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ABSTRACT

Wrigley, A.D.E. 2007. Changes in soil nutrient status and seedling performance in response to
harvest intensity on upland, shallow site types in northwestern Ontario: 10th year results.
153 pp +  Appendix.

Key Words: black spruce, shallow soils, harvesting impacts, nutrient availability, ion exchange 
resins, site productivity

Although based on limited empirical data, concerns have been raised that increased 
nutrient removals associated with full-tree harvesting on shallow-soiled sites may result in 
reduced productivity in subsequent rotations. The objective o f  this study, therefore, was to 
compare and contrast the soil nutrient status and early stand development that resulted from a 
range o f  harvest intensities (i.e., a gradient o f  biomass and nutrient removals), including a full- 
tree harvest treatment, to determine i f  such treatments did result in reduced site productivity.
The sites (3) selected for the study were mature, fire-origin, black spruce-dominated stands with 
well-drained, shallow-to-bedrock (<20 cm o f mineral soil overtopped by a moderately thin 
Fibrimor humus layer), coarse loamy soils. Experimental harvests were conducted in 1995 that 
consisted o f  five, replicated (3) treatments: uncut (UC), tree-length (TL) - delimbed at the 
stump, full-tree chipping (FTC) - chipped debris was returned to the harvested plot, full-tree 
(FTH) - delimbed at roadside, whole-tree (W TH) - complete removal o f vegetation and forest 
floor. In 2003-04, soil nutrient status (soil reserves and available pool) across the sites and 
harvest treatments was evaluated using both standard soil nutrient analysis and in situ  ion 
exchange resins. Stand structure, early tree growth, and foliar nutrition were also assessed using 
a series o f fixed area plots (48 per site) and individually tagged black spruce seedlings.

A gradient in the soil nutrient reserves was detected with declining pool sizes as the 
degree o f organic matter removal increased. For example, the WTH plots had significantly less 
N  (790 kg -ha"1) then the other harvest treatments (1018 - 1275 kg -ha'1). Estimates o f the 
available nutrient pools derived from the ion exchange resins suggested similar patterns across 
harvest treatments and soil horizon for many o f  the macro-elements tested in both growing 
season and overwinter analysis. As would be expected, high seedling densities (7000 stems • ha' 
') were associated with the WTH treatment due to the large amount o f mineral soil exposure. On 
the other hand, the heavy slash loading associated with the tree-length treatment provided a poor 
environment for seedling recruitment and survival (under 3000 stems -ha'1). Although individual 
tree growth (ht and red) appeared to be somewhat suppressed on the bladed plots, stand-level 
biomass followed a similar pattern to that o f density, with the WTH treatment accruing over 
5 T • ha'1 o f  total tree biomass over the 10 year period. Although foliar N  and P content did 
decrease along the harvest intensity gradient, all values were well within the normal range 
reported for healthy black spruce seedlings. Based on the results o f this study, there is no early 
evidence to suggest that harvesting shallow-soiled sites using the full-tree logging method would 
have an impact on tree productivity over the first 10 years after establishment.
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1.0 INTRODUCTION

The boreal forest region covers 11 % of the earth’s terrestrial surface (Bonan and 

Shugart 1989), and contains 48 % of Ontario’s forests (OMNR 1998). Characterized by 

cool temperatures and short growing seasons with strong seasonal variations (Bonan and 

Shugart 1989), the boreal forest in Ontario contains many valuable tree species. Black 

spruce {Picea mariana (Mill.) B.S.P.), jack pine (Pinus banksiana Lamb.), trembling 

aspen (Populus tremuloides Michx.), and white birch (Betula papyrifera Marsh.) are 

valued for both intrinsic and economic reasons, and are commonly extracted by timber 

harvesting regimes within northwestern Ontario. Currently, the most commonly used 

harvesting method in Ontario is full-tree harvesting, which delimbs the trees at the 

roadside instead of at the stump (Wiensczyk 1992). Past research has suggested that this 

harvest method has the potential to cause excessive nutrient losses within the site, a 

problem which remains a concern to researchers, foresters, and policy makers alike, and 

has been the subject of several studies within the forestry and scientific community 

(Gordon 1983, Kimmins et al. 1985, Wiensczyk 1992).

The changes occurring to both the soil nutrient reserves and the availability of 

nutrients over time are important aspects that need to be considered when monitoring the 

effects of timber harvesting on long-term site productivity and soil fertility. Standardized 

soil analysis methods such as ion exchange resins, can provide a reliable index of nutrient 

bioavailability and movement within forest soils (Dobermann et al. 1997). Ion exchange 

resins can be placed within the soil, and can be left in situ to collect nutrient ions
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dissolved in the soil solution. While buried within the soil, the resins become ion sinks, 

and are exposed to the same conditions as plant roots and soil colloids. Therefore, the 

same conditions that affect nutrient supply to the roots will also affect the resins and 

their ability to collect nutrients (Lundell 2001). For this reason, ion exchange resins have 

become a reliable and accurate way to estimate plant available nutrients located in the 

forest floor, which are products o f the processes of both litter decomposition and 

mineralization.

Organic matter decomposition and mineralization rates are largely dependant on 

soil moisture and temperature regimes, as well as substrate quality. Modification o f any 

or all of these factors induced by disturbances such as fire or timber harvesting, can have 

a profound effect on the cycling of nutrients within the boreal forest. Increases in 

decomposition and mineralization rates following disturbances can create a flush of 

nutrients, benefiting pioneering species, but can also lead to increased leaching rates and 

nutrient losses (Timmer et al. 1983). This can have a compounding effect on sites with 

inherently low soil nutrient reserves, specifically, shallow soil sites, which are common 

throughout northwestern Ontario. To address this concern the current research project 

was designed to evaluate the effects of harvest intensity (i.e., degree of nutrient 

removals) on soil nutrient reserves, nutrient availability, and early seedling performance 

(i.e., growth and nutrition) for shallow soil site types.
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2.0 LITERATURE REVIEW

2.1 SILVICS OF BOREAL FOREST SPECIES

The boreal forest can be found across the world. In Canada, the boreal forest 

extends east to west throughout most of the country, and is home to a variety of diverse 

species. The tree species most commonly found in the northwestern Ontario section of 

boreal forest include, but are not restricted to: black spruce, white spruce (Picea glauca 

(Moench) Voss), jack pine, balsam fir {Abies balsamea (L.) Mill.), tamarack (Larix 

laricina (Du Roi) K. Koch), white birch, and trembling aspen (Kimmins 1997). Limited 

by harsh climatic conditions, the boreal forest has lower levels of natural diversity when 

compared to most other forest regions (Smith et al. 1997).

Nonetheless, the characteristic softwood-dominated forests are well suited to 

timber production, and the stands within are often dominated by one or a few tree 

species, mainly black spruce and jack pine. Able to tolerate poorer quality sites, black 

spruce is most commonly found in northwestern Ontario on poorly-drained sites or moist 

organic soils, while jack pine tends to occur in coarse sands, shallow soils, or on rock 

outcrops (Farrar 1995).

2.1.1 Black Spruce

Black spruce is an important pulpwood species found throughout Canada’s 

boreal forests (Viereck and Johnston 1990). This spruce species usually grows on wet, 

cool, organic soil sites, such as peats and moist outwash sand plains, and commonly on
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shallow soil sites comprised of thin tills over bedrock in northwestern Ontario (Gordon 

1983). Black spruce is able to survive and thrive in the shallow soil conditions due to its 

shallow rooting habit, which also provides the species with an advantage in conditions of 

permafrost. It most often grows as pure stands on organic soils, and as mixed stands 

with other softwood species such as white spruce, balsam fir and jack pine, and 

hardwood species such as paper birch and trembling aspen on mineral soil sites (Viereck 

and Johnston 1990).

Black spruce ground cover often consists of feather mosses (Pleurozium 

schreberi) and sphagnum mosses {Sphagnum spp.), with increasing amounts of the latter 

on wetter bog-type sites. Black spruce growing together with feather mosses are most 

common in the southern and central boreal forest (Viereck and Johnston 1990). The 

herb layer is enriched with species such as fireweed {Epilobium angustifolium), 

bunchberry (Cornus canadensis), and Canada mayflower (Maianthemum canadense), 

while the shrub layer varies across the country. In northwestern Ontario, species such as 

alder {Alnus spp.), raspberry {Rubus spp.), and beaked hazel (Corylus cornuta) are 

common, as well as Labrador tea {Ledum groenlandicum), and bog laurel {Kalmia 

polifolia). However, shrubs such as Labrador tea can reduce black spruce seedling 

establishment and survival rates (Amup et al. 1995).

Black spruce is known as being a slow growing, moderately shade tolerant 

species, but not as shade tolerant as other softwood species such as white spruce and 

balsam fir. It can survive in as little as 10 % full light, with rapid growth occurring when 

it is totally free o f competition (Buse and Bell 1992, Amup et al. 1995). As a seedling,
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black spruce is a poor competitor against other boreal species and therefore, survival and 

growth are much better in open areas (Viereck and Johnston 1990, Arnup et al. 1995). 

The most productive black spruce stands grow on dark brown to blackish peats, which 

are fairly well drained, and usually in association with hardwood species (Viereck and 

Johnston 1990).

Nutritional requirements for black spruce are considered to be low, with low to 

moderate water demands (OMNR 1997a). Since it is most commonly found in nutrient 

poor areas in the boreal forest, black spruce’s high level of nutrient use efficiency (NUE) 

makes it a strong species when competing against other species such as jack pine, and 

deciduous species such as trembling aspen and white birch, which all have low NUE 

levels. Robinson et al. (2001) add that the high NUE shown by black spruce is as a 

result o f an adaptation to infertile soils, and the prevalence of the species in a nitrogen 

(N) poor environment.

2.1.2 Jack Pine

In the boreal forest, jack pine is often found in pure, even-aged stands, but can 

also grow in association with black spruce, balsam fir, birch, and aspen. Unlike black 

spruce, jack pine is well-adapted through characteristics such as serotinus cones, to 

invade areas of exposed mineral soil following disturbances such as fire. The conditions 

created by fire can open the cones to release the seeds, but dry, hot weather with 

temperatures nearing 30°C have also been known to open cones as they lay on the 

ground. This is prevalent especially after a disturbance such as harvesting. Cones may
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also open in very cold winters when the temperature nears - 50°C (Rudolph and Laidly 

1990). The optimum conditions for the establishment of jack pine seedlings include 

exposed mineral soil that has some shading, with adequate moisture and limited 

competition from other species. Seedling growth is generally slow in the first three 

years, but increases rapidly within the fourth and fifth years (Rudolph and Laidly 1990).

Jack pine is the most widely distributed pine species in Canada, and is an 

important source of both pulpwood and lumber (Rudolph and Laidly 1990). Factors 

such as fire and drought determine the range for this species, and the area of optimum 

development is located north of the Great Lakes in Ontario, and Quebec (Rudolph and 

Laidly 1990). Common herb and shrub species include fireweed and Labrador tea, with 

feather moss and sphagnum. Lichens (Cladina spp., Cladonia spp.) are also commonly 

found growing near jack pine trees, usually on dry, shallow soil sites that overlie 

bedrock.

Jack pine gains a competitive edge over other boreal species due to its high level 

of water use efficiency, and its low water requirements (OMNR 1997a). It is known as a 

species that has a low to moderate nutrient requirement, with low amounts of nutrient 

cycling between soil and trees (Foster and Morrison 1976, OMNR 1997a). Jack pine 

can grow on a variety of soils, but is usually found on sandy soils, along with black 

spruce, or gravelly soils where other species could barely survive. Rudolph and Laidly 

(1990) add that it grows best on well-drained loamy soils. It is also able to thrive on 

shallow soil sites that have limited nutrient availability, such as dry, coarse, and acidic 

soils.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

Seedlings require freedom from competing vegetation, but can grow beneath 

other species in the understorey. The shade provided is beneficial for germination and 

early survival, but can be detrimental after two years. Also, jack pine can outgrow 

competition on most sites, but increased height and survival require a large reduction in 

competition (> 50 %) (Buse and Bell 1992, Amup et al. 1995). In parts of the boreal 

forest, jack pine is often succeeded by black spruce, white spruce, balsam fir, and paper 

birch.

2.1.3 Trembling Aspen and White Birch

Deciduous species such as trembling aspen and white birch are also common in 

the boreal forest. These hardwood species share many similar characteristics as they are 

both medium sized, fast growing trees, with short life spans. They are widely distributed 

throughout Canada, with trembling aspen favouring warm, dry sites, while white birch 

tend to occur on cool, moist sites.

Trembling aspen is one of the most common tree species in the boreal forest, 

with a wide geographic distribution. Growth is limited by low growing season 

temperatures, so optimum growth occurs on warm aspects (Chen et al. 2002).

According to Radwan and Harrington (1986), nitrogen availability is also an important 

growth limiting factor in some trembling aspen stands. On the other hand, white birch is 

a northern species that is adapted to cold climates, and can often be found in conjunction 

with black spruce on north facing slopes (Safford et al. 1990).
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Trembling aspen grows on many soils types, with poor growth on sandy soil sites 

(Perala 1990), and most productive growth on fresh to moist, porous, loamy, nutrient 

rich soils (Amup et al. 1995, Chen et al. 2002). Well drained, moist soils are important 

to both species, but white birch tends to occur more on sandy loam sites (Salford et al. 

1990). Disturbances such as fire are often the cause of seedling establishment for both 

species. Trembling aspen are quick to pioneer disturbed sites with exposed mineral soil, 

which creates ideal conditions for root sprouts, also known as suckers, to establish on 

the site (Perala 1990).

Both species are also shade intolerant, with trembling aspen being more 

intolerant of shaded conditions than white birch (Safford et al. 1990). Due to this 

intolerance, an important characteristic of these species, especially trembling aspen, is 

that they are pioneering species and can colonize areas after bums or harvesting (Perala 

1990). Trembling aspen can deteriorate and die when overtopped by competition; 

growth increases rapidly following overstorey removal or thinning (Amup et al. 1995).

After establishment, white birch is often found growing with beaked hazel, 

blueberries (Vaccinium spp.), raspberries, and bearberry (Arctostaphylos uva-ursi) 

(Salford et al. 1990). Trembling aspen are found with shrubs such as mountain maple 

(Acer spicatum), raspberry, willow (Salix spp.), rose (Rosa spp.), and herbs including 

large leaf aster (Aster macrophyllus), bunchberry, sedges (Carex spp.), and Canada 

mayflower (Perala 1990).

Rooting habits differ slightly between these species. Birch are shallow rooted, 

aspen have a short taproot; they can develop flat root systems in shallow or restricted
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soils (Perala 1990). These species both play important roles in nutrient cycling within 

the forest ecosystem. Nutrients such as phosphorus (P), potassium (K), calcium (Ca), 

and magnesium (Mg) are returned to the forest floor through the enriched deciduous 

leaves (Safford et al. 1990). Aspen litter fall has been reported to have a high potassium 

content (Huang and Schoenau 1996), which is an important nutrient required for protein 

synthesis and translocation (Meyer et al. 1997).

Although all o f the previously outlined species can be found thriving in the boreal 

forest, they are all very diverse in their water and nutrient requirements. Black spruce, 

when compared to trembling aspen, has a high NUE, mostly due to the retention of 

needles, and its slow growth rate. While black spruce and jack pine have low to 

moderate requirement levels for water and nutrients, trembling aspen and white birch 

have moderate to high requirement levels for water and nutrients (OMNR 1997a). 

Although very different in nutrient requirements and growing patterns, all these species 

have been able to adapt not only to each other, but to the various conditions that the 

boreal forest provides.

2.2 NUTRIENT CYCLING AND AVAILABILITY IN 
BOREAL FOREST ECOSYSTEMS

2.2.1 Litter Distribution and Decomposition

Available nutrients are provided by several sources including mineral weathering

of rock and atmospheric deposition. It is estimated that in the past 50 years, weathering

of igneous parent material has released 5 - 2 5  kg-ha'1 of phosphorus, 250 - 1000 kg-ha'1

of potassium, 150 - 1500 kg-ha"1 of calcium, and 50 - 500 kg-ha"1 of magnesium (Brady
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and Weil 1999). In boreal forest ecosystems, however, the forest floor is the principal 

reservoir of nutrients. For example, the boreal forest floor contains 600 - 1100 kg-ha-1 of 

nitrogen, 75 - 150 kg-ha-1 of phosphorus, 300 - 750 kg-ha-1 of potassium, and 150 - 500 

kg-ha-1 of calcium (Brady and Weil 1999).

The largest amounts of available nutrients are sourced through the 

biogeochemical cycle, which is the cycling and flow of nutrients within the forest 

ecosystem (Kimmins 1997). As leaves, needles, bark, and twigs fall to the ground and 

start to decompose, vital nutrients are returned to the soil to be used once again by the 

surrounding vegetation. Not all litter decays at the same rate, nor does it provide the 

same quantities or qualities o f nutrients, but all litter does contribute to the accumulation 

and pooling of nutrients by creating a humus or organic matter layer. Litter 

decomposition is a key process in the nutrient dynamics of forest ecosystems, as many 

nutrients are closely tied to organic matter and its decomposition (Federer et al. 1993).

As such, nutrient release from decaying litter and soil organic matter is essential in 

maintaining the fertility of forests (Prescott et al. 1993). Organic matter is an important 

link in the biogeochemical cycling of nutrients and is essential for the nutrient status of 

forest stands (Raulund-Rasmussen and Vejre 1995), but the forest floor and 

decomposing Utter that eventually forms the soil organic matter is dependant on 

environmental controls (i.e., climate), Utter quaUty, and soil characteristics to dictate the 

rate of decomposition (Moore et al. 1999).
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2.2.2 Soil Nutrient Reserves and Nutrient Pools

Litterfall, as part of the bio geochemical nutrient cycle, is an important pathway in 

maintaining reserves of nutrients in the soil, as large amounts of organic debris are 

deposited on and in the mineral soil horizons (Foster and Morrison 1976). The release 

of nutrients within these reserves is closely tied to organic matter decomposition, which 

varies due to differences in temperature, moisture, pH, and soil aeration (Perala and 

Alban 1982). Boreal forests are known to be deficient, especially in nitrogen (Weetman 

and Algar 1983), which is, in general, due to the slow decomposition of organic matter 

because of cold temperatures (Perala and Alban 1982).

Mahendrappa et al. (1986) report that of the soil macro-nutrients (N, P, K, Ca, 

and Mg), plant available nitrogen is the most important factor limiting the growth of 

trees on forest soils. Nitrogen is required in the largest quantity by trees, and is 

considered by Klinka et al. (1994) to be the most limiting nutrient in forest soils. Most 

of the nitrogen that is in the soil is in organic form, and under normal conditions, only 

about 2 - 3 % of organic nitrogen is mineralized each year (Brady 1990).

Nitrogen deficiency is accentuated on poorer quality sites that have lower humus 

reserves, which is the most available source of nitrogen for trees and plants to utilize 

(Weetman and Algar 1983). Keeney (1980) adds that although total forest soil nitrogen 

pools can be quite large, estimated by Brady and Weil (1999) at 600 - 1100 kg-ha'1 in the 

boreal coniferous forest, nitrogen availability and uptake is often the limiting factor in 

forest growth and productivity. In boreal forest ecosystems, nitrogen uptake by trees 

and plants has been estimated at 22 kg-ha'1-yr'1, second lowest only to tundra
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ecosystems, in which nitrogen uptake is 10 kg-ha'1-yr’1. In comparison, temperate 

deciduous and coniferous forests have nitrogen uptake values in excess of 40 kg-ha'-yr'1 

(Aber and Melillo 1991).

2.2.3 Nutrient Accumulation and Transfers Between Soil and Vegetation

The patterns and processes that are involved in the decomposition, decay, and 

accumulation of forest floor litter have major implications for tree and plant nutrition 

(Binkley 2002). Cation and anion exchanges occur mostly on the surfaces of the finer or 

colloidal fractions of both the organic and inorganic matter, including clays and humus 

(Brady 1990). Available cation nutrient elements (ammonium (NH4+), K+, Ca2+, and 

Mg2+) are held in the soil by cation exchange capacity (CEC), which is the total negative 

charge of the soil, and is dependant on clay content and organic matter content (Meyer et 

al. 1997). Changes in CEC may also be related to changes in pH, and in most soils there 

is a positive relationship shown between these two parameters (Johnson et al. 1991b).

Soils with high organic matter content have more nutrient holding capacity, while 

acidic soils (pH < 4.9) usually have declining soil CEC (Meyer et al. 1997). Typically, 

loamy sands have the lowest CEC, compared with sandy loams, silt loams, and clay 

loams, all of which have less than 50 cmolc-kg'1(lowest to highest). Soil humus has the 

highest exchange rate, varying from 150 to 250 cmof.-kg'1 (Brady and Weil 1999). 

Compared to organic matter, which is responsible for 25 - 90 % of the total CEC of 

surface horizons, mineral soils have very low CEC (Van Dijk 1971, Oades et al. 1989).
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Anion exchange capacity (AEC) exchanges anions {i.e., N 0 3', P 0 43', S042) 

within the soil solution, but is generally much less than cation exchange (Kimmins 1997). 

It differs from cation exchange because soil AEC is very much pH dependent (Kimmins 

1997), and generally decreases as soil pH increases (Brady and Weil 1999). According 

to Kimmins (1997), AEC is greater in acidic soils, where the negatively charged anions 

are attracted to positive charges in the soil, mainly on iron and aluminum oxides that may 

occur in both clay and organic colloids. The retention of anions through AEC is 

important for retaining negatively charged nutrients in the soil for plant uptake, and 

slowing leaching.

While there may be an abundance of nutrients within the forest ecosystem, they 

need to be in ionic form to be available for uptake and use. Nutrients cannot be 

absorbed by plant roots unless they are not part of the soil solution (Beyer 1998), or are 

mineralized into available forms as part of the organic matter decomposition process. In 

addition, nitrogen, calcium, and magnesium may form organic complexes in plant tissues 

and often require decomposition for release to an available form (Meyer et al. 1997). 

However, the release of potassium and magnesium is often quite fast compared to 

nitrogen and phosphorous release.

Nutrients play an important role in tree health and maintenance within the boreal 

forest. Once taken up by roots, nutrients are distributed in different concentrations 

throughout the tree. Generally, the foliage contains the greatest concentrations of 

nitrogen, phosphorous, and potassium (Foster and Morrison 1976, Wiensczyk 1992), 

while calcium and magnesium are concentrated in the stemwood, bark, and live branches
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(Wiensczyk 1992). Also, Foster and Bhatti (2002) concluded that the availability of 

certain nutrients, such as nitrogen, phosphorous, and potassium, in forest soils largely 

determine the leaf area, photosynthetic rate and net primary production of forest 

ecosystems.

2.2.4 Nutrient Cycling Processes Within the Soil

2.2.4.1 Nutrient Mineralization. Nutrients in organic form are returned to the 

forest floor as litterfall and are converted into plant available forms through a microbial 

process called mineralization, which relies on saprophytic micro-organisms to convert 

organically complexed nutrient elements into an available form (Huang and Schoenau 

1997, Vervaet et al. 2002). Mineralization rates, and the nutrients that are released, are 

influenced by the quantity and quality of soil organic matter, soil temperature, soil 

moisture content, and by tree species type (Raulund-Rasmussen and Vejre 1995, Vervaet 

et al. 2002). Studies by Huang and Schoenau (1997) have also shown that variations in 

type and rate of mineralization are reflected during different seasons, and different 

temperature and moisture regimes. Nutrient availability for trees after mineralization 

also depends on competition from other plants and soil microbes, which can utilize 

nutrients before roots have absorbed them. Soil insects can also affect mineralization 

due to their role in soil structure maintenance, decomposition, and nutrient cycling rates 

(Rnoepp and Swank 2002).

Mineralization, when discussed in scientific papers, concentrates on the 

mineralization of nitrogen. Nitrogen mineralization can be defined as the conversion of
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organic nitrogen into inorganic nitrogen (Hart et al. 1994). After mineralization occurs, 

nutrient elements are available for plant use, but can also be immobilized through uptake 

by micro-organisms, which return the nitrogen back into an organic form.

Mineralization in the soil can be measured in different ways. Gross 

mineralization measures the actual amount of nitrogen that is mineralized in the soil, 

while net mineralization measures the difference between the actual amount of nitrogen 

mineralized (gross) and the amount of nitrogen that is used by microbes (immobilization) 

(Hart et al. 1994). Net mineralization is also referred to as plant available nitrogen, as it 

is the amount of nitrogen remaining in the soil for plant uptake. Many studies have 

focused primarily on measuring the levels of total soil mineralizable nitrogen because it is 

a good single measure of soil nutrient conditions (Klinka et al. 1994), and because 

nitrogen availability is crucial in maintaining long-term site productivity (Binkley et al. 

1990).

The mineralization of nitrogen from organic matter can be viewed as a two-step 

process, which includes: ammonification (R-NH2 -*■ NH3 (or NH4+)), followed by 

nitrification (NH4+ -* N 0 2' -* N 0 3'). Both of these forms of nitrogen are important for 

plant growth, but studies by Huang and Schoenau (1997) have shown that high soil 

moisture contents have inhibited nitrification processes. This leads to a high uptake of 

ammonium, especially in conifer forests, which has conditions favourable for 

ammonifiers, which exist in acidic soils (Ohlund and Nasholm 2002). According to 

Nadlehoflfer et al. (1984) plant uptake of ammonium is more important in conifer stands 

than in deciduous stands. Ohlund and Nasholm (2002) have also reported that a number
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of studies have shown that conifers prefer ammonium over nitrate, and that under certain 

conditions, ammonium may inhibit the uptake of nitrate by the plant roots. Forest 

ecosystems growing on acid soils may function with a nitrogen cycle dependant only on 

ammonium (Stottlemyer and Toczydlowski 1999).

Cool soil temperatures and excessive moisture inhibit mineralization, while 

maximum mineralization occurs when soil temperatures are between 25 and 35 °C 

(Nicolardot et al. 1994, Stark and Firestone 1996) and soil moisture is near field capacity 

(Stanford and Epstein 1974). These conditions, while optimal, are rarely reached in the 

field (Knoepp and Swank 2002). For example, mean summer soil temperatures for the 

boreal forest in the Thunder Bay area are between 15° and 18°C, with mean annual soil 

temperatures between 5° and 8°C (Environment Canada 2005). In field studies, 

Stottlemeyer and Toczydlowski (1999) found that nitrogen mineralization rates increased 

as soil temperature increases, but that soil moisture had little effect on mineralization 

rates.

Mineralization rates vary, and Persson and Wiren (1995) have estimated that 

78 % of the net nitrogen mineralization in coniferous forests occurs in the organic 

horizons, and in the upper 10 cm of mineral soil (Federer 1983). In addition, Huang and 

Schoenau (1997) found further differences in the mineralization rates between the L, F, 

and H organic horizons, all of which are in different stages of decomposition. The 

highest mineralized nitrogen rates are generally found in the lower organic horizons of F 

and H, with the lowest mineralization occurring in the surface horizon, L, which is least 

decomposed (Huang and Schoenau 1996). Vitousek (1981) reports that the amount of
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nitrogen cycled between soil, plants, and micro-organisms can range from less than 

10 kg-ha'1-yr'1 in infertile boreal forests, to as much as 350 - 600 kg-ha'-yr'1 in very rich 

tropical forests (Bemhard-Reverstat 1977, Pfadenhauer 1979).

2.2.4.2 Nutrient Unavailability and Leaching. While there may be an 

abundance of nutrient elements within the soil and more specifically, the organic matter 

layer, they are not commonly available for plant use. Nutrient elements that have been 

immobilized by microbial micro-organisms are unavailable to plants until the organism is 

decomposed, and the nutrients are recycled back into the soil. Also, nutrient elements 

that have not been mineralized or have been leached past the rooting zone are largely 

unavailable to plants.

Nutrient loss through leaching is a problem that is often enhanced after a 

disturbance such as wildfire or timber harvesting. Anions (e.g., nitrate) are more 

susceptible to leaching after disturbance as the forest canopy is removed, thereby 

increasing the amount of precipitation that reaches the forest floor, which results in 

greater runoff and filtration through the soil profile. Due to low AEC, anions tend to be 

highly mobile, are more soluble in water, and can by easily leached out of the system 

(Gordon 1983). Cations, including potassium, calcium, and magnesium, on the other 

hand, are principally lost through biomass removal (e.g., timber harvest removal), as well 

as some enhanced leaching following disturbances (Romanowicz et al. 1996). For 

example, Likens et al. (1970) reported that potassium was readily leached or released 

from living and non-living biomass after a harvest. This loss was likely due to low
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retention of potassium by geochemical processes, such as cation exchange, but could 

also be explained by the fact that potassium is most often mobile in tree sap and is not 

incorporated into plant tissues (Morris, pers. comm. March 7, 2005). Nutrient losses 

from leaching are often greatest in the first two years following harvesting (Likens et al. 

1970). This loss of nutrients, however, could prove to be detrimental in forest 

ecosystems that are nutrient limited, or that have a low available nutrient supply, such as 

forests with low turnover rates.

2.2.5 Environmental Drivers of Nutrient Cycling

2.2.5.1 Effect o f Moisture and Temperature on Nutrient Fluxes. Litter 

decomposition rates are important in determining soil fertility and stand productivity. 

Since tree productivity is directly related to nutrient availability, it is important to identify 

the processes and environmental factors that control the rate at which nutrients become 

available for use within forest ecosystems. The litter and the soil organic matter that 

eventually decomposes on the forest floor is affected by factors such as climate, 

temperature, freezing and thawing of soils, and moisture regimes.

Soil temperature is an important factor in the decomposition rate of boreal forest 

organic matter. As would be expected, warmer soils tend to have higher decomposition 

rates. For example, Bonan and Van Cleve (1992) found that a 5 °C increase in mean 

annual air temperature caused soils to warm by 300 - 500 growing degree days. Using a 

25-year warming simulation model, they discovered that the net effect of 25 years of soil 

warming resulted in less forest floor mass and higher tree biomass. Specifically, this
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warming action caused increased mineralization and nitrogen availability resulting from 

an increase in microbial activity. They also found that under warmed soil conditions, 

decomposition rates in black spruce forests increased 17-45 %, while tree production 

increased up to 65 %. This study supports the generalized statement that warmer soils 

lead to increased decomposition rates and that warm temperatures can have a positive 

effect on productivity in boreal forest ecosystems.

From the plant perspective, cooler soil temperatures can affect metabolic rates 

and inhibit water uptake. The slow decomposition rates that are associated with cooler 

temperatures can also restrict nutrient availability to the plant, and cause nutrients and 

biomass to accumulate in the forest floor (Bonan and Shugart 1989). Overall, the cool 

temperatures often found in areas of the boreal forest result in reduced organic matter 

decomposition and restricted nutrient cycling.

Cold temperatures that freeze the soil, however, can have a positive effect on 

decomposition rates through cycles of freezing and thawing. For example, Harris and 

Safford (1996) found that alternating cycles o f freezing and thawing of newly fallen 

leaves disrupted plant cells and thus enhanced the release of soluble components. Freeze 

and thaw cycles generally occur in the late winter and early spring, and also late fall, and 

can cause a flush in nitrogen mineralization 2 - 3  fold (Herrmann and Witter 2002), but 

these increased inputs of nutrients are short lived (Skogland et al. 1988, Herrmann and 

Witter 2002). These cycles can cause nutrient elements in organic matter to become 

more available by physically disrupting the soils, and by changing their physical 

properties, such as size distribution and stability of soil particles (Edwards 1991). The
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effects of the freeze and thaw cycles on these properties are dependant on both 

frequency and duration of freeze and thaw periods, temperature changes and shifts, soil 

moisture content, bulk density values, coarse fragment content, and the number of cycles 

that occur.

Soil moisture content and temperature are also important factors to consider, as 

they can directly affect microbial activity, and therefore control seasonal variations in the 

mineralization rate of soil organic matter (Herrmann and Witter 2002). Soil moisture 

can help regulate soil temperature, but can also hinder microbial organic matter 

decomposition. If there is excess moisture in the soil, temperatures will be cooler, and 

with little oxygen, result in anaerobic conditions which are unfavourable for microbial 

processes and can lead to denitrification. Nitrate is not usually created under these 

conditions, but ammonification can still occur. Colder environments and cooler soil 

temperatures usually lead to slow rates of decomposition and decreased rates of 

mineralization (McFarland et al. 2002). Under these conditions organic matter often 

builds up and creates thick organic horizons on the forest floor, which further lowers the 

soil temperature and impedes water infiltration (Bonan and Shugart 1989).

2.3 MEASURING SOIL NUTRIENT AVAILABILITY WITH ION EXCHANGE 
RESIN BAGS

2.3.1 Introduction to Ion Exchange Resins

Estimating the amounts o f nutrients that are available in forest soils is often a

difficult task, due to high spatial variability, seasonal fluctuations o f the nutrient pools,

and the problems that arise when trying to distinguish between the available and
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unavailable nutrient fractions (Krause and Ramlal 1987). Ion exchange resins, hereon in 

referred to as resins, are part of a suite of soil analysis methods which can provide a 

reliable index o f nutrient bioavailability and movement within forest soils (Dobermann et 

al. 1997), and have been proved to be a useful means of assessing soil nutrient status 

(Sibbesen 1977). They are useful for estimating nutrient supply rates within soils 

because of their ability to simulate nutrient fluxes to plant roots (Huang and Schoenau 

1997).

The rate of adsorption by a resin, when placed in the soil, depends on factors and 

processes that regulates the supply of nutrient elements to the root (Sibbesen 1977), 

including soil temperature and moisture. The factors that can influence the amount of 

ions that are adsorbed by the resin include: the concentrations o f ions in the soil solution, 

the flow rates o f the soil solution through the resin, the rates o f ionic diffusion in their 

surroundings and types and quantities of surrounding vegetation (Skogley and 

Dobermann 1996). Since the resins are also exposed to the same conditions as the roots 

while in situ, the resins are able to provide an estimation or index of nutrient levels in the 

soil that are available for plant use.

Available in several different forms, and widely used in research for both forestry 

and agriculture, resins have the ability to estimate the types and amounts of nutrients that 

are available for plant uptake and use within the soil. It is important to understand and 

to be able to predict the amount of nutrients available to the plant relative to the total 

amount of nutrients in the soil (Abrams and Jarrell 1992), and resins can be used for this 

purpose.
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It is also important when studying nutrient cycles to have accurate measurements 

of nutrient bio availability and to know and understand the nutrient transfers that occur in 

forest ecosystems, especially after disturbances, such as harvesting, which alter forest 

floor input and mineralization rates. As a result, resins can provide vital information 

about any treatment-induced change in nutrient status of a forest ecosystem.

Used for both long- and short-term studies, resins act as a sink for ions.

Available as either anion- or cation- resins, the resins are saturated accordingly with a 

counter-ion so they act as a strong sink for other ions. For example, cation exchange 

resins would be saturated with H+, while an anion exchange resin would be saturated 

with OH' (Skogley and Dobermann 1996). The resins would then release these counter­

ions in exchange for other nutrient ions that are diffused through the resin in the soil 

solution. Sherrod et al. (2003) performed experiments to determine which counter-ion 

yielded the most nutrients, and stated that resins that are saturated using hydrochloric 

acid (HC1) yielded the most net ion exchange when compared with other counter-ions 

such as sodium bicarbonate (NaHC03).

Furthermore, the resins will only function as sinks for the ions present in the soil 

solution if the resins have a greater affinity for those ions compared with the counter-ion 

that is initially placed on the resin (Skogley and Dobermann 1996). Thus, the ions that 

are absorbed by the resin can reflect the nutrient status of the soil (Lundell 2001), but, if 

used improperly, resins can become sources of nutrient ions for surrounding vegetation, 

instead of being a nutrient sink. This may occur if the wrong resin type is chosen, or if 

the wrong counter-ion is used to saturate the resin.
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2.3.2 Methodology Associated With This Technique

Different studies have used different resin forms accordingly depending on their 

study objectives, but resin beads are most widely used in soil nutrient research (Qian and 

Schoenau 2002). They have been used in many studies to create resin bags, which are 

created by placing a specific amount of the resin beads into pre-sewn bags made out of 

various mesh materials or even nylon stockings (Binkley and Matson 1983). The most 

common material used to create the resin bags seems to be nylon, which when sewn into 

the bags, allows for good separation of the resin from the soil (Sibbesen 1977).

Depending on which type of resin is used, the resins are soaked in either a 

NaHCOj or sodium chloride (NaCl) solution to saturate the resins with the counter-ions 

that will be exchanged with ions from within the soil solution. Anion resins are saturated 

with the sodium bicarbonate solution to convert the resins to a bicarbonate form (HC03 ) 

(Huang and Schoenau 1996, Huang and Schoenau 1997), and the cation resins are 

saturated using sodium chloride solution to convert the resins into sodium form (Krause 

and Ramlal 1987, Beyer 1998).

Once placed in the soil, it is important for the resins to maintain a flat surface 

area. This ensures rigid and constant contact surface with the soil and soil solution, and 

allows for maximum ion exchange to occur (Dobermann et al. 1997). The resin bags, if 

positioned carefully into the soil, can be inserted with minimal soil disturbance, which is 

important if a natural state is to be evaluated. If the resins are positioned properly within 

the soil column, ions in the soil solution can then diffuse through the soil to accumulate 

on the resin. This diffusion sensitive method of putting the resin bags in situ is
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advantageous as it provides information about initial ion concentrations, the dynamics of 

ion release, and ion diffusion (Skogley and Dobermann 1996).

The resins are analysed after the incubation period in a laboratory using an 

extraction technique known as desorption. Also called elution, desorption is a counter­

ion exchange, in which the nutrient ions that are held by the resin are displaced by ions in 

the eluting solution (Qian and Schoenau 2002). The eluting solution must be selected 

based on the ion strength of the resins, but it is common that this solution is the same 

solution that was used for initial saturation of the resin. HC1 and potassium chloride 

(KC1) are commonly used to recover the nutrients from the resin (Binkley and Matson 

1983, Dobermann et al. 1997).

2.3.3 Advantages of Using Ion Exchange Resin Bags to Measure Nutrient Availability

Chemical extractions are common for measuring nutrient availability, but 

. according to Sherrod et al. (2002), resins may be preferable. Chemical techniques can 

be tedious and time consuming, while resins are simple to use, cost effective, 

inexpensive, and are applicable in many regions on many different soil types (Skogley 

and Dobermann 1996, Sherrod et al. 2002). Unlike chemical extractions, using resins 

does not require the collecting and processing of soil samples. The resins provide a 

simple, reliable means to measure multiple nutrient elements in the soil environment 

(Schoenau et al. 1993), and provide an index of nutrient availability allowing for 

comparisons across different treatments and sites. The resin method overcomes the 

disadvantage of chemical extractions which are inherently static and do not account for
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the kinetics of nutrient release and transport, and which may mobilize nutrients that are 

not truly available to plants, thereby over-estimating the true available nutrient fraction 

(Abrams and Jarrell 1992). The method also provides a better relationship of plant 

uptake of nutrients than chemical extraction and allows comparisons of results across 

locations, between samples, and over time (Skogley and Dobermann 1996).

Since resin bags are often placed in situ within the soil, they are exposed to the 

same conditions to which the soil colloids and roots are exposed. In situ measurements 

are accurate because physical and chemical soil disturbances are minimized and the resin 

bags are sensitive to the on-site conditions (Dobermann et al. 1997). Therefore, in situ 

resin bags are believed to reflect the conditions that are experienced by the roots 

(Lundell 2001), and are considered to be one of the best methods to provide a measure 

of nutrient supply in soils (Huang and Schoenau 1996). Qian and Schoenau (2002) have 

reported that ion supply rates decrease as soil moisture decreases, which shows the 

relationship between soil moisture and the difftisive flux of nutrient ions. The advantages 

and ease of use of the resins are important characteristics and features if one is trying to 

study the movement and supply of different types of nutrients in a forest ecosystem that 

has been disrupted by disturbances such as fire or timber harvesting, both which can have 

negative effects on nutrient supply.
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2.4 BOREAL FOREST HARVESTING TREATMENTS

2.4.1 Full-Tree Harvesting

2.4.1.1 Effects on Nutrient Supply and Losses Within Harvested Areas. Full- 

tree harvesting is a technique that removes the entire above-ground portion of the tree to 

the roadside, including the branches and foliage (Wiensczyk 1992). Trees are delimbed 

at roadside instead of at the stump. Full-tree harvesting is also often referred to as 

whole-tree harvesting, but in Ontario, whole-tree harvesting refers to the complete 

removal of vegetation and the forest floor (Duckert and Morris 2001). This method is 

not in operational use (Greenwood 1988), and full-tree harvesting is by far, the most 

widely used method (> 90 % of all operations).

It has been suggested that since a significant portion of aboveground biomass is 

being removed from the site during full-tree harvest, reductions in site fertility may 

occur, particularly on poor sites (Weetman and Algar 1983, Wiensczyk 1992), ultimately 

resulting in severe implications on long-term site productivity (Wiensczyk 1992). By 

removing the nutrient-rich crown material, not only are greater quantities of nutrient 

elements being removed, but the regenerative capability of the forest ecosystem may also 

be impacted (Johnson et al. 1991b).

Nutrient loss after full-tree harvesting depends on several factors including the 

species being harvested, the extent of crown development, the amount of foliar biomass, 

and the level of re-distribution of roadside slash after harvesting has occurred (Kimmins 

1977). Although effects may not be immediately apparent, it has been suggested that 

full-tree harvesting could result in deficiencies in nutrient amounts of phosphorus,
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potassium, and calcium (Timmer et al. 1983) after several rotation periods. Different 

biomass components have varying concentrations of nutrient elements (Kimmins 1977), 

with large concentrations of nutrient elements often located in the tree foliage and bark. 

High concentrations of nitrogen, phosphorus, and potassium are found in the foliage and 

branches, while high concentrations of calcium and magnesium are located in the bole 

and bark of the tree (Maliondo et al. 1990).

It would be expected that full-tree harvesting would have a larger effect on sites 

where the trees have well developed crowns and high foliar biomass. For example, 

nitrogen losses from full-tree harvesting increased 288 % in a 65-year-old spruce forest, 

when compared to conventional harvesting (Weetman and Weber 1972), and a 65-year- 

old jack pine forest showed a 120 % increase (Morrison and Foster 1979). The average 

loss increase for nitrogen in the boreal forest after full-tree harvest was estimated at 

115 % (Marion 1979). Species type and needle retention is important, as species such as 

spruce, have high foliar nutrient concentrations, resulting in higher amounts of nutrient 

loss than species with lower foliar concentrations (Kimmins 1977).

Full-tree harvesting may also result in increased soil temperatures and available 

moisture due to the lack of slash and canopy cover on the site. This often leads to an 

increase in decomposition rates after the harvest and therefore, an increase in available 

nutrients. This is known as the assart effect (Kimmins 1997), which is a flush of 

nutrients into the system. Prescott et al. (1993) have reported that the nutrient increase 

after harvest can occur for two to three years before declining. The increases in soil 

temperature and moisture could, however, also lead to rapid seed germination
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accompanying the increase in available nutrients (Wiensczyk 1992). If plant uptake of 

nutrients does not increase as well, the difference could lead to increased leaching from 

the site. If nutrients are being leached away from the site after a full-tree harvest, one 

can anticipate a compounding loss of nutrients from the site, in addition to the losses 

associated with the removal of forest biomass (Gordon 1983). This could result in site 

productivity reductions on sensitive sites, such as shallow soil sites, which are more 

susceptible to nutrient depletion after full-tree harvesting than deeper soil sites (Timmer 

etal. 1983).

2.4.1.2 Site Impacts o f  Full-Tree Harvesting. Full-tree harvesting leads to 

greater exposure of the forest floor and increased disturbance of the remaining organic 

and mineral soil horizons by the harvesting operations (Hendrickson et al. 1989). 

Physical soil disturbances can have negative effects on long-term forest health and 

productivity, and can include soil compaction through increases in soil bulk density 

values, reductions in soil air spaces, and changes to soil structure. The degree to which 

soil compaction occurs depends on the type of equipment that is used, the types of soils 

involved, the condition of the soil, and the season in which the harvest occurs 

(Wiensczyk 1992). Soil compaction can be reduced by placing slash over trails used 

frequently by harvesting machinery, through careful planning and scheduling of 

operations, and by following the Best Management Practices outlined by Archibald et al. 

(1997). The redistribution of slash can also to help reduce rutting, which also destroys 

soil structure, creates trenches in the soil, and disrupts drainage patterns (Grigal 2000).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

These ruts often fill with water to create puddles, discourage seedling growth, and alter 

the water table. Soil texture and moisture can influence the impacts from harvesting, as 

finer-textured mineral and organic soils are more susceptible to compaction and rutting, 

while coarse-textured or clayey soils, with dry moisture regimes, or frozen soils, have 

minimal risks of being compacted or rutted during harvest operations (Archibald et al. 

1997).

There are also concerns regarding the dislocation of soil materials, which 

involves the mixing of surface soils, and the redistribution of nutrient pools laterally and 

vertically within the soil profile (Martin 1988). These cumulative effects generated by 

the full-tree harvesting method have important implications concerning site fertility and 

nutrient cycles. It has thus been suggested that full-tree harvesting has a greater 

potential impact on nutrient cycling than tree-length harvesting (Hendrickson et al. 1989, 

Johnson et al. 1991a), which only removes the stem and bark (or bole) from the site.

Other impacts that have been suggested to occur after full-tree harvesting include 

soil acidification that may occur as a result of nutrient loss following the harvest. Since 

full-tree harvesting removes the branches and foliage of trees, it also removes cations 

that normally buffer acid inputs from organic matter decomposition (Maliondo et al. 

1990). Organic matter decomposes at a faster rate after harvest due to increased soil 

moisture and temperature, and the resulting increase in site acidity can displace ions, 

leaving them vulnerable to leaching (Maliondo et al. 1990). This is a problem that could 

become more prominent after several rotations o f full-tree harvesting.
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Full-tree harvesting also reduces the amount of slash and organic matter that is 

left on the site. This reduction in slash does allow for easier planting after harvest 

(OMNR 1997a), but could eventually lead to lower levels of available nutrients for on­

site vegetation or seedlings that are trying to establish on the site. The remaining slash, 

(i.e., coarse slash) does help to shade seedlings and retain soil moisture, as well as 

representing an important source of nutrient elements that, over time will replenish the 

soil reserves. Slash also plays an important role in protecting the forest floor from 

temperature extremes, that often lead to increased drying. Also, wind and water erosion 

can easily degrade any exposed or vulnerable mineral soil that is disturbed during 

harvest. Water erosion increases with slope and Archibald et al. (1997) indicate that 

slopes greater that 30 % have moderate to high site damage hazard ratings, depending 

on the soil texture, type, and depth. Mineral soils have the highest risk of erosion after 

harvest occurs.

Harvesting impacts can be reduced by harvesting during winter months when the 

ground is frozen or by redistributing the slash over the site during the harvest. Both of 

these methods can help to reduce the impacts of rutting, puddling, and compaction of 

soils. It is also important to use full-tree harvesting with caution on sensitive sites, such 

as shallow soil sites. In the northwestern Ontario Silviculture Guide (OMNR 1997b), 

full-tree harvesting is not recommended (NR) for use on soils (mineral and surface 

organic) that are less than 20 cm deep. Based on this recommendation, other harvesting 

techniques, such as tree-length harvesting, may be more appropriate on these types of 

sites in northwestern Ontario.
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2.4.2 Tree-Leneth Harvesting

2.4.2.1 Site Impacts o f Tree-Length Harvesting. Tree-length harvesting, which 

is recommended for use on shallow soil sites (OMNR 1997b), is a harvesting operation 

in which the trees are delimbed at the stump and all slash and debris is left on the site.

The assumption is that the slash will protect the organic and mineral horizons from soil 

disturbance effects, such as compaction, that often occur as a result of harvesting. Also, 

nutrient elements found in the tree crown components remain on the site to help maintain 

the nutrient status of the soil and provide, via mineralization processes, inputs to the 

available nutrient pool. But, leaving all of the slash on the site can also cause some 

problems to occur, especially by inhibiting natural regeneration of some tree species, and 

serving as a food source for forest pests such as weevils. For example, exposed mineral 

soil provides an excellent seedbed for jack pine, but these conditions may not largely be 

present after tree-length harvesting with the slash and debris covering the forest floor.

It is important to add that all forest management activities, including full-tree and 

tree-length harvesting, affect soils and alter soil properties which can directly or 

indirectly affect site productivity (Grigal 2000). Soil physical properties are easily 

altered and are not easily repaired, therefore extreme care should be taken to minimize 

site impacts that occur during harvesting. Nutrients are always removed from the site 

through the removed timber, but the type and intensity o f harvest method will dictate the 

amount of additional nutrients that are removed during the harvest. Negative effects of 

forest harvesting and management can be reduced through proper planning (Grigal

2000). This is because some site are more sensitive to harvesting impacts than others,
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such as shallow soil sites, and caution needs to be exercised accordingly on these sites. 

Forest ecosystems are dynamic and resilient, so continued research is needed to fully 

comprehend how forests respond to impacts and changes in nutrient storage and supply 

(availability) related to harvest intensity {i.e., levels of biomass removal).

2.5 PROBLEM FORMULATION

There are many issues surrounding the effects that timber harvesting has on 

boreal forest ecosystems, ranging from wildlife dislocation, habitat destruction, natural 

disturbance emulation, and economical sustainability. This study aims to focus on one of 

the larger pieces of the puzzle, nutrient retention and cycling, and thus, forest stand 

productivity. By examining several different kinds o f harvesting techniques that are 

employed in the boreal forest, and including a reference stand that has not been 

harvested, comparisons can be made between the different harvest intensities.

As already mentioned, full-tree and tree-length harvesting will be examined, as 

well as whole-tree (blading) harvesting, and chipping. By using in situ techniques such 

as ion-exchange resins, amounts o f plant available nutrient ions can be estimated, and 

correlations between nutrient element concentrations and stand productivity can be 

made. The critical question addressed by this study relates to the effect that harvest 

intensity has on nutrient pool size and availability on upland shallow soil sites, and how 

these changes relate to seedling growth and productivity.
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All of the harvest types being examined have differing degrees of biomass 

removal and are expected to have different impacts on the nutrient status of shallow 

soils. The relevant question is: does the logging method that removes the most forest 

biomass have the greatest effect, in terms of lower nutrient reserves after harvest, and are 

these levels linked to reduced growth and productivity o f the regenerating forest?

Specifically, the questions addressed by this project are: 1) is there a difference 

in seedling growth and the nutrient status o f the forest floor when harvesting occurs?,

2) does the amount o f  slash (i.e., fine and coarse (tree-length) vs. coarse only (full- 

tree)) influence nutrient availability and seedling growth?, 3) does the type o f slash 

(chipped vs. regular) influence nutrient availability and seedling growth?, and 4) does 

the additional removal o f the forest floor compound the effect on nutrient availability 

and seedling growth?
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3.0 METHODS AND MATERIALS

3.1 STUDY SITE DESCRIPTIONS

The boreal forest study sites are located in northwestern Ontario (49° 03' - 

49° 04' N, 89° 23' - 89° 24' W), approximately 70 kilometres north of Thunder Bay, 

Ontario (Figurel) on the Spruce River Forest (Abitibi Consolidated SFL) (Duckert and 

Morris 2001). Three replicate sites represent the upland, mixed conifer, shallow, coarse 

loamy site type, which is characterized by a moderately thin organic horizon (<11 cm) 

over a shallow mineral Bm horizon (< 20 cm). For this paper, the three sites will be 

called Site 1, Site 2, and Site 3. Site descriptions for all three sites can be found in Table 

1.

'T hunder Bay

Lake S u perio r

-

Figure 1. Location o f the three study sites in northwestern Ontario 
(Duckert and Morris 2001).
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Table 1. Site descriptions o f the three study sites (Duckert and Morris 2001, Racey et 
al. 1996).

Site

Tree Species Composition (%) 

Sb Pj Po Ecosite Class Soil Type Moisture Regime

1 70 20 10 20 SS6 Very Fresh (3)

2 80 20 0 20 SS6 Fresh (2)

3 100 0 0 26 SS7 Moist (4)

Being part of the boreal forest, all sites experience cold and dry winters, with 

relatively short, moderately moist and warm growing seasons (Morris et al. 2003). The 

mean annual temperature is 2°C, with a mean annual precipitation o f ~ 67 cm 

(Environment Canada 1982). According to Morris et al. (2003), a high percentage 

(-60 %) of the precipitation falls as rain during the months of May to September.

All sites have Dystric Brunisol profiles (weakly developed mineral horizons with 

a pH < 5.5) and lack a well-developed mineral-organic surface horizon. At Site 1 and 

Site 3, the mineral profile is overtopped by a moderately thin Fibrimor humus organic 

horizon with average depths of 8 and 10.6 cm, respectively. Site 2 is characterized by a 

HumiFibrimor humus organic horizon, averaging 10.5 cm in depth. Site 1 and Site 2 

both have cobblely, sandy loam mineral soils, with Site 3 being dominated by silty loam 

substrate (<15 cm). There are slight differences in topographic position and mode of 

deposition, but all sites are characterized by shallow, but variable soil depths, with 

exposed patches of bedrock throughout (Duckert and Morris 2001).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

The terrain across all three sites is strongly glaciated with rolling topography; the 

soil mantle consists of thin, coarse textured soils over granitic Precambrian bedrock 

(Rowe 1972). The stands are natural, tire origin stands, with a mean age of 110 years at 

time of harvest. Stem density on Sites 1 and 2 is just under 2100 trees-ha'1, with a higher 

density on Site 3 of 3170 trees-ha'1 (Duckert and Morris 2001). Site index (base age 50) 

was slightly over 13.5 m. Species composition among the three sites is very similar, as 

all are dominated by black spruce (70 - 100 %) (Table 1). A scattering of trembling 

aspen, white birch, and understorey balsam fir can also be found on the sites (Duckert 

and Morris 2001).

3.2 HARVEST TREATMENTS

A series of replicated, experimental harvest treatments were conducted on all 

three of the study sites, in the winter of 1995 (February - March) (Duckert and Morris

2001). The harvest treatments included: chip (slash retained and chipped), tree-length 

(slash retained), full-tree (slash removed), whole-tree (vegetation and forest floor 

removed), and an uncut/reference condition. Figure 2 provides examples of the harvest 

operations associated with the four harvest treatments.
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Figure 2. Examples o f the four experimental harvest treatments. Plate A: chip 
Plate B: tree-length, Plate C: full-tree, and Plate D: whole-tree.

The harvest operations were done mechanically using a feller buncher, grapple 

skidder, and a delimber. On the tree-length harvested plots, a mechanical delimber 

distributed slash on the site as it was operating, but some manual distribution of slash 

was required to ensure uniform distribution across the plots (Figure 2 - Plate B). The 

slash from the chip sites was processed using a 12-inch gas-powered brush chipper 

(Chipmore Model TM-120-G2) (Figure 2 - Plate A), and the chipped material was 

weighed and spread uniformly across the plot manually. A D8 bulldozer was used in the 

whole-tree harvest treatment (Figure 2 - Plate D) to remove the slash and duff organic 

horizon after the plots were harvested (Duckert and Morris 2001). Each treatment 

represents different organic matter removals and levels of disturbance (Table 2).
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Table 2. Descriptions of the differences between harvest treatments.

Harvest Treatment Description of Disturbance

Chip Similar to tree-length harvesting,
but branches and foliage were chipped at the site,
and redistributed on the harvest plot

Tree-Length Trees are delimbed at the stump, branches and 
foliage remain at point of harvest

Full-Tree Trees delimbed at the roadside, 
branches and foliage remain at roadside

Whole-Tree (Bladed) After harvesting, all remaining vegetation 
and forest floor organic matter are 
removed using mechanical means

Buffer strips of at least 20 m were placed between the harvest plots and at least 

5 m between the uncut plots. Each site was divided into 16 plots, with four replicates of 

the uncut plots (50 x 50 m) and three replicates of each of the four harvest treatments 

(30 x 30 m) (Figure 3) (Duckert and Morris 2001). Each plot was then divided into four 

quadrants, and approximately 50 black spruce seedlings were planted in three of the four 

quadrants. Buffers were also planted with black spruce to minimize the potential for 

edge effect. Natural regeneration has been monitored/documented in the unplanted 

quadrant (Duckert and Morris 2001).
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Figure 3. As an example, plot layout of the harvest treatment plots at Site 1 
(Duckert and Morris 2001).

3.3 DETERMINING SOIL NUTRIENT RESERVES

3.3.1 Field Procedures

Soil samples were collected both pre- and post-harvest, with post-treatment re­

assessment being conducted in 2002, eight years after treatment. The organic horizon 

pre-harvest data included two sampling periods, one in 1992, three years before harvest, 

and one in 1995, directly after the harvest. No differences were noted in the soil nutrient 

reserves between these two sampling periods, so in addition to the slash and moss 

reserves on the sites, these two periods were combined to provide an estimate of the 

plot-level organic horizon nutrient pool immediately after harvest (Morris, per s. comm. 

September 28, 2005). The pre-harvest mineral soil nutrient pool was based on the 1992 

sampling year. Mineral soil depth is considered a static (or unchanging) variable, 

therefore, the mineral soil depths collected in 1992 during pre-harvest sampling were 

used for the other two sampling periods. (Morris, pers. comm. September 28, 2005).
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Mineral soil depths averaged between 15 and 20 cm, with slight variations in depth 

occurring across the three sites.

Both the physical and chemical soil properties resulting from the various 

harvesting treatments imposed on the sites, and their relation to early seedling growth 

and nutrient status, were assessed through time. A total of three soil pits were excavated 

and assessed in each of the experimental harvest treatment plots in 1992 as well as the 

uncut/reference plots. In 2002, 36 small pits were dug into the mineral layer, based on a 

diagonal grid pattern, with nine pits in each quadrant (Figure 4). Samples for nutrient 

determinations were taken at pit numbers 1,5, and 9, in each quadrant (12 per plot), at a 

depth of 10 -15 cm, with bulk density samples in all pit number 5's (4 per plot). All pits 

(36 per plot) also had organic horizon depths recorded. Collected samples were placed 

in labelled plastic bags, and kept cool until being processed.

Figure 4. Example of the diagonal grid pattern o f pits within each plot, with quad pit 
numbers and layout.
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3.3.2 Laboratory Procedures

Upon returning from the field, bulk density samples were placed in a drying oven 

set at 70°C until constant weight was achieved. Organic samples were weighed; bulk 

densities were calculated as sample weight per sampler volume (g-crn3). All mineral soil 

samples were then sieved (2 mm), and the fine fraction weighed. The volume of the 

coarse fraction (gravel) was determined and subtracted from the bulk density sampler 

volume.

Nutrient samples were allowed to air-dry on labelled disposable plastic plates. 

Once dry, mineral samples were sieved (2 mm), placed in clean and labelled paper bags, 

and stored awaiting nutrient analysis. Organic samples, once dry, were ground using a 

Wiley mill (20 mm mesh) after coarse debris such as sticks, cones, and bark were 

removed from the sample. Similar to the mineral samples, the ground organic samples 

were placed in labelled paper bags awaiting nutrient analysis.

3.3.3 Analytical Chemistry

All samples (soils, resin extracts, foliage) for this thesis were sent to Sault Ste. 

Marie, Ontario, to the Ontario Forest Research Institute (OFRI) to be analysed. Both 

the organic and mineral soil samples were analysed for moisture content (air to oven dry 

conversions), total C, total Kjeldahl nitrogen, potassium, phosphorus, calcium, 

magnesium, manganese, sodium, iron, and aluminum (Duckert and Morris 2001).

Morris (2000) includes more in-depth details regarding the analytical procedures used to 

make these nutrient determinations. As an example, a short summary follows.
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3.3.3.1 Total Carbon and Nitrogen. Total carbon was measured using a LECO 

analyser through infrared absorption. Dry combustion of the samples was used in this 

process. Total nitrogen was determined using a modified Kjeldahl method (semi- 

microKjeldahl), which incorporates a permanganate-reduced Fe modification technique. 

The sample is thus pre-treated with KMn04 and H2S 04 before Kjeldahl digestions. This 

step oxidizes nitrite (N 02) to N 0 3', and then with the added reduced Fe, N 0 3' is reduced 

further to NH4+.

3.3.3.2 Extractable Phosphorus (Bray P). All soils were extracted using an 

acid fluoride (Bray No. 1) extractant. This extract was then analysed by automated wet 

chemistry using an adaptation of the Bran+Luebbe TP method 365.4, which has been 

widely used as an index of available P in soils.

3.3.3.3 Exchangeable Cations (K, Ca, Mg). All soils were extracted using 

neutral normal ammonium acetate. The resulting solution was analysed for the above 

cations by Atomic Absorption Spectroscopy using a Varian SpectrAA - 400. All 

samples were analysed in duplicate for Quality Assurance (QA), and an in-house 

standard was incorporated every 10 samples for Quality Control (QC).

3.3.4 Data Synthesis and Statistical Analysis

Using both the field and laboratory data, nutrient pools could be calculated for 

both the organic and mineral horizons. In order to calculate the nutrient pool, 

information such as horizon depth (cm), soil moisture content (%), soil coarse fragment
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(%), bulk density (g-crn3), and nutrient concentration (% or mg-kg'')  was required. For 

this study, results are reported in kg’h a 1 (based on ~ 10 cm organic and ~ 15 cm mineral 

horizon depths), and are reported according to harvest treatment and site.

The calculations for both the organic and mineral soils are based on the same 

equation, with the exception that the mineral soil calculation needed to consider soil 

coarse fragment (i.e., the inert portion of the soil profile volume). Soil coarse fragment 

(cobble-size and greater), as a percent was applied to each mineral soil calculation based 

on an average for each of the three sites. Sites 1, 2, and 3 had 25.2 %, 14.4 %, and 10.5 

% soil coarse fragment, respectively (Morris, pers. comm. September 13, 2005).

Soil nutrient pools (organic and mineral horizons) were calculated by applying 

horizon bulk density to soil volume, minus the coarse fragments (mineral), and then 

multiplying by the nutrient concentrations, adjusted for air dry moisture content (Duckert 

and Morris 2001). After the calculations were completed, Analysis of Variance 

(ANOVA) was run using the statistical software Data Desk, Version 6.0 (Velleman

1997). The experiment was designed as a completely randomized design (CRD), with 

replication. The pre-harvest data set employed a one-way ANOVA, whereas the post­

harvest data set utilized a two-way ANOVA.

Results for the pre-harvest nutrient pools from both the organic and mineral soil 

horizons were considered separately, but employed the same General Linear Model 

(GLM) (Equation [1]). Estimated Mean Square (EMS) tables were also very similar, but 

with different total observations. The EMS for the pre-harvest period is presented in 

Table 3. The GLM contains a restriction error on Site Type (T), as all three areas
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represent an upland-shallow soil conifer dominated site, and since only one Site Type 

was considered in this study, this factor carries zero degrees of freedom, and had no test. 

The GLM for the pre-harvest sampling periods only contains one term, Site (S), which 

has three levels, representing the three study sites. Forty-eight observations were used in 

this ANOVA.

The GLM for the pre-harvest nutrient pool sampling period is as follows:

Y ijk =  M +  T j +  8(i) +  Sj +  e (ij)k [1 ]

i = 1 j = 1 - 3 k =  1 - 16

where:

Yijk = the measurement of nutrient pool content from the k* replicate of the j* 

site and the ith site type 

/u = the overall mean

T, = the fixed effect of the ith site type 

5(j) = error associated with the restriction on randomization

within the i* site type 

Sj = the fixed effect of the j* site

8(jj)k = the random effect of the kth replicate o f the jth site and the i* site type

The 8(jj)kare assumed to be i.i.d. N (0, a 2).
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Table 3. The EMS table associated with the pre-harvest soil sampling period for nutrient 
pool calculations.

Level 1 3 16

F/R F F R

Subscript df i j k EMS TEST

T, 0 0 3 16 a2 + 48 ®5+ 48 <D (T)

8© 0 1 3 16 a2 + 48 3>s

Sj 2 1 0 16 a2+ 16 <D (S) MS(S)/MS(E)

8(u)k 45 1 1 1 a2

Total 47

The post-harvest nutrient pool ANOVA’s utilized a similar GLM (Equation [2]), 

but with an added term representing the Harvest Treatments (H) used on the three sites, 

with five levels, representing chip, tree-length, full-tree, whole-tree harvesting, and the 

uncut/reference state. The organic and mineral horizon results were studied separately. 

The EMS table for the post-harvest sampling period can be seen in Table 4, and the 

ANOVA was run with 45 observations. Equation [2] is used for all subsequent analysis, 

with some changes to levels and reps, depending on the application.

All data sets were checked to ensure that they complied with the ANOVA 

assumptions of normal distribution and equal variance (Lorenzen and Anderson 1993). 

Response residuals were used to generate normal probability plots to check the residuals 

for departure from normality and homogeneity of variance was assessed by plotting the
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residuals side-by-side in dot plots. The residuals appeared to be in compliance, but 

further testing using the W Statistic test for normality and Bartlett’s test for homogeneity 

(Lorenzen and Anderson 1993) was done to determine whether or not the data met the 

assumptions. It was concluded that the ANOVA assumptions had been met and the data 

sets did not require transformation. SNK tests were also completed following significant 

ANOVA results to identify differences between Site means (Zar 1999).

The GLM for the post-harvest nutrient pool sampling period is as follows:

Y,jki = M + T, + 8(0 + Sj + Hk + SHjk + 8(ijk), [2]

i = l  j = 1 - 3 k = 1 - 5 1 = 1 - 3

where:

Yijkl = the measurement of nutrient pool content from the 1th replicate of the kth 

site in the jth harvest treatment and the i* site type 

fu. = the overall mean

Tj = the fixed effect of the i* site type

8(i) = error associated with the restriction on randomization

within the i* site type 

Sj = the fixed effect of the j111 site

Hk = the fixed effect of the k* harvest treatment

SHjk = the interaction effect of the jth site and the k* harvest treatment 

8Cljk)1 = the random effect of the 1* replicate of the kth harvest treatment 

in the j* site and the ith site type 

The 8 {jj k ) !  are assumed to be i.i.d. N (0, a2).
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Table 4. The EMS table associated with the post-harvest soil sampling period for 
nutrient pool calculations.

Level 1 3 5 3

F/R F F F R

Subscript df i j k 1 EMS TEST

T, 0 0 3 5 3 a2+ 45 0 8 + 45 0 (T )

5(0 0 1 3 5 3 a2+45 0>5

s, 2 1 0 5 3 o2+ 15 0  (S) MS(S)/MS(E)

Hk 4 1 3 0 3 a 2 + 9 0  (H) MS(H)/MS(E)

SHjk 8 1 0 0 3 <^+3 0  (SH) MS(SH)/MS(E)

£(ijk)i 30 1 1 1 1 cr2

Total 44

3.3.4.1 Constructing Linear Contrasts fo r  the Comparisons o f Means. Since 

harvest type was the factor driving this experiment, analysis was completed on the post­

harvest data to investigate for any differences between the different harvest types and 

their associated levels of biomass removal and site disturbances. This was done using a 

series of orthogonal contrasts, also called comparisons (Snedecor and Cochran 1989, 

Lane 1999) (Table 5). Since there are k = 5 harvest types, it is possible to have a 

maximum of (k - 1) = 4 linear contrast comparisons (Snedecor and Cochrane 1989).
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Table 5. Orthogonal contrasts for the effect of harvest type on nutrient element 
concentrations.

Lj Contrast Treatment Coefficient

h ^ 3 4̂ ^ 5 EL
1 Reference vs. Harvested -4 +1 + 1 + 1 + 1 0

2 Chipped slash vs. Original slash 0 -1 + 1 0 0 0

3 Blading after harvest vs. 
Harvested

0 +1 + 1 +1 -3 0

4 Coarse and fine slash retained 0 0 + 1 -1 0 0
vs. Coarse slash retained

X Subscripts refer to: 1 - Reference (no treatment/uncut), 2 - Chip,
3 - Tree-Length, 4 - Full-Tree, 5 - Whole-Tree (Bladed)

The contrasts and ecological questions that are addressed by them are as follows: 

L, - is there a significant change in the size of the nutrient element pool resulting from 

timber harvesting (reference versus harvested), L2 - is there a significant change in the 

size of the nutrient element pool when the slash left from the harvest is chipped or left in 

the original state (tree-length versus chip), L3 - is there a significant change in the size of 

the nutrient element pool when both the overstorey and the organic matter on the forest 

floor is removed during harvesting (whole-tree (bladed) versus full-tree, tree-length, 

chip), L4 - is there a significant change in the size of the nutrient element pool when 

different amounts and sizes of slash remain on the site after harvesting (tree-length 

versus full-tree).

Linear contrasts were applied to both the organic and mineral data sets. The full 

suite of comparisons were made as some of the comparisons might identify significant
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differences that the initial ANOVA F  tests showed as being non-significant (Snedecor 

and Cochran 1989). According to Snedecor and Cochran (1989), ANOVA is only the 

first step of statistical analysis, the next step being examination o f the class means, and 

any differences that may exist between them.

3.4 ESTIMATING AVAILABLE NUTRIENT POOL (ION EXCHANGE RESINS)

3.4.1 Field Procedures

3.4.1.1 Installing the Ion Exchange Resin Bags. At each plot, four resin bags 

(two anion and two cation) were placed in pits in quads one, two, and four, unless one of 

those quads was unrepresentative of the overall site. Some pit locations were moved 

slightly to avoid any large roots or rocks, but generally, pits were dug approximately 50 

cm apart and were located in the centre of the quadrant, corresponding to pit number 5 

(Figure 4). Care was taken to ensure that the resin bags were not placed in a pit which 

had been sampled previously, and also to keep the organic and mineral horizons separate 

while excavating the pits. Instructions were also given to ensure that any excavated soil 

was not placed on top of the location where the resins were under the soil.

Two pits were excavated, with one pit designated for the fall resin bags (growing 

season) and the other pit for the spring resin bags (overwinter). Pits were only big 

enough to be able to work in and place the bags in the two horizons. Two mineral soil 

resin bags were first placed in the pit at a depth of 10 cm, with the two organic bags 

staggered above them at the interface to avoid overlapping (Figure 5). Care was also 

taken to ensure that bags were not touching, crumpled, or placed under rocks or roots.
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Figure 5. Overhead picture o f a typical pit with staggered resin bags.

In order to prevent the crumpling or bunching of the bags, 4.25 inch wide plastic 

canvas disks (available at craft stores) were utilized to stabilize the resin bag (Figure 6). 

The disks were approximately 2 mm thick with 674 holes on the surface (2 mm x 2 mm), 

which allowed for water to pass through the disks, and percolate through the resin bag 

itself. The disks were often reused, but were thoroughly cleaned between uses.

Figure 6. Resin bags were supported with plastic disks while in situ.
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In the field, the disks were also used to evenly spread out the resin within the 

bag. Typically, each mineral resin bag was sandwiched between two disks and slid into 

the soil after making a slit with a trowel. Generally, only one disk was needed to 

stabilize the bags placed in the organic horizon, with the disk being placed underneath 

the bag. It was found that a square Bricklayer’s trowel worked the best for inserting the 

disks into the soil.

After placing both mineral bags in the Bm horizon, the organic bags were placed 

in the organic-mineral interface. This depth varied from pit to pit, and all placement 

depths were recorded on tally sheets. Most often, the organic LF horizon was lifted with 

the trowel, the bag and disks were placed on the top of the mineral horizon, and the 

organic matter was lowered back down onto the bag. The soil was then returned to the 

pit, and was gently hand-pressed, but not compacted. The location was marked with a 

coloured plastic stake to indicate if it was to be recovered in the fall or the following 

spring (Figure 7).

Figure 7. A new pit being dug, with coloured stakes marking other resin pits.
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The second pit was then dug, being careful not to stand on or place any soil on 

the location where the first bags were placed. This pit would also be marked with 

another coloured plastic stake. Since the stake was placed in the centre of the pit, 

contamination was not likely to occur, as the bags were on the outside of the pit and 

would collect nutrient elements that percolated downwards through the soil column. 

Contamination was also avoided by the use of latex gloves, which were worn at all times 

when handling the resin bags.

3.4.1.2 Removing the Ion Exchange Resin Bags. Using the coloured stakes as 

not only indicators o f extraction periods, but of resin locations, the best technique for 

extraction was to first locate and remove the organic horizon resin bags. This was done 

by scraping away the organic matter around the stake with a small trowel or your hands 

to reveal the bags. This was done carefully as many of the organic bags only had one 

disk to stabilize them (Figure 6), and the shovel could sever the bags and spill the resins. 

Once the organic bags were recovered, the mineral bags were removed by excavating the 

pit with the shovel, and since these bags were sandwiched between two disks, there was 

less chance of damaging the bags. The pit was essentially dug out again, and the mineral 

soil was dug away until the disks could be retrieved.

Once the resins were removed from the pit, each was cleaned with either a small, 

clean paintbrush or deionized water, and each resin bag was placed in a clean zipper 

freezer bag as per Beyer (1998) and Dobermann et al. (1997). The sample number on 

the resin bag was also written on the outside of the bag. The resin bags were kept cool
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in transit back to the lab and placed in the refrigerator at 4°C where they were stored 

until being extracted. Most extractions were completed within two to three days of 

collection, but past studies have suggested that they can be stored in the refrigerator or 

the freezer until they can be analysed (Dobermann et al. 1997, Beyer 1998).

3.4.2 Laboratory Procedures

3.4.2.1 Preparing the Ion Exchange Resin Bags for Use in the Field. Before 

being placed in the field, the resin bags needed to be created and chemically treated in the 

lab. The actual resin bags, each measuring 6 cm by 6 cm, were constructed out of a fine 

screen or mesh material, also known as “no-see-um” screen. This material was used to 

ensure that the resin beads would not be able to seep out of the bag, but that water could 

still percolate through. After the material had been sewn into a square with three o f the 

sides sutured shut, it was ready to be filled with the resin beads.

Two resins were used in this experiment, anion and cation. Both resins were 

made by Sigma-Aldrich, under the brand name Amberlite. The anion resin was a strong 

base, called IRA 400 (C1‘, 16-50 mesh), and the cation resin a strong acid, which was 

called IR 120 Plus (H+, 16-50 mesh). The resins were weighed out in one gram 

quantities and all weights were recorded. The anion and cation resins provided 3.8 

meq-g'1 and 4.4 meq-g'1 of exchange capacity, respectively. One gram of resin was 

adequate as CEC is typically lower than 1 meq-g"1 in most Canadian forests (Meyer et al. 

1994).

After one gram of either the anion or cation resins was placed in the prepared 

mesh bags, the open panel was folded over 1 cm and then stapled shut (Binkley and
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Matson 1983). Once the resins were evenly spread out within the mesh bag, each resin 

bag and the resins within provided a functional surface area of 4 cm by 5 cm (20 cm2) to 

allow for ion exchange. The filled and sealed bags were then labelled using a colour 

coded vinyl tag that had an identification number written on it. The type of resin could 

be identified by the colour of the tag or the identification number on the tag, which was 

also coded to identify field location and sampling period. The label was affixed to the 

bag and the bag was then moistened with deionized water and placed in zipper freezer 

bags. The resin bags were kept cool and moist by being stored at 4°C until they were 

saturated with counter-ions.

All anion bags were saturated using the same methodology and chemicals from 

the same batch and lot number. Fresh chemicals were mixed for use for each time 

period. Anions were saturated using NaHC03 which was purchased in powder form 

from Fisher Scientific and mixed to a 0.5 M solution (Sibbesen 1978, Krause and Ramlal 

1987). In order to convert the resins to a bicarbonate form, which has low attraction to 

the positive resins and will be easily exchanged for other elements, the bags were soaked 

in the 0.5 M NaHC03 solution. This was done by placing the chemical in clean large 

plastic Rubbermaid tubs, using the equivalent of 100 ml per bag. Two saturation periods 

of one hour each with gentle agitation at time zero and thirty minutes were employed 

(Sibbesen 1978, Krause and Ramlal 1987). Chemicals were not reused when saturating 

the bags.

After being in the second bicarbonate saturation for an hour, the bags were 

transferred to a tub of deionized water, where they remained for one hour, and were then
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transferred to a second tub of deionized water for another hour (Sibbesen 1978). The 

bags were allowed to drip the excess water off, but were not allowed to completely dry, 

and were returned to the zipper freezer bags and put in the refrigerator at 4°C until being 

used in the field.

Similar to the anion bags, the cation bags were separated into large batches, and 

all bags were treated in the same manner regardless of time period. The cation bags 

were cleaned in 1 M HC1 overnight using 50 ml per bag and were rinsed in deionized 

water for one hour, being stirred at half hour intervals, before being saturated using 

50 ml per bag of 1 M NaCl (Krause and Ramlal 1987) in three saturation periods of one 

hour each (Beyer 1998). These were also agitated at time zero and at thirty minutes. 

After the third hour of saturation, the bags were rinsed in deionized water for three 

rinsing periods of one hour each (Beyer 1998). Similar to the anion bags, the cation 

bags were drained of excess water before being placed in zipper freezer bags and stored 

in the fridge until being used in the field. As noted for the anion bags saturation 

procedure, each saturation period used fresh chemical batches.

3.4.2.2 Extracting the Resin Bags After the In Situ Sampling Period. Both sets 

of resins were extracted using the same methodology but with different molar strengths 

of HC1 for the anion and cation extractions. The anion and cation bags were extracted 

separately to avoid accidental mixing up of the bags during extraction. Mineral and 

organic resin bags were also separated into groups for extraction. Before extraction, the 

resin bags were thoroughly cleaned with three separate deionized water baths to remove
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any remaining dirt or debris (Krause and Ramlal 1987, Cooperband and Logan 1994, 

Huang and Schoenau 1996, Dobermann et al. 1997, Huang and Schoenau 1997, Beyer

1998). This is an important process because ion adsorption from the remaining soil 

particles may continue beyond the sample period (Dobermann et al. 1997, Qian and 

Schoenau 2002).

It is also preferable not to over handle the resins before they are placed in 

containers, and direct handling of the resin should be limited and avoided if possible 

(Sibbesen 1977). Cleaning the resins was done by gently agitating the bags in a 

Rubbermaid tub using a gloved hand. Roots were carefully removed from the bags using 

tweezers and scissors, and careful attention was paid to avoid damaging the bag. Once 

the bags were cleaned in the baths and allowed to drip dry for a few minutes, they were 

placed in clean plastic pill bottles.

The anion resin bags were extracted using 50 ml of 0.5M HC1 (Sibbesen 1978, 

Lajtha 1988, Schoenau and Huang 1991, Huang and Schoenau 1996, Qian and Schoenau 

1997). Cation resin bags were extracted using 50 ml of 0.1 M HC1 (Krause and Ramlal 

1987). Clean plastic pill bottles with tight fitting lids were used. After the resin bag and 

the chemicals had been added to the bottle, it was shaken for one hour on a shaker table 

at 180 rpm. After shaking, the solution was filtered using a vacuum flask and Buchner 

funnel with Fisherbrand’s Q2 filters (John Perron, pers. comm. September 12, 2003) 

(Figures 8 and 9). The filtered solution was placed in 50 ml centrifuge tubes (Figure 10) 

and placed in the freezer until samples were analysed. All lab equipment was thoroughly 

washed three times to avoid contamination between extractions.
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Figure 8. Front view of the vacuum flask and Buchner flannel apparatus used in the resin 
bag extractions.

Figure 9. Overhead view of a resin bag and extract solution being filtered.

Figure 10. After filtering, the solution was stored in 50 ml centrifuge tubes.
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3.4.3 Analytical Chemistry

While two separate kinds of resins were placed in situ in conjunction with each 

other, only cation results will be presented in this paper. The anion resins were analysed 

along with the cation resins, but during the anion analysis process problems were 

encountered with the extract solution. Unusual results and spikes of unwanted and 

unanticipated ions delayed the anion results. The extract samples are currently being re­

filtered and re-analyzed to try and normalize the results into a workable data set. Such 

problems were not encountered with the cation ion exchange resin extract samples. All 

resin results are reported in kg-ha'1 after converting from ppm (see Appendix I).

The cation resin bags were analysed for Ca2+, Mg2+, K+, aluminum (Al3+), iron 

(Fe3+), ammonium (NH4+), and manganese (Mn2+) levels. Ammonium was determined 

using 5 -1 0  ml of the extract sample using a modification of the classic Kjeldahl method, 

adapted for TrAAcs automated wet chemistry (Bran+Luebbe Method 351.2). SPEX QC 

aqueous control (4-15 NUT-1 and 5-10 ANIONS - NIST) material was incorporated 

every 10 samples. The other cations were determined by Atomic Absorption 

Spectroscopy. The volumes used for each sample taken depended upon expected 

elemental content and sample amount. SPEX QC aqueous control (4-12 TMAA-3, from 

NIST) material was incorporated every 10 samples.

3.4.4 Data Synthesis and Statistical Analysis

In total, over 1600 resin bags were installed over two field seasons representing 

three sampling periods (Growing Season - 2003; Growing Season - 2004; Overwinter
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2003/2004, by subtraction). For each sampling period, 540 resin bags were created (270 

anion + 270 cation), with varying amounts actually being needed once in the field, due to 

missing horizons or unsuitable conditions for burial (i.e., water, excessive roots or rocks 

in pit).

The first period was over the growing season of 2003 (June 2003 to September 

2003) with 246 anion and 247 cation resin bags being buried for an average of 111 days. 

The second period included the summer of 2003 and carried over to the spring o f2004 

(June 2003 to June 2004) with 249 of each the anion and cation resin bags being used for 

an average of 366 days. The third and last period was during the growing season of 

2004, with 259 of each the anion and cation type resin bags. These bags were in situ 

from June 2004 to September 2004, for an average of 109 days. A timeline (Figure 11) 

is shown to simplify the dates o f installation and extraction.

Resin Bags 
Installed

Ju n e  2003

I_____

Septem ber 2003

First se t of Resin 
Bags Extracted

Third Set of 
Resin Bags 

Installed

Ju n e  2004

Ju n e  2004

Second Set of 
Resin Bags 
Extracted

S eptem ber 2004

Third Set of Resin 
Bags Extracted

Growing Season2003 Overwinter/Spring Melt Growina Season20(M

Figure 11. A timeline showing the dates of installation and extraction of the resins.

For analysis, the two growing season periods were combined together to provide 

one estimate of the available nutrients during the growing season. This was done to 

simplify the analysis, as the two growing season periods had similar nutrient
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concentrations. These values were then subtracted from the overwinter period to 

provide an estimate of the contribution of nutrients to the ecosystem by the spring flush. 

The organic horizon tests had 135 observations for the growing season, and 131 

observations for the overwinter period, while the mineral test had 128 and 114, 

respectively. Observation numbers differed because different numbers of bags were used 

due to the variations that occur across the plots and sites. For example, these sites have 

exposed bedrock areas where there tends to be little or no organic and/or mineral soil to 

sample.

Resin extraction results were considered separately for each horizon and 

sampling period, but employed the same GLM and EMS table, which was similar to 

Equation [2]. The EMS table was similar to Table 4, but had different epsilon 

repetitions and degrees of freedom for error. The experimental design is the same as the 

nutrient pool experiment, considered as a completely randomized design (CRD) with 

harvest treatment replication, with analysis again utilizing ANOVA run with Data Desk, 

Version 6.0 (Velleman 1997). All data sets were checked for compliance with the 

ANOVA assumptions of normal distribution and equal variance as well as being tested 

for normality and homogeneity (Lorenzen and Anderson 1993). It was concluded after 

computing these tests that the ANOVA assumptions had been met and the data sets need 

not be transformed. Student-Newman-Keuls (SNK) tests were also completed (Zar

1999).
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3.4.4.1 Constructing Linear Contrasts fo r  the Comparisons o f  Means. Harvest 

type was again compared using linear contrasts to investigate for differences between the 

different harvest types and their associated levels of biomass removal (Snedecor and 

Cochran 1989, Lane 1999). The same contrasts were used as introduced for the nutrient 

pool sampling, with k = 5 harvest types, and a maximum of (k - 1) = 4 linear contrast 

comparisons (Snedecor and Cochran 1989) (Table 5). The contrasts and ecological 

questions used in these contrasts were outlined previously (Section 3.3.4.1). Both the 

organic and mineral data sets were included in the linear contrasts to capture any 

significant differences not identified by the initial ANOVA F  tests (Snedecor and 

Cochran 1989).

3.5 ESTIMATING STANDING CROP AND EVALUATING CROP 
TREE PERFORMANCE

3.5.1 Collecting Tree Inventory Data

During the summer months o f 2003, tree inventory plots were completed in all 

four quadrants in all plots harvested on all three study sites as part o f a bioassay of the 

treatments. From the centre of each quadrant, a 3.99 m radius was measured, and any 

tree within that radius with a total height greater than 30 cm was included as part o f the 

inventory. Quad centres (equivalent to pit 5) were used as a plot centre (Figure 4).

Measurements taken included: species type, root collar diameter (RCD) and 

diameter at breast height (DBH), both measured using digital calipers, total height, four 

growth increments, and crown widths and lengths, all of which were measured using 

either metre sticks or height poles. Crown density percentages were measured by visual
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estimation. All measurements were recorded on tally sheets, and later entered and 

verified in an Excel spreadsheet to be used to calculate species composition, stand 

density, and applied to local “small tree” biomass equations, used to estimated standing 

crop across sites and harvest treatments. Species densities were also calculated by Site 

and Harvest Treatment using this information.

3.5.2 Derivation of “Small Tree” Aboveground Biomass Equations

In the fall of 2004, destructive sampling of the dominant tree species (black 

spruce (Sb), jack pine (Pj), and trembling aspen (At) was completed to develop a 

relationship between RCD and biomass, in order to use the stand inventory data to 

estimate standing crop. A total o f 30 trees covering the full range of diameter classes 

from each of three tree species were taken from within the buffers between harvest 

treatments (10 per species per site). Diameter classes were determined from the tree 

inventory data that was collected the previous year.

The trees were measured similarly to the intensive trees which were part of the 

tree inventory, but instead of just clipping samples of the current growth, the whole tree 

was brought back to the lab to be weighed and measured. The tree was cut down using 

a small hand saw, and tagged with an identification number. Roots were not included as 

part o f the collected components due to the difficulty associated with removing them at 

that time.

Upon returning to the lab, all 90 trees were placed in a walk-in cooler set at 4°C, 

until processing a few days later. Tree components separated and weighed included:
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(total) foliage (F), current foliage (CF) and twigs (CT), branchwood (BW), and 

stemwood and bark (SB). Each component was placed in a labelled paper bag, oven 

dried at 50°C to constant weight, and then weighed. Ages were determined from 

cookies taken from the base of the stem of each tree.

After entering and checking the data, two black spruce and two jack pine trees 

were removed from the data set due to inconsistencies that could not be explained or 

corrected by the original tally sheets. In total, 28 black spruce and jack pine trees, and 

30 trembling aspen trees were used.

Curvilinear regression equations were generated to determine component 

biomass (dependant variable). RCD was used as the independent variable in a 

generalized, two parameter power function:

Mass = B1 * R.CD 82 [3]

Using this function, individual equations were developed for each tree component based 

on the measurements obtained from the destructive sampling. Total weight was also 

included in the calculations, which were performed using the PROC NLIN procedure on 

SAS/STAT software (SAS Institute Inc. 1987). The multi-variate secant method 

(Ralston and Jenrich 1978) was applied to the model-building data set.

Evaluation of the fitted model was based on the coefficient of determination (R2), 

the asymptotic standard errors of B1 and B2, the asymptotic 95 % confidence intervals 

of the estimated parameters (B1 and B2), the Mean Square Error (MSE), and the 

scatterplots of the regression residuals (Appendix II). Standing crop values for the tree
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strata were then generated by combining the regression equations, by each component, 

with the stand table information, in this case, the RCD of all trees from the known plot 

areas of collection, as per the procedure outlined in Baskerville (1972).

3.5.3 Black Spruce Seedling Intensive Inventory

After harvesting, three of the four quads per plot were planted with black spruce 

seedlings at a 2 m x 2 m spacing. After Year One, several (to a maximum of 45 per plot) 

planted black spruce seedlings were randomly selected and tagged. In addition, nine of 

these trees (three per quad) were also selected for foliar nutrient analysis. In the late 

summer/early fall of 2003, all tagged trees were measured for total height (10th year) and 

RCD. In addition, current foliage samples were collected from the predetermined foliar 

trees. It is preferable to use current foliage in the assessment of foliar nutrition due to 

the high correlation between the nutrient concentration of the current year’s foliage and 

the availability of soil nutrients (Leyton 1958, Lavoie et al. 2007). The leaf (or needle) 

is also the focal point for many plant functions, and, as such, is an excellent indicator for 

those mineral elements that directly affect internal processes, such as photosynthesis, as 

well as being a convenient portion of the plant to sample and handle (Smith 1962).

Samples were placed in labelled paper bags, and upon returning to the lab, were 

placed in a drying oven where they were force-draft oven dried at 70° C to a constant 

weight. After drying, 100 needles were counted and weighed, after which the whole 

needle sample was finely ground (to pass a 20-mesh sieve) using a Wiley mill. Ground 

samples were then transferred to air-tight, moisture-proof polyethylene containers and
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stored for further analysis. Macro-nutrient analysis completed at OFRI measured for 

total N, P, K, Ca, and Mg.

3.5.4 Analytical Chemistry

Total Kjeldahl Nitrogen (TKN) was determined on 0.2 - 0.5 g of needle sample 

using a modification of the classic Kjeldahl method, as outlined for the soil samples (see 

sec. 3.3.3.1), adapted for TrAAcs automated wet chemistry (Bran+Luebbe Method 

351.2). Total Phosphorus was also determined by using automated wet colorimetric 

analysis (Bran+Luebbe Method 365.4) on the same digest obtained for TKN 

determination. All foliar samples were analysed in duplicate, and NIST (National 

Institute o f Standards and Technology) standard reference material (Pine 1575) was 

incorporated into the sample runs as a QC (Quality Control) check every 10 samples.

Total P, K, Mg, and Ca were determined by Atomic Absorption Spectroscopy on 

a mixed acid (H2S 04, N H 03, HC104) digest (Grimshaw et al. 1989 - method 12.5). 

Again, standard reference material (Pine 1575) was incorporated as a QC check every 10 

samples.

3.5.5 Data Synthesis and Statistical Analysis

3.5.5.1 Biomass Component ANOVA and Linear Contrasts. After the biomass 

equations had been applied to the tree inventory data, and standing crop estimates were 

calculated, ANOVA was run using Data Desk, Version 6.0 (Velleman 1997). It used a 

similar GLM to Equation [2], using only four levels for harvest treatment as the 

uncut/reference stand was not included, and was calculated on a quad level. The
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standing crop data was analysed as a group with all species combined, as well as by 

individual species. Combining all species yielded 144 observations, with 129 for black 

spruce, 102 for jack pine, and 117 for trembling aspen. As done previously with all data 

sets, checks were completed to ensure compliance with the ANOVA assumptions of 

normal distribution and equal variance (Lorenzen and Anderson 1993). It was 

concluded after computing these tests that the ANOVA assumptions had been met and 

the data sets need not be transformed. Linear contrasts using the last three of the four 

contrasts outlined in Table 5 were also calculated.

3.5.5.2 Height, RCD, and Foliar Concentration and Content ANOVA’s.

Nutrient concentrations and the 100 count needle weights were used to calculate nutrient 

contents for each macro-element. Data Desk, Version 6.0 (Velleman 1997) was used, 

using similar GLM’s to the other experiments (Equation [2]), and similar EMS tables 

(Table 4). The foliar tests each had 319 observations, while total height (10th year) and 

RCD each had 1137 observations. Linear contrasts were also calculated for the height 

and RCD data sets, using the last three of the four contrasts (Table 5). After running the 

ANOVA’s for all the foliar nutrient element concentrations and contents, linear contrasts 

were calculated to compare and check for differences between harvest treatments. The 

last three contrasts will be used, as the reference/uncut state was not included in foliar 

sampling.
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4.0 RESULTS AND DISCUSSION

4.1 CHANGES IN SOIL NUTRIENT RESERVES IN RESPONSE 
TO HARVEST INTENSITY

Timber harvesting on shallow soils has been the cause of concern for many years 

due to the removal of nutrients during clearcut harvesting. Although these concerns 

have triggered several extensive long-term studies (Morris 1997, Gordon et al. 2001), 

many intensive harvest treatments, such as full-tree harvesting, are still recommended 

practices on shallow soil, conifer dominated sites (OMNR 1997b). Since harvest 

treatments such as full-tree and whole-tree harvesting are the most intense and remove 

the most nutrients from the site, it is expected that these treatments will result in greatly 

reduced nutrient pools for several years after harvest. Removal of crown and forest 

floor biomass such as that seen in these harvest types has the potential to alter the 

biogeochemical cycle of the sites (Johnson et al. 1991b), thus compromising site fertility.

Soil nutrient reserves were evaluated across three sites by comparing and testing 

differences between the pre-harvest and post-harvest pool (8 years). Both organic and 

mineral horizons were tested, as both play integral roles in nutrient cycling. For 

example, organic horizon materials have a greater capacity to mineralize nutrient 

elements per unit mass than the mineral horizon, but mineral soil can store larger 

amounts of nutrients on a per unit area basis (Mahendrappa et al. 1986). All results are 

presented in kg-ha'1, with the exception of carbon which is presented in T-ha'1.
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4.4.1 Organic Soil Horizon

Pre-harvest carbon and macro-nutrient pools varied across the study sites, and

Table 6 provides an estimate of these pool sizes. Of the macro-nutrients examined, only

nitrogen pre-harvest pools varied significantly (p = 0.015) across the study sites (Table

7), with pool sizes ranging from 730 - 1000 kg-ha'1 (Table 6).

Table 6. Pre-harvest pool sizes from the organic horizon across the three study sites 
(letters denote significant SNK results, p < 0.05).

Site C N P K Ca Mg

T-ha'1 kg-ha '*

1 28.91 736.1 a 14.22 66.04 190.5 66.06

2 38.84 1012.0 b 11.52 69.25 211.4 65.52

3 30.28 794.7 a 12.24 61.64 219.2 64.01

Table 7. P-values from the organic nutrient pool ANOVA, for both sampling 
periods (significant values are in bold, p < 0.05).

Pre-Harvest C N P K Ca Mg

Site (S) 0.0622 0.015 0.4570 0.6128 0.6109 0.9682

Post-Harvest C N P K Ca Mg

Site (S) 0.6703 0.4602 0.0435 0.4232 0.0147 0.0404

Harvest 
Treatment (H)

0.1667 0.0984 0.0001 0.0001 0.0021 0.2171

S*H 0.7948 0.8008 0.4815 0.8445 0.6234 0.7465
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The pre-harvest site differences in pool sizes of nitrogen (Table 6) can be 

explained by the differences in the organic matter located on the sites. Site 1 and Site 3 

have a moderately thin Fibrimor humus organic horizon, while Site 2 is characterized by 

a slightly deeper HumiFibrimor humus organic horizon (Duckert and Morris 2001). 

Humus type, according to Richards et al. (1985), is one of the most important factors 

affecting the amounts, forms, and mineralization/immobilization processes of nitrogen in 

forest soils. Forest humus horizons are recognized as being a major nutrient reservoir in 

boreal ecosystems (Krause et al. 1978).

This HumiFibrimor, or humus (H) organic horizon, typically is more 

decomposed than the Fibrimor (F) horizon. The H horizon is generally darker and 

moister, and made up of well-decomposed material whose origins are unidentifiable 

(Kimmins 1997). Birch (1958) adds that organic matter in the humus form accounts for 

the largest proportion of soil nitrogen. Research by Huang and Schoenau (1996) also 

found that the humified H horizon had the highest ammonium supply rates, followed by 

the F horizon, and then the L, or surface litter horizon. Several other studies, including 

those by Boone (1992) and Persson and Wiren (1995) have also found that the highest 

amounts of mineralized nitrogen are generally found on the lower forest floor horizons, 

such as the F and H horizons.

Although interactions were not a significant source of variation, main effects 

were found to be significant in several cases (Table 7). Phosphorus, calcium, and 

magnesium, all had significant tests for site (Figure 12), suggesting differential shifts in 

nutrient pool sizes have occurred after harvesting. For example, phosphorus pools were
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higher on Site 1, whereas calcium and magnesium were highest on Site 3, with SNK 

tests showing significant differences between sites (Figure 12). When comparing the 

harvest treatments using ANOVA testing, phosphorus, potassium, and calcium pools 

were significantly different across the treatments (Table 7). Both phosphorous and 

potassium pools have dropped substantially for all of the harvest treatments when 

compared to the uncut condition (Figure 13). Calcium, on the other hand, increased 

(Figure 13 c). Linear contrasts (as described in Table 5) revealed similar trends for these 

elements, with significant results for contrasts L x and L3 (Figure 13).

Although carbon, nitrogen, and magnesium pools were found to be non­

significant sources o f variation by ANOVA testing (Table 7), linear contrasts were able 

to identify significant differences in L3 for both carbon and nitrogen, and L x in regards to 

magnesium (Figure 14). A clear gradient is noticeable in all pools across the harvest 

treatments, with the largest occurring in the least intense treatments (chip and tree- 

length), and the lowest in the whole-tree treatment (Figures 13 and 14). This pattern 

was expected, as higher biomass removals leave less nutrient bearing slash on the site, 

and as such, are anticipated to contribute less nutrients to the soil nutrient reserves. No 

linear contrast results were significant for two of the four linear contrasts, and thus, no 

differences were found between the full-tree and tree-length harvesting treatments (L4), 

or between the chip and tree-length treatments (L2) (Figures 13 and 14).

Oddly, calcium and magnesium did show larger pool sizes after blading had 

occurred, compared to the uncut stands (Figures 13 c and 14 c). This is an unusual 

result, and while unique to this project, data were checked for accuracy and uniformity,
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and were included after no sampling or inputting errors could be detected. However, it 

is expected that since blading removes the organic horizon, a reduction in pool size 

would occur.
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oo 60
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ate 1 Site 2 ate 3

Figure 12. Post-harvest organic nutrient pools across sites for phosphorus (a),
calcium (b), and magnesium (c). Different letters denote significant site 
differences, based on the SNK tests (p < 0.05).
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Chip Tree-Length Full-Tree W hole-Tree U ncut

Figure 13. Post-harvest organic nutrient pools with linear contrast comparisons for 
phosphorus (a), potassium (b), and calcium (c). Different letters over the 
underlined groupings denote significant differences for the various linear 
comparisons (p < 0.05).
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Figure 14. Post-harvest organic nutrient pools across harvest treatments for carbon (a), 
nitrogen (b), and magnesium (c). Different letters over the underlined 
groupings denote significant differences for the various linear comparisons 
(p < 0.05).
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Phosphorus and potassium decreased after harvesting (Figure 13), while calcium 

and magnesium significantly increased (Figure 14), with greater nutrient reserves o f both 

phosphorous and potassium in the uncut stand (Figure 13 a, b). Bradley et al. (2001) 

also found that potassium concentration was higher in old stands than in harvested plots, 

adding that potassium is very mobile and is easily leached from living and decomposing 

plant tissues compared to other nutrients. Potassium is also readily lost because of its 

relatively low retention by processes such as cation exchange (Likens et al. 1970, Gosz 

et al. 1976). Romanowicz et al. (1996) suggest that several nutrient cations including 

potassium, calcium, and magnesium are lost from forested ecosystems by harvesting 

through biomass removal, post-harvest treatments, and enhanced leaching. While 

potassium did decrease, both calcium and magnesium increased in all treatments after 

harvesting, following the pattern o f harvest intensities, with chip and tree-length having 

greater pools.

Phosphorus is rapidly taken up by growing seedlings, as it is needed in relatively 

large amounts and is essential for plant growth (Meyer et al. 1997). Most of the readily 

available phosphorus is found in the forest floor (Kimmins et al. 1985), as it is primarily 

recycled by microbial decomposition of organic matter such as litter, and by plant uptake 

(Cade-Menum et al. 2000). It is also present in humus, mainly in the organic form, of 

which only a small fraction is soluble (Bradley et al. 2001). Thus, since uncut stands 

often have larger and deeper organic matter pools, it makes sense that these elements are 

found in greater amounts in these stands compared to harvested stands, which generally 

had thinner forest floors.
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Calcium (Figure 13 c) and magnesium (Figure 14 c) had greater reserves on the 

harvested sites compared to the uncut stand (L,), which could be attributed to the litter 

inputs and any decomposing slash that might still remain, even eight years after harvest. 

Calcium, and to some extent magnesium, are found in recalcitrant plant tissues (Morris

2000), which could explain the increases. Calcium is also relatively immobile when in 

litter and organic matter, where it is found mainly as a complex within plant cell walls, 

which makes foliage litter an important source of calcium in forest floors (Bradley et al.

2001). Hendrickson et al. (1989) found levels of these nutrients to be high in tree-length 

sites because of the logging slash, which correlates to the high reserves on harvest 

treatments that had the largest amounts of slash remaining on the site, such as the tree- 

length and chipped treatments.

With the exception of magnesium, blading caused organic nutrient pools for all 

elements to be much smaller, compared to pools associated with other harvesting types 

where the forest floor was not removed (L3 - Figure 13 and 14). This result is not 

unexpected. This method effectively removes the forest floor and associated nutrients.

It is important to note that this was an experimental treatment, and is not an operational 

practice in Ontario (Morris, per s. comm. March 7, 2006), and was incorporated in the 

design as an extreme example of biomass removal.

Full-tree harvesting, often the treatment that generates the most concern due to 

increased biomass removals, did not result in lower organic nutrient pools when 

compared to the less intense tree-length treatment (L4 - Figure 13 and 14). In fact, the 

pools associated with these two treatments are quite similar. While this treatment has
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been suggested as having a greater potential for negative impact on organic matter and 

nutrient cycles than stem-only harvesting, due to the additional removals of live crown 

biomass (Aber et al. 1978, Hendrickson et al. 1989, Johnson et al. 1991a), this paradigm 

was not supported by this study.

4.1.2 Mineral Soil Horizon

Significant differences were seen in the organic horizon after harvesting had 

occurred, so it might be expected that the mineral horizon would experience similar 

responses, but no significant effects were found in either the pre- or post-harvest 

ANOVA tests (Table 8). The mineral horizon pools did not experience a significant 

change in size, as they were constantly being recharged by the inputs from the 

decomposing upper organic horizons. However, the nitrogen and potassium pools, 

although not significantly different, were consistently higher across all three sites in post­

harvest measurements. Romanowicz et a l (1996) also found increases in potassium in 

mineral soil after harvesting had occurred.

Table 8. P-values from the mineral nutrient pool ANOVA, for both sampling periods 
(significant values are in bold, p < 0.05).

Pre-Harvest C N P K Ca Mg

Site (S) 0.1247 0.1547 0.2004 0.6693 0.4027 0.4328

Post-Harvest C N P K Ca Mg

Site (S) 0.2491 0.3297 0.3434 0.6146 0.2353 0.5424

Harvest 
Treatment (H)

0.0781 0.2746 0.1757 0.1493 0.366 0.1165

S*H 0.9536 0.993 0.9908 0.9825 0.902 0.9497
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The harvest treatment responses in the mineral nutrient pools were also 

compared using the linear contrasts outlined in Table 5. In this case, no contrasts were 

found to be significant. The lack of any significant tests in both the ANOVA and linear 

contrasts indicated that harvesting may not affect the mineral soil reserves in the same 

manner or magnitude as it does in the organic horizons, or at least within the time frame 

of the current study.

4.2 DIFFERENCES IN AVAILABLE NUTRIENT POOLS IN 
RELATION TO HARVEST INTENSITY

While boreal forest nutrient pools can be large (e.g., estimated in this study at 

1360 - 1860 kg-ha1 for nitrogen), only a small portion of these large reserves is turned 

over annually and made available for plant uptake. The cation resins have provided an 

index of nutrient availability, which differs after harvest, and may be influenced by 

harvest intensity. Whole-tree harvested sites that have had the majority of organic 

matter removed would be expected to have smaller available nutrient pools, especially 

when compared to the other treatments which have varying amounts of slash and leaf 

litter left remaining on the site after harvesting has occurred. Organic and mineral soil 

horizon results are shown in Table 9, both with growing season values (June - October) 

and overwinter values (November - May). These data will allow an estimate of spring 

flush contributions to the available nutrient pool.
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4.2.1 Organic Soil Horizon

In this horizon, site significantly affected both potassium and calcium availability; 

while harvest treatment only significantly affected ammonium (Table 9). Available 

nutrient pools of potassium were greatest on Site 1 (4 kg-ha'1-growing season'1), with 

Site 2 and Site 3 having smaller and similar pools (2 kg-ha'1-growing season'1) (Figure 

15). In contrast, availability of calcium was greatest on Site 3 (8.5 kg-ha'1-growing 

season'1), with Site 1 and Site 2 having smaller available pools (< 4 kg-ha'1-growing 

season'1) (Figure 16).

Table 9. P-values from the organic resin ANOVA, for both growing season and 
overwinter (significant values are in bold, p < 0.05).

Growing Season n h 4+ K+ C a2+ M g 2+

Site (S) 0.665 0.0009 0.0103 0.1964

Harvest Treatment (H) 0.0017 0.0806 0.0955 0.0828

S*H 0.898 0.103 0.2568 0.382

Overwinter n h 4+ K+ C a2+ M g 2+

Site (S) 0.1448 0.003 0.0166 0.3141

Harvest Treatment (H) 0.301 0.8996 0.8204 0.4647

S*H 0.6686 0.971 0.4129 0.3141

The difference in available calcium pools across the study sites could be 

explained by the site differences that were highlighted both in the site descriptions and in 

Table 1. Site 3 has a slightly deeper organic horizon, with a higher moisture regime 

(Table 1). Krause and Ramlal (1987) found increased calcium values on sites with 

higher soil temperatures and moisture, and added that while soil temperature might not
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Figure 15. Available potassium nutrient pools during the growing season for the organic 
horizon, depicting significant differences between sites. Different letters 
denote significant site differences, based on the SNK tests (p < 0.05).

a te  1 a te  2 a te  3

Figure 16. Available calcium nutrient pools during the growing season for the organic 
horizon, depicting significant differences between sites. Different letters 
denote significant site differences, based on the SNK tests (p < 0.05).
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vary that much across sites which are close to one another, soil moisture can vary 

considerably. Pre-harvest differences in moisture regimes (MR 2 - 4), are likely to be 

maintained or even enhanced post-harvest, therefore, affecting nutrient availability.

Potassium availability could be higher on Site 1 as a result of the presence of 

trembling aspen, which comprised 10 % of the pre-harvest stand composition (Table 1). 

This deciduous component provides nutrient rich foliar Utter that may enhance nutrient 

cycling on the site. It has been demonstrated that deciduous leaves, such as that from 

aspen, are more easily decomposed and digested by micro-organisms than acidic conifer 

Utter (Kimmins 1997). Any aspen suckering occurring post-harvest may also be 

important in contributing nutrients such as potassium and calcium back into the system 

(Morris 2003).

With available calcium pools nearly doubling those of potassium, once again, the 

mobiUty of the latter is asserted. Compared to potassium, calcium is more tightly held 

on cation exchange sites, and is relatively abundant in most soils as a result (Meyer et al. 

1997). Ammonium, on the other hand, is weakly held on cation exchange sites, which 

can be seen in the harvest treatment results (Figure 17), and the small range in the 

available nitrogen pools across treatments (0.06 - 0.21 kg-ha'-growing season'1). These 

pools were small, even though the nitrogen nutrient reserve pools ranged from 

-790 kg-ha'1 after whole-tree and -1300 kg-ha'1 after chip treatments (Figure 14 b).

Other studies have found limitations of ion exchange resins in reflecting the 

actual soil nitrogen supply through the growing season (Stark and Hart 1997, DriscoU et 

al. 1999). Instead, it is proposed that the resins only give a static measure of available
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soil nitrogen at a single point in time (Hangs et al. 2004), thus underestimating the total 

available pool. Kjonaas (1999) also tested nitrogen stability with Amberlite IR 120 ion 

exchange resins, and found that resins that had dried contained less ammonium than 

resins that remained moist, suggesting that drying may cause an irreversible absorption of 

ammonium in the cation exchange potential of the resins. The low amounts of 

ammonium measured by the resins could also be the result o f increased nitrification, 

which can occur after harvest (Lindo and Visser 2003). Unfortunately, the anion 

component of this experiment was not completed, and therefore, no direct link or 

comparison can be made at this time.

_______________________a_______________________  b Lj
a b L2

a  a  L ,

Chip Tree-Length Full-Tree Whole-Tree Uncut

Figure 17. Available ammonium nutrient pools during the growing season for the
organic horizon, depicting significant differences between harvest treatments. 
Different letters over the underlined groupings denote significant differences 
for the various linear comparisons (p < 0.05).

Studies by Carlyle and Malcolm (1986), however, using 20 grams of the IR 120

resins in spruce stands found, in situ for periods of 120 and 200 days, that the resins

yielded between 10-20  and 10 -17 jug N -g'1, respectively. The resins in this study
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were the same and yielded much lower amounts of ammonium (0.457 - 1.786 ^g g '1), 

but employed much smaller amounts o f resin (1 gram). Due to the low amount of 

resin/exchange sites, the stronger bonds formed by calcium, and the generally high 

abundance of calcium in the soil solution, the exchange sites might have been 

differentially “saturated” in favour of calcium. More resin may have been needed, 

providing more exchange sites to allow other nutrients to attach to the exchange sites 

without being displaced by calcium ions. It does seem reasonable, however, to consider 

the resin results as an “index” of availability to compare across harvest treatments.

Linear contrasts were found to be significant except for L4, which compares full- 

tree versus tree-length harvesting. This indicates that, although reduced, the slash 

loading associated with full-tree harvesting is sufficient to generate equivalent available 

nutrient levels when compared to the tree-length treatment. While the first three 

contrasts were significant for ammonium (Figure 17), only the first or third contrast was 

significant for calcium and magnesium, and potassium, respectively (Figure 18). These 

elements were tested using the linear contrasts after ANOVA testing found no significant 

sources of variation between treatments (Table 9).

Generally, availability increased after harvest for ammonium, calcium, and 

magnesium (L,), with greater ammonium availability after tree-length harvesting when 

compared to chipping (L2). Blading generated the lowest nutrient availability for both 

ammonium and potassium (L3).
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Tree-Lengtk Whole-Tree Uncut

Tree-Lengtk Whole-Tree Uncut

<c> M» Chip Tree-Length Fiil-Tres Whole-Tree Uncut

Figure 18. Post-harvest available organic nutrient pools during the growing season, 
depicting significant differences between harvest treatments for potassium 
(a), calcium (b), and magnesium (c). Different letters over the underlined 
groupings denote significant differences for the various linear comparisons 
(p < 0.05).
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In other studies, nitrogen levels have been found to increase following harvesting, 

even after five to ten years has passed (Paul and Clark 1989). The increase was mainly 

attributed to increased organic matter decomposition (Paul and Clark 1989). The 

addition o f live leaves, which have a lower C:N ratio than senescing or dead leaves, 

could also be an important factor (Vitousek 1981). In ten-year-old cedar (Thuja spp.) 

and hemlock (Tsuga spp.) stands, Chang et al. (1995) did report lower amounts of 

available nitrogen in the forest floor than on three-year-old sites. This difference was 

accounted for through greater competition of available nitrogen from both the microbial 

community and the vigorous growth of competing understory vegetation. This finding 

indicates that the year of testing post-harvest nutrient availability is also an important 

consideration due to the dynamic nature of this flux.

As previously noted, chipping resulted in lower ammonium availability than the 

tree-length treatment (Figure 17 - L2). Considering both of these treatments yield the 

same amount o f slash, the slash composition appears to have a larger effect on 

mineralization/immobilization processes than other factors. Chipping could result in 

nitrogen deficiencies over time through immobilization, induced by slow decomposition 

and high C:N ratios (White and Harvey 1979). For example, Tappeiner (1971) estimated 

that less than 10 % of jack pine chips are decomposed after several seasons.

Tree-length harvesting, while having the ability to provide an immediate source 

of cations on site by leaving rapidly decomposing components, such as tree crowns 

which included leaves and small twigs (Abbott and Crossley 1982), can also immobilize 

nutrients. The small branches left on the site following this treatment, in addition to the
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roots, which are also left after the chip and full-tree treatments, represent a longer-lived 

source o f nutrients and organic matter, and could be responsible for the increased pools 

almost ten years since harvest. These components tend to initially immobilize some 

nutrients during the earlier stages of decomposition, but later release them (Abbott and 

Crossley 1982, Fahey et al. 1988). This delayed release may limit the nutrient losses 

following harvest (Knoepp and Swank 1997).

Overwinter resin results showed both potassium and calcium differences across 

the study sites (Table 9). These results are similar to those obtained for the growing 

season period, with potassium having the greatest amount o f availability on Site 1 

(Figure 19), and calcium on Site 3 (Figure 20). Growing season, overwinter, and annual 

available pools are shown across sites (Figure 21 a - d) and treatments (Figure 22 a - d). 

Site and pool size differences are shown between the growing season and the overwinter 

period. For ammonium, most o f the annual available nitrogen results from the 

overwinter period, particularly on Site 2 and Site 3 (Figure 21 a).

00 M
"oo a.

Site 1 Site 2 S te  3

Figure 19. Available potassium nutrient pools during the overwinter period for the 
organic horizon, depicting significant differences between sites.
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Figure 20. Available calcium nutrient pools during the overwinter period for the organic 
horizon, depicting significant differences between sites.

Annual available potassium was greatest on Site 1 (Figure 21 b), probably related 

to inputs from trembling aspen found on the site. Calcium and magnesium availability 

was greatest on Site 3. In most cases, the overwinter values are greater than those 

calculated for the growing season, indicating that the spring flush of available nutrients 

makes an important contribution to the annual available pools.

Harvest treatment response in the ammonium available pool was greatest in both 

the tree-length and fiill-tree treatments (Figure 22 a). The whole-tree harvest treatment 

yielded the greatest availability for both calcium and magnesium in both periods, but the 

least amount o f potassium and ammonium. Krause and Ramlal (1987) also found that 

potassium was constantly lower in their resin studies on whole-tree harvested sites than 

other harvest treatments, such as fiill-tree.
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Figure 21. Available nutrient pools during the growing season and overwinter period for the organic horizon across sites for 
ammonium (a), potassium (b), calcium (c), and magnesium (d).
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Overall, availability for nutrients such as ammonium, calcium, and magnesium 

after tree-length and full-tree harvesting were not significantly different (L4 - Figure 17 

and 18), resulting in similar annual available pools (Figure 22). One might expect that 

due to the high degree of biomass and organic matter removal associated with whole- 

tree harvesting that this harvest treatment would have the lowest available pools for all 

nutrients. The significantly lower ammonium availability after whole-tree harvesting 

could be a result of low organic matter levels, in conjunction with the effect of soil 

moisture regime on ammonium values (Binkley 1984a). Whole-tree harvested plots may 

exhibit drier soils due to increased surface soil temperatures, as well as increased water 

runoff and evaporation. As noted earlier, resin ammonium values do not necessarily 

reflect ammonium content, but rather the effect of soil water regime (Gibson 1986), so it 

is important to use these estimates merely as an index of soil nutrient availability.

Seasonal effects are shown in the variability of the soil nutrient availability across 

the sites and treatments (Figures 21 and 22, respectively). Greater nutrient availability 

during the overwinter period is a result o f the resin bags that were in situ during this time 

being exposed to larger amounts of water from both autumn rain, and winter snow melt. 

Other resin studies, such as those by Lundell (1989) also found that overwintered bags 

adsorbed larger amounts o f ions than those not overwintered. Lower summer 

concentrations could be a result of the resins being ineffective competitors for nutrients 

against roots, mycorrhizal hyphae and other soil micro-organisms (Lundell 1989).

Lower soil moisture levels during this period could also lead to a lack of ion sorption by 

the resins.
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The growing season linear contrasts (Figure 18) as well as the available pool 

graphs for both periods (Figure 22), consistently show that harvesting resulted in 

increased availability for ammonium, calcium, and magnesium, compared to the uncut 

stand (L[). It is possible that potassium availability did not increase after harvesting due 

to its high mobility compared to divalent ions such as calcium and magnesium, and poor 

retention on the exchange sites. Although not measured in this study, the low recovery 

of potassium by the resins could reflect greater losses in the soil through leaching or 

assimilation by vegetation compared to calcium or magnesium (Olsson et a l 1996). 

Potassium is readily lost from both living and dead biomass, also contributing to losses 

(Romanowicz et al. 1996). Morris (1997) suggests that potassium lost due to 

harvesting, especially from whole-tree harvesting, may not be replaced over a rotation on 

shallow soil sites in Ontario. Uncut stands also have lower nutrient availability because 

prior to cutting, gross mineralization is assumed to be equal to immobilization plus plant 

uptake (Vitousek 1981), and following cutting, mineralization and immobilization 

increase while plant uptake decreases.

Canopy removal through harvesting can increase the amount o f solar radiation 

and precipitation that reach the soil surface, thereby, increasing soil temperature and 

moisture and increasing nutrient mineralization (Keenan and Kimmins 1993). While 

nutrient availability in this study increased, Lindo and Visser (2003) found ammonium in 

forest floors to be lower in clearcut treatments three years after harvest compared to 

uncut stands. Schmidt et al. (1996) also found that nutrients, especially nitrogen, 

decrease in the forest floor after harvesting has occurred. This response, however, is not
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consistent, as other studies have reported increases in nutrients after harvesting 

(Vitousek and Matson 1985, Frazer et al. 1990), while others showed no significant 

differences between cut and uncut forests (Maynard and Maclssac 1998). Collectively, 

this may suggest that no definitive negative impact on long-term site productivity can be 

expected (Knoepp and Swank 1997).

Once again, the removal of the forest floor associated with the whole-tree 

harvesting treatment significantly reduced the amount of available ammonium and 

potassium, when compared to the other harvest treatments (L3) (Figure 18). On the 

other hand, calcium and magnesium availability was greater after whole-tree treatments, 

which could be a result of the retention of these divalent ions (Olsson et al 1996). 

Similar results were reported by Frey et al. (2003) in a white spruce-dominated forest in 

Alberta, where blading had increased calcium and magnesium, but depleted potassium. 

Frey et al. (2003) and Verburg et al. (1999) related the increases to enhanced 

mineralization, due to increased temperatures in the exposed upper mineral soil and 

organic matter remaining on the site. Generally, the low nutrient availability associated 

with the whole-tree treatment is accounted for by limited mineralization due to the small 

amount of organic material remaining (F or H horizon).

The resin results have not only provided indices of the availability of nutrients 

such as ammonium and potassium (based on concentration levels, not soil mass), but 

have also shown the effect, or lack there of, that harvesting has on available nutrient 

pools. Again, contrasts were significant in cases where harvesting was compared to the 

uncut stand, and after whole-tree harvest treatments, similar to earlier contrasts which
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compare total nutrient pools. The available pool contrasts also saw one example of 

significance for the chip versus tree-length harvesting contrast, but no significant 

contrasts for the fiill-tree versus tree-length harvesting comparisons. As noted earlier, 

fiill-tree harvesting has been the subject of concern for many years regarding its potential 

for detrimental nutrient removals. The current results, however, clearly indicate that 

there is no significant difference in the available nutrient status for the shallow-soiled 

sites used in this study.

4.2.2 Mineral Soil Horizon

Resins bags in the mineral horizon were placed at a depth of 10 cm to obtain an 

index of available nutrients from within the rooting zone. Most nutrients in the mineral 

horizon are believed to be leached if not used by plants or retained by exchange sites, 

however, due to inputs from the decomposing organic horizon, the pool is considered to 

be relatively stable over time (Morris, pers. comm. September 28, 2005). This was the 

case for the total pools, but regardless of this steady recharge, available mineral pool 

concentrations (as measured by the resins) are expected to be lower than the organic 

horizon because of plant uptake by roots and lower CEC values.

ANOVA results over the growing season for the mineral horizon available pool 

(Table 10) identify at least one significant source of variation for each macro-nutrient. 

Only ammonium was significantly affected by the Site*Harvest Treatment interaction. It 

should be noted that the p-value for the interaction was 0.0152 (Table 10), which can be 

considered to be a high value. As a result, it can be interpreted that the interaction is 

subtle, and finding some sound ecological significance rather than just sampling
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variability can generally be difficult. However, it appears that ammonium increased for 

Site 1 thru 3 under full-tree harvesting, but peaked on Site 2 under tree-length harvesting 

(Figure 23). This peak could be a result of the nutrient inputs from remaining litter 

resulting from tree-length harvesting, combined with the HumiFibrimor humus organic 

horizon on Site 2. The differences between harvest treatment response across sites are 

subtle, and are simply a shift in tree-length and full-tree harvesting, which have the higher 

ammonium values.

Table 10. P- values from the mineral horizon resin ANOVA, for both growing season 
and overwinter (significant values are in bold, p < 0.05).

Growing Season NH4+ K+ C a2+ M g 2+

Site (S) 0.0097 0.0711 0.0068 0.0054

Harvest Treatment (H) 0.0002 0.0005 0.1905 0.1508

S*H 0.0152 0.4908 0.2477 0.1281

Overwinter n h 4+ K+ C a2+ M g 2+

Site (S) 0.4085 0.15 0.0842 0.2488

Harvest Treatment (H) 0.662 0.1759 0.9306 0.7465

S*H 0.556 0.8459 0.4806 0.148

Calcium and magnesium were both significantly affected by site (Table 10), with 

Site 3 again having the largest available pool for both elements (Figures 24 and 25), an 

occurrence which could be due to the higher moisture regime that is found on that site, 

which would influence post-harvest moisture conditions to also be high. Both 

ammonium and potassium were significantly affected by harvest treatment (Table 10), 

with availability higher after both full-tree and tree-length harvesting, with the smallest
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Figure 23. Available ammonium nutrient pools during the resin growing season. Results 
depict a Site*Harvest Treatment interaction in the mineral horizon. Different 
letters denote significant differences, based on the SNK tests (p < 0.05).

available pool after whole-tree harvesting (Figure 26 and 27). The increase in potassium

could be a result o f live litter inputs into the organic horizon, and the high mobility of

potassium ions, which cycle through vegetation and soil as an unbound ion (Bradley et

al. 2001). Linear contrasts did not find any additional sources o f variation not already

detected through the initial ANOVA testing. The first three contrasts were significant

for ammonium (Figure 26), with the last three contrasts significant for potassium (Figure

27). Similar to the organic horizon contrasts, no overwinter contrasts were found to be

significant for the mineral horizon.

Consistent with the organic horizon results, the harvest treatments provided 

greater available ammonium pools than the uncut stands (Lt) (Figure 26). In all 

likelihood, this increase was a result o f increased mineralization that typically occurs 

after harvesting. Both ammonium and potassium availability were reduced on the 

chipped treatment plots when o  , ipared to tree-length harvesting (L2). The lower
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a te  1 Site 2 Ste 3

Figure 24. Available calcium nutrient pools during the growing season for the mineral 
horizon, depicting significant differences between sites. Different letters 
denote significant site differences, based on the SNK tests (p < 0.05).

a te  1 a te  2 a te  3

Figure 25. Available magnesium nutrient pools during the growing season for the
mineral horizon, depicting significant differences between sites. Different 
letters denote significant site differences, based on the SNK tests (p < 0.05).
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Figure 26. Available ammonium nutrient pools during the growing season for the
mineral horizon. Significant harvest treatment effects are illustrated using 
linear contrast comparisons (p < 0.05).
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Figure 27. Available potassium nutrient pools during the growing season for the
mineral horizon. Significant harvest treatment effects are illustrated using 
linear contrast comparisons (p < 0.05).
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amounts of ammonium could be attributed to the high C:N ratios of the chips, and while 

the organic horizon showed increased values of potassium after chipping, losses in the 

mineral horizon could be associated with the inherent mobility of potassium, and its poor 

retention on exchange sites (Bradley et al. 2001). Whole-tree harvesting also 

significantly reduced the availability of these two elements in the mineral horizon 

compared to the other types of harvesting (L3), and was comparable to the uncut 

treatment, a result that is due to the increased removals associated with this treatment.

Of all the contrasts that were calculated thus far, only potassium had a significant 

test for the full-tree versus tree-length comparison (L4), from the mineral horizon during 

the growing season (Figure 27). In this case, tree-length harvesting resulted in greater 

potassium availability than did full-tree harvesting, suggesting a potential impact on the 

level of available potassium in the mineral horizon. Belanger et al. (2003) also reported 

higher exchangeable potassium concentrations in mineral soil after tree-length harvesting. 

In addition, Olsson et al. (1996) described findings showing that full-tree harvesting 

resulted in lower CEC and pools of exchangeable ions, such as potassium, than did tree- 

length harvesting. This element is released quickly from decomposing slash, has high 

mobility, and makes a high contribution to overall ionic activity in the mineral soil 

compared to other base cations (Edmonds 1987, Fahey et al. 1991, Staaf and Olsson 

1994). These factors may explain the absence of a treatment effect on other elements 

{i.e., Ca, Mg).

Overall, tree-length harvesting had the least impact on the available nutrient pools 

of this site type, and, as expected, whole-tree harvesting had the greatest impact. Tree-
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length harvesting is recommended on this site type (OMNR 1997a), and while full-tree 

harvesting is not recommended on very shallow soils (< 20 cm of organic and mineral 

soil), the results presented in this study have shown that there is little difference between 

tree-length and full-tree harvesting from an available nutrient perspective, particularly 

when combining the organic and mineral soil horizons.

Comparison of growing season, overwinter, and annual available pools for site 

(Figure 28) and harvest treatment (Figure 29) suggested the overwinter period 

contributed greater amounts of available calcium and magnesium when compared to the 

growing season period. Availability between periods was reasonably similar for 

ammonium and potassium (Figure 28 a, b). This trend was comparable across all sites 

and range of harvest treatments.

In summary, annual available pools of ammonium were greatest in the tree-length 

treatment, followed by fiill-tree, with whole-tree and the uncut/reference stand having 

the lowest means (Figure 29 a). Tree-length harvesting also resulted in the greatest 

availability of potassium and calcium, and not surprisingly, whole-tree harvesting 

consistently resulted in the lowest amounts of available cations.

Although the resin results from this study are merely being used as an index of 

available pools, additional research should be considered as it is questionable as to 

whether the resins used here provided the best index of available nutrient pools on these 

sites, and if the results shown here are truly reflective o f the available nutrient pools. It 

is possible that the resins are not efficient competitors for nutrient cations, as suggested 

by Lundell (1989), and that they could possibly lose efficiency by reacting with low
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molecular substances or organo-complexes, both which are common in solutions from 

acidic forest soils (Krause and Ramlal 1987). In addition, since it is possible that plant 

and microbe competition may reduce the ion supply in the resin bags (Binkley 1984b), 

the resins may not be effective in showing the differences in the available nutrient pool 

between the harvest treatments.

4.3 STAND-LEVEL RESPONSE TO HARVEST INTENSITY: REGENERATION 
POTENTIAL AND CROP TREE PERFORMANCE

4.3.1 Species Composition

Forest floor disturbance through harvesting not only affects nutrient pools and

nutrient availability, but also directly affects seed availability, seedbed receptivity, and

environmental factors that control germination, seedling survival, and early growth

(Roberts and Dong 1993). The study sites are representative o f an upland site type,

characterized by shallow, coarse to fine loamy soils and supporting mixed conifer stands,

with high probabilities o f natural ingress of these species following harvesting. Although

black spruce recruitment would occur over an extended period of several years, viable

seed is located both within the logging slash and the adjacent uncut stands. For this site

type, conventional clear-cutting is recommended, and both tree-length and fiill-tree are

recommended logging practices, with a high natural regeneration potential (OMNR

1997b).

Almost ten years after harvesting had occurred, species densities varied across 

the three study sites. In a mature state (i.e., late successional stage), the stands were 

dominated by black spruce. After disturbance (natural or harvesting), however, these
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site types are dominated by pioneering species, primarily jack pine (Figure 30). While 

site did not significantly affect total stand density, the sites did significantly differ with 

respect to black spruce and jack pine densities (Table 11). Based on the regeneration 

survey data completed in 2004, all three study sites had high regeneration densities, 

ranging from over 4400 stems-ha'1 (Site 1) to 7200 stems-ha'1 (Site 2).

8000

4000

2000

Figure 30. Tree densities by species, across the study sites ten years after harvest.
Different letters denote significant site differences, based on the SNK tests 
(p < 0.05).

Table 11. P-values from the species density ANOVA tests for all species (significant 
values are in bold, p < 0.05).

Total Density Black Spruce Jack Pine Trembling Aspen

Site (S) 0.0567 0.0419 0.0293 0.079

Harvest Treatment (H) 0.0371 0.2152 0.2971 0.0202

S*H 0.3719 0.6081 0.6205 0.0276
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As expected, the species composition was a mix of black spruce, jack pine, and 

trembling aspen, but was dominated by the conifer component (64 - 81 %). Black 

spruce regeneration would be expected to be a significant contributor to the total stand 

density as it was not only the dominant species in the pre-harvest stand {i.e., large seed 

source), but also as it was planted (2 m spacing) on all treatment plots. The high 

occurrence of the other two species (Pj and At), however, was not unexpected as both 

jack pine and trembling aspen are pioneering species, geared toward rapid re­

colonization following a disturbance. It is not uncommon for upland black spruce 

dominated stands to regenerate into mixedwood stands after harvesting (Brumelis and 

Carleton 1988, Heamden et al. 1993). Bowling et al. (1997) indicate that upland black 

spruce sites will often likely develop into a two storied condition, with an overstorey of 

relatively quick growing aspen and jack pine, and an understorey of slower growing 

black spruce.

Small occurrences of other species such as balsam fir, tamarack, white birch, and 

willow were recorded as well, in isolated patches, so these species were not included in 

the standing crop estimates. For this study, density was tested by species, as well as by 

total stand density. In addition to site affecting both black spruce and jack pine (Figure

30), the different harvest intensities generated conditions that significantly impacted the 

regeneration potentials that, in turn, resulted in differences in total stand density (Table 

11). Only trembling aspen was significantly affected by the Site*Harvest Treatment 

interaction (Table 11).
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On these sites, the tree-length treatment generated the lowest densities (~ 3000 

stems-ha'1) compared to the other three treatments (6000 - 7000 stems-ha'1) (Figure 31). 

The harvest treatments all leave different and unique seed bed conditions after 

harvesting. At the initial stages o f regeneration and seedling establishment, seed bed 

receptivity overshadows soil nutrient status (Kimmins 1997).

9000

7000 - 

6000 -

2000

Chip Tree-Length Full-Tree W hole-T ree

Figure 31. Total tree densities across treatments ten years after harvest. Different letters 
denote significant harvest treatment differences, based on the SNK tests 
(p < 0.05).

As a result, the tree-length treatment, which was shown to have the greatest 

nutrient pools, had the lowest density. In contrast, the whole-tree treatment had the 

highest densities even though it resulted in the lowest nutrient pools. The bottom line is 

that whole-tree harvesting provided the best seed bed due to the high level o f mineral 

soil exposure; whereas tree-length harvesting leaves the greatest amount o f logging 

debris on the site. Waters et al. (2004) indicate that post-harvest regeneration after tree- 

length harvesting will likely be affected by the considerable amount of logging slash 

remaining, compared to full-tree harvesting which leaves minimal slash at the site. The
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full-tree and chip treatments have very comparable densities (-6000 stems-ha'1), with the 

grinding and even distribution of the chips allowing for good regeneration (Figure 31).

Moist mineral soil or mosses are very suitable for black spruce germination 

(Viereck and Johnston 1990), and for trembling aspen establishment, because of its 

shade intolerance and aggressive pioneering qualitites (Perala 1990). Trembling aspen 

regenerated well in this study, particularly on the moister, finer textured soils o f Site 3 

after whole-tree harvesting with over 2400 stems-ha'1 (Figure 28). Kabzems and 

Haeussler (2005) reported a similar response for trembling aspen after disturbances such 

as whole-tree harvesting. Figure 32 shows that there was no harvest treatment response 

on Site 1 or Site 2, but the whole-tree harvest treatment stimulated aspen root suckering 

on Site 3.

5000

r -  ?ooo

1000 -

QChip

B  Tree Length

□  Full Tree

□  Whole Tree

Site 1 Ste 2 Ste 3

Figure 32. Site and Harvest Treatment differences in trembling aspen densities.
Different letters denote significant site differences, based on the SNK tests 
(p < 0.05).
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Optimal soil conditions for aspen regeneration are described as being well- 

drained, loamy soils with high organic matter content. Site 3 was shown (Figure 28) to 

have greater availability of nutrients compared to the other sites, and is characterized as 

being moderately well drained, with a finer mineral horizon (silt loam) (Duckert and 

Morris 2001). Site conditions on Site 3 favour the establishment of trembling aspen and 

also provided suitable conditions for black spruce establishment, while jack pine 

responded well on Site 2 (Figure 30).

Whole-tree harvesting has the ability to stimulate regeneration due to the mineral 

soil exposure that occurs in conjunction with a viable seed source from adjacent stands. 

Exposed mineral soil provides optimal conditions for seedling establishment (i.e., good 

moisture conditions for germination), and eliminates slash residues that can reduce light 

and temperature levels below ideal levels (Rudolph and Laidly 1990). According to 

Rudolph and Laidly (1990), jack pine regeneration is extremely high under these 

conditions, especially when competition from other vegetation is not severe (Cayford et 

al. 1967). Trembling aspen suckering is also stimulated under these conditions 

(Kabzems and Haeussler 2005). Buse and Bell (1992) add that winter harvesting, as was 

done in this study, can result in four times as many aspen suckers compared to harvest in 

other seasons.

Harvest treatment was not a significant source of variation for jack pine (Table

11), which had the highest density after fiill-tree harvesting (-2800 stems-ha'1) (Figure

31), even with the bulk of the crown material/cones being removed during harvesting. 

Similar results were found in conifer mixedwood sites in southeastern Manitoba by
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Waters et al. (2004). They reported that pine regenerated best on sites that had been 

full-tree harvested, due to the increased disturbance of soil and moss, and hypothesized 

that the decreased slash deposition after full-tree harvesting, compared to tree-length 

harvesting, was also a positive factor in seedling establishment and regeneration o f jack 

pine. Mclnnis and Roberts (1995) suggested that the low slash cover created by full-tree 

harvesting can lead to increased mineral seedbed moisture and soil surface temperatures, 

which may be a positive factor in jack pine regeneration.

Past research has shown that periodic reductions in organic matter depth, such as 

those that result after disturbances including whole-tree harvesting or wildfire, are 

required to enhance decomposition rates and to maintain and restore ecosystem 

productivity and diversity (Viereck et al. 1983, Flanagan and Van Cleve 1983). Bonan 

(1990) stated that a thick forest floor can result in low thermal conductivity and high 

water holding capacity, which can reinforce and perpetuate poor soil conditions, while 

slowing decomposition and restricting nutrient availability (Bonan and Shugart 1989). 

These conditions can prevent seedling establishment. It might, therefore, be beneficial to 

utilize silvicultural treatments designed to reduce organic matter accumulation, and mix 

organic and mineral soils. This mixing, if done without significant soil compaction, can 

increase tree growth and has the potential to enhance community diversity (Orlander et 

al. 1996, Haeussler et al. 1999). Soil horizon mixing can also promote decomposition 

and enhance tree seedling nutrition by improving soil qualities, such as aeration (Mallik 

and Hu 1997, Prescott et al. 2000).
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4.3.2 Standing Crop

Along with tree density differences across the study sites and harvest treatments, 

there was also a difference in the levels of tree biomass (standing crop), ten years after 

harvest. Appendix II summarizes the biomass regression equations derived from the 

destructive sampling used in conjunction with the stand inventory data (Equation [3] - 

section 3.5.2). For all three species combined together, and jack pine, both site and 

harvest treatment significantly affected all components, and total biomass (Table 12).

The range of total biomass across the three sites varied from ~2 T h a '1 (Site 3) to ~5 

T-ha1 (Site 2) (Figure 33 a).

The differences that are shown between site and harvest treatment standing crop 

estimates are, in all likelihood, largely the result of the differences in regeneration 

density. For example, Site 2 had greater densities than the other sites (Figure 32), as did 

the whole-tree harvesting treatment (Figure 31), with both having the highest total 

biomass (Figure 33). Ruel et al. (2004) also reported that after different harvest 

treatments were employed, regeneration produced trees of the same or similar size, 

indicating no loss in productivity. Studies by Kabzems and Haeussler (2005) also found 

little difference between treatment effects of tree-length and full-tree harvesting on the 

short-term growth rates of boreal species.

Linear contrasts were calculated to find differences between harvest treatments, 

using the last three of the four contrasts presented in Table 5. The contrasts were 

calculated using only total biomass (Figure 33), as no significant changes in individual 

tree biomass components were observed. Even though harvest treatment significantly
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Figure 33. Total biomass distribution amongst species between sites (a), with significant 
site differences denoted by letters, based on the SNK tests (p < 0.05), and 
significant harvest treatments (b) are illustrated using linear contrast 
comparisons.

affected all individual components for jack pine, foliage represented 40 % o f the total 

tree biomass o f all three species, followed by branchwood (30 %), stemwood and bark 

(25 %), and current twig growth (5 %). These percentages were consistent across all 

harvest treatments so only total biomass was considered. Unlike mature forests, a high 

percentage of the total aboveground biomass was allocated to foliage, which reinforces 

that the growth pattern o f these juvenile trees emphasizes crown development.
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Table 12. Species means for the biomass component ANOVA tests with SNK results.

Tree Component All Species Black Spruce Jack Pine Trembling Aspen

kg- ha"'

Foliage:

Site -1 1258.0 b 476.3 755.6 b 143.4
2 1882.0 a 443.1 1464.0 a 82.5
3 690.6 c 459.9 457.7 b 57.5

Harvest Treatment - Chio 1236.0 b 382.3 881.8 a 109.3
TL 661.8 c 544.4 319.1 b 64.3
FT 1397.0 b 413.7 982.1 a 79.8
WTH 1813.0 a 499.1 1387.0 a 124.3

Current Twig:

Site -1 166.4 b 37.6 114.3 b 28.3
2 260.4 a 35.3 223.1 a 16.7
3 76.5 c 36.8 68.1 b 13.0

Harvest Treatment - Chip 168.7 b 30.8 133.5 a 22.0
TL 67.9 c 42.8 48.4 b 12.8
FT 188.2 b 32.9 149.7 a 16.6
WTH 246.3 a 39.7 209.1 a 25.8

Branchwood:

Site - 1 1159.0 b 253.7 571.5 b 461.0
2 1451.0 a 226.4 1044.0 a 377.7
3 466.6 c 229.6 401.0 b 70.8

Harvest Treatment - Chip 1058.0 b 183.3 679.0 ab 338.1
TL 553.1 c 294.7 234.5 b 366.8
FT 1024.0 b 212.8 701.6 ab 179.7
WTH 1467.0 a 255.4 1073.0 a 327.9

Stemwood & Bark:

Site - 1 949.3 b 258.8 515.7 b 287.7
2 1375.0 a 227.9 1083.0 a 164.4
3 430.6 c 229.4 276.3 b 108.0

Harvest Treatment - ChiD 914.2 b 179.7 617.0 a 217.5
TL 454.7 c 303.6 222.6 b 129.1
FT 1001.0 b 214.8 741.2 a 156.5
WTH 1303.0 a 256.6 919.7 a 243.6

Total Biomass:

Site -1 3452.0 b 1021.0 2002.0 b 775.6
2 4913.0 a 925.3 3883.0 a 445.3
3 1632.0 c 946.2 1211.0 b 224.9

Harvest Treatment - Chip 3299.0 b 768.0 2337.0 a 572.1
TL 1627.0 c 1178.0 845.9 b 364.9
FT 3610.0 b 867.1 2604.0 a 384.4
WTH 4793.0 a 1044.0 3675.0 a 606.3
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It would be anticipated that once crown closure is attained and maximum LAI is 

achieved, a shift in biomass allocation to perennial tissues (i.e., stemwood) would occur 

(Kimmins 1997).

But, in terms of total biomass, the whole-tree treatment (Figure 33 b) generated 

significantly higher (L3) tree biomass after ten years (~ 5 T h a '1) (Table 12), followed by 

the chipped and full-tree treatments (~ 3.5 T ha'1), indicating that the mineral soil 

exposure facilitated rapid seedling establishment, resulting in increased biomass (Table

12). On the other hand, the tree-length treatment had significantly lower standing crop 

estimates (~ 2 T-ha'1), resulting from the low densities associated with this treatment 

(Figure 31). In particular, jack pine recruitment on the tree-length treatment was small 

compared to the other treatments (Figure 33).

Only jack pine biomass varied across the study sites and harvest treatments. As 

expected, jack pine biomass was greatest where its density was greatest, on Site 2 and 

after whole-tree harvesting (L3) (Figure 34). This positive jack pine response may be 

related to the fresh moisture regime (Table 1), and seed source availability. Jack pine 

generally grows best on well drained soils (Rudolph and Laidly 1990), and during early 

seedling growth is the fastest growing conifer. This is to a higher photo? thetic 

rate and NUE than other species such as black spruce (Sullivan et al. IV1 i7).

While shade can be beneficial for germination and early survival, it becomes 

detrimental to jack pine seedlings after the first two years (Buse and Bell 1992). The 

negative effects o ! nading could explain why jack pine density, and therefore biomass, 

are less on tree-length harvested sites (L4) (Figure 34). Deposited slash can create shade
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that has the ability generate cooler areas o f the microsite, which may, in turn, create 

unsuitable conditions and limit serotinous cones release of seeds for seedling 

establishment. Slash also does not provide a suitable seed bed for jack pine, which 

prefers a mineral soil seedbed with limited competition (Rudolph and Laidly 1990).
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Figure 34. Jack pine total biomass between sites (a) with significant site differences
denoted by letters, based on the SNK tests (p < 0.05), and significant harvest 
treatments (b) are illustrated using linear contrast comparisons.

4.3.3 Black Spruce Seedling Growth

The performance (growth and nutrition) of crop trees (i.e., black spruce), serves 

as a useful means to link changes that occur after harvesting to soil physical and
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chemical properties to site productivity (e.g., seedling biomass). After harvest, the sites 

were planted with over-wintered containerized stock from seeds extracted from trees 

from the experimental sites (Duckert and Morris 2001). The planted black spruce 

seedlings thus originated from a common starting point (spring 1995), meaning all had an 

equal chance of success. As such, these seedlings act as a biological integrator of site 

and treatment-level conditions that might impact productivity (Quoreshi and Timmer 

2000).

In terms of both height growth and RCD (based on 10th year measurements), the 

ANOVA results (Table 13) identified a differential harvest treatment response across the 

study sites through a significant Site*Harvest Treatment interaction. Linear contrasts 

were applied to help explain what effect harvest treatment is having on seedling growth 

parameters. Generally, across the sites seedling growth was greatest for the chip and 

tree-length treatments, with the poorer growth consistently occurring after whole-tree 

harvesting (Figure 35 and 36). While the pattern o f more intensive treatments producing 

reduced individual tree growth is evident, there are slight shifts between the chip and 

tree-length treatment.

Table 13. P-values from the seedling growth parameter tests for black spruce seedlings 
(significant values are in bold, p < 0.05).

Height Root Collar Diameter

Site (S) 0.3608 0.0018

Harvest Treatment (H) 0 0.0001

S*H 0.0012 0.0161
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Figure 35. Site*Harvest Treatment interactions for black spruce 10th year height measurements. Significant harvest treatment effects
are illustrated using linear contrast comparisons (p < 0.05).
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Figure 36. Site*Harvest Treatment interactions for black spruce 10th year RCD measurements. Significant harvest treatment effects
are illustrated using linear contrast comparisons (p < 0.05).
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Site 3 had no significant contrasts for either growth parameter (Figure 35 and 

36), while all three contrasts were significant on Site 2, which had significantly higher 

growth in the tree-length treatment compared to the other treatments. Comparing the 

whole-tree harvest treatment with all other treatments (L3), was significant on Site 1 for 

both height and RCD with the lowest growth. RCD on Site 1 was also significant for L4 

(Figure 36), with the tree-length treatment having greater root collar diameter growth 

when compared to the full-tree treatment.

Contrasts were also tested for the harvest treatment main effect, which had 

significant sources of variation (Table 13). Chipping did not significantly affect seedling 

growth in comparison to tree-length harvesting (L2) (Figure 37), and where whole-tree 

harvesting occurred (L3), black spruce seedlings had significantly less height and root 

collar growth than did seedlings planted on sites exposed to other harvest treatments.

Black spruce seedlings planted after tree-length harvesting were taller and had 

greater RCD than trees planted after full-tree harvesting (L4) (Figure 36). This result is 

similar to findings by Kabzems and Haeussler (2005) who found tree height greater in 

tree-length then full-tree harvested sites, but with both being greater then trees growing 

on whole-tree harvested sites, as was the case here. Pothier (2000) found that height 

growth was better on upland sites that were less stocked than other sites, and it is well 

understood that individual tree diameter is strongly correlated with stand density.

In this study, the tree-length treatment had significantly lower densities than the 

other treatments (Figure 31). The individual tree height and diameter effects, therefore, 

are somewhat confounded with density, i.e., the tree-length treatment resulted in larger
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individual trees, but fewer numbers of them. Thus, density and biomass values seem to 

be interrelated and dependant on each other, high density results in higher biomass, but 

as seen in these results, not in taller trees.
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Figure 37. Black spruce height and RCD means across harvest treatments. Significant 
harvest treatment effects are illustrated using linear contrast comparisons 
(p < 0.05).

4.3.4 Black Spruce Seedling Foliar Nutrition

Foliar analysis is preferred over soil chemical analysis as elemental leaf 

composition is considered to be a more direct index of nutrient availability to the tree 

compared to measures o f soil nutrient supply (Timmer and Teng 1999). Nutrient status
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can be an important indicator of both plant quality and overall plant performance (Haase 

and Rose 1995). Using foliar concentrations and dry weights o f a known number of 

needles {i.e., 100) to calculate foliage nutrient content can provide an easily measured 

and rapid estimate o f tree growth potential (Haase and Rose 1995) and has been linked 

to long-term stemwood responses (Ebell 1972, Leaf et al. 1975, Timmer and Morrow 

1984). According to van den Driessche (1974), foliar analysis is a well established 

method to assist in the diagnosis of tree mineral requirements, and has proven useful 

where the growth of a stand has been curbed by the deficiency of one or more nutrient 

elements.

Foliar nutrition differences across sites and treatments are summarized in Table 

14. Phosphorus and magnesium foliar concentrations were both significantly affected by 

the Site*Harvest Treatment interaction (Figure 38 and 39). However, main effects were 

a significant source o f variation for many nutrients for both foliar concentration and 

content (Table 14).

Table 14. Foliar nutrition p-values (significant values are in bold, p < 0.05).

Foliar Concentration N P K Ca Mg

Site (S) 0.014 0 0 0.002 0

Harvest Treatment (H) 0.4239 0 0.7234 0.0249 0.002

S*H 0.6665 0.0175 0.1632 0.1244 0.0183

Foliar Content N P K Ca Mg

Site (S) 0.0123 0 0.004 0.0104 0

Harvest Treatment (H) 0.009 0 0.1389 0.1583 0.6864

S*H 0.6826 0.1846 0.3057 0.5136 0.1832
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Figure 38. Site*Harvest Treatment interactions for black spruce phosphorus foliar concentrations. Significant harvest treatment
effects are illustrated using linear contrast comparisons (p < 0.05).
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The whole-tree treatment (L3) had significantly lower concentrations of 

phosphorous when compared to the other treatments on all three of the study sites 

(Figure 38). All of the contrasts tested were found to be significant on Site 3, and 

overall, concentration levels of phosphorus were consistently lower in the more intense 

treatments across all of the sites (Figure 38). Patterns shifted between the chip and tree- 

length treatments, but generally, as harvest intensity increased, foliar phosphorus 

concentration decreased. This observation correlates to patterns from the nutrient 

availability results, with the resins generally collecting less nutrients within the more 

intensive harvest treatments.

Magnesium foliar concentrations, on the other hand, were an exception to this 

pattern (Figure 39). For this element, concentration levels increased as harvest intensity 

increased. L3, comparing the whole-tree treatment with the other treatments, was found 

to be significant only on Site 1, and was the only significant contrast across the sites. 

This result was not unexpected, as when compared to the other treatments, the whole- 

tree harvesting treatment resulted in large available pools of magnesium, as measured by 

the resins (Figure 18 c). This increase could be attributed to the characteristics of 

magnesium, as generally, it is slowly released from slash, and has a low mobility rate, 

when compared to other nutrient ions (Frey et al. 2003). It is also highly available in 

mineral soils, and although not generating any significant contrasts, had the greatest 

available pools on Site 3, for both the organic (Figure 21) and mineral horizons (Figure 

28). The measured foliar concentrations of magnesium were also slightly higher on Site 

3, showing a strong correlation between nutrient availability and plant uptake.
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Site was a significant source o f variation for all tested nutrients for both foliar 

concentration (Figure 40) and foliar content (Figure 41). These site differences did vary 

depending on the element, for example, nitrogen concentrations and contents were 

highest on Site 2 and lowest on Site 1, while phosphorus and potassium were highest on 

Site 1, but lowest on Site 2. These differences could be attributed to the differences in 

organic horizon depths, and parent material that comprises the mineral horizons, but as 

seen in the interaction analysis, corresponded to site differences in the availability of 

these elements as measured by the resins.

Generally, sites that had large available nutrient pools also had high levels of 

foliar nutrient concentration and content. For example, needles from Site 1 had the 

greatest concentration of potassium (Figure 40 c), which correlates to the large available 

pools of potassium on that site (Figure 21 b). This was also the case for foliar content of 

potassium (Figure 41 c). While the connection between foliar uptake and nutrient 

availability can be correlated, many of the sites that had greater available nutrient pools, 

were not found to be significantly dif rent from the other sites by the SNK tests. 

Noticeable u ends also included: increased lul'ar concentration of potassium and bum 

on Sites 1 and 3, respectively (Figure 40), and foliar content of pr'tncsium on Site 1, and 

calcium and magnesium on Site 3 (Figure 41).
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Figure 40. Foliar concentrations across all three sites for nitrogen (a), phosphorus (b), 
potassium (c), calcium (d), and magnesium (e). Different letters denote 
significant site differences, based on the SNK tests (p < 0.05).
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Figure 41. Foliar contents across all three sites for nitrogen (a), phosphorus (b),

potassium (c), calcium (d), and magnesium (e). Different letters denote 
significant site differences, based on the SNK tests (p < 0.05).
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Harvest treatment was also a significant source of variation for the foliar 

concentrations of phosphorus, calcium, and magnesium (Figure 42). Phosphorus 

concentrations generally decreased as harvest treatment intensified, while calcium and 

magnesium concentrations both increased with harvest intensity, which again, correlated 

to the size o f the available nutrient pools for these elements (Figure 22). Harvest 

treatment was only a significant source of variation for the foliar content of nitrogen and 

phosphorus after ANOVA testing, but both potassium and calcium were found to have 

significant sources of variation after applying the linear contrasts (Figure 43).

Phosphorus, magnesium, and potassium had higher foliar contents after less 

intense harvest treatments, with calcium (Figure 43 d) only having one significant 

contrast, comparing the tree-length and chipped treatments (L2). Unlike the other 

elements, calcium did not have significant sources of variation between the whole-tree 

treatment and the other treatments. Whole-tree harvesting has previously been attributed 

to increased soil nutrient concentrations, such as calcium and magnesium (Frey et al. 

2003). Linear contrasts results showed significance for several other contrasts for foliar 

concentration (Figure 42) and foliar content (Figure 43). Only foliar concentration of 

phosporus, however, was significant for L4, which compares the tree-length and full-tree 

harvesting treatment. In this case, concentrations of phosphorus were great< _*r tree- 

length harvesting (Figure 42), but only for Site 3, as indicated by the significant 

interaction (Figure 38). This difference is likely due to the fine slash residues left on site 

after tree-length harvesting occurs. Foliar phosphorus content, however, was not 

significant for this contrast (Figure 43).
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Chipping of slash resulted in significantly lower concentrations and content of 

calcium when compared to the tree-length treatment (L2 - Figure 42 and 43). Chipping 

did not influence soil nutrient pools or availability of calcium, based on earlier contrast 

calculations, but according to Foster and Morrison (1976), calcium is greatest in 

stemwood and live branches, not foliage. Thereby, the chipped slash left after this 

treatment may be a source of calcium quickly accessed by the trees.

Seedlings growing on whole-tree harvested treatments had lower concentrations 

and contents o f phosphorus compared to the other treatments (L3) (Figure 42 and 43). 

The whole-tree treatment also had a negative affect on organic horizon phosphorus 

available pools (Figure 13), suggesting a link between the lower foliar values and the 

lower nutrient pools estimated for this treatment. Foliar contents of nitrogen and 

potassium were also significantly lower in seedlings growing after whole-tree treatments 

(Figure 43). This is consistent with other findings. For example, Pare and Van Cleve 

(1993) also reported lower amounts o f nitrogen, phosphorus and potassium in current 

biomass on whole-tree harvested (bladed) sites.
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Figure 42. Foliar concentrations across harvest treatments for phosphorus (a),
calcium (b), and magnesium (c) with linear contrast results. Different letters 
over the underlined groupings denote significant differences for the various 
linear comparisons (p < 0.05).
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Figure 43. Foliar contents across harvest treatments for nitrogen (a), phosphorus (b), 
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(p < 0.05).
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Nitrogen, phosphorus and potassium are among the most important foliar 

nutrients as they play a role in determining plant leaf area, photo synthetic rate, and net 

primary productivity o f forest ecosystems (Foster and Bhatti 2002). Seedlings growing 

on whole-tree harvested sites had significantly lower height and RCD growth compared 

to the other treatments (Figure 37), but this reduction is also confounded by the higher 

densities found on this treatment (Figure 31). At this stage (10th year), productivity 

(standing crop) was not shown to be significantly affected by the different treatments, 

including the whole-tree harvest treatment.

Foliar content tests had fewer significant factors (Table 14), indicating that there 

might not be as strong an effect as the concentration results suggested. Kimmins (1997) 

explains that plants can still grow well and have lower concentrations o f certain elements 

than if the plant were only growing moderately well (i.e., dilution effect). It has also 

been hypothesized that plants should attain a steady nutrient level as their growth adjusts 

to the nutrient resources that are available in their environment (Ingestad 1982). In this 

case, the sites are nutrient limited, shallow soil sites. Patterson et al. (1997) also 

reported that black spruce is less sensitive to nitrogen stress than other species, by 

adapting to nutrient poor conditions and increasing foliage longevity (Bonan and Shugart 

1989).

It has also been suggested that the ratios of elements are more important that the 

absolute levels of elements (Kimmins 1997), and this has been extensively investigated by 

Ingestad (1967, 1971, 1979, 1981), who reported that the optimum growth of seedlings 

occurs when the ratios lie in a fairly narrow range. Pine and spruce seedlings need the
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following ratios o f nutrients for optimum nutrition: N:P - 8:1, N:K - 2:1, N:Ca -17:1, 

and N:Mg -12:1 (Kimmins 1997). According to Meyer et al. (1997), the macro­

nutrients nitrogen, phosphorus, and potassium, are needed in large amounts, usually 

greater than 0.05 % or 50 mg-kg'1. Expressed as percent of dry weight, the approximate 

content of healthy foliage is estimated at: N = 1.6 - 2.0, P = 0.15 - 0.35,

K = 0.6 -1.2, Ca and Mg = 0.1 - 0.2 (Morrison 1974, Lavender and Walker 1979, 

Marschner 1986, Rook 1991). Specifically for black spruce, the range of sufficiency for 

good to very good growth (foliar concentrations expressed as percent dry matter) is 

estimated at: N = 1.5 - 2.5, P = 0.018 - 0.35, K = 0.35 - 0.7, Ca = 0.11 - 0.4, and Mg = 

0.09 - 0.16 (adapted from Swan 1970).

Generally, nitrogen and potassium are required in the largest amounts, with 

smaller amounts o f phosphorus, calcium and magnesium being required. The mean 

percentages found in this study are within the reported ranges, with nitrogen content 

averaging 1.5, phosphorus: 0.2, potassium: 1.0, calcium: 0.5, and magnesium: 0.14 

(Figure 43). This result, in turn, would suggest that harvest intensity is not affecting 

nutrient availability in a manner that negatively affects foliar nutrition at this stage of 

stand development.

4.4 MANAGEMENT IMPLICATIONS

While many studies suggest that harvesting has the potential to reduce nutrient 

availability through biomass removal (Forge et al. 2001), actual findings are mixed.

Some results demonstrate nutrient decreases (Schmidt et al. 1996), others have reported
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increases (Vitousek and Matson 1985, Frazer et al. 1990), whereas others show stable 

levels with no differences occurring after harvesting (Maynard and Maclssac 1998). 

Many factors affect nutrient availability after harvest, including: soil temperature and 

moisture, soil type, pH, tree species composition, and humus type. Depending on forest 

type and humus horizon composition, decomposition rates will be affected by the 

different chemical and physical properties of the forest floor (Chang et al. 1995). Most 

humus horizons in spruce forests are composed of needles containing high lignin levels 

and exhibit acidic pH levels, both of which promote slower turnover rates (Vitousek 

1977, Pastor et al. 1987), and have lower nutrient contents compared to deciduous leaf 

litter (Cote and Fyles 1994).

This study has shown that harvesting does cause lower nutrient pools as harvest 

intensity increases. However, based on the 10th year results, there is no clear link to 

reduced tree productivity. For example, higher density and standing crop were found on 

the more intense harvest treatments, due to the nature of the removals and opportunity 

for early seedling establishment. Individual black spruce seedling growth, however, was 

enhanced when removals were lowest. From a forest policy and management 

perspective, the critical question is: is there evidence to support the concern regarding 

nutrient removals that currently exists with respect to full-tree harvesting on shallow- 

soiled sites?

Forest disturbances such as harvesting change ecosystem structure and function 

(Morris 2003), but all ecosystems tend to return to pre-disturbance conditions over time, 

a process which provides inherent ecosystem stability (Kimmins 1974). Nutrient
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recovery time will vary depending on the degree and frequency o f biomass removals.

For example, Morris (2003) estimated nitrogen recovery time on Site 1 and Site 2 at 15 

years for tree-length, and 30 years after full-tree harvesting. Calcium, on the other hand, 

recovery time was estimated at 60 years for tree-length, and nearly 90 years after full- 

tree harvesting. These increased replacement times associated with full-tree harvesting 

led policy makers to favour less intense treatments such as tree-length harvesting, 

especially on very shallow soil sites (<, 20 cm).

Shallow soils are common in northwestern Ontario, and full-tree harvesting is the 

most common harvest method used to extract timber. The current results, as well as 

results by other studies, do not support the hypothesis that full-tree harvesting generally 

leads to greater reductions in the amounts of soil nutrients when compared to tree-length 

harvesting (Olsson et al. 1996). The whole-tree removal treatment (logging slash and 

forest floor removal) provides a “worse case scenario” for organic matter removal 

effects, none of which were shown to significantly affect seedling productivity after 10th 

year measurements. All harvest treatments will experience some level o f nutrient loss, 

and the effects may be site and stand specific, however these removals can be replaced 

by nutrient inputs (Alban et al. 1978), providing that sufficient time passes before 

harvesting is conducted again.
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5.0 CONCLUSIONS

The objectives o f this study were to compare several harvest treatments of 

differing intensities and their effect on nutrient status and availability, and on seedling 

growth and productivity. Whole-tree harvesting was found in several cases to reduce 

nutrient pools and availability, but even as the worst-case scenario, did not affect 

seedling productivity. If completely removing all biomass and organic matter did not 

significantly affect seedling productivity, then the effects of less intense treatments will 

be even less.

Overall, no noticeable differences were found in the seedling growth and nutrient 

status of the forest floor, and no noticeable differences were found in the foliar contents 

of the planted black spruce seedlings on the different harvest treatments. More 

importantly, no noticeable differences were revealed between tree-length and full-tree 

harvesting, including soil chemistry analysis (total pool size), ion exchange resin analysis 

(available pool size), standing crop calculations (productivity), and foliar analysis 

(nutritional status). To better evaluate any possible changes, other methods such as 

vector analysis could be employed, as well as re-visiting the ion exchange resin 

procedures. For example, it would be interesting to see the differences in nutrient 

availability results using different amounts of resin, under differing in situ periods.

The regenerating stands evaluated in this study are approaching crown closure, 

which corresponds to maximal nutrient demand. Therefore, harvest treatment effects, if 

they occur, may become more pronounced during this stage of stand development. It
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would be during crown closure that the predictions of longer-term stand growth 

trajectories (i.e., future forest conditions) can be made with a greater level of confidence. 

Thus, future research in monitoring the growth and development o f the stands on these 

sites is needed so that more definite conclusions can be drawn on the effects of 

harvesting on upland shallow soil sites in black spruce forested ecosystems of 

northwestern Ontario.

Currently in Ontario, full-tree harvesting is not recommended where total soil 

depth (mineral and surface organic) is less than 20 cm (OMNR 1997b). The results from 

this study do not support this recommendation with respect to site nutrient sustainability. 

The sites included in this study had mean depths of 10 - 20 cm of mineral soil with 5 - 1 0  

cm of surface organic (Duckert and Morris 2001). These sites border on the very 

shallow soil designation noted above, which allow us to evaluate whether harvesting 

treatments such as full-tree harvesting should be a recommended harvest method.

Forests are diverse and dynamic systems. They are constantly changing through 

disturbance and succession, and are important to not only the economics of Canada, but 

are part of its world-renowned landscape. It is the responsibility of forest planners and 

policy makers to ensure that this resource is here through perpetuity, which comes 

through the avenues o f proper removal techniques, reforestation, and on-going research 

and policy refinement. It is also important that foresters match sites that are labelled as 

nutrient poor with less nutrient demanding species, and commit to using a local seed 

source which will be better able to cope with the poor site conditions (Archibald et al. 

1997).
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APPENDIX I 
UNIT CONVERSION METHODS - PPM to KG-HA'1

The laboratory results obtained were reported in ppm, which is equivalent to 

mg-L'1. For an example of the calculation, I have used a value of 25.0 mg-L'1 of NH4+- 

N. The first step was to calculate the actual amount of NH4+ captured by the extraction 

liquid, which was 50 ml, not 1 L. To do this, multiply the nutrient values by the amount 

of extract used per sample, and divide by 1000 ml, to yield the value in mg.

Step 1: 25.0 mg • 50 ml/ 1000 ml
= 1.25 mg

Using the value from Step 1, and the surface area of the resin (20 cm2), the 

amount of NH4+ per hectare can be calculated.

Step 2: 1.25 mg • 100 000 000 cm2-ha'V 20 cm2
= 6 250 000 mg-ha'1

Step 2 gives the value in mg-ha'1 so it is an easy conversion to achieve kg-ha'1. 

Divide the value from Step 2 by 1 000 000 mg-kg'1.

Step 3: 6 250 000 mg-ha'1 / 1 000 000 mg-kg'1 
= 6.25 kg-ha'1

The values used in this example are not values representative of NH4+-N values 

typically found within upland, black spruce dominated sites, such as those used as study 

sites in this experiment. They are merely presented as an example.
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APPENDIX II - SMALL TREE BIOMASS REGRESSION EQUATIONS

Table 1.1. Model-fitting statistics for biomass-root collar diameter curves for black spruce tree components based on a 
2-parameter power function (Equation [3]).

Tree
Component

Model Parameters
B, B,

Value Std. Error 95% C.I. Value Std. Error 95% C.I. R2 F-Ratio MSE

Total Weight 

Total Foliage 

Current Foliage 

Current Twig 

Branch Wood 

Stem Wood 

Bark

0.3973 0.3118 -0.2437
1.0382

0.4119 0.3011 -0.2071
1.0308

0.1265 0.0994 -0.0778
0.3308

0.0415 0.0304 -0.0209
0.1039

0.0577 0.0577 -0.0609
0.1762

0.0127 0.0174 -0.0232
0.0485

0.0413 0.0455 -0.0523
0.1348

2.2063 0.2001 1.7951
2.6176

1.9919 0.1874 1.6066
2.3771

2.0156 0.2012 1.6019
2.4292

1.9254 0.1879 1.5392
2.3116

2.3489 0.2542 1.8264
2.8714

2.6753 0.3475 1.9611
3.3895

2.0747 0.2817 1.4956
2.6538

0.952 256.7 130627.0

0.952 257.4 26221.7

0.946 226.4 3382.3

0.950 246.2 165.9

0.930 173.35 12479.0

0.897 112.93 12120.3

0.902 119.59 1080.6
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Table II.2. Model-fitting statistics for biomass-root collar diameter curves for jack pine tree components based on a 
2-parameter power function (Equation [3]).

Tree
Component

Model Parameters
B,

Value Std. Error 95% C.I. Value Std. Error 95% C.I. R2 F-Ratio MSE

Total Weight 0.0592 0.0453 -0.0339
0.1523

2.6693 0.1869 2.2851
3.0535

0.955 273.3 97017.7

Total Foliage 0.0217 0.0194 -0.0182
0.0616

2.6765 0.2189 2.2266
3.1265

0.939 200.57 18757.0

Current Foliage 

Current Twig

0.00946 0.0094 -0.0098
0.0287

0.00454 0.0031 -0.0018
0.0109

2.6479 0.2419 2.1506
3.1452

2.5960 0.1670 2.2527
2.9394

0.925 159.82 3554.6

0.961 319.4 >67.6

Branch Wood 0.00109 0.00127 -0.00152 
0.00371

3.3410 0.2803 2.7648
3.9173

0.946 229.54 9908.8

Stem Wood 0.1568 0.1400 -0.1309
0.4444

2.0282 0.2229 1.570
2.4865

0.892 107.5 9679.3

Bark 0.1033 0.0603 -0.0206
0.2272

1.7837 0.1475 1.4806
2.0869

0.939 201.5 322.2
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Table III.3. Model-fitting statistics for biomass-root collar diameter curves for trembling aspen components based on a 
2-parameter power function (Equation [3]).

Tree
Component

Model Parameters
B, B2_

Value Std. Error 95% C.I. Value Std. Error 95% C.I. R F-Ratio MSE

Total Weight 0.1113 0.0717 -0.0356
0.2582

2.4898 0.1894 2.1018
2.8778

0.965 385.5 6346.0

Total Foliage 0.1121 0.0801 -0.0519
0.2761

Current Twig 0.0422 0.0750 -0.1114
0.1958

2.0589 0.2120 1.6246
2.4931

1.8913 0.5294 0.8069
2.9757

0.953 286.9 469.0

0.762 44.8 138.4

Branch Wood 0.00042 0.00045 -0.00051 
0.00135

3.7345 0.3102 3.099
4.370

0.928 179.5 1017.9

Stem Wood 0.1137 0.1048 -0.1011
0.3284

2.1282 0.2733 1.5685
2.6879

0.926 174.71 1264.0

Bark 0.0496 0.0371 -0.0264
1.7149

2.1681 0.2213 1.7149
2.6213

0.950 268.2 205.5
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