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ABSTRACT

Parallel robots have attracted more and more attention in recent years due to their
kinematical and mechanical advantages. However the complicated high nonlinear model
with unknown parameters and singularities make the control of a parallel robot much
more difficult than a serial robot. Nonlinear control has been made great progress since
backstepping technique was developed. Backstepping technique is a recursive design
procedure and feasible for lower triangular nonlinear systems. Moreover, the adaptive
backstepping is able to handle nonlinear systems with unknown parameters, which turns
out to be a suitable control design methodology for parallel robots.

The adaptive backstepping technique is applied to set point and tracking control of a
planar parallel robot in this thesis. The dynamic model of the robot is characterized by a
set of differential algebraic equations (DAESs) and further reduced to a set of ordinary
differential equations (ODEs). The inverse kinematics is also under investigation. For set
point control, a model-based adaptive controller is designed based on backstepping
technique, and an adaptive PD controller is also constructed for comparison. For tracking
control, adaptive backstepping controller is designed based on the model with unknown
parameters. The adaptive PD controller is also implemented for comparison. The
performances of the controllers are tested by experiments. Desired trajectories such as
circle, line, and square are tracked in experiments for two cases: with no load and with
load at the end effector.

It is shown that adaptive controllers can achieve less steady state errors in set point
control, and smaller tracking errors in tracking control than non-adaptive controllers,

especially when there is a load attached to the end effector.

Key Words: parallel robot, adaptive backstepping, nonlinear control, differential
algebraic equation (DAE) systems
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Chapter 1

Introduction

1.1 Background

Generally there are two main types of robot manipulators, which are serial manipulators and
parallel manipulators. Typically, links of serial robots are connected in series, thus forming
open-chain mechanisms and all their joints are actuated. The human arm is a good example of
a serial manipulator. On the other hand, links of parallel robots are connected in a combination
of both serial and parallel fashions, thus forming closed-chain mechanisms and not all their
joints are actuated. The actuators of parallel robots are placed on the base or close to the base,
which results in lighter moving parts. Consequently a parallel robot generally has the following
properties, such as high capacity of load for the same number of actuators, high accelerations at
the end-effector and high mechanical stiffness to weight ratio. Compared with the serial robots,
the inconveniences of parallel robots are complex dynamic model and presence of singularities
which lead to loosing control, even to a deterioration of mechanics. Thus the modeling and
controller design are appealed for a parallel robot control system.

In general, the model governing a parallel robot is highly nonlinear and a precise knowledge
of its parameters is not readily available. Adaptive backstepping is able to handle nonlinear
systems with unknown parameters, which appears to be a suitable control design methodology
for parallel robots. However, it should be noted that there has been no report on application
of the adaptive backstepping technique to control of parallel robots.

There is great progress in nonlinear control since backstepping technique is proposed by
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[15]. Backstepping is a recursive procedure that combines the choice of a Lyapunov function
with the design of feedback control and it can be applied to a class of nonlinear system called
"lower triangular” nonlinear system. Moreover adaptive backstepping can handle such a class
of nonlinear system with unknown parameters.

In this thesis, an adaptive backstepping-based control scheme is applied to set point and
tracking control for a planar 2-DOF (degree-of-freedom) parallel robot. By assuming that inertia
parameters and some geometric dimensions of the robot are not known precisely, an adaptive
backstepping controller is designed. For the purpose of comparison, an adaptive proportional
and derivative (PD) controller is designed as well. The performance of each controller is tested

by experiments.

1.2 Literature Review

In the past decades, many researchers have studied parallel mechanisms [26], [14], [7], [11], [3],
[30], and showed that parallel mechanisms have the potential advantages of high stiffness, high
speeds, low inertia and large payload capacities. Therefore, more and more researchers have
applied such mechanisms in different kinds of practical uses, such as aircraft simulator, robotic
machining, mining machines, pointing devices, and micro-positioning devices.

In general, modeling of parallel robots is more challenging than that of serial robots. In
[9], the modeling methods for parallel robots are classified into three categories. In the first
category, the dynamic model is derived for a special closed-chain or a closed-chain with a
particular structure. The dynamics of a 3-DOF spatial parallel manipulator with flexible links
is studied in [6]. [12} introduces a novel approach for the computation of the inverse dynamics
of a parallel manipulator. For those specific closed-chains, closed-form equations of motion are
possible to be derived explicitly in terms of the actuated joint variables. Thus the resulting
dynamic equations are similar to motion equations of open-chain structure. In this case, all
the control laws for open-chain mechanisms are applicable to closed-chain mechanisms with the
difference that the guaranteed (Lyapunov) stability conclusions will at best be local.

Using the method of the second category, the equations of motion are derived for general

closed-chain structures. The method is to first virtually cut open the closed-chains at passive
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joints and then derive the equations of motion of the resulting open-chains, which can be
expressed by n’ dependent differential equations. If the closed-chain mechanism has n DOF,
there will be n’ — n algebraic holonomic constraints corresponding to the virtually cut joints,
which, together with the n’ differential equations, compose the full equations of motion of the n
DOF closed-chain expressed as a set of differential algebraic equations. A set of n’ differential
equations results from eliminating the Lagrange multipliers introduced from the constraints in
the full equations, the number of which is larger than degrees of freedom, thus it is difficult to
extend the existing control laws of open-chains to closed-chains modeled based on the method of
the second category. The obtained equations are mostly suited for simulation and computation
but not best suited for a model-based control design, thus only the numerical results and
illustrative examples are given in [20], [25], and [22].

In [9] it is concluded that the method of the third category [5], [28] is preferable if a model-
based control design is employed, which has been proved in [10] based on tracking control. This
method starts with formulating the equations of motion in terms of n’ dependent generalized
coordinates and then eliminating n’ —n holonomic constraints to obtain n independent differen-
tial equations with n independent generalized coordinates corresponding to the number of DOF
of the parallel robot. Unfortunately, the resulting dynamic equations are not in an explicit form
of the independent generalized coordinates or actuated joints. Calculation of these implicit re-
lations in real time imposes a severe constraint on application of many well-established control
methods for serial robots to parallel robots. Therefore, some early attempts in control of paral-
lel robots focused on the use of non-model based control methods, such as proportional integral
derivative (PID) control [1], [16] and artificial intelligence-based algorithms [2], [8]. However, as
pointed out in [9], these methods have no guarantee of stability and performance. Some efforts
have been made to extend model-based control algorithms for serial robots to parallel robots.
The study reported in [13] proposed a parallel computational algorithm to speed up on-line
computation. In [4], the mass and inertia of the links were neglected in the dynamic model
in order to implement the computed-torque control. A PD plus simple gravity compensation
control law is proposed in [9] for set point control for a planar 2-DOF parallel robot. With the
proved skew symmetry property, this controller guarantees a local asymptotical stability. For

set point control the simple gravity compensation is a constant term which can be computed
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off-line to any degree of accuracy. In {18], the control problems are considered in the design stage
of a parallel robot to find an appropriate mechanical structure with a simple dynamic model,
which results in a simple control algorithm to achieve a satisfactory control performance. In
[29], a predictive functional control strategy is implemented for tracking control of a H4 parallel
robot. The dynamic model is simplified by neglecting the effect of arm mass, which greatly
facilitates the implementation of the controller.

Backstepping refers to a recent powerful approach for a design of stabilizing controllers for
nonlinear systems both for tracking and regulation purposes [17] since a Lyapunov function
for the closed loop system can be constructed systematically based on backstepping technique.
The adaptive version of those designs, with the tuning functions design, offers the possibility to
synthetize controllers for a wide class of nonlinear system with known strict-feedback structure
and unknown parameters in a recursive way.

In [15] a systematic procedure is developed for the design of new adaptive regulation and
tracking schemes for linearly parameterized system in strict feedback form, for which global
stabilization can be achieved with any type of smooth nonlinearities. Adaptive backstepping
technique has been applied to various fields. In [31} a nonlinear adaptive controller is designed
step by step for the field weakening area of a separately excited DC motor with unknown
parameters such as the inertia and load torque, and the simulation results show that the pro-
posed controller is robust to the parameter uncertainties. An adaptive backstepping controller
is proposed to control the mover position of a linear induction motor drive to periodic refer-
ence inputs in [19], and the controller possesses the nice transient control performance and is
robust for parameter variations and external force disturbances confirmed by both simulation
and experimental results.

Backstepping design technique has been applied to control serial robots and wheeled mobile
robots. Integrator backstepping technique is applied to trajectory tracking control for serial
robot manipulator in presence of parameters uncertainty and disturbance in [21] and [27] in-
corporating actuator dynamics. A backstepping approach for the design of discontinuous state
feedback controller is used for the design of the controller to stabilize a wheeled mobile robot
in [24] and an adaptive controller based on backstepping technique is proposed and applied to

a two-wheeled welding mobile robot to track a smooth curved welding path in [23].
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1.3 Thesis Overview

The thesis consists of six chapters. A general background on adaptive controller application
based on backstepping technique is discussed in the first chapter: Introduction. Chapter 2
gives the dynamic model and inverse kinematics of the planar 2-DOF parallel robot built for
experiments. Chapter 3 presents adaptive controller design procedures and simulation results
for set point control. Design of adaptive backstepping controller and adaptive PD controller
with compensation terms for tracking control is given in Chapter 4. Simulations are performed
to illustrate control performances of the adaptive backstepping controller and adaptive PD
controllers. Chapter 5 provides the experimental results for set point and tracking control.
Both adaptive and non-adaptive controller performances are discussed in both set point and
tracking control. In order to test the adaptability, the experiments are performed in both
without load and with load attached to the end effector. Chapter 6 concludes the thesis by
comparing the experimental results based on different controllers for set point and tracking

control and presents some proposals for future work.
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Chapter 2

Dynamic Model and Inverse

Kinematics

2.1 Dynamic Model

A schematic of a planar 2-DOF parallel robot is shown in Fig. 2-1 where m;, a;, and [; are
the mass, length of link 7 and the distance to the center of mass from the lower joint of link
1, respectively, I; denotes the mass moment of inertia of link ¢ with respect to a frame parallel
to the body-attached frame with the origin located at the center of mass. Joints ¢; and ¢y are
actuated while joints g3 and g4 are passive. In this thesis, the following factors are not taken
into account: friction between joints, motor dynamics, gear train backlash, and link elasticity.

The dynamical model of the robot, presented in [26], is described as follows:

D) +C'd, N +9(d) = o (2.1)
¢g) = 0 (2:2)
T
where ¢ = [ Qg g3 Q4 } is the vector of dependent generalized coordinates, v’ =

T
[ up uy 0 0 } with u; and uz torque applied on joints ¢; and gz, respectively, D'(¢') € R***
is the inertia matrix, C'(¢/,¢')¢’ € R* represents the centrifugal and Coriolis terms, and

d(¢) € R* is the gravity vector, ¢(q') represents the constraints of two independent alge-
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Figure 2-1: Schematic of a 2-DOF parallel robot.

braic equations which are at least twice continuously differentiable. Assume that the para-
meters m;, l;, and I; are not known precisely. For simplicity, let §; = mil? + m3a® + Iy,
02 = mol + myad + Iz, 03 = mal? + I3, 05 = myl + Iy, 05 = maayls, 05 = maasly,
07 = (mili + maai1)g, 0s = (mala + maaz)g, 09 = maslsg, and 019 = malsg (g = 9.81 m/s?)
denote the unknown parameters. Then, D'(¢"), C'(¢',¢'), ¢’(¢) and constraints ¢(¢’) can be

expressed as follows:

D'(¢)=

c'(¢,d) =

dit
0
d31

Ci1

€31

0
doo
0

da2

C22

C42

di3
0
ds3

0
dog
0

das |

C13 0

C24
0
0
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67 cos(q1) + 89 cos(q1 + g3)

g cos(g1) + B1o cos(qr + ¢3)
g(d) = 25)
B9 cos(q1 + ¢3)

| 010 cos(g2 + g4)

$1(d)

¢(q) = =0 (2.6)
$2(q)

where

diy = 61+ 03+ 205cos(g3)

dis = 634 605cos(g3)

dyp = 62+ 04+ 205 cos(qa)

d2a = 84+ 06cos(qs)

d31 = di3,d33 =03

dig = dpsg

dge = b4

a1 = —0ssin(gs)ds

c1i3 = —05sin(gs)(d1 + ¢s)

cyy = —0Ossin{(qs)gs

coa = —0gsin(qa)(da + da)

cst = Ossin(gs)ds

cgz = Bgsin(gs)do

#1(q") = aicos(qr)+ azcos(q +q3) — ¢ — azcos(qga) — ag cos(ga + qa)
$o(¢") = aysin(qr) + azsin(q + g3) — azsin(ga) — agsin(gz + g4)
It can be found that cg; :ﬁ:l —12- (—Q‘—iq—? + 59%_1 — 8_?5) G, where k, 7 are from 1 to 4, thus D'(q’) —
2C' (¢, ¢') is skew symmetric.
8
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Equations (2.1) and (2.2) are a set of differential algebraic equations (DAEs) in the depen-
dent generalized coordinates ¢’. The independent generalized coordinates g or active joints are

related to ¢’ by:

q1 1 0 00
q= = q (2.7)
q2 0100

In order to obtain a formulation that is suitable for model-based control, a reduced model in
the independent generalized coordinates is derived following the procedure given in [9] and is

given below:

D(g)a+C(¢,¢Yg+9(d) = wu (2.8)
¢ = p(d)d (2.9)
¢ = olq) (2.10)
where:
Dy D /
D) = | | =0d)"D(d)p(d) (2.11)
_D21 Dao
Cy C , ,
cd,d) = | " TP =pd)TC W, D)) +o(d)TD (@)pld)  (212)
_C'21 Caa
o) = | 7| =e@) () (2.13)
_92
(o0 [1 o ]
, R 0 1
p(d) = v, (@) = (2.14)
10 P31 P32
L0 1] | P Pa |

Ye11 Y12 Vg3 Vg4

qul(q,) _ Yy Vg2 Vo3 Yg2a (2.15)
1 0 0 0

0 1 0 0
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p(d') _
P31

| P41

with

Yy
Yy12
Yy13
Yya
PYyra1
Yyra2
Ygra3
Vgraa

P32

Paz |

=~ g g (d,d)e(d) (2.16)

—a1sin(gy) — agsin(qy + g3)
as sin(gz) + agsin(gz + qu)
~agsin(q; + g3)

assin(gz + qa)

a1 cos(q1) + ag cos(q1 + g3)
—az cos(gz) — aq cos(ga + q4)
az cos(q1 + g3)

—ay cos(gz + q4)

It should be noted that D(q') — 2C(¢',¢’) is also skew symmetric [9].

The elements Dj, Cjx and g; with j, k =1,2 in D(¢’), C(¢',¢’) and g(¢’) can be expressed

as Dojkev Cojk@ and gojG with

Dojk
Coj
Goj

©

where

Doin1

Do113

: Dyir1 Dojka Dyjx10 }

: Cojkr Cojk2 Cojk10 }

| 9oi1 Gog2 9oj10 }

- 01 02 10 ] (2.17)

= (1+p5)°

10
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D0114
Do1s
Do123
Do124
Doy25
D128
Doao2
D223
D224
D206
Co113
Cot14
Co11s
Co123
Co124
Cor25
Co126
Co213
C10214
C’0215
Co216
Co223
Co224
Co226

Gol7

9019

Pil

2(1 + p31) cos(gs)

Do213 = (1 + p31)p32

Dozia = (1 + paz)par

Do215 = p3 cos(gs)

Do216 = pay cos(qa)

1

sz

(1+ pg)’?

2(1 + pg2) cos(qa)

(1 + p31)p31

Pa1Pa1

P31 cos(gs) — (1 + ps1)gssin(ga)
(1+ p31)P32

Pa1P42

P32 c08(q3) — (41 + §3)p3a sin(gs)
padzsin(qa)

P32P31

(L + pgg)oa

p32¢1 sin(gs)

a1 c0s(qs) — (42 + G4) pyy Sin(ga)
P32032

(1 + paz)is2

Paz €08(q4) — (1 + pyp)da sin(ga)
cos(q1)

(1 + ps1) cos(q1 + g3)

11
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gollo = p41c08(q2 + qa)

go28 = COS(QQ)
go20 = paacos(qr+q3)
go210 = (14 py2)cos(gz + qa)

and all the other elements are zero.

The dependent coordinates g3 and ¢4 can be determined from the geometric relationship

which is not linear in terms of ¢1 and g2. Thus o(g) in Eq. (2.10) is given by

T
¢ =0(q)=| 01 02 03 04

where

gy = q

o2 = @

o3 = tan '((u+ assin(gz + ga))/(\ + ascos(qz + 1)) — @

o4 = =Htan"}(VA2+ B2-C2/C) +tan Y(B/A) - g
with

A = 2a4)\
B = 2a4u
C = ag — aZ — A2 2
= agcos(q) —ajcos(qy) +c
g = azsin(gz) — a1 sin(qr)

It should be noted that the reduced model is an implicit model since the parameterization
¢’ = o(q) is implicit, and it is only valid locally due to the presence of singularity.

The parameter values for the parallel robot built for the experiments are shown in Table

12
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2-1.The distance between the two motor shafts is ¢ = 0.4240 m.

Table 2-1. Link Parameters

Link i { m; (kg) | a; (m) | I; (m) | I; (kgm?)
1 0.1950 | 0.4600 | 0.3367 | 4.567 x 1073
2 0.1950 | 0.4600 | 0.3367 | 4.567 x 1073
3 0.2538 | 0.4600 | 0.2400 | 8.626 x 10~3
4 0.2538 | 0.4600 | 0.2400 | 8.626 x 10732

The nominal values of the unknown parameters, ©,,, can be calculated based on Table 2-1

as follows:

On = 0.0804 0.0804 0.0232 0.0232 0.0280 0.0280 1.7894 1.7894 0.5975 0.5975

2.2 Inverse Kinematics

(2.18)

The inverse kinematics is needed to ensure that the end effector can track different trajectories

in non-singular region. Let (x,y) represent coordinates of the end effector defined in Fig. 2-

2 where the range of ¢; is defined from —= to w. Then, the link angles q1,¢2,¢3,94 can be

determined by using the inverse kinematics. From Fig. 2-2, the following equations can be

obtained:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢
= ajcos(qi)+ascos(q1+g3) — =

2

= aysin(q1)+ assin (g1 + g3)

¢
= azcos(g2) +ascos(qa+q4) + 3

= agsin(ge) + agsin (g2 + q4)

13

(2.19)
(2.20)
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(2.22)



Figure 2-2: The coordinates defined for the inverse kinematics investigation.

Then the region of the possible positions of the end effector is shown in Fig. 2-3 and the singular
points are also shown in this figure, which satisfy det [dqu (q')] =sin(g1+g3—q2—q4) = 0.
Those trajectories in the reachable region without crossing or approaching the singular points
are possible to be tracked, which means that q; + g3 — ¢2 — g4 # naw with an integer n. The
reachable region is shown in the shaded area A in Fig. 2-3.

With the position of the end effector known, the link angles ¢; can be determined by using
inverse kinematics. As a matter of fact, summing the squares of Eq. (2.19) and Eq. (2.20)
yields

2
C
(CL‘ -+ 5) + y2 = a% + a% + 2aiag cos ((J3) (2-23)

Solving Eq. (2.23) for g3 gives

+¢ 2+ 2 _ .2 .2
q3::tcos_1<(a7 2) 2@?@3 % (2.24)

14
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Figure 2-3: The reachable region of the end effector and the singular points. Dotted area —
reachable region, solid area — singular region, shaded area A — the region of interest.
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With the similar procedure, from Eq. (2.21) and Eq. (2.22), g4 can be obtained as

c\2 .2 .2 2
—3) Yy —as—a
g4 = £ cos™t ((a: 2) 2;:@4 2 4) (2.25)

Since g1 and ¢ are in [0, 7], sin (g;) and sin (¢2) should be positive and determined by

sin(q1) = 4/1—cos?(q1) (2.26)

sin(gz) = /1 —cos?(qq) (2.27)

Substitute Eq. (2.26), Eq. (2.27) into Eq. (2.19), Eq. (2.21) separately and take square of both

sides of the equations to get

/_113 COS2 (ql) + Blg Ccos (ql) + 6_'13 = 0 (2.28)
Agycos? (qo) + Bagcos (q2) +Coqg = 0 (2.29)
where
A3 = a}+a? +2a1a3cos (q3)
Bis = -2 (a: + —g) (a1 + agcos (q3))
=~ c\? 2 2
Ciz3 = (iE + 5) — ajsin” (g3)
Ay = 5+ al+ 2aza4cos (qa)
_ ¢
By = -2 (m — —2—> (ag + ascos (qa))
= c\? 2.2
Coy = (x — —2—> ~ ajsin® (gq)
Finally solving Eq. (2.28) and (2.29) for ¢; and g2 produces
—Bi3 + /B%; — 4413C13
-1
= oS - 2.30
a1 ( 9415 ( )
—Baa & /B2 — 4454C4
g2 = cos ™t ( 2 (2.31)
2A24

16
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Chapter 3

Adaptive Set Point Control

3.1 Controller Design

3.1.1 Adaptive Backstepping Controller Design

In order to formulate Eq. (2.8) into a form suitable for set point control using the adaptive
backstepping technique, assign r, = q; — qf, To =qy— qg, T3 = §1, T4 = g2 With q‘f and qg being
the desired angles for ¢; and g9, respectively. Let © be the estimation of ©. A lower triangular

form is obtained as:

3.71 = I3 (31)

:j:g = T4 (3.2)

pig)| | = u-Ci-g@) (33)
T4

Following the backstepping design procedure, first, choose the Lyapunov function candidate:

1 1
1= Em% + 595% (3.4)
By introducing virtual controllers: o1 = —cyz1, @2 = —cpza, where ¢; and ¢z are positive
17
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numbers, Vi can be rewritten into:
; 2 2
Vi= —c1z] — oz + 21(23 — 1) + x2(Tq — 2)

Now, choose the Lyapunov function candidate:

T
11 23 — o T3 — Q1 1 AT A
Va=Vid+z| ° p|™ +-(6-6) r(e-6) (3.5)
2 Ty — 02 T4 — 2 2
where I' =diag| v, v, --- 7 | 8 a positive definite matrix. Note that D is positive

definite. Differentiating V2 with respect to time yields:

Vy = —c12? — coxd + 11 (23 — ) + To(T4 — 2)
T T
T3 — @ T3 — & 1] 23—« .| T3~
+ 3 1 D 3 1 L1 3 1 b 3 1
T4 — Q09 1;4—022 2 T4 — X9 T4 — (X9
T
-6 r(e-6) (3.6)

As pointed out in [9], the matrix D — 2C is skew symmetric. As a result, we can have:

T
1] z3— : . T3 — Qi
5 (D(Q’) ~2C(d, q/)) =0 (3.7)
T4 — Q2 T4 — (X2
Substituting (3.3), (2.17) and (3.7) into (3.6) yields:
T
. 9 9 T3 — ] T1 LT A
Vi = —c12? — o2k + u+ +A|-6 T(0-0) (3.8)
Ty — 0 T2

where A = A,© with

A= a1 Dot1+ a2 Dotz + a1Co11 + a2Co12 + gor (3.9)

a1 Dogi+ g Dooa + a1Co21 + a2C022 + g2

18
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Apparently, if the controller is chosen to be:

U c3(x3 —oy)+1x .
T B B Y- (3.10)

Ug ca (g — ) + 22

and the unknown parameters’ updating law is chosen to be:

A r3 —
6=r-1AT | P (3.11)
T4 — X2

where c3 and c4 are positive numbers, the derivative of V5 is negative semi-definite, that is,
Vy = —c12? — cpx? — c3(w3 — an)? — ca(zg — ap)? (3.12)

which means that the corresponding closed-loop system is stable.
The corresponding non-adaptive controller based on backstepping technique, namely BS,
can be obtained by letting © = ©, thus the control effort u satisfy

U cs3lrs—a1)+zx
w— 1 _ 3(3 1) 1 _A

U cy (T4 — az) + 22
3.1.2 Adaptive PD Controller Design

It is worthwhile comparing the controller of Eq. (3.10) with an adaptive PD controller. Choose

the Lyapunov function candidate:

1 T 1. .1 -~ NT o
V=2 (0— ") K (a— ) + 2" Di+ 5 (Opa — 6a) T (64— 634) (3.13)
with positive definite matrices K, zdiag[ kpt  kp2 } and I'pg :dia,g[ Ypdi Vpdz 0 Ypds },
and Opg = [ 63 B4 --- 01 } Differentiating V' with respect to time yields:
: d T . 1 T - Ty e LT A
V=(g-4°) Kpi+5¢"Di+ " Di= Op Tpa (O — 65a) (3.14)
19
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According to [9] D — 2C is skew symmetric, and D is symmetric. So we can get:
D=cCc+CT (3.15)

Substitute (3.3), (2.17) and (3.15) into (3.14) to get:

. T
. T ~ ~
V=(qg-¢*) Kpd+d" [+ Apa = Opq Tpa (Opa— Opa) (3.16)

. (Cuat — Cota) — G
where Apd = Apdoepd with Apdo = % q2( 02l 012) 9o

41(Co12 — Co21) — go2
Apparently, if the controller is chosen to be:

Ul . A
U= =-Ky ¢—Kp(q—qa) — Mpdo - Opa (3.17)
Uz

and the unknown parameters’ updating law is chosen to be:
Opa=Tpg Alod (3.18)

where K, = diag[ ko1 koo } is a positive definite matrix, the derivative of V is negative

semi-definite, i.e.,

V=—¢"K, (3.19)

which means that the corresponding closed-loop system is stable.
The corresponding non-adaptive PD controller with compensation terms, namely PD, can
also be gained by letting @pd = Opq, thus the control effort u satisfy
u1 .
U= :“Kv'q_Kp(q—Qd)_Apd
U2
It is worthwhile to note that the dimension of ©p4 is two less than that of ©, so the adaptive
PD controller needs two less unknown parameter estimators than the adaptive backstepping

controller. As a result, the adaptive PD controller is less complex and needs less computation

20
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Configuration 1: Configuration 2:
q1=90° q2=90° ql=150° g2=160
q3=-27° q4=27° B=-96° q4=55°

Figure 3-1: Configurations 1 and 2

time than the adaptive backstepping controller.

3.2 Simulation Results

Fig. 3-1 shows two configurations of the robot. It is not difficult to check when the robot moves
from configuration one to configuration two and back to configuration, the robot does not enter
singularity region. Simulation on controlling the robot from configuration one to configuration
two and back to configuration one is carried out.

The initial values of the unknown parameters © for set point control based on adaptive

backstepping are set to

9(0)=[0.1 01 01 01 01 01 1 1 1 1}

instead of its nominal value ©, while ©,4 (0) is given by

6pd(0)=[0.1 0.1 01 01 1 1 1 1}

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



instead of its nominal value

Opan = | 0.0232 0.0232 0.0280 0.0280 1.7894 1.7894 0.5975 0.5975

Fig. 3-2 to Fig. 3-4 show the simulation results for the adaptive backstepping controller
with y; = 30,4 =1to 7, vg = 60, vyg = 150, and ~y;5 = 150. The gains ¢, ¢2,¢3, ¢4 are adjusted
by trial and error in order to obtain better control performances.

Case 1: Fig. 3-2 shows the results with gains of ¢1, ¢2 = 3 and ¢3, ¢4 = 10.

Case 2: Fig. 3-3 shows the results with gains of ¢1, cp =30 and ¢3, ¢4 = 1.

Case 3: Fig. 3-4 shows the results with gains of ¢1, co = 2.1 and ¢3, ¢4 = 7.2.

The adaptive PD controller is simulated with v,4; = 10,7 = 1 to 8. The gains kp;, kvi,t = 1,2
are selected according to a standard second order system characteristics, that is, ky; = w% and
kvi = 2Cwn, where ( is the damping ratio and w, is the natural frequency.

Case 1: Fig. 3-5 shows the results with gains of kp; = 31 ky; = 10,7 =1, 2.

Case 2: Fig. 3-6 shows the results with gains of kp; =31 ky; = 1,1 =1, 2.

Case 3: Fig. 3-7 shows the results with gains of kp; = 16 ky; = 7.2, = 1,2.

It is not difficult to see that for both adaptive controllers Case 2 is much more underdamping
than Case 1, which results in obvious oscillations during the transient process even though the
response is much quicker than other two cases. For each case the steady state errors are
listed in Table 3-1 corresponding to the movements from Configuration 1 to 2 (downward), and
Configuration 2 to 1 {(upward), respectively, in which ABS stands for adaptive backstepping
controller, and APD represents adaptive PD controller. It can be seen that there exist larger
steady state errors in Case 3 for both controllers due to smaller proportional gains. In summary,

the controller gains provided in Case 1 produce the best control performances.

22
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Table 3-1 Steady State Error For Downward (D) and Upward (U) Movement

q1 q2
Movement | Case Number | ABS APD ABS APD
D 1 -1.400 | -1.509 | -1.128 | -1.290
D 2 -1.002 | -1.509 | -1.004 | -1.290
D 3 -2.697 | -2.528 | -2.169 | -2.528
U 1 0.386 | 0.389 | -0.386 | -0.388
U 2 0.393 | 0.389 | -0.394 | -0.388
U 3 0.746 | 0.758 | -0.746 | -0.757

23
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Figure 3-2: The simulation results for set point control based on the ABS in Case 1. (a) g1, (b)

q2, (¢) dgq1/dt, (d) dga/dt, (e) Vay, and (f) Vaq
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Figure 3-7: The simulation results for set point control based on the APD in Case 3. (a) ¢,
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Chapter 4

Adaptive Tracking Control

4.1 Controller Design

In this section, two adaptive controllers are designed: adaptive backstepping controller and
adaptive PD controller, to achieve the tracking control. Each controller consists of a control

law and an update law for the parameter estimation.

4.1.1 Adaptive Backstepping Controller Design

In order to change Eq. (2.8) into a form suitable for tracking control using the non-adaptive
backstepping technique, set z1 = ¢; — qf, To = q3 — qg, T3 = q) — rj‘f, T4 = (o — qg with qf,
¢$ being the desired angles of g1, g2, ¢, d$ being the desired angular velocities of g1, g2, G5,
§¢ being the desired angular accelerations of g1, g2, respectively. A lower triangular form is

obtained as:

Cbl = I3 (4'1)
j?g = T4 (4'2)
d: ..d
Sl o= @ w-c@di-o@) - | D (43)
T4 a2

Based on the lower triangular form shown by Egs. (4.1), (4.2), and (4.3), and following the
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backstepping design procedure, first, choose the Lyapunov function candidate:

- 1, 1
Vi =-a% + =z3 4.4
17 571 + 52 (4.4)
By introducing virtual controllers: oy = —c121, g = —coze, where ¢; and ce are positive
numbers,V; can be rewritten into:
Vi= —clw% - czac% + 21 (23 — 1) + 2 (T4 — a2) (4.5)

Let © be the estimation of ©, and choose the second Lyapunov function candidate:

T
_ _ i T3 — Q1 r3 — 1 1 ANT ~
h=Vi+3 D(q) +§(e—@) r(e-o6) (4.6)
T4 — Q2 T4 — Q3
where I' =diag| v, v, --- 7o | is a positive definite matrix with design parameters +;,

i = 1, ..., 10. Note that D (q') is positive definite. Differentiating V2 with respect to time

yields:
Vz = —clr% — Cz:l?% + (:133 — al) + T2 (:E4 — a2)
T T
T3 - Q1 T3 — oy 1| z3—o : nl T3—o
D (q/) . . + 5 D (q/,q/)
T4 — (X9 Ty — X2 T4 — Q2 T4 — (2
. T
-6 r(e-o) (4.7)

According to [9] the matrix D — 2C is skew symmetric, we have:

T
1| 23— : . . I3 —
5 (D(d.d)—2C(d,4)) =0 (4.8)
T4 — (X9 T4 — 09
Substituting (2.17), (4.3) and (4.8) into (4.7) yields:
T T
- r3 — & T A A
Vi=—cul—cad+ | | |u+|  |+A|-6 T(0-8) (4.9)
T4 — Q9 x9
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where A = A,© with

(021 +fi‘f> Do11 + (022 +Qg) D12 + (a1 + df) Co11 + ((12 + dg) Co12 + go1

o= (4.10)
(021 -H'if) Doy + (022 +d§i> Do + (041 + q'ii) Co21 + (az + Qg) Coz2 + 902
Apparently, if the controller is chosen to be:
U c3 X3 —1)+x N
T I B (4.11)
Uy c4 (T4 — ag) + T2
and the unknown parameters’ updating law is chosen to be:
A _ T3 — oy
6=T"1AT (4.12)
T4 — Q2

where ¢3 and ¢4 are positive numbers, the derivative of V5 is negative semi-definite, that is,
% 2 2 2 2
V2= —C1T] — CaT5 — C3 (933 - al) — C4 (1‘4 - Ozg) (4.13)

which means that the corresponding closed-loop system is stable.
The corresponding non-adaptive controller based on backstepping technique can be obtained
by letting © = ©, thus the control effort u satisfy

U c3lxs —a1)+x
y— 1 _ 3(3 1) 1 A

Us ¢4 (g — @2) + 22
4.1.2 Adaptive PD Controller Design

It is worthwhile comparing the controller of (4.11) with an adaptive PD controller. Choose the

Lyapunov function candidate:

V=3 (0-0") K (a-a) + 5@~ @ D(@) G-+ (0-6) Tra(0-6) (41)

N =
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with positive definite matrices K, :diag[ kpt  kp2 ] and I'pg =diag Ypd1 Ypdr0 |- Dif-
ferentiating V with respect to time yields:
= (¢—¢ p(d—da) +5(4=4a)" D(q,4) (G~ da) + (4~ da)” D(¢) (4~ da)
.T
-0 Tp(6-0) (4.15)
According to [9] D — 2C is skew symmetric. Thus we can get:
1("TD"’ 2C (¢',d")) (G —dq) =0 4.16
5 (@ —da) (D(¢,d)-2C(d,d)) (d - da) = (4.16)
Substitute (2.17), (4.3) and (4.16) into (4.15) to get:
. T - T
V=(a-9%) Kp(@—da) +(i—da)" (u+Apa)—© Tpy(0-0) (417)
‘jcliDoll + quOIQ + q‘(liColl + ngOIQ + gol
where Apg = Apgo®, with Apgo = —
3 Doa1 + @4 Doz2 + ¢3Con1 + §§Co22 + go2
Apparently, if the controller is chosen to be:
Ul N . N
u= =—Ky- (¢~ da) — Kp(q—qa) = Apdo - © (4.18)
U2
and the unknown parameters’ updating law is chosen to be:
O=T} Apao (4 — da) (4.19)

where K, = diag{ kui koo } is a positive definite matrix, the derivative of V is negative

semi-definite, i.e.,

V=—(4—da)" Ko (d~ da) (4.20)

which means that the corresponding closed-loop system is stable.

The corresponding non-adaptive PD controller, can also be gained by letting 6 = 0, thus
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the control effort v satisfy

U= =Ky (§—da) — Kp(q—qq) — Apa
U2

4.2 Simulation Results

The two controllers ABS and APD were compared for tracking control by simulations. The
desired trajectories to be tracked are circle, line, and square. The initial values of the unknown

parameters O are set to © (0)

©0)=|01 01 01 01 01 01 1 1 1 1

which are determined by introducing some deviations around the nominal values 6, in (2.18).
Those non-adaptive controllers, BS and PD, perform similarly to ABS and APD, which are not

shown in the thesis any more.

4.2.1 Circle Tracking

For the circular trajectory, the tracking speed is specified by the angular velocity 27 f with which
the end effector is rotating about the center of the circle, where f is the tracking frequency of
the end effector. The desired circle is centered at (0, 0.85 — ) based on the coordinates defined
in Fig. 2-2, where r is the radius of the circle. It can be checked that this circle does not contain
any singular points and the area encompassed by the circle is at least 5 centimeters away from
the singular region.

Fig. 4-1 to Fig. 4-6 show the results of tracking a circle with r = 0.2 m and f = 0.2 Hz
based on the ABS controller with different gains ¢;, ¢ = 1 to 4.

Case 1: Fig. 4-1 and Fig. 4-4 show the results with gains of ¢;, ¢co = 20 and c3, ¢4 = 80.

Case 2: Fig. 4-2 and Fig. 4-5 show the results with gains of ¢, ¢z = 50 and ¢3, ¢4 = 32.

Case 3: Fig. 4-3 and Fig. 4-6 show the results with gains of ¢;, c; = 10 and ¢3, ¢4 = 40.

Similar to set point control, the gains for the adaptive PD controller are also selected based

on the standard second order system characteristics, that is, kp; = w2 and ky; = 2Cwn.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Case 1: Fig. 4-7 and Fig. 4-10 show the results with gains of ky; = 1600, k,; = 80,7 = 1, 2.
Case 2: Fig. 4-8 and Fig. 4-11 show the results with gains of kp; = 1600, ky; = 32,7 = 1,2.
Case 3: Fig. 4-9 and Fig. 4-12 show the results with gains of kp; = 400, k,; = 40,1 =1, 2.
By comparing Fig. 4-1, Fig. 4-2, and Fig. 4-3, it can be seen that the errors at the bottom
of the circles in Case 2 are smaller than the other two cases, but the errors at the top of the
circle are larger than Case 1 when the ABS controller is applied. Moreover, it follows from
Fig. 4-7, Fig. 4-8, and Fig. 4-9 that for the adaptive PD controller, there are no noticeable
differences between Case 1 and Case 2, but the errors in Case 3 is bigger than other cases.
The average 2-norm values of the tracking errors based on different controllers are listed in
Table 4-1. It is seen that there exist larger errors in Case 3 for both controllers due to smaller

gains. The best scenario is given by Case 1.

Table 4-1 Average 2-Norm of Tracking Error Based On ABS and APD

¢1 (degree) g2 (degree)
ABS APD ABS APD
Case 1 | 0.864x1073 | 0.623x1072 | 1.304x1073 | 0.618x10™3
Case 2 | 1.608x1073 | 1.072x1073 | 2.352x1073 | 1.066x1073
Case 3 | 2.991x1073 | 3.149x1072 | 5.104x1073 | 3.101x1073
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Figure 4-1: The end effector trajectory of tracking a circular trajectory in Case 1 based on the
ABS in simulation. Dashed line — the desired, solid line — the actual.
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Figure 4-2: The end effector trajectory of tracking a circular trajectory in Case 2 based on the
ABS in simulation. Dashed line — the desired, solid line — the actual.
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Figure 4-3: The end effector trajectory of tracking a circular trajectory in Case 3 based on the
ABS in simulation. Dashed line — the desired, solid line — the actual.
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Figure 4-5: The simulation results for tracking a circle in Case 2 based on the ABS. (a) q1, (b)
g2, (¢) dq1/dt, (d) dgz/dt, (¢) Vay, and (f) Vas.
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Figure 4-6: The simulation results for tracking a circle in Case 3 based on the ABS. (a) g1, (b)
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Figure 4-7: The end effector trajectory of tracking a circular trajectory in Case 1 based on the
APD in simulation. Dashed line -— the desired, solid line — the actual.
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Figure 4-8: The end effector trajectory of tracking a circular trajectory in Case 2 based on the
APD in simulation. Dashed line — the desired, solid line — the actual.
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Figure 4-9: The end effector trajectory of tracking a circular trajectory in Case 3 based on the
APD in simulation. Dashed line — the desired, solid line — the actual.
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Figure 4-11: The simulation results for tracking a circle in Case 2 based on the APD. (a) q1,
(b) g2, (c) dg1/dt, (d) dgo/dt, (e) Vai, and (f) Vas.
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Figure 4-12: The simulation results for tracking a circle in Case 3 based on the APD. (a) q1,
(b) g2, (c) dg1/dt, (d) dga/dt, (e) Va1, and (f) Vao.
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4.2.2 Line Tracking

For line tracking, the desired linear trajectory is from (—0.312,0.7) to (0.288,0.7) based on the
coordinates defined in Fig. 2-2 and the desired tracking speed is 0.1 m/s. It can be checked
that this line does not contain any singular points and is at least 35 centimeters away from the
singular region. Fig. 4-13 shows line tracking by the adaptive backstepping controller while

Fig. 4-14 is for the adaptive PD controller. The simulation results show that ABS performs as

well as APD.
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Figure 4-13: The simulation results for tracking a line based on the ABS. (a) ¢1, (b) g2, (¢)
dq1/dt, (d) dga/dt, (e) Vay, and (f) Vas.
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Figure 4-14: The simulation results for tracking a line based on the APD. (a) ¢1, (b) g2, (¢)
dqi/dt, (d) dga/dt, (€) Vaq, and (f) Vas.
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4.2.3 Square Tracking

For square tracking, the four apexes are at (—0.1,0.6), (0.1,0.6), (0.1,0.8) and (—0.1, 0.8) based
on the coordinates defined in Fig. 2-2, and the desired tracking speed is 0.1 m/s. It can be
checked that this square does not contain any singular points and the area encircled by this
square is at least 25 centimeters away from the singular region. Fig. 4-15 to Fig. 4-16 show
the results based on the ABS while Fig. 4-17 to Fig. 4-18 show the results based on the APD.
The simulation results show that ABS performs as well as APD.
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Figure 4-15: The end effector trajectory of tracking a square trajectory based on the ABS in
simulation. Dashed line — the desired, solid line — the actual.
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Figure 4-16: The simulation results for tracking a square based on the ABS. (a) ¢1, (b) g2, (¢)
dq1/dt, (d) dgz/dt, (e) Vay, and (f) Vas
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Figure 4-17: The end effector trajectory of tracking a square trajectory based on the APD in
simulation. Dashed line — the desired, solid line — the actual.
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Figure 4-18: The simulation results for tracking a square based on the APD. (a) ¢1, (b) g2, (c)
dqi/dt, (d) dgz2/dt, (e) Vay, and (f) Vas.
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Chapter 5

Controller Implementation and

Experimental Results

5.1 Experimental Setup

Fig. 5-1 shows a photo of a planar 2-DOF parallel robot built for the purpose of this study.
Links 1 and 2 are driven by two direct current {(DC) gear head motors, respectively, and links
3 and 4 are not actuated. The parallel robot is controlled by a computer-based control system.

The computer control system is composed of four main parts: the computer, two data
requisition (DAQ) boards, two motor drivers, and two DC motors. The Pentium III personal
computer is used for reading the pulses from the encoder through two analog low pass filters and
DAQ boards, computing control signals, and sending control signals through DAQ boards to
motor drivers to control the two DC motors. The DAQ boards (PCI-6024E and PCI-MIO-16E,
NI) act as interface between the computer and the motor drivers and encoders. The motor
driver is built with the H-Bridge circuit for converting PWM signals from the DAQ boards
to armature voltages. The two gear head DC motors are driven by two H-Bridge circuits
on the motor drivers and the optical encoders built in DC motors provide angular position
measurements of links 1 and 2. The motors are made by Kollmorgen Motion Technologies
Group. The gear ratio is 99 : 1 and the peak torque is 17.1 N-m. The optical encoders of the
motors has the resolution of 1000 pulses per revolution. The values of the link parameters are

given in Table 2-1. The distance between the shafts of the motors is ¢ = 0.4240 m.

o4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5-1: Photo of the 2-DOF robot.
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Angular velocities of links 1 and 2 are calculated digitally based on the position measure-

ments. A digital low pass filter is used for the velocity calculation, which is given by:

Vg1 = (Pry1 — Pk +70) /(T +T) (5.1)

where v and vg1 are the angular velocities at the sampling instants k and &+ 1, px and pr4+1
are the angle measurements of the links at the sampling instants k and k£ + 1, respectively, T is
the sampling period, and 7 is the time constant set to 0.1.

As for experiments, the control inputs are not torque applied to the joints. The direct
control inputs are the armature voltages of the DC motors. Therefore, in order to implement
the designed controllers in terms of motor torque, the computed torque is converted into the
armature voltages of the DC motors. The conversion formula is given as follows:

u; = %(Vai - K.Guw;),i=1,2 (5.2)
where u; is the torque applied by the motor, V,; is the armature voltage, G = 99 is the gear
ratio of the motor, Ky = 0.02282 N - m/Amp is the torque constant, K, = 0.02282 V/ (rad/s)
is the back electromotive force (EMF) constant, R = 0.640 Ohms is the armature resistance,
and w; is the angular velocity of the gear shaft. The maximum voltage of the driver board is
15 volts.

In the experiment, a sampling period of 0.8 millisecond was used. In each sampling period,
the computer obtains the current positions and velocities of links 1 and 2, calculates the arma-
ture voltages in terms of duty cycles of the PWM signals, and sends the PWM signals to the
driver boards to control the DC motors.

To compensate the effect of backlash between gears in the two motors, a voltage compen-
sation is applied in the experiments. When the computed armature voltage is larger than 0.01
volts, the armature voltage used in experiment is increased by 0.05 for motor 1 and 0.35 for

motor 2; when the computed armature voltage is less than —0.01 volts, the armature voltage

used in experiment is increased by —0.65 for both motors.
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5.2 Experimental Results for Set Point Control

Recall Fig. 3-1 which shows two configurations of the robot. The robot moves from configura-
tion one to configuration two (downward) and back to configuration one (upward).
In the set point control experiments, for the ABS controller, the initial values of the unknown

parameters © are set to

@(0):[0.08 0.08 0.02 0.02 0.03 003 1.8 1.8 0.6 0.6]

and for the APD control, the initial values of the unknown parameters ©,4 are set to

®pd(0)=[0.02 0.02 0.03 003 1.8 1.8 0.6 0.6]

To test the adaptability of both adaptive controllers, a 100 gram load was attached to the
end effector of the parallel robot.

Fig. 5-2 to Fig. 5-5 show the experimental results of the ABS controller with ¢; = 3, ¢ = 3,
c3=10,¢4 = 10,7y, =30,7=1to 7, v = 60, 79 = 150, and ;5 = 150 and the APD controller
with the controller parameters ky; = 35, kpz = 35, ky1 = 11, ky2 = 11, and vp4 = 10, i = 1
to 8, respectively. The set point control is also implemented based on non-adaptive controller
based on backstepping technique and PD plus gravity, and the Coriolis and centrifugal terms
compensation. The same ¢; (i =1 to 4) , kpj, and kyj, (7 =1 to 2) are used for non-adaptive
controllers.

Fig. 5-2 to Fig. 5-3 and Fig. 5-4 to Fig. 5-5 are the results without and with load based
on adaptive controllers, respectively. It can be seen that when there is a change in the system
parameters caused by the load change, both adaptive controllers can achieve no more than
1.5° steady state errors. The steady state errors and the average steady state error for each
movement and each controller, ABS BS APD and PD, are listed in Table 5.1 and Table 5.2
separately.. When there is an additional load attached to the end effector, adaptive controllers

can achieve less steady state errors than those non-adaptive controllers.
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Table 5-1 Steady State Error For Set Point Control

q1 (degree) g (degree)
Movement / load (g) | ABS | BS | APD | PD | ABS BS | APD | PD
Downward/ 0 0.7924 | 0.8360 | 0.2215 | 0.6767 | 0.9269 | 0.8360 | 0.6860 | 0.9014
Upward / 0 0.4111 } 0.1598 | 0.3771 | 0.1420 | 0.1420 | 0.1893 | 0.1125 | 0.2934
Downward/ 100 0.1858 | 1.0804 | 1.4840 | 1.9676 | 0.0913 | 0.8614 | 0.0695 | 0.0978
Upward/ 100 0.6402 | 3.2184 | 0.7675 | 0.9929 | 0.1161 | 0.1925 | 0.5416 | 0.4725

Table 5-2 Average Steady State Error For Set Point Control

Average Errors (degree)
Movement / load (g) | ABS BS APD PD
Downward/ 0 0.8597 | 0.8360 | 0.4538 | 0.7891
Upward / 0 0.2766 | 0.1746 | 0.2398 | 0.2182
Downward/ 100 0.1386 | 0.9709 | 0.7768 | 1.0327
Upward/ 100 0.3782 | 1.7055 | 0.6546 | 0.7327
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Figure 5-2: The results of set point control without load. (a) ¢1 based on the ABS, (b) ¢1
based on the APD, (c¢) g2 based on the ABS, and (d) g2 based on the APD. Dashed line — the
desired, solid line — the actual.
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Figure 5-3: The error of ¢; and g2 without load. (a) gq14 — g1 based on the ABS, (b) g14 — ¢1
based on the APD, (c¢) gaqg — g2 based on the ABS, and (d) g2y — ¢2 based on the APD.
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the APD, (c) ¢2 based on the ABS, and (d) g2 based on the APD. Dashed line — the desired,
solid line — the actual.
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Figure 5-5: The error of g; and g2 with load. (a) q14 — ¢1 based on the ABS, (b) q14 — ¢1 based
on the APD, (c) g24 — g2 based on the ABS, and (d) gag — ¢2 based on the APD.
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5.3 Experimental Results for Tracking Control

The four controllers were implemented for tracking control, the ABS, the BS, the APD, and
the PD. The desired trajectories to be tracked are circle, line, and square. The controller
parameters are chosen as follows. For the ABS and the BS, ¢; = 20, ca = 20, ¢3 = 80, and
c4 = 80. For the APD and the PD, k;; = 1600, ky = 1600, ky1 = 80, and k2 = 80. For the
adaptive controllers (ABS and APD), v; = 30, i =1 to 7, yg = 60, 74 = 150, and ;9 = 150.

In the tracking control experiments, the initial values of the unknown parameters © are set to

©(0)=|0.08 008 0.02 0.02 0.03 003 1.8 1.8 0.6 0.6
To test the adaptability of the adaptive controllers, some loads were attached to the end effector.

5.3.1 Circle Tracking

For circle tracking, the desired circle placement and desired tracking speed used here are the
same as in Section 4.2. Four radii were used: r = 0.05, 0.1, 0.15, and 0.2 m, and three tracking
frequencies were tested: f = 0.05, 0.1, and 0.2 Hz. It can be checked that these circles do not
contain any singular points and the areas encompassed by the circles are at least 5 centimeters
away from the singular region. The following four sets of experimental results are shown in
figures, in which the load attached to the end effector is 100 g.

Case 1: Fig. 5-6 to Fig. 5-9 show the tracking results for the circle with r = 0.05 and
f=10.05.

Case 2: Fig. 5-10 to Fig. 5-13 give the results for tracking a circle with r = 0.2 and f = 0.05.

Case 3, Fig. 5-14 to Fig. 5-17 demonstrate circle tracking with » = 0.05 and f = 0.2.

Case 4: Fig. 5-18 to Fig. 5-21 exhibit the tracking performance with the circle of r = 0.2
and f =0.2.

From these figures, it is not difficult to see that the tracking errors increase with larger
radius or higher tracking frequency.

The norms of the tracking circle errors and the average of the tracking errors’ norms with
various radii, frequencies and loads are given in Table 5-3 to Table 5-8. For each radius and

frequency the errors are given in the following order, no load, 100 g load, 161 g load and 261
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g load. From Tables 5-3 to 5-8, it is hard to see which controller gives better performance and
there is not significant difference between no load test and with load test when tracking circles
with small radii or at low tracking frequency However the advantages of adaptive controllers
are obvious in tracking a large circle and at high tracking speed, especially when there is a load
attached to the end effector. Comparing the results of the adaptive controllers with those of
non-adaptive controllers, the smaller tracking errors are shown in bold format.

Adaptive controllers need much more time to calculate the control effort, which will result
in negative influence in the experimental results, especially for small circles and low tracking
speeds in no load test. When the radii of the desired circle and the tracking speed increase, the
advantages of adaptive controllers are obvious in the load test. The smaller tracking errors can
be achieved by adaptive controllers when there is a heavier additional load attached to the end
effector, especially when the parallel robot intends to track a circle with large radius and high
frequency. Comparing the results from load test with the results from no load test, the norms

of tracking errors of adaptive controllers increase less than those of non-adaptive controllers.
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Figure 5-6: The results of tracking a circular trajectory in Case 1 without load. (a) the ABS,
(b) the BS, (c) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-7: The tracking error of q; and ¢o for the circular trajectory in Case 1 without load:
(a) g1 — q1 based on the ABS, (b) ¢14 — ¢1 based on the BS, (¢) ¢1g — ¢1 based on the APD,

(d) g14 — ¢1 based on the PD, (e) gaq — g2 based on the ABS, (f) g4 — g2 based on the BS, (g)
¢2d — q2 based on the APD, and (h) gog — g2 based on the PD.
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Figure 5-8: The results of tracking a circular trajectory in Case 1 with load. (a) the ABS, (b)
the BS, (c¢) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-9: The tracking error of ¢; and g¢o for the circular trajectory in Case 1 with load: (a)
q1d — q1 based on the ABS, (b) ¢14 — q1 based on the BS, (¢) q14 — q1 based on the APD, (d)
q1d — g1 based on the PD, (e) ¢g2g — g2 based on the ABS, (f) ¢g2¢ — ¢2 based on the BS, (g)
gaq — q2 based on the APD, and (h) gaq — g2 based on the PD.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-0.2 -0.1 0 01 02 0.2 -0.1 0 01 02
x (m) x (m)

-02 -0t 0 01 02 0.2 -0.1 0 01 02
x (m) x (m)

Figure 5-10: The results of tracking a circular trajectory in Case 2 without load. (a) the ABS,
(b) the BS, (c) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-11: The tracking error of ¢; and ¢o for the circular trajectory in Case 2 without load:
(a) g1 — q1 based on the ABS, (b) q14 — q1 based on the BS, (c) ¢14 — g1 based on the APD,
(d) 14 — q1 based on the PD, (e) gag — g2 based on the ABS, (f) gay — g2 based on the BS, (g)
@24 — q2 based on the APD, and (h) gay — ¢2 based on the PD.
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Figure 5-12: The results of tracking a circular trajectory in Case 2 with load. (a) the ABS, (b)
the BS, (c¢) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-13: The tracking error of ¢; and g9 for the circular trajectory in Case 2 with load:
(a) 14 — ¢1 based on the ABS, (b) giq — ¢1 based on the BS, (c¢) ¢i4 — ¢1 based on the APD,

(d) g14 — g1 based on the PD, (e) gog — g2 based on the ABS, (f) goq — g2 based on the BS, (g)
@24 — g2 based on the APD, and (h) gaq — g2 based on the PD.
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Table 5-3. The Norms of Tracking Circle Errors

at f = 0.05 Hz with Different Controllers and Circle Radii

£=0.05 Hz g1 (degree) g2 (degree)

r(m) / load(g) | ABS BS APD PD ABS BS APD PD
0.05/0 9.6773 10.1668 | 8.9826 | 9.5528 12.817 | 12.3420 | 12.5900 | 12.4275
0.05 / 100 11.4879 | 10.6450 | 11.1612 | 10.7253 | 16.9555 | 16.0715 | 16.2636 | 17.0593
0.05 / 161 12.5090 | 11.9298 | 12.4440 | 12.6267 | 17.6126 | 16.8336 | 18.8909 | 17.7438
0.05 / 261 13.4038 | 14.0760 | 14.5037 | 14.1142 | 20.9580 | 19.7260 | 22.4735 | 19.6430
01/0 14.2549 | 14.9761 | 13.8097 | 14.3092 17.4950 | 17.3841 | 17.7268 | 17.3200
0.1 /100 16.7974 | 16.4818 | 16.6078 | 16.6197 | 23.7062 | 22.5968 | 22.6431 | 23.7274
0.1/ 161 17.9706 | 17.3125 | 17.9917 | 17.8787 | 24.3977 | 24.3036 | 26.3363 | 25.3855
0.1 /261 20.3599 | 19.9698 | 20.7737 | 20.7043 | 29.8095 | 28.4155 | 31.7409 | 28.2703
0.15/0 19.3585 | 19.1693 | 18.6362 | 19.9475 | 21.5342 | 21.3604 | 21.9035 | 21.7665
0.15 / 100 21.7893 | 21.4424 | 21.2988 | 21.1773 | 29.9689 | 28.4184 | 28.5961 | 29.1667
0.15 / 161 23.4758 | 22.8140 | 23.3992 | 23.2517 | 31.8915 | 31.0577 | 34.3338 | 32.7344
0.15 / 261 26.0329 | 25.5379 | 25.8343 | 25.9281 | 39.5663 | 37.4643 | 42.4979 | 37.5174
02/0 25.3285 | 25.2606 | 24.2149 | 26.1350 | 24.7362 | 23.2537 | 24.4715 | 24.2378
0.2 / 100 27.1548 | 27.5782 | 27.4446 | 28.0907 | 33.6891 | 33.3109 | 33.3480 | 33.4573
0.2 /161 29.5642 | 29.0670 | 29.1630 | 29.0957 | 39.9839 | 36.2254 | 37.0543 | 37.5631
0.2 / 261 31.7791 | 32.1678 | 32.5090 | 33.2724 | 44.6722 | 41.8624 | 45.2928 | 43.7665
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Table 5-4. The Average Norms of Tracking Circle Errors

at f = 0.05 Hz with Different Controllers and Circle Radii
{=0.05 Hz Average Errors (degree)
r(m) / load(g) | ABS BS APD PD
0.05/0 11.2472 | 11.2544 | 10.7863 | 10.9902
0.05 / 100 14.2217 | 13.3583 | 13.7124 | 13.8923
0.05 / 161 15.0608 | 14.3817 | 15.6675 | 15.1853
0.05 / 261 17.1809 | 16.9010 | 18.4886 | 16.8786
0.1/0 15.8750 | 16.1801 | 15.7683 | 15.8146
0.1 /100 20.2518 | 19.5393 | 19.6255 | 20.1736
0.1/ 161 21.1842 | 20.8081 | 22.1640 | 21.6321
0.1 /261 25.0847 | 24.1927 | 26.2573 | 24.4873
015/0 20.4463 | 20.2649 | 20.2699 | 20.8570
0.15/100 25.8791 | 24.9304 | 24.9475 | 25.1720
0.15 / 161 27.6837 | 26.9359 | 28.8665 | 27.9931
0.15 / 261 32.7996 | 31.5011 | 34.1661 | 31.7228
02/0 25.0324 | 24.2572 | 24.3432 | 25.1864
0.2 / 100 30.4220 | 30.4446 | 30.3963 | 30.7740
0.2 /161 34.7741 | 32.6462 | 30.3963 | 33.3294
0.2 /261 38.2257 | 37.0151 | 38.9009 | 38.5195
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Figure 5-14: The results of tracking a circular trajectory in Case 3 without load. (a) the ABS,
(b) the BS, (¢) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-15: The tracking error of ¢; and g, for the circular trajectory in Case 3 without load:
(a) q14 — q1 based on the ABS, (b) q14 — ¢1 based on the BS, (c) q14 — ¢1 based on the APD,

(d) qiq — ¢1 based on the PD, (e) gag — g2 based on the ABS, (f) g2g — ¢2 based on the BS, (g)
g2d — g2 based on the APD, and (h) gaq — g2 based on the PD.
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Figure 5-16: The results of tracking a circular trajectory in Case 3 with load. (a) the ABS, (b)
the BS, (¢) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-17: The tracking error of ¢; and ¢y for the circular trajectory in Case 3 with load:

(a) g14 — g1 based on the ABS, (b) g14 — ¢1 based on the BS, (¢) ¢14 — ¢1 based on the APD,

(d) g14 — ¢1 based on the PD, (e) g2q — g2 based on the ABS, (f) g2g — g2 based on the BS, (g)
¢2d — 2 based on the APD, and (h) gzq4 — ¢2 based on the PD.
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Figure 5-18: The results of tracking a circular trajectory in Case 4 without load. (a) the ABS,
(b) the BS, (c) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-19: The tracking error of ¢; and gz for the circular trajectory in Case 4 without load:
(a) q1¢ — q1 based on the ABS, (b) q14 — ¢1 based on the BS, (¢) q14 — ¢1 based on the APD,

(d) g14 — q1 based on the PD, (e) gag — g2 based on the ABS, (f) goq — g2 based on the BS, (g)
g2d — g2 based on the APD, and (h) gag — g2 based on the PD.
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Figure 5-20: The results of tracking a circular trajectory in Case 4 with load. (a) the ABS, (b)
the BS, (c) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-21: The tracking error of ¢; and ¢, for the circular trajectory in Case 4 with load:
(a) ¢1¢ — q1 based on the ABS, (b) qiq — ¢1 based on the BS, (c) q14 — g1 based on the APD,

(d) q1da — q1 based on the PD, {e) gag — g2 based on the ABS, (f) g24 — g2 based on the BS, (g)
@24 — g2 based on the APD, and (h) goq — g2 based on the PD.
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Table 5-5. The Norms of Tracking Circle Errors

at f = 0.1 Hz with Different Controllers and Circle Radii

f=0.1 Hz q1 (degree) g2 (degree)
r(m) / load(g) | ABS BS APD | PD ABS BS APD PD
0.05/0 13.3303 | 13.9583 | 13.5526 | 13.8856 | 15.9025 | 15.5717 | 15.8563 | 15.6828
0.05 / 100 14.1092 | 14.2841 14.5868 | 13.9304 | 19.1460 | 18.4733 | 19.4476 | 19.2779
0.05 / 161 15.8536 | 15.7814 | 15.9229 | 15.8975 | 21.4469 | 20.4738 | 22.4738 | 21.1455
0.05 / 261 17.0320 | 17.0984 | 17.2991 | 16.9053 | 23.9651 | 23.3258 | 23.5461 | 23.4933
01/0 21.0923 | 21.7993 | 21.1088 | 21.6077 | 22.9516 | 22.8734 | 23.8435 | 23.9962
0.1 /100 22.3061 | 22.0770 | 22.8010 | 22.7638 | 27.5086 | 27.5753 | 27.9461 27.8490
0.1 /161 24.4998 | 24.3750 | 24.3679 | 24.4337 | 30.4539 | 31.5143 | 31.4998 | 30.1806
0.1 /261 26.0395 | 26.6331 | 25.0687 | 26.7818 | 34.6253 | 33.9757 | 36.0918 | 34.2551
015/0 28.5865 | 29.0920 | 28.5584 | 29.1245 | 30.0482 | 29.7383 | 30.4563 | 30.2596
0.15 / 100 29.8701 | 29.4884 | 29.7317 | 30.2696 | 37.4490 | 37.4578 | 36.7600 ;| 36.2170
0.15 / 161 31.5307 | 33.2696 | 30.9478 | 32.6916 | 40.1011 | 40.4486 | 39.7049 | 41.2521
0.15 / 261 34.0374 | 35.0476 | 34.8055 | 36.2841 | 47.5395 | 47.5604 | 48.2512 | 48.6393
02/0 37.4209 | 38.0717 | 36.8181 | 39.9114 | 34.5624 | 34.3471 | 36.7947 | 37.0917
0.2 / 100 37.0743 | 38.1955 | 37.2032 | 38.7533 | 44.0338 | 42.5040 | 43.2365 | 43.8519
0.2 /161 42.4050 | 41.8295 | 40.4493 | 41.0791 | 47.8825 | 46.8907 | 49.2206 | 48.9343
0.2 / 261 42.6786 | 43.6144 | 44.0015 | 44.6222 | 52.0922 | 53.9586 | 57.8091 | 52.9764
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Table 5-6. The Average Norms of Tracking Circle Errors

at f = 0.1 Hz with Different Controllers and Circle Radii
f=0.1 Hz Average Errors (degree)
r(m) / load(g) | ABS BS APD PD
0.05/0 14.6164 | 14.7650 | 14.7045 | 14.7842
0.05 / 100 16.6276 | 16.3787 | 17.0172 | 16.6042
0.05 / 161 18.6503 18.1276 | 19.1984 | 18.5215
0.05 / 261 20.4986 | 20.2121 | 20.4226 | 20.1993
01/0 22.0220 | 22.3364 | 22.4762 | 22.8020
0.1 /100 24.9074 | 24.8262 | 25.3736 | 25.3064
0.1/ 161 27.4769 | 27.9447 | 27.9339 | 27.3072 ;
0.1/ 261 30.3324 | 30.3044 | 30.5803 | 30.5185
015/0 29.3174 | 29.4152 | 29.5074 | 29.6921
0.15 / 100 33.6596 | 33.4731 | 33.2459 | 33.2433
0.15 / 161 35.8159 | 36.8591 | 35.3264 | 36.9719
0.15 / 261 40.7885 | 41.3040 | 41.5284 | 42.4617
02/0 35.9917 | 36.2094 | 36.8064 | 38.5016
0.2 /100 40.5541 40.3498 | 40.2199 | 41.3026
0.2 /161 45.1438 | 44.3601 | 44.8350 | 45.0067
0.2 /261 47.3854 | 48.7865 | 50.9053 | 48.7993
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Table 5-7. The Norms of Tracking Circle Errors

at f = 0.2 Hz with Different Controllers and Circle Radii
f=0.2 Hz g1 (degree) g2 (degree)
r(m) / load (g) ABS BS APD PD ABS BS APD PD
0.05/0 20.5738 | 21.0759 | 20.1326 | 21.9709 | 22.0201 | 21.7119 | 21.0062 | 21.6628
0.05 / 100 21.5723 | 22.6521 | 22.0990 | 22.3875 | 23.9511 | 24.0999 | 25.3657 | 24.8289
0.05 / 161 23.4274 | 23.2146 | 23.4818 | 23.6710 | 27.1643 | 26.1233 | 26.7804 | 26.2534
0.05 / 261 23.3712 | 24.8063 | 24.4320 | 26.3249 | 29.2008 | 28.7704 | 29.3043 | 28.8645
01/0 34.8719 | 35.6543 | 33.7293 | 36.6083 | 35.3430 | 35.3901 | 34.3924 | 36.3389
0.1 /100 35.3580 | 36.7548 | 34.8632 | 36.2909 | 39.0723 | 39.9743 | 38.3818 | 38.6734
0.1/ 161 38.4451 | 39.4483 | 36.3933 | 38.6871 | 43.3818 | 43.6099 | 43.3520 | 42.3060
0.1/ 261 40.0852 | 41.2499 | 39.3806 | 40.3366 | 46.2579 | 46.8492 | 47.5575 | 45.6447
0.15/0 46.7107 | 46.0188 | 47.1770 | 48.7560 | 46.5369 | 45.6803 | 47.2657 | 47.8796
0.15 / 100 51.0805 | 52.4516 | 49.5659 | 54.0793 | 56.4757 | 55.5808 | 53.7377 | 57.0942
0.15 / 161 52.5648 | 54.0737 | 50.9708 | 51.6276 | 58.6531 | 60.6645 | 56.2147 | 56.0200
0.15 / 261 56.7268 | 54.6750 | 55.3109 | 59.1308 | 63.3346 | 63.2048 | 64.7716 | 65.0673
02/0 65.1866 | 67.6567 | 63.9666 | 67.1130 | 66.6977 | 62.6557 | 60.7594 | 62.5053
0.2 / 100 61.2315 | 66.6963 | 67.1193 | 68.6362 | 63.3729 | 68.2227 | 70.6589 | 70.7680
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Table 5-8. The Average Norms of Tracking Circle Errors

at f = 0.2 Hz with Different Controllers and Circle Radii
f=0.2 Hz Average Error (degree)
r(m) / load(g) | ABS BS APD PD
0.05/0 21.2970 | 21.3939 | 20.5694 | 21.8169
0.05 / 100 22.7617 | 23.3760 | 23.7324 | 23.6082
0.05 / 161 25.2959 | 24.6690 | 25.1311 | 24.9622
0.05 / 261 26.2860 | 26.7884 | 26.8682 | 27.5947
01/0 35.1075 | 35.5222 | 34.0609 | 36.4736
0.1 /100 37.2152 | 38.3646 | 36.6225 | 37.4822
0.1/ 161 40.9135 | 41.5291 | 39.8727 | 40.4966
0.1/ 261 43.1716 | 44.0496 | 43.4691 | 42.9907
015/0 46.6238 | 45.8496 | 47.2214 | 48.3178
0.15 / 100 53.7781 | 54.0162 | 51.6518 | 55.5868
0.15 / 161 55.6090 | 57.3691 | 53.5928 | 53.8238
0.15 / 261 60.0307 | 58.9399 | 60.0413 | 62.0991
0.2/0 65.9422 | 65.1562 | 62.3630 | 64.8092
0.2 / 100 62.3022 | 67.4595 | 68.8891 | 69.7021
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5.3.2 Line Tracking

For line tracking, the desired line used here is the same as in Section 4.2. It can be checked

that this line does not contain any singular points and is at least 35 centimeters away from the

singular region. Fig. 5-22 to Fig. 5-23 are for the case without load while Fig. 5-24 to Fig.

5-25 are for the case with 100 gram load. Comparing the results from load test with the results

from no load test, the norms of tracking errors of adaptive controllers increase less than those

of non-adaptive controllers.

0.705

0.685

0.68

0.675

0.4 -0.2 0 0.2

Figure 5-22: The results of tracking a linear trajectory without load. (a) the ABS, (b) the BS,
(c) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-23: The tracking error of ¢; and g, for the linear trajectory without load: (a) 14 — g1

based on the ABS, (b) q14 — ¢1 based on the BS, (¢) ¢14 — q1 based on the APD, (d) 14 — ¢1

based on the PD, (e) gaq — g2 based on the ABS, (f) g2q — ¢2 based on the BS, (g) g24 — g2 based
on the APD, and (h) 24 — g2 based on the PD.
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Figure 5-24: The results of tracking a linear trajectory with load. (a) the ABS, (b) the BS, (c)
the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-25: The tracking error of q; and gz for the linear trajectory with load: (a) g1 — @1
based on the ABS, (b) ¢14 — g1 based on the BS, (¢) q14 — ¢1 based on the APD, (d) g14 — @1
based on the PD, () g2q — g2 based on the ABS, (f) gog — g2 based on the BS, (g) g2q4 — g2 based
on the APD, and (h) gz4 — g2 based on the PD.
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5.3.3 Square Tracking

For square tracking, the desired square used here is the same as in Section 4.2. It can be checked
that this square does not contain any singular points and the area encircled by this square is
at least 25 centimeters away from the singular region. Fig. 5-26 to Fig. 5-27 show the results
without load while Fig. 5-28 to Fig. 5-29 show the results with 100 gram load. Comparing
the results from load test with the results from no load test, the norms of tracking errors of

adaptive controllers increase less than those of non-adaptive controllers.
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Figure 5-26: The results of tracking a square trajectory without load. (a) the ABS, (b) the BS,
(c) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-27: The tracking error of ¢; and gy for the square trajectory without load: (a) 14 — @1
based on the ABS, (b) g14 — q1 based on the BS, (¢) q14 — ¢1 based on the APD, (d) ¢14 — 1
based on the PD, (&) g2q — g2 based on the ABS, (f) ¢g24 — g2 based on the BS, (g) g2q4 — ¢2 based
on the APD, and (h) g24 — g2 based on the PD.
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Figure 5-28: The results of tracking a square trajectory with load. (a) the ABS, (b) the BS,
(c) the APD, and (d) the PD. Dashed line — the desired, solid line — the actual.
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Figure 5-29: The tracking error of g1 and ¢, for the square trajectory with load: (a) 14 — @1
based on the ABS, (b) 14 — ¢1 based on the BS, (¢) ¢14 — ¢1 based on the APD, (d) q1qa — ¢
based on the PD, (e) gaq — g2 based on the ABS, (f) g2g — g2 based on the BS, (g) g2q — g2 based
on the APD, and (h) goq — g2 based on the PD.
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The norms of the errors for the tracking line and square and the average of the tracking

errors’ norm without and with load are shown in Table 5-9 and 5-10 separately, where Traj.

stands for Trajectory. It can be seen that when there is a change in the system parameters, the

adaptive backstepping controller can achieve tracking errors with smaller norm values in most

cases.

Table5-9. The Norms of Tracking Line and Square Error Based On Different Controllers

q1 (degree) g2 (degree)
Traj./load (g) | ABS BS APD PD ABS BS APD PD
Line / 0 60.4127 | 60.7254 | 60.2202 | 62.2550 | 50.7545 | 50.5922 | 50.4511 | 50.6989
Line / 100 66.7663 | 68.4194 | 72.2895 | 72.4075 | 53.1071 | 53.5801 | 52.1231 | 52.1197
Square / 0 84.7476 | 86.0015 | 86.9251 | 88.1923 | 81.5424 | 82.0528 | 82.3448 | 83.5541
Square / 100 | 93.3803 | 95.4894 | 98.9047 | 103.0862 | 86.0076 | 87.6588 | 89.1881 | 90.3474

Table 5-10. The Average Norms of Tracking Line and Square Error Based On Different Controllers

Average Error (degree)

Trajectory/load (g) | ABS BS APD PD

Line / 0 55.5791 | 55.6588 | 55.3357 | 56.4770
Line / 100 59.9367 | 60.9998 | 62.2063 | 62.2636
Square / 0 83.1450 | 84.0272 | 84.6350 | 85.8732
Square / 100 89.6940 | 91.5741 | 94.0464 | 96.7168
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

An adaptive controller based on backstepping technique and an adaptive PD controller are
applied to set point control of the planar 2-DOF parallel robot. The designed controllers
guarantee the stability of the closed-loop system and are able to handle parameter uncertainties.
The experiments have been conducted to compare four controllers: adaptive backstepping, non-
adaptive backstepping, adaptive PD and PD plus compensation terms. The results have shown
that all the controllers perform similarly in no load test, but adaptive controllers can achieve
less average steady state error in with load test. The steady state errors are no more 1.5°,
which is satisfactory since the backlash exists in the DC motors and the friction has not been
taken into account in the controller design process.

Two backstepping based controllers: non-adaptive backstepping controller and adaptive
backstepping controller, have been presented for tracking control of the same parallel robot.
Both controllers guarantee the stability of the closed-loop system. The adaptive controller
based on backstepping technique is able to handle parameter uncertainties even though the
parameters’ estimations don not converge to their real values. The PD controller and adaptive
PD controller have been also applied to the parallel robot for comparison with the backstepping
design method. The backstepping controller is a nonlinear controller while the PD controller
is a linear controller with Coriolis and centrifugal terms, and gravity compensation. The ABS

and APD demand more computation time than those non-adaptive controllers, which leads to
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the difficulty in real time control of a parallel robot with high degree of freedom in practice.

The experiments for tracking control have been conducted to compare four controllers:
adaptive backstepping, non-adaptive backstepping, adaptive PD, and non-adaptive PD. Desired
trajectories, such as circle, line and square, are tracked in the experiments. Different radii
and tracking frequencies are used in circle tracking and the experimental results reveal that
higher tracking speed results in larger tracking errors. Moreover the results have shown that
all the controllers perform similarly when there was no additional payload. However, when
an additional payload was added to the robot, the adaptive controller were able to achieve the
smaller tracking errors than non-adaptive controllers especially in those cases with high tracking
speed. ABS performs a little bit better than APD when the tracking frequency is high.

The experiments have also revealed a need to consider friction and backlash existing in the
motors in order to further reduce the steady state errors for set point control and the tracking

errors for tracking control.

6.2 Future Work

The experimental results are satisfactory based on the limitation of the mechanical system and
the data acquisition system. However, more accurate results can be achieved with a better
mechanical system. The experimental results shown by the figures in the thesis are the best
readings after many trials. Repeating the experiments with the same parameters may not give
the exactly same results. In order to further reduce the steady state errors for set point control
and the tracking errors for tracking control, the following work should be done in future:

1. Update the mechanical system to reduce the flaws such as backlash.

2. Build more sophisticated model including backlash, friction and the dynamics of DC
motors.

3. For tracking control, reduce the sampling period to improve the tracking performance by

choosing DSP to accomplish data communication instead of DAQ.
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