective correspndence restricted to Vi (G) is bicontinuous for the 

relative weak*-topology <r(G*(G)*,G*(G)) on S(C*(G)). /.From 4.2.9 it follows that 

the topology of compact convergence on 'Pi(G) agrees with the relative weak*-topology 

<r(G*(G)*,G*(G)) on S(C*(G)).

References: [3], [5], [8], [10], [13], [16].
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4.4 The Fell Topology on G

Definition 4.4.1 Let G denote the set of equivalance classes of r{G). So [ t t ]  € G if t t  

is topologically irreducible. /.From comment 4.1.9 and proposition 4.2.5 it follows that 

there is a canonical bijection T  of G*(G) onto G. Thus we can transport the Fell topology 

T  [3.1.4] on G*(G) onto G using this bijection. That is, if U open in G*(G) then T(G) 

is open in G. We will again denote the Fell topology on G by T . The topological space 

(G, T )  is called the spectrum of the locally compact group G and we will denote it 

simpily by G. Many authors also refer to our Gas the dual space of G.

Definition 4.4.2 Let t t  € R{G) and S  C /2(G). We say t t  is weakly contained in S  

if TT, viewed as an element of R(C*(G)) [4.3.7], is weakly contained [3.1.2] in S, where 

S  is viewed as a subset of /2(G*(G)).

Theorem 4.4.3 (Equivalence Theorem II) Let G be a locally compact group, t t  6 /2(G), 

and S  C /2(A). Then the following are equivalent:

i) TT is weakly contained in S,

ii) Every <f> 6 Vi{G) associated with t t  is the uniform limit over every compact set 

o f sums o f Ip €  Vi{G) associated with S.

Moreover when t t  has a cyclic vector (, the above condition are equivalent to: 

ii’) The Junction x  -y <p{x) =  (7r(x)(|() is the uniform limit over every compact set 

o f nets {0,} in V{G) where each ipi is associated with S.

Proof: This is simpily a translation of the equivalence theorem 2.4.5 into a group con

text. We can identify /2(G) with /2(G*(G)) by 4.3.7. Hence we have i) {2.4.51)} 

where the C*-algebra A is replaced by G*(G).
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Our comment 4.3.10 describes the correspondence between the topological spaces 

Vi{G) paired with the relative topology of compact convergence and S{C*{G)) paired 

with the relative weak*-topology. Therefore, it follows that n)  {2.4.5 i ii)}  where 

again the C*-algebra A is replaced by C*{G). Hence applying the equivalence theorem

2.4.5 to C*{G) leads to the equivalence of f), ii) and ii').  □

Corollary 4.4.4 Let [ t t ]  6  G and S  Ç G . Then the following are equivalent:

i) [ t t ]  6

ii) Every <f> € V{G) associated with [ t t ]  is the uniform limit over every compact set 

o f Ip €  V{G) associated with S.

Proof: Again, this is just the translation of corollary 3.2.2 into a group context and

hence follows from the remarks made above in the proof of the equivalence theorem II.

□

References: [5], [9], [10], [13].

4.5 The Reduced Dual

4.5.1 It is easily verified that the left and right regular representations, %i and tt, in 

/2(G), each have a kernel equal to {!}, and hence are injective. As well, in comment

4.3.4 7T( as a non-degenerate representation of L^{G) is also injective. Since vr, is non

degenerate it extends to a representation of G*(G) [4.3.7]. However, as reptesentaion 

of C*(G) is not in general injective, ie. for non-amenable G [cf 4.5.6].

Definitioii 4.5.2 V^th notation as in 4.1.3 we again look at the left and right reg

ular representations of G. Now consider the isomorphism /  -> / ,  where /(x ) =
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A(x)~^^^/(x~^), from L^(G) onto L^(G). For each y € G we have

4 / W  =

hence f  f  transforms ttj into TTr and it follows that ttj and tt, are equivalent. Thus 

we can call [tt/] or equivalently [tt,] the regular representation without indicating left 

or right.

Definition 4.5.3 Let vr be a representation of a C*-algebra A. Then the support 

suppiit) of TT is the set of [p] 6  À such that each [p] is weakly contained in [ t t ] .  If t t  is a 

unitary representation of a locally compact group G then in light of definition 4.4.2 and 

with the notation used in comment 4.4.1 we have the support supp{z) of t t  is the set

{[p] € G : ker [T-\[p])] D ker [T -^k ])]}  ,

that is the set of [p] € G such that each [p] is weakly contained in [ t t ] .

Definition 4.5.4 Considering iri € R{L^{G)), the norm closure of ni{L^{G)) in 

C{p^{G)) is the reduced group C*-algebra, denoted G*(G). It follows directly from 

proposition4.3.5 thatG^G) =  7T((G*(G)) where tt/ 6 R{C*{G)) [4.3.7].

Ddinition 4.5.5 We define the reduced dual of G, denoted Gr> to be the support of 

the regular representation of G. That is, with T as in 4.4.1 we have

Gr =  {[p] €  G : ker [T-^([p])] D ker [T "\k« ])]} .

or in other words, Gr =  C*{G) =  (G*(G)/iV) where N  =  ker(Tri).
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4.5.6 Note, from the definition of Gr, that if ttj as a representation of G*(G) [4.3.7] 

is injective then G =  Gr. If ttj is injective then AT =  0 and hence Gr =  G*(G) =  G. In 

fact, this special case, when ttj 6 R{C*{G)) is injective, fully characterizes [18, theorem 

7.3.9] the important class of amenable groups.

A locally compact group G is said to be amenable if there is a linear functional m on 

L®°(G) satisfying the following conditions:

i) m(l) =  1,

ii) m{Lxf )  =  m{f )  for all x 6 G and /  6 L°®(G),

iii) m(s) > O i f g  > GinL«(G).

As in [8, 1.25] and [11,3.5.2] the following are equivalent:

i) G is amenable;

Ü) G =  Gr; 

üi) C ' (G )= G ;(G ) ;

iv) 7T( as a representation of G*(G) is injective;

v) every [p] €  G is weakly contained in ttj, that is, ker[7r/] C ker[p] for all [p] 6  G.

As well, it is well known that all abelian groups and all compact groups are amenable. 

However, not all groups are amenable. The free group on two generators with discrete 

topology is not amenable. Hence, for any non-amenable group G, tti as a representation 

of G*(G) is not injective.

4.5.7 Suppose [fi] 6 C*{G)^ so

ker[p'] D ker[p] D ker[7r,] => M  6  C*{G \,
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hence C*(G)^ is a closed subset of C*(G) from which it follows that Gr is a closed 

subset of G.

References: [5], [6], [8], [13], [11], [18].
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Chapter 5 

Structure on a Locally Compact Group
As

G as related to its spectrum G

As mentioned in the introduction, the presentaion of this chapter difreres from the other 

chapters. Many details are simiply glossed over and outside references are used frequent

ly-
One of the remarkable attributes of the Fell topology on G is its characterization of 

properties of G by simple separation properties of G. The aim of this chapter is to study 

a few of these characterizations. G will always denote a locally compact group.

5.1 The Topological Structure of G

For aC*-algebra A, we can conclude, from comment 3.3.5 and proposition 3.3.10, that À 

is not in general a To-space. In this section the inherent topological structure on A for an 

arbitrary C*-algebra A is studied. Specifically, we show Â to be a locally quasi-compact 

Baire space. Hence, G is a locally quasi-compact Baire space.

62
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Definition 5.1.1 Let A be a topological space. A subset S of A is rare if the interior 

of the closure of S  is empty, that is int(S) =  0. A subset F  of A is meager if F  =  U f 

with Sn rare for all n; otherwise F  is said to be a nonmeager subset of A.

Definition 5.1.2 A Baire space is a topological space A which satisfies one and hence

all of the following conditions which are equivalent [3, theorem 46.4]:

i) if S  is any meager subet of A then ( A 5) =  A,

ii) if G is a nonempty open subset of A then G is nonmeager,

iii) if 5  =  U f Sn, where the S„ are closed sets such that int(5n) =  0 for all n ,  then 

int(S) =  0,

iv) if 5  =  nf* Un, where the G„ are dense open sets of A, then 5  =  A.

Proposition 5.1.3 Let A be a C*-algebra, then Â is a Baire space.

Proof: Recall the surjective map $  : P( A) -4 Â described in 3.2.1 and note that in the

proof of proposition 3.2.3 we show $  to be continuous and open. Let (Vi, Vg,...)  be a 

decreasing sequence of dense open subsets of Â, and let G„ =  $'XV»), that is G» is the 

inverse image of Vt in F(A). Since $  is continuous and open, each G„ is a dense open 

subset of P(A). Due to G. Choquet [5, B 14, p. 395] it is known that P(A) is a Baire

space. Hence, f\Un = P(A) and therefore $((1 Un) =  fl V« =  A. □

Defimitiom 5.1.4 Recall, a topological space is compact if and only if each family of 

closed sets which has the finite intersection property has a non-empty intersection. We 

say a topological space is quasi-compact if every decreasing filtering family of closed 

sets has a non-empty intersection. A topological space is said to be locally quasi-compact 

if each point has a base of quasi-compact neighourhoods.
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Proposition 5.1.5 Let A b e  a C*-algebra, x  £ A and o r  > 0. Then F = { [ tt] £ À : 

|k (x )|| > a} is quasi-compact.

Proof: Let {Fi} be a decreasing filtering family of relatively closed sets of F. For

each t, set =  flMeFi ker[7r]. Then {Jj} constitutes an increasing filtering family. Let 

J  =  (U, Jj), then J  is a closed two-sided ideal of A. For each i the canonical image 

of X modulo Ji is of norm > a. In fact, by definition of the quotient norm of a normed 

space the canonical image of x modulo J  is of norm > a. Now, there exists a [g] 6 A [5, 

lemma 3.3.6] such that ||p(x)|| =  ||x|| and ker[p] D J. Thus [p] £ F. As well, [p] £ F ^  

for each i and hence [p] £ fit O

Corollary 5.1.6 Let A be a C*-algebra, then Â is locally quasi-compact.

Proof: Let TT 6 Â, and let G be an open neighborhood of tt  in A. Since A U is

closed, there is an x € A such that 7 t ( x )  ^  0 and p(x) =  0 for all p € Â ~  G. Set V = 

[ p £ Â :  11p ( x )1| > ll7r(x)ll/2} andW  = [ p £  À :  ||p(x)|| > |k(x)||/2}. Since t t  -> 

||7r(x)|| is lower semicontinuous on Â  [5, proposition 3.3.2], V is an open neighborhood 

of TT. Therefore W is a neighborhood of t t  contained in G, and by proposition 5.1.5, W  

is quasi-compact. a

Theorem 5.1.7 I f  G is a locally compact group then G is a quasi-compact Baire space.

Proof: By propositions 5.1.3 and 5.1.4 C* (G) is a quasi-compact Baire space and our

result follows immediately. □

Rrferences: [5, §3.3 and corollary 3.4.13].
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5.2 The Spectrum of a Compact Group

Locally compact groups [and hence compact Abelian groups] possess many nice

attributes, not the least of which is that all of their irreducible representations are unitary 

characters [complex-valued, multiplicative, not identically zero functions]. If tt € r{G), 

G locally compact Abelian, then tt  is one dimensional. Hence, we can take = C, 

so 7t ( x ) ( z )  =  Ç{x)z, where z € C and ( i s  a continuous morphism of G into the circle 

group. Moreover, for a locally compact Abelian group G, it turns out that G is the set 

of extreme points for the set of functions of positive type on G of norm 1 [10, theorem 

3.25]. Thus we can give G the topology of compact convergence which in this case is 

exactly the relative weak*-topology on extreme points for the set of functions of positive 

type on G of norm 1.

Proposition 5,2.1 Let G be a locally compact Abelian group. G is identified with the 

spectrum o f L^{G) [set o f non-zero multiplicative functionals on (G) ] via 5.1.

Proof: ^From proposition 4.1.4, each (  € G determines a non-degenerate representa

tion of L^{G) on C by

C(/) = j  Ç{x)f{x)dx. (5.1)

Identifing £(C ) with C all such representations are complex-valued, multiplicative, not 

identically zero functionals on L^{G). Conversely, $  G (L^(G))* is given by integration 

against some ip G L°°{G). Choose /  G L^{G) with $ ( / )  -f- 0. Then for g  G L \G ),

$ ( / )  j  i>{y)g{y)dy =  $ (/)$ W ) =  $ ( /  * g)

= f  j  ip{x)f{xy-^)g{y)dvix

=  J  ^ L y f ) g { y ) d y ,

I
iI
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so ip(y) =  ^ { L y f ) / ^ { f )  locally almost everywhere. We can redefine (j>{y) such that 

(f)(y) =  $ (L y /) /$ ( /)  for all y. Then (j> is continuous and

= ^L^f)  = $ (1 .4 /)  = 0(a:)^(y)$(/),

so ip{xy) =  if}{x)il}{y). As well, ip{x^) — ip{x)'^ for every n ,  and ip is bounded, so 

|^(x)l =  1. That is, ip maps 0  to the circle group. □

It is easily verified, that under pointwise multiplication, G is an Abelian group. It has 

the constant function 1 as its identity element and ("X^) =  C(^” )̂ =  ((z). As well it 

can be verified that G U{0} is a weak*-closed subset of the closed unit ball of L°°(G). 

Hence as a consequence of Alaoglu’s theorem, G is a locally compact Abelian group.

Definition 5.2.2 If G is a locally compact Abelian group then G endowed with the 

topology of compact convergence is called the dual group. For general non-commutative 

topological groups, G is not necessarily a group. Hence a dual group is merely a special 

case of the spectrum or dual space as defined in 4.4.1.

Proposition 5J.3 I f  G  is an Abelian compact group with a normalized Haar measure, 

then G is an orthonormal set in L‘̂ {G).

Proof: Note, if G is compact, then G C I* (G ) C Z/(G) for all p > 1. If (  6  G then

/  |C(x)pdx =  f d x  = l ,  that is, ||(1|2 =  1. Further, let t? 6 G such that (  ^  Thus, 

there is a z G G such that ((z)i9~^(z) 1. Hence,

y  C{x)i9~^{x)dx = ((z)i)" \z) j  Ç{z~^x)‘d~^{z~^x)dx 

=  ((z)i)-Xz) j  C(x)â-^(x)dx,

so /  C(x)t9“ ^(z)dx =  0 and therefore /  C(x)if(x)dx =  0. □
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Theorem 5.2.4 Let G be a locally contact Abelian group. Then,

i) i f  G is discrete, then G is compact;

ii) i f  G is compact, then G is discrete.

Proof: If G is discrete, then the point mass function which is equal to 1 at e and 0

elsewhere, is a unit for L^{G). Hence the spectrum of L \G ) is compact. Therefore, it 

follows directly from proposition 5.2.1 that G is compact.

If G is compact then the constant function 1 is in L^G). Thus, the set { /  G L°°{G) :

I /  f{x)dx\ > is weak* open. It follows from proposition 5.2.3, if (  G G then 

fÇ{x)dx =  1 if Ç =  I, /  C(x)dx =  0 if (  f  1. Hence, {1} is open in G and G is 

discrete. o

We now look at general [non-abelian] compact groups. In the 728 page often quot

ed Abstract Harmonic Analysis II [the thicker one] by Hewitt and Ross [7], which is 

exclusively devoted to the study of non-abelian compact groups, the authors begin by 

lamenting the lack of detail in their presentation. We mention this to emphasize the sheer 

magnitude of theory that we cannot, and do not, do justice to in these few pages. In 

theorem 5.2.4 we saw that for compact abelian groups their spectrum is compact. The 

remainder of this section is devoted to generalizing this result to compact [non-Abelian] 

groups. Note that in Abelian case above G was an orthonormal set in L^{G). In the gen

eral case [non-Abelian] the corresponding set of functions is the set of matrix elements 

of unitary representations of G [cf. 5.2.5]. The following is a sketch of the celebrated 

Peter-Weyl Theorem as found in FoUand’s book [10]. Our aim here is show how the 

matrix elements of irreducible representations can be used to form an orthonormal basis 

for f  2(G).
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Definition 5.2.S If tt is a unitary representation of G, then the matrix elements of tt 

are the functions,

If {cj} is an orthonormal basis for then <̂ ej,ej(x) is indeed one of the entries of the 

matrix ir{x) with respect to that basis, namely

— t̂jfii{xi) =  (7r(x)ej|et). (5.2)

Let 4  denote the linear span of the matrix elements of tt .  Clearly 4  is a subspace of 

G(G) the continuous functions on G and hence of LP{G) for all p. Further, let

S = the linear span of |J  4 -
[ff]€C

Finally, set d , =dim%, and let trB denote the trace of a matrix B.

Theorem S J .6  (Pfeter*Weyl Theorem) Let G be a compact group. Then

i) €  is dense in C  (G) in the uniform norm.

ii) €  is dense in LP{G) in the IP norm forp  < oo.

Hi) I-2(G) =  ©[„]gc Sv and [y/d^itij : i, j  =  1 , . . . ,  d^, [ tt] 6 G} is an orthonor

mal basis for L^{G).

Proof: Since G(G) is dense in IP{G), it will suffice to show £  is dense in G(G) for

both i) and ii) to hold. In fact, S  satisfies the conditions of the Stone-Weierstrass theorem 

and the hence the result follows. By the Gelfand-Raikov theorem [6, theorem 22.12] 

S  separates points. Since each representation has a contragredient, £  is closed under 

conjugation. The existence of the trivial representation of G on C  allows for the existence
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of the constant fiictions. All that remains is to show ^  is an algebra. We refer the reader 

to [6, p. 23] where indeed £  is shown to be an algebra. The basic idea is, if [ t t ] ,  [ t t ' ]  g  G 

the we want to show is a matix element of some finite-dimensional representation

of G. This is acheived by constructing the inner tensor product of tt  and tt ' .

Finally, in)  is a consequence of ii) and the following claim.

Claim: [Shur Orthogonality Relations] I f  [ t t ] ,  [ t t T  G G then: i) [ t t ]  ^ [ t t ' ]

implies 4  J- 4 .  and ii) { :  iyj =  is an orthonormal basis for £■„,

where 4  and 4  are considered as a subspaces o f L"^{G).

Let T  be any linear map from to Hn>, and define T  such that

T =  y ir\x~^)T%{x)dx.

So

fir(y) =  y 7r'(x~^)Tz(xy)dx = j  n'{yx~^)T7r{x)dx = Tr'{y)f,

that is, T  is an intertwining operator for t t  and t t ' .  Now, set u G 7 4 , i/  G 7 4  and define 

T by T ( =  Thus for all (  G 7 4  and G 7 4 ' we have,

( n i o  =  y  (T7r(x)(l7r'(x)(')rfx

=  y (7 r (x ) ( |t / ) ( f / |7 r '(x ) ( ')d x  

— j  rp^,uip')4rç,i/{x)dx

It is a consequence of proposition A.5.5 that, if two irreducible unitary representations 

are not equivalent then the set of intertwining operators, for these two representations, 

is simply {0}, see [10,3.5 p. 71]. So, if [tt]  ^  [tt' ]  then T  =  0, and therefore from our 

above equality we have 4  -L 4 *  This proves i). If [tt] =  [tt ' ]  then T  = c l  [A.5.5]. So,
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if we take (  =  Ci, =  e,', u =  Cj and 1/  =  ey then

j  Trij{x)Tri'j>{x)dx = c{ei\ei>).

But

cd,r =  trT  =  y  tr  [7r(x“ )̂T7r(x)] dx =  trT, 

and since we have trT =  (ej\ej>). Hence

j  Trij{x)Tn>j>{x)dx =  d„^(eile</)(ejlejO,

so {v^TTy} is an orthonormal set Since it is known thatdim 4 <  d^, see [10, proposi

tion 5.6], we can conclude that {y/d^nij : i, j  =  1 , . . . ,  (4} is a basis. □

Propositioii 5.2.7 I f  G is compact then G is discrete.

Proof: Let [tt]  € G. G is compact so tt  is finite-dimensional [10, theorem 5.2] and we

can express the character Xn  of t t  by %,(x) =  tr 7 t ( x ) .  Note, since the matrix represen

tation of equivalent representations have the same trace, Xir depends only on the equiv

alence class of TT. It follows from the Peter-Weyl theorem in) that 7r(x%) =  {dn)~^I ,  

where I  is the identity operator on 7 4 , and p(Xir) =  0 for [ t t ]  ^  [p]. Hence, Xtt € 

r i [ p i 6 c ~ { W }  ker[p] however 0  ker[?r]. That is, [ t t ]  ^  {G ^  { [ t t ] } ) ,  so  { [ t t ] }  is open. □  

Baggett [1, theorem 3.4] proved that if G is separable and G is discrete then G is 

compact As well, it has been proved by Wang [19, theorem 7.7] that if G is rr-compact 

and G or Gy is discrete then G is compact Hence, the converse of proposition 5.2.7 is 

also true for these cases.

References: [5], [10], [7].
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5.3 Some Remarks on the Separation Properties of G

G is not in general a To-space. In fact, we have shown in proposition 3.3.10 that G is 

To, if and only if, for any [tt] ,  [tt' ]  € G, if kerfvr] =  kerfvr'] then tt is equivalent to tt ' .  

However, for a I"** countable G, G is To if and only if G is Type I [GCR or postliroinal], 

and G is Tt if and only if G is CCR [or liminal], see [17]. For a connected G, G is Tg 

if and only if G is a compact extension of an abelian group, see [2]. Liukkonen in [IS] 

proved that, for a Type I [IN] group, G is Tg if and only if G is [FCp.

Note: The following is a list of references where adequate descriptions of the above

mentioned classes of C*-algebras and groups can be found.

i) For liminal[Type I or GCR] and postliminal[CCR] C*-algebras see Dixmier [5, 

Chapter 4]. A group is said to be GCR or CCR if C*(G) is GCR or CCR respec

tively.

ii) See [IS] and references within for a description of [IN] groups.

iii) Finally, [FCp groups are described in [17].
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Appendix A

A.1 Structure on Topological Groups

The main purpose of this section is to show that it is essentially no restriction to assume 

a topological group is Hausdorff. We start by stating some basic facts about toopological 

groups.

Proposition A.1.1 Let (G, r)  be a topological group:

i) IfU  € r  then for any x £ G we have xU, Ux and U~^ are also in t .

ii) For every neighborhood U ofe there exists a symétrie neighborhood V  o f e such 

t h a t V V c U

iii) The r  closure o f any subgroup o f G is also a subgroup.

iv) I f  A, B  C G  are comapct then so is AB.

Proof: These results are all a consequence of the continuity of the maps (x, y) -> xy

and X -4 x " \  □

Proposition A.1.2 Let (G, r)  be a Tq topological group. Then (G, r)  is regular and 

hence Hausdorff.

72
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Proof: Let (7 be an arbitrary neighborhood of e . Then from A.1.1 (ii) there exists a

symétrie neighborhood V  o le  such that V V  C U. For x  € V the intersection x V Ç\V 

is not empty since x V  is a neighborhood of x .  Hence x u i  =  for vi,V2 G V, so 

X =  V2Vx^ G VV~^ =  V V  C U. We have therefore shown, that for any neighborhood 

U of e , there exists a closed neighborhood V of e  such that V C 17. By proposition A.1.1 

i) we can transfer this regularity property from e  to all x  G G. □

Proposition A.1.3 Let (G, r)  be a topological group. If(G, r)  is not a Tq space then {e} 

is a closed normal subgroup and G/{e} endowed with the quotient topology is regular 

topological group and hence Hausdorff. Moreover, i f  G is locally compact then so is

G /IÏÏ-

Proof: It follows from proposition A.1.1 m) that {e} is a subgroup. Since every sub

group of G must contain {e}, clearly {e}  is the smallest closed subgroup of G. Thus {e} 

must be normal, otherwise we could intersect {e} with one of its conjugates to obtain a 

smaller subgroup. Therefore {e}  is a closed normal subgroup.

We now show that G / {e}  endowed with the quotient topology is a topological group. 

Since {e} is a normal subgroup, it is well known that the operation on the set of left cosets 

of {e} described by

x{e}y{e} =  (x y ){ e } ,

is well defined. Let q:  G G/{e} denote the canonical quotient map, let x  G G and 

let 17 be a neighborhood of q(x~^) in G /(e}. By continuity of inversion in G at x we can 

find a neighborhood K of x such that V  c  q~^ (U). Thus q(V) is a neighborhood of q(x) 

in G/{e} such that q(V) C U. Hence inversion is continuous with regard to the quo

tient topology on G/{e}. A similar argument shows multiplication is also continuous. 

Therefore G/{e} endowed with the quotient topology is a topological group.

I
I
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Moreover, if 17 is a compact neiborhood of e in G then q(Ux)is a compact neighbor

hood of q(x) in G/{e}. Hence if G is locally compact then so is G/{e}.

Finally, we show G/{e} is a Tq space and therefore by proposition A.1.2 is regular 

and hence Hausdorffi. Let q{x), q{y) 6  G/{e} be distinct. Since x{e}y~^ does not 

contain e, it follows from A.1.1 ii) that we can find a symétrie neighbodiood G ofe such 

that Uf\x{e}y~^  =  0 and by symmetry U~^ nar{e}y“  ̂ =  0. Hence

e i  Ux{e)y'^  =  {Ux{e})([e} \~ ^ )  =  {Ux{e}){y{e})~\

so {Ux{e}) n(y{e}) =  0 and therefore q{Ux) is a neighborhood of q{x) that does not 

contain g(y). □

We have now accomplished the main objective of this section. In view of propositions 

A. 1.2 and A. 1.3 it is practically no restriction to assume a topological group is Hausdorff, 

for if not then we can just work with G/{e} instead. Henceforth we will always assume, 

in particular, that a locally compact group is Hausdorff.

References: [3], [6], [10].

A.2 The involutive algebra Ü  (G)

A.2.1 Let G always denote a locally compact group. Since G is locally compact we 

know G possesses a left Haar measure A [non-zero, left invarient, finite on compact sets, 

outer regular on Borel sets, inner regular on open sets, Borel measure] that is unique up 

to scalar multiplication [20, Sec 2.2]. We will fix once and for all the left Haar measure 

A on G. We’ll denote dA(x) by dx, /  fdX  by /  / ,  and \F\ for A(F). The unit element of 

G will be denoted by e.
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A J .2  Let M^ (G) be the space of bounded complex measures on G. If p, i/ e  M'  ̂(G)

then we define the convolution of p and u as follows. The map <j>-̂  f j  <i>{xy)dp{x)dv{y) 

is a linear form on the space of continuous functions on G which vanish at infinity, 

and 1 / / <i>{xy)dp{x)dv{y)\ < ll<̂ llooll/illlkll- Hence this form is given by a measure 

p * v  Ç. M^{G) with||/x*:/|| < ||/i||l|t'||. This measure,/i*:/is called the convolution of 

p and u and we see that

j  (f>d{p * u ) =  J J <t>{xy)dp[x)dv(y).

It is readily checked j  *1̂) = J J ff>{^y)dp{x)du{y).^Qo\Qt convolution is commu

tative if and only if G is Abelian. M^{G) has a multiplicative identity 4 , the point mass 

measure S at e. M'-{G) also has an involution p p* defined by p*{F) =  p{F~^) or 

/  (p{x)dp* =  /  <f>{x~̂ )dp{x). Again this is readly checked to be an involution.

Definition A .23 Let F  C G and if we define Az(F) =  A(Fx) then Ag is again a left 

Haar measure and as such must be a scalar multiple of A. Thus there is a scalar A(x) > 0 

such that Ag =  A(x)A. The mapping A : G - r  (0,oo) is called the modular function. 

A is said to be unimodular if A =  1. Obviously Abelian groups and discrete groups are 

unimodular.

Proposition A J .4  The modular function A  is a continuous morphism o f G to the multi

plicative group o f positive real numbers. Moreover, for any f  6 L^{G),

j R y f d \  = A { y - ^ ) f  fdX. (A.1)

Proof: For any x ,y  € G and E  c G ,

A(xy)X(E)  =  X(Exy) =  A(y)X(Ex) = A(y)A(x)X(E),
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hence A is a morphism of G to the multiplicative group of positive real numbers.

Now to see equation (A.1) consider the characteristic function x e - Since xsixy)  =

XEy-^{x),

f  XE(xy)dX{x) =  X{Ey-^) =  A{y~^)X{E) =  A(y“ )̂ J XE{x)dX{x).

Thus we have shown (A.1) for f  = x e  so the (A.1) follows from the density of simple 

functions in L^{G).

Finally, the continuity of A follows from (A.1). Since each continuous function on 

G with compact support is right uniformly continuous [10, proposition 2.6] it follows 

immediately that y f  RyfdX = A{y~^) f  fdX  is continuous from G to C. □

Proposition A J .S  I f  G is compact then G is unimodular.

Proof: We will in fact show the following more general result. If / (  C G is any

compact subgroup then the restriction A |k- of the modular function A to the subgroup K  

is equivalent to 1. Since A is a continuous morphism from G to the multiplicative group 

of positive real numbers [A.2.4????], A|x^(G) =  A{K) must be a compact subgroup in 

this group of real numbers. Clearly A(G) =  {!}, that is A(x) =  1 for all x €  G. □

A.2.6 If we identify each function /  €  L^{G) with the measure f{x)dx e  M^{G) 

we can consider (G) as a subalgebra of (G). If / ,  y €  (G) the convolution of /

and y is the function defined by

f* g { x )  =  j  f{y)g{y~^x)dy 

= j  f{xy)g{y~^)dy 

=  /  f{y~^)g{yx)A{y~^)dy
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I

= f  /(a:y"^)y(y)A(y“ )̂dy

= j  f{y)Lyg{x)dy 

= f  Ryf{x)g{y~^)dy.

The restriction of the canonical involution on M^{G) to L^(G) is an involution defined

by the relation f*{x)dx = f{x~^)d{x~^) hence we have

/•(x) =  A (x - ') /(x -i) .

A.2.7 We make use of the following application of the Lebesgue-Radon-Nikodym 

theorem. The theorem given here is just a special case of [6, Theorem 12.18] and we 

offer no proof here.

Theorem L^{G)* =  L**(G) in the sense that for every continuous linear functional 

w on L^(G) there is a g  € L°°{G) such that

•^U) =  j l 9dX, V/ e  L'(G),

and ||w|| =  llylloo.

Proposition A J.8  L^[G) has an approximate identity, [cf A.2.1] namely {eu}.

Proof: Let 2/ be the family of compact symmetric neighborhoods (7 of e g  G ordered

by reverse inclusion. Then set eu =  \U\~^xu, where |C7| =  f ^d g  and xu  is the charac

teristic function of U. Clearly f e u = e a n d  since each U  is symmetric eu{x~^) = eu{x). 

Thus

/  ♦ euiy) -  f{y)  =  J f{yx)eu{x~^)dx -  f[y) j  eu{x)dx
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=  j  [Rxfiy) -  f{y)] eu{x)dx,

so by Minkowski’s inequality

11/ * e u -  /111 < [  \\Rxf -  f \\ ieu{x)dx < sup \\Rxf -  f \ \ v  
J  xecT

Likewise we can show \\eu * f  -  f\\ < sup^g^; | | 4 /  -  /lli- Therefore we need only 

show that | | i 4 /  -  /111 0 and | | 4 /  -  / | | i  0 as x -+ 1.

First, consider g G C o (G ) and let Ug =  (supp g)U\JU{supp g) where supp g is 

the support of g. Clearly Ug is compact, and Rxg and are supported in Ug when 

X G C7. Thus \\Rxg -  y ||i <  \Ug\\\Rxg -  y||oo -> 0 by uniform continuity. Similarly 

II - y | | i  0 . Now taking /  G L^{G), fore >  0 , we can choose g G Go (G) such that

11/ - g | | i  ^  ('

1 1 4 ; / - / I I I  <  | | 4 c ( / -  y ) | | l  +  114:5 — s i l l  +  ||5  - /111 

< (A(x)-i +  l)c +  | | / 4 5 - 5 l l i ,

where | |i4 s  -  slli 0 as x e . Similarly | | 4 /  -  / | | i  0 as x -+ e. □

References: [8], [10], [13].
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A 3 Approximate identities

Definition A J . l  Let A be a C*-algebra. An approximate identity of A is a net {e, }

of elements in A such that:

lletll <  1, Vz,

||e,x — x(| ^  0 and ||xci — x|| 0, Vx € A.

We say {e,} is increasing if e, > 0 and if z <  j  implies < ey.

Corollary A3.2 Let A be a non-unital C*-algebra. Then there exists an increasing 

approximate identity {e<} for  A.

Proof: Since A is a self-adjoint two-sided ideal in Â  this corollary is a direct result of

the following Theorem. □

Theorem A J J  Let A be a imitai C*-algebra and I  a left [right] ideal o f  A. Then 

there exists an increasing net ( e j  o f positive elements in (/)i such that ((xe, -  x(l 0 

f||xe< -  x|| -r- 0] for every x 6  /.

Proof: Let F be the set of finite subsets of/ordered by inclusion. Forz =  {x i,-* ,x„}  6 

F let

Ui =  x 'x i 4------4- x*x„

and

Since the function

I
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only takes on values between 0 and 1, we have 0 < < I. Furthermore,

52 [(e, -  l)iml*[(et -  l)a^m] =  (e» -  -  1) =
- 2

m = l

and

Thus

52 [(Ct -  l)Xm][(ei -
m = l  4 n

Form =  1, • • •, n we deduce that

which implies

l i f e  -  D i m l l '  <

Hence ||e<x -  x|| -> 0 for every x G /. So ( e j  is a left approximate identity for /.

To see that { e j is also a right approximate identity for I, that is ||xe, — x|| 0 for

every x G / ,  consider the following. Let /* =  (x* : x G /}  and apply the first part of 

this proof.

Now let A, 77 G r  such that A <  77. We have A =  {xi, • • •, x»}, 77 =  (xi, • • •, x^} 

where n < m, so

- ( ; + 4  ■

Since

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A.4. TR A N SinV JTY THEOREM 81

we have

so

Hence { e j  is an increasing approximate identity. □

Proposition A J.4  Let A be a C*-algebra. I f f  6 A'+ and ( e j  is an increasing approx

imate identity for A then

Proof: Without loss of generality we can assume \\f\\ =  1. It is clear that {/(Cj)} is

an increasing net in R which is bound above by 1. Therefore lim* /(ey) < 1. Choosing 

X G A such that ||x|| <  1 we have

l/(eix)p <  /(e,-e<)/(x*x) < /(e,)/(x*x) < lim/(e<),

so |/(x )p  < liirij /(e»). Hence 1 <  lim  ̂/(e,) ^  liraj /(e^) = 1 . □

References: [5], [13], [16], [20].

A.4 Transitivity Theorem

The following is the so called transitivity theorem as found in [16].

Theorem A.4.1 Let A be a C*-algebra acting irreducibly on a Hilbert space H, and let 

( i , ' in % such that( i , *• • , 4  are linearly independent. Then there
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exists an operator T E A  such that =  rji for i =  1, • • •, n .  I f  there is a hermitian 

operator Th on % such that =  rjifor i =  1, • • •, n  then we may choose T  to be 

hermitian also. I f  A contains the identity element o fH  and there is a unitary U on H  

such that 27((i) =  r\ifor i =  1, • • •, n  then we may choose T  to be a unitary also.

A proof of the above theorem can be found in many books outlining the theory of 

representations of C*-algebras. ie. [16, Thm 5.2.2], [5, Sec 2.8]. For our purposes here, 

we will only show the following special case of the u:ansitivity theorem.

Theorem A.4.2 Let A be a C*-algebra, tt € r(A), and tj € 74 with (  non-zero and 

llrjil =  I. Then there exists a y  e  A such that 7r(y)( =  rj.

Proof: Let T map 7 4  onto 7 4  such that T(() =  (Cl]j|iT)^- Clearly T  G £(74). 

||T|| <  IItjII and T(() =  rj. Thus for arbitrary 77 G 7 4  we can find a T  G £ (74 ) with 

||T|| < II77II such thatT ( 0  =  77.

So setting ( ,7 7  G 74  with (  non-zero and H77H =  1 we can find a To G £ (74 ) such 

that

To(() =  77, llToll < IHI =  1.

By Kaplanski’s density theorem, (7r(A))^ is strongly dense in (£ (74 ))i- So we can 

choose an xo G A such that

l k ( x o ) «  -  T , m  <  i  I l i r W I I  <  llT o ll  <  1 

Similarly there exists T\ G £(74) such that

T . ( e )  =  I)  -  x ( i o ) C  I I T il l  <  II ,, -  x ( i , ) « | |  <  i .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A.5. VON NEUMANN ALGEBRAS 83

By density, again we can choose xi € A such that

I W i , ) f  - T . « ) l l  <  5 ,  lW x .) | |  <  IIT.II <  i .

By induction we can construct sequences { 4 }  in £(74) and {x^} in A such that

7 ] k ( ( )  =  V ~  ^ ( x o ) Ç  -  . . .  -  7 r ( x f e _ i ) ( ,  l lT j t l l  <

and

lk (x .K  -  T,({)|| < 1  Ik (i.) || < ||T,|| < 1 .

00 00 j  00

Since 5 ]  ||7r(xt)|| < < 0 0  we have 52 ^(xk) is convergent in 7t(A). As well
fc=0 t = o  ^  k = 0

00 00

since tt  is continuous ^ x t  is convergent in A. Let y =  52 then
k = 0  k = 0

m 1
l k t o ) «  -  „ll =  J t a  II i ;  X ( I » ) Î  - ? l l  =  |K ( I „ ) ?  -  II <  J t a  5; ,

jfe=0

So 7 T (y ) (  =  77. □

References: [S], [16].

A S Von Neumann Algebras

Definition A.S.1 A C*-subalgebra of £(7f} is called a von Neumann algebra if it is

closed in the strong-operator topology.

A.5.2 It is well know that for any convex subset S  of £(7f ) the weak-operator closure

of S  coincides with the strong-operator closure of 5  in £(7f). [20, Thm 16.2]
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Definition A .53 Let F  be a subset of £(%). Then the set (T  G C{H) : T S  = ST  

for all 5  G F} is called the commutant of F.

Proposition A.5.4 Let A be a C*algebra and ir G R(A) then the commutant n  o / 7t(A) 

is a von Neumann algebra.

Proof: It is easily seen that IT is a self-adjoint subalgebra of £(7f). Now suppose

Ti~>T  where 7i G IT for each i. Then for any x G A and 77 G we have

((T7t{x)-7r(x)T)(l77) =  (T7r(x)(|77) -  (T(|7t(x)*77)

=  lim(T<7r(x)(|77) -  (Ti(|7r(x)*77)

=  Hm((7i7r(x) -  7r(x)7;)(|77)

=  0.

Thus T  G n  which implies IT is weak-operator closed in £(%). □

Proposition A.5.5 Let A be a C*algebra and t t  G R{A) then the commutant IT o / 7t(A) 

is equal to C l  i f  and only ifit £  r(A).

Proof: If TT G r( A) and if F  be a projection in C{H) then F  G IT if and only if F('H) is

invarient for 7t(A). So if tt  G r(A) the only projections in II are the trivial ones. Since IT 

is a von Neumann algebra, proposition A.4.4 it is the closed linear span of its projections 

[20, theorem 20.3]. Therefore II =  CF. Now suppose tt  G R(A) and II =  CF. If K  

is any closed invariant subspace of H  let P k  be the orthogonal projection of H  onto K.  

Clearly Picir(A)Pfc =  7r(A)Fx and Pkt^^AYPk =  Tt(A)*PK. Thus we have

7r(A)FK- =  Pk t {A)Pk  =  (F|f7r(A)*FK-)* =  (7t(A)’ Fk-)* =  F^ttCA)
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which implies P ^ g I I  => Pk = XI  => K  = 'Hot Q =>7t €  r{A). □

References: [3], [5], [13], [20].
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