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Abstract

Three topics in nonlinear control are studied in this thesis:

Adaptive control is investigated for a class of nonlinearly parameterized systems by
backstepping. An adaptive controller is constructed for MIMO nonlinearly parameterized
systems with nested triangular form. The design procedure is developed based on the
adaptive backstepping design technique. The designed controller guarantees that the
corresponding closed-loop system is globally asymptotically stable for any unknown

parameters which enter the system nonlinearly.

Adaptive control problem is also investigated for MIMO nonlinear DAE systems with
unknown parameters appearing linearly in both differential and algebraic equations. The
DAE system is converted into an equivalent ODE system. An adaptive controller is
designed by the backstepping technique and the asymptotic stability of the system is
guaranteed.

A parallel robotic system is studied as a test-bed to illustrate the backstepping control
approach. For comparison, PD control is also designed and implemented on the parallel
robot. The given simulation and experimental results are satisfactory for both

backstepping and PD control approaches.

Key Words: backstepping, nonlinear control, adaptive control, differential-algebraic

equation (DAE) systems, parallel robot
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Chapter 1

Introduction

1.1 Background

In this thesis, several topics in nonlinear control are studied by the backstepping technique. The
adaptive control problems are investigated by backstepping for a class of ordinary differential
equation (ODE) systems and differential algebraic equation (DAE) systems in Chapter 2 and
Chapter 3 respectively. In Chapter 4, the controllers for set point controls are designed and
implemented on both backstepping and PD control schemes for a parallel robotic system. The
backstepping technique plays a key role in this thesis. First of all, we are going to give a brief

introduction to the backstepping design technique.

Great progress has been made in nonlinear control since a recursive design procedure, called
backstepping, was systematically developed by [10]. For details in this subject, see [14], [34],
[28] and references therein. The backstepping technique can be perfectly applied for a class of
nonlinear system, specifically, ”lower triangular” nonlinear systems. Let’s take a simple example

to illustrate the basic idea of backstepping. Consider the following 2-th order system

1 = x2+ ¢(z1) (1.1)

Tg = u+¢2($1,$2) (1.2)

where u is the control input, ¢;(z1), ¢2(x1, z2) are the functions of z; and zi, z3 respectively,
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which are as differentiable as needed and vanish at the origin. Our aim is to design the control
input u to stabilize the states 1,9 to the origin. The backstepping technique is a recursive
design procedure. In each step, a Lyapunov function candidate is constructed and by choosing
a controller ¢, the derivative of the Lyapunov function candidate is made negative definite.

Step 1: Consider the Lyapunov function candidate
1
Vi = 5(151)2
Differentiating Vi with respect to time yields
Vl = z1(z2 + ¢1)
By introducing a virtual controller
ai(zy) = —c1z1 — @1 (1)
with ¢; is a positive number,
Vi = —c1(z1)? + 21 (22 — 1)
Step 2: Consider the Lyapunov function candidate
1 2
V2=V1+§($2—011)
Differentiating V, with respect to time yields
. 2 8(11
Va=—ci(z1)* +x1(z2 — 1) + (22 — 1) |[u+ @5 — %7(932 + ¢1)
It is not difficult to see that the controller
Ooy

u=—cy(x2 — 1) — 21 —¢2+*8—£(352+¢1) (1.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



makes Vz

Vo = —c1(21)? — caf@2 — 01)?

negative definite, which implies the feedback controller u can stabilize the corresponding closed-
loop system (1.1), (1.2), (1.3).

By the developed backstepping technique, several topics are studied in the areas of nonlinear
control. The thesis is organized as follows:

Chapter 2 and 3 involve more theoretical research and Chapter 4 is the experimental part.
Backstepping is extended in the adaptive control from the linearly parameterized systems to the
nonlinearly parameterized systems with nested triangular structure in Chapter 2. The devel-
oped methodology based on backstepping can stabilize the multi-input multi-output (MIMO)
system with the unknown parameters entering the system nonlinearly.

In Chapter 3, the adaptive control problem is investigated based on the adaptive backstep-
ping for DAE systems with unknown parameters appearing linearly in both differential and
algebraic equations. We propose three algorithms to produce a set of new coordinates, in which
the original system is expressed in lower triangular form. An adaptive controller is designed
by the backstepping technique and the asymptotic stability of the system is guaranteed. As an
application example of DAE systems, a constrained manipulator with flexible joints is studied
to illustrate the proposed methodology.

In Chapter 4, we take a parallel robot as a test-bed for the nonlinear stabilizing controller
designed by backstepping. The experimental setup is introduced and the controller design

procedure is shown with the simulation and experimental results.

1.2 Literature Review

The methodology developed in [10] is for linearly parameterized system and in strict feedback
form. Up to now, most of the existing results obtained by the adaptive backstepping design
method are limited to the linearly parameterized systems with lower triangular form. [23]
studied the adaptive control of the multi-input multi-output (MIMO) nonlinear systems with
nested triangular structure, which is introduced in [25] for the first time. In [23], the strict

feedback condition is relaxed for MIMO nonlinear systems.
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On the other hand, by comparison with comprehensive reports on the development in the
area of adaptive control with linear parameterization, few papers are published for adaptive
control for nonlinearly parameterized systems. In [27] and [40], the problem of the global
adaptive control was solved for the nonlinearly parameterized systems with the bound of the
nonlinear parameters assumed a priori. Nonlinear terms considered as the functions of unknown
parameters are assumed either convex or concave in [12]. In [18], systematic design methods
of adaptive control for nonlinearly parameterized systems are presented without imposing any
extra conditions such as convex/concave condition or the upper bound on the unknown para-
meters. However, the results in [18] are limited in single-input single-output (SISO) systems.
The extension to the MIMO nonlinearly parameterized systems still remains open. Meanwhile,
the nonlinearly parameterized systems with nested triangular form model more general forms
of the real systems than the ones with strict triangular forms, which can be considered as a
particular case of the ones with nested triangular form. Therefore, it is natural and of practical
importance to investigate the problem of adaptive control for MIMO nonlinearly parameterized
systems with nested triangular forms, in which the conditions of strict feedback form and linear
parameterization are respectively relaxed to nested triangular form and nonlinear parameteri-
zation.

In Chapter 2, an adaptive controller is constructed for MIMO nonlinearly parameterized
systems with nested triangular form. Based on the recursive adaptive backstepping and inspired
by [23], a design procedure is developed for the construction of an adaptive controller. The
success of the design procedure is guaranteed by the assumption involved in the functions
which the unknown parameters enter nonlinearly. Two lemmas proposed in [18] are applied
to separate the unknown parameters linearly from the nonlinear parameterization. Instead of
estimating the vector of the original unknown parameters, a new scalar parameter is introduced
by the combination of the original unknown parameters and is estimated. The derived adaptive
controller guarantees that the global asymptotic stability of the closed-loop system with the
estimation of the scalar parameter. Finally, one numerical example is studied and the simulation

results are given to illustrate the design methodology proposed in this chapter.

Differential-Algebraic Equation (DAE) systems (also referred to as singular, descriptor,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



semistate, generalized systems etc.) arise naturally as dynamic models of electrical [32], me-

chanical [29] and chemical engineering [4] applications. It constitutes an important class of
systems of both theoretical interest and practical significance. In theoretical research on DAE
systems, most of the work focused on the issues related to solvability and numerical solutions
[2] [3]. There was also some work on the topics of feedback linearization [11], observer design
[42], disturbance decoupling [22], input-output decoupling [24], output tracking [13] [21], output
regulation [9], stabilization [26] [30], robust stabilization [20], over- and underdetermined non-
linear analysis[16]. In practical applications, it is known that mechanical systems with classical
holonomic and nonholonomic constraints {41] and robotic systems with kinematic constraints
[13] [31] are modeled naturally by DAE systems. DAE systems are also known as dynamic
models in power systems [8] and chemical processes [15].

In above mentioned theoretical research and practical applications, the parameters in the
DAE systems are normally assumed to be known or given. But generally, it is not the case
in practice. For example, for a constrained robotic system, the parameters such as inertia,
damping, stiffness and friction coeflicients in the dynamic equations are normally unknown or
difficult to measure. Therefore, it is necessary to investigate the adaptive control problem of
DAE systems with unknown parameters.

In Chapter 3, one methodology will be developed to design a stabilizing feedback controller
for the multi-input multi-output (MIMO) DAE systems with unknown parameters. Our aim
is to find a change of coordinates to transform the DAE systems into an equivalent ordinary
differential equation (ODE) systems with lower triangular structure. As a result, adaptive
backstepping is applied to design an adaptive controller for the resulting ODE system.

As an important application of DAFE systems, the issues of constrained manipulators have
been the focus of research recently [6] [37] [39]. Many robotic motions require contacts to be
made with the environment by the end-effector of the robot manipulator. On the other hand, the
flexibility of joint transmissions is significant in many applications and proper compensations are
required in order to achieve accurate regulation and fast motion tracking [36] [38]. This chapter
provides one approach to handle the constrained manipulator with flexible joints. Different from
the traditional PD control based on the property of skew symmetry [38] [39], our approach

does not require this property, but focuses on the dynamics of the system itself. For some
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constrained manipulators in which the property of skew symmetry is difficult to obtain, the
approach proposed in Chapter 3 can also handle this kind of constrained systems. Following
the approach proposed in this chapter, one adaptive controller is designed for a constrained
manipulator with flexible joints in Section 3.4. The simulation results show the effectiveness of

this approach.

Today, most of the robotic systems that are popular have the links connected sequentially
from a fixed base. Typically, all the joints of serial robots are actuated. For serial robots,
there is quite a few literature in the dynamics [35], [7] and control results (1], [33]. Different
from serial robots, parallel robots have the links connected in series as well as in parallel
combinations forming one or more closed-link loops and typically, not all the joints are actuated.
The actuators are placed closer to the base or on the base itself. This makes parallel robots
have lighter moving parts, which leads to greater efficiency and faster acceleration at the end-
effector. Parallel robots also offer greater payload handling capability for the same number of
actuators. Therefore, parallel robots are more suitable for fast assembly lines, flight simulators
and robotics machining, etc.

In Chapter 4, a parallel robotic manipulator will be studied as an example of the DAE
system. A nonlinear controller is designed by the backstepping technique for the parallel robot
based on the dynamical model derived in [5]. The designed controller will also be implemented
and both of the simulation and experiment results will be shown. For comparison, the simulation

and experimental results of the PD controller will be also provided.
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Chapter 2

Adaptive Control of MIMO
Nonlinearly Parameterized Systems

with Nested Triangular Structure

2.1 Introduction

The main content of this chapter is to construct an adaptive controller for MIMO nonlinearly
parameterized systems with nested triangular form. Based on the recursive adaptive backstep-
ping and inspired by [23], a design procedure is developed for the construction of an adaptive
controller. The success of the design procedure is guaranteed by the assumption involved in
the functions which the unknown parameters enter nonlinearly. Two lemmas proposed in [18]
are applied to separate the unknown parameters linearly from the nonlinear parameterization.
Instead of estimating the vector of the original unknown parameters, a new scalar parameter
is estimated, which is introduced by the combination of the original unknown parameters. The
derived adaptive controller guarantees that the global asymptotic stability of the closed-loop
system with the estimation of the scalar parameter. Finally, one numerical example is stud-

ied and the simulation results are given to illustrate the design methodology proposed in this

chapter.
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2.2 Problem Formulation

Consider a MIMO nonlinear system described by

i1 = z3 + 611 (21, 0) + Lo 2id’ (@', -, 77 a8, 6)

- fzk—a:k+1+¢ P xd, Tk 0+ T, 25 ... 75 23,0)
Gpy = U1 + 0 (T, 0) + Ty 2i¢ny (34,70 18, 0)
if =ab+ 7@, T2t 0) + Dk 2fef (@ - 70 a8, 6)

5 fEk _$k+1 +¢ (1' 171'2.1""’33;;’9)"’22—.%1 $f¢is(fla"'afs_l>mi0)
ah, =ui+¢n, @, TNTL0) + Xk 2idn (@ T 0, 6)
&7 = 2 + o7 (T, - -, T, 2T, 6)

o G =2+ oPm(EY, -, T 2P, 2, 6) (2.1)
= Um + ST, -, T T 6)

where T = (2%, - - - ,x;i)T and @ € R? is the vector of the unknown parameters, which enters

the involved functions nonlinearly.

The structure of (2.1) is called nested triangular form, which is introduced in [23]. Note
that the nested lower triangular form contains the lower triangular form as a particular case
because the former becomes the same as the latter when all the interconnections Y7, 1 75 ¢}’
vanish for 1 <7 <m and 1 < k <mn,;. In [23], Liu has studied the problem of adaptive control
of MIMO linearly parameterized system with nested triangular form, in which the unknown
parameters enter the functions linearly. In the following sections of this chapter, the case that

all the involved functions are nonlinear in # will be discussed. In order to construct Lyapunov

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



functions based on adaptive backstepping for (2.1) with nonlinear parameterization, we are
going to separate @ linearly from the involved functions. For this purpose, one assumption will
be introduced. Before that, two useful lemmas proposed in [18] will be given first.

Lemma 2.1 For any real-valued continuous function f(z,y), where z € R™, y € R™, there

are smooth scalar functions a(z) > 0, b(y) >0, c¢(z) > 1 and d(y) > 1, such that

[flz,9)] < alz)+by)
|f(z, )] < clz)d(y)

Lemma 2.2 For any positive integers m, n and real-valued function w(z,y) > 0,

m n _
[l [yl" < (@, y) o] 4 (m/n) |y[m+n

See [18] for the proofs of Lemma 2.1 and Lemma 2.2.
Assumption 2.3 Fori=1,---,m,s=4¢+1,--- mand k=1,---,n;,

oE@E, -, Tt al, .-+, 2k, 0) is smooth and ¢¥(0,0) = 0 (2.2)

. s—1 7p .
@, 7, 0) < (ZZ\I?! ¥ lwil) el (@)

p=1j=1

where bl and b are nonnegative continuous functions.

As for b¥ and b%%, with Lemma 2.1, there exist smooth functions v¥(z!, - - -, 71,28, -, 2%) >

L ydEt, -, 75 2f) > 1, c(6) > 1 and () > 1 satisfying

b%(_fl" ’Tz 1"’17’2‘.[""71"270) < 7?(517"'»—fi_1:$1i’"'az}c)c}cz(g)
zs(fla"'vfs_l’mivg) < 7'1‘;:5(‘7517"'7533 $1)C (9)
Since 6 is a constant, ¢i*(f) and ci*(f) are constants as well. Let © := SR, CO) +

S 1 oy SR €E(6) be a new unknown scalar constant. With the results in [19] and [17],

10
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Assumption 2.3 can be rewritten as

"p

¢§ci(-fl:' "’—ji_lvzii""zi’e)} = (gz lz‘g’
+

=1j=1

k
‘ —_ il .
m})’y}c’x,-u,mz L TY, e, Z%)0 (2.4)
=1

. s—-1 np .
ACRRIE AR ) R (ZZ 23]+ |rri|) Y@, 7)o (25)

p=1j=1

As presented in [18], the new parameter © € R is different from the original parameter § € RY.
Instead of estimating 8, we estimate the scalar parameter © > 1 in our algorithm. Up to now,
we separate the parameter © from the involved functions, which is positive and only appears lin-
early in the bounded functions 7% and . Taking advantage of the linear-like parameterization

condition, we construct an adaptive controller based on adaptive backstepping.

2.3 Main Results

In this section, main results about the adaptive controller design will be given and a constructive
proof will be provided.
Theorem 2.4 Considering the system (2.1), under Assumption 2.3, there exists a smooth

adaptive controller
{

6= (@, -, T, @))
Uy = a}” (Tl,(:))

(2.6)

such that the corresponding closed-loop system (2.1), (2.6) is globally asymptotically stable.
Proof: The proof is based on a recursive procedure. In each step, a Lyapunov function
candidate is constructed and by choosing a controller & and three tuning functions 7, A and @,

the derivative of the Lyapunov function candidate is made negative definite. For convenience,

11
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let & =zt —ab_; withad=0for 1 <i<m,1<j<n;

Step 1.1: Consider the Lyapunov function candidate

Vi= (@l + 50 - 6)

Differentiating V! with respect to time yields

Vi =zi(@} + o'+ 2ie) - (0-6) 8 27)
§=2
Then, by (2.4)
ool < (zh)?ite (28)
(2.7) takes the form
Vi <al(zh +21i'e) - (0~ 8) 6 +al 3 atel’ (29)
s=2

By introducing the virtual controller

ai(e}, 8) = —2if; (2.10)
with Bi(z}, ©) = ¢t + 41186,
. A ~ m
Vi < —cl(@)? + 2l(zd — o) + (11— ©)(©0 - ) + > zia}® (2.11)
s=2
with 71(z1) = (z})?y3! and ®}° = z}¢} for s =2,--. ,m.
Claim 2.5 Foreach 1 <r < k and 2 < s < m, there exist a virtual controller a}(m%, e ,:E,l,)
—£18(xl, - -+ 2l) and tuning functions TL, A} and ®L°, such that the time derivative of V,} = %

i1} —af_y)? satisfies
T

-2 [d-30-9)] €7+ 86k -a) + (- 80 - 842 + L atar (212

j=1 s=2

Proof of Claim 2.5

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We have already proved that Claim 2.5 holds for » = 1. Assume that Claim 1 hold for
r = k. Now, we show that this claim also holds for r = k£ + 1.

Stepl.k + 1: Consider the Lyapunov function candidate
1)2

1
Vk+l = Vk (17k+1 Qg

Differentiating V}}H with respect to time yields

k .
Wa < =3 [d= 5= €02 +hlaki - b + (k- B)@ -8+ 1D

+ 3 @O + Ly |Thea + Pt + D TidR
s=2 s=2
Z 6% (z}1 + 5" + lecbls) — aak ' (2.13)
5=2
for s=2,---,m.
By (2.4), it follows that
1 5% 11
Eht1 [ Et Gt — Z (#5341 + &5 )}
3 J
< ‘511c+1l ‘fk' + Z ‘ "7k+1 aalf (]le+l' + lz: ‘Izll’ﬁl)} ©
Z; =1
< et [l + St
L j=1
k+1
< J§k+1] Z l§}!w11c+1@
1k
< 3 > + (6h41)%phin + Ak 1 (© - ©) (2.14)
j=1
where
wiﬂ(ﬁv"'axl]&l) =
wllc—kl(m%? T mllc+1, (:)) = (1 + /B% +oeeet ﬂi)@%ﬂ-l

13
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E+1,

~ 1 + ~
P/zt+1 (:ci, ) x11c+1:@) = 3 + B (wk+1)2@2
1

k+

Al (zh o 1h0,0) = e Y (€)% 4 21 ! 1+ (AL )2
bl o 8) = - mg Y2 4 () (wm)] )

and A, will be given later. The last inequality of (2.14) comes from Lemma 2.2.

Thus, (2.13) takes the form

k
Vi < Z [ k 7 - ‘] (€ + i1 (Then + Ehr1Phin)

~ ~ dal
+(Tllc+1“ @)(@ -0+ ’\11c+1) - A11c+1)‘11c+1 §k+1 k Tk kT Z $i¢’k+1 (2.15)

where
dak k dat
My = M4, —=£= |t 2.16
k+1 kT &kt 2% j§§]+1 7o) (2.16)
a . k+1 ) 3011
OiE, = O+ (oh - 28 k¢s) >ol¢ Zgj-i—lax or° (2.17)
=1
Tllc+l = Tllc+Allc+1 = (z1)*71 11

k+1 1 , . :
+1§;<5—1\/—:-ﬁ§(51) +(€l) [ + = ( l)}\/ﬁ) (2.18)

1
As for the terms —A,1c+1)\,1c+1 and —§,1C+1%g@l$7'}c in (2.15), there exist nonnegative smooth

functions Biﬂ(x%, e Thy g ©) and Eiﬂ(x%, e Thy ©), such that
k
1
’A/1c+1)‘llc+1| < 5 Z ()7 + (Ery)? /8k+1 (2.19)
dai 1E
39 Békﬂc < 52 (ED? + (Ekr1)? /8k+1 (2.20)

By introducing the virtual controller

ajy1 (@], T, ©) = =61 B (2.21)

14
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. 1 1 A - 7l 3
with 5k+1(9«"%» T 0) = Cllc+1 + P};H + Br1 + Bt

k+1
3
Vi < - 20“5 (k+1=D1E)? + €1 (Thp2— 1)+ (Thp1— 9)(@ e+/\k+l)+leq)k+l
7=1 s=2

(2.22)
This completes the proof of Claim 2.5.
Claim 2.5 holds until r = n;. At Step 1.n1, the time derivative of Vj}, = 2 il (a:; —aj_q)?
satisfies

n : m
Vi< —jl [ = 5m =] € + €@~ ad) + (75, B)O - O+ X)) + 3ot
j= 5=

with a:,lhﬂ = u;.

Claim 2.6 Foreach 1 <r<m (1<t <i—1)and 1 <r <k (t =1), there exist a virtual
controller ot(z!, -,z Y zf, .-~ zt) = &G, -, 7t zt, -, 2t) and tum'ng functions
78, AL and @Y (t+1 < s < m), such that the time derivative of Vi = 230} P i(ah —af )
24 357 (xh —ab_)) ? satisfies

t—1 TMp T t—1
< -3 znl b GEY — Y01 — o0~ DIEV + Y €8, (up o,
p=175=1 j=1 p=1
e (zhyy — ob) + (r1= B)(O = &+ M) + Z z§ bP° (2-23)
s=p+1

Proof of Claim 2.6

Assume Claim 2.6 hold for t = i, r = k, we show that the claim also holds for t = g,
r=k+1.
Step 1.k + 1: Consider the Lyapunov function candidate

1 .
Vk+l Vk ($k+1 1)2

Differentiating Vi, , with respect to time yields

i—1 7p k

Vi < =231 an+k DGR Zc——(k—y (§])2+§:£

p=1j=1 j=1

15
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+Ek(Thn — k) + (Ti=©)(© — B+ ) + Y 2y

s=i+1
) ) ) . m ) i—1 Tp a m
(T — k) [Tk H O+ D IO DD Bm +PF 4+ D aiel)
s=i+1 p—l] 1 s=p+1
k k Ui i (90/ ~
Z (.aw:J+l +oi+ D> i) - —£ 06 (2.24)
1 s=t+1 90

where xﬁpﬂ =up for p=1,---,i — 1. Rewriting (2.24), we have

.. i1 7
Vinn < —ZE[c”—— Zm+k NER* - Z[c ——(k PNE +Z§ (up —an,
p=1j=1
HrA-B)©-B+ M)+ 3 aidl, +6hyy [a;+mz+2+¢7:;1
s=i-1
il 5ak 7 S aa}c A
_ZZ ($p+1+¢’p + Z 1¢p)—z 5 © (2.25)
p=1j= 1 s=p-+1
where
. . . p) izl " g
o= ?+£k+1< B - Z Chye Sy Xy )
p=1j= 1
& A TR e 0o & das s
- ; (fl - ;5941 c’)xf) & +; (fz q;p ]Z_:l §J+1 83: Z§J+l amp ¢p
It follows from (2.4) and (2.5) that
) ) B i—1 Mp i k ot
Eit1 |k + Phy1 — ZZ &P+ Z $1¢ps Z f( J+1+¢“)
f 3:L‘p — Ozt
p=lj=1""] s=p+1 j=1 %5
i—1 7p k+1
: |(zzizﬂ+z wz)wkﬂe
p=1j7=1 Jj=1
i—1 Tp
< ‘§k+1\ (ZZ !ﬁp‘ + ) wh,1©
p=1j=1
i—1 7Tp
< (Z Z(ﬁp)Q‘FZ(fl ) + (€h11)%Phsr + Ay (6 — ©) (2.26)
p=1j=1
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with

—

N =

+

D

piii = n; +k + 1) (why1)26? (2.27)

;
i—1 Tp
7 — é-P 2 + g]
i—1
GG [g + % (Z ny kot 1) (whr)?
j=1

1

V14 (k)2 (2.28)

Lemma 2.2 is used in the last inequality of (2.26).
Thus, (2.25) takes the form

i—1 "Mp i—1 k

. 3 ) 1 3 ) i
Vin €~ 0~ S (X mtk—g) — D — i~ Sk~ )~ 5)(6] )2+Zf (up —
p=1j=1 l=p Jj=1
41 (T + E1Phrs) + (Thpa— ©)(® -6+ A1) + Z 30
s=1-+1
: : . Oat
_Az )\1 et Ak,r 229
k1M1 — Skl 55 ¢ (2.29)
where
: 8ak
b = Mg, ok 2.30
I'c+1 . §k'+1 50 (2.30)
Thr1 = Tkt AL (2.31)

As for the terms —A% ;A ; and —€% %7’}; in (2.29), there exist nonnegative smooth

functions B; +1 and Gy +1, such that

) ) i—1 Tp
¥ < 53 @ FSE (6P (2.32)
p—lg 1 j=1
8ak et 2) 2 b iN2 i N2
Chpi—=Thl < 5 ZZ E5)°+ ) (&) + (€kt1) Brr (2.33)
éS) p—'lj 1 7=1

By introducing the virtual controller
i-1

. 1 _ . . ~ , .
ai:—}-l(w y T amzb o 7$?c+17 6) = “€;c+1/67g+1 (2-34)
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. . 1 1 4 . A . ~ —
with IB}H—I("E LT ,.’1321,--~,£L'7ic+1,@) _'C}c+1 +p}c+1+ﬁk+l+/8k+17

i—1 Mp i-1 k+1 i—1

Vi € =2 20 = S mtk+ 1= IE)* = 3l — 5k +1=)I(E)* + 3 €, (up — o)
p=1j=1 l=p j=1 p=1

&1 (Thpo — 1) + (Thir— ©)(© -6+ A1) + Z 239, (2.35)

s=i+1

which completes the proof of Claim 2.6.
Claim 2.6 holds for each r = n; (1 <t <m — 1) and at each Step t.n; the time derivative

of Vi =330 1 0%, (af — of_;)? satisfies

Zz[é’——znl ) §P>2+25 (up—ad,) 4 (1%~ ©)(O-B+ X+ 3 233k

p=17=1 s=t+1
(2.36)
and for t = m, r = n,, at Step m.n,, the time derivative of V% = 5 Z - Z ( X a?_.l)2
satisfies
o m TP 3 )2
v s—;;[cﬁ—Q(gm 1(€5) +Z£ (up — o) + (17, ~8)(@-6+X1) (2:37)

Wlth l‘fm +1 = up.
By choosing real positive numbers ¢} to make sure the term cf — —(Zl_p ny —7) > 0 for

1<p<m,1 <j <ny, it is obvious that the controller

Uq :a}zi (flv"'7fi7é) (238)
Um = O‘}zm(fla' ’§m7é>

and the estimator
=17 (.-, 7™, 0) (2.39)

make V,Z‘n negative definite, therefore guarantee the asymptotic stability of the closed-loop

18
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system (2.1), (2.38) and (2.39).

2.4 Numerical Example

In this section, one numerical example is studied to illustrate the design methodology developed

in this chapter. Consider one two-input system with nonlinear parameterization

i} = 223 + 322

&} = uy + @5 (z, 23, 01) + 365> (21, 62)

" (2.40)
3 = 23 + ¢1"(x1, 73, 2, 03)
.’L‘% = up
where ¢3! = zi[1+ (23)2/%](01)7, 61 > 0, ¢§? = In[1 + (022D)¥], ¢} = [(=})? + (23)?] |23|” and
the true values of 6, #3 and 3 are 2, 1 and 0.8 respectively.
12

In the system (2.40), the unknown parameters 6;, 3 and 63 enter the functions q5
and $22 nonlinearly and the subsystem (z},z3) is nested in the larger subsystem (:cl,a:2, z?)
through the interconnection z?¢32.

For the function ¢35}, it follows that

oi'] < ot i + lril ]w%f/ HJou
= ‘m1’f91lz1+ m2’+ 'xl‘ 10,]%
< ‘:52’+’ |[62(z1)2+ ln2|01|+3( 1)2ed D+l
< —]m2}+‘x’ez<m2+ > (z1)2e3 @) ez 07100

< ’m1I+’I_2' 11(m1)e—ln2|91|

with yil(zl) = ez(@)? + L(zl 23(a1)? > 1 and 3 0161 > 1. Lemma 2.2 is applied during the
27Ty 3\t
inequality derivation above.

For the function ¢3%, ¢3* < |62] |z}|. For the function ¢32, it follows that

7 < Gl 5l

5l
3

L2
3
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% (363—1) In[1+(z2)?

IA

’xll +3}m2‘ +3‘

; e
3
2 551‘ +3 ‘ l + = ‘ le% n?[14+(a5)?] 5 (303~1)

IN

(el et o ko

where 132 (2}, 2}, 2%) = 2(a})? + 2(2})? + e2 W 0+D > 1 and €30 > 1,

Let © = ez nIf1] 4 |62 + e8(303-1° > 1 and it follows that

< (fol|+|ed)n3 @D
P < ol
2 o< (lol|+|a3] + |23l 23 D0 (2.41)

Following the design procedure presented in the last section, the adaptive controller of the
system (2.40) is constructed as follows.

Step 1.1: Define Lyapunov function candidate
1
Vi = 5(35%)2

Differentiating V* with respect to time gives

Vi = —ci(ah)? + 221 (2} — o) + 3ziz? (2.42)
with
1.1 11
op(zy) = At

Step 1.2: Consider the following Lyapunov function candidate
1 1, L1, 142, 1 )2
Vo =W +§($2—a1) +§(6—6) (2.43)
Differentiating V3! with respect to time yields

. Aol A
Vi = —ci(z])? + &3[221 + w1 + @3 — 1(2 1 322)] + o2(3et + €1612) — (6 - ) B (2.44)
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with €5 = 2} — o1 and for £343!, it follows that

3os| < |3 (|=t| + |23 030 (2.45)
< leb|(|=1] + |eb| + |ed]nite
< |&] (=] + ) + e0mte
< 5@+ (€ (a},8) + Az} z})(© - ©)

where py(z,0) = § + (w1)?6? and A, (z},23) = $[(z})? + (€)% + (¢])%(w1)? with w(}) =
(1+ ge)rdt
Thus, (2.44) produces

V== (cd - D)) - (D) + 3Bl + Gol) + (- ©)(0-0)  (2.46)

with
~ Oy
uy (71, 03,0) = —3€; — 221 — £3py + Bal AT (2932 + 323)

Step 2.1: Consider the following Lyapunov function candidate
2 1, 1, 22
Vir=Vy + 5(151)

Differentiating V;? with respect to time yields

VE = ~(cl ~ 5)(])? — chED? + 2330} + E3oF +aF + 6P + (M- ©)(0-6)  (2.47)

and for z3(£3¢3% + ¢3%), it follows that

shteaes + o1 < [od] ek |of] + (=] + foi] + st ©
< [l ot Ve @2+ (ot + o] + [t
< ]z{[)xllm (|=1] + |&b] + e3P+ 5e0 22}@
< |ad| (|=] + €] + |#3)un(al, <), D)0
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1 1 ~
5(37%)2 + 5(5%)2 + (x%)2p2($%7x%71’%7 6)

+A4s(2],73,73)(0 ~ ©) (2.48)

IA

where wy(a}, 2}, 23) = /1 + (D)2+(1+ eV, py(ah, b, 23, ©) = 14§(w2)?6? and As(a}, 2}, 2?) =

3@ + (€)% + (@)?] + §(w2)*(2})%.
Thus, it follows that

V2 = ~(ck = 1)(a})? - (b~ 5 ~ AP + 23~ od) + (A1 + A2~ 6)(0 - 6) (2.49)

with
2

27,1 2 A
of (21, 73, 1, ©) = —cfaf — 321 — alp,
Step 2.2: Consider the following Lyapunov function candidate

1
V= Vi + 5} -l

Differentiating Vi with respect to time yields

7 = (e - DD - (- D)) - ) + 6 m%+u2—§j§( B33 (2.50)
g?(ul‘*‘qﬁ 1¢%2)—Q-0—‘1( 22+ ¢22) — %é + (A1 + As— B)(© — )
where
- aia?
da?

— = —3-3z}w, lci———— ( E 1) =1
P
o 2 ey 2

2 1
a;.l% = —3zw, 3 + (1 + 10% fl‘x% &
Oz, 1+ (€3)? 273
oof Loy i m2+e3)?) 2 (1) g
a_x%_ — cl—p2—6w2(1+501)‘32 ln[1+(l‘1) ]1+( ) C)
a 2 ~
—8%)1— = —3z3(w7)?6
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Let

1,4 ~
i = 31+ @ |14+ 0+ geg 1+ (@D2) @2

1 ~
@ = A4 py+6wy(l+ 56%)6% In?[1-(2$)?] In1 + (22)%]©?

daf 1 Elet] 2 2 [0aF 11, 212y, 9of (22] -
Then la_z;T < gy and ‘5;%‘ < ¢i. Therefore, for £35 {822( 2 +Tigs”) + %%qbl ], it follows that

da? da?
Gilgg (43" +ates’) + et

4|

(2.51)

6a1 8a1

{ el et o] o

[(|=1] + =323 + =D +

< I8 [ 3“1 qu1@1+|zf¢>(\f—1+<x@2+m+ St et + f + ] 0
< ’52" (.331‘ + ‘52‘ + ’371‘)“13@
< b+ <£2)2 (1>2 (§%>Z(w3)2@2+A3(x%,xé,x%,x%><e—é)

2

where ws(z, a},0%,23) = (L+deb) |af (/1 + (@02 +98) + o8], ds(el ohhad) = BlabP+
(€3 + (= DA+ 5(“’3)2(52)2-
Thus, it follows from (2.50) that

7 = (el = Dl - (- DEP - (- D - +(ra- B)(0-8+872) (252)

with
~ da? da? oa? da? 3 ~
Lol 22 22 8y = 262 _ g2 994 3z ooy 24949, S 282
u2(z1, 3, 21,23, ©) 3¢y — i+ . %( 5 + 323) + 7l U+ 75 6:1:1 2+ 26 T3 252('“13)
Tg(x{,:c%,z%,xg) = A;+ Az + Aj

It is obvious that the feedback controller uy(z}, 2}, ©), ug(z!, 2}, 22, 23, ©) and the estimator
é: 73(zl, 1, 22, 23) make Vfg 0, which implies the global stability of the closed-loop system.
The simulation results in Figure 2-1 show the state responses and parameter estimation of
the closed-loop system (2.40) with the initial conditions z;(0) = z2(0) = z3(0) = z4(0) = 0.1

and (:)(O) = 0. It demonstrates that the adaptive regulation for the system with nonlinear pa-
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Figure 2-1: Responses of state variables
rameterization and nested triangular structure can be achieved via the methodology developed
in this chapter.
2.5 Conclusion

In this chapter, the problem of adaptive control is studied for a class of MIMO nonlinearly
parameterized systems with nested triangular structure. The methodology is developed based
on adaptive backstepping technique. Our method benefits from both [18] and [23]. The results

in [18] is extended to a class of MIMO systems with nested triangular form and adaptive
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controllers are constructed. It is shown that the resulting adaptive controller guarantees the

global asymptotic stability of the closed-loop system.
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Chapter 3

Adaptive Control of Nonlinear
Differential-Algebraic Equation

Systems

3.1 Introduction

Consider a MIMO nonlinear DAFE system

¢ = fi(z)+pi(2)z + g1(z)u+ a1 (z)0 (3.1)
0 = fa(z) + p2(z)z + g2(z)u + az(z)8 (3.2)
y = h(z) (3:3)

where z € R™ is the vector of differential variables, z € R® is the vector of algebraic variables,
u € R™ is the vector of inputs, y € R™ is the vector of outputs, § € R! is the vector of
unknown parameters, fi(z), f2(z), pi(z), p2(z), g1(z), g2(x), ai(z), aa(z), h(z) are matrix-
valued smooth functions with dimensions of n x 1, sx 1, nx s, X s, nxm,sxm,nxt, s xt,
m x 1, respectively. Assume that the origin is an isolated equilibrium point, i.e. f1(0) = 0,

£2(0) =0 and h(0) = 0.
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In this chapter, one methodology will be developed to design a stabilizing feedback controller
for the multi-input multi-output (MIMO) DAE systems with unknown parameters. Our aim
is to find a change of coordinates to transform the DAE systems into an equivalent ordinary
differential equation (ODE) systems with lower triangular structure. As a result, adaptive
backstepping is applied to design an adaptive controller for the resulting ODE system.

One algorithm, called Standardization, is developed to construct the change of coordinates.
The application of Standardization is under the full row rank condition that the block matrix
[ pa(z) g2(z) } in (3.2) has full row rank. The other two algorithms are developed to guaran-
tee the full row rank condition. The first algorithm is to calculate the generalized characteristic
numbers. The second one is proposed to identify the constraints hidden behind the algebraic
equations. These two algorithms can be considered as extensions of the first and second algo-
rithm in [26] to adaptive control problem. In comparison with the algorithms in [26], one more
term will be considered at each step of our algorithms in this chapter, which is caused by the
term aa(z).

The key step of the change of coordinates also involves the design of a static feedback
u = y(z)z + v. Different from the dynamic state compensator proposed in [15], with the
new input v, our static feedback control scheme is much simpler to handle and guarantees not
only bounded-input bounded-output (BIBO) stability, but asymptotic stability. The adaptive
controller guarantees the global asymptotic stability of the closed-loop systems if the change of
coordinates is defined globally. At last, following the approach proposed in this chapter, one
adaptive controller is designed for a constrained manipulator with flexible joints in Section 4.

The simulation results show the effectiveness of this approach.

3.2 Problem Formulation and Main Results

Considering the DAE system (3.1)-(3.3), the adaptive control problem is to find a static feedback
u = v(z)z+a(z, §) and adaptive law = 8(z, §), with v(z) and a(z, §) smooth functions defined
in a neighborhood U of the origin and a((),@) = 0, such that the corresponding closed-loop

system
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= filz)+g1(e)alz,0) + [pi1(z) + g1(2)y(2)]z + a1 (z)0 (3.4)
0 = flz)+ @@ )+ [p2(z) + ga(z)y(2)]2 + as(x)8 (3.5)
y = h(z) (3.6)

has the following properties:

1. for any consistent initial condition zg € U, it has a unique differentiable solution
(z(¢), z(t)) with z(0) = zo;

2. lim; o, z(t) = 0 for any consistent initial condition zg € U.

In the following, three algorithms are given to transform the system (3.1)-(3.3) to a lower
triangular form so that the backstepping technique can be applied. Algorithm 3.4 is applied
to transform the DAE system into an equivalent ODE system. Algorithm 3.1 and 3.3 are used
iteratively in Algorithm 3.4.

The first algorithm is to calculate the generalized characteristic number defined in [26], which
is an extension of Algorithm 3.3 proposed in [24] and Algorithm 3.1 in [26]. The algorithm is
developed under the assumption that the matrix [ p2(z) go() ] has full row rank.

Algorithm 3.1: Calculation of the Generalized Characteristic Number

Step 1. Assign ¢o(z) := ¢(z) and set k = 0. Calculate Ly, ¢o(x), Lp,¢g(x), Lg,Ppg(z) and
Ly, ¢o(z)., where

Lido() = 220 s

Indo@ = 22D o) = [ Lge@) - Ly - Lol |
Lero(z) = ?—(%—x@-gl(a:):[Lg11¢o(x) o Lydo(a) - Lg;ﬁqﬁo(x)}
Layto(z) = 8¢§£m)-a1(m):[La1¢0(x) o Loyo(@) - Laggbo(m)}

with p{, g{ and a{ are the j-th column of p1,g1 and «q, respectively.
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2\ T 2\ T
If the matriz P2(2) 92(%) has a constant rank s, then there exists o unique

L;D1 ¢0 (:C) Lg1 ¢0 (:C)

vector-valued smooth function eg(z) of dimension s such that

Lnbo@) Lato(@) | = @) | pae) o) |

Define that ¢,(z) = Lf¢g(x)— eo(z) f2(z) and wi(z) = Loy ¢g(z) — eo(z)az(x). Otherwise, set
r =1 and terminate the algorithm.
Step k + 1. Suppose we have already defined a sequence of ¢o(z), ¢1(z) - dp(z). Now cal-
p2() 92()

culate L, ¢p(x), Lp, ¢p(x), Lg,0x(x) and Lo, ¢p(x). If the matriz has
Lpi#r(z) Lgidr(z)

a constant rank s, then there exists a unique vector-valued smooth function ex(z) of dimension

s such that

[ Enti@ Lntr@) | =@ | me) (o) |

Define that ¢y 1(x) = L dp(x)— ex(z) fo(z) and wip1(z) = Lo, @p(x) —er(z)az(z). Otherwise,
set r = k + 1 and terminate the algorithm.

The algorithm terminates at Step r. Such an integer is defined to be the generalized char-
acteristic number of the function ¢(z) under the constraint (3.2). Differentiating ¢ (z) with

respect to time, it follows that for k=0, 1, ---;r — 2

d¢2§x) = L ¢p(z) + Ly (2)2 + Lgy $1(2)u + Loy d1(2)8 (3.7)

= G (T) + w1 (7)0 + ex(z)[f2(2) + p2(2)2 + g2(T)u + 02(2)0)

and

dd»c_lz (z) _ Ly br1(@) + L b1 ()2 + Ly by_1 ()t + Loy by (z)0 (3.8)

Remark 3.2 Algorithm 8.1 will be used in Algorithms 3.3 and 3.4. Different from the
algorithms in [24] and [26], besides ¢y, Algorithm 3.1 is also involved in calculating wy due to

the as term, which the unknown parameter 6 enters.
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Algorithm 3.3 is used to identify all the hidden constraints behind the algebraic equation
(3.2). It begins with decomposing the algebraic equation (3.2) into the form of (3.9) and (3.10).
Each step of Algorithm 3.3 involves calculating the generalized characteristic number r* of the
function ¢*(z) under the constraint produced in the previous step. The algorithm is developed

under the assumption that the hidden constraints on x is independent of 4.

Algorithm 3.3: Regularization

Step 0. Consider the constraint (3.2) and suppose the matriz { p2(z)  g2(x) J has a con-
stant rank so. Without loss of generality, assume that its first s rows, denoted by [ bo(z) co(z) },
has full row rank sg. Let p = s — sg, then for each 1 =1, 2, ---, p, there exists a unique vector

S*(x) such that

Pe) @) | = 5@ | boe) el

where pt(z) and gt (x) are the (so + i)th row of pa(x) and go(x) respectively.
Set ¢'(z) = £ (x) =S¥ (x)ao(z) and wi(z) = o (z)— S (x)do(z) with ag(x), do(z) being
the first so rows of fa(x), aa(x) respectively and f507(x), ot (x) being the first (so + i)th

rows of fa(z), aa(z) respectively. Then the algebraic equation (3.2) becomes

0 = ao(z)+bo(z)z + co(z)u + do(z)0 (3.9)
0 = ¢ (z) +uw'(x)d + S (z)]ao(x) + bo(z)z + colx)u + do(x)d] (3.10)

fori=1,2 -, p.
Substituting (8.9) into (8.10) leads to

0 = ¢*(z) + w'(z)0 (3.11)

Considering that the hidden constraints on x is independent of 6, we have w(z) = 0 for

i=1,2,---, p. So the hidden constraint (3.11) becomes

0= ¢'(x) (3.12)
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Step 1. Assign ¢(x) := ¢*(z) and carry out Algorithm 3.1 to calculate its generalized
characteristic number under the constraint (3.9). Then ', ¢§(z), $1(z), ---, oh_(z), wi(z),
-, wh_ (z) and e}(z), el(z), ---, eh_,(x) are produced. Now define ai(x) = Ly ¢tr_;(z),
bi(z) = Ly $p1_1(2), c1(2) = Loy by (2) and di(z) = Laqydp1_4(2)-
Differentiating ¢}(x) with respect to time leads to for i =0, 1, - 71 — 2
dei (z)

= = 6 (@) + win (28 + ¢ () [ao(x) + bo(w)z + col)u + do ()] (3.13)

and
dpi_y(x)

p =ay(z) + bi(zx)z + 1 (x)u + di ()6 (3.14)

It follows from (3.12) that %éfi) = 0, from which, together with (3.13), we obtain the hidden
constraint 0 = ¢1(z) + wi(z)6.
Considering that the hidden constraints on z is independent of 6, we have wi(z) = 0 and

the new hidden constraint is 0 = ¢1(x). By the same token, it can be derived that w}(z) =0

and

¢i(z) =0 (3.15)

fori=1,2,---, vt — 1. It follows from (3.15) with i = r' — 1 and (3.14) that

0 =ai(z) + bi(z)z + ci(z)u + di ()6 (3.16)

Combining (3.9) and (3.16) yields the following algebraic equation

0 =al(z) +b'(z)z + ¢ (@)u + d* (z)0 (3.17)
where al(z) = a0(=) , b(z) = bo() , cz) = () , dY(z) = dolz)
a1(z) bi(z) c1(z) di(z)

If the matriz [ bl(x) cl(c) } has full row rank sy + 1, then set k =2 and go to next step.

Otherwise, terminate the algorithm.
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Step k. Suppose the algebraic equation produced at Step k — 1 is given by
0=a*"1(z) + b5 Hax)z 4+ F Ha)u + ¥ 1(2)6 (3.18)

Assign ¢(z) = ¢k(x) and carry out Algorithm 3.1 to calculate its generalized character-
istic number under the constraint (3.18). Then %, ¢f(z), ¢f(z), ---, ¢f_,(z), wh(z), ---,
wfk_l(z) and ef(z), ef(x), -, e’:k_2(x) are produced. Now define ar(z) = Lf1¢>’:k_1(:c),
be(z) = Lp¢Fe_1(z), c(z) = Loy Fc_ () and di(z) = Loy ¢k (2).

Differentiating gbf (x) with respect to time produces

dgf(z) L ( k 6+ ek k-1 pr-1 k-1 10
—g = %n ) + wiiy (2)0 + e (x) [0 (z) + (z)z + " (z)u + (z)0]  (3.19)
for 1 =0, 1, .ok —2 and

d¢fk-1($)

p = ag(z) + br(z)z + cx(z)u + di(z)0 (3.20)

It follows from (3.12) that i‘i’(égl = 0, from which, together with (3.19), we obtain the hidden

constraint 0 = ¢¥(x) +wk(x)0. Considering that the hidden constraints on x is independent of
6, we have w¥(x) = 0 and the new hidden constraint is 0 = ¢¥(z). By the same token, it can

be derived that w¥(z) =0 and

¢f(z) =0 (3.21)

fori=1,2,.---, % — 1. It follows from (8.21) with i =r* — 1 and (3.20) that

0 = ax(z) + br(z)z + ck(z)u + di ()8 (3.22)

Combining (3.18) and (3.22) yields the following algebraic equation

0 = af(z) + b*(z)z + F(z)u + d¥ (z)0 (3.23)
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ag(z) b (z) ’ cx () di(z)

where a®(z) = d*~1(z)
If the matriz [ b(z) F(c) } has full row rank sy + k, then set k = k+ 1 and go to next
step. Otherwise, terminate the algorithm.
Algorithm 3.3 is said to be feasible if it terminates at Step k¥ = p and the matrix [ b (z) cP(c) }
has full row rank s = sg + p. It follows from Algorithm 3.3 that in order for solutions to the
DAE system (3.1)-(3.2) to be impulse-free, the initial condition z(0) must satisfy z(0) € M

with
M ={z€R"|¢j(z) =0, ¢}(z) =0, and w} =0, for j=1,2,---,7* " 1,i=1,2,---,p}

If Algorithm 3.3 is feasible, the DAE system (3.1)-(3.2) is equivalent to the following DAE

system

z= fi1(x) + p1(x)z + g1(x)u + a;(z)8 (3.24)

0 = a(z) + b(z)z + c(z)u + d(z)f (3.25)

where z € M and [ b(z) c(z) } has full row rank s.

With the assumption that Algorithm 3.3 is feasible, the DAE system (3.24)-(3.25) can be
changed to lower triangular form by a feedback u = y(z)z 4+ v and the following algorithm.

Algorithm 3.4: Standardization

Step 1. Set ¢'(z) := hl(z) and calculate the generalized characteristic number qb of ¥!(z)
under the constraint (3.25). Then q*, ¥i(z), vi(z), ---, ¢;1_1($), (), -, wé,_l(m) and
E}(z), B} (z), -+, E;1_2(x) are produced. Now define Ai(x) = Ly, ¢;1_1(:1:), Bi(z) = Ly, 1/);1_1(:1:),
Ci(z) = Lyy¥gi_1(z) and D1(z) = Lay pa_1 ().

Differentiating 1 (x) with respect to time yields

dip} (z) _ ol 1 1
— = i1 (@) + i1 (@) + Ej (x)[a(z) + b(z)z + c(z)u + d(z)0)] (3.26)
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fori=0,1,---,¢g' —2 and

dpr_ ()

o = Ai(z) + Bi(z)z + Ci(z)u + D1(z)8 (3.27)

Step k. Set 9*(x) := h*(z) and calculate the generalized characteristic number g* of ¥*(z)
under the constraint (3.25). Then ¢, ¥&(z), ¥¥(z), ---, 7,[)2;(_1(:1:), o), ---, cp’q“k_l(x)
and E¥(z), E¥(z), -, E;k_z(x) are produced. Now define Ax(z) = Lf1w;k_l(z), Bi(z) =
Lp1 d);k_l(x); Cl(x) = Lg1 iﬂ;k_l(fﬂ) and Dl(l‘) = Lo, ¢’;k_1(x)'

Differentiating ¥¥ () with respect to time leads to for i =0, 1, ---,¢* — 2

k
dwjit(ﬂf) =k 1 (z) + oF, 1 (2)0 + EF (2)[a(z) + b(z)2 + c(z)u + d(z)6)] (3.28)
and
k
%d—t—l(‘ﬂ = Ak(x> + Bk(w)z + C’k(x)u -+ Dk(g;)ﬁ (3'29)

Algorithm 3.4 terminates at Step k = m. Now the following assumption is made.
b(zx) c(z)
Bi(z) Ci(z)

Assumption 3.5 The matrix is nonsingular in U.

N Bi(z) Cwm(z) ]
The functions qﬁj(z) for j=0,1,---r*~1landi=20, 1, ---,p, and w;(m) for 7=0,1,

-¢¢—1landi=0, 1, ---,m, form a set of new coordinates, which is guaranteed by Lemma 1,
for proof, see [26].

Lemma 3.6 Suppose that Algorithms 3.3 and 3.4 are feasible and Assumption 8.5 is satis-
fied. Then, the vectors

dey(z), dpt(x), - -, deh_;(x)
de3(x),dd? (), -+, do%_ ()

d%(z)’ d¢711]($% T dﬁp—l(x)
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dpg(z), di(z), -, dibgr_ (x)
d(z), dyi(z), -, dvle_y (z)

are linearly independent in U.
Please see [26] for the proof of Lemma 3.6.
Assumption 3.7 n=r4+qgwithr=r+r' +... 4P and ="+ ¢* +--- + g™
Assumption 3.7 is introduced to avoid the appearance of zero dynamics. With Assumption

(=)

3.7, it follows from Lemma 3.6 that the function ®(z) = constitutes a change of
P(z)

coordinates, where

T T
8@) = [ @ FET - F@T | WO =[P e - e ]

. ) . T . ) ) T
with ¢ (z) = [ Pi(z) - ¢ () } fori=1,---,pand ¢’(z) = [ Yh(z) - Py (@) ]
for =1, ---,m.

Set ef = () for ¢ = 0,1, ---7F =1, k = 1, ---p and €F = ¥(x) 7for i = 0,

1) ...’qk—17 k = ]_} <M. Let ¢ = ,:6(])' .. 511__ e 68 N Efp_l:l and 5 =

1 1
[50 R P - R

By differentiating ¥ and ff with respect to time, in the new coordinates the DAE system

(3.1)-(3.3) can be expressed as follows

e=0 (3.30)
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Yl =¢§
€ = &L+ pH(z)0
& = 5+ ph(e)8

(3.31)
£;1«2 = 5;1—1 + 90;1-—1(3:)0
&1 = Au(@) + By(w)z + Cu(z)u+ D (2)0
Yy =&
£y = &7 + 9P (2)0
£ =&+ 97 (x)f (3.32)

Sm

Eqm—p = Egm_1 + Pgh_1(2)0
€qn_1 = Am(T) + Bm(2)z + Cpn(2)u + Dm(2)8

In order to apply the adaptive backstepping technique, the following assumption is needed
to put the system (3.30)-(3.32) into lower triangular form.

Assumption 3.8 The matriz

T
o(z) Ovl(=) g1, (=) o9l (x) (z) Bpl(z) (3.33)
oz oz oz oz oz oz
has constant row rank T+Z§;11qj+i+1 fori=0,1,---,¢*—landk=1,---, m.

Lemma 3.9 Suppose that Algorithms 3.8 and 3.4 are feasible and Assumptions 3.5, 3.7 and
3.8 are satisfied. Then, in £ coordinates, the system (3.30)-(3.82) takes the form of
e=0 (3.34)

yl=¢}
£ = &l +pl(e,)0

gi = &+ pl(e, €, €1)0 (3.35)

51
§q1—2 = 631—1 + (P;1V1(5,§(1),§%, o '>§é1_2)0
€1 = Ai(z) + Bi(2)z + Ca(z)u + Dy (z)0
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v =&
é;r)n:§T+@T(E>£l?"':£m_17§6n)9
g 4 ol (e, 17‘_" m—l, m £mg
§1 £ + 95 (e, £ £ ¢€T) (3.36)
Eam_g = Emn_1 + @ 1 (g, €8, £ €D, €T )0

a1 = Am(z) + Bpr(2)z + Cr(2)u + Dip(z)0

Proof: By carrying out Algorithms 3.3 and 3.4, the system (3.1)-(3.3) is changed to the
equivalent system (3.30)-(3.32). The matrix (3.33) takes the form of

T
9(z) () g1 4 (@) a5 () O(z)  Opy(a) 0e(z)
Oe Oe 185 Oe Oe Je Oz (3 37)
9b(z)  Owb(x) g1, (=) ok (z) o) Bk () o(z) '
66 65 .o 65 s ag ane aE 85 62
T
fori =0,1,---,¢°—1and k = 1, ---, m. Since the matrix { % gg ] is nonsingular,

therefore the rank of the matrix

d¢(z) () g4 (@) ol (=) @) B
Oe e 186 Oe Oe Oe (3.38)
o¢(z)  Fp(x) Obg1_1 (@) 8yl (z) oYk(z)  Opk(z)
5 B 5 S - e b
is the same as that of the matrix (3.33) for i =0, 1, ---, ¢* =1 and k = 1, ---, m. In the

H

matrix (3.38), Bl(ésﬂ =1, 6%(512 ~0

Ok (z) 1, k=landi=j

e} 0,k£lori#j
Since the rank of the matrix (3.33) or (3.38) is 7+ Z?;ll @ +i+1, 6_109%3:_) =0for !>k and
§

1 > j if [ = k, which implies that gof is the function of €, £!,- - ,5’““1,5’5, ‘e ,ﬁf. Therefore, the
system (3.30)-(3.32) can be expressed by (3.34)-(3.36).
Theorem 3.10 Consider the system (3.1)-(3.8). Suppose that Algorithms 3.8 and 3.4

are feasible and Assumptions 8.5, 3.7 and 3.8 are satisfied. There exist a feedback controller
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v = y(z)z+ oz, 0) and an estimator 6= 6(z, ) such that the corresponding closed-loop systems
are asymptotically stable in a neighborhood U of the origin.

A constructive proof of this theorem is given in Section 3.3.

3.3 Design of Adaptive Controllers

From Algorithm 3.3, we know that the matrix [ b(z) c(z) ] has full row rank, therefore there
exists a smooth matrix-valued function v(z) such that b(z) + c¢(z)y(z) is nonsingular. By

introducing a feedback u = y(z)z + v, the algebraic equation (3.25) admits

a(z) + [b(z) + c(z)y(z)]z + c(z)v + d(x)0 =0 (3.39)
Solving (3.39) for z gives

z = —[b(z) + c(x)y(z)]  a(z) + c(x)v + d(z)6] (3.40)

As a result, u can be expressed as

u = —y(2)[b(z) + c(z)7(z)] Ha(z) + c(z)v + d(2)8] + v (3.41)
Substituting u and z (3.30)-(3.32) leads to

=0 (3.42)

yt =&
£ =€ +010,6h)0

21

€2 =Ep 1+ 1 (0,65,61, -+, € _o)0
.l ~ .

£q1—1 = ‘/1+(10¢]i1(07§1a"'7€m l)gm)e
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Yy =&

€ =€ + 70,6, -, €™ 71,670
;M ™ 4 om0, 1’._., m-—17 mogmyg
.51 €3+ ¢3°(0,¢ 3 £6°, 1) (3.44)
éZ‘f”—2 = gg'}”—l + (pg‘}“—l(o)gl) o 7£m—17£6n7 e 751;’7;“—2)0

é'-;’;n_l — Vm_*_gag}n(o)gl,...ygm—l)é—m)g

with Vi, = Ax—[Br+Cry(2)][b(z) +c(2)7(x)] a(z)+{Cr—[Br+Ciy(@)][b(z) +c(z)v(x)] te(z) v
and <p’;k (z) = [Bx + Cry(2)][b(z) + c(z)y(z)]d(x) + Dy, for k=1, ---,m.

By applying adaptive backstepping technique to design an adaptive controller, the system
(3.42)-(3.44) is guaranteed to be asymptotically stable for any unknown parameters. The brief
design procedure is as follows.

Step 1.1: Consider the following Lyapunov function

Vi = S(687 + (0 D) (6 - )

Differentiating V; with respect to time leads to

. 1 —~ Py
Vi =&(Er+l0) - =(0 -0 0 (3.45)
Now define
ai(€h) = —chgh—plf
o= e
@ o= @

Then, (3.45) becomes

Vi = —ch(€0)? + &h(el —al) + (0 - B)T (Ti - (3.46)

| =
) -
N——
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Step 1.k + 1: Consider the following Lyapunov function

1
Vipn = Vi + 5(511c - o)’

Differentiating V;%; with respect to time yields

1 _
Vk+1 -

where we define

1 1 g1
ak+1(50,§17 T

with of = 0.

k
=Y kel — ah)? + (€ — ab) (b — ab )
7=0

1 ~ ~
+ [—I;(G— 9)T +)‘/1€+1} (FT}C+1— 9)

&) = a6k —ap) — (§ho1 — @)
1 +Faal];: 1+F>\1 ( 1 )T
Vk+1 _85 Tk k+1\Wk+1
k—1 1
“ O -
Vkpr = Prp1f - Z —a?f‘(g}-}-l + ‘P31‘+19)
j=0 YSj
Tllc+l = Tp+ (& — allc)(wllcﬂ)T
k-1
dalk
wllc+1 = ‘:011c+1 - Z ———aff ‘P}+1
=0 YSj
dal
N = A+ - a2

Step 1.k + 1: Consider the following Lyapunov function

; i 1o i
Viri = Vi + 5(52 — a})?

Differentiating V}*,; with respect to time yields
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; k
Vig = —Z Z cé ])2 + Z -« ;) Olle_1> + Zc;(é'; - cvj-)2 (3.50)

=1 j= §=0

€, — ) (et ~ obir) + [306 - BT + Myl Oris— B)
where we define

a%(gl,”',gi—l,éﬂi"“,g’i) = _c‘;c(g’;c —'ai:) - (gi:—l ~ai:—l)

Qg R
_Uk+1 + r—= 8@ Tk +F/\ +1(’W}c+l)T

k-1

. RO dat dat
,Ui:‘{-l = (p}H—lH - Z Z 6529 (€J+1 + <P]+1 ) - Z aé.zk (534—1 + (P]+19)
=1 j= J j=0
Thy1 = Tkt (&~ a}c)(w}c—l-l)
i-1¢'-1 Sad k—1
Wil = Pyl — Z Z lk%ﬂ Z agzk ‘P;+1
=1 ]~0 =0
, 8a
i:—f—l = + ({fk k

withaf):OandgfI[:f/lforlzl’...i

The iteration holds on at Step m.g™. It is obvious that the feedback controller

N=ag(E, - &0

V: 22 l; 27"') m,b\
.2 e (8,6 £™,0) (3.51)

Vi = (€1, €7, ---, €™, 8)

and the parameter estimator
f=TrTn (e, €2, &™) (3.52)

make Vq’;: negative definite, therefore guarantee the asymptotic stability of the closed-loop

system in a neighborhood U of the origin.

With the controller (3.51) and the parameter estimator (3.52) in £ coordinates, we will ex-
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press them in terms of the original coordinates x. For convenience, let fl(z) = { [171[” Aan
T
with 44(z) = A ~ [Be + Gy (@)lb(@) + elan@]ole), @) = [ ¢ - L | wim
T
Ci = Gk = [Be+ Cir(@)ble) + clon@)]ele), V= | VT o V2 | fork =1, -m.

Therefore, the controller u in the original coordinates is uniquely determined as
u=v(z)z+ C7Hz)[V - A(z)] (3.53)

where the nonsingularity of C(z) is guaranteed by the nonsingularity of b(z) + c(z)vy(z), As-

sumption 3.5 and the following equation

[ b(z) + ¢(z)y(z) o | | b(x) c(z) ]
Bi(z) + Ci(z)y(z) i _ Bi(z) Ci(x) I 0 I —[b(z) + c(z)y(z)] Le(z)
: : : : Ne) IT|o T

| Bu(z) + Cm(2)¥(z) Cm | | Bm(z) Cmlz) |

3.4 Simulation Study: Constrained Manipulator with Flexible

Joints

In this section, a constrained robotic system will be studied as an example to illustrate the
methodology proposed in this chapter. Consider a constrained two-link robotic manipulator
with two flexible joints [39]. Suppose that the end-effector is in contact with a straight line

constraint. Its dynamic model is expressed as

M(g)§+ B(q,9) +9(q) + Kg— K0 = b(g)A (3.54)
RO+DO-Kqg+KO = u (3.55)
¢(g) = 0 (3.56)

where ¢ = (q1,¢2)T contains the link angles, § = (8y,62)7 the rotor angles, and u = (ug, ug)?

the two inputs to the joint motors. R, K and D are the inertia matrix of joint motors, the
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matrix of spring stiffness and the joint friction coefficient matrix respectively, with the value
R = diag(1,1), K = diag(100, 100) and D = diag(d,d). We assume d as an unknown parameter
with the true value 0.1.

The manipulator inertia matrix is

M(q) = (I2)?ma + 2lylama cos(ga) + (l1)2(m1 +ma)  (I2)?ma + lilome cos(gz)
(l2)2m2 + l1lamy COS(q2) (12)2m2

and the Coriolis, centrifugal and gravity terms are combined as

. —mal1l2d2(241 + ga) sin(ga) + gmals cos(q1 + ¢2) + gli(m1 + m2) cos(q1)
Bla,4) +9(q) = .
malil2(d1)? sin(gz) + gmalz cos(q1 + g2)

where the parameter values are [} = l2 = 0.3 m, m; = mg = 1 kg, and g = 9.8 m/s>.

Its Jacobian matrix is given by

bq) = li(cos(q1) + Asin(q1)) + l2(cos(q1 + q2) + Asin(q1 + g2)
l2(cos(q1 + q2) + Asin(q1 + ¢2)

The constraint is assumed to be a straight line described by
¢(q)=y— Az - B
where A = —1 and B = 0.28. Rewrite the straight line constraint in joint angles
#(g) = li(sin(q1) — Acos(q1)) + l2(sin(qr + g2) — Acos(q1 +¢2)) —B =0

It is easily seen that the system (3.54)-(3.56) is a DAE system. In the following, Algorithms 3.3
and 3.4 will be applied to convert this DAE system into an ODE system and then an adaptive
stabilizing controller will be designed.

Let 21 = q1,22 = 2,23 = 1, T4 = ¢1,25 = 01,26 = 02,27 = 91, zs =0y and z=\. Asa

result, the system (3.54)- (3.56) can be put into the following form
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j:l T3
:i?z T4
T
[ i3 4 MYz1,22)N (21, 22, T3, T4, T5, T6) + M (71, 22)b(21, 72)2
.i?5 Ty
Tg T
7 uy + 100z1 — 100z5 — dx7
Ig ug + 100z — 100x¢ — dzs
0 ¢(‘Tl7 $2)
100z, 100xs
where N(z1, 2,23, 24, 5, T6) = —B(x1, T2, T3,24) — 9(x1, 22) — +

100z4 100x¢

Performing Algorithm 3.3 on 0 = ¢(zy, x2) gives 71 = 2, ¢o(x1, x2) = l1(sin(q;)— A cos(q1))+

la(sin{q1+qo)— Acos(qi+q2)) — B, ¢1(x1,22) = li(z3 cos(z1)+Axgsin(z)) +l2((x3+z4) cos(z1+

x2) + A(zs + z4)sin(z; + x2)), a(z) = 1 + oM Y (x1,22) N (21, 22, T3, T4, T5, T6), b(T) =

©2Mﬁ1($17$2)b($1, z2),c =0, and d = 0 where

&,

Il

—ll(a:3)2 sin(z1) + Aly (z3)? cos(z1) — la(z3 + z4)? sin(zy + x3) + Alo(z3 + 24)? cos(zy + 22)

P, = [licos(zy) + Alpsin(zy) + Iz cos(z1 + z2) + Alasin(zy + z2), lacos(zy + z2) + Alp sin(zy + z2)]

Solving algebraic equations 0 = ¢y(z1,z2) and 0 = ¢,(x1,z2) for 1 and z3 gives 1 = P(x2)

and z3 = Q(zy, T2, z4) where

P(z2)

Q(z1,72,74)

arcsin ((aIB - bl\/(a')2 +(b')? — Bz> /((a)? + (bl)Q))
—z4(lz cos(zy + x2) + Alasin{zy + z32))/(l1 cos(zy)

+Aly sin(z1) + Iz cos(z1 + z2) + Algsin(zy + 2))
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with @ =11 + o cos(zz2) + Alg sin(zz) and b =—Al; +1» sin(zz) — Alp cos(z3).
Solving the algebraic equation 0 = a(z) + b(z)z yields z = ~b~!(z)a(z). By substituting 2,
z7 and z3 into the original system, the following ODE system is obtained, which is in the lower

triangular form.

:i'z - T4

Ts = Xo1(T1,T2)Ts + Xoo(x1, T2)T6 + K2(T1, T2, T3, T4)
.’i‘5 = I7

g = g

7 = wuj+ 1007 — 100z5 — dx7

g = ug + 100z — 100xg — dxg

where

100
X111 Xa12 _ M_l(-’rl,xz)
X21 X222 100
100

-1
—b(z1, z2) [@2(331, z2) M~ (z1, 22)b(21, 332)] O (z1, T2) M (1, T2) 100

T T
[ K1 K2 } = M Y(z1,22) [—ﬁ(rl,m,ms,m) - g(z1,22) — [ 100z; 100z } }

The desired link angles (g1,¢2) and rotor angles (#1,62) are assumed as (115.73°,0) and
(1159, 0) respectively. The desired contact force X is set to be 3.187 N. Introducing the change
of coordinates of ) = 1 —2.0199, T3 = x5, T3 = 3,4 = X4, Ts = T5—2.0071, Tg = 2, T7 = x7,

Tg = xg yields the following system with the origin as the equilibrium point

T2 = I4

Ty = Xo1(T1,72)(Ts + 2.0071) + x5(F1, E2)E6 + ka(Z1, T2, T3, Ta)
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T; = wui+ 100%; — 100(Z5 + 2.0071) — dzy

:i—?g = wup + 100Z2 — 100Z¢ — dZs

The controllers u; and uj are given as

up = —cg(ZTr — o) — (T5 — az) — 100Z; + 100Z5 + 200.71 + dT7 + -& T2 'f-—gé Z4 +—C_E Ts
0Z2 04 0%s
. das - Oau - O -
wp = —er(Ts — as) — (T — as) — 1003 + 1006 + dTs + o> Ty +ont G4 +oat Zg

O0To 0Z4 OTg

and the parameter estimator is given as
d= —Y[(ZT7 — a)T7 + (Tg — a5)Ts]

where

@1 = —C1T2

az = —caxal (B4 — 1) = Xa1 (T2 + 2.0071xo; + K2)

as = —caXg (T4 — 1) — C1X5 Ta

g = —ca(Zs — a2) — X21(T4 — 1) + % T +%;% Z4
a5 = —cs(Zs — a3) — Xoo(Zg — 1) + —g—g—g T +%§—z Z4

Suppose the initial conditions are g(0) = #(0) = (110.66°, 10%). The simulation results are
shown in Figure 3-1. It is clear that the link angles converge to the equilibrium point (115.730, 0)
on the constraint line. The rotor angles converge to (115°,0) to offset the gravity effects. The
estimation of the unknown parameter d converges to its true value 0.1 very quickly. The contact
force converges to the desired value 3.187 N. In the transient performance, the contact force is

always positive, which implies that the contact is maintained throughout the motion.
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Figure 3-1: Responses of the constrained manipulator with flexible joints
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3.5 Conclusion

The adaptive control problem has been solved for nonlinear DAE systems. Following the ap-
proach we developed in this chapter, we can design an adaptive controller for a nonlinear DAE
system with unknown parameters appearing linearly in both differential and algebraic equa-
tions. Our methodology consists of three algorithms, by which the original system has been
transformed to one equivalent system with lower triangular form. Adaptive backstepping is ap-
plied to design the adaptive controller, which guarantees the global asymptotic stability if the
change of coordinates is defined globally. The example is given to illustrate the methodology

proposed in this chapter.
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Chapter 4

Experimental Study: Set Point
Control of Parallel Robot

4.1 Introduction

In this chapter, one parallel robotic manipulator will be studied as an example of differential
algebraic equation (DAE) systems. The nonlinear controller is designed by the backstepping
technique and also implemented on the experimental system. The experimental system is shown
in Figure 4-1.

The mechanisms of parallel robots are also known as closed kinematic chains [5]. Figure
4-2 shows planar examples of a parallel robot and a serial robot. Different from serial robots,
the links of parallel robots are connected in series as well as in parallel combinations forming
one or more closed-link loops. Typically, not all the joints of parallel robots are actuated.
Generally, for parallel robots, the actuators are placed lower in the link chain. This makes the
moving parts lighter which leads to greater efficiency and faster acceleration at the end-effector.
Parallel robots also offer greater rigidity to weight ratio, which makes greater payload handling
capability for the same number of actuators. Parallel robots are more suitable for fast assembly
lines, flight simulators and robotics machining, etc.

A parallel robot can be considered as a DAE system. For a parallel robot with n dof and n’
joints, we can obtain a DAE system with n’ differential equations and n’ —n algebraic equations.

Through solving the DAE system, we can get an ODE system with n independent differential
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Figure 4-1: Parallel Robot
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Serial Robot
Parallel Robot

Figure 4-2: Parallel Robot and Serial Robot

equations and n independent state variables. In our case, n = 2 and n’ = 4, so we can get a
DAE system with four differential equations and two algebraic equations.

In this chapter, we are going to design a nonlinear controller by the backstepping technique
for the parallel robot based on the dynamical model derived in [5]. The designed controller
will also be implemented and both of the simulation and experiment results will be shown. For

comparison, the simulation and experimental results of the PD controller will be also shown.

4.2 Experimental Setup

The experimental system, parallel robot, is shown in Figure 4-1. It has four links connected
through revolute joints. Two of the links, Link 1 and Link 2 are actuated with DC motors while
the other two are passive. The motors are driven by two H-Bridge circuits, which are controlled
by PWM signals from the computer. The robot is controlled by PC with two DAQ (data
acquisition) boards (PCI-6024E and PCI-MIO-16E), which are plugged in PCI slots inside the
computer. These two DAQ boards are connected with two SCB-68 connector blocks through
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Driver Board

PWM

Connector Block DAQ Board PC

Figure 4-3: Diagram of the control system

shielded cables. The boards and connector blocks with cables are from National Instruments.

The motors are from Kollmorgen Motion Technologies Group with the gear ratio 99 to 1
and the peak torque 17.1 N-m. The optical encoders are built in the motors with the resolution
of 1000 pulses per revolution.

Position feedbacks of Link 1 and Link 2 are provided by the optical encoders. Two analog
low pass filters are used for filtering the signals from the encoders.

The controller is implemented by using Visual C++. The sampling period is controlled
by a timer in Visual C++. The controller is designed with feedback of link positions and link
velocities. Velocity feedbacks are calculated digitally based on the position measurements. Two

digital low pass filters are introduced for velocity calculation, which are given by

Vkt1 = (Pr41 — P +Tok) /(T +T) (4.1)

where v and vy are the angular velocity at the sampling instants k£ and k + 1, p and pgy
are the position measurements of the links at the sampling instants k and k + 1, respectively.
T is the sampling period, and 7 is the time constant set as 0.1.

In each sampling period, the computer obtains the current positions and velocities of Link 1
and Link 2, calculates the control input in terms of duty cycles of the PWM signals, and sends

the PWM signals to driver boards to control the DC motors. The whole control system works
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in the way illustrated in Figure 4-3.

In the experiment, we set the sampling period as 10 milliseconds, which is fast enough to
follow the movement of the robot and also adequate for the computer to finish reading signals
from the boards, calculating and sending signals back to the boards. The driver board’s voltage

is 15 volts, which is the maximum voltage that the driver board can provide for the DC motors.

4.3 Mathematical Model

The dynamical model of the robot, presented in [5], is described as follows

D'(¢)1+C'(¢,d)i+d(d) = dL(dIA+d (4.2)
0 = ¢(q) (4.3)
T T
whereq' = | ¢ ¢ q3 @ is the vector of the generalized coordinates, u’ = [ « 0 0 J

with u the torque vector of the motors , D'(¢') € R*** is the inertia matrix, C’ (¢',¢') €
R* represents the centrifugal and Coriolis term, and ¢’(¢') € R* is the gravity vector, ¢(q’)
represents the constraints by n’ —n = 2 independent algebraic equations, QS;[; (¢') is the Jacobian
matrix of ¢(q’), A is the vector of Lagrangian multipliers and ¢ (¢')\ represents the constraint

generalized force vector. ¢(q’) is at least twice continuously differentiable. The matrices D’ (¢'),

C'(¢,), 9(d), $(@) and ¢/ (¢) are given as follows
q

dii 0 diz O

, 0 dyo O dos
D({)= (4.4)
ds1 O dsz O

0 dio 0 du

higs 0 hi(¢g1+4¢3) O
Cld. i) = 0 hags 0 h2(qd2 + da) (4.5)
—hig1 O 0 0
0 —hag O 0 |
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(maly + maaq) cos(qr) + mals cos(qy + ¢3)

, (mala + maas) cos(gz) + maly cos(gz + qa)

mal3 cos(q1 + g3)

| maly cos(gz + qa)

, aj cos(qi) + az cos(q + q3) — ¢ — az cos(ga) — a4 cos(qa + qa)
#(g) = =0 (4.7)

a1 sin(q1) + assin(q1 + g3) — azsin(g2) — aqsin(g2 + ga)

where

din = mi(l1)?+mg ((01)2 + (13)% + 2a113 COS(Qs)) +0L+ 13
di3 = mg3 ((13)2 + ayls COS(Qg)) + I3
dop = m2(l2)2 + My ((a2)2 -+ (14)2 + 2asl4 cos(q4)) + Iy + Iy

dos = my ((14)2 + asly COS(q4)> + 1

dsi = dis

dzz = ms(l3)®+ 15
diz = dos

d = ma(l)?+ 14
hi = —maailzsin(gs)
hy = —maaalssin(gs)

As defined in Figure 4-4, ms, a;, and [; are the mass, length of link ¢ and distance to the
center of mass from the previous joint, respectively. The inertia of link ¢ about the line through
the center of mass parallel to the axis of rotation is defined as I;. The parameters corresponding
to Link 2 and Link 4 are similar to the parameters of Link 1 and Link 3. The value of those
parameters are measured and given in Table 4-1. The distance between the shafts of the two

motors is given by ¢ = 0.4240 m and the gravity constant is g = 9.81 m/s?.
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Figure 4-4: Link 1 and Link 3 of the parallel robot

Link i | m; (kg) | @; (m) | ; (m) | I (kg-m?)
1 0.1950 | 0.4600 | 0.3367 | 4.567 x 10~3
2 0.1950 | 0.4600 | 0.3367 | 4.567 x 1073
3 0.2538 | 0.4600 | 0.2400 | 8.626 x 1073
4 0.2538 | 0.4600 | 0.2400 | 8.626 x 1073

Tab 4-1 Link Parameters

Obviously, the system (4.2)-(4.3) is a DAE system. In the next section, both PD controller

and nonlinear stabilizing controller will be given for the system (4.2)-(4.3).

4.4 Controller Design

Considering the DAE system (4.2)-(4.3 ), we can convert this DAE system into the following

ODE system by the method introduced in Chapter 3. The equivalent ODE system (4.8) has

two independent controlled variables, ¢; and g2.

D(d)a+C(d,¢{)i+9(d)=u
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where

D(d) = p(d)TD'(¢)o(d) (4.9)

C(d,d) = pd)TC(d,d)p(d) + p(d)T D (¢)p(d) (4.10)

9(d) = o(d)7q(d) (4.11)
T

T
with ¢ = [ G @ @ Qs } and ¢ = [ q1 ¢q2 | and p(¢') and p(q') are given in (4.12) and
(4.14) below. At this point, in order to convert the original DAE system into the ODE system

(4.8), we also need p(q') and the expression of g3 and ¢4 in terms of ¢q; and g2, which are given

as follows.
0 0
, 4, |00
plg) =y (a) (4.12)
1 0
- 0 1 -
where
Yy (1,1) y(1,2) —azsin(qr +q3) agsin(gz + q4)
, V(2,1) 1¥e(2,2) agcos(qr+q3) —agcos(qz+ qa)
vold)=| ‘ (4.13)
1 0 0 0
0 1 0 0

with 1, (1,1) = —ay sin(q1) — a3 sin(q1 + g3), ¥y (1,2) = azsin(gz) + agsin(ge + q4), Yo (2,1) =
a1 cos(q1) +azcos(q1 + g3), ¥y (2,2) = —az cos(qz) — as cos(gz + ga).

p(d) = —v31) by (d,4)p(d) (4.14)

and ¢4, g3 are calculated as

2 2 _ 2
“ = tan-—1<B(Q1;Q2)> tan—t [ VAL @) + Blon @) - Clane)l) 0y g5
A(q1,92) Clq1, ¢)
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gz = tan™? <M(Q1’ @) +aasin(gz + Q4)) —q (4.16)
(g1, q2) + ag cos(ga + qa)

where

Alq, ) = 2a4X(q1,q2)

B(qi,q2) = 2a4p(q1,92)

Cla,a2) = (a3)?— (ad)® — Ma1,@2)* — (a1, q2)°
Maqi,q2) = azcos(ge) —ajcos(qr) +c¢
wlq,q2) = agsin(g2) — arsin(q)

Assign 1 = q1 — qf, To = qg — qg, T3 = ¢1, T4 = g2 with qf and q‘21 being the desired angle

of ¢; and g . Therefore, the system (4.8) is rewritten as

i1 = 3 (4.17)
By = w4 (4.18)
z3
= H(xy,z2,23,24) +v (4.19)
T4
T
where H(z1,%2,23,24) = | Hy(z1,%2,73,74) Ha(z1,72,73,74) = —D'({NC(d,¢)d -

D7 Y(¢')g(¢') and v is the new control input with v = [ v; vy |T = D71(¢')u. By applying

the backstepping technique to design an controller, the system (4.17)-(4.19) is guaranteed to

be globally asymptotically stable. This design is based on a recursive procedure. In each step,

a Lyapunov function candidate is constructed and by choosing a controller «, the derivative of

the Lyapunov function candidate is made negative definite. The design procedure is as follows:
Step 1: Choose the Lyapunov function candidate

1 1
i= 5(371)2 + 5(272)2
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Differentiating V; with respect to time yields
Vi= —c1(z1)? — ea(z2)® + 21(73 — 1) + T2 (24 — )
with c1, co are positive numbers and

@ = —CI1

Qg = —CT2
Step 2: Choose the Lyapunov function candidate
1 2,1 2
Va=V1+ 5(233 — o)+ §(CE4 — )

Differentiating V2 with respect to time yields

V2 = —c(1)? - ca(w2)? + 71(m3 — 1) + z2(24 — 2)
+(z3 — ) (Hy + v1— a1) + (24 — a2)(Hz + v2— d2)

= —c1(z1)? - ca(z2)? — ca(zs — )? — ca(za — 2)?
with ¢3, ¢4 are positive numbers and the controller v

S —c3(z3 — 1) — 71 — Hi+ oa (4.20)
Vg —C4($4 — a2) — x9 — Ho+ an

The control (4.20) makes the derivative of V2 negative definite, which means the correspond-
ing closed-loop system (4.17)-(4.19) and (4.20) is stable. The control input u is described by
v as

u=D(q ) (4.21)

Therefore, the system (4.8) is stabilized by the control input u.
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For comparison, we also give the PD control for the system (4.8) by

u=g(q%) + Kp(¢* — q) — Ku§

T
is the desired configu-

where K, and K, are selected to be diagonal matrix, ¢ = [ q¢ qg
ration and g(q?) is the gravity vector, which is calculated off-line.
As for experiments, the control input is not u, the torques applied to the joints. The direct
control input is the armature voltage of the DC motor. Therefore, in order to implement our
designed controller in terms of the torque of the motor, we need to convert the torque into the

armature voltage of the DC motor. The conversion formula is given as follows

u= g—g—t(Va — K.Gw)

where u is the torque applied at the joints, G = 99 is the gear ratio of the motor, K; is the
torque constant with the value 2.28 N-con/Amp, K, is the back EMF constant with the value
2.39 volts/kRPM, R is the armature resistance with the value 0.640 Ohms, w is the angular
velocity of the motor shaft and V; is the armature voltage of the motor we apply. Through the

armature voltage V,, we can control the real system from point to point.

4.5 Simulation and Experimental Results

Simulations and experiments are carried out for both PD controllers and nonlinear stabilizing
controllers on the parallel robot. Three sets of simulations and experiments are performed for
three configurations shown in Figure 4-5, Figure 4-6 and Figure 4-7 .

For the first set, the control objective is to achieve position control with PD controllers of
K, = diag(11,11) and K, = diag(2,2) and nonlinear stabilizing controllers of ¢; = 10, ¢ = 10,
c3 = 12 and ¢4 = 13. The initial configuration is set as ¢ = 150°, go = 160° as Figure 4-6 and
the desired configuration is ¢¢ = 90°, ¢4 = 100° as Figure 4-5. The gravitational term g(q?) is
calculated to be | —0.2404 —-0.801 T. The simulation results are shown in Figure 4-8 and
Figure 4-9. The experimental results are given in Figure 4-10 and Figure 4-11.

The simulations and experiments are also performed to achieve position control with the
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Configuration 1:
q1=90° gq==100°
q=-23° g+~=11°

Figure 4-5: Configuration 1 of Parallel Robot

Configuration 2:
gr150° qz=160°
q=96° q&~-55°

Figure 4-6: Configuration 2 of Parallel Robot
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Configuration 3
qr=120° =130°
Q=-60° g~—-24°

Figure 4-7: Configuration 3 of Parallel Robot

initial configuration of ¢, = 90°, g2 = 100°, the desired configuration of ¢¢ = 150°, ¢¢ = 160°,
and g(qd) = | —14273 —=1.8612 T. The control gains for PD controllers are kept the same
with K, = diag(11,11), K, = diag(2,2), but for the nonlinear stabilizing controllers, ¢; = 14,
cz = 14, c¢3 = 19 and ¢4 = 20 . The simulation results are provided in Figure 4-12 and Figure
4-13. The experimental results are shown in Figure 4-14 and Figure 4-15.

For the third set, the simulations and experiments are performed to achieve position control
with the initial configuration of q; = 90°, g2 = 100°, the desired configuration of ¢¢ = 120°,
qg = 1300 as Figure 4-7, and g(qd) =] —0.9880 —1.0916 T. This time, the control gain is
set as K, = diag(11,11), K, = diag(2,2) for PD controllers and ¢; = 14, ¢z = 14, ¢c3 = 15 and
¢4 = 20 for the nonlinear stabilizing controllers. The simulation results are shown in Figure
4-16, Figure 4-17. Figure 4-18 and Figure 4-19 provide the experimental results.

From the given results, we can see that the simulation and experimental results show that
both the nonlinear stabilizing controller designed by backstepping and the PD control work
well on this parallel robot. The experimental results fit well with the simulation results and

the transient responds, setting times are satisfactory.

The responses of the experiments are little slower than the simulations, which are due to
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the fact that, at the beginning, the expected control input voltages according to the simulations
are around 40 volts or higher, while the maximum voltage we can provide from the driver board
to the DC motor is only 15 volts. There are also some voltage drops in the circuits and the
actual output voltage of the driver boards are around 14.4 volts. Such phenomena exist for
both backstepping and PD control scheme.

The steady state control efforts in experiments are smaller than those in the corresponding
simulations, which is more obvious in the second and third sets of experiments due to different
steady state configurations. The existing friction that has not been considered in our model
is the main reason. Due to the existence of friction, there is no need of that high control to
balance the link’s gravitational torque.

Since the maximum voltage of the driver board is much smaller than the expected voltage,
it is reasonable that the control efforts last for around 0.3 seconds in the maximum voltage for
the first and second set of experiments. The lasting time is much smaller for the third set of
experiments, which is reasonable, considering that the initial error is only 30° for the third set
of experiments instead of 60° for the first and second set of experiments.

There exist the steady state errors about three to four degrees in the experimental results
for the second and third sets of experiments. This is caused by the inaccurate measurement for
some system parameters and another reason is the friction that has not been taken into account.
For the PD control scheme, the errors are caused directly by the gravitational compensation
term g(q%). The required gravitational compensations of the Configuration 2, 3 are much larger
than that of the first set. This is why there are no or quite small errors in the first set of
experiments. For backstepping control scheme, we can increase the control gains ¢, ¢2, ¢z and
¢4 to decrease the steady state errors. But considering large control gains will lead to high
armature current, the control gains can not be too large with our power supply’s maximum

current being 3.5 Amp. There must be a trade-off between the error and the armature current.

4.6 Conclusion

In this chapter, we design and implement a nonlinear stabilizing controller by the backstepping

technique on the parallel robotic system. The parallel robotic system is considered as a DAE
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Figure 4-8: Point to Point Control, Simulation Results: PD Scheme, from ¢; = 150°, go = 160°
to q‘f =909, qg =100°
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Figure 4-9: Point to Point Control, Simulation Results: Backstepping Scheme, from q; = 150°,
g = 160° to ¢f = 90°, ¢¢ = 100°
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Figure 4-11: Point to Point Control, Experimental Results: Backstepping Scheme, from ¢1 =
150, g2 = 160° to ¢¢ = 90°, ¢ = 100°
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Figure 4-13: Point to Point Control, Simulation Results: Backstepping Scheme, from g; = 90°,
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Figure 4-16: Point to Point Control, Simulation Results:
to ¢ = 120°, ¢ = 130°
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Figure 4-17: Point to Point Control, Simulation Results: Backstepping Scheme, from ¢; = 90°,
g2 = 100° to ¢f = 120°, g§ = 130°

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~ 120
(@]
[0}]
z : :
D’_‘ 110 ............. ............. ..............
S : :
2 | |
G 100. ............ ..............
9 : :
o :
= 90 :
0 2 4 6
Time (sec)
o 100 - j
4] .
(%] .
ks :
[}] N
z .
o :
© :
= :
Q .
S :
Q .
> =50 -
2 4 6
. Time (sec)
= 15
2z
‘: 10 .........................................
o)
°
E 5 ...........................................
©
3 of
8 :
g -5 R ;
0 2 4 6

Time (sec)

130

S j
@ .
z :
D‘_\l 120 [ - ..............
ks] :
g :
6 110. .......................... S
9 :
g |
P 100 i
0 2 4 6
Time (sec)
< 100 N
Q .
w .
ks :
[h} .
Z :
o :
° :
= :
Q .
2 .
&) :
= 70 2 4 6
. Time (sec)
= 15
R
QI 40k . - e d
3
°
2 |
ks
O bl ey
(o))
S
E " :
2 4 6

Time (sec)

Figure 4-18: Point to Point Control, Experimental Results: PD Scheme, from ¢; = 90°, ¢» =
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system. We convert this DAE system into an equivalent ODE system so that the backstepping
design method is applied. Both simulation and experimental results are performed for the
backstepping control scheme. For comparison, the PD control scheme is also performed for both
simulation and experiment. The experimental results for both backstepping and PD control
scheme are reasonable and almost agree with the simulations results. More sophisticated model
including friction and more accurate measurements of the system’s parameters shall improve
the performances. In the future work, we will take the adaptive control scheme on this parallel
robotic system, by which the system parameters can be estimated by the controller instead of

being measure physically.
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Chapter 5

Conclusion

In this thesis, two theoretical topics are studied and an practical application is performed.
The adaptive control for both MIMO nonlinearly parameterized systems with nested triangular
structure and a class of nonlinear DAE system with unknown parameters are studied based on
adaptive backstepping. The developed methodologies can guarantee the global stability of the
corresponding systems. As a practical application, the nonlinear stabilizing controller designed
by backstepping is implemented on a parallel robot. The simulation and experimental results
are given and analyzed. The performances of the controlled system are satisfactory.

Besides the theoretical derivation, physical examples maybe need to be found to illustrate
the developed methodology in Chapter 2 in the future work. In Chapter 3, we made several
assumptions that seemed a little bit strict. The release of those assumptions is challenging. As
for the set point control of the parallel robot, more sophisticated model including friction and
more accurate measurement will be taken into account. Adaptive control scheme will also be

taken to estimate the system parameters, which is expected to give better performances.
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