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Abstract

Permanent magnet synchronous machines (PMSM) have shown increasing 

popularity in recent years for industrial drive applications due to the recent de­

velopments in magnetic materials, power converters, and digital signal proces­

sors. In particular, Interior Permanent Magnet Synchronous Motor (IPMSM) 

drives are widely used in high performance drive (HPD) applications. Fast and 

accurate speed response and quick recovery of speed from any disturbances are 

essential. The control of a high performance permanent magnet synchronous 

motor drive for general industrial application has received wide spread interest 

of researchers.

In this work, a novel speed and position control scheme for an IPMSM is 

developed based on a nonlinear adaptive control scheme. The vector control 

scheme is used to simplify control of the IPMSM. System model equations are 

represented in the synchronously rotating reference frame and provide the basis 

for the controller which is designed using the adaptive backstepping technique. 

Using Lyapunov’s stability theory, it is also shown that the control variables 

are asymptotically stable. The complete system model is developed and then 

simulated using MATLAB/Simulink software. Performance of the proposed 

controller is investigated extensively at different dynamic operating conditions 

such as sudden load change, command speed change, command position change 

and parameter variations. The results show the global stability of the proposed

vi
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controller and hence found to be suitable for high performance industrial drive 

applications. The real time implementation of the complete drive system is 

currently underway.
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Chapter 1

Introduction

For many years, DC motors were used for variable speed and high performance 

drive applications because of the simplicity of control due to the decoupled 

nature of the field and armature [1]. However, disadvantages of dc motors 

include, lack of overload capability, lack of ruggedness, frequent maintenance 

requirement as well as high cost due to brush-gear and commutators, and 

power loss in the field circuit. These drawbacks have encouraged researchers 

to develop ac motors such as induction and synchronous motors for high per­

formance variable speed drive applications, where robustness and maintenance 

free operations are the main concern.

The induction motor is the most commonly used in industry due to its 

ruggedness, reliability and low cost [2,3]. However, they have some limita­

tions associated with their use in high performance variable speed drive ap­

plications. One of the limitations is that induction motors always operate at 

lagging power factor because their rotor induced current is supplied from the 

stator side. Also, the induction motor always runs at speeds lower than the 

synchronous speed, so the control of these motors is very complex. The real

1
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time implementation of the induction motor drive requires sophisticated mod­

eling and estimation of machine parameters with complex control circuitry. 

Due to these limitations, researchers have looked into the synchronous motors 

for easier control in high performance variable speed drives.

Synchronous motors of wire-wound rotor type are common in high power 

ac drive systems because the field current can be controlled from the rotor side. 

Since it runs at synchronous speed, the control is less complex. It also removes 

the slip power loss. However, the presence of the field coil, dc supply and slip 

rings decrease the efficiency of the drive and requires frequent maintenance. 

Due to the significant technological advancement that has occurred in motor 

drives in recent years, the permanent magnet synchronous motor is becoming 

increasingly popular in varied drive applications [4,5].

1.1 Perm anent M agnet Synchronous M otors

A permanent magnet synchronous motor consists of a stator with three phase 

windings and a rotor mounted with permanent magnets to provide the field 

flux. The permanent magnet synchronous motor is not subjected to the lim­

itations of dc, ac induction and wire-wound excited synchronous motors as 

previously discussed. It does not need an external supply to excite the rotor 

field and hence the field winding and slip rings are eliminated. The absence of 

the field winding reduces the cost and eliminates the power losses associated 

with this winding. The permanent magnet synchronous motor occupies less 

space than a wire-wound motor for a given size, which leads to more compact 

design and robust construction. Unlike an induction motor there is no slip 

dependent rotor copper loss in a permanent magnet synchronous motor. The 

permanent magnet synchronous motor is more efficient and has a larger torque
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to inertia ratio and power density when compared to the induction motor. In 

addition, for the same output capacity the PMSM is smaller in size and lower 

in weight. This is preferable for certain high performance applications like in 

machine tools and aerospace [6].

1.2 C lassification o f PM SM

PM synchronous motors are classified in different categories depending on the 

position of the magnets within the rotor. The categories are:

• Surface mounted where the magnets are mounted on the surface of the 

rotor.

• Inset type where the permanent magnets are are fully or partially inset 

into the rotor core

• Interior type where the magnets are buried within the rotor core.

The cross section of the different types of PM motors are shown in Figures

1.1 - 1.3. The motor with surface magnets is essentially non-salient type. It 

has a large air gap and is popularly used in a brushless dc motor drive as for 

example in a washer/dryer or computer hard disk drives. The large air gap 

weakens the armature reaction effect, and therefore the operation is essentially 

restricted to low speed and constant torque region. The inset permanent mag­

net motor has a small but relatively smooth air gap. The interior permanent 

magnet motor overcomes the above drawbacks of surface magnet type because 

of its narrow and smooth air gap. Moreover, the motor torque is contributed 

by reluctance component due to the difference between direct and quadra­

ture axis reactances as well as the permanent magnet field component. Unlike
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Rotor

Permanent
Magnets

Stator

Figure 1.1: Cross section of surface mounted type PM motor

Rotor

Permanent
Magnets

Stator

Figure 1.2: Cross section of inset type PM motor
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Rotor

Permanent
Magnets

Stator

Figure 1.3: Cross section of interior type PM motor

surface mounted magnet type, it has advantages for high-speed applications. 

Depending on the rotor cage winding, the PM motors may be classified as: 

(a) cageless, where the rotor has no cage winding and (b) cage type, where 

the rotor is provided with a cage winding. In the case of the cage type motor, 

the cage winding provides the starting torque and hence this type of motor is 

capable of self-starting with a rated supply voltage and frequency [7].

Among the various types of PM motors discussed above, the interior type 

PM motor is the most economical to manufacture. Since the permanent mag­

nets are buried within the rotor core, it provides a smooth rotor surface and 

reduced air gap. As a result, this type of motor can be used for high speed 

with quiet operation and better dynamic performance, which are the major 

concerns for high performance drive systems. In order to take all of these
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advantages without the lack of generality, the interior permanent magnet syn­

chronous motor (IPMSM) has been considered as a working model in this 

thesis.

1.3 Literature R eview

Developments in PM motor technology is directly related to advances in per­

manent magnet materials such as ferrites, AlNiCo, rare earths such as Samar­

ium Cobalt (SmCo) and Neodymium-Iron-Boron (NdFeB) [8]. Typical resid­

ual flux densities of these PM materials are 1.1 T for neodymium, 0.85 T for 

samarium cobalt and 0.35 T for ferrites [4]. Advances in semiconductor and 

microprocessor technologies have made evolutionary advancements on the de­

sign and control of electric motors. Ac drives have already begun to replace 

the dc motors in motion control applications and possibly make dc motors rel­

atively obsolete in the next few years. The dynamics and control of ac drives 

are complex, and their complexity increases for higher performance require­

ments. Many different control techniques of varying degree of complexity have 

appeared on the nature of drive applications.

The simple open-loop volt/hertz (v/f) control method has been popularly 

used for a long time in low performance drives. Other methods include torque 

control, current angle control and flux control. However, these scalar control 

techniques have drawbacks due to the nonlinearity of the motor model and 

inherent coupling between the direct and quadrature axis (d-q axis) quantities. 

This causes sluggish responses which are unacceptable for high-performance 

drive applications which require fast and accurate speed tracking response, 

quick recovery of speed from any disturbances and must be insensitive to 

parameter variations. In order to achieve these required characteristics of
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hight performance drives the vector or field oriented control technique is being 

utilized for control of ac drives [9].

The principle of vector control is to eliminate the coupling between the 

direct (d) and quadrature (q) axes. Both the phase angle and the magnitude 

of the current must be controlled. This is achieved by transforming the abc 

quantities into the d-q quantities using Park’s transformation [10]. The ac 

motor then behaves like a separately excited dc motor while maintaining the 

advantages of ac over dc motors. Thus, the control of ac motors becomes 

easier as the q-axis component of the current affects the torque while the d- 

axis current only affects the magnitude of the flux. This indicates a close 

correspondence to dc machines, with the direct axis component of the stator 

current vector being analogous to the field current and the quadrature axis 

component to the armature current.

Based on the control signals, vector control is classified as direct and in­

direct methods. The direct method depends on the direct measurements of 

the stator (or rotor) flux, whereas the indirect method involves calculating the 

necessary variables from information of the rotor position.

1.3.1 Adaptive Speed and Position Control

The controllers used in motor drive systems can be broadly classified as fixed 

gain types or adaptive types. The conventional fixed gain types are proportional- 

integral (PI), proportional-integral-derivative (PID) and pseudo-derivative- 

feedback (PDF) controllers. Fixed gain controllers are sensitive to parameter 

variations due to saturation, temperature variation, sudden change of com­

mand speed, load disturbances and other uncertainties [11]. Therefore, these 

types of controllers are not always suitable for high performance applications.
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To overcome these obstacles, researchers [11-26] have developed adaptive con­

trol schemes so that the controller can adapt to parameter variations and 

load disturbances. The adaptive types are model reference adaptive controller 

(MRAC), sliding mode controller (SMC), self tuning regulator (STR) and 

variable structure controller (VSC). Major reported works on the interior per­

manent magnet synchronous motor (PMSM) drive will be briefly discussed 

below.

Various linear and non linear adaptive controllers have been proposed for 

IPMSM drive system. Some include LQ control, differential geometric ap­

proach, passivity theory, self tuning control, observer based adaptive control 

and model reference adaptive control [11-19]. In [16] the authors developed 

a discrete time adaptive speed controller for the PMSM where the nonlinear 

motor system was linearized in the discrete time domain. The mechanical 

parameters of the system are also estimated, however the controller is highly 

dependent on the accuracy of these estimated parameters. The same authors 

have also proposed a discrete time observer based adaptive controller without 

the use of speed sensors [17]. However, it was determined that observer based 

adaptive control is sensitive to inertial mismatch. Estimation of the motor 

speed required high gains in the presence of inertial mismatch. This amplifies 

the noise in the system which leads to poor performance. In [18] an adaptive 

uncertainty T>bserver is utilized with a conventional PI controller for position 

control of a PMSM. This method was proven to be robust but the authors 

have not applied this technique for speed control. The model reference adap­

tive control technique has been used for speed and position control suitable 

for robotic applications [14]. A disturbance torque observer is employed to 

balance the required load torque and reduce the complexity of the adaptive
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algorithm. However, the proposed model suffers from increased on-line com­

putational burden for increased robustness of the drive. In [15], the authors 

have combined model reference algorithms with variable structure algorithms 

for adaptive position control of a PMSM. MRAC techniques involve tuning 

the controller online by adaptive algorithms based on the error between the 

reference model and the controlled plant.

Other adaptive control techniques in speed and position control of a PMSM 

include sliding mode control (SMC), torque ripple minimization, efficiency 

maximizing, maximum torque per ampere control and self tuning control us­

ing Kalman filter theory [20-26]. Generally, to design a conventional SMC 

system, there are two design phases that must be considered, namely, the 

reaching phase and sliding phase. The robustness of a variable structure con­

trol (VSC) system resides in its sliding phase, but not in its reaching phase. In 

other words, the closed-loop system dynamic is not completely robust all the 

time. In addition, while the design technique for the sliding mode has been 

well established, there is no easy way to shape the dynamics of the reaching 

phase [20,21], In [27] the authors have reported an ac servo drive for PMSM 

using a variable structure controller. They have used two control loops: the 

inner loop is used for predictive current controllers and the outer loop is used 

for a position or speed controller. The predictive current controller has been 

- used to improve the robustness of the drive. However, the performance of the 

drive has not been investigated for wide range of speed conditions. Moreover, 

the drive is not completely rid of the chattering problem even in the steady 

state. The authors of [22] have combined sliding mode control with fuzzy logic 

rules to reduce chattering and improve steady state error which is associated 

with SMC. Bin Zhang et. al [28] have also combined a sliding mode controller
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based on model reference adaptive control. Combining different control tech­

niques gives superior results to conventional fixed gain controllers, however 

they increase the computational complexity of the control algorithm.

1.3.2 Adaptive Backstepping

Backstepping control is a relatively new technique for the control of uncer­

tain nonlinear systems. The most appealing point is the use of virtual control 

variables to make the original high order system simple, thus the final control 

outputs can be derived step by step through suitable Lyapunov functions en­

suring global stability. An adaptive robust nonlinear controller can be derived 

using this control method in a straightforward manner.

Recently, the newly developed adaptive backstepping technique has been 

used in the design of speed controllers for dc, induction motors and perma­

nent magnet motors [29-36]. This technique allows the designer to incorporate 

most system non linearities and uncertainties in the design of the controller. 

In [30,31,33] the authors designed a nonlinear controller that achieves rotor 

angular speed and rotor flux amplitude tracking with uncertainties in the rotor 

resistance and load torque for an induction motor. Results show that track­

ing objectives are achieved with very little steady state error or overshoot. 

Zhou et. al [29] have developed a backstepping based controller for a DC 

motor and induction motor with uncertainties. First, the authors derived a 

nonlinear model of a DC motor with parameter uncertainties such as motor 

inertia and load torque. Then the control algorithm is derived from the model 

equations. Hualin Tan et.al [32] have also designed an adaptive backstepping 

based controller for position control of an induction motor. Once again the 

simulated results showed that tracking objectives were achieved. The authors'
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of [36] have successfully implemented a backstepping based controller in real 

time for an IPMSM drive system. However, in designing the controller the au­

thors of [36] did not take into account all possible system nonlinearities such 

as stator resistance which varies with temperature. Stator resistance can vary 

as much as 70% with temperature [37].

1.4 Thesis O bjectives

Based on the literature review, the IPMSM possesses many appealing charac­

teristics, such as high torque to inertia ratio, power to weight ratio and low 

noise. However, due to the nonlinear nature of the motor, traditional control 

methods such as scalar control and fixed gain PI control are not suitable for 

high performance drive applications. Some works have been reported on adap­

tive control for the IPMSM such as MRAC, SMC etc. However, the absence of 

proper estimation of the motor parameters degrades the performance of these 

controllers. Therefore, the objective of this thesis is to develop a robust nonlin­

ear controller for speed and position control of an IPMSM drive. The proposed 

method is based on the adaptive backstepping technique. Motor parameters 

are estimated online in order to handle system disturbances and uncertainties. 

The vector control scheme is used for the proposed IPMSM drive. This decou­

ples the torque and flux, thus providing faster transient response and making 

the control task easier.

1.5 Thesis Organization

The organization of the remaining chapters is as follows. Chapter 2 describes 

Park’s transformation and the derivation of the mathematical model of the
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IPMSM. Here it is shown that the vector control technique greatly simplifies 

the control of the motor. Next, Chapter 3 shows the control design in detail 

for both speed and position control. The design is based on the motor model 

equations derived in Chapter 2. Chapter 4 describes the model development 

and shows the simulation results of the complete drive system. Chapter 5 

describes how the real time implementation of the complete drive system would 

be carried out. Finally, a summary of this work and suggestions for future 

work are highlighted in Chapter 6. After that, all pertinent references and 

appendices are listed.
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Chapter 2 

M athem atical M odel of the  

IPM SM

2.1 Park’s Transformation

In order to simplify the mathematical model of the motor it will be expressed 

in terms of the synchronously rotating reference frame where the machine 

equations are no longer dependent on rotor position. This transformation is 

also known as Park’s Transformation [10]. First the machine equations are to 

be transformed from the stationary abc frame to the stationary d3 — q3 frame. 

Then the second step is from the stationary d3 — q3 frame to the synchronously 

rotating cT — qT frame. The ahc phase quantities can be transformed into the 

stationary dqO axis quantities using the following equation.

x*
2

x sd “  3
4 .

2i r \
3 ) xa

2rr\
3 ) Xb

x c

(2 .1)

13
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where x sq, x3d, xg are the stationary frame dqO axis quantities and xabc are 

the abc quantities. The corresponding inverse relation is given by:

xa

Xb =

X c

cos8r sin8r 1

cos (0r — y )  sin (0T — y ) 1 

cos (dr -t- y ) sin (fr + y )  1

The rotor position angle is defined as

0r =  f  LJr(t) dt + 0r(0)
Jo

Q

4 .

(2 .2 )

(2.3)

For a balanced 3-phase system, Xo does not exist. Also, Equations (2.1) 

and (2 .2 ) are both in the stationary reference frame so 0T =  8r(0) which is 

the angle difference between the q-axis and a-phase. It is convenient to set 

6r(0) =  0 so that the q-axis coincides with the a-phase. Under these conditions, 

the transformation equations can be written as

(2.4)

x a~s 2 1 1
Xq 3 3 3— Xb

.Xd.
n i l  

. u “ 73 73.
Xc

and
Xa l 0

xi
Xfj

X̂

-HIM 
-HIM 

1 
1

»

2

&
2 .

9

Xd.
(2.5)

The relative positions of the stationary and rotating d-q axes is shown in 

Figure 2.1. Now the variables in the stationary d-q frame can be converted to 

the synchronously rotating cT — qr frame by:
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d" -  axis

\ 1/  
d  -  axis

Figure 2.1: Relative positions of stationary and rotating d-q axes
1

... 
1

9

xd
(2 .6)

cos 0T — sin 0r 

sin 6r cos 0T

where xrq and xrd are the synchronously rotating reference frame quantities. 

The inverse relation is:

(2.7)9 —

.Xd. -

In order to derive the <F — q

cos 0 T  sin O r *9
— sin O r  COS O r x d

assumptions are made.

• The eddy current and hysteresis losses are negligible.

• The induced emf is sinusoidal.

• The saturation is neglected.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



16

• The stator resistances of the three phases are balanced.

2.2 D erivation of the M otor M odel

As stated before, the IPMSM is similar to the conventional wire-wound syn­

chronous motor except the rotor excitation is provided by permanent magnets 

instead of wire-wound dc rotor field. Therefore, the d — q axis model of the 

IPMSM can be derived from the standard model for synchronous motors by 

removing the equation related to the field current and associated dynamics. 

The flux linkages in the three phase stator windings due to the permanent 

magnets are given in matrix form as [38]:

m sin 9t

i>bm = sin(9r - f )

_an(«r +  fe)_

(2.8)

where V'amiVw and 4’cm are the a b c phase stator flux linkages due to the 

permanent magnet alone, is the constant flux supplied by the permanent 

magnets and 9r is the rotor position angle.

The 3-phase air gap flux linkage equations are given as:

A =

•0 c_

Laa A/a& Mac 

Mba Lfrb &Lbc 

Mca Mcb Lee

â sin 0r

ib ~F P̂m sin (9r -  Y j (2.9)

ic sin (9t +  y )

where ^ a, and ipc are the 3-phase air gap flux linkages, Laa, Lbb and L are 

the self inductances and Mbc and M are the mutual inductances. Now
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the voltage equations of the three phases of the IPMSM can be defined as

v<i — 7?,aia "I- pipa

vc = Rcic +  pipe

vb =  Rbib + pipb

(2 .10)

(2 .11)

(2 .12)

where va,vb,vc are the 3-phase voltages, ia,ib, ic are the 3-phase currents, 

Ra, Rt,, Rc are the 3-phase stator resistances and p is the differential operator 

j t . Now, using equations (2.10)-(2.12), the transformation equations (2.1) and 

(2.6) the model of the IPMSM can be written in the synchronously rotating 

d-q frame as

where vd, vq, id, iq, ipd, iprq are the d-q axis voltages, currents and flux linkages 

respectively, R  is the stator resistance per phase and u>s is the stator frequency. 

ipq and ipd can be written as

vrd = RiTd + p4>d + u 3il)rq 

vrq -  Rirq + pxprq + ujsiprd

(2.13)

(2.14)

(2.15)

(2.16)

where

Lq — Li +  Ljnq 

Ld — -(- L-md

(2.17)

(2.18)
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Ld and Lq are the d-q axis inductances, Lmd and are the d and q axis 

magnetizing inductances and L\ is the leakage inductance per phase. The 

stator frequency is related to the rotor frequency by

where P  is the number of pole pairs. Now the machine model can be re-written 

as

According to Equation (2.20) the motor can be represented by the equivalent 

circuit diagrams shown in Figure 2.2. The permanent magnet flux is repre­

sented as a constant current source Im , since a constant field current in a wire 

wound synchronous machine will supply a constant flux.

The torque developed by the machine is obtained by considering the power 

entering the two sources in the circuit diagram. The total average power 

entering the sources per phase is given by [4]

tos = PuiT (2.19)

vrd R  + pLd Pu}TLq id 0

Vq \  PiOrLd R  + pLq j [ PuJr^m
(2 .20)

Therefore, the total power developed by the machine is

(2.22)

Now, the developed electromagnetic torque is given by

Ptotai 3 P
2  0fimiq "b (Ld Lq)idiq) (2.23)
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AA/V

(a) d-axis equivalent circuit

A A A -

4md

(b) q-axis equivalent circuit

Figure 2.2: Equivalent circuit model of the IPMSM

Finally, neglecting windage, the motor dynamics can be represented by the 

following equation:
dt. i

(2.24)
_ dUJr" _

Te = T i + J  — + Bmur

where T i is the load torque (Nm), Bm is the friction damping coefficient 

(Nm/rad/sec) and J  is the rotor inertia constant (kgm2). For dynamic simu­

lation, the IPMSM model equations are expressed in state-space form as

-R iq  -  PuJrLdid — PUr 1pm. +  Vq

I'd —
Rid -f- Pu r Lqiq -j- Vd

(2.25)

(2.26)
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Te — Tl — Bmur 
u r = — —j  —  (2.27)

2.3 Vector Control Strategy for IPM SM  D rive

As discussed previously, the vector control technique is an effective technique 

for use with ac motors in high performance drives. The IPMSM can be vector 

controlled when the machine equations are transformed from the abc frame 

to the synchronously rotating d-q frame. The complexity of control of the 

IPMSM drive arises due to the nonlinear nature of the torque in equation 

(2.23). One way of simplifying this is to set id =  0. The torque equation then 

becomes
3 P

Te = — i>miq (2.28)

which is linear and similar to the torque equation of a dc motor. Using phasor 

notation and taking the dr axis as the reference phasor, the steady state phase 

voltage Va can be derived from equation (2.20) as [38]

Va = vrd + jv rq

= R Ia ~  u rLqirq -I- ju rLdird + ju ripm (2.29)

where the phase current,

Ia = - i rd + j i rq (2.30)

Based on equation (2.29), the basic vector diagram of the IPMSM is shown 

in Figure 2.3. The stator current can be controlled by by controlling the 

individual d-q current components. When id is set to zero, the torque is a 

function of only the q-axis current component, and hence the torque can be 

controlled by controlling iq. Constant torque can be obtained by ensuring that
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iq is kept constant. Figure 2.3(b) shows the vector diagram with id = 0. With 

this control technique, the dynamic equations (2.25) to (2.27) can be rewritten 

as,

Riq Ptdr1pm +  Vg (2 31)
Lq

VTd = -PuirLqiq (2.32)

wr =  Te ~ T lj  BmUJr (2.33)

For the sake of testing the proposed control algorithm presented in this 

work, this technique is used to control the motor up to its rated speed. In order 

to control the motor beyond its rated speed, the flux weakening technique must 

be incorporated [39,40].

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



22

q'axis

Rl.

-LA

d '  axis  (reference)
(a) General vector diagram

q'axis

RI.

i  \

d'axis
(reference)

(b) Modified with id =  0 

Figure 2.3: Vector diagrams of the IPMSM
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Chapter 3

Adaptive Control of an IPM SM  

Drive

As stated before, the goal of this work is to design a speed and position con­

troller for the IPMSM using the adaptive backstepping technique. Speed con­

trol is essential for a high performance drive application, since a motor must 

have a fast and accurate speed tracking response, quick recovery of speed 

from any disturbances and must be insensitive to parameter variations. Such 

applications include rolling mills, machine tools, etc.

Position control of a motor is obtained with two control loops - an outer 

position loop and an inner speed loop. The position controller generates the 

reference speed, and the speed controller generates the reference currents in 

the case of vector control. A typical vector control scheme for position or 

speed control of an IPMSM is shown in Figure 3.1. Typically, conventional 

controllers such as proportional integral (PI) or proportional integral deriv­

ative (PID) have been used in both loops. The main advantage to this is 

simplicity. However, the range of operating conditions is very limited, and the 

performance of the controllers degrade when uncertainties are introduced [41].

23
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Position
Controller

Speed
Controller Voltage

Generator
PWM

Inverter
dq/abc IPMSM

abc
abc/dq

Figure 3.1: Typical vector control scheme for position or speed control of an 
IPMSM

In order to maintain good control performance an adaptive control scheme 

must be used to compensate for parameter variations [42]. Based on the mo­

tor model, the d-q axis command voltage components are generated from the 

command d-q axis current components. Using the inverse of Park’s Transfor­

mation, the command a-b-c phase voltages are generated from the d-q axis 

components, and then compared with high frequency triangle waveforms to 

generate the PWM logic signals for the inverter.

3.1 Speed Control D esign

The foundation of backstepping is the identification of a virtual control vari­

able and forcing it to become a stabilizing function. Thus, it generates a 

corresponding error variable which can be stabilized by proper input selection 

via Lyapunov’s stability theory [43]. This technique is very useful for on­

line estimation of parameters which cannot be directly measured. Hence, this 

method is suitable for speed control of a nonlinear IPMSM where parameters 

vary with magnetic saturation such as inductance and stator resistance which 

varies with temperature. Moreover, the load torque is unknown and must be 

estimated as well for complete nonlinear adaptive control.
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The overall objective is to track the rotor speed u;r . The tracking error is 

given by

e = oj*—ujr (3.1)

and the speed error dynamic is given by

e =  — uT =  —
J

3 P
Bm^r Tl — (ipm'i-q "F Bq) itflq) (3.2)

The stabilizing function is determined by differentiating the Lyapunov function 

V = |e 2 to get

V  = ee = —
t/

3 P  3 P
BmWr {Bd Bq) idiq (3.3)

The d-q axis currents id and iq are identified as the virtual control variables to 

stabilize motor speed. From (3.3) we choose the following stabilizing functions:

=  3 ^  (Bmu,r + Tl -  h J e )  (3.4)

id =  0 (3.5)

where h  is a constant gain, i* and i*d are the command currents. Substituting

these equations back into equation (3.3) the Lyapunov function becomes

V  =  - h e 2 (3.6)

if fci > 0  then the function is negative semi-definite which ensures asymptotic 

stability.

If the d-q axis currents are identified as the virtual control variables the 

corresponding error functions are defined as
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&q — %q iq (3-7)

e<f =  id — id. (3-8)

Like the speed error, these error functions must also be reduced to zero. The 

current error dynamics are (with i*d =  0 )

•* '• R id  P w r L q iq  Vd
ed = id - i d  = ------------ ------------  (3.9)

i __ }* } 2(fim — ki J) !rr D m 1

9 « q ~  3PtrnJ  ^  m r ^
i +  PurLdid "F PbJrlpm Vq

H " fcJ.iu;

The parameters that must be estimated here are the inductances Ld and Lq

which vary with magnetic saturation, stator resistance R  which varies with

temperature, and load torque which sometimes cannot be measured directly. 

The corresponding error variables are given by

Ld  —  Ld Ld ,  Lq —  Lq Lq

f L = TL - T L] R = R - R  (3.11)

To reduce these estimation errors to zero, another Lyapunov function is defined 

as

V, =  i  (e* +  4 + 4  +  + \ i \  +  L n  +  £ * )  (3.12)

where #1 - 4  are constant gains. Before differentiating, the speed error dynamics 

(3.2) and q-axis command current (3.4) must be modified to incorporate the
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estimated load torque.

lq 3Pipn
{Bmujr + Tl — kiJej (3.13)

where Tl is the estimated value of load torque. Now from equations (3.7),(3.8) 

and (3.13) the speed error dynamics is given by

3 P  3 P
Tl “I " Iprn̂ -q H (Ld Lq) G/flq k\J& (3.14)

Now (3.12) can be differentiated to obtain

V\ = ee + td&d + eq&q + ~prLd.L<i +  —LqLq +  —T iT i  +  — RR
0 i 0 2

3 P  , 3 P
03

1_
0l

e
J Tl -F 2  P̂m̂ q d~ 2  (Ld Lq) c^iq kiJe

+ed

+e„

(Rid P^rLqiq Vd \
< Ld )
( 2(^m ~ klJ) rrp    D  . ,   r p  1 \

3PipmJ  * m r  T l >
I Rig ~i~ PUrLdid ~F P^r^Pm Vq

/

01
+ —LdLd +  —LqLq +  -t-TlT l +  — RR

0 2  03 04
(3.15)

Now the input voltages Vd and vq are chosen to make equation 3.15 negative 

semi definite to ensure global stability.

Vd
3 p  ~

“  Rid PiVfLqiq d- k2edLd ~t~ _ Ld ^Ld Lq̂  iqe2J (3.16)

*«= ~ ' (3 [ t mi•+ { L i ~ - B m - ^
3 p

+Riq + P urLdid + PiVripm + k3eqLq + — ipmeLq (3.17)
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Now substitute equations (3.16) and (3.17) into (3.15) to get

e r _ 3  p  3  p
Vl = ~j I Tl H —~1pm&q H {Ld Lq) k \J €

+ g  ( ( #  -  R)id -  Pu>r(Lq -  Lq)iq -  k2edLd -  ~ ^ { L d -  Lq)

(  (L* - L d - L q  +  Lq)idiq

~ + PÛ Ld ~ ^

\

y 4~ (77 R ) i q  k'jCq L q  ^  j  Iprn^Lq

1 ;  ~ 1 ^  i ,  j_
&4

_l_s i  
Ol

+ — LdL d 4 -  — LqLq +  - t -T lT l  +  — R R  
t>2 “ 3

Simplifying (3.18) we get

Vi =  - h e 2 -  k2e \ -  h e ]  

+Tl \ ^
£ 2  eg(Bm h J ) 1 jh
J  3PipmJ  e3 L

j 3  P e€diq CqPuJrid Cq(Bm k\ J ) idiq  ̂ 1
2 J 1pm J 01

j  { 3Pccdiq edPu>Tid C q(B m h J ) idiq 1 -
+ M  ~ 1 j ~  + — l T  ------- S 77-------- + «2L<

\  L d L q  04

From (3.19) we can see the update laws for parameter estimation are

r+1 n ( e , 2 eg(Bm ^x^)
7 i  -  - 9 ,  ^  +  — iP iln J

~ /SPCGfjiq CqP0Jrid k\J^i(iiq

L i = e ' { - r r + - L r
j  *\ /SPeCrfiq €dPiOrid . ( - 6 m  / ? ! • / )  \

’  =  1 ( ~ 2J~~ + — ~ L T  — ^ ------ j
7? =  $4 f  Sd̂ d — 6q̂ 9 

V Ld Lq

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Therefore, the following expression is obtained:

Vi =  - k ie 2 -  k2e2d -  k3e2 (3.24)

If k i,k 2,k 3 > 0 then it is proved that equation (3.24) guarantees asymptotic 

stability in the complete system.

3.2 Position  Control

For position control, we regard the rotor speed and d-q axis currents as the 

virtual control variables. The procedure for designing this controller is the 

same as the previous procedure for speed control. However, in this case the 

model equations are simplified by grouping parameters into one variable [44]. 

For convenience, the model is represented as follows.

i q =  +  avq (3.25)

U =  $ 2  +  bvd (3.26)

Te =  K Tiq + Ksidiq (3.27)

t i>r =  Aiq  +  B idiq - t -  C  +  Dojr (3.28)

where

a

and $ i and $ 2  are defined in Appendix A.2 .

1 1 3 P  3 P
-- b =  — ,  K t  = Ks =  ~2 ~(Ld -  Lq)

K t  n  K s - T l - B „
a - ~ T '  b ~ T • C - ~ T '  D — T
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Step 1: Define the position tracking error as

ei = 9* -  6 (3.29)

where 6* is the desired reference trajectory of the rotor angle. The position 

error dynamics is then

ex =  0* -  0 = 0* -  u r (3.30)

The stabilizing function is determined by differentiating the Lyapunov function 

Vi =  |e i  to get

Vi — eie'i =  Ci(0* — wr) (3.31)

We now choose the first stabilizing function as

wr* =  hex +  6* (3.32)

Equation (3.32) indicates the desired velocity for position tracking. The next

step is to design a speed controller so that the rotor speed will follow (3.32).

Step 2: Now we define the speed tracking error as

e-i =  oj* — u>r — k\€i +  (?* — ujr (3.33)

From equation (3.33), the position error dynamics can be written as

ei — —ki&i + &2 (3.34)
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The speed error dynamics is defined as

e2 =  u* -  Cjr =  —k\ej +  k^e2 + 6* -  Aiq -  B idiq -  C — Dujt (3.35) 

Now define a new Lyapunov function as

K  =  \ t \  +  l e i  (3-36)

Differentiate to get

V2 = ejei +  e2e2

= -k \e \  + e2[(l -  kj)ei +  kie2

+9* -  A iq -  Bidiq - C -  DwT] (3.37)

Since id and iq were identified as the virtual control variables, we define the 

reference currents as

*; =  j  [(i -  k\)ei +  (A* +  k2)e2 + 9* -  C -  Dur] (3.38)

i*d = 0 (3.39)

Substituting (3.38) and (3.39) back into equation (3.37) would yield

V2 = -k ie f  — k2e\ (3.40)

where k i,k 2 > 0 are design constants. Thus the virtual control is asymptot­

ically stable. Since the parameters C and D  are unknown we must use their
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estimated values C and D. Thus equation (3.38) becomes

iq — — ^l)el "b (& 1 +  ^2 ) e 2 + 0* — C — Du>t] (3-41)

Step 3: The goal now is to make id and iq follow the reference trajectory i*d 

and i*. The final current error signals are defined as

e3 =  i * -  iq (3.42)

e 4 = I'd ~ id. (3.43)

Using equations (3.42) and (3.43) the speed error dynamics can be represented 

by

€■2 =  —ei — &2 e 2 “t  Ae$ -b Be^iq +  C  +  D(jr (3.44)

where C  =  C  — C, and D = D — D are the parameter estimation errors. Now

we define the current error dynamics as

e3 =  *, -  iq

=  $ 4  +  d* Du)r $ 6 +  5 e 4 i 9 ( $ 6  4- D A  *) — avq (3.45)

and

e4 =  —id =  - $ 2 — bvd (3.46)

where $ 4 , $ 5  and $ 6  are known signals defined in Appendix A.

Step 4■ The final Lyapunov function includes the current errors and parameter
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estimation errors.

V3 = -  fe  1 +  e\ +  eg + e2 H C2 H----- D2\  (3-47)
2 \  Tli n i /

where n i,n 2,n 3 are adaptive gains. Now differentiate and substitute all error 

dynamic equations to get

V3 =  eiei +  e2 e2 +  6 3 6 3  + 6 4 6 4  H CC -\ DD (3.48)
Tli 772

=  e \ { — k i e i  +  € 2 )  4- g 2 ( ~  e i  — £2^ 2  4~ A e ^  +  B e ^ i q  

- \ -C  +  D u >r ) +  e 3 ( $ 4  +  i4 $ 5  +  ( 5 $  6 +  D h )  r $ 6  — &Vq)

+e4 ( — $ 2  -  bvd) +  — + — b b
T i l  7̂ 2

=  — fciei — fc2e2 — £ 3 6 3  — k^e2 + Ae2e3 

-\-C(e2 + $6e3 4-----C)
T l i

+D(e2u!r +  $ 3e3u)r H .D) +  6 3 ( ^ 3 6 3  +  $ 4  — avg)
712

+ 6 4 ( ^ 4 6 4  +  Biq{t2 +  $ 6  d" -DA 1) — $ 2  ~ bVq) (3.49)

The d-g axis reference voltages are chosen to be

v*q = l ( k 3e3 + $ 4) (3.50)

v*d =  i(fc4e4 +  B iq(e2 +  $ 6 +  DA~l) -  $ 2) (3.51)

where £3 , fo* > 0 are design constants. The update laws are defined as

C1 =  - 7 1 2(62 +  $6e3) (3.52)

•D =  - 7i3 (e2uv +  4»6e3a)r) (3.53)
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Substituting equation (3.50-3.53) into equation (3.49) would yield

V3 =  ~ h e \  -  k2e\ -  k3ej -  k4e% + Ae2e3 < 0 (3.54)

for sufficiently large k2 and fc3. Thus it is shown that the complete system is 

asymptotically stable.
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Chapter 4 

Simulation of the Com plete 

IPM SM  Drive System

The dynamics of the IPMSM is complex because of its nonlinear nature and 

also the discrete time nature of the inverter and motor system. Therefore, 

after developing the control strategy of the complete drive system, digital 

simulations are performed to predict the behaviour of the system before it is 

implemented in real time. The simulation of the proposed drive system has 

been carried out using MATLAB/Simulink softwaire [45]. In order to simulate 

the motor model in Simulink, the state space equations (2.25)-(2.27) describing 

the IPMSM are used.

4.1 Speed Control

In order to verify the effectiveness of the proposed adaptive scheme, digital 

simulations have been performed using Matlab/Simulink software. The overall 

objective in a high performance drive application is to force the output speed 

of the motor to follow a desired speed trajectory with little or no error.

35
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4.1.1 Drive System

Based on the control principle described in Section 3.1 the complete closed 

loop vector control scheme of the IPMSM is shown in Figure 4.2. The details 

of each subsystem are given in Appendix B. First, the command current i* and 

the estimated load torque are calculated online based on speed error and the 

actual d-q axis currents id and iq using equations (3.13) and (3.20) respectively. 

From these values, the parameters R, Ld and Lq are estimated using equations 

(3.21) to (3.23). Finally, the control voltages Vd and vq are calculated using 

equations (3.16) and (3.17). Then, they are converted to 3-phase voltages using 

Park’s transformation [10]. The PWM signals are generated by comparing the 

3-phase voltages with high frequency triangular waveforms as shown in Figure 

4.3 The phase voltages are expressed as a function of bus voltage Vb and logic 

variables N A , N B  and N C  as

Va
1

2  - 1  - 1 N A

Vb “  3 - 1  2  - 1 N B

.V°. - 1  - 1  2. NC

where Vabc are the phase voltages. The PWM logic signals operate the 

inverter switches which run the motor. The three phase currents iabc are 

converted to d-q axis currents which is fed back into the controller along with 

the speed which completes the closed loop system.

4.1.2 Simulation Results and Discussion

For a sample comparison, a conventional PI controller was designed and sim­

ulated, and the results are shown. The block diagram Proportional gain Kp 

and integral gain K j were chosen to be 0.6 and 0.07 respectively by trial and

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



37

M W
Adaptive Speed Controter

Command
Current

Generator Control
Voltage

Generator

dq/
abc

PWM
Inverter

IPMSM

n = j|  w Parameter I
FartmaHnn a b c /

abc

Figure 4.1: Block diagram for adaptive backstepping based speed control of 
the proposed drive

t m

IPMSM

/;=o

abc

abc/

Comroler
d q /
abc

Contra)
Voltage

Generator

PWM
Inverter

Figure 4.2: Block diagram for PI speed control of the proposed drive
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Figure 4.3: PWM signal generation by comparing high frequency triangular 
waveform with command voltage
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error in order to maintain minimum settling time, overshoot and zero steady 

state error. Figure 4.4 shows the response of the IPMSM drive with a PI con­

troller at rated speed and no load conditions. The speed response has a large 

over shoot and settling time. However, the drive follows the command speed 

with little steady state error.

Figure 4.5(a) shows the speed response of the proposed adaptive backstep- 

ping based nonlinear (ABNL) controller and drive system from a step change 

in reference speed from 0 rad/sec to 188.5 rad/sec (1800 rpm) at no load 

(Tl =  0Nm). The actual speed converges with the reference speed in a very 

short time with minimal overshoot and no steady state error. Figure 4.5(b) 

shows the corresponding d-q axis motor currents along with the command q- 

axis current and figure 4.5(c) shows the actual motor current ia. The output 

voltage from the PWM inverter is shown in Fig. 4.5(d). Figures 4.6(a) to 

4.6(c) show the corresponding speed and current errors which all converge to 

zero. This was the goal in designing the controller. The overall stability of the 

system is shown by a plot of ids vs iqs in Figure 4.6(d).

Figure 4.7(a) shows the speed response for a step change in reference speed 

at full load Tl =  2Nm). Again, the actual speed converges with the reference 

speed with no steady state error. The motor currents are shown in Figs 4.7(b) 

and 4.7(c). Figure 4.7(d) shows the estimated and actual values of load torque. 

Next the same results are shown for the motor at low speed (0 to 50 rad/sec). 

The speed response takes a bit longer to converge to the reference speed as 

shown in Fig.4.8(a), but there is still no overshoot and no steady state error. 

The motor currents and voltage in Figs.4.8(b) to 4.8(d) show no difference 

than the previous results.

Figure 4.9 shows the response of the IPMSM drive with a PI controller
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with a step change in load from ONm to liVm at 1.2 seconds. When the 

load disturbance is introduced there is a noticeable drop in speed which takes 

time to recover. The corresponding motor currents are shown in Fig. 4.9(b) 

and 4.9(c) and the steady state abc currents are shown in Fig. 4.9(d). Next 

the results are shown in Fig. 4.9 for a sudden change in load torque from 

1 N m  to 2N m  at rated speed for the proposed controller. The disturbance 

was applied at 1.5 seconds. As can be shown in Fig.4.10(a) there is very 

little change in speed when the load was applied, and the speed recovered in 

a very short time. This shows the superiority of the proposed controller over 

the PI controller. Figures 4.10(b) and 4.10(c) show the corresponding motor 

current ia and Fig. 4.10(d) shows the steady state iabc currents. Next, the 

corresponding estimated parameters are shown in Fig. 4.11, which are the 

load torque, stator resistance and d-q axis inductances L j and Lq. Next the 

results are shown for step change in parameters R  and Lq in Figure 4.12. It 

is evident that the proposed controller can handle the parameter variations 

without any deviation in speed. No noticeable variation in speed is present; 

therefore the controller is insensitive to parameter variations.

Figure 4.13 shows the results for step change in load but with no adaptation 

of load torque in the controller. This is to demonstrate the need for parameter 

adaptation. As can be shown in Fig. 4.13(a) the speed does not converge 

back to the command speed when the load disturbance is introduced. Since 

the parameter is fixed in the controller, any deviation of actual load torque 

will produce an error in speed. Figs.4.13(b) to 4.13(d) show the corresponding 

speed error and d-q axis current errors respectively.

Next, the results are shown for a sudden step change in command speed. 

As shown in Figure 4.14(a), the initial command speed is set to 100 rad/sec
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Figure 4.4: Simulated response of the drive under PI control at rated speed 
(188.5 rad/sec) and no load conditions.

and is changed to 188.5 rad/sec at t — 1 second and then down to 40 rad/sec 

at t  =  2 seconds. Figure 4.14(b) to 4.14(d) show the corresponding d-q axis 

currents and load torque estimation respectively. These results also validate 

the robustness of controller. Figure 4.15 shows the results for a reverse change 

in command speed at full load conditions. These results are similar to the 

previous results for step change in command speed.
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Figure 4.5: Simulated responses of the proposed ABNL controller and drive 
at no load and rated speed (188.5 rad/sec).
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Figure 4.6: Simulated responses of the proposed ABNL controller and drive 
at no load and rated speed (188.5 rad/sec).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



44

200

150

S
!

100

1

-10

-1 5

-50 -20,0.80.4 1 0.4 0.6 o.e
Time («)

(a) Speed response (b) Command q-axis current and d-q axis motor 
currents i q , i q , i d

0.4 0.6
Time (*)

0.4 0.6
H m e(s)

(c) Motor current i a (d) Estimated and actual load torque

Figure 4.7: Simulated responses of the proposed ABNL controller and drive 
at full load and rated speed (188.5 rad/sec).
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Figure 4.8: Simulated responses of the proposed ABNL controller and drive 
at full load and low speed (50 rad/sec).
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Figure 4.9: Simulated response of the drive under PI control with step change 
in load.
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Figure 4.11: Simulated responses of the proposed ABNL controller and drive 
at rated speed with step change in load torque (1 Nm to 2 Nm).
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Figure 4.12: Simulated responses of the proposed ABNL controller and drive 
at rated speed with step change in stator resistance and q-axis inductance.
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Figure 4.13: Simulated responses of the proposed ABNL controller and drive 
at rated speed with step change in load torque (1 Nm to 2 Nm) with no 
adaptation in controller.
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Figure 4.14: Simulated responses of the proposed ABNL controller and drive 
at full load with step change in command speed.
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Figure 4.15: Simulated responses of the proposed ABNL controller and drive 
at full load with reverse change in command speed.
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t m

IPMSM

abc

abc/

dq/
abcVoltage

Generator

PWM
inverter

Figure 4.16: Block diagram for PI based position control

4.2 Position  Control

4.2.1 Drive System

Based on the control principle in section 3.2 the complete closed loop vector 

control scheme of the IPMSM is shown in Figure 4.17. First the command 

speed is calculated from the position error and derivative of the command po­

sition using equation (3.32). The speed controller then generates the command 

d-q axis currents using equations (3.41) and (3.39) respectively. Parameters 

C  and D  are calculated using equations (3.52) and (3.53) and the actual d- 

q axis stator currents. Then the control voltages vq and vj are calculated 

using equations (3.50) and (3.51), respectively. Then they are converted to 3- 

phase voltages using Park’s Transformation. The PWM signals are generated 

by comparing the 3-phase voltages with high frequency triangular waveforms. 

The PWM logic signals operate the inverter switches which run the motor.

4.2.2 Simulation Results and Discussion

In order to verify the effectiveness of the proposed adaptive scheme for po­

sition control of the IPMSM, digital simulations have been performed using
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Figure 4.17: Block diagrams for position control
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Matlab/Simulink software [45]. The overall control bock diagram is shown in 

Figure 4.17(a) and a detailed block diagram of the adaptive controller is shown 

in Figure 4.17(b). Numerous simulations were performed, and some sample 

results are shown here. Figure 4.18(a) shows the rotor position for a sinusoidal 

reference trajectory 6* =  90sin(2f). Load torque was set to 2 Nm. The rotor 

position follows the reference trajectory with little error. Figure 4.18(b) shows 

the corresponding command speed and actual speed, figure 4.18(c) shows the 

d-q axis currents and figure 4.18(d) shows the command voltages v'd and v*. 

The motor current ia, voltage va, PWM output voltage and estimated load 

torque are shown in Figs. 4.19(a) to 4.19(d) respectively. All the controller 

error values are shown in Figure 4.20. There is some small steady state error 

in the position, speed and currents.

For comparison, the drive was also simulated under PI control. The block 

diagram is shown in Figure 4.16 In the outer position control loop, Kp and 

K / were 1.2 and 7 respectively. For the inner speed control loop, Kp and 

K i were 0.6 and 0.07 respectively. The results are shown in Figure 4.21. The 

output rotor position does not converge to the command position for sine wave 

trajectory, and there is a large overshoot and long settling time for square wave 

trajectory.

Now the results are shown for square wave trajectory. Figure 4.22(a) shows 

the rotor position for a step change in reference position. The actual position 

converges to the reference position in a short time with no overshoot and no 

steady state error. Figure 4.22(b) to 4.22(d) show the corresponding speed, 

currents and voltages. At 3.5 seconds, the load torque was changed from 1 to 

2 Nm. There is no noticeable change in the position results. Figures 4.23(a) 

to 4.23(d) show all controller error values. In this case all errors converge to
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zero which was the goal in designing the controller. Figure 4.24 shows the 

estimated value of C and D which is the inverse mechanical time constant of 

the motor for square and sine wave trajectories. The estimated values does 

not converge to the constant actual value due to the online adaptive nature of 

the controller.

4.3 C oncluding Remarks

An adaptive backstepping based nonlinear control technique for an IPMSM 

drive has been developed for both position and speed control. The control 

laws were derived based on the motor model incorporating various system un­

certainties. Global stability of the developed nonlinear controller has been 

verified analytically using Lyapunov’s stability theory. As shown by the sim­

ulation results, speed tracking and position tracking were achieved with no 

steady state error or overshoot. The performance of these controllers was 

found to be superior to the drive under PI control.
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Figure 4.18: Simulated responses of the proposed ABNL position controller 
and drive for sine wave trajectory.
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Figure 4.19: Simulated responses of the proposed ABNL position controller 
and drive for sine wave trajectory.
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Figure 4.20: Simulated responses of the proposed ABNL position controller 
and drive for sine wave trajectory.
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Figure 4.21: Simulated responses of the system under PI control for square 
and sine wave trajectory. The dotted line represents the rotor position and 
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Figure 4.22: Simulated responses of the proposed ABNL position controller 
and drive for square wave trajectory.
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Figure 4.23: Simulated responses of the proposed ABNL position controller 
and drive for sine wave trajectory.
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Figure 4.24: Simulated parameter estimation responses of the proposed ABNL 
position controller and drive for sine and square wave trajectories.
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Chapter 5 

Experim ental Im plem entation

After the performance of the drive was tested in simulation, the results of 

the proposed drive were found to be satisfactory for an attempt of real time 

implementation. An attempt was made to implement the complete drive in 

real time both through hardware and software. Due to time constraints, this 

section was not completely finished, however, most of the setup has been 

completed and it is only a matter of integrating the entire system.

5.1 Experim ental Setup

In order to implement the control scheme in real time the DSP board DS1104 

is used [46]. The board is installed in an Intel PC with uninterrupted com­

munication through dual port memory. The DS1104 board is mainly based 

on a Texas Instrument MPC8240 64-bit floating point digital signal proces­

sor. The DSP is supplemented by a set of on-board peripherals used in digital 

control systems including analog to digital (A/D), digital to analog (D/A) 

converters and incremental encoder interfaces. Also, it is equipped with a TI 

TMS320F240 16-bit micro controller DSP that acts as a slave processor and

64
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VSI Inverter

VB IPMSM Encoder

Hall-effect 
current sensors

Base Drive

Digital I/O Subsystem

Oscilloscope £— D/A A/D
DSP

Encoder
InterfacePC RS2322

dSPACEDS 1104 Board

Figure 5.1: Block diagram of the hardware schematic of the VSI-fed IPMSM
drive

provides the necessary digital I/O ports and powerful timer functions such as 

input capture, output capture and PWM generation. The block diagram of 

the hardware schematic is shown in Figure 5.1. The actual motor currents 

are measured by the Hall-effect sensors and then fed back to the DSP board 

through the A/D channel. Rotor position is sensed by an optical incremental 

encoder mounted at the rotor shaft and is fed back to the DSP board through 

the encoder interface. The outputs of the DSP board are six PWM signals 

that are sent directly to the base drive circuit of the inverter.

In order to implement the control algorithm, a real-time Simulink model 

for the complete drive system is developed which is shown in Figure B.7. Then 

the model is downloaded to the DSP board using the Control Desk software. 

The high level C code is generated from the Simulink model.

The flow chant of the software is shown in Figure 5.2. The timer interrupt
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Start

Set parameters in memory

Get command speed/position

Initiate
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Start A /D  conversion
Start interrupt routine

Read encoder counter
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Calculate reference speed, currents

Calculate reference voltagesRead phase currents
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Output signal to Inverter

Restart Timers

Figure 5.2: Flow chart of the software for real time implementation of the 
ABNL controller based IPMSM drive.
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routine is set up to read the values of the currents and rotor position angle 

every 100 fjs. After initializing all the required variables, the speed is calculated 

from the present and past samples of the rotor position angle. For position 

control, the error between the command and actual rotor position is used 

to generate the command position. Then using the values of the measured 

currents, errors, and parameters, the command voltages are generated from the 

adaptive non linear backstepping based control algorithm. Then the command 

voltages are compared with high frequency (3 kHz) triagular wave to generate 

the PWM signals.
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Chapter 6

Conclusion

Based on the works reviewed in Chapter 1 and simulation studies presented 

in this thesis, it is concluded that the IPMSM can be used for variable speed 

high performance electric motor drives. This performance depends on the 

types of controllers used. Fixed gain types suffer from overshoot, undershoot 

and steady-state error. Some adaptive controllers require complex algorithms, 

as well as accurate system model parameters. It was found that adaptive 

backstepping based controllers gave very good speed performances with DC, 

induction and synchronous motors. However, it was found that an adaptive 

backstepping based position controller had not been developed for an IPMSM 

drive system. The vector control technique was used since the decoupled 

nature of the torque and flux allowed the IPMSM to be controlled like a DC * 

motor.

In Chapter 2 the mathematical model of the IPMSM was derived in the syn­

chronously rotating reference frame. Park’s transformation was used to convert 

the conventional abc parameters to the synchronously rotating dq frame. It 

was clear that the q-axis current controlled the torque, and the d-axis current 

controlled the flux. The motor model was expressed in state space form for
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simulation purposes and for control design.

In Chapter 3 the adaptive backstepping based controller was developed 

for speed and position control of an IPMSM. The motor model equations pro­

vided the basis for the design. Stability was proven using Lyapunov’s Stability 

theory. The simulation model for the complete drive system and simulation 

results were shown in Chapter 4. The performance of both controllers was 

investigated at different operating conditions such as sudden change in com­

mand speed, load and parameter variation. It was found from the results that 

the proposed controller is robust and could be a potential candidate for high 

performance industrial drive applications. Both adaptive controllers were also 

compared with conventional fixed gain PI controllers and it was found that the 

performance of both ABNL based controllers are superior to the PI controllers.

6.1 Future Scope

As can be seen in Chapter 5, the real time implementation of the complete 

drive system has not been completed yet due to time constraints. This is the 

next logical step in this work. Also, more research studies are being reported 

using the speed sensorless approach [47,48]. This will eliminate the need 

for a position encoder as well as any difficulties associated with it. Another 

technique which should be employed is the field weakening technique for wide 

speed range operation. Both speed and position controllers employed the 

technique of setting id to zero, which allows the motor to be controlled up to 

the rated speed. For control beyond rated speed, the field weakening technique 

must be used to calculate the command d-axis current.
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A ppendix A  

IPM SM  Parameters and Extra  

Equations

A .l  IPM SM  Param eters

Number of phases =  3

Number of poles =  4

Rated Frequency =  60 Hz

Rated power =  1 HP

Rated input line-to-line voltage =  208 V

q-axis inductance Lq =  0.07957H

d-axis inductance Ld =  0.0424477

Stator resistance per phase R  =  1.93 D,

Inertia constant J  =  0.003 kg ■m 2

Rotor damping constant J3m =  0.0008 N-m /rad/sec

Permanent magnet flux linkage =  0.314 volts/rad/sec
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A .2 P osition  Control D esign Param eters

The following are the values of $ i _ 6 as described in section 3.2.

■e  P ^ q  PurLd,id P ^ r ^ m

* =  --------------- r----------------
b q

i  Pid ~F P LqXq
^ 2  =   ;----------L>d
4*3 =  (1 — k2)ei -t- (ki +  £2 ) 6 2  Q* — C — Dur 

$ 4  =  — [ ( 1  — k\){—kiei 4- e2 ) +

(ki + fc2)(-e ! -  k2e2) +  0(3)* - b -  D 2ujr 

—C — CD + (k\ 4- k2)e$ — Diq —

$ 5  =  ^ ^ 3 ( ^ 1  +  k2)

$6 =  +  ^2)

(A.1)

(A.2 )

(A.3)

(A.4)

(A.5)

(A.6 )
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Appendix B

Simulink Simulation

The details of the subsystem blocks for the simulink schematic of the complete 

drive system as shown in Figures 4.2 and 4.17(a) are presented in this appen­

dix. There are three main subsystem blocks for speed control, the controller 

subsystem (B.2), the inverter subsystem (B.3) and the motor subsystem (B.5). 

The controller subsystem implements the control algorithm equations derived 

in section 3.1 and generates the command voltages. From here, they are trans­

formed into the abc frame using Park’s transformation and then compared with 

a high frequency triangle wave to generate the PWM signals. The logic signals 

NA, NB and NC are then transformed back to the dq frame for input to the 

motor model. For position control, the same blocks were used except a user 

defined Matlab function was used for the entire control algorithm.
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Figure B.2: Speed controller Subsystem
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Figure B.6 : Simulink model for position control
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Figure B.7: Real-time Simulink model for speed control
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