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ABSTRACT

The thesis is to investigate the dynamic behavior o f a single-axle railway wheelset and 

identify its chaotic behavior by means of time history, phase portrait, Lyapunov exponents, 

information dimension, bifurcation diagram and control strategy.

The thesis has its analytical and computational components. For the analytical 

component, several mathematical models o f a single-axle rail vehicle wheelset are 

presented in order to compare their features for similarities and differences. These models 

present different contact theories o f creep force, and have different parametric values. In 

addition, Model III does not consider gravitational stiffnesses and gyroscopic couple. As a 

result, directly comparing simulation results o f these models makes it difficult to interpret 

results and to draw conclusions. Therefore, these models need to be expanded so that 

issues can be isolated and investigated accordingly. Randomness is introduced and 

becomes an integral part o f the models. The latter step is necessary because any physical 

system is realistically operating under stochastic conditions. Randomness is introduced by 

the means o f pseudo-random numbers whose characteristic is also discussed. For the 

computational component, the time history and phase portrait o f  the wheelset models and 

their combinations are used to examine the models for similarities and differences. The 

focus, however, is to employ Lyapunov exponents, information dimensions and 

bifurcation diagrams to study the effect o f randomness in forward speed, or lateral 

clearance (dead band), or both forward speed and dead band, on the chaotic behavior of
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the single-axle wheelset. Results obtained show that Model lib is the best model; Model 

III is also a good choice, especially when lacking wheelset data. Numerical simulations 

indicate that chaotic motion depends upon forward speed, yaw stiffness and the level o f 

randomness. Increasing forward speed and the level o f randomness seem to lead to chaos 

in the wheelset which may further lead to chaos in the railway vehicle system. However, 

increasing yaw stiffness can suppress the chaotic oscillations.

Toward the goal o f chaos suppression, two control strategies are investigated: 

semi-active control and active control. Simulation results show that both can suppress 

chaos and control bifurcation pattern o f the wheelset. Finally, the thesis concludes with 

some recommendations for future work.
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Chapter 1

INTRODUCTION

1.1 Background

The history of the usage o f rail vehicles in Europe dates back to the 18th century with the 

development of first wooden and then steel railed wagon-ways on which carts were drawn 

with horses. These wagon-ways evolved into tramways. Flanged wheels were introduced 

to rail vehicles in 1789 by William Jessup, as was told by Reference [1.1]. In the early 

19th century steam power was introduced to these vehicles. Eventually the steam 

locomotives replaced the horses as the source o f propulsion power. The growth o f the 

railways and the transportation network that they provided facilitated the industrial 

revolution.

It has been known for more than a century that railway vehicles lose their lateral 

stability above a certain critical speed, which depends on many parameters [1.2]. The 

railway industry has made great effort to investigate this problem with the aim of building 

vehicles that can run at higher and higher speeds on the railway lines while maintaining 

their lateral stability. In recent years, minimization o f wheel and rail wear has also become 

an important consideration in the design process. Wheel and rail wear has been shown to 

be linked to the dynamic behavior o f  railway vehicles [1.3-1.4].

The dynamics o f railway vehicles have been o f  practical interest for many decades. 

The review paper by Shabana and Sany [1.5] provided an excellent examination o f a

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



number o f fundamental issues o f railroad vehicle dynamics. They included: (1) flexibility 

effects due to rail and track flexibility, flexibility o f suspensions, and flexibility o f  car 

body and joints; (2 ) wheel and rail interaction due to the rolling and slipping contact 

between the profiled surfaces o f the wheel and rail; and (3) modeling considerations such 

as linear versus nonlinear models, linearization, effects due to pre-mature linearization, 

and so on. They concluded that “the interaction between railroad vehicle and track is an 

important area o f study in railroad research”. They also found that the use o f computer 

multi-body simulations “requires consideration o f many factors such as truck (or bogie) 

suspensions, side-bearing clearance, the roll mass moment o f inertia, the car body mass, 

the truck mass, the type o f lading, the track extreme roughness, the vehicle resonant speed, 

the maximum peak-to-peak roll angle, the possible buff or draft force from adjacent cars, 

coupler type, the induced dynamics from track and adjacent cars, track gauge, and track 

spacing.”

The early research on the dynamic stability o f railway vehicles seems to date back to

the 1960s and to work by DePater [1.6], Matsudaira [1.7] and Wickens [1.8]. Such early

work led to a new wave o f investigations, as attested in articles by Cooperrider [1.4], by

Huilgol [1.9] which appeared to be the first bifurcation analysis o f  a free running wheelset,

and so on. On the other hand, by 19922 Carter [1.10] had developed the two-dimensional

theory o f rolling contact with friction for application to railway vehicle dynamics. Carter

gave an exact closed-form solution for the relation between longitudinal creep and

tangential force. Johnson [1.11] extended Carter's two dimensional rolling contact theory

2
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to a three-dimensional one dealing with two rolling spheres. Johnson’s theory included the 

longitudinal and lateral creepages, however spin creep was not considered. Later, 

Vermeulen and Johnson [1.12] extended the work in [1.11] to pure creepage between two 

arbitrary smooth half-spaces. Again, spin creep was excluded. Wickens [1.8] examined 

the instability o f  profiled wheels rather than purely conical wheels. He derived the 

equations o f motion of elastically restrained wheelset and studied the stability under 

varying parameters.

The hunting behavior o f conventional railway trucks was examined by Cooperrider 

[1.13], Hunting refers to the swaying motion o f a railway vehicle (Figure 1.1). It is caused 

by the coning action (Figure 1.2) on which the directional stability o f the vehicle depends. 

As shown in Figure 1.2, lateral displacement causes the left and right wheels to ride with 

different radii, resulting in the wheelset to turn to left or to right. The swaying motion is at 

times large enough to cause the wheel flange to impact upon the rail. Above a certain 

critical speed, the swaying motion can be violent, damaging track and wheels, and 

potentially causing derailment. Cooperrider determined the influence o f nonlinear effects 

on stability and the characteristics o f the hunting motion, and described the effects o f 

flange contact, wheel slip and Coulomb friction by some nonlinear expressions. A 

theoretical model for wheelset force and displacement relations in tread and flange contact 

was analyzed by Sweet and Sivak [1.14]. The analysis included a number o f issues such as 

nonlinear geometric constraints for the wheel-rail contact, and creep forces in the contact

3
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plane due to wheel and rail differential velocities. Lohe and Huilgol discovered an 

asymmetric oscillation using a numerical simulation [1.15].

~ L — v

Figure 1.1 Hunting or swaying motion of rail vehicles 

point of contact for
straight running

the wheelset 
centrelineNominal

radius

the line of contact

Lateral displacement

Figure 1.2 Railway wheel coning action

Railway vehicles have also been known to experience chaotic motion. The chaotic 

motion o f a railway wheelset, with wheels having cylindrical tires, moving at a constant 

forward velocity, was investigated by Meizard and DePater [1.16]. They found two kinds 

o f  principal motion: one in which flange contact took place at only one rail and the other in 

which flange contact occurred at both rails. Or simply put, there was a bifurcation. Using
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Vermeulen and Johnson’s contact theory, Knudsen et al. [1.17] analyzed a model o f 

suspended rolling railway wheelset. They examined the effect o f speed and suspension on 

the dynamics o f the wheelset. The results were presented in the forms o f time series and 

bifurcation diagrams. Knudsen’s work was continued by Silvsaard and True [1.18] who 

identified the periodic windows in the selected forward speed region.

A number o f recent publications looked at the interaction between rail vehicle, rail 

track and passengers with ride comfort as the primary interest. For example, Carlbom 

[1.19] investigated the interaction by combining the two dynamical systems, car body and 

bogies, and car body and passengers. The entire car body was modeled by ANSYS. 

Passengers were treated as single-degree-of-ffeedom models, and seats and seat cushions 

were included in the model as well. The software package GENSYS then pieced together 

the car body, passengers and so on.

Controlling bifurcation as well as chaos in dynamical systems has seen rapid advances

in the past decade. For example, bifurcation control was achieved by some controllers that

were designed to control the bifurcation route that led to chaos [1.20-1.21], Different

techniques have been developed for the control o f  chaotic dynamical systems. References

[1.22-1.23] employed a small amplitude control law in a restricted region of the state

space, thereby stabilizing a pre-existing equilibrium or periodic orbit. Classical control

methods were used by many [1.24-1.28]. Non-local linear or nonlinear feedback was

utilized [1.29-1.30] to stabilize nominal equilibrium points. A new recursive

back-stepping nonlinear controller was proposed [1.31] where a comparison was made

5
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between the proposed controller and the pole placement control design. Finally, methods 

involving semi-active and active controls o f the primary longitudinal stiffness were 

developed to raise the critical velocity o f the wheelset [1.32].

1.2 Objectives

The investigation reported in this thesis is motivated by the continued need to improve 

ride quality and to reduce wear and damage to the vehicles and track. One o f the 

demonstrated problems in this area is that railway vehicles, under certain conditions, 

experience erratic motions, or chaotic behavior. Chaotic vibration is accompanied by large 

dynamic loads between the vehicle and track which can damage the vehicle and track as 

well as contribute to passenger discomfort. Therefore, from the perspective o f practical 

engineering applications, understanding and identifying the causes o f chaotic behaviors in 

railway vehicles will assist engineers in the task o f minimizing undesirable behaviors, 

hence reducing material wear and damage, and enhancing ride quality. A better ride 

quality translates into passengers enjoying the rail ride, or goods being transported with 

minimal damage.

Chaotic motions arise in nonlinear dynamic systems. Nonlinear dynamics remains an 

area o f  intense research. A proper modeling o f rail vehicles with accurate quantification o f 

their dynamic responses and identification o f the causes o f possible chaotic behaviors 

remain important and challenging tasks.

6
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Specifically, this thesis investigates the dynamics o f a simplified railway freight 

vehicle running on an ideal straight track and on a single-axle wheelset. The single-axle 

wheelset is chosen because it is the fundamental element in railway vehicles. Second, due 

to weight reduction demands there is a growing interest in the railway industry to replace 

the conventional two-axle truck (bogie) by the single-axle wheelset. In addition, once the 

single-axle wheelsets are well understood, it will make easier the task o f investigating the 

two-axle counterpart. Therefore, the objectives o f the present study are, (1) to compare 

existing mathematical models o f single-axle wheelsets; (2 ) to identify the differences in 

the models and the resulting differences in the predicted dynamic behaviors; (3) to 

introduce randomness to the models by means o f pseudo-random numbers; (4) to gain 

understanding o f the dynamic behaviors o f the wheelsets, and understanding of the effect 

o f randomness on the systems; (5) to identify any damage-inducing conditions, operating 

or otherwise; and (6 ) to implement control strategies to circumvent hunting instability.

It should be pointed out that the necessity o f introducing randomness to the wheelset 

models comes from the fact that a wheelset, similar to any other physical system, operates 

under not-so-deterministic conditions. It is nearly impossible to expect, for example, the 

wheelset to travel with constant, thus deterministic, speed. The uneven wear between 

wheel flanges and sides o f the rails causes varying lateral clearance or dead band. There 

also exists uneven wear between the wheels and tops o f the rails that will cause the contact 

profile o f the wheels to deviate from the expected conical shape form.

7
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1.3 Organization of the Thesis

The thesis consists o f six chapters. Chapter 1 is the introduction. In Chapter 2, 

mathematical models are described. The corresponding equations o f motion are then 

verified and presented. Chapter 3 deals with pseudo-random number generation and 

Monte Carlo simulation. Chapter 4 presents the fundamentals o f chaotic motion, and then 

proceeds with numerical results pertaining to Lyapunov exponents and information 

dimensions. Chapter 5 deals with control strategies. The final chapter, Chapter 6 , presents 

the conclusions and recommendations for future work.

1.4 Terminologies

Relevant terminologies are introduced here.

Axle: a central shaft on which a set o f rotating wheels are mounted.

Wheelset: an axle and two wheels that are mounted on the axle (Figure 1.3)

Figure 1.3 Railway wheelset

8
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Bogie (in the U.K.) or Truck (in the U.S.): a structure underneath a train to which wheel 

axles and wheels are attached. Typically there are single-axle trucks (Figure 1.4), two-axle 

trucks (Figure 1.5) and triple-axle trucks (Figure 1.6).

Figure 1.4 (Top) A box car supported by single-axle trucks ; 
(Bottom) Major components in a single-axle truck

9
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Figure 1.5 (Top) A two-axle truck; (Bottom) Two configurations of a two-axle truck

Figure 1.6 A triple-axle truck

10
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Primary Suspension and Secondary Suspension: Secondary suspension system is 

located between the car body and truck frame, and is to support the axle load that transfers 

to the truck frame; Primary suspension connects the truck frame and wheelset, transferring 

loads from the truck frame to rail wheels (Figure 1.7).

secondary
suspension

primary suspension

Figure 1.7 Primary and secondary suspensions
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Other suspensions (spring and damper combinations) are also used. Figure 1.8 shows the

suspensions in a single-axle truck.

WheelsetTruck frame

Lateral
springPrimary — 

suspension

Contact
point

Contact
point

Left railRight rail

Direction of 
motion

Wheelset

Yaw
spring

Lateral
spring

Truck frame

Right rail Left rail

Figure 1.8 Suspensions in a single-axle truck 
(Top) Front view; (Bottom) Top view
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Chapter 2

MATHEMATICAL MODELS OF A SINGLE-AXLE 
RAILWAY WHEELSET

In this chapter, several mathematical models o f the single-axle rail vehicle wheelset are 

presented in order to compare their features for similarities and differences. These models 

will later be used in Chapters 4 and 5. The wheelset is an important dynamic component of 

the rail vehicle because it is responsible for the wheel-rail interaction.

2.1 Preamble

Various assumptions are made in developing the mathematical models. The applicability 

o f the models depends on these assumptions. Their implications must be clearly 

understood in interpreting the results obtained from the models. The assumptions or 

restrictions common to all these models are:

(1) The vehicles are traveling on a perfectly aligned, horizontal, straight track;

(2) The wheels always remain in contact with the rails;

(3) The vehicle components are perfectly rigid, and their elasticity is lumped in the 

suspension elements;

(4) External forces such as aerodynamic loads are not included;

(5) The axles run freely in the journal bearings without bearing friction or applied torques 

due to traction or braking; and
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(6 ) Perturbations in the motions o f the vehicle components about a steady state are small 

so that all terms greater than first order in the perturbed coordinates may be neglected in 

the equations o f motion.

It is noted that the truck or bogie is the component through which the weight o f the 

railcar body and its contents, the so-called axle load, is transmitted to the rails. The truck 

frame supports the axle load through the secondary suspension system which is located 

between the car body and the truck frame. Wheelsets are connected to the truck frame via 

the primary suspension. Locomotives, passenger cars, and freight cars have different truck 

and suspension configurations. For example, passenger trucks have relatively rigid truck 

frame. Primary suspension elements such as coil springs, air springs, or elastomeric pads 

are typically present. On the other hand, the frame of a freight truck is less rigid. There is 

no primary suspension. Dry friction is used intentionally in the secondary suspension. 

Overall, the suspension elements provide stiffness and damping to the system.

2.2 Wheel-Rail Interaction

As seen from discussions above, the wheelset supports the weight o f the railcar body. 

Considering the wheelset as a free body and taking into account Assumption (4) in the 

previous section, the “only” external load is the reaction force applied by the rails onto the 

wheels, the so-called wheel-rail interaction. This interaction includes the normal force and 

creep force. The latter is so termed because it is caused by creepage which is the microslip 

between the wheel-rail contact surfaces. In simplistic terms, creep force is the dry friction

14
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and creepage the relative motion. The creep force is chiefly responsible for the dynamics 

o f the wheelset, which in turn is fundamental to the control o f rail-wheel wear, vehicle 

stability and ride comfort. In the present study, two wheel-rail rolling contact theories are 

used: the Vermeulen and Johnson nonlinear contact theory [2.1] and the Kalker linear 

theory [2.2].

To appreciate the difference between the two theories, it may be helpful to properly 

introduce creepage. When two rigid bodies are rotated, or moved, or rotated and moved, 

relative to one another, the contact point will shift from its original position. The resulting 

velocities o f the two bodies at the contact point may not be equal. When the velocities are 

equal, the rigid bodies are said to undergo pure rolling; otherwise, they are said to undergo 

rolling with sliding or creep. So creep or creepage is the deviation o f actual rolling contact 

condition from pure rolling. In the case o f  wheel-rail contact, creepage is defined in both 

the longitudinal and lateral directions, and about the common normal to the contact point, 

hence the longitudinal, lateral and spin creepages, respectively (Figure 2.1).

The Vermeulen and Johnson theory includes the longitudinal and lateral creepages,

but the spin creepage is left out. The shape and size o f the contact patch are determined by

the Hertz theory. On the other hand, the Kalker theory is believed to be the most successful

method o f determining creep force. It considers all three creepages. The drawback is that

the computational time is large. It is therefore deemed not suitable for real time simulation.

Since the present study does not concern itself with real time simulation, both theories are

appropriate. Details o f the Vermeulen and Johnson theory can be seen in Section 2.3.3,

15
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Eqs. (2.17) through (2.20) in particular. The Kalker theory can be found in Appendix A,

see Eqs. (A45) and (A46).

wheel

#- V

rail

Cd)

x

v

CO

Spin moment

Lateral
force

(d)
Figure 2.1 Creepages (a) Longitudinal; (b) Lateral; (c) Spin; (d) 3D view
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2.3 Equations of Motion for Single-Axle Wheelsets

2.3.1 Model I

First, a brief description o f the coordinate systems used is in order. As seen in Figure 

2.2(a), the coordinate s y s t e m s 2 '" is called the equilibrium axes in which Newton’s 

laws of motion can apply. The coordinate system s ",y", 2 "is an intermediate coordinate 

frame that is rotated by an angle y/ about th e 2: '"axis. The coordinate s y s t e m r r z 'is  

referred to as the body axes which can translate and rotate with the wheelset body. Further 

details o f these axes systems and the transformation amongst them can be seen in 

Appendix A.

The single-axle wheelset is represented by the free-body diagram (FBD) o f Figure 

2.2(b). A description o f forces and moments appearing in the FBD is given in Table 2.1.

Equilibrium Axes

Right Rail Body Axes

Left Rail
Track Center Line

Figure 2.2(a) Axes systems
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Right
4 2 "

Left

sz
sx

Fig 2.2(b) Free-body diagram of a single-axie wheelset -  Viewed from x ' "  [2.3] 

Table 2.1 Definition of Forces and Moments

Forces variables Definition

Fjl, Fr creep forces at left and right contact points, respectively

Ml , Mr creep moments at left and right contact points, respectively

Fs suspension forces

Ms suspension moments

wA axle load

Nl,N r normal forces at left and right contact points, respectively

Table 2.2 Description of Variables

Variable Description

X longitudinal displacement o f the wheelset’s mass center

y lateral displacement o f the wheelset’s mass center

z vertical displacement o f the wheelset’s mass center

9 roll displacement about the x"  axis

¥ yaw displacement about the zr  axis

P angular displacement from a nominal value o f Q* about th e y 1 axis

* Q  is the spin of the wheels. = v /r0 with v being the traveling speed of the wheelset and ro the 
nominal radius of the wheels.
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The wheelset has six degrees o f freedom (see Table 2.2). The equations o f motion o f the 

wheelset were initially derived by Garg and Dukkipati [2.3]. They have been verified in 

the present study. Appendix A details the mathematical development o f the model. Here 

only the resulting equations o f motion are presented.

a) Longitudinal equation of motion

m x  — FLx +  FRx + N Lx +  N Rx + Fsx (2.1)

b) Lateral equation o f motion

m V — FLy +  FRy +  N ly + N Ry + Fsy (2,2)

c) Vertical equation o f motion

mz = FLz +  FRz +  N Lz +  N Rz +  Fsz -  WA (2.3)

d) Roll equation o f motion

I w x  & I  ivy (v /  ro)-0 +  RRy(FRz +  N Rz) — RRz(FRy +  N Ry) 

+ R lv(Rlz + N Lz) — Rlz(Rlv +  N Ly) +  M Lx +  M Rx + M s.

e) Spin equation o f motion

IwyP =  RRzFlix — Rrx(FRz +  N Rz) +  RLzFLx 

—Rlx(Flz +  N lz) +  MLy +  M Ry +  Mgy

f) Yaw equation o f motion

Iwyiv /  T  Rjtx(FRy Nfly) RRyFRx 

+R lx{Flv +  N Ly) — RLyFLx +  M l , +  M Rz +  M sz

(2.4)

(2.5)

(2 .6)

where m is the mass o f  the wheelset, Iwx, Iwy and IW2 are the mass moments o f inertia o f the 

wheelset about thex'  ,y '  andz' axes, respectively, or the so-called roll, pitch and yaw 

moments o f inertia. Other variables are, v the traveling speed or forward speed o f the
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wheelset and ro the nominal wheel radius. The /^-quantities are components o f  position 

vectors o f contact points. The subscripts are, L for left wheel; R  for right wheel; and x , y  

and 2: for the longitudinal, lateral and vertical axes, respectively. Over-dot indicates a 

first-order time derivative. Double over-dot means a second-order time derivative.

O f particular interest to the investigation of hunting instability are the lateral and yaw 

equations o f motion. These two equations are obtained by solving N l and Nr from Eqs. 

(2.3) and (2.4), taking their ̂ -components Niy and NRy, and substituting NLy and NRy into 

Eqs. (2.3) and (2.6). The resulting lateral and yaw equations o f motion are then 

m y  — FLy +  FRy +  Fsy + N R sin(<5fl — <f>) — N L s i n ^  +  (p)

Iwx'ip ^wyip /  b̂')4> “b (R rx fifty R rijF'r x ') T  i^RLx^Ly ^-Ly^Lx)

+R rxN R sin(6I{ —(f)) — RLxN l sin (6L +</>) + M Lz +  M Rz + M s

(2.7)

Simplified lateral and yaw equations o f motion are, by assuming small roll and yaw angles 

(p and i//, and small contact angles; neglecting the inertia forces due to the vertical and roll 

motions; and neglecting the vertical components o f  creep forces

rL + rRmy  F  2 —  
v

y + T k ± R L j , ^ v i ,

+ 2/12
^  h - $ R
V 2 rfo

+  2/33 

+ WA

2 r0

~  $R

% V
y +

2

n  + rR

+ =  F sy

(j> — Vlf)

+  2a2/ , ,  -  V 22 -  “ IVa + V 22v
Ip

M..

(2.8)

(2.9)

2r0 21 2

where f a ,  f a ,  f a  and f a  are creep coefficients; rR and rR are the running radii o f the left and 

right wheels, respectively. Contact angles SL and dR are defined in Figure 2.2b.
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Finally, for conical wheels, with a conical angle X, on knife-edged rails, it can be 

shown that

and

\ i rL ~  tr ) = Ay, +  rR) =  r0

2 ^ l ~  Sr ) — 0, ~(SL + SR) — A

</> =  (A /a)y

The equations o f motion of the wheelset are then reduced to

, fnm y  +  2 ;
v

A .
V +  r0 —y -  V'lp 

a
+ M l  ̂  + W  ± y = z F

v a y

Irox4> + I v y - - *  +  ^ ^ V -  ^  rQ a r0 v
A .

y +  ro - y  -  v'lpa

+  2a2/33 -  -  +  2/22  ^  =  M*
V V

(2 .10)

(2 .11)

(2 .12)

2.3.2 Model II

leftn g h t - i

m fr m

Figure 2.3 A single-axle wheelset -  Viewed from t "  [2.41

This model expands on the previous one. It considers a wheelset with flanges, connected 

to the truck frame by a set o f  springs and dampers, in both the longitudinal and lateral
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directions (Figure 2.3). Variables used in this model and their parametric values were 

given in [2.4], and will be listed later in this chapter (see Table 2.6)

Neglecting viscous damping, the equations o f motion for the wheelset are [2.4]

my  + 2 /n 1 +  r0 -  |y  -  VTpa
+  M i ^  +  W A ± y =  F  F { y )

v a "

T v r v X . 2aA3A 2f12 
4 ^  +  I Wy —  y +  — — y  -  —  n> a r0 V i  +  n>-\y -  vip

+  -  aWAXip +  =  M sz
v v

2 bF*

(2.13)

(2.14)

where the lateral suspension force and yaw moment are

Fsy -  - 2 kyy ,  M sz =  - 2 ^ & V  

and F t is the flange force. It depends on lateral displacement};. Fjiy) is given by

(2.15)

Ft (v)

K(y -&) v > 5
0 —8 < y < 8

K(y + &) y < - s

(2.16)

The nonlinear longitudinal yaw damping force Fd is described by

F,  =  ■
C'W/, +  c?y$  +  > o

< 0( h v + - c 2v 4 - C t V } - C i V }  

where — bip . In the present study, the Fd force is set to zero for easy comparison with 

the other models.

It can be seen that, if  Fd is removed from Eq. (2.14), and -Fj(y)  is added to the right 

side o f Eq. (2.12), Models I and II become identical. In what follows, they are referred to,

collectively, as Model II.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.3 Model III

This model [2.5] is simpler than the two previous models. The wheelset has two degrees 

o f freedom, the lateral displacement y  and yaw motion yj (Figure 2.4). The nonlinear 

creepage-creep force relation is that described by Vermeulen and Johnson [2.1], instead o f 

the Kalker’s linear creep theory used in Model II. This nonlinear creep force depends on y  

and y/, and appears in both equations o f motion. As a result, the two equations o f motion 

are coupled. The equations o f motion can be easily derived using the Langrange principle. 

Details o f the derivation can be found in [2.5] and are not repeated here. A description o f 

the variables used in the equations is given in Table 2.3. The resulting equations o f motion 

are

my  4- 2kxy +  2Fy +  Fp{y) ~  0
(2-17)

Iwz'ip “F 2A:2di ip T  2clFx — 0 

where the flange force F x(y) is given by Eq. (2.16) and the creep forces Fx  and Fy are

j? __ i x  Fr w _  £y  FR 1 0.
^ “ ¥ 6  <2 1 8 >

with the resultant creep force being

Fr — pN -
1 2 1 3u — —u + — u u < 3
3 27 (2.19)

1 u > 3

t GixaJ)e . f. . 
and^ — — j j — ̂ R . The creepages are
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The needed parametric values were given in [2.5] and will be listed later in the chapter 

(see part o f Table 2.5).

Car Body

right Frame

Figure 2.4 A single-axle wheelset -  Viewed from x'" [2.5]

Table 2.3 Description of Variables

Variable Description

Fr resultant creep force

yaw angle and angular velocity

& lateral creepage

& longitudinal creepage

6 resultant creepage

Fx longitudinal creep force

Fy lateral creep force

y,y lateral displacement and velocity

0 , F coefficients o f Johnson’s theory

Fiiy) flange contact force

ki,k2 lateral and yaw spring constants

v,t velocity and time
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2.4 Comparing the Models

A comparison of Models II and III is given in Table 2.4. The main difference lies in two 

aspects. The first one has to do with gravitational stiffnesses (the terms involving axle load 

WA) and the gyroscopic couple or moment (the term associated with Iwy). Model III does 

not include such effects because it is derived without the inclusion o f other degrees o f 

freedom, namely the vertical displacement and roll motion. The second main difference 

lies in the contact theory for creep forces. Model II employed the Kalker linear theory to 

determine creep forces and moments. However Model III used the Vermeulen and Johnson 

nonlinear creep forces to evaluate creep forces and moments. Details o f the Kalker linear 

theory can be found in Appendix A, see Eqs. (A.45) and (A.46) in particular. Details o f the 

Vermeulen and Johnson nonlinear theory are presented in Eqs. (2.17) through (2.20), see 

Section 2.3.3. In addition, the two models have different parametric values. As a result, 

comparing the two models directly, that is, keeping the models at their present states and 

using the values given in [2.4] and [2.5] would make it difficult to interpret results and to 

draw conclusions. Worse, the conclusions could be inconclusive. Therefore, it is necessary 

to expand the two models so that issues can be isolated and investigated accordingly.
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Table 2.4 Comparison of Models II and III

Considerations Model II Model III

Degrees o f Freedom y  and yj y  and y/

Primary stiffness (lateral) yes yes

Primary damping (lateral) yes no

Yaw stiffness yes yes

Yaw damping yes no

Flange force yes yes

Lateral gravitational stiffness yes no

Yaw gravitational stiffness yes no

Gyroscopic couple yes no

Creep force theory Kalker’s linear
Vermeulen and Johnson’s 

nonlinear

Longitudinal and lateral creep force yes yes

Spin creep moment yes no

2.5 Expanding Model III

Two expansions are considered.

The first expansion is to replace the creep forces by those o f the Kalker’s linear theory, or 

to linearize the creep forces. The steps involved are,

(1) Longitudinal and lateral creepages are determined by Eqs. (A.43) and (A.44). Spin 

creeps are set to zero, that is, £  — £  =  0 . Longitudinal and lateral creep forces are

then found by Eqs. (A.45), and transformed to the equilibrium axes by Eq. (A.4). The 

resulting creep forces are
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and

FLx =  ~ { h 3 h ) {  u[l - ( r L / r 0) ] - a i p }  cos ip 

+ ( f n / v)[y +  rL<P -  vip]cos(SL +  cj>) sin ip 

FLy =  - ( /s 3 h ) {  v[l -  (rL / r0)] -  aip} s in ip 

- ( / n  /  v)[y +  rtj> -  vip]cos(8L +  cp) cos ip

=  -( /ss  /  V) { v[l -  f a  / r 0)] + aip} cos ip 

+ ( f u / v)[y + rR̂ > -  W 'Jcosfo  -  (p)sinip

(2.21a)

(2.21b)
Frv =  ~(/s3 /  { u[! ~  f a  /  ro)] +  f a } sin tp

- ( / n  /v )[y  + rR<p -  vip}cos(SR -  (p) cos ip

(2) In Eq. (2.17), the creep force 2Fy is replaced b y 2Fy =  —(FLy + FRy)- The moment 

about vertical axis due to Fx, that is, 2aFx, is replaced by 2aFx  =  —a ( FRx — FLx ) . On

substitution from Eqs. (2.21a, b), these yield

2Fy =  /33[2 -  f a  / r0) -  (rR / r 0)]sin ip

[y + rL<p -  vip]cos(6L +<f>) (2.22a)
+ (/n  /  v)

+[y +  rR<j> -  vip) c o s (8 r  -  (p)
cos ip

and

2aFx  =  a (/33 /  v) { t/[fa /  r0) -  f a  /  r0)] -  2 fa }  cos ip 

[y +  rR<p -  f a ] c o s f a  -  (p)

~[y +  rf a  ~  vip\cos{6L +  (p)
A f n / v ) - sin ip

(2.22b)

(3) The assumption of small roll, pitch and contact angles, and Eqs. (A.60) and (A.61)

simplify the above equations to

2Fy = 2 ^ l y  + r0 - y - v i P  
v \ a

2 aFx ^ <■ A a ; 
2a/33 — y + ~ip

To v

2A2̂ i  . , . _ ,
3 yyip — 2  q^3

V

A a ■ 
— y +  - V  

To «

(2.23)

(2.24)
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The underlined term in Eq. (2.24) is a higher-order term that may be neglected. Finally,

(4) The equations o f motion o f the model are reduced to

The second expansion differs from the first in that it includes the effect due to spin creep 

as well. The resulting creep forces and moment are given by Eqs. (A.49) and (A.50), 

which become, after applying the assumption o f small roll, pitch and contact angles,

F Lx =  - ( /s s  /  v ){v [l -  (rL / r0)] -  a i p ]

+ (/iE A /v)[y +  rLf> -  mp) +  ( A r t  /  v)bP ~

FLy = -(fas'ip /  v) { w[l -  (rL /  r0)] -  afp} (2,26a)

~( fn  / v )[y  + rL<P -  vip] -  (fn /v)[ip -  fi<5£]

M Lz =  (fn  /v )[y  + rL<p -  mp) -  (/22 / v)[fp -  Q6L]

Frx =  -( /ss  /  v){v[l -  (nt / r 0)] +aip}

+(Ai*P/v)[y +  tr 4> ~ wP\ +  (fn^/v)VP +  M6r ]

Frv = - i f w i ’ / v ) {  41 -  (rR /  ro)] +  aip } (2.26b)

- ( f n  / v )[y  + rR4> -  vip\ -  (fl2 /  v)[fp +  flSR]

M Rz =  (fn  /v )[y  + rR<p -  wp] -  (/22 / v)[fp +

Next, 2F Y and 2aFx  in Eq. (2.17) are replaced by 2FY =  — ( FLy +  FRy) , and

2aFx  — ~ a (FRx — FLx ) — M Rz — M Lz, respectively. Eq. (2.17) then becomes

(2.25)

2FY =  —  U  + r0 - y  -  v i p W ^ - i p  
v \ a I v (2.27a)
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and the equations o f motion reduce to

my  +  2kxy +  —  l y  + r0 ~ y  -  vip\ +  ‘-^FL'ip +  FT (y) =  0 
v \ a I v

■y + aip + M i l^  _  M l i y j rrQh . y _ v^j\ — Q 
v v \ a )Iwz^P +  2A:2di ip +

vX
n>

For easy reference, the models represented by Eqs. (2.25) and (2.28), respectively, 

will be called Models Ilia and Mb hereinafter. The parameters required by the models will 

be given in Table 2.5.

2.6 Concluding Remarks

So far four models have been presented. They are, Models II, III, Ilia and Mb. These 

models can be used in certain combinations so that particular issues can be examined.

(1) The first combination is comprised o f Models III, Ilia, and Mb. This combination 

allows for the investigation into effects o f  ways o f modeling creep forces and moments on 

the dynamic behaviors o f a wheelset. The equations used in this combination, Eqs. (2.29) 

-  (2.31), and the data table, Table 2.5, are given below. Data in Table 2.5 are taken mostly 

from [2.5], The parameters f j  are determined based on Eq. (A.46) and Table 4.2 o f [2.3].
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Model III

my  +  2 kiy +  2 Fy +  Fj>{y) — 0 

11uẑ P T  2^2df'ip T  2aFx  — 0
(2.29)

Model I lia

my +  2 kxy  +  —  (y  + r0 - y - v ' i p )  + FT (y) = 0 
v \ a I

I wz^j 4- 2k ^ d lip  +  20/33 — V +  -  =  0
(2.30)

ro v

Model I llb

my +  2 %  +  — (y  +  r0 
v \

V + r0 - y  -w/>
a

w p X + ^ h .  ip + FT(y) =  0 
/ v

Iw z + 2 M iV  +  — y + aip)
» Uo ) v

(2.31)
y + rQ- y - v ' i { j \  = 0

(2) The second combination consists o f Models II and Ila. Model Ila is obtained from 

Model II by removing the gravitational stiffness terms and the term associated with Iwy. 

The latter is the gyroscopic couple (or moment) due to the coupling o f  roll and spin 

motions. Therefore this combination makes it possible to examine the effect o f 

gravitational stiffnesses and gyroscopic couple. The equations, Eqs. (2.32) and (2.33), and 

data table, Table 2.6, are listed below for easy reference. Table 2.6 is compiled from data 

given in [2.4],
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Model II

m y  +  2 kyy  +
v

v A . 
r0 a

l  +  ro ~  \y -  v-ip a —  ip + WA - y  + FT (y) = 0 v a

+  l Wy - - y  +  2fy&V +  ^ ^ y  -  M ln ». r, r rQ v

2«2/33

1 +  ro ~ \ y  -  vip

_i— pp _  a w A\^p _j_ ip — o

(2.32)

where Fsy has been replaced by Fsy =  —2kyy , and Msz by M sz =  —2k^b2ip .

Model Ila

my +  2kyy + 2/n
1 +  r o - t a  -a I

2a/33A.. 2/12
7^-0 +  2 ^ 6  ip +    y

n>

3— —  +  FT {y) — 0 
v

1 +  r o - ) y  -  W’a /

2a2/33 ; 2 /22 ; „H +  ~^±ip =  0
v v

(2.33)

(3) The third combination consists o f Models lib and III. Model lib is Model II with its 

linear creep forces being replaced with the nonlinear counterparts by Vermeulen and 

Johnson, and the creep moment being neglected. The reason for choosing this combination 

will be seen in Section 4.4. The equations, Eqs. (2.34) and (2.35), and data table, Table 2.7, 

are listed below. Table 2.7 is compiled from data given in [2.5], An estimated value is used

fOr Iwy.

Model lib

m y + 2 kyy +  2FY +  Fj{y)  +  — y — 0
&

v A .
r0 aIwx'll) +  ^wy ~  ~  V +  2k1pb2'tp +  2aFx — a — 0

(2.34)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Model III

my  +  2 kxy  +  2 Fy +  FT (y) =  0
(2.35)

I j l >  "h 2/^2 !̂ *0 "h — 0

Table 2.5 Parametric Values for Models III, I lia  and Illb

Constant Value Description

m 1022 kg mass o f wheelset

Iwz 678 kg rn' moment o f inertia

a 0.716 m half o f the track gauge

I 0.05 slope o f conical wheel

S 9.1 mm dead band

d\ 0.620 m distance from center o f gravity to k2

kT 14.60 MN/m spring constant (flange)

ky 18.23 KN/m spring constant (lateral)

k2 180 N/m spring constant (yaw)

ro 0.4572 m centered wheel rolling radius

f n 90.712 kN lateral creep force coefficient

f22 0.46739 N m 2 spin creep moment coefficient

fl2 258.88 N m lateral-spin creep force coefficient

f a 103.228 kN longitudinal creep force coefficient

G 808 MN/m2 shear modulus

¥ 0.54192 constant

0 0.60252 constant

ae 6.578 mm major semiaxis o f contact ellipse

be 3.934 mm minor semiaxis o f contact ellipse

¥ 0.15 coefficient o f friction
*

juN io  m adhesive force

* N  is the vertical force between wheel and rail.
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Table 2.6 Parametric Values for Models II and Ila

Symbol Value Description

m 1800 kg wheelset mass

I\vx Iwz 625.7 kg m2 roll/yaw moment o f inertia o f wheelset

Iwy 133.92 kg m spin moment o f inertia o f wheelset

ro 0.533 m wheel radius

a 0.7176 m half o f the track gauge

X 0.05 slope o f conical wheel

wA 18000 N axle load

II 8.67x104JV/m lateral stiffness o f primary suspension

II 8.67x104N/m yaw spring stiffness o f primary suspension

b - d j 1.00 m half o f the primary yaw spring arm

f n 6.728x106 N lateral creep force coefficient

f n 1000 N m 2 spin creep moment coefficient

f n 1.2xl03 N m lateral-spin creep force coefficient

/33 6.728x106N longitudinal creep force coefficient

kr 1.617x101 N/m lateral rail stiffness

<3 9.23 mm flange clearance
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Table 2.7 Parametric Values for Models lib  and III

Constant Value Description

m 1022 kg mass o f wheelset

I\VZ 678 kg m2 moment o f inertia

I\vy 145 kg m spin moment o f inertia o f wheelset (estimated)

a 0.716 m half o f the track gauge

X 0.05 slope o f  conical wheel

s 9.1 mm dead band

di 0.620 m distance from center o f gravity to k2

kT 14.60 M m '1 spring constant (flange)

ki 18.23 kN  mA spring constant (lateral)

k2 180 N m 1 spring constant (yaw)

ro 0.4572 m centered wheel rolling radius

G 808 M N m 2 shear modulus

¥ 0.54192 constant

0 0.60252 constant

ae 6.578 mm major semiaxis o f contact ellipse

be 3.934 mm minor semiaxis o f contact ellipse

M 0.15 coefficient o f friction

UN* 10 k N adhesive force

wA 133.33 kN axle load

* N  is the vertical force between wheel and rail.
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Chapter 3

MONTE CARLO SIMULATION AND 
RANDOM NUMBER GENERATION

Monte Carlo simulation refers to solving mathematical problems by simulating random 

variables. It can perform simulation o f  any process influenced by random factors, being 

one o f the most versatile and widely used numerical methods. One o f the crucial elements 

in Monte Carlo simulation is the generation o f random numbers o f certain distribution 

such as the Gaussian or normal distribution for this thesis. In this chapter, some random 

number generating techniques are reviewed. Two major categories are examined, namely, 

the pseudo-random number generators and the true random number generators.

3.1 Pseudo-Random Number Generators

As the name suggests, pseudo-random numbers are not truly random. Rather, they are 

computed from a mathematical formula or simply taken from a pre-calculated list. A 

great deal o f research has gone into the algorithms and techniques o f generating pseudo

random numbers [3.1]. Pseudo-random numbers have the characteristic that they are 

predictable, or they have a period. Here period refers to the length of the random number 

sequence before it repeats itself.

Pseudo-random number generation algorithms fall into two categories, serial random 

number generators that are developed for use in single-processor computers, and parallel 

random number generators employed in multi-processor computers. Only serial random 

number generators are reviewed here.
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An ideal serial random number generator should generate sequences that satisfy 

statistical tests for randomness, that are not correlated, that have a long period, that are 

reproducible, and that can be changed by adjusting the seed number. The generator 

should be fast and portable, and require limited memory. Some of the commonly used 

algorithms are,

(1) Linear Congruential Generators (LCGs)

LCGs represent one o f the oldest and best-known pseudorandom  number generator 

algorithms. The theory behind them is easy to understand, and they can be easily 

implemented and are fast. It is, however, well known that the properties o f this class of 

generator are far from ideal.

LCGs are based on the following iterative scheme:

X n = ( a X n.\ + c ) (mod m) 

where m is the modulus, a the multiplier, and c the additive constant. And “mod” is the 

modulo operator. Note that a, c and m are all integers. The size o f the modulus m 

constrains the period, and is usually a prime or a power o f 2 number. When a, c and m 

are chosen appropriately, LCGs can generate a random number sequence with a 

maximum period equal to m.

(2) Lagged Fibonacci Generators (LFGs)

This class o f pseudo-random number generator is aimed at being an improvement on the 

linear congruential generators. LFGs are based on generalized Fibonacci sequence, which 

can be described by the recursive relation: Sn = Sn-\ + Sn- 2 , or the new term is the sum of 

the last two terms in the sequence. The lagged Fibonacci sequence is then:

Sn = ( S„.j * S».k ) (mod m), 0 < j  < k
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Here the new term is some combination o f any two previous terms. Modulus m is usually 

a power o f  2 (m = 2M), often 232 or 264. The operator denotes any binary operation. 

This may be addition, subtraction, multiplication, or the bitwise arithmetic exclusive-or 

operator (XOR). The choice o f the operation gives rise to a number o f LFGs, for 

examples, Additive Lagged Fibonacci Generator or ALFG, Multiplicative Lagged 

Fibonacci Generator or MLFG, and Two-tap Generalized Feedback Shift Register or 

GFSR.

The LFGs tend to be very sensitive to the values o f j  and k. They should not be 

randomly chosen. With proper choices o f j  and k, and the first k  values o f S, the period is 

(2 k — 1 )x 2 (AM).

3.2 True Random Number Generators

True random numbers are those that exist in the physical world or created by hardware. 

Any random numbers generated by a deterministic algorithm are reproducible, therefore 

not truly random. However, it is possible to attain a random number series whose period 

is very large. Such a series is known as true random numbers. To obtain true random 

numbers, pseudo-random numbers need to be processed by randomization in the time 

domain. One such process is shown in Figure 3.1 [3.2], It consists o f delay, reverse, 

windowing, and lapping.

(1) Random delay and reverse

Let assume that there are 1,024 pseudo-random numbers, or sample data. A new random 

series is formed by randomly selecting any sample datum as the start datum while 

keeping the rest in the original and reversed orders, end to end. Since there are 1,024 

choices o f start datum, after random delay and reverse, the number o f random series is
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1,024 x 2 = 2,048. These 2,048 series o f random numbers come from the same source, 

differing only in how the random numbers are sequenced. As a result, they possess the 

same characteristics in the frequency domain. Windowing is next applied so that the 

series will possess different spectra.

Randomization in 
time domain

Continuous
spectrum
Gaussian

distribution

Discrete
spectrum

non-Gaussian
distribution

Pseudo-random signal

Delay, reverse, windowing 
and lapping

True random signal

Figure 3.1 Process diagram of true random signal production

(2) Windowing and lapping

Windowing and lapping serve to obtain a continuous spectrum distribution. Usually the 

half sine wave window is used, as is illustrated in Figure 3.2.

Let X\(t), X 2 (t), ... , X N(Z) (N  = 1, ... , 2,048) denote the random number series 

obtained after delay and reversing. Window functions are W\(t), W2(t), ... , W^(t) ( N ~  1, 

... , 2,048). Windowing means that a new random series is formed according to

N

X { t )  =  £ ^ ( 4 ) ^ ( 0  (3.1)
i = 1

The variance o f X(t) is then
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E[X*(t)]  = E l Y ' W W X i i t ) ) 2]
i=i (3.2)
N N N

= e ( £ w ? x ? +  E  E  W jW jX iX j]
i —1 i=l j = i + 1

where E [  ] denotes the expectation o f a random variable. Terms such as E  [2WlW ] X lX J ]

T

(tej) are the correlation functions defined as E [ 2 W i W j X i X j  ] =  lim J ( 2 W iW j X iX j ) d t
- » ° °  ^

T

= 2 W iW j  lim f  E \ X i ( t ) X j  ( t ) ] d t  . Since X 1 ( t ) , X 2 ( t ) , - - - , X N  ( t )  are independent
T —>oo o  0

random processes, one has,

E  [ZWjWjXiXj  ] =  0 , (i * j )  (3.3)

Substituting Eq. (3.3) into (3.2) yields

E [ X \ t )] =  E ( £ W t2X f ]  =  Y . W?E[Xt]  =  E ^ 2 =  ^ 2E ^ 2 <3-4)
i= 1 i=l i= l i=l

since the series X 1( t ) , X 2 (£),---,X N ( t )have identical variance a2. Random signals in 

engineering applications are generally smoothly ergodic so that the characteristic o f  every 

sample is the same as the holistic average characteristic. That is,

E [ X 2 (t)} =  E [X l ( t ) }  = E [ X i ( t ) \  =  E [ X i ( t ) \  =  -  =  a 2 (3.5)

Substituting Eq. (3.5) into Eq. (3.4) gives rise to

N
Y J W 2 ( t )  = l  (3.6)
i=i
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Figure 3.2 Windowing and lapping

This equation serves as the criterion o f choosing window functions. In the present study, 

the windows are chosen as the half sine wave, or

WiCO
sin ̂ - t  0 <  t < T

T  (3-7)
0 t < 0,t  > T

with W2 (t  ),■■■, WN (J) each being delayed by 772 from the one that precedes it.

Continuous spectrum Gaussian distribution is obtained after applying the half sine 

wave windows and the half-period lapping. Again, the series is still not truly random. But 

its period is large enough (about 17.5 years at a sampling interval o f 0.25 second) to be 

considered a true random signal.
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3.3 Generating Random Numbers for the Present Study

From the point o f view of generating serial random numbers on a personal computer, one 

has, broadly speaking, two options. The first option is to rely on built-in random number 

generators provided by compilers (such as Fortran or C) or software packages (such as 

Maple, MatLab, etc.) The quality o f these random numbers varies from good to fair. The 

second option is to use the so-called portable random number generators, pseudo or true. 

Here portable means that the generation o f random numbers does not depend on using a 

specific brand of computers, or specific compilers or software. In the following 

discussions, two particular portable generators are discussed (although a few others have 

been examined).

Netlib, a website repository o f mathematical software, has a Fortran code named 

zufall.f [3.3], The code utilizes the lagged Fibonacci generator (LFG) to generate 

uniformly distributed random numbers which are then transformed to the standard 

Gaussian distribution. The random numbers generated by zufall.f are obviously not true 

random numbers. To make them true, they are fed into the process described in Section

3.2 to obtain true random numbers at the output. For easy reference, the algorithm of 

zufall.f is referred to as “Zufall”, and the algorithm developed by the author (Reference 

[3.2]), is referred to as “True”.

“Zufall” and “True” are then tested on their statistical goodness. “Zufall” proves to be 

o f better quality, see Table 3.1. The tests involve generating a series o f 25,600 random 

numbers o f standard normal distribution. The mean, variance, skewness and kurtosis of 

the series are determined by the SPSS package [3.4]. The effectiveness o f the two 

generators is measured by the CPU times taken to generate 256 sets o f 25,600 random
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numbers, or 6,553,600 random numbers. The CPU times are also listed in Table 3.1. 

“True” is found to take 24% more time than the “Zufall” counterpart. This is attributed to 

the extra time required for random delay, reverse, windowing and lapping. In the 

following chapters, zufall.f is chosen as the designated random number generator, since it 

is computationally effective, and the random numbers that it generates are o f  very good 

statistical goodness.

Table 3.1 Comparison of Pseudo-Random Number Generators

Algorithm
“True” “Zufall”

Set 1 Set 2 Set 1 Set 2

Mean -0.052 -0.044 -0.0037 0.011

Variance 0.9S8 0.887 1.004 1.000

Skewness -0.055 -0.076 0.020 -0.013

Kurtosis -0.18 -0.29 -0.016 -0.036

CPU time (seconds) 3.6152 2.9242

3.4 Concluding Remarks

This chapter is concerned with generating random numbers for the purpose o f Monte 

Carlo simulation. Algorithms for generating random numbers are reviewed. The pseudo 

nature o f  the random numbers is discussed, so is the process to make them true. The 

statistical goodness o f two particular random number generators, “Zufall” and “True”, is 

examined. “Zufall” is chosen for its good quality and computational efficiency.
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Chapter 4

LYAPUNOV EXPONENTS AND INFORMATION DIMENSIONS 
OF SINGLE-AXLE WHEELSETS WITH RANDOMNESS

4.1 A Brief Introduction of the Theory of Chaos

Contrary to popular accounts, chaotic motion has nothing to do with whether the motion of 

a physical system is frenzied or wild in appearance. In fact, a chaotic system can actually 

evolve in a way that it appears smooth and ordered. So, what is chaos? At the core, chaos 

has to do with if  it is possible to make accurate long-term predictions o f the behaviour o f 

the system.

Since the inception o f chaos theory in the early 1960’s, finding a definition o f chaotic 

motion that was acceptable to all practitioners in the area had not been easy. For a few 

decades it was felt that it was easier to list the characteristics o f chaotic motion than to 

define it. However, since the 1990’s, the following definition by Devancy [4.1] has been 

seen to be most acceptable, by mathematicians at least:

Let A  be a metric space. A continuous map f:  X —>X is said to be 
chaotic on X  if
(1) / i s  topologically transitive.
Transitive: for all non-empty open subsets U  and V ofX , there exists 
a natural number k  such that f \U ) C \  V is non-empty.
(2) The periodic points o f/  are dense in X.
The point x in X is  a periodic point o f period n if  f n(x) — x. The least 
positive n for w hich/"(x) = x is called the prime period o f x.
If for any two points a and b in X, a ^  b, a < b, and there exists a 
periodic pointp  that a < p < b ,  then the periodic points o f/ are dense 
in X
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(3) / has sensitive dependence on initial conditions.
If  there is a positive real number S (a sensitivity constant) such that 
for every point x in X  and every neighbourhood N  o f x there exists a 
pointy in N  and a non-negative integer n such that the nth iterates/'(x) 
a n d /’ey) o f x and y  respectively, are more than distance d apart.

This definition tells us that the three characteristics o f chaotic motion are:

(a) It is topologically transitive.

Topological transitivity means that the system will evolve over time in a way that any 

given region or open set o f its phase space will eventually overlap with any other given 

region. Or in a lay person’s language, a starting state, if  observed for long enough time, 

will eventually pass through any little piece o f the state space.

(b) Its periodic orbits are dense

Periodic motion refers to that which repeats itself again and again. Dense periodic orbit 

means, loosely speaking, that an orbit in phase space exists next to any other orbits in the 

same phase space, or a periodic orbit may be found everywhere in the accessible phase 

space. Dense orbits or chaotic motions are found around a strange attractor, which is a set 

toward which a dynamical system evolves after a long enough period of time, or a set with 

fractal structures, geometrically speaking (Figure 4.1). A strange attractor can be 

identified if  the trajectories in the phase space appear to skip around randomly so that 

there are gaps or holes in the phase space (Figure 4.1).

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) (b)
Figure 4.1 Strange attractors (a) Lorenz strange attractor;

(b) Rossler strange attractor

(c) It is sensitive to initial conditions

Sensitivity to initial conditions, also known as the “Butterfly effect”, means that a slight 

quantitative difference in starting state can lead to major qualitative differences in long 

term behaviour (Figure 4.2).

o 6600

Figure 4.2 Sensitivity to initial conditions

There are a number o f ways to quantify and to identify chaos. They are, for example, 

time history, phase portraits, return maps or recurrence plots, Poincare maps, power 

spectrum, Lyapunov exponents, and fractal dimensions, to name just a few. It is important
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to note that, on its own, none o f the measures is sufficient to ascertain the presence of 

chaos.

One o f the effective indicators o f chaotic behaviour in a system is believed to be its set 

o f Lyapunov exponents. The exponents measure the average rate o f  convergence (if 

negative exponent) or divergence (if positive exponent) o f nearby trajectories in the phase 

space. A positive Lyapunov exponent indicates exponential divergence o f trajectories in 

that particular direction, and the system has sensitive dependence on initial conditions, a 

defining signature o f chaotic behaviour. In this chapter, the single-axle wheelset models 

previously presented in Chapter 2 will be investigated by the means o f time history, phase 

portrait, Lyapunov exponents and Lyapunov dimension. The time history and phase 

portrait are used to examine the models for similarities and differences. The focus, 

however, is to employ Lyapunov exponents and Lyapunov dimension to study the effect 

o f  randomness on the dynamic behaviour o f the single-axle wheelset.

4.2 Lyapunov Exponents and Information Dimensions

4.2.1 Determination of Lyapunov Exponents

The determination o f Lyapunov exponents and spectrum follows that by W olf et al. [4.2], 

Consider two trajectories starting close to one another in the phase space. They will move 

exponentially away from or toward each other for small times on average. Let d0 be a 

measure o f the initial distance between the two starting points, at a small but later time, the 

distance will be
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d(t) =  d02xt (4.1)

where the constant X is called the Lyapunov exponent.

Similarly, areas, spheres and super-spheres o f the phase space may stretch or contract 

under the dynamic process. Accordingly, there are respective Lyapunov exponents to 

measure the extent to which the principal axes o f the initially small areas, spheres or 

super-spheres are stretched or contracted. The Lyapunov spectrum is then defined as the 

set o f  Lyapunov exponents {/I,} ( i =  1, 2, • • •, n and X1 > X2 > ■ ■ ■ > \ ). As stated 

earlier, a positive Lyapunov exponent is an indictor o f  the system having sensitive 

dependence on initial conditions. The Lyapunov spectrum tells how nearby points move 

together or away from each other along different axes. The sum o f all the exponents says if  

the phase space as a whole will expand (if positive sum) or contract (if negative sum) or is 

invariant (if zero sum).

For an autonomous dynamic system, its equations o f  motion of the system can be 

written as:

Y  =  f (Y ,c )  (4.2)

where / is a vector o f n functions and c a vector o f  parameters. The solution to Eq. (4.2), 

Y*(t, c) ,  is termed the reference trajectory and can he sought by methods such as the 4th 

order Runge-Kutta (RK4) method.

As the next step, one considers variations from the reference trajectory. If  rj is the 

variation vector, Y* + rj is a point near Y *. Substituting Y* + rj into Eq. (4.2) yields
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j t (Y* + v )  = f(Y*  + n ,c )

^  + V = f (Y*  + v,c)  (43 )

f(Y*,c) + ri = f ( Y * + r i , c )  

fi = f ( Y * +7),c ) - f ( Y ' , c )

Taking the Taylor expansion o f f (Y* + 77, c) and keeping only the first-order term gives,

77 =  A(Y*,c)rj (4 .4 )

where A — V /  is the Jacobian matrix of f ,  that is:

dfi
A? d Y j (4.5)

y=y*

Eq. (4.4) can also be solved by RK4 and the solution is called the second trajectory or 

tangent space.

Measuring the z-th variation 77, at different time instants tQ, tx, t2, tM (M 

being a large integer), the z-th Lyapunov exponent X can be determined by:

A , = r ^ r r E l o g 21̂ | ± ^  (4.6)
IViV’K)]

where \rji(t)\ denotes the norm o f rjt( t ) . The definition of by Eq. (4.6) is known as the 

evolution o f Af since Xt is function o f time. When tM is large enough, X&) converges to 

certain values and become steady. Such steady values are needed for the accurate 

evaluation o f the Lyapunov exponents.

4.2.2 Determination of Lyapunov Spectrum

To find the Lyapunov spectrum, a set o f n orthonormal variation vectors t], ( i  =  1, 2,

• • •, n  ) is set up to span over the entire phase space. The evolutionary process o f the A,-’s is
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then observed, i.e., at each time step, RK4 is employed to numerically integrate Y*(t, c) 

from Eq. (4.2) as well as the n 7/,’s from Eq. (4.4), then the n A,’s as defined by Eq. (4.6) are 

calculated. As time goes on, each r;, will eventually fall into the principal axes o f  the 

super-sphere and the 2,’s become steady.

Attention is especially paid to the two following aspects:

(1) Since the rjfs grow exponentially with time, to avoid overflow in the computation, 

they are normalized to unity at the beginning of each time step; and

(2) Due to the fact that A  — V /  and gradients are the local directions o f the most rapid 

growth, the 7/,’s will become indistinguishable during the course o f evolution. Therefore 

the Gram-Schmidt renormalization procedure (see Reference [4.2]) is adopted to ensure 

that the //,’ s will always span over the entire phase space.

The Lyapunov exponent is a quantitative measure o f sensitivity o f a dynamic system 

to change in initial conditions, or a quantitative measure o f loss o f information during its 

motion. As informational loss is associated with strange attractors, another quantitative 

measure, information dimension, is commonly utilized. The information dimension 

measures the extent to which orbits o f  the dynamical process fill a certain subspace. A 

non-integer dimension is a hallmark o f a strange attractor and implies the existence of 

chaos [4.3],

4.2.3 Determination of Lyapunov and Information Dimensions

When a dynamic system possesses a strange attractor, regions o f the phase space are

stretched, contracted, folded and remapped onto the original space, which can be
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mathematically described by the Smale horseshoe transformation (Figure 4.3). This 

remapping leaves gaps in the phase space. This means that orbits tend to fill up a subspace 

whose dimension is less than an integer. Information dimension, like other fractal 

dimensions, measures the extent to which orbits fill a certain subspace.

There are a few useful definitions o f a fractal dimension [4.3]. These include, the 

capacity dimension (commonly known as the box counting dimension), the Hausdorff 

dimension which is an improved version o f the capacity dimension, the information 

dimension and the correlation dimension. It can be proved that information dimension is in 

fact the weighted capacity dimension since each box size is weighted with the frequency 

with which the trajectory visits the box. It is believed that information dimension is one o f 

the most direct measures o f an attractor [4.1, 4.3].

Kaplan and Yorke proposed a dimension that is based on the Lyapunov exponents. 

This dimension, DL, termed the Lyapunov dimension, is determined by the following 

equation [4.4]:

^  = •7 + P ^ i r Ai (4'7)
J J + i

where J  is the largest integer that satisfies ^  A* >  0 and ^  \  <  0 . As can be seen in
i=1 i=l

Figure 4.4, Zfr is an estimate o f the dimension o f the phase space that neither grows nor 

decays. Kaplan and Yorke conjectured that Di  might be equal to the information 

dimension D}. In what follows, Eq. (4.7) will be used to determine the wheelsets’ 

information dimension.
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Figure 4.3 (Top) The Smale horseshoe map; 
(Bottom) Horseshoe transformation of phase space

E t—«v,

Figure 4.4 Lyapunov dimension as determined by Eq. (4.7)

In passing, a direct quote from [4.3] may be warranted: “While both quantitative tests 

can be automated using computer control, experience and judgment are still required to
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provide a conclusive assessment as to whether the motion is chaotic or strange attractor. 

Finally, almost all physical examples o f strange attractors have been found to be chaotic, 

that is non-integer d  implies X > 0. However, a few mathematical models have been 

studied where one does not imply the other.” Here “both quantitative tests” refer to the 

Lyapunov exponents and fractal dimensions; d  refers to a fractal dimension, and X to a 

Lyapunov exponent. In other words, for the investigation o f chaotic behavior in a dynamic 

system, it is only prudent to not rely on one single measure to identify chaos.

4.3 Incorporating Randomness into Chaotic Motion

The publications on random chaotic motion are very limited in the open literature. The 

several publications found were intensely mathematical [4.5-4.10], even though the 

systems investigated were rather simple, such as the logistic map used in [4.7]. The 

random chaotic map proposed by [4.5] was composed o f maps o f trigonometric and 

elliptic types, and the invariant measure was the eigenfunction o f the Perron-Frobenius 

operator. Reference [4.6], with particular attention to short noisy systems, discussed the 

statistical analysis o f a dynamical system based on estimating the leading (i.e., the largest) 

Lyapunov exponent. Reference [4.7] found that “dynamic noise can dramatically change 

the dynamics o f low-dimensional chaotic systems”. Here dynamic noise refers to noise 

that “acts as a driving term in the equations o f motion”. The authors o f [4.7] found that the 

statistical tests for chaos proposed by Shintani and Linton [4.8, 4.9] and by Whang and 

Linton [4.10] may fail to characterize chaos by producing negative Lyapunov exponents.
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The present investigation chooses to incorporate the randomness numerically. The 

approach is expanded from that o f [4.11]. The approach is a combination o f  Monte Carlo 

simulation (see Chapter 3) and determination o f Lyapunov exponents (see Section 4.2). 

Specifically, 256 random series are generated. Each series consists o f 25,600 normally 

distributed random numbers. These random numbers are then added to the parameters that 

are considered random. Next, the Lyapunov exponents o f  the wheelset are determined. 

Once the exponents of all 256 realizations are computed, ensemble averages o f the 

Lyapunov exponents are computed. Finally, the information dimension is evaluated based 

on the ensemble averages o f the exponents.

4.4 Preliminary Results and Discussions

In this section, the wheelset models and combinations previously discussed in Chapter 2 

are to be investigated, with the aim o f comparing the models and combinations for further 

examination. The means used for the preliminary investigation are: time history, phase 

portrait, Lyapunov exponents and information dimension.

4.4.1 Combination 1

This combination is comprised o f Models III, Ilia, and Illb. The parametric values are 

listed in Table 2.5. This combination aims to examine the effects o f employing different 

theories o f creep forces and moments.
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(a) Deterministic Time History and Phase Portrait

The RK4 method is used to numerically integrate Eqs. (2.29), (2.30) and (2.31). Initial 

condition is set to y(0) =  8, y{0) =  i/(0) =  i//(0) =  0 , where 3 is the dead band. Time 

step size is At = 0.001 s, and forward speed (traveling speed) is v = 15 m/s. The total steps 

are 150,000, covering a 150-second time interval. The plots o f lateral displacement versus 

time are given in Figures 4.5 through 4.7 for Models III, Ilia and Illb, respectively, where 

only typical snapshots o f time history between / = 140 s and t = 150 s are shown.

Time History of Lateral Displacement
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Figure 4.5 Lateral response of wheelset at v = 15 m/s, Model III
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Time History of Lateral Displacement
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Figure 4.6 Lateral response of wheelset at v = 15 m/s, Model Ilia  
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Figure 4.7 Lateral response of wheelset at v = 15 m/s, Model I llb

Figures 4.5 through 4.7 show that the periods o f the models are almost identical, being 

approximately 1.25 seconds. The difference between Models Ilia and Illb is indiscernible. 

The difference between Model III and the other two models lies in the small oscillations 

near the maximum and minimum displacements. The effect o f these small oscillations can

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



be seen more clearly by comparing the respective phase portraits, see Figures 4.8 through 

4.10, where the small oscillations are seen as the small inner loops in Figure 4.8. It seems 

that Model III is able to capture better the details o f the dynamic behaviour.

Phase Portrait
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Figure 4.8 Phase portrait of lateral displacement at v = 15 m/s, Model III
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Phase Portrait
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Figure 4.9 Phase portrait of lateral displacement at v = 15 m/s, Model I lia
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Figure 4.10 Phase portrait of lateral displacement at v = 15 m/s, Model I llb
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(b) Lyapunov Exponents and Information Dimensions

In the computation o f the Lyapunov exponents and information dimensions, RK4 is again 

used to numerically integrate the response 7(4) and variations The forward velocity 

v varies between 10 m/s and 20 m/s with an increment o f 0.1 m/s. Initial condition is kept 

the same as that for time history. Spectral intensity So is set to several values between 0 

and 100. Note that the variance o f a random series is related to the spectral intensity o f the 

series by o2 = 2%So- Therefore, S0 = 0 is indicative o f a deterministic case.

The range o f forward speed is so chosen because the critical speed (the speed at 

which hunting occurs) can be found by the following formula [4.12] for conically shaped 

wheels,

2 To®  ̂Wĵ Xcl -F 2kxa2 -P 2A:2di ^
A ( i ^ + m a 2 )

The critical speed for Models III, Ilia and Illb is determined to be vc -  11.008 m/s, 

using the data from Table 2.5. This value is rather close to that predicted by [4.13] which 

found that the first super-critical H opf bifurcation would take place at 10.16 m/s. 

Reference [4.13] also found that the wheelset would experience, within the speed range of 

10 m/s to 20 m/s, a variety o f complex dynamical behaviours such as flange hitting rails, 

chaos explosions and reverse period doubling, in addition to super-critical Hopf 

bifurcation.

The numerical integration is performed over a total o f 15000 steps with a time step 

size o f  0.001 s, or to cover 15 seconds in the time domain. The large integer M  in Eq. (4.6)
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is set to 7500. The (temporal) average o f these 7500 values o f A,- is then considered the A,- 

o f a sample, or a realization. Finally, the ensemble averages o f A, over 256 samples are 

used to determine the information dimension by means o f  Eq. (4.7). It is observed that 

each computer run requires about 8 hours of computing time. On the other hand, a 

deterministic case requires only about 25 seconds o f computing time.

Due to space limitation, only the mean (or averaged) values o f representative leading 

Lyapunov exponents and the corresponding information dimensions are presented, as 

plots, in this section and the remainder o f the thesis. It should be pointed out that the mean 

square and variance values are also examined and are found to be within reasonable range. 

Appendix B contains the plots o f root mean squares and variances o f a typical case with 

randomness o f So = 1 in forward speed and incorporated into Model III. Sample results o f 

the four computed Lyapunov exponents and information dimensions are presented in 

Appendix C.

Figures 4.11, 4.13 and 4.14 illustrate how information dimensions for Models III, Ilia 

and Illb vary with respect to the averaged forward speed when the forward speed is 

assumed random with spectral intensity o f 0.0025, 0.01, 1, 25 and 100, respectively. The 

leading Lyapunov exponent, X\, o f  Model III with the same randomness levels in forward 

speed is shown in Figure 4.12. In all four plots, the information dimensions and leading 

Lyapunov exponent for the deterministic case have been included for comparison.

The figures show that,
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(1) Model III is the only model for which the information dimensions o f the wheelset do 

not exceed the value o f 4, the dimension o f  the phase space. With reference to Figure 4.12, 

it can be seen that the motion o f the wheelset is very similar when So = 0, 0.0025 and 0.01, 

with the exception that, in the deterministic cases, there are two small windows (around v 

= 18 m/s) o f non-chaotic motion. For the case o f So = 1, two windows o f non-chaotic 

motion are also observed, one being at 12 m/s, the other being 12.4 -  13.5 m/s. On the 

other hand, the information dimensions shown in Figure 4.11 are, for So < 1, either 0 or 

close to 2. For higher randomness, chaotic motion is seen over the entire speed range, as 

indicated by the non-integral information dimensions in Figure 4.11 and the large positive 

leading Lyapunov exponents in Figure 4.12. In the present investigation, the spectral 

intensity is restricted to values o f up to 100 only. Reference [4.14] has shown that the 

values o f the model’s information dimensions are still within 4 even when So is as high as 

10,000.

(2) As indicated in Figures 4.13 and 4.14, when randomness is small (So < 1), Models Ilia 

and Illb predict information dimensions with values between 0 and 2. However, with 

increased spectral intensity, the two models give rise to information dimensions that are in 

the tens, and that do not seem to show any general trend. Different computer runs have 

confirmed the high information dimension values, and the lack o f a general trend;

(3) Models Ilia and Illb do not yield the same information dimensions, regardless o f  the 

values o f the spectral intensity S0. Therefore, indiscernible time histories do not lead to 

same or close information dimensions;
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Figure 4.11 Information dimensions with randomness in speed, Model III
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Figure 4.12 Leading Lyapunov exponents with randomness in speed, Model III
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Figure 4.13 Information dimensions with randomness in speed, Model I lia

Information Dimension
Model lll(b)

14 -

12 -
Q
c  10 -o
'55

S 8-E 8
Q
c

12 14 16 18 2010
Forward Speed v (m/s)
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(4) Considering small randomness (S0 < 1), the information dimension plots o f Models 

Ilia and Illb do not resemble that o f Model III;

(5) Recalling that Model III employs the nonlinear Vermeulen and Johnson theory to 

evaluate creep forces, it may be concluded that linearization of creep forces may be

inappropriate. Figure 4.15 compares the two creep force theories, where the normalized

GTTa,ebe . .. . GirciJ)* ,. . G ttclJ)-
creepages are ---- —  (longitudinal),  —  (lateral) and -----—

jxN fj,N fj,N

(resultant), respectively, and the normalized creep forces are ^ x/ j \ r , ^ Y/ j \ f  and , 

respectively. The comparison uses data in Table 2.5. Significant differences are observed, 

affirming that linearizing the creep forces may not be desirable.
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Figure 4.15 Normalized creep forces
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4.4.2 Combination 2

Combination 2 consists o f Models II and Ila. The parametric values are given in Table 2.6. 

This combination is devised to investigate the effects due to gravitational stiffnesses and 

the gyroscopic couple. The critical hunting speed is found to be vc = 36.020 m/s, using Eq. 

(4.8) which is rewritten in terms o f symbols used for Models II and Ila,

2 r0a ( WA\a  +  2kya2 +  2k^b2 )
A ( l w z + m a 2 ) 4̂

(a) Deterministic Time History

Time histories are computed using RK4, for a forward velocity o f v = 35 m/s. Initial 

conditions arey(0) =  6, y(0) =  i/j(0) =  ?/>(0) =  0 where S is the dead band. Time step 

size is 0.001 second. The two responses shown in Figure 4.16 illustrate the lateral 

displacement y(t) for a 150-second period o f time.

It is seen that the models’ lateral displacement with v = 35 m/s are rather similar. One 

visible difference is the time taken for the oscillation to be damped to technical zero. 

Model Ila needs about 80 seconds while Model II takes approximately 50 seconds. The 

other difference seems to be the envelope formed by oscillating amplitudes. Model II has 

an envelope that “slims” down faster and encloses a smaller “area”.
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Figure 4.16 Lateral responses of wheelset at v = 35 m/s 
(Left) Model I I ; (Right) Model Ila

(b) Lyapunov Exponents and Information Dimensions

For the Lyapunov exponents and information dimensions, the forward velocity v is varied 

between 30 m/s and 40 m/s, and the spectral intensity So between 0 and 1 for both models. 

Other settings are the same as for Combination 1. Values o f So greater than unity are found 

to cause numerical overflow. The reason for this is not yet completely clear. But the 

following may be stipulated. As will be seen later in Section 4.4.3 where Model lib  will be 

used in Combination 3, no numerical overflow is encountered. Since Model lib differs 

from Model II in the modeling o f creep forces and moments, and in the parametric values 

o f the model data, one may conclude, from the modeling perspective, that linear creep 

forces and moments are not suitable for cases with S0 values greater than unity. This in fact 

is one o f the findings o f Section 4.4.1. From the point o f view o f parametric values for the 

model, it is noted that Model lib is computed based on, mainly, data for Model III.

Although this may lead to the conclusion that model data are also the cause o f numerical
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overflow, it is more likely that it is modeling (linear vs. nonlinear creep forces and 

moments) that plays a more dominating role.

Information dimension plots are shown in Figure 4.17 for So = 0, 0.0025, 0.01 and 1, 

respectively. It is seen that,

(1) For Model II, the information dimension changes from being close to 2 to being 0 at 

approximately 38.6 m/s. This remains unchanged for the other three So values computed; 

and

(2) Model Ila, on the other hand, obtains zero information dimension at lower speed (v < 

36.8 m/s approximately). At higher speed and with the introduction o f randomness in 

speed, the information dimension drops to values between 1 and 0.

The Lyapunov exponents and information dimensions computation is repeated for the

speed range o f 10 m/s to 20 m/s. The resulting plots are given in Figures 4.18 through 4.21

for leading Lyapunov exponents and Figures 4.22 through 4.25 for information

dimensions, respectively. Here it is very interesting to observe that the leading Lyapunov

exponent and information dimension both “oscillate” . The wheelset seems to go into

chaotic motion then come out o f  it, and so on and so forth, over a rather wide range of

speed (v > 14 m/s for So = 0, 0.0025 and 0.01; and v > 13-14 m/s for So =1). The plots o f

the leading Lyapunov exponents (Figures 4.18 through 4.21) suggest that the two models

possess acceptable difference, especially when So < 1. However, the difference in

information dimensions is more considerable. This difference in information dimensions

is partly attributed to the fact that a small negative gives rise to a zero information
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dimension; however a small positive A\ leads to generally a non-integer information

dimension.

Information Dimension
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Figure 4.17 Information dimensions with randomness in speed, v = 30 to 40 m/s

Therefore, the effects of gravitational stiffnesses and gyroscopic couple are in general 

not to be disregarded. Model II, which includes the gravitational stiffnesses and 

gyroscopic couple, employs the Kalker’s linear theory for its creep forces and moments. 

From the discussions in Section 4.4.1, it would be ideal to have the creep forces 

formulated by the Vermeulen and Johnson’s nonlinear theory.
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Figure 4.19 Leading Lyapunov exponents, randomness in speed, S o  = 0.
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Figure 4.21 Leading Lyapunov exponents, randomness in speed, So = 1
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4.4.3 Combination 3

The results from Combinations 1 and 2 can be chiefly and briefly summarized as follows: 

First o f all, using Kalker’s linear theory to determine creep forces and moments is not 

recommended, especially for cases where So > 1.0; Second, the gravitational stiffnesses 

and gyroscopic couple are in general not to be omitted. Therefore, it is suggested to 

construct a model that employs the Vermeulen and Johnson’s nonlinear creep theory and 

that includes the gravitational stiffnesses and the gyroscopic term. Mathematically, this is 

straight forward, as has been shown in Chapter 2. Numerically, the challenge lies in what 

set o f  data to use and how to determine ‘missing’ data. Attempt was first made, without 

much success, to start with data for Model II, and then determine constants such as ae, be, 

¥  and 0  that are needed for creep forces. Another option would be to use existing data 

from Model III, and assume a value for Iwy. In the end, the second option is adopted. Due 

to the lack o f wheelset data, it is decided to estimate the value o f Iw  by proportionality 

with I wz. Obviously, it would be ideal if  an estimated value o f Iwy can be avoided.

As with Combinations 1 and 2, time histories are computed using RK4, with initial

conditions ofy(0) =  6, y{0) =  t/>(0) =  ^(0) =  0 , time step size o f 0.001 s for a total o f

150,000 steps, and a forward velocity at v = 15 m/s. Figures 4.26 and 4.27 show the

responses o f lateral displacement for the time interval o f 140 s to 150 s. Note that Figure

4.27 is a repeat o f  Figure 4.5. It is interesting to note that Model lib which adopts the

nonlinear theory o f creep is not associated with the small oscillations. From results o f

Section 4.4.1, Model lib would be expected to experience those small oscillations. Further
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investigation reveals that, when the nonlinear theory o f creep is used, the small 

oscillations are due to the exclusion of gyroscopic effect, see Figure 4.28 where the spin 

moment o f the wheelset has been neglected by setting Iw  ~  0.

The Lyapunov exponents and information dimensions are shown in Figure 4.29 for 

the cases o f So = 25 and 100, and in Figures 4.30 through 4.33 for cases o f So = 0, 0.0025, 

0.01 and 1, respectively. It is noted that, with higher spectral intensity, Models lib and III 

do not show much difference, including or excluding the gyroscopic effect (Figure 4.29). 

This is understandable since higher level o f randomness will very likely push the wheelset 

to the chaotic motion regime from the non-chaotic one. As a result, difference in modeling 

(this is, whether to include gravitational stiffnesses and gyroscopic couple) is masked. 

Differences, sometimes not negligible, are however observed when small to moderate 

amount o f randomness is present (Figures 4.30-4.33). In particular, when setting I wy = 0, 

the information dimension from Models lib  and III are closer or more similar to each other, 

compared with the case o f Iwy ± 0. Note that setting WA and Iwy to zero in Model lib will 

yield Model III.
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4.5 Further Discussions

In this section, Models lib and III are further investigated for the following cases:

(1) Deterministic forward speed and dead band;

(2) Random forward speed but deterministic dead band;

(3) Random dead band but deterministic forward speed; and

(4) Randomness in both forward speed and dead band.

Here forward speed and dead band are chosen to be associated with randomness because 

under any practical operating conditions, a wheelset will travel with varying speed. The 

lateral clearance is seldom constant due to uneven wear in wheel flanges and in rails. It 

should be noted that for case (4) above, the randomness in forward speed and in dead band 

are considered independent. For simplicity, the same spectral intensity will be applied to 

both random series.

Computed information dimensions are given in Figures 4.34 through 4.36. The speed 

range is 10 to 15 m/s with an increment o f  0.1 m/s. The following remarks are in order.

(1) W ith the presence o f large randomness (S0 > 100) in forward speed, information 

dimensions have rather limited variation, compared with the cases o f low to moderate 

randomness in speed. This is true for both models;

(2) When dead band, or dead band together with forward speed, is associated with any 

amount o f  randomness (So^  0), information dimensions are almost constant, regardless o f 

forward speed. Again this is true for both models;
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(3) Both models show that randomness in dead band dominates. This means, making sure 

dead band is as even as possible is more effective in controlling the wheelset’s behavior 

than attempting to travel with constant, or almost constant, forward speed;

(4) The presence o f small randomness (So < 0.01) in forward speed seems not to change 

the nature o f the wheelset’s motion. That is, the motion does not switch from non-chaotic 

to chaotic, or vice versa. In fact, the information dimensions are basically indiscernible 

between the two models when So — 0, 0.0025 and 0.01; and

(5) The case o f So = 1 with forward speed is the most interesting to examine. The 

wheelset’s dynamic behavior is seen altered over certain speed range. In particular, 

chaotic motion may be suppressed. As shown in Figure 4.34, the information dimension of 

Model lib when So = 1 is zero for some speeds between 10-11 m/s and between 14-15 m/s. 

Similarly, for Model III, such speeds are 11.8-13.5 m/s.

4.6 Conclusions

Discussions in Section 4.4 show that Model lib is a model that takes into considerations 

essential aspects o f mathematical modeling o f a single-axle wheelset, namely, creep 

forces are nonlinear as by the Vermeulen and Johnson theory, and gravitational stiffnesses 

and gyroscopic effect are included. Computationally speaking, the model does not lead to 

problems such as overflow and information dimensions greater than the dimension o f the 

phase space. From the point o f  view o f modeling, Model III is the second best choice. It 

employs the Vermeulen and Johnson theory so that creep forces are not linearized. It is
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computationally reliable in that it will not cause numerical overflow and will not yield 

information dimensions that are beyond the dimension o f the phase space. It has the 

advantage o f being simple (that is, it contains less parameters). Therefore it is applicable 

to cases where parametric values for Iwy and WA are not available and where S0 is high (So 

>1).

Other conclusions are,

(1) Linearization o f creep forces and moments should be exercised very cautiously. This 

is especially true when dealing with higher level o f randomness (S0 > 1).

(2) When randomness is small to moderate (So < 1), the effects o f gravitational stiffnesses 

and gyroscopic couple need to be included.

(3) Small randomness (So < 1) in forward speed seems not to alter dynamic behaviour o f 

the wheelset. That is, the motion does not change from non-chaotic to chaotic, or vice 

versa.

(4) Randomness in dead band dominates over randomness in forward speed. Reducing 

the unevenness in dead band is more effective in controlling the wheelset’s behavior than 

attempting to travel with constant, or almost constant, forward speed.

(5) Large randomness (So> 100) in forward speed, or dead band, or both, seems to keep 

the information dimensions constant over the range o f velocity considered. It also seems to 

universally push the wheelset’s response into the chaotic realm.
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Chapter 5

CONTROL OF SINGLE-AXLE WHEELSETS 
INCORPORATING RANDOMNESS

5.1 Control Strategies of Dynamical Systems with Chaos

In direct contrast to the control o f dynamical systems, there is no obvious way to define 

the “control o f chaos”. This is because, to a large extent, chaos is a rich and global 

dynamic behaviour, and its “stabilization” can have vastly differing interpretations. For 

example, some authors [5.1-5.2] employed a small amplitude control law in a restricted 

region o f the state space, thereby stabilizing a pre-existing equilibrium or periodic orbit. 

Since the control vanishes in most o f the state space, closed-loop system trajectories 

follow erratic paths for some time, until they enter part o f the neighborhood in which the 

control is effective, after which they are attracted to the equilibrium or periodic orbit o f 

interest. Other authors applied non-local linear or nonlinear feedback to stabilize nominal 

equilibrium points [5.3-5.4]. The control systems approach used in [5.5-5.7] may prove to 

be useful in the control o f chaos. Chaos and bifurcation control can be achieved by 

nonlinear controllers or by control strategies. In this thesis, two control strategies are used: 

semi-active control and active control [5.8],

These control strategies are aimed at the nonlinear dynamics o f  the wheelset. It is 

realized that higher values o f the primary longitudinal stiffness &2 yield higher critical 

velocities, see Eqs. (4.8) and (4.9). However, high values o f kj, are largely undesirable,
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since they make the wheelset suspension very rigid. Any disturbance to the wheels will 

result in a forcing function in the equations of motion, thereby facilitating the transfer o f 

the wheelset oscillations to the car body, leading to a poorer ride quality. As an alternative 

to using sustained high values o f fa throughout the ride, the semi-active and active control 

approaches are attempted.

5.1.1 Semi-Active Control

The semi-active approach assumes a nominal value of fa for a portion o f the simulation 

time. On a need basis, this value is made to increase for limited portions o f the oscillatory 

cycle. In this approach, fa is considered a function o f the yaw displacement o f the wheelset. 

Two levels o f fa will be used, one below a certain yaw angle threshold and the other 

beyond that threshold. In the present study, below the threshold, the stiffness fa is taken at 

the moderate value o f 180 N/m which is also the value used in Chapter 4. As the speed of 

the vehicle is increased, so is the yaw displacement. Once the yaw threshold is reached, 

the value o f fa is increased to 1.2387><105 N/m. It should be noted that this increased fa 

value is chosen to achieve a critical hunting speed o f 25.23 m/s.

Therefore the semi-active longitudinal suspension control condition can be written as

follows (see also Figure 5.1)

180 (N /m ) \lp\ < l/jthreshold

1 .2 3 8 7 x l0 5 (N /m ) \ip\ > threshold 

where \ip\ is the absolute value o f the wheelset’s yaw displacement, and ipthreshoid the 

threshold value on yaw displacement.
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-3

Figure 5.1 Semi-active primary longitudinal suspension control 
(Top) yaw threshold = 0.003 rad; (Bottom) yaw threshold = 0.0015 rad

The resulting critical velocity has a low and a high value, depending on the value of 

the yaw threshold chosen. If  the threshold is low, the high value o f k2 will be in effect for a 

longer duration, so a higher critical velocity is obtained. I f  the threshold is high, the high 

value o f k2 is in effect for a short duration, resulting in a low critical velocity. In the
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present study, three different values are tested, 0.0015, 0.003 and 0.006 rad. The last value 

is found too large for the semi-active control to take effect. In the remainder of the thesis, 

the yaw displacement threshold will be 0.0015 rad or 0.003 rad.

The drawback of semi-active control is the abrupt change o f kx value at the threshold 

value o f yaw displacement. This in turn leads to abrupt change in displacements (see 

Figure 5.4). One way to eliminate this abruptness is to implement an active control.

5.1.2 Active Control

This strategy considers the primary longitudinal stiffness a linear function o f the absolute 

value o f the yaw displacement (Figure 5.2). That is, the longitudinal suspension control 

condition can be written as:

k2 ~  2.0x 10717/51 +180 (N/m) (5.2)

The relative effectiveness o f the two strategies will be compared in the next section, 

x 104
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z
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<0to0>
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T5
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o_i

2 3 4 5 60 1
Yaw Displacement (rad) x 1 0  3

Figure 5.2 Active primary longitudinal suspension control
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5.2 Phase Portraits and Information Dimensions

In this section, the first part o f numerical study involving the semi-active and active 

control strategies is presented. Model III is chosen to be the model to be investigated. The 

first part o f the numerical study focuses on phase portraits and information dimensions. 

The second part is comprised of bifurcation diagrams, which is to be presented in Section

5.2.1 Phase Portraits of Yaw Displacement

The computation o f phase portraits is performed using the same setting as in Section 4.4. 

The plots o f yaw displacement versus yaw velocity are given in Figures 5.3 through 5.5 

for no control, semi-active control and active control, respectively.

5.3.

Phase Portrait
0.02
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0.01

t? 0.005

>
- 0.01

-0.015

- 0.02
-5 -4 -3 - 2 - 1  0 1

Yaw Displacement fratl)
2 3 4 5

x 10'3

Figure 5.3 Phase portrait of yaw displacement at v = 15 m/s, no control
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Figure 5.4 Phase portrait of yaw displacement at v = 15 m/s, semi-active control 
(Top) threshold = 0.0015 rad; (Bottom) threshold = 0.003 rad
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Figure 5.4 shows that the yaw phase portrait has sharp “corners” at or near the value o f 

yaw threshold. These sharp comers are indicative o f abrupt changes in displacements due 

to the abrupt changes in stiffness £2. Comparing the phase portraits in Figure 5.4, one can 

see that yaw displacements are indeed limited by the respective threshold values. In 

addition, a lower threshold value gives rise to a smaller range of yaw velocity, hence a 

lower value for the extreme yaw velocity.

Phase Portrait
0.015

0.01

0.005

&u 00 
■»>
1£  -0.005

- 0.01

-0.015

Yaw Displacement (rad) ■3
x 10

Figure 5.5 Phase portrait o f yaw displacement at v -  15 m/s, active control

The phase portrait o f active control in Figure 5.5 shows smooth egg-shaped loops. In 

terms o f  limits o f  yaw displacement and yaw velocity, the active control falls between 

semi-active control with a threshold o f 0.0015 rad and semi-active control with a threshold 

o f 0.003 rad. However, unlike the critical speed o f the semi-active control which has a low 

and a high value, the critical speed o f the active control is continuous (see Figure 5.6).
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Figure 5.6 Critical speed versus time 
(Top) semi-active, threshold 0.0015 rad; (Bottom) active control

5.2.2 Information Dimensions

Information dimensions are calculated with the forward velocity v varying between 10 m/s
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and 20 m/s by an increment o f 0.1 m/s. Spectral intensity So is set to 0, 0.0025, 0.01, 0.25, 

and 1, respectively. Other settings remain the same as in Chapter 4. For brevity, only the 

0.0015-rad threshold is considered for semi-active control.

Figures 5.7 through 5.9 illustrate how information dimensions vary with respect to the 

averaged forward speed, when randomness is considered to be associated with the forward 

speed, the dead band, and both the forward speed and dead band. Figures 5.7 through 5.9 

show that,

(1) Compared with the no control case, the application o f control strategies alters the 

information dimension plots substantially.

(2) Semi-active and active controls do not give rise to the same or close information 

dimensions, regardless o f  the spectral intensity So. For example, when the randomness is 

with forward speed, the information dimensions are above 2 for the semi-active control 

case (with the exception o f when v = 10 -  11 m/s and So = 1). However, information 

dimensions vary between 0 and slightly above 1 when active control is employed.

(3) Considering the case o f randomness in forward speed, the motion o f the wheelset is 

chaotic when semi-active control is implemented, for all speed and spectral intensity 

considered. On the other hand, with active control and low forward speed (v < 14.5 m/s), 

the motion o f the wheelset is non-chaotic for all spectral intensities considered.
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(4) When randomness is associated with the dead band, or with both speed and dead band, 

the wheelset will experience chaotic motion, regardless of whether and what control 

strategy is applied. The information dimensions are seen either varying over a small range, 

or being almost constant.

5.3 Bifurcation Diagrams

Before computed bifurcation diagrams are presented, a brief introduction to bifurcation 

and bifurcation diagram is in order.
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5.3.1 Bifurcation

As the parameters o f a dynamic system are changed, the stability o f the equilibrium points 

will also change as well as the number o f equilibrium points. How the changes in system 

parameters affect the stability o f the equilibrium points are the subject o f bifurcation 

theory. Values o f these parameters that correspond to changes in the qualitative or 

topological nature o f motion are known as the critical or bifurcation values. A bifurcation 

occurs when a small smooth change made to the parameter values causes a sudden 

qualitative or topological change in the system’s long-term dynamical behavior. 

Bifurcations can be divided into two principal classes: local bifurcations and global 

bifurcations. The former refers to changes in the local stability properties o f equilibria, 

periodic orbits or other invariant sets as parameters cross through critical thresholds. The 

latter often occurs when larger invariant sets o f the system ‘collide’ with each other, or 

with the equilibria o f the system. In the remainder o f the section, focus will be placed on 

local bifurcations.

A local bifurcation occurs when a parameter change causes the stability o f  an 

equilibrium to change. For continuous dynamical systems, this corresponds to the real part 

o f an eigenvalue o f an equilibrium passing through zero. There are six types o f  local 

bifurcation. They will be seen after the introduction of bifurcation diagrams.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.2 Bifurcation Diagram

Bifurcation diagram provides a useful means to show how a system’s behaviour changes

according to the value o f a control parameter. It is widely used for examining the

pre-chaotic or post-chaotic changes in a dynamical system under parameter variations.

One o f the easiest ways to visualize the change in the

dynamics o f a system is to introduce a Poincare section

27 and plot a point every time the trajectory crosses the

section as the control parameter changes. Poincare

section 27 is in fact a sub-domain of the phase space

(Figure 5.10). For example, if  the phase space is four

dimensional with the following states y, y, ip, ip , the

hyper-plane satisfying y — 0 is then a Poincare 
Figure 5.10 Poincare section

section.

5.3.3 Local Bifurcations and Bifurcation Diagrams

The six types o f local bifurcation and the corresponding bifurcation diagrams are as 

follows. It should be mentioned that only descriptive classification is presented here, 

instead o f  the more rigorous eigen-analysis based classification.

(a) Saddle-node bifurcation. This occurs when two fixed points o f a dynamical system 

collide and annihilate each other, see Figure 5.11a.
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(b) Trans-critical bifurcation. A trans-critical bifurcation refers to the stability o f two 

equilibrium points being exchanged when the points collide. For example, before the 

bifurcation, there is one unstable and one stable fixed point. After bifurcation, the unstable 

fixed point becomes stable and vice versa (Figure 5.11b).

(c) Pitchfork bifurcation. Pitchfork bifurcation is a symmetric bifurcation. If a fixed 

point bifurcates into three points, with two being stable and one unstable, the bifurcation is 

called a super-critical pitchfork bifurcation (Figure 5.11c); A sub-critical pitchfork 

bifurcation, on the other hand, will have a unstable fixed point bifurcate into one stable 

and two unstable fixed points (Figure 5.1 Id).

(d) Period-doubling bifurcation. The system switches to a new behaviour with twice the 

period o f the original system before the bifurcation (see the right half o f Figure 5. lie ) . A 

series o f period-halving bifurcations leads the system from order to chaos.

(e) Period-halving bifurcation. The system switches to a new behavior with half the 

period before bifurcation. A series o f period-halving bifurcations leads the system from 

chaos to order (see the left half o f Figure 5. lie ).

(f) H opf bifurcation. It refers to, either a fixed point losing stability and bifurcating into a 

stable limit cycle (the super-critical Hopf bifurcation), or a unstable limit cycle shrinking 

into a fixed point (the sub-critical Hopf bifurcation), see Figure 5. Ilf .
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Figure 5.11a Saddle-node bifurcation Figure 5.11b Trans-critical bifurcation

Figure 5.11c Super-critical Pitchfork Figure 5.11d Sub-critical Pitchfork 
bifurcation bifurcation

Figure 5.11e (Left) period-halving bifurcation; (Right) period-doubling bifurcation

Figure 5.11f Hopf bifurcation diagram (Left) super-critical; (Right) sub-critical
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5.3.4 Computed Railroad Wheelset Bifurcation Diagrams

The computation o f the railroad wheelset bifurcation diagrams covers forward velocities 

between 1 and 50 m/s by an increment o f 0.025 m/s, with the forward speed being the 

chosen bifurcation parameter. Randomness is considered to be associated with forward 

speed. Spectral intensity So is set to values o f 0, 0.01 and 1 only. The computing time is 

about 3.5 hours each (the deterministic cases require 4 to 5 minutes each). Other settings 

are kept the same as in information dimension computation,

a. Selecting a Poincare section:

Four different ways o f selecting a Poincare section are examined. They are, y — 0 , y  =  0, 

ip = 0 and ip =  0 . Bifurcation diagrams are then constructed by plotting yaw 

displacement versus forward speed for Poincare section y — 0 , and lateral displacement 

versus speed for the other three sections. The plots are shown in Figure 5.12. It is seen that 

the choice o fy  =  Ogives the richest bifurcation information. For example, it is the only 

Poincare section that shows period-three oscillation when v = 13-33 m/s. The overall 

construct o f this diagram is also seen in relevant references ([5.9-5.11], for example). 

Therefore, the Poincare section y =  Owill be the default choice in the remainder o f the 

section.
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Figure 5.12 Bifurcation diagrams (  y l  =  y ,  y 2 =  y ,  y3 =  i p , y A =  w )

b. Bifurcation diagrams

They are seen in Figures 5.13 through 5.15 for the deterministic cases, Figure 5.16 though 

5.18 for the case o f So = 0.01, and Figure 5.19 through 5.21 for So -  1. The diagrams for 

cases with randomness in forward speed (Figures 5.16 through 5.21) cover averaged speed 

from 10 m/s to 50 m/s only, though computations are performed over the speed range of 

1-50 m/s. Bifurcation diagrams that contain the entire computed speed range are presented 

in Appendix D. From Appendix D it can be seen that large lateral displacements exist in 

the range o fv  = l-1 0 m /s, usually very clustered and without any apparent trend. Upon
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further investigation, it is realized that the large clustered lateral displacements are 

non-physical. Such displacements can be circumvented by using smaller time step size or 

by increasing the time duration during which response is considered transient. From the 

practical perspective, wheelsets travel usually faster than 10 m/s or 36 km/h. Therefore it 

is reasonable and logical that the focus o f the study be on the range o f v = 10-50 m/s. The 

following remarks are in order.

(1) Figure 5.13 shows the bifurcation scenario for varying speed from 1 to 50 m/s without 

any randomness in speed and any control. It reveals the transition from stability to chaos. 

It is seen that a super-critical Hopf bifurcation occurs around v = 10 m/s and the lateral 

displacement is equal to the dead band (y = 0.0091 m). A period tripling takes place shortly 

after v = 10 m/s. A chaotic attractor develops and explodes around v = 33 m/s into a few 

bands. This behavior exists up to v = 50 m/s. It is evident that increasing speed leads to 

chaos in the system.

(2) In Figure 5.14 it is shown that, with the implementation o f semi-active control, the 

super-critical H opf bifurcation still occurs around v = 10 m/s but the lateral displacement 

is much less, at only 0.004 m. There is a bridging curve between v = 10 m/s and v = 31 m/s. 

The former speed is associated with super-critical Hopf bifurcation, while the latter is 

when the lateral displacement y  reaches 0.0091 m, the dead band. Then the lateral 

displacement increases slowly with further increase in speed. However, there is no 

evidence o f chaos.
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(3) For the case o f active control (Figure 5.15), again there is no evidence o f the wheelset 

experiencing chaos. Compared with the semi-active cases, active control seems to give 

rise to no apparent bifurcation. Between v = 10 and 20 m/s there is a continuous increase in 

lateral displacement. Lateral displacement is nearly constant after v =20 m/s.

(4) Applying the semi-active and active control strategies has a profound impact on the 

wheelset’s behavior. It is observed from Figures 5.14 and 5.15 that the bifurcation scenario 

is changed and the chaotic regime disappears. Therefore the chaotic oscillations can be 

suppressed with increasing yaw stiffness.

Bifurcation Diagram
0.012

£  ■ 0.008 -

0,006 -

0.010  -

0.002  -

I
0.000

0 10 20 30 40 50 /  60

F o r w a r d  S p eed  v (111/s )

Figure 5.13 Bifurcation diagram, no control, S o  =  0
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Figure 5.14 Bifurcation diagram, semi-active control, S o  =  0
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Figure 5.15 Bifurcation diagram, active control, S o  =  0
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Figure 5.16 Bifurcation diagram, no control, S o  = 0.01

Bifurcation Diagram
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Figure 5.17 Bifurcation diagram, semi-active control, S o  -  0.01
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0.012

Bifurca tion  D iag ram
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Forward Speed v (m/s)

Figure 5.18 Bifurcation diagram, active control, S o  = 0.01

(5) Figures 5.16 through 5.18 show the dynamic behaviours o f railway wheelsets when 

spectral intensity is 0.01. Figure 5.16 illustrates that randomness gives rise to a blurry 

bifurcation diagram. Chaos is observed for v > 33 m/s. However, period tripling is broken 

into two halves, with chaos occurring at speeds in the mid-20s range. For the cases o f 

semi-active and active control shown in Figures 5.17 and 5.18, respectively, there is no 

evidence o f chaos. Instead, stable periodic solutions with different amplitudes seem to 

develop, which suggests that the control strategies can suppress the occurrence o f chaos 

even when randomness is present. An interesting observation is that there is a “dip” to zero 

lateral displacement for both cases. The speed at which the dip occurs is the speed at 

which lateral displacement reaches the dead band in the deterministic case (that is, 33 m/s
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in Figure 5.14, or 20 m/s in Figure 5.15). Since both speeds represent transition from one 

path to another, the “dip” may suggest sensitivity to small variation in speed around the 

transition point. The “dip” may also suggest a possibility o f  developing chaos when larger 

randomness is present. It should be pointed out that Reference [5.12] reported a similar 

blurring effect in its investigation o f the Henon map.

(6 ) In the case o f  moderate-to-large randomness, Figure 5.19 shows a bifurcation diagram 

that is further blurred, suggesting chaos may develop over a wider speed range. 

Bifurcation diagrams for semi-active and active control are shown in Figures 5.20 and 

5.21, respectively. The lateral displacements for these cases are much smaller compared 

with their respective counterparts for So -  0 and 0.01 shown in Figures 5.14, 5.15, 5.17 and 

5.18. In all cases there seems to be no chaos. Stable periodic solutions are still present, in 

particular at higher speed values.

5.4 Conclusions

In this chapter, two control strategies are discussed that involve the semi-active and active 

control o f  the primary longitudinal stiffness. The main results may be summarized as 

follows:

(1) The critical hunting velocity o f the wheelset can be increased by using semi-active or 

active control strategy. The semi-active strategy gives rise to an abrupt yaw profile at the 

threshold value. However, this abruptness can be eliminated by using the active control 

strategy;
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Figure 5.19 Bifurcation diagram, no control, S o  - 1
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Figure 5.20 Bifurcation diagram, semi-active control, S o  =  1
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Figure 5.21 Bifurcation diagram, active control, S o  — 1

(2) In the case o f randomness in speed, the plots o f information dimensions for no control, 

semi-active control, and active control are different for all spectral intensity considered; 

However, with randomness in dead band, or both speed and dead band, the information 

dimensions plots look almost identical except for the deterministic case;

(3) Active control strategy seems to be more effective than the semi-active counterpart 

when forward speed is low (v < 14.5 m/s) and when randomness is present only in forward 

speed. If  randomness is associated with dead band, or with both speed and dead band, 

neither control strategy seems to be able to suppress the occurrence o f chaos;

(4) For the deterministic case, increasing speed v can lead to chaos in the system. The two 

control strategies are effective in suppressing chaos, regardless o f the speed. Since
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implementing the control strategies means increasing the yaw stiffness, the present study 

also shows that increasing yaw stiffness can suppress chaotic oscillations in the 

single-axle wheelset;

(5) With the absence o f any control strategy, randomness has a blurring effect on the 

bifurcation diagrams. However, once a control strategy is implemented, the blurring effect 

is not apparent; instead stable periodic solutions are developed, especially in the higher 

speed range.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE WORK

This chapter presents a summary o f major conclusions reached during the course o f the 

study documented here, followed by some recommendations for future work.

6.1 Summary of Major Conclusions

Major conclusions are summarized as follows, on a chapter basis.

Chapter 2:

Three models, their expansions and combinations are presented.

(1) The three original models are Models I, II and III. Model II expands on Model I. The 

main difference between Models II and III is that Model III does not include gravitational 

stiffnesses and gyroscopic couple, but applies the nonlinear creepage-creep force theory.

(2) Expanded models are Models Ila, lib, Ilia and Illb. Model Ha is obtained from Model 

II by removing the gravitational stiffnesses and gyroscopic couple. Model lib is Model II 

with its linear creep forces and moments replaced by the nonlinear creep forces. Model 

Ilia is derived from Model III by linearizing the creep forces. Model Illb is obtained by 

adding the effect due to spin creep to Model Ilia.

(3) These models are studied in three different combinations to determine how different 

effects affect the motion. The first combination is comprised o f  Models III, Ilia, and Illb, 

where the effects due to the different ways o f modeling creep forces and moments are
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studied. The second combination consists o f Models II and Ila. These models are used to 

examine the effect o f gravitational stiffnesses and gyroscopic couple. The third 

combination consists of Models lib and III and investigates the effect o f the nonlinear 

creep forces and moments in conjunction with gravitational stiffnesses and gyroscopic 

moment. All o f them are numerically studied in Chapter 4.

Chapter 4:

In this Chapter the wheelset models and combinations are investigated, with the aim o f 

comparing the models and combinations for further examination. The means used for this 

preliminary investigation are: time history, phase portraits, Lyapunov exponents and 

information dimension. Based on these investigations the following conclusions may be 

given:

(1) Kalker’s linear theory o f creep forces and moments are not recommended. This is 

especially true when dealing with higher level o f randomness (So > 1).

(2) The effects o f gravitational stiffnesses and gyroscopic couple are in general not 

negligible.

(3) From the point o f view o f modeling, Model lib is the best model. It employs the 

Vermeulen and Johnson’s nonlinear creep theory and includes the gravitational stiffnesses 

and gyroscopic couple. Model III is also a good choice, in particular when lacking 

wheelset data such as l^y.
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(4) The presence o f small randomness (So < 1) in forward speed seems not to alter the 

wheelset’s dynamic behaviour. Namely, the motion does not change from non-chaotic to 

chaotic, or vice versa.

(5) Randomness in dead band dominates over randomness in forward speed. This means, 

reducing the unevenness in dead band is more effective in controlling the wheelset’s 

behaviour than attempting to travel with constant, or almost constant, forward speed.

(6 ) Large randomness (Sq> 100) in forward speed, or dead band, or both forward speed 

and dead band, seems not to change the value o f information dimensions over the range o f 

velocity considered. It also seems to universally push the wheelset’s response into the 

chaotic realm.

Chapter 5:

In direct contrast to the control o f dynamical systems there is no obvious way to define the 

“control o f chaos”. Chaos and bifurcation control can be achieved by nonlinear controllers 

or by control strategies. In this study two control strategies are employed: semi-active 

control and active control. These control strategies are aimed at the nonlinear dynamics o f 

the wheelset. Model III is chosen to be the model to be investigated in two parts. The first 

part o f  the numerical investigation focuses on phase portraits and information dimensions. 

The second part is comprised o f bifurcation diagrams of the wheelset. The main results 

may be summarized as follows:

(1) Semi-active and active control strategies increase the critical hunting velocity o f the

wheelset. The semi-active strategy gives rise to an abrupt yaw profile at the threshold
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value. Such abrupt changes in displacements are due to the abrupt changes in stiffness &2, 

but can be eliminated by using the active control strategy. In addition, a lower threshold 

value gives rise to a smaller range o f yaw velocity, hence a lower value for the extreme 

yaw velocity.

(2) Compared with the no control case, the application o f control strategies alters the 

information dimension plots substantially. But the two control strategies do not give rise 

to the same or close information dimensions, regardless o f the spectral intensity So in 

speed. However, with randomness in dead band, or both speed and dead band, the 

information dimensions plots look almost identical except for the deterministic case.

(3) Active control strategy seems to be more effective than the semi-active counterpart 

when forward speed is low (v < 14.5 m/s) and when randomness is present only in forward 

speed. I f  randomness is associated with dead band, or with both speed and dead band, the 

wheelset will experience chaotic motion, regardless o f whether and what control strategy 

is applied.

(4) For the deterministic case, increasing the speed v can lead to chaos o f the system. The 

two control strategies are effective in suppressing chaos, regardless o f the speed. It is 

shown that the chaotic oscillations can be suppressed with increasing yaw stiffness, 

because implementing the control strategies means increasing the yaw stiffness.

(5) Randomness has blurring effect on the bifurcation diagrams for the no control case.

However, once a control strategy is carried out, the blurring effect is not apparent; instead

stable periodic solutions are developed, especially in the higher speed range.
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(6 ) Although the control strategies can suppress the occurrence o f chaos even with the 

presence o f randomness, there remains a tendency o f developing chaos when larger 

randomness is present.

Finally, two remarks may be in order. First, it should be pointed out that, to the 

author’s best knowledge, no data for comparison is available in the literature. Second, a 

number o f Fortran codes have been developed, during the course o f the study presented in 

this thesis, to perform all the computations presented here, with the exception of zufall.f 

which is incorporated into the developed codes.

6.2 Recommendations for Future Work

A few recommendations for future work are,

(1) to seek more methods such as power spectrum, return maps and Poincare maps to 

investigate the chaotic existence in railway wheelsets.

(2  ) to extend the research to two-axle wheelsets, and subsequently to the assembly o f 

wheelsets and trucks, and the assembly o f  wheelsets, trucks and car body.

(3) to investigate the alternative o f  using time series analysis to save computing time or to 

conduct analysis in finer detail.

(4) to devise a control strategy that is effective in both the low and high speed ranges.
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Appendix A

WHEEL- AXLE SET EQUATIONS OF MOTION

In this appendix, the equations o f motion of a single-axle wheelset are given. The 

derivation of the equations follows closely that o f [2.3]. The derivation and resulting 

equations are presented here chiefly for two reasons, the first being completeness in 

presenting materials, and the second being that certain equations are needed to expand one 

o f the models introduced in Chapter 2.

A .l Kinematics

Equilibrium Axes

Right Rail Boclv Axes

Left Rail
Track Center Line

Figure A .l Axes systems

Three sets of Cartesian coordinate systems are shown in Figure A .l. The coordinate 

system x " \ y " \ z has its origin at the track center line and moves at a constant forward 

velocity v with respect to a fixed inertial reference frame. The coordinate system 

x " , y " , z "is an intermediate frame that is rotated by an angle y/ about th e C a x is .  The
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axesx \ y \ z 'm ake up the wheelset body coordinate system, which has its origin at the 

center o f  mass. The coordinate system x y z ' is also referred to as the body axes because 

the axes are attached to, and translate and rotate with the wheelset body. The coordinate 

system x  '",y m, z " ' , on the other hand, is called the equilibrium axes in which Newton’s 

laws o f motion can apply.

In addition, two coordinate systems are attached to the left and right instantaneous 

wheel-rail contact points, (el i ,e2i ,e 3 i ) and {eiR,e%R,e$R ) , see Figure A.2. These 

coordinate systems are used to represent the directions o f the wheel-rail contact forces.

The transformation equations between the coordinate axes are

i' 1 0  0

j' . = 0 cos (j> sin <p

k' 0 — sin (j> cos (p

i" cos ip sin ip 0

j" = — sin -ip cos ip 0

k" 0 0 1

r

k"

iw

r
k ff/

i' cos ip sin ip 0

j' - = — cos (p sin V7 cos (p cos ip sin <p f

k' sin (p sin ip — sin <p cos ip cos (p V

For small roll (p and pitch y/, Eq. (A.3) becomes

J

k'

1 ip 0

- i p  I  <p

0  -<f> 1

i"'

r
k w/

(A .l)

(A.2)

(A.3)

(A.4)
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where i 1, j ', k 1, i ", j ", k " and i , j , k re p re se n t the unit vectors that correspond to the

three coordinate systems.

Left

2 L

2R

Figure A.2 Contact plane axes

In Figure A.2, SR and SL refer to the right and left contact angles, and rR and rR are the right 

and left rolling radii. The transformation equations between the contact-point axes and the 

wheelset body axes are

e lR 1 0 0

e 2R ■ — 0 cos 6 ji - s i n  <5̂

e 3R 0 sin SR c o s ^

e lL 1 0 0

e 2L ■ — 0 cos 6 i sin5^

e 3L 0 — sin 8l cos 8 i

J

k;

J

k'

(A.5)

(A. 6 )

A.2 Degrees of Freedom and Constraints

The wheelset has in total six degrees o f freedom. A description o f the degrees o f freedom 

is given in Table A. 1 below, where Q. = v/ro and r# is the nominal wheelset rolling radius.
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Table A.l Description of Variables

Variable Description

X longitudinal displacement o f the wheelset mass center

y lateral displacement o f the wheelset mass center

z vertical displacement o f the wheelset mass center

9 roll displacement about the a;" axis

¥ yaw displacement about the z "  axis

P angular displacement from a nominal value of D about they 'ax is

It is assumed that there is no wheel lift and that the wheels are always in contact with

the rails. With these assumptions, the vertical and roll displacement o f the wheelset are

related to its lateral and yaw displacement. The dependence o f vertical and roll motions on

the yaw motion is o f second order* and is generally omitted. Therefore, vertical and roll

displacements are considered functions o f lateral displacement only. Consequently, two

constraint equations are needed. They and their time derivatives are expressed as follows.

2  =  z ( y )

i  — z ' y  (A.7)

z  =  2r" y 2 +  z ' y

and

0  =  <f>(y)

<j> = 4>'y (A. 8 )

4> = 4>"y2  +  4>'y

*
N.K. Cooperrider and E.H. Law, Data Book — Wheel/Rail Geometry for Five Wheel Profiles and Three 

Rail Profiles, Report ERC-RT5015, Arizona State University, Tempe, Arizona,1975.

where a over-dot and double over-dot represent differentiation with respect to time and a
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prime and double prime denote differentiation with respect to y.

A.3 General Equations of Motion

The general wheelset equations o f motion are derived in terms o f the equilibrium 

axes x " ' , y z . The angular velocity vector w of the wheelset is

w -  0i” +  (Q + 0 )jr +  0k" (A.9)

From Eq. (A .l), w is expressed in body axes as

w =  0i' +  (Q 4 - 0  +  0  sin <fi)/  +  0  cos fik'
•  /  i  •  f  ■ i  /

—  l j x i  T  av j +  tu.k
(A. 10)

where

=  (p

ujy — il + (3 + ip sin (j>

U)z =  0 COS(f)

The angular momentum o f the wheelset in body axes is

H  I wxtUx\ -f- I yjy ̂ 7/J T  k (A .ll)

where Iwx, Iwy, and Iwz are the principal mass moments o f inertia o f the wheelset. Note that 

Iwx = Iwz because o f symmetry.

The angular velocity o f the body axes is

waxis =  &■' +  0 k "  =  <fii; +  0sm<fi¥ +  0cos(j)k' (A. 12)

The time-rate o f change o f angular momentum can be written as

d R / d t  =  I wxd>x\ +  I wyu yj '  +  I wzu zk '  +  x H (A .l3)

where “x” indicates cross product. Substituting Eqs. (A .ll)  and (A. 12) into (A. 13) yields

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m / d t  =  ( iwJ  -  i wyn ip )r  +  i wy/3f  +  ( iwyn<j> +  i wxip)\t" ( a .  14)

The equations o f motion are written in the equilibrium axes, from Newton's law, as

mr =  ^ F ,  dH./dt =  ' ^ J M (A .l5)

where m is the mass o f the wheelset and r  the position vector o f the mass center o f the

wheelset. To express the moment vectors M, the position vectors o f the right and left

contact points are needed. In terms of the body axes, they are

R t  =  (a -  A £ )j ' -  rLk ’
(A. 16)

R r  =  ~{a +  ~  rn k r

where AL and AR denote the lateral displacements o f  the left and right contact points from 

their respective equilibrium positions (see Figure A.3). a is one-half the track gauge, and 

rL and rR are the rolling radii. The components o f the position vectors, in terms o f the

equilibrium axes, are, using Eq. (A.4):

RLx =  —{a — A l ) cos (j> sin ijj — rL sin 0  sin ip

R-Ly — (a ~  A L) cos cp cos ip +  rL sin (P cos ip (A.17)

R-Lz = (a — A ^ )s in <p — rL cos<p

and

Rrx = (a +  A ji) cos (p sin ip — rR sin (p sin ip

RRy — —(a +  A  R) cos (p cos ip +  rR sin<pcosip (A.18)

Rrz =  - ( a  +  A i?)sin  <p -  rR cos (p

The summations o f the forces and moments due to the axle load, creep, normal, and 

suspension forces shown in Figure A.3 are
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Left

Figure A.3 Free-body diagram of a wheelset

Jff

(A. 19)
£ F  =  Ft +  Fr +  N l +  N r +  Fs +  WAk  

£ M  =  R r x (Fr + N r ) +  R l x (F l+ N l ) +  M l +  Mr +  M;

A description of forces and moments appearing in Eq. (A.l 9) can be seen in Table A.2.

Table A.2 Definition of Forces

Forces variables Definition

F l , F r creep forces at left and right contact points, respectively

M l , M r creep moments at left and right contact points, respectively

F s suspension forces

M s suspension moments

WA axle load

N l , N r normal forces at left and right contact points, respectively

The components o f Eq. (A. 19) yield equations that govern the six degrees o f freedom 

(see Table A .l) o f  the wheelset.

a) Longitudinal equation o f motion

m x  =  FLx + FRx +  N Lx + N Rx + Fsx (A.20)
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b) Lateral equation o f motion

m y  =  FLy +  FRy +  N Ly +  N Ry +  Fsy (A.21)

c) Vertical equation o f motion

m 'z =  FLz + Fr . +  N Lz +  N Rz +  Fsz — W 4  (A.22)

d) Roll equation o f motion

■̂wx 0  Iwy (v /  rQ)ip +  RRy{FRz +  NRz) — RRz{FRy +  NRy) 

F-RiyiFiz +  N lz) ~  RlAFlv +  N Ly) + M Lx + M Rx +  M s.

e) Spin equation o f motion

Iwyfi — RRzFRx — RRx{FRz +  NRz) +  RLzFLx 

~~Rlx{Flz +  N  Lz) + M Ly +  M Ry 4- M sy

f) Yaw equation o f  motion

Iivx^ -fwy (V /  4) T  RRx(.FRy “F Ajj y') — RRyFRx

+ R lx(Flv + N Ly) — R i yFLx +  M Lz + M Rz +  M 3Z

(A.23)

(A.24)

(A.25)

A.4 Normal Forces

The normal forces at the left and right contact points can be expressed in terms o f  their

components in the equilibrium axes as follows 

N l  =  N L e 3 l  =  N l { -  s i n ^ y  +  c o s ^ k ')
(A.26)

=  N L[sin(5L +  <p) sin i]A'" — sin(6L +  <p) cos ip}"' +  cos(SL +  0 )kw]

N r  =  N R[-s \n ( 8 R -  (j>)s in ijj'1'" +  sin(8 R -  <j>)cosipjm +  cos(SR -  <f>)k w] (A.27)

The magnitudes o f normal forces can be obtained from Eqs. (A.22) and (A.23), the

vertical and roll equations, as

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N ,c _ fh\ _ _ _______ lRLy +  RLz tan(SL +  <f>)cosi>}Fz* -  M%________
R COS R RLy -  RRy +  [ R L z tan(<5£ +  <p) +  RRz t a n (5* -  0)]cosi/>

N  (* , =  +  ifaz ta n fo  -  (/>)cos^]F; +  m ;
£ COS 1 R Ly -  R r v +  [ R l z  tan (SL +(/>) + R r z tan (5R -  0 )]cos ip

where

F: = mz + WA -  FRz -  FLs -  Fsz (A.30)

M# — I wx(f> — I wyCl,tjj +  RRzFRy — RRyFRz +  RlzFlv — RLyFLz 

~ M Lx — M Rx — M sx
(A.31)

Assuming small contact angles SL and dR and neglecting the inertia forces due to the 

vertical and roll motions (they are small compared to the axle load and lateral creep 

forces), Eqs. (A.28) and (A.29) are simplified to

N L cos(6 L H- 4>) — - W A — - F sz — — (:rRFRy + rLFLy)

N r c o s ( 6 r  -4>) = \ w a -  \ f„  + rs Fm  + rLl % )
(A.32)

A.5 Creep Forces and Moments

The creep forces, in general, are defined with respect to the contact planes. However, after 

coordinate transformations, creep forces and moments are expressed in the equilibrium 

axes as follows.

Flx =  F[x c o s -  F[y cos (SL +  <f>) sin ip 

Fjjy =  F[x sin w + F[y cos (SL +  </>) cos ip 

FLz = F[y sin(<5£ +  0)
(A.33)

M Lx — M'Lz s in (6 l  +  0) sin ip 

M Ly =  - M ’Lz sm ( 6 L +  0) cos ip 

M Lz =  M'Lz c o s ( 6 l  +  0)
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and

Frx -  Frx cosip -  FRy cos (SR -  (p) sin ip

Frv =  FRx sin ip +  FRy cos(6r  -  <p) cos ip

Frz =  - F rv sm (SR -  <p)

M Rx =  -M 'Rz sin(SR -  (p) sin ip 

M Ry = M Rz s in ( ^  -  (p) cos ip

M Rz =  M Rz cos{6r -  (p)

(A.34)

In Eqs. (A.33) and (A.34), quantities that are primed are in terms o f the contact plane axes 

(Figure A.2). These creep forces and moments are functions of the creepages. Each wheel 

experiences longitudinal, lateral and spin creepages, which are defined as the relative 

linear and angular motions between the wheel and rail. The longitudinal £ ', lateral £' and 

spin Psp creepages are defined as

= (wheel longitudinal velocity -  rail longitudinal velocity) at contact point / nominal velocity 

£y — (lateral velocity of wheel- lateral velocity of rail) at contact point / nominal velocity 

= (angular velocity of wheel- angular velocity of rail) at contact point / nominal velocity

Now let R'l and R'r be the position vectors o f the left and right contact points in the 

equilibrium axes. They are

(A.35)

and
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(A.36)

(A.38)

R r  =  +  y f  +  2k w -  (a +  A * ) j ' -  rRk '

= [x +  (a +  A fl)cos0 s in '0  — rR sin 0  sin V;]i///

+[y — (a 4 - A r ) cos (p cos ip +  rR sin <p cos ip]j w 

+[z — (a +  ) sin <f> — rR cos <p]k w

Applying the definitions o f creeps leads

€xL =  [R l • eiL -  v(rL /  r0) cos ip]/ v

& = ( » £ • « * » ) / «  (A.37)

€ pL =  ( w - e 3L) / u

Applying Eqs. (A.6 ), (A. 12) and (A.35) and neglecting higher-order terms results in

£xL =  ( 1  /  v) {v[L -  (rL /  rQ)} -  ip[(a -  A L) cos (p cos ip}) cos ip 

iyL — (1 /  f)[y c o s^  +  rL(p cos (p cos2  ip — v  sin ip] cos(SL +  (p)

+ (1 / v)[z +  (p{a — A i )cos^>]sin(5£ 4 - <p) 

i'spL =  (1 /  [V> c o s ( 5 l  +  0 ) -  sin <5X]

Similarly, one has

&R =  [R r • em  -  v(rR /  r0)cos ̂ ] /  v

& = ( R R - e i R ) / ®  (A.39)

CspR =  (w ■ e3R) / v

and

£*r =  ( l/v ){ u [ l -  (Tr /  ro)] +  ^[(a +  A fl) cos (p cos ip\ j- COS 1p 

£yR — (1 /  v ) [ y  cos V’ +  rR (f) cos ̂  cos2 "tp v  sin  co s(^R ~  </>)

- ( l / v ) [ i  -  <p{a +  A ij)cos</>]sin(6R -  (p)

i'spL =  (1 /  u) [A cos(^ft -  0 ) +  Q sin 8 r  ]

Small roll (p and yaw t// angles reduce Eqs. (A.38) and (A.40) to

(A.40)
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& L  =  (1 /^ H 1 -  ( rL / ro)] -  < # }

iyL =  (1 / v ) [ y  +  rL<j> -  VTp}cos(8L +  <f>) 

C PL =  ( l / v ) [ i > c o s ( 6 L +  <j>)~ O s i n 5 L]

(A.41)

and

& r  =  (1/ v){v[l -  (rR / r 0)} +  a ip }  

tyR  = (1 /v){y +  rR <j> -  v ip ]c o s (6 R -  <p) 

t'spR =  (1 /  v ) b p  cos(8 r  ~ ( j> )  + C l  sin SR ]

Further assuming small contact angles Sl and dR reduces the creepages to

£ k  =  ( ! / «){v[l -  (rL / r0)] -  atp}

ZyL =  (1 f v ) [ y  +  rL4> -  vrl>]

&pL =  0 - / v)bP -

and

& R  =  (1 / v ){  v[l -  (rR /  r0)] +  a ip }

CyR = (l/«)[y + rR4>-wl>\ 

i'spR — 0 - /  v ) b P  +  ClSR ]

Employing Kalker's linear creep theory, the creep forces and moment are

K  =  - M x  

f ;  =  - / i 4  -  M l p

m [ =  m ;  -  / 22e ;

w here/1i , / 1 2 , /22and /33are the creep coefficients which are defined as:

fn  =  (ab)GC22 , fi2 = (abf2GC23

fi2 =  (ab)2GC33, / 33 =  (ab)GCn

In Eq. (A.46),

a = semiaxis o f the contact ellipse in the rolling direction
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(A.44)

(A.45)
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b = semiaxis o f the contact ellipse in the lateral direction 

G = modulus o f rigidity

Cj — creepage and spin coefficients which depend only on Poisson’s ratio u and the ratio 

o f the semiaxes o f  the contact ellipse, alb.

The substitution o f creepages o f Eqs. (A.43) and (A.44) into Eq. (A.45) yields the 

following expressions for creep forces and moments:

H x  =  - l / k  / v ) { v [ l  -  (rL / To)] — a ^ }

F[y =  - ( / n  /  v)[y +  rL<f) -  m/j] -  ( /12 /  v)[ij) -  ttSL} (A.47)

M'lz =  (/1 2  /v )[y  + rL^  -  wp\ -  (/22 / v ) [ i p -  Q6 l ]

Frx =  - ( / 33 /  v) { #  -  (rR /  r0)] +  }

=  —(Ai /  v)[y +  rR<j> -  -  (/12 /  v ) ( A . 4 8 )

=  ( /1 2  /v )[y  +  -  (/22 / t / ) [^  +

Next, components o f creep forces and moments in the equilibrium axes are obtained by 

substituting Eq. (A. 47) into (A.33):

Fix  =  - ( / 33 f v ) {  A 1 -  (rL / r 0) ] ~  a A }C O S  

+C/11 /  v)[y +  +  (/)) sin

+ (/i2 /  v )[^  -  Q6l ]cos(<57j +  0 ) sin V’

^  = -Ob /  v) { v[l -  fa /  ’0)] -  fa } sin A
. (A.49)

- ( / n  / v)[y + rL<fi ~  vA]cos(6 L +  <j>)cos A

- ( / 1 2  /  v ) [ ^  -  f 25L ] c o s ( 5£  +  < ^ ) c o s ^  

i f a *  =  (/1 2  /v )[y  + rL(p -  vA]cos(6 L +  <f>)

- C /2 2  “  f i ^ ] c o s ( 5£  +  <t>)

and Eq. (A.48) into (A.34):
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(A.50)

Frx -  ~ ( h  h ) {  v[l -  (rR / r0)] + aip}co s ip 

+ ( /n  / v ) [ y  +  rR<i> -  VTp]cos(6 R -  (p) sin ip 

+C/12 /^ )[0  + nSR]cos(5R -  0) sin ip 

F rv =  —(>33 / v){ t/[l -  {rR /  r0)} +  aip } sin ip 

~{fn h ) [ y  +  rR<]> -  vip]cos(6 R -  0 )c o s0  

- ( / 1 2  I  v)[ip +  fi5B]cos(5fi -  (p) cos ip 

M Rz =  (/12 /« )[£  +  rR<j> -  vip\cos(8 R -  0)

-(/22 /w )[^  +  fWH]cOs(<SA -  0)

A .6  Lateral and Yaw Equations of Motion

By substituting Niy and N Ry, from Eqs. (A.26) and (A.27), into Eqs. (A.22) and (A.25), the 

lateral and yaw equations o f motion for the wheelset become

m y = FLy +  FRy +  Fsy +  N R s in ( ^  -< f> ) -N L sin (SL +  0) (A.51)

and

I vjx0  I ‘wy /  0̂ )0 T  (FRxFRy FRy FRx ) -f- (RRxFiy RlyFlx )

+ R RxN r sin(SR — 0) — RLxN i  sin(Si +  0) 4- M Lz +  M Rz + M s
(A.52)

where the normal forces N r and NL are given by Eqs. (A.28) and (A.29) or in their 

simplified form by Eq. (A.32).

A . l  Lateral and Yaw Gravitational Stiffnesses

The lateral gravitational stiffness is defined as

Fg =  - N r s in (SR -  0) +  N I  s i n ^  +  0)
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It is termed lateral gravitational stiffness due to the fact that, when the terms 

- N r sin (fa -  0) and N L sin(fa +  0) are moved to the left side o f Eq. (A.51), they 

contribute a restoring force because o f gravity.

The lateral gravitational stiffness can be obtained by substituting Eq. (A.28) and 

Eq.(A.29) for NL and N R. However, the expression can be considerably simplified. 

Assuming small yaw and roll angles in Eqs. (A.28), (A.29) and (A.31), one obtains 

Fg = F *A L(y) + (Fz* /  a) A c(y) + (M^ j  a )A ^(y)

where

F~: =  m z +  WA -  Fsz -  [Fly sin(fa +  0) -  f a ,  sin (6R -  0)]

=  I wx<j ~  I  t o y ~  0 f a f a *  +  rL F ix )

- \ rRF Ry cos(Sr  -  0) +  rLF ly cos(SL +  0)]

+F[m Lz sin (SL + 4> )- M'Rz sin (SR -  <f>)] -  M sx

_  tan  ((!)£ +  0) -  ta n  (fa -  0)

Ac(y) -

2 -  a l \rL tan(SL + 0) + rR tan(SR -  0)]

fa ~ fR)tan(SL + 0)tan(fa -  0)
2 -  a -1 fa tan (fa + 0) + rR tan(fa -  0)]

tan (fa + 0) + tan (fa — 0)
2 -  a -1 fa tan (fa +  0) +  rR tan(fa -  0)]

At equilibrium, Fsz = Msx = 0. Furthermore, assuming equilibrium about the roll axis gives 

rise to M j = 0. Finally, neglecting the vertical inertia force m z and the vertical 

components o f the creep forces leads

tan(fa + 0) — tan(fa — 0)
Fg = W A

2 -  a xf a  ta n  (fa +  0) +  rR ta n  (fa  -  0)]
WAA L(y) (A.53)
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where WA is the axle load o f the wheelset. It is then assumed that the angles SL, §R and cp

are small so that the “tan” functions in the numerator o f Eq. (A.53) can be replaced by the

angles and the denominator replaced by 2. Hence, the simplified expression becomes

1
F„ = WA :(6l ~  Sr ) + (A. 54)

Similarly, the yaw gravitational stiffness is defined as

M g = —RRxN r  sin(<5# —</>) + R ixN l  s in f^  + <p) 

= - a ^ F *  A ^ (y )  + (M^ /  o)AL(y)]
( rL +  ‘f'R )ta.n(6L +  <f>)tan(SR -  <j>)+atpFz

(A.55)

2a -  [rL tan(SL + (j>) + rR tan (6R -  (f>)]

This expression can also be simplified by neglecting the creep forces and by assuming

equilibrium about the roll axis. The simplified expression for the yaw gravitational

stiffness is

-aipWA
tan(^£ + (p) + tan(5R — <p)

2 -  a l [rL tan(5£ + <j>) + rR tan(6R -  (/>)}
(A.56)

Now applying the small angle assumption to obtain the further simplified expression

1
M n -aipWA (8l +  SR ) (A.57)

A.8 Sim plified Lateral and Yaw Equations o f M otion

By using Eqs. (A.49) and (A.50) for creep forces and moments, Eqs. (A.54) and (A.57) for 

lateral and yaw gravitational stiffnesses, and Eqs. (A. 18) and (A. 19) for the components o f 

the position vectors, the simplified lateral and yaw equations o f motion of a wheelset are,

from Eqs. (A.51) and (A.52)
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These equations o f motion are nonlinear. The left and right rolling radii ri and rR, the 

left and right contact angles Si and S r ,  and the roll angle (p are, in general, nonlinear 

functions o f the lateral displacement/. They depend on the wheel and rail profiles and the 

points o f contact. In addition, the suspension force Fsy and moment Msz can be nonlinear 

functions o f the variables.

The functions o f rolling radii, contact angles and roll angle, in terms o f lateral 

displacement, have been evaluated by Cooperrider and Law* for several wheel-rail 

profiles in a combined analytical and experimental study. Their approach involved a 

polynomial fit for the wheel and rail profiles, a computer program for the determination o f 

the points o f contact as the wheelset was moved laterally on the rail, and the computation 

o f the relation functions. They have also validated experimentally some o f their results.

These functions become linear for a conical wheel on a knife-edged rail. Let X be the 

conical angle, it can be shown that:

* N.K. Cooperrider and E.H. Law, Data Book — Wheel/Rail Geometry for Five Wheel Profiles and Three 

Rail Profiles, Report ERC-RT5015, Arizona State University, Tempe, Arizona,1975.
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7}(ri ~  rR) =  Ay, rL +  rR) =  r0

~ ( 6 l  -  SR) =  0, -{5 i  +  SR) — A
(A .6 0 )

(A.61)

(A.62)
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and

(j> =  (A /  a)y

The equations o f motion of the wheelset are reduced to

m y + 2
A l A .

V +  rQ -  y -  vip 
a

V n + WA - y  a sy

t v T v A . 2a/33A 2fi2
+  Iwy — y + - ^ - y  -  —  r0  a r0  v

A .
y + r0 - y - w l >  

a

v
+  2a2/33 — — a W^Xip -F 2/22 — — M x.t .

v



Appendix B

SAMPLE PLOTS OF MEANS, ROOT MEAN SQUARES 
AND VARIANCES OF LYAPUNOV EXPONENTS

The following plots are pertaining to Model III (as in Combination 1 using data 

Table 2.5), randomness in forward speed and So = 1.

First Lyapunov Exponent
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Figure B .l M ean and root mean square of m  versus time
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Second Lyapunov Exponent
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Figure B.2 M ean and root m ean square of X2  versus time
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Figure B.3 M ean and root m ean square of "kj, versus time
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Fourth Lyapunov Exponent
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Figure B.4 M ean and root m ean square of X4 versus time 
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Figure B.5 Variances of Xi and X2 versus time
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1.6

Variances of Lyapunov Exponents

Third Exponent 
Fourth Exponent

Time (second)

Figure B .6  Variances of >.3 and Lj versus time

Note that the “waviness” seen in Figure B.6 can be minimized by using (1) a longer

transient response period; and (2) a larger time step size.
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Appendix C

SAMPLE RESULTS OF LYAPUNOV EXPONENTS 
AND INFORMATION DIMENSIONS

Table C .l Lyapunov Exponents & Inform ation Dimension (Model III + Table 2.5)

Deterministic Forward Speed 
v A-j A2  A3  A4  D/

1.00E+01 3.14E+00 8.90E-01 -3.05E+02 -3.06E+02 2.01 E+00
1 .0 1 E+ 0 1 3.15E+00 1.27E+00 -3.02E+02 -3.03E+02 2.01 E+00
1.02E+01 4.38E+00 2.99E+00 -2.98E+02 -3.05E+02 2.02E+00
1.03E+01 3.85E+00 2.81 E+00 -2.91 E+02 -3.05E+02 2.02E+00
1.04E+01 3.41 E+00 2.85E+00 -2.87E+02 -3.03E+02 2.02E+00
1.05E+01 1.38E+00 -8.33E-02 -2.84E+02 -2.96E+02 2.00E+00
1.06E+01 1.24E+00 -4.64E+00 -2.78E+02 -2.91 E+02 1.27E+00
1.07E+01 7.23E-02 -2.09E-01 -2.75E+02 -2.92E+02 1.35 E+00
1.08E+01 2.09E+00 -2.06E+00 -2.72E+02 -2.90E+02 2.00E+00
1.09E+01 4.02E-01 -3.04E+00 -2.69E+02 -2.85E+02 1.13E+00
1.10E+01 -2.34E-01 -5.99E+00 -2.64E+02 -2.81 E+02 O.OOE+OO
1 .1 1 E+ 0 1 -1.14E+00 -1.01 E+01 -2.58E+02 -2.77E+02 0.00E+00
1.12E+01 -3.50E+00 -1.82E+01 -2.48E+02 -2.72E+02 0.00E+00
1.13E+01 -2.96E+00 -2.70E+01 -2.39E+02 -2 . 6 8  E+02 0.00E+00
1.14E+01 -2.12E+00 -2.37 E+01 -2.40E+02 -2.66E+02 0.00E+00
1.15E+01 -2.24E+00 -3.98E+01 -2.23E+02 -2.62E+02 0.00E+00
1.16E+01 -1.78E+00 -4.75E+01 -2.14E+02 -2.60E+02 0.00E+00
1.17E+01 -5.52E-01 -5.56E+01 -2.06E+02 -2.56E+02 0.00E+00
1.18E+01 -5.40E-01 -4 . 6 6  E+01 -2.13E+02 -2.54E+02 O.OOE+OO
1.19E+01 -4.48E-01 -4.57E+01 -2.14E+02 -2.49E+02 0.00E+00
1.20E+01 -1.32E+00 -2.42E+01 -2.37E+02 -2.43E+02 O.OOE+OO
1.21 E+01 -2.75E-01 -3.48 E+01 -2.22E+02 -2.45E+02 O.OOE+OO
1.22E+01 -3.67E-01 -3.19E+01 -2.29E+02 -2.36E+02 O.OOE+OO
1.23E+01 4.55E-01 -3.27 E+01 -2.19E+02 -2.42 E+02 1.01 E+00
1.24E+01 9.74E-01 -2.45E+01 -2.29E+02 -2.37E+02 1.04E+00
1.25E+01 6.96E-01 -1.90E+01 -2.33E+02 -2.34E+02 1.04E+00
1.26E+01 2.52E-02 -2.07E+01 -2.27E+02 -2.34E+02 1.00 E+00
1.27E+01 1.95E-01 -1.71 E+01 -2.29E+02 -2.31 E+02 1.01 E+00
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1.28E+01 8.92E-01 -1.94E+01 -2.25E+02 -2.31 E+02 1.05E+00
1.29E+01 3.45E+00 -1.85E+01 -2.26E+02 -2.29E+02 1.19E+00
1.30E+01 2.33E+00 -1.38E+01 -2.27E+02 -2.28E+02 1.17E+00
1.31E+01 1.83E+00 -1.30E+01 -2.26E+02 -2.26E+02 1.14E+00
1.32E+01 7.57E-01 -8.65E+00 -2.25E+02 -2.26E+02 1.09E+00
1.33E+01 7.39E-01 -1.20E+01 -2.22E+02 -2.23E+02 1.06E+00
1.34E+01 1.75E+00 -1.07E+01 -2.21 E+02 -2.22E+02 1.16E+00
1.35E+01 6.60E-01 -6.84E+00 -2.21 E+02 -2.22E+02 1.10E+00
1.36E+01 3.11 E+00 -1.23E+01 -2.17E+02 -2.19E+02 1.25E+00
1.37E+01 2.65E+00 -6.79E+00 -2.18E+02 -2.20E+02 1.39E+00
1.38E+01 1.19E+00 -2.59E+00 -2.18E+02 -2.20E+02 1.46E+00
1.39E+01 2.58E+00 -4.63E+00 -2.16E+02 -2.17E+02 1.56E+00
1.40E+01 4.36E+00 -5.99E+00 -2.16 E+02 -2.16E+02 1.73E+00
1.41 E+01 2.02E+00 -1.23E+00 -2.13E+02 -2.18E+02 2.00E+00
1.42E+01 3.62E+00 -1.75E+00 -2.10 E+02 -2.18E+02 2.01 E+00
1.43E+01 7.44E+00 1.14E+00 -2.14E+02 -2.18E+02 2.04E+00
1.44E+01 9.72E+00 -1.81E-01 -2.14E+02 -2.17E+02 2.04E+00
1.45E+01 4.19E+00 1.96E+00 -2.11 E+02 -2.12E+02 2.03E+00
1.46E+01 2.52E+00 7.02 E-03 -2.07E+02 -2.10E+02 2.01 E+00
1.47E+01 8.40E+00 1.12E+00 -2.08E+02 -2.13E+02 2.05E+00
1.48E+01 3.15E+00 2.79E+00 -2.06E+02 -2.09E+02 2.03E+00
1.49E+01 2.73E+00 2.41 E+00 -2.06 E+02 -2.06E+02 2.03E+00
1.50E+01 6.04E-01 -3.55E+00 -1.96E+02 -2.04E+02 1.17E+00
1.51E+01 3.65E+00 2.32E-01 -2.02E+02 -2.03E+02 2.02E+00
1.52E+01 3.37E+00 3.17E+00 -1.99E+02 -2.06E+02 2.03E+00
1.53E+01 2.80E+00 -3.30E+00 -1.92E+02 -2.03E+02 1.85E+00
1.54E+01 5.58E+00 -7.94E-01 -1.99E+02 -1.99E+02 2.02E+00
1.55E+01 1.67E+00 -8.63E+00 -1.86E+02 -1.98E+02 1.19E+00
1.56E+01 5.03E-01 -1.08E+00 -1.91 E+02 -1.96E+02 1.47E+00
1.57E+01 1.45E+00 -2.41 E+00 -1.89E+02 -1.95E+02 1.60 E+00
1.58E+01 1.83E+00 -4.61 E+00 -1.89E+02 -1.91 E+02 1.40E+00
1.59E+01 1.67E+00 -7.96E+00 -1.85E+02 -1.89E+02 1.21 E+00
1.60E+01 2.04E+00 -9.20E+00 -1.84E+02 -1.87E+02 1.22E+00
1.61 E+01 2.41 E+00 -1.04E+01 -1.83E+02 -1.85E+02 1.23E+00
1.62E+01 3.91 E+00 -1.03E+01 -1.78E+02 -1.89E+02 1.38E+00
1.63E+01 2.74E+00 -2.55E+01 -1.67 E+02 -1.81 E+02 1.11 E+00
1.64E+01 4.08E+00 -1.34E+01 -1.78E+02 -1.81 E+02 1.30E+00
1.65E+01 4.44E+00 -2.14E+01 -1.70E+02 -1.80E+02 1.21 E+00
1 . 6 6  E+01 4.53E+00 -9.35E+00 -1.76E+02 -1.83E+02 1.48E+00
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1.67E+01 7.80E+00
1.68E+01 6.62E+00
1.69E+01 3.15E+00
1.70E+01 4.60E+00
1.71 E+01 3.40E+00
1.72E+01 3.32E+00
1.73E+01 4.22E+00
1.74E+01 3.28E+00
1.75E+01 3.31 E+00
1.76E+01 3.28E+00
1.77E+01 2.49E+00
1.78E+01 -1.34E+00
1.79E+01 -1.09E+00
1.80E+01 1.59 E+00
1.81 E+01 7.06E-01
1.82E+01 3.32E+00
1.83E+01 3.05E+00
1.84E+01 -1.15E+00
1.85E+01 -1.80E+00
1.86E+01 2.53E+00
1.87E+01 1.18E+00
1.88E+01 3.11 E+00
1.89E+01 1.41E-01
1.90E+01 3.16E+00
1.91 E+01 5.84E-01
1.92E+01 2.58E+00
1.93E+01 1.04E+00
1.94E+01 3.15E+00
1.95E+01 3.02E+00
1.96E+01 4.21 E+00
1.97E+01 3.76E+00
1.98E+01 5.50E+00
1.99E+01 2.55E+00
2.00E+01 2.78E+00

-1.91 E+01 -1.66E+02
-1.46E+01 -1.68E+02
-5.05E+00 -1.66E+02
-1.61 E+01 -1.55E+02
-8.74E+00 -1.67E+02
-1.68E+00 -1.74E+02
2.42E+00 -1.74E+02
3.13E+00 -1.73E+02
2.86E+00 -1.73E+02
2.24E+00 -1.72E+02
-1.36E+00 -1.69E+02
-3.06E+00 -1.65E+02
-2.94E+00 -1.63E+02
-2.42E+00 -1.65E+02
-3.37E+00 -1.62E+02
-2.70E+00 -1.64E+02
-6.01 E+00 -1.59E+02
-5.13E+00 -1.59E+02
-7.45E+00 -1.55E+02
-3.68E+00 -1.59E+02
-4.82E+00 -1.58E+02
-7.76E+00 -1.53E+02
-8.68E+00 -1.52E+02
-5.53E+00 -1.55E+02
-8.65E+00 -1.50E+02
-9.67E+00 -1.50E+02
-1.20E+01 -1.47E+02
-8.04E+00 -1.48E+02
-7.68E+00 -1.48E+02
-7.79E+00 -1.48E+02
-8.91 E+00 -1.47E+02
-6.34E+00 -1.49E+02
-1.01 E+01 -1.47E+02
-1.09E+01 -1.42 E+02

-1.84E+02 1.41 E+00
-1.84E+02 1.45E+00
-1.90E+02 1.62E+00
-1.89E+02 1.29E+00
-1.81 E+02 1.39E+00
-1.79E+02 2.01 E+00
-1.82E+02 2.04E+00
-1.80E+02 2.04E+00
-1.79E+02 2.04E+00
-1.77E+02 2.03E+00
-1.74E+02 2.01 E+00
-1.70E+02 O.OOE+OO
-1.70E+02 O.OOE+OO
-1.70E+02 1.66E+00
-1.69E+02 1 .2 1 E+ 0 0

-1.69E+02 2.00E+00
-1.68E+02 1.51 E+00
-1.63E+02 O.OOE+OO
-1.62E+02 O.OOE+OO
-1.65E+02 1.69E+00
-1.61 E+02 1.24E+00
-1.63E+02 1.40E+00
-1.59E+02 1.02E+00
-1.60E+02 1.57E+00
-1.58E+02 1.07E+00
-1.57E+02 1.27E+00
-1.54E+02 1.09E+00
-1.58E+02 1.39E+00
-1.57E+02 1.39E+00
-1.56E+02 1.54E+00
-1.54E+02 1.42E+00
-1.55E+02 1.87E+00
-1.49E+02 1.25E+00
-1.52E+02 1.25E+00
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Table C.2 Lyapunov Exponents & Information Dimension (Model III + Table 2.5)

Random Forward Speed, S 0  = 1 
v  A-) A2  A3  A4  D[

.OOE+01 1.93E-01 -1.65E+00 -3.52E+02 -3.99E+02 1.12E+00

.01 E+01 8.49E-01 -1.83E+00 -3.53E+02 -3.86E+02 1.46E+00

.02E+01 1.37E+00 -1.70E+00 -3.49E+02 -3.70E+02 1.81 E+00

.03E+01 1.07E+00 -1.19E+00 -3.45E+02 -3.62E+02 1.90E+00

.04E+01 1.05E+00 -9.51 E-01 -3.44E+02 -3.61 E+02 2.00E+00

.05E+01 1.10E+00 -7.65E-01 -3.41 E+02 -3.57E+02 2.00E+00

.06E+01 9.78E-01 -5.95E-01 -3.41 E+02 -3.50 E+02 2.00E+00

.07E+01 1.28E+00 -1.74E-01 -3.34E+02 -3.40E+02 2.00E+00

.08E+01 1.75E+00 2.71 E-02 -3.27E+02 -3.33E+02 2.01 E+00

.09E+01 2.19E+00 1.27E-01 -3.22E+02 -3.25E+02 2.01 E+00

.10E+01 2.50E+00 1.89E-01 -3.22E+02 -3.26E+02 2.01 E+00

.11 E+01 2.44E+00 1.40E-01 -3.23E+02 -3.25E+02 2.01 E+00

.12E+01 3.00E+00 1.50E-01 -3.17E+02 -3.17 E+02 2.01 E+00

.13E+01 3.16E+00 4.08E-01 -3.13E+02 -3.15E+02 2.01 E+00

.14E+01 2.63E+00 6.73E-01 -3.07E+02 -3.09E+02 2.01 E+00

.15E+01 3.09E+00 1.16E+00 -3.05E+02 -3.10E+02 2.01 E+00

.16E+01 2.62E+00 1.65E+00 -3.01 E+02 -3.05E+02 2.01 E+00

.17E+01 1.77E+00 1.69E+00 -2.96E+02 -3.02E+02 2.01 E+00

.18E+01 1.02E+00 4.37E-01 -2.89E+02 -2.97E+02 2.01 E+00

.19E+01 3.41 E-01 -2.00E+00 -2.82E+02 -2.93E+02 1.17E+00

.20E+01 -6.59E-01 -2.92E+00 -2.79E+02 -2.93E+02 0.00E+00

.21 E+01 -4.23E-01 -5.70E+00 -2.72E+02 -2.88E+02 0.00E+00

.22E+01 1.06E+00 -9.63E+00 -2.66E+02 -2.85E+02 1.11 E+00

.23E+01 6.51 E-01 -1.12E+01 -2.62E+02 -2.82E+02 1.06E+00

.24E+01 -1.51 E+00 -1.26E+01 -2.57E+02 -2.76E+02 O.OOE+OO

.25E+01 -2.33E+00 -1.72E+01 -2.49E+02 -2.72E+02 O.OOE+OO

.26E+01 -2.76E+00 -2.06E+01 -2.45E+02 -2.68E+02 O.OOE+OO

.27E+01 -2.11 E+00 -2.47E+01 -2.40E+02 -2.64E+02 O.OOE+OO

.28E+01 -1.91 E+00 -2.78E+01 -2.35 E+02 -2.60E+02 O.OOE+OO

.29E+01 -1.77E+00 -2.86E+01 -2.33E+02 -2.58E+02 O.OOE+OO

.30E+01 -1.26E+00 -2.98E+01 -2.31 E+02 -2.54E+02 O.OOE+OO

.31E+01 -9.42E-01 -2.92E+01 -2.30E+02 -2.50E+02 O.OOE+OO

.32E+01 -6.94E-01 -2.88E+01 -2.29E+02 -2.46E+02 O.OOE+OO

.33E+01 -4.66E-01 -2.75E+01 -2.28E+02 -2.43E+02 O.OOE+OO

.34E+01 -2.26E-01 -2.53E+01 -2.29E+02 -2.40E+02 O.OOE+OO
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1.35E+01 2.38E-01 -2.31 E+01
1.36E+01 3.62E-01 -2.18E+01
1.37E+01 6.39E-01 -2.05E+01
1.38E+01 1.14E+00 -1.89E+01
1.39E+01 1.16E+00 -1.68E+01
1.40E+01 1.63E+00 -1.57E+01
1.41 E+01 2.24E+00 -1.51 E+01
1.42E+01 1.87E+00 -1.41 E+01
1.43E+01 1.19E+00 -1.26E+01
1.44 E+01 9.57E-01 -1.15E+01
1.45E+01 1.31 E+00 -1.00E+01
1.46E+01 1.71 E+00 -9.56E+00
1.47E+01 1.92E+00 -8.64E+00
1.48E+01 2.24E+00 -7.69E+00
1.49E+01 2.47E+00 -6.21 E+00
1.50E+01 2.73E+00 -4.69E+00
1.51 E+01 2.98E+00 -3.14E+00
1.52E+01 3.15E+00 -2.26E+00
1.53E+01 3.31 E+00 -9.38E-01
1.54E+01 3.61 E+00 -4.07E-01
1.55E+01 3.89E+00 -1 .0 1 E- 0 2

1.56E+01 3.69E+00 2.15E-01
1.57E+01 4.05E+00 6.25E-01
1.58E+01 3.91 E+00 7.67E-01
1.59E+01 4.09E+00 5.88E-01
1.60E+01 3.87E+00 2.08E-01
1.61 E+01 4.17E+00 8.85E-02
1.62E+01 3.84E+00 -2.39E-01
1.63E+01 3.38E+00 -1.06E+00
1.64E+01 3.59E+00 -1.31 E+00
1.65E+01 2.82E+00 -2.39E+00
1.66E+01 2.76E+00 -3.19E+00
1.67E+01 2.32E+00 -3.86E+00
1.68E+01 2.57E+00 -5.05E+00
1.69E+01 2.90E+00 -6.55E+00
1.70E+01 3.24E+00 -6.86E+00
1.71 E+01 3.48E+00 -7.78E+00
1.72E+01 4.08E+00 -7.27E+00
1.73E+01 4.61 E+00 -7.34E+00

-2.29E+02 -2.38E+02 1.01 E+00
-2.29E+02 -2.37E+02 1.02E+00
-2.28E+02 -2.34E+02 1.03E+00
-2.27E+02 -2.32E+02 1.06E+00
-2.27E+02 -2.31 E+02 1.07E+00
-2.26E+02 -2.30E+02 1.10E+00
-2.25E+02 -2.28E+02 1.15E+00
-2.24E+02 -2.27E+02 1.13E+00
-2.23E+02 -2.25E+02 1.09E+00
-2.21 E+02 -2.23E+02 1.08E+00
-2.20E+02 -2.21 E+02 1.13E+00
-2.19E+02 -2.20E+02 1.18E+00
-2.19E+02 -2.20E+02 1.22E+00
-2.17E+02 -2.18E+02 1.29E+00
-2.16E+02 -2.17E+02 1.40E+00
-2.15E+02 -2.17E+02 1.58E+00
-2.14E+02 -2.16E+02 1.95E+00
-2.13E+02 -2.15E+02 2.00E+00
-2.11 E+02 -2.14E+02 2.01 E+00
-2.10E+02 -2.13E+02 2.02E+00
-2.09E+02 -2.12 E+02 2.02E+00
-2.07E+02 -2.10 E+02 2.02E+00
-2.06E+02 -2.09E+02 2.02E+00
-2.05E+02 -2.07E+02 2.02E+00
-2.03E+02 -2.06E+02 2.02E+00
-2.01 E+02 -2.04 E+02 2.02E+00
-1.99E+02 -2.03E+02 2.02E+00
-1.97E+02 -2.02E+02 2 .0 2 E+ 0 0

-1.95E+02 -2.00E+02 2.01 E+00
-1.94E+02 -1.99E+02 2.01 E+00
-1.91 E+02 -1.97E+02 2.00E+00
-1.89E+02 -1.95E+02 1.87E+00
-1.88E+02 -1.93E+02 1.60 E+00
-1.86E+02 -1.91 E+02 1.51 E+00
-1.83E+02 -1.90E+02 1.44E+00
-1.82E+02 -1.89E+02 1.47 E+00
-1.80 E+02 -1.88E+02 1.45E+00
-1.79E+02 -1.88E+02 1.56E+00
-1.77E+02 -1.87E+02 1.63E+00
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1.74E+01 4.81 E+00
1.75E+01 5.12E+00
1.76E+01 4.96E+00
1.77E+01 4.82E+00
1.78E+01 4.59E+00
1.79E+01 4.23E+00
1.80E+01 3.83E+00
1.81 E+01 3.43E+00
1.82E+01 2.94E+00
1.83E+01 3.18E+00
1.84E+01 2.74E+00
1.85E+01 2.17E+00
1.86E+01 1.61E+00
1.87E+01 1.53E+00
1.88E+01 1.53E+00
1.89E+01 1.56E+00
1.90E+01 1.73E+00
1.91 E+01 1. 8 6  E+00
1.92E+01 1.82 E+00
1.93E+01 2.16E+00
1.94E+01 2.01 E+00
1.95E+01 2.12E+00
1.96E+01 2.24E+00
1.97E+01 2.22E+00
1.98E+01 2.38E+00
1.99E+01 2.45E+00
2.00E+01 2.39E+00

-7.00E+00 -1.76E+02
-6.23E+00 -1.75E+02
-5.90E+00 -1.74E+02
-5.23E+00 -1.73E+02
-4.72E+00 -1.73E+02
-4.29E+00 -1.71 E+02
-4.21 E+00 -1.70E+02
-3.11 E+00 -1.70E+02
-2.96E+00 -1.69E+02
-2.57E+00 -1.68E+02
-2.43E+00 -1.67E+02
-2.69E+00 -1.66E+02
-3.49E+00 -1.65E+02
-3.62E+00 -1.64E+02
-3.18E+00 -1.64E+02
-4.19E+00 -1.62E+02
-4.99E+00 -1.60 E+02
-5.51 E+00 -1.59E+02
-5.74E+00 -1.58E+02
-5.86E+00 -1.58E+02
-6.52E+00 -1.56E+02
-6.70E+00 -1.55E+02
-7.14E+00 -1.54E+02
-7.44E+00 -1.53E+02
-7.55E+00 -1.52E+02
-7.94E+00 -1.51 E+02
-8.49E+00 -1.50E+02

-1.87E+02 1.69E+00
-1.86E+02 1.82E+00
-1.86E+02 1.84E+00
-1.84E+02 1.92E+00
-1.83E+02 1.97E+00
-1.82E+02 1.99E+00
-1.81 E+02 1.91 E+00
-1.80E+02 2.00E+00
-1.78E+02 1.99E+00
-1.77E+02 2.00E+00
-1.76E+02 2.00E+00
-1.74E+02 1.81 E+00
-1.72E+02 1.46E+00
-1.71 E+02 1.42E+00
-1.69E+02 1.48 E+00
-1.68E+02 1.37E+00
-1.67E+02 1.35E+00
-1.66E+02 1.34E+00
-1.65E+02 1.32E+00
-1.64E+02 1.37E+00
-1.63E+02 1.31 E+00
-1.61 E+02 1.32E+00
-1.61 E+02 1.31 E+00
-1.60E+02 1.30E+00
-1.59E+02 1.32E+00
-1.58E+02 1.31 E+00
-1.57E+02 1.28E+00
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Table C.3 Information Dimension (Model III + Table 2.5)

Information Dimension 
S0=0 S0=0.0025 S 0 =0.01 S0=1 S0=25 S0=100

speed

1.00E+01
1.01 E+01 
1.02E+01 
1.03E+01 
1.04E+01 
1.05E+01 
1.06E+01 
1.07E+01 
1.08E+01 
1.09E+01 
1.10E+01
1.11 E+01 
1.12E+01 
1.13E+01 
1.14E+01 
1.15E+01 
1.16E+01 
1.17E+01 
1.18E+01 
1.19E+01 
1.20E+01
1.21 E+01 
1.22E+01 
1.23E+01 
1.24E+01 
1.25E+01 
1.26E+01 
1.27E+01 
1.28E+01 
1.29E+01 
1.30E+01
1.31 E+01 
1.32E+01 
1.33E+01 
1.34E+01

2.01 E+00
2.01 E+00 
2.02E+00 
2.02E+00 
2.02E+00 
2.00E+00 
1.27E+00 
1.35E+00 
2.00E+00 
1.13E+00 
0.00E+00 
0.00E+00 
0.00E+00 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO
1.01 E+00 
1.04E+00 
1.04E+00 
1.00E+00
1.01 E+00 
1.05E+00 
1.19E+00 
1.17E+00 
1.14E+00 
1.09E+00 
1.06E+00 
1.16E+00

2.01 E+00
2.01 E+00 
2.03E+00 
2.03E+00 
2.03E+00
1.41 E+00 
O.OOE+OO 
1.15E+00 
1.56E+00 
1.09E+00 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO
1.01 E+00 
1.03E+00 
1.04E+00 
1.05E+00 
1.08 E+00 
1.19E+00 
1.14E+00
1.11 E+00 
1.08E+00 
1.05E+00 
1.10E+00

2.01 E+00
2.01 E+00 
2.03E+00 
2.04E+00 
2.02E+00 

2.00E+00 
O.OOE+OO 
1.60E+00 
1.58E+00 
1.10E+00 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
1.00E+00
1.01 E+00 
1.02E+00 
1.04E+00 
1.06E+00 
1.09E+00 
1.18E+00 
1.14E+00 
1.12E+00 
1.08E+00 
1.06E+00 
1.10E+00
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1.12E+00 
1.46E+00
1.81 E+00 
1.90E+00 
2.00E+00 
2.00E+00 
2.00E+00 
2.00E+00
2.01 E+00
2.01 E+00
2.01 E+00
2.01 E+00
2.01 E+00
2.01 E+00
2.01 E+00
2.01 E+00
2.01 E+00
2.01 E+00
2.01 E+00 
1.17E+00 
O.OOE+OO 
O.OOE+OO
1.11 E+00 
1.06E+00 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO

2.49E+00
2.48E+00
2.51 E+00 
2.47E+00 
2.46E+00 
2.44E+00 
2.44E+00 
2.49E+00
2.51 E+00 
2.48E+00
2.51 E+00 
2.54E+00 
2.55E+00
2.51 E+00
2.51 E+00
2.51 E+00 
2.49E+00 
2.48E+00 
2.43E+00 
2.44E+00 
2.44E+00 
2.48E+00 
2.48E+00 
2.49E+00 
2.44E+00 
2.45E+00 
2.45E+00 
2.45E+00 
2.44E+00 
2.42E+00 
2.40E+00 
2.42E+00 
2.43E+00 
2.47E+00 
2.49E+00

3.19E+00 
3.09E+00 
3.09E+00 
3.12E+00
3.11 E+00 
3.13E+00 
3.15E+00 
3.16E+00 
3.12E+00 
3.16E+00 
3.14E+00 
3.19E+00
3.21 E+00 
3.23E+00 
3.22E+00 
3.24E+00 
3.19E+00 
3.26E+00 
3.26E+00 
3.28E+00 
3.24E+00 
3.17E+00 
3.14E+00 
3.19E+00 
3.17E+00 
3.20E+00 
3.24E+00 
3.19E+00 
3.22E+00 
3.17E+00 
3.18E+00 
3.18E+00 
3.19E+00 
3.18E+00 
3.19E+00
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1.35E+01 
1.36E+01 
1.37E+01 
1.38E+01 
1.39E+01
1.40 E+01
1.41 E+01 
1.42E+01 
1.43E+01 
1.44E+01 
1.45E+01 
1.46E+01 
1.47E+01 
1.48E+01 
1.49E+01 
1.50E+01
1.51 E+01 
1.52E+01 
1.53E+01 
1.54E+01 
1.55E+01 
1.56E+01 
1.57E+01 
1.58E+01 
1.59E+01 
1.60E+01 
1.61 E+01 
1.62E+01 
1.63E+01 
1.64E+01 
1.65E+01 
1.66E+01 
1.67E+01 
1.68E+01 
1.69E+01 
1.70E+01 
1.71 E+01 
1.72E+01 
1.73E+01

1.10E+00 
1.25E+00 
1.39E+00 
1.46E+00 
1.56E+00 
1.73E+00 
2.00E+00
2.01 E+00 
2.04E+00 
2.04E+00 
2.03E+00
2.01 E+00 
2.05E+00 
2.03E+00 
2.03E+00 
1.17E+00 
2.02E+00 
2.03E+00 
1.85E+00 
2.02E+00 
1.19E+00 
1.47E+00 
1.60E+00 
1.40E+00
1.21 E+00 
1.22E+00 
1.23E+00 
1.38E+00
1.11 E+00 
1.30E+00
1.21 E+00 
1.48E+00
1.41 E+00 
1.45E+00 
1.62E+00 
1.29E+00 
1.39E+00
2.01 E+00 
2.04E+00

1.19E+00
1.23E+00
1.30 E+00 
1.37E+00 
1.53E+00 
1.98E+00 
2.02E+00 
2.03E+00 
2.03E+00 
2.04E+00 
2.03E+00 
2.04E+00 
2.05E+00 
2.03E+00 
2.02E+00
2.01 E+00
2.01 E+00 
2.02E+00 
2.02E+00 
2.03E+00 
2.00E+00 
1.73E+00 
1.44E+00 
1.25E+00
1.31 E+00 
1.31E+00 
1.20E+00 
1.17E+00 
1.18E+00
1.21 E+00 
1.25E+00 
1.29E+00 
1.53E+00 
1.52E+00
1.91 E+00
1.91 E+00 
2.02E+00 
2.02E+00
2.01 E+00

1.16E+00 
1.24E+00 
1.28E+00 
1.40E+00 
1.47E+00
1.81 E+00 
2.02E+00 
2.02E+00 
2.03E+00 
2.03E+00 
2.03E+00 
2.04E+00 
2.04E+00 
2.03E+00 
2.02E+00
2.01 E+00
2.01 E+00 
2.02E+00 
2.03E+00 
2.03E+00
2.01 E+00 
1.69E+00 
1.29E+00 
1.32E+00 
1.29E+00 
1.28E+00
1.21 E+00
1.21 E+00 
1.20E+00 
1.19E+00 
1.24E+00 
1.28E+00 
1.49 E+00 
1.56E+00 
1.79E+00 
1.87E+00
2.01 E+00 
2.02E+00 
2.02E+00

150

1.01 E+00 
1.02E+00 
1.03E+00 
1.06E+00 
1.07E+00 
1.10E+00 
1.15E+00 
1.13E+00 
1.09E+00 
1.08E+00 
1.13E+00 
1.18E+00 
1.22E+00 
1.29E+00 
1.40E+00 
1.58E+00 
1.95E+00 
2.00E+00
2.01 E+00 
2.02E+00 
2.02E+00 
2.02E+00 
2.02E+00 
2.02E+00 
2.02E+00 
2.02E+00 
2.02E+00 
2.02E+00
2.01 E+00
2.01 E+00 
2.00E+00 
1.87E+00 
1.60E+00
1.51 E+00 
1.44E+00 
1.47E+00 
1.45E+00 
1.56E+00 
1.63E+00

2.41 E+00 
2.40E+00
2.41 E+00 
2.42E+00
2.41 E+00 
2.40E+00 
2.36E+00 
2.38E+00 
2.37E+00 
2.39E+00 
2.38E+00 
2.36E+00
2.34 E+00 
2.28E+00 
2.33E+00 
2.32E+00 
2.29E+00 
2.33E+00 
2.35E+00 
2.33E+00 
2.34E+00 
2.35E+00 
2.34E+00 
2.32E+00 
2.33E+00 
2.39E+00 
2.35E+00 
2.33E+00 
2.35E+00 
2.30E+00 
2.29E+00 
2.28E+00 
2.26E+00 
2.26E+00 
2.24E+00 
2.25E+00 
2.23E+00 
2.25E+00 
2.24E+00

3.17E+00 
3.14E+00 
3.15E+00 
3.18E+00 
3.09E+00 
3.12E+00 
3.12E+00 
3.15E+00 
3.12E+00 
3.13E+00 
3.05E+00
3.01 E+00 
3.02E+00 
3.06E+00 
3.06E+00 
3.06E+00 
3.03E+00 
3.05E+00 
3.04E+00 
3.05E+00 
3.03E+00 
3.10E+00 
3.08E+00 
3.09E+00 
3.03E+00 
2.98E+00 
2.90E+00
2.91 E+00 
2.99E+00 
2.94E+00 
2.97E+00 
2.93E+00 
2.97E+00 
2.95E+00 
2.98E+00 
2.97E+00 
2.95E+00 
3.00E+00 
3.00E+00
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1.74E+01 
1.75E+01 
1.76E+01 
1.77E+01 
1.78E+01 
1.79E+01 
1.80E+01
1.81 E+01 
1.82E+01 
1.83E+01 
1.84E+01 
1.85E+01 
1.86E+01 
1.87E+01 
1.88E+01 
1.89E+01 
1.90E+01
1.91 E+01 
1.92E+01 
1.93E+01 
1.94E+01 
1.95E+01 
1.96E+01 
1.97E+01 
1.98E+01 
1.99E+01 
2.00E+01

2.04E+00 
2.04E+00 
2.03E+00
2.01 E+00 
0.00E+00 
O.OOE+OO 
1.66E+00
1.21 E+00 
2.00E+00
1.51 E+00 
O.OOE+OO 
O.OOE+OO 
1.69E+00 
1.24 E+00 
1.40E+00 
1.02E+00 
1.57E+00 
1.07E+00 
1.27E+00 
1.09E+00 
1.39E+00 
1.39E+00 
1.54E+00 
1.42E+00 
1.87E+00 
1.25E+00 
1.25E+00

2.02E+00
2.02E+00
2.02E+00
2.01 E+00
2.01 E+00 
1.33E+00 
1.97E+00 
1.45E+00 
1.73E+00 
1.38E+00 
1.36E+00
1.30 E+00
1.51 E+00 
1.43E+00 
1.57E+00 
1.38E+00 
1.45E+00 
1.39 E+00 
1.44E+00 
1.42E+00
1.31 E+00 
1.32E+00
1.34 E+00 
1.35E+00 
1.36E+00 
1.25E+00 
1.35E+00

2.02E+00 

2.02E+00 
2.02E+00
2.01 E+00 
2.00E+00 
1.59E+00 
1.94E+00
1.51 E+00 
1.90E+00 
1.60E+00 
1.52E+00 
1.43E+00
1.51 E+00 
1.54E+00 
1.45E+00 
1.50E+00 
1.36E+00 
1.39E+00 
1.43E+00 
1.42E+00 
1.32E+00 
1.35E+00 
1.35E+00 
1.35E+00 
1.40E+00 
1.32E+00 
1.35E+00

1.69E+00 
1.82E+00 
1.84E+00 
1.92E+00 
1.97E+00 
1.99E+00
1.91 E+00 
2.00E+00 
1.99E+00 
2.00E+00 
2.00E+00
1.81 E+00 
1.46E+00 
1.42E+00 
1.48E+00 
1.37E+00 
1.35E+00 
1.34E+00 
1.32E+00 
1.37E+00
1.31 E+00
1.32 E+00
1.31 E+00 
1.30E+00 
1.32E+00
1.31 E+00 
1.28E+00

2.25E+00 
2.24E+00 
2.24E+00 
2.26E+00 
2.28E+00 
2.28E+00 
2.26E+00 
2.27E+00 
2.27E+00 
2.25E+00 
2.26E+00 
2.25E+00 
2.26E+00 
2.23E+00 
2.25E+00 
2.23E+00 
2.24E+00 
2.25E+00 
2.23E+00 
2.24E+00
2.21 E+00 
2.22E+00 
2.23E+00 
2.24E+00 
2.23E+00 
2.24E+00 
2.22E+00

2.98E+00
2.96E+00
2.95E+00
2.92E+00
2.85E+00
2.86E+00
2.83E+00
2.81 E+00 
2.83E+00 
2.84E+00
2.81 E+00
2.81 E+00 
2.87E+00 
2.86E+00 
2.82E+00 
2.89E+00 
2.88E+00 
2.86E+00
2.91 E+00
2.91 E+00 
2.87E+00
2.91 E+00 
2.89E+00 
2.90E+00 
2.87E+00 
2.86E+00 
2.88E+00
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Table C.4 Information Dimensions of Model III with Randomness in Forward Speed

speed ono 
C 0 S0=0.0025

Information Dimension 
S 0 =0.01 S0=1 S0=100 S0=900

1.00E+01 2.01 E+00 2.01 E+00 2.01 E+00 2.00E+00 3.18E+00 3.85E+00
1.01 E+01 2.01 E+00 2.01 E+00 2.01 E+00 1.81 E+00 3.11 E+00 3.82E+00
1.02E+01 2.02E+00 2.03E+00 2.03E+00 1.81 E+00 3.06E+00 3.89E+00
1.03E+01 2.02E+00 2.03E+00 2.03E+00 2.00E+00 3.11 E+00 3.82E+00
1.04E+01 2.02E+00 2.03E+00 2.02E+00 2.00E+00 3.14E+00 3.83E+00
1.05E+01 2.00E+00 1.38E+00 2.00E+00 2.00E+00 3.17E+00 3.84E+00
1.06E+01 1.27E+00 O.OOE+OO O.OOE+OO 2.00E+00 3.12E+00 3.77E+00
1.07E+01 1.35E+00 1.02E+00 1.21 E+00 2.01 E+00 3.17E+00 3.79E+00
1.08E+01 2.00 E+00 1.56E+00 1.61 E+00 2.01 E+00 3.22E+00 3.78E+00
1.09E+01 1.13E+00 1.11 E+00 1.11 E+00 2.01 E+00 3.17E+00 3.83E+00
1.10E+01 O.OOE+OO O.OOE+OO O.OOE+OO 2.01 E+00 3.27E+00 3.83E+00
1.11 E+01 0.00E+00 O.OOE+OO O.OOE+OO 2.01 E+00 3.24E+00 3.84E+00
1.12E+01 0.00E+00 O.OOE+OO O.OOE+OO 2.01 E+00 3.21 E+00 3.78E+00
1.13E+01 0.00E+00 O.OOE+OO O.OOE+OO 2.01 E+00 3.20E+00 3.81 E+00
1.14E+01 0.00E+00 O.OOE+OO O.OOE+OO 2.01 E+00 3.21 E+00 3.85E+00
1.15E+01 O.OOE+OO O.OOE+OO O.OOE+OO 2.02E+00 3.26E+00 3.81 E+00
1.16E+01 O.OOE+OO O.OOE+OO O.OOE+OO 2.02E+00 3.20E+00 3.81 E+00
1.17E+01 O.OOE+OO O.OOE+OO O.OOE+OO 2.01 E+00 3.19E+00 3.83E+00
1.18E+01 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.17E+00 3.83E+00
1.19E+01 O.OOE+OO O.OOE+OO O.OOE+OO 1.14E+00 3.16E+00 3.85E+00
1.20E+01 O.OOE+OO O.OOE+OO O.OOE+OO 1.17E+00 3.17E+00 3.83E+00
1.21 E+01 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.14E+00 3.89E+00
1.22E+01 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.14E+00 3.87E+00
1.23E+01 1.01 E+00 O.OOE+OO O.OOE+OO O.OOE+OO 3.14E+00 3.89E+00
1.24E+01 1.04E+00 1.01 E+00 1.01 E+00 O.OOE+OO 3.14E+00 3.88E+00
1.25E+01 1.04E+00 1.03E+00 1.02E+00 O.OOE+OO 3.12E+00 3.92E+00
1.26E+01 1.00E+00 1.04E+00 1.04E+00 O.OOE+OO 3.11 E+00 3.86E+00
1.27E+01 1.01 E+00 1.07E+00 1.05E+00 O.OOE+OO 3.12E+00 3.83E+00
1.28E+01 1.05E+00 1.09E+00 1.08E+00 O.OOE+OO 3.10E+00 3.83E+00
1.29E+01 1.19E+00 1.19E+00 1.19E+00 O.OOE+OO 3.10E+00 3.81 E+00
1.30E+01 1.17E+00 1.14E+00 1.13E+00 O.OOE+OO 3.05E+00 3.80E+00
1.31 E+01 1.14E+00 1.11 E+00 1.11 E+00 O.OOE+OO 3.06E+00 3.78E+00
1.32E+01 1.09E+00 1.06E+00 1.09E+00 O.OOE+OO 3.14E+00 3.81 E+00
1.33E+01 1.06E+00 1.05E+00 1.04E+00 O.OOE+OO 3.12E+00 3.73E+00
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1.34E+01 1.16E+00 1.12E+00 1.10E+00 O.OOE+OO 3.17E+00 3.71 E+00
1.35E+01 1.10E+00 1.15E+00 1.16E+00 1.01 E+00 3.11 E+00 3.76E+00
1.36E+01 1.25E+00 1.25E+00 1.22E+00 1.03E+00 3.08E+00 3.77E+00
1.37E+01 1.39E+00 1.29E+00 1.30E+00 1.05E+00 3.09E+00 3.78E+00
1.38E+01 1.46E+00 1.37E+00 1.37E+00 1.07E+00 3.08E+00 3.78E+00
1.39E+01 1.56E+00 1.45E+00 1.45E+00 1.08E+00 3.01 E+00 3.79E+00
1.40E+01 1.73E+00 1.77E+00 1.86E+00 1.10E+00 2.99E+00 3.79E+00
1.41 E+01 2.00E+00 2.01 E+00 2.01 E+00 1.11 E+00 3.05E+00 3.76E+00
1.42 E+01 2.01 E+00 2.03E+00 2.03E+00 1.08E+00 3.04E+00 3.77E+00
1.43E+01 2.04E+00 2.02E+00 2.03E+00 1.06E+00 3.00E+00 3.75E+00
1.44E+01 2.04E+00 2.04E+00 2.03E+00 1.08E+00 3.00E+00 3.72E+00
1.45E+01 2.03E+00 2.03E+00 2.03E+00 1.15E+00 3.07E+00 3.76E+00
1.46E+01 2.01 E+00 2.04E+00 2.03E+00 1.20 E+00 3.08E+00 3.75E+00
1.47E+01 2.05E+00 2.05E+00 2.04E+00 1.28E+00 3.12E+00 3.69E+00
1.48E+01 2.03E+00 2.03E+00 2.03E+00 1.39E+00 3.10E+00 3.72E+00
1.49E+01 2.03E+00 2.01 E+00 2.02E+00 1.59E+00 3.13E+00 3.75E+00
1.50E+01 1.17E+00 2.01 E+00 2.01 E+00 1.87E+00 3.16E+00 3.73E+00

Table C.5 Inform ation Dimensions of Model III  with Random ness in Dead B and

speed

cn o II O

i i

S0=0.0025
Information Dimension 
S0 =0.01 S0=1 S0=100 S0=900

1.00E+01 2.01 E+00 2.87E+00 2.94E+00 3.66E+00 3.89E+00 3.91 E+00
1.01 E+01 2.01 E+00 2.87E+00 2.97E+00 3.67E+00 3.89E+00 3.92E+00
1.02E+01 2.02E+00 2.88E+00 2.92E+00 3.67E+00 3.89E+00 3.92E+00
1.03E+01 2.02E+00 2.87E+00 2.96E+00 3.66E+00 3.89E+00 3.91 E+00
1.04E+01 2.02E+00 2.87E+00 2.93E+00 3.67E+00 3.88E+00 3.92E+00
1.05E+01 2.00E+00 2.81 E+00 2.94E+00 3.65E+00 3.90E+00 3.91 E+00
1.06E+01 1.27E+00 2.90E+00 2.96E+00 3.67E+00 3.88E+00 3.91 E+00
1.07E+01 1.35E+00 2.86E+00 2.92E+00 3.67E+00 3.90E+00 3.92E+00
1.08E+01 2.00E+00 2.86E+00 2.96E+00 3.66E+00 3.89E+00 3.92E+00
1.09E+01 1.13E+00 2.87E+00 2.93E+00 3.69E+00 3.89E+00 3.92E+00
1.10E+01 0.00E+00 2.87E+00 2.95E+00 3.65E+00 3.90E+00 3.92E+00
1.11 E+01 0.00E+00 2.88E+00 2.94E+00 3.69E+00 3.88E+00 3.92E+00
1.12E+01 0.00E+00 2.86E+00 2.95E+00 3.66E+00 3.90E+00 3.91 E+00
1.13E+01 O.OOE+OO 2.87E+00 2.97E+00 3.67E+00 3.88E+00 3.92E+00
1.14E+01 O.OOE+OO 2.87E+00 2.93E+00 3.67E+00 3.90E+00 3.92E+00
1.15E+01 O.OOE+OO 2.86E+00 2.97E+00 3.66E+00 3.89E+00 3.92E+00
1.16E+01 O.OOE+OO 2.88E+00 2.94E+00
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1.17E+01 
1.18E+01 
1.19E+01 
1.20E+01
1.21 E+01 
1.22E+01 
1.23E+01 
1.24E+01 
1.25E+01 
1.26E+01 
1.27E+01 
1.28E+01 
1.29E+01 
1.30E+01
1.31 E+01 
1.32E+01 
1.33E+01 
1.34E+01 
1.35E+01 
1.36E+01 
1.37E+01 
1.38E+01 
1.39E+01 
1.40E+01
1.41 E+01 
1.42E+01 
1.43E+01 
1.44E+01 
1.45E+01 
1.46E+01 
1.47E+01 
1.48E+01 
1.49E+01 
1.50E+01

O.OOE+OO
O.OOE+OO
O.OOE+OO
O.OOE+OO
O.OOE+OO
O.OOE+OO
1.01 E+OO 
1.04E+00 
1.04E+00 
1.00E+00
1.01 E+00 
1.05E+00 
1.19E+00 
1.17E+00 
1.14E+00 
1.09E+00 
1.06E+00 
1.16E+00 
1.10E+00 
1.25E+00 
1.39E+00 
1.46E+00 
1.56E+00 
1.73E+00 
2.00E+00
2.01 E+00 
2.04E+00 
2.04E+00 
2.03E+00
2.01 E+00 
2.05E+00 
2.03E+00 
2.03E+00 
1.17E+00

2.84E+00
2.90E+00
2.88E+00
2.89E+00
2.90E+00
2.86E+00
2.91 E+00 
2.87E+00 
2.89E+00 
2.88E+00
2.91 E+00
2.91 E+00 
2.88E+00
2.91 E+00 
2.88E+00
2.91 E+00 
2.89E+00 
2.87E+00 
2.90E+00 
2.88E+00 
2.89E+00 
2.88E+00 
2.90E+00 
2.90E+00 
2.88E+00 
2.88E+00 
2.87E+00 
2.89E+00 
2.88E+00 
2.88E+00 
2.89E+00 
2.87E+00
2.91 E+00 
2.89E+00

2.96E+00
2.96E+00
2.95E+00
2.96E+00
2.94E+00
2.95E+00
2.94E+00
2.97E+00
2.95E+00
2.98E+00
2.97E+00
2.94E+00
2.97E+00
2.96E+00
2.96E+00
2.97E+00
2.97E+00
2.96E+00
2.98E+00
2.94E+00
2.99E+00
2.97E+00
2.98E+00
2.95E+00
2.96E+00
2.99E+00
2.96E+00
3.00E+00
2.99E+00
2.99E+00
2.97E+00
2.97E+00
2.99E+00
2.99E+00

3.66E+00
3.68E+00
3.67E+00
3.67E+00
3.68E+00
3.66E+00
3.68E+00
3.65E+00
3.68E+00
3.68E+00
3.66E+00
3.69E+00
3.67E+00
3.69E+00
3.65E+00
3.69E+00
3.67E+00
3.66E+00
3.68E+00
3.66E+00
3.69E+00
3.66E+00
3.68E+00
3.68E+00
3.67E+00
3.68E+00
3.66E+00
3.68E+00
3.69E+00
3.67E+00
3.69E+00
3.68E+00
3.68E+00
3.67E+00

3.90E+00
3.88E+00
3.90E+00
3.89E+00
3.90E+00
3.90E+00
3.89E+00
3.91 E+00 
3.88E+00
3.91 E+00 
3.89E+00 
3.90E+00
3.91 E+00 
3.89E+00 
3.90E+00 
3.89E+00
3.91 E+00 
3.90E+00 
3.89E+00
3.91 E+00 
3.88E+00
3.91 E+00 
3.89E+00
3.91 E+00 
3.90E+00 
3.89E+00
3.91 E+00 
3.89E+00
3.91 E+00 
3.90E+00 
3.90E+00
3.91 E+00 
3.89E+00
3.91 E+00

3.92E+00
3.93E+00
3.92E+00
3.92E+00
3.93E+00
3.92E+00
3.93E+00
3.92E+00
3.92E+00
3.92E+00
3.93E+00
3.93E+00
3.92E+00
3.93E+00
3.92E+00
3.93 E+00 
3.93E+00 
3.93E+00 
3.93E+00 
3.93E+00 
3.93E+00 
3.93E+00 
3.93E+00 
3.93E+00 
3.93E+00
3.93 E+00 
3.93E+00 
3.93E+00 
3.93E+00 
3.93E+00 
3.94E+00 
3.93E+00 
3.93E+00 
3.93E+00

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table C .6  Inform ation Dimensions of Model III w ith Randomness 
in Both Forw ard Speed and Dead Band

speed onoCO S0=0.0025
Information Dimension 
S0=0.01 So=1 CO o II _1 o o S0=900

1.00E+01 2.01 E+00 2.90E+00 3.19E+00 3.82E+00 3.94E+00 3.96E+00
1.01 E+01 2.01 E+00 2.89E+00 3.17E+00 3.82E+00 3.94E+00 3.96E+00
1.02E+01 2.02E+00 2.92E+00 3.19E+00 3.82E+00 3.94E+00 3.96E+00
1.03E+01 2.02E+00 2.85E+00 3.16E+00 3.82E+00 3.94E+00 3.96E+00
1.04E+01 2.02E+00 2.91 E+00 3.17E+00 3.83E+00 3.95E+00 3.96E+00
1.05E+01 2.00E+00 2.93E+00 3.19E+00 3.82 E+00 3.94E+00 3.96E+00
1.06E+01 1.27E+00 2.89E+00 3.18E+00 3.82E+00 3.95E+00 3.96E+00
1.07E+01 1.35E+00 2.93E+00 3.21 E+00 3.82E+00 3.94E+00 3.96E+00
1.08E+01 2.00E+00 2.90E+00 3.16E+00 3.82E+00 3.95E+00 3.96 E+00
1.09E+01 1.13E+00 2.94E+00 3.17E+00 3.83E+00 3.95E+00 3.96E+00
1.10E+01 0.00E+00 2.92E+00 3.19 E+00 3.82E+00 3.95E+00 3.96E+00
1.11 E+01 0.00E+00 2.92E+00 3.18E+00 3.83E+00 3.95E+00 3.96E+00
1.12E+01 O.OOE+OO 2.91 E+00 3.20E+00 3.82E+00 3.94E+00 3.96E+00
1.13E+01 0.00E+00 2.91 E+00 3.16E+00 3.82E+00 3.95E+00 3.96E+00
1.14E+01 O.OOE+OO 2.93E+00 3.20E+00 3.83E+00 3.95E+00 3.97E+00
1.15E+01 O.OOE+OO 2.94E+00 3.19E+00 3.82E+00 3.95E+00 3.96E+00
1.16E+01 O.OOE+OO 2.91 E+00 3.20E+00 3.83E+00 3.95E+00 3.96E+00
1.17E+01 O.OOE+OO 2.94E+00 3.20E+00 3.82E+00 3.95E+00 3.96E+00
1.18E+01 O.OOE+OO 2.91 E+00 3.19E+00 3.83E+00 3.95E+00 3.96E+00
1.19E+01 O.OOE+OO 2.94E+00 3.20E+00 3.82E+00 3.95E+00 3.97E+00
1.20E+01 O.OOE+OO 2.91 E+00 3.18E+00 3.83E+00 3.95E+00 3.96E+00
1.21 E+01 O.OOE+OO 2.96E+00 3.20E+00 3.82E+00 3.95E+00 3.97E+00
1.22E+01 O.OOE+OO 2.90E+00 3.17E+00 3.82 E+00 3.95E+00 3.96 E+00
1.23E+01 1.01 E+00 2.96E+00 3.17E+00 3.83E+00 3.95E+00 3.97E+00
1.24E+01 1.04E+00 2.95E+00 3.21 E+00 3.82E+00 3.95E+00 3.97E+00
1.25E+01 1.04E+00 2.91 E+00 3.18E+00 3.83E+00 3.95E+00 3.96E+00
1.26E+01 1.00E+00 2.95E+00 3.20E+00 3.83E+00 3.95E+00 3.97E+00
1.27E+01 1.01 E+00 2.92E+00 3.20E+00 3.82E+00 3.95E+00 3.96E+00
1.28E+01 1.05E+00 2.92E+00 3.18E+00 3.83E+00 3.95E+00 3.97E+00
1.29E+01 1.19E+00 2.94E+00 3.19E+00 3.82E+00 3.95E+00 3.96E+00
1.30E+01 1.17E+00 2.90E+00 3.20E+00 3.83E+00 3.95E+00 3.97E+00
1.31 E+01 1.14E+00 2.95E+00 3.20E+00 3.83E+00 3.95E+00 3.97E+00
1.32E+01 1.09E+00 2.88E+00 3.18E+00 3.83E+00 3.95E+00 3.96E+00
1.33E+01 1.06E+00 3.01 E+00 3.22E+00 3.83E+00 3.95 E+00 3.97E+00
1.34E+01 1.16E+00 2.94E+00 3.21 E+00 3.82E+00 3.95E+00 3.97E+00
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1.35E+01 
1.36E+01 
1.37E+01 
1.38E+01 
1.39E+01 
1.40E+01
1.41 E+01 
1.42E+01 
1.43E+01 
1.44E+01 
1.45E+01 
1.46E+01 
1.47 E+01 
1.48E+01 
1.49E+01 
1.50E+01

1.10E+00 
1.25E+00 
1.39E+00 
1.46E+00 
1.56E+00 
1.73E+00 
2.00E+00
2.01 E+00 
2.04E+00 
2.04E+00 
2.03E+00
2.01 E+00 
2.05E+00 
2.03E+00 
2.03E+00 
1.17E+00

2.96E+00 
2.98E+00 
2.92E+00 
2.99E+00 
2.93E+00
3.01 E+00 
2.94E+00 
2.98E+00 
2.95E+00 
2.96E+00 
2.98E+00
2.94 E+00 
2.97E+00 
2.93E+00 
3.00E+00 
2.98E+00

3.20E+00
3.19E+00
3.21 E+00
3.21 E+00 
3.20E+00 
3.20E+00 
3.20E+00 
3.23E+00 
3.18E+00
3.21 E+00
3.21 E+00
3.21 E+00 
3.20E+00
3.21 E+00 
3.20E+00 
3.22E+00

3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83E+00 
3.83 E+00 
3.83E+00

3.95E+00
3.95E+00
3.95E+00
3.95E+00
3.95E+00
3.95E+00
3.95E+00
3.95E+00
3.95E+00
3.96E+00
3.95E+00
3.95E+00
3.95E+00
3.95E+00
3.95E+00
3.95E+00

3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
3.97E+00
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Appendix D

COMPUTED BIFURCATION DIAGRAMS 
FOR THE ENTIRE SPEED RANGE OF 1 TO 50 m/s

Bifurcation Diagram
0.012

0.010  -

Z  0.008 -a0>
sa*

js  .0.006 *
Cm
Vi

5
S 0.004 -

0.002  -

0.000
0 10 20 30 40 50 60

Forward Speed v (m /s)

Figure D .l B ifurcation diagram , no control, So = 0.01
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0 . 0 2 5

Bifurcation Diagram

0.020  -

|  0.015
5?

"S.%5 0.010
C5L.<u 
-3

0.005

0.000

Forward Speed v (m/s)

Figure D.2 B ifurcation diagram , semi-active control, So = 0.01

Bifurcation Diagram
0.025 -i

0.020 -

0.015

Q  0 .0 1 0  - 
«■

< 0

0.005 - w

0.000
400 10 20 30 50 60

Forward Speed v (m /s)

Figure D.3 Bifurcation diagram , active control, S o  = 0.01
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0 .1 0

Bifurcation Diagram

0.08

|  0.06 -

P  0.04 -

I
a

0.02

0.00
30 40

Forward Speed v (m/s)

Figure D.4 Bifurcation diagram , no control, So = 1

Bifurcation Diagram
0.10

2 0.06

P  0 .0 4 -

0.02  -

10 20 30 40

Forward Speed v (m/s)

Figure D.5 B ifurcation diagram , semi-active control, So = 1
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0 .1 0

Bifurcation Diagram

0 ; 10 20 30 40 50 60

Forward Speed r (m/s)

Figure D.6 B ifurcation diagram , active control, So = 1
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