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ABSTRACT

A comparative study on the treatment of synthetic kraft evaporator condensate and thermomechanical 

pulp (TMP) pressate between thermophilic (55°C) and mesophilic (30°C) temperature was conducted 

using sequencing batch reactors (SBRs) and membrane aerated biofilm reactors (MABRs), respectively. 

The performance of thermophilic and mesophilic SBRs was evaluated in terms of chemical oxygen 

demand (COD) removal, sludge flocculating ability and settleability for these two types of wastewater. 

Sludge characteristics, including floe size distribution, zeta potential, morphological mapping, were 

evaluated for sludge from both SBRs. The performance of the thennophilic and mesophilic MABRs was 

evaluated in terms of COD removal for these two types of wastewater. The main results and conclusions 

are summarized as below.

1.) For SBRs: Under tested conditions, a chemical oxygen demand (COD) removal efficiency of 90 ~ 

98% was achieved at both thermophilic and mesophilic conditions for synthetic kraft evaporator 

condensate treatment. However, a higher level of effluent suspended solids was observed in thermophlic 

SBRs. The settleability of thermophilic sludge was poorer than that of the mesophilic sludge. The poorer 

settleability of thermophilic sludge was related to a higher level of filamentous microorganisms. The 

results suggest that treatment of synthetic kraft evaporator condensate at the thermophilic temperature 

(55°C) is feasible in terms of COD removal but faces challenge of biosolids separation.

2.) The results of particle size distribution indicate that thermophilic sludge contained a significant 

higher level of fine colloidal particles in treated effluent for synthetic kraft evaporator condensate 

treatment. The average floe diameter of thermophilic sludge was smaller or larger than that of 

mesophilic sludge, depending on the level of filaments in sludge. There was no significant difference in
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zeta potential between thermophilic and mesophilic sludge. Fourier transform infrared spectroscopy 

study suggests that there was a characteristic peak at 1080 cm'* (corresponding to the sugar groups in 

polysaccharides) existing in the thermophilic sludge but not showing in the mesophilic sludge. The level 

of filamentous microorganisms in thermophilic sludge was significantly higher than that in mesophilic 

sludge. The poorer settleability of thermophilic sludge was associated with a significant higher level of 

filaments. These results suggest that significant differences in characteristics and structure of sludge 

floes exist between thermophilic and mesophilic sludge treating synthetic kraft evaporator condensate.

3.) For MABRs: Under tested conditions, a chemical oxygen demand (COD) removal efficiency of 80 ~ 

95% was achieved at both thermophilic and mesophilic conditions, and the COD removal efficiency of 

thermophilic MABR (80 ~ 90%) was slightly lower than that of the mesophilic MABR (85 ~ 95%) for 

synthetic kraft evaporator condensate treatment. Simultaneous COD removal and denitrification were 

observed in the mesophilic MABR, while the thermophilic MABR contributed mainly for COD 

removal. Nitrification was not significant in both the thermophilic and mesophilic MABRs. The results 

suggest that treatment of evaporator condensate is feasible at both thermophilic and mesophilic MABRs 

in terms of COD removal.

4.) With a total influent chemical oxygen demand (COD) of 3700 ~ 4100 mg/L for TMP pressate, a 

COD removal efficiency of about 60, 80, and 90% was achieved at an hydraulic retention time of 6, 12 

and 24 hours, respectively, under both thermophilic and mesophilic conditions (SBRs). Excellent sludge 

settleability (a small sludge volume index) was obtained at both thermophilic and mesophilic conditions 

(SBRs). A higher level of effluent suspended solids was observed in the thermophilic SBR. The results 

suggest that treatment of TMP pressate in thermophilic temperature is feasible.
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The COD removal efficiency (40 ~ 80%) of MABRs was lower than that of SBRs (60 ~ 90%) for TMP 

pressate treatment. The COD removal efficiency of thermophilic MABR (40 ~ 65%) was slightly lower 

than that of mesophilic MABR (50 ~ 80%). Effluent suspended solids in treated effluents of MABRs 

was higher than that of mesophilic SBR, suggesting a significant detachment of biofilms from 

membrane surfaces and the need of biosolids separation after MABRs to improve the quality of treated 

effluents.
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1. Introduction

1.1 Current problems associated with pulp and paper wastewater treatment 

The pulp and paper industry, a very water intensive industry, has been considered to be a major 

consumer of natural resources and energy, and a significant contributor of pollutant discharges to the 

environment [1]. Regulations have become more stringent to protect the environment from pulp effluent 

pollution. Almost all pulp and paper mills have installed biological secondary treatment systems to treat 

their mill effluent in order to comply with government regulations. To reduce the overall demand for 

freshwater, many pulp and paper mills have, or will be adopting, water reduction strategies by 

improving pulping and paper making technologies as well as wastewater treatment technologies. An 

alternative approach is to treat the wastewater to such an extent that it can be re-used within the mill. 

Indeed, the concept of “zero liquid effluent” has been suggested for mills making certain grades of paper 

[2, 3]. The same concept would be applicable in areas where water sources were extremely limited [4]. 

Water usage in the Canadian pulp and paper industry has steadily been declining over the last 40 years 

[5] by increasing the degree of water system closure. However, as the degree of water minimizations 

increases, the concentrations of contaminants and toxicity of the untreated effluent are also likely to 

increase, which creates challenges for biological treatment processes of pulp and paper effluents. 

Advanced wastewater treatment technologies and strategies for high strength wastewater are needed to 

be explored for in-mill treatment and closed cycle operation to minimize the environmental impacts 

from pulp and paper mills effluents.

Kraft pulping is the dominant method for pulp production in the world because of its pre-eminent 

quality and commercial position. In the kraft pulping process, condensate, formed by the condensation 

in the digester and black liquor evaporators, may account for as much as 40% of the total BOD



discharged from a bleached kraft mill regardless of the fact that it may represent only 5% of the total 

mill effluent volume [6], Although the cleaner fraction of the evaporator condensate in a kraft pulp mill 

can be reused as process water, the fouler fraction of the evaporator condensate cannot be reused 

without treatment because of the high strength of organic and odorous compounds it contains [7]. For an 

unbleached-kraft mill, more than 90% of the normal mill COD load could be from foul condensate. The 

low-volume, high temperature, and high strength foul condensates, therefore, need to be seriously 

considered for an effectively in-mill biological treatment.

Mechanical pulp, high yield pulp, is one of the two branches of pulp and paper making industry. Forty 

percent of all Canadian mills are thermomechanical pulp (TMP) mills [8]. It is not a major cause for 

environmental concern since most of the organic material is retained in the pulp, and the chemicals used 

(hydrogen peroxide and sodium dithionite) produce benign byproducts (water and sodium sulfate 

respectively) [9]. However, the significant toxic influence of the effluent generated from TMP mills on 

fish were observed by previous investigations [10-12], TMP pressate is the most concentrated flow and 

contains most of the COD generated in the TMP plant. In-mill treatment of TMP pressate would 

maintain a stable operation in general, a good heat balance, promote “zero effluent” technology, thus 

reduce the final environmental impact.

1.2 A rational approach to improving the treatment of pulp and paper wastewater treatment

In this study, a research was conducted to explore novel biological wastewater treatment technologies, 

thermophilic membrane aerated biofilm reactors (MABRs) technology and thermophilic sequencing 

batch reactors (SBRs) technology, for the treatment and reutilization of the foul fraction of the 

evaporator condensates and TMP pressate, which all have a temperature of 50 ~ 70°C. The novel



biological treatment technologies may prove to be more efficient than stripping and conventional 

mesophilic biological treatment for the in-mill removal of contaminants of concern from the foul 

fraction of the evaporator condensate and TMP pressate which are plenty of hazardous air pollutants 

(HAPs). The high strength and high temperature of contaminants in foul fraction of the evaporator 

condensate and TMP pressate require pure oxygen aeration, thus, high oxygen uptake rate, a unique 

quality of MABR, may meet the demand well. Since, this biological wastewater treatment system is 

operated at a high temperature (55°C), therefore, no cooling of the hot condensates to about 35°C for the 

conventional biological treatment and no reheating to about 55°C for reusing in the process [3] are 

required in the effluent treatment and reuse system, unlike the conventional mesophilic biological 

technologies. Therefore, the treated water could remain at an elevated temperature closer to the mill 

process temperature, thereby resulting in the energy saving along with high recovery of the preheated 

quantity of condensates.

MABRs characterized by the efficient way of bubbleless aeration represent a new technology for 

aerobic wastewater treatment. A gas permeable membrane possesses two key functions: first, to provide 

bubbleless aeration for the oxygen mass transfer as an oxygen supplemental material; and second, to 

support the formation of biofilm during the biological treatment for bacterial immobilization, where 

oxidation of pollutants takes place, as illustrated in Figure 1.1 [13]. The unique aeration style makes 

MABR an ideal and high efficient (100% utilization of the oxygen) bioreactor [14-18] for removing the 

contaminants from a high strength industrial wastewater containing volatile organic compounds (VOCs) 

and a promising commercial potential for wastewater treatment. However, MABRs’ inherent inability to 

control the thickness of a biofilm formed during treatment, affects the efficiency of the process thereby 

discourages its commercial application.
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Figure 1.1 Schematic diagram of membrane aerated biofilm reactors, in this case 

through a single hollow fiber with attached biofilm growth [13]

Thermophilic aerobic biological treatment (TABT) has gained an increasing interest due to its unique 

characteristics over mesophilic treatment such as elevated operational temperature (functional at a high 

temperature of wastewater, such as the evaporator condensate and TMP pressate -  beneficial to the 

process due to no need for cooling), rapid biodégradation rates, low sludge yields, along with an 

excellent process stability [19-24], Flowever, the main challenge still remaining with TABT technology 

is the high turbidity, high oxygen transportation demand, and biomass retention problems in the 

conventional aerated biological treatment processes [19, 21, 25].



Keeping in view of the potentials of MABR and TABT and to overcome their built-in limitations but 

harnessing the benefits from both of these technologies, combining of these two (TABT & MABR) 

seems to be a plausible step. The combination will certainly be advancement in the improvement of 

biofilm thickness control, high oxygen up-take rate and remaining an optimal operational temperature to 

gain the maximum heating recovery of evaporator condensates and TMP pressate in wastewater 

treatment, which in turn helps in saving the energy to a large extent.

1.3 Motivation of the present study 

There is increasing interest in treating and reusing the foul fraction of the evaporator condensate and 

TMP pressate from pulp and paper mills to make the closed cycle operation. Treatment technologies, 

which are currently in use, such as stream stripping and conventional mesophilic biological treatment, 

have their limitations and therefore encourage the development of better treatment technologies with 

higher efficiency and lower costs.

Reusing treated evaporator condensate and TMP pressate would promote recirculation of the process 

waters, thus reduce the amount of freshwater requirements. Also, Recycling of used water at the 

required range of temperature would help in reducing the energy requirements, along with the 

contaminant load to the existing mill effluent treatment system. This in turn will help in reducing the 

impact of discharging treated wastewater into the environment, so much as, fulfilling the goal of zero 

effluent, reducing the HAP emission and trimming down the penalties. The reused foul evaporator 

condensate could be utilized in recausticizing, brownstock washing, bleaching, as well as paper making, 

as schematized in Figure 1.2 [26]. And the in-mill treated TMP pressate can be used in the TMP plants 

as process water as well.
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Figure 1.2 Schematic diagram of a bleached kraft pulping process 

with treated evaporator condensate reuse (solid lines) [26]

1.4 Objectives

The overall objective of this study was to develop better treatment technologies for in-mill kraft 

evaporator condensate and TMP pressate treatment and closed cycle operation and to explore novel 

biological treatment technologies -  thermophilic SBR and thermophilic MABR for evaporator 

condensates and TMP pressate treatment. Specific objectives include:

1.) Compare the performance between thermophilic and mesophilic SBRs;

2.) Compare the performance between thermophilic and mesophilic MABRs;

3.) Compare the performance between MABRs and SBRs; and

4.) Characterize structure and properties of biofilms and microbial floes under thermophilic and 

mesophilic conditions.



2. Literature Review

Since the purpose of this study is to develop thermophilic sequencing batch reactors (SBRs) and 

membrane aerated biofilm reactors (MABRs) for warm high strength pulp and paper effluent 

treatment, literature review on MABRs, thermophilic processes, pulp and paper effluent treatment was 

conducted to elucidate the state-of-the-art progresses in these areas.

2.1 Membrane aerated biofilm reactors

2.1.1 Introduction of MABRs 

Combining hydrophobic membrane technology with biological reactors for the treatment of municipal 

and industrial wastewaters has led to the development of MABRs. The immobilization of biofilms on 

permeable hydrophobic membranes for the biodégradation of pollutants is becoming of increasing 

interest for applications where conventional treatment technologies are unsuitable although the 

bubbleless MABRs technology is still in the development stages.

An MABR is schematically shown in Figure 2.1.1 [14]. The limiting substrates for biofilm growth are 

generally the carbon substrate and/or oxygen which, in MABRs, are supplied from opposite sides of the 

biofilm. MABRs use gas-permeable hydrophobic membranes to improve the mass transfer of oxygen to 

the bioreactor by providing bubbleless oxygen. Membranes, either tubular or flat, can be of the 

hydrophobic porous type such as polypropylene, of the dense film type such as silicone, or of the 

composite type where a porous membrane is coated with a thin film of dense material. The membrane 

lumen can be either open or closed.
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Figure 2.1.1 Schematic diagram of the MABR [14]

A number of studies have examined the concept of using gas permeable membranes for aerating water 

[27-31]. When these membranes are employed in wastewater treatment they rapidly become coated 

with biofilm which has a profound impact on the oxygen transfer behavior of the membranes [15, 32- 

34]. Table 2.1.1 lists some studies on MABRs. A wide variety of pollutants have been successfully 

treated using various system configurations and various types of membranes. Results from studies with 

MABRs have been reported for the degradation of chlorophenols [35], phenol [36], xylene [37], 

ammonia [38], and for simultaneous nitrification and organic carbon removal [39].



Table 2.1.1 Some studies on membrane aerated biofilm reactors [14]

P ollu tan t M em b ran e C on figu ra tiu n S(vi:itic su rface  area  
i n r  m

R e a c to r  volu m e
d)

Synthetic æwage T clli.n T u b u lar , sea led  end 530 2,85
Food proc(.,un^ wjile'Auirr siliC' 'lie T ubular'''’
O r g a B k  c,iib*m  a n J  in o iu a n ji mtrog»ai 1 i " i Î Single tube- 19 3,15
2 ,4  D ic h lo r o p b u o x y a o e w ie P i'iic tlier in iid e P late a n d  tram e, h o w  

th rou gh
34 0.30

Glücoæ^'peptooe Silicone with hbrous 
snppport

T u b u lar  c o il .  Ib w  
th n n ig ii

62 6.00

Xykng Sihcone T u b u lar  coif f b w  
t hr-nigh

34 1.70

O rg an ic  c tu b o n  a n d  I n o r p n k  n itrogen P o ty te tra llu ora e llia n e T u b u lar  c o if i 60 3.76
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- -
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I l l o.m
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Organic carbon and morg@iuc nitrogen S ilico n e  i t h i i l i o n s  

su ]-p .in
I k 'll l .’V tlblrf' 5 0.23

Pbenoi Silicone T u b u lar  coil, ife w  
th rou gh

mi 1.00

Chlorophenols sjlio .'iie T u b u lar  c o if  sealed  end 200 19.00
Benzene. H-cNoroplieno), 2,4-dîchloro' S iliu 'n e Ib'fll'.'W libre, flo w 54 -

t.'lU'.'U,.' through
X>l'.-iv.' and  ■.'thylRtizcne Sihcooe T u b u lar  coil, How  

through
69 0.80

( ii'gunic carb'U i and  b u-gan ii.' iiHrugen Ptbpri'pilene Il'MK'W fibre, scu k d  en d ms 0,43
1 trgiin 1C carb on  a n d  n n u y a n ic  n itm g en SiliC'-'ii'' '.viih tihrous

Mipfi'Jll
T u b u lar . ii'.'W thr.tueh IS 1.63

Organic carbon and Inorgonic nitrogen lv |; ,p ii .p y le n e l]'.illo'.t, fibre, sea led  en d I&5 0.43
Acetate Si h o  'lie H o llo w  libre, tlow  

throti'gh
15 1,5

Membrane was intended for aeration, but biofilm inadvertently formed. 

No information given on whether flow through or closed.

2.1.2 Advantages of MABRs comparing with conventional biological processes 

Membrane attached biofilms (MABs) grow in a very different manner than conventional biofilms, since 

nutrients from the wastewater and oxygen from the membrane diffuse into the biofilm from opposing 

directions. In recent years, the growth of a MAB is viewed by many as positive, since the biofilm is 

active in removing pollutants and the membrane is effective in delivering the oxygen directly to the
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bacteria that need it. Different investigators have identified potential advantages of MABRs that include 

better performance in handling high organic loading rates [40], improved oxygen transfer efficiency 

[15], potential for simultaneous carbon oxidation, nitrification, and denitrification [41], and elimination 

of VOCs stripping to the atmosphere [15]. Some of the advantages of MABRs are further discussed in 

the following paragraphs.

Lower operating cost ; High oxygen uptake rates (as high as 20 g/m^ d bar can be achieved according to 

the experiments [42]) would allow MABRs to operate with much greater thicknesses of active biomass 

than that of conventional biofilm reactors (generally not higher than 10 g/m^'d [43]). Virtually, all of the 

gas passing through the membrane can be utilized within the biofilm. Good fluidization of the fibres 

ensures they are distributed uniformly in the wastewater, providing excellent contaet between the 

attached biofilm and the wastewater. Close to 100% oxygen conversion efficiencies for the treatment of 

high-strength wastewaters are achievable [14-18]. As a result, the power consumption, thus the 

operating cost, for MABRs aeration would be reduced.

Fewer odor: Biodégradation of volatile organic compounds (VOCs) frequently results in VOCs losses 

to the atmosphere due to stripping when bubble aerated biological processes are used [44,45]. The 

problem can be prevented by using MABRs because bubbleless aeration is used, less stripping of VOCs 

is achieved. Thus, odor problems caused by bubble aeration can be eliminated by the use of MABRs 

(shown as in Table 2.1.1).

Higher rate organic removal : Biofilms in wastewater treatment systems are generally relatively thick, 

resulting in only partial penetration of oxygen to a depth of between 50 and 150 pm, varying with the
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structure of the biofilm and the utilization rate of the cells [14, 46]. When the wastewater loading rate is 

high, this limits the removal of pollutants. Aeration with pure oxygen can overcome this problem. But in 

conventional biofilm systems, a high fraction of the oxygen supplied is lost to the atmosphere, thereby 

providing a non-economical solution. An alternative is to use the MABRs with high intra-membrane 

oxygen pressure to achieve complete oxygen penetration ensuring the high rate organic removal.

Simultaneous nitrification and denitrifieation: In conventional biofilm reactors, autotrophic nitrifying 

organisms may be excluded from the oxic layer of the biofilm due to the faster growth of heterotrophs. 

As a result, substantial nitrification only occurs when the carbon substrate loading rate of the wastewater 

is low. Whereas, the MABR appears to be a promising system for one-stage organic carbonaceous 

pollutants removal, nitrification and denitrification [41, 47, 48].

2.1.3 Simultaneous organic carbonaceous pollutant removal, nitrification and denitrification 

Biological nitrogen removal is a promising way to remove nitrogen compounds in wastewater by two 

successive reactions: nitrification to convert ammonia into nitrite or nitrate under aerobic conditions and 

denitrification to convert nitrite or nitrate into nitrogen gas under anoxic conditions [49]. The reactions 

are as follows:

Nitrification:

:2NH4'4- 3C)2 2I4()2'  ̂2H2O t 4H+ (2-1-1)

2N02" + 02 -^  2N0]' (2-1 -2)

Denitrification (using methanol as the electron donor):

6 NOs" + 2CH3OH ^  6 NO2' + 2CO2 + 4H2O (2-1-3)

6 NO2' + 3CH3OH ^  3N2 + 3CO2 + 3H2O + 60H" (2-1-4)
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6 NO)' + 5 CH3OH 3Nz + 5C0z + VHzO + 60H" (2-1-5)

The two processes have complementary relations as follows:

•  Nitrification produces nitrite or nitrate that is an electron acceptor in denitrification;

•  Nitrification reduces the pH that is raised in denitrifieation;

•  Denitrifieation generates the alkalinity that is required in nitrification [50, 51].

Exemplifying that the two reactions are conducted separately, two reactors with circulation are 

necessary and pH adjustment in each reactor have to be considered separately. Therefore, there are 

obvious advantages to performing simultaneous nitrification and denitrifieation (SND) in a single 

reactor.

An MABR for nitrogen removal is of significant interest because the biofilm structure of an MABR is 

suitable for SND, thus, can make use of the above-mentioned relations; i.e. the alkalinity which is 

essential for nitrification is supplied by denitrifieation; therefore, theoretically pH adjustment is not 

required. In an MABR, a hollow-fiber membrane plays two roles: the oxygen supplemental material and 

the carrier for bacterial immobilization [13]. As schematically shown in Figure 2.1.2, the eounter- 

diffiision of oxygen and nutrients creates microbial stratification within the biofilm [52].
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aeration
membrane

biofilm wastewater

Figure 2.1.2 Simultaneous organie carbonaceous removal, nitrification 

and denitrifieation in an MABR [52]

The high oxygen concentrations and organie carbon-depleted conditions, a favourable environment for 

the cultivation of nitrifying organisms, at the membrane biofilm interface would support nitrification. If 

nitrifying bacteria are immobilized to the membrane surface, oxygen can be directly supplied to these 

bacteria without any formation of bubbles and therefore ammonia can be oxidized effectively [47, 53, 

54, 55]; an aerobic heterotrophic layer above this would facilitate carbonaceous pollutant removal, with 

comparatively high oxygen and organic carbon concentrations conditions, and an anoxic layer close to 

the biofilm-liquid interface, the region near bulk liquid, would allow denitrifieation because there would 

be a favorable condition for heterotrophic denitrifieation due to organic carbon, nitrite and nitrate- 

sufficient and oxygen-depleted conditions can be created.
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Conventional biofilm reactor is difficult to achieve SND of organic carbon-containing wastewater 

(Figure 2.1.3). In conventional biofilm reactors, autotrophic nitrifying organisms m aybe excluded from 

the oxic layer of the biofilm due to the faster growth of heterotrophs [56]. Oxygen competition between 

heterotrophic bacteria and nitrifying bacteria near the bulk biofilm interface leads to a decrease of 

nitrogen removal efficiency [57]. As a result, substantial nitrification only occurs when the carbon 

substrate loading rate of the wastewater is low. Low rates of nitrification but very high organic carbon 

oxidation were reported by both [58] and [17] in studies where a washing procedure was employed to 

detach excess biomass. In both cases, the low rates of nitrification were attributed to the wash-out of 

slow growing chemoautotrophic nitrifying bacteria.

substrate transport 

oxygen-transport

anaerobic anoxic aerobic

carrier

•carbon

■ammonium
«oxygen

•nitrite/nitrate

biofilm wastewater

Figure 2.1.3 High organic carbon oxidation but low rates of nitrification 

in a conventional biofilm reactor [52]
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2.2 Thermophilic and mesophilic biological treatment processes 

Thermophilic aerobic biological treatment (TABT) of industrial wastewaters has gained increasing 

interest in recent years, especially in the pulp and paper industry. Due to the increasing water system 

closure and higher process water temperatures, there is a need for efficient thermophilic treatment 

systems [59]. The advantages of thermophilic biological treatment processes are faster degradation rates, 

lower sludge yields, and excellent process stability [19-24]. Thermophilic aerobic biological wastewater 

treatment of several different wastewaters in both pilot and laboratory-scale experiments has been 

proven to give stable COD removals and tolerate varying operational conditions, such as changes of 

temperature and volumetric loading rates [59,60]. However, thermophilic aerobic processes, compared 

to mesophilic processes, have been reported to suffer from poorer effluent quality, typically measured as 

higher COD values and turbidity [59, 61, 62]. Current literature shows that effluents of thermophilic 

aerobic wastewater treatment systems are generally more turbid as compared to mesophilic analogues 

[59, 62]. In particular, a high amount of dispersed particles, such as free bacteria and colloids, increases 

COD values in thermophilic effluents. In addition, biomass retention is also more difficult under 

thermophilic conditions. Reasons for this phenomenon are so far unknown [63].

Suvilampi et al [64] compared laboratory-scale mesophilic (20°C ~ 35°C) and thermophilic (55°C) 

activated sludge processes (ASPs) treating diluted molasses wastewater in aspects of effluent quality, 

removal of different COD fractions, sludge yield, floe size, and sludge settleability. The results show the 

thermophilic ASP produced higher CODsoi removals, which were comparable to those of the mesophilic 

ASP. However, the CODfin and CODtot values were markedly higher in the thermophilic than mesophilic 

effluents. This was due to formation of dispersed particles, such as free bacteria, under thermophilic 

conditions. The increased amount of dispersed particles was seen in increased CODcoi values.
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Vogelaar et al. [65] focused on the thermophilic aerobic post treatment of anaerobically pretreated paper 

process water which has a relatively high COD concentration but contains few easily biodegradable 

components. Figure 2.2.1 depicts two diagrams showing the relative distributions of the different 

wastewater fractions for both temperatures.

10%
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25%
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T=30 'C
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37%

rwdNyModegnKliiW* 
10%

#owtybW#yad«jW*
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23%
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Figure 2.2.1 Wastewater fractions at 30°C and 55°C [65]

It is shown that under therm^ophilic conditions, the inert COD fraction was higher and slowly and very 

slowly biodegradable COD fractions were lower as compared to mesophilic conditions. Thermophilic 

aerobic biomass was not able to degrade the anaerobic effluent to the same extent as the mesophilic 

biomass resulting in higher at inert COD levels. Under mesophilic conditions colloidal wastewater COD 

was removed from the liquid phase by a flocculation process. However, under thermophilic conditions, 

the colloidal fraction remains almost completely stable in the water phase and was washed out in a 

continuous reactor system, i.e. the colloidal fraction was not removed from the liquid phase.

Juteau et al. [66] applied a self-heating aerobic thermophilic treatment to pig manure (a very high- 

strength wastewater CODtot = 65 ~ 110 g/L, CODsol = 32 -  59 g/L) reaching temperatures up to 75°C 

(oscillating temperature). The results show that the temperature should be limited to 60°C, which
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represents a good compromise to achieve a significant reduction of COD and ammonia and a complete 

removal of fecal coliforms, Campylobacter spp. and C. perfringens.

Vogelaar et al. [63] conducted tests to assess the individual role of the mesophilic and thermophilic 

activated sludge. The results show that they have a very different bioflocculation behavior. 

Bioflocculation of mesophilic activated sludge and wastewater colloidal particles only occurs when 

actual aerobic biodégradation takes place. In contrast, hardly any bioflocculation of thermophilic 

activated sludge and wastewater colloidal particles took place under all circumstances. Thermophilic 

sludge was found more dispersed, containing a higher volume fraction of small particles and was more 

sensitive towards shear forces than mesophilic activated sludge. Binding of wastewater colloidal 

particles on a flat hydrophobic surface did vary with temperature but no general up or downward trend 

could be observed. Therefore, it is unlikely that changes in the hydrophobic interaction with temperature 

are causing the large observed differences in bioflocculation behavior. It is expected that the different 

bioflocculation behavior of mesophilic and thermophilic activated sludge is caused by changes in 

polymer interactions with temperature and/or by the interplay with exo-enzymes in the activated 

sludge’s.

Some work has been reported on kraft pulp mill foul condensates treatment. Dias et al. [67] treated kraft 

pulp mill foul condensates under thermophilic and mesophilic conditions (temperature were 35°C, 45°C 

and 55°C respectively). High COD, total reduced sulphur (TRS) and methanol removals were obtained 

in the mesophilic temperature range. A decrease in removal efficiency was observed as the temperature 

increased, although it could still be considered comparatively high. Specifically, a decrease in 

respiratory activity obtained at 55 °C, followed by a decrease in the TSS concentration in the bioreactor.
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Bérubé and Hall [68] treated synthetic condensate, rich in methanol, obtained good methanol removal at 

temperatures of 55°C and 60°C in a membrane separation bioreactor. Welander et al. [69] obtained high 

removals of methanol and chemical oxygen demand (COD) using aerobic and anaerobic biological 

treatment of the kraft mill foul condensate at 55°C. Although anaerobic treatment showed a better 

operating economy, it was more sensitive to inhibitory compounds and suggested that recovery time 

after upsets may be long.

Due to the characteristics of thermophilic treatment processes, significant research efforts have been put 

in development of thermophilic membrane bioreactors and thermophilic biofilm reactors [70] that are 

less vulnerable to biomass retention problems.

2.3 Treatment of pulp and paper mills effluent, kraft mill foul evaporator condensate 

Effluents from pulp and paper mills are highly toxic and are a major source of aquatic pollution. The 

pulping process generates a considerable amount of wastewater, approximately 200 m^/tonne of pulp 

produced [71]. Most of the toxicity in pulp and paper whole mill effluents and process streams is 

attributed to resin and fatty acids, chlorinated phenols and, to a lesser extent, a broad group of neutral 

compounds [72]. There is a significant difference in the quality of the wastewaters from pulping and 

papermaking operations. This is due to the diversity of processes, the chemicals used and the dissolved 

wood derived substances which are extracted from the wood during the pulping and bleaching processes 

[73]. Table 2.3.1 shows the wastewater pollution load from individual pulping and papermaking 

process.
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Table 2.3.1 Typical wastewater generation and pollution load from pulp and paper industry [74]

Process Wastewater (m /adt 

pulp or paper)

SS

(kg/adt pulp)

COD

(kg/adt pulp)

Wet debarking 5-25 Nr 5 - 2 0

Groundwood pulping 1 0 -1 5 Nr 1 5 -3 2

TMP -  unbleached 1 0 -3 0 1 0 -4 0 4 0 -6 0

TMP -  bleached 1 0 -3 0 1 0 -4 0 5 0 -1 2 0

CTMP -  unbleached 1 0 -1 5 2 0 -5 0 7 0 -1 2 0

CTMP -  bleached 1 0 -1 5 2 0 -5 0 100-180

NSSC 2 0 -8 0 3 - 1 0 3 0 -1 2 0

Ca -  sulfite(unbleached) 8 0 -1 0 0 2 0 -5 0 Nr

Ca -  sulfite (bleached) 150-180 2 0 -5 0 120-180

Mg -  sulfite (unbleached) 4 0 -6 0 1 0 -4 0 6 0 -1 2 0

Kraft -  unbleached 4 0 -6 0 1 0 -2 0 4 0 -6 0

Kraft -  bleached 6 0 -9 0 1 0 -4 0 1 00-140

Paper making 1 0 -5 0 Nr Nr

Agrobased small paper mill 200 - 250 5 0 -1 0 0 1000-1100

Nr -  Not reported; adt -  air dry ton; NSSC -  neutral sulfite semi-chemicals

The kraft process is the dominant chemical pulping process in Canada and other countries (40%) [6]. In 

this process, wood chips are digested or “cooked” under pressure with a mixture of hot sodium 

hydroxide (caustic soda) and sodium sulphide. Lignin and wood extractives are solubilized, leaving the 

insoluble cellulose fibres as pulp [75]. In an unbleached kraft mill, the product may be pulp or may be 

processed into unbleached kraft products such as linerboard and paper bags. In a bleached kraft mill, the 

bleached pulp has a variety of end uses, such as a component of newsprint and other papers [75]. The 

chemicals are recovered from the spent (strong) black liquor and pulp washings (termed weak black 

liquor) through a series of involving concentration, combustion, clarification and causticizing. By­
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products like Sulphur-containing gases, turpentine and tall oil are produced during digestion and in the 

chemical recovery system [76].

Kraft foul evaporator condensates, produced by the condensation of black liquor vapors from the 

digesting and pulp washing, are low volume, high strength wastewaters comparing with other kraft mill 

waste streams. Most of the impurities in kraft foul condensates are volatiles which evaporate from black

liquor along with water. One of the main contaminants of concern in foul kraft condensates is methanol

which is the most abundant contaminant present in an evaporator condensate, contributing up to 95% of 

the total organic content, and it is classified as one of the hazardous air pollutants (HAPs) [77]. Other 

main contaminants of concern are total reduced sulphur compounds (TRS); such as hydrogen sulphide 

(H2S), methyl mercaptan (CH3SH), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS). TRS 

are also classified as HAP and are extremely odorous [6, 76, 78].

Methanol, the main organic in foul condensates, is believed to originate from an alkaline hydrolysis of 

4-o-methyl glucuronic acid residues in hemicellulose. These residues are typically greater in hardwoods 

than in softwoods [6]. Methanol may also be formed by reactions involving dimethyl sulfide/methoxyl 

groups on lignin or involving methyl mercaptan by the following reactions:

L ig O C H s *  +  O H  ‘ - ^ C H a O H  +  L ig O  ( 2 - 3 -1  )

( C h 3 ) 2 S  +  O H  ■ C H 3 S  +  C H 3 O H  (2 - 3 - 2 )

C H 3 S H  +  H 2 O  C H 3 O H  +  H z S  ( 2 - 3 - 3 )

The reduced sulfur compounds (RSCs) in the kraft foul condensates are produced from the NazS in the 

kraft cooking liquor by the following reactions:

+  H 2 O  H S ‘ +  O H  ( 2 - 3 - 4 )
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HS' + H2 O HzS + OH' (2-3-5)

LigOCHs + S^' CHaS' + LigO' (2-3-6)

LigOCHs + HS ' CH3 SH + LigO' (2-3-7)

CH3 SH + OH' CH3 S' + H 2 O (2-3-8)

L i g O C H a  +  O H  3 8 ' C H 3 S C H 3  +  L ig O '  ( 2 - 3 - 9 )

4 CH3SH + 0 z ^  2 (CH3 )zSz + 2HzO (2-3-10)

* LigOCHs indicates a methoxyl group on lignin.

It appears that RSC concentration is normally the dominant factor in foul condensate toxicity. Envirocon 

[79] found, using data from several mills, foul condensate toxicity to be highly correlated with RSC 

concentration, even for stripped condensates. It is also reported that the removal of methyl mercaptan 

and other organic sulphides was only about 60% in a five-day aerated lagoon. Since organic sulfides are 

not totally stripped or oxidized in a five day aerated lagoon, should not be rapidly oxidized or air- 

stripped upon discharge to receiving waters, they will surely tend to linger in receiving waters [6]. 

Bérubé and Hall [68, 80] indicated that over 99% of the RSC contained in condensate was removed 

during treatment using an MBR and that the removal was strictly due to abiotic mechanisms. 

Approximately 33% of the methyl mercaptan was stripped from the MBR by the aeration system. 

Remaining 67% was abiotically oxidized during treatment. Over 99% of the DNS and DMDS contained 

in the influent condensate were removed from the MBR by stripping due to the aeration system. The 

potential importance of RSC in mill effluent toxicity should be taken seriously. The amount of RSC that 

is released to the atmosphere during aerobic biological treatment can be reduced of the RSC can be 

rapidly oxidized to non-volatile compounds before having the opportunity to be stripped by the aeration 

system.
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Since the condensate streams have been considered an important pollution hazard, many methods have 

been utilized for the treatment of condensates. Table 2.3.2 [81] shows the conventional ways that have 

been investigated for treating kraft foul condensates and their effectiveness.

Table 2.3.2 Foul condensate treatment effectiveness [81]

RSC Rem oval BO D rem oval Com m ents

Selective treatm ent

stripping 

5% steam 

20% steam 

Air

Flue gas

Excellent

Excellent

Excellent

Some

Good

Some

Moderate

Off-gas incinerated 

Off-gas incinerated 

Off-gas incinerated 

Off-gas to atmosphere

Chemical Oxidation 

Chlorine Good

Oxygen Good

Air on activated carbon Good

Little

None

Poor

Chlorinated organics 

Low reaction rate 

No off-gas disposal

Carbon adsorption Moderate

Chemical precipitation Little

Turpentine décantation None

Moderate

None

Some

High operating cost 

Ineffective 

Turpentine sales

Biological oxidation 

Aerated lagoon, 
activated sludge

Tricking filter 

Spray irrigation 

Anaerobic

or Good

Good
7

Moderate

Good

Moderate

Good

Moderate

Ambient odor

Large equipment 

Ambient odor 

Gaseous fuel

Recycle to process Some Some Possible odor
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Com bined treatm ent

With mill effluent in Some 
aerated lagoon

Good Ambient odor

2.4 Treatment of TMP pressate 

The main contaminants in TMP process water are resin acid, fatty acid, and neutral wood extractives. 

Because TMP processes employ heat and chemical treatment of wood chips prior to refining, the 

solubilization of wood extractives such as resin acids could be greater than that in other mechanical 

pulping processes except CTMP [82]. In TMP mills, mechanical processes use steam to soften chips and 

pressure to refine them, producing a very high yield product, with 85 ~ 95% of the original wood 

components in the final pulp, including lignin. 2% ~ 5% of the wood material is dissolved, or dispersed 

as colloidal particles, into the process water [8]. The dissolved and dispersed substances in the process 

waters of thermomechanical pulping (TMP) system originate from several sources as follows [83]:

• Components of wood dissolved and dispersed during the high-temperature conditions of the 

defiberization processes (hemicelluloses, pectins, lignin, extractives, and inorganic salts).

• Residuals of processing chemicals possibly applied in mechanical pulping and bleaching.

• Leakages from sealing and lubrication and dissolution of equipment materials in to the process.

• Carryover of residuals of papermaking chemicals with the circulation water that is circulate backward 

from papermaking to pulping.

• The former possibly including those organic and inorganic substances that came in with fresh water 

intake and purification.

• Carryover of dissolved and dispersed material from debarking. As the debarking process usually is 

relatively closed, the concentration of process water becomes high and contaminated water penetrates 

into wood.
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There is a considerable incompatibility for the compositions and the concentrations of substances in 

process waters due to the different types of the wood which vary largely, and the structure of the water 

system (Table 2.3.3) [84].

Table 2.3.3 Oxidizable matter in water effluents of various processes [84]

Process Oxydizable material (kg/t of pulp)

Mechanical 10

Unbleached Kraft 15

Thermo-mechanical 30

Bleached Kraft 50

Chemi-thermomechanical 50

Semi chemical 90

Bisulphite 110

Twice the amount of wood material, measured as BOD, was reported to be released in TMP compared

to SOW and RMP pulping (Table 2.3.4) [84].

Table 2.3.4 Dissolved organic substances, BOD, COD and suspended solid discharges from mechanical 
pulping process [84]

Parameter Stone groundwood Refiner mechanical Thermo-mechanical

pulping (SOW) pulping (RMP) pulping (TMP)

Dissolved organic substances (%) 1-2 2 2-5

BOD (kg/t) 10-22 12-25 10-30

COD (kg/t) 22-50 23-55 22-60

Suspended solids (kg/t) 10-50 10-50 10-50
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The main components of the dissolved and colloidal substances are hemicelluloses, lipophilic 

extractives, lignins, and lignin-related substances. Lipophilic wood extractives (LWEs) are nature 

components of wood, which are liberated into the process water in mechanical pulp production. 

Chemically LWEs consist of resin and fatty acids, sterols, and triglycerides etc. They are partly present 

in both soluble, like resin and fatty acids, and non-soluble forms. The non-soluble extractives can be 

attached to fibres or other particulate matters, or they can be presented in the form of free colloidal 

droplets making the water typically turbid. Table 2.3.5 [83] gives typical amounts of substances released 

from TMP of Norway spruce.

Table 2.3.5 Typical amounts of substances released from TMP of Norway spruce [83]

Component group. Kg/ton TMP Unbleached

TMP

Peroxide-bleached TMP

Elemicelluloses 18 8

Galactoglucomannan 16 4

Other hemicelluloses 2 5

Pectins (galacturonans) 2 4

Lignins 2 1

Other lignin-related substances 7 11

Lipophilic extractives (resin) 5 4

Acetic acid 1 20

Formic acid 0.1 4

Inorganic constituents <1 5

In production of mechanical pulps from wood chips, it is very necessary to remove resin effectively 

from the pulp because resin is an undesirable component of the final pulp [85]. Resin constitutes a 

complex mixture of components that are present in the wood chips, such as, steroids, waxes, glycerides, 

resin acids, terpen es, and fatty acids. To remove resin from mechanical pulps, the pulp is diluted from
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the refiner consistency to a concentration of about 3 - 5  percent. After dilution the pulp is stored for 

about 1 5 - 3 0  minutes in a tank at 50°C -  80°C. Thereafter the pulp is pumped to a press where it is 

pressed to a dryness of about 30 percent. The pressate, which contains resin therein, is separated from 

the pulp. The pulp is again diluted and again held in another tank for about 1 5 - 3 0  minutes, and is again 

pressed. The number of dilution and pressing stages are chosen so that the desired removal o f resin from 

the pulp can be achieved. The pressate, thus, contains various dissolved organic contaminants, e.g. resin 

and fatty acids, and bleached fines, fibres as well [86].

Although TMP mill effluents tend to be more biodegradable than kraft (chemical pulp) effluents, they 

are still sufficiently recalcitrant to require very large, expensive biological secondary treatment systems 

to achieve high effluent quality. For most of thermomechanical pulp mills, traditionally biological 

treatment is applied to treat the effluents. Resin and fatty acids are reported to be efficiently removed 

from pulp and paper mill effluents during aerobic treatment (79 -  99% removal) [87-90]. The more 

hydrophilic lignans that also contribute to the acute toxicity from TMP effluents using Norway spruce 

are removed by 99% during biological treatment [91]. Elliott et al. [92] reported based on their 

laboratory-scale TMP mill effluent treatment experiments that for a newsprint mill, the level of water 

reduction did not cause adverse effects on the performance of a secondary biological treatment system 

(the FIRT was set to be proportional to the concentration of reduced volume effluent) as it might be 

expected. Also, with effluent flow reductions, the feasibility of treatment by non-biological means may 

become more attractive.
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2.5 Summary of literature review 

Based on a literature survey of past and recent publications, conclusions about the present state of 

MABR, TABT, and technology of pulp and paper mills effluents treatment can be summarized as 

follows:

1) MABRs have shown potential for removing contaminants from high strength wastewater and a 

promising commercial potential. However, the inability to control biofilm thickness and overcome mass 

transport limitations has prevented the commercial application of MABRs in wastewater treatment. 

Novel methods to conquer the weakness require to be developed.

2) In spite of significance to properly control MABRs, there are only few reports which discuss 

operational parameters affecting reactor performance, i.e. air pressure, air flow rate, concentration of 

oxygen for the aeration, and substrates loading rate etc. Therefore the effects of operational factors on 

biodégradation of carbonaceous organic compounds in MABRs needs to be further investigated.

3) Understanding of the microbial reaction and diffusion processes is necessary for the scale-up of 

MABRs. However, to date, no comprehensive study has been reported on the oxygen and substrate mass 

transfer characteristics in MABRs. What is more, the effects of particular MABR operating conditions 

on the spatial locations of active organisms have not yet been resolved. Thus, further study is needed.

4) The MABR appears to be a promising system for one stage organic carbonaceous pollutant removal, 

nitrification and denitrifieation. However, further investigations on the fundamentals of the interacting 

layers that exist in such biofilms need to be carried out.
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5) Thermophilic aerobic biological wastewater treatment systems are generally known as more turbid as 

compared to mesophilic analogues in activated sludge processes. In addition, biomass retention is also 

more difficult under thermophilic conditions. However, research efforts ean be put in development of 

the membrane aerated biofilm reactors that are less vulnerable to biomass retention problems to gain the 

benefits of the thermophilic biological processes, e.g. energy saving, biomass thickness control 

improving. The performance of thermophilic SBRs, which have a complete different operating manner 

(cyclic operation) from the ASP, has not been explored for kraft evaporator condensate and TMP 

pressate treatment.

6) Kraft foul evaporator condensate and TMP mills pressate are of high temperature, high strength of 

carbonaceous organic compounds, hazardous air pollutants and toxicity, accounting for significant 

amount (about 40%) of the total BOD discharged while constituting only 5% of the total mill effluent 

volume. Endeavor to explore the in-mill novel biological treatment technology for afore mentioned 

waste streams rather than using steam stripping and/or conventional biological wastewater treatment 

processes is completely required. The potential of SBRs and MABRs for the treatment of these two 

types of wastewaters has not been explored yet.

2.6 Significance of this study 

The literature review has shown that development of MABRs in conjunction with TABT, for the 

treatment of high strength industrial VOCs wastewater, has not been explored yet.
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Although MABRs have shown a potential for removing the contaminants from the high strength 

industrial VOCs wastewater, - an indication of a promising commercial potential, its inherent lack of 

ability to control the thickness of biofilm, and hence the mass transportation across the membrane 

during heavy biofilm formation has prevented its commercial application. As for TABT, the turbidity 

and biomass retention problems remaining in a conventional aerated biological treatment process has 

brought the challenge to its application to industrial strength wastewater treatment regardless its unique 

characteristics TABT possesses, such as; elevated operational temperature, rapid biodégradation rates, 

low sludge yields, and excellent process stability.

Keeping in view of the potentials of MABRs and TABT and to overcome their intrinsic limitations, 

combining the two (e. g. thermophilic MABRs) makes a plausible step towards gaining the benefits 

from both in terms of energy saving and improvement in biomass thickness control.

This study deals with the application of novel biological wastewater treatment technologies -  MABRs 

and SBR, for high strength industrial effluent treatment under thermophilic condition (55 ± 0.5°C) and 

evaluation of the efficiency of above novel approaches (MABRs and SBRs) of wastewater treatment 

against the conventional mesophilic biological treatment processeses.

In order to examine and compare the wastewater treatment efficiency of MABRs and SBRs under 

different conditions (thermophilic vs. mesophilic), parameters including influent and effluent chemical 

oxygen demand, concentrations of effluent suspended solids, mixed liquor suspended solids, are 

monitored and adjusted. Different levels of influent methanol COD (750 mg/L, 1500 mg/L, 3000 mg/L) 

were tested at an HRT of 12 hours. The TMP pressate at an influent COD of 3700 ~ 4100 mg/L was
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treated at different HRTs (6 hours, 12 hours, 24 hours). The results from this study have the potential for 

full-seale applications in pulp and paper mills.

In addition, the settleability and flocculating ability of sludge under thermophilic and mesophilic 

conditions were evaluated in terms of sludge volume index (SVI) and effluent suspended solids (ESS), 

respectively. To further understand the factors that affect settleability and flocculating ability of sludge, 

morphology of sludge is studied under different microscopes and floe size distribution and zeta potential 

of sludge floes were determined.

My study could offer a tremendous technical support and beneficial application in treating foul kraft 

evaporator condensate and/or TMP mill pressate in an environmentally friendly way along with 

economical benefits to the relevant pulp and paper mills, if the combination of above two technologies 

(thermophilic MABRs) and the thermophilic SBR technology were found to have a good performance 

with respect to the treatment efficiency and the biolfilm control properties, unlike the predecessors 

technologies such as MABRs and TABT.
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3. Experimental Materials and Methods

Described in this chapter are the experimental materials and methods used in the present study. The 

subsections are outlined in the following sequence: laboratory-scale sequencing batch reactor (SBR) 

system; laboratory-scale membrane aerated biofilm reactor (MABR) system; synthetic kraft evaporator 

condensate; TMP pressate; inoculum and acclimation of thermophilic bacteria; control strategies of the 

bioreactors; standard wastewater analyses (COD, MLSS, ESS, SVI, DO); Analysis of ammonia, nitrate 

and nitrite; microbiology; floe size distribution; zeta potential; and statistical methods.

3.1 Experimental system

3.1.1 Laboratory-scale sequencing batch reactor system 

The experimental system, as illustrated in the schematic diagram (Figure 3.1.1), is composed of the 

following elements: four SBRs operated in parallel for treating wastewaters and producing biomass; a 

refrigerator for storing the synthetic kraft evaporator condensate or TMP pressate feed at 4°C; two 

preheating tanks that increased the temperature of the synthetic feed from 4°C to 30°C and 55°C 

respectively before it entered the SBRs; two water baths that circulated water at different constant 

temperatures through the jacket of SBRs, resulting in each two SBRs operating at a certain constant 

temperature (30 ± 0.5°C, 55 ± 0.5°C respectively ); four on-line pH controllers (one per SBR); and four 

timers for controlling the cyclic operation such as feeding pumping, aeration diffusing and mixing, 

withdrawing pumping, pH measurement of each SBR.
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Figure 3.1.1 Schematic diagram of the laboratory-scale SBR system

A general description of the laboratory-scale SBR system is presented in the following sections:

Feed storage refrigerator: The feed was prepared by diluting the stock solutions (methanol, NFI4NO3 + 

KH2PO4, other inorganic salt nutrients) to the desired concentration in four autoclavable rectangular 

polypropylene carboys (volume: 8 L each) (Nalgene Company, Rochester, NY) and then stored in a bar 

sized refrigerator (Danby Products Limited, ON, Canada). The purpose of using a refrigerator was to 

minimize the potential biodégradation of the feed by maintaining the feed at a low temperature (4°C) 

during storage.
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Preheating units: The purpose of the preheating system was to increase the feed temperature from 4°C to 

30°C (for mesophilic SBRs) and 55°C (for thennophilic SBRs) respectively before it entered the SBRs. 

Four silicone tubes (length: 8 meter each) connecting the four carboys and the pump with four pump 

heads (Masterflex Standard Pump Drive and Masterflex L/S size 18 Pump head, Col e-Parmer 

Instrument, CO., Niles, Illinois, USA) were suspended in two preheating water baths (two in each bath) 

(29inxl5inxl5in Sheldon Manufacturing Inc., Cornelius, OR). One of the preheating water baths was 

maintained at 32°C (for mesophilic SBRs) and the other was maintained at 55°C (for thermophilic 

SBRs).

Sequencing batch reactors: Each SBR was made of glass with an operating diameter of 127 mm and a 

height of 340 mm. It was enclosed within a 25.4 mm annular thickness glass jacket for temperature 

control and had a volume of 2 L (Figure 3.1.2). Four outlet ports were positioned on each SBR, 

corresponding to volumes of 0, 0.5, 0.8 and IE from the bottom. The 0 L port was used for wasting 

mixed liquor and washing purpose. The 0.8 L port was used for discharging the treated effluent, and the 

1.0 L port was designed for collecting mixed liquor samples. The 0.5 L port was sealed with rubber 

septa. The aeration diffuser, feed tube, pH buffer tube and pH probe, put into SBR, were held by a 

wooden stopper at the top of each SBR.
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Figure 3.1.2 Schematic diagram of a laboratory-scale SBR

The sludge suspension was continuously stirred in the reaction phase with a magnetic stirring bar (0.7 

cm X 0.7 c m  X 5 cm) placed at the bottom of each SBR. The mixing intensity was maintained by 

appropriate adjustment of each magnetic stirrer at mixing level 4 (rate: 120 ~ 150 r/min) and by 

controlling the flow rate of air (1.5 L/min). The air, which served as an oxygen supply, was introduced 

in the SBR through a stone air diffuser positioned at a level corresponding to approximately the 0.4 L 

reactor volume. The SBRs were housed and secured in a wooden frame shown as photograph (Figure 

3.1.3).
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Figure 3.1.3 Laboratory-scale sequencing batch reactors set-up

Cyclic operation of the sequencing batch reactors: The SBR is a fill - and - draw activated sludge 

system. All SBRs have four operating steps in each cycle that are carried out in a time sequence as 

follows: 1) fill; 2) reaction (aeration); 3) sedimentation/clarification; and 4) draw. The operating 

sequence is illustrated in Figure 3.1.4. Sludge samples were collected for characterization at the end of 

reaction phase.
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Figure 3.1.4 Process flow diagram in the operating sequence of the SBR

Temperature controller: The operating temperatures of the SBRs were maintained at 30°C and 55°C by 

circulating water at constant temperatures through the SBRs jacket. The water baths were maintained at 

32°C and 68°C, respectively, to achieve a bioreactor temperature of 30°C and 55°C, respectively, due to 

a loss of heat in delivering the recirculation water from the water bath to the jacket of the SBRs. The 

water was circulated through the jacket of the SBRs using a variable speed peristaltic pump driving with 

four pump heads (Masterflex Standard Pump Drive and Masterflex L/S size 18 Pump head, Cole-Parmer 

Instrument, CO., Niles, Illinois, USA).

On-line pH controller and buffer: Control of the pH was achieved by immersing a pH electrode, which 

was connected to an on-line pH controller (LED pH/ORP controller, Cole-Parmer Instrument Co., Niles, 

Illinois, USA) at the 0.4 L reactor volume level in each of the four SBRs. A 0.05 - 0.1 N NaOH solution
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was used as a buffer and was introduced in the SBRs by the online pH controllers to maintain the pH at 

the desired value (7.2 ± 0.4).

Timers: Control of the cyclic operation of the SBRs was achieved through the use of four on-and-off 

programmable timers (Sper Scientific Model 810030, Sper Scientific Ltd., Scottsdale, Arizona, USA). 

The four programmable timers were used to control the transfer of the feed to the SBRs (the cold feed 

passed through the preheating unit to warm up first then entered SBRs at a constant temperature); pH 

controllers’ working time; the aeration and mixing time; and the discharge of the treated effluent, 

respectively. Control was achieved by switching the electric equipment on and off at predetermined 

times. The operating conditions of the SBR system are shown in Table 3.1.1

Table 3.1.1 Operating conditions of the SBR system

Parameters Units Value

Cycle length

Filling period

Aeration (reaction) period

Settling period 

Withdrawing period 

Sludge retention time 

(calculated)

Effective volume of each SBR

Hours

Minutes

Minutes

Minutes

Minutes

Days

Liters

12 ( Evaperator Condensate ) 12, 

24, 6 ( TMP Pressate)

10

660 ( Evaporator Condensate ) 660, 

1380, 300 ( TMP Pressate)

40

10

4-10 (Thermophilic Reactors), 

2-5 (Mesophilic Reactors)

1.8
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Operating temperature °C 30,55

Operational pH - 7.2 ± 0.4

All tygon extended-life silicone tubes for transferring the feed to the SBRs were cleaned at times, in 

order to prevent the accumulation of biomass in the tubes.

Control of the concentration of mixed liquor suspended solids:

The concentrations of Mixed liquor suspended solids (MLSS) in SBRs were controlled at a similar level 

(about 2000 mg MLSS/ L) by wasting a fitting amount of activated sludge per day to minimize the 

influence of biomass concentration on the COD removal efficiency, flocculating ability and 

compressibility of sludge floes in SBRs. for the parallel processes. MLSS and effluent suspended solids 

(ESS) were monitored every 2 or 3 days. These measurements gave the information necessary for 

determining the change in the amount of sludge wasted per day to achieve better control of the MLSS 

concentration. The equation for the calculating is as follows:

SRT = - il: Reactor (gVSS) _ Vq X
Sludge Waste (g/day) (Qw^ + QgXg)

Where SRT is the sludge retention time, [day] ( 4 - 1 0  daysfor thermophilic reactors, and 2 - 5  days for 

mesophilic reactors were maintained in this research); Vo is the volume of each SBR, [L] ; X is the 

MLSS concentration measured at the end of one cycle, [mg/L]; Qw is the amount of the sludge wasted 

per day from each SBR, [L]; Qe is the amount of discharged effluent per day from each reactor, [L]; and 

Xe is the ESS concentration in treated effluent, [mg/L].
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Experimental procedures: At the start of this study, the SBR system was inoculated with biomass from 

an activated sludge plant treating kraft mill effluent of a local pulp and paper mill. Initially, all four 

SBRs were operated at a temperature of 30°C. Then, the temperature in two of them (thermophilic 

SBRs) was gradually changed to 55°C within about one month (temperature increasing was about EC/ 

day). The influent COD was increased from 750 mg/L at the beginning to 1500mg/L after 25 days of 

operation and then finally to 3000 mg/L after 64 days’ operation. Two of the SBRs (1-thermophilic SBR 

and 1-mesophilic SBR) were converted into MABRs at the operational day of 138 (more detailed 

description of the MABRs was provided later). After 238 days operation of the SBR and MABR 

systems, the synthetic kraft evaporator condensate was switched to the real TMP pressate (Table 3.1.2).

Table 3.1.2 Wastewater experimented Vs. operational time

Operational days Feed COD [mg/L]

Junel7 ~ July 5, 2006 750, Synthetic kraft evaporator eondensate

July 06 ~ Aug. 30, 2006 1500, Synthetic kraft evaporator condensate

Aug 31,2006 -  Feb.06,2007 3000, Synthetic kraft evaporator condensate

Feb 07 -  June 01, 2007 3700-4100 mg/L, TMP pressate from a local mill*

* The COD for TMP pressate, real wastewater from a local pulp and paper mill was measured, as 

described in Table 3.1.4.
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3.1.2 Laboratory-scale membrane aerated biofilm reactor system 

Two hydrophobic membrane modules were placed into a thermophilic SBR (maintained at 55°C) and a 

mesophilic SBR (maintained at 30°C) respectively to form the sequencing batch membrane aerated 

biofilm reactors (MABRs) at the 138* operating day with an initial biomass dosage that could form a 

biofilm thickness of about 100 pm. The schematic diagram is shown in Figure 3.1.5.

Feed

Aeration
Exhausted Gas m  — 4—  Input Air

i  Membrane 
I Module

CMixing

MABR

Bubbleless
Aerated

] [

Treated Effluent

Wasting and Washing

Figure 3.1.5 Schematic diagram of membrane aerated biofilm reactor

The membrane module (Model; M60-130W-200L-FC8, 13cm wide x 20cm length, supplied by 

Nagayanagi Co., Ltd, Japan) installed in each reactor is woven fabric silicone hollow fiber membranes 

(outer diameter; 320 pm; inner diameter: 200 pm; 8 layers and 1600 fibers/ each module) having a total
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surface area of 0.26 and provided a specific surface area of 173.3 m^/m^ in each batch MABR 

(Figure 3.1.6 the photo of the membrane module).

Figure 3.1.6 Woven fabric silicone hollow membrane module

The same as SBRs, mixing of wastewater was provided by a magnetic stirring bar (120 -  150 rpm) in 

each batch MABR. Compressed air was supplied to the inside of silicone hollow fiber membranes via a 

gas regulator at 4 or 6 psi at a flow rate of 0.75 to 1.0 L/min. At this air flow rate, the supplied oxygen is 

50 to 80 times of the COD loading (3000 mg/L) to the MABRs.

The membrane modules were placed in the two batch reactors at 138* operational day with an initial 

suspended biomass concentration of 1500 mg/L for thermophilic MABR, 1300 mg/L for mesophilic 

MABR (biomass dry weight: 2.25 g in thermophilic MABR, 2.0 g in mesophilic MABR), considering 

the lower growth rate of thermophilic biofilm, more thermophilic suspended biomass concentration
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(0.3g thermophilic biomass) was put in the thermophilic MABR for the immobilization at day 3. Four 

days were allowed to immobilize bacteria on silicone hollow fiber membranes with an initial biomass 

dosage that could form approximately a biofilm thickness of 100 pm. The operational parameters during 

the acclimation were the same as those for treating synthetic evaporator condensation.

3.1.3 Synthetic kraft evaporator condensate 

The chemical composition and concentration of the synthetic kraft evaporator condensate was adapted 

from Berube and Hall [93], simulating the foul fraction of the evaporator condensate from a kraft pulp 

mill. The synthetic kraft evaporator condensate contained methanol, dimethyl sulphide, dimethyl 

disulphide and inorganic salts and was diluted to the desired influent COD using tap water (Table 3.1.3).

Table 3.1.3 chemical composition of the synthetic evaporator condensate

Chemicals Does (mg/L) Grade and source of chemicals

Methanol 500,1000,2000 Analytical (Sigma-Aldrich )

Dimethyl sulphide 37 Analytical (Sigma-Aldrich )

Dimethyl disulphide 25 Analytical (Sigma-Aldrich )

NH4NO3 1000 Analytical (Sigma-Aldrich )

KH2PO4 165 Analytical (Sigma-Aldrich )

MgS04'7H20 1280 Analytical (Sigma-Aldrich )

MgClz'ôHzO 270 Analytical (Sigma-Aldrich )

CaCl2' 2H20 70 Analytical (Sigma-Aldrich )

FeCB'ôHzO 20 Analytical (Sigma-Aldrich )

MnCl2*4H20 1.8 Analytical (Sigma-Aldrich )
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Na2B4O7»10H2O 4.5 Analytical (Sigma-Aldrich)

ZnS04' 7H2 0 0.22 Analytical (Sigma-Aldrich )

CoC12' 6H20 0.05 Analytical (Sigma-Aldrich)

Na2Mo04«2H20 0.03 Analytical (Sigma-Aldrich )

3.1.4 TMP pressate

The TMP pressate treated in this study was from a local pulp and papermill. The soluble chemical

oxygen demand (COD) of this wastewater was illustrated in Table 3.1.4. The ratio of the soluble COD

to the total COD was about 0.9 -0 .95 .

Table 3.1.4 Chemieal oxygen demand of the TMP pressate

Date Operational Chemical Oxygen Demand (COD) (mg/L)

time interval Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5

0207-07
4102

0223-07 4038

0227-0319
0227-07

3937

0320-0430
0416-07

3843

0510-07

0530-07
3937

3.1.5 Inoculum and acclimation of thermophilic bacteria 

At the start of this study, the SBR system was inoculated with biomass from an activated sludge plant 

treating kraft pulp mill effluent of a local pulp and paper mill. Initially, all four SBRs were operated at a
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temperature of 30°C. Then, the temperature in two of them was gradually changed to 55°C within about 

one month (in about 1 °C/day temperature increasing manner).

3.2 Measurement and analytical methods

3.2.1 Standard wastewater analyses (COD, MLSS, ESS, SVI, DO)

General characterization of wastewater and biomass followed standard methods described by the 

American Public Health Association (APHA, 1992) [94]

Mixed liquor suspended solids: Mixed liquor suspended solids (MLSS) were measured at the end of the 

reaction phase in accordance with Standard Methods [94].

Chemical oxygen demand: The closed reflux colorimetric method (Section 5220D, APHA, 1992) [94] 

was used to determine COD of the feed and the treated effluent. The treated effluent was filtered 

through a 0.45 pm pore size filter paper (Gelman Sciences Filter Paper, diameter 25 mm) before COD 

measurement. Culture tubes with desired effluent (2.5 mL), digestion solution (K2Cr20? + HgS04 + 

H2SO4 ), and reagents ( Ag2S04 + H2SO4 ) were heated in a Hach COD reactor ( Model 45600-00, Haeh 

Co., Loveland, CO, USA ) for 2 hours at 150°C. The cooled samples were then measured 

spectrophotometrically (Bausch & Lomb Spectronic 20D with Hach 19230-00 Adapter) at 600 nm. 

Potassium hydrogen phthalate (KHP) was used as a COD standard. All chemical reagents used for COD 

measurements were from BDH Chemicals Inc., and were of analytical grade.

Dissolved oxygen: The dissolved oxygen (DO) levels in the SBRs were frequently monitored using a 

DO meter (Model 600 Oxygen Analyzer, Engineered Systems & Design, Newark, DE, USA). The DO
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levels during the reaction phase were maintained at 1.8 -  3.1 for the thermophilic SBRs and 4.6 -  7.0 

for the mesophilic SBRs.

Sludge volume index: The compressibility of sludge was evaluated by the sludge volume index (SVI). 

The SVI is the volume in mL occupied by one gram of MLSS after 30 minutes of compaction. The SVI 

measurement was carried out by placing the well-mixed liquor into 500 mL graduated cylinders at the 

end of the cyclic operation in the SBRs. The concentration of the mixed liquor for the SVI measurement 

was fluctuated with the system upset or the property changing of the biomass at times. The average 

MLSS concentration for treating synthetic kraft evaporator condensate in thermophilic SBR was 1445 ± 

429 mg/L, and that in mesophilic SBR was 2004 ± 365 mg/L. For treating TMP pressate, that in 

thermophilic SBR was 2616 ± 1248 mg/L, and that in mesophilic SBR was 3018 ± 1370 mg/L.

_ Volume in mL after 30 minutes of compaction in a 500 mL graduated cylinder x 2
O VI — ------------------------------------------------------------------------------------------------------------------

Biomass concentration (g/L)

Effluent suspend solids: The flocculating ability of sludge floes in the SBR system was evaluated by the 

effluent suspended solids (ESS) measurement as described in Standard Methods (Method 2540D, 

APHA, 1992) [94]. The level of ESS was determined after a 40-minute compaction of the mixed liquor.

3.2.2 Analysis of ammonium-N, nitrate-N and nitrite-N 

Ammonium (N H 4-N ): NH4-N is determined by colorimetry using the Skalar autoanalyzer system. The 

automated procedure for the determination of ammonia nitrogen is based on the modified Berthelot 

reaction: ammonium is chlorinated to monochloriamine which reacts with salicylate to form 5-
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aminosalicylate. The absorption of the formed complex is measured spectrophotometrically at 660nm. 

The method detection limit (MDL) and calibration range are given in Table 3.2.1.

Table 3.2.1 The method detection limit (MDL) and calibration range of ammonium

Component Parameter CODE MDL (mg/L) Calibration Upper Limit
Range (mg/L) (mg/L)

Ammonium (NH4-N) WNH3 0.25 1.0 10.0 10.0

Nitrate and nitrite (Anions NO3-N. NO7-N)

The LUEL method code, WICA, is suitable for drinking waters and waste waters. It is based on the 

EPA300 Method A for anions but uses a Dionex AS14 anion column (4x250mm) with an AG14 guard 

column.

A sample is introduced into a stream of 3.5 mM carbonate / 1.0 nM bicarbonate eluent and passed via 

high pressure through a highly basic ion exchange column where anions are separated based on their 

relative affinity to the column. The analytical system is set up with a self-regenerating micro-membrane 

suppressor which reduces the baseline effects from the effluent. The conductivity of individual peaks is 

then measured with a conductivity cell. The method detection limit (MDL) and calibration range are 

given in Table 3.2.2.

Some other analytical parameters are;

Flow rate =1.0 mL/minute 

Temperature = ambient

Detection = Suppressed conductivity using a CD25 

Applied current= 100mA 

Injection volume=100uL
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Samples are diluted 1/10 in order to fall within the calibration range. 

Table 3.2.2 The MDL and calibration range of nitrate and nitrite

Component Parameter CODE MDL (mg/L) Calibration Upper Limit
Range (mg/L) (mg/L)

Nitrate (NO3-N) WICNO3 0.005 0.025 25.0 25.0

Nitrite (NO2-N) WICNO2 0.005 0.025 25.0 25.0

3.2.3 Microbiology

Morphology of sludge floes were observed and recorded with a light microscope (Olympus, BH2- 

RFCA) at a magnification of X 100 at the same time for filamentous microorganisms quantification. 3 

measurements were conducted for each SBR in each week of the experimental time. The number of 

filamentous microorganisms was classified into levels 1 to 6 according to Jenkins et al. [95]. A lower 

level corresponds to a fewer filamentous microorganisms.

3.2.4 Floe size distribution

Floe size distribution of mixed liquor suspended solids and effluent suspended solids in treated effluent 

(after 40 minutes settling) was determined by using a Mastersize 2000E (measuring range 0.04 ~ 1000 

pm) made by Marvin Instrument. One drop of MLSS or 5 mL of treated effluent was diluted in distilled 

water with the same ionic strength in the feed before floe size distribution. The Malvern instrument uses 

light scattering and the data is given as frequency by volume. Three measurements were taken for each 

SBR in each week of the experimental time.
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3.2.5 Zeta potential

Zeta potential of the non-settleable fraction of sludge floes in the treated effluent as ESS was measured 

by Zetacompact Z8000 model (CAD Instrumentation). The Smoluchowski equation was chosen in the 

software to calculate the zeta potential of the non-settleable fraction of sludge floes. The electric field 

added on the solution containing non-settleable floes was controlled by a cell votage of Zetacompact 

Z8000 and was fixed at 80 V. The pH of the treated effluent was in the range of 7.3 ± 0.4. The ionic 

strength in the feed was constant during the measurement.

3.2.6 Floe ultrastructure

Nano scale observations of floc extracellular polymeric substances (EPS) were made on ultra-thin 

sections of whole floes (to compare SRTs of 4 and 20 days), which were prepared for transmission 

electron microscopy (TEM) by the multi-method technique of Liss et al. [96]. Measurements were made 

from preparations derived from floes fixed initially in glutaraldehyde plus ruthenium red [96]. After the 

double fixation (designed to minimize extraction and shrinkage), the floes were embedded in Spurr's 

epoxy resin, and then sectioned with an RMC Ultramicrotome MT-7 (Boeckeler Instruments, Tucson, 

AZ). The 70 nm sections were mounted on formvar-covered copper TEM grids, and then counterstained 

[96]. The searches of TEM views of floes, to select representative images of ultrastructural features, 

were done systematically according to the protocol of Leppard et al. [97]. Documentation was 

performed with a JEOL 1200 EXII TEMSCAN scanning transmission electron microscope (JEOL, 

Peabody, MA) operated in transmission mode at 80 kV.
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3.2.7 Fourier transfer infrared spectroscopy 

Sludge samples were first washed with deionized distilled water at 2000 x g for 5 minutes and filtered to 

remove the major part of water, and then dried in a freezer dryer at -30°C for three days. To get the 

infrared (IR) spectrum, the prepared pellets were scanned for 100 cycles in a wavelength range of 4000 

to 400 cm'* at a resolution of 4 cm'% using a Bruker Tensor 37 Fourier transform infrared (FTIR) 

spectrophotometer [98, 99].

3.3 Statistical methods

The statistical (version 1.7) software package (StatistiXL, Australia), run on a personal computer, was 

used for all statistical analyses. Basically, two types of statistical analyses were used in this study: 

analysis of variance (ANOVA) and correlation. The significance of the influence of operational 

temperature on the properties and settleability of sludge floes and effluent quality was evaluated by 

ANOVA, while the significance of correlations between sludge floes properties and bioflocculating and 

settling properties was tested by Pearson’s product-momentum correlation [100, 101].

3.3.1 Analysis of variances 

Analysis of variance (ANOVA) is a method for testing two or more treatments to determine whether 

their sample means could have been obtained from populations with the same true mean. This is done by 

estimating the amount of variance within treatments and comparing it to the variance between 

treatments. The Type I error rate was set at 0.05 for all tests performed in this study. Once differences 

between means were identified by ANOVA, a least significant difference test was performed to estimate 

the means and to determine the magnitude of the differences.
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3.3.2 Con'elation

The potential correlation between two variables was evaluated by the Pearson’s product moment 

correlation coefficient (rp). experimental data measured within three days was used for correlation 

analyses [102, 95]. The statistical significance of a calculated correlation coefficient was determined 

with the t-test. The correlations between variables were considered to by significant at a 95% confidence 

level. The relationships were checked graphically in order to avoid situations where dispersion around 

the regression line was high.
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4. Results and Discussion

In this chapter, the results and discussion are organized and presented in four sections in the following 

orders: 1.) treatment of synthetic kraft foul evaporator condensate using thermophilic and mesophilic 

SBRs; 2.) treatment of synthetic kraft foul evaporator condensate using thermophilic and mesophilic 

MABRs; 3.) comparison on floc structures and characteristics between thermophilic and mesophilic 

sludge; and 4.) treatment of TMP pressate using thermophilic and mesophilic SBRs and MABRs. The 

details of each section are described as below.

4.1 Treatment of synthetic kraft foul evaporator condensate using thermophilic and mesophilic

sequencing batch reactors

The purpose of this study was to compare the COD removal efficiency, sludge settleability and 

flocculating ability between thermophilic and mesophilic SBRs for synthetic kraft evaporator 

condensate treatment.

4.1.1 COD removal efficiency 

Figure 4.1.1 shows COD removal efficiency for treating the synthetic kraft evaporator condensate in 

thermophilic and mesophilic SBRs during the 240 days operational time. Three feed concentrations 

(750, 1500 and 3000 mg COD/L) were tested. Under tested conditions, a COD removal efficiency of 90 

~ 98% was achieved for both of the SBRs at all three organic loading rates. However, a decrease in the 

COD removal efficiency was occasionally observed, particularly for the thermophilic SBR. This might 

be due to a change in microbial community which caused the upset of the SBRs. The COD removal 

efficiency from this study is consistent with that from a thermophilic membrane bioreactor reported by
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Bérubé and Hall [68, 103]. These results suggest that treatment of synthetic kraft condensate is feasible 

in terms of COD removal at both thermophilic and mesophilic SBR.
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Fig 4.1.1 Soluble COD removal efficiency versus operating time for treating synthetic kraft 

evaporator condensate in thermophilic and mesophilic SBRs (HRT=12 Hours)

It is also interesting to note that the COD removal efficiency did not change for different influent COD 

stages, only with some variations (mainly occurred in the thermophilic reactor) when the influent COD 

was increased from 750 to 3000 mg/L. This phenomenon can be understood by referring to Figure 4.1.2. 

Figure 4.1.2 shows the decrease in the concentration of effluent COD with reaction time in one 

operational cycle. Most of the consumable COD was removed within either a three-hour period for 

mesophilic condition or a six-hour period for thermophilic condition. Because methanol is easily 

biodegradable and could be totally removed within the reaction time [7, 44, 103], the presence of 

40mg/L COD (mesophilic SBR) and 70mg/L COD (thermophilic SBR) in the treated effluent strongly 

suggests that compounds other than methanol could be responsible for the COD remaining in the treated 

effluent. The compounds remaining in treated effluent could be from cell lysis or soluble microbial 

products [104].
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Figure 4.1.2 Soluble COD concentration versus time during one operational cycle 

for treating synthetic kraft evaporator condensate in thermophilic and mesophilic SBRs 

(Influent COD= 3000 mg/L, HRT=12 Hours) in Jan 18-07

A calculation of the COD removal rate from Figure 4.1.2 suggests that the COD removal rate between 

the thermophilic (4.4 g COD/g MLSS.day) and mesophilic (3.5 g COD/g MLSS.day) sludge was 

comparable. As compared to the mesophilic SBR, the longer reaction time of the thermophilic sludge 

could be due to a lower biomass concentration, which was caused by the difficulty of maintaining 

biomass concentration due to sludge bulking. Although some studies suggest a higher reaction rate was 

associated with thermophilic sludge [21, 105, 106], other studies found similar or even smaller reaction 

rate of the thermophilic sludge [59, 62, 107]. This might not be surprising, as the thermophilic sludge is 

a mixture of microorganisms. The change in microbial composition would affect the reaction rate of 

sludge. The big difference of dissolved oxygen (DO) concentrations in both thermophilic SBR and 

mesophilic SBR was another reason that caused the lower reaction rate for thermophilic condition. 

Figure 4.1.3 shows the concentrations of DO in thermophilic and mesophilic SBRs for one operational 

cycle at the same experimental day with the COD cycle test. The DO concentration in thermophilic SBR
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was much lower than that in mesophilic SBR due to the low saturation eoncentration of oxygen and high 

oxygen uptake rate at the thermophilic condition [19, 108].
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Figure 4.1.3 Dissolved oxygen (DO) concentration versus time during 

one operational cycle for treating synthetic kraft evaporator condensate 

in thermophilic and mesophilic SBRs (HRT=12 Hours) at Jan 18-07

4.1.2 Sludge settleability and flocculating ability 

Figure 4.1.4 shows the changes in settleability of sludge, as measured by sludge volume index (SVI), 

versus time in thermophilic and mesophilic SBRs. At the lower organic loadings (750 and 1500 mg 

COD/L), there was no bulking of both the thermophilic and mesophilic sludge. However, a further 

increase in the feed COD to 3000 mg/L promoted the growth of filamentous microorganisms in 

thermophilic sludge and thus led to filamentous bulking situation, while the mesophilic sludge was still 

in a good settleability under this organic loading rate. There was a statistically difference between SVls 

in thermophlic SBR and mesophilic SBR at a influent COD of 3000 mg/L. Much larger SVI values 

(poorer compaction) and a higher frequency of filamentous bulking situations were observed at the 

thermophilic condition (ANOVA, p<0.05). These results are generally in agreement with previously
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reported results [25, 109]. The difference in sludge settleability at the high organic loading rate could be 

related to the difference in the DO level under thermophilic and mesophilic conditions. A number of 

studies have found that a minimum of 2.0 ppm DO is required to suppress the overgrowth of 

filamentous microorganisms in activated sludge system [49, 110]. A higher organic loading rate requires 

a higher oxygen transfer rate for biodégradation. The lower level of DO (1.0 ~ 1.7 ppm) under 

thermophilic condition could promote the overgrowth of filamentous microorganisms. While the DO 

level ( 6 - 7  ppm) under mesophilic condition was well above the minimum DO level (2.0 ppm) that 

minimizes the growth of filamentous microorganisms.
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Figure 4.1.4 Sludge volume index (SVI) versus time for treating synthetic kraft evaporator 

condensate in thermophilic and mesophilic SBRs (HRT = 12 Hours)

The variation in effluent suspended solids (ESS), an indication of flocculating ability, of thermophilic 

and mesophilic SBRs is shown in Figure 4.1.5. Statistical analysis indicates that there was a significant 

difference in the level of ESS between thenmophilic and mesophilic SBRs. The level of ESS in the 

treated effluent of the thenmophilic SBR was much higher than that of the mesophilic SBR (ANOVA,
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p<0.05). The results suggest that the flocculating ability of thermophilic sludge was poorer than that of 

the mesophilic sludge. These results are generally in agreement with previously reported results in that 

thermophilic sludge has a poorer flocculating ability (higher ESS level) than that of mesophilic sludge 

[59, 62, 111].
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Figure 4.1.5 Concentration of effluent suspended solids (ESS) versus time for treating synthetic kraft 

evaporator condensate in thermophilic and mesophilic SBRs (HRT =12 Hours)

From the COD, SVI and ESS data, it is clear that treatment of synthetic kraft evaporator condensate is 

feasible using mesophilic SBR but faces challenges in biomass separation using theromophilic SBR. 

One way to overcome the biomass separation problems caused by a low DO level in thermophilic SBR 

can be the use of pure oxygen rather than air for aeration to increase the DO level in thermophilie 

temperatures. An economic analysis should be conducted to compare the cost of cooling wastewater to 

mesophilic temperature and reheating the treated wastewater to reuse it as process water for mesophilic 

treatment and the cost of using pure oxygen in thermophilic treatment to determine the optimal 

treatment scenarios. Another way can be the use of membrane separation bioreactor (MBR) to replace
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SBR to eliminate sludge bulking problems. However, the presence of a larger amount of fine colloidal 

particles in the treated effluent could cause a membrane fouling problem [112,113].

4.2 Treatment of synthetic kraft foul evaporator condensate using thermophlic and mesophilic 

membrane aerated biofilm reactors 

The purpose of this study was to compare the COD and N removal efficiencies of treating the synthetic 

kraft evaporator condensate (Table 3.1.3) using thermophilic and mesophilic MABRs under well- 

controlled conditions. Two silicon hollow fibre membrane models were put into the thermophilic and 

the mesophilic SBR at 138^ operational day of the two SBRs to form thermophilic and mesophilic 

MABR respectively. At the beginning, the dosage of biomass for biofilm formation on membrane 

surfaces was controlled approximately at a biofilm thickness of 100 pm by adding in adequate amount 

of biomass (3.1.2).

4.2.1 COD removal efficiency and flocculating ability 

Figure 4.2.1 shows soluble COD removal efficiency for treating the synthetic kraft evaporator 

condensate in the thermophilic and mesophilic SBRs and MABRs with respect to experimental time. 

Under the tested conditions with an influent COD concentration of 3000 mg/L, a soluble COD removal 

efficiency of 80-90% for thermophilic MABR and 90 ~ 95% for mesophilic MABR were achieved 

except the upset period of the system (mainly under the mesophilic condition). There was a large 

fluctuation regarding the performance of the mesophilic MABR for COD removal during the 

operational day 150 to day 165. This phenomenon might be related to the transition of pure aerobic 

COD removal (thinner biofilm thickness) to the establishment of anaerobic and aerobic COD and N 

removal (thicker biofilm thickness), due to an increase in biofilm thickness. It was observed that the
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color of the membrane biofilm in the mesophilic MABR was changed from yellow brown to black and 

gas bubbles were observed during this period of time.
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Fig 4.2.1 Soluble COD removal efficiency versus operating time for treating synthetic kraft 

evaporator condensate in thermophilic and mesophilic MABRs (HRT=12 Hours)

The COD removal efficiency of thermophilic MABR was basically lower than that of mesophilic 

MABR. This is inconsistent with previous studies [108]. Liao and Liss [108] showed that the 

thermophilic MABR had better performance than the mesophilic MABR with respect to the COD 

removal due to its lower growth rate of biofilm, resulting in a proper biofilm thickness close to the 

optimal one (in the order of a few hundred pm) [114,115]. This difference could be explained by the 

contribution of anaerobic COD removal (denitrification) in the mesophilic MABR in this study, which 

was not observed in the previous study o f Liao and Liss [108].

A comparison on the COD removal efficiency between SBRs and MABRs, as shown in Figure 4.1.1 and 

Figure 4.2.1, indicate that a slightly higher COD removal efficiency was obtained in the SBRs.
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However, the COD removal could be mainly attributed into two categories: biodegradtion and stripping 

in the SBRs and the relative contribution of biodégradation and stripping is not clear. In the MABRs, the 

COD removal was mainly attributed into biodegrdation, as the use of bubbleless aeration led to a 

minimum stripping effect. A GC-MS analysis of the exhausted air from the MABRs showed that there 

was no methanol or only trace-amount of methanol in the outlet air. From the stripping point of view, 

the advantages of MABRs over SBRs for kraft evaporator condensate treatment are obvious.

Figure 4.2.2 shows the decrease in the concentration of treated effluent COD with respect to operating 

time in one cycle for treating synthetic kraft evaporator condensate in thermophilic and mesophilic 

MABRs. From the profiles in Figure 4.2.2, the consumable COD was removed gradually during the 

whole reaction period. More COD concentration was remained at the end of the reaction for 

thermophilic MABR than that in mesophilic MABR. However, from the trend of the thermophilic 

profile, it would be likely that COD reduced to a further extent to the equal level with that of mesophilic 

SBR if HRT were set longer.
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Fig 4.2.2 Soluble treated effluent COD concentration versus operating time during one operational 

cycle for treating synthetic kraft evaporator condensate in thermophilic and mesophilic MABRs 

(Influent COD= 3000 mg/L, HRT=12 Hours) at Jan 07-07

Concentration of effluent suspended solid (ESS), one of the indicators for treated effluent quality, for 

treating synthetic kraft evapotator condensate using thermophilic and mesophilic MABRs is shown in 

Figure 4.2.3. The ESS concentration for thermophilic MABR was much lower (reduced from 250 mg/L 

average to 90 mg/L) than that in thermophilic SBR after the stabilization period. ESS level for 

mesophilic MABR remained almost the same (a slightly lower) as it in mesophilic SBR but was more 

stable. The statistical analysis indicates that there was a significant difference in the level of ESS 

between thermophilic SBR and MABR. The concentration of ESS existed in the treated effluent in 

thermophilic MABR (90mg/L) was much lower than it in thermophilic SBR (250 mg/L) but was still a 

bit higher than that in mesophilic MABR (60mg/L) (ANOVA, p<0.05). It suggests that thermophilic 

MABR has an outstanding performance regarding the separation of the treated effluent from the
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suspended solids, as compared to the thermophilic SBR. This is probably not surprising that most of 

biomass was attached on the membrane surface thus lightened the poor settleability effect of 

thermophilic sludge on ESS level as that in thermophilic SBR. Pankhania et al [17] reported the ESS 

concentration increased immediately after the biomass detachment when treated synthetic sewage using 

MABR. This result indicates that thenuophilic MABR has advantages than thermophilic SBR in terms 

of the ESS level in treated effluent.
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Figure 4.2.3 Concentration of effluent suspended solids (ESS) versus operating time for treating 

synthetic kraft evaporator condensate in thermophilic and mesophilic MABRs

(HRT=12 Hours)

4.2.2 Nitrification and denitrification 

The nitrogen composition in the synthetic evaporator condensate was introduced by addition of 

nutrients. Three hundreds mg/L of total N (150 mg/L MH4-N, 150 NO3-N) was added in the synthetic 

wastewater influent in the form of NH4NO3 (1000 mg/L). Figure 4.2.4 and Figure 4.2.5 are the nitrogen 

(Ammonium-N, Nitrate-N, and Nitrite-N) concentrations in thermophilic and mesophilic MABRs with
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respect to operating days respectively. A large amount of N was removed by the biodégradation from 

mesophilic MABR than that in thermophilic MABR. Total N concentration was reduced to 150 ~ 240 

mg-N/L for the thermophilic MABR and 80 ~ 140 mg-N/L for the mesophilic MABR. Nitrification 

process generates hydrogen ions thus causes significant reductions in pH which may inhibit nitrification 

in return [49,116]. Grunditz et al. [116] reported optimum pH was 8.1 for Nitrosomonas and 7.9 for 

Nitrobacter, nitrification activities decreased 40 ~ 80 % when pH was among 6 - 7 .  But it is not the case 

in this study. On the contrary, once the reaction started, the pH usually increased, especially, in the 

beginning 2 - 3  hours of the reaction and the pH values in mesophilic MABR were 0.3 -  0.8 higher than 

those in thermophilic MABR. It shows that there would be denitrification in the mesophilic MABR 

occurring at the same time which consumed the hydrogen ions and produced alkalinity.

From Figure 4.2.4, it is clear that the removal efficiency of NH4-N fluctuated a lot, while the NO3-N 

concentration decreased with time, a simultaneous increase in NO2-N was observed. The results indicate 

that nitrification at the thermophilic temperature is not stable. This is in agreement with the result that 

nitrification is inhibited at the reaction temperature larger than 45 °C [117]. There is a very obvious 

trend for the variation of concentration of nitrate-N and nitrite-N. Nitrate-N concentration reduced to 

zero gradually with the nitrite-N concentration increasing from zero to 95 mg/L from 138‘'’ -  236'”’ 

operating day. It suggests that at the beginning reaction of MABR, there was no denitrification occuring 

in thermophilic MABR and with the reaction going on and the biofilm on the membrane surface was 

getting thicker, an increasing denitrifying reaction occurred. However, due to the high temperature 

(55°C) in thermophilic MABR, the nitrite-N accumulated, suggesting that denitrification was not 

complete which is not desirable. It should be noted that nitrate-N concentration decreased only can be
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caused by denitrification because nitrate-N is unlikely consumed as nitrogen nutrient for bacteria growth 

with presence of ammonium -N [117].
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Figure 4.2.4 Concentration of Ammonium-N, Nitrate-N, and Nitrite-N versus time 

for synthetic kraft evaporator condensate in thermophilic MABR 

(Influent COD= 3000 mg/L, influent total N = 300 mg/L HRT=12 Hours)

It was also observed that much lower level of nitrate-N and nitrite-N was found in mesophilic MABR 

(Figure 4.2.5) than that in thermophilic MABR (Figure 4.2.4). It suggests that some nitrification and 

very effective denitrification were occurring in the mesophilic MABR rather than thermophilic MABR. 

This is not surprising because the biofilm thickness in the mesophilic MABR could be much thicker (the 

weight of the mesophilic MABR was much higher than that of the thenuophilic MABR) than that in the 

thermophilic MABR, which could lead to the development of three layers biofilm (aerobic, anoxic, 

anaerobic) to facility simultaneous nitrification and denitrification (SND) in the mesophilic MABR. 

Similar results were found in previous studies [41, 118, 119]. Terada et al [119] indicated that there was
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no simultaneous nitrogen removal until a minimum biofilm thickness (450 |am) was attained. This 

phenomenon suggests that a more integrated SND biofilm structure existed in mesophilic MABR during 

the reaction.
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Figure 4.2.5 Concentration of Ammonium-N, Nitrate-N, and Nitrite-N versus time 

for synthetic kraft evaporator condensate in mesophilic MABR 

(Influent COD= 3000 mg/L, influent total N = 300 mg/L HRT=12 Hours)

Figure 4.2.5 suggests that nitrifying reaction was much less effective than denitrification in mesophilic 

MABR even though the reaction temperature was within the optimal temperature range (28°C ~ 32°C) 

for nitrification [117], which may be caused by the inhibition of high concentration of ammonia 

produced by ammonium ion in a higher pH environment [117, 120]. In addition, the high COD 

concentration (3000 mg/L) might favor the growth of heterotrophs and suppress the growth of 

autotrophs, which requires a low COD level for nitrifiers growth, and thus led to a poor simultaneous 

nitrification in the present study [57]. From Figure 4.2.5, the residual ammonium-N concentration 

increased with experimental time and the Nitrate-N concentration decreased with experimental time.
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This could be explained by the change in biofilm thickness. In the first few days of the mesophilic 

MABR operation, the biofilm thickness was in the optimal range of a few hundred pm, which gave a 

good nitrification efficiency. With an increase in biofilm thickness with experimental time, the 

nitrification efficiency decreased and at the same time denitrification efficiency was improved.

The results, as shown in Figures 4.2.6 and 4.2.7, of further analyses of ammonium-N, nitrate-N, and 

nitrite-N concentrations in an operating cycle support the observations of the long-term experimental 

results (Figures 4.2.4 and 4.25). In one operational cycle, sometimes ammonium -N  decreased with the 

operating time (results not reported here) while the other times ammonium-N did not change 

significantly from the beginning to the end of the reaction cycle (Figure 4.2.6). These results indicate 

that ammonium-N removal was not stable in the thermophilic MABR. It suggests that there was no 

stable nitrification occurring under the thermophilic condition. Denitrification in thermophilic MABR 

was not complete, and the nitrite-N accumulated up to 50 mg/L which might be caused by the high 

operating temperature. In mesophilic MABR, concentration of ammonia-N decreased by about three 

times of that in thermophilic MABR (50 mg/L) during all operating cycle (Figure 4.2.7). The drop in the 

amount of ammonium-N could be due to two factors: (I) some of ammonium ions were removed as a 

nitrogen nutrient for COD removal; and (2) some of the ammonium ions were oxidized to nitrite by 

Nitrosomonas, and then oxidized to nitrate ions by Nitrobacter (no adverse operational condition 

developed in mesophilic MABR). Figure 4.2.7 suggests that a complete denitrification occuned in 

mesophilic MABR. The reaction included, (1) NO3 reduction occurred immediately after the feed NO3- 

N was added; (2) NO3 reduction occurred immediately after NO3 was produced by nitrification from 

ammonium-N; and (3) NO2 was directly reduced to N2 gas without the reverse reaction by changing to 

NO3'. There was no NO2-N built-up in the mesophilic MABR. All of these results suggest that there was
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a big difference in nitrification and denitrification behaviour between thermophilic and mesophilic 

MABR. The mesophilic MABR had a higher efficiency in N removal than the thermophilic MABR.

200

180

160

140

120 AnmoniunrvN — Ntrate-N Ntrite-N
100

80

60

40

20

0 100 200 300 400 500 600 700

tlm etm inutes)

Fig 4.2.6 Concentration of ammonium -N, nitrate-N, and nitrite-N versus time for synthetic kraft 

evaporator condensate in thermophilic MABR during one operating cycle on Jan 07, 2007 

(Influent COD= 3000 mg/L, influent total N = 300 mg/L HRT=12 Hours)
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Fig 4.2.7 Concentration of ammonium -N, nitrate-N, and nitrite-N versus time for synthetic kraft 

evaporator condensate in mesophilic MABR during one operating cycle on Jan 07, 2007 

(Influent COD= 3000 mg/L, influent total N = 300 mg/L HRT=12 Hours)
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4.3 Characterization of sludge floes and biofilms 

Study of flocculating ability, settleability, and compressibility of sludge floes has been one of the most 

important tasks in biological wastewater treatment researches due to its crucial role in effective 

separation of biomass from treated effluent to achieve a high quality of receiving water. In this part, a 

comparison on floc structure and characteristics between thermophilic and mesophilic sludge was 

conducted.

4.3.1 Floc morphology, ultrastructure, and filamentous microorganisms 

Figure 4.3.1 shows the typical morphology of the thermophilic and mesophilic sludge. An examination 

of sludge morphology over a period of 8 months’ experimental time suggests that both types of sludge 

floes were irregular in shape. Cells that are growing rapidly and under nutrient rich conditions could 

give rise to more complex microcolony and colony morphology [121]. The thermophilic sludge 

contained a significant portion of filamentious microorganisms, while the mesophilic sludge contained 

no or very few filamentious microorganisms. Three different types of filamentous microorganisms, 

including Haliscomenhacter hydrossis, Thiothrix I and Type 1863, were identified (Figure 4.3.2), 

according to the methods presented in Jenkins et al. [95], in thermophilic sludge.
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(a)

(b)

Figure 4.3.1 Typical morphology of (a) thermophilic and (b) mesophilic sludge
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Figure 4.3.2 Three different types of filamentous microorganisms identified in thermophilic sludge

The gi'owth of filamentious microorganisms was related to the organic loading of COD in the 

thermophilic SBR. There were no or fewer filamentous microorganisms at an influent COD of 1500 

mg/L. Filamentous microorganisms started to show up in a large quantity when the influent COD was 

increased from 1500 mg/L to 3000 mg/L in the thermophilic SBR.

While the conventional optical microscopy (COM) provides information on cross morphology of sludge 

floes, detailed information on ultrastructure needs the use of transmission electron microscope (TEM). 

The ultrastructure of sludge floes observed TEM is shown in Figure 4.3.3 (a) and (b). There are 

considerable differences in the floc surface roughness and miero-eonolies. The populations of the 

thermophilic and mesophilic sludge showed some diversity in morphology, but a significant difference
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between populations in surface roughness is observed by nanoseale resolution. Figure 4.3.3 reveals the 

presence of patches of a nanoscale surface layer of filamentous microorganisms which is present 

commonly on floes of thermophilic sludge, but rarely on floes of mesophilic sludge.
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4.3.3 Ultrastructrue of a portion of a floc (a) from thermophilic SBR, 

and (b) from mesopilic SBR. The marker represents 500 nm.
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The change in the level of filamentous microorganisms with respect to experimental time is shown in 

Figure 4.3.4. Obviously, the level of filamentous microorganisms in thermophilic sludge was much 

higher than that of the mesophilic sludge all the time. The difference in the level o f filamentous 

microorganisms between thermophilic and mesophilic sludge explains the difference in settleability of 

thermophilic and mesophilic sludge (Figure 4.3.5). From Figure 4.3.5, The average SVI levels ± 

standard deviations were 653 ±117 mL/g MLSS in the thermophilie SBR and 391 ± 66 mL/g MLSS in 

mesophilic SBR from 61 sample tests for each SBR during an influent COD of 3000 mg/L for treating 

synthetic kraft evaporator condensate. It is clear, from Figures 4.3.4 and 4.3.5, that the poorer 

settleability of thermophilie sludge was associated with a higher level of filamentous microorganisms. 

This finding is generally consistent with a number of previous studies [122, 123] in that the presence of 

a large portion of filamentous microorganisms in sludge causes sludge bulking problem.
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Figure 4.3.4 Level of filamentous microorganisms in thermophilic and mesophilic 

sludge versus experimental timefor treating synthetic kraft evaporator condensate 

(Infiuent COD = 3000 mg/L, HRT = 12 Hours)
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Figure 4.3.5 A comparison on settleability of thermophilic and mesophilic sludgefor treating synthetic 

kraft evaporator condensate. Results are expressed as the average ± standard deviation 

(Influent COD = 3000 mg/L, HRT = 12 Hours)

The difference in the level of filamentous microorganisms could be related to the difference in the DO 

level and influent organic loading in the thermophilic (1.0 ~ 1.5ppm) and mesophilic SBR (5.5 ~ 

6.5ppm). It is generally believed that a minimum of DO at 2.0ppm should be maintained in the bulk 

solution to prevent the overgrowth of filamentous microorganisms [49, 110]. The low DO (1.0-1.7 ppm) 

in the thermophilic sludge caused oxygen diffusion limitation into sludge floes and thus promoted the 

overgrowth of faliments [124], The overgrowth of filamentous microorganisms was also related to the 

influent COD level in the thermophilic SBR. With a higher influent COD level (3000 mg/L), an even 

larger transfer rate of oxygen was desired to biodegrade the COD, which further worsen the oxygen 

limitation problems in the thermophilic SBR. One way to solve the thermophilic sludge bulking problem
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is to use pure oxygen for aeration. The use of pure oxygen can significantly increase the DO level in 

thermophilic temperatures and thus minimize the growth of filamentous microorganisms caused by 

oxygen limitation. Another approach to solve the themiophilic biomass separation problems is the use of 

membrane separation bioreactor (MBR) technology. The use of MBR can retain all sludge floes with a 

size larger than the pore size of membrane, no matter sludge is bulking or not. Further studies should 

focus on the impact of pure oxygen on thermophilic sludge settleability and the use of MBR to eliminate 

biomass separation problems.

4.3.2 FTIR spectrum

Fourier transfer infrared spectroscopy (FTIR) technique was used to distinguish the microbial 

community between thermophilic and mesophilic sludge. As shown in Figure 4.3.6, the FTIR spectrum 

was generally similar except for a characteristic peak at 1080 cm"' existing in the thermophilic sludge 

but not showing in the mesophilic sludge. The unique characteristic peak at 1080 cm"' corresponds to 

the sugar groups in polysaccharides [125]. This result might suggest that the thermophilic sludge was 

richer in polysaccharides.

The similarity of the FTIR spectrum was due to the fact that both the thermophilic and mesophilic 

sludge contain proteins, polysaccharides, DNA, RNA and lipids as their molecular composition. The 

characteristic peak near 1654 and 1542 cm"' corresponds to the primary amino group (Am I) and the 

secondary amino group (Am II) in proteins, respectively. The characteristic peak near 1460 cm"* may 

also come from the secondary amine and is resulted from the CHz group of aliphatic chains [126]. The 

deformation vibration of (CH])! or (CH])] may contribute to the characteristic peak near 1400 cm"*. The 

phosphate group (PI) and primary alcohol connected with saturated and unsaturated organic backbones 

in sludge leads to a deformation vibration near 1240 and 1035 cm"', respectively [126].
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Figure 4.3.6 FTIR spectrum for thermophilic and mesophilic sludge for treating synthetic kraft 

evaporator condensate (Influent COD = 3000 mg/L, HRT =12 Hours)

The differences illustrated by the presence or absence of unique characteristic peak at 1080 cm'' suggest 

that FTIR spectroscopy can be used to recognize differences in microbial community structure. The 

results suggest that there were some differences in microbial community structure between thermophilic 

and mesophilic sludge.

4.3.3 Floc size distribution 

Floc size distribution of the non-settleable fraction of sludge floes in treated effluent and the MLSS is 

shown in Figures 4.3.7 and 4.3.8. A significant larger portion of fine colloidal particles in the size range 

of 0.1 to IGum was observed in the treated effluent of the thermophilic SBR, as shown in Figure 4.3.7. 

However, there was a larger fraction of large particles (400 ~ lOOOum) in the thermophilic MLSS
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(Figure 4.3.8). This may not be surprising, as the presence of filamentous microorganisms in the 

thermophilic sludge provides the backbones of formation of large floes.
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Figure 4.3.7 Floc size distribution (Volume %) Vs. particle size of thermophilic and mesophilic ESS for 

treating synthetic kraft evaporator condensate (Influent COD = 3000 mg/L, HRT =12 Hours)
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Figure 4.3.8 Floc size distribution (Volume %) Vs. particle size of thermophilic and mesophilic MLSS 

for treating synthetic kraft evaporator condensate (Influent COD = 3000 mg/L, FIRT =12 Hours)

The larger portion of non-settleable fraction of colloidal particles in thermophilic sludge was related to a 

higher level of ESS (Figure 4.3.9). From Figure 4.3.8, The average ESS concentrations ± deviations 

were 328 ± 152 mg/L in the thermophilic SBR and 109 ± 105 mg/L in mesophilic SBR from 61 sample 

tests for each SBR during an influent COD of 3000 mg/L for treating synthetic kraft evaporator 

condensate. The significant difference of ESS levels between thermophilic and mesophilic SBRs is 

probably not surprising, as the ESS concentration is related to the level of the non-settleable fraction of 

particles.
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Figure 4.3.9 A comparison on the ESS level between thermophilic and mesophilic SBRs for 

treating synthetic kraft evaporator condensate. Results are expressed as the average 

± standard deviation (Influent COD = 3000 mg/L, FIRT =12 Hours)

A comparison on the average diameter (d4,s) between thermophilic sludge and mesophilic sludge with 

experimental time is shown in Figures 4.3.10 (a) and 4.3.10 (b ). The average diameter was similar in 

these two sludges during the acclimation period of time. This is not surprising, as all the SBRs were 

seeded with the same seed sludge and operated under similar conditions. However, significant 

differences in the average diameter were observed once the thermophilic SBRs reached at the 

thermophilic temperatures. The average diameter of the thermophilic sludge was usually smaller than 

that of the mesophilic sludge. There was attributed to the larger portion of non-settable fraction of 

colloidal particles in the thermophilic sludge. A reversal in the average diameter of floes was observed 

at the end of the experiment. The larger average diameter of thermophilic sludge could be attributed the 

formation of a large portion of large filamentous microorganisms-backbone floes. A comparison 

between the average diameter of sludge f lo e s  (Figures 4.3.10(a)-(b)) and the settleability of sludge
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(Figure 4.3.5) suggests that a smaller SVI was usually related to a larger average diameter of floes. 

Similarly, a lower level of ESS was usually related to a larger average diameter of floes (Figure 4.3.9). 

This is eonsistent with the previous findings of Liao et al. [127]. Therefore, a large and dense floe is 

desirable for effeetive biomass separation. From this point of view, theraiophilie sludge faees ehallenges 

of biomass separations.
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(a) MLSS average particle diameter versus experimental time for thermophilic-SBRl and mesophilic-SBR2
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(b) MLSS average particle diameter versus experimental time for thermophilic-SBR3 and mesophilic-SBR4 

Figure 4.3.10 MLSS average particle diameter with respect to experimental time for treating synthetic 

kraft evaporator condensate (Influent COD = 3000 mg/L, HRT = 12 Hours)
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4.3.4 Zeta potential

Figure 4.3.11 shows the average zeta potential in the thermophilic ESS (-10.44 ± 2.44 mV) and 

mesophilic ESS (-10.84 ± 2.53 mV). The average values and standard deviations of zeta potential were 

calculated from 80 sample tests for each of both thermophilic ESS and mesophilic ESS for treating 

synthetic kraft evaporator condensate. In contrast to the significant difference in ESS concentration and 

SVI level between thermophilic and mesophilic sludge, there was no significant difference in zeta 

potential between the thermophilic and mesophilic sludge. The results of statistical analysis among the 

zeta potential, SVI and ESS data suggest that there is no correlation either between SVI and zeta 

potential or between ESS and zeta potential (p>0.05). This result is consistent with the findings of 

Vogelaar et al. [63] in that the DLVO (Derjaguin, Landau, Verweij and Overbeek) theory is not valid in 

explaining the difference in bioflocculation and settleability between thermophilic and mesophilic 

sludge. It is likely the biopolymer bridging mechanism by extracellular polymeric substance (EPS) 

plays a more important role in controlling bioflocculation [63]. Further studies should focus on the 

quantity and composition of EPS from thenuophilic and mesophilic sludge.
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Figure 4.3.11 A comparison on zeta potential of thermophilic and mesophilic ESS for treating synthetic 
kraft evaporator condensate. Results are expressed as the average ± standard deviation 

(Influent COD = 3000 mg/L, HRT=12 Hours)
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4.4 Treatment of TMP pressate using thermophilic and mesophilic SBRs and MABRs 

In this part of experiments, the main goal was to conduct a comparative study of the soluble chemical 

oxygen demand (COD) removal efficiencies, sludge settleability and flocculating ability of 

thermomechemical pulp (TMP) pressate treatment (Table 3.4) using thermophilic and mesophilic SBRs 

and MABRs under well-controlled conditions. The two SBRs were operated at 30°C (mesophilic 

temperature) and 55°C (thermophilic temperature), respectively. The same was for the two MABRs. The 

soluble COD of the TMP pressate from a local pulp and paper mill was in the range of 3700 ~ 4100 

mg/L. Nutrients added in the influent wastewater were adjusted to: NH4NO3 = 570 mg/L, and KH2PO4 = 

175 mg/L (others remained the same as shown in Table 3.1.3) according to the ratio of COD: N: P = 

100: 5: 1. Parametric evaluations (residual COD, SVI, ESS, particle size distribution, and zeta potential) 

with time were performed in order to investigate the performance of biomass to remove the organic 

contaminants. The influent COD levels were shown in Table 3.1.4. Each barrel contained about 170 liter 

TMP pressate. The performance of the MABRs was monitored and evaluated by taking the same means 

except abandoning the SVI measurements.

4.4.1 COD removal efficiency 

Figures 4.4.1 and 4.4.2 show soluble COD removal efficiencies for the TMP pressate in thermophilic 

and mesophilic SBRs and MABRs, respectively, during the 236* ~ the 350* day operational time under 

tested conditions with an influent COD of 3700 ~ 4100 mg/L (Table 3.1.4). From Figure 4.4.1, a soluble 

COD removal efficiency of 75 ~ 85 % was achieved for the thermophlic SBR and 80 ~ 90 % was 

achieved for the mesophilic SBR when the HRT was set at 12 and 24 hours. And a very stable 

performance regarding soluble COD removal was observed. However, when the HRT was changed to 6 

hours from 325* to 334* day, the soluble COD removal efficiency reduced dramatically and much less
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stable for both thermophilic and mesophilic conditions (worse for thermophilic than mesophilic 

condition). Then, when the HRT was changed back to 12 hours from 335* to 350* day, the soluble 

COD removal efficiency was getting improved (50 ~ 85 %) under both thermophilic and mesophilic 

conditions. What is more, it was observed that the MLSS concentration in thermophilic SBR was very 

low (600 ~ 1100 mg/LMLSS) during the period of the HRT was set to 6 hours (325* to 334* day) even 

with none MLSS wasted, which was another reason to cause the very low COD removal efficiency 

besides the shorter HRT. It suggests that the HRT of 6 hours was not sufficient for the biodégradation to 

accomplish for both thermophilic and mesophilic SBRs and the intensity of high feed frequency under 

the HRT of 6 hours might greatly inhibit activated sludge growth due to an increase in the loading of 

toxic compounds in TMP pressate.
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Fig 4.4.1 COD removal efficiency versus operating time for treating TMP pressate 

in thermophilic and mesophilic SBRs (Influent COD = 3700 ~ 4100 mg/L)
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Figure 4.4.2 COD removal efficiency versus operating time for treating TMP pressate 

in thermophilic and mesophilic MABRs (Influent COD = 3700 ~ 4100 mg/L)

From Figure 4.4.2, the COD removal efficiency for thermophilic MABR (45 ~ 65 %) and mesophilic 

MABR (55 ~ 80 %) was lower than that for thermophilic and mesophilic SBRs respectively. An 

increase in the HRT from 12 hours to 24 hours led to a slightly increase in the COD removal efficiency 

of both the thermophilic and mesophilic MABRs. In addition, the soluble COD removal efficiency 

deteriorated when the HRT was changed to 6 hours. A little bit higher soluble COD removal efficiency 

obtained after the HRT was changed to 12 hours. It is obvious that the HRT of 6 hours was not 

sufficient for the reaction for thermophilic and mesophilic MABRs either. As compared to the MABRs, 

the higher COD removal efficiencies in the SBRs could be at least partially attributed to the stripping of 

VOC by conventional bubble aeration.

The reason that soluble COD removal efficiency of treating TMP pressate was generally lower than that 

of treating synthetic kraft evaporator condensate might be related to the composition and the
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concentration of the feed. There might be a portion of toxic and/or non-biodegradabie organic 

compounds that affected the bacteria (especially, thermophilic bacteria) performance with respect to 

removing COD occurring in the TMP pressate. It is well known that the TMP pressate contains toxic 

compounds, notably the resin and fatty acids and soluble lignin-like material [128-130]. Similar results 

were reported by the previous study [88, 130]. Magnus et al. [130] reported a large portion of 

unidentified extractives, both extractahle by MTBE and water-soluble, were non-biodegradable. The 

analysis of the influent TMP pressate, such as BOD measurement and some main contaminants 

identification, are being conducted in this research group.

Figure 4.4.3 and Figure 4.4.4 show the reduction of the soluble COD concentration versus operating 

time in one operating cycle for thermophilic and mesophilic SBRs and MABRs respectively. Most of 

the consumable COD was removed within the first six hours period for thermophilic and mesophilic 

SBRs. However, the portions of about 600 mg/L and 400 mg/L COD were remaining without being 

biodegraded in thermophilic SBR and mesophilic SBR respectively. Much higher COD concentration 

remaining was found, from Figure 4.4.4, for thermophilic and mesophilic MABR. It suggests that great 

amount of non-biodegradable contaminants and/or microbial culture inhibition may occur in the 

wastewater treatment system. The significant difference in the COD removal efficiency between 

MABRs and SBRs could be at least partially attributed to the stripping effect of bubble aeration and 

adsorption onto biosolid [131] in SBRs.
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Fig 4.4.3 COD concentration versus time during one operating cycle 

for treating TMP pressate in thermophilic and mesophilic SBRs 

(Influent COD = 3700 ~ 4100 mg/L, HRT = 12 Hours) at March 06-07
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Fig 4.4.4 COD concentration versus time during one operating cycle 

for treating TMP pressate in thermophilic and mesophilic MABRs 

(Influent COD = 3700-4100 mg/L, HRT =12 Hours) at March 06-07
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4.4.2 Settleability and floceulating ability 

Figure 4.4.5 shows the settleability of sludge - sludge volume index (SVI) in the thermophilic and 

mesophilic SBRs for TMP pressate treatment. It is obvious that there was not so significant and 

consistent disparity in SVIs between the thermophlic and mesophilic SBR for TMP pressate treatment 

(ANOVA, p>0.05). This was different from the results of synthetic kraft evaporator condensate 

treatment. It was found that the SVI level was still larger for thermophilic SBR than those for 

mesophilic SBR at the beginning of the feed switching to TMP pressate from synthetic kraft evaporator 

condensate, then SVI values for thermophilic sludge gradually reduced and after about 30 days’ 

stabilizing period, the SVI level of thermophilic sludge were even lower than those of mesophilic 

sludge. This is probably not surprising because at the beginning the level of filaments decreased 

gradually with experimental time, and finally much less filaments were observed morphologically for 

thermophilic floes treating TMP pressate (Figure 4.4.6). From Figure 4.4.6 (a) -  (d) ( 2 4 ~ 334 '̂’ 

operational day) the amount of filaments were decreasing gradually. This observation also suggests that 

the TMP pressate inhibited the growth of filaments.
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Figure 4.4.5 SVI versus time for treating TMP pressate in thermophilic and mesophilic SBRs
(Influent COD = 3700 -  4100 mg/L)
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Figure 4.4.6 Microscopical images of thermophilic activated sludge 

for treating TMP pressate in thermophilic SBR at different operational days 

(Influent COD = 3 7 0 0 -4 1 0 0 mg/L, HRT = 6 - 2 4  Hours)

The effluent suspended solid (ESS) concentrations with respect to operational time for TMP pressate in 

thermophilic and mesophilic SBRs and MABRs are shown in Figure 4.4.7 and 4.4.8 respectively. ESS 

for thermophilic sludge in SBR was low (100 -  240 mg/L) during first two operating months, but 

increased (400 -  600 mg/L) after. The change in the flocculating ability as indicated by the ESS level
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was probably due to a decrease in the filamentous level in the thermophilic sludge. At the beginning of 

treating TMP pressate, the filaments level might be decreased to a level that favor the formation of 

filament-backbone floes [95] and minimized the non-settleable colloidal particles. However, with a 

further decrease in the filaments level and until complete disappear of the filaments, the filaments- 

backbones disappeared and thus dispersed growth might occur, which explained the significant increase 

in the ESS level after two months operation.

A significant detachment of both thermophilic and mesophilic biofilms in the MABRs was observed 

(Figure 4.4.8), as compared to the membrane attached biofilms that treated synthetic kraft evaporator 

condensate. This would indicate that the TMP pressate might contain toxic compounds that cause the 

detachment of membrane attached biofilms. The high level of ESS in the treated effluent of MABRs 

may suggest the need of a solids separation stage after the MABRs to remove the detached biofilms.
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Figure 4.4.7 ESS concentration versus time for treating TMP pressate 

in thermophilic and mesophilic SBRs (Influent COD = 3700-4100 mg/L)
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Figure 4.4.8 ESS concentration versus time for treating TMP pressate 

in thermophilic and mesophilic MABRs (Influent COD = 3700-4100 mg/L)

The better flocculating ability of mesophilic SBR during an HRT of 24 hours, might probably due to the 

effect of overabundance of protozoa in mesophilic sludge by their grazing upon effluent turbidity. 

Protozoa are known to graze upon activated sludge floes and feed up on free-swimming bacteria [132]. 

Figure 4.4.9 shows microscopical images of mesophilic activated sludge for TMP pressate tretment in 

mesophilic SBR at different operational days. At the beginning of treating TMP pressate (HRT = 1 2  

hours), almost no protozoa was observed, and then the number of protozoa increased gradually, and an 

aboundance of protozoa (free ciliates) were observed after the HRT was changed to 24 hours (Figure 

4.4.9-c). This is not surprising because Ciliates are usually found under conditions of good floe 

formation and generally indicate satisfactory activated sludge operation [95]. However, under operated 

temperature above 40°C, protozoa and other higher life forms are generally absent from activated sludge 

systems [95], which is why there were no protozoa observed in thermophilic SBR which might be 

another reason to cause high ESS level in thermophilic SBR. When the HRT was set to 6 hours, the 

population of protozoa in the mesophilic SBR reduced greatly, which resulted in ESS level went much
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higher in mesophilic SBR (Figure 4.4.7). LaPara et al [19] reported that the absence of protozoa and 

other higher life forms is a possible cause for high turbidity and ESS level of treated effluent.
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Figure 4.4.9 Microscopical images of mesophilic activated sludge for treating 

TMP pressate in mesophilic SBR at different operational days 

(Influent COD = 3700-4100 mg/L, HRT = 6 - 2 4  Hours)
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4.4.3 Particle size distribution 

Floe size distribution of the non-settleable fraction of sludge floes in treated effluent and the MLSS is 

shown in Figures 4.4.10 and 4.4.11. A significant larger portion of fine colloidal particles in the size 

range of 0.1 to lOum was observed in the treated effluent of the thermophilic SBR, as shown in Figure 

4.4.10. There was a larger fraction of large particles (70 ~ 300 pm) in the mesophilic MLSS (Figure 

4.4.11).
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Figure 4.4.10 Floe size distribution (Volume %) Vs. particle size of thermophilic 
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The average diameter (d4,3) of thermophilic sludge and mesophilic sludge with experimental time for 

treating TMP pressate is shown in Figures 4.3.12. The average diameter of the thenuophilic sludge was 

greatly larger (100 ~ 270 pm) than that of the mesophilic sludge (50 - 1 1 0  pm) when the HRT = 12 

Hours. Then, when the HRT = 24 hours, the average diameter of both the thermophilic and mesophilic 

sludge stayed in a very close level (50 -  100 pm). The average diameter of the mesophilic sludge went 

higher (100 -  150 pm) while that of thermophilic sludge stayed in the same level when the HRT 

changed to 6 hours. The results of particle size changing might reflect the variation of microbial cultures 

due to the toxic quality of real wastewater (TMP pressate), especially for the thermophilic sludge as the 

filaments disappearing. There was no obvious correlation between the Particle size and ESS, SVI 

respectively for treating TMP pressate under the experimental conditions of this study.
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Figure 4.4.12 MLSS average particle diameter with respect to experimental time for treating 

TMP pressate (Influent COD = 3700-4100 mg/L, HRT = 6 - 2 4  Hours)

4.4.4 Zeta potential

Figure 4.4.13 shows the average zeta potential in the thenuophilie LSS (-17.23 ± 5.81 mV) and 

mesophilic LSS (-17.76 ± 6.38 mV). The average values and standard deviations of zeta potential were 

calculated from 30 sample tests for each of both thenuophilie LSS and mesophilic LSS for treating TMP
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pressate. Similarly, there is no signifieant difference in zeta potential between the thermophilic and 

mesophilic sludge. The results of statistical analysis among the zeta potential, SVI and ESS data suggest 

that there is no correlation either between SVI and zeta potential or between ESS and zeta potential 

(p>0.05). This result is consistent with the findings of our study in treating synthetic kraft evaporator 

condensate (section 4.3.3) and Vogelaar et al. [63] that the DLVO theory can not explain the difference 

in flocculating ability of thermophilic and mesophilic sludge. Other mechanisms, such as hydrophobic 

interaction and polymer bridging may be responsible for the difference. Further studies on the role of 

extracellular polymeric substances (EPS) in flocculation are under going by other graduate students in 

this research group.
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Figure 4.4.13 A comparison on zeta potential of thermophilic and mesophilic ESS for treating 

TMP pressate. Results are expressed as the average ± standard deviation 

(Influent COD = 3700 -  4100 mg/L, HRT = 6 - 2 4  Hours)
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4.4.5 MLSS level

Figure 4.4.14 shows MLSS eoncentration versus operating time for TMP pressate in thenuophilie and 

mesophilic SBRs. A proper amount of sludge was wasted after the reaction period every two days 

according to the monitoring data of MLSS concentrations and the relevant calculation to try to maintain 

a similar MLSS level (2000 ± 300 mg/L) at each SRT. However, the MLSS level fluctuated due to an 

operational difficulty in dealing with the accumulation of sludge on the wall of SBRs at the water-air 

interface. The accumulated sludge could fall down back the mixed liquor randomly. The MLSS in 

thermophilic SBR grew slowly comparing with that in mesophilic SBR. This might not be surprising, as 

the yield of thenuophilie sludge was generally much lower than that of the mesophilic sludge [19]. It 

was also noticed that the growth of biomass was under the lowest level with an HRTof 6 Hours. This 

suggests that the loading of toxic contaminants was too higher, as compared to that at an HRT of 12 and 

24 hours, at an HRT of 6 hours that inhibited the growth of biomass [133].

Figure 4.4.15 shows the average MLSS concentration ± standard deviation in the thermophilic SBR 

(2616 ± 1248 mg/L) and mesophilic SBR (3018 ± 1370 mg/L). The average concentration of 

thenuophilie sludge for TMP pressate was higher than that for synthetic kraft evaporator condensate 

treatment. This was mainly due to the improvement of thermophilic sludge settleability in TMP pressate 

treatment, which eliminated the wasting of biomass in treated effluent.
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Figure 4.4.14 MLSS concentration versus operational time for treating TMP pressate 

in thermophilic and mesophilic SBRs (Influent COD = 3700 ~ 4100 mg/L)
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5. Conclusions and Recommendations

5.1 Conclusions

A comparative study was conducted to evaluate and compare the performance between thermophilic and 

mesophilic treatment processes using two types of bioreactors - MABRs and SBRs and characterize 

structure and properties of microbial floes and biofilms for synthetic kraft evaporator condensate and 

TMP pressate treatment. The main conclusions are summarized below.

1.) For synthetic kraft evaporator condensate: Treatment of synthetic kraft evaporator condensate at both 

thermophilic (55°C) and mesophilic (30°C) temperature was feasible in MABRs and SBRs; Under 

normal operation, soluble COD removal between thermophilic and mesophilic SBR (90 -  98%) was 

comparable; When compared with SBR, the soluble COD removal efficiency of MABR (80 -  95%) was 

slightly lower; The soluble COD removal efficiency of thermophilic MABR (80 ~ 90%) was slightly 

lower than mesophilic MABR (90 ~ 95%); Settleability of thermophilic sludge was poorer when 

compared with that of mesophilic sludge; The level of ESS in the thermophilc process was higher than 

that in the mesophilic process for synthetic evaporator condensate. These results suggest that treatment 

of synthetic kraft evaporator condensate in thermophilic SBR was feasible in terms of COD removal but 

faces challenges of biomass seaparation. The thermophilic MABR showed the advantages in 

overcoming stripping of VOC (methanol) and biomass separation problems, as eompared to 

thermophilic SBR.

2.) For TMP Pressate: Treatment of TMP pressate at both thermophilic (55°C) and mesophilic (30°C) 

temperature was feasible for MABRs and SBRs; The soluble COD removal efficiency of thermophilic 

SBR (75 -  85%) was slightly lower than that of mesophilic SBR (80 -  90%); The soluble COD removal
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efficiency of thermophilic MABR (40 ~ 65%) was slightly lower than that of mesophilic MABR (50 ~ 

80%); The soluble COD removal efficiency of MABR (40 -  80%) was lower than that (60 ~ 90%) of 

SBR ; Settleability of thermophilic sludge was comparable to that of mesophilic sludge; The level of 

ESS in thermophilc process was higher than that in mesophilic process for TMP pressate. These results 

suggest that treatment of TMP pressate is feasible in thermophilic SBR. The lower COD removal 

efficiency and higher ESS of MABRs needs further investigation.

3.) For the characteristics and structure of thermophilic and mesophilic sludge treating synthetic 

evaporator condensate, there are significant differences in floe morphology, ultrastructure, filaments, 

surface functional groups, floe size disfribution, bioflocculating ability and settleability between 

thermophilic and mesophilic sludge. The poorer settleability of thermophilic sludge was related to a 

higher level of filaments, which could be caused by a low DO level at the thermophilic temperature 

(55°C). The poorer bioflocculating ability of thermophilic sludge could not be explained by the 

conventional DLVO theory, pointing to other mechanisms, such as polymer bridging and hydrophobic 

interactions. Treatment of evaporator condensate under thermophilic condition faces the challenge of 

biomass separations and requires further studies on pure oxygen and MBR technology to solve biomass 

separation problems.

5.2 Recommendations

Although this thesis explores a novel biological treatment technology -  thermophilic MABR for kraft 

evaporator condensate treatment, and provides a long-term (one year) experiment on a bench-scale to 

prove its feasibility, a number of questions raised by this study still require further investigation. 

Specific recommendations for future studies are outlined below.
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• Optimization of the performance of MABR. Significant attention has to be paid to unifomaly 

distributing the aeration gas, simultaneously provide effective contact between the biofilm and the 

wastewater.

• developing of mechanism for optimally controlling biofilm thickness. Optimizing the operating 

conditions, such as, pure oxygen aeration, gas flow rate and gas pressure etc.

• Further membrane development for bubble-free aeration under higher temperature (55°C).

• Bioreactors application for closed cycle operation of pulp and paper mills to solve biomass separation 

problems.

• Pilot-scale studies of TMP pressate treatment using SBR and/or MABR.
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Appendix A Effluent Chemical Oxygen Demand Data [mg COD/L]

Day Date thermophilic
SBR1

mesophilic
SBR2

thermophilic
SBR3/MABR

mesophilic
SBR4/MABR

3 June 19-06 90 21.9 40 21
6 June 22-06 3 11.4 8.9 8.9
8 June 24-06 18 3.9 4 1
11 June 27-06 43 11.6 28.2 11.5
13 June 29-06 28 1.3 25.6 16.6
17 July 03-06 31 16.8 39.7 3.8
20 July 06-06 5 6.4 117 21.6
22 July 08-06 97 6.4 187 10.2
24 July 10-06 216 19.2 336.6 15.4
26 July 12-06 85 15 230.3 15
27 July 13-06 80 4 128 10
29 July 15-06 33 2 53 5
31 July 17-06 41 9 80 27
33 July 19-06 101 16 37 38
34 July 20-06 199 22 95 50
38 July 24-06 32 51 52 78
41 July 27-06 124 78 72 81
45 July 31-06 67 105 62 112
48 Aug 03-06 136 99 48.2 102.8
52 Aug 07-06 51 104.1 40.6 100.3
55 Aug 10-06 109 50 50 81
59 Aug 14-06 86 58 39 71
62 Aug 17-06 88 69 71 33
64 Aug 19-06 99 40 38 18
66 Aug 21-06 52 81 55 38
69 Aug 24-06 34 34 109 18
71 Aug 26-06 38 63 33 29
73 Aug 28-06 52 57 42 59
76 Aug 31 -06 54 63 50 40
78 Sep 02-06 110 61 121 46
80 Sep 04-06 55 82 95 74
83 Sep 07-06 52 38 92 27
85 Sep 09-06 43 53 50 204
88 Sep 12-06 47 44 70 226
90 Sep 14-06 17 19 83 102
92 Sep 16-06 20 28 38 265
94 Sep 18-06 41 28 43 329
96 Sep 20-06 40 62 90 270
98 Sep 22-06 75 103 142 121
101 Sep 25-06 170 5 88 92
103 Sep 27-06 109 152 104 136
105 Sep 29-06 460 96 197 76
108 Oct 02-06 185 95 174 148
110 Oct 04-06 198 175 120 211
112 Oct 06-06 207 147 323 106
115 Oct 09-06 156 102 107 86
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117 Oct 11-06 148 161 132 462
119 Oct 13-06 445 79 86 173
122 Oct 16-06 102 65 92 161
124 Oct 18-06 119 64 101 113
126 Oct 20-06 95 62 99 149
129 Oct 23-06 77 66 121 85
131 Oct 25-06 440 83 87 50
133 Oct 27-06 471 64 91 46
136 Oct 30-06 87 66 108 50
138 Nov 01-06 74 53 58 58
140 Nov 03-06 72 41 52 34
143 Nov 06-06 68 49 133 182
145 Nov 08-06 110 110 228 315
147 Nov 10-06 94 100 187 390
150 Nov 13-06 105 79 187 223
152 Nov 15-06 96 59 131 367
154 Nov 17-06 1027 214 205 1049
157 Nov 20-06 120 176 72 938
159 Nov 22-06 111 143 101 484
161 Nov 24-06 299 374 191 747
164 Nov 27-06 985 1014 524 1678
166 Nov 29-06 106 99 193 385
168 Dec 01-06 99 120 220 201
171 Dec 04-06 120 345 411 379
173 Dec 06-06 235 376 201 359
178 Dec 11-06 116 296 333 65
180 Dec 13-06 158 238 377 78
182 Dec 15-06 147 286 453 100
185 Dec 18-06 130 188 277 117
187 Dec 20-06 105 169 514 149
189 Dec 22-06 103 985 387 137
192 Dec 25-06 80 96 538 150
194 Dec 27-06 97 227 526 297
196 Dec 29-06 88 148 519 173
199 Jan 01-07 64 46 466 102
201 Jan 03-07 52 34 664 210
203 Jan 05-07 143 72 512 124
206 Jan 08-07 118 160 546 150
208 Jan 10-07 132 140 491 173
210 Jan 12-07 67 50 466 129
213 Jan 15-07 46 25 595 100
215 Jan 17-07 33 27 651 79
217 Jan 19-07 61 39 408 120
220 Jan 22-07 76 52 471 499
222 Jan 24-07 79 61 451 371
224 Jan 26-07 150 98 478 427
227 Jan 29-07 150 63 526 283
229 Jan 31-07 135 50 401 196
231 Feb 02-07 76 41 430 96
235 Feb 06-07 54 20 567 55
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236 Feb 07-07 74 54 445 61
238 Feb 09-07 761 742 1472 1280
241 Feb 12-07 757 521 1490 1490
243 Feb 14-07 704 587 1492 1250
245 Feb 16-07 757 423 1496 1256
248 Feb 19-07 692 260 1472 1252
250 Feb 21-07 688 271 1482 1284
252 Feb 23-07 568 491 1533 1228
255 Feb 26-07 711 157 1422 1252
257 Feb 28-07 609 454 1145 1090
259 Mar 02-07 536 292 1385 1339
262 Mar 05-07 517 491 1247 1302
263 Mar 06-07 571 395 1791 1773
266 Mar 09-07 558 650 1840 1550
269 Mar 12-07 620 432 1840 1480
271 Mar 14-07 588 316 1780 1610
273 Mar 16-07 518 288 1620 1510
276 Mar 19-07 602 316 1760 1300
278 Mar 21-07 666 324 1480 1230
280 Mar 23-07 624 330 1430 1220
283 Mar 26-07 596 334 1110 1040
285 Mar 28-07 588 290 1250 1120
287 Mar 30-07 558 340 1270 1140
290 Apr 02-07 614 320 1190 1110
292 Apr 04-07 654 332 1190 1080
294 Apr 06-07 682 340 1320 1120
297 Apr 09-07 740 384 1320 1060
299 Apr 11-07 730 310 1410 930
301 Apr 13-07 744 302 1410 1210
304 Apr 16-07 734 310 1420 860
306 Apr 18-07 732 292 1340 730
308 Apr 20-07 744 632 1640 930
311 Apr 23-07 740 272 1310 960
313 Apr 25-07 724 252 1240 1030
315 Apr 27-07 714 270 1430 900
318 Apr 30-07 762 254 1210 740
320 May 02-07 764 280 1280 1410
322 May 04-07 758 328 1520 1170
325 May 07-07 738 310 1420 980
327 May 09-07 1790 1715 2010 1800
329 May 11-07 2935 2849 2382 1294
332 May 14-07 1254 667 2365 1248
334 May 16-07 2511 422 2040 1613
336 May 18-07 2516 676 2388 1465
339 May 21-07 1261 1128 2245 1487
341 May 23-07 1222 1144 2018 1935
343 May 25-07 1458 1402 2129 2018
346 May 28-07 1341 457 2105 1842
348 May 30-07 1627 583 2277 2038
350 June 01-07 322 2314 1848
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Appendix B Effluent Suspended Solids Data [mg/L]

Day Date thermophilic
SBR1

mesophilic
SBR2

thermophilic
SBR3/MABR

mesophilic
SBR4/MABR

3 19 June 2006 62 5 8&8 136 100.6
6 22 June 2006 738 7&2 77 49
7 23 June 2006 6&8 100.4 788 6&6
10 26 June 2006 66.4 5&6 78 6 66A
13 June 29-06 838 73 92 2 74.2
17 July 03-06 95.4 71.4 9&2 61.4
20 July 06-06 52 49 63 62 8
24 July 10-06 206 44.2 387A 56.2
27 July 13-06 264 2 75 335 81
31 July 17-06 26E2 75.6 226 8 6Œ2
34 July 20-06 19&8 50.4 243.6 46.2
38 July 24-06 22E8 41 2&A6 54.8
41 July 27-06 266^ 6&8 246 52.8
45 July 31-06 251 50.8 229.4 64.2
48 Aug 03-06 261.4 102 16A8 50.2
52 Aug 07-06 223 6 205^ 179.6 36.2
55 Aug 10-06 245.4 55 138 44.8
59 Aug 14-06 236^ 3A8 155.8 53.2
62 Aug 17-06 257.4 40 151.2 52
66 Aug 21 -06 173.2 36 142.8 40.4
69 Aug 24-06 120.4 3&6 187.4 3&8
73 Aug 28-06 10&6 48.4 12&8 43
76 Aug 31-06 89 2 344 8A2 47.2
80 Sep 04-06 230 30 242 40
83 Sep 07-07 142 32 158 36
87 Sep 11-06 98 20 134 44
90 Sep 14-06 128 38 190 70
94 Sep 18-06 712 46 356 66
96 Sep 20-06 434 48 228 60
98 sep 22-06 258 76 112 84
101 Sep 25-06 360 30 272 58
103 Sep 27-06 440 36 252 36
105 Sep 29-06 602 14 152 32
108 Oct 02-06 548 32 118 32
110 Oct 04-06 402 20 130 42
112 Oct 06-06 496 34 132 36
115 Oct 09-06 504 44 110 252
117 Oct 11-06 420 40 114 388
119 O ct 13-06 456 30 146 398
122 Oct 16-06 304 32 126 190
124 Oct 18-06 240 34 158 56
126 Oct 20-06 228 56 82 76
129 O d2S46 370 68 226 52
131 Oct 25-06 188 32 200 38
133 Oct 27-06 422 38 212 30
136 Oct 30-06 360 56 226 30
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138 Nov 01-06 276 94 268 38
140 Nov 03-06 144 134 238 28
143 Nov 06-06 222 158 220 42
145 Nov 08-06 124 214 348 38
147 Nov 10-06 278 212 268 86
150 Nov 13-06 256 44 152 34
152 Nov 15-06 250 74 154 48
154 Nov 17-06 264 118 118 20
157 Nov 20-06 294 260 68 30
159 Nov 22-06 432 262 86 64
161 Nov 24-06 180 68 40 64
164 Nov 27-06 308 87 86 14
166 Nov 29-06 318 92 88 38
168 Dec 01-06 286 104 74 46
171 Dec 04-06 596 410 64 48
173 Dec 06-06 884 370 68 38
178 Dec 11-06 138 332 74 42
180 Dec 13-06 176 346 74 28
182 Dec 15-06 200 408 70 40
185 Dec 18-06 222 270 76 44
187 Dec 20-06 258 210 92 38
189 Dec 22-06 214 276 86 60
192 Dec 25-06 254 100 88 44
194 Dec 27-06 340 236 92 38
196 Dec 29-06 210 90 78 26
199 Jan 01-07 202 58 80 34
201 Jan 03-07 320 68 90 38
203 Jan 05-07 240 74 116 36
206 Jan 08-07 260 98 90 48
208 Jan 10-07 210 106 102 82
210 Jan 12-07 214 78 72 46
213 Jan 15-07 230 50 72 14
215 Jan 17-07 500 48 72 54
217 Jan 19-07 278 40 68 64
220 Jan 22-07 76 32 38 36
222 Jan 24-07 128 34 56 28
224 Jan 26-07 562 72 70 56
227 Jan 29-07 282 26 80 60
229 Jan 31-07 258 30 40 30
231 Feb 02-07 468 46 76 36
235 Feb 06-07 408 28 128 34
236 Feb 07-07 506 36 146 32
238 Feb 09-07 182 126 150 82
241 Feb 12-07 122 212 144 94
243 Feb 14-07 172 194 132 132
245 Feb 16-07 160 260 138 94
248 Feb 19-07 118 72 128 80
250 Feb 21-07 146 118 174 92
252 Feb 23-07 156 150 140 82
255 Feb 26-07 118 216 98 78
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257 Feb 28-07 116 140 212 76
259 Mar 02-07 140 104 226 84
262 Mar 05-07 96 148 342 90
264 Mar 07-07 174 150 640 118
266 Mar 09-07 184 202 530 112
269 Mar 12-07 134 150 166 142
271 Mar 14-07 132 62 160 112
273 Mar 16-07 126 110 228 238
276 Mar 19-07 196 170 158 160
278 Mar 21-07 244 58 456 84
280 Mar 23-07 132 56 640 112
283 Mar 26-07 136 76 220 102
285 Mar 28-07 118 100 196 126
287 Mar 30-07 276 98 264 312
290 Apr 02-07 284 86 214 202
292 Apr 04-07 146 46 94 64
294 Apr 06-07 208 68 108 80
297 Apr 09-07 60 44 162 110
299 Apr 11-07 146 34 240 88
301 Apr 13-07 264 40 184 374
304 Apr 16-07 632 54 210 146
306 Apr 18-07 632 54 210 146
308 Apr 20-07 524 182 346 196
311 Apr 23-07 606 48 300 120
313 Apr 25-07 496 50 440 362
315 Apr 27-07 480 96 394 306
318 Apr 30-07 532 58 302 236
320 May 02-07 498 28 340 552
322 May 04-07 330 140 464 266
325 May 07-07 392 78 472 258
327 May 09-07 272 354 360 162
329 May 11-07 328 276 240 178
332 May 14-07 336 244 228 202
334 May 16-07 446 266 258 176
336 May 18-07 402 194 262 236
339 May 21-07 316 230 222 208
341 May 23-07 556 394 266 184
343 May 25-07 376 280 202 210
346 May 28-07 462 166 246 198
348 May 30-07 156 100
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Appendix C Sludge Volume Index Data [mL/g MLSS]

Day Date thermophilic
SBR1

mesophilic
SBR2

thermophilic
SBR3

mesophilic
SBR4

4 20 June 2006 263 361 379 359
7 23 June 2006 268 268 259 180
11 27 June 2006 197 242 275 167
14 June 30-06 235 246 244 258
18 July 04-06 256 182 255 139
21 July 07-06 227 111 175 129
25 July 11-06 272 118 385 140
28 July 14-06 320 86 297 181
32 July 18-06 73 53 216 137
35 July 21-06 84 56 219 135
39 July 25-06 73 36 172 101
42 July 28-06 54 32 133 89
46 Aug 01-06 47 50 127 102
49 Aug 04-06 52 29 179 74
53 Aug 08-06 47 36 183 64
56 Aug 11-06 62 27 181 51
60 Aug 15-06 110 36 149 65
63 Aug 18-06 207 43 157 76
67 Aug 22-06 199 44 202 46
70 Aug 25-06 209 47 267 50
74 Aug 29-06 181 55 260 62
77 Spt 01-06 123 62 214 50
81 Sep 05-06 187 75 234 115
84 Sep 08-06 175 111 251 134
88 Sep 12-06 204 174 278 143
91 Sep 15-06 173 153 278 139
95 Sep 19-06 396 170 130 84
98 Sep 22-06 452 116 389 55
101 Sep 25-06 842 139 707 107
103 Sep 27-06 1045 130 821 122
105 Sep 29-06 1221 158 615 155
108 Oct 2-06 1128 105 710 132
110 Oct 04-06 1185 122 655 113
112 Oct 06-06 1054 90 328 82
115 Oct 09-06 1289 84 784 94
117 Oct 11 -06 1333 114 352 112
119 Oct 13-06 1031 146 400 130
122 Oct 16-06 1276 125 222 123
124 Oct 18-06 893 131 340 81
126 Oct 20-06 530 143 271 100
129 Oct 23-06 727 122 393 179
131 Oct 25-06 1042 135 440 110
133 Oct 27-06 925 118 746 124
136 Oct 30-06 1099 117 768 198
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Day Date thermophilic
SBR1

mesophilic
SBR2

Day Date thermophilic
SBR1

mesophilic
SBR2

138 Nov 01-06 253 105 238 Feb 09-07 117 16
140 Nov 03-06 375 100 241 Feb 12-07 86 32
143 Nov 06-06 318 61 243 Feb 14-07 48 35
145 Nov 08-06 209 35 245 Feb 16-07 82 56
147 Nov 10-06 260 41 248 Feb 19-07 36 31
150 Nov 13-06 277 144 250 Feb 21-07 61 19
152 Nov 15-06 284 254 252 Feb 23-07 62 23
154 Nov 17-06 1124 332 255 Feb 26-07 16 35
157 Nov 20-06 318 161 257 Feb 28-07 50 36
159 Nov 22-06 424 83 259 Mar 02-07 55 42
161 Nov 24-06 793 246 262 Mar 05-07 53 300
164 Nov 27-06 818 390 264 Mar 07-07 70 142
166 Nov 29-06 333 149 266 Mar 09-07 214 185
168 Dec 01-06 251 120 269 Mar 12-07 157 71
171 Dec 04-06 189 57 271 Mar 14-07 48 63
173 Dec 06-06 237 32 273 Mar 16-07 68 43
175 Dec 08-06 214 67 276 Mar 19-07 44 26
178 Dec 11-06 495 97 278 Mar 21-07 57 32
180 Dec 13-06 325 63 280 Mar 23-07 61 25
182 Dec 15-06 212 29 283 Mar 26-07 60 35
185 Dec 18-06 950 42 285 Mar 28-07 61 37
187 Dec 20-06 410 38 287 Mar 30-07 52 31
189 Dec 22-06 720 53 290 Apr 02-07 29 33
192 Dec 25-06 1042 142 292 Apr 04-07 50 31
194 Dec 27-06 971 110 294 Apr 06-07 35 38
196 Dec 29-06 377 51 297 Apr 09-07 73 81
199 Jan 01-07 204 64 300 Apr 12-07 56 57
201 Jan 03-07 628 112 304 Apr 16-07 10 34
203 Jan 05-07 574 57 306 Apr 18-07 43 40
206 Jan 08-07 459 101 308 Apr 20-07 26 42
208 Jan 10-07 490 71 311 Apr 23-07 17 40
210 Jan 12-07 261 75 313 Apr 25-07 20 43
213 Jan 15-07 322 78 315 Apr 27-07 33 22
215 Jan 17-07 442 85 318 Apr 30-07 10 20
217 Jan 19-07 407 78 320 May 02-07 24 16
220 Jan 22-07 252 84 322 May 04-07 21 37
222 Jan 24-07 200 108 325 May 07-07 3 31
224 Jan 26-07 1087 154 327 May 09-07 31 48
227 Jan 29-07 980 223 329 May 11-07 34 42
229 Jan 31-07 1333 172 332 May 14-07 20 54
231 Feb 02-07 709 190 334 M ay 16-07 18 38
234 Feb 05-07 1695 112 336 May 18-07 16 42
236 Feb 07-07 161 114 339 May 21-07 17 44

341 May 23-07 20 52
343 May 25-07 28 47
346 May 28-07 40 47
348 May 30-07 41 56
350 June 01-07 36 77
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Appendix D Mixed Liquor Suspended Solids Data [mg/L]

Day Date thermophilic mesophilic thermophilic mesophilic
SBR1 SBR2 SBR3/MABR SBR4/MABR

4 20 June 2006 1750 1799 1717 1952
7 23 June 2006 1791 2013 1895 2050
11 27 June 2006 1877 2104 1745 2210
14 June 30-06 1487 2137 1555 2129
18 July 04-06 1287 1702 1215 1723
21 July 07-06 1408 1978 1546 1937
25 July 11-06 1653 2036 1558 2360
28 July 14-06 1625 2431 1786 2812
32 July 18-06 1791 2621 1763 2772
35 July 21-06 1786 2138 1623 2885
39 July 25-06 1787 2193 2154 3055
42 July 28-06 2021 1867 2099 3046
46 Aug 01-06 1713 2214 2203 2053
49 Aug 04-06 1547 2041 1729 2294
53 Aug 08-06 1713 1952 1805 2021
56 Aug 11-06 1620 1829 2153 2769
60 Aug 15-06 1271 1395 2012 2623
63 Aug 18-06 1352 1380 2295 2516
67 Aug 22-06 2256 2249 2622 2379
70 Aug 25-06 1671 2149 1984 2220
74 Aug 29-06 1768 2070 1958 1601
77 Spt 01-06 2430 2090 2480 3200
81 Sep 05-06 2350 3850 2480 4700
84 Sep 08-06 2400 4320 2110 4940
88 Sep 12-06 2110 4380 1690 5180
91 Sep 15-06 2250 4310 1800 4810
95 Sep 19-06 1390 3880 2690 3570
98 Sep 22-06 1660 3220 1930 3110
101 Sep 25-06 1140 3300 1330 3260
103 Sep2A06 880 2470 1170 2050
105 Sep 29-06 770 3300 1560 3040
108 Oct 02-06 860 2570 1380 2430
110 Oct 04-06 810 1800 1450 2210
112 Oct 06-06 930 1770 1370 1820
115 Oct 09-06 760 1670 1250 1920
117 Oct 11-06 750 1750 1590 1690
119 Oct 13-06 970 1440 1500 1540
122 Oct 16-06 760 2080 1850 2040
124 Oct 18-06 1120 1910 1620 990
126 Oct 20-06 1810 2310 2070 2010
129 Oct 23-06 1320 2220 1780 2570
131 Oct 25-06 960 1710 1250 1450
133 Oct 27-06 1060 1870 1300 1860
136 Oct 30-06 910 2130 1250 2020
138 Nov 01-06 990 2290
140 Nov 03-06 1200 2100



117

143 Nov 06-06 1730 1970
145 Nov 08-06 1910 1710
147 Nov 10-06 1730 1230 370 340
150 Nov 13-06 1880 1950 320 360
152 Nov 15-06 1480 2440 420 280
154 Nov 17-06 890 2650 90 110
157 Nov 20-06 1100 2490 70 140
159 Nov 22-06 1320 1800 250 290
161 Nov 24-06 1210 1710 120 60
164 Nov 27-06 1210 2050 210 160
166 Nov 29-06 1260 1540 200 200
168 Dec 01-06 1830 1840 150 170
171 Dec 04-06 2380 2300 190 150
173 Dec 06-06 2190 2490 80 340
175 Dec 08-06 1400 1190 150 290
178 Dec 11 -06 970 1450 190 210
180 Dec 13-06 1600 860 190 260
182 Dec 15-06 1700 1750 240 310
185 Dec 18-06 1010 1190 310 30
187 Dec 20-06 1170 1600 90 240
189 Dec 22-06 1250 2270 290 270
192 Dec 25-06 960 2330 130 320
194 Dec 27-06 1030 1820 60 80
196 Dec 29-06 1380 2340 20 10
199 Jan 01-07 1520 2190 400 350
201 Jan 03-07 1560 2510 260 180
203 Jan 05-07 1220 2610 250 180
206 Jan 08-07 1220 1690 110 120
208 Jan 10-07 1430 1980 210 380
210 Jan 12-07 1530 2140 320 170
213 Jan 15-07 1460 2450 360 400
215 Jan 17-07 1470 2230 230 270
217 Jan 19-07 1230 2550 570 700
220 Jan 22-07 1390 2370 230 740
222 Jan 24-07 1800 1950 150 530
224 Jan 26-07 920 1950 140 430
227 Jan 29-07 1020 2020 210 350
229 Jan 31-07 750 2320 110 240
231 Feb 02-07 1410 2100 100 60
234 Feb 05-07 1590 1970 220 60
236 Feb 07-07 1860 1850 490 120
238 Feb 09-07 1540 3220 540 350
241 Feb 12-07 1740 1560 640 640
243 Feb 14-07 2920 2880 490 580
245 Feb 16-07 2670 3060 440 760
248 Feb 19-07 1660 2920 620 600
250 Feb 21-07 4090 2620 730 680
252 Feb 23-07 4510 2170 470 290
255 Feb 26-07 4280 2280 370 770
257 Feb 28-07 2810 3340 560 380
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259 Mar 02-07 1890 2360 500 280
262 Mar 05-07 1500 2670 590 160
264 Mar 07-07 4580 3530 440
266 Mar 09-07 2520 2050 560 670
269 Mar 12-07 3430 5330 660 270
271 Mar 14-07 3550 6400 610 400
273 Mar 16-07 3240 2560 340 340
276 Mar 19-07 5680 5710 430 430
278 Mar 21-07 4210 2510 750 230
280 Mar 23-07 4560 2810 410 250
283 Mar 26-07 3520 2850 200 500
285 Mar 28-07 3920 2450 780 490
287 Mar 30-07 3820 2540 380 600
290 Apr 02-07 1400 1530 500 580
292 Apr 04-07 1990 1910 370 620
294 Apr 06-07 3110 2110 370 460
297 Apr 09-07 1240 1110 290 570
300 Apr 12-07 1070 1580 520 580
304 Apr 16-07 3890 2900 420 850
306 Apr 18-07 2570 2620 550 190
308 Apr 20-07 3420 7140 390 380
311 Apr 23-07 2950 4950 610 390
313 Apr 25-07 1490 3640 480 460
315 Apr 27-07 1200 5670 600 830
318 Apr 30-07 3090 2510 900 710
320 May 02-07 1230 2570 530 700
322 May 04-07 1410 810 1460 610
325 May 07-07 630 1310 1410 430
327 May 09-07 980 5050 640 440
329 May 11-07 890 2380 440
332 May 14-07 1010 1670 720 390
334 May 16-07 1130 2380 1130 460
336 May 18-07 1850 3120 990 470
339 May 21-07 1780 2730 490 380
341 May 23-07 3030 4270 1120 560
343 May 25-07 2530 3860 510 450
346 May 28-07 37æ 3200 680 510
348 May 30-07 780 500
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Appendix E Mixed Liquor Suspended Solids Average Particle Diameter (d4,3) Data [pm]

Day Date thermophilic
SBR1

mesophilic
SBR2

thermophilic
SBR3/MABR

mesophilic
SBR4/MABR

5 June 21-06 149.0 119.8 117 . 2 104.6
8 June 23-06 104.0 94.6 74.6 95.9
10 June 26-06 163.9 136.2 137.4 138.2
14 June 30-06 159.4 145 168.9 160.4
18 July 04-06 185.6 185.5 243.6 231. 3
21 July 07-06 224.4 205. 1 214. 1 214.1
25 July 11-06 214.2 234. 8 194.4 247.8
28 July 14-06 215.2 207. 3 212.9 218.8
32 July 18-06 196.8 161.5 219.3 236. 1
39 July 25-06 178.1 168.0 248.3 230.3
42 July 28-06 162.7 181.5 244.8 280.9
46 Aug 01-06 173.5 209. 2 250.8 267.2
49 Aug 04-06 147.5 229 3 216.4 341.5
53 Aug 08-06 175.9 1821 226.4 236A
60 Aug 15-06 162.9 291.4 206.9 242.2
67 Aug 22-06 176.1 242.4 201.9 21&9
73 Aug 29-06 156.5 267^ 162.2 257.6
81 Sep 05-06 153.1 263 5 174.2 241.0
88 Sep 12-06 12&6 162.8 131.5 169.2
97 Sep 21-06 169.4 153.3 166.4 134.8
101 Sep 25-06 162.5 155.7 82.4 157.8
103 Sep 27-06 162^ 131.8 112.6 161.6
108 Oct 02-06 110.9 125.3 87.4 135.8
110 Oct 04-06 118.1 141.8 79.0 12&3
116 Oct 10-06 158.9 160.8 6&1 112.5
117 Oct 11 -06 168.2 163.2 95.8 119.9
122 Oct 16-06 2574 165.9 82.8 145.7
129 Oct 23-06 145.1 145 83.7 225.3
131 Oct 25-06 127.4 176.7 95.4 161.4
136 Oct 30-06 144.6 149.8 119.4 123.4
140 Nov 03-06 135.8 146.6
145 Nov 08-06 120.5 160.4
147 Nov 10-06 116.5 167.0
150 Nov 13-06 141.9 158.2
152 Nov 15-06 140.5 215.8
157 Nov 20-06 185.5 122.1
159 Nov 22-06 138 6 105.7
164 Nov 27-06 157.7 152.4
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168 Dec 01-06 141 . 5 126.8
173 Dec 06-06 80.7 108.4
180 Dec 13-06 95.8 166.8
185 Dec 18-06 111.4 181.5
187 Dec 20-06 114 . 1 169.5 171.2 191.7
203 Jan 05-07 147.8 94 3 252.5 142.1
208 Jan 10-07 161.1 988 117 . 4
210 Jan 12-07 143.3 103.6 154.2
215 Jan 17-07 160.5 101.6 130.9
217 Jan 19-07 167.1 101.4 207.7 167.6
222 Jan 24-07 150.9 106.5 109. 1 140.8
224 Jan 26-07 206.4 116.1 164.1 144.7
229 Jan 31 -07 180.7 131,2 304.4 271.5
231 Feb 02-07 30&9 142.2 232.9 126.5
234 Feb 05-07 211.1 144.6 255.3 193.7
238 Feb 09-07 208.3 185.6 130.9 168.8
241 Feb 12-07 175.7 177.9 231.5 165.9
245 Feb 16-07 242.7 92 9 123.4 205.7
248 Feb 19-07 272.2 109.0 85.3 218.4
250 Feb 21-07 216.5 77.1 73.1 153.7
257 Feb 28-07 16&7 839 126.1 216.4
259 Mar 02-07 141.0 60.4 112.6 201. 1
264 Mar 07-07 123^ 72 3 96.8 214.6
266 Mar 09-07 144.8 928 74.9 199.2
271 Mar 14-07 140.9 104.8 128.7 303.8
273 Mar 16-07 104.3 94 3 85.4 158.1
278 Mar 21-07 65.1 598 179.7 181.4
280 Mar 23-07 83 5 56 6 75.5 98.1
285 Mar 28-07 72.4 47.9 99.1 210.2
287 Mar 30-07 98 1 54.1 114 . 4 143.4
294 Apr 06-07 6A5 46.1 92.2 146.0
300 Apr 12-07 57.1 42 7 98.1 118.2
308 Apr 20-07 71.1 839 186.1 93.1
315 Apr 27-07 442 52.9 57.0 57.6
320 May 02-07 334 48.0 52.8 67 . 1
327 May 09-07 330 8&0 93.6 170.3
336 May 18-07 74.2 1342 91.5 41.8
343 May 25-07 40.8 77.7 95.3 101.3
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Appendix F Effluent Suspended Solids Average Particle Diameter (d4,3) Data [pm]

Day Date thermophilic
SBR1

mesophilic
SBR2

thermophilic
SBR3/MABR

mesophilic
SBR4/MABR

3 June 21-07 167.5 112 60 8 51.3
7 June 23-07 66 5 69 2 53 73
10 June 26-07 142.1 107.3 110.5 114.1
14 June 30-07 138.5 130.2 137.7 131.6
28 July 14-06 138.4 86 2 89 170.7
35 July 21-06 186.3 168.6 234.5 211.6
38 July 24-06 99.8 95 58.1 76.7
41 July 27-06 47.3 160.1 35.2 116.3
45 July 31-06 24^2 70.2 110.5 239.7
48 Aug 03-06 10.4 63 3 169.9 2586
52 Aug 07-06 74.6 206V 1346
59 Aug 14-06 2&9 112
73 Aug 28-06 127.7 105.6
80 Sep 04-06 91.4 67.6
87 Sep 11-06 116.7 113.9 112.4 52.5
98 sep 22-06 105.8 159.4 102.9 34.6
101 Sep 25-06 91 125.6 62V 115.9
108 Oct 02-06 99.8 125.5 77.7 144.2
117 Oct 11-06 123.5 164.7 91.5 101.3
122 Oct 16-06 182 8 1387 70.5 247.7
124 Oct 18-06 125.3 160.5 869 123.3
129 Oct 23-06 126.3 149.1 867 233
136 Oct 30-06 13&6 141.8 102.2 897
145 Nov 08-06 115.1 153^ 11.4 1806
150 Nov 13-06 13&9 226.1 54.8 114.4
157 Nov 20-06 80.9 100.3 159.3 2596
164 Nov 27-06 120.2 132 4 151.8 226
171 Dec 04-06 72.8 54.4 145.6 125.4
189 Dec 22-06 13&2 140.3 113.1 174.9
203 Jan 05-07 96.7 114,6 16A1 77.5
208 Jan 10-07 99.4 59,1
210 Jan 12-07 110.9 856 4.4 8.1
217 Jan 19-07 142.6 80.5 6A1 143.6
224 Jan 26-07 165.3 111.7 2 6 7.6
231 Feb 02-07 290^ 149.2 2446 191.2
235 Feb 06-07 262 7 162J 257.1 175.8
241 F e b  12 -07 2 9 0 ,5 57.3 36 40.6
248 Feb 19-07 183V 40.1 1586 2.4
259 Mar 02-07 127.5 4&1 436 146
266 Mar 09-07 137 279 11.2 206
273 Mar 16-07 16.2 796 84.2 65 5
280 Mar 23-07 42.8 45,5 196 82 1
287 Mar 30-07 35.8 426 51.9 90
294 Apr 06-07 54.7 406 5.7 781
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301 Apr 13-07 10.6 52^ 1.4 23V
308 Apr 20-07 3.9 10.3 9.1 88.2
315 Apr 27-07 5.3 49.1 1.2 7.1
320 May 02-07 4.9 35A 3.4 137
327 May 09-07 15.3 15.1 7.4 8.8
336 May 18-07 1Z3 42.6 93.8 88.2
343 May 25-07 726 77.1 125 112.5

Appendix G ESS Zeta Potential Data [mV]

Day Date thermophilic mesophilic thermophilic mesophilic
SBR1 SBR2 SBR3/MABR SBR4/MABR

5 June 21-06 -&35 -12.73 -11.2 -11.84
7 June 23-06 -5.67 -12.28 -9.74 -8.35
11 June 27-06 -14.55 -8.47 -9.57 -7.37
13 June 29-06 -9.57 -6.96 -9.67 -8.89
17 July 03-06 -8.38 -7.67 -7.76 -Z83
20 July 06-06 -13.12 -10.74 -13.09 -9.03
24 July 10-06 -11.54 -12.68 -9.6 -12.52
27 July 13-06 -10.55 -9 69 -10.52 -&63
31 July 17-06 -7.36 -8.8 -9.27 -11.14
34 July 20-06 -10.2 -8.7 -11.31 -12.54
38 July 24-06 -8.79 -8 91 -12.6 -13.44
41 July 27-06 -10.01 -12.38 -14.41 -17.15
45 Aug 31-06 -8.93 -10.81 -14 -12.14
48 Aug 03-06 -9.42 -14.37 -15.32 -14.56
59 Aug 14-06 -10.26 -12.46 -13.45 -12.75
66 Aug 21-06 -12.32 -16.15 -12.5 -13.43
73 Aug 28-06 -11.6 -1L34 -11.96 -&96
80 Sept 04-06 -9.24 -9 56 -13.78 -11.65
87 Sept 11-06 -12.72 -14.16 -11.48 -12.97
96 Sept 20-06 -13.29 -8.49 -10,37 -6.61
101 Sept 25-06 -11.32 -8.34 -13.07 -&53
108 02-06 -9A3 -10.96 -14.1 -8.52
111 Oct 10-06 -9.43 -10.99 -14.08 -8.45
122 Oct 16-06 -9.44 -6.41 -9.29 -11.66
129 Oct 23-06 -11.38 -9.95 -13.66 -11.26
136 Oct 30-06 -12.01 -11.33 -10.24 -9.74
145 Nov 08-06 -23 -11.95 -9.8 -12.75
150 Nov 13-06 -9.49 -11.83 -9.23 -11.38
157 Nov 20-06 -10.56 -14.72 -&33 -11.95
164 Nov2A06 -4.29 -6.32 -5.22 -7.49
172 Dec 05-06 -7.87 -11.83 -13.25
180 Dec 13-06 -9.66 -11.74 -11.48
185 Dec 18-06 -7 61 -8.41 -5.59 -7.61
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189 Dec 22-06 -6.47 -7.86 -5.8 -6.63
207 Jan 07-07 -8.79 -12.49 -11.74 -11.64
210 Jan 12-07 -7.74 -14.26 -13.39 -13.83
217 Jan 19-07 -8.56 -12.63 -11.93 -14.43
224 Jan 26-07 -15.16 -14.2 -5.7 -10.57
231 Feb 02-07 -9.45 -9.21 -11.94 -10.71
234 Feb 05-07 -8.41 -15.15 -11.54 -7.69
241 Feb 12-07 -13.54 -15.75 -24.14 -16.04
248 Feb 19-07 -15.45 -11.77 -14.58 -14.23
259 Mar 02-07 -9.6 -10.35 -10.39 -11.3
266 Mar 09-07 -12.45 -12.6 -10.98 -13.7
273 Mar 16-07 -&22 -13.9 -10.75 -9.2
280 Mar 23-07 -12.56 -11.98 -8.9 -11.26
287 Mar 30-07 -12.51 -12.47 -11.69 -14.38
294 Apr 06-07 -21.62 -14.69 -23.63 -28.12
301 Apr 13-07 -23.59 -16.81 -21.98 -33.74
308 Apr 20-07 -18.29 -20.61 -21.41 -21.17
315 Apr 27-07 -23.55 -18.4 -25.85 -26.26
320 May 02-07 -19.59 -11.43 -9.97 -15.38
327 May 09-07 -17.32 -22.56 -19.41 -20.81
336 May 18-07 -21.93 -25.44 -25.01 -28.54
343 May 25-07 -26.6 -24.87 -21.42 -25.12

Appendix H Dissolved Oxygen (DO) Concentration Data [mg/L]

1. DO concentration during Jan 07-07 operational cycle (Synthetic wastewater HRT=12 Hours)

minutes Date thermophilic
SBR

mesophilic
SBR

thermophilic
MABR

mesophilic
MABR

0 Jan 07-07-cl 2.3 6.8 0.4 1.8

90 Jan 07-07-C2 2.4 4.1 0.2 0.6

180 Jan 07-07-C3 1.6 6.8 0.2 0.4

270 Jan 07-07-C4 2.4 5.6 0.2 1.1

360 Jan 07-07-C5 1.9 5.5 0.2 0.3

450 Jan 07-07-C6 2.3 5.6 0.2 0.3

540 Jan 07-07-C7 2.2 5.7 0.2 0.3

650 Jan 07-07-C8 2.3 6.1 0.2 5.1



2. DO concentration during Jan 18-07 operational cycle (Synthetic wastewater HRT=12 Hours)
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minutes Date thermophilic
SBR

mesophilic
SBR

thermophilic
MABR

mesophilic
MABR

0 Jan -18-c1 2.4 3.2 0.6 0.5
90 Jan -18-c2 1.3 6.1 0.3 4.5
180 Jan -18-c3 1.4 5.8 0.3 0.4
270 Jan -18-c4 1.6 6.4 0.2 0.3
360 Jan -18-05 1.7 6.2 0.2 0.4
450 Jan -18-c6 2.5 6.1 0.2 0.2
540 Jan -18-c7 2.4 6.4 0.2 0.3
650 Jan -18-c8 2.3 6.7 0.2 0.4

3. DO concentration during March 06-07 operational cycle (Real wastewater HRT=12 Hours)

minutes Date thermophilic
SBR

mesophilic
SBR

thermophilic
MABR

mesophilic
MABR

0 Mar -06-c1 3.0 6.8 0.5 0.6
90 Mar -06-c2 2.5 5.4 0.2 0.3
180 Mar -06-03 1.7 5.4 0.2 0.3
270 Mar -06-c4 2.2 5.5 0.2 0.3
360 Mar -06-05 2.4 5.6 0.2 0.3
450 Mar -06-c6 2.6 6.5 0.2 0.3
540 Mar -06-o7 3.2 6.5 0.2 0.3
650 Mar -06-c8 3.1 6.5 0.2 0.3

4. The graph of DO concentration versus operational time after the membrane was put in SBR
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5. DO concentration [mg/L] after the membrane was put in SBR

Date Day (since using 
the membrane)

thermophilic
SBR

mesophilic
SBR

thermophilic
MABR

mesophilic
MABR

Nov 01-06 1 1.8 6.8 1.2 2.3
Nov 03-06 3 1.7 6.7 1.1 1.9
Nov 06-06 6 1.6 6.8 0.7 2.2
Nov 07-06 7 1.8 6.4 1.0 1.4
Nov 09-06 9 2.0 6.8 0.2 0.5
Nov 13-06 13 1.7 6.9 1.1 2.2
Nov 14-06 14 1.9 6.8 1.2 2.5
Nov 15-06 15 1.9 6.9 0.5 2.5
Nov 17-06 17 1.8 6.8 0.2 0.3
Nov 18-06 18 1.9 6.8 0.2 0.5
Nov 20-06 20 2.0 6.9 0.2 0.3
Nov 22-06 22 1.8 6.5 0.4 0.2
Nov 25-06 25 1.7 6.2 0.3 2.3
Nov 27-06 27 1.5 5.8 0.4 3.1
Nov 28-06 28 1.0 5.6 0.3 2.5
Nov 30-06 30 1.3 5.9 0.2 2
Dec 05-06 35 1.3 7.0 0.2 0.7
Dec 06-06 36 1.7 6.2 0.2 0.5
Dec 07-06 37 1.0 6.1 0.4 2.4
Dec 11-06 41 2.4 6.1 0.4 4.8
Dec 12-06 42 2.1 6.9 0.2 1.1
Dec 15-06 45 2.0 5.9 0.2 1
Dec 18-06 48 ' 1.7 5.6 0.3 1
Dec 20-06 50 2.2 7.1 0.3 5.1
Dec 22-06 52 1.9 5.8 0.4 4.3
Dec 25-06 55 2.0 6.9 0.4 5.2
Dec 27-06 57 2.1 6.8 0.4 4.3
Dec 29-06 59 2.5 4.9 0.2 0.3
Jan 01-07 62 2.3 5.7 0.4 3.7
Jan 03-07 64 1.6 4.7 0.4 0.7
Jan 07-07 68 2.3 6.8 0.4 1.8
Jan 11-07 72 1.5 6.5 0.2 0.4
Jan 15-07 76 1.0 5.8 0.2 0.4
Jan 18-07 79 2.1 6.5 0.2 0.5
Jan 19-07 80 2.0 6.0 0.3 0.5
Jan 22-07 83 2.1 6.1 0.3 0.5
Jan 24-07 85 2.2 6.1 0.3 0.3
Jan 26-07 87 2.2 5.8 0.2 0.3
Jan 29-07 90 2.1 6.2 0.2 0.4
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Jan 31-07 92 2.0 6.5 0.2 0.4
Feb 02-07 94 2.3 6.7 0.3 0.6
Feb 06-07 98 2.3 6.2 0.3 0.6
Feb 07-07 99 2.1 6.0 0.2 0.4
Feb 09-07 101 2.1 5.8 0.2 0.5
Feb 12-07 104 2.0 5.6 0.2 0.5
Feb 14-07 106 2.3 5.8 0.2 0.5
Feb 16-07 108 2.2 5.6 0.2 0.4
Feb 19-07 111 2.0 5.3 0.2 0.3
Feb 21-07 113 2.0 5.4 0.2 0.3
Feb 23-07 115 1.9 5.2 0.2 0.3
Feb 26-07 118 1.8 4.8 0.2 0.4
Feb 28-07 120 1.9 3.5 0.2 0.4
Mar 02-07 122 2.2 3.2 0.3 0.6
Mar 05-07 125 2.1 4.0 0.2 0.4
Mar 07-07 127 2.2 3.8 0.3 0.5
Mar 09-07 129 2.2 6.5 0.2 0.3
Mar 10-07 130 2.3 6.4 0.3 0.4
Mar 11 -07 131 2.1 6.2 0.3 0.3
Mar 12-07 132 1.9 6.5 0.2 0.5
Mar 13-07 133 1.9 6.5 0.8 0.8
Mar 14-07 134 2.0 6.0 0.2 0.4
Mar 16-07 136 2.1 5.8 0.3 0.3
Mar 19-07 139 1.8 5.8 0.2 0.4
Mar 21 -07 141 1.9 6.0 0.2 0.3
&4ar 23-07 143 1.9 5.8 0.2 0.3
Mar 26-07 146 1.9 5.6 0.2 0.3
Mar 27-07 147 2.1 5.2 0.2 0.3
Mar 30-07 150 2.2 6.5 0.2 0.5
Apr 02-07 153 2.3 6.6 0.3 0.3
Apr 04-07 155 2.1 6.0 0.2 0.4
Apr 06-07 157 1.9 5.8 0.2 0.3
Apr 09-07 160 1.9 5.7 0.2 0.4
Apr 11-07 162 2.0 6.0 0.2 0.3
Apr 13-07 164 2.1 5.8 0.2 0.3
Apr 16-07 167 1.8 5.6 0.3 0.3
Apr 18-07 169 1.9 5.2 0.2 0.3
Apr 20-07 171 1.7 6.4 0.2 0.4
Apr 23-07 174 1.9 6.5 0.2 0.3
Apr 25-07 176 2.1 6.0 0.3 0.4
Apr 27-07 178 2.2 5.9 0.2 0.3
Apr 30-07 181 2.3 5.8 0.2 0.5
May 02-07 183 2.1 6.0 0.2 0.3
May 04-07 185 1.9 5.8 0.2 0.4
May 07-07 188 1.9 5.6 0.2 0.3
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May 09-07 190 2.0 5.3 0.3 0.4
May 11-07 192 2.1 6.5 0.2 0.3
May 14-07 195 1.8 6.7 0.2 0.3
May 16-07 197 1.9 6.0 0.3 0.3
May 18-07 199 1.8 5.8 0.2 0.3
May 21-07 202 1.9 5.7 0.2 0.4
May 23-07 204 2.0 6 0.3 0.3
May 25-07 206 1.9 5.9 0.2 0.4
May 28-07 209 1.9 5.6 0.2 0.3
May 30-07 211 2.1 5.2 0.2 0.4

* About 2700 microscopical pictures, which are not included in this appendix, were observed and taken 
with a light microscope (Olympus, BH2-RFCA) and recorded in a computer to investigate the 
morphology of activated sludge floes.


