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ABSTRACT

Most of the control systems are designed using linear techniques, which have been
well developed. Practical physical systems are typically nonlinear. Nonlinear control
is one of the biggest challenges in modern control theory. Nonlinear processes are
difficult to control because there can be so many variations of the nonlinear behavior.

One of the main recursive procedures to design a nonlinear controller is the back-
stepping. Adaptive backstepping achieved global stabilization in the presence of un-
known parameters and robust backstepping achieved it in the presence of distur-
bances. The ease with which backstepping incorporated uncertainties and unknown
parameters, contributed to its instant popularity and rapid acceptance. The back-
stepping provides a powerful design tool for nonlinear systems in the lower triangular
form.

The first part of the thesis is to explain backstepping technique for third order
nonlinear systems. Robust backstepping technique for a system with bounded un-
certainties and adaptive backstepping technique for a system with linear unknown
parameters are illustrated and simulated.

The second part of the thesis is to apply the adaptive backstepping and robust
backstepping technique to a 2-DOF (degree of freedom) planar manipulator. Experi-
mental and simulation results are obtained and compared with linear (PD) controller

and nonlinear controller (Lyapunov based algorithm).
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INTRODUCTION
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Chapter 1

Introduction

1.1 Nonlinear Control

Control theory can be described as the process of influencing the behavior of a physical
system to achieve a desired goal, primarily through the use of feedback. It is important
in a diverse range of scientific and engineering disciplines, including such things as
the design of robotic systems.

Linear control is widely used in industrial applications. Most physical systems
are nonlinear to various extents. However, if the range of variations of the system
variables is not wide, then the system may be linearized within relatively small range
of variation of variables {1]. While linearizing the behavior of the system and applying

traditional linear control methods is an effective method of controlling the system,
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there are many reasons, which justify the effort in the development of nonlinear

control methodologies, as follows:

¢ Improvement of Existing Control Systems [2]| Linear control methods are
only effective around the chosen operating point. Large deviations from this
point lead to instabilities and the eventual failure of the system to remain in
the desired position. It is therefore important to develop techniques of analysis

and control design for nonlinear systems.

e Analysis of Hard Nonlinearities [2] In some cases a linear approximation
of the system is a good enough model for analysis and design, while in others
the system has dominating nonlinear effects that make a linear approximation
a non-satisfactory model for the system. Saturation and hysteresis are good
examples for the so-called ’hard nonlinearities’. Their effects cannot be derived
from linear methods, and nonlinear controllers must be developed to deal with

the system in the presence of these inherent nonlinearities.

e Dealing with Model Uncertainties [2] It is not practical to assume that
all the parameters are exactly known for a system to be controlled. There are
systems whose parameters and models can be accurately obtained. On the
other hand, there are systems to be controlled with unknown or uncertain pa-

rameters. Uncertainties may result from disturbances or inaccurate knowledge
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of the system parameters. In such cases linear controllers may act poorly in
controlling these systems. Two classes of nonlinear controllers can stabilize
the system in the presence of such uncertainties. These controllers are called
robust controllers and adaptive controllers. The adaptive controller estimates
parameters and calculates the control accordingly. The robust controller allows
for uncertainty in the design of the fixed controller so it becomes insensitive to

parameter variations or disturbances [3].

The application of nonlinear control methods was limited due to the mathematical
complexity associated with the nonlinear control laws. Over the last few years, the
evolution in computer technology has solved a lot of problems related to the imple-
mentation of nonlinear controllers. Moreover, most of modern applications require
more stringent control systems.

The most important approach for studying the stability of nonlinear control sys-
tems is the theory introduced in the late 19th century by the Russian mathematician
Alexandr Mikhailovich Lyapunov. There are two methods introduced by Lyapunov
for stability analysis of a nonlinear system.

The indirect method, or linearization method, states that the stability properties
of a nonlinear system in the close vicinity of an equilibrium point are essentially the
same as those of its linearized approximation. The method serves as the theoretical

justification for using linear control for physical systems, which are always inherently
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nonlinear. The direct method is a powerful tool for nonlinear system analysis, and
therefore, the so-called Lyapunov analysis often actually refers to the direct method.
The direct method is a generalization of the energy concepts associated with a me-
chanical system: the motion of a mechanical system is stable if its total mechanical
energy decreases all the time. In using the direct method to analyze the stability
of a nonlinear system, the idea is to construct a scalar energy-like function (a Lya-
punov function) for the system, and to see whether it decreases. The limitation of
this method lies in the fact that it is often difficult to find a Lyapunov function for a
given system [2].

Lyapunov functions are of fundamental importance in the study of nonlinear sys-
tems. Not only Lyapunov functions are useful in proving stability of nonlinear sys-

tems, they are also an important part of certain nonlinear control design methods.

1.2 Basic Concepts and Definitions

Some basic concepts and definitions are introduced below.

Equilibrium Point: A state vector x* is an equilibrium point of the system if
once x(t) is equal to x*, it remains equal to x* for all future time.

Definition of Stability: Let By denote the spherical region (or ball) defined by
Il z ||< R in state space, and Sy the sphere itself defined by || z ||= R.

The equilibrium point x = 0 is said to be stable if, for any R > 0, there exists

5
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r > 0, such that if || z(0) ||< 7, then || z(¢) ||< R for all ¢ > 0. Otherwise the
equilibrium point is unstable.

Asymptotic Stability: An equilibrium point is called locally asymptotically
stable if it is stable, and if in addition there exists some r > 0 such that || z(0) ||< r
implies that z(t) — 0 as t — oco. The ball B, of radius r is called the domain of
attraction of the equilibrium point. If the convergence to zero occurs for any initial
condition z(0), the equilibrium point is globally asymptotically stable (GAS).

Smooth Function: A smooth function is a function that has continuous deriv-
atives up to some desired order over some domain. A function can therefore be said
to be smooth over a restricted interval such as (a, b) or [a, b]. The number of con-
tinuous derivatives necessary for a function to be considered smooth depends on the
problem at hand, and may vary from two to infinity. A function for which all orders
of derivatives are continuous is called a C-infinity function.

Symmetric Matrix: A square matrix P is symmetric if P = P7.

Skew-Symmetric Matrix: If a matrix P is equal to the negative of its transpose
PT = —P then it is called a skew-symmetric matrix.

Positive Definite: A square matrix P is positive definite if 27 Pz > 0 for non-
Zero I.

Positive Semidefinite: A square matrix P is positive semidefinite if z7 Pz > 0

for non-zero z.
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Negative Definite: A square matrix P is negative definite if z7 Pz < 0 for
non-zero .

Negative Semidefinite: A square matrix P is negative semidefinite if z7 Pz < 0
for non-zero z.

Lyapunov Function Candidate: Let V(x): R* — R be a continuous function
with continuous first partial derivatives in the neighborhood of the origin in R*. If V
is positive definite then it is called a Lyapunov function candidate.

Lyapunov Function: Consider the system

i= f(a), (L.1)

where £ € R™. Suppose that the origin is an equilibrium point i.e., f(0) = 0. The
equilibrium point z = 0 is asymptotically stable if there exists a Lyapunov function
candidate V such that V is negative definite along the solution trajectories of the

system, that is, if
V = —
o f(z) <0, Vz#0,

Then V is called a Lyapunov function.

LaSalle’s Theorem: Given the system (1.1), suppose that a Lyapunov function
candidate V is found such that V < 0 along solution trajectories. Then the equilib-
rium point z = 0 of (1.1) is asymptotically stable if V does not vanish identically
along any solution of (1.1) other than the null solution, i.e., if and only if the only

7
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solution of (1.1) satisfying V' = 0 is the null solution.

1.3 Literature Review

Nonlinear feedback control has been the topic of hundreds of publications, numerous
monographs and several comprehensive textbooks such as Khalil (1996b), Vidyasagar
(1993), and Sastry (1999) [4].

For nonlinear control the 1990s started with a breakthrough: backstepping, a
recursive design for systems with nonlinearities not constrained by linear bounds. The
true potential of backstepping was discovered only when this approach was developed
for nonlinear systems with structured uncertainty [4] [5].

The ease with which backstepping incorporated uncertainties and unknown para-
meters contributed to its instant popularity and rapid acceptance. At the same time,
its limitation to a class of pure feedback (lower triangular) systems stimulated the
development of other recursive procedures such as forwarding [4].

Models of physical non-linear systems are prone to different kinds of uncertainties
[6].

With adaptive backstepping, Kanellakopoulos, Kokotovic, and Morse (1991a,b)
achieved global stabilization in the presence of unknown parameters and with robust
backstepping, Freeman and Kokotovic (1992,1993), and Marino and Tomei (1993b)
achieved it in the presence of disturbances [4].

8
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There are many papers, which develop the design methodology and technique for
adaptive and robust backstepping control on many physical systems [7] [8] [9] [10]
[11].

Sliding mode control [12] and Lyapunov redesign are used to robustly stabilize an
uncertain system when the uncertainty satisfies the matching condition. Backstepping
can be used to relax the matching condition.[13].

Motivated by the backstepping design technique, a robust and adaptive control
technique has been introduced using neural networks [14] [15].

The considerable number of publications on the robust and adaptive control of
robot manipulators has brought many interesting results [16]. Recursive design of
robust and robust adaptive control with Lo-gain performance for two-link robot ma-
nipulator has been developed and applied experimentally {17]. A general approach
for the design of an adaptive position control for robotic systems by the backstepping
passivity strict-feedback technique has been illustrated by simulation results [18].

To deal with the uncertainties in the dynamics of robotic systems, various control
methods have been developed, including robust control schemes (e.g. Dawson et al.
1992) and adaptive control schemes (e.g. Yuan 1995) [5] [16] [17].

In this thesis, we will develop the adaptive and the robust recursive design methods
(backstepping) for the two-link robot manipulator and compare them with other well-

developed controllers.
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The advantage of this control technique is that it imposes desired properties of
stability by fixing the candidate Lyapunov functions initially, then by calculating the

other functions in a recursive way [5].

1.4 Thesis Overview

The thesis is mainly divided into two parts besides the introduction and the conclu-
sion. Nonlinear backstepping design procedures are explained in the first part. The
application of different controllers on a 2-DOF planar manipulator, including adap-
tive backstepping and robust backstepping, discussed in the first part, are shown in
the second part. Simulation and experimental results are analyzed and compared.

A general background on nonlinear system and Lyapunov stability theorem is
discussed in the introduction.

Chapter 2 gives the theoretical background needed in order to understand the
backstepping design followed by an example and simulations to show the design
method.

Chapter 3 presents the robust backstepping design procedure theoretically. An
example and simulations are provided to demonstrate the procedure.

Chapter 4 explains the adaptive backstepping design theoretically with an example
and simulations to illustrate the design method.

Chapter 5 provides some basic knowledge about robots and describes the experi-

10
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mental setup used.

Chapter 6 shows the application of PD controller on the 2-link robot manipulator.
Simulation and experimental results are shown and discussed.

Chapter 7 discusses the performance of nonlinear controllers based on Lyapunov
direct method on the 2-link robot manipulator by simulation and experimental results.

Chapter 8 demonstrates the robust backstepping controller design on the 2-link
robot manipulator. Simulation and experimental results are studied.

Chapter 9 illustrates the adaptive backstepping controller design on the 2-link
robot manipulator. Simulations and experimental results are analyzed.

Chapter 10 concludes the thesis by comparing the main results that have been

reached. Moreover, it includes some proposals for future work.

11
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Part 11

NONLINEAR ADAPTIVE AND ROBUST

BACKSTEPPING CONTROL DESIGN

12
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Chapter 2

Nonlinear Backstepping Control

Design

2.1 Theory

Lyapunov functions are of fundamental importance in the study of nonlinear systems
and the design procedure of nonlinear controllers including backstepping. Backstep-
ping is a recursive design procedure for systematically selecting the control Lyapunov
functions (clf) that allow the design of nonlinear controllers for a nonlinear system.
Backstepping is applicable to the systems in the lower triangular form [19].

In this chapter, we will explain the procedure to design backstepping-based con-

trollers for a nonlinear system assuming that all parameters are known. This chapter

13
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is considered an introduction for the next two chapters, which explain the robust
backstepping techniques for nonlinear systems with bounded uncertainties and the

adaptive backstepping techniques for nonlinear systems with unknown linear para-

meters.

In what follows, we will illustrate the application of backstepping procedure on a
nonlinear system in the lower triangular structure.

Consider a SISO nonlinear system of the form

& = &)+ aE)é
& = fol&,&)+0(6,86)8
& = f3(&1,6,86) + g3(&1, &, &)

ST = fr(gla-'wg?‘)+g?'(€l>"'7€7‘)u (21)

with ¢;(&1,...,&) #0forall 1 < i < r, f;(0,..,0) = 0for all 1 <4 < r, and all
functions are smooth. u is the control input.

For simplicity, let » = 3 to show the backstepping design procedure. Equation

(2.1) can be written as follows

14
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& = fil&) + g1(&1)és
£ = fo&,&) + ga(61,6)E
& = f3(6,6,8) + 93(6, &, E)u (2.2)

We start by choosing the Lyapunov function V; as follows
Vi) = 58 (23
The derivative of the Lyapunov function is
Vi=6&& (2.4)
If &, were the control, a controller for the first equation of (2.2) would be given by

1
& = (&) = m(—clﬁl — fi(&)) (2.5)

where a4 (&;) is an intermediate control law called virtual control. We need to make
the derivative of V| negative definite when & = «;(&;). This is possible when the

constant ¢; > 0. The derivative of V; would be

To find a function ay (£, &) for &3, the virtual control in the second equation of (2.2),

we introduce the new error variable &5 — «;. Choose the Lyapunov function

Voler, &) = Vi + 5 (62 — o)’ 27)

15
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Then, the derivative of the Lyapunov function is

Vo=V + (& — a1)(fo&1, &) + 92(61, &) — (fi(€1) + q1(&1)€2)) (2.8)

3

If &3 were the control, a controller for the second equation of (2.2) would be given by

! DL ) + (e 29

£ = z(&),82) = m(*@(& — o) = fo€1, &) + o€

which results that
Vz = —'lef - 02(52 - 061)2 (2-10)
is negative definite where ¢y > 0.

Introducing the new error variable &5 — ay, we are finally in the position to design

our actual feedback control u to stabilize the system by using the Lyapunov function

Va(&1, 82, 83) = V2+%(§3"a2)2 (2.11)

The derivative of the Lyapunov function is

Vi = Vot (& — a2)(f3(61, &, &) + 9361, &, 6)u

5042

_ a_&(fl(.fl) + g1(61)é)

_ %%;%(fz(fh@) + g2(&1,62)63)) (2.12)

Knowing that g; # 0, g2 # 0, and g3 # 0, we can choose the control u as follows

1 60[2
= m(_CS(f?)—a,’z)'fB(fl, /52, fg)—i— agl

U

(fil&)+a (51)€2>+%§‘§‘(f2(§1: &) +92(61,62)83))
(2.13)

16
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to make V3 negative definite, that is

Vi = —c1€f — cs(& — an)? — c3(&s — o)’ (2.14)

where ¢; > 0. By Lyapunov stability theorem, the controller (2.13) can stabilize the

system.

2.2 Example

We will illustrate the design procedure explained in the previous section by the fol-

lowing example

i’l = $2+$?
Ty = T 415+ 733
i’g = $1$2+5L‘2$3+U (215)
Comparing (2.15) to (2.2):
Ty = &, T2 = &, T3 = &
fil&) = xf
g(&) = 1
f2(61,62) = 55?+$g
17
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gZ(é-lag?) =1
f3(61,&2,8&3) = T3y + T3

93(61,62,6) = 1 (2.16)

First step is by choosing the Lyapunov function V;
L,

The derivative of the Lyapunov function is given by

Vi = miy (2.18)
If x5 were the control, a controller for the first equation of (2.15) would be given by
Ty = o= —T° — Ty (2.19)

Applying (2.19) in V4, then

Vi = —aot (2.20)

becomes negative definite where ¢; > 0.

Introducing the error variable 5 = x5 —q;, the derivative of the Lyapunov function

1
Vo=V, + _2.93»3 (2.21)

18
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is as follows

Vo = Vi+ dd
= z, (% — 1)) + E2(23 4 (Zo + ) + 25 — ) (2.22)
If 23 were the control, a controller for the second equation of (2.15) would be given
by
T3 =y =) — (Fp +0y)2 — 23 — 1) — oy (2.23)
which makes V, negative definite by choosing ¢y > 0. V, can be written as follows
Vo = —c122 — cpi? (2.24)

The new error variable is 3 = x3 — ap. The derivative of the Lyapunov function

1
Vo=Vt 58 (2.25)

is given by

Vi = Vot &3ds
= 11(%y — 171) + o3 + (F2 + o) + (33 + @) — i)
+ Zy(—ds +x1(Z2 + ) + (&2 + 1) (&3 + ag) + ) (2.26)
We are finally in the position to design our feedback control u to stabilize the system.

U = 022 — Iy (:i2 -+ C!l) — (§:2 -+ al)(iﬁg -+ 0[2) - ff?g — Cgig (227)

19
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0.14

01f

0.081

x~ 006

where ¢; > 0.

The feedback control u is able to stabilize the system by making
Vo = —c 1% — cyd2 — 3l (2.28)

negative definite.

The simulation results shown in figures 2.1, 2.2, 2.3, and 2.4 were realized using
Matlab. These figures show the system response for nonlinear backstepping control.
u is the control effort. The control parameters are chosen as follows ¢; = 10, ¢z = 1,

and c3 = 2. T = 10s with initial values z;, = 0.1, 9, = 0.1, and z3, = 0.1.

0.15

0.1 \

P
N 0.05}1 , ///v E
/
1 2 3 4 5 6 7 8 9 10 -0.‘0 '; 2 3 4 ; [:] 7 8
Figure 2.1: z;-Nonlinear backstep- Figure 2.2: z,-Nonlinear backstep-
ping control ping control

Assuming that all parameters of the system are accurately known, nonlinear back-

stepping controller causes the closed loop states to converge to zero.

20
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0.2

{
~ah
01l 4

gl

-0.5 -9
0

Figure 2.3: z3-Nonlinear backstep- Figure 2.4: u-Nonlinear backstepping

ping control control

In the previous example, overshoots and/or undershoots can’t be totally elimi-

nated. However, they can be controlled by changing the control parameters.

21
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Chapter 3

Robust Backstepping Control

Design

3.1 Theory

Every mathematical model for a real system is more or less uncertain. The uncertain-
ties may result from disturbances or inaccurate knowledge of the system parameters
(such as mass, inertia, friction, etc). The need of controllers with high performance
and guaranteed robustness properties has increased during the last decade.

Model uncertainties should always be bounded; otherwise with absolutely no
knowledge of the system, the problem becomes ill posed. Given any controller con-

nected to a completely uncertain system, there is always the possibility of making the

22
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closed loop unstable [20].

Robust controllers are introduced to stabilize the system in spite of parameter
uncertainties. In this chapter, we will explain the robust control design using back-
stepping. It is a procedure by which both a Control Lyapunov Function (clf) and a
control law can be determined simultaneously. The robust backstepping technique
for a third order system in the lower triangular form is developed in this chapter.

The lower triangular structure for a system with uncertainties is:
T = ¢1(z1)%2 + Y1(71) + 6i(2)

Ty = ¢aT1, T2)T3 + 2(z1, T2) + 02(7)

&3 = ¢3(1,Te, T3)Ts + Y3(T1, T2, T3) + 83(2)

T = ¢o(x1, -, T)u+ U (21, .., Z) + 6,(2) (3.1)

where z; € R, 22 € R, 23 € R ... z. € R are state variables and u € R is the control
input. &,(z), d2(x), d3(x) ... 4.(z) are uncertain nonlinearities which are uniformly
bounded for all values of z. ¢;(x;,...,x;) # 0 where 1 <1 <r

(Structural Condition)

The uncertainty terms §;(z) for 1 < i < r satisfy the following structural conditions
ldb(l') 1 S ij—(ml,...,xi) l.’L'J I, izl,...,T
j=1

where the nonnegative functions k; for1 <j<iandl <7 <r are known.

23
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For simplicity, we will explain the robust backstepping design procedure by as-

suming that r = 3. The lower triangular form for the third order system is as follows:

1 = ¢1(x1)z2 + Yi{m1) + ()
Ty = ¢o(T1,T2)23 + Pa(z1, T2) + b2(x)

T3 = ¢3($1, Lo, T3)U + ¢3($1, Za, 333) + 53(33) (3-2)

Step 1: First z, is regarded as a control input for the first equation of (3.2). A

control Lyapunov Function, Vi(z;), can be chosen as follows:
L,
Vilzy) = 571 (3.3)

We start by designing the smooth function o;(z;), as will be shown in the example,
with a;(0) = 0, so that the derivative of the Lyapunov function Vj(x,) satisfies the

following inequality
Vi £ —bizd (3.4)

along the trajectories of the first equation of the system (3.2) with x5 = ay(z;).
Step 2: Let us introduce the change of coordinate &5 = x3 — a;(x1). Then, by

taking the derivative of &y, we have

N . Oay
Ty = To9— —1I

aml

= $o(x1, 22) T3 + Yo (1, T2) + 82(2)

24
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_ 6a1 [qﬁl(xl)mg + Y1 (x1) + 61 ()]

= ¢ (iL‘l, $9)$3 + wz(l'l,.'l')‘)) + 52(33)

where

652(5517 §72) = (]52(3317 932)

Uo(21,82) = Ya(zr, ) — %%[%(1’1)732 + i (1)]
32(17) = do(z) — %51(@

We can rewrite the equation of ; as follows

;= ¢i(z)aa(zr) + Yi(21) + 01(x) + Dachr(24) (3.5)

From the structural condition, d,(z) satisfies

8&1

[0:(2) | < 18a(a) [ +] 5~ ~ [[41(=) |

aal

Slefc1|+k2\ﬂ?zl+l lkll 1|

3041

IA

k21$11+k2112l+k21041($1)|+l lkll 1]

Now we can design the smooth function as(z;, Z;), as will be shown in the example,

with a»(0,0) = 0, so that the derivative of
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along the trajectories of the second equation of the system (3.2) with z3 = as(xy, Z2).
Step 3: Let us introduce the change of coordinate Z3 = x3 — as(x,Z2). Then,

by taking the derivative of 3, we have

N . Oay Oay .
I3 = T3— Ty — 7 T2
8$1 83[32

= ¢3(z1, T2, T3)u + Y3(z1, T2, 23) + 85(T)

60[2

_ B (1 (1) 29 + 1 (T1) + 01(z)]

80[2 ~

- 8_:;:;{(;52(331, Eo)xs + 1[12(331, T9) + 82(93)]

= q33(3:1, Ta, T3)u + 7153(271, To, T3) + 53(33)

where

G3(T1, 52, 33) = 3(T1, T2, T3)
a1, B9, 33) = t3(x1, B2, T3) — ng [#1(z1)z2 + 1 (z1)]
aag

_ 55;[@(351, o)z + (T, £2))

b3(z) = 53(1-)—?3351(1) —?—0232(1:)

We can rewrite the equation of Z5 as follows

~ A~ ~ ~

Lo = @o(21, Z2)aa (1, B2) + Yo(@1, T2) + 02(2) + Pa(z1, £2) %3 (3.6)

The upper bound for §3(x) can be estimated

B) | < 10a) |+ 1 g2 (1) |+ 1 52 [l |

T2

26
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8&2

Sk?|$1|+k§|$2|+k§\1’3|+i5;;!k}|3?1|
80’2
+ 15;2‘ (k3 |2y | +k3 | 22 )

< K|z | kS | B2 | K3 | culz) | K3 | &5 | K3 | ooz, 22) |

Oy

(93:1

fas

+ \ 8.1'2

EAENE (k7 | 1 | +K3 | 22 | +K3 | 0o(2y, 22) |)

We are finally in the position to design our actual feedback control u to stabilize the
system with respect to

1 1. 1,
‘/3(371,532,@‘3) = ‘él‘? + 51173 + :;2'.’13%

so that it satisfies the following inequality
V}, S —blx% - bgig - bgfi'g

where by > 0, by > 0, and b3 > 0.
The steps above have demonstrated the design procedure of the robust backstep-

ping control. In the following example, the same procedure will be applied on a given

system.

3.2 Example

We will illustrate the design procedure explained in the previous section by the fol-

lowing example

fi‘l = $2+.’E191

27
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Ty = 1173+SL'§33192

Comparing (3.7) to (3.2):

pi(z) = 1

<Z52(931,$2) =1

¢3(931, 332,133) =1
Yi(z1) = 0
7/)2(55171‘2) = 0

s3(xy, T2, 23) = 0O

(51(27) = 33'191
(52("17) = CE%LIHQQ
53(113) = $1$293 (38)

where 0,, 05, and 65 are unknown parameters that satisfy
|01 |<a, |6:]1<b, |6s3|<c

for some known bounds a, b, and c.

The function 6; satisfies the inequality | d; |< a | x1 | globally. The function
J, satisfies the inequality | 8, |< bz | z; | globally. The function d; satisfies the
inequality | 63 |< ¢ | z1 || z2 | globally.

28
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Starting with the equation

ibl = o + 01371

we take Vy(z1) = 13 to obtain
Vi = 2129 + 0,22
If z, were the control, a controller for the first equation of (3.7) would be given by
zo = ap=—(b +a)r; (3.9)

We can rewrite V; as follows

Vi = —(by+a)a?+6,27
< —(by +a)z? + a:crf

< —byr} (3.10)

Set the new error variable £ = T3 — a; = T + (by + a)z;. Then, we have

Fr = by - 2%
2 - 2 axl 1
= CiIQ -+ (b1 + Cl)j?l
= I3+ $§$102 + (bl + U;)(xg + .’23191)
= z3+ (&2 + a1)2w192 + (b1 + a)(T2 + 1 + z160y)
= @3+ (by + a)(F2 + 1) + bz, Bs)

29
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where 52(1‘1,1%2) = (fifz + a1)2$192 + (bl + a)m101
| 0o(z1,8) | < b(Er+on)? |31 | +(bs +a)a ]z |
We can choose the Lyapunov function Vs

1.
Vo=V, + 55;5 (3.11)

The derivative of the Lyapunov function is given by

V) = ‘/1 +i:2.’2'2
= :131(.’252 + a; + 915E1) + i’Q(CU:g + (b1 + a,)(jg + Oll) + 52)

= z(a; + 6izy) + To(zy + z3 + (b + a) (T2 + o)) + b,

IN

—-bll'% + ig(ml + x3 + (bl + a)(:f:2 + Otl))

+ 1@ | (b(E+ ) |z | +(by +a)a |z ])

IA

—l)l$% + .’i‘z(fEl + 3+ (bl + (1.)(12'2 + Otl))

+ ‘ i?g I (b(iﬁg + 061)2 + (bl + a)a) I Ty ‘

< -—bliEz + ig(fﬂl + T3 + (bl -+ a)(:?:2 + Oll))
1 1
+ 5:@3(5@2 +ay)? + (b, +a)a)® + -2-1;% (3.12)

We now consider z3 as the control variable for the second equation of (3.7). We can

design the smooth function as as follows

T3 = ag=—byy —x1 — (b1 +a){dy + 1)

30
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1
- 5532(5(5?72 +a)® + (by + a)a)? (3.13)
Applying (3.13) in (3.12), we can rewrite V, as follows
’ L o =2
Vo < (_bl + 5)331 - 621'2 (3.14)

Set the new error variable Z3 = x3 — as. Then, we have

¢y can be written as follows
a; = —(by+a)i;
Replacing «; by its equivalence from equation (3.9), &, can be written as follows
Fo = —(by + a)’xy + (b1 + @)%y + 73 + (B2 — (b1 + @)21)’210, + (b1 + a)2:0; (3.15)

ci» can be written as follows

, = Doy 0o,
@ = 8:1:1 o 8332 T2
= *bgig — ifl — (bl + a)ii:g — (bl + (l)dtl
— By(b(Ey + a1)? + (b + a)a)(26(d2 + o) (£ + 1))
1.
— 5552(1;(502 + ay)? + (b1 + a)a)?
= '_bQIi:g b il — (bl + a).’fz + (b1 + a)2a'51

— 29(b(Es — (by + a)z1)? + (by + a)a) (20(d2 — (by + a)21)(Z2 — (b + a)d1))
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ii‘g(b(i‘:} — (b1 + a)ml)‘? -+ (bl + (I)CL)2
= .’i:g(—bl — Qaq — b2) — Slfl((bl + a)2 — 1)
— i‘g(b(i’z —_ (bl + 0)1131)2 + (b1 + a)a)(2b(§:2 — (bl -+ a)a:l)(:?f2 —_ (bl + Q)SEI))

1.
- -Q-jﬁz(b(i'g b (bl -+ CL).’El)Q + (bl + CL)(I)2 (316)
From equation (3.16), we can rewrite &3 as follows

Iy = .’ig -+ bgi:g + jil -+ (bl + a).@-g e (bl + G,)chl
-+ ig(b(ﬁfg - (b1 -+ CI;):IIl)z —+ (bl + a)a)(2b(i2 — (bl + a).’Bl)(fg - (b1 + Cl).’I'Jl)

+ %fg(b(ig (b +a)z1) + (b + a)a)?
and from equation (3.15), &, can be written as follows
Ty = T3 + (&3 + 01)22,0, + (by + a) (&3 + g + 216;) (3.17)
To simplify the equation, the following variables are introduced

m = (&3 — (b1 +a)x;)

k = bm?+ (b +a)a

Il = b +a
We can rewrite Z, as follows
Ty = &y + 0p + mP210y 4 1(Zy + ay + 7,61) (3.18)
32
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We can rewrite Z3 as follows

.f:gk2 + m2$192 + lxlﬁl)

B =

Ty = U+ cclm03 - (£3 — bgi’g — X —
('—bl —a— b2) + (m -+ 33191)([2 - 1) + 2532kb77l(j3 — bgii’g
1
- 1 — 5@'2](}2 +m2w192+l1‘191 —l(m+$101))
1 2/ A -~ 1, 2 2
+ ik ($3 — bzl’g — Ty — 5(132]6 +m 33102 + ll’lgl)
= Uu-— (ig - bgji;) — Ty — —2-532/62)(—1)1 — 4 = bQ)

1
+ m(? = 1) + 282kbm (23 — boFy — T, — 555218 — Im)

1 1 -
-+ —ékz(jﬁg - bzfig — T = §£2k2) + 53 (319)
where

N . 1
53 = (m93 - (—b1 —Qa— bg)(mzez + lel) -+ (l2 - 1)91 + 2§32kbm302 + ‘2*]132 (m292 -+ l91))a:1

(3.20)
We can choose the Lyapunov function V;
1o
The derivative of the Lyapunov function is given by
Vi = Vot dsds
L, 5 22 A (a N
< —(bl — 5)1’1 - bg.’Ez + xg(mg -+ fBg) (322)
33
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The uncertain term in V; can be written as follows

517353 = :?:3(777,95 - (—bl - a— bg)(m202 + l01) + (l2 — 1)(91 + 2j2k5bm392
1
+ —2—k2(m292 + l01))$1
< clay||m || 23| +b(by +a+b)m® | 23 || 71 |
+ (bhta+b)la|ds ||z | +(*—1Da]| s || =1 |
1 97 |
+ 2kbgm2\:f:2||m|1:%3||x1|+§k2m“b|x3|}x1|
1, .
+ ‘ék}lCL‘iEg”SCll
< éx% +2c*m?3: + —;-xf + 202 (by + a + by)*m*33

1
+ =224+ 2((by +a+by)la + (12— 1)a)?s2

8
1A 274, 4 2-2 2 1 2 1 4. 4122

+ §x2+2kbmmx3x1+é—x1+§kmbx3

bl lppes (3.23)
g7t 2 8 '

From equations (3.22), (3.23), and (3.19), we are in the position to design our

actual feedback control u to stabilize the system.

1
u = —bgi’g - C?]g + (j?g - bQ.’ig — X1 — §£2k2)(—b1 —QaQ — b2) — m(12 - 1)
. . " 1, 2 1 2/ A - 1. 2
— 2Zokbm(Zs — boZo — x — 5.’152]6 —1Im) — §k (T3 — boZy — 21 — §z2k )

- 202m2:%3 — 2b2(b1 +a+ b2)2m4:i‘3 — 2((b1 4+ a+ bg)la + (l2 - 1)&)253'3

1, 1
— 2K’b'm*m?232? — §k4m4b2:&3 - §k4l2a2§:3 (3.24)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The derivative of the Lyapunov function V5 is given by

: 9 1. .2
Vs < =(b — '8‘)95% — (b2 — ‘2‘)353 — b33 (3.25)

which implies that the controller given by (3.24) will stabilize the system and as will
be shown in the following figures.

Figures 3.1 - 3.16 show the simulation results, which were carried out on Matlab.
The control parameters are as follows b; = 1.9, by = 0.6, and b3 = 1. T = 10s with
initial values z;, = 0.1, z5, = 0.1, and z3, = 0. The upper bounds are chosen as
follows a = 2, b = 3, and ¢ = 4.

Simulations were performed using different values of 6,, 6 and 63 as follows:

First set: 6, = 1.5, 6, = 2, 85 = 3. Results are shown in figures 3.1, 3.2, 3.3, and
34.

Second set: 8, =0, 85 =0, 03 = 0. Results are shown in figures 3.5, 3.6, 3.7, and
3.8.

Third set: 6, = —1, 0 = —1, 83 = —1. Results are shown in figures 3.9, 3.10,
3.11, and 3.12.

Fourth set: 6, =1, 6, = 1, 63 = 1. Results are shown in figures 3.13, 3.14, 3.15,
and 3.16.

The fourth set will be compared with the results of the adaptive backstepping
control, as will be shown in the next chapter, where the value of 8 is chosen equal to

1.
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Figure 3.1: z;-Nonlinear robust back- Figure 3.2: x3-Nonlinear robust back-

stepping control - §; = 1.5,03 = 2,603 = 3 stepping control - 81 = 1.5,6; = 2,05 = 3

Robust backstepping control makes the closed loop states to converge to zero in
the presence of bounded uncertainties. However, the control effort is very high. The
simulation results are quite similar for the four cases, which prove that the robust
controller is able to stabilize the system even if we change the values of 6;, 6; and 65

as long as their absolute values are less than the upper bounds.
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Chapter 4

Adaptive Backstepping Control

Design

4.1 Theory

Adaptive backstepping is a nonlinear control design technique that has been devel-
oped in the last decade. This technique achieves the control of nonlinear systems with
parametric uncertainties. These uncertainties consist of unknown constant parame-
ters which appear linearly in the system equations. In this chapter, we will explain
the backstepping method for designing an adaptive controller to stabilize the system
in the presence of these uncertainties.

In previous chapters, for the robust backstepping control design and the nonlinear

41
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backstepping control design, we used a static feedback control law to stabilize the
closed loop system. In addition to the static feedback, the adaptive controller employs
nonlinear dynamic feedback.

The underlying idea in the design of this dynamic part of feedback is parameter
estimation. Then, the dynamic part of the controller is designed as a parameter
update law with which the static part is continuously adapted to new parameter
estimates, hence its name: adaptive control law [19].

The adaptive backstepping design employs more than one estimate per unknown
parameter. This over parameterization makes the control law complicated and diffi-
cult to implement. The tuning functions are introduced to reduce the dynamic order
of the adaptive controller to its minimum. The number of parameter estimates is
equal to the number of unknown parameters. The benefit from this improvement in
the design is not only for implementation, but also because it guarantees the strongest
achievable stability and convergence properties.

In the tuning functions procedure, the parameter update law is designed recur-
sively. At each consecutive step we design a tuning function as a potential update
law. The controller uses these intermediate update laws to compensate for the effect
of parameter estimation transients. Only the final tuning function is used as the
parameter update law [19].

The design procedure for a third order system in the lower triangular form is
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developed in this chapter.

Consider the following system

1 = Zy+ P1{x1)0
Ty = xg+ Pa(xy1,x0)0

ng = 'U,+¢3(5L'1,1'2,SL'3)9 (41)

where 0 is the unknown constant parameter. z; € R, o € R, 13 € R are state
variables and v € R is the control input. ¢, =0, ¢, =0, and ¢3, = 0.

We will start the design procedure by assuming that z is the virtual control of the
first equation of (4.1). Recursively, we will augment the designed subsystem by one
equation and design a stabilizing function «; and a tuning function 7;. The update

law for the parameter estimate 0 and the adaptive feedback control u are designed at

the final step.

Step 1: If x, were the control, an adaptive controller for the first equation of

(4.1) would be given by

To = Oél(.’L'l,é) = —C121 — ¢1($1)é (42)

where z; = x; and 6 is the estimation of the unknown parameter. Introducing the

new error variable 2o = x93 — a;, the z;-equation becomes

21 =1+ 29 + ¢1(.’I)1)9 (43)
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our task in this step is to stabilize (4.3) with respect to the Lyapunov function

1, 15
= - —u- 4.4
Vi=gal+ 279 (4.4)

where 6 = 6 — @ is the parameter estimation error. The derivative of the Lyapunov

function is

. 1%
‘/1 = 21(011 + 25 + ¢16) e ;99
A 1~ &

= z(on+ 2+ ¢10) - ;9(9 —YP121) (4.5)

We can eliminate 8 from V; with the update law g = ~v11 where

T1(z1) = ¢1(z1) 21 (4.6)

If z, were our actual control, we would let z; = 0, that is, 3 = a;. Then, Vi = —c 2%,
Since z5 is not our control, we have 23 Z 0, and we do not use = ~7; as un update
law. Instead, we retain 7; as our first tuning function and tolerate the presence of 8
in Vl

. 5 ~ 1=

Vi=—ci2] + 2122 +9(———7—9+7'1) (4.7)
The second term z;2, in V; will be canceled at the next step.

Step 2: We now consider z3 as the control variable for the second equation of

(4.1). Introducing the new error variable 23 = z3 — vy, the 2;-equation becomes
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Zy = z3+a2——(?9—1:t1~%62—1§+¢590

8%1
) Bay: O
— g — -5%@ - —(9%9 — 5(;%@9 + o8 (4.8)

Our task in this step is to stabilize (4.3), (4.8) with respect to the Lyapunov function

1
Vo=Vi + 523 (4.9)

The derivative of the Lyapunov function is

8a1$ _ 3a1é B Oaq

0z 2 o0 Oz

801 8011 A 8@1
Ty — ~0 —

0z, 08 0z

Vo = —clzf + 2] + 23+ —

$10 + $.0] + é(—%é +7)

¢1é + ¢2é]

= —-clzf + 22[21 + 23+ —

~ 1= o
4-9G;9+ﬁ+wﬂ~é§%+¢ﬁ) (4.10)

We can eliminate 8 from V5 with the update law § = y7,, where

_ R 0
(w1, 22, 0) = 7 + (5 1 + ) (4.11)
1

If z3 were our actual control, we would achieve 23 = 0, that is, 3 = ay. Then, to

make Va = —c122 — 222, we would design a; as follows
- o O Oay , ; .
CEQ(SL'l, T, 8) = —23 — C92Z9 + amll Ty + 89‘177_2 -+ amigble - ¢20 (412)

Since z3 is not our control, we have z3 #Z 0, and we do not use § = y7, as un update

law. Instead, we retain 75 as our second tuning function so that the resulting V, is:

. 1=
Vo= —c12% — o2 + zp23 + 2 85)0;1 (vry — 0) + 0(12 — ;6) (4.13)
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The third term 2025 in V, will be canceled at the next step.

Step 3:The derivative of z3 is now expressed as

8042 . 8&2 . 8012

Z3 = .’IJ3*(12:U+¢39——‘—8$11’1—%—2'$2 800
8a2 8012 80@ 8052 602
= — Ty — 20~ - 20 — 4.14
u + @36 Bz, o3 - o)} 52, Z3 e $20 39 (4.14)

We are finally in the position to design our actual update law g = ~v73 and feedback

control u to stabilize the system with respect to

1
Va=Vo+

2z3 (4.15)

The derivative of the Lyapunov function

: ooy
Vo = —ci27 - 0222 + 20— 5% (77'2 — 0)
+ ozl ut gy — 225 60‘2(;519 - 8“2 ol Oas
or 1 2 o8
_ 1
+ (e — =6
(T2 5 )

oa
= —c170 —co2t + zz—aél('yTg - 6)

A 8042 8042 ~ 8062 8&2 ~ 8042
+ z3(ze +u+ @30 oz, ™~ B, $10 — 75,7~ 3, ¢20 — % 0]
~ 1 Oa oo
+ O(ra = =0+ 25(90 - 2¢1 ~ —%)) (4.16)

we can eliminate 6 from V, with the update law 6 = T3, where 13 is our tuning
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function

- Oo oo
7'3(1'1, T2, T3, 9) =Ty + Z3(¢3 - ”‘2¢1 2¢2) (4-17>
‘We choose the control u as follows
s 0 15, Oa Oy
U = —29 — C323 — ¢39 -+ az.’L’Q + ﬂqﬁ@ + 2.133 -+ ——¢20 + = ’)’Tg + V3 (418)
8 Tq 8 T2 69

where v3 is a correction term yet to be chosen. Vs becomes
. 9 (’9
Vs = —c12] — 0222 322 + Zg—= 50 (7T2 — 6) + 23v3 (4.19)

Then, noting that

X oo Oa
0 — g = Y73 — Y7o = Y23(¢3 — —‘2‘951 2¢2) (4.20)
we can rewrite Vé as
. Oa Oa da
Vo= —c12? — cozh — ca2s + 2lus — 2oy (b3 — ~—athy — 2¢2)] (4.21)
08 01y
Now the correction term vy is chosen as
Oa 5‘a 150"
v3 = zg——Y( Py — 7 ¢1 2¢2) (4.22)
06
Finally, Vs can be written as
Vs = —c122 — cp22 — 322 (4.23)

which means that, according to Lyapunov stability theorem, the controller u associ-

ated with the update law 6 can stabilize the system.
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4.2 Example

We will illustrate the design procedure explained in the previous section by the fol-

lowing example

.'I.Jl = I9+ .’E19
: 2
Ty = T3+ 2520

.i'3 = U+CU11E-29 (424)
Comparing (4.24) to (4.1):
i(z1) = m

$2(T1,72) = THT)

$3(T1, T2, T3) = T122 (4.25)

If 75 were the control, an adaptive controller for the first equation of (4.24) would be

given by
Ty = = —c,7 — 710 (4.26)
The derivative of the Lyapunov function
Vi = =13 + —0° (4.27)

is as follows
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Vl = z(z2+x,0) — -}éé

1.2
= ($2+C¥1 —011+I19+$19) —;99
1a ~
= —clmf + (zg — 1)z + (mf —_ ;0)9 (4.28)

The new error variable is o — a;. We can choose the Lyapunov function V;
1 2
Vo=V + 5(»’62 — o) (4.29)

The derivative of the Lyapunov function is given by

Vé = V1 + (332 - 011)@2 - dl)

1 -
= —Clmil + ($2 - Ql)l'l -+ (33% — ;9)9
9 )
+ (zg—an)(z3 + a:%:clﬂ BZ (g + 2,6) — _glg)
1

ooy
= —2% + (1 — o) [w1 + 33 + (232; — ——3:1)9

83’)1
5041

da ~ Oy » Y.
- %——wgﬁ—(a:%xl—é—m—i—zl)@]—(arg—al)—a—é}ﬂ—i—(xf— 66  (4.30)

1
~
We now consider z3 as the control variable for the second equation of (4.24). The

virtual control

Oay O
o 1$1)9 + —8——.’132 + 71 (431)

T3 = ag=—cy(Ty — ) ~ 3y — (2377 —

can be found to make V; as
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Vo = —e22 + (2o — )z +23+0p — g+ (piz, — -g—alazl)é
day
- g%wz] + (32 — 1) (z321 — g . 1) + 230 — (32 — al)—%-(g B)
- 2065~ (@ - o) 6~ 20
= *C1LE% - Cz(I2 - a1)2 + ($2 - al)(i% - Oéz) (332 - 041)“8“&—1(9 5)
1~ =
— Z6(8 — 4.32
S -8 (4.32)

where 8 = y[(zy — au) (2321 — aalml) +z¥ and 1 = %’g—ﬁ = a;;l’y[(xg — o) (zizy —

%%fm) + z3].

The new error variable is 23 — cg. We can choose the Lyapunov function V3

—1- I3 — Oé2)2 (433)

V= Vit 5

The derivative of the Lyapunov function is given by

Vs = Vot (3 — ao)(ds — G)

8042 . 8(12 B 80&2 A 80(2 . 5042

= ‘/2 -+ <$3 — O.’Q)(IEQ, — axl Ty — 8:132:62 — 3@ 9 — aalal — ‘-37_—17'1)
13]
= —z2 -y — o) + (z2 — ) (T3 — ) — (T2 — al)ﬂ(e B)
1. 0 5]
— 00— )+ (25— o) (Ut 21290 — o2 (@ + 310) — 2 (25 + 2246)
i 8.T1 0 Lo

60(2 ~ 802
o6 ¢ doy (
Oy , 01y
on (8351
871 8@1

Oa, B0, 52, Ory

doy da »
om0 20+ 50

on

(2 + 210) + 2—(ac::, + z27,0) + 9g
0o 00
Ooyy

(z2 + 10)+—~89 9)))
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= —c2} — o2y — a1)? ~ (22— o) k(6 — B) - =6(6 - B)

a0 Y
+ (z3—an)(zg —ay +u— 4%12 - Q%Z‘Z“
+ (z129 — 4—(;9%:51 2%@%)9 + (r122 — 42—3?—11 — 2%933331)5
da
B 4_89_29) (4.34)

We are finally in the position to design our actual update law 0, second tuning function

T, and feedback control u to stabilize the system.

Oa ooy 156" Jo -
U= —03(5U3 - 042) — Ty + Qg +45—2‘$2 + 28 2333 - (.’Elmg - 4%%ZE1 - 2'5‘:';3.’E31'1>9 + T3
(4.35)
6= — -4 —-2—= - 4.36
Y((z3 — ag)(T172 pe 13?1 By T311) + 75) (4.36)
ooy Oaiy Oy 2 Oag -
= — D — 44—, — 2= 4-—=-0 4.37
Ty = (zo — @) % v(z122 e 28:);2 T321) + Py (4.37)
which gives
Vs = —177 — ca(xy — y)? — c3(z3 — ap)? (4.38)

The simulation results presented in figures 4.1 - 4.10, which were performed using
Matlab, show the system response for adaptive backstepping control.

Figures 4.1, 4.2, 4.3, 4.4, and 4.5 represent the first set of simulations with § = 1.
The control parameters are ¢; = 1.5, ¢ = 4, ¢3 = 12, and v = 0.27. T = 10s with
initial values z;, = 0.1, 5, = 0.1, 23, = 0, and 90 ={.1.

The second set of simulations is achieved by choosing # = 2 and the results are
shown in figures 4.6, 4.7, 4.8, 4.9, and 4.10. Control parameters are changed to ¢; = 6,

o1
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co = 6, c3 = 14, and v = 0.03 to achieve

used for the first set.

0.16 T T —

x 0081

Q.06

0.04

Figure 4.1: z;-Nonlinear adaptive

backstepping control - § =1

stability with the same initial conditions

0.45 ————

0.05

o
T

/

Figure 4.2: z,-Nonlinear adaptive

backstepping control - § =1

Comparing robust backstepping controller discussed in the last chapter with the

adaptive backstepping controller, for the case where § = 1, we conclude that the

control effort for the robust controller is much higher than the adaptive controller.

The response of the robust controller is faster. However, the percentage overshoot

and/or undershoot is much higher for x5 and z3 when the robust controller is applied

to the system. Moreover, the control effort for the robust controller is much higher

than the adaptive controller.
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Chapter 5

System and Experimental Setup

5.1 Robotics Background

Robotics technology is likely to become the high technology field of the 21st century.
Developments in fields such as microprocessors, vision, and artificial intelligence are
used to fulfill the needs of a competitive worldwide manufacturing industry. Robotics
technology is finding applications in many other fields as well, such as medicine, health
care, space exploration, and transportation. Today, robots are used iﬁ many ways,
from lawn mowing to auto manufacturing. Scientists see practical uses for robots in
performing socially undesirable, hazardous or even ”impossible” tasks such as trash
collection, toxic waste clean-up, desert and space exploration, and more.

Robot manipulators are composed of links connected by joints. The joints of

o6
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the manipulator may be electrically, hydraulically, or pneumatically actuated. The
number of joints determines the degrees of freedom (DOF) of the manipulator. The
workspace of a manipulator is the total volume swept out by the end-effector as the

manipulator executes all possible motions [21].

: ; ;
S~ PP Fle
S iy /, ,

T Y
i, / \\l /{\3 Cj_ . /
7~ 7\‘;/ e
~ *@/ q
~ B
e A \\!

Figure 5.1: 2 DOF robot manipulator

Robots are usually equipped with internal position sensors (e.g. joint encoders)
in order to measure the relative position of two neighboring links.

With increasing number of joints not only the mobility of the manipulator is en-
hanced, but also the mechanical and electrical problems become difficult to solve, and
the development of a motion controller becomes a more complex and more expensive
task.

For many simple handling tasks in robotics, 4 joints are already sufficient. For

some specific welding and painting applications 5 joints are necessary, and for general-

o7
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purpose applications, a manipulator with 6 joints has to be chosen, which is the
standard type of an industrial robot. A 6 joints robot offers solutions to a vari-
ety of advanced handling problems, because it provides 6 degrees of freedom in its

workspace.
To apply different types of nonlinear controllers experimentally, a two-link planar

manipulator system is used. The dynamics for the robot can be written as follows

M(q)i+Clq,9)g+glq) =7 (5.1)

where ¢ is the 2 x 1 vector of joint positions, 7 is the 2 x 1 vector of applied torques,
M(q) is the 2 x 2 symmetric positive definite manipulator inertia matrix, C(q, §)q is
the 2 x 1 vector of centrifugal and Coriolis torques, and g(q) is the 2 x 1 vector of
gravitational torques. Gravitational torques can be eliminated from our model since
it’s a planar (horizontal) model [17]{22].

Equation (5.1) can be written as follows
M(g)qg+Clg9)g=T (5.2)
The elements of the inertia matrix M(q) are given by
Mi(q) = mil? +mo(B + 1% + 2Ll gcos(qy)) + 1) + I
Mio(q) = my(2 + Lilecos(qy)) + I
My (q) = mo(l% + lileacos(qz)) + I

MQZ(q) = m2l§2+I2 (53)

o8
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The elements of the centrifugal and Coriolis matrix C(q, ) are given by

Culg,q) = —malilesin(qz)ge
Cia(q,q) = —malilasin(gz)(d1 + ¢o)
Cnlg,d) = malilesin(g)d:

Cnlg,¢) = 0 (5.4)

The meaning of the symbols and their numerical values for the 2-DOF robot ma-

nipulator shown in figure 5.1 and used in the experiment are as follows

Iy

ly

: length of link 1 = 0.74m

: length of link 2 = 0.475m

: mass of link 1 = 5.106kg

: mass of link 2 = 1.1317kg

: distance to the centre of gravity of the link 1 = 0.2293m
: distance to the centre of gravity of the link 2 =0.171m
: moment of inertia of link 1 = 0.2158kg.m?

: moment of inertia of link 2 = 0.0137kg.m?

5.2 Experimental Setup

The experimental setup consists of three main parts.
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5.2.1 Mechanical Assembly

The mechanical setup consists of two links made of aluminum connected through gear
trains. The joints are actuated by DC motors, Pittman GM9434H187, via gear trains
with the optical encoders providing motors position measurements. Each motor has
a built-in gearbox with a transmission ratio of 1:5.9 and with a no load speed of
6151rpm. The mechanical assembly has a further gear ratio of 22:64 for the first link
and 30:86 for the second link.

The voltage equation of the motor can be derived as follows

01
a — Ra .a L—a
v 1q + Bt + v
Tm = kmia
v = ko (5.5)

where v, is the armature voltage, R, is the armature resistance, i, is the armature
current, L is the armature inductance, v is the back emf, 7, is the motor torque, k,,
is the torque constant, k. is the back emf constant, ¢,, is the angular velocity of the
motor.

The gear ratio G causes an increase in the torque seen at the load and a reduction

in the speed of the load.

T = Gy
: 1.
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The value of the gear ratio should reflect the gear ratio of the link and the motor
gearbox transmission ratio. G > 1
Finally, neglecting the change in the motor current, the voltage equation of each

motor link is measured by the following equation

1 1
=R,—-— k.G
U o kmU1 + 191

11 .
Vg = Raa‘z"k—;’llq + keG2q2 (57>

where (5 is the gear ratio for link 1, G is the gear ratio for link 2, v; is the armature

voltage for the motor of link 1, v, is the armature voltage for the motor of link 2, and
Uy
Ug
Q1
q =
G2
The values used in the simulation and the experiments for (5.7) are as follows
R, = 2.960hms
Gy = 64/22 5.9
G, =86/30%59
k., = 0.0365N.m/A

ke = 0.0365V /rad/s

The motor is driven by the driver circuitry explained in the following section.
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5.2.2 Circuitry

To better understand the controller circuit, we will explain briefly two main concepts,

which are H-bridge and PWM signal.

H-Bridge Module

A microprocessor cannot drive a motor directly, since it cannot supply enough cur-
rent. Instead, there must be some interface circuitry so that the motor power is
supplied from another power source and only the control signals are provided by the
microprocessor. This interface circuitry can be implemented by a circuit known as
the H-bridge [23]. An H-bridge merely consists of 4 switches connected in topology
of an H, where the motor terminals form the crossbar of the H. In an H-bridge, the
switches are opened and closed in a manner so as to put a voltage of one polarity
across the motor for current to flow through it in one direction or a voltage of the
opposite polarity, causing current to flow through the motor in the opposite direction

for reverse direction.

Pulse-Width-Modulation Control

In pulse-width-modulation (PWM) control [24] [25], the converter switches are turned
on and off during a half-cycle and the output voltage is controlled by varying the width

of the pulses. The gate signals are generated by comparing a triangular wave with
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a dc signal. The PWM circuit requires a steadily running oscillator to operate. The
main disadvantages of PWM circuits are the added complexity and the possibility
of generating radio frequency interference (RFI). RFI may be minimized by locating
the controller near the load, using short leads, and in some cases, using additional

filtering on the power supply leads.

Controller Circuit Description

The driver board is divided into two main circuits. Each circuit deals with different
types of input, analog and digital. The driver board consists of 4 chips: JWD-107-1,
LMD18200, TL494, and MOC5007.

The LMD18200 is made by National Semiconductor. It is an H-bridge, which can
supply up to 3 amps continuously at 55 volts. The motor and the LMD18200 are
in series with an electromechanical relay. The relay must be enabled by the DAQ
device. This prevents unwanted motor motion.

In this circuit, the LMD18200 is configured to accept a PWM signal. This type of
signal encodes both direction and speed information. A PWM signal of 50% means
motor off. A PWM signal less than 50% makes the motor rotate at ever increasing
speed as the PWM signal approaches 0%. A PWM signal greater than 50% makes
the motor rotate at ever increasing speed in the opposite direction as the PWM signal

approaches 100%.
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The circuit will also accept a 0 to +5 volt analog signal. The 3-pin header to the
immediate right of the relay selects whether the PWM signal comes from the DAQ
or from the TL494. The DAQ - PWM line is optically isolated from the LMD18200
to prevent 12 volts from reaching DAQ 5-volt logic devices.

For a given control input, the motor rotation can be reversed by configuring the

3-pin header to the immediate left of the TL494.

5.2.3 Data Acquisition Module

Traditionally, measurements are done on stand-alone instruments of various types-
oscilloscopes, multi meters, counters etc. However, the need to record the mea-
surements and process the collected data for visualization has become increasingly
important.

There are several ways in which the data can be exchanged between instruments
and a computer. A popular way to measure signals and transfer the data into a
computer is by using a data acquisition board. A typical commercial DAQ card
contains analog to digital converter (ADC) and digital to analog converter (DAC) that
allow input and output of analog and digital signals in addition to digital input/output
channels.

The Data Acquisition (DAQ) board used for the experiment is DS1102 from

dSpace. Controldesk (dspace) is used to interface between Matlab/Simulink and
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DS1102. DS1102 is a single board system, specifically designed for development
of high-speed digital controllers and real-time simulations. The DS1102 board is
based on Texas Instruments TMS320C31 third generation floating-point digital sig-

nal processor, which builds the main processing unit
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Chapter 6

PD Controller

6.1 Theory

Most of the present industrial robots are controlled through local PID controllers.
The PID controller has been shown in practice to be effective for set-point control of
robot manipulators. The PID controller structure consists of three components, the
Proportional, Integral, and Derivative part.

Proportional control is the primary alternative to on-off control. If the difference
between the output signal and its desired value is large, the software should change
the drive signal a lot. If the error is small, it should change it only a little. If the
proportional gain is well chosen, the time the system takes to reach a new set-point

will be as short as possible, with overshoot (or undershoot) and oscillation minimized.
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The control signal in a P controller is given by [26]:
U= Ug + kce, (61)

where ug is the level of the control signal when we have no control error, e is the error
signal, and K, is the proportional gain of the controller. K, indicates the change in
the control signal per unit change in the error signal.

Unfortunately, proportional control alone is not sufficient in all control applica-
tions. One or more of the requirements for response time, overshoot, and oscillation
may be impossible to fulfill at any proportional gain setting. The biggest problem
with proportional control alone is that you want to reach new desired outputs quickly
and avoid overshoot and minimize ripple once you get there. Responding quickly
suggests a high proportional gain; minimizing overshoot and oscillation suggests a
small proportional gain. Achieving both at the same time may not be possible in all
Systems.

With derivative action, the controller output is proportional to the rate of change
of the measurement or error. The controller output is calculated by the rate of
change of the measurement with time. If the output is changing rapidly, overshoot
or undershoot may lie ahead. In that case, we can reduce the size of the change
suggested by the proportional controller.

In practice, proportional-derivative (PD) controllers work well. The net effect is a
slower response time with far less overshoot and ripple than a proportional controller
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alone. The derivative action may also result in difficulties if high frequency mea-
surement noise is present. These difficulties are normally resolved using additional
filtering techniques.

The control signal in a PD controller is given by [26]:

de
u=k.(e+ Td%) (6.2)

where T} is the derivative time of the controller.
With integral action, the controller output is proportional to the integration of

the error over the time. Integral action eliminates offset.

The control law of the PID controller is [26]:

1 de
u:k;c(e—*—i/edt—f—Td'CE), (63)

where T; is the integral time of the controller.

Each of the three components of the PID controller has its own distinctive function
to fulfill certain control objectives. In actual applications, different permutations of
the P, T and D components may be used depending mainly on the process and the
control requirements.

The PD control is able to vanish position error when used for set-point control of
robot having zero gravitational torques into its dynamic model. The integral term has
been suggested to eliminate the offset, which appears when robot dynamics having
gravitational torques is under PD control. We will study in the following section the
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application of PD control on the 2-DOF planar manipulator.

6.2 Control Design

In this section, we will show the application of PD controller on the 2-DOF robot
manipulator. The main goal is to compare the simulation and the experimental
results with other nonlinear controllers applications as will be shown in the following
chapters.

The dynamical equation of the robot manipulator is given by

M(q)i+Clq,q)g+g(q) =T (6.4)

The term ¢(q) is eliminated due to the absence of the gravitational torques as the
experimental setup is horizontal. The dynamical equation of the robot manipulator

is now,
M(g)i+Clg,d)g =T (6.5)

An independent joint PD-control scheme can be written in vector form as
T=~K,i— K.q (6.6)

where § = q¢ — g4 = e is the error between the desired joint displacements ¢q; and
the actual joint displacements q. K, and K, are diagonal matrices of (positive)

proportional and derivative gains, respectively. In the absence of gravity, the PD

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



control law achieves asymptotic tracking of the desired joint positions. To show that
the above control law achieves zero steady error, consider the Lyapunov function

candidate

1. .1 :
V=350 Kd+54 M(a)g (6.7)
V is a positive definite function. The time derivative of V is given by

. 1o 0 1o o 1o 1o 1.
V o= -iqTqu + §qTqu + iqTMq + -2—qY Mg+ §qTMq

= Ky + M+ T
= K+ ¢~ Q) + i MG
= K, g+4d" T+ %qT(M —20)q
= ¢ (7+Kp)
(68)

where the last equality results from the fact that, for any robot manipulator, the

matrix (M(q) — 2C(q,q)) is skew symmetric. Substituting the PD control law for T

into the above yields

V = §T(~K,q— K.G+ K,q)
= 4Ky
(6.9)

which is negative definite.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



It is possible that the manipulator can reach a position where ¢ = 0 but q # qq.
To show that this cannot happen we can use LaSalle’s theorem. Suppose V = 0.

Then (6.9) implies that ¢ = 0 and hence § = 0 [21]. From (6.6) and (6.5)

M(q)i+Clq,q)q = —Kpd — K.q (6.10)

then
0=—-Ky (6.11)

which implies that § = 0. LaSalle’s Theorem then implies that the system is as-
ymptotically stable. This means that ¢ — ¢; when t — oo for any initial condition
q(0).

Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 are the simulation results when
applying PD controller on the 2-DOF robot manipulator using Matlab with control

parameters

2 0 4 0
K, = K, =
0 1.5 0 2

Time () is in sec and motors voltages for link 1 v; and link 2 v, are in Volts.
dd, 7T/2
Qd i paed
Qd, ’/T/ 2

Initial values are ¢;, =0, g2, = 0, ¢3, = 0, and ¢, = 0. For clearness, the figures for

q1, ¢, 41, and ¢ are shown in deg. ¢; and ¢ are in deg/sec.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

80

70

60

S0

Figure 6.1: ¢; - Simulation result with

PD control

100 ) - : ;

90 e

80+

Figure 6.2: g - Simulation result with

PD control

6.3 Experimental Results

The experimental results on the 2-DOF planar manipulator shown in figures 6.9, 6.10,
6.11,6.12, 6.13, 6.14, 6.15, and 6.16 were realized using Simulink /dSpace environment
with a sampling period of 0.05sec and with the same units, desired angles, and initial
values used in the simulation part. To achieve the best results, the contro! parameters

are chosen as follows

sz K‘U:
0 1.5 0 03

The PD controller is able to stabilize the system, which means that ¢ — ¢; when
t — 00. PD control was simulated and experimentally implemented on the robot

to be compared with other nonlinear controllers as will be further discussed in the
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Chapter 7

Nonlinear Controller

7.1 Control Design

In the previous chapter, PD controller was applied on the 2-DOF robot manipulator
and a Lyapunov function was found to show the global asymptotic convergence of the
closed loop system. This is considered the first technique for using Lyapunov’s direct
method for control design. The second technique is shown in this chapter, which
requires hypothesizing a Lyapunov function candidate and then finding a control law
to make this candidate a real Lyapunov function.

The controller designed by the second technique is simulated and implemented on
the 2-DOF robot manipulator. Comparison among these controllers and also other

controllers discussed in the next chapters will be made.
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To start the design technique, let’s consider the dynamical equation of the robot

manipulator without the gravitational torques

M(q)i+Clg, 9)g=T1 (7.1)

g = q — qq = e is the error between the desired joint displacements g, and the actual
joint displacements ¢q. The goal is to design 7 such that ¢ — g3 as ¢ — 00. g, is a
constant vector.

Let’s choose

1 .- 1. ~
V= §qTq + iqTKlq (7.2)

K is chosen to be diagonal positive definite.

- 1 1 1 1
vV = L LT '—~TK . _.TK,.
2(1 Q+2q Q+2q 1Q+2q 1q

1 T .. 1 T e 1 T ~ 1 T ~
= - = 'K g K
2(1 Q+2q Q+2q 1Q+2q 19

= ¢'§+¢ Ki§

= (M7 - Cq) + K.§)

(7.3)
Let’s choose 7
T=0¢— MK §— MK>q (7.4)
K is chosen to be diagonal positive definite. Finally, we obtain
V="K (7.5)
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which is negative definite.

Using LaSalle’s theorem, V =0= ¢ =0 = ¢ = 0, then
T=~-MK\§ (7.6)

M(q) is symmetric positive definite for any robot manipulator.

=q = 0

This means that ¢ — g4 when ¢ — oo for any initial condition ¢(0).

By choosing the control parameters

1 0 3 0
K, = K, =
0 25 0 3

the simulation results in figures 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8 obtained
by Matlab show the system response for the nonlinear stabilizing control based on
Lyapunov’s direct method.

Time (¢) is in sec and motors voltages for link 1 v; and link 2 v, are in Volts.
In order to compare the results with other controllers, same initial values and same
desired angles are used. ¢, =0, ¢, =0, ¢1, =0, g2, =0, g4, = 7/2, and qu, = 7/2.

The figures for q1, g2, ¢1, and G, are shown in deg. ¢; and ¢, are in deg/sec.
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Figure 7.1: g - Simulation result with
nonlinear stabilizing control based on

Lyapunov method

Figure 7.2: g, - Simulation result with
nonlinear stabilizing control based on

Lyapunov method

7.2 Experimental Results

Simulink/dSpace environment with a sampling period of 0.05sec was used to obtain
the experimental results on the 2-DOF planar manipulator shown in figures 7.9, 7.10,
7.11, 7.12, 7.13, 7.14, 7.15, and 7.16. These figures show the system response for
nonlinear stabilizing controller based on Lyapunov’s direct method with the same
units, desired angles, and initial values used in the simulation part.

The control parameters are chosen as follows

22 0
K]_: K =

0 25 0 4

05 0

We can conclude from the experimental and simulation results that both PD
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Figure 7.4: ¢, - Simulation result with
nonlinear stabilizing control based on

Lyapunov method

controller and nonlinear controller based on Lyapunov’s direct method can stabilize

the system. There is no big difference between the figures of the two controllers

for both simulations and experiments. Any small difference can result from the fact

that different control parameters are used. However, v, is higher when using PD

control for both simulation and experimental results. Further comparison will be

done after introducing the robust and adaptive backstepping control for the 2-DOF

robot manipulator.
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Chapter 8

Robust Controller

8.1 Control Design

In a previous chapter, robust backstepping control design technique was discussed
with an example. In this chapter, the objective is to stabilize the 2-DOF planar
manipulator using the robust backstepping technique in the presence of bounded
uncertainties in the dynamical equation of the robot. Simulation and experimental

results will be shown. Let’s start with the dynamical equation of the robot

M(q)§+Clq,9)¢+D(q) =7 (8.1)
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T = u is the control input. D(q) is the dynamic friction term in the dynamical

equation of the robot, which can be expressed as [17]

diqy di 0| ¢
D(q) = =
dago 0 do] |2
dl 0
D1=
0 dy

There exists a positive constant k., which satisfies the following inequality

| Dig |< key {141l (8.2)

We can rewrite the dynamical equation of the robot as follows
§=M(q)"(r — Clg,d)d — Drg) (8.3)

qd = q — qq = e is the error between the desired joint displacements q; and the
actual joint displacements q. Let 1 = ¢, —qu, = ¢1 = €1 and 3 = @2 — g4, = G2 = €5.

The vector A is introduced as
HA

A=

T

Let ¢ = x3 and ¢y = z4. The vector B is introduced as

I3
B =
Ty
then
T3 I
A == B = =
T4 T
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B =

T3 ¢

= =M Y (u—-CB- D\B)
T4 g2

A = B (8.4)

First step in the design is by choosing V; = LAT A to obtain
. 1. 1 ...

= ZATA+-ATA
Y 2 + 2

= ATB (8.5)

If B were the control, a virtual controller a; would be chosen such that

B = a=-MA (8.6)
V; can be written as follows
vV, = AT(B+ oy — oy) = ATy + AT (B — o) (8.7)
Second step is by choosing V;
Vo= Vi + (B — ar) M(B - a) (53

to obtain the derivative of the Lyapunov function V5 as follows

. . 1 . .
Vo = Vit o(B—a)"M(B o)+ (B—0) M(B-a)

1 .
= —A"T\A+AT(B—a))+ (B - o)TM(B — o)

Y
+ (B—a)"M(B - -(%A)
= —AT\A+(B—a)T(A+ M(B - %‘%A) + %M(B —a))  (8.9)
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The matrix (M(q) — 2C(q,q)) is skew symmetric. This implies M(q) = C(g,q) +

C*(q,q) (22, then

: 0
V, = —ATMA+ (B —a) A+ MM u—M"'CB-M"'D,B - %B)
1
+ 5(0 +CH(B - o))
1 0
— —A"\A+(B—a)'(A+u—5CB—DiB- MEC—;—IB
1 1
- 5((J +CMay + 5(JTB) (8.10)
From equation (8.2), Vs can be written as follows
) T T 1 80&1
1 T 1 o
— -(C+C")oy+ zC"B)
2 2
+ | (B-a)" | ke, | B (8.11)
Let
B = B- oy + o
1Bl < I(B-a)ll+ ol
< T B=a) |+ 1AllbAl (812)
We can rewrite V; as follows
’ T T 1 6041

1 1
5(C +CTay + §CTB)
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+ [(B—on) | kalll (B=a) I+ 1 A lI Al

—ATMA+ (B—a))T(A+u— M%%B

IA

- %(c +CT)oy + %(CT _0)B)

+ | (B=a) | ke, | (B =) |

+ 1 (B=a) [ ke | A [l Al

< —AT\MA+(B-a)T(A+u— M%%B
_ %(C’ + Yo + %(CT _O)B)

+ (B—o1)Tky (B — o)

1 1
+ Sk I MNP (B = en)T(B ~ o)+ 5ATA

< —ATMA+ %ATA +(B—a)T(A+u— M%%B
- %(0 +CTYoy + %(CT _C)B
1
+ (B =)k, (1+ qu A 1) (8.13)

We are in the position to design our actual feedback control u to stabilize the system.

8
u = —M(B-oy)— A+ M%B
+ —;—(C + Moy — %(cT _O)B
1
= (B=a)ka (14 gka | M %) (8.14)

The controller u can stabilize the system by causing Vs to be negative

. 1
V:z < —AT)\IA + §ATA - (B — C21>T)\2(B - Oll) (815)
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The simulation results in figures 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, and 8.8, which
were carried out on Matlab, show that the robust backstepping controller is able to
stabilize the system in the presence of uncertainties.

Time (t) is in sec and motors voltages for link 1 v; and link 2 v, are in Volts.

Initial values and desired angles are chosen like the one used for other controllers.
g1, =0,62, =0, ¢1, =0, go, =0, g, = 7/2, and gy, = 7/2.

The figures show the results by choosing k., = 0.05. By changing the value of Dy,
the robust controller can stabilize the system as long as equation (8.2) is satisfied.

Control parameters are chosen as follows

06 0 2 0
)\1 = >\2 =
0 09 0 1.5

The figures for qi, ¢2, 1, and ¢ are shown in deg. ¢; and ¢, are in deg/sec.

8.2 Experimental Results

In the same environment (Simulink/dSpace) with the same sampling period (0.05sec)
of the controllers discussed in the previous chapters, robust controller was imple-
mented on the 2-DOF robot manipulator. Experimental results are shown in figures
8.9, 8.10, 8.11, 8.12, 8.13, 8.14, 8.15, and 8.16.

The same initial values, units, and same desired angles of the simulation part

are used for the experimental part. To achieve stability, control parameters for the
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Figure 8.1: ¢ - Simulation result with Figure 8.2: ¢, - Simulation result with

robust control robust control

experiment are:

0.01 0 0.01 O

)\1: AQZ

0 09 0 02

k., = 0.05. The figures for ¢i, g2, G1, and gy are shown in deg. ¢; and ¢, are in
deg/sec.

In practical system, modeling error is unavoidable. A control scheme is needed
that guarantees robustness in the presence of the modeling error. Experimental works
were carried out to evaluate the performance of the robust backstepping controller.
The controller can stabilize the system in spite of the presence of model inaccuracy.
This means that ¢ — g4 when t — oco. Hence, the effectiveness of the proposed
controller is verified. More comparison with other controllers will be discussed in the

conclusion.
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Chapter 9

Adaptive Controller

9.1 Control Design

In this chapter, we will assume that the inertia for the robot is an unknown parameter.
The objective of this chapter is to prove by simulations and experiments that the
adaptive controller can stabilize the system in the presence of this unknown parameter

using the backstepping technique. The dynamical equation of the robot is given by

M(@)i+Clg,q)g=T (9.1)

T = u is the control input. We can rewrite the dynamical equation of the robot as

follows

G=M(q)™(r = C(q,9)9) (9.2)
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The elements of the inertia matrix M(q) are given by

-A/Ill(q) = mllfl -+ mz(l% -+ l32 + 2l1lCQCOS(q2)) -+ Il -+ [2
Mlg(q) = My (lzz + ZLICQCOS(QQ)) + 12
Moi(q) = ma(lZ + lileacos(qe)) + I

Mgg(q) = m2l32+12 (93)

We will assume that the inertia of link 1, I;, and the inertia of link 2, I3, are the

unknown parameters. The inertia matrix M can be written as follows

Mu(q) = mall +ma(l + 1% + 2l1lcacos(q2)) + 01 + b2
Mia(q) = mo(l + lilacos(gz)) + 0

My(q) = mz(lé + lileocos(qz)) + 62

My(q) = molZ, + 0, (9.4)
mllgl + mQ(l% + ng -+ 211lc2008(q2)) m2(l(2:2 -+ lllCQCOS(QQ)) 1 OT 1 1
M = 4+ 1+ 0,
ma(l%, + Uil acos(g2)) mayl% 0 0] 11
Let
mil? 4+ mo (12 +12% + 211l 0cos(qa))  mo(1% + Lileacos(g)) |
M, =
my (% + Lileacos(ge)) maldy l
1 0
M1 =
0 0
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]V[gz
11

Let’s introduce the change of variables z; = ¢y —qq, = Gi = €1 and Ty = @ —qu, =

g2 = €2.
[z, ]
A=
L L2
¢ = T3 and g, = T4. )
.7)3}
B =
L.x4
XT3 Ty
A=B= =
Ty Lo
I3 Q1
B= = = M_l(u — CB)
T4 Go
A = B (9.5)

First step is to take V; = 1 AT A to obtain
) 1. 1 ..
= ATB (9.6)

If B were the control, a virtual controller «; would be chosen such that

B = a;=-MA (9.7)
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We can rewrite V; as follows
Vi = AT(B+a;—ay) = ATay + AT (B — o) (9.8)
Second step is to choose V5 as follows
1 T 1 NT 5
V3=V1+§(B—a1) M(B—a1)+§(9—0) '@ —0) (9.9)

where 6 is the unknown constant parameter which appears in the system equations.

6, ]
0 =
62 ]
The parameter estimate is 6.
6,
6 =
|0 |

The derivative of the Lyapunov function is as follows

Vo = —ATMA+AT(B— o)+ —;-(B — a))TM(B - )

+ (B=—a)"M(B —ay) + (6 — 0)TT(—6)

= —ATMA 4 (B — ) (A4 %(C +CTY(B — o)

+ u—CB—Mad) + (8 —§)TT(-6) (9.10)
Let
It O
=
0 Iy
We can rewrite Vg as follows
y T T 1 T
Vo = —A"MA+(B—oy) (A+§(C+C B —ay)+u—CB
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— Mydy — Mybyay — Mobyaiy — M, (6, — é1>dl — M5(6; — é2)Ci1)
+ (6, = 0001 (=61) + (62 — 6,)Do(—065) (9.11)

We are finally in the position to design our actual update law 6 and feedback control

u to stabilize the system as follows

P 1
91 = —‘—“(B - al)TMldl

Iy

p 1
02 = —‘—(B - al)TMgdl (912)

Iy

1
u = —X(B-o)—A-— 5(C +CT)B - o)+ CB
+ My, + Mi6ic, + Mobro (9.13)
such that

‘./2 = —ATAlA - (B - Ql)T>\2<B - (Il) (914)

We are then proving that the controller u and the update law 0 can stabilize the
system by making V, negative definite. This is proved by the simulation results
shown in figures 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, and 9.8, which were performed on
Matlab.

Time (t) is in sec and motors voltages for link 1 v; and link 2 v, are in Volts.

Initial values and desired angles are ¢, =0, g2, =0, ¢1, = 0, G2, =0, qu, = 7/2,
and gg, = 7/2.

6, =1, =0.2158 and 6, = [, = 0.0137.
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100

Control parameters are chosen as follows

005 0 15 0
AL = Ay =
0 001 0 15
10 0
I'=
0 55

The figures for q;, ¢2, §;, and ¢, are shown in deg. ¢; and ¢, are in deg/sec.

801

20r

/‘/\ T

-20
[

Figure 9.1: ¢; - Simulation result with

adaptive control

9.2 Experimental Results

20
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80
701 /
60
50
40
30
20+

10

Q

Figure 9.2: g - Simulation result with

adaptive control

Simulink/dSpace environment with a sampling period of 0.05sec is used to obtain the

experimental results on the 2-DOF planar manipulator shown in figures 9.11, 9.12,

9.13, 9.14, 9.15, 9.16, 9.17, and 9.18.
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Figure 9.3: ¢ - Simulation result with Figure 9.4: ¢, - Simulation result with
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With the same initial values, units, and same desired angles of the simulation

part, stability is reached by choosing the control parameters as follows:

005 O 01 O
A = Ay =
0 001 0 03
10 0
I'=
0 55

By assuming that the inertia is unknown, the adaptive backstepping control proved
its ability to stabilize the system under this condition. Convergence of the estimated
parameters to the real values is not guaranteed. However, simulations and exper-
imental results show that the estimated parameters are bounded. A more general
comparison will be discussed in the conclusion to compare the effectiveness of the

four type of controllers tested on the 2-DOF robot manipulator.
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Part 1V

CONCLUSION
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Chapter 10

Conclusion and future work

10.1 Conclusion

Comparing different controllers discussed in this thesis report leads us to the following

conclusions:

o Adaptive backstepping controller and robust backstepping controller were ef-
fective when applied on a third order system. However, high overshoot is one

of the disadvantages of nonlinear control techniques.

e When the system gets more complicated, adaptive backstepping controller and
robust backstepping controller require powerful tools to be implemented exper-

imentally because of the complexity of the control laws.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o Adaptive backstepping controller has shown very good performance when ap-
plied on a practical system (2 DOF robot manipulator). However, if the number
of unknown parameters increases, then the controller will be more complicated

and it will affect negatively the implementation of the controller experimentally.

e The effectiveness of the robust backstepping controller is verified. However, if

the uncertainty model becomes more complicated, the controller may be difficult

to implement.

e Better results can be achieved experimentally with smaller sampling periods
than the one used (0.05 sec). This couldn’t be achieved because of the speed of

the data acquisition board.

e The performance on the 2-DOF robot is quite similar for the four controllers.
All control parameters were tuned by trial-and-error until the best result was

achieved.

e The work done proves that adaptive and robust controllers are able to stabilize
the system in spite of model uncertainties or unknown parameters, which are
unavoidable problems in practical systems. Moreover, the results are quite
similar to the PD controller, which is widely used to control the 2-DOF robot

manipulator. Hence, the effectiveness of the proposed controllers is verified.
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10.2 Future work

Experimental work was successful. However, we can achieve more accurate results
with a better mechanical system. The figures showing the experimental results are the
best readings after many trials. Repeating the experiment with the same parameters
may sometimes give different results.

Consequently, our recommendation for future work is to update the mechanical

system to accomplish the following:

¢ Obtain better experimental results for stabilizing controllers.

e Approach the tracking control problem.

Moreover, better data acquisition system and other programming languages (C-
language) can be used to overcome some of the difficulties in the experimental work

and to realize better performance.
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Appendix A

Block Diagrams

Power i

Supply |
v I
Computer . DAQ ) Cl;):;:gl |
Encoder K Motor

Figure A.1: Experimental Block Diagram
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Figure A.2: PD Controller - Simulink Block
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Appendix B

Cut Sheets - LMD18200, 55V
H-bridge

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X , . Septembar 1996
National Semiconductor

LMD18200 3A, 55V H-Bridge

General Deacription
The EMD18200 is a 3A H-Bridge designed far motion con-
trof applications. The device is built using a muiti-tachnology
process which combines bipolar and CMOS control circuitry
with DMOS power devices on the same monolithic struc-
ture, Ideal for drving DC and stepper motors; the
LMD18200 accommodatas paak output currents up to 6A.
Aninnovative circuit which faciiitates low-loss sensing of the
output Gurrent has besn implemented. Applications

0OC and stepper motor drives
Features Position and velocity servomechanisms
B Delivers up to 3A continuous output

Factory automation robots
& Operates at supply voltages up to 55V

; Numerically cortrolied machinery
® Low Rps(ON) typicaliy 0.30 per swich Computer printers and piotters.

TTL and CMOS compatibla Inputs

No “‘shoot-through”” current

Thermal warning flag output at 145°C

Thetmal shutdown (outputs off} at 170°C

internal clamp diodes

Shorted load protection

tntarnal charge pump with extarnal bootstrap capability

abplig-H ASS ‘VE 00281 N1

Functional Diagram
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Connection Diagram and Ordering information

1] s—— ACOTSTRAP 7
(£} anm—TT 4

b T-ERMAL FLAG JLTPL
CURRENT SEASE CUIELF

> Sacung

Order Number LMD 18200T
See NS Package TA118

O
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———- - LN 3
> 0omRAP G

R

1

e WCURTING TAB 2IANICTEO FO GROUND (PN 7)
TL/MI1G568-2
Top View

Figure B.1: LMD18200, 55V H-bridge - Pagel
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Absolute Maximum Ratings (vow 1)

If Military/Aerospace specified devices are required,

Power Dissipation (Ta — 256°C, Free Air}

3w
150°C
1500V

—d40°C to +150°C

300°C

—40°C to +125°C

please contact the National Semiconductor Sales Junctlon Temperature, Ty(max)
Office/Distributors for and specif ESD Suscaptibility (Note 4)

Totai Supply Vaitage (Vg, Pin 6) 80V Storage Temperature, Ts1g

Voitage at Pins 3, 4,5, Band 9 1av Lead Temperaturs {Soldering, 10 sec}
Voltage at Bootstrap Pins (Pins 1 and 11) Vout + 18V

Peak Output Currant (200 ros) 6A Operating Ratings (note 1)
Continuous Output Current {Note 2} 3A Junction Temperature, Ty

Power Dissipation (Note 3) 25W Vg Supply Voltage

Electrical Characteristics

+12Vto +55V

The following specifications apply for Vg = 42V, unless otherwise specified. Boldface limits apply over the antire operating
temgerature range, —40°C € Ty £ +125°C, all other limits are for Tq — T — 25°C, (Note 5)

Symbot Parameter Conditions TYP Limit Units
RpslON) Switch OM Resistance Output Current — 3A (Nota &) 033 0.4/0.6 Q (max)
Ros{ON} Switch ON Resistance Output Currant — 8A (Note 6} 0.33 04/0.6 N {max}
Voviave Clamp Diode F orward Drop Clarmp Current - 3A (Note 6) 1.2 1.5 V {max}
Vit Logic Low Input Voltage Pins 3,4, 5 -t V (min)
0.8 V (max
W Logic Low Input Current Vig — — 0.1V, Pins — 3,4, 5 —10 A (max)
Vi Logic High Input Voltage Pins 3,4,5 2 V (min)
12 V {max)
™ Logic High Input Currant Vin — 12V, Pins — 3,4,5 10 pA (max
Current Sense Output lout — 1A (Note B) . 325/300 A (min)
425/450 wA (max)
Current Sense Linaarity 1A < oyt < 3A (Note 7) +6 +9 %
Undervoltage Lockout Outputs twrn OFF 9 V (min)
11 V {(max}
T jw Waming Flag Temperature Pin9 < D8V, ! ~ 2mA 148 °C
VE(ON} Flag Cutput Saturation Voltage To~ Tyl — 2mA 015 \4
1g{OFF) Flag Qutput Leakage Vg — 12V 0.2 10 wA (maxy
Tisp Shutdown Temperature Outputs Turn OFF 170 °Cc
Is Quiescent Supply Gurrent All Logic Inputs Low 13 26 MA (max)
on Output Twn-On Delay Time Sourcing Cutputs, loyr — 3A 300 ns
Sinking Outputs, loyt — 3A 300 ns
Gn Output Turn-On Switching Time Bootstrap Capacitor — 10 nF
Sourcing Outputs, loyr — 3A 100 ns
Sinking Outputs, togr — 3A 80 ns
oot Output Turn-Off Delay Times Sourcing Cutputs, lour — 3A 200 ns
Sinking Outputs, 1oy — 3A 200 ns
L Output Turn-OH Switching Times Bootstrap Capacitor — 10 nF
Sourcing Outputs, oy — 3A 75 ns
Sinking Outputs, oyt — 3A 70 ns
tow Mirimum Input Pulse Width Pins 3,4 and 5 1 us
topr Charge Pump Risa Time No Bgotstrap Capacitor 20 ns

Figure B.2: LMD18200, 55V H-bridge - Page2
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Electrical Characteristics Notes

Note 1: Absolute Maximum Ratings indizate limits bayond which damage to the devica may occur. DC and AC alectical spacifications do not appty whan oparating
tha davica beyond s ratet operating conditions.

Note 2: Sae Application Information for datails regasding currant feniting
Nos 3 The maximum powar dissipation must be daraied at Glevalad 1SmMparalures and is a function of Timax, Sua and Ta. The maximum alowable powar

disgipation atany 1emperature I Pomay = (Tumaqg  TAM 8.4 o the number ghan in the Absolute Ratings, whichevar s lower. The typleal themal rasistanca
from jun ction 1o case (8,c) is 1.0°G/W and from junction to ambient (81) is 30CG/W. For quaranteed oparation Tumag = 125°C.

Note & Human-nody modal, 100 pF discharged through a 1.5 kit rsistor. Excapt Bootstrap pins (ping 1 and 11) which are protaciad to 1000V of ESO.

Note 8: All imits am 100% Drod uction tested at 25°C. sxtreme kmits ar via ion using acoapted SQG (Statistical Quality Control
mathoda. All limits ar6 used to caiculate AOQL, (Averaga Cutgeing Quaitty Level).

Nots §: Output cumants am pulsed (hw < 2 ms, Duty Cycle < 6%).

Nats 7: Regulation is cakulated relative to the curent sense output value with a 1A load.

Nate 8: Salactions for tighter tolatance are avadable. Gontact JACtory.

Typical Performance Characteristics

Rps(ON) vs
VsaT ¥s Flag Current Rps(ON) vs Temperature Supply Voltage
350 S8 0.40
(D
I ] \ 03 r, s 250 T
- —+ - '8 7 038
Z Ty 7m0 L g A o ow [
= P = E] HISS0L P
3w LA S 2 /] b wiN I
= 3 ox ol
S i 1 R
e g 1A o8 L%
] o3t -
as 030 )
15 20 25 39 35 4D 45 50 =55 =35=15 5 25 4 & 86 0515 10 15 20 25 30 35 40 45 30 S5
FLAG CURRENT {mA) JUNCHION (EMPERATURE {9€) SUPPLY VOLIAGE
Supply Current vs Supply Currentvs Supply Cursrent vs
Supply Voltage Freguency (Vg — 42V) Temperature (Vg — 42V)
8 I,H T "
17 15
o 1 3 {1} Vil < U™
g z il il A
12 | QUTPUTS K § * 10 il g ~
§ B i (K g,
3 SUTPYTS LOW 3 il 3 N
= = . Co :ll 5w ™~
3 3 — it i £
7 2 it I a .
l it i)
" i { R
© 20 30 0 2 & ' o 100 -35-30 -5 20 45 70 @5 120 146
SUPPLY VOLTAGE (YOLTS) SWIICHING FREQUENCY {KHz) AUNCTION TEMPERATURE (7C)
Cursrent Sense Output Current Sense
vs Load Current Operating Region
120 w |
_ow - it ‘
i “zsec g 0% SCCURRCY |
™ / 3. N "
% w0 / 41259 g 20} 7% .w:unc\\
4 S s 2
g o 2
-] 3 10
0 i o5
° a
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LOAD CURRENT {AWPS) SUNCTION TENPERATURE (°C)

TLIN/10568-3

Figure B.3: LMD18200, 55V H-bridge - Page3
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Pinout Description (see Connection Diagram)

Pin 1, BOOTSTRAP 1 Input: Bootstrap capacitor pin for
half H-bridge number 1. The recommended capaclitor
{10 nF} is connected between pins t and 2.

Pin 2, QUTPUT 1: Heif H-bridge number 1 output.

Pin 3, HRECTION Input: See Tabie L. This input controls
the direction of current fiow between OUTPUT 1 and OUT-
PUT 2 {pins 2 and 10} and, theretore, the direction of rota-
tion of a motor load.

Pin 4, BRAKE Input: See Table 1. This input is used 1o
brake a motor by afisctively shorting its terminals. When
braking is desired, this input is taken to a logic high level
and Itis also necassary to apply logic high to PWM Input, pin
5. The drivers that short the motor are determined by the
logic level at the DIREGTION input (Pin 3): with Pin 3 logic
high, bath current sourcing output transistors are ON; with
Pin 3 logic low, both current sinking output transistors are
ON. Ail output transistars can be turned OFF by applying a
loglc highto Pin 4 and a loglc low to PWM inpust Pin 5; in this
case only a small bias curent (approximataly —1.5 mA} ex-
ists at sach output pin.

Pin 6, PWM Input: Ses Table |. How this input {(and DIREC-
TION input, Pin 3) is used is determined by the format of the
PWM Signal.

Pin 6, Vg Power Supply

Pin 7, GROUND Connectian: This pin is the ground return,
and Is internally comnected to the mounting tab.

Pin 8, CURRENT SENSE Output: This pin provides the
sourcing current sensing output signal, which is typically
377 uAA.

Pin 9, THERMAL FLAG Output: This pin provides the ther-
mmal warning flag output signal. Pin 9 becomes active-iow at
146°G (unction temperature). However tha chip will not shut
itself down untit 170°C is reached at the junction.

Pin 10, OUTPUT 2 Half H-bridge number 2 output.

Pin 11, BOOTSTRAP 2 Input: Bootstrap capacitor pin for
Hall H-bridge nwmber 2. The recommended capacitor
{10 nF} is connected between pins 10 and 11.

TABLE {. Logic Truth Table
PWM BDir Brake

Active Output Drivers

H H L Sowrge 1. Sink 2

H L L Sink 1, Source 2

L X L Source 1, Source 2
H H H Souwrce 1, Source 2
H L H Sink 1, Sink 2

L X H NONE

Locked Anti-Phase PWM Controt

se% BTy SYELL 752 UTY eV 25% BUTY CYCLT

Jue U Jns

vy g L
o = dJ U

AVERATL LGS
CUHRENT <9

OAD CRAEST  AVIRAGE LOAD CURRLHT
| TLIWS TRGM DUTUT 2
16 SuhRdl ¢

TLIH /105684

Application Information

TYPES OF PWM SIGNALS

The LMD18200 readily irterfaces with ditferent torms of
PWM signals. Use of the pant with two of the more poputar
forms of PWM is descrited in the foliowing paragraghs.
Simple, locked anti-phase PWM consists of a single, vari-
able duty-cycls signal In which is encoded both dlraction
and ampiitude information. A 50% duty-cycle PA/M signal
reprasents zero drive, since the net value of voltage (inte-
grated over ane periad) delivared to the load is zaro. For the
LMD18200, the PWiM signal drives the direction Input (pin 3}
and the PWM input (pin 5) is tied to fogic high.
Sign/magnitude PWM consists of separate direction (sign}
and amplitude {magnitude) signals. The (absoiute) magni-
tude signel is duty-cycie modulated, and the absence of a
puise signal {(a continuous logic low level} represents zero
drive. Current delivered to the load is proportional to puise
width. For the LMD18200, the DIRECTION input {pin 3} is
driven by the sign signal and the PWM input {pin 5} is driven
by the magnitude signal.

USING THE CURRENT SENSE OUTPUT

The CURRENT SENSE outout (pin 8) has a sensitivity of
877 uA per ampera of output current. For optimal accuracy
and lineasity of this signal, the value of voltage generating
resistor betwesn pin 8 and ground should be chosan to imit
the maximum voltage developed at pin 8 to 5V, of less. The
maximum valtage compliance is 12V.

It should be noted that the recirculating cutrents (free
wheeling currents) are ignored by the current sense circuit-
ry. Therefore, only the curcents in the upper sourcing out.
puts are sensed.

USING THE THERMAL WARNING FLAG

The THERMAL FLAG owput {(pin 9} is an copen coliector
transistor. This permits a wired OR connection of thermal
warning flag outputs from multiple LMD18200°s, and allows
the user to set the logic high level af the autput signal swing
1o match system raguirements. This cutput typlcally drives
the interrupt inpwt of a systemm controller. The interrupt serv-
ice routine would then be designed to take appropriate
steps, such as reducing load currents or initiating an orderly
systam shutdown. The maximum veitage compliance on the
flag pin is 12V.

SUPPLY BYPASSING

During switching transitions the levels of fast current chang-
es experienced may cause troublesome voltags transients
across systern stray Inductance.

Sign/Magnitude PWN Control

o™

SO TLIy Ju e

AU e

MATGR SPEEG: stk wmaw R s e it

wit

P SarRO £.0XS FaTa AERATE SISER” F:003 DY
20teuA + 1 e 2 TETUT 2 b odd +

TLIHI10568 -5

Figure B.4: LMD18200, 55V H-bridge - Page4
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Application information (continueg)

Itis normaily necessary to bypass the supgply rail with a high
gquality capacitor{s) connected as close as possitie to the
Vg Powaer Supply (Pin 6 and GROUND (Pin 7). A 1 wF high-
frequency ceramic capacitor is recommended. Care shouid
be taken to limit the transients on the supply pin below the
Absolute Maximum Rating of the device. When operating
the chip at supply voltages above 40V a vollage suppressor
(ransorb) such as PEKEBZA is recommended from supply
to ground. Typically the ceramic capacitor can be aliminated
in the presence of the voltags suppressor. Note that whan
driving high ivad currents a greater amount of supply bypass
capacitance (in general at lsast 10D uF per Amp of load
current) is required to absorb the recirculating currents of
the Inductive ivads.

CURRENT LIMITING

Current limiting protection circuitry has been incorporated
into the daesign of the LMD18200. With any powsr device it
Is important to consider the effects ot the substantial surge
currents through the device that may occur as a resuit of
shorted loads. The protection circuitry monitors this in-
crease in currert (the threshold is set 1o approximately 10
Amps) and shuts off the pewear devica as guickly as possible
in the event of an overicad condition. In a typical motor
driving application the most common overload faults are
caused by shorted motor windings and locked rotors. Undar
these conditions the inductance of the motor (as well as any
series inductanca in tha Vg supply line)} serves to reduce
the magnitude of a current surge to a safe level for the
LMD18200. Qnce the device is shut down, the control cir-
cuitry will periodically try to twrn the power device back on.
This feature allows the imvmediate return to normal opera-
tion in the event that the fault condition has been removed.
While the tault rerains however, the davice will cycle in and
out of tharmal shutdown. This can create voitage transients
on the Ve supply Hine and tharefore propar supply bypass-
ing technigues are required.

The most severs condltion tor any power davice is a diract,
hard-wired {“screwdriver”) fong term short from an cutput to
ground. This condition can generate a surge of curent
through the power device on the order of 16 Amps and
require the die and package 1o dissipate up to 500 Watts of
power for the short time required for the protaction circuitry
to shut off the power device. This enargy can be destruc-
tive, particularly a1 higher operating voltages {>30V} so

g

i TIRCUN

h
CONARET PuMP

o
] 'flﬂl
I
B
&

GIOUAD

TUH/10568-6
FIGURE 1. Internal Charge Pump Circuitry

some precautions are in order. Proper heat sink design is
essential and il is normally nesessary 10 heat sink the Yoo
supply pin (pin 6) with 1 sguare inch of copper on the PCB.

INTERNAL CHARGE PUMP AND USE OF BOOTSTRAP
CAPACITORS

To wm on tha high-side {sourcing) DMOS power devicss,
the gate ot each device must be driven approximately 8V
more positive than the supply voitage. To achieve this an
internat charge pump is used to provide the gate drive volt-
age. As shown in Figure 7. an Internai capacitor Is altecnate-
ly switched to ground and charged to about 14V, then
switched to V supply thereby providing a gate drive voltage
greater than V supply. This switching action is controlled by
a continutously running internal 300 kHz osciilator. The rise
time of this drive voltage Is typically 20 ps which is suitable
for operating frequencies up to 1 kHz.

For higher switching frequencies, the LMD18200 provides
for the use of external bootstrap capacitors. The bootstrap
principle is in essence a second charge pump whereby a
large value capacitor is used which has enough energy to
quickly chargs the parasitic gate input capacitance of the
power device resulting in much faster rise times. The switch-
ing action is accompiished by the powser switches them-
selves (Figure 2). Bxdernal 10 nF capacitors, connected
from the outputs 1o the bootstrap pins of each high-side
switch provide typically less than 100 ns rise times allowing
switching freguencies up to 500 kHz.

INTERNAL PROTECTION DIODES

A major consideration when switching curramt through in-
ductive loads is protection of the switching power devices
from the large voltage transients that occur. Each of the four
switches in the LMD18200 have a bullt-in protsction dicde
to clamp trensient voltages exceading the positive supply or
ground to a safe diode voitage drop across the switch.
The reverse recovery charactersistics of these dodes, once
the transient has subsidaed, is important. These diodes must
come out of conduction guickly and the power switches
must be able to conduct the additional reverse recovery cur-
rent of the dicdes. The reverse secovery ime of the diodes
protecting the sourcing power devices is typically only 70 ns
with a reverse recovery current of 1A when tested with a full
BA of torward current through tha diode. For the sinking
devices the recovery time is typically 100 ns with 4A of re-
verse current under the same conditions.

s '
1
v i
h A '
< '
T0 GATE 3 PNt orR 1
CRIVE n
CIRCUIT — 1l EXTERNAL
'\ B00TSTRAR
'
H CAPACTTOR
' PIN 2 0R 10
]
‘
'
)
SROUND 5

TLIHF0S68 -7
FIGURE 2. Bootstrap Circultry
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Test Circuit
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Switching Time Definitions
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Figure B.6: LMD18200, 55V H-bridge - Page6
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Typical Applications

Fixed Off-Time Controk This circuit controls the current slightly about an externally controlled average (evel. The
through the motor by applying an average voltage equal to duwration of the Cfi-period is adjusted by the resistor and
zero to the motor terminals for a tixed period of time, when- capacitor combination of the LM58S. In this clrcuit the Sign/
ever the current through the motor exceads the command- Magnitude mode of operation is implemented {see Types of
ed currert. This action causes the motor current to vary PWM Signals).
24 VOLTS
Lu340LA- 12 g § 4+
<
Iu.zz uf == Torws 3R 4 8
- = 12kQ 2 S 3
= 2 s [} 6 Lusss
2 5

L3935 >
S LA T T
1.33 AMP/VOLY vy =L 001 4F

5
=" 330 uFa
2 12V
= 10k8
v wos200 | 10ka
AM 3 j¢—0
< WOTOR BRAKE
. 4 1 FORWARD § REVERSE
Torr = 1.1RC

TUM/aSE8-10
Switching Waveforms

DIRECTION FORWARD l REVERSE

THAE
OUTPUT 1 ” | | | l I

TME
OUTF‘UYZ“ ” ” ” I

TIME

MOTOR CURRENT

\/\/\N\/ N

CONTROLLED BY RC OF LMSSSN —-»iTosc|w—
TLIHI10558-11

Figure B.7: LMD18200, 55V H-bridge - Page7
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Typicat Applications cominued

TORQUE REGULATION

Locked Anti-Phase Control of a brushed DC motor. Current sense output of the LMD18200 provides load sensing. The
LM3525A is a general purpose PWM controler.

oV DIRECTION CONTROL 12¥ 10 26

IR (3 S D
%3 zzﬂr! l 100 nF 6 120,.7' I 1 uf
= = s =
‘ D
oo 1M35254 ‘ ’ LM018200 10nF
v ' LT 0.25A TG 3.25A
VousRint S ——4 1 24¥ DC MOTOR
ADJUST 3 gy 3 " ‘j
— 9 10k s 10 nF
s 0
? N 3.6 ’ 8
7 3 < 619k
10 12 2 = 4 7 S 12
T o] 3 tnF 3 )
i o —
TL/HA10588-12
Pezak Motor Current
vs Adjustment Voltage
4
w
£y
3 s e //
= A
5
&
g e
3 2 i
=
2
2
1 .
i LS
0

0 t 2 3 4 5 6 7 8

Yeurrent apsust (VOLTS)
TLIN/VO568--13

Figure B.8: LMD18200, 55V H-bridge - PageS8

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Typical Applications (contirued)
VELOCITY REGULATION
Utilizes tachometar output from the motor to sense motor spesd for a locked anti-phase sontrol loop.

CIRECTION CONTROL

+1ovV 12V 7O 30V
r;_ 1 ? —
B3 zz“rl l 160 af 6 zzourl ] 1 uf
16 - = = =
Lu3525A LuD18200 10ef
1N4001"
= +10v 1 —-J— 0 TO 7400 RPW
Vseeen . 30V DC MOTOR
ADUST 1" 1
-t
10k 10 nF
* ! A

Viack

\ 4

A7 10K 1 R
-_t-l Viack =

- 5.1k 1000 RPM/Y

*
~
)
I
“~ oo
:
3
EN
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I w
>
-
2
ES
w
5
Lg) [.l‘

TLHI10568-14

Motor Speed vs
Control Voltage
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Figure B.9: LMD18200, 55V H-bridge - Page9
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Physical Dimensions inches (milimeters) unless otherwise noted
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11-Lead TO-220 Power Package (T)
Order Number LMD 182007
NS Packaga Number TA11B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS N LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICCMDUCTOR GORPORATION. As used hergin:

1. Life supgort devices or systems are devices or
systems which, {a) are intended for surgical implant
into the body, or (b} support or sustain lits, and whose
failure to periorm, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.

2. A critical component is any component of a tife
support device or system whose tailure to perform can
be raasonahly expacted to cause the (ailwe of the lite
support device or system, or to affect its safety or
effectiveness.

National Somiconducior
Gompormion

1111 Weet Bardin Flaad
Adingzan. TX 76017

Tet (000} 772-9859
Fax: 1(800) 737-7018
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http: /Awww.national.com
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Dautseh Tet +49 [0} 180530 85 85
Englsh Teb +49 (0} 180532 78 32
Frargais Tat +49 (0} 180532 53 58
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Appendix C

Cut Sheets - TL494, PWM Control
Circuit
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TL494
PULSE-WIDTH-MGDULATION CONTROL CIRCUITS

® Complete PWH Power-Conteol Cirowtry 0 0B N NS DR PWPACKAGE
TN W B
® Urcommitted Outputs for 200 mA Sink or i
Source Currant o
& Output Control Selects Single-Ended or

Push Pull Operation

® [Internal Circuitry Prohibits Doable Pulse at
Fither Dutput

& Variable Dead Time Provides Control Over
Total Range

@ internal Requlator Provides a Stable 5.V
Reaterence Supply With §%, Tolerance

® Circuit Architecture Allows Easy
Synchronization
descnption

Wegle cfup Dresipsiad pos
cunkol arondty to asp

Watod o desd Umie contoot
ater arh onipat

VL ahd eonlains twa arrar smphifiers . an

ey, & 5

oy

uls i ayvnebronous mathy

{

SR £

S

BT
et

we el

frie 1L
R

oud Frop opesration om0

AVALABLE ORIIONS
H PACKAGED DEVIC

SHRINA THIM SHRINK

j“"”':"'iﬁ SAIALL
: = CRITLINE

YEY

TEXAS
INSTRUMENTS

Figure C.1: TL494, PWM Control Circuit - Pagel
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TLdG84
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
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Figure C.2: TL494, PWM Control Circuit - Page?2
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TL394
PULSE-WIDTH-MCOULATION CONTROL CIRCUITS

absolute maximum ratings over opemting free-aiy lersperature range (uniess olherwise notedit
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TL494
PULSE-WIDTH-MODULATION CONTRGL CIRCUITS

electical charactenstics over recommended operating free-ar femperature range. Vege - 15 ¥
f= 10 kHz {unless otherwise noted)
reference section
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Figure C.4: TL494, PWM Control Circuit - Page4
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TL494
PULSE-WIDTH-MODULATION CONTROL CIRCUITS

electncal characteristics over recomimended operating tree-ar temperature range, Voo = 15V,
f = 10 kHz (unless othervise noted)
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Figure C.5: TL494, PWM Control Circuit - Page5
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TL494
PULSE-WIDTH-MCDULATION CONTROL CIRCUITS

PARAMETER MEASUREMENT INFORMATION
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TL434
PULSE-WIDTH-MCCULATIGN CONTROL CIRCUITS

PARAMETER MEASUREMENT INFORMATION
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TL4%4
PULSE-WIDTH-MODULATION CONTROL CIRCUITS

TYPICAL CHARACTERISTICS
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Appendix D

Cut Sheets - Servo Systems
Encoder
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<
SERVO 9)
SYSTEMS®

A Full Service Motion Control Distributor and Systems Integrator.

Motion Congrol - Robotics - Avionic « Marine - Componentzs and Systems

Hewlet Packard mode!
Incremental Encoder Specifcations

Supply Voltage, Vee -05to 7V
Output Voitage, Vo, -.05 to Vce
Qutput Current per Channai................ -1.0mato5ma

PIN OUT

[1] GND

[2]

[3] Channel A

(4] +Vee
[8] Channe! B

s Pin One

115 Main Road - P.O. Box 97 - Montville, N 07045-0097 - (973) 335-1007 Toll Free: (800) 922-1103 Fax: (973) 335-1661
——m www.servosystems.com ¢ e-mail: info@servosystems. com

Figure D.1: Servo Systems Encoder
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XXX MOTOR SIZE DATA (25° C)

PARAMETER SYMBOW  UONITS | 9x1d@ | 9X32 " 9x13 | 8x%a3 | gXid [ —sKa4d
1 Motor Conslant K _‘{ ozeint/M | 116 | mzj 194 | 266 205 ‘ 301
2 Poak Torgue |Siai) Te ozZenn 835 138 1586 318 229 413
3 Mo Lasd Speed Sg ) o gas1t l 7015 5592 5283 7666 8151
4 Moter Fricten Torque Tr l Gran 0.40 i Q.50 0.50 0.60 050 ’ 0.60
5 Viscaus Damping =actor D | ozeinikrpm Q.0088 [ 0.0272 0.0113 0.0335 0.07125 0.0387
5 Dampirg Constan Ky | oz-intkrpm ioe 1.9 278 523 311 588
7 Etectrical Time Constant Tg ’ ms a53 ! 083 074 { 084 08¢ 08s
8 Mechanics Tine Constanm T ms 228 14.% 14.7 929 181 925
@ Thermal Time Constant Ty l min 7.2 S 721 1.1 ‘ 111 120 120
173 Thanna! tmpedancs RTH gag C'wW 227 227 14.1 ! 124 17t 171
11 Marimum Winding Temperatura ‘ Sux } deg C max 155 155 155 [ 155 | 155 155
12 Mcwr inddia St 9Zeifras? 22304 27%10e 3.9x104 4.5%10" S54%304 | T8I0
13 Motor Waeight Wiy oz 396 598 898 8.80 104 101
14 Mgotor Leagih, 54XX, 32XX Ly ‘ in may | 1.828 1.828 2203 2,203 2.403 2.403
15 Motor Lengih, 95X [ ty | inmax 1779 ‘ 1.779 2154 2154 2354 2354
et ergud BPEER 3,05
2XX2 MOTOR WINDING DATA (25° C)
T . axi12 : 9x32
FPARAMETER SYMBOL UNITS | WDGHt | WDG#2 | WOGS3 | WwDG #4 | WDG &1 | WDG %2 | WDG #3 | WOG o4
16 Yoltage 13 v 6.00 120 19.1 24,0 120 191 240 363
17 Torgug Constart K 0z=iniA 0.83 1.86 285 372 2.20° 3.50 4,40 5.8%
18 Back EMF Constant Kg Vikrpm V) 1.38 218 275 1.63 250 3.25 4.09
1% Terminat Resislance Ay ohms 675 263 645 0.2 193 4.70 7.38 118
20 tnductance [ mH 034 138 3.40 542 116 254 384 7.34
27 Mo Load Currant | Ta A 051 0.26 01 013 0.32 Q¢ . o018 0.13
22 Pesk Curert {Stak) | Ie A 8.03 4.558 L 285 l 235 g.22 406 i 3.25 2.60
9XX3 MOTOR WINDING DATA (25° C)
: T 9xX13 9X33
PARAMETER ISYMBOL] UNITS | WDG #1 | WDG 52 | WOG #3 | WOG 34 | WDG At | WDG 42 | WOG 83 | WDG #
23 Volage R T E v 6.00 120 9.1 240 120 19.1 24.0 303
24 Taroua Coastant \ ®y U gzeinia | 142 280 4,47 .80 287 4.20 " 528 €68
25 Back EMF Constant K'@‘ Vikrpm 1.05 207 33 418 198 210 3.8Q 484
26 Termina Resistanca } Amg ohrms 0.64 217 5.32 833 1.08 2.53 84 [:%-3]
27 imdustance R mH 0.40 1.54 388 617 0.84 2.08 329 527
28 No Loatt Currert Ia A 0.40 a.20 033 0.10 6.30 [R1-] 0.1% 042
bs Paak Curent ;Staly . L I A 9.98 554 ] 1353, 2.88 111 7.55 6.09 488
9XX4 MOTOR WINDING DATA {(25° C)
S i iB R ax14 . ] -~ 9%34 :
PARAMETER syMBOLl UNITS | wDG a1 | WOGHZ | WDG 83 | WOG #4 | WDG #1 | WOG 82 | WDG #3 | WOG &4
30 Voltage g v 1206 -180 24.0 %03 F 120 191 24.0 303
31 Torque Constant K QTe/A 2.06 227 413 522 258 407 537 6.5¢
32 Back EMF Constant Ke Virpm 153 242 305 3.86 e 3.0t 382 4.81
33 Terminal Rusistancas RT chms 1.1¢ 259 406 1 640 0.33 1.89 296 482
34 inductance L mH - 081 - 2.0¢ 325 519 0.63 1.56 251 ag7
35 No Load Current Ig A 0.28 Q.18 0.14 011 233 a2t Q.15 013
36 Peak Cuirent (Stall] Ip S ) 736 5.91 473 14.5 101 L 8.1 6.55

Figure E.1: DC Motor - Pagel
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GMEXXX SPUR GEARMOTOR DATA (25° C)

GEAR RATIOS -
PARAMETER SYM|_ UNITS | 58074 ; 11500 | 10650 | 38.323 | 65527 | 127.78 | 218.42 { 42593 | 726.08 | 1310.8 | 24269 | 47325
27 woag, Randard Gaaring Ty |ozeinmax| 175 175 175 175 175 1 75‘! 178 175 175 175 178 175
36 Load. High Torgue Ophon Ti lozen max —_ - 300 300 3006 300 300 ano 300 300 300 300
39 Load, Wide Face Qpilon Ty |ozew max - - s09 500 500 560 S00 500 500 50Q - -
40 ML Spewd, GMIXIZ Sa P 1399 kahd a2G s 126 54.6 378 194 13 381 a0 174
4T N.L Spead. GMOX32 Sg Bm 1188 610 387 143 107 54.9 3z 1885 963 494 2.89 1.48
42 ML Spesd. Gi9X13 Sp rpere 948 486 282 146 853 438 256 131 7.6868 asa 230 138
43 N.L Spesd, GMIX33 Sa om 1016 521 acs 186 AR 468 27.4 141 833 a2 247 127
44 N.L Spesd, GMIX1d 5o P 1300 667 390 200 117 800 351 180 105 5.40 AT 1.62
45 N.L Speed, GMIX34" 53 e 1043 535 313 160 3.9 48,1 202 14.4 845 433 2353 1.30
46 Goarpox Shaft Powanon — — cw o cew cow cw tw cow cow ow ow cow cow
AT Gearbox Efficiency - % 81 at 73 73 (-] 66 S8 s9 53 53 | 48 a8
48 Geantios Weeight Std. HLT. wWg oz 5.50 5.90 326 8.26 662 5872 | 898 698 7.24 7.34 818 818
45 Gearpox Weight, Wide Face | Wa oz - - 8352 6823 6.88 888 7.24 724 8.08 8.08 — -
S0 Geardox Length, Std./H.T, Lz n max 1373 1373 1373 1379 1373 1373 1373 1.373 1.373 1273 1.528 1528
51 Geartiox Length, Wide Face Lo | inmax - — 1373 | 1a79 | 1378 | 1373 | 1373 | 1373 ) 1528 | 1.528 - -
52 Length, AMILN2, S, AT, t3 | wmex AL 31401 { 401 | a10t | 3901 | 3101 kBT 3,901 3101 3101 | 3256 | 3256
3 Length, GMIAX2, Wide Face La i max — — 3101 30 3.0 310t 310 J.101 3258 2255 —_ —
34 Lengih. GMRAX3Z, Sid H.T. L3 nmax 3476 3476 3476 3476 3476 3.47% 3476 3478 3476 3.476 383 aex
$5 Length. GMS4X3, Wire Face ta nmax - - 3476 3476 3ATE 3.476 3476 3476 3634 3831 | - -
36 Lengtn. GM34axd. Sta H.T ta 10 max 3.676 3676 3676 3676 3676 3.678 2878 3.676 3876 3676 3.631 3.3t
57 Length, (GM94X2, Wide Face. | L i e - —_ 3678 agre 3678 3876 agre 3876 2.83t 3.831 —_ —_
R8 Lengih, GrISXZ, S0, H.T. Ly | @ max 3052 § 2082 3052 | J0s2 3052 | 3052 | 4082 3052 3082 | 3052 | 3207 3.207
59 Length, GME3X2, Wide Face | Ly | nmax - — 3052 | 3052 | 3052 | 3082 | 3052 3082 | 3207 | 3207 —_ -
S0 Length, SMS5SX3. St HY. (Y in max 3.427 3427 3.427 3.437 3427 3427 asar 3427 427 34827 3582 3382
&1 Lengin, GM85X3, Wide Face 15 in max — —_ 3427 3427 3427 3427 3axt Q.427 3.582 3.682 — —_
62 tength GMSX4. S0 HT L3 Y max 3627 3627 3627 1627 3627 3827 3.8%7 3627 3627 | 3627 | 3782 1782
63 Lenglh. GMOSX4, Wide Face | Ly | ineax - - 3827 | 3627 | 3627 | ae27 | 3827 | 3627 | 3a7e2 | 3vE2 L—- -
I Regregents gearbiox capabilty only. Conbaunus 103d 101que capabilty will vary with gear rato, moor seweciion, nd operstling conditons. See pages 3 and 4,
sectian IV, ar "Sgrvo Motar AppiicEnon Naes™ .
1 8rah rotalion s gesignaled while 160king ot gutpwl Snak ¢f gesrbox with posilive vattage |+ on numder 1 lerminal. Gearmator 18 palarily reversitie.
GMIXXX SPUR GEARMOTOR DIMENSIONS
I e——— (
PRI N .
LIS E B gt e - ; !
LU Y2 _‘ X I
' )
¢
L
!
- !
. |
i -
L0G0 . *
1. -
LA B S PIST g
'
HEDS 90X0 OPTICAL ENCODER DATA (25° C)
PARAMETER SYMBOL UNITS Min. Typ. Max,
64 Encadsr Resoiutan, HEDS 97Xa N1 cem 96 500 §12
€6 Encoder fasrtia, HEDS 81X0 JE 02sin-g? — 8.0 % 10 -
36 Encoder Weight, HEDS §1X0 L WE oz — 1.58 -
67 _Encoder Length, HEDS 91X0 g in max — — 0595

Figure E.2: DC Motor - Page2
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