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Self-Assembly of Dithbl Monolayers on A u (lll)

by

Allan MacDairmid

Abstract

This thesis compares the self-assembly of octanethiol, a representative 
n-alkanethiol, with dithiothreitol (DTT) on A u(lll). Octanethiol is on 
eight carbon n-alkanethiol while DTT is a four carbon Q ,(i) dithiol with 
hydroxyl groups on the second and third carbons. We find that 
octanethiol forms a densely packed c(4%2) superlattice of the 
(/3*\/3)R30® structure characteristic of n-olkanethiols. DTT forms a less 
dense monolayer, possibly c(2V3»V3). Both monolayers exhibit pits 2.5 A 
deep equivalent to the height of one gold layer. The time evolution of 
pitting is investigated in both systems using scanning tunneling 
microscopy (STM). The fraction of the surface that is covered by these 
pits is found to be in the range of 0.05-0.10 for both systems and 
consistent with previous n-alkanethiol studies. The mean pit radius 
approaches an equilibrium value of ~19 A for both thiol species. I t  has 
been observed that DTT modified systems do not reach this equilibrium 
value as quickly as octanethiol modified systems. The nature of the 
binding of DTT to gold is also investigated using STM and Auger electron 
spectroscopy (AES) studies. AES studies involving Eliman's Reagent, a 
marker species, suggest that a significant fraction of the DTT binds to 
the gold surface via two Au-S bonds.
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Self-assembled monolayers (SAMs) have received a great deal of 

attention over the past decade. The most commonly studied system has been 

n-alkanethiol, CH3 (CH2 )„_iSH, adsorption onto A u(lll) substrates. The SAM 

that forms from adsorption is a compact layer that exhibits molecular order. 

Once formed, a simple n-alkanethiol SAM con be modified to tailor the chemical 

properties of the surface. This includes the wetting, chemical specificity, and 

electronic characteristics of the film. As a wider understanding of 

self-assembly is attained, more and more complicated molecules con be 

incorporated into the surface layer.

This thesis discusses the properties of SAMs of aliphatic thiols. 

Octanethiol is studied os a representative n-alkanethiol and compared with 

dithiothreitol (DTT), a functionolized dithiol molecule. The chemical structure 

of octanethiol and DTT is shown in Figure 1. The effect of the presence of a 

second sulphydryl group and two hydroxyl groups on the self-assembly of DTT 

will be observed using scanning tunneling microscopy (STM) and Auger electron 

spectroscopy (AES) and compared with the self-assembly of the more 

conventional octanethiol.

For the first time, molecular images of DTT were obtained indicating a
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Figure 1. Structural diagram of octanethiol (left) 
and dithiothreitol (right).

larger unit cell than octanethiol. Auger results suggest sulphur is present in 

similar quantities for both octanethiol and dithiothreitol and use of Eliman's 

reagent suggests both sulphur atoms bind the DTT to the gold. These results 

suggest a (2/3*/3) lattice for DTT. Investigations into the degree of surface 

pitting suggest that both dithiothreitol and octanethiol, while chemically very 

different, seem to trigger pitting via the same mechanism. At 60®C, DTT 

modified films appear to reach the same equilibrium pit radius as octanethiol.

A discussion of the main issues surrounding SAAAs is provided, followed 

by sections outlining the experimental techniques involved in observing and 

preparing SAAAs. Observations concerning the ordering of the two SAAAs ore
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presented along with the results of a study on the time evolution of pitting. 

Finally, a summary discussion of the results is presented and future 

investigations ore suggested.
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Single molecular monolayers have been utilized in technological 

applications for several decades dating back to the 1930‘s  ̂ Monolayers of 

amphiphilic molecules comprised of both hydrophilic and hydrophobic moieties 

were used to coot metals and control the condensation properties of water 

inside steam engines .̂ Uncoated metals resulted in a complete layer of water 

condensation which then insulated the condenser from accumulating more 

steam. The presence of an amphiphilic monolayer triggered water to condense 

os droplets and subsequently fall off. The dhoplet formation facilitated the 

condensation of larger quantities of steam and increased heat conversion 

efficiency by over 200 %. Researchers realized that the amphiphiles were 

bound to the surface by a metallophillic head group and that the hydrocarbon 

tails of the molecules aligned and formed the layer on which steam dhoplets 

could condense. In  the late 1950's, scientists investigated droplet condensation 

on monolayers of alkanethiols on copper surfaces^. By the early 1980 s, alkyl 

disulfide monolayers were being studied on gold substrates^.

While early research focussed on controlling wetting properties, more 

recent studies have investigated applications in biochemical sensinĝ , 

biomimetics ,̂ and nanoengineering  ̂ For example, SAMs can be altered on a
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molecule by molecule basis using the tip of a scanning probe microscope os a 

local catalyst". This allows for design in the nanometre scale regime.

While there are many different classes of SAMs (alkyl trichlorosilanes 

on SiOg, organic acids on mica, etc) the primary focus of SAM research has 

been on alkyl thiols on A u(lll). Alkyl thiols ore robust molecules that are not 

moisture sensitive like alkyl trichlorosilanes and Au(lll) provides a crystalline 

surface that allows SAM crystallization studies to be conducted’ . Another 

benefit of using A u(lll) as the substrate is that gold does not oxidize readily in 

air so scanning probe microscopy investigations of alkyl thiol SAMs can be 

performed in ambient conditions. This discussion will only consider SAAAs of 

alkonethiol molecules and their derivatives on Au (111) substrates.

A u ( l l l )

Metallic gold arranges itself in a face-centred cubic (fee) lattice with a 

lattice constant of 4.08 Â*°. The fee unit cell can be thought of as a cube with 

eight atoms situated at the eight vertices, (0,0,0), (1,0,0), (0,1,0), (0,0,1),

(1,1,0), (0,1,1), (1,0,1), and (1,1,1), and six more atoms occupying the centres of 

the six faces, (0 ,t ,t ). ( i,0 ,i) , (t ,t ,0), (1.t ,t ), (t ,1.t ). and ( i , i , l ) ,  as shown in 

Figure 2. When the unit cells are repeated to generate the lattice, each of the
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1

Figure 2. Unit cell of face-centred cubic (fee) 
lattice^.

eight corner atoms sit partially in eight cells thereby contributing one eighth of 

on atom to each unit cell. Each of the six face atoms are shared by only two 

unit cells so they contribute one half of on atom to each unit cell. Analysing the 

unit cell in this manner yields four atoms per unit cell. Fee crystals exhibit 

close packing which, using a hard sphere model, yields a packing density of 

0.74*°. This is the highest packing fraction possible.

The (111) plane of the crystal passes through the atoms at positions 

(0,0,1), (1,0,0), (0,1,0), (0 ,i,i) , (t ,0,t ), and ( i, i ,0 )  forming a hexagonal lattice 

as shown in Figure 3. The nearest neighbour spacing in the (111) plane is 2 * 

times the lattice constant or 01=2.88 Â. Because the lattice vectors define a
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[010]
Figure 3. ( I l l)  plane of on fee crystal*®.

cube, the [111] vector is normal to the (111) plane. I t  should be emphasized that 

this does not hold true for non-cubic crystals.

The (111) plane can be thought of as a sheet of densely packed hard 

spheres as shown in Figure 4. Because the (111) plane is close packed, it is the 

low energy plane of the crystal. Starting with a single layer of close packed 

atoms, the second layer can be stacked on top of the firs t by placing spheres at

Figure 4 . Possible stacking sites for a close 
packed lattic^®.
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B sites. The third layer can sit at the unused C sites or revert bock to the 

original A sites. ABC stacking corresponds to fee crystals while ABA stacking 

corresponds to hexagonal close packed (hep) crystals.

Herringbone Reconstruction 

Crystalline surfaces often undergo reconstruction to reduce the energy 

of the surface layer. This occurs because atoms in the surface layer do not 

have as many nearest neighbours as those in the bulk crystal. The surface layer 

of (111) terminated gold crystals reduces its energy by incorporating one extra 

atom into every (23aW 3a) cell, where a  is the gold spacing within the (111) 

plane. This results in a 4.4 % increase in areal density**. The reconstruction 

realizes this excess by periodically changing from the ABC stacking of fee 

crystals to the faulted ABA stacking of hep crystals*  ̂as shown in Figure 5. At 

phase boundaries, the surface layer buckles because the atoms are forced to

1  { i
ABC ABA ABC
Figure 5. Top view of the (23W3) cell of the 
herringbone reconstruction showing bridge site 
phase boundaries (white circles) between ABC 
stacking and faulted ABA stacking**.
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occupy bridge sites of the second layer due to the transition from C hollow 

sites to A hollow sites. I t  should be emphasized that the increased areal 

density is accommodated by the surface buckling and that there is no change in 

the lattice constant of the fee and hep regions. The energy tied up in having 

atoms occupy bridge sites is compensated by having the rest of the atoms 

occupy A and C hollow sites. The energy difference between fee and hep 

stacking can be determined by comparing the relative domain size in the 

(23W3) cell. When the reconstruction is observed with STM, parallel pairs of 

ridges (white circles in Figure 5) are seen zigzagging across the surface. The 

atoms that occupy bridge sites protrude 015 Â above the other surface atoms 

that occupy hollow sites as predicted using a hard sphere model and verified 

experimentally by helium scattering. The periodicity of the(23W3) cell is 23a  

or ~66 Â os measured using scanning tunneling microscopy*".

SAM Formation and Packing 

Alkanethiol SAAAs form as a result of the strong affinity between 

sulphur and gold. The thiol head groups form strorg covalent bonds with the 

gold substrate and the hydrocarbon backbone of the molecules align and 

stabilize the monolayer via van der Waals interactions. A typical dense packed
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Figure 6. Dense packed SAM of n-alkanethiol on 
Au(lll) (n=8).

SAM is shown in Figure 6. I t  has been observed that SAM formation is 

possible from both liquid and gas phase deposition". While liquid phase 

deposition is the most common technique used, gas phase deposition removes 

solvent effects from the system. This is of significance when the alkanethiol is 

functionolized.

Systems involving the self-assembly of n-alkanethiols of varying lengths

Figure 7. Commensurate (V3*v'3)R30® lattice of 
n-olkonethiol (dork circles) on A u(lll) substrate 
(open circles) (a =2.88 Â).
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ranging from eight to twenty carbon atoms attain a commensurate (\/3xV3) 

lattice rotated by 30® with respect to the substrate lattice vectors os shown in 

Figure 7*̂ . The SAM lattice results in a periodicity of 3̂(X or 5.00 Â along both 

lattice directions. I t  has also been determined from IR  studies that the 

hydrocarbon backbone is tilted ~30® with respect to the surface normal and 

that there are two distinct planes defined by the oll-trons hydrocarbon 

backbone*̂ . A c(4%2) superlattice of the adsorbed n-alkanethiol has been 

observed that is believed to be caused by the pairing of the two different 

oll-tro ns planes*® as shown in Figure 8. The c(4*2) superlattice results in the

Figure 8. c(4»2) superlattice of n-alkanethiol 
SAMs arising from the two different orientations 
of the oll-trons planes of the molecules 
(P=5.00 Â).
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densest possible pocking observed with a molecular area of 21.6 Â". Recently, 

another densely packed (6W3) phase was observed on on octanethiol modified 

film after being stored for six months at room temperature (RT)“ . Complete 

monolayer coverage is attained using 1 mM concentrations of alkanethiol for a 

relatively small (1 cm") Au(lll) sample.

Other phases of SAMs have been observed for smaller chain length 

alkanethiols and longer chain length molecules at low coverages. These phases, 

often called the "pinstripe phased" consist of molecules lying down on the 

surface to form a (p*/3) lattice where p is an integer that depends on the 

length of the thiol molecule*̂  The molecules align head to head, and 

subsequently, tail to toil to form stripes along the surface.

Temperature Effects 

Alkanethiol SAMs form when modified at RT. The resulting monolayer is 

ordered but exhibits depressions in the surface equivalent to a gold single 

atomic step height (25 Â)*®. The threefold symmetry of the surface results in 

boundaries between domains with different tilt directions. Heating the surface 

to 50®C increases the average domain size. At 100®C, the mobility of gold 

atoms in the surface layer increases and the depressions begb to fuse with
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Step edges. Above 100®C, some thiol molecules evaporate from the surface 

resulting in striped depressions where thiol molecules ore no longer present. 

The monolayer can remain crystalline with as little as 25 % of the saturation 

c(4*2) density. This is attributed to the fact that the molecules can diffuse 

through the monolayer faster than the evaporation process can remove them so 

the monolayer can heal itself. As the temperature is increased further, the 

desorption rate increases and the monolayer rapidly degrades until it is 

completely gone at 130®C.
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Scanning Tunneling Microscopy

Scanning tunneling microscopy (STM) is the primary technique employed 

in this study of self-assembly. STM is a scanning probe technique used for 

obtaining real space information about surfaces on the atomic scale. The first 

functional STM was realized in 1981 by Binning, Rohrer, and Gerber*’ . The 

potential of STM was demonstrated in 1982 with the publication of images of 

the (7*7) reconstructed surface of S i(lll). The structure of the reconstructed 

surface had been debated for over twenty years. The unit mesh comprised 49 

atoms which mode analysis based on diffraction experiments very difficult. 

Several models were proposed but comparison between the STM results and 

theoretical predictions confirmed the dimer-adatom-stacking-fault model"®.

The ability to observe atomic scale features on surfaces with STM led to the 

wide-scale use of STM as a surface science technique and the awarding of the 

Nobel prize for physics to Binnig and Rohrer in 1986. STM depends on the 

relatively simple physical phenomenon of quantum tunneling.

Quantum Tunneling 

Quantum tunneling arises when a particle is incident on a finite potential 

barrier with insufficient energy to overcome it"*. Though classically forbidden.
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H m

E -

Figure 9. Idealized schematic of quantum 
tunneling through a finite potential barrier.

there is a non-zero probability that the particle will tunnel through the barrier

and emerge on the other side. This phenomenon can easily be demonstrated in

one dimension by exploring a system where a free particle with energy, E, is

incident on a rectangular potential barrier of width, L, and height, U, starting

at x=0 as shown in Figure 9. In region I  and IH , the wave vector is k and in

region H  the inverse decay length is k . The two constants are given by:

K =
V2m(U-E)

The tunneling probability can be expressed as the ratio of the transmitted and
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incident curren t densities of the particle*®. Given the current density operator:

. drn
rn dx dxd x j

the transmitted current density, ĵ , the incident tunnel current, j,, and the 

tunneling probability, T, are*®:

I ' - S » '. *k
J ' '  m

T= 4 =  IW" 
Jl

Therefore, the tunneling probability is the fraction of incident particles that 

pass through the barrier, !D!̂ . At the boundaries of the potential barrier, x=0 

and x=L, the wave functions must be continuous since the barrier is finite. 

Hence the wave functions and their derivatives must equal each other at the 

boundaries. Applying these boundary conditions yields four equations with four 

unknowns which can be solved to yield the tunneling probability^^:

T  =
4k^x*

(k  ̂ + Ac^)^sinh^(xL) +4k^x:^

The tunneling probability can be approximated assuming kL »1:
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The tunneling probability is dominated by the exponential term which depends 

on the effective barrier height, (U-E) which is expressed in k ,  and the width, L, 

of the barrier. Typical tunneling conditions result in a 10-fold mcreose in the 

tunneling probability for a 1 Â decrease in barrier width” .

Since STM relies on the quantum tunneling effect, it  is very sensitive to 

changes in the barrier between the sample and the tip. The tunneling current 

between the tip and the sample will cancel the tunneling current between the 

sample and the tip unless a bias is applied to favour tunneling towards the tip or 

the sample.

The previous treatment provides the exponential dependence of the 

tunnel current on the tunnel gap thickness, however, it does not consider the 

structural effects contributed by the tip and the sample. Assuming that the 

bias voltage that is applied is small, only electrons near the Fermi levels of the 

tip and the sample can contribute to the tunnel current. A precise 

determination of the tunnel current is often intractable for realistic tip and 

sample systems. I f  a weak coupling between the tip and the sample is assumed.
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,20.the tunnel current can be calculated using first-order perturbation theory 

I  = f ( E j ]  -  < e 4 i -  <E „ ) ] } K n r < E ,  + e V - E j

Here f(E) is the Fermi function and is the tunneling matrix element 

between tip states m and sample states n.

As an approximation, the Fermi functions can be treated as unit step 

functions. This coupled with the small voltage assumption simplifies the tunnel 

current expression to:

I  = K nlXEm  -  -Ep)
'* mji

In  the weak coupling limit, the tunneling matrix element can be 

determined by integrating the current density operator over any surface inside 

the tunnel barrier

2m

In  order to calculate the tunneling matrix elements, the wave functions 

that describe the tip and the sample must be determined Given the 

difficulties manufacturing atomically similar tips, the exact structure can not
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be modelled. However, a good approximation can be made by treating the tip as 

a spherically symmetric current source:

_ 1 c .xR e*

Here O» 'S the tip volume, c, is the normalization coefficient, k is the inverse 

decoy length for the wove function in vacuum, and R is the radius of curvature 

of the tip centred at Fq. The sample wave function can be obtained using a 

Bloch wave treatment:

Here O , is the sample volume, Og is the Fourier coefficient, k is the inverse 

decay length for the wove function in vacuum, k.. is the surface Bloch wove 

vector of the state, and 6  is the reciprocal lattice vector.

Substituting the tip and sample wave functions into the expression for 

the tunneling matrix elements gives:

A tc xR /_  \
■ 2m

The significance of this result is that the tunneling matrix elements depend on
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the value of the wave function of the sample at the position of the centre of 

curvature of the tip. With the tunneling matrix element determined the tunnel 

current can be calculated:

I - Z  k(''o)r<y(En -Ep)  -X n .E p )
n

Hence the tunnel current is directly proportional to the local density of states 

(LDOS) near the Fermi level at the position of the tip. This model assumes that 

the tunneling barrier is a vacuum. I t  is not clear how the presence of an 

adsorbed layer within the barrier would affect tunneling.

Operating Principles 

One of the major implications of STM is that it does not need to be 

operated in a vacuum environment*®. The barrier between the tip and the 

sample is so small (< 1 nm) that an ambient STM can still function properly. 

Ambient STM requires that the system being imaged is stable in atmospheric 

conditions. This is not often the case since many conducting surfaces oxidize 

quickly. For these surfaces, Ultrahigh vacuum STM is necessary.

The most significant technological development that led to the successful 

implementation of STM was the realization that piezoelectric ceramics.
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materials that change their shape in the presence of an applied electric field, 

can be controlled with atomic scale precision̂ ®. Typically, the resulting length 

changes ore several Â /V  at RT. The scanning tip is attached to a set of 

piezoelectric ceramics which ore manipulated by control electronics to obtain 

motion in all three dimensions.

Scanning tunneling microscopes ore most commonly operated in constant 

current mode. In  this mode, a constant tunnel current (Jy) is maintained for a 

given bios (Vy) while it is roster scanned across the sample by ceramics P, and P, 

os shown in Figure 10“ . To maintain a constant current while scanning, the tip 

is moved toward or away from the surface by changing the piezo voltage (Vp) to 

induce a change in the length of the ceramic P,. A computer (CU) is used to 

collect the height variations as a function of x and y and the resulting image is

CU

Figure 10. Schematic diagram of STM in constant
current mode” .
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displayed using a colour gradient.

An atomic resolution image of highly orientated pyrolytic graphite 

(HOP6) obtained using constant current imaging is shown in Figure 11. The gray, 

white, and black regions of the image correspond to open, overlapping, and dark 

circles respectively in the stacking diagram. This example demonstrates the 

sensitivity of the tunnel current to changes in the LDOS. Surface  layer atoms 

sitting directly on top of second layer atoms appear higher in the image because 

of the extra electron density contributed from the second layer atom. Figure 

11 also demonstrates the high degree of spatial resolution passible with an 

STM.

m
Figure 11. 10Â x 10 Â atomic resolution image of 
HOPS (left) and stacking diagram for top two 
layers (right). (Az=1.2 A) Tunneling conditions: 
*0.4 V and 1.0 nA.
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Instrumentation

The STM that is used in the lab is an RHK Technology "Besocke" style 

scan head controlled by RHK Technology SPM 100 electronics. The scanning tip 

is a fine wire of platinum-rhodium alloy (7:3) and it sits inside a single scan tube. 

The tip is prepared by cutting the wire at an angle and, a t the same time, 

pulling out to draw the wire to a point. The scan tube consists of a cylindrical 

piezoelectric ceramic comprised of four outer electrodes. The inside of the 

scan tube is grounded. Applying a voltage across one of the quadrants will 

result in the tube thinning and becoming longer in that quadrant. I f  the 

opposing quadrant is not given the same bias, the ceramic will bend due to the 

length difference between the two sides. In  this manner the tip can be 

manipulated to move in x or y. A uniform voltage applied to all four quadrants 

causes the whole ceramic to elongate and move the tip in z.

In  order to get the scan tip into tunneling range, it is necessary to have a 

course approach mechanism that will bring the tip into close proximity with the 

surface without crashing it. This is achieved with the use of three tubes (legs) 

similar to the scan tube that are located 120* apart as shown in Figure 12. The 

legs are lowered onto a three segment circular ramp. A sawtooth waveform is
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Figure 12. "Besocke" STM scon head with three 
walking legs and central scan tube^ .̂

applied to the legs to make them bend tangent to the circular ramp and then

quickly straighten^^. This Jerking "stick, slip" motion causes the legs to walk the

scan head down the ramp. To prevent the tip from crashing into the surface,

the control electronics use the feedback circuitry mentioned earlier. The

software generates a false tunnel current to fool the electronics into thinking

the STM has crashed. The feedback electronics then fully retract the tip.

Once the legs have "stepped", the feedback moves the tip toward the surface

and tries to detect a real tunnel current. I f  no current is detected, the cycle

repeats and the STM walks down the ramp.
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Auger Electron Spectroscopy

Another technique used to monitor the presence of thiol molecules on the 

surface is Auger electron spectroscopy (AES). AES measures the energy of 

electronic transitions in core level atoms to provide insight into the elemental 

composition of the surface under study^®. The basic premise of AES is as 

follows. An incident particle knocks a core level electron out of an atom leaving 

a vacancy. The vacancy is filled by an electron from a higher energy level and, 

to conserve energy, a third electron is excited as shown in Figure 13. I f  the 

emitted electron has sufficient energy to escape the atom, its kinetic energy

K E

B

Figure 13. Energy level diagram of Auger electron 
emission*®.
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will equal the difference between the energy levels involved (KEsE -̂Eg-Ec+Ugc) 

where Ugc is the interaction energy of the final two hole state of the atom**. 

This emitted electron, called an Auger electron, is collected and analysed to  

provide information about the atom that it came from. The energy of the 

emitted Auger electron is characteristic of the element that it came from and, 

subsequently, each element yields a characteristic spectrum. AES must be 

performed in an ultrahigh vacuum (UHV) chamber to ensure the unimpeded 

transit of Auger electrons from the sample to the detector.

Operating Principles 

The spectrometer fires a beam of electrons at the sample surface and 

Auger electrons that escape from the surface are counted. The analyser that 

the electrons pass through uses electric, and sometimes magnetic, fields to 

select the energy of the Auger electrons. The number of electrons as a 

function of energy con then be determined.

The beam of electrons fired at the surface is more than adequate to 

penetrate deep into the surface. However, the kinetic energy of the electrons 

that escape the surface is typically in the range where the electrons only have 

a mean free path of a few atomic layers (10 to 500 eV) as shown in Figure 14*̂ .
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Figure 14. The universal curve of electron meon 
free poth (A) versus energ/^.

The meon free poth os o function of energy is lorgely moteriol independent ond 

the curve shown in Figure 14 wos obtoin using o ronge of elements. The 

ottenuotion of electrons from deeper within the somple meons thot AES is very 

sensitive to the firs t few loyers of the surface ond provides very little 

informotion obout the bulk of the somple. Since Auger emission is o three 

electron process, hydrogen ond helium con not be detected by AES.

An Auger spectro of A u(lll) is shown in Figure 15. To improve the signol 

to noise rotio of the technique, the derivotive of the signol, or electron flux, is 

meosured using o lock-in omplif ier. This olso improves peok identif icotion since
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Figure 15. Auger spectra of bare Au(lll). Major 
peaks are Au(74 cV), C(275 eV), and 0(510 cV).

plotting the derivative versus energy yields very sharp spikes to measure at 

characteristic electron energies. Typically, the energy of the most negative 

part of a given spike is used as the reference^^. The major peaks we observe 

are gold at 74 eV, carbon at 275 eV, and oxygen at 510 eV. The other peaks 

that are present in the spectra are all attributed to other gold transitions.

Instrumentation 

The Auger electron spectrometer used in the lab is the Omicron 

Vacuumphysik GmbH Cylindrical Mirror Analyser (CMA) model CMA 100. A
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CMAAaisEiwuan

Figure 16. Schematic diagram of a cylindrical 
mirror analyser (CMA)̂ ‘-

3000 eV beam of electrons is fired at the surface and the Auger electrons are 

collected by a CMA and detector. The CMA is comprised of a pair of concentric 

metal cylinders which establish an electric field that guides the electrons with 

the desired energy toward the detector as shown in Figure 16“ . This is 

achieved by biassing the outer cylinder positively with respect to the inner 

cylinder. Ramping the voltage on the outer cylinder (E*) romps the energy of 

the Auger electrons (E*) that hit the detector. The detector is a channel 

electron multiplier (CEM). The CEM is a finely drawn tube of low electron 

binding energy material as shown in Figure 17. A high voltage is applied between 

the ends of the tube and the high resistivity of the material establishes a 

continuous voltage gradient” . Incident Auger electrons will trigger the 

emission of several secondary electrons which proceed further into the tube 

triggering more secondary electron emissions. CEMs can increase the electron
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current by a factor of 10^

Figure 17. Channel electron multiplier29
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Self-assembled monolayers were prepared by immersing flame annealed 

A u(lll) surfaces in dilute (~1.0 mM) solutions of the thiols being investigated. 

The following sections overview the procedures involved in producing SAAAs: 

gold films are made via gold evaporation onto atomically flat mica surfaces, 

domains with (111) termination are attained by flame annealing the gold film, 

and the polycrystalline gold films are modified with the desired thiol.

Sold Evaporation

Sold films were made by evaporating gold onto cleaved mica in high 

vacuum. Mica was used as the substrate because it is arranged in layers of 

atomically flat sheets which can be easily cleaved using adhesive tape to yield a 

clean, flat surface. The evaporating chamber was pumped to a base pressure of 

8.0% 10^ Torr using a rotary vane roughing pump and a diffusion pump with a 

liquid nitrogen trap.

Once the base pressure was attained, the 1.0 mm gold wire was melted in 

a tungsten wire basket positioned 5 cm below the mica surface as shown in 

Figure 18. The mica was placed on a stage and held in place by a clipped glass 

slide which kept a heating filament in contact with the back of the mica. A 

thermocouple was used to monitor the temperature of the mica throughout the
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Heating Fionant
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Shutter

Tungsten Basket

Figure 18. Evaporator set-up.

evaporation procedure. Prior to evaporation the mica was heated to 130**C using 

a 2.5 A current supplied by a DC constant current power source to expel water 

trapped between mica layers. Trapped water con destroy the film during the 

rapid heating of the flame annealing process.

Once the mica was sufficiently heated, the tungsten basket was heated 

by 16 A of current from a variac AC power supply. A shutter shielded the bare 

mica from évaporant until a stable gold flux was achieved. The mica was coated 

with gold for a period of five minutes. During this time the current from the 

power supply dropped up to 1 A dependirç on the quantity of gold wire that 

remained in the basket. The deposited film was allowed to cool under vacuum 

before it was removed for use.
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The evaporation process produced a 2 cm « 3 cm gold film that could be 

cut into smaller pieces (typically 0.5 cm * 0.8 cm) to f it  into the sample vials for 

thiol modification and also the sample holder for the STM. Film thickness was 

measured using a fizeau plate interferometer^ by measuring the fringe pattern 

produced. In  order to measure the film thickness, a glass slide had to be used 

as the substrate since mica is riddled with large steps which can hinder the 

measurement. A molybdenum strip was placed between the slide and the basket 

to act as a mask during the first deposition. A second layer was deposited on 

top of the first to provide a reflecting surface for the interferometry. The 

fringe spacing and fringe of^et were measured using the filar scale on the 

interferometer as shown in Figure 19 and the film thickness, t, was calculated

omtr
Figure 19. Fringe spacing and offset for typical 
step edge” .
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using the expression30.

Fringe Spacing^ 
Fringe O f f ^

Typical film thickness was measired to be ~5000 Â indicating a gold flux of 

~15 Â /S .

Flame Annealing

Gold evaporation produces a thick film of gold that is very rough as 

shown in Figure 20a. The topography of the surface as seen with STM is very 

hilly with little evidence of crystalline terraces. The standard deviation about 

the mean height of the scan is 31.4 Â. The domain size ranges from about

Figure 20. 5000 Â % 5000 Â STM images of a) 
pre- and b) post-annealed gold films. Tunneling 
conditions: a) +1.0 V and 0.86 nA and b) +1.0 V and 
0.90 nA.
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400 Â X 400 Â to about 2000 Â % 2000 A. Roughness varies from film to film  

but usually lies between 30 and 60 A. In  order to achieve large flat terraces 

with (111) termination, flame annealing is necessary *̂.

The flame annealing procedure was carried out using a bunsen burner 

apparatus with a natural gas flame. The sample was quickly passed through the 

flame 1 cm above the bright blue tip. By the end of the annealing process, the 

edges of the mica had attained a reddish orange glow and the gold had been 

evaporated from the corners. After the sample was allowed to cool, the 

success of annealing was explored with STM os shown in Figure 20b. The 

standard deviation about the mean height of this scan was reduced to 8.8 A and

Figure 21. 1000 A x 1000 A STM image of the 
23x/3 "herringbone" reconstruction of Au(lll). 
Tunneling conditions: +0.02 V and 2.3 nA.
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the domain size greatly improved to 3000 Â % 3000 Â. Typically, surface  

roughness was reduced to 10-20 Â but more importantly the terraces exhibited 

hexagonal symmetry (120** between step edges) indicating that they were (111) 

terminated. The 23W3 reconstruction was also verified by STM as shown in 

Figure 21. The parallel pairs of ridges were measired to be 0.20 Â high which 

is in close agreement with predicted values. The width of the pairs is ~60 A 

which is also agrees with previous studies as discussed.

Thiol Modif icotion 

Once the termination of the gold films was verified and the terraces 

were large enough to perform sample measurements (500 Â % 500 Â), the films 

were incubated in thiol solution. The thiol solutions were prepared in HPLC 

grade ethanol at a concentration of 1.0 mM. This corresponds to an addition of 

7.7 mg of DTT or 8.7 pL of octanethiol to 50 mL of ethanol. Films were 

modified at RT and at 60**C. For incubated films, the thiol solution was heated 

to 60®C prior to gold film introduction. The gold was then introduced into the 

heated thiol solution and remained at 60**C for the duration of the modification. 

A fter the modification, the samples were removed from solution and rinsed in 

copious amounts of ethanol to remove any unbound thiol.
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Modification Verification

Modification of the surface was verified using Auger electron 

spectroscopy and contact angle measurement. I f  Auger electron spectroscopy 

was used, the sample was mounted on a stainless steel sample holder with 

molybdenum clips and introduced into the (UHV) chamber via a load lock. The 

presence of thiol on the surface was verified by observing the Ŝ iMM peak at

(0
"c
3
JQL_
<
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LU
F l a m e  A n n e a l e d  A u ( 1  1 1)  
O c t a n e t h i o l  M o d i f i e d  A u ( 1 1 1 ) 
0  ith 10 th re ito I M o d i f i e d  A u ( 1 1 1 )

50 100 150 200 250 300  350 400  450 500 550 600
E n e r g y  ( e V )

Figure 22. Auger spectra for bore gold, 
octanethiol, and dithiothreitol modified films. 
Major peaks are Au(74 eV), 5(153 cV), C(275 eV), 
and 0(510 eV).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

153 eV. Both octanethiol and DTT modified gold films exhibited a strong 

sulphur peak at an energy between 150 and 155 eV as shown in Figure 22. The 

ratio of S:Au was similar for the two films.

Contact angle measurements were made by placing a small water droplet 

onto the gold film. A photograph of the droplet was taken and the contact 

angle was measured. The contact angle was determined to be 50±7**, 98+2°, and 

38+2* for bare gold, octanethiol and DTT respectively as shown in Figure 23. 

The higher contact angle for octanethiol can be attributed to the hydrophobic 

character of the methyl groups in the tail region of the molecule. The contact 

angle for DTT was lower due to the presence of hydrophilic hydroxyl groups.

I i

Figure 23. Contact angles for a) bare gold, b) a 
DTT modified surface, and c) a octanethiol 
modified surface.
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All STM images were obtained in constant current mode at RT. Large 

area scans were obtained at scan ra tes  between 100 and 500 ms /  line while 

molecular resolution images were obtained at scan rates between 10 and 100 

ms /  line.

Molecular Order

All A u(lll) surfaces modified by octanethiol exhibited dense packed 

monolayers characteristic of n-alkanethiols. The c(4»2) superlattice of the 

(f/3«>/3)R30° pattern as shown in Figure 24 was observed regularly on the

Figure 24. 500 Â % 500 A STM image of a 
surface modified by 1.0 mM octanethiol in ethanol 
at 60®C for 4 hours. Inset: 50 A * 50 A STM 
image of c(4*2) superlattice of (/3%V3)R30® 
lattice. Tunneling conditions: ♦l.O V and 1.04 nA 
and +1.0 V and 0.50 nA (inset).
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surfaces  modified both at RT and 60®C. The periodicity was determined to be 

5.2+0.2 A which is close to \/3 times the gold lattice spacing.

As was previously discussed, the STM maps out contours of constant 

electron density near the Fermi level of the sample at the position of the tip. 

For simple metals, the conduction band is half full so there is a high density of 

states near the Fermi level. Once the conducting surface is covered by an 

organic monolayer, direct interpretation of STM images becomes more difficult. 

Since methyl groups are poor conductors, the majority of the tunnel current is 

expected to flow between the tip and the sulphur head group.

A study of the self-assembly of mixed n-alkanethiols of differing chain 

lengths (nplO and n=12) revealed two distinct height levelŝ .̂ While the effect 

of adsorbed molecules on the tunnel barrier is not well understood, the 

following argument was proposed to explain the observed height difference of 

the two molecules. The tunnel barrier between the sample and the tip can be 

subdivided into two regions, the vacuum, or air barrier, and the film barrier of 

insulating alkyl tails as shown in Figure 25. Each region will have a different 

inverse decay length. Since the tunnel impedance is held uniform during 

constant current imaging, the change in film barrier thickness due to longer
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Vocuum

Film

Substrate
Figure 25. Model of tunnel Jwctlon for o SAM^ .̂

alkyl chains has to be compensated by a change in vacuum barrier thickness and 

hence the tip height changes. Given the insulating nature of alkyl chains it is 

possible to operate the STM with the tip inside the thiol layer, however 

molecular resolution requires that the tip lie outside the molecular loyer. For 

longer thiols, it is necessary to scan at a very low tunnel current to raise the 

tunnel impedance to 10s or 100s of GO to keep the tip outside the SAM.

For octanethiol modified films, stripes were observable under 1.0 V and

1.0 nA tunnel conditions giving a tunnel impedance of 1.0 GO. To observe 

individual octanethiol molecules the tunnel current had to be lowered to 0.5 nA 

to raise the tunnel impedance suggesting that a 1.0 GO tunnel impedance does 

not keep the tip outside the octanethiol monolayer. No bias dependence was 

observed for this system.
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Figure 26. 500 Â % 500 Â STM image of a 
surface modified by 1.0 mM DTT in ethanol at 
60®C for 3 hours. Inset: 30 Â * 30 Â STM 
molecular resolution image of a surface modified 
by DTT in ethanol at 60®C for 12 hours. Tunneling 
conditions: -0.87 V and 0.49 nA and -0.67 V and 
0.49 nA (inset).

A u(lll) surfaces modified by dithiothreitol (DTT) at 60®C exhibited 

small domains of molecular order, however, the majority of the surface 

appeared to be disordered as shown in Figure 26. In the ordered region, the 

lattice spacir^ was "̂ 5 Â along one direction and 10-15 Â along the other 

direction. This unit cell (2/3*i/3) is larger than the close packed n-alkanethiol 

unit cell (V3%\/3) suggesting that DTT does not pack as densely.

In  order to observe individual molecules the tunnel current had to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4S

COOH

SH

OH

HO

OH

.COOH

COOH

► +

OH

HO

Figure 27. Example of chemical reaction between 
DTNB and free DTT.

reduced to 0.5 n A and the voltage had to be reduced to ~0.7 V. We were only 

successful in obtaining molecular images under negative sample bias conditions. 

At this time, the nature of the bias dependence remains uninvestigated.

Au-DTT Binding

One question that arises when studying dithiols is whether or not each 

molecule binds to the surface via one or two Au-5 bonds? To further address 

this question, Ellman's reagent or 5-5'-dithiobis(2-nitrobenzoic acid) (DTNB) 

was used to detect free thiol on the surface. Surfaces with exposed sulphydryl 

groups react with DTNB to form a complex and liberate 5-thio(2- nitrobenzoic
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acid) (TNB) as shown in Figure 27” . In  free solutions, TNB is strongly coloured 

(412 nm) and can be detected using UV/Visible spectroscopy. Unfortunately, 

the amount of TNB that would be liberated by a reaction at the surface would 

be undetectable by UV/Visible spectroscopy. To overcome this problem, the 

samples were exposed to DTNB and then introduced into the UHV chamber 

were AES was used to detect the presence of nitrogen on the surface. The 

Nku. peak at 389 eV is not observed on bare or thiol modified A u(lll) films so 

its presence on films exposed to DTNB would suggest the presence of TNB 

bound to the surface.

Bare A u(lll) films treated with DTNB exhibited a small nitrogen peak at 

389 eV as shown in Figure 28. Comparison of sensitivity factors”  of sulphur 

(4.7575) and nitrogen (1.2184) indicate that nitrogen was present in similar 

quantities to sulphur suggesting that there was o complete loyer of TNB on the 

surface. Exposure of octanethiol and dithiothreitol modified surfaces to DTNB 

resulted in no observable nitrogen peak suggesting that all sulphur present at 

the surface is bound to the gold. The size of the carbon and oxygen peaks 

cannot be used to obtain information about the surface because the surface is 

generally coated with carbon dioxide in varying amounts.
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Figure 28. Auger spectra of flame annealed gold 
and dithiothreitol and octanethiol modified 
surfaces exposed to DTNB for 15 minutes. The 
spectra are normalized with respect to the Au 
peak. Major peaks are Au(74 eV), 5(153 eV),
C(275 eV), N(389 eV) as indicated, and 0(510 eV).

Previous Auger results (Figure 22) of octanethiol and DTT modified films 

suggest a similar areal density of sulphur on the gold. Results with DTNB 

indicate that both sulphur atoms bind to the surface. Based on these results 

and the observed (2/3%/3) unit cell observed in STM (Figure 26), we propose the
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2V3

Figure 29. Structural model for DTT on Au(lll).

structural model shown in Figure 29. Conformational analysis of DTT suggests 

that having both S oriented in the same direction (ie. down) and spaced 5 Â 

apart is a low energy state of the molecule” . I t  should be noted that the 

molecule is comprised of single bonds which exhibit free rotation. In this 

model, the sulphur atoms ore still densely packed, however, there are two 

sulphur atoms per molecule so the unit cell becomes larger. This unit cell has a 

molecular area of 49.8 which is consistent with the spacing observed.

Pitting

All A u(lll) surfaces modified by octanethiol exhibited pitting 

characteristic of dense packed n-alkanethiols at both RT and 60°C. A u(lll) 

surfaces modified by DTT at 60°C exhibited pitting similar to that observed on 

octanethiol SAMs. Pits were too small to be resolved if the incubation time was
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less than 90 minutes. As well, pits could not be resolved on surfaces modified 

at RT regardless of the modification time.

The single step height depressions that are observed in SAM systems 

were originally believed to arise due to chemical etching of the surface by the 

thiol in solution” . Evidence for this was discovered when gold particles where 

observed in solution after modification. As the phenomenon of pitting became 

more thoroughly investigated, it was discovered that pits formed during gas 

phase deposition as well as liquid phase deposition.

Studies of initial SAM formation revealed that the herringbone 

reconstruction relaxes as a result of thiol adsorption". The extra gold atoms 

present in the reconstructed layer are displaced onto the surface layer upon 

relaxation where they quickly migrate towards a step edge. I t  is believed that 

a second gold atom per unit cell is also ejected and subsequently migrates 

towards the step edge. This leaves behind one vacancy per unit cell. The 

vacancies in the surface gold layer cannot diffuse as quickly as theadotoms 

and, as the thiol adsorption continues, vacancies begin to migrate and nucleate 

vacancy islands as shown in Figure 30.

In  order to make a comparison between the pitting characteristics of
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Figure 30. Diagram depicting A u(lll) surface 
relaxation and Au adatom (black squares) and 
vacancy (white squares) migration. White layers 
represent bulk gold layers (0=1.000) while gray 
layers represent reconstructed gold layers 
(0=1.044)“.

DTT and octanethiol, the time evolution of fractional pit surface area and mean 

pit radius was investigated. The pit surface area and number density was 

measured using Image SXM for the Macintosh platform” . The raw data was 

loaded into the software and modified using the program's image editing macros.

First, a linear and quadratic compensation was performed to account for 

slope changes from line to line in the scan. Next, o7%7 Gaussian filter as shown 

in Figure 31 was applied to smooth the surface features. The enhance contrast 

macro was then used to maximize the pixel resolution of the image. A 

threshold was performed to convert pixels below 40 % of an atomic layer to 

black while those above the threshold were set to white The fractional
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Figure 31. 7%7 Gaussian filter used to smooth 
STM data.

coverage was determined by comparing the number of black pixels to the 

number of white pixels. A particle counting macro was then used to count the 

number of pits with surface area greater than 100 Â̂ . The 100 cutoff was 

used to eliminate spurious statistics arising from noise in the data. The mean 

pit radius was calculated using the following equation assuming the circular pits:

FractionalA rcox Im age A rea
Number O f  P its

Fractional Pit Area

In both systems under investigation, the pits occupied 5-10 % of the  

total surface area of the film as shown in Figure 32. The fluctuations in 

fractional area can be attributed to changes in tip geometry as the tip was 

often recut prior to each sample imaging. There was no clear trend observed as 

the results fluctuated over this range. Incubation time does not seem to have
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Figure 32. Graph of pit fraction versus 
modification time for octanethiol and DTT 
modified surfaces incubated at 60°C. Error bars 
quantify inter- and intra-sample variations.

25

an effect on the fractiona l coverage o f pits beyond one hour of modification 

consistent with previous studies”  indicating that pit formation reaches 

equilibrium before one hour of modification time. I t  should be re-emphasized 

that pits were not resolvable on DTT modified samples incubated for 90 

minutes or less whereas octanethiol modified samples had resolvable pits at one 

hour. This result suggests that DTT modified surfaces take longer to reach 

equilibrium.
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The consistency of the pit fractional coverage for both octanethiol and 

DTT modified films suggests a common mechanism for pit formation. The close 

agreement between the observed results and previous studies" suggest that pit 

formation is independent of the tail groups of the thiols and that simply the 

presence of thiol triggers pitting.

Another interesting observation of the surfaces resulting from thiol 

modification was the observation of evidence for mass transport of terraces. 

According to the herringbone relaxation model, terraces should expand as a 

result of adatom migration to ascending step edges as shown in Figure 30.

itsi
Figure 33. 5000 Â % 5000 À STM image of a 
surface modified by 1.0 mM octanethiol in ethanol 
at 60**C for 20 hours showing pinning sites. 
Tunneling conditions: -1.0 V and 0.98 nA.
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Octanethiol modified surfaces were characterized by terraces that grew larger 

around pinning sites os shown in Figure 33. Pinning sites arise as terraces move 

through local defects or impurities in the crystal structure. The defect or 

impurity prevents local crystal growth os the rest of the terrace expands. 

Notice the higher terraces wrap around the pinning sites suggesting that the 

terraces are advancing.

In  contrast, DTT modified surfaces exhibit evidence of terrace 

recession os shown in Figure 34. Here the terraces appear to be pulling away 

from the pinning sites. I t  is also interesting to note that pinning sites are

Figure 34. 5000 Â % 5000 Â STM image of a 
surface modified by 1.0 mM DTT in ethanol at 
60°C for 1 hour showing pinning sites. Tunneling 
conditions: -1.0 V and 0.52 nA.
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observed before pits ore resolvable. This phenomenon cannot be explained in 

terms of the pit formation theory but rather suggest that the surface is being 

eroded by the modification process.

Meon Pit Radius

I t  has been observed by a number of groups that pits undergo a ripening 

process over time whereby larger pits grow at the expense of smaller pits '̂. 

This process, often referred to os Ostwald ripening, is affected by the 

evaporation rate of vacancies from the pit edges and the diffusion rate of 

vacancies from high curvature step edges to lower curvature step edges. Pit 

ripening should obey a power law relationship (r«t") where n=0.33 if diffusion is 

the rate limiting step and n=0.50 if evaporation is the rate limiting step.

Studies of butanethiol on Au(lll) at RT determined that pit ripening is 

evaporation limited” .

The mean pit radius was measured for all octanethiol and DTT samples 

incubated over a range of times from one to twenty-four hours as shown in 

Figure 35. Both systems seemed to reach a similar saturation mean pit radius 

between 18-20 Â consistent with similar studies” . However, while octanethiol 

modified films are close to this saturation level at one hour it seems that DTT
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Figure 35. Pit radius versus modification time for 
octanethiol and DTT modified surfaces incubated 
at 60®C. Error bars quantify inter- and 
intra-sample variations.
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modified films do not reach that level for several hours. Samples incubated for 

90 minutes exhibit pits shallower than 2.5 Â. These pits are too small for the 

tip to image before it encounters the other side. I t  should also be noted that 

pits are not resolvable on films modified by DTT at RT regardless of the 

incubation time (up to several days) suggesting that increased temperature is 

required to ripen the pits on DTT modified SAMs. The increased thermal 

energy may be required to facilitate evaporation from step edges since there
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are two Au-S bonds to overcome.

Preliminary investigations of octanethiol modified films at RT suggest 

that the equilibrium mean pit radius decreases with decreasing temperature 

consistent with previous studies” . Somples modified for 46 hours at RT 

exhibited a mean pit radius of ~11 Â. This result is expected since evaporation 

is a thermodynamic phenomenon.

At firs t glance, the data shown in Figure 35 does not appear to obey the 

power law for Ostwald ripening. At 60®C, it is most probable that the 

transition from unresolvable pits at low incubation times to the saturation pit 

radius occurred too quickly to be observed in our measurements. There is also 

a dependence on temperature as is evident from the smaller saturation pit 

radius for octanethiol modified at RT.
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We compared the properties of dithiothreitol self-assembled monolayers 

to octanethiol self-assembled monolayers. The results observed for octanethiol 

modified films were consistent with previous studies. For the first time, STM 

images of dithiothreitol were obtained. Molecular resolution images along with 

Auger results were used to determine the structure of the film.

The octanethiol modified films exhibited properties characteristic of 

n-alkanethiol SAMs os expected. The c(4*2) superlattice of the (V3*/3)R30® 

SAM was observed with the appropriate lattice spacings (5.2±02 Â). Numerous 

pits were observed with the characteristic depth of 25 Â consistent with the 

height of a single gold step.

The fraction of the surface covered by pits always fell between 

0.05-0.10 regardless of incubation time. These results are in agreement with 

previous studies based on relaxation of the gold surface reconstruction". The 

mean pit radius seemed to quickly reach an equilibrium value of ~19 Â. Samples 

modified at RT reached an equilibrium value of ~11 Â. Evidence for mass 

transport of terraces was also observed suggesting that the adatoms liberated 

by the relaxation of the herringbone reconstruction migrate towards step 

edges resulting in the growth of the terrace consistent with the theory of pit
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formation.

Dithiothreitol modified films exhibited many properties similar to those 

observed in n-alkanethiol SAMs with a few exceptions. The films did not 

exhibit long range order os observed for octanethiol and the order that was 

observed suggested that DTT does not form a densely packed monolayer. Pits 

were observed to be 2.5 Â deep for films modified at 60®C however, pits were 

unresolvable when the gold surface  was modified at RT. Preliminary studies 

with Ellman's reagent (DTNB) suggest that DTT binds to the gold surface via 

two Au-S bonds. The structural model proposed for DTT is (2v'3*\/3).

The fractional pit coverage was also observed to lie in the range of

0.05-0.10 and the mean pit radius appeared to reach the same equilibrium value 

of ~19 Â. The data suggest that the origin of pitting is similar in both systems. 

Pits on DTT modified films take longer to reach equilibrium than was observed 

for octanethiol SA Ms. There was also evidence of mass transport of terraces 

however, contrary to octanethiol modified films, DTT modified films exhibit 

receding terraces. This phenomenon can not be explained using the theory of 

pit formation and is attributed to some sort of etching mechanism.
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Future Considérations

At this time, it is unclear how the DTT modified films order with respect 

to the underlying Au(lll) substrate. Observing the registry of the DTT SAM 

would help determine the DTT packing structure.

In-situ STM investigations could observe the early stages of modification 

in the DTT system. Probing the initial pit formation and subsequent pit 

dynamics would help answer questions about the nature of the binding of the 

DTT to the surface and also about the mobility of the SAM.

The observation of terraces receding in DTT modified films can not be 

explained using current theories about SAM formation and evolution. In-situ 

STM investigations need to be performed to observe the mass transport of 

terraces during modification.

The use of DTNB provided insight into the nature of the binding of the 

DTT SAM. However, nitrogen is a poor choice for o marker since it is very 

close to a secondary peak of gold. Another marker species with a stronger 

Auger signal, chlorine for example, would be a better choice.

The bios dependence of stable molecular imaging for DTT SAMs should 

be more thoroughly investigated as it may shed some light on how the DTT
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presents itself at the surface.
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