
INFERENCE IN
DISTRIBUTED

MULTIAGENT REASONING
SYSTEMS IN COOPERATION
WITH ARTIFICIAL NEURAL

NETWORKS
by

Abdunnaser Abdulhamid Diaf

A thesis submitted to the faculty of graduate studies
Lakehead University

in partial fulfillment of the requirements for the degree of
Masters of Science in Mathematical Science

Department of Computer Science

Lakehead University

March 2007

Copyright © Abdunnaser Abdulhamid Diaf 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1^1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-31158-5
Our file Notre référence
ISBN: 978-0-494-31158-5

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To m y parents, who spent their lives, health and w ealth, just as
scented candles, for nothing but to see me and my siblings prosperous

and healthy. To my w ife for her continuous support, love,
understanding and encouragem ent during m y studies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

First of all, I greatly thank my supervisor Professor Nasser Noroozi and my co­
supervisor Professor Francis Allaire. Mr. Noroozi has provided me invaluable guid­
ance, continuous encouragement, support throughout this work. I am so grateful
that he introduced me to the world of Artificial Intelligence. He has been very help­
ful and supportive both intellectually and personally. In all circumstances where
I needed his approval for taking important decisions, he was supportive. While
working with him, I always had the most genuine sense of freedom in pursuing
research in my own way.

During my graduate studies, many Professors have influenced me significantly
at Lakehead University: Professor Ruizhong Wei, Professor Maurice Benson and
Professor Sabah Mohammed.

Also my appreciation to many professors and friends who have somehow been
important during my residence in Canada.

Next, I would like to thank my brothers and sisters for their love and encour­
agement during my stay in Canada.

I V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

List o f Tables viii

List o f Figures xi

A bstract xii

1 Introduction: Bayesian Network Theory 1
1.1 Bayes’ T h eo rem ... 1

1.1.1 Bayes’ Theorem .. 1
1.1.2 Expansion rule .. 2
1.1.3 Chain ru le .. 2

1.2 Basic Definitions... 3
1.2.1 Graph (G) ... 3
1.2.2 Path p .. 4
1.2.3 Directed Acyclic Graph (DAG).. 4
1.2.4 D -Separation... 5

1.3 Bayesian N etw orks.. 5
1.4 Why a Bayesian network? ... 6

1.4.1 Advantages of using Bayesian networks 7
1.5 Bayesian inference .. 8

1.5.1 Types of inference in B N s.. 8
1.5.2 Pearl’s (or A — tt) message-passing a lgorithm 9

2 Prom DAG s to Junction Trees 13
2.1 The Junction Tree framework.. 13

2.1.1 The Junction Tree definition... 13
2.2 Moral G raph.. 15
2.3 Graph triangulation (Chordal g rap h)... 15

2.3.1 Converting the moral graph into a chordal g ra p h 16
2.4 Constructing Junction Trees from Chordal G ra p h s 19

2.4.1 Identifying C liq u e s ... 19
2.4.2 From 0(G) to an efficient JT representation............................... 19

2.5 Belief Updating in Junction T re e s .. 21
2.5.1 The System Potential of a J T ... 22

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.2 Initialization of po ten tials ... 22
2.5.3 Consistency in a JT ... 22
2.5.4 The Absorption M e th o d .. 23
2.5.5 The propagation algorithm ... 24
2.5.6 Applying O bservations.. 25

M SB N s as Linked Junction Forests 27
3.1 Limitations of the Single-agent Paradigm .. 27
3.2 Background Knowledge .. 28

3.2.1 Definition of hypertree s tructu re .. 28
3.2.2 Definition of MSBN ... 29
3.2.3 The JPD of the M SB N .. 29
3.2.4 D-Sepset C o n ce p t... 29
3.2.5 Lmessages and Eh m essages... 30

3.3 The Five Basic Assumptions of M SBN s... 30
3.4 Linked Junction F o rests ... 31

3.4.1 The LJF Fram ew ork.. 31
3.4.2 Cooperative Distributive Moralization of M SD A G 32
3.4.3 Linkage Trees as Communication Channels 33
3.4.4 Cooperative Triangulation in a Hypertree.................................... 36
3.4.5 Constructing Local JTs and Linkage Trees: (L J F) 38

Inference in D istributed M ultiagent System s 41
4.1 Initial Potential Assignm ent... 41
4.2 E-message Passing among Agents.. 42

4.2.1 Why Extended Linkage P o te n tia l? ... 42
4.2.2 Passing Beliefs through Linkages ... 43

4.3 The Communication Protocol in an L J F .. 44
4.3.1 Complexity of Multi-agent Communication 46

4.4 A Practical Issue on Implementing Distributed Multi-agent Reason­
ing Systems .. 47

A N N s Playing a R ole in M ulti-agent System s 54
5.1 Introduction to Neural N etw orks.. 54

5.1.1 Artificial Neural Networks... 56
5.1.2 Basic ANN Com ponents... 58
5.1.3 Multi-layer perceptron (MLP) m o d e l.. 60
5.1.4 Error Back-Propagation Training of M LP................................... 61

5.2 Speeding up a Multi-agent Slow Inference by Employing ANNs 65
5.3 Implementation R e s u lts .. 68

5.3.1 Digit R ecognition ... 68
5.3.2 E-message P re d ic tio n .. 69

V I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Im plem enting an 0 . 0 . M ulti-agent System 74
6.1 The Implementation Package... 74

6.1.1 The Four Main 0 .0 . Classes... 74
6.1.2 The Structure of BN Description F ile ... 76

6.2 Cooperative Multi-agent System Troubleshoots a Digital System . . . 76
6.2.1 Results of the cooperative global m oralization 78
6.2.2 Results of the cooperative global triangulation.......................... 86
6.2.3 Construction Results of each O b jec t... 89
6.2.4 Belief Updating to Bring the LJF into Consistence 93
6.2.5 Processing Observations in the System .. 95

Conclusions and Future Work 97

References 98

Vll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

5.1 Summary of Net Functions... 59
5.2 Neuron Activation F u n c tio n s .. 59

6.1 BN description file structure... 78

vin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 A chain DAG over a universe t / = (X i,A 2 , ...,X„) 3
1.2 (a) An undirected graph; (b) A directed graph; (c) A hybrid graph;

(d) A multiply connected directed graph; (e) A multiply connected
undirected graph... 3

1.3 The graphical model for the digital circuit.. 6
1.4 BNs support three kinds of reasoning: causal, diagnostic, and inter-

causal... 8
1.5 Pearl’s (or X — n) message-passing algorithm... 9

2.1 T is the junction tree of the undirected graph G 14
2.2 From DAG (a) to undirected moral graph (b) .. 15
2.3 (a) A DAG. (b) The undirected moral graph of (a) 16
2.4 Elimination of node a with one fill-in. Node d is already simplicial. . 17
2.5 (b) The resultant chordal graph after applying TriangulationByE-

limination algorithm on the undirected graph in (a).............................. 18
2.6 A chordal graph and two corresponding clique trees 20
2.7 Junction tree construc tion ... 21
2.8 Potential assignment of each cluster in the JT of Figure 2.1................. 23
2.9 Illustration of Collect Evidence (the black arrows) and DistrihuteEvidence

(the white arrows) activated from Qq... 24

3.1 A system of five components... 28
3.2 T in (b) is a hypertree over G in (a) after G has been sectioned in

to two subdomains.. 29
3.3 An agent interface {d, e} that is not a d-sepset. Each box represents

the DAG of one agent. Dots represent additional variables not shown
explicitly.. 30

3.4 Individual local moralization does not ensure correct moralization of
a hypertree MSDAG. In (b), the link (6, c) in G\ is not found in Gq
(.'. Gq and G\ are not graph-consistent).. 32

3.5 (a) An MSDAG consists of two subnets, (b) Their local moral graphs.
(c) JTs constructed from local moral graphs, (d) JTs constructed
after adding link {b, d) (the dotted link) to the local moral graphs. . . 35

3.6 Illustration of constructing LTs using merge operation.......................... 35

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 (a); A full-adder digital circuit consists of two units, (b): The MS­
DAG of (a), (c) and (d); The resultant moral and chordal super­
graphs respectively, (e): The LJF representation consists of two
agents each with a copy of L.. 39

4.1 Defining linkage peers for each linkage.. 43
4.2 (b) A hypertree over G in (a), which is sectioned into subgraphs in

(c)... 47
4.3 A simple MSBN. (a) Subnets, (b) The hypertree...................................... 52

5.1 A biological neuron... 54
5.2 A typical layered feed-forward ANN.. 57
5.3 McCulloch-Pitts neuron model... 58
5.4 Illustration of an acyclic graph (a) and a cyclic graph (b). The cycle

in (b) is emphasized with thick lines.. 60
5.5 A three-layer multilayer perceptron configuration.................................... 60
5.6 MLP example for back-propagation trainingsingle neuron case 61
5.7 Notations used in a multiple-layer MLP model... 64
5.8 Illustration of error back-propagation computation................................. 65
5.9 A feed-forward ANN, with dual-weight neurons in its hidden layers,

associated with a hypernode... 66
5.10 Illustration of UnifyBelief on a five-cluster chain in a JT 67
5.11 Feed forward ANN Recognizing the number “3” 68
5.12 Feed forward ANN Recognizing the number “5” 68
5.13 Feed forward ANN Recognizing the number “7” 69
5.14 Feed forward ANN Recognizing the number “8” 69
5.15 The hypertree of the digital system shown in Figures 6.1 through 6.3

with an ANN attached with agent A i .. 70
5.16 Two charts, the first shows the identity level between the actual

output of e — messagci (obtained from the proposed model) and the
desired output (obtained from agent Ai). The second chart reflects
how low the difference (distortion) between the actual e — messagei
and the desired e — messagei is.. 71

5.17 Two charts, the first shows the identity level between the actual
output of e — message^ (obtained from the proposed model) and the
desired output (obtained from agent Ai). The second chart reflects
how low the difference (distortion) between the actual e — messagei
and the desired e — messagei is.. 72

6.1 The five physical components of a digital system.................................... 77
6.2 The integrated view of the digital system... 79
6.3 The five virtual components of the digital system................................... 80
6.4 The subnet Go for virtual component Uq.. 81
6.5 The subnet Gi for virtual component Ui.. 81

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 The
6.7 The
6.8 The
6.9 The

82
82
83
96

X I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This research is motivated by the need to support inference in intelligent decision
support systems offered by multi-agent, distributed intelligent systems involving
uncertainty. Probabilistic reasoning with graphical models, known as Bayesian
networks (BN) or belief networks, has become an active field of research and practice
in artificial intelligence, operations research, and statistics in the last two decades.

At present, a BN is used primarily as a stand-alone system. In case of a large
problem scope, the large network slows down inference process and is difficult to
review or revise. When the problem itself is distributed, domain knowledge and
evidence has to be centralized and unified before a single BN can be created for the
problem.

Alternatively, separate BNs describing related subdomains or different aspects
of the same domain may be created, but it is difficult to combine them for problem
solving, even if the interdependency relations are available. This issue has been
investigated in several works, including most notably Multiply Sectioned BNs (MS­
BNs) by Xiang [Xiang93]. MSBNs provide a highly modular and efficient framework
for uncertain reasoning in multi-agent distributed systems.

Inspired by the success of BNs under the centralized and single-agent paradigm,
a MSBN representation formalism under the distributed and multi-agent paradigm
has been developed. This framework allows the distributed representation of un­
certain knowledge on a large and complex environment to be embedded in multiple
cooperative agents and effective, exact, and distributed probabilistic inference.

W hat a Bayesian network is, how inference can be done in a Bayesian net­
work under the single-agent paradigm, how multiple agents’ diverse knowledge on
a complex environment can be structured as a set of coherent probabilistic graph­
ical models, how these models can be transformed into graphical structures that
support message passing, and how message passing can be performed to accomplish
tasks in model compilation and distributed inference are covered in details in this
thesis.

The thesis is organized into six chapters. The first chapter, Chapter 1, intro­
duces Bayesian networks as a concise representation of probabilistic knowledge and
demonstrates the idea of belief updating by concise message passing using Pearl’s
algorithm (or A — t t algorithm). Chapter 2 describes stepwise how to compile a BN

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

into a junction tree (JT) model and covers probabilistic inference by concise mes­
sage passing under the single-agent paradigm. Also, algorithms for belief updating
by passing potentials as messages in a JT are presented. Chapter 3 explains in de­
tails the framework for the distributed representation of probabilistic knowledge in
a cooperative multi-agent reasoning system. It is shown that the MSBN restrictions
follow directly from a set of very basic assumptions and required properties. It also
presents a set of distributed algorithms used to compile an MSBN into a collection
of related junction tree models, termed a linked junction forest (LJF) for effective
multi-agent belief updating. A set of algorithms for performing effective, exact, and
distributed inference by the agents in an MSBN organized as an LJF is covered in
Chapter 4. In this chapter, we propose an efficient method that can guarantee per­
forming belief assignment over all d-sepnodes in a hypertree. The method aims to
relax the constraint of Xiang’s model [Xiang93], namely the assumption of JPDs to
be consistent with agent’s belief. The model proposed can start from an arbitrary
agent and its associated belief and establish the consistency in a practical man­
ner. Chapter 5 addresses the issue of slow inference in multi-agent the model and
how to overcome this problem by providing some enhancement to speed it up. A
new model is introduced here using concepts from artificial neural network (ANN).
An overview of ANN is given too. Chapter 6 presents an efficient object-oriented
Bayesian network framework built by C-|—P. The package deals with a BN entities
as objects starting with a simple variable and ending with an agent (a hyper node).
Implementation results for a simple BN, a single-agent JT, and a multi-agent hyper
tree are shown as well (including the compilation processes for both, JT and LJF
models).

xni

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction: Bayesian Network
Theory

A Bayesian network (BN) is a form of probabilistic graphical model, named after
Thomas Bayes (1702-1761). A Bayesian network, also known as Bayesian belief
network, belief network, probabilistic network, causal network, or influence diagram,
is a graphical structure for representing the probabilistic relationships among a
number of variables and doing probabilistic inference with those variables [17].

1.1 B ayes’ T heorem
Probability theory has adopted the autoepistemic phrase “...given that Y is

known” as a primitive of the language [18]. Syntactically, this is denoted by placing
Y behind the conditioning bar, in a statement such as P {X \Y) = p. This
statement combines the notions of knowledge and belief by attributing to A a
degree of belief p, given the knowledge Y. Y is also called the context of the belief
in X, and the notion P (A |T) is called Bayes conditionalization. Thomas Bayes
made his main contribution to the science of probability by associating the English
phrase “...given that I know T ” with the now-famous ratio formula:

P(X\Y) = (11)

Eq. 1.1 has become a definition of conditional probabilities. The probability of an
event X conditional on another event Y, P {X \Y), is generally different from the
probability of Y conditional on X, P {Y \X). However, there is a definite relationship
between the two, and Bayes’s theorem is the statement of that relationship [1].

1.1.1 B a y e s’ T h eorem

Given two events X and Y such that P {X) > 0 and P (T) > 0, then the following
equality follows directly from Eq. 1.1 [16]:

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION: BA YESIAN N ETW O RK TH EO RY

P(X |K) = (1.2)

where:

• P(X\Y) is the posterior probability of the hypothesis X, given the data Y,

• P(Y\X) is the probability of the data Y, given the hypothesis X, or the like­
lihood of the data,

• P(X) is the prior probability of the hypothesis X, and

• P(Y) is the prior probability of the data Y, or the evidence.

Furthermore, given n mutually exclusive and exhaustive events A i, A 2 , ...A„ such
that P{Xi) > 0 for all is, we have for 1 < / < n,

= rZfrnSL
Two other rules are important in Bayesian networks, the expansion rule and the
chain rule.

1.1 .2 E xp an sion rule

Consider the situation where A and Y are random variables with n possible out­
comes:

P {X) = P (X \y ,).P {y ,) + P {X \y 2).P{y2) + . . . + P{X\y.,).P{y„)
n

= E A V | y ,) . - P f e) or = J 2 P W n P (Y) (1.4)
1=1 r

Applying the expansion rule means that variables can be introduced on the right-
hand side of the equation, as long as we sum over all their possible values. This
concept is also known as the marginal probability of A , meaning that only the prob­
ability of one variable, A , is important and all information about other variables,
Y , is ignored.

1.1 .3 C hain rule

This rule is derived by writing Bayes’ Theorem in the following form, which is called
the product rule:

p (A ,y) = p (y |A) . f (y)
= P (X \Y) .P (X) (1.5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRODUCTION: BA YESIAN NETW O RK TH EO RY

X i)— --

Figure 1.1: A chain DAG over a universe U = (Ai, A 2 , ..., A„)

Figure 1.2: (a) An undirected graph; (b) A directed graph; (c) A hybrid graph; (d)
A multiply connected directed graph; (e) A multiply connected undirected graph.

Considering the simple Bayesian network shown in figure 1.1, let 17 = (Ai, A 2 , ..., A^)
be a universe of variables. Successive application of the product rule in the follow­
ing, yields the chain rule:

? ([/) = f(A i,A 2 ,...,A ,.)
= -P (A i, ..., A „ _ i) .P (A „ |A x , ..., A „ _ i)

= P (A i , ..., A„_2)-F(A,^_i |A i , ..., A „_2).P (A „ |A i , ..., A n -i)

= P (A i).P (A 2 |A i)...P (A jA i,...,A ^_ i)
n

= P(Ai).%%(A,|Ax,...,A,_x) (1.6)
t= 2

Therefore, the joint probability distribution P{U) is the product of all condi­
tional probabilities specified in a Bayesian network:

n

P{U) = (1,7)

where 7r(Aj) is the parent set of A,.

1.2 B asic D efin itions

i= l

1.2.1 G raph (G)

A graph is a symbolic representation of a network and of its connectivity. It mod­
els an abstraction of the reality into a set of linked nodes. A graph G is a set
of vertices (nodes) V connected by edges (links) E. Thus G = (V ,E). Graphs

Reproduced with permission ot the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRODUCTION: BAYESIAN N ETW O RK TH EO RY 4

can be of different types such as directed (where all links in the graph have direc­
tions. figure 1.2(b)), undirected (where all links have no directions, figure 1.2(a)),
and hybrid (where the graph has both kinds of links, see figure 1.2(c)) [21]. For
undirected graphs, terminologies are introduced to describe the neighborhood of a
node, a path from one node to another, a cycle in a graph, a graph within another
graph, and other aspects of connectivity of a graph. For directed graphs, additional
terminologies are introduced to describe a directed path or cycle and to name nodes
at different locations on a directed path.

V ertex (N ode)

A node u is a terminal point or an intersection point of a graph. We can use nodes
to represent events. Each node contains a conditional probabilistic table, OPT,
that contains probabilities of the node being a specific value given the values of its
parents.

Edge (Link)

An edge e is a link between two nodes. The link {X, Y) between the pair of nodes
X and y shows a direct relationship between them. A link is called directed or
unidirectional when it is represented as an arrow and may be called an arc. When
an arrow is not used, it is assumed the link is bidirectional. A unidirectional arc
(X, Y) is directed from X (called the tail of the arc) to Y (called the head of the
arc). We also refer to A as a parent of Y and to y as a child of A.

1.2.2 P a th p

A path p in a directed graph is a directed path if each node in p, other than the
first and the last, is the head of one arc in and the tail of the other arc in p. If
there is a directed path from a node A to a node Y (A, N i ,N i , . .. ,N k ,Y) , then A
is called an ancestor of Y and Y is called a descendant of A. A path is a cycle if it
contains two or more distinct nodes and the first node is identical to the last node.

A graph is connected if there exists a path between every pair of nodes, as all
graphs in Figure 1.2). A connected graph is a tree if there exists exactly one path
between every pair of nodes, as graphs in (a), (b), and (c); otherwise, it is multiply
connected as graphs in (d) and (e).

1.2.3 D irected A cy c lic G raph (D A G)

A directed graph G is acyclic or is a directed acyclic graph if it contains no directed
cycles. A directed acyclic graph is often referred to as a DAG. In Figure 1.2, the
directed graphs in (b) and (d) are DAGs. The graph in (b) is singly connected and
has no cycles. The graph in (d) is multiply connected and while (A, y, W, Z , X) is
a cycle, it is not a directed cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION: BA YESIAN N ETW O RK TH EO RY 5

1.2 .4 D -S ep aration

In a DAG, d-separation is a property of two nodes x and y with respect to a set
of nodes Z. x and y are said to be d-separated by Z if no information can flow
between them when Z is observed [9]. The d in d-separation stands for “directed
acyclic graph” . Informally, two variables x and y are independent conditional on
Z if knowledge about x gives you no extra information about y once you have
knowledge of Z. In other words, once you know Z, x adds nothing to what you
know about y. Formally, a path p between two variables x and y is closed or blocked
by a set of nodes Z if (1) There exists z E Z that is either a fork (tail-to-tail) or
a chain (head-to-tail) on p or (2) There exists a node v that is a collider (head-to-
head) on p and neither v nor any descendant of v is in Z. If both conditions fail,
then p is rendered open by Z. Nodes x and y are d-separated by Z if every path
between x and y is closed by Z\

In a simple chain, X — Z — > Y , if X is d-separated from Y conditional on
Z, then X is independent of Y conditional on Z. The following formula expresses
the result.

p (A , y |z) = f (A |%)f (y |z) (1.8)

1.3 B ayesian N etw orks
A Bayesian network represents and processes probabilistic knowledge. The rep­

resentational components of a BN are a qualitative and a quantitative component.
The qualitative component encodes a set of conditional dependence and inde­

pendence statements among a set of random variables, informational precedence,
and preference relations. The statements of conditional dependence and indepen­
dence, information precedence, and preference relations are visually encoded using
a graphical structure.

The quantitative component, on the other hand, specifies the strengths of depen­
dence relations expressed by the assignment of the joint probability distributions
(JPDs) to the nodes.

The graphical representation of a Bayesian network describes knowledge of a
problem domain in a precise manner. It is intuitive and easy to comprehend,
making it an ideal tool for communication of domain knowledge between experts,
users, and systems [14]. For these reasons, the formalism of probabilistic networks
is becoming an increasingly popular domain knowledge representation for reasoning
and decision making under uncertainty.

Furthermore, a Bayesian network is represented as a directed graphical model
whose nodes signify events (variables), and unidirectional links represent causal
dependence relations among the variables. In addition, there is a local probability
distribution for each variable given the values of its parents. Nodes can represent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION: BAYESIAN N ETW O RK TH EO RY

o-
So

93) ---------- O® /
94

S* - t ^ / Î Î \
92)-#--------------- tL Ï ^ ""C /Co -is-'''

Figure 1.3: The graphical model for the digital circuit.

any kind of variables, be it a measured parameter, a latent variable or a hypothesis.
They are not restricted to representing random variables. If there is an arc from
node X to another node T, then variable Y depends directly on variable X, and X is
called a parent of Y. Figure 1.3 shows the graph of a Bayesian network representing
knowledge of a full-adder digital circuit.

A Bayesian network can also be defined as a framework for explaining causal
relations consisting of a set of variables (each with a finite set of mutually exclusive
states) connected by a set of directed edges. Probability calculus is used to describe
the probabilistic relationship of each variable with its parents.

1.4 W hy a B ayesian network?

There are a number of models available for data analysis, including rule bases,
decision trees and artificial neural networks. There are also several techniques for
data analysis such as classification, density estimation, regression and clustering.
One may wonder what Bayesian networks and Bayesian methods have to offer to
solve such problems and why Bayesian networks are so interesting. The following
paragraphs provide five answers to the question [7].

First, Bayesian networks can handle incomplete data sets without difficulty be­
cause they discover dependencies among all variables. When one of the inputs is
not observed, most models will end up with an inaccurate prediction. That is be­
cause they do not incorporate a correlation between the input variables. Bayesian
networks suggest a natural way to encode these dependencies.

Second, Bayesian networks allow one to learn about causal relationships between
variables. There are two important reasons to learn about causal relationships.
The process is worthwhile when we would like to understand the problem domain,
for instance, during exploratory data analysis or when an agent is exploring the en­
vironment. Additionally, in the presence of intervention, one can make predictions
with the knowledge of causal relationships.

Third, considering the Bayesian statistical techniques, it is possible to combine
expert knowledge and data into a BN. Prior or domain knowledge is crucially im-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION: BA YESIAN N ETW O RK TH EO RY 7

portant if one performs a real-world analysis; in particular, when data is inadequate
or expensive. The encoding of causal prior knowledge is straightforward because
Bayesian networks have causal semantics. Additionally, Bayesian networks encode
the strength of causal relationships with probabilities. Therefore, prior knowledge
and data can be put together with well-studied techniques from Bayesian statistics.

Fourth, Bayesian methods give an efficient approach to avoid the over-fitting of
data during learning. Models can be smoothed in such a way that all available data
can be used for training by using Bayesian approach.

Finally, Bayesian networks are able to model causal relationships between vari­
ables.

1.4.1 A d van tages o f u sin g B ayesian netw orks

For over a decade, expert systems have used BNs in domains where uncertainty
plays an important role. Nowadays, BNs appear in a wide range of diagnostic
medical systems, fraud detection systems, missile detection systems, decision sup­
port systems, engineering, text analysis, image processing, data fusion, and spam
filtering [4].

In addition, Bayesian networks have a couple of properties that make them
popular and suitable. Eleven important properties are, in no particular order, the
following:

• BNs model probabilities naturally,

• BNs can derive posterior beliefs given some observations,

• BNs have a bidirectional message passing architecture,

• BNs have the ability to imitate human thinking processes,

• BN can be used as a classifiers,

• BNs can explain non obvious causal relationships,

• BNs can find the variables with the most impact,

• BNs can learn details about their own structure from raw data,

• BNs can model expert (subjective) knowledge,

• several useful algorithms exist, and

• BNs are simple and easy to learn.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION: BAYESIAN N ETW O RK TH EO RY

Causal
reasoning

Intercausal
reasoning

Allergy

Runny Nose

Diagnostic
reasoning

Figure 1.4: BNs support three kinds of reasoning: causal, diagnostic, and inter-
causal.

1.5 B ayesian inference
Inference is a process whose main goal is to calculate the probability function
F (Query I Evidence). The evidence is expressed as an instantiation of some vari­
ables in the BN. This section gives the details of an algorithm for exact inference in
Bayesian networks, namely Pearl's message-passing algorithm. Before we present
Pearl’s, let us introduce what kinds of inference Bayesian networks can support.

1.5.1 T y p es o f in ference in B N s

BNs can be seen as compact representations of “fuzzy” cause-effect rules that
are capable of performing causal and diagnostic inference as well as intercausal
inference (see Figure 1.4) [10].

Causal inference

Causal inference (top-down, P (E ffec t\C a u se)) follows the direction of the causal
links between variables of a model; e.g., P(Fever\Cold = true) or P(RunnyNose\Cold
true).

D iagnostic inference

Diagnostic inference (bottom-up, P (C ause\E ffee t)) goes against the direction of
the causal links; e.g., P(Cold\RunnyNose = true) and P (Allergy\RunnyNose =
true) provide either cold or allergy being the correct diagnosis. Diagnostic inference
is a common task in expert systems.

Intercausal inference

Intercausal inference, or explaining away, (P(Cause\Cause)) in a Bayesian network
occurs when evidence that establishes a cause for an event reduces the likelihood

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION: BAYESIAN N ETW O RK TH EO RY

7tx(Wi>sU > ^x(W 2)

^x (Y i)/^ ^ \ A x (Yz)

Figure 1.5: Pearl’s (or X — t t) message-passing algorithm,

of other possible causes [5].

1.5 .2 P ea r l’s (or A — t t) m essage-p assin g a lgorith m

This algorithm depends on massage passing among nodes in the DAG to perform
exact inference. Given a set e of values of a set E of instantiated variables, the
algorithm determines P{x\e) for all values x of each variable X in the network.
It accomplishes this by generating messages from each instantiated variable to its
neighbors. The neighbors in turn, propagate messages to their neighbors.

Pearl’s message-passing algorithn, also known as A — t t algorithm, is applicable
for three topologies of BNs, chain, rooted-tree, and singly-connected DAGs. Infer­
ence in the forth topology, multiply-connected DAGs, can also be accomplished by
using this algorithm but in an indirect manner or method called loop cutset condi­
tioning [18]. Conditioning is the ability to form a multiply-connected DAG from a
number of singly-connected DAGs by instantiating a selected group of variables.

Since all DAG topologies are formed as singly-connected DAGs, we present only
inference in singly-connected DAGs.

Inference in singly-connected DAG s

The two rules that are needed for inference are Bayes’ theorem (Eq. 1.2) and the
expansion rule (Eq. 1.4).
Let us consider that we want to know the probability of each value of the variable X
in Figure 1.5 given that evidence might come through its parents and children. Let
Yx be the subset of E containing all members of E that are in the subtree connected
with X through its children, and let Z x be the subset of E containing all members
of E that are in the subtree connected with X through its parents. We have for each
value of X ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION: BA YESIAN N ETW O RK TH EO RY 10

F (a : |e) = P { x \ e D ^ , e A x)

P{^Dx) ^Ax)
F (eo^ |x)P (e^^ |x)P (x)

PifiDxi
P{eD^\x)P{x\eAx)P{&Ax)P{^)

Baye s Theorem, Eq.[1.2)

<= d — separation Eq.(1.8)

-- Baye's Theorem, Eq.{\.2)

Pip-Dx) ^Ax)

Letting a — A(r) = P (eo^ |z), 7t(x) - P (x |e^^), then
P{eox,eAx)

P(x|e) = o;A(x)7r(x) (1.9)

a is a constant that does not depend on the value of x, \{x) is called “A — va lue’’
of x and depends on A — messages coming from its children, and 7t(x) represents

“t t — value” of x and depends on tt — messages coming from its parents.
The following equations and equalities describe how A — value and t t — value

can be obtained, and what A — messages and t t — messages represent.

1. A value:
II X E E and %'s value is x*, then

A(x*) = 1, A(x : X X *) = 0

I I X ^ E and % is a leaf, for all values of x,

A(x) = 1

If % ^ P and X is a notleaf, for all values of x,

A(x) = P(eDx|2:)
= P (e y i ,e y jx) -4= : {eyi,ey 2 }

— P(ey^|x)P(ey;|x) <#= D — Separation E q.(1.8)
n

= ^ = P(^yil^) (1.10)
i=l

2. TT value:
II X E E and % ’s value is x*, then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION: BAYESIAN N ETW O RK TH EO RY 11

7t(x*) = 1, 7t(x : X X*) = 0

If % ^ P and % is a root, for all values of x,

7t(x) = P(x)

If % ^ P and % is a notroot, for all values of x,

7t(x) = P (x |e^^)

P(x|6]yj^, 6 VV2) ^Ax ’ (^

= P(x |w i, W2)P(w i, Wzlewi, ewg) <= Eq.{lA)
Wi,VJ2

= ^ P(x|wi,W 2)P(wi|eM^jP(w 2 |etyJ ^ Eq.{1.8)
Wi,W2
^x{wi) = P{wi\ewi), then

m

= ^ (^P{x \wi ,W2, . . . ,Wm)Y[TTx{ 'Wi)y (1 .11)
Wi,W2,-;Wm i= l

3. A m essage:
For each child X of W), for all values of w,,

\x{w i) = ^ \ { x) ^ (P(x|?xi,...,'u;,„) J j7 rx (rc j)y (1.12)
X Wj :jÿti jÿii

where Wjj,^i are the other parents of X .

4. 7T message:
Let % be a parent of Yi. Then for all values of x,

(1.13)

The algorithm:

All formulas involved in inference in singly-connected DAGs just have been men­
tioned with details. We shall now summarize the steps of the algorithm considering
a typical node X having m parents, ITx, W2 , ..., W^, and n children, F^, L2 , ...,
as in Figure 1.5.

Three types of parameters need to be available in order to compute the belief
distribution of variable X :

1. The current strength of the causal support tt — message contributed by each
incoming link Wi X (from Eq. 1.13).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION: BAYESIAN N ETW O RK TH EO RY 12

2. The current strength of the diagnostic support A — message contributed by
each outgoing link X —>Yj (from Eq. 1.12).

3. The CPT of X with respect to its immediate parents, P{x\wi,W 2 ,

Using these parameters ready, local belief updating can be performed in three steps:

1. B elief updating: When node X is activated, it simultaneously inspects the
messages 7rx(Wi), i = 1,..., m communicated by its parents and the messages
Ay^(x), j = l , . . . ,n communicated by its children. Using these inputs, it
updates its belief measure according to Equations 1.10, 1.11 and 1.9. q is a
normalizing constant rendering P(x) = 1.

2. D iagnostic m essage-passing (Bottom -up): Using the messages received,
node X , according to Equation 1.12, computes new A — messages, (Ax(wi),
Ax(w2), ..., Ax(tCm)), to be sent to its parents.

3. Causal m essage-passing (Top-down): Each node, according to Equation
1.13, computes new t t — messages, (7Ty (̂x), 7Ty (̂x), ..., 7Ty^(x)), to be sent to
its children.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Prom Directed Acyclic Graphs to
Junction Trees

The junction tree propagation method (Jensen [11]) involves the extraction of an
undirected graph from a DAG in the Bayesian network, and the creation of a tree
whose vertices are the cliques of a triangulated graph [12].

2.1 T he Ju n ction Tree fram ework

The method is a message-passing algorithm, where messages are seen as local
computations involving two maximal cliques of the graph. Its general view for
undirected graphical models can be described as follows:

1. Moralization. The first step is to generate a moral graph by connecting the
parents of each node pairwise and making all edges in the graph undirected.

2. Triangulation. This step is to triangulate the moral graph, or equivalently to
make it a chordal graph by the proper insertion of new edges.

3. Junction Tree construction. A hyper-graph, whose nodes are the maximal
cliques of the chordal graph, is constructed.

4. Potentials assignment. The nodes of the Junction Tree are initialized with a
product of probability distributions in a proper manner.

5. Propagation. A message-passing or potentials propagation algorithm is run
on the Junction Tree in order to systematically update the potentials and
bring it into consistency.

2 .1 .1 T h e J u n ctio n T ree d efin ition

Trees of cliques are a concept from graph theory that play an important role in
problems like probabilistic inference, co^nstraint satisfaction, query optimization,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 14

■ ■— '■"■-Cn Ci ' -X
; g i ,S o ,a ,b ; g2 ,Co,a ,b ;

~ I S o ,a ,b I _ I c p ,a ,b i

a,So,Co,b)

! So,Co
' ^ p 3

L So,Ci.Co)

i So,Ci] I Cl,Co

7 ' V \ ('g4,ci,Ci,so') j C^5,c,Ci,Co)

G) ---------
93iS,Cj,So /

Figure 2.1: T is the junction tree of the undirected graph G.

and matrix decomposition. Clique trees are also called junction trees or join trees.
Beliefs in the original Bayesian network are updated by passing messages among

the nodes as we have seen in Section 1.5 on page 8. Once the junction tree is built,
we no longer in need of the original DAG.

Definition

A junction tree (JT) is a tree T whose nodes and edges are annotated with sets
of vertices from an undirected graph G. The vertex set associated with a junction
tree node is called the node’s clique. The vertex set associated with a junction tree
edge is called the edge’s separator, and it is defined to be the intersection of the
two incident nodes’ cliques.

A valid junction tree T for an undirected graph G should satisfy two properties:

• Every clique of G is contained in at least one clique of T; and

• the cliques of T satisfy the running intersection property: For each pair 17, V
of cliques in the junction tree T with intersection 5, all cliques on the unique
path between them contain S.

An example of an undirected graph G and its junction tree T are shown in Figure
2 . 1 .

In order to construct a junction tree from a Bayesian network. A series of
graphical transformations tha t result in a joint tree can be summarized as follows:

1. Construct an undirected graph, called a moral graph, from the directed acyclic
graph (DAG) representation of the Bayesian network.

2. Triangulate the moral graph by adding arcs selectively to form a chordal
graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 15

3. From the chordal graph, identify selected subsets of nodes, called cliques.

4. Build a junction tree: connect the cliques to form an undirected tree that
satisfies junction tree properties, and insert appropriate separators.

2.2 M oral G raph
A moral graph is an intermediate undirected graphical representation to facilitate
the conversion of a DAG model to a junction tree model.

Given the DAG G of a Bayesian network. For each child node in G, connect
its parent nodes pairwise and make all links in the graph undirected. The resultant
undirected graph G is the m oral graph of G .

For example, the undirected graph in Figure 2.2(b) represents the moral graph
of the DAG in (a).

s

a

7 ib'

I -93

' ^ c

Figure 2.2: From DAG (a) to undirected moral graph (b)

2.3 G raph triangu lation (C hordal graph)
A JT can be derived from the triangulated moral graph of the DAG rather than from
the DAG directly. This is because a JT uniquely defines an undirected graphical
structure, and hence a trangulated moral graph of the DAG provides a more direct
basis to work on than the DAG itself. For example, consider the JT T in Figure
2.1. Construct an undirected graph Cf with the generating set of the JT as the
nodes. For each pair of nodes contained in a cluster in the JT, connect the pair in
G '. The resultant G' is the graph G in Figure 2.1.

To build a JT, the cliques must be determined. In a JT, each cluster admits no
graphical separation and signifies no conditional independence internally. Similarly,
in an undirected graph G, a set of pairwise-connected nodes admits no graphical
separation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 16

% ---------------------

(a) (7 (b) > '
. ►0'̂ " — — —

Figure 2.3: (a) A DAG. (b) The undirected moral graph of (a)

A set of nodes in an undirected graph G is com plete if they are pairwise connected.
A maximal set of nodes that is complete is called a m axim al clique in G. Let D(G)
be the set of maximal cliques of G.
Because a clique is a maximal set of variables without graphically identifiable con­
ditional independence, it should become a cluster in the JT representation. The
JT T in Figure 2.1 has Cq through Cq as its clusters.

Unfortunately we can not construct a JT from cliques of every moral graph G.
Given a connected undirected graph G and D{G), then there exists a junction tree
T whose clusters are elements of D{G) i f and only if G is chordal [21].
As an example, consider the DAG in Figure 2.3 (a) with its moral graph in (b),
the cliques are {a, b}, {a, e}, {b, c}, {c, d, e}. No cluster graph made out of these
clusters is a JT.

Given an undirected graph G, a path or cycle p has a chord if there is a link in
G between two nonadjacent nodes on p. G is chordal or triangulated if every cycle
of length greater than 3 contains a chord. A cycle of length > 3 without a chord is
called a chordless cycle. The graph G in Figure 2.1 is chordal, but in Figure 2.3(b)
is not because the cycle (a, 6 , c, e, a) of length 4 does not have a chord.

A node v in an undirected graph G is simplicial if the nodes adjacent to it,
adjfu), are complete. Figure 2.3(b) has one simplicial node d. A chordal graph G
has at least one simplicial node [2 1].

Definition

A Chordal graph establishes a relation between moral graphs and junction trees. It
is shown that a moral graph model must be converted to a chordal graph in order
to construct a junction tree model.
The next subsection presents an algorithm known as triangulation by elimination
for converting a moral graph into a chordal graph. Elimination also provides a
simple way to check if a graph is chordal.

2.3 .1 C on vertin g th e m oral graph in to a chordal graph

A simple operation called node elimination is introduced here so it can be used for
triangulating a moral graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 17

b*-
(a) (b)

Figure 2.4: Elimination of node a with one fill-in. Node d is already simplicial.

Given an undirected moral graph G. A node v is eliminated from G if and only
if V is simplicial. Otherwise, links are added to G to make v simplicial and then v
is eliminated. The necessary added links are called fill-ins. Figure 2.4 illustrates
the elimination of nodes d and a. Because d is already simplicial, no fill-ins were
needed. Elimination of node a required the fill-in (6 , e). Each of b, c and e can
be subsequently eliminated in an order, because they are now simplicial. No more
fill-ins need to be added.

An undirected moral graph G is eliminatable if all nodes can be eliminated in
some sequence without any fill-ins. Nodes in Figure 2.4(c) can be eliminated in the
order {d, a, b, c, e) without fill-ins; hence, the graph is eliminatable. Note that if the
graph is eliminated in the order (d, b, a, c, e), a fill-in {a, c) needs to be added when
eliminating b. Consequently, as long as there exists one elimination order tha t is
fill-in free, the graph is eliminatable. On the other hand, if no such order can be
found, the graph is not eliminatable.
In fact, an undirected moral graph G is chordal if and only if it is eliminatable [21].

Triangulation by elimination algorithm [21,23] provides a straightforward way
to check if a graph is chordal.

A lgorithm (IsChordal)

Given an undirected moral graph G = {V^E), do the following lines and return
T R U E if G is chordal; F A L S E otherwise.

for i = 1 to \V\, do
search for a simplicial node v;
if found, eliminate v;
else return fa lse;

return true;

If G is not chordal, elimination of nodes will require fill-ins. If these fill-ins are
added back to G, the resultant graph G' will be chordal.

Given an undirected moral graph G — {V, E) and a set of fill-ins F produced
by eliminating all nodes of G in any order, then G' = (V] JE U F) is eliminatable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. FROM DAGS TO JUNCTION TREES 18

-A.,

' • c

Figure 2.5: (b) The resultant chordal graph after applying TriangulationByElimi­
nation algorithm on the undirected graph in (a).

In general, we can obtain an eliminatable graph from an undirected graph by
making a simple modification of algorithm IsChordal: At each iteration of the fo r
loop, if a simplicial node cannot be found, eliminate a node with the minimum
number of fill-ins needed and store the fill-ins. At the end of the for loop, return
O' = (F ,E U F) .

A lgorithm (G etChordalG raph)

Given an undirected moral graph G = (V ,E) do the following lines and return a
chordal graph G' = (V, E') where E' = E U F

F" = 0
for i = 1 to |F |, do

search in G for simplicial node v;
if found, eliminate v;
else

select a node w with the minimum number of fill-ins required to eliminate w;
add fill-ins produced to F;
add fill-ins to G;
eliminate w;

return G = {V, E C F);

Figure 2.5 illustrates how the chordal graph can be obtained from a moral graph
by using the above algorithm, triangulation by elimination. Underlined numbers
show the elimination sequence and dashed lines represent the fill-ins links.

The triangulation process has been introduced in order to convert the moral
graph of a BN into a chordal graph so th a t a JT model can be built. Fill-ins
added during triangulation causes the loss of some graphical separation relations
and hence should be kept minimal. Unfortunately, the minimality in selecting w of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 19

algorithm GetChordalGraph does not guarantee finding the chordal graph with the
minimum number of fill-ins. The problem is NP-complete [21].

2.4 C onstructing Ju n ction Trees from C hordal
G raphs

For a fixed moral graph, the elimination sequence determines the triangulated
graph. The maximal cliques of this triangulated graph determine a junction graph
and from that: a junction tree.

In this section, we assume that G is a triangulated or chordal graph.
In order to construct a JT T from the triangulated moral graph G of a BN,

the set 0(G) need to be identified. Once 0(G) is determined, a junction graph
H = {V, 0(G), E) is defined. Then, by removing specific separators from E on H,
a junction tree T can be obtained.

2.4 .1 Id en tify in g C liques

Given a chordal graph G and its elimination sequence 7 = (ui, U2 , ..., u„), if each
node Vi and its adjacenct nodes are saved as a clique G, = U adj{vi) just before
it is eliminated, the resulting record will contain all the possible maximal cliques
of G. In order to obtain 0(G), every clique G, that is contained in another clique
Cj needs to be removed.

2.4 .2 From Q(G) to an efficient J T rep resen ta tion

Given a graph of cliques H = (V, O, F) , a junction tree T can be constructed by
forming a maximal spanning tree from H. A tree of cliques will be constructed with
separators. We have to mention here that not every clique tree is a junction tree.
A clique tree is a junction tree if and only i f it satisfies the running intersection
property. In particular, a junction tree is a maximum weight spanning tree of H
where the weights on the separators are the number of variables shared by the two
cliques [1 2].

Figure 2.6 shows that not all the clique trees obtained from a set D of cliques,
generated from a chordal graph G, are junction trees.

Once the set Q obtained, an algorithm called greedy algorithm, or P rim ’s algo­
rithm for a maximal spanning tree, will be used to identify how O members will be
connected and then what the set E of links will be.

G reedy Spanning Tree A lgorithm

In general, for maximal spanning tree problems on a graph of vertices, each link is
assigned a weight. The goal of the problem is to select a spanning tree so th a t the
total of the weights of the selected links is maximized [6]. For a graph of cliques, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 20

(a) A non-junction tree

:a:b,e

b,e

> ç A ê : ’

(b) A junction tree

£ c j ; l , b S >

Figure 2.6: A chordal graph and two corresponding clique trees

vertices are cliques, and the links are separators. I this setting Prim ’s Algorithm
becomes:

1 . Choose a single clique arbitrarily Q*;

2 . start a junction tree T with the chosen clique Q*;

3. add remaining cliques one at a time. At each step connect a new clique Q*
with a clique in T that has the most number of variables in common,
unless this would create a cycle. If two or more separators have the same
weight, add the corresponding cliques arbitrarily.

Given a set Ü of cliques Ü = {{a ,b ,c ,d}, {e ,f,b ,g } , { e , f ,h ,i} , { j , f , k }] ,
Figure 2.7 illustrates applying the greedy spanning tree algorithm on fl. The four
clusters Cq through C3 are shown in (a). Suppose that the junction tree T starts
with a single cluster C2 arbitrarily. The intersections of Gg with each of Go, Gi, and
G3 are 0, {e, /} , and f, respectively. The weights of the corresponding separators
will be 0, 2, and 1 , respectively. Hence, C\ is connected to C2 as in (b). The
remaining clusters Gq and G3 have the intersections 0 and { /} with Gg, respectively,
and have the intersections {b} and { /} with Gi, respectively. At this point, three
alternatives produce the equal total weight: connecting G3 to Gg, connecting Gq to
Cl, or connecting G3 to G%. Suppose that the tie is arbitrarily broken by connecting
G3 to Gg, as in (c). Finally, the remaining cluster Gq has the intersections {b}, 0, and
0 with Cl, C2 , and G3, respectively. It is connected with Gi as in (d). Construction
of the junction tree T is done.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 21

a, b, c, da, b, c, d

e,f b,g

e , f h, i e,f, h, i

a, b, c, d a, b, c, d

e,fi b,g

e , f h, i e , f h , i

Figure 2.7: Junction tree construction

From what we just have seen in the preceding example, the construction of a
junction tree is not unique. That is, given a chordal graph, multiple corresponding
junction trees exist in general. However, they all satisfy the running intersection
property.

Before we introduce the propagation part in junction trees, we need to give each
separator in the JT a label consisting of the intersection between its terminal clus­
ters. As we can see in Figure 2.6(b), clusters are shaped as ellipses but separators
are shaped as boxes.

2.5 B e lie f U p d atin g in Jun ction Trees
In order to use a JT representation of a BN for belief updating, the CPTs of

the BN need to be converted into the potentials over the JT. A potential function
-ipc of a particular cluster C is defined as a function that associates to each joint
realization of the random variables in C a positive real number (which is called
potential) [3]. This potential can be considered as a non-normalized (not summing
to 1) probability distribution defined over a cluster Q or its subsets. A potential
is equivalent to a probability distribution because it differs only by a normalizing
constant and the constant can be removed at any time [2 1].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 22

2.5 .1 T h e S y stem P o ten tia l o f a JT

The following two formulas show the relation between the JPD of a BN domain
and the cluster and separator potentials of a JT representation.

Given a junction tree representation T = (P, G, ^) , we define the system poten­
tial SP for T as

v » T (n = p . i)
Qeu Sen

The system potential of a JT T is equal to the JPD defined by its original
BN.

V;r(y) = n = f (P) (2.2)
v € V

2 .5 .2 In itia liza tio n o f p o ten tia ls

Once the DAG of a BN has been moralized and then triangulated, and a junction
tree T has been built, The clusters in T shall have joint probability tables, known
as potentials, attached to them. The size of each potential table is the product of
the numbers of states of relevant variables. The total size increases exponentially
with the sizes of the cliques.

Now, we show how to initialize the clusters potentials in a JT representation
so that its system potential, SP, is equivalent to the JPD of the corresponding
Bayesian network; see Equation 2.2.

For each probability distribution (CPT) in the DAG G of the original Bayesian
network, assign this distribution into only one cluster in T tha t contains all the
variables referenced by the CPT (The moralization step guarantees the existence
of at least one such node). The following few lines have more details:
Given a junction tree T — (P, 0, E) obtained from the DAG G — (P, G, P) of a
BN, for each cluster Q and each separator S, create a potential tpQ or ips for it and
initialize it to unity {ipQ = 1, ips = I)- A potential ipq is uniform if for each q E D q ,

ipQ=q = 1. Let fm ly(v) = {u} U tt{v), for each node v in G, find a cluster Qy in
T such that fm ly{v) Ç Qy and break ties arbitrarily. Update 'ipQv to the product
i ’Qv * P(r;|7r(u)). From the BN in Figure 1.3 on page 6 and its JT in Figure 2.1 on
page 14, Figure 2.8 illustrates the potential of each cluster.

2.5 .3 C o n sisten cy in a JT

Given two adjacent clusters Q and C in a junction tree T, Q and C are said to
be consistent if their potentials, -0 q and 'ipc, satisfy the following formula:

V'q(Q) = consti * ips{S) = const2 * ^ fpc{C) (2.3)
Q \ S C \ S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 23

P(a)P(b)P(gi)P(So\a,b,gi) P(92)P(co\a,b,g2)

("gi,So,a,bj j^2,Co,a,b)
j I c o ; C b i

Q | ^ ^ , c o , b ;

1 Sq.Cq I

Y j ,^ 0 ,C l ,C o /' ^

P (C i)P (g 4)P (c i\C i,S o ,g 4) I S q . C i : | ~ ^ C q I

*\ 9 4 > C l , C j , S o y \ 9 5 > C , C i , C o)

o T o — ^ 5

(93,S,Ci,So)

Figure 2.8: Potential assignment of each cluster in the JT of Figure 2.1.

where S is the separator between Q and C, and consti and const2 stand for positive
constants.

Local Consistency:

Given a junction tree T = {V, (1, E, ’F), if every pair of adjacent clusters {Q, C) is
consistent, T is said to be locally consistent. Because T is locally consistent, if any
cluster Q passes a potential to an adjacent cluster C over their separator S^q ĉ),
the message cannot change ipc{C).

Global C onsistency

If every pair of clusters, (not necessarily adjacent) Q and C, is consistent, then T
is said to be globally consistent and it holds that:

V'o(Q) = const * Y2 i>c{C) (2.4)
Q\c C\Q

2 .5 .4 T h e A b so rp tio n M eth o d

This is a method developed by Jensen in 1990 [11], for belief updating in a JT
representation of a BN through concise message passing. The main purpose of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 24

Qs

Figure 2.9: Illustration of CollectEvidence (the black arrows)
DistributeEvidence (the white arrows) activated from Qo-

and

Absorption is to bring adjacent clusters in a JT representation into consistence.
Absorption is an operation that passes messages from a cluster Q to an adjacent
cluster C through their separator S and modifies Us and Uc in such a way that
the joint probability of the junction tree is preserved [21]. Such an operation can
be done by performing the following:

1 . From Q to 5' by updating Us{S) to U's{^) = J2q\s '^q(Q)-

2. From S to C by updating Uc(C) to U'ci^) = i ’c{C) * ^

Given two adjacent clusters Q and C in a JT T and their separator S, Q and C
are consistent after an absorption is performed over the separator in each direction
(C absorbs from Q over S followed by the absorption of Q from C over S).

2.5 .5 T h e p rop agation a lgorith m

In general, inference in JTs is not different from what we have mentioned in Sec­
tion 1.5 on page 8 about inference in BNs. Again, belief updating is a process
whose main goal is to compute the probability function P{Query\Evidence). The
evidence, in fact, is the instantiation of a variable in the probabilistic system.

Section 2.5.4 on page 23 recommends that, to make a JT T = (V, fi, ^) lo­
cally consistent, absorptions need to be done along every separator in Q, in both
directions. These absorptions can be organized into two cycles of message passing,
CollectEvidence and DistributeEvidence [11]. Figure 2.9 illustrates these two
cycles.

The following two algorithms represent the two propagation cycles CollectEvidence
and DistributeEvidence respectively:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 25

A lg o rith m CollectEvidence

Given a JT T = (V, D, 'F), let Q be a cluster in T such that Q E D. A caller is
either an adjacent cluster C or T itself. When CollectEvidence is called in Q, it
does the following:

1. Q calls CollectEvidence in each adjacent cluster except the caller.

2. A fte r each called cluster has fin ished , Q absorbs fro m it.

A lg o rith m DistributeEvidence

Given a JT T = {V, D, ^) , let Q be a cluster in T such that Q E D. A caller is
either an adjacent cluster C or T itself. When DistributeEvidence is called in Q,
it does the following:

1. I f the caller is a cluster, Q absorbs fro m it.

2. Q calls DistributeEvidence in each adjacent cluster except the caller.

From the consistency definition in Section 2.5.3 on page 22, we can guarantee
that by performing CollectEvidence and DistributeEvidence on a JT T, every pair
of clusters is consistent. Consequently, T is globally consistent and the potential
over T is unified [21].

In Figure 2.9, T calls Qo to start CollectEvidence cycle. In response, Qo calls
Q2 , which in turn calls Qi and Q3 . When Qi {Qf) is called, it has no adjacent
cluster except the caller and hence returns immediately, causing Q2 to absorb from
Qi (Qa) through [8 2). After Q2 finishes, Qo absorbs from Q2 and terminates
CollectEvidence. The two cycles of message passing are combined in U n ify B e lie f.

A lg o rith m U n ifyB e lie f

Given a J T representation T = (T] 12, T selects a cluster Q*,{Q* E D), arbi­
trarily and calls the process CollectEvidence in Q*. After it has finished, T calls
the process DistributeEvidence in Q*.
Then after U n ifyB e lie f has finished, T is globally consistent.

2 .5 .6 A p p ly in g O b servations
For bringing the JT T into global consistency again after an observation has
been applied, we need nothing more than the three algorithms, {U n ifyB e lie f,
CollectEvidence and DistributeEvidence), that just have been mentioned.
All that remains is how instantiation of a variable can be applied in T and what
modifications need to be done among the set ^ of potentials to reflect that obser­
vation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. FROM DAGS TO JUNCTION TREES 26

Of course some potentials of specific clusters in T have to be modified. The fol­
lowing algorithm, called Enter Evidence, shows how an observation can be applied
in details.

A lg o rith m EnterEvidence

Given a J T representation T = {V ,Q ,^) and an observation X = x, for each x E
X , find a cluster Q in Q such that x E Q and replace Uq{Q) by U'q = U{Q)*obs(x).

i f X = x ;
W here obs{x) — <

t o otheTwise.

After EnterEvidence is performed the system potential has been changed.
If U n ifyB e lie f is performed next, according to Section 2.5.5, P{Q\x) can be ob­
tained from each cluster Q, where X E Q ,h j normalizing its potential Uq{Q)-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Multiply Sectioned Bayesian
Networks as Linked Junction
Forests

3.1 L im itations o f th e S ingle-agent Paradigm
Chapter 2 studied exact probabilistic reasoning using a junction tree representation
converted from a Bayesian network. It is considered that an agent makes observa­
tions on a domain, performs probabilistic inference based on its knowledge about
the relations among domain events, and estimates the state of the domain. However,
a single agent is limited by its knowledge, its perspective, and its computational
resources. Such a locality has its limitations:

• A problem domain may be too large and complex (e.g., designing intricate
machines and monitoring and troubleshooting complicated mechanisms), and
thus building a single agent capable of being in charge of the reasoning task
for the entire domain becomes too difficult.

• The problem domain may be open, distributed, or spread over a large ge­
ographical area, and thus transmitting observed variable values from many
regions to a central location for processing is undesirable owing to communi­
cations cost, delay, and unreliability (due to communication failures).

Because of these limitations, Yang Xiang [23] has realized that a set of cooperating
agents is needed to address the reasoning task effectively, that is using the local­
ity property of large BNs to create m u ltip ly sec tio n ed B a y e s ia n n e tw o rk s
(M S B N s) that are composed of one or more sections. This approach explores
the natural distribution of knowledge and sensors, and to distribute modeling and
inference accordingly using the multiagent paradigm.

Under the single-agent paradigm, a single computational entity, an agent, has
access to a BN over a problem domain, converts the BN into a JT, acquires obser-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MSBNS A S LINKED JUNCTION FORESTS 28

------Y
I Co
I____J

c,

i C4 i

C:

Figure 3.1; A system of five components.

vations from the domain, reasons about the state of the domain by concise message
passing over the JT, and takes actions accordingly.

In this chapter we consider large and complex uncertain problem domains popu­
lated by multiple autonomous agents. Also we show that the junction tree method,
presented in details in Chapter 2, can be extended to inference in multi-agent rea­
soning systems. Clearly, to benefit from the knowledge and observations of others,
agents must communicate (The term communication refers to any exchange of mes­
sages between two or more agents).

Figure 3.1 shows a system of five components that may be remotely located. Each
component is interfaced with one or more additional components.

3.2 B ackground K now ledge
The M SBN technique is an extension to the junction tree technique which trans­
forms a Bayesian network into an equivalent secondary structure where inference is
conducted. Because of this restructuring, belief propagation in multiply connected
Bayesian networks can be performed in a manner similar to that used in singly
connected networks [23].

3.2 .1 D efin itio n o f h y p ertree stru ctu re

Let G = (V, E) be a connected graph sectioned into subgraphs {Gi — {Vi, E,)}. Let
the GiS be organized as a connected tree T, where each node of T is labeled by a
Gi and each link between Cm and is labeled by the interface VÇn Ll Ki such that
for each i and j , Vj fl Vj is contained in each subgraph on the path between Gi and
Cj in T. Then T is a hypertree over G, each Gi is a hypemode, and each interface
is a hyperlink.

Figure 3.2 shows an example hypertree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. M SBNS A S LINKED JUNCTION FORESTS 29

Hypernode Hypernode

DAG

Hyperlink
 ! G]c, e

(a)
Hypertree

(b)

Figure 3.2: T in (b) is a hypertree over G in (a) after G has been sectioned in to
two subdomains.

3 .2 .2 D efin itio n o f M S B N

In general, an MSBN is a knowledge representation for distributed multi-agent
uncertain reasoning.
An M SBN M is a triplet (V ,G ,P): V — UiVi is the total universe where each
Vi is a set of variables called a subdomain, G = is the structure, a hypertree
M S DAG, and P = UjPi is the JPD, where each Pj is the product of the potentials
associated with nodes in Q . Each triplet Si = (V̂ , Gi, Pi) is called a subnet of M.

Two subnets Si and Sj are said to be adjacent if Gi and Gj are adjacent in the
hypertree.

3 .2 .3 T h e J P D o f th e M S B N

Given that for each variable x e V , exactly one of its occurrences (where {x } U 7 r(x)
is found) is assigned P(x|7r(x)), and each occurrence in other subgraphs is assigned
the uniform potential “1” , we have

= n f.(%)
i

= U (3.1)
x £ V

3 .2 .4 D -S ep se t C on cep t

Let Gi and Gg be two DAGs such that G = Gi U G2 is a DAG. A node x e / (/ =
Gi n G2) with its parents 7t (x) in G is a d-sepnode between G% and Gg if either
7r(x) G Vt or 7r(x) G I f every x G J is a d-sepnode, then I is a d-sepset.

Figure 3.3 illustrates the d-sepset concept. The agent interface is {d, e}. For the
shared variable e, we have 7r(e) ~ b,d and 7r(e) G Vq. Therefore, e is a d-sepnode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. M SBNS A S LINKED JUNCTION FORESTS 30

Figure 3.3: An agent interface {d, e} that is not a d-sepset. Each box represents
the DAG of one agent. Dots represent additional variables not shown explicitly.

For d, we have 7r(d) = { a ,/} , 7r(e) ^ Vq and 7r(e) ÇL Vj. Therefore, d is not a d-
sepnode and {d, e} is not a d-sepset. If, however, the arc (a, d) in Gq were reversed,
then {d, e} would be a d-sepset.

3.2 .5 I-m essages and E -m essages

To distinguish the message sent between nodes or clusters in earlier chapters, we
refer to it as an internal message or simply i-message, and we refer to the message
sent between agents as an external message or simply e-message. Accordingly,
we term direct communication between agents e-message passing. Note that both
i-messages and e-messages are concise messages.

3.3 T h e F ive B asic A ssum ptions o f M S B N s
It is clear that this representation is quite restrictive, especially with respect to
the allowed agent network structure. The following is a list of the major restric­
tions [22]: 1. Beliefs are represented using probabilities. 2. The complete domain
is sectioned into subdomains, and through shared variables the agents form a con­
nected network. 3. This agent network is structured as a tree. 4. The agent tree
satisfies the running intersection property, i.e. is a hypertree. 5. Each subdomain
is structured as a DAG. 6. The union of the DAGs of all subdomains is a connected
DAG. 7. Each edge in the hypertree is a d-sepset. 8. The JPD over the domain is
specified as in Section 3.2.3 on page 29.

In this section, it is shown that the MSBN restrictions follow directly from
a set of very basic assumptions and required properties [21]. These assumptions
are shown to give rise to a particular knowledge representation formalism termed
multiply sectioned Bayesian networks (MSBNs).

1. The first basic of these stipulates that each agent’s belief over its subdomain
is represented by probability distribution. This assumption not only requires

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. MSBNS A S LINKED JUNCTION FORESTS 31

each agent to represent its belief using a probability distribution but also to
perform belief updating exactly.

Consider a total universe V of variables over which a multi-agent reasoning
system made of n agents A o ,..., is defined. Each agent A^ has knowledge
over a subdomain Vi, where Vi C V and UiVj = V. From this basic assump­
tion, the knowledge of Ai is a probability distribution over its subdomain Vi
denoted by Pi{Vi).

2. The second basic assumption requires an agent Ai to communicate directly
with another agent Aj only with a concise message; its belief over the variables
they share Pi{Vi n Vj) where Vj n VJ 0.

The i-message passing in a junction tree can be used to achieve local con­
sistence between adjacent clusters (over their separator belief). Similarly, e-
message passing can be used to achieve consistence between adjacent agents
(over their interface belief) in their tree organization.

3. The third basic assumption requires that a simpler agent organization is pre­
ferred in which agent communication by concise message passing is achievable.
According to the result from Chapter 2, it follows that a tree-organization for
agent communication should be adopted.

4. The fourth basic assumption requires each agent to represent its subdomain
dependence as a DAG. As demonstrated in Chapter 1, a DAG allows the
agent’s belief over a subdomain to be encoded concisely (through the chain
rule). Hence, this assumption is a requirement about efficiency.

5. The last basic assumption requires the JPD to be consistent with each agent’s
belief over its subdomain. The assumption enforces cooperation among agents
and interprets the JPD thus defined as the collective belief of all agents.

3.4 Linked Jun ction Forests

It is desirable that a multi-agent MSBN performs exact inference effectively by
concise message passing as in the case of single-agent BNs. Chapter 2 showed
how to transform or compile a multiply connected BN into a JT representation to
perform belief updating by message passing. Because each subnet in an MSBN
is multiply connected in general, a similar compilation is needed to perform belief
updating in an MSBN by message passing.

3 .4 .1 T h e L JF Fram ew ork

In order to perform efficient inference in a distributed network, it is desirable to
transform each subdomain of an MSBN into a JT representation which will stand

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MSBNS A S LINKED JUNCTION FORESTS 32

(a) An MSDAG consists o f two suh-graphs: Go and G (b) The local moral graphs o f Go and G,

Figure 3.4: Individual local moralization does not ensure correct moralization of a
hypertree MSDAG. In (b), the link (6, c) in G) is not found in Gg (.’. Gg and G)
are not graph-consistent).

as an inference entity. The transformation takes several steps to be done. First
performin a global computation (moralization and triangulation) on the MSDAG
to find a set of chordal graphs from which a set of clique hypergraphs are formed.
Then the set of clique hypergraphs are organized into a set of JTs. Afterwards
interfaces or d-sepsets between the JTs are created in an alternate representation
called linkage tree. Finally, belief tables are assigned to clusters and linkages in
a certain manner. The outcome of the compilation is an alternative dependence
structure called a linked junction forest.

The message passing includes i-message passing within an agent for local in­
ference as well as e-message passing between agents so that each can benefit from
information maintained by others.

3.4 .2 C o o p era tiv e D istr ib u tiv e M oralization o f M S D A G

The first step in compilation of an MSBN is to transform the structure of its
hypertree MSDAG into its moral graph. Recall from Section 2.2 on page 15 that
the moral graph of a DAG is obtained by connecting parents pairwise for each child
node and dropping the direction of each arc.
Because local computation by individual agents without interaction does not en­
sure correct moralization of a hypertree MSDAG (See Figure 3.4), a cooperative
distributive moralization is needed.

Recursive algorithms for each agent are presented [21]. The execution of each
algorithm by an agent is activated by a call from an entity known as the caller.
We denote the agent called to execute the algorithm by A*. The caller is either an
adjacent agent of A* in the hypertree denoted by Ac or the system coordinator.

A lg o rith m (CoM oralize)

Algorithm CoM oralize is executed by the system coordinator to activate cooper­
ative moralization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. M SBNS A S LINKED JUNCTION FORESTS 33

start < CoM oralize >
choose an agent A* arbitrarily;
call A, to run CollectM Links;
call A* to run D istribu teM L inks;

end < CoM oralize >

A lg o rith m {CollectM Links)

An Agent A* performs local moralization (as it is described in details in Section 2.2
on page 15), updates its moral graph with links collected from adjacent agents, and
sends all relevant added moral links to the caller.

start < CollectM Links >
set M L inks = 0 ;
moralize G* and denote added moral links by L»;
add L* to M Links;
for each adjacent agent Ai{i = 1, ...,n) except caller, do

call Ai to run C ollectM Links and receive links Li over li from A, when done;
add Li to G* and to M L inks

i f caller is an agent Ac, send Ac the restriction of M L inks to T
end < CollectM Links >

A lg o rith m {D istributeM Links)

An Agent A* receives moral links from the caller Ag, updates its moral graph
accordingly, and sends all relevant added moral links to each adjacent agent.

start < D istributeM L inks >
i f caller is an agent Ac do

receive a set Lc of links over L from Ac;
add Lc to G* and to M Links;

for each adjacent agent Ai{i = 1, ...,n) except caller, do
send Ai the restriction of M L inks to L with links in Li removed;
call Ai to run D istribu teM L inks;

end < D istributeM L inks >

3 .4 .3 L inkage T rees as C om m u n ication C hannels

A JT should not just support effective local inference, but it should also support
communication among the hypertree.

An alternate representation of the agent interface, called a linkage tree (LT), is
used to support concise interagent message passing (e-messages). The need to con­
struct linkage trees imposes additional constraints when the moral graph structure
is triangulated into the chordal graph structure. An obvious method is to construct

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MSBNS A S LINKED JUNCTION FORESTS 34

the JT so that each d-sepset I with an adjacent agent is contained in a single cluster
Q. The e-message will then be the potential '0(1) computed by marginalization of
the cluster potential Uq{Q)-

In large problem domains, the d-sepsets are much larger. Applying the preceding
method will increase belief complexity \'iPq{Q)\ exponentially on the cardinality of
d-sepsets. It is possible to generate the e-message from a less complex d-sepset by
using a cluster tree as a graphical structure for computing the e-message.

Given the MSDAG in Figure 3.5 (a), the two corresponding JTs in (c) are
equivalent to those in (d). From (d), potentials, or e-message, over d-sepset (6, c, d)
can be computed in a direct way, such that

f(6,c,d) =
or

= ipCiiCi)

with belief complexity

| f (6 ,c ,d) |= 8

On the other hand, potentials over the same d-sepset can also be computed from
(c) such that

f(6,c,d) = f (6 ,c) f (c ,d) / f (c)
= V'Qo (,̂ c) * V'Qi (c, (f)/T(c)

or

where each of P(6, c) and P(c, d) is a potential over a cluster, and P(c) is the
potential over the corresponding separator.

The next algorithm shows how a linkage tree L can be constructed from a JT
T by using a graphical operation called merge. Let us first introduce the merge
operation. A cluster C in a JT is merged into another cluster Q if Q is replaced by
Q' = QU C, C is removed from the JT (together with its separator with Q), and
the other clusters originally adjacent to C are made adjacent to Q '.

A lg o rith m {ConstructLinkageTree)

Given a subgraph G in a hypertree MSDAG, the d-sepset I between G and an
adjacent subgraph G , and a JT T derived from G, perform the following procedure
in T. The resultant cluster tree will be the linkage tree L of G with respect to G .
Figure 3.6 illustrates how the merge operation leads to linkage tree construction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MSBNS A S LINKED JUNCTION FORESTS 35

r

J

r
b

c

d
J

(a) (b)

b, c, I

c ,d ,f

b, c,g

c, d j

b, c,g b, c, i

b, c, d
b, c, d

c, d ,f c, d J

(d)(c)

Figure 3.5; (a) An MSDAG consists of two subnets, (b) Their local moral graphs,
(c) JTs constructed from local moral graphs, (d) JTs constructed after adding link
(6, d) (the dotted link) to the local moral graphs.

To

T,

I r . (^ | l ^ 1

T ' T I
1 To 1

1 T l| 1 1

1 1 (4^ /) (J Ï 7) Ti 1
1 — "B, ic r— 1

(a) Removing e from Q> in 7}̂ and h from Cj in T, (b) Merging Q: into Qi in T,* and C; into O iin T/ (c) Removing./ from Qi in To. and i from Co in 7/

b, c, i

c, d , f c, d

(e) The resultant linkage tree L connects the tw o JTs To and T/(d) Removing g from Qo in 7)& and / from C/ in T,

Figure 3.6: Illustration of constructing LTs using merge operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MSBNS A S LINKED JUNCTION FORESTS 36

< stari>
do
search for a variable x in T such that x ^ / ;
i f X is found and contained in a unique cluster C

remove x from C;
if C becomes a subset of an adjacent cluster Q {C Ç Q)
merge C into Q:
make the other clusters originally adjacent to C adjacent to Q;
remove C and its separator with Q;

until no such x found;
<end>

Let L be the resultant cluster graph. Then L is a linkage tre e of T with respect
to I if

\ J q = i

Q e L

where each cluster Q in T is called a linkage. A cluster in T tha t contains Q
(breaking ties arbitrarily) is called the linkage h o s t of Q.

3 .4 .4 C o o p era tiv e T riangu lation in a H y p ertree

This step is to triangulate the moral graph of the MSDAG into a chordal supergraph.
The chordal supergraph is the union of a set of local chordal graphs, each of which
is a supergraph of a local moral graph. It is necessary for the same reason that
triangulation is used when compiling a BN : a junction tree of a graph exists i f and
only if the graph is chordal [21].

Given the moral graph G = UjGj of a hypertree MSDAG, each subgraph Gi
over Vi needs to be converted into a chordal supergraph G- over Vi such that U,G(
is a chordal supergraph G' of G and each pair of G- and G'j is graph-consistent.

In an LJF, d-sepsets need to be formed as LTs. In order to form each d-
sepset /, of an agent A* in a linkage tree representation, the local graph G* of A,
needs to be chordal supergraph G*. In other words, G* must be eliminatable with
respect to each adjacent agent A, in the hypertree T in the order (V*\/j, /,), where
(i — l...adj{A^)).

Next we present recursive algorithms for each agent for cooperative multi-agent
triangulation considering the most general case: to triangulate the moral graph of
a general hypertree MSDAG when the hypertree is populated by n > 3 agents. The
execution of each algorithm by an agent (denoted by A,) is activated by a caller,
which is either an adjacent agent (denoted by Ac) of A* or the system coordinator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MSBNS A S LINKED JUNCTION FORESTS 37

A lg o rith m (CoTriangulate)

CoTriangulate is executed by the system coordinator to activate the cooperative
triangulation by multiple agents.

start < CoTriangulate >
choose an agent A* arbitrarily;
call A* to run D epthF irstE lim inate;
after A* has finished, call A* to run D is tr ib u te e Links;

end < CoTriangulate >

A lg o rith m (D epthFirstE lim inate)

An Agent A* performs triangulation by elimination and updating with respect to
all its adjacent agents.

start < D epthF irstE lim inate >
i f caller is an agent A^ do

receive a set Lc of f i lL in s over F from Ac;
add Lc to G*;

set C Links = 0;
for each adjacent agent Ai(i = 1, ...,n) except caller, do

eliminate K in the order (V f\Ii,Ii) denote the resultant f i lL in s by L;
add L to G* and to CLinks;
send Ai the restriction of C Links to R;
call Aj to run D epthF irstE lim ina te and receive fi lL in s Li over R from A^;
add Li to G* and to CLinks;

if caller is an agent Ac, do
eliminate 17, in the order (17,\/c, F) and denote the resultant f i lL in s by L;
add L to G , and to CLinks;
send Ac the restriction of C Links to F;

end < D epthF irstE lim inate >

A lg o rith m (D istribu teeL inks)

An Agent A* receives moral links from the caller Ac, updates its moral graph
accordingly, and sends all relevant added moral links to each adjacent agent.

start < D istribu tee L inks >
if caller is an agent Ac do

receive a set Lc of f i lL in s over F from Ac;
add Lc to G, and to CLinks;

for each adjacent agent A{(i — 1, ...,n) except caller, do
send Ai the restriction of C Links to Fi
call Ai to run D istribu te C Links ;

end < D istribu tee L inks >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MSBNS A S LINKED JUNCTION FORESTS 38

Because only one execution of CoTriangulate does not guarantee that each Gi
{G = UjGj) is eliminatable with respect to all of its adjacent agents in the order
{V.j\Ij, Ij), it is required to rerun CoTriangulate until no new fi lL in s are produced.
The following algorithm SafeC oTriangulate extends CoTriangulate to ensure the
requirement on eliminatable order is fully satisfied.

A lg o rith m (SafeCoTriangulate)

CoTriangulate is executed by the system coordinator to activate the safe cooper­
ative triangulation by multiple agents.

start < SafeCoTriangulate >
do

perform CoTriangulate;
each agent performs an elimination relative to the d-sepset with each adjacent

agent;
until no agent added any filL in ;

end < SafeCoTriangulate >

3.4 .5 C on stru ctin g L ocal JT s and Linkage Trees: (L JF)

Before inference in a hypertree MSDAG is possible the structure has to be trans­
formed into an LJF with LTs as communication channels before belief updating
through concise message passing is possible [23] [21].

The chordal supergraph needs to be organized into an LJF representation to do
effective inference with concise message passing. This can be performed by.

• first, organizing all the local chordal supergraphs into their JT representation.
This transformation can be done locally in each agent without any cooperation
from any adjacent agent.

• second, because each JT (as an entity) in an LJF is connected with its adjacent
JTs through LTs, those linkage trees must be constructed locally from the
agent’s JT using the method described in Section 3.4.3 on page 33.

This task needs to be performed by each individual agent. The final structure will
be an LJF.

Figure 3.7 illustrates how a MSDAG of a full-adder digital circuit can be com­
piled in to a multi-agent LJF managed by two agents.

After the local JT and LTs are constructed by each agent, the hypertree MSDAG
in the original MSBN has been converted into a different dependence structure,
which is an LJF. Thus, an LJF structure is formally defined as follows;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MSBNS A S LINKED JUNCTION FORESTS 39

o-
,o-

U,

o-
So

Uo\
- o

g 4
S t

g 2 H * -
Co_

(a)

g s _

1 r , r

I I b 1

1 1 a *
1 1 #

1 1

' 1 1

1 ^

! '

I 1 ^ 0 j
' L ^ ! |

S0--..g3

r

L L

(d)

Co, C„ gs, C

(e)

Figure 3.7: (a): A full-adder digital circuit consists of two units, (b): The MSDAG
of (a), (c) and (d): The resultant moral and chordal supergraphs respectively, (e):
The LJF representation consists of two agents each with a copy of L.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MSBNS A S LINKED JUNCTION FORESTS 40

An LJF F is a tuple {V, G ,T ,L). V = CiVi is the total universe, where each K
is a set of variables, called a subdomain.

G = UiGi, where each Gi = (%, Ei) is a chordal graph such that there exists a
hypertree T over G .

T = {Tj} is a set of JTs, each of which is a J T of the corresponding Gi.

L = {Li} is a collection of LT sets. Each Li = {L ij} is a set of linkage trees,
one for each hyperlink incident to Gi in T. Each L ij is a LT o fT with respect to
a hyperlink fl V̂-.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Inference in Distributed
Multi-agent Reasoning Systems

In order to start performing belief updating in an LJF representation, the quanti­
tative knowledge in the original MSBN needs to be transformed into knowledge in
the LJF as well. As in the single-agent paradigm, the knowledge needs to be con­
verted from conditional probability distributions over the variables in the subnet
into potentials over the cliques and separators in the corresponding JT. Because
in an LJF we have additional entities, linkage trees, these too have to be assigned
potentials.

4.1 In itia l P o ten tia l A ssignm ent

In each JT % in the LJF, in the same way as in the single-agent paradigm, first,
each cluster and each separator in Tj is given a uniform potential “1” . Second, for
each variable x find a cluster Q that contains fm ly{x) {fm ly{x) Ç Q), and break
ties arbitrarily. Update ipqiQ) to fpgiQ) = ipgiQ) * P(x|7r(x)). In each LT Lÿ in
Tj, each linkage in Lij is given a uniform potential.

Once potentials for clusters V'Q,(Qy) and separators ipSkiSk) of local JTs Ti and
linkages 4’qXQ i) of LTs are assigned, all other potentials can be defined accordingly.
These include the following potentials:

• a potential for each local JT:

f e W) = [i i ’̂ « j (%)] / [n ^ s . (s .)] (4.1)
3 fc

where j is over the indices of all clusters in T, and k is over the indices of all
separators.

• a potential for each separator in each LT. A potential of a separator Sk can
be computed from either of the two linkages with it:

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. INFERENCE IN DISTRIBUTED MULTIAGENT SYSTEM S 42

M S ,) = M (Q ,} (4.2)
Q k\Sk

a potential for each LT. Because a LT is a tree, its potential can be calculated
just as in a JT and is defined as:

M (M=[n 1̂0. / [n (s,)] (4.3)
k I

where k is over the indices of all clusters in and I is over the indices of all
separators.

a joint system potential (JSP) for the entire LJF representation. The JSP
over the universe V is associated with the LJF F and is defined as

where i is over the indices of all JTs in P and j is over the indices of linkage
tree (one for each d-sepset).

4.2 E -m essage P assin g am ong A gents

4.2 .1 W h y E x ten d ed L inkage P oten tia l?

Recall from Equation 4.3 that the potential of a linkage tree L ij over a d-sepset
l i j is defined as

=[n>f«.(«-.)]/[n'̂ sW)
k I

where k is over the indices of all linkages in and I is over the indices of all
separators.

When the LT is locally consistent, each separator potential carries redundant
information because it is simply a marginal of some cluster potential. The ap­
pearance of the product of separator potentials as a denominator in the preceding
equation is just to remove this redundance from the numerator (the product of
cluster potentials).

Instead of removing redundance after the product, an extended potential asso­
ciated with each linkage in an LT leads to a computation shortcut.

Let L be a linkage tree of a local JT. Convert L into a rooted tree by selecting a
linkage Q arbitrarily as the root and direct links away from it. For each linkage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. INFERENCE IN DISTRIBUTED M ULTIAGENT SYSTEM S 43

Figure 4.1; Defining linkage peers for each linkage.

Q' ^ Q, assign the separator with its parent linkage as the peer separator R of
Q ' -

In Figure 4.1, if the linkage Qo is chosen as the root, then no peer will be assigned
to it. The peer separator of each other linkage is marked beside the linkage.
After linkage potentials, separator potentials, and linkage peers have been defined,
we can derive an extended linkage potential:

for each linkage Q with peer R in L, do
define its extended linkage potential iPq{Q) = 'ipQ{Q)/'ipji[R);

for the linkage Q labeled as a root (without peer),
define its extended linkage potential tpQ{Q) = 3Pq{Q);

Now the linkage tree potential V'z.ij (Aj) can be expressed in terms of extended
linkage potentials as

'4’Li,j(Ii,j) = J3'0q(<5) (4.5)

4 .2 .2 P a ssin g B elie fs th ro u g h Linkages

Because agents in a system organized as an LJF representation have to be consis­
tent, we introduce two algorithms U pdateBelief and AbsorbThroughLinkage to
achieve consistence by message passing [21,23]. U pdateBelief algorithm is analo­
gous to Absorption in Section 2.5.4 on page 23 for message passing in a single-agent
JT. It propagates belief from an agent to an adjacent agent through linkages in the
linkage tree between them. AbsorbThroughLinkage algorithm is to propagate be­
lief from one agent to an adjacent agent through a single linkage.

A lgorithm U pdateB elief

Here, the message originates from a local JT and is targeted at another local JT.
The channel is a d-sepset and (a hyperlink) in the form of LT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. INFERENCE IN DISTRIBUTED M ULTIAGENT SYSTEM S 44

Let Ai and A j be adjacent agents. Ai is associated with local J T T i and LT Li, and
Aj with Tj and Lj. When UpdateBelief is called on Ai with respect to A j, it does
the following:

start < U pdateBelief >
call A j to assign a new potential eocA linkage Qj in Lj;
for each linkage Qi with host Q in Li, do

call AbsorbThroughLinkage for Q to absorb through Qi;
call U n ify B e lie f (Section 2.5.5 on page 25) at Ti;

end < U pdateBelief >

Upon request from Ai to assign a new potential for each linkage in Lj, A j does the
following:

start < subUpdateBelief >
for each linkage Qj with host Cj in L j, do

OSS# = E c ,\o , V 'c/C j);
end < subUpdateBelief >

A lgorithm AbsorbThroughLinkage

Let Ai and A j be adjacent agents. A, is associated with the local J T T i OTid linkage
tree Li, and A j with Tj and Lj. Let Qi be a linkage in Li, Q be the linkage host of
Qi in Ti, and Qj be the corresponding linkage in Lj. When AbsorbThroughLinkage
is called on Ai for Q to absorb through Qi, the following occurs:

start < AbsorbThroughLinkage >
send a request to Aj to transmit ipQ^iQj);
upon receipt. Ai updates its host potential ip'(j.{Gi) — ifcXCi) * V'Q
update linkage potential V’q.(Qi) = 'fpQ.{Qj);

end < AbsorbThroughLinkage >

4.3 T he C om m unication P rotoco l in an LJF
An LJF representation is operated by multiple agents with one at each hyper­

node. The multi-agent belief communication in an LJF is organized as follows:
The main algorithm Com m unicateBelief is for belief propagation and calls first
the algorithm Collect B e lie f and after that the algorithm D istributeB elief [23]
[2 1]. G ollectBelief recursively propagates belief inwards from terminal agents to­
wards an initiating agent, where GollectBelief is analogous to GollectEvidence
for the single-agent paradigm proposed by [11] (See Section 2.5.5 on page 24).
D istribu teB elie f recursively propagates belief outwards from the initiating agent
to the terminal agents and is analogous to DistributeEvidence also proposed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. INFERENCE IN DISTRIBUTED MULTIAGENT SYSTEM S 45

by [11]. Running Com m unicateBelief will bring the LJF into global consis­
tence. When observations made by the agents, the evidence is injected into the
multi-agent reasoning system by the observing agent with Enter Evidence. After
C om m unicateBelief is called, the LJF will be returned to a globally consistent
state.

The execution of each algorithm by an agent is activated by a call from an entity
known as the caller. We denote the agent called to execute the algorithm by A*.
The caller is either an adjacent agent of A* in the hypertree denoted by Ac or the
system coordinator.

A lgorithm C om m un ica teB elie f

Algorithm C om m unicateBelief is executed by the system coordinator to activate
global communication.

start < Com m unicateBelief >
choose an agent A* arbitrarily;
call A* to run CollectBelief;
call A* to run D istributeB elief;

end < Com m unicateBelief >

A lgorithm C ollectB elief

As it is mentioned at the beginning of this section, C ollectBelief algorithm is
responsible for performing the first belief propagation cycle inwards on the hypertree
of an LJF. An agent A* updates its belief over the shared variables with all of its
adjacent agents (except Ag if applicable) by absorbing through its linkage trees with
them and unifies its local belief (just as an independent JT) after each absorbtion.
If no adjacent agent exists except the caller, it just unifies its belief over T,. A
caller is either an adjacent agent Ag or the system coordinator.

start < CollectBelief >
i f there is no adjacent agent except caller

execute U n ifyB e lie f locally at T,,;
else

for each adjacent agent Ai{i = l ,. .. ,n) except caller, do
call Ai to run CollectBelief;
execute U pdateB elief relative to A,;

end < CollectBelief >

A lgorithm D istr ib u teB e lie f

D istributeB elief algorithm is responsible for performing the other belief propa­
gation cycle outwards on the hypertree of an LJF. An agent A. updates its belief
over the shared variables with the caller (if applicable) by absorbing through its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. INFERENCE IN DISTRIBUTED MULTIAGENT SYSTEM S 46

linkage tree with Ac and unifies its local belief (just as an independent JT). A, then
motivates the remaining adjacent agents to recursively distribute their beliefs. A
caller is either an adjacent agent A ̂ or the system coordinator.

start < D istributeB elief >
i f caller is an agent Ag

execute U pdateBelief locally at T, relative to A ^
for each adjacent agent Ai(i = 1 , ...,n) except caller, do

call Ai to run D istributeB elief;
end < D istributeBelief >

4 .3 .1 C o m p lex ity o f M u lti-a g en t C om m u n ication

We consider the time complexity of C om m unica teB elie f in a multi-agent reason­
ing system organized into an LJF. We used the following parameters to characterize
the LJF.

• a: the total number of agents in the system.

• b: the maximum number of clusters in a local JT.

• c: the cardinality of the largest cluster in local JTs.

• d: the cardinality of the largest junction in local JTs.

• e: the maximum number of linkages in a linkage tree.

During C om m unicateBelief algorithm, U pdateB elief is performed twice
for each hyperlink in the hypertree, once during CollectBelief, and once during
D istributeBelief. Hence, U p d ateB elief is performed 2(a — 1) times because a
tree of a nodes has a — 1 links.

U p d ateB elief has three steps. The first step updates up to e local linkage
potentials (one for each linkage) and has a complexity of 0(62^^). In the second
step, AbsorbThroughLinkage is performed up to e times (one for each linkage).
For each AbsorbThroughLinkage, an extended linkage potential is transmitted,
and a linkage host potential is updated. Hence, this step has the complexity 0{e2Q.
In the last step of U pdateB elief, U nifyB elief is performed. U nifyB elief calls
A bsorptions twice over each separator. The complexity of A bsorptions is 0(2^).
Hence, complexity of U nifyB elief is linear on b (there are n — 1 separators) and
exponential on c, 0(62^). The overall complexity of U pdateB elief is then

0((6-F2e)y=).

Combining the preceding analysis, we arrive at the conclusion that the com­
plexity of C om m unicateB elief is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. INFERENCE IN DISTRIBUTED M ULTIAGENT SYSTEM S 47

(b,c,d)

(a) (b)

e
_I

(c)

Figure 4.2: (b) A hypertree over G in (a), which is sectioned into subgraphs in (c).

0(o(b + 2e)2"). (4.6)

It is assumed that the shared variables between a pair of agents are a small subset
of either subdomain involved. This implies 6 3> e. Therefore, the complexity of
C om m unicateBelief can be simplified to

0(a62^)_ (4.7)

4.4 A P ractica l Issue on Im plem enting D istr ib u ted
M ulti-agent R eason ing System s

The dependence structure of a multi-agent reasoning system is a hypertree multiply
sectioned DAG G. Hence, a JPD over a set of variables V can be defined by
specifying a local distribution for each node (or variable) and applying the chain
rule. Each node in G is either internal to an agent (a non-d-sepnode), or it is
shared between some agents, which in the latter case is referred to as a d-sepnode.

The distribution for a non-d-sepnode can be specified by the corresponding
agent vendor or owner. On the other hand, the parent set of a d-sepnode within
each agent may differ. In Figure 4.2(c), c has two parents in Go and one parent in
Gi. From Section 3.2.4 on page 29, all parents n{x) of a d-sepnode x must exist in
at least one agent in G.

When agents that contain x are developed by the same vendor and owned by the
same owner, only P (x |7r(a;)) needs to be specified. For each agent A, that contains
7fi{x) C 7 t (x) , Pi{x\TVi{x)) is implied [21].

In a distributed multi-agent reasoning system with agents that are built by
different vendors or owned by different owners, it is possible that Pi{x\ni{x)) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. INFERENCE IN DISTRIBUTED M ULTIAGENT SYSTEM S 48

Pj{x\nj{x)) are inconsistent for a pair of agents A, and Aj. This may occur even
when ni{x) = T̂ j{x). For instance, in Figure 4.2(c), Po{d\c) by A q may be incon­
sistent with Pi(d]c) by A^. Inconsistence may also occur when TVi{x) ^ nj{x). For
instance, in Figure 4.2(c), Aq may have P q (c = coja = o i , 6 = bo) = 0.8, whereas
Ai may specify Pfyc = Co\b = fy) = 0.

Xiang, in [23], made a basic assumption to integrate independently built agents
into a coherent system. In a distributed multi-agent reasoning system, each agent
has no knowledge beyond its shared variables. For example, no agent can be abso­
lutely certain of exactly how many parents | 7 t (x) | a d-sepnode x has. We must also
assume that each agent protects the knowledge about its non-d-sepnodes as much
as possible, revealing as little as possible.

Here, we propose an efficient method that can guarantee performing belief as­
signment over all d-sepnodes in a hypertree. The method aims to enforce the
constraint of Xiang’s fifth assumption in a practical manner. The method is built
mainly on the following five agreements:

1. Each node in each agent has an attribute of its nature {true: x is a physical
local variable, false: otherwise).

2. Each agent has its own rank given by the system coordinator.

3. An agent having the maximum number of parents |7r(x)| of a d-sepnode x will
be permitted to assign its conditional probability over x.

4. In case of more than one agent having the same value of |7r(x)|, the agent
with positive physical attribute of x is more entitled to assign its conditional
probability over x.

5. When more than one agent has the same]7t (x) | and x is virtual to all of
them, the agent with better rank (a lower rank) will be permitted to assign
x ’s conditional probability.

This method uses a very simple logic. That is, an agent Aj proposes to assign
its conditional probability Pj(x)7rj(x)) over a d-sepnode x (even if)7rj(x)j = 0), so it
sends a request to each adjacent agent Aj asking it to assign a uniform “1 ” instead
of its conditional probability Pj{x\TTj{x)) over x. Aj may agree or disagree. It
agrees by sending back an acceptance and disagrees by sending back an objection
explaining why. Through passing a sequence of such e-messages among agents
organized in an LJF, a single assignment of d-sepnodes’ conditional probabilities
in the distributed multi-agent reasoning system can be achieved. This relaxes the
condition that the JPD of each d-sepnode will be consistent with each agent’s belief
over its subdomain

The method is represented by three algorithms, BeR eadyToC om m unicate,
Uniform V, and W ithdrawV. BeR eadyToC om m unicate is the main algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. INFERENCE IN DISTRIBUTED M ULTIAGENT SYSTEM S 49

and it has been given this identification name because it needs to be performed just
before the first call of Com m unicateBelief.

Before we present the algorithms, for each hypernode in the hypertree, assume that
we have;
I = UiL] where i 6 \adjacent agents\
Rank: is given by the system coordinator;
Assigned = {P}\{7};
Suspended = 0.

A lgorithm B eR eadyT oC om m unica te

BeReadyToCommunicate algorithm is responsible for performing the potential
assignment globally for the d-sepsets’ variables in the hypertree of an LJF. Before
an agent A, assigns its belief over a shared variable u, it calls its adjacent agents
to assign a uniform belief over v. If any of them feels more entitled than A*, it
sends back an objection. As a response. A* will be content with assigning a uniform
belief.

The caller is either an adjacent agent Ac or the system coordinator. First, the
system coordinator chooses an agent A* arbitrarily and calls it to run BeReadyToCommunicate
to activate global potential assignment.

start < B eR eadyToC om m unicate>
for each variable Vi (î = 1,..., |/ |) , such that v 0 Assigned, do

if Vi G Suspended,
assign u, ’s conditional probability locally;
remove Vi from Suspended;

else
set R n = Rank;
set Objector = 0;
set Pr = |7r(ui)|;
set Ph =
for each adjacent agent Aj (j = 1 , ...,n), except Ac, do

send {vi, Pr, Ph and Rn} to A j and call it to run U niform V ;
if A j sent back an objection,

add A j to Objector;
receive new Pr, Ph and Rn from Aj ;

endif;
next Aj;
if Objector = 0,

assign v̂ ’s conditional probability locally;
else

assign a uniform for u, locally;
for each objector Oj {j = 1,..., \Objector\ — 1), do

^true: i f Vi is a physical local variable.
I false: otherwise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. INFERENCE IN DISTRIBUTED M ULTIAGENT SYSTEM S 50

send Vi to agent Qj and call it to run W ithdraw V;
next Qj;

endif;
endif;
add Vi to Assigned;

next V i;

for each adjacent agent Ai {i = 1 , ...,n), except Ac, do
call Ai to run B eR eadyToC om m unica te;

next Ai;
end < B eR eadyToC om m unicate>

A lg o rith m U n ifo rm V

Uni fo rm V algorithm is responsible for assigning variable v a uniform belief locally
when the agent has no objection available. It receives a variable v, its maximum
number of parents Pr, its physical attribute Ph and the rank of the original re­
quester agent Rn, from Ac and checks locally if A* is more entitled to assign its local
belief over v. If so, A* assigns its local properties about v instead of the received
ones. It in turn calls its adjacent agents to assign a uniform belief over v. In case
of any adjacent agent has an objection. A* withdraws its objection, and assigns
a uniform belief over v. Finally, if any objection exists, no m atter its source. A*
sends back an objection to Ac attached with the best properties about v.

start < U niform V>
receive {u, Pr, Ph and R n} from Ac,"
set Objection = fa lse;
if (|7r(u)| > Pr OR
(j7r(u)| = Pr AND Ph = fa lse AND v is a physical local variable) OR
(j7r(u)| = Pr AND Ph = v's physical attribute AND Rank < R n)),
update P r = |7t(u)|

, , r-ti (true: i f v is a physical local variable.

update R n = Rank;
set Objection — true;

endif;
set Objectors = 0;
for each adjacent agent A, = 1 ,..., |adjacents|) except Ac, such that v E R, do

send {u, Pr, Ph and R n} to Aj and call it to run U niform V ;
if Ai sent back an objection,

receive new {v, Pr, P h and Rn} from Aj,-
add Aj to Objector;

endif;
next Aj,'
i f Objection = fa lse or Objector ^ 0,

assign a uniform for v locally;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. INFERENCE IN DISTRIBUTED M ULTIAGENT SYSTEM S 51

add V to Assigned;
eke,

add V to Suspended;
endif;
for each objector O, {i = 1 , |Objector| — 1), do

send V to agent O, and call it to run W ithdraw V;
next Oj,
if Objection = true or Objector ^ 0,

send back an objection to A^ as well as the new {v, Pr, Ph and Rn};
else

send back an acceptance;
endif;

end < U niform V >

A lg o rith m W ithdraw V

In W ithdraw V algorithm, as a response to the call from Ac, agent A* cancels
its objection about the variable v in case of having an objection and assigns it a
uniform belief locally. If it does not have an objection, and because it still keeps
the objector set, it calls only the last objector in the set to withdraw its objection
and assign v a uniform belief.

start < W ithdraw V>
receive v from Ac/
i f v E Suspended,

assign a uniform for v locally;
add V to Assigned;
remove v from Suspended;

else
send V to agent Objector\objector\ call it to run W ithdraw V;

endif;
end < W ithdraw V>

Exam ple

Here is an example to show how the proposed method can correctly assign the
belief of the d-sepnodes in an LJF. Figure 4.3 shows a hypertree consisting of four
agents and their subgraphs, Sq, S\, 8 2 , and S 3 with belief assignment from this
method labeled. For simplicity, we hid the non-d-sepnodes’ belief assignment and
we suppose all variables in the system are virtual variables (their physical attribute
is false).

We start by giving each agent (Aq, ..., A3) a rank value, let say 3, 1, 2 , and
0 respectively. By calling Aq to run BeR eadyToC om m unicate, the following
processes will be done:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. INFERENCE IN DISTRIBUTED M ULTIAGENT SYSTEM S 52

/ \ f ’<i I

(a)

./■

h
Pi 11 A ,

I II

(b)

ila.h

A ']

Ai)

IWI

/ \ //A.//

Figure 4.3: A simple MSBN. (a) Subnets, (b) The hypertree.

j4q calls A 2 to run U n ifo rm V (/, 0, fa lse , 3).
A 2 calls A i to run U n ifo rm V (/, 1 ,/oZse, 2).
A i adds / to Suspended set and sends back an objection to A 2 with {1, f a l s e , 1).
A 2 assigns a uniform belief to / locally and adds / to A ss ign ed set.
A 2 sends back an objection to Aq w ith (1 , fa lse , 1).
A q assigns a uniform belief to f locally and adds f to A ss ign ed set.
yfo calls A 2 to run U n ifo rm V (t, 1 ,/a lse , 3).
A 2 eidds i to Suspended set and sends back an objection to A q w ith (2, fa lse , 2).
A q assigns a uniform belief to i locally and adds i to A ss ign ed set.
Ao calls A 2 to run U n ifo rm V (j, 2 ,/.aise, 3).
A 2 calls A 3 to run U n ifo rm V ^ . 2 , fa lse , 3).
A 3 assigns a uniform belief to j locally, adds j to A ss ign ed set and sends back an acceptance to A 2 ■
A 2 assigns a uniform belief to j locally, adds j to A ss ign ed set and sends back an accep tance to Aq.
Ao assigns j ’s conditional probability locally and adds j to A ss ign ed set.
Ao calls A 2 to run B eR ea d y T o C o m m u n ic a te .
A2 assigns t ’s conditional probabihty locally, removes i from Suspended set and adds i to A ss ign ed set.
A 2 calls A j to run U n ifo rm V (p , 1, fa lse , 2).
A i adds g to Suspended set and sends back an objection to A 2 w ith (1, f a l s e , !) .
A 2 assigns a uniform belief to g locally and adds g to A ss ign ed set.
A 2 calls A i to run U n ifo rm V (h , 0 , /a ise , 2).
A i adds h to Suspended set and sends back an objection to A 2 w ith (0, fa lse , 1).
A 2 assigns a uniform belief to h locally and adds h to A ss ign ed set.
A2 calls A3 to run U niform V (fc, 2 ,/a ise , 2).
A3 assigns a uniform belief to k locally, adds k to A ss ign ed set and sends back an acceptance to A 2 .
A 2 assigns fc’s conditional probability locally and adds k to A ss ign ed set,
A 2 calls A 3 to run U n ifo rm V (i, 1, fa lse , 2).
A 3 adds i to Suspended set and sends back an objection to A 2 w ith (1, fa lse , 0).
A 2 assigns a uniform belief to i locally and adds i to A ss ign ed set.
A 2 calls A i to run B eR ea d y T o C o m m u n ic a te .
A i assigns f ' s conditional probabihty locally, removes / from Suspended set and adds / to A ss ign ed set.
A i assigns g ’s conditional probability locally, removes g from Suspended set and adds g to Ass ign ed set.
A i assigns h's conditional probability locally, removes h from Suspended set and adds h to A ss ign ed set.
A 2 calls A3 to run B e R e a d y T o C o m m u n ic a te .
A 3 assigns i’s conditional probability locally, removes I from Suspended set and adds I to A ss ign ed set.

From the preceding progress, P{j\i,p) is assigned in Aq because no other agent
has local |7r(j)| more than A q . For P{f\g), P{g\h) and P{h\$), both agents A i and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. INFERENCE IN DISTRIBUTED M ULTIAGENT SYSTEM S 53

A 2 have the maximum value of |7t (x) | but because Ai has better rank, it assigned
them locally. The maximum value of | 7 t (x) | for both i and k are found in A 2 , so
it assigned P{i\ f ,g) and P{k\h,i) locally. For P{l\k), both agents A 2 and A 3 have
the maximum value of | 7 t (/) | but because A 3 has better rank, it assigned P{l\k)
locally. All leaf agents (except the one called by the system coordinator) in an LJF
in their turns of running BeR eadyToC om m unicate do not need to send any
e-message asking for acceptance because all their variables are already assigned or
suspended. Thus, each leaf agent just assigns its conditional probabilities of its
suspended variables locally.

Now we can clearly conclude that this proposal algorithm is efficient and ad­
equate to satisfy Xiang’s 5*̂ assumption in case of a real distributed multi-agent
reasoning system without revealing any agent’s internal knowledge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Artificial Neural Networks
Playing a Role in Multi-agent
Reasoning Systems

5.1 In troduction to N eural N etw orks

Figure 5.1: A biological neuron.

How a face in a crowd can be recognized? How the weather condition can be
predicted by a forecaster or a weather analyst? Faced such problems, the human
brain uses a network of interconnected processing elements called neurons to pro­
cess information. Each neuron is autonomous and independent. It does its work
asynchronously. The two problems posed, namely recognizing a face and forecast­
ing the weather condition, have two important characteristics that distinguish them
from other problems: First, the problems are complex, that is, you can not create
a simple step-by-step algorithm or accurate formula to give an answer. Second,
the available data to resolve the problems is equally complex and may be noisy
or incomplete. The huge processing power inherent in biological neural structures
has inspired the study of the structure itself for hints on organizing human-made

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 55

computing structures. Artificial neural networks (ANN) cover the way to organize
synthetic neurons to solve the same kind of difficult, complex problems in a similar
manner as we think the human brain may.

Since late 1980s, there has been an explosion in research of ANNs. Today, ANNs
successful applications are reported across a big range of fields. ANN is a paradigm
of learning tool, which is able to discover underlying dependencies between the
given inputs and outputs by using training data sets. After the training process, it
represents high-dimensional nonlinear functions. Many research institutions, indus­
tries, and commercial firms have already started to apply ANN successfully to many
diverse types of real world problems. The most important applications include the
following, [13]:

• Classification and pattern recognition for visual, sound, olfactory and tactile
patterns.

• Time series forecasting for financial, weather, engineering time series.

• Diagnostics, e.g., in medicine or engineering.

• Robotics, including control, navigation, coordination, object recognition prob­
lems.

• Process control, like nonlinear and multivariate control of chemical plants,
power stations and vehicles or missiles.

• Optimization, such as combinatorial problems, e.g., resource scheduling and
routing.

• Signal processing, speech and word recognition.

• Machine vision, e.g., inspection in manufacturing, check reader, face recogni­
tion and target recognition.

• Financial forecasting for interest rates and stock indices, currencies.

• Financial services, like credit worthiness, forecasting and data mining, services
for trade like segmentation of customer data.

An ANN function differs based on its application, e.g. In certain application ar­
eas, such as speech and word recognition, neural networks outperform conventional
statistical methods. While in other fields, such as specific areas in robotics and
financial services, they show promising application in real world situations. One
of the first successful applications was a project (Sejnowski and Rosenberg 1987),
aimed at training an ANN to pronounce English text consisting of seven consec­
utive characters from written text, presented in a moving window that gradually

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. AN NS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 56

scanned the text. The nonlinear nature of ANNs, the ability of neural networks to
learn from their environments in supervised and unsupervised ways, as well as the
universal approximation property of neural networks make them highly suited for
solving difficult signal processing problems. For practical understanding of ANNs,
it is imperative to develop a proper understanding of basic ANN structures and
how they impact training algorithms and applications.

A challenge in surveying the field of ANN paradigms is to identify those ANN
structures that have been successfully applied to solve real world problems from
those that are still under development or have difficulty scaling up to solve realistic
problems. It is also critical to understand the nature of the problem formulation
so that the most appropriate ANN paradigm can be applied. In addition, it is
also important to assess the impact of ANNs on the performance, robustness, and
cost-effectiveness of the systems.

Learning is defined by Herbert Simon [20] as “any change in a system that allows
it to perform better the second time on repetition of the same task or another task
drawn from the same population!'

Artificial learning is then defined as the methodologies of modulating the oper­
ation of Learning and the ability of determining a method or a process to achieve
learning.

Many methodologies were proposed to the artificial learning subject, [15]:

• Sym bol-based learn ing . A symbol-based learning method uses a set of sym­
bols that represent the entities and relationships of a problem domain. Sym­
bolic learning algorithms attem pt to infer novel, valid and useful generaliza­
tions that can be expressed using these symbols.

• C o n n ec tio n is t learning: The connectionist approaches represent knowl­
edge as patterns of activity in networks of small, individual processing units.
Inspired by the architecture of animal brains, connectionist networks learn
by modified their structure and weights in response to training data. Rather
than searching through the possible generalizations afforded by a symbolic
representation language, connectionist models recognize invariant patterns in
data and represent these patterns within their own structure.

• E m e rg en t Learning: Just as connectionist networks are inspired by the
biological neural system, the emergent models are inspired by genetic or evo­
lutionary analogs. The learning through genetic algorithms reflects the old
concept the learning of human and animal systems that have evolved towards
equilibrium with world.

5.1.1 A rtific ia l N eu ra l N etw ork s

An artificial neural network ANN, also known as a parallel distributed processing
network, is a computational structure that is inspired by the study of biological

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN M ULTI-AGENT SYSTEM S 57

Output

Output Layer

Hidden
Layer

Input Layer
A

Input

Figure 5.2: A typical layered feed-forward ANN.

neural processing. It consists of interconnected processing elements called nodes or
neurons connected through weighted links called connections. Those neurons work
together to produce an output function. So the output of an ANN relies on the
cooperation of the individual neurons within the network to operate. Processing of
information by ANNs is characteristically done in parallel rather than in series (or
sequentially)

A layered feed-forward A N N has layers of processing elements. A layer of pro­
cessing elements makes independent computations on data that it receives and
passes the results to another layer. The next layer may in turn make its indepen­
dent computations and pass on the results to yet another layer. Finally, a subgroup
of one or more processing elements determines the output from the network.

Each neuron makes its computation based upon a weighted sum of its inputs that
comes to it through its input connections, generates one output, and then spread
it over its output connections to be processed again by other connected neurons.
These connections have some feature of changing the strength of the passing signal
according to its connection weight. The output connection from a neuron can be
an input to another neuron or a final output of the ANN. The input connection to
a neuron can be an output of another neuron or an initial input to the ANN. The
first layer is called the input layer, the last the output layer, and the layers th a t are
placed between the first and the last layers are the hidden layers.

The processing that is accomplished at any neuron over its inputs is established
through applying a specific function called net function. The output of this function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN M ULTI-AGENT SYSTEM S 58

is the value of the neuron after processing its inputs. This value is called a net
value. Another function called threshold activation function or output function is
sometimes used to qualify the output of a neuron in the output layer.
Connections between neurons are represented by edges of a directed graph in which
the nodes are the neurons. Figure 5.2 is a layered feed-forward ANN with three
layers, an input layer, a hidden layer and an output layer. The ball-shaped nodes
represent neurons. The directed links show the weighted connections between nodes
from a given layer and other nodes in an adjacent layer.

In ANN processing begins with the entire network in a quiescent state, an
external comprised set of signals to be processed by the network is applied to the
input layer. Each neuron then generates a single output signal with a magnitude
that is a function of the total simulations received by it. Collectively, the output
produced by all processing elements on the layer are then passed as input pattern to
the subsequent layer, until the output layer produces output for the current input
pattern [8].

5.1 .2 B asic A N N C o m p o n en ts

The N euron

xo Wff
X, Wt

e

Figure 5.3: McCulloch-Pitts neuron model.

Among numerous ANN models that have been proposed over the years, all share
the neuron as a common building block for its networked interconnected structures.
The most widely used neuron model is McCulloch-Pitts neuron model illustrated
in Figure 5.3 [19]. In Figure 5.3, each neuron consists of two parts, the net function
and the activation function. The net function determines how the network inputs
{xj : 0 < z < n} (where n is the number of input connection) are combined inside
the neuron. In this figure, a weighted linear combination is adopted:

n—1

u — ^ Wi* Xi-\- 6 (5.1)
1=0

{xj : 0 < z < n} are parameters expressing the synaptic weights. The quantity
9 is called the bias and is used to model the threshold. In the literature, other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN M ULTI-AGENT SYSTEM S 59

types of network input combination methods have been proposed as well. They are
summarized in Table 5.1.

Net F unctions F ormula

Linear « = E "= i WjXj + e

Higher order (2"d order formula exhibited) ^ E ^ i WjkXjXk + 6

Delta (^ — Y%) t~tN
Ii;= l

Table 5.1: Summary of Net Functions

The output of the neuron, denoted by a in Figure 5.3, is related to the network
input u via a linear or nonlinear transformation called the activation function:

a = f{u) (5.2)

In various ANN models, different activation functions have been proposed. The
most commonly used activation functions are summarized in Table 5.2, [8].

Activation Function Formula Derivatives df(u)
du

Sigmoid / W “ l + e - “ /T / (z z) [l - / (z z)] /T

Hyperbolic tangent f{u) = tanh{~) (1 - l J (u) ?) / T

Inverse tangent f{u) = M a n ~ \ ^) frac2 'ïïT .fracll + (u/T)^

Threshold X/ \ _ r l i f u> th resh o ld
J \ / 1—1 otherwise No at It = threshold

Gaussian radial basis f {u) = exp[—u\\u — m\\^/a^] —2 {u — m) f { u) / a ‘̂

Linear f{u) = au + b a

Table 5.2: Neuron Activation Functions

Table 5.2 lists both the activation functions as well as their derivatives. In both
sigmoid and hyperbolic tangent activation functions, derivatives can be computed
directly from the knowledge of f{u).

A N N Topology

In an ANN, multiple processing elements are interconnected to form a network
to facilitate distributed computing. The configuration of the interconnections can
be described efficiently with a directed graph. A directed graph consists of nodes
(in the case of a neural network, neurons, as well as external inputs) and directed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 60

o

(b) Acyclic Topology (b) Cyclic Topology

Figure 5.4: Illustration of an acyclic graph (a) and a cyclic graph (b). The cycle in
(b) is emphasized with thick hnes.

arcs (in the case of a neural network, synaptic links). The topology of the graph
can be categorized as either acyclic or cyclic. In Figure 5.4a, an ANN with acyclic
topology consists of no feedback loops. Such an acyclic neural network is often used
to approximate a nonlinear mapping between its inputs and outputs. Figure 5.4b
shows an ANN with cyclic topology contains at least one cycle formed by directed
arcs. Such an ANN is also known as a recurrent network. Due to the feedback
loop, a recurrent network leads to a nonlinear dynamic system model that contains
internal memory. Recurrent ANNs often exhibit complex behaviors and remain an
active research topic in the held of ANNs.

5.1 .3 M u lti-layer p ercep tro n (M L P) m odel

Output Layer

Hidden
Layer #2

Hidden
Layer #1

Input Layer

Figure 5.5: A three-layer multilayer perceptron conhguration.

This is the most well known and most popular ANN among all the existing ANN
paradigms. It consists of a feed-forward, layered network of neurons. Each neuron
in an MLP has a nonlinear activation function that is often continuously differ­
entiable. Some of the most frequently used activation functions for MLP include

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 61

the sigmoid function and the hyperbolic tangent function. Figure 5.5 illustrates a
popular configuration of MLP where interconnections are provided only between
neurons of successive layers in the network. In practice, any acyclic interconnections
between neurons are allowed. Each ball-shape in the figure represents an individual
neuron. These neurons are organized in layers, labeled as the hiddden layer #1 ,
hidden layer #2 , and the output layer. While the inputs at the bottom are also
labeled as the input layer, there is usually no neuron model implemented in that
layer. The name hidden layer refers to the fact that the output of these neurons
will be feeded into upper layer neurons and, therefore, is hidden from the user who
only observes the output of neurons at the output layer.

It has been proven that with a sufficient number of hidden neurons, an MLP
with as few as two hidden layer neurons is capable of approximating an arbitrarily
complex mapping within a finite support [2].

5 .1 .4 Error B ack -P rop agation T rain ing o f M L P

A key step in applying an MLP model is to choose the weight matrices. Assuming a
layered MLP structure, the weights feeding into each layer of neurons form a weight
matrix of that layer (the input layer is excluded as it contains no neurons). The
values of these weights are found using the error back-propagation training method.

Finding the W eights o f a Single N euron M LP

W i H 2) z-* ‘. Z

i f (z) h
Figure 5.6: MLP example for back-propagation trainingsingle neuron case.

Let us first consider a simple example consisting of a single neuron to illustrate
this procedure. Figure 5.6 represents the neuron in two separate parts: a summation
unit to compute the net value u, and a nonlinear activation function to computer
the neuron’s output z = f{u). Then the output z is to be compared with a desired
target value d, and their difference, the error e = d — z, will be computed. There
are two inputs [xi ig] with corresponding weights Wi and wg. The input labeled
with a constant 1 represents the bias term 9. Here, the bias link weight is labeled
Wq. The net value is computed as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN M ULTI-AGENT SYSTEM S 62

2
u = ^ WiXi = W x (5.3)

i=0

where xq — 1, W = [wq wi W2] is the weight matrix, and x = [l x i 1 2]^ is the input
vector.

Given a set of training samples {{x{k),d{k)) : 1 < k < K} , the error back-
propagation training begins by feeding all K inputs through the MLP network and
computing the corresponding output {z{k) : I < k < K} . We usually use an
initial random values for the weight matrix W. Then a sum of square error will be
computed as:

K
E =

k = l

fc=i
K

= g W t) - f { W x { k)) f (5.4)
fc=l

Now, the objective is to adjust the weight matrix W to minimize the error E.
This leads to a nonlinear least square optimization problem. There are numerous
nonlinear optimization algorithms available to solve this problem. Basically, these
algorithms adopt a similar iterative formulation:

W (t -bl) = W (t) -t- (5.5)

where AW{t) is the correction made to the current weights W{t).

Because different algorithms differ in the form of AW(t) , we focus on a method
called the steepest descend gradient method. It is the basis of the error back-
propagation learning algorithm. The derivative of the scalar quantity E with re­
spect to individual weights can be computed as follows:

AW{t) = -Ï] g{t)

where g is known as the gradient vector. 77 is called the step size, learning rate or
learning factor. Usually, it is a value between 0 and 1, and specified by the network
designer.

The derivative of the scalar quantity E with respect to individual weights can be
computed as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 63

Ê dwi
K

^2[c/(A:) - z(A:)](- f o r i = 0,1,2 (5.7)

where

k .,

dz{k) _ df{u) du
dwi du dwi

\ j=0
= f \ u) x , (5.8)

Hence,

dwi
= -2 'Y y d { k) - z {k)] f [u{k))xfk) (5.9)

fc=i
W ith 5{k) = [d{k) — z{k)]f '{u{k)), the above equation can be expressed as:

d F ^
— = - 2 ^ S{k)xi{k) (5.10)

 ̂ k=i
6 {k) is the error that represents the amount of correction needed to be applied to
the weight Wi for the given input Xi{k). The overall change Awi is thus the sum
of such contribution over all K training samples. Therefore, the weight update
formula has the format of:

i{t + l) = Wi{t)+ r] ' ^ô(k)x i {k) (5.11)
K

k=\
If a sigmoid activation function f{u) = , as defined in Table 5.2, is used,
then the derivative f { u) is

f { u) = f{u) ■ [1 - /(«)] (5.12)

and 6 {k) can be computed as:

0{k) = ^ = K ^) - ^(^)] • ■ [l - z{k)] (5.13)

So far, we discussed how to adjust the weights of an MLP with a single layer of
neurons.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 64

Error Back-Propagation in a M ultiple Layer Perceptron

(0

Zi (k) i.+i
^Hii (t)

Figure 5.7: Notations used in a multiple-layer MLP model.

Now we discuss how to perform training for a multiple layer MLP of neurons.
First, some new notations are adopted to distinguish neurons at different layers. In
Figure 5.7, the net-function and output corresponding to the training sample
of the neuron of the (L — 1)*̂ are denoted by uf~^{k) and z^^^{k), respectively.
The input layer is the zero*'^ layer. In particular, z^{k) — Xj{k). The output is
feeded into the i^h neuron of the L^h layer via a synaptic weight denoted by wL (t)
or, for simplicity, since we are concerned with the weight update formulation
within a single training epoch.
To derive the weight adaptation equation, must be computed:

K

- 2 E

= - 2 E
dK

K

(A).
M

(k)

= ^{k) (5.14)
fc=i

where 1 < m < M, and M is the number of neurons in layer {L — 1).

In Equation 5.14, the output z- ~ (fc) can be evaluated by applying the Uh training
sample x{k) to the MLP with weights fixed to wfj. However, the delta error term
ôf'{k) is not readily available and has to be computed.

Recall that the delta error is defined as ô^(k) = Figure 5.8 is now used to
illustrate how to iteratively compute Sl{k) from 6 ^ ^ (k) and weights of the { L + i y h
layer.

Note that z l (k) is fed into all M neurons in the (L -f l)*/i layer. Hence:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 65

L+l
(k)

Si(k)

L+l
Sm (k) <

< e(k)

Figure 5.8: Illustration of error back-propagation computation.

M

E
M ■

E
m=l

M
w: (5.15)

m = l

Equation 5.15 is the error back-propagation formula that computes the delta error
from the output layer back toward the input layer, in a layer-by-layer manner.

5.2 Speed ing up a M ulti-agent Slow Inference by
E m ploying A N N s

Although C om m unicateBelief algorithm can be performed effectively, when the
problem domain is very large, the computation of C om m unicateBelief can still be
quite expensive. Each agent must pass i-messages twice locally during U nifyB elief
algorithm. To pass e-messages among agents, AbsorbThroughLinkage algorithm
must be performed, which involves transmission across some media, re su ltin g in
delay. Furthermore, the e-message passing and local i-message passing must be
performed in a semiparallel fashion [21]. The semiparallel computation implies that
the computational time of C om m unicateB elief is lower bounded by four times
the length of the longest hyperchain in the LJF.

Unlike inference computations in an agent in a hypertree which use explicit,
often logical, rules arranged to manipulate believes in a serial manner (for each
chain), however, ANN systems rely on parallel processing of data elements, using
statistical properties instead of logical rules to transform information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 66

An agent Ai
(hypernode)

i+ I

A gen t's
Potentials

; le f t -r ig h t'\
A neuron /i,- j

Figure 5.9: A feed-forward ANN, with dual-weight neurons in its hidden layers,
associated with a hypernode.

ANNs process information in a similar way the human brain does. The net­
work is composed of a large number of highly interconnected processing elements
(neurons) working in parallel to solve a specific problem. ANNs’ ability to learn
by example makes them very flexible and powerful. Furthermore there is no need
to devise an algorithm in order to perform a specific task; i.e. there is no need to
understand the internal mechanisms of that task. They are also very well suited
for real time systems because of their fast response and computational times which
are due to their parallel architecture. Hence, special hardware devices are being
designed and manufactured to take advantage of this capability.

In an ANN, it is only possible to handle independent parts in parallel processes.
That means only neurons belonging to the same layer can be run in parallel. For
example, any neuron of the second hidden layer needs the outputs of the first hidden
layer but not from other neurons within its own layer.

Given an ANN with single hidden layer needs only two processing stages to
transform an input vector to its corresponding output vector. In contrast, hav­
ing a trivial BN represented as a JT with a chain of just five clusters, see Fig­
ure 5.10, needs sixteen processing stages to perform UnifyBelief. Eight for each
half (ColIectEvidence, D istributeEvidence) and two for each adjacent pair of
clusters.

Taking this as a starting point, we proposed a kind of cooperation between MS-
BNs and ANNs aiming to estimate e-messages in advance and speed up the inference
and belief updating between agents among the LJF. The model can be adopted in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. AN NS PLAYING A ROLE IN M ULTI-AGENT SYSTEM S 67

9 , - > Co
,,, , V 92,Co,a,b ;

C i J r iT "

y
/5

11^
a,So,Co,b > •

"--n----
12 So,Co

'----5
14 T U

So,Ci,Co J

__ So,Ci ^ C2

U
"1 ̂ ̂ Ho "

z '
(, g3,s,Ci,so / / NM '

Figure 5.10: Illustration of UnifyBelief on a five-cluster chain in a JT.

the case of time-sensitive distributed multi-agent reasoning systems. Such time-
sensitive systems in most cases have some tolerance. These systems can sacrifice
little accuracy for ensuring satisfiable speed. The model is represented by the use of
ANNs for prediction of e-messages that represent the belief over a d-sepset and that
is by associating an ANN with each agent in parallel. Figure 5.9 gives a clear pic­
ture about our model. The ANN ^captures the incoming e-message over one of the
d-sepsets of its agent (left port or right port), ^directs the transformation process to
adapt to one of the two directions {left — right or right — left), and ^immediately
generates the predicted e-message and sends it to the target agent while the local
agent is busy by running U nifyBelief. We use the terms right — lef t , l e f t — right
and the virtual switch on the figure just for simplification.

An ANN can learn the behavior of its agent by catching the input e-messages
and the output e-messages and use them as a training sample and train itself using
the error back-propagation method.

In our model, we propose the use of an ANN with dual-weight neurons in order
to use only one ANN for each agent to do e-message prediction in both directions.
We have to mention here that our model can be applied only on each agent that
has exactly two adjacent agents making a chain with them.

Once an ANN is trained enough to do its responsibilities, its agent has to stop
sending e-messages that carry belief and devote itself to receiving e-messages and
to doing local belief unification after each reception.

In fact, this model consists of two ANNs but only one is working at a time.
In Figure 5.9, if an e-message came from agent towards Ai, the message will
be received by both the agent and the ANN. Because the message came from the
left side, the virtual switch will activate those weights in the neurons belonging to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. AN NS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 68

xaa9B2ag%zaaK%m

ni«atPaMm

Figure 5.11: Feed forward ANN Recog­
nizing the number “3” .

Figure 5.12: Feed forward ANN Recog­
nizing the number “5” .

the l e f t — right ANN. As a response the ANN processes the received e-message
and generates its corresponding e-message from the other side. The inputs of the
l e f t — right ANN are the e-message coming from Aj_i and the potentials of the
associated agent A, represented by the wide arrow from A, towards the ANN. On
the other hand, the inputs of the right — l e f t ANN are the e-message coming from
Aj+i and the potentials of A,. Therefore, the number of input lines and output
neuron differ from one ANN to foanother in the same model. The figure shows
clearly that l e f t — right and right — l e f t ANNs are sharing only the hidden layers.

A software program has been developed to implement this model and fortunately
it gave very satisfiable results. The following section presents these results.

5.3 Im p lem entation R esu lts

5.3 .1 D ig it R eco g n itio n

First of all, we developed an object oriented C-h+ program with GUI to simulate
a feed-forward ANN with a back-propagation learning algorithm. In general, the
software deals with an ANN as one object. This object can be created dynamically
and easily by passing the number or hidden layers, the number of neurons in each
hidden layer, the size of the input vector and the size of output vector. In turn, an
ANN as an object deals with each layer of neurons as a single object. It actually
deals with only the input and output layers. Those layers, in turn, consist of smaller
entities representing neurons. Each neuron receives commands from its parent layer
and has the ability to communicate directly with the neurons in the preceding layer.

A standard feed-forward ANN was used in the program to recognize a digit given
through an input pattern drawn using the mouse. It is designed to be trained using
the training patterns and the back-propagation algorithm presented in Section 5.1.4
on page 61.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 69

ĵ PMiPdtam

TDK

Figure 5.13: Feed forward ANN Recog­
nizing the number “7” .

Figure 5.14: Feed forward ANN Recog­
nizing the number “8” .

Once the program is started, and before applying digits, a button labeled “Start
Training” needs to be clicked to start training the network. During this operation
a progress bar will be activated. After the training is finished, the training button
automatically disabled and another button for testing patterns, “Start Training” ,
will be enabled. When a pattern is plotted on the grid and the test button is
clicked, the neural network processes the input pattern using its neurons’ weights
and then gives its output represented as an activation value for each digit from 0
to 9 and shaped as blue bars. Figures 5.11 through 5.13 illustrate the outputs of
number of tests done.

5.3 .2 E -m essage P red ic tio n

One of the most challenging problems in training neural networks is determining
the appropriate features that contribute the most to the training of the network.
The same programming objects used in the preceding section are used here. They
represent a standard feed-forward ANN and the error-backpropagation algorithm
trained it using training sets taken from agent Ai in the MSBN of the digital system
shown in Figures 6.1 through 6.3. The hypertree is shown in Figure 5.15.

The network consisted of the input layer, one hidden layer and the output layer.
The input layer consists of 296 inputs, one input for each potential value in a cluster
inside the agent or in a linkage inside the received e-message. Variable number of
hidden units are used and 96 output units, one unit per each potential value in
the output e-message. The number of hidden units influences the training results
of the network and ranged from 5 to 20 hidden units: 5, 10, 15 and 20. For these
numbers, four networks were trained for a fixed size of the training set.

In each training cycle the same parameters were used. All the networks were
trained for a maximum of 10,000 epochs with a momentum term of 0.9 and learning
rate of 0.3. The training was stopped when the maximum number of epochs reached
(10,000) or when the mean squared error dropped below l.Oe-5. We finally used 10
hidden units in the middle layer. The state of the network, i.e. the weights, were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 70

Figure 5.15: The hypertree of the digital system shown in Figures 6.1 through 6.3
with an ANN attached with agent A i .

kept in a file.
Afterwards, the network was connected in parallel with agent Ai as shown in

Figure 5.15 and the object oriented framework, presented in the following chapter,
was turned on. Two variables were considered instantiated and entered to the sys­
tem one by one from different agents. Each time C om m unica teB elief performed,
our model generates an e-message consisting of 96 potential values and saves it in
an output file.

In the following, results of two e-messages, and their corresponding charts, gen­
erated by the model and sent to A 2 are shown. For comparison, we attached each
potential value generated by the ANN model (an actual value) with the corre­
sponding one (a desired value) generated by agent Ai in the form {ANN' s value,
A \s value). The following e-message potential values are in the order of the link­
ages in the LT between A i and A 2 (for more details refer to “For the agent A N ’
— “Linkages with respect to “G2” :” in Section 6.2.3 on page 90).

As it can be seen by the scale of vertical axis of the two Figures 5.16 and 5.17, the
scale of differences between the desired and the actual e-messages are in the range
of 0 — 0.0012 in (6), which could not have been captured in (a). So in (6) in fact,
the differences between the actual and the desired e-messages of the corresponding
bars are compared. And as it is shown these differences are so small.

The results of e-message No(l):

01.(0
05.(0
09.(0
13.(0
17.(0
21.(0
25.(0
29.(0
33.(0
37.(0
41.(0

000070,
020649,
000069,
000054,
.000040,
.000076,
993029,
000056,
000032,
992987,
006976,

0 .000000),
0.020651),
0 .000000),
0 .000000),
0 .000000),
0 .000000),
0.992979),
0 .000000) ,

0 .000000),
0.992979),
0.007021),

02.(0
06.(0
10.(0
14.(0
18.(0
22.(0
26.(0
30.(0
34.(0.
38.(0
42.(0

000045,
000076,
000049,
000041,
000045,
.000039,
000061,
.000052,
000027,
000077,
000044,

0 .000000),
0.000062),
0 .000000) ,
0 .000000),
0 .000000),
0 .000000),
0 .000000) ,

0 .000000),
0 .000000),
0 .000000),
0 .000000) ,

03.(0,
07.(0
11 . (0 .

15.(0.
19.(0.
23.(0
27.(0.
31.(0
35.(0.
39.(0.
43.(0.

000047,
002491,
617519,
000043,
001159,
001195,
000070,
000039,
000061,
000036,
000059,

0 .000000),
0.002938),
0.617517),
0 .000000),
0.001248),
0.000106),
0 .000000),
0 .000000),
0 .000000),
0 .000000),
0 .000000),

04.(0.
08.(0.
12 . (0 .
16.(0.
20 . (0 .

24.(0.
28.(0.
32.(0.
36.(0.
40.(0.
44.(0.

000060,
976280,
000066,
997372,
381232,
001658,
000055,
000043,
000068,
000050,
000038,

0 .000000),
0.976349),
0 .000000),
0.997879),
0.381236),
0.002016),
0 .000000),
0 .000000),
0 .000000),
0 .000000),
0 .000000) ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEM S 71

(a) I □ Actual e-message potentials ■ Desired »-message potertiate

Potential values in the e-message

(b)
.0012

.0002

1 6 21 26 31 36 46 51 56 61 7166 76 81 86 91 96

Distortions in the e-message potentials

Figure 5.16: Two charts, the first shows the identity level between the actual output
of e — messagei (obtained from the proposed model) and the desired output (ob­
tained from agent Ai). The second chart reflects how low the difference (distortion)
between the actual e — messagei and the desired e — messagei is.

45.(0,
49.(0
53.(0
57.(0,
61.(0
65.(0
69,(0
73.(0
77.(0
81,(0
85.(0,
89.(0
93.(0

.999931,

.999972,

.007026,

.985057,
000070,
000056,
985039,
006957,
002900,
002957,
006961,
000064,
000037,

1 .000000)
1 .000000)
0.007021)
0.985050)
0 .000000)
0 .000000)
0.985050)
0.006965)
0.002985)
0.002985)
0.006965)
0 .000000)
0 .000000)

46.(0.
50.(0.
54.(0.
58.(0.
62.(0.
66 . (0 .
70.(0.
74.(0.
78.(0.
82.(0.
86 . (0 .
90.(0.
94.(0.

000070,
000041,
000067,
000045,
000046,
004954,
004934,
000057,
000082,
000048,
000067,
994999,
005033,

0 .000000)

0 .000000)

0 .000000)
0 .000000)
0 .000000)
0.004950)
0.004950)
0.000015)
0.000015)
0.000035)
0.000035)
0.994975)
0.005025)

47.(0,
51.(0,
55.(0
59.(0
63.(0.
67.(0.
71.(0.
75.(0.
79.(0.
83.(0.
87.(0.
91.(0.
95.(0.

000053,
000047,
000056,
000057,
000039,
000031,
000060,
000064,
000076,
000044,
000039,
000038,
000046,

0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)

48.(0,
52.(0
56.(0.
60.(0
64.(0
6 8 . (0 .

72.(0.
76.(0.
80.(0.
84.(0.
88 . (0 .
92.(0.
96.(0.

000031,
000050,
000039,
000060,
000077,
000041,
000051,
000050,
000050,
000048,
000052,
000050,
999946,

0 .000000),
0 .000000),
0 .000000),
0 .000000),
0 .000000),
0 .000000),
0 .000000) ,
0 .000000),
0 .000000) ,

0 .000000) ,
0 .000000) ,
0 .000000) ,
1 .000000)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEMS 72

(a) □ Actual e-m essage potentials ■ Desired e-m essage potentials

41 46 51 56

Potential values in the e-message

(b)

11 16 21 26 31 41 46 51 56

Distortions In the e-message potendais
71 75 81 66 91

Figure 5.17: Two charts, the first shows the identity level between the actual output
of e — message^ (obtained from the proposed model) and the desired output (ob­
tained from agent A i). The second chart reflects how low the difference (distortion)
between the actual e — m essage 2 and the desired e — m essage2 Is.

The results of e-message No(2):

01.(0.000091, 0.000000), 02.(0.000116, 0.000000), 03.(0.000129, 0.000000), 04.(0.000125, 0.000000),
05.(0.007874, 0.007873), 06.(0.000115, 0.000024), 07.(0.000478, 0.000000), 08.(0.000754, 0.000103),
09.(0.000106, 0.000000), 10.(0.000132, 0.000000), 11.(0.997858, 0.997943), 12.(0.000096, 0.000000),
13.(0.000113, 0.000000), 14.(0.000132, 0.000000), 15.(0.000122, 0.000000), 16.(0.383128, 0.383127),
17.(0.000139, 0.000000), 18.(0.000121, 0.000000), 19.(0.002025, 0.002016), 20.(0.000614, 0.000041),
21.(0.000087, 0.000000), 22.(0.000122, 0.000000), 23.(0.616098, 0.616099), 24.(0.000897, 0.000774),
25.(0.992967, 0.992979), 26.(0.000109, 0.000000), 27.(0.000088, 0.000000), 28.(0.000118, 0.000000),
29.(0.000113, 0.000000), 30.(0.000118, 0.000000), 31.(0.000127, 0.000000), 32.(0.000113, 0.000000),

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 5. ANNS PLAYING A ROLE IN MULTI-AGENT SYSTEMS 73

33,(0.
37.(0.
41.(0.
45.(0.
49.(0.
53.(0.
57.(0.
61.(0.
65.(0.
69.(0.
73.(0.
77.(0.
81.(0.
85.(0.
89.(0.
93.(0.

000142,
992977,
007032,
999902,
999855,
007020,
985048,
000099,
0 0 0 1 2 1 ,
985053,
006967,
003002,
002990,
006966,
0 0 0 1 0 0 ,
000125,

0 .000000)
0.992979)
0.007021)
1 .000000)
1 .000000)

0.007021)
0.985050)
0 .000000)

0 .000000)
0.985050)
0.006965)
0.002985)
0.002985)
0.006965)
0 .000000)
0 .000000)

34.(0.
38.(0.
42.(0.
46.(0.
50.(0.
54.(0.
58.(0.
62.(0.
6 6 .(0 .
70.(0.
74.(0.
78.(0.
82.(0.
8 6 .(0 .
90.(0.
94.(0.

000146,
000087,
000113,
0 0 0 1 0 2 ,
000131,
000094,
000132,
0 0 0 1 2 1 ,
004949,
004953,
000124,
000096,
000142,
000139,
994970,
005023,

0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)

0 .000000)
0 .000000)

0.004950)
0.004950)
0.000015)
0.000015)
0.000035)
0.000035)
0.994975)
0.005025)

35.(0.
39.(0.
43.(0.
47.(0.
51.(0.
55.(0.
59.(0.
63.(0.
67.(0.
71.(0.
75.(0.
79.(0.
83.(0
87.(0.
91.(0.
95.(0.

000125,
000130,
0 0 0 1 1 1 ,
0 0 0 1 2 1 ,
000116,
000108,
000109,
000132,
000146,
000103,
000097,
000083,
0 0 0 1 2 0 ,
000138,
000138,
0 0 0 1 2 0 ,

0 .000000)
0 .000000)

0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)
0 .000000)

0 .0 0 0 0 0 0)
0 .0 0 0 0 0 0)

36.(0.
40.(0.
44.(0.
48.(0.
52.(0
56.(0
60.(0.
64.(0.
6 8 . (0

72.(0
76.(0
80.(0
84.(0
8 8 . (0

92.(0
96.(0

000095,
000123,
000131,
000144,
000125,
000125,
000098,
000092,
000123,
.0 0 0 1 2 2 ,
000118,
000129,
.000109,
.000117,
.000131,
999887,

0 .0 0 0 0 0 0)
0 .0 0 0 0 0 0)
0 .0 0 0 0 0 0)
0 .0 0 0 0 0 0)
0 .0 0 0 0 0 0)
0 .000000)
0 .000000)
0 .000000)
0 .000000)

0 .000000)

0 .000000)

0 .000000)
0.000000)
0.000000)
0 .000000)
1.000000)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Im plem enting a M ulti-agent
Reasoning System as an Object
Oriented Framework

6.1 The Im plem entation Package
An object-oriented Bayesian network framework has been developed using the

C-f—f- programming language. This package has been given generality and is mainly
designed to give an efficient and easy way to implement three kinds of BN represen­
tations: DAG, JT and LJF. It consists of three main C-t—F Object-Oriented classes:
B N CTree, BN^Comp, and B N M T ree. Each class inherits its preceding classes
in a direct and indirect manner (e.g. BN JTom p directly inherits B N CTree, and
B N N T re e directly inherits BN JJom p and indirectly inherits B N CTree). Each
class consists of many classes representing the basic entities of the model it repre­
sents.

6.1 .1 T h e Four M ain 0 . 0 . C lasses

The four classes are briefly described in the following:

1. The first class, B N CTree, deals with a basic DAG and is responsible for load­
ing data that defines and describes qualitative and quantitative components of
the network, constructing the graph and performing the A—tf message passing
algorithm (if applicable). In the case of a multi-agent MSBN, it has a another
duty and that is loading additional information regarding its subdomain’s po­
sition among the subdomains of the given hypertree and the intersection sets
with its adjacent agents.

2. The second class, B N JJomp, represents the compiler object that is responsi­
ble for performing the compilation procedure starting with moralization and

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 75

ending with generating the final clique graph. This class has the ability to
play the same role in two situations. In a single-agent BN, it can be used to
compile a given DAG and generates the corresponding moral, chordal, and
clique graph. In a multi-agent MSBN, it can be used as an entity in each
subdomain and controlled by its parent class, B N M T ree. In particular, it
compiles a given subnet respecting all of its adjacent subdomains in a coop­
erative manner.

3. The third class, B N M T ree, is responsible for constructing the final form of
the junction tree representation after obtaining the outputs of the associated
BNJComp object and applying Prim’s algorithm. For a single agent BN, it
assigns initial potentials and performs belief updating by using the absorption
method. For a multi-agent MSBN, B N M T ree directs its compiler object to
perform the local compilation stages as an entity in the hypertree, as well as
doing belief updating as a response to the global communication algorithm,
C o m m u n i c a t e B e l i e f .

4. BN _LTree is the fourth class to handle the LJF structure. For each agent
there is a single B N M T ree for each adjacent agent, and it is responsible
for keeping the information about that adjacent agent including the physical
address and the set of intersection variables, creating the linkage tree with
respect to the associated agent’s junction tree, and works as a communication
channel or an e-message bridge between its parent, and the associated adja­
cent agent. Each B N M T ree object in a multi-agent MSBN has a BN^LTree
object for each adjacent hypernode in the hypertree.

We have to mention here some of the package’s advantages:

• Each object has its own members (properties, methods and operators), so it
just needs to be activated or directed to perform its responsibilities by itself.

Each object is provided with one or more constructors and destructors, so
there is no need to tell it how or what kind of objects it has to initialize
before usage or what members are to be destroyed before its destruction. It
automatically and dynamically creates and initializes its important members.

• The package is designed to deal with different sizes of BNs. It allocates
memory dynamically depending on the domain’s description files given by
the user. It has no limitations except the memory space available because all
the indexing variables used are defined as long in t inside the code.

• Each object has the ability to print out in a given file a short description
about what it is doing at the moment, so the user can review the progress.

In the case of a multi-agent LJF, all conversations between agents will be
saved in a text file, so it can be explored or printed.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 76

• Each class of the first three classes is defined in two separate source files; .hpp
contains the prototype of the class and .cpp contains the code. Each .hpp file of
B N .C om p and B N .J T ree includes the .hpp file of its sub-class. So B N .Tree
can be used by including only DAG.hpp and DAG.cpp, B N .C om p can be
used by including only D AG2JT.hpp and DAG2JT.cpp, an B N .J T ree by
including only JT.hpp and JT.cpp.

6.1 .2 T h e S tru ctu re o f B N D escr ip tio n F ile

Before we show the implementation results, it is preferred to explain the structure
of the input file that used to describe a BN or a subnet;

The following section gives the implementation results of applying an MSBN
adopted from ([21] Figure 6.11).

6.2 Cooperative M ulti-agent System Troubleshoots
a Digital System

Here, we demonstrate how an MSBN-based multi-agent reasoning system functions
in practice. We are using digital system monitoring as the problem domain. The
digital system and its physical components are shown in Figures 6.2 and 6.1 re­
spectively. We need five agents to populate the monitoring system. The virtual
components are shown in Figure 6.3. The subnet dependence structures are shown
in Figures 6.4 through 6 .8. The hypertree is shown in Figure 3.1.

In addition to the dependence structures, we assume the following representa­
tional parameters:

• Each logical gate is represented as a binary variable and is either norm al or
fau lty{th e space is denoted as {good, bad}).

• It is assumed that each gate has a 0.01 probability of being faulty. A faulty
gate is modeled so that it may or may not produce the incorrect output.

• A faulty A N D gate is assumed to output correctly 20% of the time. A faulty
OR gate outputs correctly 70% of the time, and a faulty N O T gate outputs
correctly 50% of the time.

We consider the external inputs are as follows:

Uq — 0 , 0 . 2 — I j — 0 , 6 2 ~ 1) f^ 2 — 0 , = 1 , % 2 ~ 1 , k g = 0 , k i — 0 , I2 — 0 , Oq — 0 ,

Oi = 0, 02 = 1, P i = 1, So = 0, V 4 — 1, V j = 1, y i = 1, P2 = 1, Z i = 0 , Z 5 — 0.
First of all, we created five description files structured as in Tabel 6.1, one for

each subnet dependence structure or subDAG. Five J T CTree objects were used,
each one representing one agent in the system. Each object has been provided
by one of the description files, so it loaded the structure of its associated subnet

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 77

"II

Figure 6.1: The five physical components of a digital system.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 78

Title Type Example
Graph title text D A G i
Total number of variables integer 5
Number of roots integer 1

Number of instantiated variables integer 1

1 ®' variable
Title text X
Number of states integer 2

States text I I
text X2

Number of parents integer 0

Parents (if applicable) text
OPT real 0 . 1

real 0.9
2 nd variable

Title text y
Number of states integer 2

States text yi
text K

Number of parents integer 1

Parents (if applicable) text X
OPT real 0 . 6

real 0 . 2

real 0.4
real 0 . 8

5* ̂ variable
Title text W
Number of states integer 2

States text Wl
tex t W2

Number of parents integer 1

Parents (if applicable) text y
CPT real 0.9

real 0,3
real 0 . 1

real 0.7
instantiated variable

Title
Value

tex t
text

y
V2

Number of adjacent graphs (if applicable) integer 1

1 *̂ adjacent graph title
Number of intersected variables

variable
2 ” *̂ variable

text
integer

tex t
text

DAG 2
2

y
w

Table 6.1: BN description file structure.

and became connected with its adjacent objects. At this moment, the multi-agent
reasoning system is ready to perform the cooperative compilation.

6.2 .1 R esu lts o f th e co o p era tiv e g lobal m oralization

Here, according to C o M o r a l i z e algorithm (Section 3.4.2 on page 32), the system
coordinator (represented by the main program) calls an object arbitrarily (imple­
mented by randQ function) to run C o I l e c t M L i n k s . After it finishes the coordi­
nator calls the same object to run D i s t r i b u t e M L i n k s .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 79

; ' j ç , I'l 7 '. Li , "4

: . -
1 "" • h,i

: -------- C,

'D » '7

^11 ,

^ 'II

V, <0 -

1 Â'

" 0
K

C.

;i/ii>

-Th'.
j h ; />:

</i < 1

", <h
/ 'I r ,

Figure 6.2; The integrated view of the digital system.

Before we show the results of each object individually, let us take a look at the
system communications between the objects to have a general view about how the
cooperative moralization is done.

Coordinator.CoMoralize() calls agent “G4” to execute CollectMLink().
G4.CollectMLink() calls its compiler to execute DoM oralization().
G4.CollectMLink() calls agent “G2” to execute CollectMLink().
G2.CollectMLink() calls its compiler to execute DoMoralization().
G2.CollectMLink() calls agent “G l” to execute CollectMLink().
Gl.CollectMLinkO calls its compiler to execute DoM oralization().
Gl.CollectMLinkQ calls agent “GO” to execute CollectMLink().
GO.CollectMLink() calls its compiler to execute DoMoralization().
GO.CollectMLink() runs GetM oraIsW ith() to obtain the moral arcs restricted with the intersection with “G l” .
Gl.CollectMLinkQ receives 12 moral arc(s) from agent “GO” ;

aO-bO
b 0 -g2

gl-z 2

aO-gl
b0-x3
g2-x3

a 0 -z2

b 0 -z2

bO-eO
e0 -g2

bO-gl
eO-x3

Gl.CollectMLinkQ calls its compiler to execute AddToMoralLinksQ.
Gl.CollectM Link() runs GetMoralsW ithQ to obtain the moral arcs restricted with the intersection w ith “G2” .
G2.CollectMLinkQ receives 15 moral arc(s) from agent “G l” :

g7-i0
gO-kO
kO-oO

g7-z4
gO-pO
kO-rO

g8 -k 0

g9-r0
nO-oO

g8 -n 0

10-z4
pO-rO

g8 -o0

kO-nO
t 2 -y 2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 80

<■()
C(l

"(»

" '7

" I I

" I I

/I)

Vt'O

Figure 6.3; The five virtual components of the digital system.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 81

v4.1

cO.4aO.O

/ 2 . 1 0

2.14

Figure 6.4: The subnet Gq for virtual component Uq.

11.4

/.4.2Ii O . l ScO.I42.24
cO.1.4

;S.27[7.26

iiO.O
h0.15 k 0 . 2 0

/.2.I7 c|0 . 6 I2 .S

>•2.7

Figure 6.5: The subnet Gi for virtual component Ui.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 8 2

iO .lS
U 1.44

ilO, I/ 4,22

vO.26

WX.4S
J 4 .6

V7..S

14.40
I 6 . V

j 2 .() 15.41
1 0 . 1 2

Figure 6.6: The subnet Gg for virtual component Ü2 -

U5.4 c l l . l 6

p i . 1 0
vvO.O

v().7

zO.l

Figure 6.7: The subnet G 3 for virtual component U3 .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 83

14.16

y.5.7

2.S

c 2 . l ()

17.12

1)2.14
o2.l5

Figure 6.8: The subnet G4 for virtual component U4 .

G2.CollectMLink() calls its compiler to execute AddToMoralLinks().
G2.CollectMLinkO calls agent “G3” to execute CollectMLink().
G3.CollectMLink() calls its compiler to execute DoMoralization().
G3.CollectMLink() runs GetM oralsW ith() to obtain the moral arcs restricted w ith the intersection with “G2” .
G2.CollectMLink() receives 12 moral arc(s) from agent “G3” :

a2-d3 a2-u0 a2-z0 dl-sO dl-uO
d2-x0 d2-y0 d3-u0 d3-z0 sO-uO
uO-zO xO-yO

G2.CollectMLink() calls its compiler to execute AddToMoralLinks().
G2.CollectMLink() runs GetMoralsWith{) to obtain the moral arcs restricted w ith the intersection with “G4” .
G4.CollectMLink() receives 14 moral arc(s) from agent “G2” :

e2-t5 e2-t7 e2-x4 h2-12 h2-t4
h2-w2 h2-z5 12-t4 12-w2 i2-z5
t4-w2 t4-z5 t5-x4 w2-z5

G4.CollectMLink() calls its compiler to execute AddToMoralLinks().
Coordinator.CoMoralize() calls agent “C4” to execute DistributeMLink(),

C4.DistributeM LinkQ runs GetMoralsW ith{) to obtain the moral arcs restricted w ith the intersection with
“C2” .

C4.DistributeM Link() calls agent “C2” to execute DistributeMLink().
C2.DistributeM Link() receives 15 moral arc(s) from agent “C4” :

e2-t5 e2-t? e2-x4 h2-i2 h2-t4
h2-w2 h2-z5 12-t4 12-w2 12-z5
j2-z5 t4-w2 t4-z5 t5-x4 w2-z5

G2.DistributeM Link() calls its compiler to execute AddToMoralLinks().
C2.DistributeM Link() runs CetM oralsW ith() to obtain the moral arcs restricted w ith the intersection with

“C l” .
C2.DistributeMLink{) calls agent “C l” to execute DistributeMLink().
C l.D is trib u teM L in k () receives 15 m oral arc(s) from agent “C 2” :

g7-i0 g7-z4 g8-k0 g8-n0 g8-o0
g9-k0 g9-p0 g9-r0 iO-z4 kO-nO
kO-oO kO-rO nO-oO pO-rO t2-y2

C l.D istributeM Link() calls its compiler to execute AddToMoralLinks().
C l.D istributeM LinkO runs CetM oralsW ith() to obtain the moral arcs restricted w ith the intersection with

“CO”.
Cl.D istributeM LinkO calls agent “CO” to execute DistributeMLink().
GO.DistributeMLink() receives 12 moral arc(s) from agent “C l” :

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 8 4

aO-bO
b0 -g2

gl-z 2

aO-gl
b0-x3
g2-x3

aO-z2

b 0 -z2

bO-eO
eO-g2

bO-gl
eO-x3

GO.DistributeMLinkO calls its compiler to execute AddToMoralLinks().
G2.DistributeM Link() runs GetM oralsW ith() to obtain the moral arcs restricted w ith the intersection with

“G3” .
G2.DistributeMLink{) calls agent “G3” to execute DistributeMLink().
G3.DistributeMLink{) receives 12 moral arc(s) from agent “G2” :

a2-d3
d 2 -xO
uO-zO

a 2 -uO
d 2 -y0

xO-yO

a 2 -z0

d3-u0
dl-sO
d3-zO

dl-uO
sO-uO

G3.DistributeM Link() calls its compiler to execute AddToMoralLinks().

Now we can show the results of the local moralization in each object:

1. For the agent Aq:

Default Arcs:

g2 -c0

bO-fO
gl-fO

eO-cO
v4-vl
g4-sl

z2 -f0

aO-vl
vl-x3

g3-x3
aO-fD
x3-c0

bO-cO
w 6 -v l
fD-sl

Moral Arcs:

v4-a0
x3-b0
bO-aO
z2 -gl

v4-w6
x3-g2
b0 -z2

f0-g4

a 0 -w6

eO-bO
bO-gl

vl-g3
e0 -g2

a0 -z2

x3-e0
bO-g2

aO-gl

2. For the agent Ai.

Default Arcs:

tl-z3
y 2 -r0

iO-nO
gO-z2

g2 -c0

nO-pO
z2 -f0

gS-pO
w7-v5
g7-n0
g5-e0
aO-fO
n0 -z2

kO-pO
oO-pO
yl-eO
bO-cO
gl-fO
pO-z3

kO-qO
g9-q0
zl-eO
bO-fO
rO-qO
pO-qO

t 2 -r0

iO-v5
z4-n0
x3-c0
v5-z3
eO-cO

Moral Arcs:

y2 - t 2

nO-oO
kO-gS
p0-g9
yi-gS
eO-bO
b 0 -z2

i0-w7
nO-kO
v5-p0
kO-rO
zl-g5
e0 -g2

bO-gl

i0-z4
nO-gS
v5-tl
kO-g9
x3-e0
b 0 -g2

a 0 -z2

i0-g7
oO-kO
pO-tl
r0-g9
x3-b0
nO-gO
aO-gl

z4-g7
o0 -g8

pO-rO
y l-z l
x3-g2
bO-aO
z2 -gl

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 8 5

3. For the agent A 2 :

Default Arcs:

kO-pO
z5-x4
t7-y4
h 2 -v6

g8 -p 0

t 6 -s2

d4-x0
sO-il
il-xO
z4-n0
q0 -w2

kO-qO
t4-x4
w5-fl
h2-x4
iO-nO
kl-zO
v7-x0
sO-wO
xO-uO
nO-pO
w2-x4

g9-qO
t5-j2
12-S2
t3-w 2
g7-n0
tO-zO
d 2 -u 0

t8-z4
u0 -b 2

pO-qO
x4-fl

t 2 -r0

e2-y4
12-x4
oO-pO
t9-x5
d3-b2
w9-il
dl-wO
uO-wO
v6 -s2

x4-j2

y 2 -r 0

e2 -j2

i2 -fl
o0-x5
w8 -v 6

a 2 -b 2

yO-uO
z0 -b 2

w0-z4
rO-qO

Moral Arcs:

kl-tO
xO-yO
z0-d3
sO-dl
z4-g7
oO-gB
v6 - t6

pO-g9
z5-w2
w2 -i2

12-w5
j2-z5

s0-w9
x0 -d 2

u0 -a 2

uO-dl
nO-oO
k 0 -g8

1 2 - t 6

kO-rO
z5-h2
w2-t4
x4-w5

4. For the agent ^ 3:

il-v7
yO-d2

u0-d3
w0 - t 8

nO-kO
o0-t9
e2-t7
k0-g9
z5-12
h2 - 1 2

x4-e2

il-d4
zO-uO
a2-d3
i0-z4
nO-gS
h2 -w 8

y 2 - t 2

rO-g9
z5-t4
h2-t4
x4-t5

v7-d4
z0 -a 2

sO-uO
i0-g7
oO-kO
v6 -i2

pO-rO
qO-t3
w 2 -h 2

12-t4
e2-t5

Default Arcs:

d3-b2
a 2 -ll
p l-n l
yO-uO

sO-wO
a2 -b 2

d 8 -y0

u0 -b2

dl-wO
dS-ql
o l-n l
uO-wO

z0 -b 2

d 2 -u 0

d7-nl
wO-ql

xO-uO
d 6 -ll
nl-yO

Moral Arcs:

a 2 -d 6

xO-yO
z0-d3
sO-dl

5. For the agent A 4 :

Default Arcs:

o l-p l
xO-d2

u0 -a 2

uO-dl

ol-d7
yO-d2

u0-d3
w0-d5

pl-d7
zO-uO
a2-d3

nl-dS
zO-a2

sO-uO

1 2 -m 2 o2 -n 2 d 0 -m 2 d9-q2 g6 -n 2

z5-x4 z5-q2 t4-x4 t5-j2 w2-x4
e2-y4 e2 -j2 h2-x4 i2-x4 t7-y4
x4-j2 j 2 -m 2 j 2 -q 2 m 2 -n 2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 8 6

Moral Arcs:

z5-w2 z5-h2 z5-i2 z5-t4 w 2 -h 2

w2 -i2 w2-t4 h 2 -i2 h2-t4 12-t4
e2-t7 x4-e2 x4-t5 e2-t5 1 2 -j2

12-dO j 2 -d 0 m 2 -o2 m 2 -g6 o2 -g6

z5-j2 z5-d9 J2-d9

6 .2 .2 R esu lts o f th e co o p era tiv e g lob a l tr ia n g u la tio n

Here, according to C o T r i a n g u l a t e algorithm (Section 3 .4 .4 on page 3 7), the system
coordinator calls an object arbitrarily to run D e p t h F i r s t E l i m i n a t e . After it
finishes the coordinator calls the same object to run D i s t r i b u t e C L i n k s .

Before we show the results of each object individually, let us take a look at the
system communications between the objects to have a general view about how the
cooperative triangulation is done.

Coordinator.CoTriangulate() calls “G4” to run D epthFirstElim inate().
G 4.DepthFirstEliminate() calls its compiler to run Triangulate() w ith respect to “G2” .
G4.DepthFirstEliminate() saves the resultant elimination sequence in its linkage tree w ith “G2” : {12, o2, dO,

d9, g6 , n2, m2, q2, h2, 12, t4, t5, t7, w2, y4, e2, j2, x4, z5}.
G 4.DepthFirstEliminate() runs G etChordalsW ith() to obtain the chordal arc(s) restricted w ith the intersection

with “0 2 ” .
G 4.DepthFirstEliminate() calls “G2” to run DepthFirstElim inate().
G 2.DepthFirstEliminate() receives 0 chordal arc(s) from “G4” .
G 2.DepthFirstEliminate() calls its compiler to run AddToChordalLinks().
G 2.DepthFirstEliminate() calls its compiler to run Triangulate() with respect to “G l” .
G 2.DepthFirstEliminate() saves the resultant elimination sequence in its linkage tree w ith “G l” : {t4, t5 , t7,

w5, t3, t9, w8 , t 6 , k l, to, d3, a2, d4, v7, d2, w9, yO, t 8 , d l, zO, b2, x5, s2, v 6 , h2, y4, e2, fl, 12, j2, z5, x4, w2, il,
xO, sO, uO, wO, g7, g8 , g9, iO, oO. qO, t2, y2, rO, kO, pO, nO, z4}.

G2.DepthFirstEliminate() runs G etChordalsW ith() to obtain the chordal arc(s) restricted w ith the intersection
with “G l” .

G2.DepthFirstEliminate() calls “G l” to run DepthFirstElim inate().
G l.D epthFirstE lim inate() receives 0 chordal arc(s) from “G2” .
G l.D epthFirstElim inateO calls its compiler to run AddToChordalLinks().
G l.D epthFirstE lim inate() calls its compiler to run Triangulate() w ith respect to “GO” .
G l.D epthFirstElim inateO saves the resultant elimination sequence in its linkage tree w ith “GO” : { tl , g8 , t2,

y2, w7, oO, g9, g7, y l, z l, z4, gO, g5, rO, z3, qO, kO, iO, v5, pO, nO, aO, cO, eO, fO, g l, g2, x3, bO, z2}.
G l.D epthFirstElim inateO runs G etChordalsW ith() to obtain the chordal arc(s) restricted w ith the intersection

with “GO” .
G l.D epthFirstElim inateO calls “GO” to run DepthFirstElim inate().
GO.DepthFirstEliminate() receives 0 chordal arc(s) from “G l” .
GO.DepthFirstEliminate() calls its compiler to run AddToChordalLinks().
GO.DepthFirstEliminate() calls its compiler to run TriangulateQ w ith respect to “G l” .
GO.DepthFirstEUminateO saves the resultant elimination sequence in its linkage tree w ith “G l” : {g3, v4, w6 ,
s i , v l, cO, eO, fO, g l, g2, x3, aO, bO, z2}.
GO.DepthFirstEUminateO runs G etChordalsW ith() to obtain the chordal arc(s) restricted with the intersection

with “G l” .
G l.D epthFirstElim inateO receives 1 chordal arc(s) from “GO” :
a0-x3

G l.D epthFirstE lim inateO calls its compiler to run AddToChordalLinks().
G l.D epthFirstE lim inateO calls its compiler to run TriangulateQ with respect to “G2” .
G l.D epthFirstElim inateO saves the resultant elimination sequence in its linkage tree w ith “G2” : { tl , w7, y l,

z l, gO, g5, g2, g l, z3, eO, cO, x3, bO, aO, fO, z2, v5, g7, g8 , g9, oO, qO, t2, y2, rO, kO, pO, iO, nO, z4}.
G l.D epthFirstE lim inateO runs GetChordalsW ithQ to obtain the chordal arc(s) restricted with the intersection

with “G2” .
G2.DepthFirstEliminate() receives 1 chordal arc(s) from “G l” :

g4;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 87

iO-pO
G2.DepthFirstEliminate() calls its compiler to run AddToChordalLinks().
G 2.DepthFirstEliminate() calls its compiler to run TriangulateQ w ith respect to “G3” .
G 2.DepthFirstEliminate() saves the resultant elimination sequence in its linkage tree w ith “G3” ; {g9, t2 , y2,

t4, t5, t7, w5, t3, g8 , g7, t9, w8 , t 6 , k l, tO, d4, v7, w9, t 8 , il , x5, oO, s2, v 6 , h2, y4, e2, rO, fl, i2, j2, z5, x4, w2,
qO, kO, pO, iO, nO, z4, a2, b2, d l, d2, d3, wO, sO, xO, yO, uO, zO}.

G2.DepthFirstEliminateQ runs GetChordalsW ithQ to obtain the chordal arc(s) restricted w ith the intersection
with “G3” .

G2.DepthFirstEliminateQ calls “G3” to run DepthFirstEliminate{).
G3.DepthFirstEliminate() receives 1 chordal arc(s) from “G2” :
sO-xO

G3.DepthFirstEliminate() calls its compiler to run AddToChordalLinksQ.
G3.DepthFirstEliminateQ calls its compiler to run TriangulateQ with respect to “G2” .
G3.DepthFirstEliminateQ saves the resultant elimination sequence in its linkage tree with “0 2 ” : {d5, d 6 , p i,

d 8 , o l, d7, 11, n l, q l, a2, b2, d l, d2, d3, wO, sO, xO, yO, uO, zO}.
G3.DepthFirstEliminateQ runs GetChordalsW ithQ to obtain the chordal arc(s) restricted w ith the intersection

with “G2” .
G2.DepthFirstEliminate() receives 1 chordal arc(s) from “G3” :
sO-xO

G2.DepthFirstEliminateQ calls its compiler to run AddToChordalLinksQ.
G2.DepthFirstEliminateQ calls its compiler to run TriangulateQ with respect to “G4” .
G2.DepthFirstEliminateQ saves the resultant elimination sequence in its linkage tree w ith “G4” : {g9, t2 , y2,

w5, t3, gS, g7, t9, w8 , t 6 , k l, tO, d3, a2, d4, v7, d2, w9, yO, t 8 , d l , zO, il , xO, sO, b2, uO, wO, z4, iO, nO, x5, oO, kO,
pO, s2, v6 , rO, qO, fl, h2, i2, t4, t5, t7, w2, y4, e2, j2, x4, z5}.

G2.DepthFirstEliminateQ runs GetChordalsW ithQ to obtain the chordal arc(s) restricted w ith the intersection
with “G4” .

G4.DepthFirstEliminateQ receives 0 chordal arc(s) from “G2” .
G4.DepthFirstEliminateQ calls its compiler to run AddToChordalLinksQ.

Coordinator.CoTriangulateQ calls “G4” to run DistributeCLinksQ.
G4.DistributeCLinksQ runs GetChordalsW ithQ to obtain the chordal arc(s) restricted w ith the intersection

with “G2” .
G4.DistributeCLinksQ calls “G2” to run DistributeCLinksQ.
G2.DistributeCLinksQ receives 0 chordal arc(s) from “G4” .
G2.DistributeCLinksQ calls its compiler to run AddToChordalLinksQ.
G2.DistributeCLinksQ runs GetChordalsW ithQ to obtain the chordal arc(s) restricted w ith the intersection

with “G l” .
G2.DistributeCLinksQ calls “G l” to run DistributeCLinksQ.
Gl.DistributeCLinksQ receives 1 chordal arc(s) from “G2” :
iO-pO

Gl.DistributeCLinksQ calls its compiler to run AddToChordalLinksQ.
Gl.DistributeCLinksQ runs GetChordalsW ithQ to obtain the chordal arc(s) restricted w ith the intersection

with “GO” .
Gl.D istributeCLinksQ calls “GO” to run DistributeCLinksQ.
GO.DistributeCLinksQ receives 1 chordal arc(s) from “G l” :
a0-x3

GO.DistributeCLinksQ calls its compiler to run AddToChordalLinksQ.
G2.DistributeCLinksQ runs GetChordalsW ithQ to obtain the chordal arc(s) restricted w ith the intersection

with “G3” .
G2.DistributeCLinksQ calls “G3” to run DistributeCLinksQ.
G3.DistributeCLinksQ receives 1 chordal arc(s) from “G2” :
sO-xO

G3.DistributeCLinksQ calls its compiler to run AddToChordalLinksQ.

Now we can show the results of the local triangulation in each object:

1. For the agent A q:
Elimination Sequence(s):

with respect to “G l” : {g3, v4, w6 , g4, v l, s i , cO, eO, fD, g l, g2, x3, aO, bO, z2}.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTTAGENT SYSTEM 88

Chordal Arcs:

a0-x3

2. For the agent A i.
Elimination Sequence(s):

w ith respect to “GO” : { tl , g8 , t2, y2, w7, oO, g9, g7, y l, z l, z4, iO, gO, g5, rO, z3, v5, qO, kO, pO, nO,
cO, eO, fO, g l, g2, x3, aO, bO, z2}.

w ith respect to “G2” : { tl , w7, y l, z l. gO, g5, g2, g l, z3, v5, eO, cO, x3, bO, aO, fO, z2, g7, g8 , g9, oO.
qO, t2, y2, rO, kO, pO, iO, nO, z4}.

Chordal Arcs:

v5-n0 a0-x3 iO-pO

3. For the agent A 2 :
Elimination Sequence(s):

• w ith respect to “G l” : {t4, t5, t7, w5, t3, t9, w8 , t 6 , k l, tO, d3, a2. d4, v7, d2, w9, yO, t 8 , d l , zO, il,
xO, sO, b2, uO, wO, x5, s2, v 6 , h2, y4, e2, f l , i2, j2, z5, x4, w2, g7, gS, g9, oO, qO, t2, y2, rO, kO, pO,
iO, nO, z4}.

• w ith respect to “G3” : {g9, t2, y2, t4, t5, t7, w5, t3, g8 , g7, t9, w 8 , t 6 , k l, tO, d4, v7, w9, t 8 , i l , x5,
oO, s2, v6 , h2, y4, e2, rO, fl, i2, j2, z5, x4, w2, qO, kO, pO, iO, nO, z4, a2, b2, d l, d2, dS, wO, sO, xO,
yO, uO, zO}.

• w ith respect to “G4” : {g9, t2, y2, w5, t3, g8 , g7, t9, w8 , t 6 , k l, tO, dS, a2, d4, v7, d2, w9, yO, t 8 ,
d l , zO, il, xO, sO, b2, uO, wO, z4, iO, nO, x5, oO, kO, pO, s2, v 6 , rO, qO, fl. h2, i2, t4, t5. t7, w2, y4,
e2, j2, x4, z5}.

Chordal Arcs:

sO-xO iO-pO

4. For the agent A :̂
Elimination Sequence(s):

• w ith respect to “G2” : {d5. d 6 , p i, d 8 , o l, d7, 11, n l, q l, a2, b2, d l, d2, d3, wO, sO, xO, yO, uO, zO}.

Chordal Arcs:

sO-xO

5. For the agent A 4 :
Elimination Sequence(s):

• w ith respect to “G2” : {12, o2, dO, d9, g6 , n2, m2, q2, h2, 12, t4, t5, t7, w2, y4, e2, j2, x4, z5}.

Chordal Arcs:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 8 9

6 .2 .3 C o n stru ctio n R esu lts o f each O b ject

Immediately after the cooperative triangulation is finished, each object starts con­
structing its own JT as a hypernode. The following lines record this action:

1. For the agent A q:
Generated Cliques and their Initial Potentials:

(a) [p3, x3,i;l] : [P(c/3) * P (x 3 |u l, g3)j

(b) [nl.aO, x3] : [P(aO)]

(c) [i;4, u l, aO, ru6] : [P(u4) * P{ul|u4, aO, tu6) * P(ui6)]

(d) [i3,fc0,a0] : [P(60)]

(e) [cO, g2, eO, 60, i3 j : [P(c0|x3, eO, 60, g2) * P(g2) * P(eO)]

(f) [/O, 2 2 , 60, aO, gl] : [P (/0 |60 , aO, z2, g l) * P(z2) * P (g l)j

(g) [g 4 ,s l , /0] : [P(g4) * P (s l |/0 , g4)j

DSep Nodes:

(a) [g3,x3,ul] — (x3 ,n l) — [nl,a0 , i3]

(b) [ul,a0,x3] — (ul.aO) — [u4, n l, aO, ik6]

(c) [nl,aO, x3] — (a0,x3) — [i3, 60, aO]

(d) [x3, 60, aO] — (x3 ,60) — [cO, g2, eO, 60, x3]

(e) [x3, 60, aO] — (60, aO) — [/O, z2, 60, aO, gl]

(f) [/0 ,z2 .6 0 ,a0 ,g l] - (/O) - [g 4 ,s l,/0]

Linkages with respect to “G l” :

(a) [x3, 60, oO] from the host: [i3,60, aO]

(b) [cO, g2, eO, 60, i3] from the host: [cO, g2, eO, 60, x3]

(c) [/O, z2, 60, aO, gl] from the host: [/O, z2, 60, aO, gl]

2. For the agent Ai:
G enerated Cliques and their Initial Potentials:

[tl, z3, n5,p0] : [P (tl) * P(z3|n5, pO, tl)]

[iO, n5, nO,pO] : [P(iO)]

[w7, n5, fO] : [P(u;7) * P (n5|i0 , ui7)]

[g7, nO, iO, z4] : [P(g7) * P(nO|iO, z4, g7) * P(z4)]

[g8 ,pO,nO, oO, fcO] : [P(g 8) * P(pO|nO, oO, fcO, g 8) * P(oO) * P(fcO)]

[g9, gO, pO, fcO, rO] : [P(g9) * P(gO|pO, fcO, rO, g9)]

[gO, z2,n0] : [P(gO) * P (z2 |n0 , gO)]

[t2, rO, y2] : [P(t2) * P (r0 |y2 , t2) * P(g2)]

[/0 ,60, aO, g l, z2] : [P (/0 |60 , aO, z2, g l) * P(60) * P (a0) * P(gl)]

[x3,60, aO] ; [P(x3)]

[cO, 60, x3, g2, eO] : [P(cO]i3, eO, 60, g2) * P(g2)]

[yl,eO, z l,g5] : [P (y l) * P(eO |yl, z l, g5) * P (z l) * P(g5)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 9 0

DSep Nodes:

(a) [tl,z3,n5,pO] - (v5,pO) - [iO, n5, nO,pO]

(b) [iO, n5,nO,pO] - (i0,v5) - [iu7, n5,t0]

(c) [iO, v5,nO,pO] - (iO,nO) - [g7, nO, iO, z4]

(d) [iO, n5, nO.pO] - (nO,pO) - [g8,p0, nO, oO, kO]

(e) [g8 , pO, nO, oO, fcO] - (pO, fcO) - [p9, qO, pO, fcO, rO]

(f) [iO, n5, nO,pOj - (nO) - [gO, z2,n0]

(g) [g9, gO,pO,A:0,rO] - (rO) - [t2,r0,y2]

(h) [gO, z2, nO] - (z2) - [/O, 60, aO, g l, z2]

(i) [/0 ,6 0 ,a0 ,g l, z2] - (60, aO) - [x3, 60, aO]

(j) [i3,60,a0] - (x3,60) - [cO, 60, x3, g2, eO]

(k) [cO, 60,x3, g2, eO] - (eO) - (yl, eO, zl,g5]

Linkages w ith respect to “GO” :

(a) [/0 ,60, aO, g l, z2] from the host: [/O, 60, aO, g l, z2]

(b) [x3,60, aO] from the host: [x3,60, aO]

(c) [cO, 60, x3, g2, eO] from the host: [cO, 60, x3, g2, eO]

Linkages with respect to “G2” :

(a) [iO, nO,pO] from the host: [iO, n5, nO, pO]

(b) [g7, nO, iO, z4] from the host: [g7, nO, tO, z4]

(c) [g8 , pO, nO, oO, fcO] from th e host: [gS, pO, nO, oO, fcO]

(d) [g9, gO,pO, fcO, rO) from the host: [g9, gO,pO, fcO, rO]

(e) [t2, rO, y2] from the host: [t2,r0, y2]

3. For the agent A 2 :
Generated Cliques and their Initial Potentials:

(a

(b
(c

(d

(e

(f

(g

(h

(i

(j

(k

(1

(m

(n

(o

[14, x4, z5, m2, h 2 , 12] : [P(t4) * P (x4|z5, m2, 62,12,14) * P(z5) * P(62) * P(12)]

[m 5 ,/l,1 2 ,i4] : [P(m5) * P (/l|12 ,x4 ,m S)]

[n6,62,12] : [J

[)2,x4,z5] : 0

[m8,n6,62] : [P(m 8) * P(n6|62, m8)]

[1 6 , s2, n6 , 12) : [P(16) ♦ P (s2 |n 6 ,12,16)]

[I5,g2,x4,e2] : [P(15) * P(g2|x4, e2 ,15) * P(e2)]

[13, m2, gO] : [P(13) * P (m 2|g0,13)]

[I7,y4,e2] : [P(17) * P (y 4 |e2 ,17)]

[g9, gO,pO, to , rO) : [P(g9) * P(gO|pO, kO, rO, g9) * P(fcO))

[g8,p0, nO, oO, fcO] : [P(g 8) * P(pO|nO, oO, fcO, g8) * P(oO)]

[p0,n0,10] : [P(10)]

[g7, nO, 10, z4] : [P(g7) ♦ P(n0|10, z4, g7)j

[12,r0,y2] : [P (l2)*P (rO |y2 ,12)*P (y2)]

[t9,x5,o0] ; [P(19) * P(i5|oO , 19)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 91

(p) [£8,z4,n;0]: [P (t8) * P(z4|mO. 18)]

(q) [dl, mO, sO, ixOj : [P (d l) * P(mO|sO, uO, d l) * P(sO)]

(r) [lO, uO, sO] : []

(s) [il,sO ,iO] : 0

(t) [d2, uO, xO, yO] : [P(d2) * P(-uO|xO, yO, d2) * P(yO)]

(u) [d4, lO, i l , n7] : [P(d4) * P (xO |il, n7, d4) * P(v7)]

(v) [m 9,il,s0] : [P(m9) * P (tl|sO , m9)]

(w) [d3,62, zO, uO, a2] ; [P(d3) * P(62]z0, uO, a2, d3) * P(a2)]

(x) [fcl,zO,lO]: [P (fc l)* P (z 0 |tl ,1 0)* P (l0)]

DSep Nodes:

(a) [14, x4, z5, m2, 62,12] - (x 4 ,12) - [m5, / 1 , 12, x4]

(b) [14, x4,z5,m 2,62,12] - (62,12) - [n6,62,12]

(c) [14, x4, z5, m2, 62,12] - (x4, z5) - [j2, x4, z5]

(d) [n6,62,12] - (n6 ,62) - [m8, n 6 ,62]

(e) [n6,62,12] - (v6,12) - [16, s2, n6 ,12]

(f) [j'2 ,i4,z5] - (j2, x4) - [I5,j2,x4,e2]

(g) [14, x4, z5, m2, 62,12] - (m2) - [13, m2, gO]

(h) [15, j2 ,x 4 , e2] - (e2) - [l7,y4, e2]

(i) [13, m2, gO] - (gO) - [g9, gO,pO, fcO, rO]

(j) [9 9 . 9 O, pO, to , rO] - (pO, to) - [yS, pO, nO, oO, tO]

(k) [gS,pO, nO, oO, to] - (pO, nO) - [p0,n0,10]

(1) [p0,n0,10] - (n0,10) - [g7, nO, 10, z4]

(m) [g9, gO,pO,tO,rO] - (rO) - [I2,r0,y2]

(n) [g8 ,p0,n0,o0,t0] - (oO) - [19, x5, oO]

(o) [g7, nO, 10, z4] - (z4) - [1 8 , z4, mO]

(p) [18, z4, mO] - (mO) - [dl, mO, sO, aO]

(q) [dl,mO, sO, uO] - (sO,uO) - [xO,uO, sO]

(r) [xO,tiO, sO] - (xO,sO) - [11, sO, xO]

(s) [xO,uO,sO] - (xO,uO) - [d2, uO, xO, yO]

(t) [Il,s0 ,x0] - (11,xO) - [d4, xO, 11,n7]

(u) [Il,s0 ,x0] - (11, sO) - [m9,11, sO]

(v) [dl, mO, sO, uO] - (uO) - [d3, 62, zO,uO, a2]

(w) [d3,62, zO, uO, o2] - (zO) - [t l , zO, 10]

Linkages w ith respect to “G l” :

(a) [y9, gO, pO, to, rO] from the host: [g9, gO, pO, tO, rO]

(b) [g8 , pO, nO, oO, tO] from the host; [gS, pO, nO, oO, tO]

(c) [pO, nO, 10] from the host: [pO, nO, 10]

(d) [g7, nO, 10, z4] from the host: [g7, nO, 10, z4]

(e) [1 2 , rO, y2] from th e host: [12, rO, y2]

Linkages w ith respect to “G3” :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 92

(a) [dl, mO, sO, uO] from the host; [dl, mO, sO, uO]

(b) [xO, uO, sO] from the host: [lO, uO, sO]

(c) [d2, uO, xO, yO] from the host; [d2, uO, xO, yO]

(d) [d3,62, zO, uO, a2] from the host: [d3, 62, zO, uO, q2]

Linkages w ith respect to “G4’' :

(a) [t4, x4, z5 ,1x2 , 62,12] from the host: [14, x4, z5 ,1x2 , 62,12]

(b) [j2, x4, z5j from the host: [j2, x4, z5]

(c) [l5 ,j2 , x4, e2] from the host: [15, g'2, x4, e2]

(d) [17, y4, e2] from the host: [l7, y4, e2]

4. For the agent A 3 :
G enerated Cliques and their Initial Potentials:

(a) [d5, g l, 1x0] : [P(d5) * P(gl|ixO, d5)]

(b) [dl,iuO, sO, uO] : [P (d l) * P(mO]sO, uO, d l) * P(sO)]

(c) [sO, uO, xO] : [P(xO)]

(d) [d2,itO,xO,yO] : [P(d2) * P(iiOjxO, yO, d2))

(e) [a2, 62, zO, uO, d3] : [P(a2) » P(62|zO, irO, a2, d3) * P(zO) * P(d3)]

(f) [d8 , yO,nl] : [P(d 8) * P(yO |nl, d8)]

(g) [d6 , l l , a 2 j : [P(d6)$P(Zl|a2,d6)]

(h) [p l ,n l,o l ,d 7] : [P (p l)* P (n l |o l ,p l ,d 7)* P { o l) * P (d 7)]

DSep Nodes:

(a) [d5, g l, 1x0] - (ixO) - [dl, ixO, sO, uO]

(b) [dl, 1x0 , sO, uO] - (sO, uO) - [sO,uO,xO]

(c) [sO, uO,xO] - (iiO,xO) - [d2, uO, xO, yO]

(d) [dl, 1x0 , sO, uO] - (liO) - [a2,62, zO, uO, d3]

(e) [d2,u0,x0,y0] - (yO) - [d8,y0,nl]

(f) [a2,62, zO, liO, d3] - (a2) - [d6 , il,a2]

(g) [d8,y0,nl] - (n l) - [p l ,n l,o l ,d 7]

Linkages w ith respect to “G2” :

(a) [dl, 1x0 , sO, uO] from the host: [dl, ixO, sO, uO]

(b) [sO, liO, xO] from the host: [sO, uO, xO]

(c) [d2, uO, xO, yO] from the host: [d2, uO, xO, yO]

(d) [o2, 62, zO, liO, d3] from the host: [a2,62, zO, uO, d3]

5. For the agent A 4 :
Generated Cliques and their Initial Potentials:

(a) [12, m 2 , j 2 , dO] : [P(12) * P(m2|12, j2 , dO) * P(dO)]

(b) [o2,n2,m 2,g6] : [P(o2) * P (n2 |m 2, o2, g6) * P (g 6)]

(c) [d9,g2,z5,j2] : [P(d9) * P(g2|z5,g2,d9) * P(z5)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 93

(d) |j’2 ,x4 ,z5l : [

(e) [15, j2 , x4, e2] ; [P(l5) * P (j2 |i4 , e2 ,15) * P(e2)]

(f) [62, x4, z5, m2,12,14] ; [P{62) * P(x4|z5, m2, 62,12,14) * P(m2) * P(12) * P(14)]

(g) [I7,y4,e2] : [P(17) * P (y4 |e2 ,17)]

DSep Nodes:

(a) [1 2 , m 2 , j 2 , do] - (m 2) - [o2 , n 2 , m 2 , g6]

(b) [12, m2, j2 , dO] - (j2) - [d9, g2, z5, j2]

(c) [d9, q2, z5, j2] - (z5, j 2) - [j2, x4, z5]

(d) [)2,x4, z5] - (j2 ,i4) - [I5,g'2,x4,e2|

(e) [)2,x4, z5] - (i4 , z5) - [62, x4, z5, m2,12,14]

(f) [15,i2,x4,e2] - (e2) - [17,y4,e2]

Linkages w ith respect to “G2” ;

(a) [j2, z4, z5] from the host; [j2 ,z4, z5]

(b) [15, j2 , x4, e2] from the host; [I5,j2, x4, e2]

(c) [62, z4, z5, m2,12,14] from the host: [62, z4, z5, m2,12,14]

(d) [17, y4, e2] from the host: [17, y4, e2]

6 .2 .4 B e lie f U p d a tin g to B rin g th e LJF in to C o n sisten ce

By the end of the preceding step, the MSDAG of the digital system has been
transformed into its corresponding LJF model. The last step before applying any
observation is to bring the multi-agent reasoning system belief into consistence.
That can be accomplished by running C om m u n ica teB elie f algorithm (Section 4.3
on page 45).

First we present the conversations between agents and then we show clearly
the consistence between agents’ belief by normalizing the variables’ belief in each
agent. The belief equality of each variable V G { / ,} in all agents {V G Ti) reflects
the global consistency.

Coordinator.CommunicateBelief() calls “G4” to run CollectBelief().
G4.CoUectBelief() calls “G2” to run CollectBelief().
G2.CollectBeliefQ calls “G l” to run CollectBeliefQ.
Gl.CoUectBeliefQ calls “GO” to run CollectBeliefQ.
GO.Collect BeliefQ runs UnifyBeliefQ.
Gl.CollectBelief() runs UpdateBeliefQ with respect to “GO” .

Gl.UpdateBeliefQ calls “GO” to run AssignLinkagePotentialsQ.
GO.AssignLinkagePotentialsQ calls its linkage tree w ith “G l” to run PreparePotentialsQ.

Gl.UpdateBeliefQ calls its linkage tree w ith “GO” to run AbsorbQ.
Gl.UpdateBeliefQ runs UnifyBehefQ.

G2.Collect BeliefQ runs UpdateBehefQ w ith respect to “G l” .
G2.UpdateBeliefQ calls “G l” to run AssignLinkagePotentialsQ.

Gl.AssignLinkagePotentialsQ calls its linkage tree w ith “G2” to run PreparePotentialsQ.
G2.UpdateBeliefQ calls its linkage tree with “G l” to run AbsorbQ.
G2 UpdateBeliefQ runs UnifyBeliefQ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 94

G2.CollectBeliefQ calls “G3” to run CollectBeliefQ.
G3.CollectBeliefQ runs UnifyBeliefQ.
G2.CollectBeliefQ runs UpdateBeliefQ with respect to “G3” .

G2.UpdateBeliefQ calls “G3” to run AssignLinkagePotentialsQ.
G3.AssignLinkagePotentialsQ calls its linkage tree with “G2” to run PreparePotentialsQ.

G2.UpdateBeliefQ calls its linkage tree with “G3” to run AbsorbQ.
G2.UpdateBeliefQ runs UnifyBeliefQ.

G4.Collect BeliefQ runs UpdateBeliefQ with respect to “G2” .
G4.UpdateBeliefQ calls “G2” to run AssignLinkagePotentialsQ.

G2.AssignLinkagePotentialsQ calls its linkage tree with “G4” to run PreparePotentialsQ.
G4.UpdateBeliefQ calls its linkage tree with “G2” to run AbsorbQ.
G4.UpdateBeliefQ runs UnifyBeliefQ.

Coordinator.CommunicateBeliefQ calls “G4” to run DistributeBeliefQ.
G4.DistributeBeliefQ calls “G2” to run DistributeBeliefQ.
G2.DistributeBeliefQ runs UpdateBeliefQ w ith respect to “G4” .

G2.UpdateBeliefQ calls “G4” to run AssignLinkagePotentialsQ.
G4.AssignLinkagePotentialsQ calls its linkage tree with “G2” to run PreparePotentialsQ.

G2.UpdateBeliefQ calls its linkage tree with “G4” to run AbsorbQ.
G2.UpdateBeliefQ runs UnifyBeliefQ.

G2.DistributeBeliefQ calls “G l” to run DistributeBeliefQ.
Gl.DistributeBeliefQ runs UpdateBeliefQ with respect to “G2” .

Gl.UpdateBeliefQ calls “G2” to run AssignLinkagePotentialsQ.
G2.AssignLinkagePotentialsQ calls its linkage tree w ith “G l” to run PreparePotentialsQ.

Gl.UpdateBeliefQ calls its linkage tree w ith “G2” to run AbsorbQ.
Gl.UpdateBeliefQ runs UnifyBeliefQ.

Gl.DistributeBeliefQ calls “GO” to run DistributeBeliefQ.
GO.DistributeBeliefQ runs UpdateBeliefQ with respect to “G l” .

GO.UpdateBeliefQ calls “G l” to run AssignLinkagePotentialsQ.
Gl.AssignLinkagePotentialsQ calls its linkage tree with “GO” to run PreparePotentialsQ.

GO.UpdateBeliefQ calls its linkage tree with “G l” to run AbsorbQ.
GO.UpdateBeliefQ runs UnifyBeliefQ.

G2.DistributeBeliefQ calls “G3” to run DistributeBeliefQ.
G3.DistributeBeliefQ runs UpdateBeliefQ with respect to “G2” .

G3.UpdateBeliefQ calls “G2” to run AssignLinkagePotentialsQ.
G2.AssignLinkagePotentialsQ calls its linkage tree w ith “G3” to run PreparePotentialsQ.

GS.UpdateBeliefQ calls its linkage tree w ith “G2” to run AbsorbQ.
G3.UpdateBeliefQ runs UnifyBeliefQ.

For the agent A q:

P{g2 = ' good' \{}) = 0.990000
F(g3 = ' good' \{ }) = 0.990000
P(aO = ' zero' \ { }) = 1.000000
P{g4 = ' good'lO) = 0.990000
P(cO = ' zero '|{}) = 0.992000

P(eO = ' zero ' \ { }) = 0.992000
P(bO = ' zero ' \ { }) = 1.000000
P(m 6 = ' good' \ { }) = 0.990000
P (u l = ' zero '|{}) = 0.003000
P (/0 = ' ze ro 'lO) = 0.971647

P(z2 = ' zero '|{}) = 0.974494
P (u4 = ' zero '|{}) = 0.000000
P (g l = ' good' \ { }) = 0.990000
P (x3 = ' zero 'IO) = 0.992030
P (s l = ' zero '|{}) = 0.033069

For the agent Ai

p (t i
P (t2
P(oO
P { A
P (z 4
P(bO
P(aO
P(v5
P(z3
P(cO

= ' good'|{}) =
= ' good' l l }) =
= ' zero 'lO) :
= ' good'|{}) ;
= ' zero'|{}) :
= ' zero '|{}) =
= ' zero '|{}) :
= ' zero 'IO) :
= ' zero 'IO) :
= ' zero '|{}) =

0.990000
0.990000

: 1.000000
: 0.990000
: 0.012920

1.000000
: 1.000000
: 0.995000
: 0.987196
: 0.992000

P(99

PigO
P {x 3
P { g i
P{nO
P{gO
P(z2

= ' good'|{}) :
= ' zero '|{}) :
= ' good'IO) :
= ' zero '|{}) :
= ' good'|{}) :
= ' zero 'IO) '
= ' good'iO) :
= ' z e ro ' l l })
= ' zero '|{}) :
= ' z e ro ' l l }) :

: 0.990000
: 0.000000
: 0.990000
: 0.000000
= 0.990000
: 0.992030
: 0.990000
= 0.020713
0.026330

: 0.974494

P(fcO
P { w 7
P(iO =
P (z l
P(g5

P(rO
P(pO
P(eO:
P (/0

= ' zero '|{})
= ' good' l{})
=' zero ' l l }) -
= ' zero '|{}) :
= ' good'll})
= ' good'll})
= ' zero '|{}) :
= ' z e ro 'IO):
= ' zero '|{}) :
= ' zero 'll})

= 1.000000
= 0.990000
= 0.000000
= 1.000000
= 0.990000
= 0.990000
= 0.995000
= 0.023589
= 0.992000
= 0.971647

For the agent A 2 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 95

P(fcO = ' zero'K}) = 1 . 0 0 0 0 0 0 P(g9 = ' good'
P |z5 = ' zero '

= 0.990000 P (t2 = ') = 0.990000
P(y2 = ' zero 'll}) = 0.000000) = 1.000000 P{t4 = ') = 0.990000
P (t5 = ' good'K}) = 0.990000 P(e2 = ' zero ' = 0.000000 P{ t 7 = ' = 0.990000
P(m5 = ' good' l l }) = 0.990000 P (i2 = ' zero ') = 0.000000 P(h2 = ') = 1.000000
P(tZ = ' good'll}) = 0.990000 P(oO = ' zero ') = 1.000000 P{g8 = ') = 0.990000
P(iO = ' zero' l l }) = 0.000000

good'll}) = 0.990000
good'll}) = 0.990000

P(g7 = ' good') = 0.990000 P (t9 = ') = 0.990000
P(m8 = p |t6 = ' good') = 0.990000 P(fcl = ' = 1.000000
P(tO = ' P(d3 = ' good') = 0.990000 P (a2 = ') = 0.000000
P(d4 = ' good'K}) = 0.990000

' good'K}) = 0.990000
P { v 7 = ' zero ' = 0.000000 P(d2 = ') = 0.990000

P(m9 = p|yO = ' zero ') = 0.012920 P (s0 = ') = 1.000000
P (t8 = ' good'll}) = 0.990000

zero'K}) = 0.005000
P (d l = ' good') = 0.990000 P(zO = ') = 0.005000

P (t l = ' P(iO = ' zero ') = 0.003000 P(uO =) = 0.023627
P(62 = ' zero'K }) = 0.036053 P(mO = ' zero ' = 0.992000 P (z4 = ') = 0.012920
P(nO = zero'K }) = 0.020713 p|pO = ' zero ') = 0.023589 P (i5 =) = 0.005000
P(x6 = ' zero'K }) ~ 0.005000

zero'K }) = 0.995000
zero 'll}) = 0.003000

P(s2 = ' zero ') = 0.012920 P(y4 = ') = 0.995000
P(rO = ' P(qO — zero ') = 0.026330 P{yj2 =) = 0.968933
P (i4 = P (/ l = ' zero ' = 0.010952 P { j 2 = ' = 0.010952

For the agent A 3 :

P {d3 = ' good'K}) = 0.990000
P(zO = ' zero' \ {)) = 0.005000
P(d5 = ' good' \{}) = 0.990000
P (p l = ' zero '|{}) = 0.000000
P {d 7 = ' good'IO) = 0.990000
P(yO = ' zero'K }) = 0.012920
P(mO = ' zero 'IO) = 0.992000

For the agent A 4 :

P{12 = ' zero'IO) = 1.000000
P(d9 = ' good'10) = 0.990000
P (t4 = ' good'|{}) = 0.990000
P(e2 = ' zero 'IO) = 0.000000
P (t7 = ' good'|{}) = 0.990000
P (g 2 = ' zero 'IO) = 0.010952
P(g2 = ' zero 'IO) = 0.013886

P(sO = ' zero 'IO)
P (iO = ' zero 'IO)
P(d2 = ' good'IO)
P(d8 = ' good'IO)
P (U = ' zero'I.O) :
P(uO — zero 'IO)
P (g l = ' zero '|{})

= 1.000000
= 0.003000
= 0.990000
= 0.990000
= 0.995000
= 0.023627
= 0.012920

P(o2 = ' zero 'K }) = 0.000000
P(g6 = ' good'll}) = 0.990000
P (t5 = ' good'K}) = 0.990000
P (6 2 = ' zero 'K }) = 1 . 0 0 0 0 0 0

P(x4 = ' zero 'll}) = 0.003000
P (m 2 = ' zero 'K }) = 0.013886

P (d l = ' good'K}) '
P (a2 = ' zero 'K }) =
P(d6 = ' good'll}) :
P (o l = ' zero 'K }) :
P (n l = ' ze ro 'll}) ;
P (6 2 = ' zero'K}) =

: 0.990000
: 0.000000
: 0.990000
: 1.000000
: 0.992000
0.036053

P(dO = ' good'K}) = 0.990000
P (z5 = ' zero 'K }) = 1 . 0 0 0 0 0 0

P(m 2 = ' zero 'K }) = 0.968933
P (i 2 = ' ze ro 'll}) = 0.000000
P (y 4 = ' zero'K }) = 0.995000
P (n2 = ' ze ro 'll}) = 0.021664

6 .2 .5 P ro cess in g O b servations in th e S ystem

Suppose that the gates di in digital component Cg and U in C4 are faulty and
produce incorrect outputs. The state of the total universe is then completely defined
and is shown in Figure 6.9. The input and output of each gate are labeled in the
figure. Because gates di and ts produce incorrect outputs, the outputs of other
gates downstream will also be affected. Each incorrect output is underlined in the
figure.

These observations can be injected in the multi-agent reasoning system as ev­
idence using the E n t e r E v i d e n c e algorithm (Section 2.5 .6 on page 26) by agents
A2 and A4. C o m m u n i c a t e B e l i e f needs to be called to propagate e-messages and
return the system into consistence again. Here we show the significant changes in
each agent that is affected by the two instantiated variables (di = ' bad', — bad'):

Note that these observations are seen as evidence only by their agents where they
were entered, they are not seen as evidence in the others.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. IMPLEMENTING A N 0 .0 . MULTI-AGENT SYSTEM 9 6

' I L -r,7 N<-()
1 0 - 0

•— - -

X, 'i

I /„ 'm' 7 II

'^ " 7 :
, H(l 0

X/-" mi r .

</n
 - -•-—— —; 1

 . : 6 :
I'h — :—; :

I'7

. 'II

4 0>.T::ÆD-u
- f '7

.'■4

<lh
3 "I o “ . "I

T ^ ^ T L L L y - /),

i / \ 0 < J —J ;

<h \

Ç :

Figure 6.9: The inputs and outputs of all gates with incorrect outputs underlined.

For the agent Aq:

P { z 2 = ' zero'K }) = 0.210675 P (/ 0 = ' zero'K }) = 0.212411 P (s l = ' zero 'K }) = 0.784713

• For the agent Ai.

P(z4 = ' zero'K }) = 0.796999
P(gO = ' zero 'IO) = 0.784822

• For the agent Ag:

P(nO = ' zero'K }) = 0.792247 P(p 0 = ' zero'K }) = 0.790494
P (z 2 = ' zero'K }) = 0.210675 P (/ 0 = ' zero 'K }) = 0.212411

P(i5 = ' good' \ {d\ = ' bad'}) = 0.000000
P(mO = ' zero '|{d l = ' bad'}) = 0.200001
P(nO = ' zero '|{d l = ' bad'}) = 0.792247
P(gO = ' zero 'K dl = ' bad'}) = 0.784822
P (j 2 = ' zero 'K d l = ' bad'}) = 0.798200

P { d l = ' good' \ {dl = ' bad'}) = 0.000000
P (z4 = ' zero ' \ {d l = ' bad'}) = 0.796999
P(pO = ' zero 'K d l = ' bad'}) = 0.790494
P { w 2 = ' zero '|{d l = ' 6 ad'}) = 0.218026

For the agent A 3 :

P (d l = ' good'K}) = 0 . 0 0 0 0 0 0 P(mO = ' zero'K }) = 0 . 2 0 0 0 0 1 P (g l = ' zero 'K }) = 0.796999

For the agent A 4 :

P(t5 = ' good'|{t5 = ' bad'}) = 0.000000
P(g2 = ' zero'I {15 = ' bod'}) = 0.798200
P (n2 = ' zero 'I{15 = ' bad'}) = 0.791668

P { w 2 = ' zero'|{15 = ' bad'}) = 0.218026
P (m 2 —' z e ro '|{15 = ' bad'}) — 0.796411
P(g2 = ' zero 'I{15 = ' bad'}) = 0.796411

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conclusions and Future W ork

In Chapters 3 and 4, we studied in detail why a set of agents over a large and
complex domain should be organized into an MSBN and how. We studied how they
can perform probabilistic reasoning exactly, effectively, and distributively. Then
we provide an effective cooperative method to assign shared variables’ belief in an
MSBN in order to satisfy Xiang’s 5*̂ assumption in the case of distributed multi­
agent reasoning systems.

In Chapter 5, first we gave an overview about feed-forward artificial neural net­
works and how they can be trained using a back-propagation training algorithm,
and then we showed how ANN can play a role in a multi-agent reasoning system to
enhance the communication speed between agents. In this thesis, much program­
ming has been done (more than 3000 lines). We spent a full term just to prepare
a very consistent package that has no limitation but the available memory space.
In spite of everything, it was a very good experience to prepare such an advanced
system from scratch especially since the package has many practical applications.

The results that have been shown in Chapters 4 through 6 are very complete,
transparent and verifiable, and the time taken is acceptable. Having a very good
and deep knowledge about such a topic motivates us to go forward in this research
and try to provide more contributions. We have started to build a real distributed
multi-agent reasoning system by using the internet as a communication media but
unfortunately we don’t have enough time.

In the future, if a chance of obtaining a PhD admission, some ideas will be stud­
ied and then implemented. One idea is studying and then employing the TC P/IP
network protocol to establish a direct client/server reliable connection between each
pair of hypernodes to carry e-messages between them. Another idea involves giving
the system coordinator just enough more privileges to allow the building of a dy­
namic multi-agent reasoning system that can be changed dynamically, all without
compromising each agent’s privacy.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eferences

[1] Bayes’s theorem. http://en.wikipedia.org/wiki/Bayes%27_theorem, January
2007.

[2] R. Brunelli and T. Poggio. Face recognition: Features versus templates. IEEE
Trans. Pattern Anal. Mach. Intell, 15(10):1042-1052, 1993.

[3] T. Caetano. Graphical Models and Point Set Matching. PhD thesis, Universi-
dade Federal do Rio Grande do Sul, Porto Alegre, July 2004.

[4] G. Csaba. Creation of a bayesian network-based met a spam filter, using the
analysis of different spam filters. Master’s thesis. University of Copenhagen,
May 2006.

[5] M. Druzdzel and M. Hernion. Intercausal reasoning with uninstantiated ances­
tor nodes. In Ninth annual conference on uncertainty in artifecial intelligence,
UAI-93, pages 317-325, Washington, D.C., July 1993.

[6] R. Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduc­
tion. Addison Wesley Publishing Company, Reading, MA, 1989.

[7] D. Heckerman. A tutorial on learning bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, March 1995.

[8] Yu Hen Hu and Jenq-Neng Hwang, editors. HandBook of Neural Network
Signal Processing. CRC Press, September 2002.

[9] A. Paz J. Tian and J. Pearl. Finding minimal d-separators. Technical Report
R-254, University of California, February 1998.

[10] F. Jensen. Bayesian Networks and Decision Graphs. Springer, 2002.

[11] F. V. Jensen, S. L. Lauritzen, and K. C. Olesen. Bayesian updating in
causal probabilistic networks by local computations. Computational Statis­
tics Quaterly, 4:269-282, 1990.

[12] Finn Jensen and Frank Jensen. Optimal junction trees. In Proceedings of the
10th Annual Conference on Uncertainty in Artificial Intelligence (UAI-94),
pages 360-366, San Francisco, CA, 1994. Morgan Kaufmann.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://en.wikipedia.org/wiki/Bayes%27_theorem

REFERENCES 9 9

13] V. Kecman. Learning and Soft Computing: Support Vector Machines, Neural
Networks, and Fuzzy Logic Models. MIT Press, Cambridge, MA, 2001.

14] U. Kjaerullf and A. Madsen. Probabilistic networks: An introduction to
bayesian networks and influence diagrams. May 2005.

15] C. F. Luger. Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. Pearson Education Limited, Essex, England, forth edition,
2002 .

16] R. Neapolitan. Probabilistic Reasoning in Expert Systems: Theory and Algo­
rithms. John Wiley & Sons, New York, NY, 1990.

17] R. Neapolitan. Learning Bayesian Networks. Prentice Hall, New York, NY,
2003.

18] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, San Mateo, California, 1988.

19] Valluru B. Rao. C-h+ Neural Networks and Fuzzy Logic. M&T Books, IDC
Books Worldwide, Inc., June 1995.

20] H. Simon. Why Should Machines Leam?, Machine Learning: An Artificial
Intelligence Approach, volume I. Tioga Pub. Co., Palo Alto, CA, 1983.

21] Y. Xiang. Probabilistic Reasoning in Multiagent Systems: A Graphical Models
Approach. Cambridge University Press, New York, NY, 2002.

22] Y. Xiang and V. Lesser. Justifying multiply sectioned bayesian networks. In
Proceedings of the Fourth International Conference on Multi-Agent Systems
(ICMAS-2000), pages 349-356, Boston, MA, July 2000.

23] Y. Xiang, D. Poole, and M. P. Beddoes. Multiply sectioned bayesian net­
works and junction forests for large knowledge-based systems. Computational
Intelligence, 9:171-220, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

