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ABSTRACT

Xiao, Baoying. 2005. Present and future focal point seed zones for jack pine in 
northwestern Ontario. 208 pp. Advisor: Dr. W.H. Parker

Key Words: adaptation, climate change, focal point seed zone, seed to, seed from, 
climate change scenario, genetic variation, jack pine, provenance, provenance test, seed 
source, seed transfer.

Jack pine (Pinus banksiana Lamb.) is among the most widespread and most ecologically 
and economically important species for planting and direct seeding in the Lake States 
and throughout much o f the boreal forest o f Canada. Focal point seed zones for 
northwestern Ontario jack pine were previously developed in the 1990’s but are in need 
o f revaluation and refinement based upon recent growth and mortality measurements 
and more current climate models. Updated focal point seed zones created for both 
present and predicted future climate conditions will provide forest managers with seed 
transfer guidelines that avoid maladaptation between seed sources and planting sites 
under a range o f current and future climate conditions.

To update the existing focal point seed zones and develop future focal point seed zones 
o f jack pine in northwestern Ontario, the newest version o f the climate model OCM2 
(1961-1990) was used to update the existing focal point seed zones, while four separate 
climate change models (CGCM1, CGCM2, HADCM3, CSIRO) were used to develop 
future focal point seed zones based on predicted future climate conditions. Data obtained 
from a freezing trial conducted by Davradou (1992), as well as data for additional 
growth and survival variables collected in recent years (1997, 2003 and 2004) were 
incorporated when compared with the previous focal point seed zone studies o f jack pine 
in northcentral Ontario and northwestern regions o f Ontario.

In total 23 and 47 biological variables including growth, phenological and freezing 
variables were determined for each seed source in these two study areas. Principal 
components analysis (PCA) was used to summarize the main components o f variation 
patterns. The first two PC axes represented growth potential and phenology, respectively, 
for these two study areas. PCA axis factor scores for seed sources were regressed against 
current climatic variables. The significant regression equations were used to model the 
patterns o f adaptive variation. Present and future focal point seed zones were produced 
through intersecting the two contour maps by GIS. Future focal point seed zones include 
where seed should go from a given location to best suit future climate conditions (Seed 
To) and where seed should come from now to be best adapted in the future to its planting 
location (Seed From).

Under these different predicted future climate models, by the middle o f this century, 
seeds will transfer to the north or northeast to match the future climate conditions and 
seeds should come from areas lying to the south or southeast o f the planting location to 
be best adapted to the future site. By the end o f this century, the northward or northeast­
ward shift gradually slows and seed zones will move back under some climate scenarios.
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INTRODUCTION

Jack pine (Pinus banksiana Lamb.) is a leading forest crop species in Ontario 

and collection o f jack pine cones exceeds that o f any other conifer species (OMNR

1991). Because o f their most widespread distribution and economic value, jack pine 

and black spruce (Picea mariana (M ill) B.S.P.) account for more than 70% o f the 

Ontario tree improvement effort and 80% o f the current artificial regeneration efforts 

(OMNR1987).

Proper seed selection is the most important initial step in reforestation. Seed 

transfer guidelines are vital for species that exhibit patterns o f adaptive variation, as 

the use o f maladapted seed/stock may result in an increased risk o f mortality or 

damage due to cold, drought, insects and disease (Anon. 1997). Matyas (1994) found 

that the southward transfer o f more northerly jack pine provenances provided 

conditions close to optimum and increased height growth by approximately 20%. 

Thus, the optimal use o f genetic resources depends on the plant material being well 

matched to the regeneration site. Seed zones must be developed based upon 

demonstrated patterns o f adaptive variation on an individual species level.

In an earlier study, a method to produce ‘site-specific focal point seed zones’ 

was developed for jack pine based first on 64 seed sources sampled from northcentral 

Ontario (Parker 1992) and second on 102 seed sources from the northwestern Region 

o f Ontario ( Parker and van Niejenhuis 1996 a). This work was adapted into an 

Arc/View extension program and is currently utilized in northern Ontario (Rouillard

1999). The layout o f these two sampled areas including test locations and 

provenances is shown in Figure 1.
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Focal point seed zones for jack pine are in need o f revaluation and subsequent 

refinement based on more recent growth and mortality measurements and recently 

updated versions o f climate models. The results o f two separate graduate theses by 

van Niejenhuis (1995) and Davradou (1992) were used to derive the original focal 

point seed zone models for jack pine in the northcentral area. The results o f a 

Northern Ontario Development Agreement (NODA) funded project were used to 

develop the original focal point seed zone models for jack pine in the northwestern 

portion o f Ontario (Parker and van Niejenhuis 1996 a). New data collected in 1997, 

2003, and 2004 growing seasons were integrated with the earlier data to produce 

revised focal point seed zones for jack pine in 2005. These focal point seed zone 

were also updated with the second iteration o f the Ontario Climate Model (OCM2) 

(Natural Resource Canada and Ontario Forest Research Institute).

LU

O

1:3,466,354

Figure 1. Jack pine seed source and field trial locations
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Climate change will very likely lead to a change in habitats for boreal forest 

species in Canada. Many scientists believe that the effects o f climate change 

will be serious and may pose a threat to sustainable forestry (Houghton 1997).

Natural or artificial regeneration o f forests with local seed sources will be become 

increasingly difficult if  global warming occurs as predicted (Ledig and Kitzmiller

1992). Managers often make decisions based on their experience and intuition, but an 

intensified program o f provenance testing is needed to provide accurate quantitative 

information for guiding seed transfer, especially, under a scenario o f global wanning. 

Improved forest management is increasingly viewed as an important means to 

counteract adversity resulting from global warming. Focal point seed zones modeled 

for future climates could provide information aiding in long-term seed selection 

decisions and may answer several questions: Are focal point seed zones for jack pine 

in study areas static or not? By the middle o f this century, is a particular seed sources 

still suitable for this area? Where should sources be planted in order to be more 

suitable for the future climate condition? Where should seeds be taken from today to 

best match the future climate conditions o f a given area? By the end o f this century, 

how do the seed zones for jack pine in the study area change? Is there any difference 

among focal point seed zone models based on varying climate change scenarios?

To address these questions, the first objective o f this study is to obtain 

reliable additional information on adaptive variation in jack pine and subsequently 

update focal point seed zones for jack pine in northwestern Ontario. Focal point seed 

zones should be dynamic in time as well as space, especially facing future climate 

change. The updated focal point seed zones w ill be used in the northwestern Ontario 

as the best available information for determining seed transfers for jack pine, which
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can help aid in reforestation decisions for forest managers under the present and 

future climate conditions.

Thus, the second objective is to develop future focal point seed zones for jack 

pine in the northwestern region o f Ontario. Forest managers are concerned not only 

with short-term risk associated with planting trees, but also with long-term risk in 

maladaptation between seed sources and planting sites. These risks will be especially 

important where established plantations may not be intensively managed and the 

planted forest stands w ill be left to develop naturally. Rehfeldt et al. (1999) 

suggested that a major redistribution o f tree species would happen in the future due 

to climate change. Focal point seed zones are based on climate data and will 

inevitably be altered by climate change. Focal point seed zone methodology uses 

models o f adaptive variation to determine the necessary changes in seed zones and 

breeding zones resulting from global warming. Where seed should be transferred to 

from a given location to best-suit future climate conditions {Seed To), and where 

seed should come from now in order to be best adapted to its planting location {Seed 

From) in the future, are vital information when determining seed transfers under a 

scenario o f global warming.

A final objective is to compare and explain future focal point seed zones in 

the study area based on various climate change scenarios. Because o f uncertainties o f 

projected climate models, it is necessary to develop focal point seed zones under 

varying future climate models. Seed zones necessary in developing a tree- 

improvement strategy for jack pine could be summarized by examining all focal 

point seed zones produced by the various models o f future climate.
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LITERATURE REVIEW

CLIMATE CHANGE 

In the World

Climate change resulting from natural and human activities has become a 

pressing international concern. The climate is changing rapidly (Houghton et al., 

2001) and the scientific community accepts a consensus that the world is definitely 

warming (Bolin et al. 1986), with changes in average temperatures expected to be 

larger in northern areas than elsewhere (Houghton et al., 2001). This warming is 

largely suggested to be a result o f emissions o f carbon dioxide and other greenhouse 

gases from human activities including industrial processes. These industrial 

processes include fossil fuel combustion, and changes in land use, such as 

deforestation (Bolin et al. 1986). The results reported in the Third Assessment 

Report o f the Intergovernmental Panel on Climate Change (IPCC) (Houghton et al. 

2001) indicate an increase in global mean temperature ranging from 1.4 to 5.8°C for 

the end o f the 21st century. Concurrently, it is expected on average that global mean 

precipitation will increase by about 2.4% per 1°C increase in temperature (IPCC 

2001). These predictions may have real consequences for North America and the 

world with respect to agriculture, forestry, water sources, coastal areas and human 

populations et al (Caldwell 1979). As such, changes in precipitation patterns, 

increased risk o f droughts and floods, threats to biodiversity and a number o f  

potential challenges for public health may be expected in the coming century.
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In Canada

Our current understanding based upon climate system science is that climate 

change is likely in Canada during the next century. In Canada, temperatures have 

increased by an average o f 1.1 °C (Environment Canada 1997), while the Great Lakes 

Basin has seen a 0.5 to 0.7°C rise (Smith et al. 1998) in the 21st century. Greater 

warming occurs during the winter and spring seasons. In Ontario, global circulation 

models (GCMs) based on a doubling o f CO2 predict an increase o f mean annual 

temperature o f 3-5°C with the largest temperature increases expected in the 

northwest and southern regions o f the province in next century. The GCMs predict 

more complex changes in moisture patterns. Precipitation increases or decreases 

depending on the region and season. An increased frequency o f extreme weather 

events is also likely to occur (Colombo et al. 1998; Parker et al. 2000). An 

approximate loss o f about 5% to 10% in height growth is expected for a genetically 

adapted seed source if  the average yearly temperature increases by 4°C (Schmidtling 

1994). Since Ontario w ill be sensitive to climate change, it is important that policy- 

and decision-makers plan on adapting to the changes. Any actions undertaken today 

to cope with existing climate variability and extremes w ill reduce future 

vulnerabilities.

In Ontario, areas where forest tree species currently thrive may no longer 

provide the species' necessary temperature and moisture requirements (Papadopol

2000). Tree species w ill need to migrate in response to these environmental changes. 

Migration rates w ill differ for each tree species, likely resulting in the breakdown o f 

current forest stand associations in the Boreal and Great Lakes-St. Lawrence Forest 

Regions. Maps showing simple northward shifts o f major vegetation zones (e.g.
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Hengeveld 1991) may not represent the changed composition o f the future vegetation 

types; Ontario's northward shifted boreal forest o f 2100 will not have the same 

species composition as it does today. This study aims at providing understanding to 

what extent focal point seed zones o f jack pine in the northwest o f Ontario w ill be 

affected by future climate changes, according to several climate change scenarios. 

Accurate predictions o f future forest stand harvests w ill not be possible unless these 

impacts are accounted for.

Climate Change Applications

Climate change is expected to cause many changes in Canada’s forests and 

very likely w ill lead to a change in the habitats o f boreal forest species in Canada. 

The primary force determining the vegetation o f a region is clim ate-in particular 

temperature, precipitation and seasonal variation. As such, if  or when climate change 

occurs, it w ill bring major changes to Canada's forests. Even small changes in 

climate w ill affect plant growth and survival.

The distribution range o f species will be reduced due to the higher 

temperatures and drought stress on growth. Failure to meet winter chilling 

requirements may also occur (Kimmins and Lavender 1987; McCreary et al. 1990). 

Higher temperatures may affect flowering and seed formation (Cannell 1987), 

reducing the ability o f some species to regenerate at their southern margin or at low  

elevations. Higher temperatures w ill also favor insect pests because they w ill suffer 

less overwinter mortality and may also be able to complete more generations during 

the longer growing seasons. High temperature and drought stress will weaken trees 

and make them more vulnerable to insect attacks (Ledig and Kitzmiller 1992). Some 

types o f species w ill decline because their populations are genetically adapted to the
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conditions under which they are now growing, not conditions 2.5°C warmer.

Climate change is also likely to affect pollination processes, alter the genetic 

structure o f forest tree populations, and affect the genetic diversity o f forest tree 

populations by modifying mechanisms o f self-incompatibility, which could strongly 

affect both adaptedness and adaptability to further changes o f forest tree populations 

(Giannini and Magnani 1994). Active interventions are needed in the Forest 

Management Planning process to circumvent these problems. To intervene and 

counter the possible destructive changes to native forests, foresters must understand 

about the range o f adaptation within tree species. Intensified programs o f provenance 

testing are needed to provide information for guiding seed transfer and forest 

restoration; however, much research relative to genetic and climate change issues 

have been carried out for many years.

Within species, populations may differ in their responses to various climatic 

variables, in the habitats that they are able to occupy, and in the breadth o f habitats 

suitable for their survival and growth. Some studies have been completed by forest 

geneticists and tree breeders to analyze existing provenance tests, where population 

samples have been exposed to different environments. Matyas (1996) predicted how  

a tree w ill grow under warmer conditions. He accomplished this by measuring trees 

on northern and southern aspects. Suffling (1995) studied disturbance and vegetation 

zones using models and concluded that vegetation zones can shift northwards during 

global warming because o f increased disturbance.

Rehfeldt et al. (1999) studied 118 populations o f lodgepole pine (Pinus 

contorta Dougl. ex Loud.) in British Columbia. He developed population specific 

response functions driven by predicted climate variables and transfer functions that 

predict performance from the climatic distance over which populations were
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transferred. These functions can serve as guidelines for reforestation in a changing 

environment and explain the effects o f climate change on adaptedness o f populations. 

Rehfeldt suggested that a major redistribution o f tree species and genotypes across 

the landscape may be needed to maintain forest productivity, health, and biodiversity 

should climate change scenarios be realized. Also, Rehfeldt et al. (2002) found that 

trees may grow far from their climate optimum and that the changing climate will 

increase survival and growth in a study o f Scots pine (pinus sylvestvis L.) in a 

Eurasian provenance trial.

Based on response functions from a white spruce provenance trial, Cherry 

and Parker (2003) found optimal habitats for Ontario populations are expected to 

shift northward by approximately 2° latitude if  the climate changes as expected.

Using the same methodology, Parker et al. (2004) found optimal height growth tends 

to occur just north o f the Canada/Minnesota border in western Ontario (48 to 49°) 

and in a zone from 45 to 47° N  latitude in eastern Ontario for black spruce based on 

future climate warming predictions.

All o f the above research is based on provenance trials, which provide 

valuable information on adaptation and responses to environmental change and are 

ideal for predicting and quantifying impacts o f climate change at both species and 

population levels. Univariate climate model were used in these studies. Thus, 

limitations as result o f uncertainties o f climate models exist in the research. There is 

a need to consider combinations o f climatic factors when predicting future habitats 

for forest tree species in Ontario.

Genetic Management under Climate Change

If global warming materializes as projected, natural or artificial regeneration
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o f forests with local seed sources w ill become increasingly difficult (Ledig and 

Kitzmiller 1992). A forward-looking genetic management program for forest species 

is needed to respond to climate change. Tree species have limited ability to adapt 

genetically to new forest conditions. Local ecotypes may be threatened and genetic 

diversity may be reduced unless steps are taken to identify and conserve them. 

According to current climate change theory, there is pressure for a northward shift o f 

species ranges (Houghton 1997) that will proceed with differing rates for various 

species (Peter 1990). Papadoopol (2000) stated that it was rational to establish new 

forests with species that might shift 300 to 600 km north o f the limit o f their current 

natural ranges. Reforestation strategies should emphasize conservation, 

diversification, and broader deployment o f species, seed sources, and families given 

the uncertainties o f predicted climate change (Ledig and Kitzmiller 1992). Non-local 

seed sources imported from further south or from lower elevations should be 

deployed in planting programs. Climate change w ill also require periodic updating o f 

climate-based seed zones. The methodology o f focal point seed zone (Parker 1992, 

1996 a) allows the consideration o f future climate condition. It provides important 

information to develop reforestation strategies that will utilize the best adapted seed 

source based on the predicted climatic condition.

Given the current uncertainty regarding regional shifts in climate, the planting 

o f nursery stock representing widely adapted populations and diverse seed source 

mixtures has been recommended to increase the likelihood o f regeneration success 

and long-term site adaptation (Ledig and Kitzmiller 1992). Breeding programs 

promoting genetic diversity, pest resistance, tolerance o f environmental stresses, and 

increased growth with elevated CO2 may be needed to ensure that species are 

adapted to the future environment (Namkoong 1984; Wang et al. 1995). The
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application o f forest management responses to a changing climate will be needed to 

minimize the adverse impacts o f climate change on Ontario’s forests. Understanding 

and recognizing the potential effects o f climate change on forests will allow resource 

managers to begin to modify forest management planning and policies to lessen 

negative impacts on the sustainability, biodiversity, health, and economic benefits o f 

forest ecosystems. Accelerating research on adaptation, expanding the present 

program o f progeny testing on a wider range o f sites, and enlarging seed banks for 

gene conservation are directions for practice in tree improvement programs (Ledig 

and Kitzmiller 1992). Adaptation and mitigation strategies are needed to be 

innovative and preserve a degree o f local flexibility under the climate change.

JACK PINE

Ranee and Ecology

Jack pine is an important commercial species o f the boreal and cool 

temperate forests o f North America east o f the Rocky Mountains. Its geographic 

range extends from 42° to 65° N  latitude, i.e., the Atlantic coast in Maine and Nova 

Scotia to the Mackenzie Valley in the Northwest Territories, and 65° to 130°W 

longitude from central Wisconsin to north central Quebec and northern Ontario 

(Critechfield and Little 1966). It includes broad ranges in latitude and climate 

(Yeatman 1966) and it forms an important constituent o f the Great Lakes-St. 

Lawrence forest region (Rudolf 1958). The range o f jack pine in North American is 

shown in Figure 2. The United States accounts for little boreal forest land area when 

compared with Canada.
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Figure 2. Range o f jack pine in North America

Throughout its range in North America, jack pine utilizes a diverse range o f  

habitat conditions. Mean annual temperatures vary from -5°C to 9.5°C, and mean 

minimum temperatures from -20°C to -45°C or lower. Precipitation varies between 

13 to 58 cm and the growing season ranges from 60 to 170 days. Soils associated 

with jack pine stands are commonly sandy; however, loams, shallow soils over 

bedrock, and rarely organic soils may also be colonized by this species (Rudolph and 

Yeatman 1982).

Jack pine is the dominant or co-dominant species in eight recognized Forest 

Ecosystem Classification (FEC) Vegetation Types in northwestern Ontario (Sims et 

al. 1989). Common overstory associates include black spmce (Picea mariana 

(M ill.)B.S.P), trembling aspen (Populus tremuloides Michx.) and white birch (Betula
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papyrifera Marsh.). Often, jack pine stands have a predominant ericaceous shrub 

layer together with feather moss ground cover (Sims et al. 1990). Jack pine is an 

important forestry species in northern Ontario that is usually regenerated by direct 

seeding. Most o f this seed w ill continue to come from seed collection and production 

areas located within designated seed zones.

Jack pine is among the most widespread and most ecologically and 

economically important species for planting and direct seeding in the Great Lakes 

States and throughout much o f the boreal forest o f Canada (OMNR 1991). By 

volume, jack pine is the second most important species harvested in Ontario. In 

addition to volume, the quality and characteristics o f the wood o f jack pine can also 

be greatly improved by modifying stem and branch form. In Ontario, jack pine and 

black spruce (Picea mariana (M ill) B.S.P.) are viewed as the top priority species 

because they receive more than 70% o f the Ontario tree improvement effort 

(OMNR1987) and 80% o f the current artificial regeneration efforts. This effort is 

being expended on these two species due to their significant level o f genetic variation. 

Through genetic improvement and silvicultural management, the rotations o f species 

can be shortened by more than 20% (Rudolph and Yeatman 1982).

Silvical and Genetic Traits

Jack pine is one o f the province’s most variable species. Stem and branch 

form as well as wood quality vary moderately (OMNR 1987). In most species, these 

traits are strongly heritable and can be easily manipulated through genetics. It is 

anticipated that substantial improvements in the stem and crown form could be made 

in the first generation. The growth rate is also variable but has only low to moderate 

heritability. Growth is a more important objective in later generations, when 

heritability can be increased by better control o f test environment (OMNR 1987).
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Genetic Variation

Provenance research in forestry deals with common garden plantations o f 

wild populations o f forest trees sampled randomly in certain parts o f their 

distribution. Provenance trials with forest tree species have been established in many 

countries and have a long history (Zobel and Talbert 1984; Beuker et al. 1997). In 

the early 1960’s, Holst (1967) started all-range jack pine sources covering Canada 

and the Lake States. The goal o f provenance trials is to identify populations or areas 

o f provenance which may provide reproduction material with the most desirable 

traits for a given region (Giertych 1997). In recent decades, provenance test is taking 

central role to assess and forecast effects o f climate change (Davis et.al 2005). 

Observed variations in provenance tests may be interpreted as an adaptive response 

to changes in climate conditions (Maytas 1997). The necessary transfer o f 

populations from the location o f origin to the test site can be regarded as a simulation 

o f environmental change and the response may be modeled; i.e., spatial (geographic) 

variation patterns may be interpreted as a simulation o f responses to environmental 

change over time.

Considerable research has been directed at investigating jack pine’s patterns 

o f adaptive variation. These studies have included range-wide provenance tests to 

determine the broad patterns o f geographic variation, and more restricted local 

provenance tests to determine the most desirable sources for artificial regeneration 

programs. Rudolph and Yeatman (1982) reported that local provenances were among 

the best performers in common garden field trials except in some particular cases. 

However, if  environmental conditions have changed faster than the process o f 

evolutionary adaptation, populations may not be optimally adapted to the new
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environment (Matyas 1990). Not all local sources performed best, usually those from 

milder climates performed better and sources transferred from south seem to surpass 

the local provenances in growth (Matyas and Yeatman 1992; Matyas 1996)

Patterns o f variation in jack pine (by provenance tests) have been examined 

to be clinal with climatic and geographic and elevation gradient, although in some 

cases, with numerous irregularities (Schoenike and Brown 1963; Schoenike 1976; 

Yeatman 1966; Hyun 1979; Maley and Parker 1993; Davradou 1992; van Niejenhuis 

1995 and Parker and van Niejenhuis 1996 a). King (1971) found eastern gall rust on 

10 year old jack pine and incidence o f white pine weevil were significantly different 

among seed sources. Ying (1991) reported that genetic resistance can be an effective 

tool in controlling white pine weevil. Characteristics that showed variation related to 

seed origin included growth and phenotypic variables. These variables include height 

growth, survival, bark thickness, tree form, winter injury, cold hardiness, pest 

resistance and cone and needle characteristics. Parker et al. (1996 b) reported that 

selection pressure corresponding to different FEC V-Type and S-Types have resulted 

in a detectable pattern o f adaptive variation for jack pine in northern Ontario. Several 

allozyme studies have reported existence o f genetic variability in ponderosa pine 

(Pinus ponderosa Laws.), lodgepole pine (Pinus contorta Dougl. var latifolia) and 

jack pine populations (O’Malley et al. 1979; Yeh and Layton 1979). Similar studies 

revealed that the levels o f genetic variability were lower in jack pine compared to 

other pine species (Mosseler et al. 1991). Nkongolo and Gratton (2001) found 36.7% 

o f the total molecular variance was related to provenance.

Cold hardiness and winter injury are a major concern when considering 

moving seed throughout the range o f jack pine. Variations among jack pine seed 

sources in their ability to withstand winter injury were reported (Schantz-Hansen and
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Jensen 1952, Yeatman 1976, Davradou 1992, and Parker and van Niejenhuis 1996 a). 

They concluded that winter hardiness is the critical factor in the survival and growth 

o f planted jack pine in the boreal forest. Seed sources with long, warm growing 

seasons should not be moved to areas with severe winters and short growing seasons 

(Schantz-Hansen and Jensen 1952). The risk o f winter injury and the increased 

susceptibility to disease as a result o f increased stress may be expected when moving 

provenances north. Potential for early frost injury increases for trees displaying 

lammas growth (Rudolph and Yeatman 1982). Cold hardiness and associated 

physiological and morphological characteristics such as cessation o f growth and date 

o f bud set are provenance-related (Rudolph and Yeatman 1982). Foliage color 

change in jack pine in the fall o f the year is also provenance-related (Rudolph 1980 

and Davradou 1992). Hunt and van sickle (1984) also found genetic variation in jack 

pine with regard to susceptibility and resistance to certain diseases.

Schoenike (1976) concluded that all traits examined including crown, bark, 

wood, foliage and cones showed significant differences between populations o f jack 

pine. The amount o f variation associated with geographic location averaged 37 

percent. Individual traits showed both continuous and irregular variation patterns 

across the range o f the species. The most distinct clinal pattern was noted in an area 

from the Lake States to the Northwest. Schoenike (1976) also examined the 

correlations o f individual traits with certain environment factors including: latitude, 

elevation, mean annual temperature, and mean annual precipitation. Most cases 

revealed low to moderate correlations. Higher correlations were seen for 

precipitation and bark thickness, precipitation and needle length, as well as latitude 

and needle volume.
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Maley (1990) examined phenotypic variation in cone and needle 

characteristics o f 64 jack pine seed sources in northwestern Ontario. A steep east- 

west cline at a longitude o f 88.25° in the Nipigon area was found in this study. 

Patterns o f variation demonstrated in the phenotypes o f cones and needles appear to 

be a result o f adaptation to local environment (Maley and Parker 1993).

Van Niejenhuis (1995) examined the adaptive variation o f jack pine o f 64 

provenances in northcentral Ontario. The study measured eight growth variables and 

fourteen phenological variables in the greenhouse and at three common garden tests. 

These variables included elongation and cessation dates, duration o f elongation, date 

o f needle flush and foliage purpling. Variation expressed among seed sources was 

significant for all growth and many phenological variables. The pattern o f variation 

in this portion o f the range was clinal with numerous irregularities. The dependent 

variables were regressed against climate, spatial, soil and vegetative variables. The 

environment at seed source resulted in coefficients o f determination as high as 0.57. 

July and average annual temperatures, heating degree days, frost dates, and soil and 

vegetation variables showed higher correlation with predictive models in this case 

(Van Niejenhuis 1995).

Parker and van Niejenhuis (1996 a), using common garden tests and a 

freezing trial o f jack pine o f 102 provenances in northwest o f Ontario, found that 21 

o f 32 biological variables showed significant inter-provenance variation. Extreme 

minimum temperature and number o f frost-free days were shown to be good 

predictors o f this variation. In this study, the largest components o f variation (28~30 

percent) expressed among provenances were observed for the freezing trials. It was 

found that there is a gradual clinal trend from the southwest to the northeast. 

Northern sources flushed earlier while the southern sources flushed later.
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SEED ZONE DELINEATION 

Background

Transfer o f plants to test locations with substantially different environments 

resulted in reduced adaptation to the new conditions (Matyas and Yeatman 1992). 

Specifically, material transferred beyond the range o f adaptability for a species w ill 

demonstrate lower yield due to maladaptation. To define the range adaptability for a 

species, seed zone and seed transfer guidelines have been developed in all major 

forest regions (Lindgren and Ying 2000). A quantitative approach using regression 

coefficients to scale latitudinal transfer was first suggested by Morgenstem and Teich 

(1969). A conceptual model considering the performance o f a seed source and the 

location or range o f its deployment was developed using Cauchy function by 

Raymond and Lindgren (1990). Genetic differences among populations have been 

recognized as an important consideration when selecting appropriate sources o f seed 

for artificial regeneration programs (Ledig and Kitzmiller 1992).

The use o f seed zones is based on the assumption that the local population, 

which is the result o f thousands o f years o f natural selection, is best adapted to the 

site (Rudolph and Yeatman. 1982). Although this hypothesis is still debated, some 

studies have been reported that some non-local seed sources outgrew local seed 

sources (Namkoong 1969; Mangold and Libby 1978; Matyas 1990,1996; Matyas 

and Yeatman 1992, Rehfeldt 1999,2002). The range o f each species includes an 

array o f environmental conditions. Within that range there are distinctive habitats for 

which certain trees within that species are better suited. Tree seed zones divide the 

range o f a species into areas where the habitats are fairly similar. The size and shape 

o f these zones varies depending upon the environment and the species. For species 

that have no or limited information on genetic variation and adaptability to non-
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native sites, there is a need for seed collection guidelines based on biological, 

climatological, and geographical criteria. Following the assumption that the local 

provenance is optimal, adaptive variation associated with the geographic origin o f 

the parent tree can be obtained. Seed source variation in quantitative traits can be 

related to geoclimatic parameters at the location o f seed sources and then can be 

modeled (Rehfeldt 1984).

Seed zone policy in Ontario was based on the assumption that areas o f similar 

or nearly homogeneous climate will result in minimal inter-species variation (Anon. 

1997). The strategy for reforestation efforts with boreal and other species has been to 

establish local seed zones and not to move seed or seedlings across zone boundaries. 

The existing seed zones o f jack pine in northern Ontario correspond to boundaries 

taken from the H ills’ (1959) site classification system and to administrative district 

boundaries has not been changed any more since the middle o f the 1990’s. These 

seed zones, represent a static pattern o f polygons (OMNR 1987) based on the 

implicit assumption that until better information becomes available, seed collected 

from anywhere within a polygon is equally suited to reforest all areas within the 

polygon, but unsuited to reforest areas in adjacent or more distant polygons 

regardless o f geographic proximity. This approach will not necessarily produce the 

best results since the approach is logically backwards. To produce a good seed zone 

each site should be considered individually in terms o f locating potential seed 

sources with the appropriate matching adaptive characteristics.

Different Approaches for Seed Zone

Different approaches can model genetic variation in adaptive traits and guide 

seed sources transfer. Parker’s (1992) focal point seed zone approach, which was 

built on Campbell (1974) and Rehfeldt (1984), is used in present study.
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Campbell (1974.1975.1986)

Campbell (1974) initially laid the conceptual framework o f modern-day seed 

zone delineation methodology. He developed an illustrative model as a basis for 

discussing seed transfer zone within a species-range, capable o f providing stock 

adaptable to a particular plantation site. The model is based on the concept that 

synchronization o f the development cycle o f the tree with the seasonal cycle is the 

central problem o f adaptation in high latitudes. Rate o f damage was taken as a 

response variable to reflect poor synchronization, and the predictive variables chosen 

were (a) latitudinal and altitudinal 'transfer distances' (i.e. distances between the 

place o f origin o f a provenance and the trial site), and (b) 'plantation severity' (a 

measure o f the severity o f a plantation site based on the average response to 

damaging events o f the populations tested). The prediction equation mainly 

emphasized the interaction between (b) and (a). Campbell (1975) first described the 

concept o f risk assessment that was used in delineating seed transfer zones.

Campbell (1986) developed a guide for seed transfer in Douglas- fir for 

southwest Oregon by mapping genetic variation at the family level. Its aim was to 

estimate the proportion o f seedlings that are maladapted to the plantation site when 

seeds are transferred. The main assumption o f this approach is that local seed sources 

are best adapted to the planting site. According to this assumption, adaptive variation 

associated with the geographic origin o f the parent tree can be separated from other 

genetic and environmental components o f variation. The seed source variation in 

quantitative traits can be related to geoclimatic parameters at the location o f the seed 

sources and can be modeled using the explanatory factors. When seed sources are 

transferred, a risk can be estimated and the greater the difference between the
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distributions o f genotypes at the seed source origin and the plantation site, the greater 

the risk.

Rehfeldt 119841

Rehfeldt (1984) developed a quantitative methodology for assessing 

geographic variation in Douglas - fir (Pseudotsua memiesii (Mrb.) Franco). It was 

used to develop seed transfer guidelines for various species in some areas o f the 

western United States. In that study, Rehfeldt used three types o f tests, a growth 

potential test done as a short-term field trial, a phenological test done in a greenhouse 

lasting one growing season, and a laboratory cold-hardiness test done in the month o f 

September. Such data may be used to demonstrate patterns o f adaptive variation that 

are useful in formulating seed zones. The results were used to establish least 

significant difference boundaries between sampled populations based on the results 

o f ANOVA and regression against important environmental parameters. These 

differences are represented on a map as a generalized set o f contour lines. These 

contours provide boundaries for movement o f plant material; i.e., seed may be 

transferred within a contour interval, but not across another. The contours 

represented gradients o f variation for the trait being modeled and spatially depict the 

regions in which populations were significantly different at the 80% level. Rehfeldt’s 

approach was based on the actual patterns o f adaptive variation present in each o f the 

forest tree species targeted for regeneration.

These seed zone guidelines were based on the risk associated with moving 

seeds over a contour interval. Both Campbell’s (1974,1986) and Rehfeldt (1984) 

empirical method o f seed zone were aiming at providing ecological basis for the 

development o f guidelines dictating the movement o f seed and plant material.
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Although there is a debate that local sources are optimal, the advantage o f Rehfeldt 

and Campbell’s approaches are that information about genetic differentiation in 

growth and adaptive traits can quickly be obtained from provenance tests (growth 

potential), greenhouse trials (phenological variation) and laboratory experiments 

(freezing trial).

Raymond and Lindgren (1990)

A mathematical model was used to describe the relative performance o f six 

different seed sources over a range o f sites (Raymond and Lindgren 1990). In their 

study, latitude and elevation, along with performance measurements o f seed sources 

at different planting sites, were used to develop a severity index. This severity index 

could be used to identify the optimal deployment o f materials. Relative performance 

was the basis for delimiting seed zones or refining transfer rules. This approach relies 

on mathematical functions to model response o f genotypes to environmental 

gradients. For practical application, this methodology requires extensive data from 

multiple provenance tests close to rotation age for each potential planting 

environment (Hamann et a l  2000). However, this information is rarely available 

(Ying 1997).

Focal Point Seed Zone (Parker 1992^

With modem computer methods, including multivariate statistical analysis 

and GIS techniques, there is a need to develop an operational method for 

identification o f dynamic focal point seed zones. Parker (1992) developed site- 

specific seed zone delineation using GIS. By this method, an individual site to be 

reforested becomes the focal point and a unique seed zone is specially defined for
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each site as required. Instead o f a region such as northern Ontario being divided into 

a checker-board pattern o f polygons, the area may be divided into infinite number o f 

zones, each corresponding to a single geographic point for which seed is required. 

The limits o f each zone depend upon the desired level o f similarity in adaptive traits. 

This was first time that GIS was used to define focal point seed zones based on 

adaptive variation in jack pine provenances located in northern Ontario. Parker's 

focal point seed zone methodology w ill be discussed in detail in the next section. 

Inspired by Campbell, Rehfeldt and Parkers’ approaches to define seed zones, 

Hamann et al. (2000) used ordinary kriging to delineate seed zones. These methods 

examined variation in seed source performance and were modeled by a stochastic 

surface. The estimation surface variance was used to map seed zones. The advantage 

o f this methodology is the ability to model heterogeneous surfaces, but it has 

uncertainty due to sampling and random genetic variation.

FOCAL POINT SEED ZONE METHODOLOGY 

Background

Conventional seed zones are fixed geographic areas within which seed may 

be moved from a source to a reforestation site. Seed zones were originally defined to 

provide assurance that reforestation stock are adapted to a planting site by requiring 

that the seed was collected in the general area o f the plantation. The philosophy 

underlying the development o f the focal point seed zone was based on current 

opinion in Ontario that local seed sources are best for reforestation.

Interactive GIS Approach
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Parker (1992) used geographic information systems (GIS) technology to 

delineate a unique seed zone for any site (the focal point) requiring seed for artificial 

regeneration based on a gencological trial o f 64 seed sources in northcentral Ontario. 

Using the same methodology, Parker and van Niejenhuis (1996 a) developed focal 

point seed zones for jack pine using 102 seed sources in northwestern Ontario. The 

goal o f the focal point method is to find the best matches between potential seed 

sources and a specific reforestation site. It is based upon similarities in adaptive 

variation-the patterns o f genetic variation present in the natural forest that have 

evolved as a result o f climate differences associated with changes o f latitude, 

longitude, elevation, and other factors such as proximity to large bodies o f water. 

While conventional seed zones are intended to represent a best compromise based 

primarily on spatial patterns, the establishment o f fixed boundaries may not give the 

best adaptive match particularly when a reforestation site is found near a zone 

boundary. In contrast, the focal point seed zone approach converts our best 

knowledge o f a species' adaptive variation into actual spatial data. This spatial data is 

then used to make best fit o f seeds to planting sites.

Focal Point Seed Zone Methodology

Producing focal point seed zones requires a number o f steps. The most 

important step is to develop mathematical models o f adaptive variation for each 

species o f interest (Parker 1992). These models are then used in conjunction with 

GIS technology to identify the zone o f seed sources that best match a particular focal 

point reforestation site. Broadly speaking, these steps are as follows (Parker 1992):
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“1. Provenance testing--Seed is collected from natural stands throughout the 

management area. Common-garden provenance tests are established, maintained, and 

measured to compare the growth o f the seedlings from the sampled stands. 

Appropriate descriptors o f tree growth are selected (e.g., measures such as height and 

diameter growth, and if  available, other attributes such as frost hardiness and date o f 

bud flush). These activities may occur over many decades.

2. Growth analysis—Measurements o f the selected growth descriptors are 

analyzed to show differences among seed sources, to identify the principal 

components o f variation, and to correlate these with climate variables. The objective 

is to establish the relationship between genetic variation in the species and climate 

differences.

3. Mapping—Once the mathematical models have been established, they are 

used to convert the observed adaptive variation into a spatial database in the form o f  

high resolution geographic grids. GIS technology is then used to map the adaptive 

variation. For any point on the map (the focal point), it is possible to define a 

surrounding geographic area that falls within specified acceptable limits o f similarity. 

The denser the shading on the map, the better the match in adaptive traits to the 

designated focal point.”

The methodology developed in Parker (1992 and Parker and van Niejenhuis 

1996 a) utilized Arc/GIS and Advanced Macro Language (AML) programming. The 

algorithm developed by Parker (1992) allowed an advanced user to operate this 

program independently. However, the advanced knowledge and technical support 

required by this program limited its use by forest managers. To address this problem, 

a series o f seed zones were produced arbitrarily for every 12 minutes o f latitude and 

20 minutes o f longitude by Parker et al. (1994). There is still a need to provide an
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interactive component that would allow the user to select specific regeneration or 

seed source sites to suit their specific needs.

To address this problem, Rouilliond (1999) developed FPSeedZ, an 

application extension for Arcview, based on Parker’s research and methodology.

Arcview Extension (Rouilliond 1999)

Seed transfer guidelines are vital for species such as black spruce and jack 

pine that exhibit patterns o f adaptive variation. If seed/stock is moved too far from its 

geographic origin it becomes more probable that it w ill be poorly adapted to the 

climatic conditions o f the regeneration site. The use o f maladapted seed/stock may 

result in an increased risk o f mortality or damage due to cold, drought, insects and 

disease (Anon. 1997). Thus, the optimal use o f genetic resources depends on the 

plant material being well adapted to the regeneration site.

FPSeedZ was designed to facilitate the transfer o f knowledge from several 

years’ research by Parker (1992, Parker et al. 1994, and Parker and van Niejenhuis 

1996 a) to forest managers in a manner. It is simple to use and practical. It is 

expected that FPSeedZ w ill be used in the Northwestern region o f Ontario as the best 

available information for determining seed transfers for black spruce and jack pine.

Current seed zone policy in Ontario is a climate-based approach that uses 

discretely mapped boundaries as guidelines for seed transfers. This approach uses 

the Ontario Climate Model to develop and refine seed zones that correspond with 

climatic gradients (Mackey et al. 1996). These guidelines are distributed in the form 

o f a generalized seed zone map. The FPSeedZ approach improves upon this method 

in two general ways. Firstly, it is based upon both biological and climate data. This 

allows for species- specific determination o f seed zones. Secondly, the seed zones

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

are not static. Seed zones are determined based on the selection o f a unique 

regeneration site. Current policy has made provisions for the use o f programs such as 

FPSeedZ. It states that "when biological information is available, species specific 

seed transfer guidelines w ill take precedence over the generic climatically-based seed 

zones"(Anon. 1997). It is a user-friendly tool based on actual biological variation to 

guide seed transfer.

Methodology and Program Design

FPSeedZ utilizes biological data from four studies that were conducted in 

Northwestern Ontario. These studies examined the patterns o f adaptive variation in 

jack pine and black spruce for the former north central and Northwestern regions o f  

Ontario (Parker et al. 1994; van Niejenhuis and Parker 1996; Parker and van 

Niejenhuis 1996 a). Each o f these studies employed the use o f short-term common 

garden tests and greenhouse tests. The studies in the former northwestern region 

included additional freezing tests.

FPSeedZ was developed as an extension module for Arcview Geographic 

information systems. Along with the spatial analyst module, Arcview provides 

superior capabilities for modeling geographic and tabular data. Furthermore, the easy 

to use point and click graphical user interface and the powerful built in programming 

language (Avenue) provided an excellent media to translate Parker’s research into a 

form that is intelligible and suited to the user’s needs.

The methodology employed by FPSeedZ was developed and refined by Dr. 

Parker for several years (Parker 1992; Parker and van Niejenhuis 1996 a, 1996 b). 

FPSeedZ represents more updated version o f this methodology including the use o f  

the Ontario Climate Model (OCM1) and updated regression formulae.
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Future Application

In addition to providing the best possible match o f seed to planting site, the 

focal point approach has another important advantage over traditional seed zones. 

This advantage will be possible to specify a modified target climate and generate 

appropriately modified seed-suitability areas.

Rehfeldt et al. (1999) suggested that a major redistribution o f tree species 

would happen in the future due to climate change. Focal point seed zones will 

inevitably change with the climate. FPSeedZ is dynamic instead o f static. There is a 

need to update it with additional biological data (freezing variables and more recent 

growth variables), more accurate and reliable updated climate models and future 

climate scenarios and develop additional functions based on the FPSeedZ. Gene 

variation is a prerequisite for future evolution, in addition to a conservation objective 

related to the present adaptations. The concern about future adaptation, therefore, 

generates an urgent need to develop conservation programs that consider unique 

characteristics related to the long generation time o f tree species. Climate change w ill 

undoubtedly affect current gene conservation strategies. Thus, a new focal point seed 

zone tool (Arcview extension) should provide the information need to determine 

where seed should be transferred from to best suit future climate conditions at a 

given location (Seed To) and where seed should come from now to be best adapted in 

the future to its planting location (Seed From).

In this way, forest managers w ill be able to predict where genetically 

improved seeds from today's orchards w ill perform best under tomorrow's predicted 

climates.
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MATERIAL AND METHODS

STUDY AREA

This study area extends across a landbase o f 23.2 million hectares. It spans 

roughly 3 degrees o f latitude and 9 degrees o f longitude, nearly covering the entire 

region o f northwestern Ontario that lies south o f the area o f undertaking. Initially the 

study area was divided into two test regions representing the former North Central 

and Northwestern Regions. The location o f this division was arbitrarily set at an 

approximate mid-point between the seed source locations for each respective study. 

The 91°W longitude line was determined by Yeatman (1966) to distinguish eastern 

and western zones. Sixty four and one hundred two jack pine provenances were used 

in the northcentral and northwestern regions o f Ontario, respectively.

Northwestern Study Area

This work was part o f NODA 4211 (Parker and van Niejenhuis 1996 a). This 

project included a greenhouse trial, field trials, and a freezing trial. The current study 

is based on the results o f 1993 and 1994 (Parker and van Niejenhuis 1996 a), with 

new data collected from 1997,2003 and 2004 growing seasons added.

STAND AND COLLECTIONS
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Collections o f jack pine cones were gathered in the summer o f 1992 from the 

portion o f northwest Ontario extending from a longitude o f approximately 90°. The 

study area formed a rectangle o f approximately 400 km east to west, and 350 km 

north to south. Within this area 102 jack pine stands o f natural origin were selected. 

The locations o f the seed sources and tests studied are shown in Figure 3. At each o f 

the 102 collection sites, at least ten dominant jack pine trees with adequate numbers 

of seed cones in the upper crown were randomly selected. Each jack pine chosen was 

felled, measured, and aged, and cones that had matured the previous fall (1991) were 

collected. Stand and site descriptions, details o f the collections, and descriptions o f  

the growth trials o f the 102 jack pine populations are provided in Appendix I (Parker 

and van Niejenhuis 1996 a).
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Figure 3. Locations o f the 102 seed sources and three trial sites in northwest 
Ontario study area.
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TEST ESTABLISHMENT

Cones from each jack pine at each site were individually processed for the 

extraction o f seed, and equal numbers o f seed per tree were bulked by site; cleaned 

seed was weighed and recorded for ten replicates o f five seeds for each site.

Seedlings to be outplanted in the field and greenhouse trials were grown in 

leach tubes at the Lakehead University (Thunder Bay, Ontario) Greenhouse. Seeding 

o f jack pine for the field trials was completed on April 8thl993; seeding for the 

greenhouse trial was completed on May 5th 1993.

In the summer o f 1993, common garden tests, including seedlings o f all 102 

seed sources were established near the Fifth Creek Seed Orchard in the Kenora 

District (50°3'14"N, 94°23'30"W), at the Goodie Lake North Seed Orchard in the 

Sioux Lookout District (50o4'12"N, 92021'23"W), and at the Dryden Tree Nursery 

(49°47'18"N, 92°36'7"W). Trial locations are referred to by the town or general area 

that they are located in. At each o f these locations, field trials were planted. These 

consisted o f three blocks o f ten replicates per seed source arranged in a completely 

randomized design. A freezing trial o f a single complete randomized block with 25 

replicates from each seed source was established at the former Thunder Bay Forest 

Nursery (48°2r48"N, 89°23'57"W) to provide material for frost hardiness tests. As 

well, a Greenhouse trial consisting o f a single, completely randomized block with 25 

replications from each seed source was established at the Dryden Tree Nursery. 

These seedlings were transplanted from the leach tubes into 3-L pots. This stock was 

brought into a greenhouse in 1994 (additional information provided in Parker and 

van Niejenhuis 1996a).
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DATA COLLECTION

Seedlings heights o f jack pine were measured (1993 and 1994) at one forestry 

nursery, three field trials and one greenhouse trial. Tree heights were measured with 

height poles and diameter was measured at breast height using diameter tapes. 

Missing or dead trees were noted. Tree height increments were also measured at all 

trials but the Thunder Bay Forest Nursery. A total o f 14 height variables were 

measured during 1993 and 1994. Seedling heights were remeasured in 1997 and 

2003 and diameter was measured in 2003 at the Thunder Bay Forest Nursery trial. 

Seedling heights were remeasured in fall o f 1997 and 2004 and diameters were 

measured in the fall o f 2004 at the Sioux Lookout and Kenora trials. Survival counts 

were also determined at Sioux Lookout and Kenora trials in 1997 and 2004, and for 

Thunder Bay Forest Nursery in 1997 and 2003. Six survival variables were used in 

further analysis. Thus, a total o f 23 growth variables and six survival variables were 

measured in this study.

Phenological data, including elongation initiation date, elongation cessation 

date, and duration o f elongation in days were estimated. The needle flushing date 

was recorded for each seedling at all trials but Thunder Bay Forest Nursery. A total 

o f 12 phenological variables were recorded in this study. The shoot elongation 

measurements were fitted to a growth equation described by Rehfeldt and W ykoff 

(1981):

Y  =  i-----
l + be(-rx+c,x)

l n ( i - l )  = ln ( 4 ) - r f  + c ( j )

Where: Y is the proportion o f the total elongation observed by day X, and ln(b), r, 

and c are regression coefficients. A multiple linear regression algorithm was written
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following the methods o f Sokal and Rohlf (1981) to calculate the regression 

coefficients and coefficients o f multiple determinations (R-square) and to plot the 

growth curves. Regression o f the elongation data for each seedling allowed estimates 

for the time o f elongation initiation and the time o f elongation cessation. Growth 

duration was then calculated as the difference between these two estimated dates.

FREEZING TEST

Three comparative freezing damage trials were conducted in the fall o f 1994. 

Current year needles were collected and bulked from ten seedlings o f each seed 

source. Nine replicates o f 20 needles from each seed source were placed in labelled 

bags. These included three controls, three o f a first treatment temperature, and three 

o f a second treatment temperature. These were cooled at a rate o f 2°C per hour in a 

programmed chest freezer and maintained for 2.5 hours at treatment temperatures 

varying from -8°C on the earliest date o f 15 September to -38°C on the last date o f 

October 12th 1994. Percent damage was assessed relative to control samples 

maintained at 5°C. In this manner comparative freezing damage data were obtained 

for the 102 sources for six different freezing treatments (Parker and van Niejenhuis 

1996 a).

Overall, 23 growth variables, 12 phenological variables, 6 survival, and 6 

freezing variables, totalling 47 biological variables were collected in this study 

(Table 1).
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Table 1. Definition, code and unit o f measured biological variables
Test Variable Code Unit
Greenhouse

GH94 needle flush date GH94FLSH days
GH94 elongation start date GH94STRT days
GH94 elongation stop date GH94ST0P days
GH94 increment of leader growth GH94INCR mm
GH93 height GH93HT mm
GH94 height GH94HT mm

Dryden
DR94 needle flush date DR94FLSH days
DR94 elongation start date DR94STRT days
DR94 elongation stop date DR94ST0P days
DR94 increment of leader growth DRINCR mm
DR93 height DR93HT mm
DR94 height DR94HT mm

Kenora
KE94 needle flush date KE94FLSH days
KE94 elongation start date KE94STRT days
KE94 elongation stop date KE94ST0P days
KE94 increment of leader growth KE94INCR mm
KE93 height KE93HT mm
KE94 height KE94HT mm
*KE97 height KE97HT mm
*KE97 survival KE97SURV %
*KE04 height KE04HT mm
*KE04 survival KE04SURV %
*KE04 diameter KE04DIAM mm

Sioux Lookout
SL94 needle flush date SL94FLSH days
SL94 elongation start date SL94STRT days
SL94 elongation stop date SL94ST0P days
SL94 increment of leader growth SL94INCR mm
SL93 height SL93HT mm
SL94 height SL94HT mm
*SL97 height SL97HT mm
*SL97 survival SL97SURV %
*SL04 height SL04HT mm
*SL04 survival SL04SURV %
*SL04 diameter SL04DIAM mm

Thunder Bay Forest Nursery
TB93 height TB93HT mm
TB94 height TB94HT mm
*TB97 height TB97HT mm
*TB97 survival TB97SURV %
*TB03 height TB03HT mm
*TB03 survival TB03SURV %
*TB03 diameter TB03DIAM mm

Freezing Trials
Frzl Temp2 (-8°C on 15 September) FRZ1T2 %
Frzl Temp3 (-14°C on 15 September) FRZ1T3 %
Frz2 Temp2 (-18°C on 28 September) FRZ2T2 %
Frz2 Temp3 (-25°C on 28 September) FRZ2T3 %
Frz3 Temp2 (-28°C on 12 October) FRZ3T2 %
Frz3 Temp3 (-38°C on 12 October) FRZ3T3 %

Note: Flush, start and stop date: number of days starting on 1 May.
Freezing data: percent damage relative to control samples. Survival: percent of alive 
* Results are not previously published
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Climate Data and Future Climate Change Scenarios

Ontario Climate Model data for the period 1961 to 1990 OCM2 (with 1 km 

resolution) were obtained from Natural Resource Canada and Ontario Forest 

Research Institute. The future climate scenarios considered in this study were the 

CGCM1 obtained from Canadian Institute for Climate Studies, University o f Victoria 

(www.cics.uvic.ca/scenarios/other/interDgrid/normals40.zip') for the period 2040- 

2069 in the form o f Canada-wide grids with 15 km resolution, HadCM3 Climate 

Change Experiments (Hadley Centre, U.K.), CGCM2 (Canadian Global Coupled 

Model 2nd version, Canada) and CSIRO (Commonwealth Scientific and Industrial 

Research Organization, Melbourne, Australia). The other three future climate 

scenarios (projected for 1990-2100) were provided by David T. Price, Edmonton, 

Natural Resource Canada. Thirty six climatic variables were selected including 

monthly average maximum temperature, monthly average minimum temperature and 

monthly average precipitation for both current and future climate models.

HadCM3, developed in 1998, is a coupled atmosphere-ocean general 

circulation model (AOGCM) developed at the Hadley Centre and described by 

Gordon et al. (2000) and Pope et al. (2000). Unlike earlier AOGCMs at the Hadley 

Centre and elsewhere (including HadCM2), HadCM3 does not need flux adjustment 

(additional "artificial" heat and freshwater fluxes at the ocean surface) to produce a 

good simulation. The higher ocean resolution o f HadCM3 is a major factor in this. 

CGCM2 has been used to produce ensemble climate change projections using the 

older IS92a forcing scenario, as well as the newer IPCC SRES A2 and B2 scenarios. 

Compared with CGCM1, CGCM2 has the ability o f a climate model to reproduce the 

present-day mean climate and its historical variation adds confidence to projections
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(Flato and Hibler 1992). Using climate model simulations, CSIRO has estimated 

future changes in Australian temperature, rainfall and evaporation. The estimates 

take into account uncertainties associated with the range o f future global warming 

and the range o f regional climate model responses (Whetton 2001).

More current emission scenarios A2 and B2 were applied in present study. 

The A2 storyline and scenario family describes a very heterogeneous world. The 

underlying theme is self-reliance and preservation o f local identities. Fertility 

patterns across regions converge very slowly, which results in high population 

growth. Its scenario envisions population growth to 15 billion by the year 2100 and 

rather slow economic and technological development (IPCC 2001). The B2 storyline 

and scenario family describes a world in which the emphasis is on local solutions to 

economic, social, and environmental sustainability (IPCC 2001). Its scenario 

envisions slower population growth (10.4 billion by 2100) with a more rapidly 

evolving economy and more emphasis on environmental protection. It therefore 

produces lower emissions and less future warming (IPCC 2001).

An Arc/Info (Environment Systems Research Institute 2000) AML program, 

written by Dr. Parker, was used to extract climatic data for each o f seed sources. A 

three-dimensional trend surface was generated for each o f 36 variables, and a unique 

value for each variable was generated for the 102 seed sources in northwestern 

Ontario and each o f 64 seed sources in northcentral Ontario. The summary o f 

geographical variables and climate variables (for 1961-1990) for 102 seed sources is 

listed in Table 2.
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Table 2. Geographic and climatic variables with study area ranges, units and codes 
for 102 seed sources in northwestern Ontario
Variable Mean Std Dev Range Max Range Min Unit Code

Longitude 92.5 1.2 95.1 90.3 decimal degret long

Latitude 49.7 0.7 51.4 48. 1 decimal degret lat

Elevation 423 72 649 180 m elv

January mean monthly maximum temperature -1 3 .0 1. 1 - 9 .9 -15 .0 °C janmaxt

February mean monthly maximum temperature - 8 .7 1.0 - 5 .9 -1 0 .6 °C febmaxt

March mean monthly maximum temperature - 0 .9 0 .7 0.7 -2 .3 °c marmaxt

April mean monthly maximum temperature 8.3 0 .9 10. 1 6.7 °c aprmaxt

May mean monthly maximum temperature 16.6 0.8 18.2 15.2 °c maymaxt

June mean monthly maximum temperature 21.3 0 .4 22.2 20.4 °c junmaxt

July mean monthly maximum temperature 24.5 0.5 25.5 23.4 °c julmaxt

August mean monthly maximum temperature 22.5 0.6 23.7 21.2 °c augmaxt

September mean monthly maximum temperature 15.9 0.7 17.3 14.7 °c septmaxt

Octomber mean monthly maximum temperature 8 .8 0 .8 10.3 7.3 ° c octmaxt

November mean monthly maximum temperature - 1 .3 0 .8 0 .8 - 2 .9 °c novmaxt

December mean monthly maximum temperature -1 0 .0 1. 1 - 7 .0 -1 2 .2 °c decmaxt

January mean monthly minimum temperature -2 4 .4 1.0 -2 3 .0 -2 6 .8 °c janmint

February mean monthly minimum temperature -2 1 .6 1. 1 -1 9 .9 -2 4 .5 °c febmint

March mean monthly minimum temperature -1 3 .9 1.2 -1 2 .0 -1 7 .0 °c marmint

April mean monthly minimum temperature - 4 .2 0 .9 - 2 .8 - 6 .5 °c aprmint

May mean monthly minimum temperature 3.4 0 .8 4.4 1.4 °c maymint

June mean monthly minimum temperature 9.1 0.7 9.9 7.3 °c junmint

July mean monthly minimum temperature 12.5 0 .6 13.2 10.7 °c julmint

August mean monthly minimum temperature 10.9 0.7 11.7 8 .6 °c augmint

September mean monthly minimum temperature 5.6 0 .6 6.3 4. 1 °c septmint

Octomber mean monthly minimum temperature 0 .3 0.4 0.8 -0 .9 °c octmint

November mean monthly minimum temperature - 8 .9 0 .6 - 7 .9 -10 .6 °c novmint

December mean monthly minimum temperature -2 0 .0 0 .9 -18. 1 -22 .2 °c decmint

January mean monthly precipitation 33.5 4 .0 43.7 26.8 mm janprec

February mean monthly precipitation 26.3 4 .8 37.5 18.8 mm febprec

March mean monthly precipitation 34.8 2 .9 42.2 27.6 mm marprec

April mean monthly precipitation 40.1 4 .5 55.9 32.6 mm aprprec

May mean monthly precipitation 64.6 6 .8 77.5 52.3 mm mayprec

June mean monthly precipitation 98.4 5 .6 112. 1 87.4 mm junprec

July mean monthly precipitation 94.4 4.4 101.5 84.0 mm julprec

August mean monthly precipitation 90.2 4 .3 97.6 78.7 mm augprec

September mean monthly precipitation 83.4 7 .0 96.7 63.4 mm septprec

Octomber mean monthly precipitation 60.4 8 .3 77.5 42.5 mm octprec

November mean monthly precipitation 40.5 4.2 51.3 32.1 mm novprec

December mean monthly precipitation 33.9 4 .9 47.5 25.5 mm decprec

Five integrations scenarios (i.e., HADCM3A2, HADCM3B2, CGCM2A2, 

CGCM2B2 and CSIROB2), together with CGCM1 (2040-2069), were used in the
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present study to predict how the climate change may affect focal point seed zone 

models. Focal point seed zones were evaluated for the projections by the middle o f 

this century (2050) and by the end o f this century (2099) for HADCM3, CGCM2 and 

CSIRO scenarios.

Note that the available general circulation models were expressed as monthly 

climate variable ratios (or differences) derived from respective scenarios, subsetted 

for Ontario. Scenarios showing differences in monthly temperature and ratios o f 

monthly precipitation, rather than actual climate values, were needed to compare 

focal point seed zones between each o f the three temporal points: present day (1990), 

mid-century (2050), and end-of-century (2099). A base-line scenario representing 

current climate conditions, data on 1960-1990 from Dr. Dan McKenney, was used to 

extract data for these scenarios. A C- language algorithm was written for this purpose 

by Dr. Parker. These scenarios were on a 7.5 km grid resolution o f monthly mean 

temperature and monthly average precipitation. From the extracted data, a trend was 

observed that the extent o f predicted future warm was CSIRO > CGCM2 > GGCM1 

> HADCM3; also, scenario A2 predicted warmer conditions than B2 in the future.

Scenario Tools (http ://www.cics .uvic. ca/scenario s/plots/select, cgi) was run to 

get the detailed descriptions on these five different scenarios from an intuitional 

aspect. The results o f this procedure are presented in Table 3. Figures 4 and 5 show 

temperature and precipitation trends between the years o f 2050 and 2080 (the best 

estimates we could get) for the point 50° N  latitude 89° W longitude. Based on 

CGCM2A2, temperature is predicted to increase by 2.7°C and 4.8°C, while 

precipitation is predicted to decrease by 3% and decrease by 1% for 2050 and 2080, 

respectively; based on GCM2B2, the temperature increase is predicted to be 2.3°C 

and 3.2°C and the precipitation decrease by 8% for 2050 and keep the same as
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current precipitation for 2080; based on HADCM3 A2, the temperature increase is 

predicted to be 2.7°C and 5 .1°C and the precipitation increase by 15% and 9.0% 

for 2050 and 2080; based on HADCM3B2, the temperature increase is predicted to 

be 2.6°C and 3.6°C and the precipitation increase by 10% and increase by 15%, 

respectively; based on CSIROB2, the temperature increase is predicted to be 3.9 and 

5.7°C and the precipitation decrease by 1% and increase o f 6% for 2050 and 2080, 

respectively.

Table 3. Climate change projected to 2050 and 2080 based on 1961-1990 climate 
model at 49.5°C N, 92.5°C W_____________________________________________
Scenario TC (°C) 2050 TC (°C) 2080 PC (%) 2050 PC (%) 2080
HADCM3A2 2.7 5.1 15.0 9.0
HADCM3B2 2.6 3.6 10.0 15.0
GCGM2A2 2.7 4.8 -3.0 -1.0
CGCM2B2 2.3 3.2 -8.0 0.0
CSIROB2 3.9 5.7 6.0 -1.0

Source: calculated by scenario tools (Canadian Institute for Climate Studies, University of Victoria) 
TC: Temperature Change; PC: Precipitation Change
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Northcentral Ontario Study Area

The following two studies describe van Niejenhuis’ morphological and 

phenological results (1995) and Davradou’s freezing test (1992) from northcentral 

Ontario, which were used to derive the original focal point seed zone models for jack 

pine in the northcentral area.

TEST ESTABLISHMENT

This study area is located in the province o f Ontario, to the north and west o f  

Lake Superior, and to the east and west o f Lake Nipigon. All populations from which 

seed was collected are located between the longitudes o f 86°47' and 90°54'. To the 

east o f Lake Nipigon, the most southerly collection was near Terrace Bay at a 

latitude o f 48°47'. The most southerly western collection was at a latitude o f 48°05\ 

The most northerly collection site lies north o f Lake Nipigon at 50°27'.

Throughout the study area, 64 jack pine stands were selected from which 

cones were collected during the summer o f 1987. The locations o f the 64 collection 

sites are illustrated in Figure 6 . Detailed location information for each provenance is 

presented in Appendix II (van Niejenhuis 1995).
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Figure 6 . Location o f the 64 seed sources and two trial sites in the northcentral 
region o f Ontario.

At each site, ten healthy, cone-bearing trees separated by at least 20 m were 

selected for cone collection. A minimum o f 10 cones were collected from each tree, 

and height and age o f each sampled tree were recorded and averaged for each stand. 

From the cones o f the 10 trees at each collection site, seed was extracted and bulked. 

Stock for the field and greenhouse trials was grown at the Lakehead University 

greenhouse in the winter o f 1987-1988 for transplanting to three common garden 

tests in the spring o f 1988.

The LU field test site was cleared and tilled. The Raith test site was extremely 

stressed. The LU greenhouse test was established in 3-L pots. Both o f the field 

designs consisted o f three blocks, each containing 1 0  seedlings from each seed
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source planted randomly at 0.5 m spacing. The greenhouse test contained 640 

seedlings ( 1 0  from each seed source), also arranged in a completely random design.

DATA COLLECTION

Growth variables included year 1 ,2 , and 3 heights (1988, 1989 and 1990) at 

LU and Raith trials, and year 1 heights (in 1989) at the greenhouse trial, for a total o f 

eight variables. Repeated measures o f the terminal shoot throughout the period o f 

elongation in the second growing year (1989) allowed for the derivation o f 

phenological variables. For each seedling in each test, initiation, cessation, and 

duration o f terminal shoot elongation were derived using multiple linear regression 

techniques described by Rehfeldt and W ykoff (1981), for an additional nine variables. 

Needle flushing date (i.e., the date the first needle emerged from a fascicle on the 

terminal shoot) for each seedling was recorded during the second (1989) growing 

season, for an additional three variables (additional information provided in van 

Niejenhuis 1995).

FREEZING TEST

Seven comparative freezing damage trials were conducted over three years 

(Davradou 1992). Information obtained from these trials is shown in Table 4. At each 

date needles were removed and bulked from the current growth from ten seedlings 

representing each seed source. Twelve replicates o f each o f 10 needles each from 

each seed source were placed in small labelled plastic bags and stored in a 

refrigerator at 5°C. Three test temperatures and a 5°C control were used for all 

freezing tests. Three replicates per seed source were used for each o f the four
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temperature treatments. Needles collected in September 1988 were cooled in a 

freezer at 2°C per hour to each o f three temperatures (-8 , -13 and -18) and maintained 

for 1 hour. See Table 2 for 1989 and 1990 results. Freezing injury was evaluated 

visually. Tissue discoloration was used as criterion for rating injury. For each 

provenance, the proportion o f needles exhibiting injury was recorded at each test 

temperature at each sampling date. Percent damage was assessed relative to control 

samples maintained at 5°C. In this fashion, comparative freezing damage data were 

obtained for the 64 sources for 21 freezing treatments. Only nine freezing treatments 

were used in subsequent analysis due to the other 1 2  exhibiting high percentages o f 

samples with either too much ( 1 0 0 %) or too little (0 %) damage, which gave no 

useful information and introduced noise variables. The freezing data were 

transformed by arcsine (additional detailed information provided in Davradou 1992). 

All biological and freezing variables measured at each o f the tests are presented in 

Table 5.

Table 4. Temperatures and durations o f the freezing trials. (From Davradou 1992)

Date of Trials Temperatures / Druations
TreatmentI(Tl) Treatment II(T2) TreatmentIII(T3)

09/28/1988 (Dl) - 8°C 1 hour - 8°C 1 hour - 18°C 1 hour
09/01/1989 (D2) - 6°C 1 hour - 6°C 1 hour - 18°C 1 hour
09/09/1989 (D3) - 9°C 1 hour - 9°C 1 hour - 19°C 1 hour
09/19/1989 (D4) - 9oC 1 hour - 9°C 1 hour - 18°C 1 hour
07/21/1990 (D5) - 2°C 1 hour - 2°C 1 hour - 6°C 1 hour
08/06/1990 (D6) - 1°C 1 hour - 1°C 1 hour - 6°C 1 hour
09/23/1990 (D7) - 2°C 1 hour - 2°C 1 hour - 6°C 1 hour
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Table 5. Variables definition, code and measurement unit for northcentral Ontario
Test Variables Code Measurement unit

Greenhouse 1988 Height Growth GH88 millimeter
1989 Height Growth GH89 millimeter
Elongation Initiation GHIN Date
Elongation Cessation GHCS Date
Elongation Duration GHDR Date
Needle Flushing GHNF Date
Purpling GHR % Purpling (Arcsine)

LU Field trial 1988 Height Growth LU88 millimeter
1989 Height Growth LU89 millimeter
Elongation Initiation LUIN Date
Elongation Cessation LUCS Date
Elongation Duration LUDR Date
Needle Flushing LUNF Date
Purpling LUR % Purpling (Arcsine)

Raith Field trial 1988 Height Growth R88 millimeter
1989 Height Growth R89 millimeter
1990 Height Growth R90 millimeter
Elongation Initiation RIN Date
Elongation Cessation RCS Date
Elongation Duration RDR Date
Needle Flushing RNF Date
Survival RSU numbers of living tree

Freezing Trial Freezing treatment 1 D1T1 09/28/88 -8"C 1 hour(%damage)
Freezing treatment 2 D1T2 09/28/88 -13°C 1 hour(%damage)
Freezing treatment 3 D1T3 09/28/88 -18”C 1 hour(%damage)
Freezing treatment 4 D2T1 09/01/89 -6°C 3 hour(%damage)
Freezing treatment 5 D3T1 09/09/89 -9°C 1.5 hour(%damage)
Freezing treatment 6 D4T1 09/01/89 ~9°C 2 hour(%damage)
Freezing treatment 7 D5T2 07/21/90 -3‘C 2.5 hour(%damage)
Freezing treatment 8 D7T2 09/23/90 -5"C 5 hour(%damage)
Freezing treatment 9 D7T3 09/23/90 -6”C 6 hour(%damage)

CLIMATE DATA

The same climate models and methodology for northwestern Ontario area 

were used in this northcentral Ontario study area (see climate data and climate 

change scenarios section in northwestern area). The summary o f the climate 

interpolated by GIS and geographical variables for the 64 jack pine seed sources are 

listed in Table 6 .
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Table 6. Geographic and climatic variables with study area ranges, units and code for
64 seed sources in north central Ontario
Variable Mean Std Dev Range Max Range Min Unit Code

Longitude 88.9 1.2 90.9 86.8 decimal degree long

Latitude 49.4 0.6 50.5 48.1 decimal degree lat

Elevation 1290 254 1700 650 m elv

January mean monthly maximum temperature -12.5 1.3 -9.3 -14.5 °C janmaxt

February mean monthly maximum temperature -8.5 1.1 -6.0 -10.3 °C febmaxt

March mean monthly maximum temperature -1.5 0.7 0.1 -2.6 °c marmaxt

April mean monthly maximum temperature 7.1 0.8 9.0 5.8 °c aprmaxt

May mean monthly maximum temperature 15.3 0.9 17.2 12.5 °c maymaxt

June mean monthly maximum temperature 20.1 0.9 21.2 16.2 °c junmaxt

July mean monthly maximum temperature 23.5 0.9 24.7 19.1 °c julmaxt

August mean monthly maximum temperature 21.5 0.8 22.7 18.8 °c augmaxt

September mean monthly maximum temperature 15.2 0.7 16.5 13.8 °c septmaxt

Octomber mean monthly maximum temperature 8.5 0.7 10.0 7.5 °c octmaxt

November mean monthly maximum temperature -0.8 0.9 1.1 -2.1 °c novmaxt

December mean monthly maximum temperature -9.0 1.1 -6.3 -10.9 °c decmaxt

January mean monthly minimum temperature -25.9 1.7 -21.1 -28.6 °c janmint

February mean monthly minimum temperature -23.5 1.8 -19.5 -26.8 °c febmint

March mean monthly minimum temperature -16.4 1.7 -12.9 -19.5 °c marmint

April mean monthly minimum temperature -6.5 0.9 -4.6 -8.4 °c aprmint

May mean monthly minimum temperature 1.0 0.5 2.0 0.0 °c maymint

June mean monthly minimum temperature 6.3 0.5 7.6 5.4 °c junmint

July mean monthly minimum temperature 9.9 0.6 11.3 8.9 °c julmint

August mean monthly minimum temperature 8.4 0.5 9.6 7.4 °c augmint

September mean monthly minimum temperature 3.8 0.6 5.6 2.7 °c septmint

Octomber mean monthly minimum temperature -0.9 0.5 0.8 -1.9 °c octmint

November mean monthly minimum temperature -9.7 1.2 -6.5 -11.7 "c novmint

December mean monthly minimum temperature -20.4 1.5 -16.1 -23.2 °c decmint

January mean monthly precipitation 42.5 7.2 65.2 32.7 mm janprec

February mean monthly precipitation 32.5 3.1 41.5 26.9 mm febprec

March mean monthly precipitation 42.4 5.0 55.9 32.7 mm marprec

April mean monthly precipitation 43.6 3.3 53.1 37.7 mm aprprec

May mean monthly precipitation 70.1 5.0 77.8 60.3 mm mayprec

June mean monthly precipitation 89.9 5.4 103.2 78.6 mm junprec

July mean monthly precipitation 95.2 6.0 104.0 81.8 mm julprec

August mean monthly precipitation 90.8 3.7 98.5 83.2 mm augprec

September mean monthly precipitation 90.7 7.5 110.5 75.3 mm septprec

Octomber mean monthly precipitation 73.5 5.7 88.2 66.3 mm octprec

November mean monthly precipitation 58.0 7.5 73.2 46.2 nun novprec

December mean monthly precipitation 47.0 8.5 66.3 36.8 mm decprec
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DATA ANALYSIS

The same methodology for data analysis was used in both the northcentral 

area and the northwestern regions o f the Ontario study area.

To obtain more reliable adaptive variation information on jack pine, 

additional data was added to the earlier jack pine data sets o f 1988,1989, 1990 for 

northcentral area (van Niejenhuis 1995 for biological data and Davradou 1992 for 

freezing data) and 1993 and 1994 for the northwestern Ontario area (Parker and van 

Niejenhuis 1996 a). Additional new data collected during the course o f 1997,2003 

and 2004 were combined with previous data for use in the present study.

Univariate Analysis

Each o f the measured biological variables was analyzed by ANOVA to 

determine the amount o f variation expressed among seed sources. For the greenhouse 

trial and freezing tests, each o f which consisted o f only one block, one-way 

ANOVAs were run, and the coefficients o f intraclass correlation were calculated 

(Sokal and Rohlf 1981) to determine the extent o f differentiation among the seed 

sources. The model used was:

Yjj=p+ Aj +

Where: Yy -  measured variable value o f replication j o f seed sources i;

p = the overall mean;

Ai = the random effect o f seed source i;

i = the number o f seed sources (i =1- 64 for northcentral Ontario and 1- 

102 for northwestern Ontario);

j = replicates per seed sources (j = 1 to 25 replicates per seed source);

Eij = the random effect o f replication j o f provenance i.
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Similarly, for the field trials, two-way ANOVAs were run and the results were 

presented as percents o f variation attributable to seed sources, blocks and seed source 

x block interactions. The model used was:

Yijk — (i.+ Aj + Bj + (AB)jk +  Sjjk 

Where: Yijk= measured variable value o f replication k o f seed sources i at block j;

p = the overall mean;

Aj = the random effect o f the7 th provenance;

Bj = the random effect o f the i* block;

(AB)jk = the interaction effect in the subgroup representing the i* seed 

source and the j**1 block;

i = the number o f seed sources (i =1- 64 for northcentral Ontario and 1- 

102 for northwestern Ontario);

j = the number o f blocks (j = 1 ,2 , 3);

k = replicates for each seed source in each block (k = 1 to 1 0  replicates per 

seed source);

Sjjk = the random effect o f replication k o f block j o f provenance i.

ANOVAs on the new data gathered for both study areas were used in the 

present study. Only means values o f previously analyzed variables were used in the 

subsequent analysis.

SAS 8.01 (SAS Institute 2000) GLM procedure was run primarily to obtain 

provenance overall means and block means. The GLM procedure in SAS was also 

used to calculate Least Significant Difference (LSDs) among provenances. Variables 

that showed significant at p< 0.05 were retained for further analysis. PROC 

VARCOMP and the Restricted Maximum Likelihood method (REML) were used to
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calculate the components o f variance (SAS Institute 2000). Intralass correlation 

coefficients (I.C.C) convey meaning about the level o f adaptive variation expressed 

at each o f the measured tests, by indicating what fraction o f the observed variation is 

expressed among provenances.

I.C.C formula is as follows:

v <t1 provenance+<?2 error

Variance components were obtained for growth variables, phenological variables, 

survival and freezing variables to calculate Intraclass Correlation Coefficients

Multivariate Analysis

All growth and freezing variables which showed significant inter-provenance 

adaptive variation were run by simple regression and multiple regression against the 

three geographical and 36 climate variables. The 36 climate variables were monthly 

average maximum temperature, monthly average minimum temperature and monthly 

average precipitation for each month o f the year. This step was done by regression 

procedure (SAS Institute 2000) with the maximum r2 method. Biological variables 

with both p < 0.05 level o f significant among seed sources and significant 

regressions against the climatic data at p < 0.05 level were included in further steps 

in the focal point seed zone procedure (Parker and Van Niejenhuis 1996 a). Only 

variables expressing adaptive variation are useful for determining seed zones. These 

two steps ensured that variables retained in the future PCA have strong correlation 

between the components o f adaptive variation and the local climate o f the seed 

source. In the northcentral region, 20 o f out o f 29 measured variables were retained

cr provenance vinn«v:
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i.e. five growth, one survival, nine phonological and five freezing variables; 30 out o f 

45 measured variables were retained, i.e., 21 growth, three survival, six phenological 

and three freezing variables in the northwestern Ontario area.

Seed source mean values for the 21 in northcentral variables and 30 

northwestern variables were analyzed using principal components analysis (PCA) to 

summarize the main components o f variation in the data set. New summary variables 

consisting o f principal component scores were calculated for each main axis o f 

variation. These PCA summary variables were reproduced graphically as contour 

maps by GIS to show patterns o f geographic variation. Additional multiple linear 

regressions were run for the PCA scores against climatic data for the 64 and 102 seed 

sources using the regression procedure in SAS (SAS Institute 2000). Preliminary 

regressions were run using a backwards stepwise procedure with a probability at the 

5% level. Thirty six climatic variables were used in this step (Table 1 and Table 5). 

To avoid overfit regressions, variables with tolerances considerably less than 0.1 or t 

values less than 2.0 were eliminated (Wilkinson et al. 1992) and the regressions were 

rerun. These simplified regressions were used to model the main PCA axes. Scores 

predicted by the regressions were calculated for each o f the 64 and 102 seed sources. 

The predicted scores were then graphically reproduced as contour maps by GIS to 

summarize the modeled pattern o f geographic variation.

Focal Point Seed Zone

Three algorithm ArcGIS (Arc/Info) AML programs written by Dr. Parker 

were run to generate present and future focal point seed zones. Future focal point 

seed zones include Seed To and Seed From based on different climate change
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scenarios. It was determined by intersection o f the regression-based first two PCA 

grids in each case. Zones o f simultaneous similarity represented a minimum level o f 

adaptive similarity on both modeled PCA axes. A series o f focal point seed zone 

maps based on current and future climate conditions was illustrated in the present 

study for both areas. Two types o f future climate focal point seed zone maps were 

prepared: best adaptive match for the future seed source {Seed From) and best future 

location for seed taken from focal point {Seed To).
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RESULTS: Northwestern Ontario 

SINGLE VARIABLE ANALYSES

Select results obtained from the ANOVA for variables measured in 1993 and 

1994 in Northern Ontario Development Agreement (NODA) funded project (Parker 

and van Niejenhuis 1996 a) were used in the present study. Only the means o f these 

variables were analyzed in the subsequent analysis.

Greenhouse Trial

One-way ANOVA tests revealed that provenance was a significant source o f  

variation for all the variables in the greenhouse trial, except the elongation stop date 

variable in 1994. The portion o f the total variance attributed to seed source ranged 

from 4.98% for seedling height increment during the course 1993 and 1994 up to 

21.02% for the 1993 height (Parker and Niejenhuis 1996 a).

Field Trials

In the four field tests, one-way ANOVA tests o f all the biological variables 

revealed that significant differences existed between provenances for the majority 

variables at the p < 0.05 level. Variables that did not show significant differences 

were 1994 elongation start date at the Dryden and Kenora tests, 1994 elongation stop 

date at Dryden, Kenora and Sioux Lookout tests (Parker and Niejenhuis 1996 a). For 

growth variables, 1997 height, 2004 height and 2004 diameter at Kenora and Sioux 

Lookout tests were not significant at p< 0.05 level, but the height variables showed 

some differentiation. The six freezing variables were all significant at p< 0.05 level.
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All variables and significance levels are shown in Table 7. Provenance mean values 

for all variables are included in Appendix III (variables measured in 1993 and 1994 

and freezing variables were obtained from Parker and Niejenhuis (1996 a).

All the variables except for the 1994 cessation o f elongation date at the 

Greenhouse trial, the start o f elongation at the Dryden, Kenora, Sioux Lookout tests, 

1997 height at the Kenora test and 2004 diameter at Kenora and Sioux Lookout tests 

explained some level o f genetic variation between provenances. Those variables 

showing zero or very little genetic variance were excluded from further analysis 

(Parker and Niejenhuis 1996 a).

Provenance differentiation was evident in all trials. Specifically, this trend 

was clearer during the course o f the first several growing seasons than in the later. 

I.C.C values were used here to explain the extent o f differentiation between 

provenances. The largest components o f variation expressed among provenances 

were found for the freezing trial, which accounted for 19.6-37.9 percent. Generally, 

I.C.C values were higher for seedling height variables than those o f phenological 

variables. More variation was explained among seed sources for height and needle 

flush dates in the Greenhouse due to the well controlled environment. The level o f 

differentiation between provenances showed by seedling height growth was very 

little (0.1 and 1.17%) for the 1997 seedling height for Kenora and Sioux Lookout 

trials. These values were greater (5.13 and 5.58%) in 2004, although they were not 

significant at the p<0.05 level, which was not expected. Perhaps, there was an 

unfavourable environment during that growing season. The level o f differentiation 

showed by survival for these two trials was 4.91 and 9.48%, respectively; survival 

was significant at p = 0.05 level for Sioux Lookout trial and at the p < 0.2 level for
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the Kenora trial. Diameter measured in the 2004 growing season indicated little or no 

differentiation among seed sources (3.9 and 0%). Perhaps the stem density was part 

o f the cause. For the Thunder Bay Forest Nursery trial, it was not the same situation; 

the level o f differentiation among provenances indicated by seedling height growth 

increased with time except for the first growing season when the first year seedling 

height explained the largest differentiation (7.44%).

Table 7 showed that the percentages o f variation expressed by blocks in the 

three blocked test designs were very low or moderate, ranging from 0 to 5.96. Block 

x provenance interaction term generally was very low, ranging from 0  to 2.08 o f the 

total variation. This component o f variation was not considered in the focal point 

seed zone method.
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Table 7. Means, standard deviations, and percentages o f variation expressed among 
1 0 2  seed sources o f jack pine.
Variables Mean® SD8 Provenace(%) Block (%) Interaction(%)
Greenhouse
Gh94 flush dateb 6. 78 1.41 17.05 - -
GH94 start date 5.3 4. 79 8. 05 - -
GH94 stop date 79. 43 12.01 0 nsc - -
Gh94 increment (cm) 3.3 1.4 4. 98
GH93 height (cm) 10. 24 1.61 21.02 - -
GH94 height (cm) 18. 86 3.3 12. 74 - -
Dryden
DR94 flush date 23.81 2. 05 14. 54 2.49 1.52
DR94 start date 14. 58 3. 95 0. 35ns 2.39 0. 00
DR94 stop date 78. 25 14.01 0. 70 ns 1.78 0.00
DR94 increment (cm) 5. 58 2.68 5. 58 1.66 0. 65
DR93 height (cm) 13.11 2. 36 12.2 1.25 0. 53
DR94 height (cm) 21. 15 3. 72 10.67 3.64 0. 66
Kenora
KE94 flush date 28. 35 3.04 3. 36 5.96 0. 38
KE94 start date 13.1 4. 03 0. 47ns 0. 25 0.00
KE94 stop date 71.72 20. 58 0.12ns 0. 09 0. 00
KE94 increment (cm) 3. 35 1.96 4.9 0.11 0.21
KE93 height (cm) 12. 88 2.31 6. 29 0. 24 2. 08
KE94 height (cm) 17.83 3.51 9. 42 1.57 0.3
*KE97 surv (%) 95.3 0. 68 0.4 5.43 0. 00
*KE97 height (cm) 67. 67 6.74 0. Ins 2.12 1.01
*KE04 surv (%) 74.8 1.43 4.91 0. 00 0. 00
*KE04 height (cm) 318. 38 36.64 5. 13ns 0. 00 0. 00
♦KE04 diam (cm) 24.31 3. 09 3. 85ns 0.56 0. 19
Sioux Lookout
SL94 flush date 28. 53 2. 47 6.04 2. 71 0.00
SL94 start date 17. 75 2. 99 0. 75 0. 52 0. 96
SL94 stop date 74. 85 17.37 0. 21ns 0. 00 1.12
SL94 increment (cm) 3. 73 2. 37 3. 38 5. 58 0. 00
SL93 height (cm) 12. 23 2. 23 6. 45 2.19 0.98
SL94 height (cm) 18. 23 3. 95 6.82 5.46 0.18
*SL97surv (%) 88.6 1.08 1.63 1.78 0. 00
*SL97height (cm) 62 7.7 1.17ns 2.37 1.05
*SL04surv (%) 82.9 1.26 9. 48 0.00 0. 00
*SL04 height (cm) 257. 73 23.6 5. 58ns 0. 34 0.00
*SL04 diam (cm) 17. 24 2.61 0ns 0. 65 0.19
Thunder Bay Forest Nursery
TB93 height (cm) 12. 23 2.42 7. 44 - -
TB94 height (cm) 24.62 6. 27 3.87 - -
*TB97 height (cm) 147. 64 29.21 5.41 - -
*TB03 height (cm) 487.7 57.54 5. 57 - -
*TB03 diam (cm) 3. 36 0.87 4. 69 - -
Freezing trials
Frzl Temp2<l 4. 81® 2. 33 32. 24 - -
Frzl Temp3 11. 38 7. 42 26. 53 - -
Frez2 Temp2 14.92 3. 82 36. 44 - -
Frez2 Temp3 17. 72 5.29 19. 62 - -
Frez3 Temp2 9. 62 1.48 37. 88 - -
Frez3 Tenm3 .......10-.74. 2.18 35. 75 - -
4 based on 102 seed source values
b Number of days starting on May 1st.c Not significant (a = 0.05).
d Freezing trial dates and temperatures: Frzl Temp2 was -8 on 15 Sept; Frzl Temp3 was -14 on 15 
Sept; Frz2 Temp2 was -18 on 28 Sept; Frz2 Temp3 was -25 on 28 Sept; Frz3 Temp2 was -28 on 12
Oct; Frz3 Temp3 was -38 on 12 Oct. 
e percent damage relative to control samples.
* Unpublished data
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Examination o f the seed source means revealed that the five earliest needle 

flush dates in 1994 were obtained for sources 73, 76, 8 ,7 ,7 4  at the Greenhouse trial, 

7, 70, 7 2 ,6 ,7 4  at the Dryden trial, 73, 72,71, 8 ,9 2  at the Kenora trial and 7 ,7 7 ,9 3 , 

5, 80 at the Sioux Lookout trial. Seed sources 70, 71, 72, 73, 74, 76 and 80 originated 

in the north portion o f the study area. Sources 70, 76, 80 were located around the 

north o f Lac Seul. Sources 6 ,7 , and 8  originated from the eastern o f portion o f the 

study area, while sources 43 and 101 originated from the south o f study area. Source 

72 was the earliest to needle flush, while source 21 was the latest to flush needles for 

both the Greenhouse and Dryden trials.

Source 98 showed the tallest seedling height in Kenora trial by 1993 and 

1994. Source 29 was the second tallest seedling height for 1993 which is located near 

the Kenora trial. Source 98 originated from the middle potion o f the study area, 

southern o f the Kenora test location. By 1997, the tallest seedlings originated from 

source 101, averaging 75.8 cm after 5 years. The top 5 seedlings heights were 

obtained for sources 101,28, 9 ,38  and 34 for 2004 in the Kenora trial, averaging 

358.7, 358.5,356.8, 356.2 and 354.7 cm after 12 years. Source 96 showed the 

biggest survival (90%) and source 5 showed the lowest survival (50%) at the Kenora 

trial after 12 years (2004).

SIMPLE REGRESSION ANALYSIS

Results were obtained from the simple linear regressions (start = 1 and stop =

1) run on each biological variable against three geographic and 36 climatic variables. 

The bigger the r2 value, the better the relationship between biological variables and 

geographic and climatic variables is explained.
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There were nine dependent variable regressions found to be non- significant 

at the p < 0.05 level. These variables were 1994 elongation start date for Greenhouse 

trial, 1994 elongation start date, 1997 height and 2004 height for the Kenora test, 

1994 elongation stop date, 2004 diameter for the Sioux Lookout trial, FRZ1T2, 

FRZ1T2 and FRZ2T1 for the freezing trial. All dependent variable regressions were 

significant at the p < 0.05 level for the Thunder Bay Nursery trial. Coefficients o f 

determination (r2) ranged from 3% for Kenora 1994 elongation stop date and 

Thunder Bay Nursery 1997 survival, up to 60% for the Greenhouse 1994 needle 

flush date. Flushing dates had relatively high r2 values, ranging from 60% for the 

Greenhouse 1994 down to 23% for Kenora 1994, compared with the other height and 

phenological variables. Surprisingly, geography and climate explained none o f or 

only low levels o f the variation among seed sources in the freezing trials.

In the retained variables (variables with not significant at the p < 0.05 level 

were excluded), latitude was the most often selected (eight times) to explain 

differences in the biological variables. Photoperiod differences due to latitude are 

considered one o f the main factors influencing the initiation o f winter hardening in 

trees (Weiser 1970). Average November monthly minimum temperature was found 6  

times to be related to the biological variables. Average September monthly 

maximum temperature was selected 5 times, and March maximum temperature was 

selected 3 times. Overall, the temperature variables produced higher r values than 

the precipitation variables.

Both best r-square selection simple linear (start = 1 and stop = 4) and 

backwards stepwise multiple linear regression analyses were run for all the variables 

in each test against three geographic and 36 climatic variables. The coefficient o f
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determination (r2) and the independent climatic variables are provided in Table 8  for 

all regressions that were significant at the p < 0.05 level.

Flushing dates had the highest r2 values. Spring maximum temperature played 

an important role in determining needle flushing date variables. Simple linear 

regressions accounted for as much as 60 percent o f the variation and multiple 

regressions accounted for up to 65 percent. Latitude is a good predictor for gro wth 

variables; it was selected nine times by height growth variables, the variation ranging 

from 6  percent to 28 percent. The survival variables were closely related to spring 

and fall maximum temperatures. Freezing trial variables showed unexpected results 

in that they showed large variation between seed sources while low  or no levels o f 

variation were explained by climate. Climate was significant in explaining variation 

between provenances for only 3 o f the 6  phenological variables, with r2  ranging from 

1 percent up to 5 percent. Even multiple regressions accounted for only 11 to 15 o f  

the percent variation.

Simple regression results are similar to those from a Parker and van 

Niejenhuis study (1996a) which found that r2 values for flushing dates were the 

highest, ranging from 25 percent to 59 percent, and freezing variables showed low  

or no level o f variation explained by climate in their study. Mean maximum daily 

temperature in July, mean annual temperature and heating degree days are 

important variables in determining needle flushing date in that study. Mean 

maximum daily temperature in July is the most selected (18 times) in that study, 

with r2 values ranging 4 for DR94 start date to 59 percent for DR94 flush date.
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Table 8. Results o f simple linear and backwards stepwise multiple linear regression
against 3 geographic and 36 climate variables

Simple regression Multiple regression
pendent variable Climate variable R? Climtc variable Max Rz

marmaxt 0.6
septmaxt 0. 59 marmaxt 0. 65

GH94FLSH aprmaxt 0. 59 aprprec
maymaxt 0. 58

marmint 0. 35
augmaxt 0. 34 novmi nt

GH94STRT aprmint 0. 34 marprec 0.42
junmaxt 0. 33 augprec

janmaxt. 0. 13
marmaxt 0.13

GH94INCR febmaxt 0.13 janmaxt 0.13
lat 0.13

marmaxt 0.12
marmaxt 0.11 maymaxt

GH93HT febmaxt 0.11 decmint 0. 397
lat 0. 11 marprec

janmaxt 0. 16 aprmaxt
marmaxt 0.16 janprec

GH94HT febmaxt 0.15 febprec 0.41
maymaxt 0.15 novprec

maymaxt 0.51
aprmaxt 0.5 maymaxt

DR94FLSH marmaxt 0.5 julmaxt 0. 56
janprec 0.49

julmaxt 0. 068
augmaxt 0. 066 julmaxt

DR94STRT julmaxt 0. 064 elv 0.09
maymaxt 0. 06

junprec 0. 05 janmaxt
maymint 0. 04 septmaxt

DR94ST0P octmint 0. 039 janmint 0.12
aprmint 0. 037 maymint

lat 0. 28
decmaxt 0. 24

DR94INCR novmaxt 0. 23 lat 0. 28
febmaxt 0. 22

lat 0.17 long
octmaxt 0.17 elv

DR93HT novmint 0.15 junmaxt 0.3
novmaxt 0.15 aprprec

loat 0. 24
octmaxt 0. 24 lat 0. 29

DR94HT novmaxt 0. 23 aprprec
marmaxt 0. 22
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Table 8. Results o f simple linear and backwards stepwise multiple linear regression
against 3 geographic and 36 climate variables (cont’d)

Multiple regression_____
 CJimt e _var iable MaxJt*Dependent variable

Simple regression 
Climate variable

KE94FLSH

mavmaxt
junmaxt
aprmaxt
julmaxt

0. 23 
0. 23 
0.21  
0 .2

maymaxt 0. 23

KE94ST0P

anrmaxt
maymaxt
augmaxt
aprmint

0. 046 
0. 045 
0. 045 
0. 044

marmint
julprec
septprec

0.14

KE94INCR

lat
decmaxt
sentprec
octprec

0 . 1 1  
0 . 1 
0.1 
0. 09

mavmaxt
septprec 0. 59

KE93HT

novmint
decmint
octmaxt

lat

0 .1  
0. 08 
0. 074 
0. 073

decmint
iannrec
aorprec

0.2

KE94HT

novmint 
oc tmaxt 
marmaxt 
aprmaxt

0.114 
0.113 
0.11  
0 .1

octmint
novmint
aprprec

0.21

KE97SURV

elv
septmaxt
marmaxt
aprmaxt

0. 044 
0. 037 
0. 037 
0. 036

elv 0. 0438

KE04SURV

septmaxt
augmaxt
julmaxt
aprmaxt

0 . 1 1  
0 . 1 
0 . 1 
0 . 1

septmaxt 0 . 1 1

SL94FLSH

novmint
mavmaxt
junmaxt
junprec

0. 352 
0. 346 
0. 344 
0. 343

octmaxt
junprec 0. 39

SL94STRT

septprec
octorec
long

decorec

0. 054 
0. 052 
0. 046 
0. 042

septprec 0. 054

SL94INCR

SL93HT

SL94HT

septprec
octprec
mayprec
long

novorec
mavorec
marmaxt
aormaxt
mavmaxt

lat
novmint
novmaxt
marmaxt

0.14 
0 . 12 
0.098 
0. 087

0. 327 
0. 26 
0. 22 
0.2 
0. 18

0.09 
0. 08 
0. 074 
0. 071

septprec

lone
marprec

iunmint
septmint
decmint

0.14

0.452

0. 26
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Table 8, Results o f simple linear and backwards stepwise multiple linear regression
against 3 geographic and 36 climate variables (cont’d)

Simple regression Multiple regression
Dependent variable Climate variable _ R l  _ Climte variable Max R‘

septmaxt 0. 13
octmaxt 0. 127 septmaxt

SL97SURV novmaxt 0. 11 junprec 0.21
marmaxt 0. 11

lat 0. 064
novmint 0. 061

SL97HT novmaxt 0. 059 na na
marmaxt 0. 059

septmaxt 0. 077
marmaxt 0. 074 elv

SL04SURV aprmaxt 0. 071 augmaxt 0. 11
octmaxt 0. 061

novmint 0. 069
octmint 0. 056 lone

SL04HT junmaxt 0. 052 novmint 0. 14
mavmint 0. 044 aororec

octmaxt 0. 069
lat 0. 062 lat

TB9311T junmaxt 0. 053 janmaxt 0. 19
novmint 0. 051 mayprec
novmint 0. 238 julymint
marmaxt 0.197 octmint 0. 34

TB94HT janmaxt 0. 194 novmint
decmint 0.191 aprprec
novmint 0. 27
marmaxt 0. 261 octmint

TB97I1T janmaxt 0. 26 novmint 0. 34
decmint 0. 254 decprec

lat 0. 054
septprec 0. 052 elv 0.09

TB03SURV novmint 0. 052 novmint
docmaxt 0. 05
decmint 0.149
novmint 0.144 octmint

TB03HT marmint 0.132 novmint 0. 19
janmaxt 0.132 decprec
janmaxt 0. 33
marmaxt 0. 32 ianmaxt

TB03DIAM febmaxt 0. 33 aprprec 0. 36
octmaxt 0.31
aororec 0.049
iunmint. 0. 044 iulmint.

FRZ2T2 julmint 0. 043 febprec 0.11
maymi nt 0. 028 marprec
septmaxt 0.148
marmaxt 0. 147

FRZ3T1 aprmaxt 0. 146 septmaxt 0.15
janmaxt 0. 141
marmint 0.137
aprmaxt 0.134 marmint 0. 14

FRZ3T2 maymaxt 0.131
decmint ( U 2 9 . _ _

Note: all variables are significant at p <0.05 level.
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MULTIVARIATE ANALYSIS

Variable Correlations

Many o f the variables examined in this study were highly correlated. The 

Pearson correlation matrix based on the mean values for those measured variables in 

Sioux Lookout and Kenora trials is presented in Tables 9 and 10. Positive 

correlations were consistently displayed between growth variables. Generally, 

survival variables were negatively correlated with needle flush date. Specifically, 

2004 survival in both trials had a significant negative correlation at the p<0.05 level 

with coefficients o f -0.39 and -0.28, respectively. Growth variables were positively 

correlated with other growth variables within each trial. All the growth variables but 

1997 height in Kenora were negatively correlated with date o f elongation start, 

meaning that seed sources whose seedlings initiated elongation earlier were taller, on 

average. At the Sioux Lookout trial, the correlation between height variables and 

needle flush variables decreased with time, ranging from 0.316 for height at 1993 

down to 0.058 for height at 2004.
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Table 9. Pearson’s correlation matrix o f the variables measured in the Sioux Lookout trial based on provenance means
SL94FLSH SL94STRT SL94ST0P SL94INCR SL93HT SL94HT SL97SURV SL97HT SL04SURV SL04HT SL04DIAM

SL94FLSH
SL94STRT -0.082
SL94ST0P 0.035 -0.084
SL94INCR 0.101 -0.275 -0. 301
SL93HT 0.316 -0.107 0.183
SL94HT 0.232 -0.199 0.072
SL97SURV -0.278 0.014 0.089
SL97HT 0.174 -0.098 -0.120
SL04SURV | 0.058 0.044
SL04HT 0.058 -0.074 -0.053
SL04DIAM -0.192 0.019 -0.086

0.272

-0.179 -0.065 
0.275 
-0. 105 
0.145 
0.212

-0. 054
-0.166

0. 090 0.041 
0.291 
0. 284

0.079 
0. 113

0. 083 
0.0700.299 _____

Note: Bold means significant at the p< 0.05 level, values in grey shading mean significant at the p < 0.01 level

Table 10. Pearson’s correlation matrix o f the variables measured in the Kenora trial based on provenance means
KE94FLSH KE94STRT KE94ST0P KE94INCR KE93HT KE94HT KE97SURV KE97HT KE04SURV KE04HT KE04DIAM

KE94FLSH
KE94STRT
KE94ST0P
KE94INCR
KE93HT
KE94HT
KE97SURV
KE97HT
KE04SURV
KE04HT
KE04DIAM

0.058 
-0.039 
-0. 223 
0.085 
0.022 

-0.095

-0. 004 
0.036

-0. 029
-0. 088 -0.119
-0.037
0.044 -0.234 

0.226
- 0.012 
0.213 
-0. 079 

0. 001

0. 152 - 0.202 0.005 -0.033
0.029 0.102

0.028 0.113 
0.268 
0.194

-0.143 
0.191 
0. 087

0.034 0.266 -0.054 
0.179

-0. 080 
0. 0330. 002 0.143

Note: Bold means significant at the p< 0.05 level, values in grey shading mean significant at the P < 0.01
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RESULTS OF PRINCIPAL COMPONENT ANALYSIS

The results o f principal components analysis o f the 30 retained variables are 

shown in Table 11. Eigenvalues, the percentage o f total variation attributed to each 

component and the associated component loadings are presented for first three 

principal component axes. The first three PC axes accounted for 31%, 10% and 7% 

o f total variation respectively. The other PC axes showed low eigenvalues (less than

2) and contributed little to the explained variation; thus, they were not considered for 

the multiple regressions against climatic variables in the further analysis. In 

eigenvector one, all the variable loadings were positive except Kenora 2004 survival, 

Sioux Lookout 1997 and 2004 survival and Sioux Lookout 1994 elongation start date. 

Component loadings ranged from values o f 0 for the FRZ2T2 to 0.26 for the 

TB94HT and GH94FLSH. Loadings for phenological variables were intermediate. 

The high loading values for the height growth variables, in conjunction with the 

uniformly positive signs for almost all the variables, indicated that the first axis 

mainly represents growth potential (i.e., seed source with the greatest potential for 

growth generally had the highest growth at each trial). Except for the Sioux Lookout 

elongation start date variable, the loadings for phenological variables were positive 

which indicted that the sources having the greatest growth potential flushed later and 

started and stopped elongation later. Positive signs for the freezing variables 

suggested that seed sources with the greatest growth potential suffered the greatest 

frost damage.

The second component displayed high loadings for the survival variables 

from 0.27 down to 0.12; the loadings for all the phenological variables, two o f the 

three freezing variables and the Greenhouse variables were negative, while the
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loadings for the height growth variables were positive for field trials. The biological 

significance o f second axis is less obvious for the biological significance than in the 

first one. The mixed signs for the loadings indicates that the second axis is generally 

a descriptor o f phenological characteristics; i.e. the bigger the positive value, the later 

the needles flush and the smaller survival potential. Signs changed for flush variables 

and freezing variables, but did not change for height variables at the three field trials 

and the Thunder Bay nursery trial. This implies that the earlier flushing sources with 

higher height growth potential generally showed a reduction in height growth at the 

field trials but not at the Greenhouse. Less cold-hardy sources had higher survival 

potential, higher growth potential, flushed earlier, and started elongation earlier.

The third component was dominated by performance at the greenhouse trial, 

with strong loadings from greenhouse height growth variables. The third component 

had an eigenvalue o f 2.22, and accounted for 7 percent o f the total variance. The 

biological significance o f this axis is not obvious. The other 27 axes are not shown, 

as their contribution to the total variance is only 52 percent.
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Table 11. Principal components analysis results for 30 growth, phenological and 
freezing characters

Principal Components
PCA axis 1 2 3
Eigenvalues 9. 27 3. 10 2. 22
Difference 6. 17 0. 88 0. 45

Percent variation 0. 31 0. 10 0. 07
Cumulative variation 0. 31 0. 41 0. 49

Variables* Components Loadings
GH94FLSH 0. 26 -0. 21 0. 03
GH94STRT 0. 16 -0. 21 -0. 11
GH94INCR 0. 16 -0. 21 0. 25
GH93HT 0. 15 -0. 15 0. 26
GH94HT 0. 19 -0. 21 0. 26
DR94FLSH 0. 23 -0. 22 -0. 07
DR94INCR 0. 17 0. 03 0. 35
DR93HT 0. 23 0. 13 -0. 31
DR94HT 0. 23 0. 03 -0. 04
KE94FLSH 0. 13 -0. 30 -0. 25
KE94INCR 0. 16 0. 21 0. 30
KE93HT 0. 22 0. 22 -0. 20
KE94HT 0. 23 0. 25 -0. 11
KE04SURV -0. 05 0. 12 0. 16
SL94FLSH 0. 21 -0. 19 -0. 11
SL94STRT -0. 06 -0. 15 -0. 05
SL94INCR 0. 16 0. 19 0. 34
SL93HT 0. 21 0. 25 -0. 19
SL94HT 0. 22 0. 27 -0. 06
SL97SURV -0. 10 0. 23 -0. 02
SL97HT 0. 16 0. 09 0. 20
SL04SURV -0. 09 0. 27 0. 02
TB93HT 0. 19 0. 16 -0. 22
TB94HT 0. 26 0. 13 -0. 01
TB97HT 0. 25 -0. 01 0. 11
TB03HT 0. 18 0. 01 -0. 03
TB03DIAM 0. 23 -0. 03 0. 10
FRZ2T2 0. 00 0. 01 -0. 01
FRZ3T1 0. 11 -0. 21 -0. 22
FRZ3T2 0. 11 -0. 16 -0. 07

FLSH: Number of days starting on May 1st
INCR: Increment of height
STRT: Number of days starting on May 1st.
FRZ: Percent damage relative to control samples (Freezing trial dates and temperatures).

The results o f the correlation between the first three PC A axes against the 36 

climatic variables are shown in Table 12. All but nine correlations were significant; 

non-significant correlation values were obtained for monthly minimum temperature
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in July, August and monthly precipitation from January to April, July, August and 

December. In other words all 12 correlations o f maximum temperature with the first 

PCA were significant, showing high positive correlation coefficients ranging from 

0.68 down to 0.56. O f the five correlations o f precipitation variables against the first 

PC axis, all but November precipitation (-0.27) were positive. This result indicated 

that the higher the maximum and minimum temperature, the higher growth potential 

was. For the November precipitation, the opposite was true. These results 

demonstrate the high level o f intercorrelation o f the climatic variables and the large 

component o f adaptive variation expressed by the first PCA axis. All the monthly 

maximum and minimum temperature values except the July minimum temperature 

are significant against the second PCA axis correlations. These correlations are 

negative, indicating that needle flush and elongation occur earlier when the values o f 

these climate variables are higher. Precipitation variables except June precipitation (- 

0.4), had positive correlations with phenology (second PCA axis). This means that 

needle flush occurs earlier and survival potential is higher when precipitation values 

are higher. For the first two PCA axes, the strongest correlations generally occurred 

between monthly maximum temperatures, although very strong correlations were 

also found with the first axis for November and December minimum temperature. No 

significant correlation was found for maximum temperature. All the precipitation 

variables except November were found to have significant correlation with this axis.
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Table 12. Correlation of PCA Axes 1, 2 and 3 factor scores with 36 climatic variables

Climate variable Component
prinl prin2 prin3

janmaxt 0.669 -0. 325 0. 039
febmaxt 0.665 -0. 311 0. 043
marmaxt 0.679 -0. 350 0.008
aprmaxt 0.625 -0.428 -0. 093
maymaxt 0.634 -0. 412 -0.114
junmaxt 0.624 -0. 403 -0.141
julmaxt 0.577 -0.419 -0. 137
augmaxt 0. 562 -0. 435 -0. 132
septmaxt 0.646 -0.397 -0. 075
octmaxt 0.671 -0. 296 -0. 001
novmaxt 0.659 -0. 284 0. 041
decmaxt 0.615 -0. 219 0. 097
janmint 0.480 -0. 342 -0. 098
febmint 0.512 -0. 363 -0.119
marmint 0. 527 -0. 392 -0.127
aprmint 0.472 -0. 404 -0.170
maymint 0. 372 -0. 315 -0. 209
junmint 0. 200 -0. 202 -0.211
julmint 0.108 -0.157 -0. 201
augmint 0.114 -0. 217 -0.195
septmint 0. 220 -0. 293 -0.194
octmint 0.440 -0. 321 -0.170
novmint 0.652 -0. 296 -0. 065
decmint 0.627 -0. 322 -0. 009
janprec -0. 091 0.315 0.219
febprec -0. 030 0. 343 0. 221
marprec -0. 066 0.287 0. 241
aprprec 0.176 -0.154 0.211
mayprec 0.343 0. 001 0.226
junprec 0. 550 -0. 396 -0. 024
julprec 0. 070 0.106 0. 254
augprec -0.140 0.202 0.260
septprec 0. 281 0.162 0. 255
octprec 0. 338 0.017 0. 253
novprec -0.273 0.210 0.155
decprec 0. 023 0. 227 0.239

Note: values in bold are significant at the p < 0.05 level.
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MULTIPLE REGRESSION ANALYSIS

Backward stepwise multiple linear regression analysis was used to examine 

the relationship between the PCA summary variables, dependent variables and 

climate variables (independent variables).

Results o f multiple regression analysis among the first three PCA axes and 

the 36 climatic variables are presented in Table 13. Regression o f the first PCA axis 

against December maximum temperature, November minimum temperature and 

April precipitation had an r2 value o f 0.55. Sources with high December maximum 

temperature, high November minimum temperature and low amounts o f April 

precipitation were predicted to have higher growth potential. Seed sources with the 

highest positive scores on the first PCA axis had December maximum temperature o f 

approximately -10°C, and November minimum temperature o f -9°C and April 

precipitation o f about 35 mm, while sources with the lowest scores had December 

maximum temperature o f approximately -12°C, November minimum temperature o f  

-10°C and April precipitation o f about 42 mm.

Regression o f the second axis against August maximum temperature, 

November minimum temperature and June precipitation had an r2 value o f 0.237. 

Sources from areas with low August maximum temperatures coupled with colder 

November minimum temperatures and lower amounts o f June precipitation were 

predicted to needles flush earlier and lower survival potential. Seed sources with 

highest scores on this axis to the southwest o f study area had August maximum 

temperature 24.1°C, -10.3°C in November minimum temperature and 89.2 mm June 

precipitation, while sources in the north (lower scores) had maximum temperatures 

o f 23°C in August, November minimum temperature o f -8.3 °C and 108 mm June
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precipitation. Regression o f the third PC axis against climatic variables was only 

explained (significant at p<0.05 level) by August precipitation with an r2 o f 0.06.

Table 13. Results o f regression o f PCA axes against climatic variables for 102 jack 
pine seed sources in northwest Ontario.
Dependent Variables Independent variable Coeffeicent t value Tolerance Significance

constant 13. 70
PCA 1 decmaxt 0.51 5.15 0. 35 0.00
R2 = 0. 55 novmint 0.62 4.16 0. 55 0. 00

aprprec -0.08 -3.71 0. 55 0.00

constant 31.00 3. 75
PCA 2 augmaxt -0. 83 -3. 13 0. 30 0. 00
R2 = 0. 237 novmint 0. 68 2. 22 0.22 0. 029

junprec -0.06 -2. 13 0. 28 0. 034

PCA 3 constant -5. 44
R2 = 0. 06 augprec 0. 06 2. 69 1. 00 0. 01

Factor scores were predicted by GIS based on the regression equations 

developed using the climatic variables. The new factor scores reflect the adaptive 

variation explained by these models. Figures 7 and 8  graphically summarize the 

geographic pattern o f variation predicted by the first two multiple regressions in 

Table 13. The trend surface diagram produced by the set o f scores predicted for the 

first component is seen in Figure 7. Figure 7 can be interpreted as the pattern o f 

adaptive variation in terms o f growth potential in northwest Ontario. Generally, 

sources with greater growth potential, corresponding to higher positive scores on the 

first axis, were from the southwest portion o f the sampled area. Sources with reduced 

growth potential were found in the north portion. Clinal variation with latitude is 

shown. Figure 8  shows the pattern o f adaptive variation in terms o f phenological 

characteristics and survival. Sources with the lower scores, indicating earlier needles 

flush and higher survival potential were from the south-western portion o f study area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

Extreme positive scores were predicted for the north-eastern portion o f the sampled 

area. The sources in close proximity to Lake o f the Woods also showed early needles 

flush and greater survival potential. The pattern o f variation based on the second axis 

PCA scores follows a gently longitudinal trend. The map produced by the third PC 

factor scores is not shown here due to its more complex geographic pattern and the 

lower coefficient o f determination (r2 = 0.06) against the climatic variable.

Figure 7. Predicted factor scores from the PCI regression model based on OCM2
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Figure 8 . Predicted factor scores from the PC2 regression model based on OCM2

Figure 9. Predicted factor scores from the PCI regression model based on 
HADCM3B2 projected for 2050
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Figure 10. Predicted factor scores from the PCI regression model based on 
HADCM3B2 projected for 2099

Figures 9 and 10 show the pattern o f adaptive variation o f growth potential 

based on HADCM3B2 projected for 2050 and 2099. They demonstrate similar trends 

as Figure 7, which is based on OCM2. By 2050, the color ramp moves to the more 

northern portion o f the study area, which means sources from this area will have 

higher growth potential in the future in the sampled area than those in the current 

conditions (Fig.7). By 2099, the northward shift is not very obvious compared with 

the map projected to 2050, but Figure 9 still shows higher growth potential when 

compared with Figure 7. Figures 11 and 12, based on CGCM2A2, show a 

moderately different growth potential trend (predicted for 2050 and 2099) when 

compared with Figure 7. The growth potential decreases from the southwest to the 

northeast portion o f this map by 2050 in Figure 11. Figure 12 shows a different
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pattern o f growth potential based on GCCM2A2 for 2099. All sampled area show 

low growth potential with the lowest growth potential in a small area in the south and 

a bigger area in the north o f the sampled area (Fig. 12). Figures 13-14 and 15-16, 

show predicted factor scores from PC2 regression models based on HADCM3B2 and 

CGCM2A2, respectively. These figures show the cline o f adaptive variation o f 

phenology and survival characteristics. Compared with Fig. 8 , by 2050, sources from 

the west portion o f the sampled area w ill show earlier needle flush and lower 

survival potential (Fig. 13). By 2099, the longitudinal trend is not as evident, with 

early needle flush and low survival potential moving to the east portion o f the study 

area (Fig. 14). The total sampled area shows the earlier needle flush and lower 

survival potential by 2050 based on CGCM2A2 (Fig. 15). By 2099, sources with 

lower survival potential and earlier needle flush will come from the west portion o f 

the sampled area compared with Fig. 8 . Compared with Fig.13 and 14, Figures 15 

and 16, based on CGCM2A2, show earlier needle flush and lower survival potential.
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Figure 11. Predicted factor scores from the PCI regression model based on 
CGCM2A2 projected for 2050
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Figure 12. Predicted factor scores from the PCI regression model based on 
CGCM2A2 projected for 2100
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Figure 13. Predicted factor scores from the PC2 regression model based on 
HADCM3B2 projected for 2050
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Figure 14. Predicted factor scores from the PC2 regression model based on 
HADCM3B2 projected for 2099
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Figure 16. Predicted factor scores from the PC2 regression model based on 
CGCM2A2 projected for 2100
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FOCAL POINT SEED ZONES

The r2  values obtained from regressions for PCI and PC2 axis against climate 

variables are 55 and 24 percent. The first two PCA axes account for 31 and 10 

percent, respectively, o f the variation among seed sources (total o f 41%) and were 

used to generate focal point seed zones in the northwestern Ontario area. In these 

maps, the focal point is represented by a red star; the three different shades o f green 

represent areas within 1-3 standard deviations from the focal point. The darker the 

color, the greater the similarity. No shading indicates that the area is outside the 

range o f 3 standard deviations around the focal point, suggesting that these areas are 

not recommended for seed transfer.

A series o f focal point seed zones based on focal point (49.5°N, 92.5°W) are 

presented here based on current climate condition (OCM2) and future climate 

conditions (CGCM1, HADCM3A2, HADCM3B2, CGCM2A2, CGCM2B2 and 

CSIROB2). Another series o f seed zones is shown in Appendix V .

Figures 17 through 33 show both present and future focal point seed zones. 

Future focal point seed zones include where seed should come from now to be best 

matched in the future to its planting location (Seed From), and where seed should go 

from a given location to best match future climate conditions (Seed To) based on the 

six climate change scenarios projected for the middle o f this century (2050) and the 

end o f this century (2099). Figure 17 shows a seed zone based on a focal point from 

the central portion o f the study area in northwestern Ontario (49.5°N, 92.5°W). It 

shows suitable areas across almost all o f the range, except in a band occurring from 

the most northwest to most northeast portion o f the study area. This figure represents 

a band o f adaptive similarity ranging from the northwest to southeast. The major 

trend is determined by the first PCA axis.
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Figure 17. Focal point seed zones at coordinate 49.5°N, 92.5°W based on OCM2

Focal point seed zone methodology allows for use o f predicted future climate 

models to show anticipated changes in seed zones resulting from climate change. 

Figures 18 though 33 show Seed To and Seed From based on different climate 

change models projected for the middle (2050) and the end (2099) o f this century. 

Taking the same focal point (49.5°N, 92.5°W) as an example, Seed To and Seed 

From based on CGCM1 projected for 2040-2069 are shown in Figures 18 and 28. By 

2069, seed sources from this focal point should be transferred to the north and 

northeast portion o f the range in order to be best matched future climate condition 

(Fig. 18). An area between Lac Seul and Lake ST. Jonsoph demonstrates the greatest 

suitability (within 1 standard deviation o f the focal point); the east part o f Lake 

Woods in this range is not suitable for this location by 2069. When examining the 

entire Ontario area, another area, northeast o f Lake Nipigon, shows the most suitable 

potential site for seed sources to be used at this focal location. Shifting the concept,
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by 2069, seed sources should come from the south and southwest portion o f the study 

area to best match the future condition (Fig. 28). No dark green area remains is left in 

this seed zone, which means that by 2069 the most suitable seed sources (within 

1 standard deviation o f the focal point) for this focal site have disappeared from 

northwestern Ontario area.

Figures 19 though 27 show where seed should transfer to from a given 

location (the selected focal point), to best match the future climate conditions.

Figures 1 9 ,2 1 ,2 3 ,2 5 ,2 6  and 27 show the future focal point seed zones (Seed To) 

for the middle o f this century (2050) based on future climate models HADCM3 A2, 

HADCM3B2, CGCM2A2, CGCM2B2 and CSIROB2. An evident trend is that all 

seed zones for the current climate condition shift northward or north-eastward to best 

match the climate conditions predicted for the middle o f this century (2050). Figure 

19 generally represents a band o f seed zones based on HADCM3A2 by 2050 ranging 

from the northwest to the southeast, and then to the eastern portion o f the study area, 

extending through Lake Nipigon. Figure 21, based on HADCM3B2, shows a 

different seed zone which winds in a dragon-like fashion west and east, with a large 

suitable area in Quebec. The west and south portions o f this study area are not 

suitable sites for seed sources obtained from the focal point by 2050.This differs 

from the seed zones that are based on HADCM3A2. Figures 23 and 25 show Seed To 

based on future climate models CGCM2A2 and CGCM2B2, respectively, projected 

for 2050. Two bands formed this seed zone; one ranges from the north to the 

southeast and the other starts from the south o f Lake Nipigon and continues into 

Quebec (Fig. 23). The difference between these two maps lies in that Fig. 23 shows a 

shift o f the northern band eastward, and the most suitable areas (within 1 standard 

deviation) have appeared.
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Figure 27 shows a Seed To based on CSIROB2 projected for 2050. Compared 

with other seed zones for 2050 based on different climate scenarios, Fig. 27 shows 

little suitable area for the seed sources from this focal point; the north band, 

especially, is reduced to a tiny area along the west shore o f James Bay.

By the end o f this century, how do these seed zones change based on different 

climate scenarios? Future focal point seed zones based on HADCM3A2 projected for 

2050 and 2099 show similar trends (Fig. 19 and Fig. 20), although seed zones for 

2099 (Fig. 20) expands within the study area by 2099 and shrinks in the east near 

Lake Nipigon. A similar trend is seen in Figures 21 and 22 based on the 

HADCM3B2. Fig. 22 shows more suitable area in northwestern Ontario, but Quebec 

is no longer suitable by 2099. By the end o f this century, no area in Ontario is 

suitable for planting o f seed sources from the focal point based on CGCM2B2 (Fig. 

26) and CSIROB2 (not shown).

Figures 28 through 33 show the future focal point seed zones (Seed From) 

based on these different future climate models. Fig. 28 through 31 all show seed 

sources should come from the southwest today, to best match the future climate 

condition at the focal point site. Fig. 29 and 30 show very similar zones based on 

HADCM3A2 projected for 2050 and 2099. Figure 30 (for 2099) shows more suitable 

area (within 2 Std. dev. from focal point) for planting. Seed From maps based on 

HADCM3B2 for 2050 and 2099 are shown in Fig. 31 and 32, respectively. Figure 32 

shows larger suitable areas when compared with Fig. 31, which means that by the 

end o f this century, there are more seed sources from this zone that match the future 

climate conditions for this focal point. Under CGCM2A2, no seed sources are 

suitable for the focal point in the sampled area in order to match the climate 

condition in 2050. Seed sources should come from the north portion o f the sampled
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area to best match the 2099 condition for the focal point (Fig. 33), which contrasts 

sharply with recommendations based on other climate change scenarios. 

Examination o f the seed zones based on the other future climate scenarios indicates 

that, by the end o f this century, no more seed sources from this study area are 

suitable for the focal point based on the CGCM2A2, CGCM2B2 and CSIROB2; 

especially for CGCM2B2, even by the middle o f this century, no seed sources from 

sampled area are suitable for this focal point.
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Figure 18. Best 'Seed To’ transfer zone in 2069 for seed from point 
49.5°N, 92.5°W based on CGCM1
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Figure 19. Best ‘Seed. To’ transfer zone in 2050 for seed from point 
49.5°N, 92.5°W based on HADCM3A2
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Figure 20. Best "Seed To’ transfer zone in 2099 for seed from point
49.5°N, 92.5°W based on HADCM3A2
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Figure 21. Best ‘See*/ To’ transfer zone in 2050 for seed from point 
49.5°N, 92.5°W based on HADCM3B2
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Figure 22. Best ‘Seed To’ transfer zone in 2099 for seed from point 
49.5°N, 92.5°W based on HADCM3B2
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Figure 23. Best ‘Seed To’ transfer zone in 2050 for seed from point 
49.5°N, 92.5°W based on CGCM2A2
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Figure 24. Best ‘Seed To’ transfer zone in 2099 for seed from point 
49.5°N, 92.5°W based on CGCM2A2
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Figure 25. Best 'Seed To’ transfer zone in 2050 for seed from point 
49.5°N, 92.5°W based on CGCM2B2
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Figure 26. Best 'Seed To’ transfer zone in 2099 for seed from point 
49.5°N, 92.5°W based on CGCM2B2
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Figure 27. Best ‘Seed To’ transfer zone in 2050 for seed from point 
49.5°N, 92.5°W based on CSIROB2
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Figure 28. Best ‘Seed From1 transfer zone in 2069 to best match climate o f 
point 49.5°N, 92.5°W based on CGCM1
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Figure 29. Best ‘Seed From’ transfer zone to best match climate o f point
49.5°N, 92.5°W in 2050 based on HADCM3A2
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Figure 30. Best 'Seed From’ transfer zone to best match climate o f point
49.5°N, 92.5°W in 2099 based on HADCM3A2
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Figure 31. Best ‘'Seed From’ transfer zone to best match climate o f point 
49.5°N, 92.5°W in 2050 based on HADCM3B2
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Figure 32. Best ‘Seed From’ transfer zone to best match climate o f point
49.5°N, 92.5°W in 2099 based on HADCM3B2
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Figure 33. Best ‘Seed From’ transfer zone to best match climate o f point 
49.5°N, 92.5°W in 2099 based on CGCM2A2

RESULTS : Northcentral Ontario

SINGLE VARIABLE ANALYSIS 

Analysis o f Variance

Select o f the ANOVA results for variables measured in 1988, through 1990 

as presented by van Niejenhuis (1995) were used in the present study. However, only 

the means o f these variables were used in the subsequent analysis. In addition, the 

original data o f Davradou’s (1992) freezing trial was added to the current study. The 

results o f the freezing trial were not used in the original version o f the focal point 

seed zone models.
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Significant difference in seedling growth was observed between the three 

tests. Seedlings grown at the Lakehead University Nursery trial showed the greatest 

height with the longest growing season, while seedlings at the Raith forestry trial had 

the shortest growing season and poorer growth than those grown at the other two 

trials.

Provenance differentiation was evident at the Greenhouse trial, although six 

out o f 29 measured variables were not significantly different at the p<0.05 level. In 

general, the variation in seedling height among provenances was greater than the 

variation expressed by phenological variables. Freezing variables explained the 

largest variation among provenances ranging from 51.8 percent at D1T1 down to 2.5 

percent at D1T3 (Table 7). The interaction between block and provenance in field 

trials generally accounted for none or a very small fraction o f the total variation. This 

component was not included in the Table 14.

Table 14. Portion o f the total variance expressed among 64 seed sources and 
measurement units
Variable Mean* SD* I.C.Cb Unit Variable Mean STD DEV I.C.C Unit
GH88 95.1 36.8 24.7** mm
GH89 100.6 32.4 15.4** mm R90 279.6 133.9 16.7** mm
GHIN* 26.9 1.6 0.8nsd days RIN 23.2 5.2 1.4ns days
GHCS 81 11.2 3.0ns days RCS 74.9 11.4 5.3** days
GHDR 54.1 11.3 2.8** days RDR 51.8 12.5 4.7** days
GHNF 30.4 1.9 15.5** days RNF 33.4 6.6 4.6** days
LU88 101.6 40.7 25.6** mm D1T1 42.2 12.9 51.8** days
LU89 330.7 104.9 30.0** mm D1T2 54.2 13.1 37.6** %
LU90 768.1 197.7 19.6** mm D1T3 79.1 12.4 2.5** %
LUIN 13.3 0.7 5.4** days D2T2 97.1 8.1 37.2ns %
LUCS 87.8 13.2 4.0** days D3T1 96.2 13 10.1ns %
LUDR 74.6 13.2 4.2** days D4T1 96.6 10.8 13.4* %
LUNF 27.7 3.6 4.4** days D5T2 30.6 40.5 21.4* %
R88 66.1 33.9 13.1** mm D7T2 13.7 14.8 11.1ns %
R89 151.9 76.8 18.4** mm D7T3 43.2 32.3 42.6** %

‘  Based on the 64 provenance values
bThe intraclass correlation coefficient (i=SA2/ ( SA2 + S2)*100)
0 Number of days (starting on May 1st) 
d Not significant ( a >0.05)
* Significant at the p< 0.05 level; ** Significant at the p < 0.01 level 
Note: the I.C.C results of variables in bold has not been published previously.
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A contour map depicting survival at the Raith trial was constructed to show 

the gradual changes in adaptive variation throughout the seed collection area (Figure 

34). There are obvious lake effects on the survival at the Raith trial with poorer 

survival around Lake Nipigon and west o f the Lake Superior shore, except in the 

northern portion. Seed sources from the Raith trial location showed good survival 

potential compared with seed sources from the Lakehead University trial location. At 

the northwest and southwest comers o f the sampled area, the contour map shows a 

latitudinal trend; as latitude increases, the survival decreases in the northwest portion, 

but the reverse is true for the southwest portion o f sampled area.
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Figure 34. Contour map for survival at the Raith trial in northcentral Ontario
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SIMPLE REGRESSION ANALYSIS

Simple regression analysis was used to examine the relationships between 

measured variables and geographic and climatic predictor variables. Simple linear 

and backwards stepwise multiple linear regression and analyses were run for all test 

variables against the 36 climatic variables with the best R2 method o f SAS. The 

results are shown in Table 15. Climate and geographic values for each provenance 

are shown in Appendix II and Appendix VO. Four measured variables were found to 

be non-significant at the p < 0.05 level including 3 height variables from the Raith 

trial and one freezing variable, D1T2. R2  values for retained variables ranged from 

2.8 percent for Raith 1988 height against November precipitation to 43.1 percent for 

the date o f needle flush at the Lakehead University Field trail against April 

maximum temperature. Date o f needle flush was best explained by the climatic 

variables compared with other measured variables. Measured LU field trial variables 

showed the most significant relationships to climatic variables; i.e. they had bigger 

R values compared with other trials. Maximum temperature at the beginning o f 

growing season best explained measured variables at this trial. April and June 

maximum temperature and July and August minimum temperature were significant 

in this trial.

The results o f the simple regression analysis are presented in Table 15. April 

maximum temperature was the most frequently retained variable (5 times) to explain 

differences within the measured variables; November precipitation was included 2 

times at p< 0.05 level o f significant. Overall, temperature-related variables produced 

the highest R2 values and were included 14 times; compare with variables related to 

precipitation ( 6  times), longitude ( 1  time), or elevation ( 1  time).
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Table 15. Results of simple linear regression against 3 geographic and 36 climate variables
Depdent variable Climate vabriable Constant Coefficient MaxR2 Sig

Greenhouse
GH88 augmaxt -92.4 8.67 0.10 0.021
GH89 aprprec 13.8 1.99 0.18 0.002
GHIN janprec 27.7 -0.02 0.05 0.117
GHCS octmaxt 102.7 -2.56 0.19 0.001
GHDR octmaxt 74.6 -2.42 0.17 0.002
GHNF mayprec 25.4 0.07 0.16 0.004
GHR octmaxt 133.9 -9.4 0.24 0.000

LU Field Trial
LU88 
LU89 
LU90 
LUIN 
LUCS 
LUDR 
LUNF 
LUR 

Raith trial 
R88 
R89 
R90 
RIN 
RCS 
RDR 
RNF 
RSU 

Freezing trial
D1T1 j unmint 78.0 -5.64 0.10 0.020
D1T2 decpric 44.3 0.23 0.04 0.140
D1T3 octmint 85.4 6.21 0.12 0.014
D2T1 long -43.6 1.59 0.31 0.000
D3T1 septprec 30.0 0.19 0.04 0.139
D4T1 long 232.5 -1.51 0.12 0.010
D5T2 mayprec 244.9 -2.88 0.23 0.000
D7T2 decprec 3.6 0.9 0.19 0.001
D7T3 novprec -25.5 1.23 0.14 0.007

Note: Bold represents not significant at the p < 0.05. They will be excluded from the subsequent analysis.

maymaxt -89.2 12.3 0.27 0.000
aprmaxt -22.4 49.3 0.35 0.000
aprmaxt 195.1 80.35 0.41 0.000
julmint 15.0 -0.17 0.18 0.002
junmaxt 43.8 2.17 0.31 0.000
junmaxt 27.8 2.31 0.35 0.000
aprmaxt 21.3 0.91 0.50 0.000
aprmaxt 99.3 -8.19 0.35 0.000

augmint 25.1 4.79 0.03 0.196
novprec 96.5 1.1 0.06 0.078
novprec 181.5 1.95 0.07 0.051
maymint 22.5 1.03 0.10 0.020
novprec 64.8 0.16 0.10 0.020
novprec 39.6 0.19 0.11 0.019
aprmaxt 22.8 1.54 0.34 0.000

long 421.9 -4.2 0.21 0.001
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MULTIVARIATE ANALYSIS

Principal Components Analysis

Principal components analysis (PCA) was used to examine the patterns o f 

variation displayed in this study because many o f the variables measured in these 

trials were highly correlated. Variables that showed a significant portion o f the total 

variance attributable to seed sources and with significant regression against climate 

variables at the p < 0.05 level were included in the PCA. Because the elongation 

duration was calculated from the date o f elongation initiation and date o f elongation 

cessation, only two o f these three variables were included in the PCA. The 

provenance means o f five height variables, nine phenological variables, survival at 

the Raith trail and five freezing variables (transformed using arcsine transformation), 

a total o f 20 variables were included in the PC A .

Table 16 shows the results o f the principal components analysis conducted on 

the 20 variables retained. Eigenvalues, the percentage o f total variation attributed to 

each component, and the associated eigenvectors are shown for the first three 

principal component axes. The first three PC axes together account for 50.8 percent 

o f the total variation.

The first component, with an eigenvalue o f 5.498 and accounting for 27.5 

percent o f the variance, had high positive loadings for all height growth variables.

The highest positive loadings corresponded to Lakehead University greenhouse 

heights for all three years (0.36-0.40). Negative loadings were displayed for variables 

LU purpling, LU elongation initiation, greenhouse purpling and survival at Raith trial; 

two freezing variables also had negative signs. The signs o f these loadings, together 

with the high coefficients for the height growth variables, indicate that the first axis
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is generally a descriptor o f growth potential; i.e., seed sources with the greatest 

potential for growth generally had the highest growth.

The second component accounted for 15 percent o f the total variation. Two o f the 

five freezing variables, Needle flush, elongation cessation, and survival variables at 

the Raith trial each made strong positive contributions to the second axis with 

respective component loadings o f 0.299, 0.125,0.494,0.461, and 0.458. All o f the 

needle flush variables demonstrated negative component loadings. This axis appears 

to reflect the phenological and cold-hardiness potential. The opposite polarity o f the 

variable loadings implies a negative correlation between hardiness; i.e. more frost 

hardy sources with flush later in the season.

The third axis accounted for 8  percent o f the total variation. Three o f the six 

freezing variables had high positive eigenvector loadings, ranging from D5T2 at 0.29 

to D4T1 at 0.43. Needle flush for the greenhouse trial showed the highest negative 

loadings, which indicates increased cold-hardiness occurs with later needle flush.

The interpretation for this PC is more difficult than that o f the first PC.

The remaining 17 PCs, cumulatively accounted for about 49 percent o f the 

total variation. Individually, they each accounted for less than 10 percent o f the total 

variation among traits. Generalized trends in the pattern o f variable loadings were 

less evident for those axes and, therefore, these PCs will not be discussed further.
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Table 16. Results o f principal components analysis o f 20 growth, phenological and 
freezing variables for 64 jack pine seed sources in north central Ontario.

PCA axis 
Eigenvalue 

Percent Variation 
Cumulative

1
5.498
0.275
0.275

Component
2

2.970
0.149
0.423

3
1.695
0.085
0.508

Variables* C om ponent Loadings
GH88 0.273 0.021 -0.109
GH89 0.241 0.156 0.359
GHNF 0.140 -0.144 -0.524
GHR -0.200 -0.033 -0.028
LU88 0.359 0.000 -0.023
LU89 0.402 0.053 0.100
LU90 0.397 -0.019 0.083
LUIN -0.240 -0.043 0.107
LUCS 0.230 -0.186 -0.225
LUNF 0.231 -0.109 0.099
LUR -0.341 -0.049 -0.227
RDR 0.073 0.494 -0.133
RCS 0.104 0.461 -0.125
RNF 0.132 -0.339 0.077
RSU -0.067 0.458 -0.055
D1T1 0.048 0.076 -0.091
D1T3 0.084 -0.084 0.349
D4T1 -0.144 0.035 0.430
D5T2 -0.103 0.125 0.291
D7T3 0.035 0.299 -0.038

♦See variables definition in method and Materials section Table 5.

Multiple Regression Analysis

The PCA factor scores for the 64 provenances were regressed against the 

climatic variables using backwards stepwise multiple linear regression. To avoid 

overfit regressions, variables with tolerances considerably less than 0 . 1  or t values 

less than absolute 2.0 were eliminated (Wilkinson et al. 1992). Significant regression 

equations were generated for the first three sets o f factor scores, with coefficients o f  

determination (r2) ranging from 0.315 to 0.55. PCI was fit to a model including April
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maximum temperature, October maximum temperature, June minimum temperature 

and October precipitation (Table 17). These results suggest that spring, summer and 

fall temperature as well as fall precipitation are good indictors o f growth potential. 

Climatic predictor variables retained in the second equation included only March 

precipitation and November precipitation. This result suggests that spring and late 

fall precipitation variables are important indicators o f phenology. The best fitting 

model for the third axis contained December maximum temperature, February 

Precipitation and June precipitation, with r2 at 0.39. A ll predicative variables in each 

o f the models had significant difference at the p < 0.05 level.

Spatially explicit models o f adaptive variation were generated by GIS based 

on the regression equations developed using the climatic variables. The trend surface 

diagram produced by the set o f scores predicted for the first component is seen in 

Figure 35. Generally, sources with greater growth potential, corresponding to higher 

positive scores on the first axis were from the southwest portion o f the sampled area. 

There was an area with higher factor scores on the north-eastern shore o f Lake 

Superior, probably due to lake effects. Sources with reduced growth potential were 

found in the northeast portion o f the study area. Clinal variation exists corresponding 

to elevation and altitude. The growth potential had a negative correlation with 

elevation and a negative correlation with altitude in this area.

The pattern o f variation based on second-axis PCA scores generally follows a 

longitudinal trend (Figure 36), showing reduced survival and earlier flush when 

moving from the east to the west. Sources with higher positive scores, indicating 

later needle flush and higher survival potential, were from the eastern portion o f the 

study area, especially to the east o f Lake Nipigon. Also sources 31, 3 3 ,3 4 ,4 8 ,5 1 , 

and 64 from the southwest portion o f the study area showed higher survival. The
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extreme negative score was predicted for the western portion o f sampled area. Figure 

37 shows more a complex geographic pattern and can be interpreted as showing the 

pattern o f adaptive variation in terms o f cold-hardness and corresponding to the 

greenhouse needle flush. This map shows a longitudinal trend indicating more cold 

hardiness along lines o f longitude. A latitudinal trend is found from the southeast 

portion o f the sampled area. It shows reduced hardiness and with the increasing 

latitude in this area.

Table 17. Results o f regression o f PCA axes against climatic variables for 64 jack 
pine seed sources in northern center Ontario.

Dependent Variable Independent Varibles Coeficent t value Tolerance Significance
constant -9.13

PCA 1 aprmaxt 1.56 4. 53 0.12 0.00

R2 = 0.55 octmaxt -1.07 -2.41 0.10 0.02
junmint 0.63 2.66 0.51 0.01
octprec 0.04 2.04 0.55 0.047

PCA 2 constant -0 .88
R2 = 0.315 marprec -0.08 -3.32 0.82 0.017

novprec 0.08 4.59 0.82 0.00

PCA 3 constant 1.11 0.36

R2 = 0.39 decmaxt 0.50 3.83 0.50 0.00
febprec -1.34 -2 .54 0.43 0.01
iunprec 0.09 3.47 0.73 0.00
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Figure 35. Predicted factor scores from the PCI regression model based on OCM2

Legend
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Figure 36. Predicted factor scores from the PC2 regression model based on OCM2
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Figure 37. Predicted factor scores from the PC3 regression model based on OCM2

Figures 38 through 42 (showing a longitudinal trend) are GIS-generated 

contour maps that graphically summarize the geographic pattern o f variation 

expressed among the 64 seed sources (PCI) based on the same regression models as 

Figure 35. However, they were expressed by future climate models CGCM1 (2040- 

2069), HADCM3A2 and HADCM3B2 projected for 2050 and 2099. When 

compared with Figure 35, they look coarser due to the future climate models’ 

resolutions being 15 km and 7.5 km rather than 1 km for OCM2. In this study area, 

the growth potential decreases from southwest to the northeast region. The patterns 

o f these figures look similar to that predicted by OCM2. The two pairs o f figures (39, 

40) and (41 ,42) show the growth potential based on HADCM3A2 and HADCM3B2 

projected for 2050 and 2099. They predict higher growth potential in the sampled 

area than Fig. 35, which was based on OCM2 (1990). This result indicates that seed 

sources from this area have greater
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growth potential in the future. Contour maps that present growth potential prediction 

for 2099 show higher growth potential compared with those predicted for 2050 based 

on both HADCM3A2 and HADCM3B2 models. Contour maps predicted by 

HADCM3A2 and HADCM3B2 demonstrate similar trends in predicted growth 

potential within the study area (Fig. 39,41 and 40,42).

Figure 38. Predicted factor scores from the PCI regression model based on 
CGCM1 (2040-2069)
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Rebalances

Figure 39. Predicted factor scores from the PCI regression model 
based on HADCM3A2 (2050)

Figure 40. Predicted factor scores from the PCI regression model 
based on HADCM3A2 (2099)
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Figure 41. Predicted factor scores from the PCI regression model 
based on HADCM3B2 (2050)

Figure 42. Predicted factor scores from the PCI regression model 
based on HADCM3B2 (2099)
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Figures 43 through 47 illustrate the pattern o f variation based on the second 

PCA axis under future climate models and demonstrate a similar longitudinal trend 

as Figure 36. As longitude decreases, needle flush occurs later, the duration o f the 

growing season is reduced, and the survival potential decreases.

1:5,473.522

Figure 43. Predicted factor scores from the PC2 regression model
based on CGCM1 (2040-2069)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106
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Figure 44. Predicted factor scores from the PC2 regression model 
based on HADCM3A2 (2050)

Figure 45. Predicted factor scores from the PC2 regression model 
based on HADCM3A2 (2099)
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Figure 46. Predicted factor scores from the PC2 regression model 
based on HADCM3B2 (2050)
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Figure 47. Predicted factor scores from the PC2 regression model 
based on HADCM3B2 (2099)
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Focal Point Seed Zones

In the northcentral Ontario study area the first two axes, totalling 42.3 percent 

of the variation, were used to generate focal point seed zones. There are two reasons 

that the third axis was not included in generating focal point seed zones: first, this 

principal component accounts for only 8  percent o f the total variation with a smaller 

eigenvalue (1.7); secondly, to make comparisons between focal point seed zones 

produced by the climate model OCM1, two PCs were used in that case (Parker 

1996a). In both cases, these two axes were considered equal for the calculation o f 

focal point seed zones due to their independence.

In the following figures (48 through 6 6 ) the focal point is represented by a 

red star. The darkest shade o f green is used to depict areas with a climate that lies 

within 1 standard deviation o f that o f the focal point. The intermediate shade o f 

green is used to represent areas within 2  standard deviations and the lightest shade o f 

green is used to represent areas within 3 standard deviations. Non-shaded areas 

represented areas that are outside the range o f 3 standard deviations from the focal 

point and, therefore, are not recommended for seed transfer.

A focal point (48.5°N, 90.5°W) from the southwest o f the sampled area was selected 

to demonstrate present and future focal point seed zones. Seed zones based on 

current climate condition (1990) and the future climate conditions (2040-2069,2050 

and 2099) based on different climate change scenario models are shown in Figures 

48 through 6 6 . Future focal point seed zones include where seed should go from a 

given location to best suit future climate conditions {Seed To) and where seed should 

come from now to be best adapted in the future to its planting location {Seed From). 

A further series o f seed zones based another focal point (50.1°N, 87.9°W) from the
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east o f Lake Nipigon based on these climate change scenarios is provided in 

Appendix VI.

The area around Lake Nipigon, excluding the northern shore, shows suitable 

planting sites for seed originating from the focal point. It can also be said that seed 

sources from the aforementioned area are suitable to be planted at the focal point, 

although the southwest area o f the map shows the best match (standard deviation 

within 1 from focal point). Areas to the west o f the Lake Superior shore show the 

lightest green.

/
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Figure 48. Focal point seed zones at coordinate 48.5°N, 90.5°W based on OCM2

By 2069, seed obtained from the focal point is no longer suitable for the 

original area; the seed is best adapted to the north and northeast portions o f the study 

area under future climate conditions (Figure 49). Figure 50 shows where seeds
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should come from today, to best match the focal point climate by 2069 according to 

CGCM1. No seed sources in the northwest study area are predicted to be well 

adapted to the focal point; instead sources should come from the southwest o f the 

Lake o f the Woods.

•  seed sources 
| | lakes
i---- 1MNR97

m  Od<srfw*»n f

Figure 49. Best "Seed To’ transfer zone in 2069 for seed from point 
48.5°N, 90.5°W based on CGCM1
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Figure 50. Best ‘‘Seed From’ transfer zone to best match climate o f point 
49.5°N, 92.5°W in 2069 based on CGCM1

Examination o f the relationship between elevation and future focal point seed 

zones reveals a trend. With the projected climate warming in the future, seeds w ill go 

where the climate is somewhat milder; i.e. at higher elevation. To best match the 

future climate, seeds should come from a relatively low elevation area today.

The pairs o f figures (51 and 52), (53 and 54), (55 and 56), (57 and 58), and 

(59 and 60) show future focal point seed zones (Seed To) for 2050 and 2099 based on 

future climate models HADCM3A2, HADCM3B2, GCCM2A2, CGCM2B2, and 

CSIROB2, respectively. A general trend is that all these future seed zones will shift 

northward or north-eastward to best match the future climate conditions compared 

with the current focal point seed zone based on OCM2 (1990). Seed zones 

extend to the northwest o f the study area. Comparing these seed zones, Figures 51
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and 52 have similar shape, showing the suitable future areas for seed sources 

originating from the focal point. By the end o f this century, Fig.52 shows that the 

most southern portion o f the study area is not suitable for planting. The green area 

moves from the northwest to the east by 2099 when compared with the seed zone by 

2050. Fig. 53 and 54 based on HADCM3B2 show a similar trend to Fig. 51 and 52. 

There is very little or no best suitable area (standard deviation from the focal point 

within 1) identified in Fig. 53 projected for 2050; however, best suitable area in the 

projection for 2099 (Fig. 54). Referring to the CGCM2A2 model projected for the 

year 2050, seed sources originating from the focal point are suitable to be planted 

almost anywhere within the study area but a small area to the southwest (Figure 55). 

By 2099, future seed zones for this point move north and the most suitable Seed To 

area for the source has decreased (Figure 56). The study area appears to be divided 

by Lake Nipigon and the eastern portion is not suitable for planting. The most 

suitable Seed To area is found to the southeast o f Lac Seul. Figures 57 and 58 show  

very different Seed To maps based on CGCM2B2 compared with those based on 

CGCM2A2. By 2050 and 2099, neither the northcentral nor northwestern Ontario 

study regions provide suitable planting locations for seed sources originating from 

the focal point. Suitable sources move northwards and appear in a band. Figures 57 

and 58 are very similar except that the most suitable Seed To area moves from the 

northwest portion to the northeast portion o f the suitable transfer band between 2050 

and 2099. Suitable sources move more north and appear in a band shape. Fig. 57 and 

58 are very similar except the most suitable area for transfer is from northwest to 

northeast by the end o f this century. Figure 59 shows a Seed To map based on 

CSIROB2 projected for 2050 which is outside o f the study area; a suitable band 

stretches from the northwest to the northeast in the Hudson Bay area. By 2099, two
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separate seed zones are identified; one suitable area is found within the study area 

(northcentral Ontario) north o f the focal point, while the other is found far northeast 

o f the sampled area (Fig.60).

Figures 61 through 6 6  show the future focal point seed zones (Seed From) 

based on the different future climate models. They all show that seed sources should 

come from southwest and west o f the sampled area (within this area) today, to best 

match the future climate condition at the focal point site. Seed sources that match the 

climate condition at the focal site are also found outside o f the northwestern Ontario 

study area. Figures 61 and 62 show very similar Seed From zones based on 

HADCM3A2 projected for 2050 and 2099. Figure 62 (for 2099) shows the most 

Seed From suitable area (within 1 standard deviation o f the focal point) decreases in 

the sampled area. Seed From based on HADCM3B2 for 2050 and 2099 are shown in 

Figures 63 and 64, respectively. No regions within 1 standard deviation o f the focal 

point are identified in Figure 64. This is not the case for Figures 65 and 6 6 , which are 

based on CGCM2A2 projected for 2050 and 2099, respectively. No most Seed From 

suitable area is found in Fig. 65. While by 2099, areas most suitable for the focal 

point have appeared (Fig. 6 6 ). By the middle and end o f this century, no seed sources 

from the study area elsewhere in Ontario are suitable for planting at the focal point 

based on the CGCM2B2 and CSIROB2 climate models.
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Figure 51. Best 'Seed To’ transfer zone in 2050 for seed from point 
48.5°N, 90.5°W based on HADCM3A2
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Figure 52. Best ‘Seed To’ transfer zone in 2099 for seed from point 
48.5°N, 90.5°W based on HADCM3A2
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Figure 53. Best ‘Seed To’ transfer zone in 2050 for seed from point 
48.5°N, 90.5°W based on HADCM3B2
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Figure 54. Best ‘Seed To’ transfer zone in 2099 for seed from point 
48.5°N, 90.5°W based on HADCM3B2
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Figure 55. Best ‘Seed To’ transfer zone in 2050 for seed from point 
48.5°N, 90.5°W based on CGCM2A2
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Figure 56. Best ‘Seed To’ transfer zone in 2099 for seed from point 
48.5°N, 90.5°W based on CGCM2A2
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Figure 57. Best 'Seed To’ transfer zone in 2050 for seed from point 
48.5°N, 90.5°W based on CGCM2B2
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Figure 58. Best 'Seed To’ transfer zone in 2099 for seed from point 
48.5°N, 90.5°W based on CGCM2B2
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Figure 59. Best 'Seed To’ transfer zone in 2050 for seed from point 
48.5°N, 90.5°W based on CSIROB2

I |bte>
s e e d b 1 2  2099 cstrab2
■ I  stdevw ithin 1 
f S d  stdevw ithin 2 
i I stdevw ithin 3

Figure 60. Best 'Seed To’ transfer zone in 2099 for seed from point 
48.5°N, 90.5°W based on CSIROB2
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Figure 61. Best ‘’Seed. From’ transfer zone to best match climate o f point 
49.5°N, 92.5°W in 2050 based on HADCM3A2
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Figure 62. Best ‘‘Seed From’ transfer zone to best match climate o f point 
49.5°N, 92.5°W in 2099 based on HADCM3A2
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Figure 63. Best ‘SeedFrom’ transfer zone in 2050 to best match 
climate o f point 49.5°N, 92.5°W based on HADCM3B2

Figure 64. Best ‘Seed From’ transfer zone to best match climate o f point 
49.5°N, 92.5°W in 2099 based on HADCM3B2
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Figure 65. Best ‘Seed From’ transfer zone to best match climate o f point 
49.5°N, 92.5°W in 2050 based on CGCM2A2
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Figure 6 6 . Best ‘Seed From’ transfer zone to best match climate o f point 
49.5°N, 92.5°W in 2099 based on CGCM2A2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

DISCUSSION

ADAPTIVE VARIATION OF JACK PINE

Part o f the results on an ANOVA (variables measured in 1988,1989 and 

1990) presented by van Niejenhuis (1995), Davradou’s (1992) freezing variables 

and variables (measured in 1993 and 1994) in a Northern Ontario Development 

Agreement (NODA) funded project (Parker and van Niejenhuis 1996 a) were used in 

the current study.

The results o f the present study are consistent with those o f many studies 

dealing with adaptive variation o f jack pine determined by provenance tests. These 

studies have shown clinal patterns in many measured traits including height, 

diameter, survival, cone and needle traits, cold hardiness, lammas growth, insects, 

diseases, form and many phenological variables (Arend et al. 1961; Batzer 1962; 

Schoenike and Brown 1963; Rudolph 1964; Yeatman 1966; Matyas and Yeatman 

1992; Morris and Parker, 1992; Hyun 1979; Maley 1993; Davradou 1992; van 

Niejenhuis 1995; Parker and van Niejenhuis 1996 a; Matyas 1996).

In a study o f range-wide jack pine provenance tests in Ontario, Maytas and 

Yeatman (1992) regressed height and survival traits against precipitation, latitude 

and heat sum. They found that seed sources transferred moderately northward would 

result in superior growth potential or at least equal performance to local provenances. 

The results o f that study gave the proof for the possible superiority in growth 

potential o f northward shifted populations over the local ones. In their study, they 

used ecological distance, a measure o f environment change for the transferred 

sources, to describe limitations o f safe transfer distance for jack pine. From a 

practical viewpoint, this ecological distance graph can be viewed as seed transfer
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guidelines, although it has limitations. As such, only height and survival were used to 

model the effects o f limited transfer, limited ecological factors and method o f 

mortality analysis (seed sources displaying less than 50% survival were regarded as 

complete failures) etc. Standard deviations from focal point were used in focal point 

seed zone methodology to show best adapted areas for reforestation. The findings o f 

the present study w ill give forest managers a more reliable, more accurate and more 

operational tool when making seed selection.

Many measured growth, phenological and freezing variables explained 

significant variation among provenances in the current study. One-way ANOVA 

showed an unexpected result; i.e., height and diameter differences at 1 1  years 

measured in 2004 at Kenora and Sioux Lookout trials were not significant among 

seed sources. This is somewhat surprising given that the finding o f Aim et al. (1966) 

that highly significant differences among jack pine seed sources were found in height 

and diameter growth after 9 years in the University o f Minnesota Cloquet Forestry 

Center in Carlton County, Minnesota. Also, King (1966) reported that 10-year height 

growth o f trees showed a significant difference among provenances. Matyas and 

Yeatman (1992) found height and survival at year 15 showed great differences. 

Perhaps the seedlings suffered competition in moisture and light due to the narrow 

stem density (0.5 m spacing) or some other environmental factors in the present 

study area. The trend today is to plant at spacing wider than the traditional 2 m in 

northern Ontario (Morris and Parker 1992). Perhaps, competition for moisture tends 

to regulate form as a factor superimposed upon competition for light and space 

(Morris and Parker 1992). Height traits were significantly different among seed 

sources in their young age (van Niejenhuis 1995; Parker et al. 1996a). This 

environment stress may have become stronger over time. It is possible that height
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and diameter differences could not show up under this circumstance in spite o f 

genetic variation among seed sources. In other words, the effects o f interaction 

between genotype and environment might have overshadowed genetic influence on 

phenotype o f seedlings in this case. This effect may have resulted from the seedlings 

suffering extreme weather conditions.

Overall, the freezing variables explained more variation among seed sources 

than the other growth variables and phenological variables. The height growth 

variables expressed more variance than phenological variables and diameter 

variables. In addition to variation among provenances, among family variation may 

result from block effects, environmental effects and within provenance differences.

In the current study, I did not deal with family variation within seed sources, a 

possible source o f experimental error that might exist.

Testing families over a similarly broad range o f environments and artificial 

screening for adaptive traits w ill ensure the maintenance o f well-adapted, genetically 

improved populations composed o f adaptational generalist rather than specialist 

elements (Balduman 1999). Beaulieu et al. (2004) reported that, although the 

proportion o f variation due to families within provenances for black spruce was 

smaller than that due to provenances, it was significant for most o f the growth traits. 

Mullin et al. (1995) also found that for most o f the growth traits, family-within- 

provenance variance components explained a significant proportion o f the total 

variation in a black spruce study.

Cold Hardiness

Cold hardiness, as an important criterion, was first considered when seed 

selection was made for reforestation in the boreal climates o f Canada (Yeatman and 

Holst 1972, Rudolph and Yeatman 1982). Cold hardiness traits in the current study in
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the northcentral study area showed significant differences among seed sources. Seed 

sources (22, 31, 32, 33 and 34) from the north shore o f Lake Superior showed less 

frost hardiness. In the northwestern study area, an obvious Lake Superior shore effect 

was found; seed sources from this area showed greater growth potential (Fig.7). 

Perhaps the southern location, lower elevation and water body produce a warmer 

environment for jack pine. But this was not the case for the northcentral study area. 

This phenomenon might give some indications that it is necessary to separate these 

two study areas. The greater the cold hardiness similarity between seed source and 

reforestation site, the less the risk o f winter injury and susceptibility to disease. For 

both the previous study and the current study in the northwestern Ontario study area, 

cold hardiness traits were found to be significantly different among seed sources.

Examination o f the relationship between cold hardiness and parent tree 

environment (longitude, latitude and elevation) in study areas found that there was a 

positive correlation against latitude with coefficient 0.25 and 0.20 in northcentral and 

northwestern Ontario study areas, respectively. Comparing the predicted factor 

scores from PC2 regression models in both study areas, a trend was found (Fig. 8  and 

Fig. 36) that showed needles flush later with increasing latitude; this trend was more 

obvious (Fig. 36) in the northcentral Ontario area. There was a negative relationship 

with elevation (Pearson correlation coefficient -0.325) in the northcentral study area, 

and a positive but not significant relationship (0.08) in the northwestern Ontario 

study area. This result was not consistent with Jonsson et a l  (1980) who indicated 

that trees o f northern origin or from high elevations developed frost hardiness earlier 

than those o f southern origin and from low elevations. Balduman et al. (1999) 

reported that movement o f material up 600 m in elevation would result in a 1 0  % 

increase in fall cold damage. Differentiation within the study area seed sources was
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arbitrary in the current study, perhaps partly due to the lakes effect. Especially, Lake 

Nipigon in the northcentral study area somehow counteracts cold hardiness.

COMPARISONS BETWEEN FORMER AND CURRENT STUDIES

Differences o f multiple regression equations for PCA axis 1 and 2 between 

the earlier and the current studies o f jack pine in the same study area were illustrated 

in Table 18. In the northcentral area, the first PCA axis, reflecting growth potential o f 

seed sources, was predicted by 3 temperature variables and one precipitation variable. 

In contrast, three precipitation variables and one temperature variables were retained 

in the former study (Parker and van Niejenhuis 1996 a). The second PCA axis 

reflecting phenology was predicted by two precipitation variables in the current study, 

while two temperature variables and two precipitation variables were retained in the 

former study reflecting susceptibility to drought or environmental stress. The same 

methodology was used in the former and current study with the inclusion o f 

additional freezing trials (Davradou 1992) in the current study. In the northwestern 

Ontario area, both PCI axes and PC2 axes were predicted by two temperature and 

one precipitation variables in the current study. But in the former study, precipitation 

variables accounted more in the first two PC axes. More biological variables and 

more updated climate models are used in the current study.

Comparisons o f the regressions o f PCA axes against climatic variables for 

jack pine data in the present study and the former northcentral and northwestern 

Ontario (Parker et al. 1994, Parker and Van Niejenhuis 1996 a) show differences in 

many ways (Table 18). Different climate models were used in these studies. Climate 

data for the period 1951-1980 (OCM1) was used in the former study, while OCM2 

for the period 1961-1990 was used in this present study. In the former northcentral
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study, the first two axes accounted for 33 and 21.5 percent o f the total variation with 

r2 value o f 0.52 and 0.38, respectively. While in this present study, the first two axes 

accounted for 27.5% and 14.5% o f the total variation with r2 value o f 0.55 and 0.32, 

respectively. The first axis in present study has the higher r2 value o f 0.55 (growth 

potential) compared with 0.52, while with lower r2 value o f 0.32 was found for the 

second axis compared with 0.38 in the former study. The higher r2 value suggests 

more confidence in the focal point seed zones generated by this axis. Only two 

precipitation variables were used to represent the second axis (representing 

phenology). Precipitation models have more uncertainties when used to predict seed 

source climate. The first two axes are weighted equally; maybe this action results in 

weakness o f methodology o f focal point seed zones.
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Table 18. Comparison o f multiple regressions equations for PCA Axes 1 and 2 
between the former and current study
Study Region PC axis Variation Climate Variables R2

Former(1994)

PCI 33%
March minimum temperature 

May precipitation 
July precipitation 

Prec4 
MnT3

0.52

PC2 21.5%
March mimimum temperature 

December minimum temperature 
October precipitation 

Prec4 
MnT

0.38

North Central

Current(2004)

PCI 27.5%
April maximum temperature 

October maximum temperature 
Jun minimum temperature 

October precipitation

0.55

PC2 14.5% March precipitation 
November precipitation

0.32

Formei(1996)
PCI 37.8%

July maximum temperature 
average April precipitation 

July precipitation
0.665

Northwesten
PC2 17.3% March precipitation 

GrowStr
0.35

Current(2004)

PCI

PC2

31%

10%

December maximum temperature 
November minimum temperature 

April precipitation

August maximum temperature 
November minimum temperature 

June precipitation

0.55

0.24

1
Prec4: average precipitation (mm) for 6 weeks from the start of the growing season;
MnT: mean annual temperature; MnT: mean temperature for the entire growing season;
GrowStr: start of growing season (last day of 5 consecutive days when mean daily temperature > 5°C)

In the northwestern Ontario study, the first two axes accounted for 31 and 10 

percent o f the total variation compared with the 37.8 and 17.3 percent in the former 

study. The decreased amount variation in the first two axes accounted for in the 

present study may result from more environment variation over time and additional 

biological variables used: 30 principal components, compared with 21 in the former
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study. The r2 values o f 0.55 and 0.24 for the first two axes in present study compared 

to 0.665 and 0.35 in the former study, respectively. In the present study, only 36 

monthly climate variables were available both for OCM2 and future climate 

scenarios. But an additional 29 climate variables included in OCM1 were used in the 

former study including start o f growing season, mean annual temperature, entire 

growing season and average precipitation. The decreased r2 values for the first two 

axes in the present study compared with the former study might partly result in the 

differences between these two climate models.

FOCAL POINT SEED ZONES OF JACK PINE

In terms o f differentiation o f populations based on clinal variation, focal point 

seed zones have been developed for black spruce and jack pine in northwestern 

Ontario (Parker 1992, Parker et al. 1994 and Parker and van Niejenhuis 1996 a) and 

for white spruce across the Ontario province (Parker and Lesser 2004). Focal point 

seed zones are based on the actual patterns o f adaptive variation present in each 

forest tree species targeted for regeneration. Numerous growth, phenological and 

freezing damage variables are used to delineate seed zones. They represent true 

patterns o f adaptive variation within a species based on regression models o f 

summarized biological variables against climate.

Present Focal Point Seed Zones

The results o f a Northern Ontario Development Agreement (NODA) funded 

project were used to develop the original focal point seed zone models for jack pine 

in the northwestern portion o f Ontario (Parker and van Niejenhuis 1996 a). OCM1
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(1951-1980 average climate girds) was used in the early study, and 29 climate 

variables, e.g. start o f growing season, mean annual temperature, entire growing 

season and average precipitation etc, were included in OCM1. In present research on 

these focal point seed zones, an updated second iteration o f the Ontario Climate 

Model (OCM2) (1961-1990 average climate grids) was adopted. New data collected 

in 1997,2003 and 2004 growing seasons, were integrated with the earlier data to 

produce revised focal point seed zones for jack pine in 2005. Thirty six monthly 

climate variables are available both for OCM2 and future climate scenarios used in 

the present studies. A focal point seed zone model is selected to show the differences 

between the current and former study based on focal point 49.5°N 92.5°W. Certain 

differences o f focal point seed zones exist between two studies (Fig. 17 and Fig. 67).

Figure 67. Focal point seed zones at point 49.5°N, 92.5°W based on OCM1 (Parker 
and van Niejenhuis 1996 a)
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Compared with the Fig. 67, which produced in the former study, in general, 

Fig. 17 shows a bigger seed zone (stand deviation within 1) expanding to the 

southeast portion o f the sampled area. Two separate most suitable areas for the focal 

point are shown in Fig. 67 in the former study.

Examination o f focal point seed zones for the northcentral study area, found 

that seed zones created for a focal point south o f approximately 49° latitude showed 

clear east west separation within the study area (maps are not shown here). Many 

zones show less suitable areas around Lake Nipigon. Excluding the most southwest 

and northeast portion o f study area, most o f the area is suitable for seed transfer 

within the study area. The eastern shores o f Lake Superior show less suitable area in 

most seed zones. As points move northeast, the zones become more general crossing 

the study area. Focal point seed zone at (49.9°N 89°W) appears to be the most 

equally suitable for seed transfer within the whole study area. This result is 

consistent with the findings from the 410 Series white spruce research by 

Morgenstem and Copis (1999) that the best growing provenances at more southern 

test sites are generally local or at least regional sources. While in northwestern 

Ontario area, focal point seed zones are most specialized and regional. When focal 

point is moved from west to east along 50.5°N latitude, focal point seed zones 

generally become more local and regional.

Future Focal Point Seed Zones

Significance

Forest managers are concerned not only with the short term risk associated 

with planting trees, but also with long term risk. Global wanning is expected to
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affect seed selection in the future. Concern about climate change is increasing 

because ecological and social economic impacts are more and more perceptible. 

Research on the ecological consequences o f global warming mainly concerns 

changes in plant community and species as whole (Chuine 2004, Davis, et. al 2005). 

Forest managers are becoming increasingly concerned about the effects o f projected 

global warming on the growth o f future forests. Maps o f interpolated climate normals 

have recently become essential tools for many types o f forestry research, such as 

studying genetic adaptation o f trees to local environments, modeling species’ range 

shifts or forest productivity under climate change scenarios. Scientists have 

suggested a number o f adaptive management strategies to reduce the vulnerability o f 

managed forests to climate change. One important strategy is to modify present seed 

transfer guidelines based on more up to date climate models and climate change 

scenarios. Eriksson et a l  (1993) proposed the “dynamic conservation” concept to 

convey that breeding and conservation are not static, and that an evolutionary 

approach to manage forest tree genetic resources is necessary. Focal point seed zone 

is one operational approach, which provides an opportunity to develop dynamic 

maps.

Seed To and Seed From

Focal point seed zones, which prescribe Seed To and Seed From in terms o f  

changing climate, provide an additional and more robust means to evaluate the 

adaptive suitability o f potential seed transfers for jack pine, which can help ensure 

properly matched seed sources to planting sites according to expressed patterns o f 

adaptive variation. Future focal point seed zones could help avoid future 

maladaptation resulting from climate change. The right seed sources can be
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identified by Seed To and Seed From to match the anticipated climate shift, and used 

in reforestation efforts.

Focal point seed zones based on future climate scenarios {Seed To and Seed 

From) show a consistent pattern that by the middle o f this century, seeds from the 

study area will transfer to the north or northwest from the origin in the study area.

The extent to which focal point seed zones changes were affected by the future 

condition was largely dependent on the choice o f scenarios. Most seeds from the 

most northern portion o f study area w ill not be suitable for anywhere in the sampled 

area. The best adapted seeds should come from the southwest area. Fig. 59 shows 

that no seed sources from the sampled area w ill be suitable to be planted at the focal 

point by 2050, while by 2099; seed sources from local points are suitable to the north 

o f the sampled area (Fig. 60). The reason is that the precipitation projected to 2050 is 

decreasing by 1% and increasing projected to the end o f this century by 6% based on 

the future climate model— CSIROB2 .

Although much uncertainty exists in scenarios, by the middle o f this century, 

seeds from this study area should be transferred north or northeast to best suit future 

conditions. We can also say that seeds should come from the south or the southwest 

portion o f present study area now to be best adapted in the future to their plating site. 

By the end o f this century, the trend shifts further north based on some scenarios. If 

climate change predictions are true, gain could be substantial by the use focal point 

seed zones generated for jack pine in northwest Ontario.

Focal point seed zone maps (Seed To) o f both study areas show the similar 

trend that the seed zones move to the high elevations in the north or northeast portion 

o f study area by the middle o f this century, or out o f the study area farther north or 

northeast by the end o f this century based on these five different climate scenarios.
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Focal point seed zone maps (Seed From) show that seeds should come from south or 

southwest area- low elevations o f the sampled area, to best match the future 

conditions. Similar results have been reported by Rehfeldt (2004) that the 

contemporary location o f Engelmann spruce (Picea engelmannii Parry ex Engelm.) 

best suited to the new climates shifts from the contemporary site to the low  

elevations at the north. But an exception was found that seeds should come from the 

north portion o f the sampled area, to best match the future conditions based on 

CGCM2A2 by the end o f this century (Fig. 33), which is not expected. All the 

pertinent research has demonstrated a close relationship between species’ ranges and 

climate change.

Relevant Research

Future focal point seed zones o f this study are consistent with the continuous 

zones o f Rehfeldt (1990) in some respects. Rehfeldt gave rough descriptions on the 

adaptedness o f populations when the environment changes. He found that if  the 

environment were to warm, the appropriate seed sources tend to come from either 

elevations lower than the planting site itself or from elevations higher than the 

planting site toward the north and west where the climate is slightly milder. This case 

is somewhat similar to Seed From in this study. Adapted sources would come from 

higher elevations than that o f the site and from geographic regions toward the 

southeast where the climate is more severe if  the environment were to get cold. This 

case is somewhat similar to Seed To in this study. He used geographical variables 

(elevation, latitude and longitude) instead o f climate variables in the locations o f 

parent trees. Compared with the models that Rehfeldt and others developed using 

geographic variables as surrogates, focal point seed zones as in the current study
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provide a direct cause-response measure, and can be expected to improve in accuracy, 

reliability, robustness and flexibility.

The results o f the present study join with those o f numerous studies dealing 

with genetic responses to climate change. Ontario’s northward-shifted boreal forest 

o f 2050 w ill not have the same species composition as it does today (Hengeveld 

1991). Climate change may result in dramatic northward shifts in the natural range o f 

forest types and species (Parker et al. 2000). The present results also are consistent 

with the prevailing view o f a major redistribution o f tree species and genotypes 

across the landscape due to global warming in the long run (Rehfeldt et al. 1999).

The results o f this study supported those studies that dealt with climate 

change effects on tree species. Matyas (1994) constructed a growth response model 

by principal component analysis and ecological distance and predicted that the 

southward transfer o f more northerly jack pine provenances provided the source with 

conditions close to optimum and increased height growth by approximately 20%; 

Morgenstem and Teich (1969) reported increases in height were obtained by planting 

trees 2 to 3° north o f their seed origin. A study done by Cherry and Parker (2003) in 

Ontario found that white spruce optimal habitats were expected to shift north by 

about 2° latitude as result o f climate warming for 50 years into the future based on 

CGCM1 using response functions and Cauchy functions; More recently, Parker et al. 

(2004) using the same methodology with black spruce found that more northerly 

provenances in Ontario currently achieve better height growth when moved to more 

southern locations.

Focal point seed zones represent the areas o f greatest similarity to the 

selected point, and the local seed is considered best to reforest efforts in Ontario. 

However, authors have reported that provenances moved l°or 2° latitude north o f the
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place o f origin, or moderate northward shifts, would out perform local sources (W ell 

and Wakeley 1966; Morgenstem and Teich, 1969; Maytas 1994,1997; Maytas and 

Yeatman 1992, Rehfeldt 1999; Cherry and Parker 2003; Parker et al. 2004). One 

thing we should keep in mind is that focal point seed zones are the best adapted and 

do not ensure that the selected seed sources will maximize growth potential at the 

given point. However, the predicted factor score maps (Figure 7 in northwestern 

region o f Ontario and Figure 35 in northcentral Ontario) from PCI regression models 

do show the variation in growth potential, and it is highest in the southwest.

CLIMATE CHANGE AND CLIMATE CHANGE SCENARIOS

The real scenario o f the climate change on earth environment in history (e.g. 

a somehow dramatic periodic fluctuation on temperature in a large temporal and 

space scale) can be determined by some research methods including climate 

monitoring, sampling ice cores and tree rings. These objective facts o f past history o f 

the earth are viewed as the base o f specific images o f the future climate change, and 

as an important database and supportive base when scientists simulate future climate 

change.

Necessity

Climate is the primary factor controlling the distribution o f organisms 

(Brown and Gibson 1983, Woodward 1987, Rehfeldt 2004). Some relative impact 

studies have suggested that climate change may alter species distribution and seed 

transfer (Mayas 1994, Rehfeldt 1999, Parker et al. 2000, Cherry and Parker 2003). 

However, these studies were based on a single temperature or other single climate 

variable; the uncertainties o f the projection could not be quantified. IPCC (2001)
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recommends that "users should design and apply multiple scenarios in impacts 

assessments, where these scenarios span a range o f possible future climates, rather 

than designing and applying a single guess scenario". Six different climate change 

scenarios (CGCM1, CGCM2A2, CGCM2B2, HADCM3A2, HADCM3B2 and 

CSIROB2) are used in the present study. These alternative scenarios are based on 

different estimates o f fossil-fuel reserves, rates o f economic growth, or rates o f 

technological change within a given scenario family (IPCC 2001).

Geographical Variables and Climate Variables 

Geographical variables (longitude, latitude, elevation, aspect etc.) were more 

commonly used in past studies describing environmental variation because o f the 

relative ease in obtaining their estimates; however, they are simply surrogates for 

local climate conditions based on broad scale relationships between geographic 

location and climate (Balduman 1999). In a study o f genetic variation in ponderosa 

pine o f the southwest, Rehfeldt (1993) used elevation and latitude as independent 

variables to approximate climate conditions. The use o f ecological variables (i.e. 

temperature and precipitation) has many advantages over geographical ones. First, it 

links genetics and ecology by the possible assessment o f the weight and importance 

o f various environmental factors shaping and delimiting within-species genetic 

variation. Secondly, adaptive responses and variation patterns can be interpreted, 

generalized and compared more easily if  cleared from strict geographic bonds. 

Thirdly, the use o f ecological variables allows the modeling o f effects o f 

environmental change (Matyas 1997). Also, climatic variables can provide better 

estimates o f components o f the environment conditions o f species as they directly 

measure temperature and moisture regimes.
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Examination o f the results o f simple regression o f biological variables against 

geographic and climate variables indicated that temperature variables were selected 

much more often than precipitation variables in both northcentral area and 

northwestern Ontario area. A similar observation is reported by Parker et al. (2004) 

in a white spruce provenance test study. These findings are consistent with a study 

done with ponderosa pine by Sorensen (1994) indicating that genetic differentiation 

o f tree species across temperature gradients is much stronger than across moisture 

gradients. The R2 values in both current studies for the temperature are much greater 

than those for precipitation, possibly indicating that regression models are more 

effective in describing gradients in temperature from geographic prediction than they 

are in describing geographic patterns o f precipitation. The same observation was 

found in a genetic response to climate study by Rehfeldt (1999). It is most likely that 

precipitation is strongly influenced by local topographic effects.

Considered variables in six different climate change scenarios include 

monthly maximum temperatures, minimum temperatures and precipitation in the 

present study. Different temperature and precipitation are projected in the future 

based on different climate scenarios compared to today’s climate conditions (OMNR 

2000). From data extracted from these five different climate change scenarios (Table 

3 and Figure 4, 5), we know precipitation projected in the study area for the future 

will be different. As such, precipitation projected to 2050 is decreasing based on 

CGCM2A2 while it is increasing based on CGCM2B2; or it is decreasing for 2050, 

and increasing for 2080 based on CSIROMB2. It is predicted that higher average 

temperatures will be accompanied by global increases in precipitation, but the 

amount and distribution o f it w ill vary regionally, with some areas having a higher 

frequency and severity o f droughts (IPCC 1996).
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To What Extent Can We Trust Future Climate Change Scenarios?

Although knowing what has happened in the past and what is happening now  

could provide us some clues, can we accurately know future events? Climate change 

scenarios play an important role in revealing the future climate events, and show a 

degree o f validity. The current generation o f predictive climate models are effective 

in estimating the mean global and hemispheric sensitivity to altered climate forcing 

(Webb 1998; Joussaume et al. 1999). However, the simulation results among diverse 

climate models could be significantly different in predicting the same changing event, 

even on the same area and the same temporal range, owing to the differences in the 

structure, variables, sensitivity and parameters o f models. In constructing climate 

change scenarios there are many sources o f uncertainty. Where possible, they have 

been taken into account. Thus, the scenarios represent a multiplicity o f plausible 

futures (CSIRO 1996). In this study, different climate change scenarios were used, 

different scales o f resolution were used (i.e. 1-km grid scale for OCM2,7.5-km grid 

scale for CGCM2, HADCM3 and CSIROS, 15-km resolution for CGCM1). CGCM’s 

spatial resolution is still poor and the prediction o f regional climate change remains 

limited, especially for precipitation. And, there were different width ranges o f these 

models. Five are within Ontario and the west o f Quebec, while CGCM1 is 

throughout all Canada; this difference can result in some uncertainties. For example, 

Fig. 19, Fig. 25 and Fig. 27 show future focal point seed zones based on point 49.5°N, 

92.5°W by the middle o f the 21st century under HADCM3, CGCM2 and CSIRO 

scenarios. These three climate modes predicted the same point (49.5°N, 92.5°W) at 

the same time (2050), but the results o f Seed To maps are significantly different 

resulting from the different simulation results o f climate models. By the middle o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

the 21st century (2050), the temperature increase is predicted to be 2.7°C, 2.3°C , 

2.7°C, 2.6°C, and 3.9°C and precipitation decrease o f 3%, 8%, increase o f 15%, 

increase o f 10%; and increase o f 6% based on CGCM2A2, GCM2B2, HADCM3A2, 

HADCM3B2 and CSIROMB2, respectively. Hence, This large discrepancy o f 

simulated results, 1.6°C (ranging from 2.3 to 3.9°C) in temperature and 23 %( from - 

8% to 15%) in precipitation among these climate models, which results in some 

uncertainty, such as the diverse Seed To maps shown in the present study.

It is a great goal to approach reality in modem models. The results o f model 

simulation are still uncertain. Current scientific understanding predicts with 

confidence global warming in this century (CSIRO 1996). Uncertainty surrounding 

future greenhouse gas and sulfate emissions, shortcomings in climate modelling, and 

difficulties in determining regional patterns o f climate change from global estimates 

mean that predictions o f future climate change at a regional level still cannot be 

made (CSIRO 1996 ). At present, almost all climate change model simulations 

usually focus on one or two main factors, which serve as major forcing and 

expressing factors (e.g. temperature or precipitation) and redisplay the historical 

scenario by ceaselessly revising parameters o f a model according to the real climate 

database. At the same time, global climate models are continuously being improved. 

Horizontal and vertical resolution are being increased as computing power advances, 

with many modelling groups taking advantage o f the ability to split intensive 

calculations between multiple, parallel processors on a single computer (Flato et. al 

2000). Improvements in parameterizations o f physical processes in all component 

models are being made (Zhang and McFarlane 1995). We should remember that 

some limitations to the use o f the modeled climate variables exist. They are predicted 

values interpolated from climate models instead o f true values; there might be some
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discrepancy from true values. Different technical skills for extracting data result in 

some estimate uncertainty.

Moreover, it is an additional challenge to effectively deal with the uncertain 

stress effects o f human activities on the change o f the earth environment in climate 

models. The dynamic pressures o f human activities (emission o f greenhouse gas, 

decreasing coverage vegetated lands due to forest cutting and cultivated farm lands) 

produced by increasing conflicts between rapid population growth and resource 

limitation, explained an increasing ratio and magnitude leading to global warming 

(Ledig and Kitzmiller 1992, Parker et al. 2000). As such, more up-to-date emission 

scenarios A2 and B2 were applied in the present study. The A2 scenario envisions 

population growth to 15 billion by the year 2100 and rather slow economic and 

technological development (IPCC 2001). The B2 storyline and scenario family 

describes a world in which the emphasis is on local solutions to economic, social, 

and environmental sustainability (IPCC 2001). Its scenario envisions slower 

population growth (10.4 billion by 2100) with a more rapidly evolving economy and 

more emphasis on environmental protection. It therefore produces lower emissions 

and less future warming (IPCC 2001). Fig. 19 and 21 and Fig. 24 and Fig. 26 show 

different future focal point seed zones by the middle o f the 21st century and by the 

end o f the 21st century based on HADCM3 and CGCM2 climate scenario in the form 

o f A2 and B2. Fig. 21 shows a large suitable area in Quebec and Fig. 26 shows no 

suitable area by 2099 for seed sources from the focal point.

Future focal point seed zones (Seed To and Seed From) o f this study are 

based on different climate change scenarios. Although they are uncertain, they are a 

significant prediction. The reliability o f future focal point seed zones for jack pine is 

dependent on the accuracy o f climate change scenarios as well as the improvement o f
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the statistical models that predict adaptive variation. These alternative scenarios are 

based on different estimates o f social policy, rates o f economic growth, rates o f 

technological change, natural eco-environment change within a given scenario 

family. However, the focal point seed zone method is one operational approach, 

which provides an opportunity to develop dynamic maps. In this study, these future 

focal point seed zones are probably more reliable when based upon temperature 

rather than precipitation, due to the high degree o f uncertainty surrounding currently 

available estimates o f changes in precipitation within Ontario as result o f climate 

change (IPCC 2001). The same observations were found in other relevant research 

(Maytas 1994, Cherry and Parker 2003, Parker et al. 2004). Given the uncertainty 

about precipitation changes in the future, caution must be exercised in interpreting 

the predictions o f increasing adaptation lag in global warming scenarios based solely 

on temperature change. Until a regional-scale climate circulation model becomes 

available for Ontario with fine resolution, and until one that can model the effects o f  

the Great Lakes on local climate patterns, no model o f individual focal point seed 

zones can give reliable guidelines for seed election.

RECOMMENDATIONS

Although there are limitations and uncertainties, the results o f this study are 

able to serve as seed transfer guidelines for jack pine for both the present day and the 

future in northwestern Ontario. Seed source selection based on the best available 

information is the first step to realize the greatest yields in jack pine and other 

species (Zobel and Talbert 1984). We must use the best genetic material for the 

locale and the best techniques available for establishing and managing plantations.
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It is recommended using seeds from selected stands near the planting site 

where local seed sources appear to be superior; I consider selecting stands within 

focal point seed zones or a little south o f local stands within the range o f jack pine 

where local sources lack superiority and the use o f nonlocal sources is indicated. 

Forest managers could mix the local seed source and one they expect to be better 

adapted to future conditions under a worst-case scenario (Ledig and Kitzmiller 1992). 

There have been no reports o f planting o f non-local sources from more moderately 

southern locations resulting in losses. Especially when climate change is concerned, 

the use o f non-local sources will reduce this risk o f maladaptation in the long term. It 

is obvious that using the wrong seed source will result in maladaptation and will 

result in volume losses. Using the right seed source can result in gains in volume 

production. Schmidtling (1994) reported in his study that loblolly pine and Norway 

spruce models predicted a loss o f about 5 to 10% in height growth below that 

expected for a genetically adapted seed source, if  the average yearly temperature 

increases by 4°C.

In conclusion, despite significant improvements as compared with the 

previous studies, the results o f this study cannot considered as final. The focal point 

seed zone models are dynamic and will be improved by more refined biological data, 

more reliable climate scenarios and more advanced technological skills. Continued 

effort in research to improve focal point seed zone models w ill better position us in 

taking adaptive or mitigating measures once climate change scenarios becomes clear.
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Appendix I
Site and collection data summary for 102 stands o f jack pine in Northwestern Ontario

Site
Age(year)

Mean S.D
Height(m)

Mean S.D
DBH(cm)

Mean S.D
Latitude (dd) Longitude(dd) Elev(m) V-type S-type

1 66.6 -9.0 19.24 1.28 22.72 1.36 49°41'48" 92°55'38" 360 28 S2
2 55.5 -20.1 19.07 1.11 22.54 1.18 50°8'15" 9 2 ° 5 3 'ir ' 424 29 S7
3 74.1 -1.5 19.71 1.75 32.22 10.86 49°25'15" 92°8'50” 460 17 SS6
4 70.3 -5.3 20.78 2.82 26.18 4.82 49°30'30" 91°48'0" 440 29 S2
5 69.1 -6.5 19.79 1.83 22.75 1.39 50°9'45" 90°46'10" 440 18 S8
6 65.5 -10.1 18.8 0.84 22.59 1.23 50°22'15" 91°18'3o» 410 29 S2
7 74 -1.6 16.51 -1.45 18.01 -3.35 50°27'15" 90°36'10" 415 32 S7
8 115.2 39.6 22.06 4.10 28.64 7.28 50°22'15" 90°23'0’’ 440 18 SS4
9 67.5 -8.1 17.85 -0.11 20.31 -1.05 50°7'15” 91°52'10" 390 31 S2
10 52.2 -23.4 16.22 -1.74 16.65 -4.71 50°27'30" 90°17'45" 410 32 SS5
11 71.7 -3.9 21.47 3.51 25.18 3.82 49o53'30” 91°27'0" 410 31 S2
12 89.3 13.7 20.83 2.87 23.64 2.28 48°49'14" 92°16'23" 502 17 S10
13 62.4 -13.2 18.15 0.19 22.1 0.74 49°2'17" 90°58'42" 388 18
14 76.4 0.8 18.82 0.86 23.8 2.44 49°1'57" 93°17'42" 433 31 SS7
15 105.1 29.5 20.05 2.09 31.59 10.23 49°17'21" 93012-18" 510 18 SSI
16 73.3 -2.3 17.87 -0.09 21.65 0.29 49°15'5” 90°47'29" 551 18 SS6
17 91.8 16.2 17.92 -0.04 23.49 2.13 49° 13'50” 93°13'47” 414 17 SS2
18 57.3 -18.3 16.25 -1.71 20.27 -1.09 48°51'26" 92°41'38" 402 18 SS7
19 65 -10.6 16.61 -1.35 18.83 -2.53 48°56'26H 92041-4.. 426 17 SS6
20 51.9 -23.7 17.84 -0.12 24.43 3.07 48°56'26" 920415" 426 17 SS6
21 99.3 23.7 19.3 1.34 24.79 3.43 49°3'26" 93°53'47” 426 28 S10
22 82.1 6.5 18.03 0.07 25.27 3.91 49°44'7" 95°3'52" 436 17 SS5
23 53.1 -22.5 15.92 -2.04 22.77 1.41 50°3'46" 94°22'41” 387 32 SS5
24 65.2 -10.4 18.81 0.85 28.27 6.91 49°51'21" 94°23'41” 375 17 S7
25 74.2 -1.4 18.78 0.82 23.88 2.52 49047-3 1- 94032-8" 385 31 SS5
26 83.4 7.8 17.35 -0.61 25.73 4.37 49042-3- 94°56'3" 355 17 SS7
27 110.8 35.2 15.25 -2.71 27.04 5.68 49°52'15" 94°47'35" 356 17 SS5
28 89.5 13.9 16 -1.96 25.58 4.22 49°42'25" 94°14'54" 373 30 SSI
29 57.7 -17.9 14.88 -3.08 18.77 -2.59 49°23'10" 93°37'21" 370 31 SS5
30 53.7 -21.9 14.5 -3.46 19.12 -2.24 49°25'27" 93°44'23" 345 18 SS7
31 77.6 2.0 17.48 -0.48 20.79 -0.57 5003-3.. 92°55'12" 399 29 S3
32 95.3 19.7 13.25 -4.71 24.03 2.67 49049-35.. 93°29'23" 377 30 SSI
33 54.3 -21.3 14 -3.96 18.97 -2.39 49038-33" 92°26'30" 418 30 SS4
34 70.1 -5.5 18.51 0.55 20.2 -1.16 48°54'49" 91°52'46" 463 32 SI
35 68.9 -6.7 17.81 -0.15 20.72 -0.64 48°47'49" 91°33'53" 465 32 SS5
36 76.2 0.6 19.23 1.27 24.95 3.59 48°55'1" 91°16'3” 413 32 SS6
37 87.5 11.9 19.81 1.85 24.57 3.21 4909-14.. 92°2'41" 442 28 SS5
38 87 11.4 19.56 1.60 24.16 2.8 48°42'59" 91°14'10” 440 30 SS4
39 62.6 -13.0 18.33 0.37 20.34 -1.02 48°57'49" 92°0'10” 465 17 SS5
40 85 9.4 20.7 2.74 28.82 7.46 48°40'40" 91°0'43” 481 30 SS4
41 93.9 18.3 15.82 -2.14 19.53 -1.83 49°10'42" 92°14'14" 394 29 SSI
42 59.7 -15.9 18.81 0.85 25.42 4.06 48°59'58" 92°5'9" 450 32 SI
43 68.2 -7.4 19.62 1.66 21.03 -0.33 48°39'58” 92°10'43" 410 18 SI
44 60.9 -14.7 17.06 -0.90 22.53 1.17 48°33'55" 92°19'16" 428 30 SSI
45 63.6 -12.0 17.47 -0.49 19.6 -1.76 48°43'57" 91°47'50” 350 28 SS2
46 80.3 4.7 17.94 -0.02 20.13 -1.23 48°4'16" 91°21'58" 263 32 S2
47 93.1 17.5 17.3 -0.66 20.84 -0.52 49°8'15" 92°23'24" 415 30 SSI
48 67.3 -8.3 17.21 -0.75 19.63 -1.73 49°2'34" 92°20'57” 334 32 S10
49 90.8 15.2 16.21 -1.75 20.09 -1.27 48°43'41" 91°25'59" 427 32 SS2
50 64.3 -11.3 17.33 -0.63 17.53 -3.83 50° 18'2" 91039-41.. 373 18 SS4
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Site
Age(year)

Mean S.D
Height(m)

Mean S.D
DBH(cm)

Mean S.D
Latitude (dd) Longitude(dd) Elev(m) V-type S-type

51 95 19.4 20.77 2.81 24.28 2.92 50°35'4" 91°36'34" 29 S2
52 69 -6.6 16.73 -1.23 18.54 -2.82 50°4'14" 92°19'51" 324 30 S2
53 57.3 -18.3 19.23 1.27 21.26 -0.1 50°23'1" 91°37'10" 470 32 SI
54 77.8 2.2 21.46 3.50 20.63 -0.73 49°54'48" 92°22'50" 458 29 SI
55 84.8 9.2 18.18 0.22 18.88 -2.48 50°44'1” 91°25'55" 397 32 SS4
56 79.9 4.3 18.23 0.27 19.8 -1.56 50°1'15" 92°36'14" 570 29 S2
57 71.4 -4.2 19.13 1.17 20.35 -1.01 49°58'104" 91°38'19" 365 29 SI
58 66.2 -9.4 17.85 -0.11 17.56 -3.8 49°2ri6" 91°15'43" 492 32 S2
59 79.7 4.1 17.31 -0.65 18.76 -2.6 49°33'50" 91°36'31" 475 32 SS5
60 71.3 -4.3 19.36 1.40 21.9 0.54 49°48'32" 91°16'7" 446 32 S2
61 64.2 -11.4 17.5 -0.46 18.71 -2.65 49°35'32" 92°2'39" 485 29 SI
62 102.8 27.2 21.67 3.71 25.61 4.25 49044-59" 92°3'29" 487 32 S2
63 72.3 -3.3 18.57 0.61 22.9 1.54 49°23'32” 91°58'22" 485 32 SS4
64 74 -1.6 16.32 -1.64 15.98 -5.38 49°16'27" 91°54'30" 489 32 S2
65 77.8 2.2 18.75 0.79 20.61 -0.75 49°22'52" 91°31'12" 506 29 S2
66 71.9 -3.7 14.98 -2.98 16.27 -5.09 49°15'31" 91° 11'34" 477 29 SS4
67 120 44.4 12.74 -5.22 17.42 -3.94 50°56'32" 94° 12'48" 458 30 SS2
68 74.9 -0.7 15.51 -2.45 18.19 -3.17 50°32'47" 92°33'27" 358 32 S2
69 55.8 -19.8 17.61 -0.35 19.51 -1.85 50°29'36" 92°19'1" 345 29 S2
70 75.6 0.0 16.03 -1.93 17.64 -3.72 51°10'18" 93039-52" 298 32 S2
71 74.8 -0.8 15.95 -2.01 19.36 -2 50°48'9" 92°46'16" 454 32 SS5
72 65.2 -10.4 17.45 -0.51 18.58 -2.78 50°56'25” 92°31'60" 448 32 S6
73 94.4 18.8 19.23 1.27 22.32 0.96 51°23'2" 93°42'7" 510 29 SI
74 71.1 -4.5 17.65 -0.31 17.33 -4.03 51°10'16" 93°49'43" 375 30 S2
75 46.9 -28.7 16.92 -1.04 21.49 0.13 50°44'2" 93°11'27" 410 29 SI
76 76.7 1.1 18.09 0.13 18.55 -2.81 51°9'53" 93°56'25” 537 32 S2
77 71.3 -4.3 18.86 0.90 22.56 1.2 51°2'38" 92°50'7" 461 18 SS5
78 78 2.4 18.65 0.69 18.89 -2.47 50°54'5" 93°3'40" 353 32 S6
79 88.2 12.6 21.53 3.57 21.32 -0.04 50°39'16" 93°12'31" 362 32 SS5
80 83.7 8.1 16.62 -1.34 17.79 -3.57 50°26'23" 94°6'12" 417 29 SS5
81 78.1 2.5 20.28 2.32 23.81 2.45 50°28'19" 94°14'35" 259 18 SS6
82 75.2 -0.4 20.81 2.85 22.04 0.68 50°35'26" 94°12'50" 453 29 S6
83 82.3 6.7 18.55 0.59 20.05 -1.31 50°31'3r 94°1'35" 406 32 S2
84 92.7 17.1 11.85 -6.11 17.11 -4.25 50°43'23" 94°6'34" 389 30 SSI
85 77.1 1.5 17.57 -0.39 20.07 -1.29 50°42'3" 93°52'28" 340 29 S5
86 81.4 5.8 14.33 -3.63 18.65 -2.71 50° 15'33" 93°16'54" 416 30 SSI
87 91.5 15.9 18.38 0.42 21.57 0.21 50°3'47" 93°16'9" 449 17 S6
88 66.8 -8.8 19.37 1.41 18.59 -2.77 49°18'55" 90°51'41" 423 SI
89 51.9 -23.7 15.27 -2.69 19.93 -1.43 49013.59., 90°39'50" 649 29 SI
90 58.8 -16.8 20.3 2.34 20.26 -1.1 48°57'34" 90°44'59 445 32 S2
91 75.8 0.2 17.86 -0.10 20.32 -1.04 49°34'52" 90°30'39 555 29 SS5
92 61.7 -13.9 18.59 0.63 17.61 -3.75 49°25'21" 90°26'47" 478 S2
93 84 8.4 17.73 -0.23 16.12 -5.24 49°46'5" 90° 15'57" 370 18 SS4
94 58.7 -16.9 17.98 0.02 19.96 -1.4 49°13'30" 90°54'48" 635 32 SI
95 64.1 -11.5 21.07 3.11 21.44 0.08 49° 12'48" 90°37'34" 502 32 SI
96 70.4 -5.2 16.92 -1.04 20.69 -0.67 49°46'56" 93°11'29" 505 29 SI
97 118.9 43.3 19.35 1.39 28.19 6.83 49°30'19" 93°9'46" 290 32 SS4
98 72.2 -3.4 16.9 -1.06 17.69 -3.67 49°56'55" 93031-31” 400 29 SS4
99 85.6 10.0 16.02 -1.94 17.99 -3.37 49°35'51" 93°3'41" 300 30 SSI
100 73.9 -1.7 16.84 -1.12 17.49 -3.87 49°23'10" 92°38'7" 450 32 SS4
101 93.7 18.1 19.85 1.89 23.25 1.89 49041'I?.. 90°49'60" 180 17 S3
102 70.3 -5.3 19.22 1.26 19.74 -1.62 49°52'16” 92°36'18" 411 29 S6
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APPENDIX II
SITE AND COLLECTION DATA SUMMARY FOR 64 STANDS OF JACK PINE

IN NORTH CENTRAL ONTRARIO
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Appendix II
Site and collection data summary for 64 stands o f jack pine in North Centre Ontario

Site Latitude(dd) Longitude(dd) Elevation(m) V-Type S-Typi
1 50°12' 86°52’ 1050 V32 SI
2 50°07' 86°47' 1080 V29 SI
3 50°03' 86°54' 1150 V32 SI
4 50°05' 87°or 1100 V18 SI
5 49°48' 87°00' 1150 V18 SI
6 50°09' 87°37' 1050 V32 SI
7 49°59' 87°44' 1050 V32 SI
8 49°11' 88°25' 950 V32 S2
9 49°37' 87°57' 1050 V28 S3
10 49°01' 88°20' 950 V18 SI
11 49°12' 87°43' 1500 V30 SSI
12 49°13' 87°52' 1400 V30 SSI
13 48°54' 88°21' 650 V28 SI
14 4 9 0 4 3 ' 87°44' 1150 V32 SI
15 49°12' 88°13' 800 V32 SI
16 48°54' 88°31' 900 V28 SI
17 49°54' 87°24' 1100 V31 S3
18 4 9 0 4 3 ' 87°27' 1100 V17 SI
19 4 9 0 4 3 ' 87°16' 1100 V18 SI
20 4 9 0 3 3 ' 87° 10' 1250 V29 SI
21 4 9 0 1 7 ' 87°13' 1300 V32 SI
22 48°47' 87°06' 900 V32 S2
23 50°16' 89°03' 1200 V32 SI
24 50°18' 89°01' 1150 V32 S4
25 50°04' 89°42' 1450 V30 SSI
26 50°02' 89°29' 1350 V32 SI
27 50°07' 89°13' 1100 V32 SS3
28 50°17' 88°53' 1050 V30 S2
29 50°26' 88°32' 1050 V32 S2
30 50°27' 88°42' 1050 V32 S5
31 48°05' 89°47' 1100 V29 S6
32 48°10' 89°37' 1250 V30 SS2
33 48°14' 90°30' 1700 V29 SS3
34 48°14' 90°11' 1600 V28 S6
35 48°50' 89°06' 1550 V32 S6
36 48°39' 89°04' 1500 V18 SI
37 4 9 0 1 7 ' 89° 14' 1350 V31 SS5
38 49°15' 89°25' 1450 V32 SS2
39 49°20' 89°09' 1150 V32 S5
40 49°07' 90°03' 1550 V32 S2
41 48°55' 89°53' 1600 V32 S5
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Appendix II
Site and collection data summary for 64 stands o f jack pine in North Centre Ontario

(cont’)
Site Latitude(dd) Longitude(dd) Elevation(m) V-Type S-Type
42 48°59' 89°57' 1450 V17 SI
43 48°44' 90°15' 1600 V18 SI
44 48°54' 88°44' 1100 V17 SS5
45 48°57' 89°11' 1500 V30 SSI
46 49°26' 88°56' 750 V32 SI
47 49°21' 89°50' 1500 V25 S2
48 48°30' 90°36' 1600 V31 SS6
49 48°47' 89°36' 1500 V30 SS6
50 48°38' 89°51' 1450 V32 SI
51 48°35' 90°09' 1500 V31 SS5
52 o

00 90°11' 1600 V29 SI
53 48 °4 r 90°54' 1600 V32 SS6
54 49°46' 90°17' 1450 V I8 SS7
55 49°33' 90°17' 1550 V31 S3
56 49°34' 90°32' 1600 V29 SI
57 49°26' 90°26' 1550 V32 SI
58 49°17' 90°20' 1550 V28 SS5
59 49°13’ 9 0 0 3 7 ' 1550 V29 SI
60 49°37' 89°51' 1450 V29 S2
61 49°31' 89°38' 1500 V32 SI
62 4 9 0 3 2 ' 87°40' 1350 V32 SI
63 49°28' 87°32' 1450 V32 SI
64 48°25' 90°08' 1450 V30 SSI
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APPENDIX III
PROVENANCE MEAN VALUES FOR GROWTH, PHENOLOGICAL AND 

FREEZING VARIABLES IN NORTHWESTERN ONTRIAO (102) CASE
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34 
7.04 
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204.68
35 
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103.04 
181.16 

25.00 
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Prov GH94FLSH GH94STRT GH94STOP GH94INCR GH93HT GH94HT DR94FLSH DR94STRT DR94STOP DR94INCR DR93HT DR94HT
69 6.04 6.00 81.84 31.28 105.28 197.08 22.83 14.07 78.21 51.65 122.80 204.14
70 6.04 5.38 82.33 30.25 93.48 174.56 21.86 14.34 77.79 37.97 127.23 187.63
71 5.95 4.64 80.12 28.44 88.80 166.04 22.93 14.72 75.69 47.21 111.07 187.79
72 5.73 3.84 78.56 34.16 101.60 190.24 22.07 13.61 80.46 53.46 113.20 179.00
73 5.12 4.08 83.00 27.50 90.44 159.20 22.63 16.57 84.13 52.43 110.67 181.20
74 5.60 3.04 78.28 25.72 101.36 176.72 22.34 12.97 76.34 59.17 112.57 190.50
75 6.12 3.28 77.44 31.52 99.32 186.56 23.04 13.61 78.00 42.81 123.30 188.31
76 5.42 5.32 74.56 21.76 87.64 163.28 22.43 13.70 81.77 50.67 114.43 190.97
77 6.29 4.38 79.96 28.50 97.17 180.84 22.43 14.79 78.03 44.14 123.63 196.00
78 5.73 4.96 76.20 29.96 98.21 180.32 22.53 14.60 79.73 48.73 122.47 195.77
79 6.64 4.44 78.36 28.32 98.68 184.88 23.73 14.37 79.57 52.00 127.70 202.97
80 6.32 7.46 77.71 36.79 95.36 184.00 23.38 15.50 81.00 50.33 125.00 200.60
81 7.12 5.28 79.60 32.48 96.36 187.12 23.79 14.90 78.00 52.90 131.00 208.60
82 5.77 4.40 74.84 28.40 96.56 173.88 22.55 15.03 80.17 48.77 114.47 181.63
83 7.04 5.20 83.36 31.44 97.68 177.96 24.23 14.77 84.00 45.57 126.13 192.43
84 6.08 4.52 73.32 29.48 88.32 167.60 23.29 13.30 75.23 49.83 119.33 194.00
85 6.76 5.88 80.56 28.20 96.48 176.92 23.89 15.07 76.90 48.66 125.63 205.69
86 6.74 6.12 84.32 34.84 87.20 171.44 23.17 14.43 79.57 53.70 132.33 210.47
87 6.83 6.08 82.68 33.16 102.60 192.92 23.64 15.79 80.39 47.64 134.80 208.76
88 7.00 5.12 80.24 29.92 92.16 183.44 23.53 13.70 77.77 51.60 129.07 207.70
89 6.46 4.60 79.40 31.60 97.64 180.21 23.46 14.93 76.56 56.81 127.83 195.55
90 7.24 4.00 84.08 36.56 90.08 183.52 24.30 14.86 75.75 70.21 121.50 211.61
91 6.39 5.42 78.63 28.75 97.52 183.75 22.80 13.33 81.43 70.03 124.23 214.17
92 6.72 3.00 76.04 36.56 113.64 206.28 23.22 14.32 80.82 60.64 121.10 201.17
93 6.63 3.42 76.63 28.25 111.36 186.56 22.93 14.43 77.87 60.50 134.83 210.00
94 5.79 1.92 81.08 34.12 103.24 193.44 23.64 12.38 79.48 53.41 134.33 212.17
95 6.24 3.28 79.76 28.76 92.80 171.64 23.30 14.00 78.33 53.00 138.20 223.13
96 6.32 3.68 79.24 30.96 98.16 179.80 24.72 14.48 78.86 57.69 149.17 230.62
97 6.57 3.80 84.12 31.96 98.28 180.92 23.96 14.86 83.66 54.24 143.03 224.13
98 7.00 6.24 79.04 37.24 111.40 207.04 23.36 15.52 72.18 55.01 143.90 228.78
99 7.20 8.16 82.44 37.16 115.80 206.84 24.32 16.00 76.28 52.17 152.63 236.57
100 6.60 7.52 81.40 36.60 102.28 201.84 24.23 14.37 74.53 52.73 141.63 231.63
101 7.46 6.80 80.88 34.20 104.60 189.40 24.30 14.90 73.66 62.00 133.70 213.41
102 6.63 5.60 77.40 37.04 117.16 220.84 23.83 13.90 77.73 60.77 143.87 226.77
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Prov KE94FLSH KE94STRT KE94STOP KE94INCR KE93HT KE94HT
1 29.80 13.46 71.04 31.93 124.57 169.73
2 27.40 14.82 72.00 36.25 118.20 165.27
3 28.78 12.36 74.24 35.88 124.27 165.03
4 29.37 14.56 70.93 30.48 124.46 172.61
5 27.21 12.86 71.48 25.84 129.55 177.34
6 27.90 13.57 73.11 35.21 129.30 184.07
7 27.39 15.04 73.38 38.75 128.77 179.79
8 26.79 14.57 73.47 39.25 128.70 187.03
9 27.62 12.68 75.57 40.28 124.32 177.41
10 28.55 12.68 70.79 26.33 115.45 154.38
11 28.41 12.79 72.36 30.89 115.70 162.23
12 28.76 12.00 72.04 29.84 125.62 167.00
13 28.53 13.67 72.17 31.77 126.52 181.57
14 29.33 12.64 67.00 38.29 118.63 171.19
15 29.43 12.93 69.69 28.86 117.70 158.55
16 27.96 13.35 75.23 40.77 127.63 178.33
17 29.00 13.48 65.19 32.04 131.88 173.64
18 29.92 13.69 72.85 45.34 127.43 179.19
19 28.39 12.93 76.18 38.90 131.86 185.75
20 29.07 13.00 69.58 29.85 128.70 177.17
21 29.43 13.90 67.93 29.73 133.72 181.86
22 30.21 13.93 64.68 28.68 133.47 189.90
23 28.66 13.84 71.84 33.20 138.07 189.93
24 29.81 12.58 70.79 29.67 134.17 192.25
25 29.14 14.20 71.90 34.50 130.60 186.20
26 28.93 13.00 72.48 28.65 119.60 162.18
27 28.93 12.70 77.44 26.93 127.78 177.45
28 28.28 13.31 71.21 31.18 132.83 188.28
29 27.29 13.19 61.30 44.23 144.42 204.79
30 27.82 13.65 67.27 47.38 133.57 195.62
31 27.93 12.86 74.69 34.70 131.43 184.93
32 29.20 11.69 6823 33.27 128.80 175.20
33 28.37 13.15 69.00 39.15 137.00 189.63

KE97SURV KE97HT KE04SURV KE04HT KE04DIAM
10.00 644.00

10.00 732.00
9.67 649.22
9.00 669.06
9.67 626.57
9.67 647.59
9.67 727.67
9.67 688.35
9.67 691.22
9.33 642.92
9.67 681.09
9.67 664.17

10.00 699.67
9.00 690.54
9.00 630.69

10.00 686.33
8.33 709.31
8.67 724.32
9.33 639.88
9.67 650.85
9.33 651.11
9.67 661.56
9.67 679.96
9.33 653.48

10.00 720.17
9.33 624.24

10.00 688.83
9.00 712.03
9.00 734.67
9.33 744.72

10.00 703.67
10.00 654.17
9.67 703.63

.00 3151.6
8.67 3157.9
8.33 2843.3
6.00 2995.3
7.33 3153.2
7.67 2923.6
7.33 3518.9
8.33 3131.9
7.33 3568.4
7.67 3219.3
8.00 3136.6
7.00 3215.1
8.00 3261.7
8.33 3068.1
6.00 3305.8
8.33 3187.6
6.33 3485.1
8.67 3161.0
7.00 3175.2
8.00 3177.6
6.00 3003.8
6.33 3316.0
6.67 3421.2
5.67 3262.6
8.00 3458.8
7.33 3000.7
7.00 3139.3
6.67 3585.5
7.67 3143.8
8.33 3151.4
7.00 3469.2
7.67 3030.6
7.00 3404.4

25.78
25.49
22.87
26.39
25.88 
23.53
25.10
22.11
26.92 
23.90 
29.80 
22.25 
24.22
22.50 
23.32 
22.28 
26.68
27.40
22.73 
25.02 
22.31
22.73 
24.16 
24.77 
27.86
24.19
27.20 
28.29
26.92 
23.58 
26.43 
25.45 
25.14

R
ep

ro
du

ce
d 

wi
th

 
pe

rm
is

si
on

 
of 

the
 

co
py

rig
ht

 
ow

ne
r. 

Fu
rth

er
 

re
pr

od
uc

tio
n 

pr
oh

ib
ite

d 
w

ith
ou

t 
pe

rm
is

si
on

.



ON ON ON Os Os Os Os Os ON Us Us U i Us Us Us Us U s Us Us 4k 4k 4 k 4 k 4k 4 k 4k 4k 4k 4k 04 0 4 0 4 0 4 0 4 0 4
00 ON Us 4 * Ui t o hh © SO 00 -O Os U i 4k. 0 4 t o © SO 00 >0 ON Us 4 k 0 4 t o © SO 00 •O Os Us 4 k

t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o t o
00 00 *o 00 - J 00 00 * o 70 00 •0 - j SO 00 00 00 00 00 s o 00 ^ | 00 00 00 SO SO 00 00 so 00 00 00 00
© hh b b b Ui U i b 00 0 4 b b b b 0 4 © 1- ^ 00 t o © 4 k 00 00 b U i H-* 4 k © hat b t o
o o 4k o 00 © *o 0 4 Os © © SO 00 © © © 1- ^ t o © 4k 0 4 U s ON t o 00 © so 0 4 0 4 0 4 4 k 4 k 0 4

h-» h-* h h hh ha* ha* h** ha* la-k Hat H-* ha* ha* ha*
hh u > U4 t o i—* ha* t o Ui 0 4 0 4 t o Ui 0 4 t o t o 0 4 4k. 0 4 4k 0 4 t o 0 4 0 4 t o 0 4 04 t o t o JO t o ha* 0 4 t o
00 Us o t o V© 00 b U i Us 00 U i k ) t o h-* U i 4k. ‘t o t o © 4k U i t o 00 t o 04 b 4 k 4k U s b h-*
-0 o s o ON 04 00 4k. •O 0 4 s o © 00 © O n 4k 4k © 0 4 t o 00 ON © 0 4 00 1̂ © Ha* t o 0 4 t o

- 4 O n • o ^ 4 -0 *o Os ON >0 ON ON 00 *0 *o « o "0 •O ON Os 1̂ 1̂ ON •O V j -s i -0
U l U i • o o j -0 'O Ui 00 0 4 00 0 4 hh t o 4k. 00 SO Us s-- 1—* H— *0 © SO ON © © Us © ha* 4 k ©
b £ b b b u> Ui 4^. U i © k | © haa b 0 4 4k. 00 © 0 4 i o k j U i k * 4k Us k | b I n 4 k t o b 0 4 0 4
o Os SO 4 k ■**4 o t o t o © 00 4> ■0 t o s o SO 00 4k © ON t o 0 4 00 00 00 00 ON SO 4k 'O © 0 4 O s

04 4 k 4k 0 4 04 04 04 4k- 0 4 4k. 0 4 t o t o t o t o t o t o 04 4k 0 4 0 4 0 4 0 4 04 0 4 0 4 0 4 0 4 0 4 4k 4 k 0 4 4k
ha* t o -0 ^ 4 t o U i © 'O © ha* © 0 4 0 4 00 SO SO SO N-k t— 00 Os ON 'O US 4 k Os H - 0 4 00 © © O s 4 k
t o 00 V0 b o b b b 0 4 © t o 1—k Us 04 t o 4k Us ‘O n N-* k * 0 4 1- ^ 4 k © *4k U i *© b 4k 04 4k 4k Us 4k 4 k
o NO -0 00 -0 - 4 © ON 4k. t o 4k. 00 Os SO © t o 4k 0 4 Us ON 4k Os © 0 4 Os t o 00 - o Us Os SO 4 k

ha* hh ha* h* h-» i—» ha* h-* H-k |ak M h-*
hh t o u> 0 4 o> 04 Ui 4k 4k 0 4 4 k 0 4 h h 04 0 4 Hak *■» t o t o t o 0 4 t o 0 4 t o t o t o t o 0 4 0 4 0 4 t o 0 4 4k 0 4
Us 4 k 4k s o t o *o U i N 0 4 Us © 0 4 Us 00 'O 00 O s SO •0 Us On Os t o 00 00 U s JO 'O t o 0 4
b k ) U i b t o 00 b h»* b b ha* 4k- Us k | b t o t o 4 k b 00 U i b b t o 00 © 00 00 b 00 h** U s © ©
o * o t o -0 00 Ui 'O 0 4 'O © SO so © 'O 0 4 4 k >J © 0 4 00 t o © 4k © 'O 00 Us 0 4 0 4 © 4 k -s l ©

*a* h-* h* h - t o H-k •—* h-* ka* l—t |a* hh ha* t o ha*
Os ON NO SP SO 00 00 © © 00 SO 00 Us 00 SO U i Us ON U i ON 00 00 00 00 • o 'O 'O 00 00 SO 00 00 © SO
t o 00 n- 4 k OJ 00 Us •U SO ON U i 4k. O n 00 0 4 t o ^ 4 U i SO ** SO © © SO 4 k 4 k © 00 u s © 00 © 4 k
4k Us b o b b b 4k. b 00 Us 0 4 0 4 00 Us 00 Us b k | b © © k l 04 t o 0 4 t o *© Us b b b h h ha*
Os t o 00 *o Os -0 Ui © 1̂ - 4 *0 ha* 4k Os 0 4 0 4 so © Os H-k X 4k >0 0 4 © >0 0 4 Us © 0 4 t o -4 SO

h*» hh
SO SO so o so so © SO SO © SO SO NO SC © © SO SO SO 00 SO SO 00 s o SO © © 00 SO so © © SO SO 00
b *ON b o b b © b b © 0 4 0 4 0 4 b © © © b b b 0 4 0 4 b b b © © b b b © *© 0 4 b
■-4 - j o o -0 'O © 'O © 0 4 0 4 0 4 *0 © © © * o -0 'O 0 4 0 4 •0 v j *0 © © *0 1̂ 1̂ © © © 0 4 -0

•O Os • o -0 - o ON ON -0 *0 -0 - J ON 0\ Os Os ON Os ON U i Os O n <?s ON Os Os O n Os ^ 4 •O •O v|O U i to o U i 00 00 © 04 k—* 0 4 SO © *o 00 © 00 4k. t o Os to 'O 0 4 & 1̂ b t o U i u s t o Os 4kUS O 00 NO to Ui 00 ■o -0 h-* 00 © to 0 4 N Us >-* •—k © © so 4k to © O n Os SO 4k 00 M -0
to 00 U i Ui 4k b U i to b 00 to 00 4k. 04 0 4 0 4 Us U i k l 0 4 © 0 4 00 k l 0 4 4k U i t o b b b bto * o O U i E Os © to -0 0 4 ON 00 ON hh 04 0 4 Us SO 4k Os © © Us © >0 ^ 4 0 4 0 4 to © 1̂ Os 4k

o 00 -o "O -0 00 00 00 00 - J 00 < t 00 ON 00 00 00 U i 00 O s Us ON 00 00 O n On •O 00 ;0 00 -4w b u> o b b © b b 0 4 b © b b 0 4 0 4 © © © © b 0 4 b © b b © b 0 4 0 4 © © 0 4 © bo> © u> o 'O -0 © - o *0 0 4 • o © 'O *0 04 0 4 © © © © *0 0 4 © 'O •0 © 'O 0 4 0 4 © © 0 4 ©

04 t o 04 Ui Ui Ui OJ 0 4 0 4 0 4 0 4 04 0 4 0 4 04 t o 0 4 t o to to 0 4 t o 0 4 04 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4ha* SO u> U i ha* h"* ha* t o H-k 0 4 4k. to to to © 00 00 00 to © © 4k H-k 4k 0 4 4 k © Us 4k U i
U i © o 00 0 4 ON ha* 00 4k 'O SO 00 Os © 00 00 00 00 04 00 to Us to © O t o © Os 'O SO so 4kA s o * o £» US Us -0 00 0 4 00 »— t o h— t o Us -0 4k 4. ON Us 0 4 O s 4 k 4k to 4k to 00 4 k to 4k U i 4k -J
b b o b b b b 4k. 00 b 4. ha* U i h- Us to b b h— 4k 0 4 4 k 00 t o Us 4 k U i 00 b H-* N-t ha* l-h ha*04

to t o to to t o to to to to to to to t o t o to t o to to t o to to to t o to t o to t o t o to to t o t o t o t o t o
o> 'O N Us ON Os Us 0 4 4 k 4k. U I 0 4 04 4k. t o to 0 4 s—» t o 4k © 4k 04 0 4 4 k o n 00 H-t 0 4 u s 4k O s to 4k

to 4 k 0 4 00 0 4 o k> 00 b kl b 0 4 © 00 © b b b t o N4 k k b kl 4k 4k 4k to U s b Us to 0 4 b U i
U > U > U 4 h - O ' \ t O 0 0 h a * ^ H - h - t O 0 0 4 » . 0 0 N C > t s J 0 0 4 h 0 Q - 4 O 4 0 0 N C ) 0 0 N 0 t O S © U l - > I t O O 4 . ^ . U l 4 h

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

Prov KE94FLSH KE94STRT KE94STOP KE94INCR KE93HT KE94HT KE97SURV KE97HT KE04SURV KE04HT KE04DIAM

69 27.76 12.31 76.00 35.86 127.13 170.17 10.00 651.50 7.67 3137.2 23.09
70 27.03 11.69 75.76 24.60 117.30 159.55 9.33 642.09 8.67 2721.0 24.34
71 26.67 12.97 67.87 32.05 122.30 172.17 10.00 634.17 8.67 2559.4 20.51
72 26.63 11.68 77.54 37.57 118.30 160.63 9.67 694.30 7.33 3247.3 23.66
73 26.03 14.42 76.04 25.67 117.17 156.13 10.00 701.17 8.67 3023.9 23.82
74 28.00 13.79 64.83 29.07 121.22 165.55 9.67 690.50 8.67 3300.2 25.65
75 27.45 12.21 67.41 34.55 129.86 180.38 9.67 647.56 6.33 3108.4 24.28
76 28.27 13.26 66.89 30.65 125.20 170.70 10.00 626.67 8.00 2991.0 21.02
77 28.56 15.13 69.96 32.53 121.86 162.71 9.00 659.98 6.67 3390.6 24.64
78 28.43 12.83 70.43 27.00 126.23 162.83 9.67 648.22 7.67 3009.0 21.17
79 28.31 12.48 74.41 38.75 133.59 187.52 9.33 705.56 7.00 2995.8 23.47
80 28.29 13.62 74.50 24.73 135.12 178.96 9.33 618.72 6.33 2942.5 24.33
81 28.79 12.71 81.21 29.50 134.40 177.76 9.33 629.18 7.00 2531.3 25.39
82 28.67 13.89 70.48 29.78 117.33 161.27 10.00 637.83 7.33 3335.9 24.57
83 27.96 13.04 76.74 30.49 116.38 168.07 9.67 677.43 7.67 3356.0 23.32
84 29.21 13.56 70.92 25.45 134.07 181.11 9.33 657.00 7.67 3209.8 21.75
85 28.55 13.15 65.42 20.46 124.90 163.07 9.67 634.06 6.67 3452.3 23.20
86 28.00 13.59 70.15 33.03 123.03 173.25 9.00 630.93 7.67 3110.8 23.18
87 28.03 11.64 63.11 30.07 134.03 180.74 9.67 662.11 7.00 3404.7 24.28
88 29.41 13.38 68.58 27.54 129.93 168.72 9.67 599.80 7.00 2605.4 23.24
89 27.40 12.00 71.65 34.77 125.73 177.41 9.67 675.15 8.00 3479.2 28.21
90 28.07 12.66 74.38 35.66 125.07 167.77 10.00 655.67 7.67 3393.7 21.90
91 27.70 13.11 69.05 43.21 123.67 173.11 9.33 684.46 7.67 3078.8 23.93
92 26.96 12.80 67.52 33.17 127.73 171.48 9.67 656.72 8.33 3102.4 22.66
93 27.41 12.72 74.12 38.16 126.14 183.15 9.00 725.53 8.00 3384.0 24.63
94 29.18 14.04 79.31 33.77 131.63 183.14 9.67 663.72 8.33 3244.5 25.37
95 28.85 14.91 71.70 30.57 127.02 173.15 9.00 669.81 6.33 3080.4 27.39
96 30.07 12.88 75.92 26.46 130.30 174.83 10.00 690.00 9.00 3234.6 25.00
97 29.10 12.45 71.97 35.28 129.23 191.93 9.67 647.35 6.00 3207.4 23.32
98 29.00 13.92 73.64 35.53 148.08 210.72 9.67 690.52 7.33 3118.6 22.72
99 29.03 14.87 67.00 31.10 139.75 195.38 9.67 669.26 8.67 3008.0 22.14
100 28.37 12.48 71.52 29.48 121.60 169.90 9.33 708.56 8.67 2893.6 21.89
101 28.29 13.32 72.32 35.50 137.00 184.11 9.00 758.33 7.67 3587.0 26.46
102 28.03 13.00 69.45 32.41 131.23 179.62 9.67 707.33 5.67 3379.8 25.09
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17.00 
70.04 

45.08 
118.1 

180.2 
9.33 

592.1 
8.67 

248.49 
15.76

17.67 
76.41 

46.23 
124.1 

187.6 
8.33 

646.1 
8.67 

261.62 
15.62
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Prov SL94STRT SL94STOP SL94INCR SL93HT SL94HT SL97SURV
34 17.78 71.26 47.70 119.3 182.5 9.00
35 17.38 70.62 51.19 127.5 206.2 8.67
36 17.28 77.52 33.50 122.1 175.1 8.67
37 17.55 77.79 44.86 129.0 198.0 7.67
38 17.36 66.04 47.51 123.1 185.6 7.33
39 17.52 76.17 42.89 122.7 183.8 7.00
40 16.85 75.69 40.22 119.1 184.4 7.67
41 16.73 70.93 41.60 121.9 186.6 8.67
42 18.89 69.85 36.85 121.3 188.3 9.00
43 17.80 75.83 38.76 122.9 187.2 8.67
44 17.39 68.43 42.82 121.0 186.0 8.00
45 19.32 69.04 41.62 111.7 157.3 6.33
46 17.11 77.32 42.50 122.4 187.3 8.00
47 17.67 75.33 34.03 128.9 184.0 8.33
48 17.21 73.86 38.36 124.9 188.8 9.67
49 18.25 75.64 41.34 126.3 193.6 9.33
50 17.70 74.20 27.97 117.8 173.2 8.33
51 18.56 75.60 28.36 117.7 162.4 8.33
52 16.82 74.18 35.40 118.2 167.9 7.67
53 17.54 81.73 25.95 106.7 157.8 9.00
54 17.63 72.48 36.67 130.9 191.4 8.67
55 17.07 81.04 30.64 122.4 181.9 8.67
56 17.18 78.76 36.94 115.9 166.4 8.33
57 18.70 75.44 34.63 131.6 189.2 9.67
58 18.15 76.69 39.92 135.6 195.8 8.00
59 17.24 76.45 43.72 132.0 205.7 8.33
60 16.64 75.39 33.20 135.6 190.2 9.67
61 17.04 76.71 43.80 131.6 190.9 9.00
62 17.71 78.36 34.08 124.5 182.4 8.67
63 17.14 74.93 37.46 132.4 196.2 9.00
64 17.76 79.41 45.07 134.2 200.7 8.67
65 17.63 79.56 39.41 134.6 194.2 8.00
66 17.87 73.33 40.32 132.0 192.6 8.33
67 18.34 72.93 35.13 116.0 168.2 9.00
68 17.25 66.57 36.07 119.9 175.5 8.00

SL97HT SL04SURV SL04HT SL04DIAM
632.0 8.33
660.5 8.67
625.2 8.33
623.1 8.33
641.1 7.00
638.2 7.33
569.9 7.00
649.0 8.00
644.5 9.33
651.5 8.67
616.7 8.00
730.0 6.67
685.9 8.67
593.5 7.33
666.0 8.67
668.1 9.33
568.9 8.33
556.3 7.67
568.5 6.67
567.6 9.00
610.9 8.33
545.6 8.33
631.6 7.67
627.1 9.33
668.8 8.00
675.6 8.33
622.4 9.00
609.2 8.00
700.0 8.33
621.7 8.33
631.4 9.00
604.4 7.00
631.5 8.67
570.6 9.00
629.4 8.33

265.84 17.12
261.56 16.44
248.50 14.15
268.13 19.30
281.46 19.06
265.30 18.57
233.15 13.64
251.72 17.78
252.93 16.29
259.14 16.01
259.23 15.50
280.01 18.63
258.63 17.11
238.74 18.03
270.80 16.95
257.27 18.22
234.86 16.69
235.75 15.51
241.69 16.74
245.95 16.71
234.98 16.28
230.12 16.08
250.26 16.19
263.58 18.62
278.98 20.06
280.52 18.45
266.10 17.34
262.37 18.03
286.53 20.13
273.30 17.75
262.61 17.33
241.11 15.53
253.16 19.20
245.82 17.13
255.63 18.27
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APPENDIX IV
PROVENANCE VALUES FOR 36 CLIMATE VARIABLES IN NORTH CENTRE

ONTRIAO (102 PROVENANCES)
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Prov Janmaxt Febmaxt Marmaxt Aprmaxt Maymaxt Junmaxt Julmaxt Augmaxt Sepmaxt Octmaxt Novmaxt Decmaxt Janmint Febmint Marmint Apnnint Maymint Junmint
1 -12.96 -8.75 -0.91 8.54 16.99 21.45 24.66 22.65 15.88 8.65 -1.43 -10.43 -23.32 -20.36 -12.73 -3.36 4.22 9.92
2 -13.69 -9.33 -1.35 7.98 16.44 21.14 24.41 22.37 15.51 8.2 -1.83 -10.94 -23.61 -20.82 -13.21 -3.78 3.82 9.66
3 -12.64 -8.38 -0.75 8.4 16.68 21.27 24.47 22.5 15.92 8.84 -1.16 -9.67 -23.76 -20.95 -13.27 -3.81 3.66 9.37
4 -12.84 -8.46 -0.75 8.29 16.56 21.31 24.46 22.46 15.95 8.94 - 1.1 -9.63 -24.1 -21.33 -13.66 -4.06 3.5 9.32
5 -14.24 -9.79 -1.87 6.94 15.46 20.54 23.76 21.48 14.89 7.99 -2.14 -10.79 -25.81 -23.39 -15.94 -5.79 2.37 8.38
6 -14.31 -9.84 -1.74 7.27 15.73 20.84 24 21.8 15.13 8.03 -2.13 -11.09 -25.13 -22.71 -15.26 -5.19 2.86 8.97
7 -14.58 -10.19 -2.17 6.71 15.22 20.37 23.67 21.35 14.67 7.6 -2.51 -11.24 -26.34 -24.06 -16.65 -6.28 1.93 7.89
8 -14.39 -9.94 -1.94 6.95 15.45 20.52 23.91 21.58 14.92 7.87 -2.24 - 10.88 -26.61 -24.24 -16.72 -6.31 1.87 7.71
9 -13.83 -9.4 -1.39 7.71 16.14 21.07 24.23 22.12 15.42 8.29 -1.82 -10.75 -24.31 -21.72 -14.16 -4.4 3.4 9.41
10 -14.5 -10.07 -2.05 6.87 15.37 20.47 23.88 21.54 14.85 7.75 -2.35 -11.04 -26.8 -24.49 -17.01 -6.51 1.7 7.52
11 -13.66 -9.19 -1.29 7.64 16.05 21.03 24.13 22.01 15.46 8.51 -1.62 -10.35 -24.61 -22.04 -14.51 -4.68 3.21 9.24
12 -11.27 -7.07 0.27 9.53 17.52 21.82 25.11 23.32 16.93 9.83 -0.08 -8.3 -23.36 -20.42 -12.53 -3.28 3.75 9.15
13 -11.72 -7.59 -0.12 9.41 17.59 21.78 25.03 23.15 16.62 9.47 -0.57 -9.26 -23.09 -20.03 -12.26 -3.08 4.16 9.56
14 -11.65 -7.55 -0.12 9.51 17.68 21.8 25.06 23.19 16.67 9.51 -0.57 -9.35 -23.12 -19.97 -12.22 -3.06 4.18 9.52
15 -12.15 -8 -0.42 9.16 17.42 21.67 24.92 22.99 16.38 9.19 -0.9 -9.75 -23.36 -20.21 -12.55 -3.25 4.19 9.67
16 -12.14 -7.96 -0.35 9.1 17.37 21.68 24.92 22.99 16.39 9.22 -0.82 -9.56 -23.2 -20.2 -12.45 -3.17 4.18 9.7
17 -12.14 -7 .% -0.35 9.1 17.37 21.68 24.92 22.99 16.39 9.22 -0.82 -9.56 -23.2 -20.2 -12.45 -3.17 4.18 9.7
18 -12.03 -7.88 -0.32 9.28 17.53 21.74 24.99 23.08 16.49 9.3 -0.79 -9.64 -23.29 -20.14 -12.45 -3.17 4.22 9.67
19 -11.33 -7.18 0.21 9.66 17.73 21.92 25.2 23.37 16.92 9.8 -0.19 -8.69 -23.02 -20 -12.15 -2.99 4.08 9.44
20 -11.5 -7.33 0.11 9.54 17.66 21.88 25.14 23.3 16.82 9.69 -0.3 -8.84 -23.08 -20.07 -12.23 -3.04 4.09 9.49
21 -11.5 -7.33 0.11 9.54 17.66 21.88 25.14 23.3 16.82 9.69 -0.3 -8.84 -23.08 -20.07 -12.23 -3.04 4.09 9.49
22 -11.49 -7.32 0.14 10.05 18.19 22.22 25.46 23.62 17.17 9.98 -0.3 -9.31 -23.14 -19.88 -11.99 -2.76 4.41 9.63
23 -12.7 -8.42 -0.71 9.24 17.57 22 25.15 23.33 16.87 9.68 -0.95 -9.89 -24.36 -21.37 -13.27 -3.28 4.19 9.46
24 -13.05 -8.63 -0.76 9 17.28 21.8 25.02 23.12 16.49 9.16 - 1.2 -10.31 -24.52 -21.37 -13.52 -3.52 4.08 9.58
25 -12.82 -8.49 -0.72 9.06 17.33 21.77 24.98 23.09 16.49 9.21 -1.15 -10.19 -24.38 -21.21 -13.38 -3.51 4.08 9.51
26 -12.67 -8.32 -0.54 9.33 17.6 22 25.2 23.34 16.78 9.52 -0.93 - 10.01 -24.28 -21.12 -13.19 -3.29 4.22 9.6
27 - 12.66 -8.44 -0.79 9.12 17.43 21.83 25 23.16 16.68 9.5 -1.07 -9.97 -24.34 -21.33 -13.3 -3.4 4.08 9.35
28 -12.83 -8.51 -0.76 9.11 17.41 21.87 25.05 23.19 16.65 9.41 -1.09 -10.09 -24.45 -21.4 -13.42 -3.41 4.12 9.47
29 -12.62 -8.32 -0.6 9.19 17.44 21.81 25.04 23.14 16.56 9.3 -1.05 -10.07 -24.2 -20.97 -13.19 -3.45 4.13 9.55
30 -12.25 -8.07 -0.49 9.18 17.43 21.67 24.92 23 16.41 9.19 -0.97 -9.9 -23.73 -20.44 -12.85 -3.43 4.14 9.59
31 - 12.2 -7.95 -0.31 9.44 17.68 21.91 25.16 23.26 16.68 9.44 -0.78 -9.8 -23.75 -20.4 -12.75 -3.27 4.28 9.73
32 -13.55 -9.24 -1.3 8.05 16.52 21.17 24.42 22.38 15.53 8.25 -1.79 -10.87 -23.55 -20.72 -13.13 -3.71 3.9 9.71
33 -12.99 -8.68 -0.89 8.66 16.99 21.47 24.73 22.77 16.04 8.74 -1.38 -10.41 -24.11 -20.82 -13.37 -3.77 4.03 9.71

R
ep

ro
du

ce
d 

wi
th

 
pe

rm
is

si
on

 
of 

the
 

co
py

rig
ht

 
ow

ne
r. 

Fu
rth

er
 

re
pr

od
uc

tio
n 

pr
oh

ib
ite

d 
w

ith
ou

t 
pe

rm
is

si
on

.



175

Prov Janmaxt Febmaxt Marmaxt Aprmaxt Maymaxt Junmaxt Julmaxt Augmaxt Sepmaxt Octmaxt Novmaxt Decmaxt Janmint Febmint Marmint Aprmint Maymint Junmint
34 -12.94 -8.68 -0.85 8.46 16.$7 21.43 24.62 22.61 15.89 8.73 -1.33 -16.18 -2 l4 2 -20.6 -12.91 -148 4.05 9.8
35 -11.6 -7.36 -0.08 8.96 16.94 21.42 24.7 22.89 16.53 9.49 -0.37 -8.34 -23.93 -21.04 -13.24 -3.85 3.29 8.79
36 -11.3 -6.96 0.28 9.25 17.13 21.65 24.94 23.18 16.92 9.91 0.07 -7.77 -24.02 -20.97 -13.23 -3.79 3.25 8.71
37 -11.93 -7.55 -0.29 8.5 16.61 21.31 24.44 22.52 16.29 9.54 -0.36 -8.47 -24.61 -21.8 -14.1 -4.5 2.7 8.28
38 -12.08 -7.81 -0.32 8.81 16.94 21.47 24.7 22.81 16.34 9.28 -0.68 -8.97 -23.78 -20.9 -13.13 -3.71 3.6 9.2
39 -11.35 -7.01 0.12 8.98 16.99 21.53 24.75 22.89 16.7 9.9 0.08 -7.94 -24.38 -21.54 -13.79 -4.3 2.69 8.11
40 -11.68 -7.44 -0.09 9.03 17.05 21.51 24.78 22.95 16.55 9.48 -0.42 -8.52 -23.77 -20.87 -13.06 -3.69 3.48 8.99
41 -11.51 -7.2 -0.17 8.58 16.74 21.3 24.46 22.52 16.35 9.71 -0.09 -8.23 -24.64 -21.9 -14.27 -4.77 2.23 7.63
42 -12.1 -7.89 -0.39 8.81 16.98 21.44 24.68 22.78 16.26 9.17 -0.79 -9.16 -23.6 -20.72 -12.96 -3.6 3.71 9.29
43 -11.77 -7.55 -0.16 8.98 17.04 21.49 24.75 22.9 16.47 9.4 -0.51 -8.68 -23.71 -20.82 -13.02 -3.66 3.54 9.06
44 -10.98 -6.79 0.45 9.69 17.61 21.87 25.19 23.44 17.1 10.02 0.15 -7.95 -23.36 -20.43 -12.51 -3.28 3.65 8.98
45 -10.74 -6.56 0.67 9.99 17.9 22.07 25.4 23.66 17.34 10.25 0.37 -7.83 -23.06 -20.1 -12.16 -3.02 3.84 9.11
46 -11.07 -6.78 0.45 9.53 17.38 21.79 25.12 23.39 17.1 10.02 0.19 -7.68 -23.92 -21.02 -13.05 -3.64 3.3 8.69
47 -9.85 -5.93 0.71 9.64 17.49 21.53 24.98 23.22 17.1 10.29 0.8 -7.01 -23.04 -20.26 -12.73 -3.87 2.69 7.73
48 -11.99 -7.79 -0.27 9.02 17.19 21.59 24.83 22.94 16.41 9.3 -0.68 -9.15 -23.41 -20.5 -12.71 -3.4 3.88 9.42
49 -11.76 -7.53 -0.04 9.25 17.37 21.73 24.99 23.13 16.65 9.54 -0.44 -8.85 -23.39 -20.45 -12.61 -3.3 3.89 9.4
50 -11.29 -7 0.13 9.02 16.95 21.47 24.74 22.94 16.71 9.8 0 -7.83 -24.25 -21.33 -13.59 -4.14 2.87 8.3
51 -14.15 -9.69 -1.61 7.45 15.9 20.93 24.09 21.94 15.23 8.1 -2.04 -11.02 -24.68 -22.19 -14.69 -4.77 3.14 9.22
52 -14.53 -10.07 -1.9 7.19 15.65 20.78 23.96 21.78 15.01 7.8 -2.34 -11.45 -25.02 -22.62 -15.18 -5.12 2.87 8.99
53 -13.66 -9.3 -1.31 7.92 16.38 21.16 24.35 22.28 15.49 8.29 -1.79 -10.79 -23.8 -21.12 -13.51 -3.94 3.73 9.64
54 -14.27 -9.81 -1.71 7.35 15.8 20.87 24.04 21.87 15.15 8 -2.14 -11.15 -24.81 -22.35 -14.87 -4.91 3.04 9.14
55 -13.41 -9.1 -1.16 8.1 16.55 21.25 24.44 22.38 15.62 8.43 -1.64 -10.59 -23.64 -20.91 -13.26 -3.75 3.87 9.73
56 -14.75 -10.31 -2.1 6.99 15.45 20.66 23.85 21.64 14.85 7.62 -2.54 -11.69 -25.38 -23.07 -15.68 -5.47 2.59 8.74
57 -13.58 -9.29 -1.33 7.96 16.46 21.14 24.36 22.29 15.46 8.22 -1.83 -10.87 -23.55 -20.82 -13.21 -3.75 3.88 9.73
58 -13.68 -9.22 -1.27 7.76 16.16 21.11 24.24 22.13 15.52 8.48 -1.65 -10.47 -24.45 -21.85 -14.29 -4.49 3.35 9.36
59 -12.92 -8.47 -0.91 7.85 16.16 21.08 24.1 22.05 15.72 9.01 -1.04 -9.46 -24.85 -22.2 -14.53 -4.76 2.83 8.69
60 -13.03 -8.61 -0.88 8.08 16.38 21.22 24.33 22.3 15.82 8.88 -1.19 -9.73 -24.34 -21.63 -13.99 -4.3 3.34 9.23
61 -13.59 -9.08 -1.22 7.66 16.07 21.07 24.14 22.01 15.52 8.66 -1.48 -10.18 -24.72 -22.14 -14.61 -4.75 3.17 9.21
62 -12.95 -8.64 -0.89 8.23 16.56 21.25 24.42 22.41 15.81 8.73 -1.3 -9.92 -23.89 -21.13 -13.47 -3.93 3.64 9.44
63 -13.23 -8.89 -1.05 8.09 16.47 21.21 24.38 22.33 15.68 8.57 -1.49 -10.23 -23.91 -21.19 -13.55 -3.98 3.65 9.52
64 -12.59 -8.29 -0.69 8.38 16.62 21.27 24.45 22.49 15.97 8.93 -1.06 -9.48 -23.94 -21.14 -13.45 -3.95 3.52 9.25
65 -12.43 -8.18 -0.68 8.34 16.53 21.16 24.36 22.42 15.94 8.92 -1.03 -9.29 -24.01 -21.2 -13.53 -4.05 3.37 9.06
66 -12.76 -8.34 -0.74 8.15 16.41 21.22 24.33 22.32 15.92 9.05 -0.98 -9.38 -24.44 -21.69 -14.03 -4.36 3.19 9.01
67 -12.77 -8.31 -0.81 7.92 16.22 21.12 24.13 22.09 15.81 9.14 -0.9 -9.29 -24.94 -22.28 -14.57 -4.8 2.71 8.52
68 -14.27 -9.84 -1.73 7.77 16.05 20.95 24.16 22.22 15.36 7.89 -2.34 -11.47 -25.35 -22.48 -14.69 -4.36 3.29 9.08
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Prov Janmaxt Febmaxt marmaxt aprmaxt maymaxt junmaxt julmaxt augmaxt sepmaxt octmaxt novmaxt decmaxt janmint febmint marmint aprmint maymint junmint
69 -14.38 -9.98 -1.92 7.27 15.72 20.68 23.94 21.86 14.95 7.63 -2.39 -11.51 -24.21 -21.66 -14.14 -4.5 3.19 9.19
70 -14.3 -9.85 -1.72 7.49 15.94 20.92 24.14 22.04 15.19 7.89 -2.19 -11.36 -24.28 -21.72 -14.17 -4.43 3.31 9.34
71 -14.83 -10.36 -2.15 7.22 15.49 20.58 23.81 21.82 14.88 7.38 -2.77 -11.95 -25.33 -22.62 -14.92 -4.71 2.91 8.92
72 -14.59 -10.06 -1.89 7.37 15.76 20.81 24.1 22.04 15.11 7.7 -2.35 -11.63 -24.36 -21.79 -14.22 -4.48 3.14 9.18
73 -14.86 -10.38 -2.19 7.03 15.45 20.57 23.84 21.74 14.8 7.41 -2.65 -11.93 -24.75 -22.27 -14.79 -4.89 2.87 8.98
74 -15.03 -10.55 -2.29 7.11 15.41 20.52 23.75 21.76 14.77 7.27 -2.91 - 12.2 -25.58 -22.9 -15.24 -4.89 2.81 8.86
75 -14.72 - 10.22 -1.98 7.45 15.71 20.78 23.98 22.01 15.09 7.58 -2.62 -11.83 -25.4 -22.63 -14.86 -4.56 3.06 9.04
76 -14.39 -9.82 -1.71 7.58 15.91 20.9 24.23 22.24 15.32 7.86 -2.15 -11.38 -24.14 -21.47 -13.81 -4.22 3.24 9.18
77 -14.7 -10.26 -2.08 7.33 15.6 20.64 23.84 21.87 14.95 7.46 -2.74 -11.87 -25.49 -22.73 -14.99 -4.67 2.98 8.92
78 -14.9 -10.38 -2.18 7.08 15.45 20.58 23.87 21.8 14.84 7.4 -2.65 -11.96 -24.76 -22.23 -14.69 -4.8 2.87 8.96
79 -14.68 -10.14 -1.99 7.28 15.63 20.7 24.01 21.98 15.03 7.58 -2.45 -11.71 -24.5 -21.9 -14.3 -4.54 3.03 9.05
80 -14.3 -9.73 -1.65 7.63 15.96 20.92 24.27 22.28 15.37 7.92 -2.08 -11.29 -24.01 -21.33 -13.67 -4.16 3.28 9.2
81 -13.66 -9.2 - 1.2 8.38 16.65 21.38 24.61 22.68 15.92 8.5 -1.73 -10.84 -24.76 -21.71 -13.95 -3.91 3.73 9.41
82 -13.68 -9.25 -1.28 8.32 16.6 21.32 24.54 22.62 15.86 8.46 - 1.8 - 10.88 -24.9 -21.88 -14.09 -3.96 3.68 9.32
83 -13.8 -9.33 -1.29 8.3 16.57 21.34 24.56 22.63 15.85 8.42 -1.84 -10.97 -24.96 -21.96 -14.15 -3.97 3.66 9.35
84 -13.9 -9.52 -1.58 7.89 16.17 20.96 24.2 22.24 15.45 8.04 -2.13 - 11.12 -24.89 -21.94 -14.24 -4.24 3.42 9.14
85 -14.09 -9.66 -1.62 7.87 16.14 21 24.22 22.27 15.45 8 -2.2 -11.27 -25.1 -22.19 -14.42 -4.25 3.38 9.14
86 -14.15 -9.7 -1.63 7.81 16.07 20.97 24.2 22.24 15.41 7.95 -2.21 -11.28 -24.9 -22.01 -14.26 -4.24 3.36 9.18
87 -13.73 -9.29 -1.34 8.03 16.4 21.14 24.45 22.46 15.61 8.24 -1.79 -10.91 -23.87 -20.97 -13.38 -3.9 3.67 9.48
88 -13.44 -9.08 -1.19 8.23 16.61 21.24 24.52 22.53 15.72 8.39 -1.67 -10.74 -23.86 -20.84 -13.3 -3.81 3.85 9.61
89 -13.22 -8.67 - 1.12 7.46 15.91 20.99 23.86 21.71 15.5 9.07 -1.05 -9.64 -25.68 -23.2 -15.37 -5.37 2.22 8.1
90 -13.37 -8.83 -1.38 7.02 15.58 20.76 23.5 21.3 15.17 8.98 -1.15 -9.8 -26.35 -24.01 -16.06 -5.93 1.57 7.4
91 -12.55 -8.1 -0.88 7.66 16.08 20.99 23.89 21.8 15.66 9.28 -0.7 -9.14 -25.65 -23.13 -15.38 -5.52 1.73 7.34
92 -13.71 -9.2 -1.62 6.93 15.49 20.51 23.61 21.34 14.98 8.5 -1.61 -9.98 -26.43 -23.88 -16.12 -6.02 1.83 7.61
93 -13.47 -8.89 -1.36 7.18 15.74 20.75 23.78 21.55 15.27 8.88 -1.25 -9.69 -26.5 -23.92 -16.05 -5.92 1.75 7.47
94 -13.78 -9.3 -1.69 6.98 15.53 20.36 23.79 21.48 14.96 8.28 -1.78 -9.91 -26.74 -24.01 -16.31 -6.19 1.79 7.42
95 -13 -8.47 -0.98 7.61 16.03 21.05 23.93 21.82 15.62 9.19 -0.9 -9.45 -25.57 -23.05 -15.22 -5.28 2.22 8.04
96 -13.41 -8.89 -1.47 6.89 15.47 20.67 23.38 21.18 15.05 8.89 - 1.22 -9.86 -26.46 -24.16 -16.2 -6.06 1.44 7.26
97 -12.96 -8.65 -0.78 8.74 17.12 21.59 24.84 22.86 16.1 8.82 -1.28 -10.37 -23.61 -20.49 -12.9 -3.43 4.21 9.9
98 -12.55 -8.36 -0.67 8.86 17.2 21.55 24.79 22.83 16.14 8.92 -1.16 -10.09 -23.48 -20.36 -12.75 -3.39 4.18 9.76
99 -13.11 -8.7 -0.81 8.76 17.08 21.62 24.88 22.93 16.19 8.85 -1.29 -10.42 -24.1 -20.84 -13.31 -3.66 4.09 9.79
100 -12.7 -8.45 -0.65 8.88 17.26 21.66 24.88 22.91 16.19 8.95 -1.15 -10.17 -23.37 -20.29 -12.64 -3.25 4.3 9.94
101 -12.44 -8.25 -0.56 8.83 17.16 21.56 24.78 22.82 16.17 9.01 -1.04 -9.8 -23.27 -20.34 -12.61 -3.28 4.14 9.75
102 -11.65 -7.33 -0.36 8.33 16.6 21.17 24.29 22.3 16.14 9.59 -0.21 -8.43 -24.86 -22.18 -14.64 -5.11 1.9 7.27
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Prov Julmint Augmint Sepmint Octmint Novmint Decmint Janprec Febprec Marprec Aprprec
1 13.19 11.63 6.29 0.69 -8.46 -19.54 30.83 24.25 33.98 38.92
2 13 11.47 6.13 0.54 -8.75 -19.83 31.55 24.85 34.78 39.12
3 12.77 11.17 5.83 0.44 -8.54 -19.45 31.98 26.18 34.16 37.85
4 12.78 11.11 5.74 0.46 -8.48 -19.62 33.91 28.21 34.91 38.04
5 12.01 10.02 4.67 -0.43 -9.69 -21.62 42.88 37.54 40.32 36
6 12.52 10.69 5.27 -0.05 -9.25 -21.22 38.9 32.94 38.37 38.86
7 11.57 9.64 4.38 -0.8 -10.33 -22.06 40.73 34.84 39.77 39.03
8 11.44 9.48 4.31 -0.78 -10.43 -22.01 40.09 34.39 39.28 38.94
9 12.87 11.17 5.75 0.33 -8.82 -20.39 35.25 28.43 38.44 44.19
10 11.26 9.33 4.19 -0.92 -10.64 -22.18 39.67 33.71 39.21 40.05
11 12.74 10.91 5.47 0.23 -8.72 -20.54 39.41 33.62 38.51 38.1
12 12.5 11.01 5.9 0.58 -8.15 -18.67 32.79 25.18 34.31 45.58
13 12.83 11.3 6.11 0.61 -8.22 -19.11 31.31 24.44 34 41.47
14 12.78 11.25 6.06 0.54 -8.26 -19.25 31.05 24.12 33.94 40.91
15 12.94 11.38 6.11 0.59 -8.34 -19.4 30.63 23.8 33.71 39.68
16 12.98 11.44 6.19 0.68 -8.27 -19.19 30.97 24.38 33.68 40.35
17 12.98 11.44 6.19 0.68 -8.27 -19.19 30.97 24.38 33.68 40.35
18 12.94 11.39 6.14 0.61 -8.28 -19.34 30.55 23.74 33.53 39.81
19 12.72 11.23 6.1 0.67 -8.07 -18.79 31.89 24.7 33.98 43.34
20 12.77 11.27 6.11 0.68 -8.11 -18.86 31.62 24.6 33.8 42.64
21 12.77 11.27 6.11 0.68 -8.11 -18.86 31.62 24.6 33.8 42.64
22 12.85 11.3 6.14 0.61 -8.19 -19.4 29.17 21.91 31.64 38.08
23 12.67 11.02 5.74 0.34 -8.91 -20.09 28.99 20.52 27.56 32.61
24 12.94 11.34 5.99 0.53 -8.78 -20.23 27.14 18.8 29.29 33.28
25 12.84 11.22 5.89 0.43 -8.78 -20.16 27.01 18.99 30.11 33.93
26 12.88 11.27 5.96 0.51 -8.68 -20.06 26.79 18.79 28.86 33.2
27 12.57 10.92 5.64 0.22 -9.01 -20.17 29.38 20.89 28.77 33.41
28 12.75 11.12 5.81 0.39 -8.89 -20.21 27.87 19.54 28.45 33
29 12.87 11.24 5.92 0.45 -8.66 -20.02 26.98 19.27 30.76 34.66
30 12.89 11.29 5.99 0.48 -8.44 -19.67 29.86 22.68 33.17 38.25
31 13.02 11.41 6.12 0.62 -8.3 -19.61 28.81 21.64 31.91 37.1
32 13.04 11.49 6.14 0.55 -8.72 -19.79 31.51 24.8 34.79 39.08
33 13.06 11.45 6.05 0.56 -8.52 -19.82 29.98 22.69 33.12 37.15

Mayprec Junprec Julprec Augprec Sepprec Octprec Novprec Decprec

63.85 103.62 94.96 89.34
62.76 99.85 96 91.22

66.7 102.34 98.41 85.76
66.52 98.35 96.43 86.97
64.46 88.87 93.38 97.62
62.07 91.06 93.61 93.64
64.85 89.19 98.51 97.21
65.48 87.4 98.44 95.88
64.21 96.67 94.52 88.02
65.44 87.47 100.23 95.81
64.29 93.36 91.98 92.35
71.24 104.04 97.13 90.3
67.21 110.23 94.21 90.1
66.05 112.09 92.77 90.33
64.62 108.63 93.32 89.69
66.43 106.83 95.12 88.87
66.43 106.83 95.12 88.87
64.83 109.08 93.05 89.61
69.22 108.67 95.02 90
68.71 108.01 95.17 89.59
68.71 108.01 95.17 89.59
61.37 108.62 88.64 86.36
56.59 96.17 84.57 78.7
53.34 96.05 84.2 82.25
53.26 97.81 84.97 82.63
53.31 97.01 84.06 80.95
56.51 97.66 85.77 80.08
54.77 96.3 84.02 80.12
53.86 99.68 85.9 83.6
61.56 107.26 91.24 88.64

59.9 105.48 89.5 87.12
63.05 100.88 95.91 90.95
60.46 102.58 92.1 89.3

82.37 58.59 38.92 31.11
80.31 55.97 40.23 32.22
89.51 64.5 33.49 32.1
89.51 64.29 35.61 34.08
89.95 61.25 45.79 41.48
85.81 58.8 45.82 37.9
87.65 61.77 47.83 39.93
86.16 62.14 47.63 39.49
82.35 60.13 48 34.64
85.58 62.35 48.42 39.32
88.65 61.24 43.33 38.5
86.65 68.33 37.28 35.09
84.42 62.91 39.24 31.46
83.19 61.37 40.4 30.62
82.75 59.98 39.62 30.46
84.63 62.29 37.72 31.35
84.63 62.29 37.72 31.35
82.72 60.18 39.54 30.36
85.43 65.39 38.38 32.86
85.41 64.92 37.88 32.52
85.41 64.92 37.88 32.52
78.08 55.69 39.18 27.85

63.4 42.46 32.31 27.19
72.69 48.19 37.46 25.93
74.14 49.41 38.73 25.95
71.25 47.4 36.9 25.53
65.79 44.23 34.01 27.54
67.99 45.3 34.92 26.3
76.05 51.12 39.72 26.08
80.57 57.05 40.27 29.23
78.95 55.33 39.5 28.13
80.93 56.62 40.1 32.07
79.64 55.13 39.74 29.91
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Prov Julmint Augmint Sepmint Octmint Novmint Decmint Janprec Febprec Marprec
34 13.12 11.54 6.19 0.67 -8.45 -19.51 31.35 25.18 34.24
35 12.27 10.75 5.55 0.33 -8.45 -18.8 34.34 26.6 35.54
36 12.32 10.85 5.61 0.49 -8.22 -18.27 35.18 26.61 35.44
37 11.81 10.17 5.1 0.16 -8.62 -19.18 37.64 29.94 36.92
38 12.63 11.06 5.79 0.48 -8.39 -19.08 32.42 26.01 33.95
39 11.61 10.05 5.1 0.18 -8.48 -18.86 37.94 28.94 37.07
40 12.42 10.89 5.69 0.42 -8.38 -18.87 33.35 26.06 34.76
41 11.1 9.48 4.67 -0.12 -8.77 -19.28 39.94 30.77 38.62
42 12.67 11.12 5.85 0.48 -8.42 -19.14 32.14 25.67 34.19
43 12.47 10.94 5.72 0.43 -8.39 -18.93 33.04 25.97 34.64
44 12.33 10.86 5.81 0.55 -8.11 -18.54 33.64 25.39 34.87
45 12.42 10.97 5.96 0.67 -7.93 -18.39 33.46 25.12 34.61
46 12.11 10.64 5.6 0.45 -8.25 -18.55 34.24 25.6 34.96
47 11.13 9.73 4.98 0.02 -8.17 -18.14 43.66 30.53 42.19
48 12.76 11.23 5.99 0.58 -8.32 -19.07 31.73 25.14 33.91
49 12.74 11.22 6.01 0.63 -8.2 -18.91 31.7 24.92 33.59
50 11.85 10.34 5.25 0.23 -8.46 -18.61 37.02 27.96 36.95
51 12.72 10.98 5.54 0.15 -9.04 -20.81 36.61 30.17 38.26
52 12.54 10.81 5.39 -0.04 -9.37 -21.2 35.92 29.56 37.44
53 13.02 11.42 6.03 0.5 -8.73 -20 32.62 26.09 36.05
54 12.66 10.91 5.48 0.07 -9.15 -20.95 36.69 30.31 38.13
55 13.08 11.48 6.1 0.57 -8.62 -19.82 32.17 25.8 35.45
56 12.33 10.58 5.19 -0.25 -9.65 -21.55 36.05 29.81 37.11
57 13.06 11.49 6.12 0.54 -8.73 -19.86 32.01 25.47 35.43
58 12.84 11.07 5.64 0.32 -8.72 -20.41 37.1 30.9 38.11
59 12.2 10.38 5.16 0.17 -8.71 -20.03 39.17 33.34 37.49
60 12.71 10.97 5.6 0.38 -8.54 -19.87 36.34 30.57 36.33
61 12.71 10.83 5.4 0.24 -8.63 -20.59 41.27 35.84 38.61
62 12.85 11.22 5.85 0.46 -8.56 -19.66 32.63 26.85 34.82
63 12.92 11.28 5.89 0.46 -8.61 -19.84 33.18 27.05 35.92
64 12.7 11.07 5.73 0.41 -8.53 -19.44 32.4 26.79 33.93
65 12.53 10.91 5.59 0.3 -8.61 -19.36 33.47 27.37 34.94
66 12.52 10.79 5.47 0.33 -8.54 -19.68 36.77 30.8 36.26
67 12.02 10.22 5.08 0.15 -8.74 -19.94 38.82 32.82 37.24
68 12.68 11.17 5.68 0.12 -9.71 -21.29 30.5 19.78 30.73

Aprprec Mayprec Junprec Julprec Augprec Sepprec Octprec Novprec Decprec
39.16 65.05 102.08 96.24 86.94 84.88 61.02 37.46 31.49
47.53 73.2 100.19 99.59 92.2 88.18 71.08 37.67 37.63

51.5 75.4 95.75 99.07 94.57 86.47 73.1 40.23 40.23
47.51 74.98 96.37 99.03 95.81 91.15 72.98 42.98 41.41
40.98 69.17 101.48 98.43 87.81 89.06 67.06 33.87 33.85
50.38 76.12 96.57 99.39 95.95 90.68 74.45 44.57 42.46

45.1 71.59 101.48 98.85 90.4 88.18 69.34 36.22 35.87
49.18 76.84 98.16 100.61 96.83 94.43 75.72 48.06 43.84
40.95 68.73 103.63 98.26 87.93 88.49 66.25 34.73 33.19
43.96 70.88 102.34 98.75 89.74 88.4 68.6 35.75 35.13
47.93 72.64 103.43 97.34 91.48 86.52 69.81 38.59 36.59
47.6 72.17 105.03 96 91.13 85.94 68.94 39.12 36.05

51.02 74.6 97.99 98.61 93.2 85.79 72.15 39.02 38.86
55.86 77.48 102.69 99.81 97.26 94.55 77.52 51.31 47.54
41.23 68.38 104.67 97.21 88.2 87.18 65.38 35.62 32.72
42.09 68.97 104.15 96.84 88.39 86.81 65.98 35.56 33.08
52.28 76.53 96.66 100.05 96.12 88.69 74.67 42.94 42.01
41.9 62.78 94.04 94.29 90.65 83.47 59.06 46.9 35.87

41.53 61.19 92.52 95.75 91.85 82.49 57.79 46.39 35.42
41.38 63.77 99.08 96.02 88.23 82.17 58.87 42.47 32.61
41.57 62.31 93.43 94.64 91.3 83.45 58.7 46.75 35.97
40.47 64.26 100.23 96.12 87.63 83.26 59.66 40.64 32.18
41.03 60.51 91.19 96.95 93.02 82.77 57.66 46.3 35.65
40.21 63.75 100.55 96.44 89.59 82.09 58.22 40.79 32.3
40.68 64.19 94.88 93.14 89.7 85.74 60.75 44.89 36.33
40.02 70.01 94.58 95.02 95.01 92.24 67.52 41.2 40.38
38.67 66.7 96.21 94.8 89.8 89.69 64.21 38.66 36.48
35.81 64.15 91.51 90.15 94.37 90.53 61.23 42.24 40.28
38.06 65.77 100.59 97.31 85.59 88.49 63.25 35.7 32.42
40.06 65.26 99.85 96.38 86.31 86.15 61.97 39.69 32.86
37.07 67.02 100.95 98.59 85.55 90.89 65.35 32.11 32.64
39.77 68.94 101.23 99.37 87.94 91.03 67.29 33.88 34.38
40.05 68.82 96.03 95.72 91.66 90.65 66.52 38.48 37.83
41.29 71.41 94.81 95.94 95.45 92.33 68.91 41.8 40.64
34.82 53.36 92.82 85.76 84.98 73.19 48.62 38.09 28.15
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10.71 
9.06 

4.37 
-0.33 

-8.99 
-19.6 

40.83 
31.72 

39.35 
47.97 

77.3 
98.94 

101.54 
96.92 

96.65 
76.38 

50.39 
44.32
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APPENDIX V
PRESENT AND FUTURE FOCAL POINT SEED ZONES BASED ON POINT 
(51.2°N, 94°W) THE MOST NORTH AREA OF NORTHWESTERN REGION 

ONTRIAO (102 PROVENANCES)
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Best ‘Seed To’ transfer zone in 2050 for seed from point
51,2°N, 94°W based on HADCM3A2
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Best ‘Seed To’ transfer zone in 2099 for seed from point 
51.2°N, 94°W based on HADCM3A2

1:14,963,716

Best ‘Seed To’ transfer zone in 2050 for seed from point
51.2°N, 94°W based on HADCM3B2
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APPENDIX VI
PROVENANCE M EAN VALUES FO R GROW TH, PHENOLOGICAL AND 

FREEZING VARIABLES IN N ORTH  CENTRE ONTRIAO (64) CASE
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Prov 
GH88 

GH89 
GHIN 

GHCS 
GHDR 

GHNF 
GHR 

LU88 
LU89 

LU90 
LUIN 

LUCS 
LUDR 

LUNF 
LUR

1 
64.80 

83.59 
27.19 

79.87 
52.70 

29.50 
50.77 

73.8 
270.03 

685.93 
13.40 

87.14 
73.74 

25.53 
52.54

2 
110.20 

99.20 
26.98 

84.41 
57.43 

31.10 
45.00 

99.47 
333.20 

730.13 
13.29 

89.96 
76.67 

27.27 
50.77

3 
93.50 

104.30 
26.76 

81.17 
54.42 

30.00 
56.79 

73.63 
286.14 

657.31 
13.60 

86.77 
73.17 

27.33 
55.55

4 
86.60 

91.90 
26.96 

81.76 
54.81 

29.60 
45.00 

103.60 
317.10 

691.50 
13.25 

85.94 
72.69 

26.80 
35.06
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194

Prov Janmaxt Febmaxt Marmaxt Aprmaxt Maymaxl Junmaxt Julmaxt Augmaxt Sepmaxt Octmaxt Novmaxt Decmaxt Janmint Febmint Marmint Aprmint Maymint Junmint
1 -14.14 -10.33 -2.58 6.15 14.25 20.44 23.23 20.74 14.92 7.94 -1.79 -10.91 -27.19 -25.73 -18.99 -7.39 0.27 6.18
2 -14.06 -10.29 -2.51 6.20 14.26 20.55 23.24 20.74 15.02 8.02 -1.77 -10.85 -27.04 -25.70 -18.96 -7.30 0.28 6.22
3 -13.85 -10.11 -2.43 6.25 14.34 20.36 23.18 20.77 14.96 8.02 -1.63 -10.64 -27.00 -25.51 -18.76 -7.24 0.39 6.22
4 -13.87 -10.09 -2.47 6.23 14.36 20.24 23.17 20.78 14.88 7.96 -1.61 -10.64 -27.12 -25.48 -18.73 -7.31 0.39 6.18
5 -13.22 -9.71 -2.33 6.19 14.26 19.75 22.74 20.58 14.73 7.94 -1.39 -10.07 -26.56 -24.93 -18.22 -7.05 0.58 6.14
6 -13.90 -9.89 -2.47 6.35 14.78 19.94 23.43 21.09 14.62 7.76 -1.47 -10.58 -27.82 -25.48 -18.63 -7.64 0.42 5.96
7 -13.52 -9.55 -2.27 6.55 15.01 19.87 23.50 21.22 14.68 7.89 -1.16 -10.20 -27.66 -25.08 -18.21 -7.47 0.58 5.94
S -11.69 -7.96 -1.17 7.21 15.32 19.85 23.57 21.85 15.61 8.96 0.28 -7.98 -24.54 -21.99 -14.87 -5.89 1.29 6.30
9 -12.68 -8.73 -1.80 7.04 15.63 19.78 23.78 21.64 14.87 8.22 -0.38 -9.37 -27.27 -23.96 -17.09 -7.01 1.00 5.98
10 -11.03 -7.47 -0.72 7.61 15.45 19.89 23.57 22.06 16.09 9.50 0.93 -7.29 -23.38 -20.93 -13.77 -5.12 1.70 6.58
11 -11.73 -8.75 -2.32 5.80 13.72 17.90 21.49 19.91 13.87 7.62 -0.60 -8.59 -24.99 -22.67 -16.01 -6.67 0.71 5.45
12 -11.94 -8.84 -2.42 5.75 13.84 18.05 21.75 20.04 13.82 7.50 -0.75 -8.78 -25.33 -22.87 -16.20 -6.92 0.57 5.37
13 -10.71 -7.32 -0.68 7.55 15.24 19.67 23.29 21.88 16.02 9.53 1.04 -7.04 -22.93 -20.60 -13.48 -4.94 1.75 6.60
14 -12.99 -9.20 -2.19 6.53 14.97 19.47 23.21 21.07 14.52 7.88 -0.88 -9.75 -27.24 -24.43 -17.63 -7.26 0.71 5.83
15 -11.81 -8.27 -1.62 6.72 14.88 19.23 23.00 21.26 14.97 8.42 -0.07 -8.30 -24.93 -22.31 -15.36 -6.30 1.03 5.94
16 -11.01 -7.54 -0.94 7.26 15.06 19.71 23.28 21.75 15.76 9.23 0.64 -7.37 -23.38 -21.12 -14.00 -5.34 1.48 6.52
17 -13.41 -9.68 -2.38 6.28 14.54 19.67 23.01 20.80 14.58 7.83 -1.30 -10.18 -27.15 -24.97 -18.20 -7.32 0.53 5.96
18 -12.83 -9.22 -2.09 6.52 14.70 19.48 22.92 20.89 14.70 8.07 -0.83 -9.60 -26.62 -24.26 -17.48 -6.92 0.81 6.02
19 -12.91 -9.40 -2.20 6.34 14.42 19.46 22.70 20.66 14.65 7.99 -1.04 -9.72 -26.47 -24.44 -17.69 -6.94 0.72 6.04
20 -12.41 -9.19 -2.16 6.19 14.08 18.96 22.13 20.31 14.49 7.96 -0.90 -9.28 -25.73 -23.91 -17.19 -6.67 0.81 5.99
21 -11.53 -8.75 -2.07 6.02 13.59 18.02 21.21 19.80 14.21 7.96 -0.48 -8.44 -24.49 -22.77 -16.08 -6.19 0.99 5.81
22 -9.41 -7.61 -1.50 6.00 12.50 16.24 19.14 18.81 14.07 8.49 0.79 -6.31 -21.10 -19.99 -13.27 -4.59 1.66 5.74
23 -14.17 -9.78 -2.18 6.69 15.24 20.17 23.95 21.59 14.77 7.73 -1.88 -10.42 -28.41 -26.57 -19.01 -8.13 0.18 5.51
24 -14.21 -9.83 -2.22 6.66 15.20 20.16 23.93 21.56 14.75 7.70 -1.91 -10.49 -28.45 -26.66 -19.11 -8.19 0.14 5.48
25 -14.00 -9.65 -2.07 6.71 15.25 19.97 23.80 21.41 14.66 7.70 -2.13 -10.09 -27.66 -25.05 -17.46 -7.12 1.08 6.47
26 -13.79 -9.38 -1.84 6.98 15.49 20.19 24.08 21.72 14.95 7.98 -1.77 -9.79 -27.74 -25.18 -17.54 -7.16 1.00 6.31
27 -13.84 -9.40 -1.79 7.09 15.59 20.41 24.24 21.90 15.12 8.10 -1.57 -9.93 -27.99 -25.79 -18.14 -7.50 0.69 5.99
28 -14.13 -9.74 -2.14 6.75 15.29 20.24 24.02 21.66 14.85 7.81 -1.73 -10.40 -28.50 -26.78 -19.22 -8.25 0.06 5.36
29 -14.45 -10.14 -2.56 6.32 14.89 19.99 23.70 21.30 14.49 7.47 -1.99 -10.91 -28.57 -26.64 -19.39 -8.35 0.01 5.53
30 -14.49 -10.15 -2.52 6.37 14.93 20.03 23.74 21.35 14.53 7.48 -2.05 -10.91 -28.60 -26.80 -19.45 -8.39 -0.01 5.48
31 -9.32 -6.03 -0.18 8.41 16.61 20.40 24.15 22.17 15.98 9.47 0.69 -7.21 -22.28 -19.62 -13.39 -5.30 1.19 5.96
32 -9.31 -5.95 0.08 8.57 16.61 20.74 24.32 22.58 16.51 10.02 1.14 -6.63 -22.06 -19.52 -12.94 -4.80 1.53 6.41
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Prov janmaxt febmaxt marmaxt aprmaxt maymaxt junmaxt julmaxt augmaxt sepmaxt octmaxt novmaxt decmaxt janmint febmint marmint aprmint maymint junmint
33 -10.21 -6.28 0.14 8.96 17.17 21.14 24.65 22.66 16.48 9.86 0.49 -7.65 -23.51 -20.69 -13.79 -4.94 1.71 6.64
34 -10.17 -6.42 -0.26 8.51 16.82 20.69 24.32 22.25 16.00 9.39 0.21 -7.86 -23.46 -20.66 -14.16 -5.48 1.19 6.02
35 -11.76 -7.81 -1.21 7.00 15.09 20.54 23.65 21.86 15.43 8.84 -0.19 -8.16 -24.79 -22.59 -15.56 -6.22 1.05 6.78
36 -11.03 -7.42 -0.97 7.19 14.99 20.21 23.48 21.83 15.67 9.17 0.29 -7.57 -23.64 -21.56 -14.50 -5.57 1.27 6.77
37 -12.53 -8.20 -1.17 7.38 15.72 20.73 24.26 22.24 15.61 8.82 -0.51 -8.53 -26.23 -23.59 -16.22 -6.45 1.20 6.66
38 -12.86 -8.54 -1.63 6.85 15.33 20.30 23.80 21.68 14.97 8.22 -1.26 -8.90 -26.72 -23.95 -16.69 -6.88 0.89 6.36
39 -12.52 -8.17 -1.08 7.53 15.86 20.81 24.39 22.36 15.73 8.93 -0.43 -8.49 -26.27 -23.59 -16.17 -6.37 1.29 6.70
40 -12.78 -8.26 -1.19 7.42 15.96 20.68 23.97 21.86 15.45 8.85 -1.06 -8.98 -26.43 -23.56 -16.10 -6.21 1.20 6.51
41 -12.21 -7.68 -0.82 7.89 16.35 21.04 24.32 22.37 15.94 9.18 -0.62 -8.50 -25.85 -22.95 -15.79 -6.05 1.12 6.29
42 -12.48 -7.99 -1.12 7.52 16.04 20.74 24.01 21.99 15.55 8.86 -0.95 -8.79 -26.15 -23.28 -16.08 -6.29 0.99 6.21
43 -11.88 -7.50 -0.79 7.90 16.39 20.90 24.12 22.13 15.81 9.17 -0.59 -8.61 -25.41 -22.62 -15.57 -6.00 1.00 6.10
44 -11.33 -7.69 -1.06 7.16 15.07 19.98 23.45 21.80 15.63 9.07 0.31 -7.68 -23.98 -21.73 -14.60 -5.68 1.32 6.58
45 -12.24 -8.03 -1.30 6.99 15.28 20.79 23.86 21.96 15.36 8.70 -0.50 -8.51 -25.60 -23.25 -16.19 -6.57 0.97 6.79
46 -12.74 -8.55 -1.54 7.00 15.40 20.27 23.93 21.86 15.21 8.43 -0.75 -8.86 -26.52 -23.98 -16.67 -6.88 0.88 6.21
47 -12.95 -8.51 -1.36 7.30 15.80 20.34 24.06 21.85 15.25 8.53 -1.30 -8.82 -26.86 -23.68 -16.12 -6.29 1.42 6.66
48 -11.05 -6.85 -0.13 8.63 16.91 21.22 24.51 22.51 16.33 9.75 0.11 -8.09 -24.40 -21.64 -14.40 -5.12 1.71 6.85
49 -11.79 -7.48 -0.84 7.72 16.03 20.97 24.19 22.35 15.91 9.16 -0.35 -8.20 -25.19 -22.5.3 -15.57 -6.06 1.02 6.34
50 -11.44 -7.05 -0.51 8.27 16.67 21.13 24.41 22.62 16.27 9.42 -0.24 -8.11 -24.89 -22.03 -15.31 -5.86 0.91 5.81
51 -11.31 -7.04 -0.46 8.31 16.73 21.04 24.37 22.40 16.11 9.43 -0.19 -8.27 -24.77 -21.94 -15.05 -5.71 1.12 6.11
52 -13.20 -8.69 -1.42 7.13 15.69 20.50 23.77 21.56 15.17 8.67 -1.33 -9.34 -26.71 -23.91 -16.24 -6.25 1.36 6.81
53 -11.60 -7.32 -0.36 8.33 16.56 21.12 24.26 22.28 16.12 9.54 -0.24 -8.39 -24.79 -22.11 -14.56 -5.06 1.95 7.33
54 -13.78 -9.30 -1.69 6.98 15.53 20.36 23.79 21.48 14.96 8.28 -1.78 -9.91 -26.74 -24.01 -16.31 -6.19 1.79 7.42
55 -13.58 -9.09 -1.64 6.94 15.51 20.35 23.68 21.40 14.95 8.41 -1.63 -9.70 -26.79 -24.04 -16.30 -6.24 1.59 7.17
56 -13.69 -9.17 -1.60 6.95 15.51 20.54 23.62 21.36 15.01 8.54 -1.57 -9.97 -26.41 -23.86 -16.09 -5.99 1.84 7.64
57 -13.49 -8.92 -1.39 7.14 15.70 20.71 23.76 21.52 15.22 8.82 -1.30 -9.70 -26.53 -23.94 -16.08 -5.96 1.73 7.44
58 -13.24 -8.66 -1.28 7.25 15.81 20.75 23.81 21.61 15.33 8.94 -1.13 -9.46 -26.58 -23.93 -16.11 -6.03 1.51 7.10
59 -13.41 -8.89 -1.47 6.89 15.47 20.67 23.38 21.18 15.05 8.89 -1.22 -9.86 -26.46 -24.16 -16.20 -6.06 1.44 7.26
60 -13.26 -8.87 -1.53 7.20 15.68 20.08 24.04 21.72 15.06 8.28 -1.59 -9.03 -27.16 -23.90 -16.18 -6.30 1.62 6.82
61 -13.06 -8.71 -1.52 7.18 15.65 20.07 24.07 21.79 15.08 8.26 -1.46 -8.79 -27.17 -23.90 -16.29 -6.47 1.43 6.58
62 -12.47 -8.95 -2.11 6.43 14.68 19.03 22.72 20.78 14.42 7.92 -0.65 -9.27 -26.46 -23.75 -16.99 -6.93 0.82 5.80
63 -12.30 -9.02 -2.26 6.11 14.18 18.60 22.13 20.32 14.18 7.76 -0.77 -9.15 -25.96 -23.57 -16.87 -6.86 0.74 5.70
64 -10.74 -6.72 -0.35 8.42 16.79 20.89 24.36 22.35 16.08 9.42 0.01 -8.06 -24.12 -21.30 -14.63 -5.61 1.12 6.02
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Prov Julmint Augmint Sepmint Octmint Novmint Decmint Janprec Febprec Marprec Aprprec Mayprec Junprec Julprec Augprec Sepprec Octprec Novprec Decpre
1 9.69 7.94 3.47 -1.09 -10.82 -22.03 33.07 27.35 32.73 40.67 61.29 86.73 94.56 83.16 91.35 67.62 57.37 40.21
2 9.70 7.92 3.49 -1.04 -10.81 -21.96 34.38 28.23 34.04 40.62 61.46 86.79 92.95 83.34 90.65 67.95 57.74 41.14
3 9.74 8.05 3.61 -0.97 -10.57 -21.76 34.30 28.09 34.34 40.72 62.75 87.85 92.61 84.70 90.81 68.72 57.94 41.47
4 9.72 8.06 3.58 -1.02 -10.55 -21.79 33.50 27.47 33.51 40.86 62.76 87.92 93.79 84.81 91.41 68.75 57.80 41.10
5 9.71 8.24 3.84 -0.83 -10.03 -21.14 37.27 29.81 38.19 41.46 66.58 91.00 89.64 88.91 90.64 71.80 59.63 44.54
6 9.61 8.06 3.39 -1.29 -10.54 -22.07 33.31 26.94 33.33 42.61 61.87 87.52 97.81 86.38 93.22 70.39 58.54 42.90
7 9.59 8.12 3.46 -1.22 -10.22 -21.74 35.85 28.04 35.28 42.73 63.35 88.61 95.23 87.68 92.62 72.42 59.97 45.74
8 9.98 9.03 4.53 -0.25 -8.06 -18.58 47.67 33.13 43.48 43.65 65.95 91.25 86.07 92.38 91.16 82.08 72.11 61.29
9 9.67 8.39 3.70 -1.05 -9.39 -20.90 42.00 30.54 39.11 43.16 65.55 90.26 90.15 89.91 92.13 77.26 64.30 52.98
10 10.24 9.53 5.19 0.34 -7.16 -17.46 49.13 33.08 42.54 42.87 64.65 91.03 82.24 91.77 92.17 82.49 73.22 64.08
11 9.03 8.28 3.89 -0.89 -8.79 -19.31 53.84 36.43 47.26 47.52 73.02 95.72 89.66 95.15 99.05 85.78 69.70 62.42
12 9.00 8.13 3.66 -1.12 -9.03 -19.59 53.41 36.54 47.89 47.88 72.50 96.52 91.16 96.17 99.06 86.40 71.66 63.15
13 10.23 9.58 5.25 0.39 -7.00 -17.16 50.14 33.40 43.66 43.73 66.24 90.56 82.08 91.78 92.77 82.06 71.62 63.55
14 9.49 8.18 3.55 -1.17 -9.79 -21.18 40.67 30.29 38.73 43.51 66.26 90.97 92.33 90.05 93.42 76.26 62.95 50.56
15 9.61 8.69 4.20 -0.59 -8.40 -18.97 49.89 34.40 44.89 45.10 67.73 93.72 87.84 94.04 94.49 84.22 73.05 62.97
16 10.14 9.30 4.81 0.00 -7.51 -17.72 49.04 33.44 45.36 44.62 68.02 90.14 84.94 92.38 91.61 80.98 70.16 60.77
17 9.57 8.13 3.58 -1.09 -10.16 -21.46 36.45 28.59 36.00 42.31 65.12 89.96 93.54 88.09 92.79 72.47 59.97 45.22
18 9.61 8.37 3.88 -0.83 -9.56 -20.79 39.66 29.81 37.85 42.41 66.55 90.52 90.14 89.09 92.45 74.62 61.12 48.49
19 9.61 8.32 3.89 -0.81 -9.69 -20.82 38.93 29.88 38.18 42.13 67.08 91.03 89.80 89.35 91.92 73.77 60.49 47.02
20 9.53 8.44 4.12 -0.62 -9.29 -20.20 42.96 32.10 41.41 43.01 69.41 92.44 87.58 91.03 92.37 76.25 61.76 49.95
21 9.28 8.62 4.45 -0.33 -8.53 -19.07 51.24 35.64 45.33 45.42 72.14 93.10 86.17 91.96 95.49 81.51 64.16 56.71
22 8.94 9.33 5.63 0.81 -6.50 -16.14 65.24 41.47 50.58 49.31 75.16 90.98 81.77 90.19 99.22 88.18 65.31 66.27
23 9.24 7.49 2.74 -1.80 -11.66 -23.02 34.61 29.24 39.08 44.10 64.10 86.79 100.62 89.77 83.49 67.25 51.35 40.19
24 9.20 7.45 2.71 -1.82 -11.69 -23.09 34.39 29.10 38.85 44.20 63.69 86.93 100.89 89.77 83.88 67.15 51.40 40.24
25 10.46 8.44 3.39 -1.43 -11.49 -22.14 38.93 33.11 42.01 42.49 69.60 85.69 101.06 92.68 82.70 67.28 50.55 39.05
26 10.27 8.32 3.35 -1.38 -11.37 -22.05 37.39 31.50 41.23 42.63 68.80 83.95 99.37 90.22 80.34 67.34 50.53 38.44
27 9.80 7.99 3.16 -1.45 -11.30 -22.39 35.38 29.68 39.43 42.88 65.87 84.36 98.49 88.88 80.56 66.83 50.57 39.02
28 9.04 7.35 2.67 -1.81 -11.59 -23.10 33.41 28.25 37.94 43.91 62.75 87.22 99.74 88.93 84.35 67.31 51.42 40.55
29 9.23 7.57 2.81 -1.80 -11.49 -23.11 32.66 27.68 36.19 44.88 60.30 86.33 102.92 88.75 89.34 68.06 54.58 41.29
30 9.18 7.50 2.74 -1.85 -11.64 -23.24 32.92 28.02 36.86 44.92 60.72 86.47 103.04 89.21 87.82 67.33 53.34 40.77
31 9.64 8.29 3.55 -1.18 -8.52 -18.25 61.52 39.12 55.92 53.08 71.96 101.52 97.80 98.52 110.50 78.78 69.99 61.32
32 10.04 8.73 4.06 -0.60 -7.94 -17.66 53.78 34.95 50.80 49.88 70.93 94.74 91.73 94.46 101.40 71.27 61.47 56.21
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Prov julmint augmint sepmint octmint novmint decmint janprec febprec marprec aprprec mayprec junprec julprec augprec sepprec octprec novprec decprec
33 10.15 8.71 4.07 -0.69 -8.69 -18.85 51.41 35.21 47.09 51.10 74.93 101.85 101.31 %.98 104.47 78.88 61.12 52.64
34 9.58 8.18 3.52 -1.22 -9.05 -19.09 58.12 38.56 52.65 51.23 73.52 103.19 102.72 97.79 109.88 80.44 67.85 57.36
35 10.19 8.74 3.70 -0.85 -8.68 -19.48 44.84 32.81 48.71 45.70 74.04 85.62 92.52 90.51 86.20 73.82 59.85 48.25
36 10.26 9.01 4.13 -0.56 -8.14 -18.49 44.98 32.16 48.23 45.79 72.91 86.52 90.14 91.15 89.02 72.63 59.47 49.83
37 10.32 8.68 3.71 -0.87 -9.61 -20.35 40.23 30.90 45.02 43.71 73.00 79.03 92.63 86.18 75.84 72.04 55.80 40.72
38 10.08 8.25 3.17 -1.39 -10.48 -20.94 41.63 32.99 48.45 45.07 77.77 79.14 98.14 87.03 75.31 72.67 54.38 37.55
39 10.39 8.75 3.80 -0.79 -9.59 -20.33 39.45 30.42 44.05 43.18 72.22 78.56 92.07 85.66 75.28 71.34 55.10 40.20
40 10.12 8.28 3.57 -0.97 -10.26 -20.78 38.93 33.21 41.72 40.42 76.49 89.49 101.48 90.29 88.14 70.90 50.59 39.13
41 9.75 8.16 3.51 -1.03 -9.86 -20.33 40.27 33.12 43.73 39.35 74.93 87.16 100.68 86.14 86.82 68.65 51.82 40.19
42 9.72 8.03 3.36 -1.17 -10.18 -20.63 40.61 33.77 44.01 40.44 76.31 89.18 102.34 88.44 88.41 70.61 52.41 40.46
43 9.49 7.95 3.42 -1.12 -9.75 -20.23 43.77 34.49 44.24 42.59 76.14 95.55 104.00 91.28 96.64 73.68 55.67 44.77
44 10.17 9.09 4.40 -0.33 -8.02 -18.41 46.77 32.81 46.29 44.96 70.00 87.90 87.54 91.54 88.72 78.15 66.13 55.52
45 10.19 8.58 3.45 -1.02 -9.14 -20.15 43.80 32.82 48.60 45.30 75.02 83.67 94.26 89.17 82.79 73.44 58.42 45.18
46 9.91 8.36 3.49 -1.10 -9.85 -20.65 41.36 31.49 44.64 44.38 70.81 83.90 93.25 88.90 80.92 74.77 59.75 45.74
47 10.61 8.61 3.63 -1.05 -10.78 -20.84 39.00 33.03 43.20 40.96 75.39 83.96 99.26 88.87 81.53 69.52 50.18 37.29
48 10.30 8.75 4.14 -0.55 -8.94 -19.36 45.07 33.12 42.49 48.43 76.32 99.85 101.86 96.07 100.07 77.24 55.51 47.50
49 9.74 8.26 3.47 -1.07 -9.37 -19.89 42.67 33.16 46.85 41.61 74.32 85.71 97.67 86.36 86.16 68.28 53.96 43.12
50 9.11 7.83 3.35 -1.20 -9.47 -19.80 45.01 34.94 46.88 39.26 72.80 90.41 101.73 85.16 92.84 67.99 55.50 45.47
51 9.51 8.07 3.54 -1.06 -9.41 -19.79 47.54 35.28 46.08 44.06 74.47 %.86 103.03 91.78 99.89 74.41 58.61 48.09
52 10.49 8.50 3.73 -0.84 -10.38 -21.06 38.61 33.71 40.54 40.23 75.93 90.09 100.52 92.89 88.72 70.75 49.12 38.91
53 10.78 9.14 4.40 -0.33 -8.98 -19.52 41.05 31.72 39.68 48.84 77.45 99.24 101.72 97.36 96.45 76.65 50.13 44.63
54 11.24 9.13 4.08 -0.73 -10.44 -21.47 40.46 35.63 40.58 38.22 70.59 87.67 97.02 95.04 87.61 66.29 47.23 39.71
55 10.94 8.84 3.92 -0.77 -10.45 -21.32 39.81 35.11 40.66 39.12 73.32 89.11 98.50 94.67 88.56 68.65 47.89 39.50
56 11.25 9.16 4.22 -0.48 -9.90 -21.30 40.89 36.36 39.78 37.70 71.61 90.52 96.19 96.73 91.43 67.56 46.24 40.87
57 11.03 8.96 4.17 -0.43 -9.91 -21.14 38.99 34.63 38.68 38.47 73.27 90.52 97.31 95.17 90.45 68.73 46.50 39.61
58 10.66 8.66 3.98 -0.55 -10.00 -21.01 37.71 33.28 38.44 39.70 75.48 91.39 99.41 93.97 90.34 70.59 47.70 38.92
59 10.66 8.63 4.06 -0.40 -9.71 -21.10 38.79 34.02 38.30 41.39 76.20 95.67 100.07 97.51 94.63 72.66 47.39 40.94
60 10.99 8.86 3.77 -1.03 -11.15 -21.08 38.85 33.29 42.25 40.73 73.30 84.09 98.70 90.56 81.63 68.38 49.34 37.46
61 10.74 8.68 3.57 -1.18 -11.16 -20.% 39.06 32.59 44.10 42.29 74.60 81.48 98.43 88.41 78.02 69.67 50.89 36.77
62 9.42 8.31 3.79 -0.96 -9.31 -20.45 44.77 32.09 41.17 44.19 68.50 92.35 89.96 91.42 94.55 79.04 64.73 54.17
63 9.28 8.28 3.84 -0.91 -9.23 -20.16 46.88 33.30 42.87 44.95 70.28 93.46 89.69 92.42 95.63 80.33 65.13 55.26
64 9.49 8.08 3.50 -1.17 -9.24 -19.45 53.55 37.18 49.80 47.42 73.51 99.95 102.88 94.54 105.36 77.29 63.83 53.20
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A P P E N D IX  VIII
PRESENT AND FUTURE FOCAL POINT SEED ZONES BASED ON POINT 

(50.1°N, 87.9°W) UND ER DIFFERENT CLIM ATE SCENARIO IN NORTH 
CENTRAL ONTRIAO (64 PROVENANCES)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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