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ABSTRACT

Feng, N. 2001. Variation of wood properties in a single stem of jack pine (Pinus
banksiana Lamb.). M.Sc. Forestry Thesis, Lakehead University, Thunder Bay,
Ontario, Canada. 100pp.

Keywords: tracheid length, relative density, ring width, radial and tangential shrinkage,
juvenile and mature wood, juvenile and mature wood volume.

Radial and axial variation of tracheid length, relative density, ring width, radial 
and tangential shrinkage, and juvenile and mature wood volume were studied in a single 
stem of jack pine, 37 km north of Thunder Bay. The tree was 60-year-old and was from 
a naturally grown stand in the Jack Haggerty Forest of Lakehead University, Thunder 
Bay, Ontario. Specimens were taken from the tree stem at heights of 0.15, 1.4, 3.4, 5.4, 
7.4, 9.4, 11.4, 13.4, 15.4 m along west and east aspect. Juvenile and mature wood 
boundary was demarcated by using the radial variation pattern of tracheid length as the 
criterion.

Tracheid length increased from pith outward in the juvenile wood, reaching a 
maximum, then remained constant or leveled off towards the bark in the mature wood. 
The rate of increase in tracheid length with ring age increased with increasing height 
with an exception at 13.4 m. The mean tracheid length in the juvenile and mature wood 
increased from the base upward, reaching a maximum at 3.4 m and 5.4 m for the 
juvenile and mature wood, respectively, followed by a decrease further to the top. 
Relative density decreased from the pith outward with ring age in the juvenile wood and 
remained less variable in the mature wood, with an exception at 0.15 m. Relative density 
decreased with increasing height with an exception at 13.4 m in both juvenile and 
mature wood. Ring width increased with ring age from the pith outward in the juvenile 
wood and fluctuated in the mature wood. Ring width decreased with increasing height in 
the juvenile wood. No axial trend for ring width variation in the mature wood was found. 
Tangential shrinkage was greater than radial shrinkage. The mean tracheid length of the 
west aspect was significantly different from that o f  the east aspect. Relative density of 
both juvenile and mature wood in the east aspect was significantly higher than that in the 
west aspect. Ring width in the west aspect was significantly wider than that in the east 
aspect for mature wood. For both tracheid length and ring width, there was no difference 
between west and east aspects in the juvenile wood. Radial, tangential shrinkage (overall 
and the two outermost wood strips) increased from pith outward to the bark, reaching a 
maximum then followed by a leveling off. Radial, tangential shrinkage (overall and the 
two outermost wood strips) decreased with increasing height with an exception at 0.15 
m. The percentage of juvenile wood accounted for 16% and 30%, respectively, of the 
entire stem volume based on ring age and stem diameter as criteria. The juvenile wood 
zone was conical in shape. There was a strong negative correlation between juvenile 
wood width and cambial initial age. The values for percentage of juvenile wood volume 
at breast height can be used to predict the entire stem value.
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INTRODUCTION

Wood is a product of the metabolic activity of cambium in a living tree (Panshin 

and de Zeeuw 1980) and a product of forestry operations (Zobel and van Buijtenen 

1989). The wood produced by a living tree varies both radially (across the radius of the 

bole) and longitudinally (along the tree height). Moreover, the wood properties vary 

with different geographic location, seed source, species and other environmental factors. 

Such variation should be fully understood if we want to successfully convert wood into 

end products and use wood efficiently. The knowledge about variation of wood 

properties will also benefit the tree grower, the breeder, and the harvester for 

regeneration and wood quality improvement.

The greatest cause of wood variation among conifers is the presence of juvenile 

wood and its relative proportions to mature wood (Zobel and van Buijtenen 1989). 

Forest plantations and intensively managed stands represent an ever-increasing portion 

of the wood needed to supply the world’s expanding human population. However, the 

short rotations and rapid tree growth associated with plantations increase the percentage 

of juvenile wood in harvested timber. Properties of juvenile wood are undesirable for 

some end products compared to that of mature wood. For example, in the juvenile wood, 

cells are shorter and cell walls are thinner, resulting in a lower relative density of wood; 

the micorfibril angels are flatter, resulting in greater longitudinal shrinkage of boards 

(Zobel and Spargue 1998). Forest management can be used to influence the proportion 

of juvenile wood by selection of the growth regime for the tree (Panshin and de Zeeuw
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1980; Yang 1994; Zobel and Sprague 1998). However, before the forester modifies 

existing practices, research is needed to increase the fundamental knowledge on the 

juvenile wood properties, and its impacts on other wood properties.

Jack pine (Pinus banksiana Lamb.) is a common species found in the Boreal 

Forest and currently represents more than one-third of the total volume of softwood 

timber in Ontario (Ontario Ministry of Natural Resources 1997). The wood of jack pine 

has a coarse texture and is generally resinous and knotty, light in weight, and low in 

strength, resistance and stiffness compared to other pines. The wood of jack pine is used 

for pulpwood, poles, lumber posts and mine timbers (Panshin and de Zeeuw 1980). Jack 

pine is a very important species for forest utilization. However, the variation of wood 

properties in the stem of jack pine has not been studied adequately to date.

In this study, a single jack pine stem was studied with the following objectives: 

1) to demarcate juvenile/mature wood boundary; 2) to investigate the variation of 

tracheid length, relative density and ring width, with respect to ring age, height and 

aspect; 3) to investigate the variation of radial and tangential shrinkage; 4) to find out the 

vertical distribution of juvenile wood and the percentage of juvenile wood.
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LITERATURE REVIEW

T r a c h e id  len g th

It is generally accepted that most coniferous species have a general pattern of 

radial variation (Panshin and de Zeuuw 1980). According to Panshin and de Zeeuw 

(1980), tracheid length is very short near the pith, and thereafter, tracheid length follows 

one of the following patterns (Figure 1):

(1) Tracheid length increases rapidly from the pith outward in the juvenile wood 

until a maximum is reached at a certain range of ring age. After that, tracheid length 

remains constant in the mature wood (Dadswell 1958; Schmidt and Smith 1961; Zobel 

and Blair 1976; Barrichelo and Brito 1979).

(2) Tracheid length shows a rapid increase in the juvenile wood followed by 

continuously slow increase in the mature wood (Elliott 1960; Panshin and de Zeuuw 

1980; Plumotre 1983; Zobel etal. 1983).

(3) Tracheid length shows a rapid increase in the juvenile wood until a maximum 

is reached at a certain range of ring age. After that, tracheid length showed a leveling off 

in the mature wood (Panshin and de Zeuuw 1980; Megraw 1985).

Tracheid length is primarily affected by the cambial initial length from which it 

developed (Schmidt and Smith 1961; Panshin and de Zeuuw 1980; Megraw 1985). The 

cambial initials divide periclinally in the tangential-longitudinal plane and anticlinally in 

the radial plane. Bannan (1967) emphasized that it was the cambial initials which
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40 40 « 100
Ring number from the pttfi

XI

Figure 1. Typical curves for tracheid length variation from pith to bark (Revised from 
Panshin and de Zeeuw, 1980).

controlled tracheid length variation, that is, very short near the pith with rapid increase 

outward followed by a leveling off. According to Megraw (1985), the rate of anticlinal 

division has a major effect on the variation of tracheid length in Pinus taeda L. The 

author stated "when tree growth is rapid, a greater frequency and survival rate of 

cambial anticlinal division is required to keep up with girth expansion. ... This tends to 

reduce average fiber length during periods of rapid growth."

According to tracheid length variation, the cross section of the stem can be 

divided into two zones from the pith outward: (1) juvenile wood or core wood zone 

where rapid increase in tracheid length occurs; (2) mature wood or adult wood where 

tracheid length is relatively constant (Rendle 1959a). Wheeler et al. (1966) further 

emphasized that these two types of woods must be recognized and taken into 

consideration when any variation studies are conducted within and between trees.
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Regression analysis of tracheid length over ring age was used to demarcate the 

juvenile and mature wood boundary by Yang et al. (1986) in Larix laricina (DuRoi) K 

Koch. Bendtsen and Senft (1986) used a more usual method by examining graphic plots 

of tracheid length over rings from pith to bark in Pinus taeda L. Also a logarithmic 

formula was reported by Shiokura (1982) to describe the radial variation of tracheid 

length with ring number in coniferous trees.

Longitudinally from the stump upwards, the tracheid length tends to increase 

with increasing height up to a maximum, thereafter the tracheid length decreases with 

further increasing height (Panshin and de Zeuuw 1980). The same trend was described 

by Kribs (1928) for Pinus banksiana Lamb., by Wheeler et al. (1966) for Pinus taeda L., 

and by Megraw (1985) for Pinus taeda L. Another trend in axial variation of tracheid 

length is that tracheid length shows a constant decrease in the upward direction (Webb 

1964). However, Wang and Micko (1984) found that the tracheid length at the top of the 

tree was longer than from the lower heights in Picea glauca (Moench) Voss. Moreover, 

Taylor (1973) showed no trend of tracheid length with stem height at all in hardwood of 

Eucalyptus grandis Hill ex Maiden. The variation of the proportion of juvenile wood 

from the base to the top of the tree is assumed to be the reason for the variation in 

tracheid length along the tree trunk by Zobel (1975a).

Rela tiv e  d e n sity

Relative density of wood is the ratio of the dry weight of wood substance based 

on green volume to the weight of an equal volume of water. It indicates the amount of 

actual substance in a unit volume of wood on the green volume base (Zobel and Jett
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1995). Wood density is defined as the ratio of the dry weight of wood to its volume and 

is normally expressed as grams per cubic centimeter (g-cm 3) based on the green volume. 

Using the metric system, wood density and relative density are easily converted. 

Because of the numerous efforts investigating wood density and relative density, its 

variation can be well understood. It is affected by the cell wall thickness, the cell 

diameter, and the earlywood to latewood ratio (Panshin and de Zeeuw 1980).

Relative density within a tree varies from pith to bark and with height in the 

stem. Variation of relative density from pith to bark can be categorized into three groups 

(Panshin and de Zeeuw 1980):

(1) Relative density increases from pith outward, then remains constant in the 

mature wood (Cooper 1960; Gilmore and Pearson 1969; Barrichelo and Brito 1979; 

Bunn 1981; Roody 1983; Kellison etal. 1983; Megraw 1985).

(2) Relative density decreases from pith outward, then increases toward the bark 

(Tajima 1967; Olesen 1977; Kromhout and Toon 1978; Falkenhagen 1979; Lewark 

1979).

(3) Relative density decreases linearly or curvilinearly from the pith to bark 

(Krahmer 1966; Taylor and Wooten 1973).

Low relative density near the pith followed by a density increase from pith to 

bark is the predominant variation in relative density for about two-third of the softwood 

and hardwood species (Panshin and de Zeeuw 1980). Relative density near the pith is 

low because there are relatively few latewood cells and a high proportion of cells have 

thin cell wall layers (Haygreen and Bowyer 1996). Some species exhibit greater density 

variation than others. For example, in Picea sitchensis (Bong.) Carr., relative density is 

very high in the innermost rings and then decreases from the pith outward until a
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minimum is reached about ring 8 to 12, after which it increases gradually towards the 

bark (Harvald and Olesen 1987). This is in agreement with Petty et al. (1990) who also 

found relative density in Picea sitchensis (Bong.) Carr, to be relatively high near the 

pith, falling to a minimum further out and then gradually increasing with distance from 

the pith. This trend in relative density variation was also found for Pinus caribaea 

Dougl. by Kromhout and Toon (1978), for Pinus caribaea Dougl. by Falkenhagen 

(1979). High relative density near the pith in Pinus banksiana Lamb, was not found in 

the literature.

In a study done by Harvald and Olesen (1987) on the variation of relative density 

within the juvenile wood of Picea sitchensis (Bong.) Carr., it was found that relative 

density decreased with increasing height in the stem. Megraw (198S) found that wood 

relative density was slightly greater at breast height than higher up in Pinus taeda L. 

Donaldson et al. (1995) also reported a similar pattern in Pinus radiata D. Don. grown 

in New Zealand. However, in contrast, Ward (1975) found that for Picea sitchensis 

(Bong.) Carr., relative density does not markedly decrease with height in the stem, but 

rather increases with increasing height.

Compression wood in conifers has an indistinct and sharp latewood band and is 

deeper in color than normal wood (Panshin and de Zeeuw 1980). Compression wood has 

different microscopic structures from normal wood, e.g., short tracheid, round shape 

cell, flat fibril angel, and thick cell wall. Compression wood tends to have a higher 

relative density than normal wood due to its thicker cell wall (Panshin and de Zeeuw 

1980; Haygreen and Bowyer 1996).
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R in g  w id th

Ring width or growth rate is often used as the most important criterion for tree 

selection in tree improvement programs. Radially, ring width decreases from the pith 

outward to the bark. This decreasing trend reaches a minimum at a certain age and then 

levels off and fluctuates with environmental conditions. Axially, ring width increases 

with increasing height.

Seth and Agrawal (1984) found that the ring width increased at the pith and then 

slowly decreased to the bark in Pinus wallichiana A.B. Jackson. Taras (1965) and Pemg 

(1983) stated that ring width decreased from pith to bark with fluctuation in the mature 

wood of Pinus elliottii Engelm. and Picea rubens Sarg., respectively. Kozlowski (1971) 

reported an axial pattern of ring width variation as ring width narrowed down with 

decreasing height. Larson (1969) emphasized that environmental factors such as climate 

changes and thinning led to fluctuation of ring width. Ring width can also be increased 

by thinning in southern pine as reported by Martin (1984). Fast-grown plantation trees 

tend to have wider rings than trees grown in a natural location (Bendtsen 1978; Zobel 

1981; Zobel 1984; Megraw 1985). Though much research has been done about ring 

width variation, reports on variation of ring width in jack pine are scarce.

Sh r in k a g e

Wood is subject to dimensional changes when its moisture fluctuates below the 

fiber saturation point. The amount of shrinkage is generally proportional to the amount
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of water removed from the cell wall below the fiber saturation point. Dimensional 

changes caused by shrinkage are anisotropic: i.e., different in axial, radial, and tangential 

directions. Axial shrinkage of wood can be negligible: i.e., 0.3% in practice. For jack 

pine, mean values for radial and tangential shrinkage are roughly 3.7% and 6.6%, 

respectively (Forest Products Laboratory 1999). These values refer to changes from 

green to oven-dry conditions and are expressed in percentage of green dimensions.

Shrinkage of wood is affected by a number of factors, such as relative density, 

the size and shape of the measured wood, and the anatomic structure of the wood (Siau 

1984; Skaar 1988, Desch and Dinwoodie 1996). Radial and tangential shrinkage 

variations are reported by Yao (1969) in Pirtus taeda L., Wilcox and Pong (1971) in 

Abies balsamia (L.) Mill., Choong and Foggy (1989) in Pinus echinata Mill., and 

Koubaa et al. (1998) in Populus x euramericcma (Dode) Guinier. They all found (1) 

radial and tangential shrinkage increased from the pith outward followed by a leveling 

off near the bark; and (2) radial and tangential shrinkage tended to decrease with 

increasing height. There is lack of information in regard to shrinkage variation in jack 

pine.

Vo l u m e  o f  ju v en ile  w ood

Zobel et al. (19S9) defined juvenile wood as wood formed near the tree center. 

Juvenile wood is sometimes referred to as core wood because it is produced near the pith 

during the early period of tree growth (Yang 1986). Generally, the period of juvenile 

wood varies from 5 to 20-year-of-age (Panshin and de Zeeuw 1980). Corson (1991) 

reported juvenile wood was the first 15 annual growth rings from the pith in Pirtus
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radiata D. Don., while Cown (1992) defined it within 10 rings for the same species. In 

fact, there is no clear demarcation between juvenile and mature wood. The term 

"transition zone" always refers to the region between the two types of woods. This 

means no distinct line can be drawn where juvenile wood ends and where mature wood 

begins. However, relative density, tracheid length, growth rate and cell diameter can be 

used as criteria for defining the juvenile wood zone. While using these as criteria, 

different results may be obtained (Yang et al. 1994).

Juvenile wood has an important impact on wood properties. According to Zobel 

and Sprague (1998), the "juvenile wood zone is the area of rapid change in properties 

near the pith; mature wood is more uniform towards the bark." Compared with mature 

wood, juvenile wood has shorter tracheid length, smaller cell diameter, larger 

microfibrillar angels, and low relative density which lead to poor physical properties and 

mechanical strength, and different chemical properties in the end products. Because of 

the "undesirable" properties of juvenile wood, the percentage of juvenile wood in a 

whole tree is a concern for many researchers due to its impact on wood strength and 

wood product qualities (Pansin and de Zueew 1980; Yang 1994; Zobel and Sprague 

1998).

The proportion of juvenile wood is related to tree age. Zobel and Blair (1976) 

have demonstrated that juvenile wood volume in plantation loblolly pine (Pirns taeda 

L.) at 15, 25 and 40-year-of-age contain 85%, 55% and 19% of juvenile wood, 

respectively. Kellison (1981) stated that Pirtus taeda L. contained 19% by volume of 

juvenile wood at age 45 and 85% at age 15. Senft (1986) found that a naturally grown 

50-year-old Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) may be expected to 

contain about 16% juvenile wood, while a plantation grown tree of a similar size but
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younger age may be expected to contain about 55% juvenile wood. The percentage of 

juvenile wood is largely dependent on species and environmental conditions (Yang 

1986).
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MATERIALS AND METHODS

Sa m ple  c o l l e c t io n  and  pr e pa r a t io n

One jack pine tree was selected and felled at the Lakehead University Jack 

Haggerty Forest, Thunder Bay, Ontario. The tree was 60-year-old and in a naturally 

grown stand. Appendices I and II show the field data of the stand and diameter and 

number of growth rings at various heights of the tree, respectively. Figure 2 illustrates 

the sample collection in the field and preparation in the laboratory.

Nine pith-to-bark wood discs, 3 cm thick each, were sectioned from the tree stem 

at heights of0.15, 1.4, 3.4, 5.4, 7.4, 9.4, 11.4, 13.4, and 15.4 m. The wood discs were cut 

into strips, 1.5 cm thick, in an east-west orientation.

The wood strips were used for ring width measurements and shrinkage studies. 

The shrinkage was studied first. After which the strips were made into further specimens 

for relative density, tracheid length and juvenile/mature wood boundary determination.

Determ in a tio n s  and  m ea su rem en ts

Ring Width

The central wood strips of the disc that contained the pith-to-bark section were 

smoothed with a sander to expose the growth rings on cross-section. The cross-sections 

of each strip were placed on a photo copy machine (Konica 7033) according to their 

location in the stem and the images were copied. The image of growth ring was
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magnified 10 times and copied in order to measure the ring width easily. After the 

magnified copy of growth ring of each strip was measured and recorded, the actual 

width of each ring width was obtained by dividing 10.

Shrinkage

The central wood strips from each wood disc were used for radial shrinkage 

measurements. Others left were used for tangential shrinkage measurements. Each strip 

was immersed in water for seven days until saturated to represent the green condition. 

Two lines were drawn at each end of the strip and the distance between these two lines 

was measured and recorded as the distance of green condition.

These strips were dried in an oven at 100±3 °C for approximately 2 weeks until a 

constant weight was obtained. The distance of each strip as marked was then re­

measured as the oven-dry distance of the strip. The shrinkage percentage of each strip 

from a green condition to an oven-dry condition was calculated using the following 

formula:

Shrinkage % = — ——  x 100 Equation (1)
Lm

Where L m -  the green condition distance of the sample 

Lo = the oven-dry distance of the sample
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Figure 2. Illustration of sample collection and preparation.
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Relative Density

Relative density is defined as the wood substance present in a given green 

volume of wood. The maximum moisture content method (Smith 1954) for small sample 

was used to determine the relative density of growth ring.

To determine the relative density, each wood strip was cut into small chips that 

contained one growth ring. Each chip was numbered and placed in beakers with distilled 

water. The beakers were then placed in a dessicator and a vacuum was applied to draw 

the air out of the wood. The vacuum was applied for 14 days to ensure complete 

saturation, i.e., no more water intake, of the samples. Once the chips reached their 

maximum weights, they were removed from the dessicator and weighed on an automatic 

semi-micro-balance as maximum moisture contents (Wm). The water saturated chips 

were dried in an oven at 100±3 °C for approximately 1 week until a constant weight was 

obtained. The dried chips were then weighed as the oven dry weight (Wo).

The relative density of the growth rings was calculated using the following 

formula from Smith (1954).

Relative density = -------------    Equation (2)
(Wm-Wo)/Wo + \/G

Where Wm = the maximum moisture content of the chip 

Wo = the ovendry weight of the chip 

G = the density of the cell wall substance =1.53
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Tracheid Length

After the relative density measurements were completed, the wood chips were 

cut into small wood sticks and placed in labeled test tubes. The wood sticks were 

macerated for tracheid length measurement according to Franklin (1945). The 

maceration solution was prepared with an equal part of glacial acetic acid and hydrogen 

peroxide. After the solution was placed in the test tubes, they were covered by parafilm 

and placed on a heater at 60 °C for 48 to 72 hours until the wood sticks turned white. 

Then the wood sticks were rinsed three times with distilled water and shaken into 

individual tracheids. The tracheids from each tube were placed on a microscopic slide 

and viewed through a light microscope with 2.5 * 10 magnification.

A preliminary measurement was made to determine the number of tracheids 

required at a given confidence level and allowable error. Growth ring ages 9 and 18 

counted from the pith of 15.4 m wood disc were randomly selected for tracheid length 

preliminary measurement. Twenty-five tracheids from growth ring ages 9 and 18 were 

randomly measured to represent the tracheid length of the growth ring. The result of the 

preliminary measurement used to determine the number of tracheid length measurement 

required for a given confidence level and an allowable error was calculated using the 

following formula:

N =
E 22

Equation (3)

Where N = number of tracheids to be measured
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t = the student's t

a = the confidence level at 95% (i.e. a < 0.05) 

s = standard deviation of the samples 

x = mean of the samples 

CV = coefficient of variation, * 100 

E = allowable error at 10% of the mean

In this study, 25 tracheid lengths were required at 95% confidence level and 

allowable error at 10% of the mean.

Volume of Juvenile Wood

The juvenile wood in this study was defined as the zone where the tracheid 

length increased progressively from the pith outwards to the bark, while mature wood 

was defined as the zone where the tracheid length became constant or leveled off.

The following formulae were used to calculate the volume of juvenile wood and 

mature wood.

Volume of juvenile wood for each section = Juvenile wood basal area * Height of the

2 • , ^(r.2+ fb2)section = i t x r  x Height of the section = -----   *(Ht -Hb) Equation (4)

Volume of total juvenile wood = Sum of the 9 sections Equation (5)

Where r = radius of the juvenile wood

rt = radius of the juvenile wood of the top section
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ib = radius of the juvenile wood of the base section

Height o f the section = H, - Hb = height of the top section (H,) - height of the 

base section (Hb)

In this study, the tree bole was divided into nine conical sections. The volume of 

total juvenile wood equals the sum of volume of juvenile wood of the nine sections.

Cambial initial age was defined as the number of years between the formation of 

the cambium initials and the year the seed germinated (Yang et al. 1986). At a given tree 

height, the cambial initial age is calculated by taking the difference between the number 

of growth rings at 0.15 m height and the number of growth rings at the upper level, plus 

one. The relationship between juvenile wood width and cambial initial age was 

analyzed.

Da t a  analysis

Variation of the three variables {i.e., tracheid length, relative density and ring 

width) were analyzed with respect to several factors such as ring age, height in stem, and 

aspect. Radial and tangential shrinkage were analyzed with respect to wood strip number 

(from the pith to bark instead of ring age) and height in stem. Tangential shrinkage of 

the two outermost wood strips from wood disc was analyzed with respect to height in 

stem. The data were entered into Microsoft Excel and then analyzed with the SPSS 

program.
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Juvenile and Mature Wood Boundary

In this study, tracheid length was used as a criterion for determining the 

boundary of juvenile and mature wood. The determination of juvenile/mature wood 

boundary was based on Yang et al. (1986) method. The initial boundary of juvenile and 

mature wood was determined by examining the plot of tracheid length over ring age 

counted from the pith for all heights and aspects. The juvenile wood zone was defined as 

where the tracheid length stopped increasing rapidly, while the mature wood was 

defined as the zone where the tracheid length became constant or leveled off. Then the 

data became separated into two parts, pith to boundary and boundary to bark. Two 

regression lines were calculated by using tracheid length of these two sets of data, 

respectively. The intersection of these two lines was considered the secondary boundary 

between juvenile and mature wood for all the heights and aspects. However, this method 

could not be applied for the upper two heights (15.4 m and 13.4 m) of the tree stem 

because there were no distinct points where the tracheid length increased rapidly and 

where the tracheid length became constant. Also the radial variations of tracheid length 

between two aspects were not consistent due to its nature. Therefore, an adjusted 

tracheid length as boundary point of juvenile and mature wood at various heights was 

used. The adjusted tracheid length was determined by using the mean of tracheid length 

in the west and east aspects for all heights except for the upper two heights (15.4 m and 

13 .4 m). Then an axial trend from the base to the top of the stem for all height except the 

upper two heights (15.4 and 13.4 m) was obtained. The upper two tracheid lengths as 

boundary points were derived by examining the extended axial trend of other heights. 

After the tracheid length of boundary point was determined for all heights, horizontal 

lines were drawn on the radial variation pattern curves and crossed with the curves at
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both west and east aspects. The intersections between the horizontal lines and the radial 

variation curves at the west and east aspects were considered the new boundaries of the 

juvenile and mature wood for west and east aspect, respectively.

Tracheid length, relative density and ring width of juvenile and mature wood 

were analyzed separately.

Table 1. Tracheid length of boundary point for demarcating boundary of juvenile and 
mature wood at various heights.

Height
(m)

Tracheid length of the 
new boundary (mm)

15.4 2.00
13.4 2.10
11.4 2.50
9.4 2.70
7.4 2.80
5.4 3.20
3.4 3.20
1.4 3.15

0.15 3.00

Radial Variation

Radial variations of the variables in the juvenile wood were examined using 

linear regression. The linear equation Y=a+bX was used to determine the fitness of the 

model to the data. Y is the wood property variable, X is the ring age counted from the 

pith, a and b are the intercept and slope of the regression line, respectively. The slope (b) 

represented the general variation trend of the wood property variable with ring age in the
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juvenile wood. The correlation coefficient of the regression (r) between X and Y of the 

model was also calculated for the data set for each height and aspect.

Axial Variation

Multiple comparison procedures are methods to determine which means are 

significantly different from each other (Norusis 1982). Axial variations of the variables 

were tested with the multiple comparison method on the series of height means for the 

juvenile wood and mature wood. Each height mean was calculated from the data of two 

aspects of a given height. Juvenile and mature wood were tested separately. In this study 

multiple comparison was used to identify the height means which were significantly 

different from others. Those height means that were significantly different from others 

were classified into one of the subsets. The height means of different subsets were 

significantly different from each other.

Differences between Two Aspects

The differences between the means of west and east aspects were tested with 

student's t test. For the null hypothesis of no difference, the test was as follows:

X1 -X 2 d  
s- - s-

x i - x i  d

Note that d  is used to replace the difference of the two means, s- is the standard 

deviation appropriate to a difference between two means.
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The test of difference between the two aspects for the variables was based on the 

means at each height from west and east aspects. Juvenile wood and mature wood were 

separated for analysis.

Correlations between Variables

Correlations between each pair of the following variables were tested: tracheid 

length, relative density, ring width and ring age. The tests were to examine the strength 

of linear association (Norusis 1982) between every two of the above variables. The 

correlations were based on the data from the juvenile and mature wood of the entire 

stem, respectively.
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RESULTS

The results in the following section are in accordance to the sequence of data 

analysis.

Tr a c h e id  len g th  

Radial Variation

In the jack pine stem, tracheid length increased progressively from the pith 

outward for all heights, then remained constant (11.4, 9.4, 7.4, 5.4, 3.4, 1.4 m) or 

leveled off (0.15 m) at ring age of juvenile and mature wood boundary (Table 2) towards 

the bark (Figure 3). In the juvenile wood, tracheid length was shorter than that in the 

mature wood.

The radial variation of tracheid length with ring age could be expressed by the 

linear regression equation Y= a+bX (Table 2). The linear regression equations were all 

significant at the 5% level in both juvenile and mature wood for all heights and aspects.

The boundaries between juvenile and mature wood at each height are shown in 

Figure 3. The slope of the regression line represents the rate at which tracheid length 

increased with ring age from the pith outward. In both west and east aspects, the slope 

increased with increasing height from the base up to the top with an exception low value 

at 13.4 m (Figure 4).
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Table 2. Linear equations Y=a+bX representing the variation o f juvenile wood tracheid 
length (Y) with ring age (X), and ring age of the juvenile/mature wood 
boundary (Xjm) for each heights of the west and east aspects.

Height Total West East
(m) ring

age
(yrs) a+bX r xjm a+bX r xjm

15.4 18 0.73+0.21X 0.99** 7 0.88+0.23X 0.96** 6
13.4 26 0.78+0.14X 0.99** 9 0.83+0.1 OX 0.99** 12
11.4 33 0.84+0.18X 0.96** 11 0.95+0.13X 0.98** 13
9.4 39 0.99+0.16X 0.98** 13 1.00+0.14X 0.98** 15
7.4 42 1.11+0.13X 0.96** 16 1.00+0.12X 0.98** 16
5.4 49 1.01+0.13X 0.99** 19 0.89+0.12X 0.99** 21
3.4 52 1.02+0.12X 0.93** 21 1.00+0.12X 0.96** 22
1.4 56 0.98+0.12X 0.97** 21 0.99+0.1 OX 0.97** 25

0.15 59 1.12+0.07X 0.99** 28 0.97+0.07X 0.99** 30

** Significant at a  <0.01.

Axial Variation

The mean tracheid length increased from base upward and reached a maximum 

at 3.4 m and 5.4m height for juvenile and mature wood, respectively. Thereafter, the 

mean tracheid length of the west and east aspects decreased toward to the top for both 

juvenile and mature wood (Figure 5). Mean tracheid length of the west and east aspects 

at various heights are listed in Appendix m .

In the juvenile wood, the mean tracheid length at the 13.4 m was significantly 

different from that at the 3.4 m (Table 3). No significant differences were found between 

all other heights in the juvenile wood. In the mature wood, the mean tracheid length of 

the 5.4 m and 3.4 m height were in the subsets of the highest value, and those of the 15.4 

m and 13 .4 m were in the subsets of the lowest value (Table 3). Impact of height is more
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Figure 3. Radial variation of tracheid length at various heights of the tree at west and 
east aspects. Arrows indicate the boundary o f the juvenile and mature wood. 
Note that negative ring ages represent west aspect and positive ring ages 
represent east aspect.
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Figure 3. (Continued) Radial variation of tracheid length at various heights of the tree at 
west and east aspects.
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Figure 3. (Continued) Radial variation of tracheid length at various heights of the tree at 
west and east aspects.
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significant in the mature wood than in the juvenile wood. For both juvenile and mature 

wood, the shortest tracheid length occurred at the upper tree heights, i.e., 13.4 m and

15.4 m in the juvenile and mature wood, respectively.

Table 3. Multiple comparisons of the means of tracheid length of heights for testing 
axial variation in the juvenile and mature wood.

Juvenile wood Mature wood
Height Mean Subset* Mean Subset*

(m) (mm) 1 2 3 (mm) 1 2 3 4

15.4 1.62 1.62 1.62 2.54 2.54
13.4 1.47 1.47 2.63 2.63
11.4 1.90 1.90 1.90 1.90 2.93 2.93
9.4 2.08 2.08 2.08 2.08 3.15 3.15
7.4 2.10 2.10 2.10 2.10 3.21 3.21
5.4 2.26 2.26 2.26 3.45 3.45
3.4 2.36 2.36 3.32 3.32 3.32
1.4 2.29 2.29 2.29 3.26 3.26

0.15 2.09 2.09 2.09 2.09 2.82 2.82

a Subsets 1, 2, 3, ... for juvenile and mature wood denote subsets significantly
different from each other; the height means within the subsets are not significantly 
different. For example, in the mature wood, subset 1 contains mean tracheid length 
2.54 and 2.63 of 15.4 and 13.4 m heights and they are significantly different from 
subset 2 which contains the mean of 2.93 and 2.82 of height 11.4 and 0.15 m; the 
mean 2.54 and 2.63 in subset 1 are not significantly different. (Significant at a  = 
0.05)

Difference between Two Aspects

The mean tracheid length of the west and east aspect at each height were not 

significantly different from each other in the juvenile wood (Table 4). In the mature 

wood, the mean tracheid length of the west aspect was significantly longer than that of 

the east aspect at 13.4 m, 11.4 m, 7.4 m and 3.4 m, while the mean tracheid length of the
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west aspect was significantly shorter than that of the east aspect at 9.4 m and 1.4 m. At 

all other heights in the mature wood, the mean tracheid length of the west and east 

aspects were not significantly different.

Table 4. Number of measurements, mean tracheid length, standard deviation and t value 
for testing the differences between west and east aspects in tracheid length at 
various heights.

Height
(m) Aspect

Mature wood Juvenile wood

N
Mean
(mm) s t N

Mean
(mm) s t

15.4 West 11 2.54 0.182 7 1.58 0.463
East 12 2.54 0.216 ns 6 1.67 0.437 ns

13.4 West 17 2.75 0.209 9 1.50 0.398
East 14 2.50 0.207 2.16* 12 1.44 0.350 ns

11.4 West 22 3.00 0.223 11 1.78 0.604
East 20 2.85 0.225 2.42* 13 1.84 0.525 ns

9.4 West 24 3.09 0.102 13 2.08 0.618
East 24 3.20 0.177 -2.77* 15 2.09 0.623 ns

7.4 West 26 3.35 0.122 16 2.19 0.629
East 26 3.06 0.284 4.85** 16 2.02 0.586 ns

5.4 West 28 3.44 0.077 19 2.27 0.719
East 28 3.46 0.140 ns 21 2.25 0.777 ns

3.4 West 31 3.37 0.106 21 2.32 0.787
East 30 3.26 0.140 3.57* 22 2.39 0.816 ns

1.4 West 35 3.19 0.213 20 2.30 0.762
East 31 3.35 0.073 -3.81* 28 2.29 0.759 ns

0.15 West 31 2.77 0.254 28 2.11 0.572
East 28 2.88 0.233 ns 30 2.08 0.636 ns

* Significant at a  < 0.05. 
** Significant at a  <0.01. 
ns - not significant
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R ela tiv e  den sity  

Rad ia l V ariation

In the juvenile wood, relative density was generally high near the pith and 

decreased outward to a certain ring age, then increased further outward. The higher 

relative density near the pith was more obvious in the juvenile wood at the heights of

15.4 m, 13.4 m, 5.4 m and 3.4 m. In the mature wood, the variation of relative density 

became relatively constant for all heights (Figure 6). Table 5 shows the linear equations 

expressing the radial variation of relative density with ring age in the juvenile wood. The 

slopes (b) were all negative indicating the general decreasing pattern of relative density 

(Y) with ring age (X) with an exception of a positive slope at 0.15 m. At some heights 

of both aspects, there was no correlation between relative density and ring age in the 

juvenile wood. The ranges of relative density variation were 0.32-0.69 and 0.35-0.53 for 

the juvenile and mature wood, respectively. The highest relative density 0.69 occurred in 

the juvenile wood of the east aspect at 13 .4 m.

Axial Variation

In the juvenile wood, mean relative density decreased from the base up to the top 

with an exception o f a relatively high relative density at 13.4 m height. Relative density 

in the mature wood followed the same variation pattern as shown in the juvenile wood. 

Figure 7 shows the axial variation of relative density with height for juvenile and mature 

wood. Mean relative density of the west and east aspects at various heights are listed in 

Appendix IV.
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Figure 6. (Continued) Radial variation of relative density at various heights of the tree at 
west and east aspects.
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The mean relative density of juvenile wood at 13.4 m height was significantly 

different from that at other heights. The mean relative density at 13.4 m is the highest 

value (0.517) of relative density in the juvenile wood (Table 6). Relative density of 

mature wood showed a decreasing pattern with increasing height. The lowest and 

highest relative density occurred at 15.4 m and 0.15 m, respectively (Table 6).

Table 5. Linear equations Y=a+bX representing the variation of juvenile wood relative 
density (Y) with ring age (X) for each heights of the west and east aspects.

Total West East
Height

(m)
ring
age

(yrs) a+bX r a+bX r

15.4 18 0.56-0.0294X 0.93* 0.54-0.031 IX 0.84*
13.4 26 0.67-0.0382X 0.97** 0.72-0.0160X 0.68*
11.4 33 0.42-0.0065X 0.88** 0.41-0.0049X 0.76*
9.4 39 0.43-0.0046X 0.59* ns
7.4 42 0.43-0.003 7X 0.64* 0.40-0.000IX 0.53*
5.4 49 0.43-0.0043X 0.52* ns
3.4 52 0.51-0.0074X 0.46* ns
1.4 56 ns ns

0.15 59 0.40+0.004 IX 0.70** 0.40+0.0017X 0.50*

* Significant at a  < 0.05. 
** Significant at a <0.01. 
ns - not significant

Difference between Two Aspects

The mean relative density of the west aspect was significantly lower than that of 

the east aspect in the juvenile wood at 13.4 m, 5.4 m, 1.4 m, while a higher relative 

density occurred at the west aspect of 0.15 m (Table 7). At all other heights, there were
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no significant differences of mean relative density between these two aspects in the 

juvenile wood. In the mature wood, the mean relative density of the west aspect was 

significantly lower than that of the east for all heights, with an exception at 15.4 m 

(Table 7). No difference of relative density from west and east aspects was found for

7.4 m in the mature wood.

Table 6. Multiple comparisons of the means of relative density of heights for testing 
axial variation in the juvenile and mature wood.

Juvenile wood Mature wood
Height

(m)
Subset * 

Mean 1 2 Mean 1
Subset *

2 3 4 5

15.4 0.44 0.44 0.36 0.36
13.4 0.57 0.57 0.41 0.41 0.41
11.4 0.38 0.38 0.39 0.39
9.4 0.40 0.40 0.41 0.41 0.41
7.4 0.40 0.40 0.41 0.41 0.41
5.4 0.42 0.42 0.41 0.41 0.41
3.4 0.42 0.42 0.43 0.43 0.43
1.4 0.42 0.42 0.44 0.44

0.15 0.44 0.44 0.47 0.4

a Subsets 1, 2, 3, ... for juvenile and mature wood denote subsets significantly different 
from each other; the height means within the subsets are not significantly different 
(Significant at a=0.05).

R in g  w id th

Radial Variation

Ring width increased from the pith outward and reached a maximum at ring age 

of 4 to 12 for various heights followed by a leveling off in the remainder of the juvenile
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wood. In the mature wood the ring width fluctuated (Figure 8). The ring width of the 

east aspect at ring ages of 10 to 13 at 13.4 m was relatively wide and deviated from the 

general pattern.

Table 7. Number of measurements, mean relative density, standard deviation and t value 
for testing the differences between west and east aspects in relative density at 
various heights.

Height
(m) Aspect

Mature wood Juvenile wood
N Mean s t N Mean s t

15.4 West 11 0.37 0.024 7 0.45 0.068
East 12 0.35 0.010 2.24* 6 0.44 0.070 ns

13.4 West 17 0.39 0.015 19 0.48 0.108
East 14 0.44 0.026 -7.66** 12 0.63 0.055 -4.22*

11.4 West 22 0.38 0.018 11 0.39 0.024
East 20 0.40 0.020 -2.75* 13 0.38 0.025 ns

9.4 West 24 0.40 0.029 13 0.39 0.030
East 24 0.42 0.027 -2.40* 15 0.40 0.029 ns

7.4 West 26 0.40 0.021 16 0.40 0.028
East 26 0.41 0.028 ns 16 0.40 0.012 ns

5.4 West 28 0.39 0.023 19 0.39 0.046
East 28 0.44 0.033 -7.43** 21 0.45 0.049 -3.61*

3.4 West 31 0.41 0.024 21 0.43 0.098
East 30 0.45 0.023 -6.60** 22 0.42 0.089 ns

1.4 West 35 0.42 0.032 21 0.41 0.029
East 31 0.46 0.030 -5.03** 25 0.43 0.027 -2.18*

0.15 West 31 0.46 0.031 28 0.46 0.047
East 28 0.48 0.023 -2.79* 30 0.42 0.030 3.57*

* Significant at a  < 0.05. 
** Significant at a  <0.01. 
ns - not significant
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Figure 8. Radial variation of ring width at various heights of the tree at west and east 
aspects. Note that negative ring ages represent west aspect and positive ring 
ages represent east aspect.
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Table 8 shows the linear equations expressing the radial variation of ring width 

with ring age in the juvenile wood. The slope (b) which was positive or negative 

indicated the increase or decrease of ring width (Y) with ring age (X). At some heights 

of both aspects, there was no correlation between ring width and ring age in the juvenile 

wood.

Table 8. Linear equations Y=a+bX representing the variation of juvenile wood ring 
width (Y) with ring age (X) for each heights of the west and east aspects.

Total West East
Height

(m)
ring
age

(yrs) a+bX r a+bX r

15.4 18 0.81+0.246X 0.95* ns
13.4 26 0.70+0.247X 0.82* 0.46+0.333X 0.84*
11.4 33 ns ns
9.4 39 1.66+0.126X 0.62* ns
7.4 42 ns ns
5.4 49 ns 4.20-0.125X 0.51*
3.4 52 ns 3.75-0.108X 0.54*
1.4 56 ns

0.15 59 ns 3.65-0.062X 0.48*

* Significant at a  < 0.05. 
ns - not significant

Axial variation

In juvenile wood, ring width decreased from the base of the tree to the top with 

the narrowest ring at the top. There was no apparent trend for ring width variation in the 

mature wood. Figure 9 shows the axial variation of ring width with height for juvenile 

and mature wood. It is evident that ring width in the juvenile wood is wider than that in
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the mature wood (Figure 9). Mean ring width of the west and east aspects at various 

heights are listed in Appendix V.

In the juvenile wood, the differences among the height means of ring width were 

not significant. In the mature wood, the ring widths at 11.4 m and 9.4 m (wide ring 

subsets) were significantly different from that at 5.4 m (narrow ring subset) (Table 9).

Table 9. Multiple comparisons of the means of ring width of heights for testing axial 
variation in the juvenile and mature wood.

Juvenile wood Mature wood
Height Mean Subset* Mean Subseta

(m) (mm) 1 (mm) 1 2

15.4 1.8 1.8 1.4 1.4 1.4
13.4 2.3 2.3 1.6 1.6 1.6
11.4 2.6 2.6 1.7 1.7
9.4 2.6 2.6 1.7 1.7
7.4 2.8 2.8 1.5 1.5 1.5
5.4 2.8 2.8 1.2 1.2
3.4 2.6 2.6 1.4 1.4 1.4
1.4 2.7 2.7 1.3 1.3 1.3

0.15 2.7 2.7 1.6 1.6 1.6

a Subsets 1, 2, 3, ... for juvenile and mature wood denote subsets 
significantly different from each other; the height means within the 
subsets are not significantly different (Significant at a=0.05).

Difference between Two Aspects

There was no significant differences in the ring width between the west and east 

aspects in the juvenile wood for all heights (Table 10). The ring width in the west aspect 

was significantly wider than that in the east aspect at 9.4 m, 5.4 m, and 3.4 m in the
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mature wood. At other heights in the mature wood, ring width at the west aspect was not 

significantly different from that at the east aspect (Table 10).

Table 10. Number of measurements, mean ring width, standard deviation and t value for 
testing the differences between west and east aspects in ring width at various 
heights.

Height
(m) Aspect

Mature wood Juvenile wood

N
Mean
(mm) s t N

Mean
(mm) s t

15.4 West 11 1.4 0.373 7 1.8 0.563
East 12 1.4 0.342 ns 6 1.9 0.432 ns

13.4 West 17 1.6 0.714 9 1.9 0.825
East 14 1.6 0.849 ns 12 2.6 1.425 ns

11.4 West 22 1.6 0.390 11 2.3 0.866
East 20 1.8 0.607 ns 13 2.7 0.970 ns

9.4 West 24 2.0 0.536 13 2.5 0.794
East 24 1.3 0.511 4.33** 15 2.7 0.860 ns

7.4 West 26 1.5 0.459 16 2.7 0.606
East 26 1.5 0.356 ns 16 2.9 0.778 ns

5.4 West 28 1.4 0.430 19 2.8 1.102
East 28 1.1 0.222 2.62* 21 2.8 1.532 ns

3.4 West 31 1.6 0.313 21 2.8 1.163
East 30 1.3 0.340 3.47* 22 2.5 1.301 ns

1.4 West 35 1.3 0.340 21 2.6 1.034
East 31 1.3 0.411 ns 25 2.7 1.373 ns

0.15 West 31 1.6 0.656 28 2.7 0.982
East 28 1.6 0.555 ns 30 2.7 1.139 ns

* Significant at a  < 0.05. 
** Significant at a  < 0.01. 
ns • not significant
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Shr in k a g e

Radial and Axial Variation

Mean tangential shrinkage (5 .6%) was greater than mean radial shrinkage (4.0%) 

in the jack pine studied. Mean radial tangential shrinkages at various heights of the west 

and east aspect are listed in Appendix VI.

Radial shrinkage was at the pith section while tangential shrinkage was at the 

various tangential sections from pith to the bark. Tangential shrinkage increased from 

the pith outward to the bark, reaching a maximum and then leveled off near the bark for 

all heights except in the east aspect at 15.4 m and 13.4 m (Figure 10). Shrinkage in the 

east aspect at 15.4 m decreased from the pith outward, reaching a minimum and then 

increased to the bark, while shrinkage in the east aspect of 13.4 m remained constant 

from pith outward to the bark. The tangential shrinkage values in the east aspect at 13 .4 

m and 15.4 m were lower than expected.

Both radial and tangential shrinkage were relatively low at 0.15 m and increased 

at 1.4 m. Thereafter, radial and tangential shrinkage showed a decreasing trend with 

increasing height (Figure 11). Tangential shrinkage at the top (15.4 m) height was 

significantly lower than at other height levels excluding that at 13.4 m (Table 11). The 

tangential shrinkage value at the top was the lowest with a value of 3.4%. No significant 

differences were found for tangential shrinkage at all other heights below 13.4 m.

Axial tangential shrinkage variation of the two outermost wood strips is shown in 

Figure 12. It was relatively low at 0.15 m and increased at 1.4 m. After that it decreased 

with increasing height. Tangential shrinkage of the two outermost wood strips at the top 

(15.4 m) height was significantly lower than those at other heights, excluding that at
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13.4 m (Table 12). The tangential shrinkage value at the top was 3.4%. No significant 

differences were found for tangential shrinkage of the outermost two wood strips at 

various heights below 13 .4 m. Mean tangential shrinkage of the two outermost wood 

strips at various heights of the west and east aspect is listed in Appendix VII.

Relationship between Shrinkage and Relative Density

Generally, there is a close relationship between shrinkage and relative density, 

that is, wood with a higher relative density shrinks more than the one with a lower 

density (Haygreen and Bowyer 1996). In this study, no correlation was found between 

radial shrinkage and relative density, nor between tangential shrinkage and relative 

density (Figures 13).

Vo l u m e  o f  ju v e n il e  w ood

Vertical variation of juvenile and mature wood, expressed by the ring age and the 

tree diameter, is shown in Figures 14, IS and Table 13.

The juvenile wood core in this 60-year-old jack pine is conical in shape when 

expressed both by ring age and tree diameter (Figures 14 and IS). No mature wood was 

found when the tree is less than 26-year-old. Based on ring age or tree diameter as 

criteria, the percentage of juvenile wood volume accounted for approximately 16% and 

30%, respectively of the total tree stem volume.
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Figure 10. Radial variation of radial and tangential shrinkage at various heights of the 
tree at west and east aspects. Note that negative wood strip numbers represent west 
aspect and positive wood strip numbers represent east aspect.
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Figure 10. (Continued) Radial variation of radial and tangential shrinkage at 
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Figure 10. (Continued) Radial variation of radial and tangential shrinkage at 
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Figure 11. Axial variation of radial and tangential shrinkage at various heights.

Table 11. Multiple comparisons of the means of tangential shrinkage at various heights 
for testing axial variation.

Height
(m)

Subset8
Mean (%) 1 2

15.4 3.4 3.4
13.4 5.3 5.3 5.3
11.4 6.1 6.1
9.4 5.9 5.9
7.4 5.8 5.8
5.4 5.6 5.6
3.4 6.0 6.0
1.4 6.3 6.3

0.15 5.9 5.9

* Subsets 1, 2 denote subsets significantly different 
from each other; the height means within the subsets 
are not significantly different (Significant at a=0.05).
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Figure 12. Axial tangential shrinkage variation of the two outermost wood strips at 
various heights.

Table 12. Multiple comparisons of the means of tangential shrinkage of the two 
outermost wood strips at various heights for testing axial variation.

Height Subset *
(m) Mean (%) 1 2

15.4 3.4 3.4
13.4 5.5 5.5 5.5
11.4 6.6 6.6
9.4 6.4 6.4
7.4 6.3 6.3
5.4 6.4 6.4
3.4 7.1 7.1
1.4 7.2 7.2

0.15 6.5 6.5

a Subsets 1, 2 denote subsets significantly different 
from each other; the height means within the subsets 
are not significantly different (Significant at a=0.05).
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Relationship between Ring Age. Stem Diameter and Percentage of Juvenile Wood 
Volume

A strong linear correlation exists between percentage of juvenile wood volume 

and ring age (r = -0.830**), as well as percentage of juvenile wood and stem diameter (r 

= -0.927**). The percentage of juvenile wood volume, when expressed by ring age, 

remained 100% when the ring age is less than 26 years. The percentage of juvenile wood 

volume decreased rapidly with increasing ring age after 26 years (Figures 14 and 16). 

The percentage of juvenile wood volume, when expressed by stem diameter, remained 

100% when the stem diameter was less than 15.2 cm at ring age 26. The percentage of 

juvenile wood volume decreased rapidly with increasing stem diameter when the tree 

diameter was greater than 15.2 cm (Figures 15 and 17).

Relationship between Juvenile Wood Zone Width and Cambial Initial Age

There is a strong negative correlation between juvenile wood zone width and 

cambial initial age. When expressed in ring age (Figure 18.a ), the correlation 

coefficients between juvenile wood zone width and cambial initial age were -0.97** and 

-0.98** for the west and east aspect, respectively. When expressed in centimeters 

(Figure 18.b ), the correlation coefficients between juvenile wood zone width and 

cambial initial age were -0.96** and -0.97** for the west and east aspect, respectively. 

The increasing cambial initial age led to the narrower juvenile wood zone width. This 

indicated that the cambial initial age plays an important role in juvenile wood formation.
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Breast Height to Entire Stem Correlation

In order to determine if the breast height values can be used to indicate the 

characteristics of wood for the entire stem, percentage of juvenile wood volume at the 

breast height and at the entire stem was studied. The coefficient of determination 

between breast height and the entire stem for percentage of juvenile wood volume was r2 

= 0.99 (Figure 17). The result implies that one can predict the juvenile wood volume for 

entire stem by using the values at breast height.

Table 13. Gross characteristics of juvenile wood and mature wood at various tree heights 
determined by tracheid length as juvenile/mature wood boundary in a 60-year- 
old jack pine.

Total Cambial Juvenile wood Mature Wood
ring initial Tree Tree Radius No. of Radius No. of

Height age age diameter radius (mm) (mm) rings (mm) rings
(m) (yrs) (yrs) (mm) W E W E W E W E W E

15.4 18 42 55.6 27.9 27.7 12.6 11.2 7 6 15.3 16.5 11 12
13.4 26 34 108.0 54.0 54.0 10.4 17.1 9 12 43.6 36.9 17 14
11.4 33 27 131.3 61.2 70.1 25.8 35.4 11 13 35.4 34.7 22 20
9.4 39 21 153.9 82.7 71.2 33.0 39.9 13 15 49.7 31.3 26 24
7.4 42 18 167.4 83.5 83.9 43.7 45.9 16 16 39.8 38.0 26 26
5.4 49 11 182.0 92.1 89.9 52.6 59.5 19 21 39.5 30.4 30 28
3.4 52 8 199.1 104.7 94.4 57.9 55.1 21 22 46.8 39.3 31 30
1.4 56 4 213.0 105.7 107.3 55.6 66.8 21 25 50.1 40.5 35 31

0.15 59 1 258.6 127.7 130.9 75.1 81.0 28 30 52.6 49.9 31 29
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C o r r e l a t io n s  b e t w e e n  v a r ia b l e s

Table 14 shows the correlation coefficients of the ring age, the tracheid length, 

the relative density and the ring width in the juvenile and mature wood based on the 

entire stem.

In the juvenile wood, the tracheid length and the ring age were positively 

correlated, and the correlation coefficient was 0.884**. The relative density and the ring 

width were correlated negatively with the ring age. The correlation coefficients were 

-0.140** for the relative density and -0.318** for the ring width. In the mature wood,
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the relative density and the ring width were correlated positively with ring age with r = 

0.269** and 0.178**, respectively. The tracheid length was correlated negatively with 

the ring age in the mature wood (r = -0.176**).

In both juvenile and mature wood, the tracheid length was correlated negatively 

with the relative density and the ring width with r = -0.360** and -0.223** in the 

juvenile wood, and r = -0.261* and -0.378** in the mature wood, respectively.

The relative density was negatively correlated with the ring width (r = -0.117*) 

in the juvenile wood, but no correlation was found in the mature wood.

Table 14. Correlation coefficients (r) for the relationship between ring age (RA), 
tracheid length (TL), relative density (RD), and ring width (RW) in the 
juvenile and mature wood.

Juvenile wood (n=305)

RA TL RD RW

RA 0.884** -0.140** -0.318**

TL -0.176** -0.360** -0.223**

RD 0.269** -0.261* -0.117*

RW 0.178** -0.378** ns

Mature wood (n=438)

* Significant at a  < 0.0S. 
** Significant at a  <0.01.
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DISCUSSION

T r a c h e i d  l e n g t h  

Radial Variation

The pattern of tracheid length variation (Figure 3) generally conforms to "Sanio's 

law", i.e., tracheid length increased rapidly with increasing growth rings from the pith 

until a maximum was reached, and then increased or decreased slightly in subsequent 

growth rings (Bailey and Shepard 1915). This radial variation pattern has also been 

reported by Dadswell (1958) in Pinus radiata D. Don, Schmidt and Smith (1961) in 

Pinus caribaea Dougl., and Megraw (1985) in Pinus taeda L. This trend was also 

generalized by Panshin and de Zeeuw (1980), and Zobel and Sprague (1998).

The variation of the slope (increasing rate at which tracheid length increased 

with ring age from pith outward) from the base up to the top (Figure 4) is in agreement 

with the results of Kribs (1928) in Pinus banksiana Lamb., Megraw (1985) in Pinus 

taeda L., and Yang el al. (1986) in Larix laricina (DuRoi) K. Koch. They all reported 

the slope increased with increasing height. That means the rate at which tracheid length 

increases with ring age from pith is slower at the base than higher in the stem. This also 

indicates that there is a shorter period for juvenile wood at the top. Yang et al. (1986) 

explained it as "the tree ages, the most recently formed cambium forms mature fibers in 

a shorter period of time than cambium developed earlier in the life of the tree".

In this study, radial variation of tracheid length was generally consistent for all 

heights. It is suitable for demarcating the juvenile and mature wood boundary. Though

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

many researchers reported methods for juvenile and mature wood boundary 

determination by growth ring width (Paul 1957; Zobel et al. 1959; Bendtsen and Senft 

1986), relative density (Loo etal. 1985; Bendtsen and Senft 1986; Di Lucca 1989; Cook 

and Barbour 1993; Abdel-Gadir and Krahmer 1993ab; Sauter et al. 1999), and 

longitudinal shrinkage (Ying et al. 1994). Yang and Benson (1997) summarized four 

advantages of using cell length as an criterion for demarcating the juvenile and mature 

wood boundary as: “ (1) it can be applied in both natural and plantation grown trees; (2) 

it can be used in both conifers and hardwoods; (3) it has a high degree of heredity in 

nature; and (4) it is not greatly affected by growth ring width. ”

Axial Variation

In this study, tracheid length in both juvenile and mature wood generally 

increases from ground level to a certain height and then decreases to the top of the tree 

(Figture 5). This agrees with Sanio's law (Bailey and Shepard 1915) and Panshin and de 

Zueew (1980). A similar pattern was also presented by Kribs (1928) in Pinus banksiana 

Lamb., Jackson (1959), Wheeler et al. (1966) and Megraw (1985) in Pinus taeda L. 

Taylor et al. (1982a) stated that for Pinus contorta Dougl. ex Loud, the average tracheid 

length for top logs was shorter than for butt logs because top logs would contain a higher 

proportion of juvenile wood with shorter tracheids. Cambial initial age was reported to 

have a major effect on the axial variation of tracheid length (Yang et al. 1986). Bannan 

(1967) stated a reduced rate of anticlinal division of cambial initials with increasing 

height, while a reduced rate of anticlinal division of cambial initials led to the increase in 

tracheid length.
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R e l a t i v e  d e n s i t y  

Radial Variation

The general radial pattern of relative density is that relative density is low at the 

pith, followed by a rapid increase through the juvenile wood and then remains constant 

near the bark (Panshin and De Zeeuw 1980; Zobel and Sprague 1989). Similar results 

have been reported in pines by Copper (1960) in Pinus resinosa Ait., Manwiller (1972) 

in Pinus clausa (Chapm. ex Engelm.) Vasev ex Sarg., Brown (1973) in Pinus caribaea 

Dougl., Bunn (1981) in Pinus radiata D. Don, Zobel et al. (1983), Megraw (1985) in 

Pinus taeda L., and in other species by Wilcox and Pong (1971) in Abies concolor 

(Gord. & Glend.) Lindl. ex Hildebr., Olesen (1977) in Picea abies (L.) Karst., Taylor et 

al. (1982b) in Picea glauca (Moench.) Voss.

In this study, relative density was generally high near the pith and decreased 

outward to a certain ring age, then increased further outward in the juvenile wood. In the 

mature wood, the variation of relative density became less variable (Figure 6). The 

variation of relative density found in this study does not agree with the general results 

reported by the above authors as relative density increased from pith outward and 

remained constant near the bark. However, there are exceptions to the general pattern. 

High relative density near the pith followed by a falling off was reported by Krahmer 

(1966) in Tsuga heterophylla (Raf.) Sarg., Tajima (1967) in Pinus densiflora Sieb. & 

Zucc., Kromhout and Toon (1978) and Falkenhagen (1979) in Pinus caribaea Dougl., 

and Lewark (1979) in Picea abies (L.) Karst, Keith and Chauret (1986), Villeneuve et 

al. (1987) in Pinus banksiana Lamb., and Yang and Hazenberg (1994) in Picea mariana 

(Mill.) B.S.P. According to Kromhout and Toon (1978) and Falkenhagen (1979), the
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cause of the high relative density at the center was thought to be resin infiltration at the 

heart of the tree. The relative proportion of earlywood to latewood (latewood 

percentage) has been reported to be the dominant factor determining the overall relative 

density (Megraw 1985). Megraw (1985) stated the variation of the whole average 

relative density depends on the combination of earlywood relative density, latewood 

relative density, and the percentage of each. According to Zobel and Talbert (1984), the 

cell size and cell wall thickness have a primary influence on relative density and amount 

of latewood. The high relative density near the pith in this study may be due to the 

reason of small cell size, thick cell wall, and a high proportion of latewood. It should be 

pointed out here that radial variation of relative density varies greatly from tree to tree, 

from species to species and from site to site (Panshin and de Zeeuw 1980; Zobel and 

Sprague 1998).

Axial Variation

Usually the axial variation in relative density shows a considerable decrease with 

increasing height (Panshin and De Zeeuw 1980; Zobel and Spargue 1989). This pattern 

was also reported in Pinus resinosa Ait. by Jayne (1958) and Cooper (1960), in Pinus 

caribaea Dougl. by Brown (1971), in Pinus resinosa Ait., Pinus banksiana Lamb., 

Larix laricina (DuRoi) K. Koch, Picea glauca (Moench) Voss, by Provin (1971), in 

Pinus banksiana Lamb, by Roddy (1983), in Pinus taeda L. by Megraw (1985). The 

axial variation of relative density of this study (Figure 7) both in the juvenile and mature 

wood is consistent with the above results with exception at the top of the stem. Relative 

density in both juvenile and mature wood decreased from the base to 11.4 m height, 

followed by a fluctuation at the upper height.
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Relative density both in the juvenile and mature wood at the top of the stem in 

this study was relatively higher than expected for both aspects. Compression wood could 

be observed visually from the cross section of disc 8 (13.4 m) where the high relative 

density occurred. The relative density of compression wood is generally higher than that 

of normal wood (Haygreen and Bowyer 1996). Another cause of the high relative 

density was the resin streak around the pith at discs 8 and 9 (13.4 m and 15.4 m). The 

growth rings near the pith of these two discs were dark-colored and filled with resin. 

These two reasons may explain the high relative densities at the top two sampling 

heights.

Zobel (1975b) discussed that the differences in overall relative density with 

height were a direct result of the proportion of juvenile wood. The percentage of juvenile 

wood increased with increasing stem height (van Buijtenen 1969). The effect of ring 

width (growth rate) on relative density has been reported for many conifers (Zobel and 

van Buijtenen 1989). Paul (1932) and van Buijtenen (1969) found a negative 

relationship between relative density and ring width in Pinus taeda L.: i.e., lower 

relative density always associates with faster growth. However, Zobel (1970), Pearson 

and Gilmore (1980) and Megraw (1985) reported that there was no relationship within 

the same species. MacPeak et al. (1987) indicated that fast grown Pinus tadae L. had a 

larger core o f juvenile wood
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R in g  w id th  

R ad ia l V aria tion

Ring width increased outward from the pith and reached maximum followed by a 

leveling off in the juvenile wood and remained relatively constant in the mature wood 

(Figure 8). The radial variation of ring width does not follow the pattern reported by 

Taras (1965) in Pinus elliottii Engelm and Pemg (1983) in Picea rubens Sarg., as ring 

width was wider in the juvenile wood and decreased from pith outward followed by a 

fluctuation in the mature wood. In this study, the first few rings in the juvenile wood had 

relatively narrow width. This was also found by Paul (1957) as trees did not have wide- 

ringed wood in the early stage of tree growth. He mistakenly termed the narrow-ringed 

type of juvenile wood as mature wood. Zobel and Blair (1976) indicated that the 

physical properties of the narrow-ringed juvenile wood were different from those of 

mature wood. However, mean ring width in the juvenile wood in this study was wider 

than that of mature wood (Figure 8). Large environmental variations can often have a 

greater influence on the ring width of juvenile wood because juvenile wood is more 

sensitive to growth conditions (Zobel and Sprague 1998).

Comparing radial variation of ring width and relative density in the juvenile 

wood of this study, relative density has the reversed variation pattern as ring width, 

decreasing from pith in the juvenile wood. This trend (i.e., high relative density near the 

pith) appears to be related to narrow rings in the juvenile wood, and was also found by 

Polge and Illy (1968) in Pinus pinaster Ait., van Buijtenen (1969) in Pinus taeda L., 

Burley (1973) in Pinus patula Schiede & Deppe., and Nicholls and Wright (1976) in 

Pinus radiata D. Don.
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Axial Variation

Kozlowski (1971) and Borgaonkar et al. (1996) reported a trend of decreasing 

ring width from the base to the top of a stem. A similar radial variation of ring width in 

the juvenile wood was found in this study, but the axial variation pattern of ring width in 

the mature wood was not found. Studies on the axial variation of ring width with respect 

to tree height are relatively scarce. Mean ring width of juvenile wood was wider than 

that of mature wood in this study (Figure 9). This has been reported by others (Rendle 

1959b; Panshin and de Zeeuw 1980; Senft etal. 1985; Zobel and Sprague 1998).

Compression wood tends to have wide rings on the compression side and 

narrower rings to the opposite side of the pith (Haygreen and Bowyer 1996). In this 

study, compression wood was found to have a major effect on ring width as wider rings 

appeared at the east side of tree trunk at 13.4 m height. However, since it accounted for a 

small portion from ring 10 to 12 at 13.4 m height, the mean ring width was not affected 

greatly.

D if f e r e n c e  b e t w e e n  w e s t  a n d  e a s t  a s p e c t s  f o r  t r a c h e id  l e n g t h , r e l a t iv e

DENSITY AND RING WIDTH

Tracheid length showed irregular variation between west and east aspects at 

different height in the mature wood. No significant differences were found in the 

juvenile wood (Table 4). According to Bannan (1967), exposure to the sun always 

causes more cambial activity and consequently shorter tracheids.

At most heights, relative density of both juvenile and mature wood in the east 

aspect was significantly higher than that in the west aspect (Table 7). Ward and Gradiner 

(1976) also found that relative density in the west aspect was significant lower than that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

in the east in Picea sitchensis (Bong.) Carr. Similarly, Schiitt (1962) found that relative 

density from the east side were always higher than those from the north or south side in 

Pinus contorta Dougl. ex Loud, grown in Europe. Polge and Illy (1968) also found a 

higher relative density on the east compared to the west side of the tree. On the other 

hand, Zobel and Rhodes (1955), Walters and Bruckman (1965), and Pemg (1983) 

studied Pinus taeda L., Populus deltoides Bartr. ex Marsh, and Picea rubens Sarg., 

respectively, and found no significant differences between the aspects. The aspect 

difference is affected by sunlight, prevailing winds which are indirect cause of the 

variation (Olesen 1973). More sunlight, and the influence of winds tended to have high 

relative density according to Olesen (1973).

Ring width in the west aspect was significantly wider than that in the east aspect 

for mature wood. No significant differences were found between these two aspects in the 

juvenile wood (Table 10). No relevant literature was found for ring width variation 

between aspects.

For both tracheid length and ring width, there was no difference between west 

and east aspects in the juvenile wood (Tables 4 and 10). The significant differences were 

found for relative density in the juvenile wood at some heights (Table 7). Studies made 

by Cown et al. (1991) show that juvenile wood was less responsive to environmental 

differences than was mature wood in Pinus radiata D. Don.
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S hrinkage

Mean tangential shrinkage (5.56%) was greater than mean radial shrinkage 

(3.96%) in this study. This was in agreement with many authors' results (Panshin and de 

Zeeuw 1980; Desch and Dinwoodie 1996; Haygreen and Bowyer 1996; Forest Products 

Laboratory 1999). Differences in shrinkage between tangential and radial directions 

result from many factors (Boyd 1974; Skaar 1988; Desch and Dinwoodie 1998). Desch 

and Dinwoodie (1998) stated that several anatomical characteristics should be 

responsible for such a differential radially and tangentially as: " (1) the restricting effect 

of the ray on the radial plane; (2) the difference in degree of lignification between the 

radial and tangential walls; (3) small differences in microfibrillar angle between the 

radial and tangential walls; and (4) the increased thickness of the middle lamella in the 

tangential direction compared with that in the radial direction".

The radial and tangential shrinkage in this study increased from pith outward and 

then showed a tendency to level off near the bark (Figure 10). This pattern of variation 

was also observed by Wilcox and Pong (1971) in Abies concolor (Gord & Glend.) Lindl 

ex Hildebr. and Koubaa et al. (1998) in Populus x euramericana (Dode) Guinier. No 

reports of radial variation of shrinkage were found in the Pinus species. The relationship 

between radial and tangential shrinkage and moisture content was reported to be linear at 

or below the fiber saturation point (Haygreen and Bowyer 1996). Choong and Foggy 

(1988) reported in Pinus echinata Mill, that moisture content was low near the pith and 

increase outward to a maximum followed by a leveling off. This radial variation pattern 

of moisture content is the same as that of shrinkage.
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Tangential shrinkages in the east aspect at 15.4 m and 13.4 m did not follow the 

general pattern and were lower than expected values (Figure 10). This was caused by the 

presence of compression wood in the east aspect at the top of the stem. Compression 

wood was reported to have smaller tangential shrinkage than normal wood (Panshin and 

de Zeeuw 1980; Haygreen and Bowyer 1996). This may be due to the differences in 

both anatomical and submicroscopic structure between compression wood and normal 

wood (Wardrop and Dadswell 1950; Panshin and de Zeeuw 1980; Haygreen and 

Bowyer 1996).

Radial and tangential shrinkage generally tends to decrease with increasing 

height (Wilcox and Pong 1971; Yao 1969). In this study, radial, overall tangential and 

tangential shrinkage of the two outermost wood strips showed a pattern of decreasing 

with increasing stem height (Figures 11 and 12). The relationship between shrinkage and 

relative density has been documented and discussed (Siau 1984; Skaar 1988; Desch and 

Dinwoodie 1996; Haygreen and Bowyer 1996). It is believed that there is a relationship 

between shrinkage and relative density: the higher the relative density, the more it will 

tend to shrink (Desch and Dinwoodie 1996; Haygreen and Bowyer 1996). In this study, 

relative density and tangential shrinkage have the same axial trend. However, the 

correlation was weak for relative density and tangential shrinkage (Figure 13). Yao 

(1969) stated that even for the same species, shrinkage of samples having the same 

relative density but representing different trees is not necessarily the same. Variation in 

the shrinkage may be affected by not only relative density alone, but also by microfibril 

angle, lumen diameter, and presence of extractives (Haygreen and Bowyer 1996; 

Koubaae/a/. 1998).
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The sizes of the two outermost wood strips are almost the same as the normal 

size of commercial lumber (i.e., 2*4 inches), so the axial tangential shrinkage variation 

of the outermost two wood strips has the practical implication in lumber manufacture. In 

this study, tangential shrinkage of the two outermost wood strips along the tree height 

did not vary greatly from the base up to 13.4 m. Only the tangential shrinkage value at 

the very top was significantly lower than those at other heights. This indicates that when 

lumber is cut along the tree bole, the dimensional changes will be almost the same 

longitudinally and will not cause serious problems such as warping, checking, splitting, 

and distortion of the end products (Forest Products Laboratory 1999).

V o l u m e  o f  ju v e n il e  w o o d

The shape of juvenile wood in this study was conical (Figures 14 and 15) by 

using ring age and stem diameter as criteria, that is, juvenile wood is wider at the base 

than at the top. This finding of a conical shape of the juvenile wood agrees with the 

observations of Zobel and McElwee (1958) for Pinus taeda L., and Yang et al. (1986 

and 1994) for Larix laricina (DuRoi) K. Koch and Cryptomeria japonica D. Don. While 

Rendle (1958) however, summarized that juvenile wood formed a cylinder-like column 

at the center of the tree. A similar cylindrical shape of the juvenile wood in Pinus taeda 

L. and Pinus elliottii Engelm. was reported by Zobel et al. (1959).

The top zone of this jack pine studied consists of both juvenile and mature wood. 

A similar report was made by Yang et al. (1986) in Larix laricina (DuRoi) K. Koch. 

However, this is not in agreement with the results of Zobel et al. (1959) in Pinus taeda
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L. and Pinus elliottii Engelm. and Yang et al. (1994) in Cryptomeria japonica D. Don. 

They all reported no mature wood was found at the top of the stem.

In the jack pine studied, the percentage of juvenile wood expressed either by ring 

age or by stem diameter in the entire stem decreased considerably with increasing age of 

the tree (Figures 16 and 17). Based on the concept that juvenile wood is cylindrical in 

shape, Zobel and Blair (1976) found in a 15-year-old Pinus taeda L., 85% of the volume 

was juvenile wood, while in a 40-year-old one it only accounted for 19% of the volume. 

Kellison (1981) stated that stems of Pinus taeda L. contained 19% by volume of juvenile 

wood at age 45 and as much as 85% by volume at age 15 based on the same concept as 

Zobel and Blair (1976). In an 81-year-old dominant Larix laricina (DuRoi) K. Koch, 

Yang et al. (1986) preferred to consider the juvenile wood as conical in shape instead of 

cylindrical, and reported the percentage of juvenile wood volume accounted for 

approximately 44% and 66% of the total stem volume, based on tracheid length and 

growth ring width as criteria, respectively. In this 60-year-old jack pine, based on ring 

age or tree diameter as criteria, juvenile wood was 16% and 30% of the total stem 

volume, respectively. The discrepancy in the percentage of juvenile wood volume may 

be due to different species or different criteria used to determine the juvenile and mature 

wood boundary (Yang et al. 1986). More rapid growth would probably produce an even 

larger percentage of juvenile wood (Senft et al. 1985; Yang and Hazenberg 1994) and 

the amount of juvenile wood is greater in plantation grown trees than in natural stands 

(Zoble and van Buijtenen 1989). Martin (1984) stated "tight spacing and intermediate 

thinning" were effective ways to reduce the percentage of juvenile wood. Some 

researchers also reported that silvicultural treatments and genetic manipulations could 

change the amount and properties of juvenile wood (Rendle 1959b; Zobel et al. 1960b;
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Schmidt and Smith 1961; Zobel and Blair 1976; Kellison 1981; Zobel and Talbert 1984;

Briggs and Smith 1986; Clark and Saucier 1991; Yang 1994; Lindstrom 1997).

The cambial initial age of both west and east aspects has a strong negative 

relationship with width of juvenile wood in this study (Figure 18). This is in agreement 

with Yang et al. (1986) results for a 45-year-old Larix laricina (DuRoi) K. Koch. Yang 

et al. (1994) also found a similar relationship in Crytomeria japonica D. Don between 

these two variables. It was believed by many authors that large tree crowns produce a 

large amount of juvenile wood (Trendenlenburg 1935; Zobel et al. 1959; Knigge 1962; 

Brunden 1964; Larson 1969; Bendtsen 1978; Panshin and de Zeeuw 1980; Haygreen 

and Bowyer 1996). In this study, cambial initial age plays an important role in the 

formation of juvenile wood. It was reported that the formation of juvenile wood was 

primarily under the influence of cambial initial age (Yang et al. 1986 and 1994). Yang et 

al. (1986) further indicated that tree vigor and the size of the tree crown play a minor 

role in juvenile wood formation.

The coefficient of determination (r2 = 0.99) was very high for the relationship 

between percentage of juvenile wood volume for entire stem and at the breast height 

(Figure 19). This indicates that the percentage of the juvenile wood volume at the breast 

height can be an indicator for that of the entire stem. Many researchers have reported the 

relationship between breast height wood properties and wood properties of the entire 

stem (Zobel et al. 1960a; Taras and Saucier 1970; Echols 1971; Cown 1981; Brito et al. 

1984). However, most reports used the relative density to predict the relationship 

between breast height and entire tree. No reports were found using percentage of 

juvenile wood volume at the breast height in predicting the entire stem values.
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C o r r e l a t io n s  b e t w e e n  v a r ia b l e s

Ring Age and Other Variables

In the juvenile wood, ring age was positively correlated with tracheid length (r = 

0.884) and negatively correlated with relative density (r = -0.140) and ring width (r = 

-0.318) (Table 14).

The strong positive correlation (r= 0.877) between ring age and tracheid length in 

the juvenile wood indicates that tracheid length is short near the pith and increases with 

ring age. This was similar to the results of Foelkel et al. (1975) in Pinus oocarpa 

Schiede ex Schltdl. and Ladrach (1984) in Pinus patula Schiede & Deppe. The negative 

correlation between ring age and ring width showed that in the juvenile wood, the first 

number of rings in the juvenile wood was expected to be wider than the later ones. 

Actually in this study, ring width showed narrow rings near the pith and became wider 

after few rings in the juvenile wood. However, the correlation was based on the ring 

widths for the whole stem. The first few narrow rings did not affect the relationship 

between ring width and ring age.

In the mature wood, ring age was correlated negatively with tracheid length but 

correlated positively with relative density and ring width (Table 14). Ring age and the 

other three variables were only weakly correlated. Many authors reported that radial 

variation of wood properties with ring age become less as trees become older (Cooper 

1960; Roddy 1983; Talbert and Jett 1981).
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Tracheid Length and Ring Width

In both juvenile and mature wood, tracheid length was correlated negatively with 

ring width (Table 15). This indicated that shorter tracheid length tends to be related to 

wider ring width. The same relationship was found by Bisset et al. (1951) in Pinus 

radiata D. Don, Echols (1958) in Pinus ponderosa Dougl. ex Laws., and Megraw (1985) 

in Pinus taeda L. From Megraw's (1985) point of view, tracheids were always shorter in 

faster growing trees which always have wider rings. Megraw further explained: "when 

tree growth is rapid, a greater frequency and survival rate of cambial anticlinal division 

is required to keep up with girth expansion. More cambial initials are therefore still in 

some stage of partial elongation from dividing anticlinally by the time they are already 

dividing periclinally and produing new xylem and phloem cells. This tends to reduce the 

average fiber length during periods of rapid growth".

Relative Density and Ring Width

In this study, relative density and ring width in the juvenile wood had a negative, 

but weak correlation (r = -0.117*). There was no correlation between these two variables 

in the mature wood (Table 14). Zobel (1956), Goddard and Strickland (1964), Bannister 

and Vine (1981) reported a weak negative correlation between ring width and relative 

density in Pinus taeda L., Pinus elliottii Engelm., and Pinus radiata D. Don, 

respectively. Stonecypher and Zobel (1966) found a strong negative correlation between 

ring width and relative density in the juvenile wood within the same species. A strong 

negative correlation was also found between ring age and relative density by van 

Buijtenen (1969) in Pinus taeda L. However, Tajima (1967) in Pinus densiflora Sieb. & 

Zucc., Larson (1972) in Pinus taeda L., Pinus echinata Mill., Pinus resinosa Ait., Pinus
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banksiana Lamb., Bamber and Burley (1983) in Pinus radiata D. Don obtained no 

relationship between ring age and relative density. Zobel and van Buijtenen (1989) cited 

59 studies and summarized the ring width and relative density relationship as "there is 

generally little or no relationship between wood relative density and ring width of the 

individual tree". Megraw (1985) also stated that in Pinus taeda L. the correlation 

between relative density and ring width might be positive, negative or nonexistent, 

depending on circumstances. According to Megraw (1985), if there was a correlation 

between relative density and ring width, it should be weak to negligible in most cases. 

These results reflect the effects of different trees, environments and genetics which will 

result in different relationship between ring width and relative density (Zobel and van 

Buijtenen 1989).

Tracheid Length and Relative Density

In both juvenile and mature wood of the jack pine stem studied, tracheid length 

and relative density were correlated negatively with correlation coefficients of 

0.360** and -0.261*, respectively (Table 14).

Zobel et al. (1960b) and Strickland and Gooddard (1966) found that relative 

density was negatively correlated to tracheid length in Pinus taeda L. and Pinus elliottii 

Engelm., respectively. Goddard and Strickland (1964) reported a negative but weak 

correlation between these two variables in Pinus elliottii Engelm. and it was of little 

practical significance. No relationship between relative density and tracheid length was 

reported by Schmidt and Smith (1961) in Pinus caribaea Dougl and Megraw (1985) in 

Pinus taeda L. Though relative density and tracheid length were correlated in this study, 

they are genetically independent from one another (Dadswell 1960; Wellwood and
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Smith 1962; Zobel et al. 1962; Goggans 1964; Keller 1973; Allen 1985). Zobel and van 

Buijtenen (1989) stated that both relative density and tracheid length were genetically 

inherited.
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CONCLUSIONS

Tracheid length increased from the pith outward in the juvenile wood and 

remained constant or leveled off at a certain ring age for different heights towards the 

bark in the mature wood. The rate of increase in tracheid length with ring age from pith 

outward increased with increasing height except at 13.4 m due to the presence of 

compression wood. The mean tracheid length increased from the base upward, reaching 

a maximum at 3.4 m and 5.4 m for juvenile and mature wood, respectively, followed by 

a decrease further to the top. The mean tracheid lengths of west and east aspects were 

not significantly different from each other in the juvenile wood. In the mature wood, the 

mean tracheid length of the west aspect was significantly longer than that of the east 

aspect at 7.4 m and 3.4 m, while the mean tracheid length of the west aspect was 

significantly shorter than that of the east aspect at 9.4 m and 1.4 m. At all other heights 

in the mature wood, the mean tracheid length of the west and east aspects were not 

significantly different.

Relative density generally decreased with ring age from the pith outward in the 

juvenile wood and remained less variable in the mature wood, with an exception of a 

reversed pattern at 0.15 m height. Relative density decreased with increasing height with 

the exception of relatively high values at 13.4 m height in both juvenile and mature 

wood due to the presence of compression wood. The mean relative density of the west 

aspect was significantly different from that of the east aspect in the juvenile wood at 

13.4 m, 5.4 m, 1.4 m and 0.15 m. In the mature wood, the mean relative density of the
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west aspect was significantly different than that of the east aspect for all heights with an 

exception at 7.4 m.

Ring width increased with ring age from pith outward in the juvenile wood and 

fluctuated in the mature wood. Ring width decreased with increasing height in the 

juvenile wood. No axial trend was found of ring width variation in the mature wood. 

Ring width in the juvenile wood was wider than that in the mature wood. Ring width of 

the west aspect was significantly wider than that of the east aspect in the mature wood. 

There was no significant difference between ring width in the west and east aspects in 

the juvenile wood.

Tangential shrinkage was greater than radial shrinkage. Radial and tangential 

shrinkage generally increased from the pith outward to the bark, reaching a maximum 

followed by a leveling off. Radial, tangential shrinkage for both entire stem and the two 

outermost wood strips decreased with increasing height with an exception at 0.15 m. The 

lowest shrinkage occurred at the top for both juvenile and mature wood. There was no 

close relationship between radial or tangential shrinkage, and relative density.

The percentage of juvenile wood was 16% and 30%, respectively, of the entire 

stem volume based on ring age and stem diameter as criteria. The juvenile wood core 

was conical in shape. Ring age and stem diameter had strong negative correlation with 

percentage of juvenile wood volume. There was a strong negative correlation between 

juvenile wood width and cambial initial age. The values at breast height can be used to 

predict the entire stem for percentage of juvenile wood volume.

Ring age was correlated positively with tracheid length, and correlated 

negatively with ring width and relative density in the juvenile wood. In the mature 

wood, ring age was correlated negatively with tracheid length, and correlated positively
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with ring width and relative density Tracheid length and relative density were negatively 

correlated in both juvenile and mature wood. Relative density was negatively correlated 

with ring width in the juvenile wood, but no correlation was found in the mature wood.
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Appendix 1. Field data of the sampled stand.

Date Oct. 29,2000

Location Longitude 89°22’
Latitude 48°39’
Jack Haggerty Forest

Elevation 536 m (Above Sea Level)

Stocking 0.7

Site index 11

Appendix II. Numbers of growth rings and diameter at various height sampled in the 
jack pine studied.

Height
(m)

Number of 
rings

Diameter
(cm)

15.4 18 5.6
13.4 26 10.8
11.4 33 13.1
9.4 39 15.4
7.4 42 16.7
5.4 49 18.2
3.4 52 19.9
1.4 56 21.3

0.15 59 25.9
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Appendix III. Mean tracheid length (mm) at various heights in the juvenile and mature
wood of the west and east aspect.

Height West East Mean Overall
(m) Mature Juvenile Mature Juvenile Mature Juvenile mean

15.4 2.54 1.58 2.54 1.67 2.54 1.63 2.08
13.4 2.75 1.50 2.41 1.35 2.58 1.42 2.00
11.4 2.96 1.78 2.83 1.84 2.9 1.81 2.35
9.4 3.09 2.08 3.20 2.09 3.15 2.09 2.62
7.4 3.35 2.19 3.06 2.02 3.21 2.11 2.66
5.4 3.44 2.27 3.46 2.25 3.45 2.26 2.86
3.4 3.36 2.23 3.26 2.39 3.31 2.31 2.81
1.4 3.19 2.25 3.35 2.40 3.27 2.33 2.80

0.15 2.78 2.01 2.88 2.08 2.83 2.05 2.44

Appendix IV. Mean relative density at various heights in the juvenile and mature wood 
of the west and east aspect.

Height West East Mean Overall
(m) Mature Juvenile Mature Juvenile Mature Juvenile mean

15.4 0.37 0.45 0.35 0.44 0.36 0.44 0.40
13.4 0.39 0.45 0.43 0.56 0.41 0.51 0.46
11.4 0.37 0.39 0.40 0.38 0.38 0.38 0.38
9.4 0.40 0.39 0.42 0.40 0.41 0.40 0.40
7.4 0.40 0.40 0.42 0.42 0.41 0.41 0.41
5.4 0.39 0.39 0.44 0.45 0.41 0.42 0.42
3.4 0.41 0.43 0.45 0.42 0.43 0.42 0.43
1.4 0.42 0.41 0.46 0.43 0.44 0.42 0.43

0.15 0.46 0.46 0.48 0.42 0.47 0.44 0.46
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Appendix V. Mean ring width (mm) at various heights in the juvenile and mature
wood of the west and east aspect.

Height West East Mean Overall
(m) Mature Juvenile Mature Juvenile Mature Juvenile mean

15.4 1.4 1.8 1.4 1.9 1.9 1.0 1.4
13.4 1.3 2.1 1.0 2.4 2.3 1.2 1.7
11.4 1.6 2.5 1.8 2.7 2.6 1.4 2.0
9.4 2.0 2.5 1.4 2.7 2.6 1.4 2.0
7.4 1.4 2.7 1.3 2.5 2.6 1.3 1.9
5.4 1.6 2.9 1.3 2.5 2.7 1.3 2.0
3.4 1.5 2.7 1.5 2.9 2.8 1.5 2.1
1.4 1.4 2.8 1.1 2.8 2.8 1.4 2.1

0.15 1.6 2.8 1.7 2.7 2.8 1.4 2.1

Appendix VI. Mean radial tangential shrinkage (%) at various heights of the west and 
east aspect.

Height Tangential
(m) Radial West East Mean

15.4 3.0 4.3 2.5 3.4
13.4 4.3 6.0 4.5 5.3
11.4 3.9 6.4 5.7 6.1
9.4 4.6 5.8 6.0 5.9
7.4 4.3 6.3 5.3 5.8
5.4 3.8 5.3 5.9 5.6
3.4 4.0 5.8 6.2 6.0
1.4 4.1 6.3 6.2 6.3

0.15 3.6 5.7 6.1 5.9
Mean 4.0 5.8 5.4 5.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

Appendix VII. Mean tangential shrinkage (%) of the two outermost wood strips at
various heights of the west and east aspect.

Height West East Overall
(m) Strip #1 Strip #2 Mean Strip #1 Strip #2 Mean mean

15.4 4.3 4.2 4.3 2.9 2.2 2.5 3.4
13.4 6.9 6.2 6.5 4.6 4.2 4.4 5.5
11.4 6.6 7.5 7.0 6.6 5.8 6.2 6.6
9.4 6.6 6.3 6.4 6.1 6.7 6.4 6.4
7.4 6.9 7.2 7.1 5.5 5.7 5.6 6.3
5.4 5.8 6.1 6.0 6.5 7.2 6.9 6.4
3.4 6.7 7.2 6.9 6.7 7.9 7.3 7.1
1.4 7.4 7.9 7.7 6.9 6.6 6.7 7.2

0.15 6.0 6.9 6.5 6.1 6.9 6.5 6.5

Appendix VIII. Percentage (%) of juvenile wood volume expressed by ring age (yrs)
(entire stem and breast height) or stem diameter (cm) (entire stem only).

Entire stem Breast height Entire stem
Ring age Percentage Ring age Percentage Diameter Percentage

1 100 1 100 0.2 100
10 100 10 100 6.3 100
20 100 20 100 12.9 100
25 100 25 100 14.8 100
26 100 26 100 15.2 100
31 89 31 81 16.4 96
36 64 36 59 17.4 79
41 45 41 45 19.3 63
46 33 46 35 20.4 50
51 25 51 28 22.1 45
56 19 56 23 24.0 34
60 18 60 20 26.2 29
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Appendix IX. Juvenile wood zone width expressed in ring age and centimeters and 
cambial initial age (yrs) at various heights.

Juvenile wood Juvenile wood
Cambial width expressed width expressed

Height initial tr. ring age in centimeters
(m) age West East West East

15.4 42 7 6 1.3 1.1
13.4 34 9 12 1.0 1.7
11.4 27 11 13 2.6 3.5
9.4 21 13 15 3.3 4.0
7.4 18 16 16 4.4 4.6
5.4 11 19 21 5.3 6.0
3.4 8 21 22 5.8 5.5
1.4 4 21 25 5.6 6.7

0.15 1 28 30 7.5 8.1

Appendix X. Images of entire stem growth ring variation (next page).
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