Robust and Adaptive Control via Backstepping Technique

Antoine G. Ibrahim

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF MScEng DEGREE IN CONTROL ENGINEERING

FACULTY OF ENGINEERING

LAKEHEAD UNIVERSITY
THUNDER BAY, ONTARIO
P7B 5E1

October $24^{s t}, 2005$

Library and
Archives Canada
Published Heritage Branch

395 Wellington Street Ottawa ON K1A ON4 Canada

Bibliothèque et Archives Canada

Direction du Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence ISBN: 978-0-494-15620-9 Our file Notre référence ISBN: 978-0-494-15620-9

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Abstract

Most of the control systems are designed using linear techniques, which have been well developed. Practical physical systems are typically nonlinear. Nonlinear control is one of the biggest challenges in modern control theory. Nonlinear processes are difficult to control because there can be so many variations of the nonlinear behavior.

One of the main recursive procedures to design a nonlinear controller is the backstepping. Adaptive backstepping achieved global stabilization in the presence of unknown parameters and robust backstepping achieved it in the presence of disturbances. The ease with which backstepping incorporated uncertainties and unknown parameters, contributed to its instant popularity and rapid acceptance. The backstepping provides a powerful design tool for nonlinear systems in the lower triangular form.

The first part of the thesis is to explain backstepping technique for third order nonlinear systems. Robust backstepping technique for a system with bounded uncertainties and adaptive backstepping technique for a system with linear unknown parameters are illustrated and simulated.

The second part of the thesis is to apply the adaptive backstepping and robust backstepping technique to a 2-DOF (degree of freedom) planar manipulator. Experimental and simulation results are obtained and compared with linear (PD) controller and nonlinear controller (Lyapunov based algorithm).

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. X. Liu for his guidance and mentorship, which were more than effective. I would like to thank my cosupervisor Dr. A. Tayebi for his suggestions and help. I am grateful to Mr. Manfred Klein, Greg Jollimore and Mr. Kailash Bhatia who helped me in the experimental part of the thesis.

I extend my thanks to my fellow graduate students for their suggestions and discussions, which were valuable and positive.

Finally, I would like to thank my family for many reasons, which allow me to accomplish this work.

Contents

I Introduction 1
1 Introduction 2
1.1 Nonlinear Control 2
1.2 Basic Concepts and Definitions 5
1.3 Literature Review 8
1.4 Thesis Overview 10
II Nonlinear Adaptive and Robust Backstepping Con- Trol Design 12
2 Nonlinear Backstepping Control Design 13
2.1 Theory 13
2.2 Example 17
3 Robust Backstepping Control Design 22
3.1 Theory 22
3.2 Example 27
4 Adaptive Backstepping Control Design 41
4.1 Theory 41
4.2 Example 48
III Application of Different Controllers on 2-DOF Pla-
NAR Manipulator 55
5 System and Experimental Setup 56
5.1 Robotics Background 56
5.2 Experimental Setup 59
5.2.1 Mechanical Assembly 60
5.2.2 Circuitry 62
5.2.3 Data Acquisition Module 64
6 PD Controller 66
6.1 Theory 66
6.2 Control Design 69
6.3 Experimental Results 72
7 Nonlinear Controller 77
7.1 Control Design 77
7.2 Experimental Results 80
8 Robust Controller 85
8.1 Control Design 85
8.2 Experimental Results 90
9 Adaptive Controller 96
9.1 Control Design 96
9.2 Experimental Results 101
IV Conclusion 107
10 Conclusion and future work 108
10.1 Conclusion 108
10.2 Future work 110
A Block Diagrams 115
B Cut Sheets - LMD18200, 55V H-bridge 120
C Cut Sheets - TL494, PWM Control Circuit 131
D Cut Sheets - Servo Systems Encoder 140
E Cut Sheets - DC Motor 142

List of Figures

$2.1 x_{1}$-Nonlinear backstepping control 20
$2.2 \quad x_{2}$-Nonlinear backstepping control 20
$2.3 \quad x_{3}$-Nonlinear backstepping control 21
$2.4 u$-Nonlinear backstepping control 21
$3.1 x_{1}$-Nonlinear robust backstepping control $-\theta_{1}=1.5, \theta_{2}=2, \theta_{3}=3$ 36
$3.2 x_{2}$-Nonlinear robust backstepping control $-\theta_{1}=1.5, \theta_{2}=2, \theta_{3}=3$ 36
$3.3 x_{3}$-Nonlinear robust backstepping control $-\theta_{1}=1.5, \theta_{2}=2, \theta_{3}=3$ 37
$3.4 u$-Nonlinear robust backstepping control $-\theta_{1}=1.5, \theta_{2}=2, \theta_{3}=3$ 37
$3.5 x_{1}$-Nonlinear robust backstepping control $-\theta_{1}=0, \theta_{2}=0, \theta_{3}=0$ 37
$3.6 x_{2}$-Nonlinear robust backstepping control $-\theta_{1}=0, \theta_{2}=0, \theta_{3}=0$ 37
$3.7 x_{3}$-Nonlinear robust backstepping control $-\theta_{1}=0, \theta_{2}=0, \theta_{3}=0$ 38
$3.8 u$-Nonlinear robust backstepping control $-\theta_{1}=0, \theta_{2}=0, \theta_{3}=0$ 38
$3.9 x_{1}$-Nonlinear robust backstepping control $-\theta_{1}=-1, \theta_{2}=-1, \theta_{3}=-1$ 38
$3.10 x_{2}$-Nonlinear robust backstepping control - $\theta_{1}=-1, \theta_{2}=-1, \theta_{3}=-1$ 38
$3.11 x_{3}$-Nonlinear robust backstepping control $-\theta_{1}=-1, \theta_{2}=-1, \theta_{3}=-1$ 39
$3.12 u$-Nonlinear robust backstepping control $-\theta_{1}=-1, \theta_{2}=-1, \theta_{3}=-1$ 39
$3.13 x_{1}$-Nonlinear robust backstepping control $-\theta_{1}=1, \theta_{2}=1, \theta_{3}=1$ 39
$3.14 x_{2}$-Nonlinear robust backstepping control $-\theta_{1}=1, \theta_{2}=1, \theta_{3}=1$ 39
$3.15 x_{3}$-Nonlinear robust backstepping control $-\theta_{1}=1, \theta_{2}=1, \theta_{3}=1$ 40
$3.16 u$-Nonlinear robust backstepping control $-\theta_{1}=1, \theta_{2}=1, \theta_{3}=1$ 40
4.1 $\quad x_{1}$-Nonlinear adaptive backstepping control $-\theta=1$ 52
$4.2 x_{2}$-Nonlinear adaptive backstepping control $-\theta=1$ 52
$4.3 \quad x_{3}$-Nonlinear adaptive backstepping control $-\theta=1$ 53
4.4 $\hat{\theta}$-Nonlinear adaptive backstepping control $-\theta=1$ 53
$4.5 u$-Nonlinear adaptive backstepping control $-\theta=1$ 53
4.6 $\quad x_{1}$-Nonlinear adaptive backstepping control $-\theta=2$ 53
4.7 $\quad x_{2}$-Nonlinear adaptive backstepping control $-\theta=2$ 54
$4.8 \quad x_{3}$-Nonlinear adaptive backstepping control $-\theta=2$ 54
$4.9 \hat{\theta}$-Nonlinear adaptive backstepping control $-\theta=2$ 54
$4.10 u$-Nonlinear adaptive backstepping control $-\theta=2$ 54
5.1 2 DOF robot manipulator 57
$6.1 q_{1}-$ Simulation result with PD control 72
$6.2 q_{2}$ - Simulation result with PD control 72
$6.3 \quad \dot{q}_{1}-$ Simulation result with PD control 73
$6.4 \dot{q}_{2}$ - Simulation result with PD control 73
$6.5 e_{1}$ - Simulation result with PD control 74
$6.6 e_{2}-$ Simulation result with PD control 74
$6.7 v_{1}$ - Simulation result with PD control. 74
$6.8 v_{2}-$ Simulation result with PD control 74
$6.9 \quad q_{1}$ - Experimental result with PD control 75
$6.10 q_{2}$ - Experimental result with PD control 75
$6.11 \dot{q}_{1}$ - Experimental result with PD control 75
$6.12 \dot{q}_{2}$ - Experimental result with PD control 75
$6.13 e_{1}$ - Experimental result with PD control 76
$6.14 e_{2}$ - Experimental result with PD control 76
$6.15 v_{1}$ - Experimental result with PD control 76
$6.16 v_{2}$ - Experimental result with PD control 76
$7.1 \quad q_{1}$ - Simulation result with nonlinear stabilizing control based on Lyapunov method 80
$7.2 \quad q_{2}$ - Simulation result with nonlinear stabilizing control based on Lyapunov method 80
$7.3 \quad \dot{q}_{1}-$ Simulation result with nonlinear stabilizing control based on Lyapunov method 81
$7.4 \quad \dot{q}_{2}$ - Simulation result with nonlinear stabilizing control based on Lyapunov method 81
$7.5 \quad e_{1}$ - Simulation result with nonlinear stabilizing control based on Lyapunov method 82
$7.6 e_{2}$ - Simulation result with nonlinear stabilizing control based on Lyapunov method 82
7.7 $\quad v_{1}$ - Simulation result with nonlinear stabilizing control based on Lyapunov method 82
$7.8 \quad v_{2}$-Simulation result with nonlinear stabilizing control based on Lyapunov method 82
$7.9 \quad q_{1}$ - Experimental result with nonlinear stabilizing control based on Lyapunov method 83
$7.10 q_{2}$ - Experimental result with nonlinear stabilizing control based on Lyapunov method 83
$7.11 \dot{q}_{1}$ - Experimental result with nonlinear stabilizing control based on Lyapunov method 83
$7.12 \dot{q}_{2}$ - Experimental result with nonlinear stabilizing control based on Lyapunov method 83
$7.13 e_{1}$ - Experimental result with nonlinear stabilizing control based on Lyapunov method 84
$7.14 e_{2}$ - Experimental result with nonlinear stabilizing control based on Lyapunov method 84
$7.15 v_{1}$ - Experimental result with nonlinear stabilizing control based on Lyapunov method 84
$7.16 v_{2}$ - Experimental result with nonlinear stabilizing control based on Lyapunov method 84
8.1 q_{1} - Simulation result with robust control 91
$8.2 \quad q_{2}-$ Simulation result with robust control 91
$8.3 \dot{q}_{1}-$ Simulation result with robust control 92
$8.4 \quad \dot{q}_{2}-$ Simulation result with robust control 92
$8.5 e_{1}-$ Simulation result with robust control 92
$8.6 e_{2}-$ Simulation result with robust control 92
$8.7 \quad v_{1}$ - Simulation result with robust control 93
$8.8 \quad v_{2}$ - Simulation result with robust control 93
$8.9 q_{1}$ - Experimental result with robust control 93
$8.10 q_{2}$ - Experimental result with robust control 93
$8.11 \dot{q}_{1}$ - Experimental result with robust control 94
$8.12 \dot{q}_{2}$ - Experimental result with robust control 94
$8.13 e_{1}$ - Experimental result with robust control 94
$8.14 e_{2}$ - Experimental result with robust control 94
$8.15 v_{1}$ - Experimental result with robust control 95
$8.16 v_{2}$ - Experimental result with robust control 95
9.1 $\quad q_{1}-$ Simulation result with adaptive control 101
$9.2 \quad q_{2}$ - Simulation result with adaptive control 101
$9.3 \quad \dot{q}_{1}-$ Simulation result with adaptive control 102
$9.4 \quad \dot{q}_{2}-$ Simulation result with adaptive control 102
$9.5 e_{1}$ - Simulation result with adaptive control 103
$9.6 e_{2}$ - Simulation result with adaptive control 103
$9.7 \quad v_{1}-$ Simulation result with adaptive control 103
$9.8 \quad v_{2}$ - Simulation result with adaptive control 103
$9.9 \hat{\theta}_{1}$ - Simulation result with adaptive control 104
$9.10 \hat{\theta}_{2}$ - Simulation result with adaptive control 104
$9.11 q_{1}$ - Experimental result with adaptive control 104
$9.12 q_{2}$ - Experimental result with adaptive control 104
$9.13 \dot{q}_{1}$ - Experimental result with adaptive control 105
$9.14 \dot{q}_{2}$ - Experimental result with adaptive control 105
$9.15 e_{1}$ - Experimental result with adaptive control 105
$9.16 e_{2}$ - Experimental result with adaptive control 105
$9.17 v_{1}$ - Experimental result with adaptive control 106
$9.18 v_{2}$ - Experimental result with adaptive control 106
$9.19 \hat{\theta}_{1}$ - Experimental result with adaptive control 106
$9.20 \hat{\theta}_{2}$ - Experimental result with adaptive control 106
A. 1 Experimental Block Diagram 115
A. 2 PD Controller - Simulink Block 116
A. 3 Nonlinear Controller - Simulink Block 117
A. 4 Robust Controller - Simulink Block 118
A. 5 Adaptive Controller - Simulink Block 119
B. 1 LMD18200, 55V H-bridge - Page1 121
B. 2 LMD18200, 55V H-bridge - Page2 122
B. 3 LMD18200, 55V H-bridge - Page3 123
B. 4 LMD18200, 55V H-bridge - Page 4 124
B. 5 LMD18200, 55 V H-bridge - Page5 125
B. 6 LMD18200, 55 V H-bridge - Page6 126
B. 7 LMD18200, 55V H-bridge - Page7 127
B. 8 LMD18200, 55V H-bridge - Page8 128
B. 9 LMD18200, 55 V H-bridge - Page 9 129
B. 10 LMD18200, 55 V H-bridge - Page 10 130
C. 1 TL494, PWM Control Circuit - Page1 132
C. 2 TL494, PWM Control Circuit - Page2 133
C. 3 TL494, PWM Control Circuit - Page3 134
C. 4 TL494, PWM Control Circuit - Page4 135
C. 5 TL494, PWM Control Circuit - Page5 136
C. 6 TL494, PWM Control Circuit - Page6 137
C. 7 TL494, PWM Control Circuit - Page7 138
C. 8 TL494, PWM Control Circuit - Page8 139
D. 1 Servo Systems Encoder 141
E. 1 DC Motor - Page1 143
E. 2 DC Motor - Page2 144

List of Acronyms and Notations

P	Proportional
PD	Proportional plus Derivative
PID	Proportional plus Integral plus Derivative
DOF	Degree of Freedom
SISO	Single Input Single Output
DAQ	Data Acquisition
DAC	Digital to Analog Converter
ADC	Analog to Digital Converter
DC	Direct Current
PWM	Pulse Width Modulation
RFI	Radio Frequency Interference
clf	Control Lyapunov Function
A^{-1}	Inverse of Matrix A
A^{T}	Transpose of Matrix A

Part I

Introduction

1

Chapter 1

Introduction

1.1 Nonlinear Control

Control theory can be described as the process of influencing the behavior of a physical system to achieve a desired goal, primarily through the use of feedback. It is important in a diverse range of scientific and engineering disciplines, including such things as the design of robotic systems.

Linear control is widely used in industrial applications. Most physical systems are nonlinear to various extents. However, if the range of variations of the system variables is not wide, then the system may be linearized within relatively small range of variation of variables [1]. While linearizing the behavior of the system and applying traditional linear control methods is an effective method of controlling the system,
there are many reasons, which justify the effort in the development of nonlinear control methodologies, as follows:

- Improvement of Existing Control Systems [2] Linear control methods are only effective around the chosen operating point. Large deviations from this point lead to instabilities and the eventual failure of the system to remain in the desired position. It is therefore important to develop techniques of analysis and control design for nonlinear systems.
- Analysis of Hard Nonlinearities [2] In some cases a linear approximation of the system is a good enough model for analysis and design, while in others the system has dominating nonlinear effects that make a linear approximation a non-satisfactory model for the system. Saturation and hysteresis are good examples for the so-called 'hard nonlinearities'. Their effects cannot be derived from linear methods, and nonlinear controllers must be developed to deal with the system in the presence of these inherent nonlinearities.
- Dealing with Model Uncertainties [2] It is not practical to assume that all the parameters are exactly known for a system to be controlled. There are systems whose parameters and models can be accurately obtained. On the other hand, there are systems to be controlled with unknown or uncertain parameters. Uncertainties may result from disturbances or inaccurate knowledge
of the system parameters. In such cases linear controllers may act poorly in controlling these systems. Two classes of nonlinear controllers can stabilize the system in the presence of such uncertainties. These controllers are called robust controllers and adaptive controllers. The adaptive controller estimates parameters and calculates the control accordingly. The robust controller allows for uncertainty in the design of the fixed controller so it becomes insensitive to parameter variations or disturbances [3].

The application of nonlinear control methods was limited due to the mathematical complexity associated with the nonlinear control laws. Over the last few years, the evolution in computer technology has solved a lot of problems related to the implementation of nonlinear controllers. Moreover, most of modern applications require more stringent control systems.

The most important approach for studying the stability of nonlinear control systems is the theory introduced in the late 19th century by the Russian mathematician Alexandr Mikhailovich Lyapunov. There are two methods introduced by Lyapunov for stability analysis of a nonlinear system.

The indirect method, or linearization method, states that the stability properties of a nonlinear system in the close vicinity of an equilibrium point are essentially the same as those of its linearized approximation. The method serves as the theoretical justification for using linear control for physical systems, which are always inherently
nonlinear. The direct method is a powerful tool for nonlinear system analysis, and therefore, the so-called Lyapunov analysis often actually refers to the direct method. The direct method is a generalization of the energy concepts associated with a mechanical system: the motion of a mechanical system is stable if its total mechanical energy decreases all the time. In using the direct method to analyze the stability of a nonlinear system, the idea is to construct a scalar energy-like function (a Lyapunov function) for the system, and to see whether it decreases. The limitation of this method lies in the fact that it is often difficult to find a Lyapunov function for a given system [2].

Lyapunov functions are of fundamental importance in the study of nonlinear systems. Not only Lyapunov functions are useful in proving stability of nonlinear systems, they are also an important part of certain nonlinear control design methods.

1.2 Basic Concepts and Definitions

Some basic concepts and definitions are introduced below.
Equilibrium Point: A state vector x^{*} is an equilibrium point of the system if once $x(t)$ is equal to x^{*}, it remains equal to x^{*} for all future time.

Definition of Stability: Let B_{R} denote the spherical region (or ball) defined by $\|x\|<R$ in state space, and S_{R} the sphere itself defined by $\|x\|=R$.

The equilibrium point $x=0$ is said to be stable if, for any $R>0$, there exists
$r>0$, such that if $\|x(0)\|<r$, then $\|x(t)\|<R$ for all $t \geq 0$. Otherwise the equilibrium point is unstable.

Asymptotic Stability: An equilibrium point is called locally asymptotically stable if it is stable, and if in addition there exists some $r>0$ such that $\|x(0)\|<r$ implies that $x(t) \rightarrow 0$ as $t \rightarrow \infty$. The ball B_{r} of radius r is called the domain of attraction of the equilibrium point. If the convergence to zero occurs for any initial condition $x(0)$, the equilibrium point is globally asymptotically stable (GAS).

Smooth Function: A smooth function is a function that has continuous derivatives up to some desired order over some domain. A function can therefore be said to be smooth over a restricted interval such as (a, b) or $[\mathrm{a}, \mathrm{b}]$. The number of continuous derivatives necessary for a function to be considered smooth depends on the problem at hand, and may vary from two to infinity. A function for which all orders of derivatives are continuous is called a C-infinity function.

Symmetric Matrix: A square matrix P is symmetric if $P=P^{T}$.
Skew-Symmetric Matrix: If a matrix P is equal to the negative of its transpose $P^{T}=-P$ then it is called a skew-symmetric matrix.

Positive Definite: A square matrix P is positive definite if $x^{T} P x>0$ for nonzero x.

Positive Semidefinite: A square matrix P is positive semidefinite if $x^{T} P x \geq 0$ for non-zero x.

Negative Definite: A square matrix P is negative definite if $x^{T} P x<0$ for non-zero x.

Negative Semidefinite: A square matrix P is negative semidefinite if $x^{T} P x \leq 0$ for non-zero x.

Lyapunov Function Candidate: Let $\mathrm{V}(\mathrm{x}): R^{n} \rightarrow R$ be a continuous function with continuous first partial derivatives in the neighborhood of the origin in R^{n}. If V is positive definite then it is called a Lyapunov function candidate.

Lyapunov Function: Consider the system

$$
\begin{equation*}
\dot{x}=f(x) \tag{1.1}
\end{equation*}
$$

where $x \in R^{n}$. Suppose that the origin is an equilibrium point i.e., $f(0)=0$. The equilibrium point $x=0$ is asymptotically stable if there exists a Lyapunov function candidate V such that \dot{V} is negative definite along the solution trajectories of the system, that is, if

$$
\dot{V}=\frac{d V}{d x} f(x)<0, \quad \forall x \neq 0
$$

Then V is called a Lyapunov function.
LaSalle's Theorem: Given the system (1.1), suppose that a Lyapunov function candidate V is found such that $\dot{V} \leq 0$ along solution trajectories. Then the equilibrium point $x=0$ of (1.1) is asymptotically stable if \dot{V} does not vanish identically along any solution of (1.1) other than the null solution, i.e., if and only if the only
solution of (1.1) satisfying $\dot{V}=0$ is the null solution.

1.3 Literature Review

Nonlinear feedback control has been the topic of hundreds of publications, numerous monographs and several comprehensive textbooks such as Khalil (1996b), Vidyasagar (1993), and Sastry (1999) [4].

For nonlinear control the 1990s started with a breakthrough: backstepping, a recursive design for systems with nonlinearities not constrained by linear bounds. The true potential of backstepping was discovered only when this approach was developed for nonlinear systems with structured uncertainty [4] [5].

The ease with which backstepping incorporated uncertainties and unknown parameters contributed to its instant popularity and rapid acceptance. At the same time, its limitation to a class of pure feedback (lower triangular) systems stimulated the development of other recursive procedures such as forwarding [4].

Models of physical non-linear systems are prone to different kinds of uncertainties [6].

With adaptive backstepping, Kanellakopoulos, Kokotovic, and Morse (1991a,b) achieved global stabilization in the presence of unknown parameters and with robust backstepping, Freeman and Kokotovic $(1992,1993)$, and Marino and Tomei (1993b) achieved it in the presence of disturbances [4].

There are many papers, which develop the design methodology and technique for adaptive and robust backstepping control on many physical systems [7] [8] [9] [10] [11].

Sliding mode control [12] and Lyapunov redesign are used to robustly stabilize an uncertain system when the uncertainty satisfies the matching condition. Backstepping can be used to relax the matching condition.[13].

Motivated by the backstepping design technique, a robust and adaptive control technique has been introduced using neural networks [14] [15].

The considerable number of publications on the robust and adaptive control of robot manipulators has brought many interesting results [16]. Recursive design of robust and robust adaptive control with L_{2}-gain performance for two-link robot manipulator has been developed and applied experimentally [17]. A general approach for the design of an adaptive position control for robotic systems by the backstepping passivity strict-feedback technique has been illustrated by simulation results [18].

To deal with the uncertainties in the dynamics of robotic systems, various control methods have been developed, including robust control schemes (e.g. Dawson et al. 1992) and adaptive control schemes (e.g. Yuan 1995) [5] [16] [17].

In this thesis, we will develop the adaptive and the robust recursive design methods (backstepping) for the two-link robot manipulator and compare them with other welldeveloped controllers.

The advantage of this control technique is that it imposes desired properties of stability by fixing the candidate Lyapunov functions initially, then by calculating the other functions in a recursive way [5].

1.4 Thesis Overview

The thesis is mainly divided into two parts besides the introduction and the conclusion. Nonlinear backstepping design procedures are explained in the first part. The application of different controllers on a 2-DOF planar manipulator, including adaptive backstepping and robust backstepping, discussed in the first part, are shown in the second part. Simulation and experimental results are analyzed and compared.

A general background on nonlinear system and Lyapunov stability theorem is discussed in the introduction.

Chapter 2 gives the theoretical background needed in order to understand the backstepping design followed by an example and simulations to show the design method.

Chapter 3 presents the robust backstepping design procedure theoretically. An example and simulations are provided to demonstrate the procedure.

Chapter 4 explains the adaptive backstepping design theoretically with an example and simulations to illustrate the design method.

Chapter 5 provides some basic knowledge about robots and describes the experi-
mental setup used.
Chapter 6 shows the application of PD controller on the 2-link robot manipulator. Simulation and experimental results are shown and discussed.

Chapter 7 discusses the performance of nonlinear controllers based on Lyapunov direct method on the 2 -link robot manipulator by simulation and experimental results.

Chapter 8 demonstrates the robust backstepping controller design on the 2-link robot manipulator. Simulation and experimental results are studied.

Chapter 9 illustrates the adaptive backstepping controller design on the 2 -link robot manipulator. Simulations and experimental results are analyzed.

Chapter 10 concludes the thesis by comparing the main results that have been reached. Moreover, it includes some proposals for future work.

Part II

Nonlinear Adaptive and Robust

Backstepping Control Design

Chapter 2

Nonlinear Backstepping Control

Design

2.1 Theory

Lyapunov functions are of fundamental importance in the study of nonlinear systems and the design procedure of nonlinear controllers including backstepping. Backstepping is a recursive design procedure for systematically selecting the control Lyapunov functions (clf) that allow the design of nonlinear controllers for a nonlinear system. Backstepping is applicable to the systems in the lower triangular form [19].

In this chapter, we will explain the procedure to design backstepping-based controllers for a nonlinear system assuming that all parameters are known. This chapter
is considered an introduction for the next two chapters, which explain the robust backstepping techniques for nonlinear systems with bounded uncertainties and the adaptive backstepping techniques for nonlinear systems with unknown linear parameters.

In what follows, we will illustrate the application of backstepping procedure on a nonlinear system in the lower triangular structure.

Consider a SISO nonlinear system of the form

$$
\begin{align*}
\dot{\xi}_{1} & =f_{1}\left(\xi_{1}\right)+g_{1}\left(\xi_{1}\right) \xi_{2} \\
\dot{\xi}_{2} & =f_{2}\left(\xi_{1}, \xi_{2}\right)+g_{2}\left(\xi_{1}, \xi_{2}\right) \xi_{3} \\
\dot{\xi}_{3} & =f_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)+g_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \xi_{4} \\
& \vdots \\
\dot{\xi}_{r} & =f_{r}\left(\xi_{1}, \ldots, \xi_{r}\right)+g_{r}\left(\xi_{1}, \ldots, \xi_{r}\right) u \tag{2.1}
\end{align*}
$$

with $g_{i}\left(\xi_{1}, \ldots, \xi_{i}\right) \neq 0$ for all $1 \leq i \leq r, f_{i}(0, \ldots, 0)=0$ for all $1 \leq i \leq r$, and all functions are smooth. u is the control input.

For simplicity, let $r=3$ to show the backstepping design procedure. Equation (2.1) can be written as follows

$$
\begin{align*}
& \dot{\xi}_{1}=f_{1}\left(\xi_{1}\right)+g_{1}\left(\xi_{1}\right) \xi_{2} \\
& \dot{\xi}_{2}=f_{2}\left(\xi_{1}, \xi_{2}\right)+g_{2}\left(\xi_{1}, \xi_{2}\right) \xi_{3} \\
& \dot{\xi}_{3}=f_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)+g_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) u \tag{2.2}
\end{align*}
$$

We start by choosing the Lyapunov function V_{1} as follows

$$
\begin{equation*}
V_{1}\left(\xi_{1}\right)=\frac{1}{2} \xi_{1}^{2} \tag{2.3}
\end{equation*}
$$

The derivative of the Lyapunov function is

$$
\begin{equation*}
\dot{V}_{1}=\xi_{1} \dot{\xi}_{1} \tag{2.4}
\end{equation*}
$$

If ξ_{2} were the control, a controller for the first equation of (2.2) would be given by

$$
\begin{equation*}
\xi_{2}=\alpha_{1}\left(\xi_{1}\right)=\frac{1}{g_{1}\left(\xi_{1}\right)}\left(-c_{1} \xi_{1}-f_{1}\left(\xi_{1}\right)\right) \tag{2.5}
\end{equation*}
$$

where $\alpha_{1}\left(\xi_{1}\right)$ is an intermediate control law called virtual control. We need to make the derivative of V_{1} negative definite when $\xi_{2}=\alpha_{1}\left(\xi_{1}\right)$. This is possible when the constant $c_{1}>0$. The derivative of V_{1} would be

$$
\begin{equation*}
\dot{V}_{1}=-c_{1} \xi_{1}^{2} \tag{2.6}
\end{equation*}
$$

To find a function $\alpha_{2}\left(\xi_{1}, \xi_{2}\right)$ for ξ_{3}, the virtual control in the second equation of (2.2), we introduce the new error variable $\xi_{2}-\alpha_{1}$. Choose the Lyapunov function

$$
\begin{equation*}
V_{2}\left(\xi_{1}, \xi_{2}\right)=V_{1}+\frac{1}{2}\left(\xi_{2}-\alpha_{1}\right)^{2} \tag{2.7}
\end{equation*}
$$

Then, the derivative of the Lyapunov function is

$$
\begin{equation*}
\dot{V}_{2}=\dot{V}_{1}+\left(\xi_{2}-\alpha_{1}\right)\left(f_{2}\left(\xi_{1}, \xi_{2}\right)+g_{2}\left(\xi_{1}, \xi_{2}\right) \xi_{3}-\frac{\partial \alpha_{1}}{\partial \xi_{1}}\left(f_{1}\left(\xi_{1}\right)+g_{1}\left(\xi_{1}\right) \xi_{2}\right)\right) \tag{2.8}
\end{equation*}
$$

If ξ_{3} were the control, a controller for the second equation of (2.2) would be given by

$$
\begin{equation*}
\xi_{3}=\alpha_{2}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{g_{2}\left(\xi_{1}, \xi_{2}\right)}\left(-c_{2}\left(\xi_{2}-\alpha_{1}\right)-f_{2}\left(\xi_{1}, \xi_{2}\right)+\frac{\partial \alpha_{1}}{\partial \xi_{1}}\left(f_{1}\left(\xi_{1}\right)+g_{1}\left(\xi_{1}\right) \xi_{2}\right)\right) \tag{2.9}
\end{equation*}
$$

which results that

$$
\begin{equation*}
\dot{V}_{2}=-c_{1} \xi_{1}^{2}-c_{2}\left(\xi_{2}-\alpha_{1}\right)^{2} \tag{2.10}
\end{equation*}
$$

is negative definite where $c_{2}>0$.
Introducing the new error variable $\xi_{3}-\alpha_{2}$, we are finally in the position to design our actual feedback control u to stabilize the system by using the Lyapunov function

$$
\begin{equation*}
V_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=V_{2}+\frac{1}{2}\left(\xi_{3}-\alpha_{2}\right)^{2} \tag{2.11}
\end{equation*}
$$

The derivative of the Lyapunov function is

$$
\begin{align*}
\dot{V}_{3} & =\dot{V}_{2}+\left(\xi_{3}-\alpha_{2}\right)\left(f_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)+g_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) u\right. \\
& \left.-\frac{\partial \alpha_{2}}{\partial \xi_{1}}\left(f_{1}\left(\xi_{1}\right)+g_{1}\left(\xi_{1}\right) \xi_{2}\right)-\frac{\partial \alpha_{2}}{\partial \xi_{2}}\left(f_{2}\left(\xi_{1}, \xi_{2}\right)+g_{2}\left(\xi_{1}, \xi_{2}\right) \xi_{3}\right)\right) \tag{2.12}
\end{align*}
$$

Knowing that $g_{1} \neq 0, g_{2} \neq 0$, and $g_{3} \neq 0$, we can choose the control u as follows

$$
\begin{equation*}
u=\frac{1}{g_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)}\left(-c_{3}\left(\xi_{3}-\alpha_{2}\right)-f_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)+\frac{\partial \alpha_{2}}{\partial \xi_{1}}\left(f_{1}\left(\xi_{1}\right)+g_{1}\left(\xi_{1}\right) \xi_{2}\right)+\frac{\partial \alpha_{2}}{\partial \xi_{2}}\left(f_{2}\left(\xi_{1}, \xi_{2}\right)+g_{2}\left(\xi_{1}, \xi_{2}\right) \xi_{3}\right)\right) \tag{2.13}
\end{equation*}
$$

to make \dot{V}_{3} negative definite, that is

$$
\begin{equation*}
\dot{V}_{3}=-c_{1} \xi_{1}^{2}-c_{2}\left(\xi_{2}-\alpha_{1}\right)^{2}-c_{3}\left(\xi_{3}-\alpha_{2}\right)^{2} \tag{2.14}
\end{equation*}
$$

where $c_{3}>0$. By Lyapunov stability theorem, the controller (2.13) can stabilize the system.

2.2 Example

We will illustrate the design procedure explained in the previous section by the following example

$$
\begin{align*}
& \dot{x}_{1}=x_{2}+x_{1}^{2} \\
& \dot{x}_{2}=x_{1}^{3}+x_{2}^{2}+x_{3} \\
& \dot{x}_{3}=x_{1} x_{2}+x_{2} x_{3}+u \tag{2.15}
\end{align*}
$$

Comparing (2.15) to (2.2):

$$
\begin{aligned}
x_{1}=\xi_{1}, x_{2} & =\xi_{2}, x_{3}=\xi_{3} \\
f_{1}\left(\xi_{1}\right) & =x_{1}^{2} \\
g_{1}\left(\xi_{1}\right) & =1 \\
f_{2}\left(\xi_{1}, \xi_{2}\right) & =x_{1}^{3}+x_{2}^{2}
\end{aligned}
$$

$$
\begin{align*}
g_{2}\left(\xi_{1}, \xi_{2}\right) & =1 \\
f_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) & =x_{1} x_{2}+x_{2} x_{3} \\
g_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) & =1 \tag{2.16}
\end{align*}
$$

First step is by choosing the Lyapunov function V_{1}

$$
\begin{equation*}
V_{1}=\frac{1}{2} x_{1}^{2} \tag{2.17}
\end{equation*}
$$

The derivative of the Lyapunov function is given by

$$
\begin{equation*}
\dot{V}_{1}=x_{1} \dot{x}_{1} \tag{2.18}
\end{equation*}
$$

If x_{2} were the control, a controller for the first equation of (2.15) would be given by

$$
\begin{equation*}
x_{2}=\alpha_{1}=-x_{1}^{2}-c_{1} x_{1} \tag{2.19}
\end{equation*}
$$

Applying (2.19) in \dot{V}_{1}, then

$$
\begin{equation*}
\dot{V}_{1}=-c_{1} x_{1}^{2} \tag{2.20}
\end{equation*}
$$

becomes negative definite where $c_{1}>0$.
Introducing the error variable $\hat{x}_{2}=x_{2}-\alpha_{1}$, the derivative of the Lyapunov function

$$
\begin{equation*}
V_{2}=V_{1}+\frac{1}{2} \hat{x}_{2}^{2} \tag{2.21}
\end{equation*}
$$

is as follows

$$
\begin{align*}
\dot{V}_{2} & =\dot{V}_{1}+\hat{x}_{2} \dot{\hat{x}}_{2} \\
& =x_{1}\left(\hat{x}_{2}-c_{1} x_{1}\right)+\hat{x}_{2}\left(x_{1}^{3}+\left(\hat{x}_{2}+\alpha_{1}\right)^{2}+x_{3}-\dot{\alpha_{1}}\right) \tag{2.22}
\end{align*}
$$

If x_{3} were the control, a controller for the second equation of (2.15) would be given by

$$
\begin{equation*}
x_{3}=\alpha_{2}=\dot{\alpha}_{1}-\left(\hat{x}_{2}+\alpha_{1}\right)^{2}-x_{1}^{3}-x_{1}-c_{2} \hat{x}_{2} \tag{2.23}
\end{equation*}
$$

which makes \dot{V}_{2} negative definite by choosing $c_{2}>0 . \dot{V}_{2}$ can be written as follows

$$
\begin{equation*}
\dot{V}_{2}=-c_{1} x_{1}^{2}-c_{2} \hat{x}_{2}^{2} \tag{2.24}
\end{equation*}
$$

The new error variable is $\hat{x}_{3}=x_{3}-\alpha_{2}$. The derivative of the Lyapunov function

$$
\begin{equation*}
V_{3}=V_{2}+\frac{1}{2} \hat{x}_{3}^{2} \tag{2.25}
\end{equation*}
$$

is given by

$$
\begin{align*}
\dot{V}_{3} & =\dot{V}_{2}+\hat{x}_{3} \dot{\hat{x}}_{3} \\
& =x_{1}\left(\hat{x}_{2}-c_{1} x_{1}\right)+\hat{x}_{2}\left(x_{1}^{3}+\left(\hat{x}_{2}+\alpha_{1}\right)^{2}+\left(\hat{x}_{3}+\alpha_{2}\right)-\dot{\alpha}_{1}\right) \\
& +\hat{x}_{3}\left(-\dot{\alpha_{2}}+x_{1}\left(\hat{x}_{2}+\alpha_{1}\right)+\left(\hat{x}_{2}+\alpha_{1}\right)\left(\hat{x}_{3}+\alpha_{2}\right)+u\right) \tag{2.26}
\end{align*}
$$

We are finally in the position to design our feedback control u to stabilize the system.

$$
\begin{equation*}
u=\dot{\alpha_{2}}-x_{1}\left(\hat{x}_{2}+\alpha_{1}\right)-\left(\hat{x}_{2}+\alpha_{1}\right)\left(\hat{x}_{3}+\alpha_{2}\right)-\hat{x}_{2}-c_{3} \hat{x}_{3} \tag{2.27}
\end{equation*}
$$

where $c_{3}>0$.
The feedback control u is able to stabilize the system by making

$$
\begin{equation*}
\dot{V}_{3}=-c_{1} x_{1}^{2}-c_{2} \hat{x}_{2}^{2}-c_{3} \hat{x}_{3}^{2} \tag{2.28}
\end{equation*}
$$

negative definite.
The simulation results shown in figures 2.1, 2.2, 2.3, and 2.4 were realized using Matlab. These figures show the system response for nonlinear backstepping control. u is the control effort. The control parameters are chosen as follows $c_{1}=10, c_{2}=1$, and $c_{3}=2 . T=10 s$ with initial values $x_{1_{0}}=0.1, x_{2_{0}}=0.1$, and $x_{3_{0}}=0.1$.

Figure 2.1: x_{1}-Nonlinear backstepping control

Figure 2.2: x_{2}-Nonlinear backstepping control

Assuming that all parameters of the system are accurately known, nonlinear backstepping controller causes the closed loop states to converge to zero.

Figure 2.3: x_{3}-Nonlinear backstepping control

Figure 2.4: u-Nonlinear backstepping control

In the previous example, overshoots and/or undershoots can't be totally eliminated. However, they can be controlled by changing the control parameters.

Chapter 3

Robust Backstepping Control

Design

3.1 Theory

Every mathematical model for a real system is more or less uncertain. The uncertainties may result from disturbances or inaccurate knowledge of the system parameters (such as mass, inertia, friction, etc). The need of controllers with high performance and guaranteed robustness properties has increased during the last decade.

Model uncertainties should always be bounded; otherwise with absolutely no knowledge of the system, the problem becomes ill posed. Given any controller connected to a completely uncertain system, there is always the possibility of making the
closed loop unstable [20].
Robust controllers are introduced to stabilize the system in spite of parameter uncertainties. In this chapter, we will explain the robust control design using backstepping. It is a procedure by which both a Control Lyapunov Function (clf) and a control law can be determined simultaneously. The robust backstepping technique for a third order system in the lower triangular form is developed in this chapter.

The lower triangular structure for a system with uncertainties is:

$$
\begin{align*}
\dot{x}_{1} & =\phi_{1}\left(x_{1}\right) x_{2}+\psi_{1}\left(x_{1}\right)+\delta_{1}(x) \\
\dot{x}_{2} & =\phi_{2}\left(x_{1}, x_{2}\right) x_{3}+\psi_{2}\left(x_{1}, x_{2}\right)+\delta_{2}(x) \\
\dot{x}_{3} & =\phi_{3}\left(x_{1}, x_{2}, x_{3}\right) x_{4}+\psi_{3}\left(x_{1}, x_{2}, x_{3}\right)+\delta_{3}(x) \\
& \vdots \tag{3.1}\\
\dot{x}_{r} & =\phi_{r}\left(x_{1}, \ldots, x_{r}\right) u+\psi_{r}\left(x_{1}, \ldots, x_{r}\right)+\delta_{r}(x)
\end{align*}
$$

where $x_{1} \in R, x_{2} \in R, x_{3} \in R \ldots x_{r} \in R$ are state variables and $u \in R$ is the control input. $\delta_{1}(x), \delta_{2}(x), \delta_{3}(x) \ldots \delta_{r}(x)$ are uncertain nonlinearities which are uniformly bounded for all values of $x . \phi_{i}\left(x_{1}, \ldots, x_{i}\right) \neq 0$ where $1 \leq i \leq r$

(Structural Condition)

The uncertainty terms $\delta_{i}(x)$ for $1 \leq i \leq r$ satisfy the following structural conditions

$$
\left|\delta_{i}(x)\right| \leq \sum_{j=1}^{i} k_{j}^{i}\left(x_{1}, \ldots, x_{i}\right)\left|x_{j}\right|, \quad i=1, \ldots, r
$$

where the nonnegative functions k_{j}^{i} for $1 \leq j \leq i$ and $1 \leq i \leq r$ are known.

For simplicity, we will explain the robust backstepping design procedure by assuming that $r=3$. The lower triangular form for the third order system is as follows:

$$
\begin{align*}
& \dot{x}_{1}=\phi_{1}\left(x_{1}\right) x_{2}+\psi_{1}\left(x_{1}\right)+\delta_{1}(x) \\
& \dot{x}_{2}=\phi_{2}\left(x_{1}, x_{2}\right) x_{3}+\psi_{2}\left(x_{1}, x_{2}\right)+\delta_{2}(x) \\
& \dot{x}_{3}=\phi_{3}\left(x_{1}, x_{2}, x_{3}\right) u+\psi_{3}\left(x_{1}, x_{2}, x_{3}\right)+\delta_{3}(x) \tag{3.2}
\end{align*}
$$

Step 1: First x_{2} is regarded as a control input for the first equation of (3.2). A control Lyapunov Function, $V_{1}\left(x_{1}\right)$, can be chosen as follows:

$$
\begin{equation*}
V_{1}\left(x_{1}\right)=\frac{1}{2} x_{1}^{2} \tag{3.3}
\end{equation*}
$$

We start by designing the smooth function $\alpha_{1}\left(x_{1}\right)$, as will be shown in the example, with $\alpha_{1}(0)=0$, so that the derivative of the Lyapunov function $V_{1}\left(x_{1}\right)$ satisfies the following inequality

$$
\begin{equation*}
\dot{V}_{1} \leq-b_{1} x_{1}^{2} \tag{3.4}
\end{equation*}
$$

along the trajectories of the first equation of the system (3.2) with $x_{2}=\alpha_{1}\left(x_{1}\right)$.
Step 2: Let us introduce the change of coordinate $\hat{x}_{2}=x_{2}-\alpha_{1}\left(x_{1}\right)$. Then, by taking the derivative of \hat{x}_{2}, we have

$$
\begin{aligned}
\dot{\hat{x}_{2}} & =\dot{x}_{2}-\frac{\partial \alpha_{1}}{\partial x_{1}} \dot{x}_{1} \\
& =\phi_{2}\left(x_{1}, x_{2}\right) x_{3}+\psi_{2}\left(x_{1}, x_{2}\right)+\delta_{2}(x)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\partial \alpha_{1}}{\partial x_{1}}\left[\phi_{1}\left(x_{1}\right) x_{2}+\psi_{1}\left(x_{1}\right)+\delta_{1}(x)\right] \\
& =\hat{\phi}_{2}\left(x_{1}, \hat{x}_{2}\right) x_{3}+\hat{\psi}_{2}\left(x_{1}, \hat{x}_{2}\right)+\hat{\delta}_{2}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{\phi}_{2}\left(x_{1}, \hat{x}_{2}\right) & =\phi_{2}\left(x_{1}, x_{2}\right) \\
\hat{\psi}_{2}\left(x_{1}, \hat{x}_{2}\right) & =\psi_{2}\left(x_{1}, x_{2}\right)-\frac{\partial \alpha_{1}}{\partial x_{1}}\left[\phi_{1}\left(x_{1}\right) x_{2}+\psi_{1}\left(x_{1}\right)\right] \\
\hat{\delta}_{2}(x) & =\delta_{2}(x)-\frac{\partial \alpha_{1}}{\partial x_{1}} \delta_{1}(x)
\end{aligned}
$$

We can rewrite the equation of \dot{x}_{1} as follows

$$
\begin{equation*}
\dot{x}_{1}=\phi_{1}\left(x_{1}\right) \alpha_{1}\left(x_{1}\right)+\psi_{1}\left(x_{1}\right)+\delta_{1}(x)+\hat{x}_{2} \phi_{1}\left(x_{1}\right) \tag{3.5}
\end{equation*}
$$

From the structural condition, $\hat{\delta}_{2}(x)$ satisfies

$$
\begin{aligned}
\left|\hat{\delta}_{2}(x)\right| & \leq\left|\delta_{2}(x)\right|+\left|\frac{\partial \alpha_{1}}{\partial x_{1}}\right|\left|\delta_{1}(x)\right| \\
& \leq k_{1}^{2}\left|x_{1}\right|+k_{2}^{2}\left|x_{2}\right|+\left|\frac{\partial \alpha_{1}}{\partial x_{1}}\right| k_{1}^{1}\left|x_{1}\right| \\
& \leq k_{1}^{2}\left|x_{1}\right|+k_{2}^{2}\left|\hat{x}_{2}\right|+k_{2}^{2}\left|\alpha_{1}\left(x_{1}\right)\right|+\left|\frac{\partial \alpha_{1}}{\partial x_{1}}\right| k_{1}^{1}\left|x_{1}\right|
\end{aligned}
$$

Now we can design the smooth function $\alpha_{2}\left(x_{1}, \hat{x}_{2}\right)$, as will be shown in the example, with $\alpha_{2}(0,0)=0$, so that the derivative of

$$
V_{2}\left(x_{1}, \hat{x}_{2}\right)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} \hat{x}_{2}^{2}
$$

satisfies the following inequality

$$
\dot{V}_{2} \leq-b_{1} x_{1}^{2}-b_{2} \hat{x}_{2}^{2}
$$

along the trajectories of the second equation of the system (3.2) with $x_{3}=\alpha_{2}\left(x_{1}, \hat{x}_{2}\right)$.
Step 3: Let us introduce the change of coordinate $\hat{x}_{3}=x_{3}-\alpha_{2}\left(x_{1}, \hat{x}_{2}\right)$. Then, by taking the derivative of \hat{x}_{3}, we have

$$
\begin{aligned}
\dot{\hat{x}_{3}} & =\dot{x}_{3}-\frac{\partial \alpha_{2}}{\partial x_{1}} \dot{x}_{1}-\frac{\partial \alpha_{2}}{\partial \hat{x}_{2}} \dot{\hat{x}}_{2} \\
& =\phi_{3}\left(x_{1}, x_{2}, x_{3}\right) u+\psi_{3}\left(x_{1}, x_{2}, x_{3}\right)+\delta_{3}(x) \\
& -\frac{\partial \alpha_{2}}{\partial x_{1}}\left[\phi_{1}\left(x_{1}\right) x_{2}+\psi_{1}\left(x_{1}\right)+\delta_{1}(x)\right] \\
& -\frac{\partial \alpha_{2}}{\partial \hat{x}_{2}}\left[\hat{\phi}_{2}\left(x_{1}, \hat{x}_{2}\right) x_{3}+\hat{\psi}_{2}\left(x_{1}, \hat{x}_{2}\right)+\hat{\delta}_{2}(x)\right] \\
& =\hat{\phi}_{3}\left(x_{1}, \hat{x}_{2}, \hat{x}_{3}\right) u+\hat{\psi}_{3}\left(x_{1}, \hat{x}_{2}, \hat{x}_{3}\right)+\hat{\delta}_{3}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{\phi}_{3}\left(x_{1}, \hat{x}_{2}, \hat{x}_{3}\right) & =\phi_{3}\left(x_{1}, x_{2}, x_{3}\right) \\
\hat{\psi}_{3}\left(x_{1}, \hat{x}_{2}, \hat{x}_{3}\right) & =\psi_{3}\left(x_{1}, x_{2}, x_{3}\right)-\frac{\partial \alpha_{2}}{\partial x_{1}}\left[\phi_{1}\left(x_{1}\right) x_{2}+\psi_{1}\left(x_{1}\right)\right] \\
& -\frac{\partial \alpha_{2}}{\partial \hat{x}_{2}}\left[\hat{\phi}_{2}\left(x_{1}, \hat{x}_{2}\right) x_{3}+\hat{\psi}_{2}\left(x_{1}, \hat{x}_{2}\right)\right] \\
\hat{\delta}_{3}(x) & =\delta_{3}(x)-\frac{\partial \alpha_{2}}{\partial x_{1}} \delta_{1}(x)-\frac{\partial \alpha_{2}}{\partial \hat{x}_{2}} \hat{\delta}_{2}(x)
\end{aligned}
$$

We can rewrite the equation of \hat{x}_{2} as follows

$$
\begin{equation*}
\dot{\hat{x}_{2}}=\hat{\phi}_{2}\left(x_{1}, \hat{x}_{2}\right) \alpha_{2}\left(x_{1}, \hat{x}_{2}\right)+\hat{\psi}_{2}\left(x_{1}, \hat{x}_{2}\right)+\hat{\delta}_{2}(x)+\hat{\phi}_{2}\left(x_{1}, \hat{x}_{2}\right) \hat{x}_{3} \tag{3.6}
\end{equation*}
$$

The upper bound for $\delta_{3}(x)$ can be estimated

$$
\left|\hat{\delta}_{3}(x)\right| \leq\left|\delta_{3}(x)\right|+\left|\frac { \partial \alpha _ { 2 } } { \partial x _ { 1 } } \left\|\delta _ { 1 } (x) \left|+\left|\frac{\partial \alpha_{2}}{\partial x_{2}} \| \delta_{2}(x)\right|\right.\right.\right.
$$

$$
\begin{aligned}
& \leq k_{1}^{3}\left|x_{1}\right|+k_{2}^{3}\left|x_{2}\right|+k_{3}^{3}\left|x_{3}\right|+\left|\frac{\partial \alpha_{2}}{\partial x_{1}}\right| k_{1}^{1}\left|x_{1}\right| \\
& +\left|\frac{\partial \alpha_{2}}{\partial x_{2}}\right|\left(k_{1}^{2}\left|x_{1}\right|+k_{2}^{2}\left|x_{2}\right|\right) \\
& \leq k_{1}^{3}\left|x_{1}\right|+k_{2}^{3}\left|\hat{x}_{2}\right|+k_{2}^{3}\left|\alpha_{1}\left(x_{1}\right)\right|+k_{3}^{3}\left|\hat{x}_{3}\right|+k_{3}^{3}\left|\alpha_{2}\left(x_{1}, \hat{x}_{2}\right)\right| \\
& +\left|\frac{\partial \alpha_{2}}{\partial x_{1}}\right| k_{1}^{1}\left|x_{1}\right|+\left|\frac{\partial \alpha_{2}}{\partial x_{2}}\right|\left(k_{1}^{2}\left|x_{1}\right|+k_{2}^{2}\left|\hat{x}_{2}\right|+k_{2}^{2}\left|\alpha_{2}\left(x_{1}, \hat{x}_{2}\right)\right|\right)
\end{aligned}
$$

We are finally in the position to design our actual feedback control u to stabilize the system with respect to

$$
V_{3}\left(x_{1}, \hat{x}_{2}, \hat{x}_{3}\right)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} \hat{x}_{2}^{2}+\frac{1}{2} \hat{x}_{3}^{2}
$$

so that it satisfies the following inequality

$$
\dot{V}_{3} \leq-b_{1} x_{1}^{2}-b_{2} \hat{x}_{2}^{2}-b_{3} \hat{x}_{3}^{2}
$$

where $b_{1}>0, b_{2}>0$, and $b_{3}>0$.
The steps above have demonstrated the design procedure of the robust backstepping control. In the following example, the same procedure will be applied on a given system.

3.2 Example

We will illustrate the design procedure explained in the previous section by the following example

$$
\dot{x}_{1}=x_{2}+x_{1} \theta_{1}
$$

$$
\begin{align*}
& \dot{x}_{2}=x_{3}+x_{2}^{2} x_{1} \theta_{2} \\
& \dot{x}_{3}=u+x_{1} x_{2} \theta_{3} \tag{3.7}
\end{align*}
$$

Comparing (3.7) to (3.2):

$$
\begin{align*}
\phi_{1}\left(x_{1}\right) & =1 \\
\phi_{2}\left(x_{1}, x_{2}\right) & =1 \\
\phi_{3}\left(x_{1}, x_{2}, x_{3}\right) & =1 \\
\psi_{1}\left(x_{1}\right) & =0 \\
\psi_{2}\left(x_{1}, x_{2}\right) & =0 \\
\psi_{3}\left(x_{1}, x_{2}, x_{3}\right) & =0 \\
\delta_{1}(x) & =x_{1} \theta_{1} \\
\delta_{2}(x) & =x_{2}^{2} x_{1} \theta_{2} \\
\delta_{3}(x) & =x_{1} x_{2} \theta_{3} \tag{3.8}
\end{align*}
$$

where θ_{1}, θ_{2}, and θ_{3} are unknown parameters that satisfy

$$
\left|\theta_{1}\right| \leq a, \quad\left|\theta_{2}\right| \leq b, \quad\left|\theta_{3}\right| \leq c
$$

for some known bounds a, b, and c.
The function δ_{1} satisfies the inequality $\left|\delta_{1}\right| \leq a\left|x_{1}\right|$ globally. The function δ_{2} satisfies the inequality $\left|\delta_{2}\right| \leq b x_{2}^{2}\left|x_{1}\right|$ globally. The function δ_{3} satisfies the inequality $\left|\delta_{3}\right| \leq c\left|x_{1}\right|\left|x_{2}\right|$ globally.

Starting with the equation

$$
\dot{x}_{1}=x_{2}+\theta_{1} x_{1}
$$

we take $V_{1}\left(x_{1}\right)=\frac{1}{2} x_{1}^{2}$ to obtain

$$
\dot{V}_{1}=x_{1} x_{2}+\theta_{1} x_{1}^{2}
$$

If x_{2} were the control, a controller for the first equation of (3.7) would be given by

$$
\begin{equation*}
x_{2}=\alpha_{1}=-\left(b_{1}+a\right) x_{1} \tag{3.9}
\end{equation*}
$$

We can rewrite \dot{V}_{1} as follows

$$
\begin{align*}
\dot{V}_{1} & =-\left(b_{1}+a\right) x_{1}^{2}+\theta_{1} x_{1}^{2} \\
& \leq-\left(b_{1}+a\right) x_{1}^{2}+a x_{1}^{2} \\
& \leq-b_{1} x_{1}^{2} \tag{3.10}
\end{align*}
$$

Set the new error variable $\hat{x}_{2}=x_{2}-\alpha_{1}=x_{2}+\left(b_{1}+a\right) x_{1}$. Then, we have

$$
\begin{aligned}
\dot{\hat{x}_{2}} & =\dot{x}_{2}-\frac{\partial \alpha_{1}}{\partial x_{1}} \dot{x}_{1} \\
& =\dot{x}_{2}+\left(b_{1}+a\right) \dot{x}_{1} \\
& =x_{3}+x_{2}^{2} x_{1} \theta_{2}+\left(b_{1}+a\right)\left(x_{2}+x_{1} \theta_{1}\right) \\
& =x_{3}+\left(\hat{x}_{2}+\alpha_{1}\right)^{2} x_{1} \theta_{2}+\left(b_{1}+a\right)\left(\hat{x}_{2}+\alpha_{1}+x_{1} \theta_{1}\right) \\
& =x_{3}+\left(b_{1}+a\right)\left(\hat{x}_{2}+\alpha_{1}\right)+\hat{\delta}_{2}\left(x_{1}, \hat{x}_{2}\right)
\end{aligned}
$$

where $\hat{\delta}_{2}\left(x_{1}, \hat{x}_{2}\right)=\left(\hat{x}_{2}+\alpha_{1}\right)^{2} x_{1} \theta_{2}+\left(b_{1}+a\right) x_{1} \theta_{1}$

$$
\left|\hat{\delta}_{2}\left(x_{1}, \hat{x}_{2}\right)\right| \leq b\left(\hat{x}_{2}+\alpha_{1}\right)^{2}\left|x_{1}\right|+\left(b_{1}+a\right) a\left|x_{1}\right|
$$

We can choose the Lyapunov function V_{2}

$$
\begin{equation*}
V_{2}=V_{1}+\frac{1}{2} \hat{x}_{2}^{2} \tag{3.11}
\end{equation*}
$$

The derivative of the Lyapunov function is given by

$$
\begin{align*}
\dot{V}_{2} & =\dot{V}_{1}+\dot{\hat{x}}_{2} \hat{x}_{2} \\
& =x_{1}\left(\hat{x}_{2}+\alpha_{1}+\theta_{1} x_{1}\right)+\hat{x}_{2}\left(x_{3}+\left(b_{1}+a\right)\left(\hat{x}_{2}+\alpha_{1}\right)+\hat{\delta}_{2}\right) \\
& =x_{1}\left(\alpha_{1}+\theta_{1} x_{1}\right)+\hat{x}_{2}\left(x_{1}+x_{3}+\left(b_{1}+a\right)\left(\hat{x}_{2}+\alpha_{1}\right)\right)+\hat{x}_{2} \hat{\delta}_{2} \\
& \leq-b_{1} x_{1}^{2}+\hat{x}_{2}\left(x_{1}+x_{3}+\left(b_{1}+a\right)\left(\hat{x}_{2}+\alpha_{1}\right)\right) \\
& +\left|\hat{x}_{2}\right|\left(b\left(\hat{x}_{2}+\alpha_{1}\right)^{2}\left|x_{1}\right|+\left(b_{1}+a\right) a\left|x_{1}\right|\right) \\
& \leq-b_{1} x_{1}^{2}+\hat{x}_{2}\left(x_{1}+x_{3}+\left(b_{1}+a\right)\left(\hat{x}_{2}+\alpha_{1}\right)\right) \\
& +\left|\hat{x}_{2}\right|\left(b\left(\hat{x}_{2}+\alpha_{1}\right)^{2}+\left(b_{1}+a\right) a\right)\left|x_{1}\right| \\
& \leq-b_{1} x_{1}^{2}+\hat{x}_{2}\left(x_{1}+x_{3}+\left(b_{1}+a\right)\left(\hat{x}_{2}+\alpha_{1}\right)\right) \\
& +\frac{1}{2} \hat{x}_{2}^{2}\left(b\left(\hat{x}_{2}+\alpha_{1}\right)^{2}+\left(b_{1}+a\right) a\right)^{2}+\frac{1}{2} x_{1}^{2} \tag{3.12}
\end{align*}
$$

We now consider x_{3} as the control variable for the second equation of (3.7). We can design the smooth function α_{2} as follows

$$
x_{3}=\alpha_{2}=-b_{2} \hat{x}_{2}-x_{1}-\left(b_{1}+a\right)\left(\hat{x}_{2}+\alpha_{1}\right)
$$

$$
\begin{equation*}
-\frac{1}{2} \hat{x}_{2}\left(b\left(\hat{x}_{2}+\alpha_{1}\right)^{2}+\left(b_{1}+a\right) a\right)^{2} \tag{3.13}
\end{equation*}
$$

Applying (3.13) in (3.12), we can rewrite \dot{V}_{2} as follows

$$
\begin{equation*}
\dot{V}_{2} \leq\left(-b_{1}+\frac{1}{2}\right) x_{1}^{2}-b_{2} \hat{x}_{2}^{2} \tag{3.14}
\end{equation*}
$$

Set the new error variable $\hat{x}_{3}=x_{3}-\alpha_{2}$. Then, we have

$$
\dot{\hat{x}_{3}}=\dot{x}_{3}-\dot{\alpha_{2}}
$$

$\dot{\alpha_{1}}$ can be written as follows

$$
\dot{\alpha_{1}}=-\left(b_{1}+a\right) \dot{x}_{1}
$$

Replacing α_{1} by its equivalence from equation (3.9), $\dot{\hat{x}}_{2}$ can be written as follows

$$
\begin{equation*}
\dot{\hat{x}_{2}}=-\left(b_{1}+a\right)^{2} x_{1}+\left(b_{1}+a\right) \hat{x}_{2}+x_{3}+\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)^{2} x_{1} \theta_{2}+\left(b_{1}+a\right) x_{1} \theta_{1} \tag{3.15}
\end{equation*}
$$

$\dot{\alpha_{2}}$ can be written as follows

$$
\begin{aligned}
\dot{\alpha_{2}} & =\frac{\partial \alpha_{2}}{\partial x_{1}} \dot{x}_{1}+\frac{\partial \alpha_{2}}{\partial x_{2}} \dot{\hat{x}_{2}} \\
& =-b_{2} \dot{\underline{x}}_{2}-\dot{x}_{1}-\left(b_{1}+a\right) \dot{\dot{x}_{2}}-\left(b_{1}+a\right) \dot{\alpha}_{1} \\
& -\hat{x}_{2}\left(b\left(\hat{x}_{2}+\alpha_{1}\right)^{2}+\left(b_{1}+a\right) a\right)\left(2 b\left(\hat{x}_{2}+\alpha_{1}\right)\left(\dot{\hat{x}_{2}}+\dot{\alpha}_{1}\right)\right) \\
& -\frac{1}{2} \dot{\hat{x}}_{2}\left(b\left(\hat{x}_{2}+\alpha_{1}\right)^{2}+\left(b_{1}+a\right) a\right)^{2} \\
& =-b_{2} \dot{\hat{x}_{2}}-\dot{x}_{1}-\left(b_{1}+a\right) \dot{\hat{x}_{2}}+\left(b_{1}+a\right)^{2} \dot{x}_{1} \\
& -\hat{x}_{2}\left(b\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)^{2}+\left(b_{1}+a\right) a\right)\left(2 b\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)\left(\dot{\hat{x}_{2}}-\left(b_{1}+a\right) \dot{x}_{1}\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& -\frac{1}{2} \dot{\hat{x}}_{2}\left(b\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)^{2}+\left(b_{1}+a\right) a\right)^{2} \\
& =\dot{\hat{x}}_{2}\left(-b_{1}-a-b_{2}\right)-\dot{x}_{1}\left(\left(b_{1}+a\right)^{2}-1\right) \\
& -\hat{x}_{2}\left(b\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)^{2}+\left(b_{1}+a\right) a\right)\left(2 b\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)\left(\dot{\hat{x}}_{2}-\left(b_{1}+a\right) \dot{x}_{1}\right)\right) \\
& -\frac{1}{2} \dot{\hat{x}}_{2}\left(b\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)^{2}+\left(b_{1}+a\right) a\right)^{2} \tag{3.16}
\end{align*}
$$

From equation (3.16), we can rewrite $\dot{\hat{x}_{3}}$ as follows

$$
\begin{aligned}
\dot{\hat{x}_{3}} & =\dot{x}_{3}+b_{2} \dot{\hat{x}_{2}}+\dot{x}_{1}+\left(b_{1}+a\right) \dot{\hat{x}}_{2}-\left(b_{1}+a\right)^{2} \dot{x}_{1} \\
& +\hat{x}_{2}\left(b\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)^{2}+\left(b_{1}+a\right) a\right)\left(2 b\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)\left(\dot{\hat{x}_{2}}-\left(b_{1}+a\right) \dot{x}_{1}\right)\right. \\
& +\frac{1}{2} \dot{x}_{2}\left(b\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right)^{2}+\left(b_{1}+a\right) a\right)^{2}
\end{aligned}
$$

and from equation (3.15), $\dot{\hat{x}_{2}}$ can be written as follows

$$
\begin{equation*}
\dot{\hat{x}_{2}}=x_{3}+\left(\hat{x}_{2}+\alpha_{1}\right)^{2} x_{1} \theta_{2}+\left(b_{1}+a\right)\left(\hat{x}_{2}+\alpha_{1}+x_{1} \theta_{1}\right) \tag{3.17}
\end{equation*}
$$

To simplify the equation, the following variables are introduced

$$
\begin{aligned}
m & =\left(\hat{x}_{2}-\left(b_{1}+a\right) x_{1}\right) \\
k & =b m^{2}+\left(b_{1}+a\right) a \\
l & =b_{1}+a
\end{aligned}
$$

We can rewrite $\dot{\hat{x}_{2}}$ as follows

$$
\begin{equation*}
\dot{\hat{x}_{2}}=\hat{x}_{3}+\alpha_{2}+m^{2} x_{1} \theta_{2}+l\left(\hat{x}_{2}+\alpha_{1}+x_{1} \theta_{1}\right) \tag{3.18}
\end{equation*}
$$

We can rewrite $\dot{\hat{x}_{3}}$ as follows

$$
\begin{align*}
\dot{\hat{x}_{3}}= & u+x_{1} m \theta_{3}-\left(\hat{x}_{3}-b_{2} \hat{x}_{2}-x_{1}-\frac{1}{2} \hat{x}_{2} k^{2}+m^{2} x_{1} \theta_{2}+l x_{1} \theta_{1}\right) \\
& \left(-b_{1}-a-b_{2}\right)+\left(m+x_{1} \theta_{1}\right)\left(l^{2}-1\right)+2 \hat{x}_{2} k b m\left(\hat{x}_{3}-b_{2} \hat{x}_{2}\right. \\
- & \left.x_{1}-\frac{1}{2} \hat{x}_{2} k^{2}+m^{2} x_{1} \theta_{2}+l x_{1} \theta_{1}-l\left(m+x_{1} \theta_{1}\right)\right) \\
+ & \frac{1}{2} k^{2}\left(\hat{x}_{3}-b_{2} \hat{x}_{2}-x_{1}-\frac{1}{2} \hat{x}_{2} k^{2}+m^{2} x_{1} \theta_{2}+l x_{1} \theta_{1}\right) \\
= & u-\left(\hat{x}_{3}-b_{2} \hat{x}_{2}-x_{1}-\frac{1}{2} \hat{x}_{2} k^{2}\right)\left(-b_{1}-a-b_{2}\right) \\
+ & m\left(l^{2}-1\right)+2 \hat{x}_{2} k b m\left(\hat{x}_{3}-b_{2} \hat{x}_{2}-x_{1}-\frac{1}{2} \hat{x}_{2} k^{2}-l m\right) \\
+ & \frac{1}{2} k^{2}\left(\hat{x}_{3}-b_{2} \hat{x}_{2}-x_{1}-\frac{1}{2} \hat{x}_{2} k^{2}\right)+\hat{\delta}_{3} \tag{3.19}
\end{align*}
$$

where
$\hat{\delta}_{3}=\left(m \theta_{3}-\left(-b_{1}-a-b_{2}\right)\left(m^{2} \theta_{2}+l \theta_{1}\right)+\left(l^{2}-1\right) \theta_{1}+2 \hat{x}_{2} k b m^{3} \theta_{2}+\frac{1}{2} k^{2}\left(m^{2} \theta_{2}+l \theta_{1}\right)\right) x_{1}$

We can choose the Lyapunov function V_{3}

$$
\begin{equation*}
V_{3}=V_{2}+\frac{1}{2} \hat{x}_{3}^{2} \tag{3.21}
\end{equation*}
$$

The derivative of the Lyapunov function is given by

$$
\begin{align*}
\dot{V}_{3} & =\dot{V}_{2}+\dot{\hat{x}}_{3} \hat{x}_{3} \\
& \leq-\left(b_{1}-\frac{1}{2}\right) x_{1}^{2}-b_{2} \hat{x}_{2}^{2}+\hat{x}_{3}\left(\hat{x}_{2}+\dot{\hat{x}}_{3}\right) \tag{3.22}
\end{align*}
$$

The uncertain term in \dot{V}_{3} can be written as follows

$$
\begin{align*}
\hat{x}_{3} \hat{\delta}_{3} & =\hat{x}_{3}\left(m \theta_{3}-\left(-b_{1}-a-b_{2}\right)\left(m^{2} \theta_{2}+l \theta_{1}\right)+\left(l^{2}-1\right) \theta_{1}+2 \hat{x}_{2} k b m^{3} \theta_{2}\right. \\
& \left.+\frac{1}{2} k^{2}\left(m^{2} \theta_{2}+l \theta_{1}\right)\right) x_{1} \\
& \leq c\left|x_{1}\right|\left|m \| \hat{x}_{3}\right|+b\left(b_{1}+a+b_{2}\right) m^{2}\left|\hat{x}_{3}\right|\left|x_{1}\right| \\
& +\left(b_{1}+a+b_{2}\right) l a\left|\hat{x}_{3} \| x_{1}\right|+\left(l^{2}-1\right) a\left|\hat{x}_{3}\right|\left|x_{1}\right| \\
& +2 k b^{2} m^{2}\left|\hat{x}_{2}\|m\| \hat{x}_{3}\left\|x_{1}\left|+\frac{1}{2} k^{2} m^{2} b\right| \hat{x}_{3}\right\| x_{1}\right| \\
& +\frac{1}{2} k^{2} l a\left|\hat{x}_{3} \| x_{1}\right| \\
& \leq \frac{1}{8} x_{1}^{2}+2 c^{2} m^{2} \hat{x}_{3}^{2}+\frac{1}{8} x_{1}^{2}+2 b^{2}\left(b_{1}+a+b_{2}\right)^{2} m^{4} \hat{x}_{3}^{2} \\
& +\frac{1}{8} x_{1}^{2}+2\left(\left(b_{1}+a+b_{2}\right) l a+\left(l^{2}-1\right) a\right)^{2} \hat{x}_{3}^{2} \\
& +\frac{1}{2} \hat{x}_{2}^{2}+2 k^{2} b^{4} m^{4} m^{2} \hat{x}_{3}^{2} x_{1}^{2}+\frac{1}{8} x_{1}^{2}+\frac{1}{2} k^{4} m^{4} b^{2} \hat{x}_{3}^{2} \\
& +\frac{1}{8} x_{1}^{2}+\frac{1}{2} k^{4} l^{2} a^{2} \hat{x}_{3}^{2} \tag{3.23}
\end{align*}
$$

From equations (3.22), (3.23), and (3.19), we are in the position to design our actual feedback control u to stabilize the system.

$$
\begin{align*}
u & =-b_{3} \hat{x}_{3}-\hat{x}_{2}+\left(\hat{x}_{3}-b_{2} \hat{x}_{2}-x_{1}-\frac{1}{2} \hat{x}_{2} k^{2}\right)\left(-b_{1}-a-b_{2}\right)-m\left(l^{2}-1\right) \\
& -2 \hat{x}_{2} k b m\left(\hat{x}_{3}-b_{2} \hat{x}_{2}-x_{1}-\frac{1}{2} \hat{x}_{2} k^{2}-l m\right)-\frac{1}{2} k^{2}\left(\hat{x}_{3}-b_{2} \hat{x}_{2}-x_{1}-\frac{1}{2} \hat{x}_{2} k^{2}\right) \\
& -2 c^{2} m^{2} \hat{x}_{3}-2 b^{2}\left(b_{1}+a+b_{2}\right)^{2} m^{4} \hat{x}_{3}-2\left(\left(b_{1}+a+b_{2}\right) l a+\left(l^{2}-1\right) a\right)^{2} \hat{x}_{3} \\
& -2 k^{2} b^{4} m^{4} m^{2} \hat{x}_{3} x_{1}^{2}-\frac{1}{2} k^{4} m^{4} b^{2} \hat{x}_{3}-\frac{1}{2} k^{4} l^{2} a^{2} \hat{x}_{3} \tag{3.24}
\end{align*}
$$

The derivative of the Lyapunov function V_{3} is given by

$$
\begin{equation*}
\dot{V}_{3} \leq-\left(b_{1}-\frac{9}{8}\right) x_{1}^{2}-\left(b_{2}-\frac{1}{2}\right) \hat{x}_{2}^{2}-b_{3} \hat{x}_{3}^{2} \tag{3.25}
\end{equation*}
$$

which implies that the controller given by (3.24) will stabilize the system and as will be shown in the following figures.

Figures $3.1-3.16$ show the simulation results, which were carried out on Matlab. The control parameters are as follows $b_{1}=1.9, b_{2}=0.6$, and $b_{3}=1 . T=10 s$ with initial values $x_{1_{0}}=0.1, x_{2_{0}}=0.1$, and $x_{3_{0}}=0$. The upper bounds are chosen as follows $a=2, b=3$, and $c=4$.

Simulations were performed using different values of θ_{1}, θ_{2} and θ_{3} as follows:
First set: $\theta_{1}=1.5, \theta_{2}=2, \theta_{3}=3$. Results are shown in figures 3.1, 3.2, 3.3, and 3.4.

Second set: $\theta_{1}=0, \theta_{2}=0, \theta_{3}=0$. Results are shown in figures 3.5, 3.6, 3.7, and 3.8.

Third set: $\theta_{1}=-1, \theta_{2}=-1, \theta_{3}=-1$. Results are shown in figures 3.9, 3.10, 3.11 , and 3.12 .

Fourth set: $\theta_{1}=1, \theta_{2}=1, \theta_{3}=1$. Results are shown in figures 3.13, 3.14, 3.15, and 3.16.

The fourth set will be compared with the results of the adaptive backstepping control, as will be shown in the next chapter, where the value of θ is chosen equal to 1.

Figure 3.1: x_{1}-Nonlinear robust backstepping control $-\theta_{1}=1.5, \theta_{2}=2, \theta_{3}=3$

Figure 3.2: x_{2}-Nonlinear robust backstepping control $-\theta_{1}=1.5, \theta_{2}=2, \theta_{3}=3$

Robust backstepping control makes the closed loop states to converge to zero in the presence of bounded uncertainties. However, the control effort is very high. The simulation results are quite similar for the four cases, which prove that the robust controller is able to stabilize the system even if we change the values of θ_{1}, θ_{2} and θ_{3} as long as their absolute values are less than the upper bounds.

Figure 3.3: x_{3}-Nonlinear robust backstepping control $-\theta_{1}=1.5, \theta_{2}=2, \theta_{3}=3$

Figure 3.5: x_{1}-Nonlinear robust back-
stepping control - $\theta_{1}=0, \theta_{2}=0, \theta_{3}=0$

Figure 3.4: u-Nonlinear robust backstepping control $-\theta_{1}=1.5, \theta_{2}=2, \theta_{3}=3$

Figure 3.6: x_{2}-Nonlinear robust backstepping control - $\theta_{1}=0, \theta_{2}=0, \theta_{3}=0$

Figure 3.7: x_{3}-Nonlinear robust backstepping control - $\theta_{1}=0, \theta_{2}=0, \theta_{3}=\mathbf{0}$

Figure 3.9: x_{1}-Nonlinear robust backstepping control $-\theta_{1}=-1, \theta_{2}=-1, \theta_{3}=$ -1

Figure 3.8: u-Nonlinear robust backstepping control - $\theta_{1}=0, \theta_{2}=0, \theta_{3}=0$

Figure 3.10: $\quad x_{2}$-Nonlinear robust backstepping control $-\theta_{1}=-1, \theta_{2}=$ $-1, \theta_{3}=-1$

Figure 3.11: x_{3}-Nonlinear robust backstepping control $-\theta_{1}=-1, \theta_{2}=$ $-1, \theta_{3}=-1$

Figure 3.13: x_{1}-Nonlinear robust backstepping control - $\theta_{1}=1, \theta_{2}=$ $1, \theta_{3}=1$

Figure 3.12: u-Nonlinear robust backstepping control $-\theta_{1}=-1, \theta_{2}=-1, \theta_{3}=$ -1

Figure 3.14: x_{2}-Nonlinear robust backstepping control - $\theta_{1}=1, \theta_{2}=$ $1, \theta_{3}=1$

Figure 3.15: x_{3}-Nonlinear robust backstepping control - $\theta_{1}=1, \theta_{2}=$ $1, \theta_{3}=1$

Figure 3.16: u-Nonlinear robust back-
stepping control $-\theta_{1}=1, \theta_{2}=1, \theta_{3}=1$

Chapter 4

Adaptive Backstepping Control

Design

4.1 Theory

Adaptive backstepping is a nonlinear control design technique that has been developed in the last decade. This technique achieves the control of nonlinear systems with parametric uncertainties. These uncertainties consist of unknown constant parameters which appear linearly in the system equations. In this chapter, we will explain the backstepping method for designing an adaptive controller to stabilize the system in the presence of these uncertainties.

In previous chapters, for the robust backstepping control design and the nonlinear
backstepping control design, we used a static feedback control law to stabilize the closed loop system. In addition to the static feedback, the adaptive controller employs nonlinear dynamic feedback.

The underlying idea in the design of this dynamic part of feedback is parameter estimation. Then, the dynamic part of the controller is designed as a parameter update law with which the static part is continuously adapted to new parameter estimates, hence its name: adaptive control law [19].

The adaptive backstepping design employs more than one estimate per unknown parameter. This over parameterization makes the control law complicated and difficult to implement. The tuning functions are introduced to reduce the dynamic order of the adaptive controller to its minimum. The number of parameter estimates is equal to the number of unknown parameters. The benefit from this improvement in the design is not only for implementation, but also because it guarantees the strongest achievable stability and convergence properties.

In the tuning functions procedure, the parameter update law is designed recursively. At each consecutive step we design a tuning function as a potential update law. The controller uses these intermediate update laws to compensate for the effect of parameter estimation transients. Only the final tuning function is used as the parameter update law [19].

The design procedure for a third order system in the lower triangular form is
developed in this chapter.
Consider the following system

$$
\begin{align*}
\dot{x}_{1} & =x_{2}+\phi_{1}\left(x_{1}\right) \theta \\
\dot{x}_{2} & =x_{3}+\phi_{2}\left(x_{1}, x_{2}\right) \theta \\
\dot{x}_{3} & =u+\phi_{3}\left(x_{1}, x_{2}, x_{3}\right) \theta \tag{4.1}
\end{align*}
$$

where θ is the unknown constant parameter. $x_{1} \in R, x_{2} \in R, x_{3} \in R$ are state variables and $u \in R$ is the control input. $\phi_{1_{0}}=0, \phi_{2_{0}}=0$, and $\phi_{3_{0}}=0$.

We will start the design procedure by assuming that x_{2} is the virtual control of the first equation of (4.1). Recursively, we will augment the designed subsystem by one equation and design a stabilizing function α_{i} and a tuning function τ_{i}. The update law for the parameter estimate $\hat{\theta}$ and the adaptive feedback control u are designed at the final step.

Step 1: If x_{2} were the control, an adaptive controller for the first equation of (4.1) would be given by

$$
\begin{equation*}
x_{2}=\alpha_{1}\left(x_{1}, \hat{\theta}\right)=-c_{1} z_{1}-\phi_{1}\left(x_{1}\right) \hat{\theta} \tag{4.2}
\end{equation*}
$$

where $z_{1}=x_{1}$ and $\hat{\theta}$ is the estimation of the unknown parameter. Introducing the new error variable $z_{2}=x_{2}-\alpha_{1}$, the \dot{z}_{1}-equation becomes

$$
\begin{equation*}
\dot{z}_{1}=\alpha_{1}+z_{2}+\phi_{1}\left(x_{1}\right) \theta \tag{4.3}
\end{equation*}
$$

our task in this step is to stabilize (4.3) with respect to the Lyapunov function

$$
\begin{equation*}
V_{1}=\frac{1}{2} z_{1}^{2}+\frac{1}{2 \gamma} \tilde{\theta}^{2} \tag{4.4}
\end{equation*}
$$

where $\tilde{\theta}=\theta-\hat{\theta}$ is the parameter estimation error. The derivative of the Lyapunov function is

$$
\begin{align*}
\dot{V}_{1} & =z_{1}\left(\alpha_{1}+z_{2}+\phi_{1} \theta\right)-\frac{1}{\gamma} \tilde{\theta} \dot{\hat{\theta}} \\
& =z_{1}\left(\alpha_{1}+z_{2}+\phi_{1} \hat{\theta}\right)-\frac{1}{\gamma} \tilde{\theta}\left(\dot{\hat{\theta}}-\gamma \phi_{1} z_{1}\right) \tag{4.5}
\end{align*}
$$

We can eliminate $\tilde{\theta}$ from \dot{V}_{1} with the update law $\dot{\hat{\theta}}=\gamma \tau_{1}$ where

$$
\begin{equation*}
\tau_{1}\left(x_{1}\right)=\phi_{1}\left(x_{1}\right) z_{1} \tag{4.6}
\end{equation*}
$$

If x_{2} were our actual control, we would let $z_{2} \equiv 0$, that is, $x_{2} \equiv \alpha_{1}$. Then, $\dot{V}_{1}=-c_{1} z_{1}^{2}$. Since x_{2} is not our control, we have $z_{2} \not \equiv 0$, and we do not use $\dot{\hat{\theta}}=\gamma \tau_{1}$ as un update law. Instead, we retain τ_{1} as our first tuning function and tolerate the presence of $\tilde{\theta}$ in \dot{V}_{1} :

$$
\begin{equation*}
\dot{V}_{1}=-c_{1} z_{1}^{2}+z_{1} z_{2}+\tilde{\theta}\left(-\frac{1}{\gamma} \dot{\hat{\theta}}+\tau_{1}\right) \tag{4.7}
\end{equation*}
$$

The second term $z_{1} z_{2}$ in \dot{V}_{1} will be canceled at the next step.
Step 2: We now consider x_{3} as the control variable for the second equation of (4.1). Introducing the new error variable $z_{3}=x_{3}-\alpha_{2}$, the \dot{z}_{2}-equation becomes

$$
\begin{align*}
\dot{z}_{2} & =z_{3}+\alpha_{2}-\frac{\partial \alpha_{1}}{\partial x_{1}} \dot{x}_{1}-\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \dot{\hat{\theta}}+\phi_{2} \theta \\
& =z_{3}+\alpha_{2}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{2}-\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \dot{\hat{\theta}}-\frac{\partial \alpha_{1}}{\partial x_{1}} \phi_{1} \theta+\phi_{2} \theta \tag{4.8}
\end{align*}
$$

Our task in this step is to stabilize (4.3), (4.8) with respect to the Lyapunov function

$$
\begin{equation*}
V_{2}=V_{1}+\frac{1}{2} z_{2}^{2} \tag{4.9}
\end{equation*}
$$

The derivative of the Lyapunov function is

$$
\begin{align*}
\dot{V}_{2} & =-c_{1} z_{1}^{2}+z_{2}\left[z_{1}+z_{3}+\alpha_{2}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{2}-\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \dot{\hat{\theta}}-\frac{\partial \alpha_{1}}{\partial x_{1}} \phi_{1} \theta+\phi_{2} \theta\right]+\tilde{\theta}\left(-\frac{1}{\gamma} \dot{\hat{\theta}}+\tau_{1}\right) \\
& =-c_{1} z_{1}^{2}+z_{2}\left[z_{1}+z_{3}+\alpha_{2}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{2}-\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \dot{\hat{\theta}}-\frac{\partial \alpha_{1}}{\partial x_{1}} \phi_{1} \hat{\theta}+\phi_{2} \hat{\theta}\right] \\
& +\tilde{\theta}\left(-\frac{1}{\gamma} \dot{\hat{\theta}}+\tau_{1}+z_{2}\left(-\frac{\partial \alpha_{1}}{\partial x_{1}} \phi_{1}+\phi_{2}\right)\right) \tag{4.10}
\end{align*}
$$

We can eliminate $\bar{\theta}$ from \dot{V}_{2} with the update law $\dot{\hat{\theta}}=\gamma \tau_{2}$, where

$$
\begin{equation*}
\tau_{2}\left(x_{1}, x_{2}, \hat{\theta}\right)=\tau_{1}+z_{2}\left(-\frac{\partial \alpha_{1}}{\partial x_{1}} \phi_{1}+\phi_{2}\right) \tag{4.11}
\end{equation*}
$$

If x_{3} were our actual control, we would achieve $z_{3} \equiv 0$, that is, $x_{3} \equiv \alpha_{2}$. Then, to make $\dot{V}_{2}=-c_{1} z_{1}^{2}-c_{2} z_{2}^{2}$, we would design α_{2} as follows

$$
\begin{equation*}
\alpha_{2}\left(x_{1}, x_{2}, \hat{\theta}\right)=-z_{1}-c_{2} z_{2}+\frac{\partial \alpha_{1}}{\partial x_{1}} x_{2}+\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \gamma \tau_{2}+\frac{\partial \alpha_{1}}{\partial x_{1}} \phi_{1} \hat{\theta}-\phi_{2} \hat{\theta} \tag{4.12}
\end{equation*}
$$

Since x_{3} is not our control, we have $z_{3} \not \equiv 0$, and we do not use $\dot{\hat{\theta}}=\gamma \tau_{2}$ as un update law. Instead, we retain τ_{2} as our second tuning function so that the resulting \dot{V}_{2} is:

$$
\begin{equation*}
\dot{V}_{2}=-c_{1} z_{1}^{2}-c_{2} z_{2}^{2}+z_{2} z_{3}+z_{2} \frac{\partial \alpha_{1}}{\partial \hat{\theta}}\left(\gamma \tau_{2}-\dot{\hat{\theta}}\right)+\tilde{\theta}\left(\tau_{2}-\frac{1}{\gamma} \dot{\hat{\theta}}\right) \tag{4.13}
\end{equation*}
$$

The third term $z_{2} z_{3}$ in \dot{V}_{2} will be canceled at the next step.
Step 3:The derivative of z_{3} is now expressed as

$$
\begin{align*}
\dot{z}_{3} & =\dot{x}_{3}-\dot{\alpha}_{2}=u+\phi_{3} \theta-\frac{\partial \alpha_{2}}{\partial x_{1}} \dot{x}_{1}-\frac{\partial \alpha_{2}}{\partial x_{2}} \dot{x}_{2}-\frac{\partial \alpha_{2}}{\partial \hat{\theta}} \dot{\hat{\theta}} \\
& =u+\phi_{3} \theta-\frac{\partial \alpha_{2}}{\partial x_{1}} x_{2}-\frac{\partial \alpha_{2}}{\partial x_{1}} \phi_{1} \theta-\frac{\partial \alpha_{2}}{\partial x_{2}} x_{3}-\frac{\partial \alpha_{2}}{\partial x_{2}} \phi_{2} \theta-\frac{\partial \alpha_{2}}{\partial \hat{\theta}} \dot{\hat{\theta}} \tag{4.14}
\end{align*}
$$

We are finally in the position to design our actual update law $\dot{\hat{\theta}}=\gamma \tau_{3}$ and feedback control u to stabilize the system with respect to

$$
\begin{equation*}
V_{3}=V_{2}+\frac{1}{2} z_{3}^{2} \tag{4.15}
\end{equation*}
$$

The derivative of the Lyapunov function

$$
\begin{align*}
\dot{V}_{3} & =-c_{1} z_{1}^{2}-c_{2} z_{2}^{2}+z_{2} \frac{\partial \alpha_{1}}{\partial \hat{\theta}}\left(\gamma \tau_{2}-\dot{\hat{\theta}}\right) \\
& +z_{3}\left[z_{2}+u+\phi_{3} \theta-\frac{\partial \alpha_{2}}{\partial x_{1}} x_{2}-\frac{\partial \alpha_{2}}{\partial x_{1}} \phi_{1} \theta-\frac{\partial \alpha_{2}}{\partial x_{2}} x_{3}-\frac{\partial \alpha_{2}}{\partial x_{2}} \phi_{2} \theta-\frac{\partial \alpha_{2}}{\partial \hat{\theta}} \dot{\hat{\theta}}\right] \\
& +\tilde{\theta}\left(\tau_{2}-\frac{1}{\gamma} \hat{\theta}\right) \\
& =-c_{1} z_{1}^{2}-c_{2} z_{2}^{2}+z_{2} \frac{\partial \alpha_{1}}{\partial \hat{\theta}}\left(\gamma \tau_{2}-\dot{\hat{\theta}}\right) \\
& +z_{3}\left[z_{2}+u+\phi_{3} \hat{\theta}-\frac{\partial \alpha_{2}}{\partial x_{1}} x_{2}-\frac{\partial \alpha_{2}}{\partial x_{1}} \phi_{1} \hat{\theta}-\frac{\partial \alpha_{2}}{\partial x_{2}} x_{3}-\frac{\partial \alpha_{2}}{\partial x_{2}} \phi_{2} \hat{\theta}-\frac{\partial \alpha_{2}}{\partial \hat{\theta}} \dot{\hat{\theta}}\right] \\
& +\tilde{\theta}\left(\tau_{2}-\frac{1}{\gamma} \dot{\hat{\theta}}+z_{3}\left(\phi_{3}-\frac{\partial \alpha_{2}}{\partial x_{1}} \phi_{1}-\frac{\partial \alpha_{2}}{\partial x_{2}} \phi_{2}\right)\right) \tag{4.16}
\end{align*}
$$

we can eliminate $\tilde{\theta}$ from \dot{V}_{3} with the update law $\dot{\hat{\theta}}=\gamma \tau_{3}$, where τ_{3} is our tuning
function

$$
\begin{equation*}
\tau_{3}\left(x_{1}, x_{2}, x_{3}, \hat{\theta}\right)=\tau_{2}+z_{3}\left(\phi_{3}-\frac{\partial \alpha_{2}}{\partial x_{1}} \phi_{1}-\frac{\partial \alpha_{2}}{\partial x_{2}} \phi_{2}\right) \tag{4.17}
\end{equation*}
$$

We choose the control u as follows

$$
\begin{equation*}
u=-z_{2}-c_{3} z_{3}-\phi_{3} \hat{\theta}+\frac{\partial \alpha_{2}}{\partial x_{1}} x_{2}+\frac{\partial \alpha_{2}}{\partial x_{1}} \phi_{1} \hat{\theta}+\frac{\partial \alpha_{2}}{\partial x_{2}} x_{3}+\frac{\partial \alpha_{2}}{\partial x_{2}} \phi_{2} \hat{\theta}+\frac{\partial \alpha_{2}}{\partial \hat{\theta}} \gamma \tau_{3}+v_{3} \tag{4.18}
\end{equation*}
$$

where v_{3} is a correction term yet to be chosen. \dot{V}_{3} becomes

$$
\begin{equation*}
\dot{V}_{3}=-c_{1} z_{1}^{2}-c_{2} z_{2}^{2}-c_{3} z_{3}^{2}+z_{2} \frac{\partial \alpha_{1}}{\partial \hat{\theta}}\left(\gamma \tau_{2}-\dot{\hat{\theta}}\right)+z_{3} v_{3} \tag{4.19}
\end{equation*}
$$

Then, noting that

$$
\begin{equation*}
\dot{\hat{\theta}}-\gamma \tau_{2}=\gamma \tau_{3}-\gamma \tau_{2}=\gamma z_{3}\left(\phi_{3}-\frac{\partial \alpha_{2}}{\partial x_{1}} \phi_{1}-\frac{\partial \alpha_{2}}{\partial x_{2}} \phi_{2}\right) \tag{4.20}
\end{equation*}
$$

we can rewrite \dot{V}_{3} as

$$
\begin{equation*}
\dot{V}_{3}=-c_{1} z_{1}^{2}-c_{2} z_{2}^{2}-c_{3} z_{3}^{2}+z_{3}\left[v_{3}-z_{2} \frac{\partial \alpha_{1}}{\partial \hat{\theta}} \gamma\left(\phi_{3}-\frac{\partial \alpha_{2}}{\partial x_{1}} \phi_{1}-\frac{\partial \alpha_{2}}{\partial x_{2}} \phi_{2}\right)\right] \tag{4.21}
\end{equation*}
$$

Now the correction term v_{3} is chosen as

$$
\begin{equation*}
v_{3}=z_{2} \frac{\partial \alpha_{1}}{\partial \hat{\theta}} \gamma\left(\phi_{3}-\frac{\partial \alpha_{2}}{\partial x_{1}} \phi_{1}-\frac{\partial \alpha_{2}}{\partial x_{2}} \phi_{2}\right) \tag{4.22}
\end{equation*}
$$

Finally, \dot{V}_{3} can be written as

$$
\begin{equation*}
\dot{V}_{3}=-c_{1} z_{1}^{2}-c_{2} z_{2}^{2}-c_{3} z_{3}^{2} \tag{4.23}
\end{equation*}
$$

which means that, according to Lyapunov stability theorem, the controller u associated with the update law $\dot{\hat{\theta}}$ can stabilize the system.

4.2 Example

We will illustrate the design procedure explained in the previous section by the following example

$$
\begin{align*}
& \dot{x}_{1}=x_{2}+x_{1} \theta \\
& \dot{x}_{2}=x_{3}+x_{2}^{2} x_{1} \theta \\
& \dot{x}_{3}=u+x_{1} x_{2} \theta \tag{4.24}
\end{align*}
$$

Comparing (4.24) to (4.1):

$$
\begin{align*}
\phi_{1}\left(x_{1}\right) & =x_{1} \\
\phi_{2}\left(x_{1}, x_{2}\right) & =x_{2}^{2} x_{1} \\
\phi_{3}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2} \tag{4.25}
\end{align*}
$$

If x_{2} were the control, an adaptive controller for the first equation of (4.24) would be given by

$$
\begin{equation*}
x_{2}=\alpha_{1}=-c_{1} x_{1}-x_{1} \hat{\theta} \tag{4.26}
\end{equation*}
$$

The derivative of the Lyapunov function

$$
\begin{equation*}
V_{1}=\frac{1}{2} x_{1}^{2}+\frac{1}{2 \gamma} \tilde{\theta}^{2} \tag{4.27}
\end{equation*}
$$

is as follows

$$
\begin{align*}
\dot{V}_{1} & =x_{1}\left(x_{2}+x_{1} \theta\right)-\frac{1}{\gamma} \tilde{\theta} \dot{\hat{\theta}} \\
& =x_{1}\left(x_{2}+\alpha_{1}-\alpha_{1}+x_{1} \hat{\theta}+x_{1} \tilde{\theta}\right)-\frac{1}{\gamma} \tilde{\theta} \dot{\hat{\theta}} \\
& =-c_{1} x_{1}^{2}+\left(x_{2}-\alpha_{1}\right) x_{1}+\left(x_{1}^{2}-\frac{1}{\gamma} \hat{\theta}\right) \tilde{\theta} \tag{4.28}
\end{align*}
$$

The new error variable is $x_{2}-\alpha_{1}$. We can choose the Lyapunov function V_{2}

$$
\begin{equation*}
V_{2}=V_{1}+\frac{1}{2}\left(x_{2}-\alpha_{1}\right)^{2} \tag{4.29}
\end{equation*}
$$

The derivative of the Lyapunov function is given by

$$
\begin{align*}
\dot{V}_{2} & =\dot{V}_{1}+\left(x_{2}-\alpha_{1}\right)\left(\dot{x}_{2}-\dot{\alpha}_{1}\right) \\
& =-c_{1} x_{1}^{2}+\left(x_{2}-\alpha_{1}\right) x_{1}+\left(x_{1}^{2}-\frac{1}{\gamma} \dot{\hat{\theta}}\right) \tilde{\theta} \\
& +\left(x_{2}-\alpha_{1}\right)\left(x_{3}+x_{2}^{2} x_{1} \theta-\frac{\partial \alpha_{1}}{\partial x_{1}}\left(x_{2}+x_{1} \theta\right)-\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \dot{\hat{\theta}}\right) \\
& =-c_{1} x_{1}^{2}+\left(x_{2}-\alpha_{1}\right)\left[x_{1}+x_{3}+\left(x_{2}^{2} x_{1}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{1}\right) \hat{\theta}\right. \\
& \left.-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{2}+\left(x_{2}^{2} x_{1}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{1}\right) \tilde{\theta}\right]-\left(x_{2}-\alpha_{1}\right) \frac{\partial \alpha_{1}}{\partial \hat{\theta}} \dot{\hat{\theta}}+\left(x_{1}^{2}-\frac{1}{\gamma} \dot{\hat{\theta}} \tilde{\theta}\right. \tag{4.30}
\end{align*}
$$

We now consider x_{3} as the control variable for the second equation of (4.24). The virtual control

$$
\begin{equation*}
x_{3}=\alpha_{2}=-c_{2}\left(x_{2}-\alpha_{1}\right)-x_{1}-\left(x_{2}^{2} x_{1}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{1}\right) \hat{\theta}+\frac{\partial \alpha_{1}}{\partial x_{1}} x_{2}+\tau 1 \tag{4.31}
\end{equation*}
$$

can be found to make \dot{V}_{2} as

$$
\begin{align*}
\dot{V}_{2} & =-c_{1} x_{1}^{2}+\left(x_{2}-\alpha_{1}\right)\left[x_{1}+x_{3}+\alpha_{2}-\alpha_{2}+\left(x_{2}^{2} x_{1}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{1}\right) \hat{\theta}\right. \\
& \left.-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{2}\right]+\left[\left(x_{2}-\alpha_{1}\right)\left(x_{2}^{2} x_{1}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{1}\right)+x_{1}^{2}\right] \tilde{\theta}-\left(x_{2}-\alpha_{1}\right) \frac{\partial \alpha_{1}}{\partial \hat{\theta}}(\dot{\hat{\theta}}-\beta) \\
& -\frac{1}{\gamma} \tilde{\theta}(\dot{\hat{\theta}}-\beta)-\left(x_{2}-\alpha_{1}\right) \frac{\partial \alpha_{1}}{\partial \hat{\theta}} \beta-\frac{1}{\gamma} \tilde{\theta} \beta \\
& =-c_{1} x_{1}^{2}-c_{2}\left(x_{2}-\alpha_{1}\right)^{2}+\left(x_{2}-\alpha_{1}\right)\left(x_{3}-\alpha_{2}\right)-\left(x_{2}-\alpha_{1}\right) \frac{\partial \alpha_{1}}{\partial \hat{\theta}}(\dot{\hat{\theta}}-\beta) \\
& -\frac{1}{\gamma} \tilde{\theta}(\dot{\hat{\theta}}-\beta) \tag{4.32}
\end{align*}
$$

where $\beta=\gamma\left[\left(x_{2}-\alpha_{1}\right)\left(x_{2}^{2} x_{1}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{1}\right)+x_{1}^{2}\right]$ and $\tau_{1}=\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \beta=\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \gamma\left[\left(x_{2}-\alpha_{1}\right)\left(x_{2}^{2} x_{1}-\right.\right.$ $\left.\left.\frac{\partial \alpha_{1}}{\partial x_{1}} x_{1}\right)+x_{1}^{2}\right]$.

The new error variable is $x_{3}-\alpha_{2}$. We can choose the Lyapunov function V_{3}

$$
\begin{equation*}
V_{3}=V_{2}+\frac{1}{2}\left(x_{3}-\alpha_{2}\right)^{2} \tag{4.33}
\end{equation*}
$$

The derivative of the Lyapunov function is given by

$$
\begin{aligned}
\dot{V}_{3} & =\dot{V}_{2}+\left(x_{3}-\alpha_{2}\right)\left(\dot{x}_{3}-\dot{\alpha}_{2}\right) \\
& =\dot{V}_{2}+\left(x_{3}-\alpha_{2}\right)\left(\dot{x}_{3}-\frac{\partial \alpha_{2}}{\partial x_{1}} \dot{x}_{1}-\frac{\partial \alpha_{2}}{\partial x_{2}} \dot{x}_{2}-\frac{\partial \alpha_{2}}{\partial \hat{\theta}} \dot{\theta}-\frac{\partial \alpha_{2}}{\partial \alpha_{1}} \dot{\alpha}_{1}-\frac{\partial \alpha_{2}}{\partial \tau_{1}} \dot{\tau}_{1}\right) \\
& =-c_{1} x_{1}^{2}-c_{2}\left(x_{2}-\alpha_{1}\right)^{2}+\left(x_{2}-\alpha_{1}\right)\left(x_{3}-\alpha_{2}\right)-\left(x_{2}-\alpha_{1}\right) \frac{\partial \alpha_{1}}{\partial \hat{\theta}}(\dot{\hat{\theta}}-\beta) \\
& -\frac{1}{\gamma} \tilde{\theta}(\dot{\hat{\theta}}-\beta)+\left(x_{3}-\alpha_{2}\right)\left(u+x_{1} x_{2} \theta-\frac{\partial \alpha_{2}}{\partial x_{1}}\left(x_{2}+x_{1} \theta\right)-\frac{\partial \alpha_{2}}{\partial x_{2}}\left(x_{3}+x_{2}^{2} x_{1} \theta\right)\right. \\
& -\frac{\partial \alpha_{2}}{\partial \hat{\theta}} \dot{\hat{\theta}}-\frac{\partial \alpha_{2}}{\partial \alpha_{1}}\left(\frac{\partial \alpha_{1}}{\partial x_{1}}\left(x_{2}+x_{1} \theta\right)+\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \dot{\hat{\theta}}\right) \\
& -\frac{\partial \alpha_{2}}{\partial \tau_{1}}\left(\frac{\partial \tau_{1}}{\partial x_{1}}\left(x_{2}+x_{1} \theta\right)+\frac{\partial \tau_{1}}{\partial x_{2}}\left(x_{3}+x_{2}^{2} x_{1} \theta\right)+\frac{\partial \tau_{1}}{\partial \hat{\theta}} \dot{\hat{\theta}}\right. \\
& \left.\left.+\frac{\partial \tau_{1}}{\partial \alpha_{1}}\left(\frac{\partial \alpha_{1}}{\partial x_{1}}\left(x_{2}+x_{1} \theta\right)+\frac{\partial \alpha_{1}}{\partial \hat{\theta}} \dot{\hat{\theta}}\right)\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& =-c_{1} x_{1}^{2}-c_{2}\left(x_{2}-\alpha_{1}\right)^{2}-\left(x_{2}-\alpha_{1}\right) \frac{\partial \alpha_{1}}{\partial \hat{\theta}}(\dot{\hat{\theta}}-\beta)-\frac{1}{\gamma} \tilde{\theta}(\dot{\hat{\theta}}-\beta) \\
& +\left(x_{3}-\alpha_{2}\right)\left(x_{2}-\alpha_{1}+u-4 \frac{\partial \alpha_{2}}{\partial x_{1}} x_{2}-2 \frac{\partial \alpha_{2}}{\partial x_{2}} x_{3}\right. \\
& +\left(x_{1} x_{2}-4 \frac{\partial \alpha_{2}}{\partial x_{1}} x_{1}-2 \frac{\partial \alpha_{2}}{\partial x_{2}} x_{2}^{2} x_{1}\right) \hat{\theta}+\left(x_{1} x_{2}-4 \frac{\partial \alpha_{2}}{\partial x_{1}} x_{1}-2 \frac{\partial \alpha_{2}}{\partial x_{2}} x_{2}^{2} x_{1}\right) \tilde{\theta} \\
& \left.-4 \frac{\partial \alpha_{2}}{\partial \hat{\theta}} \dot{\hat{\theta}}\right) \tag{4.34}
\end{align*}
$$

We are finally in the position to design our actual update law $\dot{\hat{\theta}}$, second tuning function τ_{2} and feedback control u to stabilize the system.

$$
\begin{equation*}
u=-c_{3}\left(x_{3}-\alpha_{2}\right)-x_{2}+\alpha_{1}+4 \frac{\partial \alpha_{2}}{\partial x_{1}} x_{2}+2 \frac{\partial \alpha_{2}}{\partial x_{2}} x_{3}-\left(x_{1} x_{2}-4 \frac{\partial \alpha_{2}}{\partial x_{1}} x_{1}-2 \frac{\partial \alpha_{2}}{\partial x_{2}} x_{2}^{2} x_{1}\right) \hat{\theta}+\tau_{2} \tag{4.35}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\dot{V}_{3}=-c_{1} x_{1}^{2}-c_{2}\left(x_{2}-\alpha_{1}\right)^{2}-c_{3}\left(x_{3}-\alpha_{2}\right)^{2} \tag{4.38}
\end{equation*}
$$

The simulation results presented in figures 4.1-4.10, which were performed using Matlab, show the system response for adaptive backstepping control.

Figures 4.1, 4.2, 4.3, 4.4, and 4.5 represent the first set of simulations with $\theta=1$. The control parameters are $c_{1}=1.5, c_{2}=4, c_{3}=12$, and $\gamma=0.27 . T=10 s$ with initial values $x_{1_{0}}=0.1, x_{2_{0}}=0.1, x_{3_{0}}=0$, and $\hat{\theta}_{0}=0.1$.

The second set of simulations is achieved by choosing $\theta=2$ and the results are shown in figures 4.6, 4.7, 4.8, 4.9, and 4.10. Control parameters are changed to $c_{1}=6$,
$c_{2}=6, c_{3}=14$, and $\gamma=0.03$ to achieve stability with the same initial conditions used for the first set.

Figure 4.1: $\quad x_{1}$-Nonlinear adaptive backstepping control $-\theta=1$

Figure 4.2: $\quad x_{2}$-Nonlinear adaptive backstepping control $-\theta=1$

Comparing robust backstepping controller discussed in the last chapter with the adaptive backstepping controller, for the case where $\theta=1$, we conclude that the control effort for the robust controller is much higher than the adaptive controller.

The response of the robust controller is faster. However, the percentage overshoot and/or undershoot is much higher for x_{2} and x_{3} when the robust controller is applied to the system. Moreover, the control effort for the robust controller is much higher than the adaptive controller.

Figure 4.3: $\quad x_{3}$-Nonlinear adaptive backstepping control $-\theta=1$

Figure 4.5: u-Nonlinear adaptive backstepping control $-\theta=1$

Figure 4.4: $\hat{\theta}$-Nonlinear adaptive backstepping control $-\theta=1$

Figure 4.6: x_{1}-Nonlinear adaptive backstepping control $-\theta=2$

Figure 4.7: x_{2}-Nonlinear adaptive backstepping control $-\theta=2$

Figure 4.9: $\hat{\theta}$-Nonlinear adaptive backstepping control $-\theta=2$

Figure 4.8: x_{3}-Nonlinear adaptive backstepping control $-\theta=2$

Figure 4.10: $\quad u$-Nonlinear adaptive backstepping control $-\theta=2$

Part III

Application of Different
 Controllers on 2-DOF Planar

Manipulator

Chapter 5

System and Experimental Setup

5.1 Robotics Background

Robotics technology is likely to become the high technology field of the 21st century. Developments in fields such as microprocessors, vision, and artificial intelligence are used to fulfill the needs of a competitive worldwide manufacturing industry. Robotics technology is finding applications in many other fields as well, such as medicine, health care, space exploration, and transportation. Today, robots are used in many ways, from lawn mowing to auto manufacturing. Scientists see practical uses for robots in performing socially undesirable, hazardous or even "impossible" tasks such as trash collection, toxic waste clean-up, desert and space exploration, and more.

Robot manipulators are composed of links connected by joints. The joints of
the manipulator may be electrically, hydraulically, or pneumatically actuated. The number of joints determines the degrees of freedom (DOF) of the manipulator. The workspace of a manipulator is the total volume swept out by the end-effector as the manipulator executes all possible motions [21].

Figure 5.1: 2 DOF robot manipulator

Robots are usually equipped with internal position sensors (e.g. joint encoders) in order to measure the relative position of two neighboring links.

With increasing number of joints not only the mobility of the manipulator is enhanced, but also the mechanical and electrical problems become difficult to solve, and the development of a motion controller becomes a more complex and more expensive task.

For many simple handling tasks in robotics, 4 joints are already sufficient. For some specific welding and painting applications 5 joints are necessary, and for general-
purpose applications, a manipulator with 6 joints has to be chosen, which is the standard type of an industrial robot. A 6 joints robot offers solutions to a variety of advanced handling problems, because it provides 6 degrees of freedom in its workspace.

To apply different types of nonlinear controllers experimentally, a two-link planar manipulator system is used. The dynamics for the robot can be written as follows

$$
\begin{equation*}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+g(q)=\tau \tag{5.1}
\end{equation*}
$$

where q is the 2×1 vector of joint positions, τ is the 2×1 vector of applied torques, $M(q)$ is the 2×2 symmetric positive definite manipulator inertia matrix, $C(q, \dot{q}) \dot{q}$ is the 2×1 vector of centrifugal and Coriolis torques, and $g(q)$ is the 2×1 vector of gravitational torques. Gravitational torques can be eliminated from our model since it's a planar (horizontal) model [17][22].

Equation (5.1) can be written as follows

$$
\begin{equation*}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}=\tau \tag{5.2}
\end{equation*}
$$

The elements of the inertia matrix $M(q)$ are given by

$$
\begin{align*}
& M_{11}(q)=m_{1} l_{c 1}^{2}+m_{2}\left(l_{1}^{2}+l_{c 2}^{2}+2 l_{1} l_{c 2} \cos \left(q_{2}\right)\right)+I_{1}+I_{2} \\
& M_{12}(q)=m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right)+I_{2} \\
& M_{21}(q)=m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right)+I_{2} \\
& M_{22}(q)=m_{2} l_{c 2}^{2}+I_{2} \tag{5.3}
\end{align*}
$$

The elements of the centrifugal and Coriolis matrix $C(q, \dot{q})$ are given by

$$
\begin{align*}
& C_{11}(q, \dot{q})=-m_{2} l_{1} l_{c 2} \sin \left(q_{2}\right) \dot{q}_{2} \\
& C_{12}(q, \dot{q})=-m_{2} l_{1} l_{c 2} \sin \left(q_{2}\right)\left(\dot{q}_{1}+\dot{q}_{2}\right) \\
& C_{21}(q, \dot{q})=m_{2} l_{1} l_{c 2} \sin \left(q_{2}\right) \dot{q}_{1} \\
& C_{22}(q, \dot{q})=0 \tag{5.4}
\end{align*}
$$

The meaning of the symbols and their numerical values for the 2-DOF robot manipulator shown in figure 5.1 and used in the experiment are as follows $l_{1}:$ length of link $1=0.74 \mathrm{~m}$
$l_{2}:$ length of link $2=0.475 \mathrm{~m}$
$m_{1}:$ mass of link $1=5.106 \mathrm{~kg}$
$m_{2}:$ mass of link $2=1.1317 \mathrm{~kg}$
$l_{c_{1}}$: distance to the centre of gravity of the link $1=0.2293 \mathrm{~m}$
$l_{c_{2}}$: distance to the centre of gravity of the link $2=0.171 \mathrm{~m}$
$I_{1}:$ moment of inertia of link $1=0.2158 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$I_{2}:$ moment of inertia of link $2=0.0137 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

5.2 Experimental Setup

The experimental setup consists of three main parts.

5.2.1 Mechanical Assembly

The mechanical setup consists of two links made of aluminum connected through gear trains. The joints are actuated by DC motors, Pittman GM9434H187, via gear trains with the optical encoders providing motors position measurements. Each motor has a built-in gearbox with a transmission ratio of 1:5.9 and with a no load speed of 6151rpm. The mechanical assembly has a further gear ratio of 22:64 for the first link and $30: 86$ for the second link.

The voltage equation of the motor can be derived as follows

$$
\begin{align*}
v_{a} & =R_{a} i_{a}+L \frac{\partial i_{a}}{\partial t}+v \\
\tau_{m} & =k_{m} i_{a} \\
v & =k_{e} \dot{q}_{m} \tag{5.5}
\end{align*}
$$

where v_{a} is the armature voltage, R_{a} is the armature resistance, i_{a} is the armature current, L is the armature inductance, v is the back emf, τ_{m} is the motor torque, k_{m} is the torque constant, k_{e} is the back emf constant, \dot{q}_{m} is the angular velocity of the motor.

The gear ratio G causes an increase in the torque seen at the load and a reduction in the speed of the load.

$$
\begin{align*}
\tau & =G \tau_{m} \\
\dot{q} & =\frac{1}{G} q_{m} \tag{5.6}
\end{align*}
$$

The value of the gear ratio should reflect the gear ratio of the link and the motor gearbox transmission ratio. $G \geq 1$

Finally, neglecting the change in the motor current, the voltage equation of each motor link is measured by the following equation

$$
\begin{align*}
v_{1} & =R_{a} \frac{1}{G_{1}} \frac{1}{k_{m}} u_{1}+k_{e} G_{1} \dot{q}_{1} \\
v_{2} & =R_{a} \frac{1}{G_{2}} \frac{1}{k_{m}} u_{2}+k_{e} G_{2} \dot{q}_{2} \tag{5.7}
\end{align*}
$$

where G_{1} is the gear ratio for link $1, G_{2}$ is the gear ratio for link $2, v_{1}$ is the armature voltage for the motor of link $1, v_{2}$ is the armature voltage for the motor of link 2 , and

$$
\begin{gathered}
\tau=u=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
\dot{q}=\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]
\end{gathered}
$$

The values used in the simulation and the experiments for (5.7) are as follows
$R_{a}=2.96 \mathrm{ohms}$
$G_{1}=64 / 22 * 5.9$
$G_{2}=86 / 30 * 5.9$
$k_{m}=0.0365 N . m / A$
$k_{e}=0.0365 \mathrm{~V} / \mathrm{rad} / \mathrm{s}$

The motor is driven by the driver circuitry explained in the following section.

5.2.2 Circuitry

To better understand the controller circuit, we will explain briefly two main concepts, which are H -bridge and PWM signal.

H-Bridge Module

A microprocessor cannot drive a motor directly, since it cannot supply enough current. Instead, there must be some interface circuitry so that the motor power is supplied from another power source and only the control signals are provided by the microprocessor. This interface circuitry can be implemented by a circuit known as the H-bridge [23]. An H-bridge merely consists of 4 switches connected in topology of an H , where the motor terminals form the crossbar of the H . In an H -bridge, the switches are opened and closed in a manner so as to put a voltage of one polarity across the motor for current to flow through it in one direction or a voltage of the opposite polarity, causing current to flow through the motor in the opposite direction for reverse direction.

Pulse-Width-Modulation Control

In pulse-width-modulation (PWM) control [24] [25], the converter switches are turned on and off during a half-cycle and the output voltage is controlled by varying the width of the pulses. The gate signals are generated by comparing a triangular wave with
a dc signal. The PWM circuit requires a steadily running oscillator to operate. The main disadvantages of PWM circuits are the added complexity and the possibility of generating radio frequency interference (RFI). RFI may be minimized by locating the controller near the load, using short leads, and in some cases, using additional filtering on the power supply leads.

Controller Circuit Description

The driver board is divided into two main circuits. Each circuit deals with different types of input, analog and digital. The driver board consists of 4 chips: JWD-107-1, LMD18200, TL494, and MOC5007.

The LMD18200 is made by National Semiconductor. It is an H-bridge, which can supply up to 3 amps continuously at 55 volts. The motor and the LMD18200 are in series with an electromechanical relay. The relay must be enabled by the DAQ device. This prevents unwanted motor motion.

In this circuit, the LMD18200 is configured to accept a PWM signal. This type of signal encodes both direction and speed information. A PWM signal of 50% means motor off. A PWM signal less than 50% makes the motor rotate at ever increasing speed as the PWM signal approaches 0%. A PWM signal greater than 50% makes the motor rotate at ever increasing speed in the opposite direction as the PWM signal approaches 100%.

The circuit will also accept a 0 to +5 volt analog signal. The 3 -pin header to the immediate right of the relay selects whether the PWM signal comes from the DAQ or from the TL494. The DAQ - PWM line is optically isolated from the LMD18200 to prevent 12 volts from reaching DAQ 5 -volt logic devices.

For a given control input, the motor rotation can be reversed by configuring the 3 -pin header to the immediate left of the TL494.

5.2.3 Data Acquisition Module

Traditionally, measurements are done on stand-alone instruments of various typesoscilloscopes, multi meters, counters etc. However, the need to record the measurements and process the collected data for visualization has become increasingly important.

There are several ways in which the data can be exchanged between instruments and a computer. A popular way to measure signals and transfer the data into a computer is by using a data acquisition board. A typical commercial DAQ card contains analog to digital converter (ADC) and digital to analog converter (DAC) that allow input and output of analog and digital signals in addition to digital input/output channels.

The Data Acquisition (DAQ) board used for the experiment is DS1102 from dSpace. Controldesk (dspace) is used to interface between Matlab/Simulink and

DS1102. DS1102 is a single board system, specifically designed for development of high-speed digital controllers and real-time simulations. The DS1102 board is based on Texas Instruments TMS320C31 third generation floating-point digital signal processor, which builds the main processing unit

Chapter 6

PD Controller

6.1 Theory

Most of the present industrial robots are controlled through local PID controllers. The PID controller has been shown in practice to be effective for set-point control of robot manipulators. The PID controller structure consists of three components, the Proportional, Integral, and Derivative part.

Proportional control is the primary alternative to on-off control. If the difference between the output signal and its desired value is large, the software should change the drive signal a lot. If the error is small, it should change it only a little. If the proportional gain is well chosen, the time the system takes to reach a new set-point will be as short as possible, with overshoot (or undershoot) and oscillation minimized.

The control signal in a P controller is given by [26]:

$$
\begin{equation*}
u=u_{0}+k_{c} e \tag{6.1}
\end{equation*}
$$

where u_{0} is the level of the control signal when we have no control error, e is the error signal, and K_{c} is the proportional gain of the controller. K_{c} indicates the change in the control signal per unit change in the error signal.

Unfortunately, proportional control alone is not sufficient in all control applications. One or more of the requirements for response time, overshoot, and oscillation may be impossible to fulfill at any proportional gain setting. The biggest problem with proportional control alone is that you want to reach new desired outputs quickly and avoid overshoot and minimize ripple once you get there. Responding quickly suggests a high proportional gain; minimizing overshoot and oscillation suggests a small proportional gain. Achieving both at the same time may not be possible in all systems.

With derivative action, the controller output is proportional to the rate of change of the measurement or error. The controller output is calculated by the rate of change of the measurement with time. If the output is changing rapidly, overshoot or undershoot may lie ahead. In that case, we can reduce the size of the change suggested by the proportional controller.

In practice, proportional-derivative (PD) controllers work well. The net effect is a slower response time with far less overshoot and ripple than a proportional controller
alone. The derivative action may also result in difficulties if high frequency measurement noise is present. These difficulties are normally resolved using additional filtering techniques.

The control signal in a PD controller is given by [26]:

$$
\begin{equation*}
u=k_{c}\left(e+T_{d} \frac{d e}{d t}\right) \tag{6.2}
\end{equation*}
$$

where T_{d} is the derivative time of the controller.
With integral action, the controller output is proportional to the integration of the error over the time. Integral action eliminates offset.

The control law of the PID controller is [26]:

$$
\begin{equation*}
u=k_{c}\left(e+\frac{1}{T_{i}} \int e d t+T_{d} \frac{d e}{d t}\right), \tag{6.3}
\end{equation*}
$$

where T_{i} is the integral time of the controller.
Each of the three components of the PID controller has its own distinctive function to fulfill certain control objectives. In actual applications, different permutations of the P, I and D components may be used depending mainly on the process and the control requirements.

The PD control is able to vanish position error when used for set-point control of robot having zero gravitational torques into its dynamic model. The integral term has been suggested to eliminate the offset, which appears when robot dynamics having gravitational torques is under PD control. We will study in the following section the
application of PD control on the 2-DOF planar manipulator.

6.2 Control Design

In this section, we will show the application of PD controller on the 2-DOF robot manipulator. The main goal is to compare the simulation and the experimental results with other nonlinear controllers applications as will be shown in the following chapters.

The dynamical equation of the robot manipulator is given by

$$
\begin{equation*}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+g(q)=\tau \tag{6.4}
\end{equation*}
$$

The term $g(q)$ is eliminated due to the absence of the gravitational torques as the experimental setup is horizontal. The dynamical equation of the robot manipulator is now,

$$
\begin{equation*}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}=\tau \tag{6.5}
\end{equation*}
$$

An independent joint PD-control scheme can be written in vector form as

$$
\begin{equation*}
\tau=-K_{p} \tilde{q}-K_{v} \dot{\tilde{q}} \tag{6.6}
\end{equation*}
$$

where $\tilde{q}=q-q_{d}=e$ is the error between the desired joint displacements q_{d} and the actual joint displacements $q . \quad K_{p}$ and K_{v} are diagonal matrices of (positive) proportional and derivative gains, respectively. In the absence of gravity, the PD
control law achieves asymptotic tracking of the desired joint positions. To show that the above control law achieves zero steady error, consider the Lyapunov function candidate

$$
\begin{equation*}
V=\frac{1}{2} \tilde{q}^{T} K_{p} \tilde{q}+\frac{1}{2} \dot{q}^{T} M(q) \dot{q} \tag{6.7}
\end{equation*}
$$

V is a positive definite function. The time derivative of V is given by

$$
\begin{align*}
\dot{V} & =\frac{1}{2} \tilde{q}^{T} K_{p} \dot{q}+\frac{1}{2} \dot{q}^{T} K_{p} \tilde{q}+\frac{1}{2} \ddot{q}^{T} M \dot{q}+\frac{1}{2} \dot{q}^{T} M \ddot{q}+\frac{1}{2} \dot{q}^{T} \dot{M} \dot{q} \\
& =\dot{q}^{T} K_{p} \tilde{q}+\dot{q}^{T} M \ddot{q}+\frac{1}{2} \dot{q}^{T} \dot{M} \dot{q} \\
& =\dot{q}^{T} K_{p} \tilde{q}+\dot{q}^{T}(\tau-C \dot{q})+\frac{1}{2} \dot{q}^{T} \dot{M} \dot{q} \\
& =\dot{q}^{T} K_{p} \tilde{q}+\dot{q}^{T} \tau+\frac{1}{2} \dot{q}^{T}(\dot{M}-2 C) \dot{q} \\
& =\dot{q}^{T}\left(\tau+K_{p} \tilde{q}\right) \tag{6.8}
\end{align*}
$$

where the last equality results from the fact that, for any robot manipulator, the matrix $(\dot{M}(q)-2 C(q, \dot{q}))$ is skew symmetric. Substituting the PD control law for τ into the above yields

$$
\begin{align*}
\dot{V} & =\dot{q}^{T}\left(-K_{p} \tilde{q}-K_{v} \dot{\tilde{q}}+K_{p} \tilde{q}\right) \\
& =-\dot{q}^{T} K_{v} \dot{q} \tag{6.9}
\end{align*}
$$

which is negative definite.

It is possible that the manipulator can reach a position where $\dot{q}=0$ but $q \neq q_{d}$. To show that this cannot happen we can use LaSalle's theorem. Suppose $\dot{V} \equiv 0$. Then (6.9) implies that $\dot{q} \equiv 0$ and hence $\ddot{q} \equiv 0$ [21]. From (6.6) and (6.5)

$$
\begin{equation*}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}=-K_{p} \tilde{q}-K_{v} \dot{\tilde{q}} \tag{6.10}
\end{equation*}
$$

then

$$
\begin{equation*}
0=-K_{p} \tilde{q} \tag{6.11}
\end{equation*}
$$

which implies that $\tilde{q}=0$. LaSalle's Theorem then implies that the system is asymptotically stable. This means that $q \rightarrow q_{d}$ when $t \rightarrow \infty$ for any initial condition $q(0)$.

Figures $6.1,6.2,6.3,6.4,6.5,6.6,6.7$, and 6.8 are the simulation results when applying PD controller on the 2-DOF robot manipulator using Matlab with control parameters

$$
K_{p}=\left[\begin{array}{cc}
2 & 0 \\
0 & 1.5
\end{array}\right] \quad K_{v}=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

Time (t) is in sec and motors voltages for link $1 v_{1}$ and link $2 v_{2}$ are in Volts.

$$
q_{d}=\left[\begin{array}{l}
q_{d_{1}} \\
q_{d_{2}}
\end{array}\right]=\left[\begin{array}{l}
\pi / 2 \\
\pi / 2
\end{array}\right]
$$

Initial values are $q_{1_{0}}=0, q_{2_{0}}=0, \dot{q}_{1_{0}}=0$, and $\dot{q}_{2_{0}}=0$. For clearness, the figures for $q_{1}, q_{2}, \tilde{q}_{1}$, and \tilde{q}_{2} are shown in deg. \dot{q}_{1} and \dot{q}_{2} are in $\mathrm{deg} / \mathrm{sec}$.

Figure 6.1: q_{1} - Simulation result with
PD control

Figure 6.2: q_{2} - Simulation result with PD control

6.3 Experimental Results

The experimental results on the 2-DOF planar manipulator shown in figures 6.9, 6.10, $6.11,6.12,6.13,6.14,6.15$, and 6.16 were realized using Simulink/dSpace environment with a sampling period of 0.05 sec and with the same units, desired angles, and initial values used in the simulation part. To achieve the best results, the control parameters are chosen as follows

$$
K_{p}=\left[\begin{array}{cc}
2 & 0 \\
0 & 1.5
\end{array}\right] \quad K_{v}=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.3
\end{array}\right]
$$

The PD controller is able to stabilize the system, which means that $q \rightarrow q_{d}$ when $t \rightarrow \infty$. PD control was simulated and experimentally implemented on the robot to be compared with other nonlinear controllers as will be further discussed in the

Figure 6.3: \dot{q}_{1} - Simulation result with PD control

Figure 6.4: \dot{q}_{2}-Simulation result with PD control
conclusion.

Figure 6.5: e_{1} - Simulation result with PD control

Figure 6.7: v_{1} - Simulation result with PD control

Figure 6.6: e_{2} - Simulation result with PD control

Figure 6.8: v_{2} - Simulation result with PD control

Figure 6.9: q_{1} - Experimental result with PD control

Figure 6.11: \dot{q}_{1} - Experimental result with PD control

Figure 6.10: q_{2} - Experimental result with PD control

Figure 6.12: \dot{q}_{2} - Experimental result with PD control

Figure 6.13: e_{1} - Experimental result with PD control

Figure 6.15: v_{1} - Experimental result with PD control

Figure 6.14: e_{2} - Experimental result with PD control

Figure 6.16: v_{2}-Experimental result with PD control

Chapter 7

Nonlinear Controller

7.1 Control Design

In the previous chapter, PD controller was applied on the 2-DOF robot manipulator and a Lyapunov function was found to show the global asymptotic convergence of the closed loop system. This is considered the first technique for using Lyapunov's direct method for control design. The second technique is shown in this chapter, which requires hypothesizing a Lyapunov function candidate and then finding a control law to make this candidate a real Lyapunov function.

The controller designed by the second technique is simulated and implemented on the 2-DOF robot manipulator. Comparison among these controllers and also other controllers discussed in the next chapters will be made.

To start the design technique, let's consider the dynamical equation of the robot manipulator without the gravitational torques

$$
\begin{equation*}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}=\tau \tag{7.1}
\end{equation*}
$$

$\tilde{q}=q-q_{d}=e$ is the error between the desired joint displacements q_{d} and the actual joint displacements q. The goal is to design τ such that $q \rightarrow q_{d}$ as $t \rightarrow \infty . q_{d}$ is a constant vector.

Let's choose

$$
\begin{equation*}
V=\frac{1}{2} \dot{q}^{T} \dot{q}+\frac{1}{2} \tilde{q}^{T} K_{1} \tilde{q} \tag{7.2}
\end{equation*}
$$

K_{1} is chosen to be diagonal positive definite.

$$
\begin{align*}
\dot{V} & =\frac{1}{2} \ddot{q}^{T} \dot{q}+\frac{1}{2} \dot{q}^{T} \ddot{q}+\frac{1}{2} \tilde{q}^{T} K_{1} \dot{q}+\frac{1}{2} \dot{q}^{T} K_{1} \tilde{q} \\
& =\frac{1}{2} \dot{q}^{T} \ddot{q}+\frac{1}{2} \dot{q}^{T} \ddot{q}+\frac{1}{2} \dot{q}^{T} K_{1} \tilde{q}+\frac{1}{2} \dot{q}^{T} K_{1} \tilde{q} \\
& =\dot{q}^{T} \ddot{q}+\dot{q}^{T} K_{1} \tilde{q} \\
& =\dot{q}^{T}\left(M^{-1}(\tau-C \dot{q})+K_{1} \tilde{q}\right) \tag{7.3}
\end{align*}
$$

Let's choose τ

$$
\begin{equation*}
\tau=C \dot{q}-M K_{1} \tilde{q}-M K_{2} \dot{q} \tag{7.4}
\end{equation*}
$$

K_{2} is chosen to be diagonal positive definite. Finally, we obtain

$$
\begin{equation*}
\dot{V}=-\dot{q}^{T} K_{2} \dot{q} \tag{7.5}
\end{equation*}
$$

which is negative definite.
Using LaSalle's theorem, $\dot{V}=0 \Rightarrow \dot{q}=0 \Rightarrow \ddot{q}=0$, then

$$
\begin{equation*}
\tau=-M K_{1} \tilde{q} \tag{7.6}
\end{equation*}
$$

$M(q)$ is symmetric positive definite for any robot manipulator.

$$
\begin{aligned}
\tau & =0 \\
\Rightarrow \tilde{q} & =0
\end{aligned}
$$

This means that $q \rightarrow q_{d}$ when $t \rightarrow \infty$ for any initial condition $q(0)$.
By choosing the control parameters

$$
K_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & 2.5
\end{array}\right] \quad K_{2}=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

the simulation results in figures $7.1,7.2,7.3,7.4,7.5,7.6,7.7$, and 7.8 obtained by Matlab show the system response for the nonlinear stabilizing control based on Lyapunov's direct method.

Time (t) is in sec and motors voltages for link $1 v_{1}$ and link $2 v_{2}$ are in Volts. In order to compare the results with other controllers, same initial values and same desired angles are used. $q_{1_{0}}=0, q_{2_{0}}=0, \dot{q}_{1_{0}}=0, \dot{q}_{2_{0}}=0, q_{d_{1}}=\pi / 2$, and $q_{d_{2}}=\pi / 2$.

The figures for $q_{1}, q_{2}, \tilde{q}_{1}$, and \tilde{q}_{2} are shown in deg. \dot{q}_{1} and \dot{q}_{2} are in $\mathrm{deg} / \mathrm{sec}$.

Figure 7.1: q_{1} - Simulation result with nonlinear stabilizing control based on Lyapunov method

Figure 7.2: q_{2} - Simulation result with nonlinear stabilizing control based on Lyapunov method

7.2 Experimental Results

Simulink/dSpace environment with a sampling period of 0.05 sec was used to obtain the experimental results on the 2-DOF planar manipulator shown in figures 7.9, 7.10, $7.11,7.12,7.13,7.14,7.15$, and 7.16 . These figures show the system response for nonlinear stabilizing controller based on Lyapunov's direct method with the same units, desired angles, and initial values used in the simulation part.

The control parameters are chosen as follows

$$
K_{1}=\left[\begin{array}{cc}
2.2 & 0 \\
0 & 2.5
\end{array}\right] \quad K_{2}=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 4
\end{array}\right]
$$

We can conclude from the experimental and simulation results that both PD

Figure 7.3: \dot{q}_{1} - Simulation result with nonlinear stabilizing control based on Lyapunov method

Figure 7.4: \dot{q}_{2} - Simulation result with nonlinear stabilizing control based on Lyapunov method
controller and nonlinear controller based on Lyapunov's direct method can stabilize the system. There is no big difference between the figures of the two controllers for both simulations and experiments. Any small difference can result from the fact that different control parameters are used. However, v_{2} is higher when using PD control for both simulation and experimental results. Further comparison will be done after introducing the robust and adaptive backstepping control for the 2-DOF robot manipulator.

Figure 7.5: e_{1} - Simulation result with nonlinear stabilizing control based on Lyapunov method

Figure 7.7: v_{1} - Simulation result with nonlinear stabilizing control based on Lyapunov method

Figure 7.6: e_{2} - Simulation result with nonlinear stabilizing control based on Lyapunov method

Figure 7.8: v_{2} - Simulation result with nonlinear stabilizing control based on Lyapunov method

Figure 7.9: q_{1} - Experimental result with nonlinear stabilizing control based on Lyapunov method

Figure 7.11: \dot{q}_{1} - Experimental result with nonlinear stabilizing control based on Lyapunov method

Figure 7.10: q_{2} - Experimental result with nonlinear stabilizing control based on Lyapunov method

Figure 7.12: \dot{q}_{2} - Experimental result with nonlinear stabilizing control based on Lyapunov method

Figure 7.13: e_{1} - Experimental result with nonlinear stabilizing control based on Lyapunov method

Figure 7.15: v_{1} - Experimental result with nonlinear stabilizing control based on Lyapunov method

Figure 7.14: e_{2}-Experimental result with nonlinear stabilizing control based on Lyapunov method

Figure 7.16: v_{2} - Experimental result with nonlinear stabilizing control based on Lyapunov method

Chapter 8

Robust Controller

8.1 Control Design

In a previous chapter, robust backstepping control design technique was discussed with an example. In this chapter, the objective is to stabilize the 2-DOF planar manipulator using the robust backstepping technique in the presence of bounded uncertainties in the dynamical equation of the robot. Simulation and experimental results will be shown. Let's start with the dynamical equation of the robot

$$
\begin{equation*}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+D(\dot{q})=\tau \tag{8.1}
\end{equation*}
$$

$\tau=u$ is the control input. $D(\dot{q})$ is the dynamic friction term in the dynamical equation of the robot, which can be expressed as [17]

$$
\begin{gathered}
D(\dot{q})=\left[\begin{array}{l}
d_{1} \dot{q}_{1} \\
d_{2} \dot{q}_{2}
\end{array}\right]=\left[\begin{array}{ll}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right] \\
D_{1}=\left[\begin{array}{ll}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right]
\end{gathered}
$$

There exists a positive constant $k_{c_{1}}$ which satisfies the following inequality

$$
\begin{equation*}
\left\|D_{1} \dot{q}\right\| \leq k_{c_{1}}\|\dot{q}\| \tag{8.2}
\end{equation*}
$$

We can rewrite the dynamical equation of the robot as follows

$$
\begin{equation*}
\ddot{q}=M(q)^{-1}\left(\tau-C(q, \dot{q}) \dot{q}-D_{1} \dot{q}\right) \tag{8.3}
\end{equation*}
$$

$\tilde{q}=q-q_{d}=e$ is the error between the desired joint displacements q_{d} and the actual joint displacements q. Let $x_{1}=q_{1}-q_{d_{1}}=\tilde{q}_{1}=e_{1}$ and $x_{2}=q_{2}-q_{d_{2}}=\tilde{q}_{2}=e_{2}$. The vector A is introduced as

$$
A=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Let $\dot{q}_{1}=x_{3}$ and $\dot{q}_{2}=x_{4}$. The vector B is introduced as

$$
B=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]
$$

then

$$
\dot{A}=B=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]
$$

$$
\begin{align*}
\dot{B}=\left[\begin{array}{c}
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{l}
\ddot{q}_{1} \\
\ddot{q}_{2}
\end{array}\right] & =M^{-1}\left(u-C B-D_{1} B\right) \\
\dot{A} & =B \tag{8.4}
\end{align*}
$$

First step in the design is by choosing $V_{1}=\frac{1}{2} A^{T} A$ to obtain

$$
\begin{align*}
\dot{V}_{1} & =\frac{1}{2} \dot{A}^{T} A+\frac{1}{2} A^{T} \dot{A} \\
& =A^{T} B \tag{8.5}
\end{align*}
$$

If B were the control, a virtual controller α_{1} would be chosen such that

$$
\begin{equation*}
B=\alpha_{1}=-\lambda_{1} A \tag{8.6}
\end{equation*}
$$

\dot{V}_{1} can be written as follows

$$
\begin{equation*}
\dot{V}_{1}=A^{T}\left(B+\alpha_{1}-\alpha_{1}\right)=A^{T} \alpha_{1}+A^{T}\left(B-\alpha_{1}\right) \tag{8.7}
\end{equation*}
$$

Second step is by choosing V_{2}

$$
\begin{equation*}
V_{2}=V_{1}+\frac{1}{2}\left(B-\alpha_{1}\right)^{T} M\left(B-\alpha_{1}\right) \tag{8.8}
\end{equation*}
$$

to obtain the derivative of the Lyapunov function V_{2} as follows

$$
\begin{align*}
\dot{V}_{2} & =\dot{V}_{1}+\frac{1}{2}\left(B-\alpha_{1}\right)^{T} \dot{M}\left(B-\alpha_{1}\right)+\left(B-\alpha_{1}\right)^{T} M\left(\dot{B}-\dot{\alpha}_{1}\right) \\
& =-A^{T} \lambda_{1} A+A^{T}\left(B-\alpha_{1}\right)+\frac{1}{2}\left(B-\alpha_{1}\right)^{T} \dot{M}\left(B-\alpha_{1}\right) \\
& +\left(B-\alpha_{1}\right)^{T} M\left(\dot{B}-\frac{\partial \alpha_{1}}{\partial A} \dot{A}\right) \\
& =-A^{T} \lambda_{1} A+\left(B-\alpha_{1}\right)^{T}\left(A+M\left(\dot{B}-\frac{\partial \alpha_{1}}{\partial A} \dot{A}\right)+\frac{1}{2} \dot{M}\left(B-\alpha_{1}\right)\right) \tag{8.9}
\end{align*}
$$

The matrix $(\dot{M}(q)-2 C(q, \dot{q}))$ is skew symmetric. This implies $\dot{M}(q)=C(q, \dot{q})+$ $C^{T}(q, \dot{q})$ [22], then

$$
\begin{align*}
\dot{V}_{2} & =-A^{T} \lambda_{1} A+\left(B-\alpha_{1}\right)^{T}\left(A+M\left(M^{-1} u-M^{-1} C B-M^{-1} D_{1} B-\frac{\partial \alpha_{1}}{\partial A} B\right)\right. \\
& \left.+\frac{1}{2}\left(C+C^{T}\right)\left(B-\alpha_{1}\right)\right) \\
& =-A^{T} \lambda_{1} A+\left(B-\alpha_{1}\right)^{T}\left(A+u-\frac{1}{2} C B-D_{1} B-M \frac{\partial \alpha_{1}}{\partial A} B\right. \\
& \left.-\frac{1}{2}\left(C+C^{T}\right) \alpha_{1}+\frac{1}{2} C^{T} B\right) \tag{8.10}
\end{align*}
$$

From equation (8.2), \dot{V}_{2} can be written as follows

$$
\begin{align*}
\dot{V}_{2} & \leq-A^{T} \lambda_{1} A+\left(B-\alpha_{1}\right)^{T}\left(A+u-\frac{1}{2} C B-M \frac{\partial \alpha_{1}}{\partial A} B\right. \\
& \left.-\frac{1}{2}\left(C+C^{T}\right) \alpha_{1}+\frac{1}{2} C^{T} B\right) \\
& +\left\|\left(B-\alpha_{1}\right)^{T}\right\| k_{c_{1}}\|B\| \tag{8.11}
\end{align*}
$$

Let

$$
\begin{align*}
B & =B-\alpha_{1}+\alpha_{1} \\
\|B\| & \leq\left\|\left(B-\alpha_{1}\right)\right\|+\left\|\alpha_{1}\right\| \\
& \leq\left\|\left(B-\alpha_{1}\right)\right\|+\left\|\lambda_{1}\right\|\|A\| \tag{8.12}
\end{align*}
$$

We can rewrite \dot{V}_{2} as follows

$$
\begin{aligned}
\dot{V}_{2} & \leq-A^{T} \lambda_{1} A+\left(B-\alpha_{1}\right)^{T}\left(A+u-\frac{1}{2} C B-M \frac{\partial \alpha_{1}}{\partial A} B\right. \\
& \left.-\frac{1}{2}\left(C+C^{T}\right) \alpha_{1}+\frac{1}{2} C^{T} B\right)
\end{aligned}
$$

$$
\begin{align*}
& +\left\|\left(B-\alpha_{1}\right)\right\| k_{c_{1}}\left[\left\|\left(B-\alpha_{1}\right)\right\|+\left\|\lambda_{1}\right\|\|A\|\right] \\
& \leq-A^{T} \lambda_{1} A+\left(B-\alpha_{1}\right)^{T}\left(A+u-M \frac{\partial \alpha_{1}}{\partial A} B\right. \\
& \left.-\frac{1}{2}\left(C+C^{T}\right) \alpha_{1}+\frac{1}{2}\left(C^{T}-C\right) B\right) \\
& +\left\|\left(B-\alpha_{1}\right)\right\| k_{c_{1}}\left\|\left(B-\alpha_{1}\right)\right\| \\
& +\left\|\left(B-\alpha_{1}\right)\right\| k_{c_{1}}\left\|\lambda_{1}\right\|\|A\| \\
& \leq-A^{T} \lambda_{1} A+\left(B-\alpha_{1}\right)^{T}\left(A+u-M \frac{\partial \alpha_{1}}{\partial A} B\right. \\
& \left.-\frac{1}{2}\left(C+C^{T}\right) \alpha_{1}+\frac{1}{2}\left(C^{T}-C\right) B\right) \\
& +\left(B-\alpha_{1}\right)^{T} k_{c_{1}}\left(B-\alpha_{1}\right) \\
& +\frac{1}{2} k_{c_{1}}^{2}\left\|\lambda_{1}\right\|^{2}\left(B-\alpha_{1}\right)^{T}\left(B-\alpha_{1}\right)+\frac{1}{2} A^{T} A \\
& \leq-A^{T} \lambda_{1} A+\frac{1}{2} A^{T} A+\left(B-\alpha_{1}\right)^{T}\left(A+u-M \frac{\partial \alpha_{1}}{\partial A} B\right. \\
& -\frac{1}{2}\left(C+C^{T}\right) \alpha_{1}+\frac{1}{2}\left(C^{T}-C\right) B \\
& \left.+\left(B-\alpha_{1}\right) k_{c_{1}}\left(1+\frac{1}{2} k_{c_{1}}\left\|\lambda_{1}\right\|^{2}\right)\right) \tag{8.13}
\end{align*}
$$

We are in the position to design our actual feedback control u to stabilize the system.

$$
\begin{align*}
u & =-\lambda_{2}\left(B-\alpha_{1}\right)-A+M \frac{\partial \alpha_{1}}{\partial A} B \\
& +\frac{1}{2}\left(C+C^{T}\right) \alpha_{1}-\frac{1}{2}\left(C^{T}-C\right) B \\
& -\left(B-\alpha_{1}\right) k_{c_{1}}\left(1+\frac{1}{2} k_{c_{1}}\left\|\lambda_{1}\right\|^{2}\right) \tag{8.14}
\end{align*}
$$

The controller u can stabilize the system by causing \dot{V}_{2} to be negative

$$
\begin{equation*}
\dot{V}_{2} \leq-A^{T} \lambda_{1} A+\frac{1}{2} A^{T} A-\left(B-\alpha_{1}\right)^{T} \lambda_{2}\left(B-\alpha_{1}\right) \tag{8.15}
\end{equation*}
$$

The simulation results in figures $8.1,8.2,8.3,8.4,8.5,8.6,8.7$, and 8.8 , which were carried out on Matlab, show that the robust backstepping controller is able to stabilize the system in the presence of uncertainties.

Time (t) is in sec and motors voltages for link $1 v_{1}$ and link $2 v_{2}$ are in Volts.
Initial values and desired angles are chosen like the one used for other controllers. $q_{1_{0}}=0, q_{2_{0}}=0, \dot{q}_{1_{0}}=0, \dot{q}_{2_{0}}=0, q_{d_{1}}=\pi / 2$, and $q_{d_{2}}=\pi / 2$.

The figures show the results by choosing $k_{c_{1}}=0.05$. By changing the value of D_{1}, the robust controller can stabilize the system as long as equation (8.2) is satisfied.

Control parameters are chosen as follows

$$
\lambda_{1}=\left[\begin{array}{cc}
0.6 & 0 \\
0 & 0.9
\end{array}\right] \quad \lambda_{2}=\left[\begin{array}{cc}
2 & 0 \\
0 & 1.5
\end{array}\right]
$$

The figures for $q_{1}, q_{2}, \tilde{q}_{1}$, and \tilde{q}_{2} are shown in deg. \dot{q}_{1} and \dot{q}_{2} are in $\mathrm{deg} / \mathrm{sec}$.

8.2 Experimental Results

In the same environment (Simulink/dSpace) with the same sampling period (0.05sec) of the controllers discussed in the previous chapters, robust controller was implemented on the 2-DOF robot manipulator. Experimental results are shown in figures $8.9,8.10,8.11,8.12,8.13,8.14,8.15$, and 8.16.

The same initial values, units, and same desired angles of the simulation part are used for the experimental part. To achieve stability, control parameters for the

Figure 8.1: q_{1} - Simulation result with robust control experiment are:

$$
\lambda_{1}=\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.9
\end{array}\right] \quad \lambda_{2}=\left[\begin{array}{cc}
0.01 & 0 \\
0 & 0.2
\end{array}\right]
$$

$k_{c_{1}}=0.05$. The figures for $q_{1}, q_{2}, \tilde{q}_{1}$, and \tilde{q}_{2} are shown in deg. \dot{q}_{1} and \dot{q}_{2} are in deg/sec.

In practical system, modeling error is unavoidable. A control scheme is needed that guarantees robustness in the presence of the modeling error. Experimental works were carried out to evaluate the performance of the robust backstepping controller. The controller can stabilize the system in spite of the presence of model inaccuracy. This means that $q \rightarrow q_{d}$ when $t \rightarrow \infty$. Hence, the effectiveness of the proposed controller is verified. More comparison with other controllers will be discussed in the conclusion.

Figure 8.3: $\dot{q}_{1}-$ Simulation result with robust control

Figure 8.5: e_{1} - Simulation result with robust control

Figure 8.4: \dot{q}_{2} - Simulation result with robust control

Figure 8.6: e_{2} - Simulation result with robust control

Figure 8.7: v_{1} - Simulation result with robust control

Figure 8.9: q_{1} - Experimental result with robust control

Figure 8.8: v_{2} - Simulation result with robust control

Figure 8.10: q_{2} - Experimental result with robust control

Figure 8.11: \dot{q}_{1} - Experimental result with robust control

Figure 8.13: e_{1} - Experimental result with robust control

Figure 8.12: \dot{q}_{2} - Experimental result with robust control

Figure 8.14: e_{2} - Experimental result with robust control

Figure 8.15: v_{1} - Experimental result with robust control

Figure 8.16: v_{2} - Experimental result with robust control

Chapter 9

Adaptive Controller

9.1 Control Design

In this chapter, we will assume that the inertia for the robot is an unknown parameter. The objective of this chapter is to prove by simulations and experiments that the adaptive controller can stabilize the system in the presence of this unknown parameter using the backstepping technique. The dynamical equation of the robot is given by

$$
\begin{equation*}
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}=\tau \tag{9.1}
\end{equation*}
$$

$\tau=u$ is the control input. We can rewrite the dynamical equation of the robot as follows

$$
\begin{equation*}
\ddot{q}=M(q)^{-1}(\tau-C(q, \dot{q}) \dot{q}) \tag{9.2}
\end{equation*}
$$

The elements of the inertia matrix $M(q)$ are given by

$$
\begin{align*}
& M_{11}(q)=m_{1} l_{c 1}^{2}+m_{2}\left(l_{1}^{2}+l_{c 2}^{2}+2 l_{1} l_{c 2} \cos \left(q_{2}\right)\right)+I_{1}+I_{2} \\
& M_{12}(q)=m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right)+I_{2} \\
& M_{21}(q)=m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right)+I_{2} \\
& M_{22}(q)=m_{2} l_{c 2}^{2}+I_{2} \tag{9.3}
\end{align*}
$$

We will assume that the inertia of link $1, I_{1}$, and the inertia of link $2, I_{2}$, are the unknown parameters. The inertia matrix M can be written as follows

$$
\begin{aligned}
& M_{11}(q)=m_{1} l_{c 1}^{2}+m_{2}\left(l_{1}^{2}+l_{c 2}^{2}+2 l_{1} l_{c 2} \cos \left(q_{2}\right)\right)+\theta_{1}+\theta_{2} \\
& M_{12}(q)=m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right)+\theta_{2} \\
& M_{21}(q)=m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right)+\theta_{2} \\
& M_{22}(q)=m_{2} l_{c 2}^{2}+\theta_{2} \\
& M=\left[\begin{array}{cc}
m_{1} l_{c 1}^{2}+m_{2}\left(l_{1}^{2}+l_{c 2}^{2}+2 l_{1} l_{c 2} \cos \left(q_{2}\right)\right) & m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right) \\
m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right) & m_{2} l_{c 2}^{2}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \theta_{1}+\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \theta_{2}
\end{aligned}
$$

Let

$$
\begin{array}{cc}
M_{n}=\left[\begin{array}{cc}
m_{1} l_{c 1}^{2}+m_{2}\left(l_{1}^{2}+l_{c 2}^{2}+2 l_{1} l_{c 2} \cos \left(q_{2}\right)\right) & m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right) \\
m_{2}\left(l_{c 2}^{2}+l_{1} l_{c 2} \cos \left(q_{2}\right)\right) & m_{2} l_{c 2}^{2}
\end{array}\right] \\
M_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
\end{array}
$$

$$
M_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Let's introduce the change of variables $x_{1}=q_{1}-q_{d_{1}}=\tilde{q}_{1}=e_{1}$ and $x_{2}=q_{2}-q_{d_{2}}=$ $\tilde{q}_{2}=e_{2}$.

$$
A=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$\dot{q}_{1}=x_{3}$ and $\dot{q}_{2}=x_{4}$.

$$
\begin{gather*}
B=\left[\begin{array}{c}
x_{3} \\
x_{4}
\end{array}\right] \\
\dot{A}=B=\left[\begin{array}{c}
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] \\
\dot{B}=\left[\begin{array}{c}
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{c}
\ddot{q}_{1} \\
\ddot{q}_{2}
\end{array}\right]=M^{-1}(u-C B) \\
\dot{A}=B \tag{9.5}
\end{gather*}
$$

First step is to take $V_{1}=\frac{1}{2} A^{T} A$ to obtain

$$
\begin{align*}
\dot{V}_{1} & =\frac{1}{2} \dot{A}^{T} A+\frac{1}{2} A^{T} \dot{A} \\
& =A^{T} B \tag{9.6}
\end{align*}
$$

If B were the control, a virtual controller α_{1} would be chosen such that

$$
\begin{equation*}
B=\alpha_{1}=-\lambda_{1} A \tag{9.7}
\end{equation*}
$$

We can rewrite \dot{V}_{1} as follows

$$
\begin{equation*}
\dot{V}_{1}=A^{T}\left(B+\alpha_{1}-\alpha_{1}\right)=A^{T} \alpha_{1}+A^{T}\left(B-\alpha_{1}\right) \tag{9.8}
\end{equation*}
$$

Second step is to choose V_{2} as follows

$$
\begin{equation*}
V_{2}=V_{1}+\frac{1}{2}\left(B-\alpha_{1}\right)^{T} M\left(B-\alpha_{1}\right)+\frac{1}{2}(\theta-\hat{\theta})^{T} \Gamma(\theta-\hat{\theta}) \tag{9.9}
\end{equation*}
$$

where θ is the unknown constant parameter which appears in the system equations.

$$
\theta=\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]
$$

The parameter estimate is $\hat{\theta}$.

$$
\hat{\theta}=\left[\begin{array}{l}
\hat{\theta}_{1} \\
\hat{\theta}_{2}
\end{array}\right]
$$

The derivative of the Lyapunov function is as follows

$$
\begin{align*}
\dot{V}_{2} & =-A^{T} \lambda_{1} A+A^{T}\left(B-\alpha_{1}\right)+\frac{1}{2}\left(B-\alpha_{1}\right)^{T} \dot{M}\left(B-\alpha_{1}\right) \\
& +\left(B-\alpha_{1}\right)^{T} M\left(\dot{B}-\dot{\alpha}_{1}\right)+(\theta-\hat{\theta})^{T} \Gamma(-\dot{\hat{\theta}}) \\
& =-A^{T} \lambda_{1} A+\left(B-\alpha_{1}\right)^{T}\left(A+\frac{1}{2}\left(C+C^{T}\right)\left(B-\alpha_{1}\right)\right. \\
& \left.+u-C B-M \dot{\alpha_{1}}\right)+(\theta-\hat{\theta})^{T} \Gamma(-\dot{\hat{\theta}}) \tag{9.10}
\end{align*}
$$

Let

$$
\Gamma=\left[\begin{array}{cc}
\Gamma_{1} & 0 \\
0 & \Gamma_{2}
\end{array}\right]
$$

We can rewrite \dot{V}_{2} as follows

$$
\dot{V}_{2}=-A^{T} \lambda_{1} A+\left(B-\alpha_{1}\right)^{T}\left(A+\frac{1}{2}\left(C+C^{T}\right)\left(B-\alpha_{1}\right)+u-C B\right.
$$

$$
\begin{align*}
& \left.-M_{n} \dot{\alpha}_{1}-M_{1} \hat{\theta}_{1} \dot{\alpha}_{1}-M_{2} \hat{\theta}_{2} \dot{\alpha_{1}}-M_{1}\left(\theta_{1}-\hat{\theta}_{1}\right) \dot{\alpha_{1}}-M_{2}\left(\theta_{2}-\hat{\theta}_{2}\right) \dot{\alpha}_{1}\right) \\
& +\left(\theta_{1}-\hat{\theta}_{1}\right) \Gamma_{1}\left(-\dot{\hat{\theta}_{1}}\right)+\left(\theta_{2}-\hat{\theta}_{2}\right) \Gamma_{2}\left(-\dot{\hat{\theta}}_{2}\right) \tag{9.11}
\end{align*}
$$

We are finally in the position to design our actual update law $\dot{\hat{\theta}}$ and feedback control u to stabilize the system as follows

$$
\begin{gather*}
\dot{\hat{\theta}}_{1}=-\frac{1}{\Gamma_{1}}\left(B-\alpha_{1}\right)^{T} M_{1} \dot{\alpha_{1}} \\
\dot{\hat{\theta}}_{2}=-\frac{1}{\Gamma_{2}}\left(B-\alpha_{1}\right)^{T} M_{2} \dot{\alpha_{1}} \tag{9.12}\\
u=-\lambda_{2}\left(B-\alpha_{1}\right)-A-\frac{1}{2}\left(C+C^{T}\right)\left(B-\alpha_{1}\right)+C B \\
+M_{n} \dot{\alpha_{1}}+M_{1} \hat{\theta}_{1} \dot{\alpha_{1}}+M_{2} \hat{\theta}_{2} \dot{\alpha_{1}} \tag{9.13}
\end{gather*}
$$

such that

$$
\begin{equation*}
\dot{V}_{2}=-A^{T} \lambda_{1} A-\left(B-\alpha_{1}\right)^{T} \lambda_{2}\left(B-\alpha_{1}\right) \tag{9.14}
\end{equation*}
$$

We are then proving that the controller u and the update law $\dot{\hat{\theta}}$ can stabilize the system by making \dot{V}_{2} negative definite. This is proved by the simulation results shown in figures $9.1,9.2,9.3,9.4,9.5,9.6,9.7$, and 9.8 , which were performed on Matlab.

Time (t) is in sec and motors voltages for link $1 v_{1}$ and link $2 v_{2}$ are in Volts.
Initial values and desired angles are $q_{1_{0}}=0, q_{2_{0}}=0, \dot{q}_{1_{0}}=0, \dot{q}_{2_{0}}=0, q_{d_{1}}=\pi / 2$, and $q_{d_{2}}=\pi / 2$.

$$
\theta_{1}=I_{1}=0.2158 \text { and } \theta_{2}=I_{2}=0.0137
$$

Control parameters are chosen as follows

$$
\begin{gathered}
\lambda_{1}=\left[\begin{array}{cc}
0.05 & 0 \\
0 & 0.01
\end{array}\right] \quad \lambda_{2}=\left[\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right] \\
\Gamma=\left[\begin{array}{ll}
10 & 0 \\
0 & 55
\end{array}\right]
\end{gathered}
$$

The figures for $q_{1}, q_{2}, \tilde{q}_{1}$, and \tilde{q}_{2} are shown in deg. \dot{q}_{1} and \dot{q}_{2} are in $\mathrm{deg} / \mathrm{sec}$.

Figure 9.1: q_{1} - Simulation result with adaptive control

Figure 9.2: q_{2} - Simulation result with adaptive control

9.2 Experimental Results

Simulink/dSpace environment with a sampling period of 0.05 sec is used to obtain the experimental results on the 2-DOF planar manipulator shown in figures 9.11, 9.12, $9.13,9.14,9.15,9.16,9.17$, and 9.18.

Figure 9.3: $\dot{q}_{1}-$ Simulation result with adaptive control

Figure 9.4: \dot{q}_{2} - Simulation result with adaptive control

With the same initial values, units, and same desired angles of the simulation part, stability is reached by choosing the control parameters as follows:

$$
\begin{gathered}
\lambda_{1}=\left[\begin{array}{cc}
0.05 & 0 \\
0 & 0.01
\end{array}\right] \quad \lambda_{2}=\left[\begin{array}{cc}
0.1 & 0 \\
0 & 0.3
\end{array}\right] \\
\Gamma=\left[\begin{array}{cc}
10 & 0 \\
0 & 55
\end{array}\right]
\end{gathered}
$$

By assuming that the inertia is unknown, the adaptive backstepping control proved its ability to stabilize the system under this condition. Convergence of the estimated parameters to the real values is not guaranteed. However, simulations and experimental results show that the estimated parameters are bounded. A more general comparison will be discussed in the conclusion to compare the effectiveness of the four type of controllers tested on the 2-DOF robot manipulator.

Figure 9.5: e_{1} - Simulation result with adaptive control

Figure 9.7: v_{1} - Simulation result with adaptive control

Figure 9.6: e_{2}-Simulation result with adaptive control

Figure 9.8: v_{2}-Simulation result with adaptive control

Figure 9.9: $\hat{\theta}_{1}$ - Simulation result with adaptive control

Figure 9.11: q_{1} - Experimental result with adaptive control

Figure 9.10: $\hat{\theta}_{2}$ - Simulation result with adaptive control

Figure 9.12: q_{2} - Experimental result with adaptive control

Figure 9.13: \dot{q}_{1} - Experimental result with adaptive control

Figure 9.15: e_{1} - Experimental result with adaptive control

Figure 9.14: \dot{q}_{2} - Experimental result with adaptive control

Figure 9.16: e_{2} - Experimental result with adaptive control

Figure 9.17: v_{1} - Experimental result with adaptive control

Figure 9.19: $\hat{\theta}_{1}$ - Experimental result with adaptive control

Figure 9.18: v_{2} - Experimental result with adaptive control

Figure 9.20: $\hat{\theta}_{2}$ - Experimental result with adaptive control

Part IV

Conclusion

Chapter 10

Conclusion and future work

10.1 Conclusion

Comparing different controllers discussed in this thesis report leads us to the following conclusions:

- Adaptive backstepping controller and robust backstepping controller were effective when applied on a third order system. However, high overshoot is one of the disadvantages of nonlinear control techniques.
- When the system gets more complicated, adaptive backstepping controller and robust backstepping controller require powerful tools to be implemented experimentally because of the complexity of the control laws.
- Adaptive backstepping controller has shown very good performance when applied on a practical system (2 DOF robot manipulator). However, if the number of unknown parameters increases, then the controller will be more complicated and it will affect negatively the implementation of the controller experimentally.
- The effectiveness of the robust backstepping controller is verified. However, if the uncertainty model becomes more complicated, the controller may be difficult to implement.
- Better results can be achieved experimentally with smaller sampling periods than the one used $(0.05 \mathrm{sec})$. This couldn't be achieved because of the speed of the data acquisition board.
- The performance on the 2-DOF robot is quite similar for the four controllers. All control parameters were tuned by trial-and-error until the best result was achieved.
- The work done proves that adaptive and robust controllers are able to stabilize the system in spite of model uncertainties or unknown parameters, which are unavoidable problems in practical systems. Moreover, the results are quite similar to the PD controller, which is widely used to control the 2-DOF robot manipulator. Hence, the effectiveness of the proposed controllers is verified.

10.2 Future work

Experimental work was successful. However, we can achieve more accurate results with a better mechanical system. The figures showing the experimental results are the best readings after many trials. Repeating the experiment with the same parameters may sometimes give different results.

Consequently, our recommendation for future work is to update the mechanical system to accomplish the following:

- Obtain better experimental results for stabilizing controllers.
- Approach the tracking control problem.

Moreover, better data acquisition system and other programming languages (Clanguage) can be used to overcome some of the difficulties in the experimental work and to realize better performance.

Bibliography

[1] K.Ogata, Modern control engineering, Prentice-Hall, 1990.
[2] J.J.Slotine and W.Li, Applied nonlinear control, Prentice-Hall, 1991.
[3] M.J.Grimble, Robust industrial control optimal design approach for polynomial systems, Prentice-Hall, 1994.
[4] P.Kokotovic and M.Arcak, Constructive nonlinear control: a historical perspective, Automatica, Vol. 37, 2001, pp. 637-662.
[5] D.Nganga-Kouya, M.Saad, L.Lamarche, and C.Khairallah, Backstepping adaptive position control for robotic manipulators, Proceedings of the American Control Conference, Vol. 1, 2001, pp. 636-640.
[6] V.Manosa, F.Ikhouane, and J.Rodellar, Control of uncertain non-linear systems via adaptive backstepping, Journal of Sound and Vibration, Vol. 280, No. 3-5, 2005, pp. 657-680.
[7] R.A.Freeman and P.V.Kokotovic, Backstepping design of robust controllers for a class of nonlinear systems, IFAC Symposia Series, No. 7, 1993, pp. 431-436.
[8] S.T.Glad and O.Hakegard, Backstepping control of a rigid body, Proceedings of the IEEE Conference on Decision and Control, Vol. 4, 2002, pp. 3944-3945.
[9] C.Tsai, M.Cheng, and C.Chan, Adaptive backstepping position control for a linear DC brushless motor, IECON Proceedings, Vol. 1, IECON 2004-30th Annual Conference of IEEE Industrial Electronics Society, 2004, pp. 365-370.
[10] C.Huang, K.Chen, H.Lee, and L.Fu, Nonlinear adaptive backstepping motion control of linear induction motor, Proceedings of the American Control Conference, Vol. 4, 2002, pp. 3099-3104.
[11] G.Li, Guang and A.Khajepour, Application of backstepping technique to robust control of a hydraulically driven flexible arm, Proceedings of the Tenth International Congress on Sound and Vibration, 2003, pp. 4101-4108.
[12] H.Sira-Ramirez, Hebertt and O.Llanes-Santiago, Adaptive dynamical sliding mode control via backstepping, Proceedings of the IEEE Conference on Decision and Control, Vol. 2, 1993, pp. 1422-1427.
[13] H.K.Khalil, Nonlinear Systems, Prentice-Hall, 2002.
[14] C.M.Kwan and F.L.Lewis, Robust backstepping control of nonlinear systems using neural networks, IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans, Vol. 30, No. 6, 2000, pp. 753-766.
[15] M.Sharma and A.J.Calise, Adaptive backstepping control for a class of nonlinear systems via multilayered neural networks, Proceedings of the American Control Conference, Vol. 4, 2002, pp. 2683-2688.
[16] H.G.Sage, M.F.De Mathelin, and E.Ostertag, Robust control of robot manipulators: a survey, International Journal of Control, Vol. 72, No. 16, 1999, pp. 1498-1522.
[17] C.Ishii, T.Shen, and Z.Qu, Lyapunov recursive design of robust adaptive tracking control with L_{2}-gain performance for electrically-driven robot manipulators, International Journal of Control, Vol. 74, No. 8, 2001, pp. 811-828.
[18] D.Nganga-Kouya, M.Saad, and L.Lamarche, Backstepping passivity adaptive position control for robotic manipulators, Proceedings of the American Control Conference, Vol. 6, 2002, pp. 4607-4611.
[19] M.Krstic, I.Kanellakopoulos, and P.Kokotovic, Nonlinear and adaptive control design, Wiley, 1995.
[20] R.S.Sanchez-Pena and M.Sznaier, Robust systems theory and applications, Wiley, 1998.
[21] M.W.Spong and M.Vidyasagar, Robot dynamics and control, Wiley, 1989.
[22] R.Kelly, A tuning procedure for stable PID control of robot manipulators, Robotica, Vol. 13, 1995, pp. 141-148.
[23] N.Mohan, T.M.Undeland, and W.P.Robbins, Power electronics: converters, applications and design, Wiley, 1989.
[24] M.H.Rashid, Power electronics, circuits, devices, and applications, Prentice-Hall, 1993.
[25] R.E.Tarter, Solid-state power conversion handbook, Wiley, 1993.
[26] T.K.Kiong, W.Quing-Guo, and H.C.Chieh with T.J.Hagglund, Advances in PID control, Springer, 1999.

Appendix A

Block Diagrams

Figure A.1: Experimental Block Diagram

Figure A.2: PD Controller - Simulink Block

Figure A.3: Nonlinear Controller - Simulink Block

Figure A.4: Robust Controller - Simulink Block

Figure A.5: Adaptive Controller - Simulink Block

Appendix B

Cut Sheets - LMD18200, 55V H-bridge

Figure B.1: LMD18200, 55V H-bridge - Page1

Absolute Maximum Ratings (Note i)													
If Militrory/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.			Power Dissipation ($\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}$, Free Air) Junction Termperature, $\mathrm{T}_{\mathbf{J}(\text { max })}$ ESD Susceptibility (Note 4)			$3 W$							
			$150{ }^{\circ} \mathrm{C}$										
			1500 V										
Totai Supply Voitage (V_{s} Pin 6)		60 V				Storage Temperature, TSTS Lead Temperature $\{$ Soldering, 10 sec .)			O $+150^{\circ} \mathrm{C}$				
Voltage at Bootstrap Pins (Pins 1 and 11)		12 VVOUt +18 V				$300^{\circ} \mathrm{C}$							
Poak Output Current (200 ms)			6A	Operating Ratings (Nate 1)									
Continuous Output Current \{Note 2)		34	Junction Ternperature, T_{J}		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$								
Power Dissipation (Note 3)		25 W	V_{S} Supply Voltage			+12 V to +55 V							
Electrical Characteristics The foitowing specifications apply for $V_{S}-42 \mathrm{~V}$, unless otherwise specified. Boldface limits apply over the entire operating temperature range, $-40^{\circ} \mathrm{C} \leq T_{J} \leq+125^{\circ} \mathrm{C}$, all other linnits are for $T_{A}-T_{j}-25^{\circ} \mathrm{C}$. (Note 5)													
Symbol	Parameter		nditions	Typ	Limit	Units							
R ${ }_{\text {DSS }}$ (ON)	Switch ON Resistance	Output	ant - 3A (Note 6)	0.33	$0.4 / 0.6$	$\Omega(\max)$							
Roston)	Switch ON Resistance	Output	ent - ¢A (Note E)	0.33	0.4/0.6	Ω (max)							
$V_{\text {Clamp }}$	Clamp Diode Forward Drop	Clamp	nt - 3A (Note b)	1.2	1.5	V (max)							
V_{16}	Logic Low Input Voltage	Pins 3, 4, 5			$\begin{gathered} -0.1 \\ 0.8 \end{gathered}$	V (min) V (max)							
$\frac{I_{16}}{v_{1+}}$	Logic Low Input Cutrent	$V_{\text {IN }}--0.1 \mathrm{~V}$, Pins - 3.4 .5			-10	$\mu \mathrm{A}$ (max)							
	Logic High Input Voltage	Fins 3, 4, 5			$\begin{gathered} 2 \\ 12 \end{gathered}$	V (min) V (max)							
IH_{H}	Logic High Input Current	$V_{\text {IN }}-12 \mathrm{~V}$, Pins $-3,4,5$			10	μ^{\prime} (max)							
	Curremt Sense Outpur	IOUT - 7A (Note B)		377	325/300 $425 / 450$	μA (min) $\mu \mathrm{A}$ (max)							
	Current Sense Linearizy	t $4 \leq$ lout ≤ 3 (Note 7 \%		± 6	± 9	\%							
	Undervoltage Leckout	Outputs turn OFF			$\begin{array}{r} 9 \\ 11 \end{array}$	V (min) $V(\max)$							
TJw	Waming Flag Temperature	Pin $9 \leq 0.6 \mathrm{~V}, \mathrm{~h}_{\mathrm{L}}-2 \mathrm{~mA}$		145		${ }^{\circ} \mathrm{C}$							
$\mathrm{V}_{\mathrm{F}}(\mathrm{ON})$	Flag Output Saturation Voltage	$\mathrm{T}_{J}-T_{J W_{i}} \mathrm{I}_{\mathrm{L}}-2 \mathrm{~mA}$		0.15		\checkmark							
$\mathrm{I}_{\text {(}}$ (OFF)	Flag Output Leakage	$V_{F}-12 \mathrm{~V}$		0.2	10								
TISO	Shutdown Temperature	Outputs Turn off		170		${ }^{\circ} \mathrm{C}$							
Is	Quiescent Supply Current	All Legic Inputs Low		13	26	mA (max)							
toon	Output Turn-On Delay Time	Sourcing Outputs, bur -3 A Sinking Outputs, IOUT -3 A Sinking Outpuns, I IOUT - 3A		$\begin{aligned} & 300 \\ & 300 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$							
\%on	Output Tum-On Swithing Time	Bootstrap Capacitor - 10 nF Sourcing Outputs, bur - 3 A Sinking Outputs, lour - 3A		$\begin{gathered} 100 \\ 80 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$							
${ }^{\text {toit }}$	Ounput Turn-Ot Delay Times	Sourcing Cutputs, lout - 3A Sinking Outputs, lour - 3A		$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$							
Lots	Output Turn-Oth Switching Tirmes	Bootstrap Capacitor - 10 nF Sourcing Cutputs, but - 3A Sinking Outputs, lout - 3A		$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$							
${ }^{\text {pous }}$	Mirimum input Pulse Wiath	Plins 3, 4 and 5		1		$\mu \mathrm{s}$							
tcpr	Charge Purnp Rise Time	No Mootstrap Capacitor		20		$\mu \mathrm{s}$							

Figure B.2: LMD18200, 55V H-bridge - Page2

Figure B.3: LMD18200, 55V H-bridge - Page3

Figure B.4: LMD18200, 55V H-bridge - Page4

Figure B.5: LMD18200, 55V H-bridge - Page5

Figure B.6: LMD18200, 55V H-bridge - Page6

Figure B.7: LMD18200, 55V H-bridge - Page7

Figure B.8: LMD18200, 55V H-bridge - Page8

Figure B.9: LMD18200, 55V H-bridge - Page9

Figure B.10: LMD18200, 55V H-bridge - Page 10

Appendix C

Cut Sheets - TL494, PWM Control Circuit

- Complete PWN Powet Control Circutry
- Uncommitted Outputs for 200 mA Sink or Source Current
- Ouphit Control Selecks Single. Ended or Push Pull Operation
- Internal Gircuitry Prohibits Double Pulse at Fither Oufput
- Variable Dead Time Provides Control Over Total Range
- Internal Regulator Provides a Stable s.v Refer erice Supply With Sh, foterance
- Circuit Architecture Altows Easy Symchronization
descmption

Abstract

IA	PACHAREDOEVICES				
	$\begin{aligned} & \text { swal } \\ & \text { ourchate } \\ & \text { idi } \end{aligned}$	$\begin{aligned} & \text { DASTG: } \\ & \text { Din } \\ & \text { N: } \end{aligned}$	$\begin{gathered} \text { Sthat } \\ \text { OUTANE } \\ \text { NS: } \end{gathered}$		$\begin{aligned} & \text { Tha Silkink } \\ & \text { SHALL } \\ & \text { GOLLANE } \\ & \text {, } 2 \mathrm{~mol} \end{aligned}$
:	1	- 4	Catate	34	$\underline{\square}$
-	4	-2	-	--	

Th Texas INSTRUMENTS

Figure C.1: TL494, PWM Control Circuit - Page1

functional block diagram

Figure C.2: TL494, PWM Control Circuit - Page2

recommended operating conditions

Figure C.3: TL494, PWM Control Circuit - Page3

TL494
PULSE-WIOTH-MODULATION CONTROL CIRCUITS
 $I=10 \mathrm{kHz}$ funfess otherwise noted
reference section

oscillator section, $C r=0.01 \mathrm{~F}, \mathrm{Rr}_{\mathrm{r}}=12 \mathrm{k}$ (see Figure i)

error amplifier section (see figure 2)

PARADAETER	1est conmmons	TL494. TLAEA	UNT
		SIN TYot kax	
			3
<i1 40:	Craseray	'- -	-
Cu\% 5 ¢	aras		\%
	-raconom	\cdots	\because
	$\cdots 3$	\square	\%
\%18, - 57\%		\square	4
-		\cdots	\%
		:	\cdots
-480		\cdots	at

TEXAS

instruments

Figure C.4: TL494, PWM Control Circuit - Page4
electical characteristics over tecommended operating free-an temperature range, Vco $=15 \mathrm{~V}$ $t=10 \mathrm{kHz}$ (untess othervise noted)
output section

dead-time tontrol section (see Figure 1)

PARAMETER	TESTCOPDTSDNE	41\%	tiak	Unit
-	$\cdots \cdots$,	\%	
arar $6-18$	arstacab	\cdots		'

tolal device

switehng characteristics. $\mathrm{T}_{\mathrm{A}}=250$

PARATSETER	TESTSONCMTHONS		304 -Y0!	6AAX	Jnit
3, mim	\therefore T-7,		\cdots	\cdots	4
\%			\cdots	-	\%
\cdots	 $\because j$	\%	-	\therefore
4			$1 \cdot$		\square

Figure C.5: TL494, PWM Control Circuit - Page5

Figure C.6: TL494, PWM Control Circuit - Page6

PARAMETER MEASUREMENT INFORMATION

Figure 2 Amplifer Characteristics

Figure 4 Emitter Follower Configuration

INSTRUMENTS

Figure C.7: TL494, PWM Control Circuit - Page7

Figure C.8: TL494, PWM Control Circuit - Page8

Appendix D

Cut Sheets - Servo Systems Encoder

Hewlet Packard model
Incremantal Encoder Specifcations

PIN JUT
[1] GND
[2]
[3] Channel A
[4] +Vce
[5] Channel B

115 Main Road - R.O. Box 97- Montville, NJ 07045-0097 - (973) 335-1007 Toll Free: (800) 922-1103 Fax: (973) 335-1661 www.servosystems.com - c-mail: info@servosystems com

Figure D.1: Servo Systems Encoder

Appendix E

Cut Sheets - DC Motor

9XXX MOTOR SIZE DATA（ $25^{\circ} \mathrm{C}$ ）

PARAMETER	SYMEOL	UNITS	9×12	3x32	9×13	9×33	3x4	8×34
1 Motor Corslant	K_{M}	Oz．in ${ }^{\text {a }}$ W	1.16	1.62	4.94	2.86	2.05	3.01
2 Peak Torque 15 Saih	To	oz：\％	8.35	13.6	15.5	31.5	23.9	41.3
3 No Load Speed	St	rem	9251	7015	5592	5993	766 －	S151
4 Wotar Frimion Torque	TF		0.40	0.50	0.50	0.60	0.50	0.60
5 Viscous Damiping Factor	0	oz．inkrom	0.0086	0.0272	0.0113	0.0335	0.0125	0.0387
6 Ompirg Constan	Ko	oz－in＇krpen	100	1.98	2.78	5.23	3.14	6.88
7 Electrical Time Constant	T_{E}	ms	0.53	0.63	0.74	0.84	0.80	0.85
8 Werchanicel Time Constant	T_{M}	ms	22.8	74.4	14.7	929	18.1	9.25
9 Therrral Time Constant	$\mathrm{T}_{\text {TH }}$	\min	7.21	7.29	11.1	11.1	12.0	12.0
12 Thermal impediance	RTH	deg Cow	22.7	22.7	19.1	19.4	17.	17.1
（1）Maximum Winding Temperature	GMX	deg C max	155	155	155	155	755	155
12 Matoriraria	J_{M}	$2 z=15.85^{3}$	$2.2 \times 30-4$	2.7×10^{-4}	3.9×10^{4}	4.5×10^{4}	5.4×10^{-4}	5.9×10.4
13 Motor Weight	W_{M}	02	5.96	3.98	8.98	8.80	10.1	10.1
14 Mowor Lengin．S4xK．32xX	4	in may	4.829	1.828	2.203	2,203	2.403	2.403
15 Moror Lengin． 950% ．	L．	in max	8.779	1.779	2.154	2154	2.354	2354

9XX2 MOTOR WINDING DATA（ $25^{\circ} \mathrm{C}$ ）

			9×12				9×32			
PAFAMETEA	STMBOL	UNITS	WDG 41	WOG\＃2	WOG ${ }^{\text {W }}$	WOG \＃4	WDG \＃1	W＋0¢	NDG＊	W0Ge4
16 Voltage	E	\checkmark	6.00	120	19.1	24，0	120	19.1	24.0	303
17 Terqug Constant	${ }^{K}$ T	az－inia	0.93	1.85	2.95	3.72	2.20	3.50	4.40	5.5 .9
13 Back EmF Corstant	K_{E}	Vikrom	0.65	8.38	2.16	275	1.63	259	3.25	4.09
19 Terminat Resistance	${ }^{\text {AT }}$	Ohmes	0.75	2.63	6.45	10.2	193	4.70	7.38	11.6
20 Indugrance	1	mH	0.34	1.35	3.40	5.42	1.16	2.94	4.84	7.34
2：No Lozd Curient	Ia	A	0.51	0.26	0.16	0.13	0.32	0.20	0.18	0.13
22 Pear Current（Stail）	Ip	A	9.03	4.56	2.96	2.35	6．22	4.06	3.25	2.80

$9 \times \times 3$ MOTOR WINOING DATA（ $25^{\circ} \mathrm{C}$ ）

PAFAMETER			9×13				9र33			
	SYMBSL	Units	WOS	WOG：2	WOG \＃3	WDG $\ddagger 4$	WDO\＃	WOG×2	WOG	WDGem
23 voltage	E	\checkmark	6.00	12.0	79.1	24.0	120	19.1	26.0	30.3
24 Tordue Constant	KT	czoin／a	1.42	2.80	4.47	5.60	2.67	4.20	5.28	6.68
25 Eack EMP Constant	Kex	Vikrom	1.05	2.07	3.31	4.14	7 He	3.10	3．90	4.94
26 Termina Resistancy	日包家	onms	0.64	2.17	5.32	8.33	1.08	2.53	3.94	6.21
27 Inductance	L	mH	0.40	1.54	3.93	6.17	0.84	2.03	3.29	5.27
28 No Laat Currem	I	A	0.40	0.20	0.33	0.10	0.30	0.19	0.15	0.12
29 Peak Curent ；stang	Ip	A	9.38	5.54	3.59	2.88	11.1	7.55	6.09	4.30

9XX4 MOTOR WINDHNG DATA（ $25^{\circ} \mathrm{C}$ ）

PARAMETEA			9×14				9×34			
	SYMBOL	UNITS	WOG\＃1	WOG $\# 2$	WDG	WOQ 44	WDG \＃1	WDG \＃2	W0G 3	WDG：4
30 Voltage	E	\checkmark	12.0	19.	24.0	30.3	12.0	19.1	24.0	303
31 Targue Comatant	${ }_{K T}$	cromia	2.05	3.27	4.13	522	2.58	4.07	5.17	6.50
32 Back EMF Constant	K_{E}	V／ikrpm	1.53	242	3.05	3.86	1.31	3.04	3.82	4.81
33 Terminal fisistance	R_{T}	chms	1．10	2.58	406	6.40	0.83	1.99	2.86	4.62
34 inductance	L	mH	0.81	－ 2.04	3.25	5.19	0.63	1.56	2.51	3.37
35 Na Loac Curem	If	A	0.28	0.18	0.14	0.11	0.33	0.21	0.15	0.13
36. Peak Cuirent（stam）	I_{P}	A	109	7.38	5.97	4.73	14.5	10.1	8.17	6.55

Figure E．1：DC Motor－Page1
GM9XXX SPUR GEARMOTOR DATA ($25^{\circ} \mathrm{C}$)

HEDS 90X0 OPTICAL ENCODER DATA ($25^{\circ} \mathrm{C}$)

parametea	SYMBol	UNITS	Min.	Typ.	Max.
64 Encoder Resolution HEOS 91×0	N	CPR	96	500	512
65 Encoder turria, HEOS 31xo	${ }_{\text {J }}$	02-in- s^{2}	-	8.0×10.6	-
66 Encoder Weight. HEDSS S1x0	W_{E}	92	-	9.58	-
OT Encodar Lengm. HEOS 91×0	L 4	inmax			0.595

Figure E.2: DC Motor - Page2

