
 

 

 

 

Development of bacterial systems for the production of cellulase and 

bioethanol 

 

 

 

 

A thesis presented to 

The Faculty of Graduate Studies 

of 

Lakehead Univeristy 

by 

MIRANDA MAKI 

 

 

 

In partial fullfillment of the requirements                                                                                                
for the degree of                                                                                                                              

Doctor of Philosophy in Biotechnology 

August 30th, 2012 

 

© Miranda Maki, 2012 



Abstract 
 

The wide varieties of extant bacterial species are often resistant to various environmental stresses. 

This demonstrates their frequent ability to adapt to and thrive in challenging environments. One such 

adaptation in wood-degrading species that may be exploited to produce a product of high value to humans 

is a more efficient cellulase activity, which may help to overcome current challenges in biofuel 

production. In this study, 18 efficient cellulase-producing bacteria were isolated from organic fertilizers 

and paper mill sludges and characterized for consideration in large scale biorefining. All cellulase positive 

isolates were further characterized to identify those with the greatest cellulase activities for potential 

industrial application. Six of these isolates produced greater cellulase activity on soluble cellulose in 48 h 

than the positive control (Cellulomonas xylanilytica). Phylogenetic analysis of a portion of the 16S rDNA 

gene revealed genera belonging to two major phyla of Gram positive bacteria: Firmicutes and 

Actinobacteria. Additionally, isolates E2 and E4 (Paenibacillus species) displayed qualitative cellulase 

activities towards filter paper under limited oxygen condition. When total cellulase activities of E2 and E4 

were examined, it was shown that 1% (w/v) carboxymethyl cellulose (CMC) could induce total cellulase 

activities of 1652 ± 62 and 1457 ± 31 nM of glucose equivalents that were 8- and 5.6-fold greater than 

total cellulase activities induced by filter paper for E2 and E4, respectively. The genus Paenibacillus 

includes many highly-expressing cellulase producing strains, and E2 and E4 represent excellent 

candidates for further cellulase activity analysis and characterization.   

Cellulose hydrolysis is only one of the rate-limiting steps in the industrial production of biofuels 

which can be improved by isolation and characterization of novel enzymes.  In addition, pretreatment of 

lignocellulosic biomass is a costly hurdle which can be improved by the application of bacteria capable of 

producing a greater variety of enzymes. The potential use of lignocellulosic biomass for biofuel production has 

been hampered due to the complexity of its composition and the lack of microorganisms capable of modifying 

or decomposing the different components. Thus, CMC-containing agar was used to isolate and characterize 

20 cellulase-producing bacterial strains from peat and municipal wastes that belonged to four major phyla: 



Firmicutes, Actinobacteria, Proteobacteria and Bacteriodetes. Seven of the cellulase positive isolates also 

exhibited filter paper activities, while 13 exhibited activities towards xylan. Moreover, 10 of the isolates 

were capable of surviving 21 days incubation with 1% black liquor. Five strains increased the absorbance 

of black liquor by greater than 10-fold. Similarly, these five strains could also increase the absorbance of 

lignin at 280 nm when grown with 0.1% pure lignin. Additionally, although FTIR analysis of 1% barley 

straw treated for 21 days with these 5 strains showed a preference for consumption of hemicelluloses over 

lignin, a change in lignin was observed. Two isolates, 55S5 and AS1, a Bacillus sp. and Pseudomonas sp., 

respectively, have the highest lignocellulase activity, that is activities towards cellulose, hemicellulose 

and lignin, and possess the greatest potential for industrial use because of their concomitantly high 

cellulase activities, including filter paper activity and in addition, xylanase activity.  

The anaerobic, thermophilic and ethanogenic bacterium Clostridium thermocellum has great 

potential for use in consolidated bioprocessing for a more cost effective production of biofuels. However, 

its application is still hindered by such obstacles as end-product inhibition, i.e. feedback inhibition to 

cellulase activity by cellobiose. To increase cellulase activity and ethanol production, the copy number of 

β-glucosidase A (bglA) in C. thermocellum 27405 was increased using shuttle vector pIBglA to lower the 

end-product inhibition of cellulase. Using a modified electrotransformation protocol, C. thermocellum 

transformant (+MCbglA) harbouring pIBglA was successfully produced. The β-glucosidase activity of 

+MCbglA was 2.3- and 1.6-fold greater than wild-type (WT) during late log and stationary phases of 

growth, respectively. Similarly, total cellulase activity of +MCbglA was shown to be 1.7-, 2.3- and 1.6-

fold greater than WT during, log, late log and stationary phases of growth. However, there was no 

significant correlation found between increased cellulase production and increased ethanol titres for 

+MCbglA compared to the WT, perhaps due to the accumulation of toxic end-products (i.e. ethanol). We 

successfully increased total cellulase activity by increased expression of bglA and thereby increased the 

productivity of C. thermocellum during the hydrolysis stage in consolidated bioprocessing. Our work also 

provides insight into the complex metabolism of C. thermocellum for future further improvement of this 

strain.  



The co-culture of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum has 

great potential in the production of biofuels because it will consolidate the hydrolysis and fermentation 

steps and potentially increase bioethanol titres. However, there is little knowledge of the industrial 

application of this kind of co-culture such as substrate conditions and the number of generations for stable 

co-culture in addition to the effect of ethanol titres. The goal of this study was to develop a stable co-

culture of C. thermocellum 27405 and T. saccharolyticum 31097 which can produce greater ethanol titres 

than mono-cultures in batch fermentation. Comparison of C. thermocellum and T. saccharolyticum 

growth in reducing sugar (1% (w/v) cellobiose and 0.5% (w/v) xylose) and polysaccharide (1% (w/v) 

Avicel and 0.5% (w/v) cellobiose) media, showed that T. saccharolyticum could grow 2-fold faster in 

reducing sugar medium compared to C. thermocellum, while C. thermocellum grew to 2.3-fold greater 

turbidity in polysaccharide medium in mono-cultures. Subsequent co-culture batch cultures revealed that 

both strains could only co-exist for complete cell culture in reducing sugar medium, as confirmed by 

biomarker genes (bglA and xylB, respectively) detected by PCR, while in the subsequent subcultures only 

T. saccharolyticum was detected. In polysaccharide medium, both strains were detected continuously for 

4 generations in batch culture trials, using the same biomarker genes. After the fourth continuous 

subculture, the co-culture required re-establishing or further media optimization due to growth inhibition 

of strains.  Additionally, the ethanol titres also increased by 2.01-fold in the first and second subcultures 

compared to the mono-cultures. However, third and fourth subcultures did not have significantly different 

ethanol titres. Nonetheless, C. thermocellum and T. saccharolyticum co-culture has potential application if 

added during the hydrolysis stage of complex polysaccharides but not if added to simple sugars such as 

short poly- and oligo-saccharides produced during the fermentation stage. 

All of the work presented here in this thesis, focuses on the potential exploitation of bacteria to 

improve the economic feasibility of biofuels from stages of pretreatment, to hydolysis and fermentation. 

Due to the large variety and extreme environmental resistance, as well as genetic advances in prokaryotic 



systems the potential to improve exisiting bacterial systems or isolate new strains for industrial 

application is immense. 

Keywords: Biodegradation, cellulase, bioethanol, lignocellulase-producing bacteria, xylanase, lignase, 

β-glucosidase, co-culture, Clostridium thermocellum, Thermoanaerobacterium saccharolyticum,    
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Chapter 1: Literature Review 

1.1 The prospects of cellulase-producing bacteria for the bioconversion of 
lignocellulosic biomass  
 

Published Review: International Journal of Biological Science, (2009) 5, 500-516.  

Authors: Miranda Maki, Kam Tin Leung, Wensheng Qin. 

Abstract:  

Lignocellulosic biomass is a renewable and abundant resource with great potential for 

bioconversion to value-added bioproducts. However, the biorefining process remains economically 

unfeasible due to a lack of biocatalysts that can operate industrial conditions such as at high temperatures, 

under reduced oxygen/stirring, and in acidic or basic pH. The extreme environmental resistance of 

bacteria permits their screening for novel thermo-, hypoxia- and pH-tolerant cellulases that may help 

overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and 

metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have 

been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or 

activity over a wide pH spectrum, while novel cellulases from strains like Cellulomonas flavigena and 

Terendinibacter turnerae are multifunctional with a broader substrate utilization. These enzymes offer a 

framework for enhancement of cellulases including increasing specific activity and thermostability and/or 

reducing end-product inhibition. In addition, anaerobic bacteria like Clostridia sp. offer potential because 

they may produce multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close 

proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the 

construction of designer cellulosomes enhanced for specific substrate activity.  For example, cellulosome-

producing Clostridium thermocellum has a high ability to ferment sugars to ethanol and is amenable to 

co-culture and is promising for biofuel production thanks to recent advances in genetic engineering. The 

exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade 

feasibility for lignocellulosic biomass conversion, ultimately providing means to a „greener‟ technology.        
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Keywords: bacteria, bioconversion, cellulases, cellulosome 

Introduction:   

The combustion of petroleum-based fossil fuels has become a concern with respect to global 

climate change due to accelerated carbon emissions [1].  Burning of fossil fuels has also created a concern 

for unstable and uncertain petroleum sources, as well as, the rising cost of fuels [2].  These concerns have 

shifted global efforts to utilize renewable resources for the production of a „greener‟ energy replacement 

which can also meet the high energy demand of the world.  The Canadian renewable fuel standard has 

been raised so that fuel will contain 5% ethanol by 2010 [3]; the US Environmental Protection Agency 

raised their renewable fuel standard to 10.21% ethanol mixed fuels by 2009 [4]; while, the current 

mandate for mixing ethanol in fuel for Brazil is 25% (set in 2007) [5]. 

Currently, the US and Brazil are leaders in the production of starch/sugar-based fuels from corn 

and sugarcane crops, respectively. This is the production of first generation fuel from food-crop sugars 

using conventional technologies; however, starch raw materials will not be sufficient enough to meet 

increasing demand and are a controversial resource for bioconversion [6].  Also the reduction in 

greenhouse gases is low for starch-based ethanol and thus, second generation fuels based on non-edible 

crops (lignocellulosic biomass), is gaining immense global and scientific attention.   

Lignocellulosic biomass, („plant biomass‟), is a great potential resource for the production of 

biofuels because it is largely abundant, inexpensive and production of such resources is environmentally 

sound.  Agricultural residues are a great source of lignocellulosic biomass which is renewable, chiefly 

unexploited, and inexpensive. Such resources include: leaves, stems, and stalks from sources such as corn 

fibre, corn stover, sugarcane bagasse, rice hulls, woody crops, and forest residues.  Also, there are 

multiple sources of lignocellulosic waste from industrial and agricultural processes, e.g., citrus peel waste, 

sawdust, paper pulp, industrial waste, municipal solid waste, and paper mill sludge. In addition, dedicated 

energy crops for biofuels could include perennial grasses such as Switchgrass and other forage feedstocks 

such as Miscanthus, Bermuda grass, Elephant grass, etc [6].  Approximately 70% of plant biomass is 
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locked up in 5- and 6-carbon sugars. These sugars are found in lignocellulosic biomass, which is 

comprised of mainly cellulose (a homologous polymer comprised of long chains of glucose); less so, 

hemicelluloses (heterologous polymer of 5- and 6-carbon sugars); and least of all lignin (a complex 

aromatic polymer). The major component cellulose, is a homopolysaccharide comprised of glucose units, 

linked by β-(1→4) glycosidic bonds. Cellobiose is a repeating unit of cellulose which is comprised of two 

glucose monomoners linked via β-(1→4) glycosidic bonds and can ultimately be converted into glucose. 

Hemicellulose is a heterogeneous polymer, which varies in composition from plant to plant and within 

different parts of the same plant. It is made up of mainly pentoses (D-xylose, L-arabinose), hexoses (D-

mannose, D-glucose, D-galactose) and sugar acids (uronic and acetic acid). In hardwoods hemicellulose 

contains mainly xylans, while in softwood mainly glucomannans are present. Hydrolysis of 

hemicelluloses requires various types of enzymes. Briefly, xylan degradation requires endo-1-4,-β-

xylanase, β-xylosidase, α-glucuronidase, α-L-arabinofuranosidase, as well as acetylxylan esterases. In 

glucomannan degradation β-mannanase and β-mannosidase are required to cleave the polymer backbone. 

There are several advantages for the production of biosolvent fuels such as bioethanol:  1) 

produced from a variety of raw materials; 2) it is non-toxic to the environment; and 3) easily introduced 

into the existing infrastructure [7].  However, the path to sustainable and economically feasible biofuels is 

hampered. There are a few major bottlenecks with the current production of biofuels; one being, there is a 

lack of biocatalysts that can work efficiently and inexpensively at high temperatures and/or low pH 

conditions used in the bioconversion of lignocellulosic material to bioethanol.  Moreover, there is a great 

need for cost-effective fermentation of sugars derived from cellulose and hemicellulose.  Currently, 

industrial bioconversions of lignocellulose requires the application of high temperature and acidic or 

sometimes basic conditions to break down lignin, decrease crystallinity, increase pore volume and 

solubilise cellulose and hemicellulose to allow enzymatic hydrolysis of target polysaccharides [8].  This 

process is both expensive and inefficient. It is therefore important that enzymes be stable and active at 

high temperatures and/or low or high pH conditions.  
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 Additionally, industrial bioconversion of lignocelluloses to ethanol occurs in multiple steps, 

where hydrolytic enzymes are added after pre-treatment of the lignocelluloses (saccharification) and then 

in an additional step, microorganisms capable of fermentation are added to the resulting monosaccharides 

generated during hydrolysis to ferment sugars to bioethanol.  The multiple steps of the current biorefining 

process makes it both time-consuming and costly. By combining saccharification with fermentation in a 

process referred to as consolidated bioprocessing (CBP) or saccharification-co-fermentation (SCF), using 

a whole-cell(s) based approach, costs of fermentation and hydrolysis could be reduced [9,10]. Some 

additional rate-limiting steps in the bioconversion of lignocelluloses are the crystalline recalcitrance of 

cellulose and the limited number of cellulases. That is, all cellulolytic strains identified express low 

amounts in one or more type of glycoside hydrolases (GH) required for efficient cellulose hydrolysis 

(endo-/exo-glucanases, β-glucosidases). In attempts to improve the feasibility of the bioconversion of 

lignocellulose to biofuel, enzymes must have high adsorption capabilities, high catalytic efficiencies, high 

thermal stability and low end-product inhibition. 

However, in addition to technical challenges there remain many ethical issues regarding the 

development of biofuels which can be addressed through revised policies and regulation. These issues 

include namely: negative effects towards food security; the rights of farmers and landholders in 

developing countries; and the environment. Furthermore, several claims have contested the ability of 

biofuels to significantly reduce greenhouse gase emissions [7].    

Both fungi and bacteria have been heavily exploited for their abilities to produce a wide variety of 

cellulases and hemicellulases.  Most emphasis has been placed on the use of fungi because of their 

capability to produce copious amounts of cellulases and hemicellulases which are secreted to the medium 

for easy extraction and purification. In addition, the enzymes are often less complex than bacterial 

glycoside hydrolases and can therefore be more readily cloned and produced via recombinant DNA 

methods in a rapidly growing bacterial host such as E. coli. However, the isolation and characterization of 

novel glycoside hydrolases from Eubacteria are now becoming widely exploited.  There are several 



8 

 

reasons for these shifts, for one, bacteria often have a higher growth rate than fungi allowing for higher 

recombinant production of enzymes. Secondly, bacterial glycoside hydrolases are often more complex 

and are often expressed in multi-enzyme complexes providing increased function and synergy. Most 

importantly, bacteria inhabit a wide variety of environmental and industrial niches, which enrich for 

cellulolytic strains that are extremely resistant to environmental stresses. These include strains that are 

thermophilic or psychrophilic, alkaliphilic or acidiophilic, and, strains that are halophilic. Not only can 

these strains survive the harsh conditions found in the bioconversion process, but they often produce 

enzymes that are stable under extreme conditions which may be present in the bioconversion process and 

this may increase rates of enzymatic hydrolysis, fermentation, and, product recovery.  Researchers are 

now focusing on utilizing, and improving these enzymes for use in the biofuel and bioproduct industries.  

This review will focus on aspects rarely covered by other reviews, such as bacterial screening 

techniques, and new bacterial cellulases by comparing different cellulase-producing bacteria. Moreover, it 

will examine how these new cellulases can help overcome some of the major bottlenecks in the biofuel 

industry. In addition, this review will address how some novel bacterial strategies in biotechnology can 

advance the growing field of biorefining.  

Bacterial cellulases: 

Cellulases are comprised of independently folding, structurally and functionally discrete units 

called domains or modules, making cellulases modular [11].  A typical free cellulase is composed of a 

carbohydrate binding domain (CBD) at the C-terminal joined by a short poly-linker region to the catalytic 

domain at the N-terminal. There are only two modes of action for the hydrolysis of cellulose by 

cellulases, either inversion or retention of the configuration of the anomeric carbon. At least two amino 

acids with carboxyl groups located within the active site catalyze the reaction by acid-base catalysis.  The 

commonly described mode of action for cellulases on polymers is either exo- or endo-cleavage, and all 

cellulases target the specific cleavage of β-1,4-glycosidic bonds [12]. Using this classification system, 
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cellobiohydrolases (exoglucanases) were classified as exo-acting based on the assumption that they all 

cleave β-1,4-glycosidic bonds from chain ends. As well, those enzymes truly exo-acting often have a 

tunnel-shaped closed active site which retains a single glucan chain and prevents it from re-adhering to 

the cellulose crystal [13-15]. While endoglucanases on the other hand, are often classified as endo-acting 

cellulases because they are thought to cleave β-1,4-glycosidic bonds internally only and appear to have 

cleft-shaped open active sites. Endoglucanase are active on amorphous regions of cellulose and thus their 

activity can be assayed using soluble cellulose substrates; i.e., the carboxymethylcellulase assay 

(CMCase). However, there is now supporting evidence that some cellulases display both modes of action, 

endo- and exo- [16]. Thus classification has changed; cellobiohydrolases (exoglucanases) are described as 

active on the crystalline regions of cellulose; whereas, endoglucanases are typically active on the more 

soluble amorphous region of the cellulose crystal. There is a high degree of synergy seen between 

cellobiohydrolases (exoglucanases) and endoglucanases, and it is this synergy that is required for the 

efficient hydrolysis of cellulose crystals. 

CBD is the most common accessory module of cellulases and there are 54 distinct families [17]. 

The major function of CBDs is to deliver its resident catalytic domain to crystalline cellulose. Binding 

brings the catalytic domain into close contact with the crystalline cellulose for efficient hydrolysis. 

Binding of the cellulase via CBD is extremely stable, yet still allows the enzymes to diffuse laterally 

across the surface of the substrate and in some cases CBD has also been shown to catalyze the disruption 

of noncovalent interactions between cellulose chains of crystalline cellulose.  Some other CBDs bind 

preferentially to noncrystalline cellulose [18-20].  

Interestingly, the family 9 cellulase of aerobic Thermomonospora fusca has a family IIIc CBD 

with a different function that gives family 9 cellulases their distinctive theme [21]. This unique CBD does 

not bind crystalline cellulose but instead directly assists the catalytic function of the cellulase by binding a 

single cellulose chain and ultimately feeding this chain into the active site of the enzyme [22,23]. This 
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contributes to the overall processivity of the family 9 cellulase, that is, the sequential cleavage of the 

cellulose chain. Additionally, a second type of CBD must be associated with this cellulase to bind it to the 

crystalline cellulose.  Moreover, the family 9 cellulase of T. fusca provides strong evidence for enzymes 

that can exhibit both endoglucanase and exoglucanase activities accentuating the equivocacy of these 

terms.  

The products of exoglucanases and cellobiohydrolases, that are cellobiose and cellodextrans, 

respectively, are inhibitory to their activity. Thus, efficient cellulose hydrolysis requires the presence of β-

glucosidases to cleave the final glycosidic bonds producing glucose. Typically cellobiose and 

cellodextrins are taken up by the bacteria and internally cleaved via cellodextrin phosphorylases or 

cellobiose phosphorylases to create glucose monophosphate, which is energetically favoured. Some 

bacteria also produce intra- or extra-cellular β-glucosidases to cleave cellobiose and cellodextrins and 

produce glucose to be taken up by or assimilated by the cell [17]. 

Screening and isolation of cellulase-producing bacteria: 

Over the years, culturable, cellulase-producing bacteria have been isolated from a wide variety of 

sources such as composting heaps, decaying plant material from forestry or agricultural waste, the feces 

of ruminants such as cows, soil and organic matter, and extreme environments like hot-springs, to name a 

few [24]. Screening for cellulase production can be done by enrichment growth on microcrystalline 

cellulose as a sole source of carbon, followed by the extraction of 16S rDNA/RNA to determine the 

microbial community structure of the environment and analyze whether bacterial genera containing 

cellulase-producing species are present. Strains with cellulase potential can be isolated by subculturing 

from the enrichment culture on cellulose as a sole carbon source. This method was used to identify 

cellulase-producing bacteria in the deep subsurface of the Homstake gold mine, Lead, South Dakota, 

USA [25].   
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Moreover, efficient plate-screening methods are a prerequisite to finding cellulase-producing 

bacteria. Screening for bacterial cellulase activity in microbial isolates is typically performed on 

carboxymethylcellulose (CMC) containing plates [26]. This method can be time consuming and zones of 

hydrolysis are not easily discernable. Recently, Kasana and colleagues found that Gram‟s iodine for plate 

flooding in place of hexadecyltrimethyl ammonium bromide or Congo red, gave a more rapid and highly 

discernable result [27]. However, plate-screening methods using dyes are not quantitative or sensitive 

enough due to poor correlation between enzyme activity and halo size. This has sparked the development 

of short cellooligosaccharides possessing modified reducing termini with chromogenic/fluorogenic 

groups due to achievement of higher sensitivity and quantification. Several examples such as fluorescein, 

resorufin and 4-methylumbelliferone are well-established [28-33]. A major limitation of the incorporation 

of fluorescent substrates into agar plates is the tendency for hydrolysis products to diffuse widely and 

therefore these kinds of compounds are not as readily used. Today, new substrates, 2-(2‟-benzothiazolyl)-

phenyl (BTP) cellooligosaccharides with degree of polymerization (DP) 2–4 (BTPG2–4) were 

synthesized for the screening of microbial cellulolytic activity in plate assays. The usefulness of the 2-(2‟-

benzothiazolyl)-phenyl substrates was shown during purification of the Bacillus polymyxa cellulolytic 

complex, which consists of at least three types of the enzymes: cellobiohydrolase, endo-β-D-glucanase 

and β-glucosidase [34]. Nonetheless, these methods are mainly limited to culturable cellulase-producing 

bacteria and the full cellulase-potential of the site (culturable and nonculturable microorganisms) is not 

being fully examined.    

Researchers have now focused on the identification and exploitation of cellulase genes from 

unculturable microorganisms found in more extreme environments in hopes that the enzymes isolated will 

be novel and have specific applications in the biorefining industry due to a higher resistance to harsh 

environmental conditions. These enzymes may contribute to a decrease in the current cost of 

bioconversion of lignocellulose to ethanol by being more resistant to acids or bases used and by retaining 

activity at higher temperatures. To identify novel cellulases from all species present, culturable and 
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nonculturable in a swift manner, a metagenomic clone library should be created and then functionally 

screened; the key feature of this technique is the functional screening. Screening requires knowledge or 

rather an objective for the isolation of a specific enzyme with specific activity whether it be 

exoglucanases with activity on microcrystalline cellulose or endoglucanases with activity on soluble 

cellulose such as carboxymethyl cellulose (CMC). Depending on the objective different assays can be 

used to screen the recombinant proteins produced in E. coli. This is a quick and efficient method to screen 

a wide population which has been used recently to identify novel cellulase-producing bacteria from the 

rumen of buffalo and from pulp and paper mill effluent sediments by screening for crystalline and soluble 

cellulase activity [35,36]. Using different screening methods, a variety of cellulases with novel 

characteristics have been identified and are still being identified to date.  

The isolation and identification of cellulases has been limited in the past to culturable 

microorganisms. However, recent advances in molecular techniques, such as the creation of metagenomic 

libraries will widen the pool of cellulolytic enzymes available for biofuel research. This approach will 

allow exploition of cellulases and related enzymes from otherwise unculturable microorganisms which 

may produce enzymes with novel characteristics.   

 Novel cellulase producing bacteria: 

Isolation, screening and selection have favoured the discovery of several novel cellulase-

producing bacteria from a wide variety of environments as previously discussed.  Due to the vast diversity 

among bacteria the identification of novel cellulases remains a currently explored route to the 

improvement of biorefining industries.  Here will be discussed briefly some of the new bacterial isolates 

and/or newly discovered and characterized cellulases, with potential use in the biorefining industry.  

Recently, the bacterial strain B39, previously isolated from poultry manure compost in Taichung, 

Taiwan, was identified through 16S rRNA gene sequencing and phylogentic analysis to be a novel 

cellulose-degrading Paenibacillus sp. strain.  A high-molecular weight (148 kDa) cellulase, possessing 
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both CMCase and Avicelase activities, was found to be secreted by this isolate into the media. At an 

optimal pH of 6.5, the CMCase activity of the newly isolated and purified cellulase was found to be 

approximately 2-fold greater than the activity on Avicel or filter paper and this cellulase was found to 

have maximum CMCase activity at 60°C, pH 6.5. Due to the promising thermostability of this enzyme, it 

has good potential for industrial use in the hydrolysis of soluble cellulose as well as activity on 

microcrystalline sources of cellulose [37].  Furthermore a novel cellulase-producing Paenibacillus 

campinasensis BL11 was isolated in 2006, from black liquor of brownstock at washing stage of the Kraft 

pulping process.  This black liquor environment is strongly alkaline and therefore highly unfavourable to 

bacterial growth, isolation of a cellulase-degrading species from this environment provides plausibility 

that the enzymes produced by such a species could be tolerant to some of the harsh conditions used in the 

different pretreatments of lignocellulosic biomass.  P. campinasensis BL11 is a thermophilic, spore-

forming bacterium which was found to grow between 25 and 60°C over a wide range of pH. Optimal 

growth is around neutral pH, at 55°C. This isolate used a variety of saccharides (glucose, lactose, D(+)-

mannose, D(+)-cellulobiose, L-arabinose etc.) and polysaccharides (starch, CMC, Avicel, xylan etc.) as 

carbon sourse in basal medium with organic nitrogen, and produced multiple extracellular saccharide-

degrading enzymes including: a xylanase, two cellulases, a pectinase and a cyclodextrin 

glucanotransferase. The physiological properties of this strain and the vast number of free glycosyl 

hydrolases produced give this strain potential for use in the biorefining industry [38].  

More recently, a thermostable cellulase was found in newly isolated Bacillus subtilis DR, 

extracted from a hot spring.  The high temperature environment allowed for the production of a 

thermostable endocellulase CelDR with an optimum temperature at 50°C. It was found to retain 70% of 

its maximum activity (CMCase) at 75°C after incubation for 30 minutes. This strain offers a potentially 

more valuable thermostable enzyme for the biorefining industry due to extreme heat tolerance [39]. 

Cultivation of thermophiles offers several advantages, it reduces the risk of contamination, reduces 

viscosity thus making mixing easier, and leads to a high degree of substrate solubility while reducing the 
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cost of cooling. This is a greatly sought after property for cellulases in industrial applications like the 

bioconversion of lignocellulose.  Also recently, a novel thermophilic, cellulolytic bacterium was isolated 

from swine waste and identified as Brevibacillus sp. strain JXL. It was found to use a broad spectrum of 

substrates such as crystalline cellulose, CMC, xylan, cellobiose, glucose and xylose. The crude extract of 

cellulolytic enzymes appeared to retain 50% of their activity after 1h at 100°C, making them highly 

thermostable [40]. Furthermore, a salt-activated endoglucanase was recently isolated from another 

Bacillus strain, alkaliphilic Bacillus agaradhaerens JAM-KU023 which was shown to have increased 

optimal thermostability from 50°C to 60°C with the addition of 0.2M NaCl and optimal pH range from 7-

9.4 [41].   

In addition, bacteria are capable of producing more complex protein structures supporting 

enzymes for the hydrolysis of cellulose, such as the cellulosome, xylosome and bifunctional or 

multifunctional enzymes which are currently gaining a lot of attention. If these enzymes can be 

recombinantly produced on mass or produced in situ by the bacterial strains naturally encoding them, then 

they may have great potential in improving the cost of hydrolysis for the production of biofuels by 

reducing the need for production of multiple enzymes for efficient hydrolysis. For example, a bifunctional 

endoglucanase/endoxylanase was isolated from Cellulomonas flavigena providing potential for use in 

different industrial processes such as biofuel production. This bifunctional enzyme was found to have 

optimum cellulase and xylanase activity at pH 6 and 9, respectively, with a general optimum temperature 

at 50°C [42]. Similarly, in 2007, a multifunctional enzyme was found to be produced by Terendinibacter 

turnerae T7902, which is a bacterial symbiont isolated from the wood-boring marine bivalve Lydrodus 

pedicellatus. This CelAB was found to have two catalytic and two carbohydrate-binding domains. It 

binds both cellulose and chitin and possesses cellobiohydrolase and beta-1,4(3) endoglucanase activity 

allowing it to degrade multiple complex polysaccharides. This enzyme is marginally acid-tolerant at an 

optimum pH of 6 and mesophilic with a temperature optimum of 42°C.  Additionally, this enzyme was 

able to reduce viscosity of CMC approximately 40% after 25 minutes, displaying promising 
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characteristics for the biofuel industry [43].  All of these recently isolated enzymes and many more 

provide the framework needed to characterize and build highly efficient hydrolysis systems to be used in 

the biorefining industry. Isolation and characterisation of cellulase-producing bacteria will continue to be 

an important aspect of biofuel research. 

Improvement of bacterial cellulases: 

Despite the broad spectrum of cellulases being isolated, no single enzyme is completely suitable 

as it is, for the hydrolysis of cellulose in the biorefining industry. However, these enzymes offer a good 

starting point for the improvement of cellulases in steps towards enhancing the overall economics of 

biofuel production. Typically, the use of protein engineering technology has been directed towards the 

study of cellulase catalytic function.  Mutagenesis has provided a means for studying the role of different 

amino acids within the catalytic domain. More recently, modifications to bacterial cellulases through the 

use of protein engineering is taking a stage in the production of efficient hydrolytic enzymes used in a 

broad scope of industries and includes targeting structural amino acids, beyond amino acids in the 

catalytic site.  There are two major strategies for the improvement of a cellulase or cellulase component: 

1) rational design and 2) directed evolution.  

 

Rational design:  

Rational design involves 1) choice of a suitable enzyme, 2) identification of the amino acid sites 

to be changed, based usually on a high resolution crystallographic structure, and 3) characterization of the 

mutants [44].  The use of rational design requires detailed knowledge of the protein structure: what makes 

the catalytic site active, a theoretical molecular structure-based model of the protein, and most ideally 

structure–function relationship. With at least part of this knowledge, modification of amino acid sequence 

can be achieved using site-directed mutagenesis, in some cases elements of secondary structure can be 

altered and even exchange of whole domains and/or generation of fusion proteins [44].  However, the vast 
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majority of enzymes do not have structural information available. Despite the fact that some target 

cellulases are well characterized, the molecular mutation required for the desired function cannot always 

be achieved [45]. To date, there are no general rules for site-directed mutagenesis strategies for the 

enhancement of cellulase activity and it therefore remains at present in a trial-like state. There is still 

limited knowledge about the properties of insoluble cellulosic substrates which differ based on 

pretreatment technologies; the interactions between cellulases and cellulose; and, the synergistic 

relationship among cellulase components. These factors hamper the ability of using rational design for 

improving bacterial cellulases for the biofuel industry. 

  To date, there are a few reports where site-directed mutagenesis was used to increase the catalytic 

activity of a bacterial cellulase. Mahadevan et al., subjected the amino acids around the active site of 

endoglucanase Cel5A from Thermotoga maritima creating the N147E mutant which displayed 10% 

higher activity towards Avicel than the wild-type Cel5A [46]. The amino acids around the catlalytic-

active center play a pivitol role in determing the rate of catalysis by stabilizing the carbonium ion 

intermediate. This group also showed a correlation between binding ability and the activity of the 

enzyme.  By binding two CBDs, one from Trichoderma reesei and the other from Clostridium 

stercorarium, to Cel5A this CBD-engineered Cel5A displayed 14 to18-fold higher hydrolytic activity 

towards the crystalline cellulose Avicel [46].  In addition, the mutation of the conserved residue F476 

involved in cellulose binding to Y476 of the CBD from Cel9A of Thermobifida fusca displayed 40% 

improved activity in assays with soluble and amorphous cellulose such as CMC and swollen cellulose. 

This was achieved through the integration of computer modeling with site-directed mutagenesis [47]. 

Furthermore, enzymatic activity was increased by 80% for a mutant Cel5Z endoglucanase of 

Pectobacterium chrysanthemi compared to the wild-type. However, this mutant enzyme was created by 

the use of a nonsense mutation which removed the C-terminal region creating a truncated Cel5Z 

containing 280 amino acids compared to the native Cel5Z which has 426 amino acids. Without the CBD 

this enzyme would not be efficient for hydrolysis of crystalline cellulose but could offer potential for 
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solubilised cellulose [48]. Likewise, the Cel5Z:: Ω mutant Cel5Z of P. chrysanthemi hydrolyzed CMC 

with 1.7-fold higher activity than the intact Cel5Z cellulase; this was due to the insertion of stop codon 

(Ω) that led to the removal of the C-terminal including CBD and linker region [49]. Similarly, a complex 

multifunctional enzyme Cel44C-Man26A secreted by Paenibacillus polymyxa GS01, was truncated from 

1352 amino acids down to 549 amino acids. The truncated enzyme maintained cellulase, xylanase, 

mannanase and lichenase activities but on the contrary activity was not enhanced, however truncation 

allows the recombinant production of this multifunctional enzyme with more ease [50].   

Furthermore, Baker and colleagues (2005) were able to design and mutate Tyr 245; an amino acid 

identified as a key residue interacting with a leaving group and related to reduced product inhibition of 

Cel5A of Acidothermus cellulolyticus. It was thus mutated to Gly and this was found to decrease the 

inhibition of the endoglucanase by cellobiose. Solubilized sugars were hydrolyzed 40% greater by the 

mutant Cel5A compared to the wild-type. Structural and kinetic studies correlated increased enzymatic 

activity to reduced product inhibition [51].  In addition, mutation of a single active-site cleft tyrosyl 

residue to a glycyl residue significantly changed the mixture of products released from phosphoric acid-

swollen cellulose (PSC) from the catalytic domain of the endoglucanase-I from A. cellulolyticus. The 

percentage of glucose found in the product stream was approximately 40% greater for the Y245G mutant 

they created compared to the wild-type enzyme [52]. Bacterial cellulases improved by rational design are 

summarized in Table 1. 

Classical chemical mutagenesis does not require knowledge of the protein structure and selection 

of desired traits becomes a guiding force for the development of improved enzymes. The maximum 

product yield of an endoglucanase from Cellulomonas biazotea deoxyglucose- mutant 51 was 1.5- to 2.5-

fold more than was produced by the wild-type cells and was twice that reported by previous researchers 

on CMC [53]. Similarly, the highest productivity of β-glucosidase by a derived-mutant of C. biazotea was 

2.5-fold more than that of the parent organism and the mutation stabilized the thermostability of the 
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enzyme [54]. This type of random mutation, although more crude, is indicative of the ideas directed 

evolution was based upon. 

 

Directed Evolution:  

Contrary to rational design, irrational design or directed evolution is an approach to non-

informational protein engineering which utilizes the power of natural selection to evolve proteins and 

select for those with desired traits. Specifically, directed evolution requires the use of DNA techniques 

such as error-prone PCR (epPCR) and DNA shuffling to randomly generate a large library of gene 

variants. It has a great advantage over rational design because it is independent of enzyme structure and of 

the interactions between enzyme and substrate.  Nonetheless, a major challenge of this method is 

developing a means to accurately evaluate the performance of mutants generated by recombinant DNA 

techniques and the selection of high-performance mutants. Screening methods typically include such tests 

as CMC agar with Congo red staining or the use of chromogenic or fluorogenic substrates, as previously 

mentioned. The more quantitative these methods are the greater chance of improving the directed 

evolution for improving bacterial cellulases. The success of directed evolution relies on a large library of 

gene variants, the larger, the greater the chance of mutants with desired properties.  

The method of directed evolution was used to improve the thermal stability of Clostridium 

cellulovorans cellulosomal endoglucanase (EngB) in vitro by DNA recombination with non-cellulosomal 

endoglucanase EngD, based on the fact that the catalytic domains of both cellulase were highly 

homologous. The screening was done using CMC agar and staining with Congo red [55]. One of the 

mutants produced EngD with 7-fold higher thermostability and the authors suggest this to be due to a 

greater volume observed in the enzymes sidechains. Further, DNA shuffling was used to create a library 

of mutated endoglucanases from B. subtilis and was screened for increased catalytic activity. 

Interestingly, a bacterial surface display method was used to selectively screen for variants with improved 

activity on CMC agar with Congo red staining. This was done by fusing the genes with the ice nucleation 
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protein (Inp) the resulting fusion proteins would be displayed on the bacterial cell surface for easy 

screening [56].  

Furthermore, directed evolution using epPCR and family shuffling was used to successfully 

increase thermal stability of β-D-glucosidases from Paenibacillus polymyxa, desired mutants were 

screened using a chromogenic substrate [57,58].  Likewise, the catalytic activity of 1,4-β-D-glucan 

glucohydrolase A from Thermotoga neapolitana  was improved using epPCR to generate the gene variant 

library [59]. While additionally, catalytic activity of a hyperthermostable β-glucosidase CelB from 

Pyrococcus furiosus was improved by family shuffling. Catalytic activity was increased by 3- and 5-fold 

compared to the wild-type; screening for successful mutants was accomplished by a chromogenic 

substrate [60]. Finally, directed evolution of a glycosynthase from Agrobacterium sp. increased its 

catalytic activity dramatically and expanded its substrate usage, the successful mutants were screened by 

fluorogenic substrate [61]. Continued advancements in technology may increase the ease of using rational 

design in attempts to improve cellulolytic enzymes. However, irrational design or random mutagenesis 

will continue to be a dominant technique to alter cellulases because there is still much to be learned about 

predicting protein structure and function. Some bacterial cellulases improved by rational design and 

directed evolution are summarized in Table 1. 

 
 
Table 1. A list of bacterial strains and cellulases or related enzymes from these microorganisms which 
have been improved using rational design or directed evolution (Modified from Percival Zhang et al., 
2006). 
 
Bacterial Strain Enzyme Property 

Altered 
Method Reference 

 Rational Design    

Acidothermus 
cellulolyticus 

Endoglucanase Type of 
products 
released 

Site-directed 
mutagenesis 

[52] 

Acidothermus Endoglucanase Product Site-directed [51] 
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cellulolyticus inhibition mutagenesis 

Pectobacterium 
chrysanthemi 

Endoglucanase Activity Nonsense 
mutagenesis 

[48] 

Pectobacterium 
chrysanthami 

Endoglucanase Activity Insertional 
truncation 

[49] 

Thermobifida fusca Processive 
Endoglucanase 

Activity Site-directed 
mutagenesis 

[47] 

Thermotoga maritime Endoglucanase Activity Site-directed 
mutagenesis, 
CBD 
engineering 

[46] 

 Directed 
Evolution 

   

    

Agrobacterium sp. 

 

Mutated α-
glucosidase 

Activity 

 

epPCR 

 

[61] 

Bacillus subtilis Endoglucanase Activity DNA 
shuffling 

[56] 

Clostridium cellulovorans Endoglucanase Thermal 
stability 

Family 
shuffling 

[55] 

Paenibacillus polymyxa β-D-glucosidase Thermal 
stability 

epPCR [58] 

Paenibacillus polymxa β-D-glucosidase Thermal 
stability 

epPCR + 
family 
shuffling 

[57] 

Pyrococcus furiousus α-glycosidase Activity Family 
shuffling 

[60] 

Thermotoga neapolitana β-D-glucosidase Activity epPCR [59] 
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Hemicellulase-producing bacteria and engineering hemicellulases: 

Hemicellulose is the second most abundant renewable biomass, accounting for approximately 25-

35% of lignocellulosic biomass and therefore bacterial enzymes involved in its degradation have also 

been the focus of several hemicellulase engineering studies using either rational design or directed 

evolution.  

Rational design has been used to improve thermostability and functionality of several 

hemicellulases, however to date; rational design has not been successful in directly improving enzymatic 

activity.  Four single, three double and one single disulphide bridge/s were constructed, using computer 

modeling, in the xylanase of Bacillus circulans and in GH-AA xylanase of Thermobacillus xylanolyticus.  

The half life of each mutant was 69°C for 120 mins and 70°C for 80 mins, respectively. Disulphide bonds 

increased thermostability 15°C over the wild-type but did not improve activity at elevated temperatures. 

The increased number of disulphide bonds was also shown to play a key role in thermostability [62,63].  

Increasing enzyme thermostability is one step towards lowering biofuel production costs. 

Moreover, increasing the versatility of a single hemicellulolytic enzyme could improve the 

hemicelluloytic properties and lower the amount of enzymes required for hydrolysis. Lu and Feng [64] 

created a bifunctional xylanase by creating an optimized flexible peptide linker between β-glucanase (Gl) 

of Bacillus amyloliquefaciens and the xylanase (Xyl) of B. subtilis. The catalytic efficiencies of Gl and 

Xyl moieties increased 304-426% and 82-143%, respectively, compared to an end-end fusion of Gl and 

Xyl that they have previously created [65].  Similarly, Fan and colleagues [66], also using a flexible 

peptide linker, created a multifunctional xylan-degrading enzyme. The xylanase domain of the xylanase 

XynZ from Clostridium thermocellum, was fused to a dual functional arabinofuranosidase/xylosidase 

(DeAFc; isolated from a compost starter mixture). The resulting trifunctional enzyme was more active in 

the hydrolysis of natural xylans and corn stover and retained pH, temperature optima, and, kinetics of the 
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parental enzymes [66]. Increasing the versatility of enzymes may increase activity through the synergistic 

action of fused enzymes and offer a greater production-cost savings.   

Directed evolution, without the knowledge of enzyme structures, has been used to enhance 

thermostability, pH optima and specific activity of hemicellulases.  A family shuffling technique referred 

to as degenerate oligonucleotide gene shuffling was created by Gibbs and colleagues [67], to reduce 

regeneration of unshuffled parental genes. One round of this technique was used after epPCR to generate 

a gene variant library and ultimately improve thermostability and pH optima (alkaline > 8.5 pH) of a 

family-11 xylanase (XynB) from Dictyoglomus thermophilum [67].  More recently, epPCR followed by 1 

round of DNA shuffling was used to increase the melting temperature by 20°C for the xylanase XylA of 

B. subtilis. Screening of efficient variants was done using 1% oat spelt xylan and Congo red staining [68].  

Consequently, epPCR has also been used to increase specific activity of xylanase Xys1 from 

Streptomyces halstedii JM8. By the random mutagenesis, two structural mutations were created (G133D 

and N148D) outside the catalytic centre. This slight structural change resulted in a 22-25% increase in 

specific activity of Xys1 towards xylan compared to the wild-type [69].  This study not only displays 

results towards creating more efficient enzymes for use in lignocellulosic biomass conversion; it also 

lends insight to key residues that are not directly involved in the catalytic site but play a indirect role in 

the active site function. Some bacterial hemicellulases improved by rational design and directed evolution 

are summarized in Table 2. 

Rational design and directed evolution are helping to improve not only cellulases, but also 

hemicellulases by providing important insights about enzyme structure and function.  Each contribution, 

no matter how large, is a step closer to improving lignocellulose biomass conversion. 
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Table 2.  A list of bacterial strains and hemicellulases from these microorganisms which have been 
improved using rational design or directed evolution. 
Bacterial strain Enzyme Property 

altered 
Method Reference 

 Rational design    

     

Bacillus circulans Xylanase Thermostability Site-directed 
mutagenesis 

[62] 

Bacillus amyloliquefaciens                     
Bacillus subtilis  

Bifunctional: 
xylanase-β-
glucosidase 

Substrate usage Peptide linker 
fusion 

[64] 

Clostridium thermocellum 
Anaerobic digester  

Trifunctional: 
xylanase, 
arabinofuranosidase
/ β-xylosidase 

Substrate 
Usage 

Peptide linker 
fusion 

[66] 

Thermobacillus 
xylanolyticus 

GH-11 xylanase Thermostability Site-directed 
mutagenesis 

[63] 

 Directed evolution    

     

Bacillus subtilis Xylanase XylA Thermostability epPCR, DNA 
shuffling 

[68] 

Dictyoglomus 
thermophilum 

Xylanase XynB Thermostability 
Alkalinity 

DOGS, 
epPCR 

[67] 

Streptomyces halstedii Xylanase Xys1 Activity epPCR [69] 

                                                                                                                                  

Cellulosomes: 

Cellulosomes are multienzyme complexes produced mainly by anaerobic bacteria, many from the 

class clostridia.  However, evidence suggests the presence of cellulosomes in at least one aerobic 

bacterium and a few anaerobic fungi from species such as Neocallimastix, Piromyces, and Orpinomyces 

[70,71]. It is speculated that several other cellulolytic bacteria may also produce cellulosomes which have 
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yet to be described [40]. Production of cellulosomes by mainly anaerobic microorganisms is thought to be 

an evolutionary advantage which may counteract the low energy production by fermentation. Therefore, 

anaerobes produce this highly efficient multienzyme complex which allows for fine control over 

metabolic activities.  

The cellulosome was first identified in 1983 from the anaerobic, thermophilic, spore-forming 

Clostridium thermocellum [72]. Unlike fungal cellulases, the C. thermocellum cellulase complex has very 

high activity on crystalline cellulose; this activity is termed “true cellulase activity” or Avicelase, 

characterized by its ability to completely solubilise crystalline forms of cellulose such as cotton and 

Avicel [73]. The cellulosome of C. thermocellum is commonly studied along with cellulosomes from the 

anaerobic mesophiles, C. cellulolyticum and C. cellulovorans.  All cellulosomes share similar 

characteristics, they all contain a large distinct protein referred to as the scaffoldin which allows binding 

of the whole complex to microcrystalline cellulose via a nonspecific carbohydrate binding module 

(CBM).  Also, the cellulosome scaffoldin expresses type I cohesins which allow binding of a wide variety 

of cellulolytic and hemicellulolytic enzymes within the complex via the expression of complementary 

type I dockerins on enzymes. Similarly, at the C-terminal the scaffoldin expresses type II cohesins which 

allow the binding of the cellulosomes to the cell through type II dockerins on surface layer-homology 

proteins (SLH) (Figure 1). The structure and function of bacterial cellulosomes have been reviewed 

several times elsewhere and will not be discussed in greater detail here [74-77]. 

The cellulosome eliminates the wasteful expenditure of energy of microorganisms continuously 

producing copious amounts of free enzymes along  with which, the products get diluted in the bulk 

solution. There are several other advantages for microorganisms to naturally produce cellulosomes; 

specific characteristics of cellulosomes give rise to efficient cellulose hydrolysis. Firstly, synergism is 

optimized by the correct ratio between components, which is determined by the composition of the 

complex. Secondly, non-productive adsorption is avoided by the optimal spacing of the components 
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Mini-cellulosome chimeras: 

The complete genome sequence is available for C. thermocellum and the well known solvent-

producing C. acetobutylicum, in the NCBI Genbank (NC_009012 and NC_003030, respectively).  

Additionally, several sequences for different cellulosomal scaffoldin are also now available. The 

sequencing of these genomes and various cellulosomal scaffoldin genes has opened the door for future 

enhancement of clostridia for cellulose hydrolysis and in some strains additionally fermentation. 

Researchers recognize the value of cellulosomes for the efficient hydrolysis of microcrystalline cellulose 

and have begun to focus research on creating designer cellulosomes for recombinant expression for 

industry and to advance our knowledge of true cellulolytic activity.  Murashima and colleagues [55] 

created the first in vitro recombinant minicellulosomes with a specific function, using the scaffoldin 

structure of C. cellulovoran and the knowledge of cohesion-dockerin self assembly.  The mini 

cellulosomes contained the enzymatic subunit EngB and the scaffolding unit, mini-CbpA, cellulose 

binding domain, a putative cell wall binding domain, and two cohesin units [55]. The full-length EngB 

containing the dockerin domain was expressed by B. subtilis WB800, which is deficient in eight 

extracellular proteases, to prevent the proteolytic cleavage of the enzymatic subunit between the catalytic 

and dockerin domains that was observed in previous attempts to express EngB with Escherichia coli. The 

mini-CbpA and cohesins were expressed by E. coli. This paved the way for in vivo synthesis of the EngB 

enzymatic subunit and mini-CbpA scaffolding unit by co-expression in B. subtilis [78]. Moreover, Perret 

and colleagues [79] created an enriched, highly specific cellulosome by cloning and overexpression of the 

Man5K gene in C. cellulovorans. Due to the high expression levels, Man5K was almost exclusively 

incorporated into the cellulosome resulting in a 20-fold increase in activity towards galactomannans and 

ultimately reducing specific activity on crystalline cellulose by 20% [79]. This is further evidence that the 

enzymatic composition of cellulosomes can be altered towards a specific activity. 

Creating designer cellulosomes also allows us to examine properties of the cellulosome that may 

contribute to its efficiency.  In „bifunctional‟ designer cellulosomes, two divergent cohesion-dockerin 
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devices from C. thermocellum and C. cellulolyticum of a CBD containing scaffoldin were compared to 

the function of similar minicellulosomes lacking CBD and free enzymes with and without CBDs. The 

result was higher cellulase activity on crystalline cellulose for minicellulosomes with CBD, however no 

apparent advantage over free enzymes on soluble substrate. The proximity of enzymes and the presence 

of CBD on the scaffoldin appear to contribute significantly and almost equally to the efficiency of the 

cellulosome on recalcitrant substrate [80].  Additionally, Fierobe and colleagues [81] used the same 

principle to create „trifunctional‟ designer cellulosomes with the addition of a third divergent cohesin-

dockerin device from Ruminococcus flavefaciens.  The trifunctional cellulosome chimera was found to be 

considerably more active than their previous bifunctional cellulosome, in addition to free enzymes. Their 

work also suggests that the cellulases from family-48 and -9 glycoside hydrolases are prominent and 

crucial for crystalline cellulose degradation. Also, co-operation and synergistic action between cellulases 

and hemicellulases of different organisms within designer cellulosomes, does exist and contribute to 

overall efficiency [81].  The largest designer cellulosome created using CbpA of C. cellulovorans 

contained four cohesins and was compared with activities of designer cellulosomes containing one and 

two cohesins. The incorporation of endoglucanase EngB and endoxylanase XynA enzymes in CbpA1234 

again exemplified the importance of clustering for efficiency of cellulose degradation [82]. This research 

also provides evidence for the construction of more specific and larger designer cellulosomes with high 

activity. 

Moreover, fungal cellulases were recently fused with dockerin sequences matching bacterial 

cohesins, and shown to be incorporated in vivo into mini bacterial cellulosomes alongside bacterial 

cellulases. These enzymes, despite species difference still showed increased synergy when bound in 

minicellulosomes further demonstrating the importance of synergy and enzyme proximity [83].  

Similarly, the activities of free exoglucanases from T. fusca were compared to the activity of these 

enzymes incorporated into minicellulosomes. Incorporation showed a marked increase in cellulase 

activity due to increased synergy of the enzymes and close contact compared to free enzymes diluted in 
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the bulk solution [84]. These cellulosome chimeras offer an opportunity to take efficient cellulases or 

hemicellulases to further increase lignocellulosic hydrolysis.  

In contrast to these studies, Mingardon and colleagues [83] deviated from designing cellulosome 

chimeras based on the general native structure of cellulosomes. Instead, they designed novel cellulosome 

chimeras which exhibited atypical geometries. Family-48 and -9 enzymes were modified to contain 

cohesins/dockerins and CBD‟s, additional to the CBD and cohesins of the scaffoldin. This resulted in 

novel, oddly shaped cellulosomes.  The number of protein-protein interactions within these complexes 

diminished the hydrolytic activity, due to the reduced mobility of the catalytic domains.  Similarly, the 

presence of numerous CBD‟s also restricted the activity and it appears that the native structure of the 

cellulosome is critical because it maximizes enzyme mobility [83]. 

 The recent development of designer cellulosomes has unlocked key knowledge for the 

exploitation of cellulosomes in the bioconversion of lignocellulose. Designer cellulosomes offer a means 

to create specificity towards substrates and enhance enzyme activity with incorporation of efficient 

enzymes from a broad range of hosts. The next step is to find a means to develop cellulosome chimeras in 

a biologically and economically feasible manner.  

 The potential for cellulosome-producing C. thermocellum:  

Due to the production of highly versatile cellulosomes and the anaerobic, thermophilic, 

ethanologenic nature, of C. thermocellum, it is an excellent candidate for consolidated bioprocessing 

(CBP). CBP features the production of cellulases and hemicellulases, hydrolysis of cellulose and 

hemicellulose, and, fermentation of hydrolysis products, all in one step.  Using a strain such as C. 

thermocellum means less time for cooling and easy removal of ethanol at higher temperatures. It also 

means no addition of oxygen during the biorefining process and fermentation of glucose to produce 

ethanol and organic acids [85]. The compromise to using such a strain is the slow growth rate of 

anaerobic thermophiles; the possibility of spore-formation during biorefining; and, the fact that C. 
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thermocellum does not metabolize the 5-carbon sugars it produces during hydrolysis.  Albeit, this strain is 

highly amenable to co-culture and co-culturing would allow growth with second or third party strains to 

enhance fermentation by the utilization of 5-carbon sugars as has been suggested [86,87].   

Further, it has been observed that cellulase production in C. thermocellum is rapidly depressed by 

increasing concentrations of cellobiose [88].  However, the addition of exogenous β-glucosidase such as 

that purified from Aspergillus niger, can increase cellulosome activity up to 10-fold and offers a potential 

solution towards reducing cellulase inhibition [89]. In addition, the lower growth produced by anaerobic 

thermophiles can also be exploited as an advantage because it allows for prolonged ethanol production 

and less end-product inhibition to the hydrolysis enzymes due to an over abundance of enzymes. 

An additional limiting factor to the exploitation of C. thermocellum for CBP for biomass 

conversion has been its recalcitrance to genetic modification. C. thermocellum has a strict restriction 

endonuclease system and is described as having a Dam+ phenotype [90,91]. However, several 

breakthrough DNA recombinant technologies are being developed for genetic engineering of the 

anaerobic clostridia. There are also DNA transformation protocols optimized specifically for C. 

thermocellum [92,93]. It has been shown that if DNA is Dam methylated it can provide protection to 

DNA from the restriction endonuclease system of C. thermocellum; therefore, if DNA is Dam methylated 

prior to electrotransformation a higher number of successful transconjugants should be seen [90]. A large 

number of plasmids have been developed for engineering thermophilic anaerobic bacteria [94-96]. The 

pIMK1 plasmid developed from the replicons of C. acetobutylicum and Escherichia coli, was used to 

successfully express kanamycin in Thermoanaerobacterium saccharolyticum, an anaerobic, thermophilic 

strain and close relative of C. thermocellum. Therefore this plasmid offers great potential framework for 

recombinant gene expression in C. thermocellum [97]. 

One final limiting factor for use of C. thermocellum in CBP is the inhibition of cell growth and 

metabolism by toxic by-products such as the production of acetic and lactic acids during fermentation to 
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produce ethanol.  Blocking or knocking out genes involved in acetic and lactic acid production (e.g. 

acetate kinase and phosphotransacetylase), could help solve this problem. However, again the 

recalcitrance of clostridia to genetic modification has impeded this development. Nonetheless, a new 

technology has been developed been developed in 2007 for efficient gene knockout in clostridia: The 

ClosTron. The ClosTron utilizes Targetron technology which is a mobile group II intron originating from 

Lactococcus lactis L1 (LtrB intron). The LtrB intron allows a double-cross over event which is highly 

stable compared to previously used single-cross over events [98,99]. Successful transformants are 

selected based on erythromycin resistance and can be made in as short as 10 to 14 days for a variety of 

clostridia tested. Six knockout mutants of C. acetobutylicum were created and five knockout mutants of 

C. difficile were created, exceeding the number of mutants ever published for these species. Genes were 

also inactivated for the first time in C. botulinum and C. sporogenes [98]. These results make the 

ClosTron universally applicable to the clostridium genus and should therefore be of use in creating 

knockout mutants of C. thermocellum. 

With recent great advancements in genetic technologies, overcoming the stumbling blocks of 

using C. thermocellum for a CBP process in the bioconversion of lignocellulosic biomass is a good 

concept with great potential. It may one day offer the most economically feasible means to create 

lignocellulosic derived ethanol.  
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Figure 2. Simplified process using C. thermocellum and T. saccharolyticum in co-culture for ethanol 

production. C. thermocellum produces the cellulases and hemicellulases for hydrolysis of lignocelluloses 

to sugars such as cellobiose and xylobiose. In addition, C. thermocellum can utilize hexose sugars derived 

from celluloses to produce ethanol. While, the hemicelluloses derived pentoses can be utilized by T. 

saccharolyticum. T. saccharolyticum can also use glucose thus contributes to cellobiose reduction and is a 

good ethanol producer (modified from Demain et al. [85]). 

 

Co-culture : 

Bacterial co-cultures can offer a means to improve hydrolysis of cellulose as well as enhance 

product utilization and thus increase desirable fermentation products.  Clostridium thermocellum has 

gained special interest for co-culture with organisms capable of fermenting pentose sugars to ethanol 

because C. thermocellum can only ferment hexose sugars.  Hence, C. thermocellum has been co-

cultivated with other anaerobic thermophilic clostridia or close relatives such as Clostridium 

thermosaccharolyticum (now classified as Thermoanaerobacterium saccharolyticum) [100-102], 
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Clostridium thermohydrosulfuricum [86,102,103], Thermoanaerobacter ethanolicus [104] and 

Thermoanaerobium brockii [105].  These organisms can share a syntrophic relationship with C. 

thermocellum which exploits its cellulases and hemicellulases to hydrolyze cellulose to cellobiose and 

cellodextrans, and hemicelluloses to mainly xylobiose, arabinoxylans and xylooligosaccharides.  C. 

thermocellum will then convert cellulose breakdown products to ethanol while the latter strains will 

utilize hemicellulose hydrolysis products to produce ethanol; this avoids the competition for substrates 

between species and maximizes product formation (Figure 2).  The current challenge with this type of co-

culture application is the increased production of by-products such as acetate and lactate which decrease 

ethanol production by slowing the growth rate of cells [106].  

 Developing bacterial co-cultures can be a tedious task.  To establish a stable co-culture, media 

and growth requirements, such as temperature, atmosphere and carbon source, must be fine-tuned to 

permit equal growth of each strain.   Stable co-cultures may not only depend on the media and growth 

requirements of each strain, but may also be controlled more specifically by metabolic interactions (i.e. 

syntrophic relationships or alternatively competition for substrates) and other interactions (i.e. growth 

promoting or growth inhibiting such as antibiotics). Criteria for structurally stable bacterial communities 

have been established, where 1) all the members must persist over more than 20 times subculturing and 2) 

the abundance ratio of members does not change even after subculturing. This is represented by 

reproducible growth, that is, subsequent subcultures without overgrowth or growth failure [107,108]. 

The alternative of bacterial co-culture would be to engineer one microorganism to complete an 

entire task from start to finish itself. In the case of C. thermocellum, this would mean metabolically 

engineering this strain to ferment pentose sugars in addition to hexose sugars.  This is a difficult task as 

far as molecular engineering goes in clostridia due the recalcitrance of clostridia to genetic manipulation. 

Also to consider, if one could successfully engineer C. thermocellum to utilize pentose sugars, would this 

have an alternative effect on the ethanol yield produced from hexose sugars? Co-cultivation has 
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advantage because it reduces the number of exogenous elements produced by a single bacterial population 

and therefore reduces the chance of metabolic imbalance for host cells. Additionally, division of labor 

will simplify the optimization of each reaction pathway [109]. Although bacterial co-culture is not an 

uncommon concept, its use in the bioconversion of lignocellulosic biomass is still premature and offers 

great potential. 

Closing comments: 

Bacteria present an attractive potential for the exploitation of cellulases and hemicellulases due to 

their rapid growth rate, enzyme complexity and extreme habitat variability. The development of rapid and 

reliable methods for the screening of cellulases from microorganisms within inhospitable environments 

will allow a greater number of novel bacterial cellulases to be isolated with purpose for industrial use. 

None of the enzymes isolated to date, are fully resistant to the harsh environmental conditions used in the 

bioconversion process such as high temperature, acidic and or alkali pretreatments. However, these novel 

enzymes can be further engineered using available knowledge of enzyme structure and function through 

rational design. Or, they can be improved using random mutagenesis techniques with focus on selection 

of ideally augmented traits through directed evolution. Furthermore, novel or improved enzymes can be 

incorporated into designer minicellulosomes, which can further enhance the hydrolytic activity of 

individually efficient enzymes through synergy. Beyond free bacterial cellulases is the opportunity for 

whole cells in bacterial co-culture and the use of strains with multiple exploitable characteristics to reduce 

time and cost of current bioconversion processes.  The future may hold great prospects for lignocellulosic 

biofuel; by combining our knowledge of excellent cellulolytic and hemicellulolytic systems such as the 

cellulosome of C. thermocellum with technologies such as directed evolution and co-culture, the future of 

lignocellulolytic biofuel looks potentially feasible.  
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1.2 Lignin degradation in bacteria 
 

 Lignin is a complex polyphenol found in plants and is the most abundant aromatic in the 

biosphere; its complex structure makes it highly resistant to degradation (Ralph, 2005). Besides 

contributing to plant strength and resistance, it also acts as a barrier keeping microorganisms away from 

more readily degradable polysaccharides such as cellulose and hemicellulose (Monties and Fukushima, 

2001). Primarily, studies have focused on degradation of lignin by the white-rot fungi and brown-rot 

fungi due to their ability to mineralize lignin (Sanchez, 2009). However, due to challenges in the genetic 

manipulation of fungi, as well as in protein expression from fungi there is currently no commercial 

biocatalytic process; thus, the prospects of using bacterial lignin-degrading genes has been gaining greater 

attention (Bugg et al., 2011). 

 In 1988, the first reported lignin peroxidase in bacteria was characterized from extracellular 

extracts of Streptomyces viridosporus T7A (Ramachandra et al., 1988). Moreover, using 14C-labeled 

lignin Rhodococcus and Nocardia soil bacterium species also demonstrated breakdown of lignins 

(Zimmerman, 1990). Moving away from radioactive compounds, Ahmed et al. describe two 

spectrophotometric methods for measuring lignin degradation: one requires fluorescently labeled lignins, 

whereas the other involves the release of nitrated phenols from chemically nitrated lignins in a UV-vis 

assay (Ahmed et al., 2010). Consequently, Pseudomonas putida mt-2 and Rhodococcus jostti RHA1 were 

confirmed for lignin degradation activities using these assays, as was revealed by the release of low 

molecular weight phenolic products. However, the lignin activities of these bacteria were lower in 

comparison to lignin degradation in white-rot fungi (Phanerochaete chrysosporium) (Ahmed et al., 

2010). 

 Additionally, potential abilities to break down lignin due to degradation of aromatics have been 

observed in bacteria isolated from the guts of termites. For example, Rhodococcus erythropolis was 
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isolated from the termite Reticulitermes speratus and was capable of degrading polycholorinated 

biphenyls, and displayed evidence for decomposition of lignin (Chung et al., 1994). Moreover, 

Burkholderia and Citrobacter species were isolated from the lower gut of the termite Coptotermes 

formosanus displaying abilities to degrade aromatic compounds such as veratraldehyde and vanillin 

(Horazono et al., 2003). All of the bacteria thus far suggested in the degradation of lignin or aromatics 

belong to three main classes: α-proteobacteria, γ-proteobacteria and actinomycetes (Bugg et al., 2011). 

 Currently, the types of bacterial enzymes involved in lignin degradation are poorly understood. 

However, extracellular peroxidases have been found in bacteria such as S. viridosporus which can 

catalyze oxidative cleavage of β-aryl ether lignin models (Ramachandra et al., 1988), while DyP-type 

peroxidase (DypB) was found to be expressed from R. jostii in the presence of Kraft lignin and ΔdypB 

mutants showed a significant reduction in Kraft lignin degradation (Ahmad et al., 2011). In addition, a 

recent secretome analysis of Thermobifida fusca also revealed a dyp-type peroxidase (Adav et al., 2010). 

Furthermore, over 100 different bacterial laccases (multi-copper oxidase genes) were isolated 

from the DNA found in forest soils (Kellner et al., 2008). Bacterial laccases may have considerable 

potential in lignin degradation as they are widespread in bacteria and are thought to play roles in 

pigmentation, sporulation and metal tolerance (Kellner et al., 2008). There is little knowledge on the 

function of these widespread laccases however, some studies have shown that laccases  can depolymerise 

lignin by oxidizing smaller molecules such as 2,20-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid 

(ABTS) and hydroxybenzotriazole (HBT).  

Due to the resilience of bacteria to extreme environmental conditions such as acidity, alkalinity, 

salinity and drastic temperature changes, they represent possibly greater hosts for the exploitation of 

industrial lignases over fungal counterparts. For example, a copper-inducible laccase was found in 

Thermus thermophilus HB27 and was characterized as having a thermal inactivation half-life of greater 

than 14 h at 80°C (Miyazaki, 2005). Additionally, using anion exchange and gel filtration 
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chromatography a halotolerant-alkaline laccase was isolated from Streptomyces psammoticus; it was 

shown to retain 97% activity at pH 9.0 and NaCl tolerance up to 1.2 M (Niladevi et al, 2008). 

To date, very few bacterial lignases have been characterized as mentioned here. Nonetheless, due 

to advances in the genetic manipulation of a wide variety of bacteria there remains great opportunity not 

only for isolation and expression of unique lignases, also further improvement of their catalytic activities.  
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1.3 Cellulase activities in biomass conversion: Measurement methods and 
comparison 
 

Published Review: Critical Reviews in Biotechnology, (2010) 30, 302-309.  

Authors: Miranda Maki*, Mehdi Dashtban*, C. Mao, Kam Tin Leung, Wensheng Qin  

Abstract 

Cellulose, the major constituent of all plant materials and the most abundant organic molecule on 

the Earth, is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds.  Enzymatic 

hydrolysis of cellulose requires mixtures of hydrolytic enzymes including endoglucanases, exoglucanases 

(cellobiohydrolases) and β-glucosidases acting in a synergistic manner.  In biopolymer hydrolysis studies, 

enzyme assay is an indispensable part.  The most commonly used assays for the individual enzymes as 

well as total cellulase activity measurements, including their advantages and limitations are summarized 

in this review article.  In addition, some novel approaches recently used for enzyme assays are 

summarized.  

Keywords: Biofuel, Biomass, Bioconversion, Cellulase, and Cellulase Assays  

  

Introduction 

Many microorganisms including fungi and bacteria had been found to degrade cellulose and other 

plant cell wall fibres.  In nature, degradation of cellulosic biomass is performed by mixtures of hydrolytic 

enzymes collectively known as cellulases.  The cellulases include endo-acting (endoglucanases) and exo-

acting (cellobiohydrolases, CBH) enzymes, which act in a synergistic manner in biomass-degrading 

microbes.  The cellobiose and cellodextran products of exoglucanases and cellobiohydrolases are 

inhibitory to their activity.  Thus, efficient cellulose hydrolysis requires the presence of β-glucosidases to 

cleave the final glycosidic bonds of cellobiose producing glucose (Dashtban et al. 2009; Maki et al. 

2009).  
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Assays for determining cellulase activity have been classified differently over years of cellulase 

research.  Sharrock (1988) grouped cellulase assays into two basic approaches: 1) determining the 

activities of individual cellulases (endoglucanases, exoglucanases, and β-glucosidases), and 2) measuring 

the total saccharifying activity of a crude cellulase system (Sharrock 1988).  Whereas Zhang et al. (2006) 

classified all cellulase activity assays into three main groups: 1) assays in which the accumulation of 

products after hydrolysis were targeted, 2) assays in which the reduction in substrate quantity were 

monitored, and 3) assays in which the change in the physical properties of the substrate were measured 

(Zhang et al. 2006).  Due to the complexity of cellulose-cellulase systems and differences between kinetic 

characteristics of initial hydrolysis reaction and the extended time, cellulase activity assays are either 

expressed based on the initial hydrolysis rate or using the end-point hydrolysis.  The first one is preferred 

when measuring an individual cellulase activity in a short time; however, the last one is a method of 

choice for the total enzyme activity assay within a given time (Wu et al. 2006; Zhang et al. 2006). 

Cellulase activity is mainly evaluated using a reducing sugar assay to measure the end products of 

cellulase hydrolysis activities.  Thus, the results of such an assay are typically expressed as the hydrolysis 

capacity of the enzymes.  There are several issues with this work: it cannot be easily expressed in a 

quantitative manner, lacks theoretical basis, and does not consider all effective factors, such as 

concentration of cellulose and cellulase, the hydrolysis time, the ratio of crystalline and amorphous 

cellulose, and the proportion between different individual components in the enzyme preparations (Wu et 

al. 2006).  Researchers have mainly focused on improving methods for measurement of cellulase activity 

which have already been widely used.  Developing new sufficient cellulase assays is hampered by the 

physical heterogeneity and limited enzyme-accessibility of cellulosic materials, and the complexity of 

cellulase enzyme systems (synergy and/or competition) (Zhang et al. 2006).  Thus, an accurate and 

reproducible assay for the measurement of cellulase hydrolysis rate is still required (Wu et al. 2006).  

 In this review article, total cellulase activity by application of filter paper (filter paper assay, 

FPA) will be explained and then individual cellulase activities including endoglucanases, exoglucanases 
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and β-glucosidases will be discussed.  Moreover, we will also summarize some novel approaches such as 

(1) quartz crystal microbalance, (2) miniaturized colorimetric assay, (3) automated FPA for the 

measurement of cellulase activity, (4) fluorescent microfibrils, and (5) amperometric cellobiose 

dehydrogenase biosensor.  Figure 1 recaps the different cellulase assays discussed in the article.  This 

review paper summarizes and compares past and present cellulase assaying techniques and suggests 

future directions important for the ever growing field of biofuel research. 

 

1. Filter paper assay (FPase activity): total cellulase activity  

To compare the efficacy of cellulase activity between microorganisms or their secreted enzymes, 

techniques for measuring total cellulase activity are required.  The filter paper assay (FPA) is the key 

method for analysis of total cellulase activity.  In 1976, the filter paper assay was developed by Mandels 

et al. (Mandels et al. 1976).  The filter paper assay became widely used since 1984, when the Commission 

on Biotechnology of the International Union of Pure and Applied Chemistry (IUPAC) proposed a number 

of standard procedures for the measurement of cellulase activity.  Traditionally, the filter paper assay uses 

a 1 × 6-cm strip of Whatman no. 1 filter paper, as the standard substrate because it is readily available and 

inexpensive (Coward-Kelly et al. 2003).  This standard filter paper method has been reviewed by Ghose 

(Ghose 1987).  The International Unit (IU) of filter paper activity (FPase) (FPU) is defined as the 

micromole of glucose equivalent liberated per minute of culture filtrate under assay conditions.  Where 

assay conditions, refer to the conditions such as pH and temperature at which the enzymes are held at 

during the assay and depend largely on the properties of the enzyme, varying widely between cellulases 

and microorganisms.  Reducing sugar is estimated as glucose by the Miller method.  This assay is 

performed so that 0.5 mL of diluted enzymes releases about 2.0 mg of glucose equivalents in 60 min, as 

determined by the dinitrosalicylic acid (DNS) assay (Miller 1959; Wood and Bhat 1988). 

The DNS reagent is used as a colorimetric method for the determination of reducing sugars, such 

as glucose. It contains sodium potassium tartrate, which decreases the tendency to dissolve oxygen by 
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increasing the ion concentration in the solution.  Phenol increases the amount of color produced during 

the color developing reaction. Sodium bisulphite stabilizes the color obtained and reacts with any oxygen 

present in the buffer.  Finally, an alkaline buffer is required for the redox reaction between DNS and 

glucose, or other reducing sugars.  DNS will be added at the last step of the enzyme assay to stop the 

reaction.  To promote full color development, samples have to be boiled vigorously and the absorbance of 

diluted samples will be read at 540 nm (Zhang et al. 2009).  One disadvantage of using such a dye for 

quantification is that, some of the reducing sugars are degraded while the analysis is performed (Miller 

1959).  

There are several more concerns associated with using the filter paper assay to quantify total 

cellulase activity.  Although the FPA is commonly used, it is also known for being non-reproducible.  

Difficulties arise from the preparation of the DNS reagent which is a tedious task requiring optimal 

mixing ratios of the different components.  Additionally, DNS reagent requires appropriate temperature 

control to allow for proper colour development and colour stability (Miller 1959).  Furthermore, it is 

known that the decomposition of sugars in the alkaline solution recommended by the IUPAC method 

causes an increase of (measured) enzyme activity to values higher than the actual ones (Gilman 1943).  

To summarize, it is time-consuming, labor-intensive and requires large quantities of reagents.  It is also 

difficult to obtain adequate sensitivity and reproducibility when characterizing newly isolated cellulases 

using this method.  Factors that affect sensitivity and reproducibility often result from the fact that most 

natural cellulase complexes tend to have a shortage of β-glucosidase activity (Breuil et al. 1986; Coward-

Kelly et al. 2003). 

 Several methods have been developed to improve the filter paper assay for the evaluation of total 

cellulase activity.  Nordmark et al. (2007) designed a modified method for the filter paper assay which 

requires the use of protein stabilizers.  This method allows the sensitive measurement of cellulase activity 

below the level required for the detection of reducing sugars using the traditional filter paper assay.  The 

traditional filter paper assay requires a fixed degree of conversion of substrate, i.e. a fixed amount (2 mg) 
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of glucose (based on reducing sugars measured by the DNS assay) released from 50 mg of filter paper 

within a fixed time (60 min).  Because of the heterogeneous (amorphous/crystalline) nature of filter paper, 

reducing sugar yield during hydrolysis is not a linear function of the quantity of cellulase enzyme in the 

assay mixture (Zhang et al. 2009).  To overcome this limitation, researchers usually measure two enzyme 

activities (slightly less than and slightly greater than 2.0 mg of Reducing Sugar Equivalents (RSE) in 1h).  

It is difficult to measure activities greater than 2.0 mg RSE in 1h for all cellulases because cellulases 

preparations typically have lower cellulase activity due to lower concentration.  Protein stabilizers (such 

as bovine serum albumin, 1-2mg/ml) extended the enzyme reaction time thereby allowing a proportionate 

calculation of cellulase activities on natural cellulosic substrates to those obtained in the IUPAC assay 

(Nordmark et al. 2007).  

Similarly, Coward-Kelly et al. (2003) found that the filter paper assay could be improved by 

adding supplemental β-glucosidase.  If an organism or enzyme complex has low β-glucosidase activity a 

high amount of cellobiose will be produced resulting in a lowered or „false‟ absorbance reading for the 

DNS assay because it is not glucose.  Adding supplemental β-glucosidase can help to overcome this issue.  

In this study, supplemental β-glucosidase increased the assay reading by 56%.  They also tested the 

hypothesis that extended boiling time will improve the filter paper assay but failed to find any such 

benefit.  A 5-min boiling time is sufficient; however, they suggest that the water bath boil vigorously to 

eliminate temperature excursions (Coward-Kelly et al. 2003).  

Finally, downsizing the filter paper assay has also been developed as an improvement to the assay, 

allowing researchers to assay a large number of samples simultaneously.  This has been achieved by 

reducing the volume of the reagents and substrate so the assay can be done in a 96-well microtitre plate.  

The overall enzymatic reaction volume was reduced from the IUPAC 1.5 mL standard to 60 µL.  An 

office hole puncher was used to create small disks of filter paper substrate to fit perfectly in the wells.  No 

significant difference was observed between the activities measured using the IUPAC filter paper assay 

compared to the minimized reactions in the microtitre plate (Xiao et al. 2004). 
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2. Endoglucanases activity: carboxymethyl cellulase activity (CMCase) 

Endoglucanases (EG) can randomly hydrolyze internal glycosidic bonds in cellulose chains.  EGs 

activities can be measured using a soluble cellulose derivative with a high degree of polymerization (DP) 

such as carboxymethyl cellulose (CMC).  Carboxymethyl cellulase (CMCase) is mainly evaluated based 

on the procedure described by Mandels et al. (1976).  In this method, CMCase activity is measured by 

determining reducing sugars released after 5 min of enzyme reaction with 0.5% CMC at pH 4.8 and 50 °C 

(Mandels et al. 1976).  Also, one unit (IU) of EG is defined as the amount of enzyme that liberates 1 μmol 

of glucose per minute under assay conditions.  Reducing sugar can be estimated by application of 

different methods such as high performance liquid chromatography (HPLC) (Fujita et al. 2002) or glucose 

oxidase/peroxidase reagent (Trinder 1969) or a colorimetric method such as the Somogyi-Nelson method 

which uses alkaline copper as an inorganic oxidant.  Cupric ions (Cu (II)) accept electrons from the 

donating aldehyde groups of reducing sugars and reduce to Cu (I). In the second step, reduced Cu (I) ions 

will be oxidized back to Cu (II) using a chromogenic compound.  The reduced chromogenic compound 

produces color which can be measured using a colorimeter and compared to standards prepared from 

reacting sugar solutions of known concentration, to determine the amount of reducing sugar present 

(Nelson 1944; Somogyi 1952). 

Although CMC is commonly used as a substrate to quantify EG activity, there are several 

concerns associated with using CMC.  It is known for being non-reproducible as it is only linear to about 

12% hydrolysis (CMC to glucose) due to interference by substituents.  In this case, substituted glucose 

units available in different CMCs are also accessible to cellulase which caused non-reproducibility.  In 

addition, the quantity of reducing sugars produced and thus the unit values, will be highly affected by the 

particular type of CMC used in the assay (Eveleigh et al. 2009; Mandels et al. 1976).  These difficulties 

arise from two important variable physical parameters of CMC: 1) the degree of substitution (DS), and 2) 

the degree of polymerization (DP) which will affect its solubility and viscosity, respectively.  It is 
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recommended that a reducing sugar assay or viscosity assay should be limited to the first 2% hydrolysis 

of substrate when CMC is used as the substrate with DS=0.7, this is to ensure that only nonsubstituted 

glucose units are accessible to EG (Zhang et al. 2006).  Additionally, the DP of CMC has an important 

role in determination of viscosity reduction.  Therefore, to minimize the influence of some conditions 

such as pH and ionic strength on DP and thus viscosity, some substituted CMC substrates such as ionic 

CMC have to be avoided for determining EG activity.  Whereas non-ionic substituted cellulose such as 

hydroxyethyl cellulose (HEC) is preferred (Guignard and Pilet 1976; Zhang et al. 2009). 

 EGs activities can be measured using dye, either by adding dye to soluble cellulose derivatives or 

by adding it to solid agar plates known as “zymograms”.  Remazol Brilliant Blue R and Ruthenium Red 

are two examples of dyes that have been used in CMC assays.  Recently in a zymogram assay, Gram‟s 

iodine has been used for a fast and easy detection of endoglucanase activity which makes a sharp and 

distinct zone around the cellulase producing microbial colonies in a bluish-black background within a 

short time (3-4 min) (Kasana et al. 2008).  This method and other zymogram methods are applicable for 

screening of a large number of colonies.  However, they do not provide a quantitative result for the 

enzyme activity due to the lacking of a linear relationship between halo zones and enzyme activity.  

Moreover, EGs activities can be measured using some other dyes by adding them to insoluble cellulose 

derivatives or substituting insoluble cellulose derivatives chemically to produce chromogenic CMC.  

Examples of these are Cibacron Blue 3GA (Ten et al. 2004) and chromogenic trinitrophenyl CMC (TNP-

CMC) (Huang and Tang 1976), respectively.  

 

3. Exoglucanases activity: Avicellulases  

Cellobiohydrolases (exoglucanases) are classified as exo-acting based on the assumption that they 

all cleave β-1,4-glycosidic bonds from chain ends releasing cellobiose and some glucose molecules.  

Commercial Avicel (also called microcrystalline cellulose or hydrocellulose) is used for measuring 
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exoglucanase activity because it has a low degree of polymerisation of cellulose and it is relatively 

inaccessible to attack by endoglucanases despite some amorphous regions. 

Enzymes which show relatively high activity on Avicel and little activity on CMC are identified 

as exoglucanases (Maki et al. 2009).  However, Avicel contains some amorphous cellulose and soluble 

cellodextrans which can act as substrates for both exo- and endo-glucanases.  There is no highly specific 

substrate to test exoglucanase activity in cellulase mixtures (Sharrock 1988; Wood and Bhat 1988). 

Different assays have been reported for selection of exoglucanase activity, nevertheless all of 

these assays have some sort of limitations.  Van Tilbeurgh and Claeyssens (1985) found that 4-

methylumbelliferyl-β-D-lactoside was an effective substrate for assaying CBHI of Trichoderma reesei, 

where hydrolysis of this substrate yields lactose, phenol and 4-methylumbelliferone (a fluorescent signal 

molecule) as products.  However, this substrate could not be used to determine CBHII activity of T. reesei 

thus it is not an effective representation of true exoglucanase activity for this strain (van Tilbeurgh et al. 

1982; van Tilbeurgh et al. 1985).   

Similarly, Deshpande et al. (1984) developed an assay for quantification of exoglucanase activity 

in the presence of endoglucanases and β-glucosidases (Deshpande et al. 1984).  This assay is based on the 

following: exoglucanases specifically hydrolyze the aglyconic bond of p-nitrophenyl-β-D-cellobioside to 

yield cellobiose and p-nitrophenol; β-glucosidase activity is inhibited by adding D-glucono-1,5-δ-lactone 

(Holtzapple et al. 1990); and, the influence of exoglucanase hydrolysis activities must be quantified in the 

assay procedure in the presence of added purified endoglucanases.  The limitations for this assay are that: 

(1) the CBHII activity cannot be measured using p-nitrophenyl-β-D-cellobioside, (2) the specific activity 

of the available purified endoglucanases may not be representative for all existing endoglucanases in the 

mixture, and (3) the product ratio from endoglucanase actions may be influenced by the presence of 

exoglucanases (Zhang et al. 2006). 

Other less commonly used substrates for measuring or detecting exoglucanase activity for both 

bacteria and fungi include the following: PNP-β-D-cellobioside (Kohring et al. 1990), bacterial 
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microcrystalline cellulose (BMCC) (Caspi et al. 2008), and MU-β-D-cellobioside (MU-C) (Courty et al. 

2005).  Limitations of these substrates are not clearly defined. 

 

4. β-glucosidases assay  

β-glucosidase activity can be measured using various chromogenic and nonchromogenic 

substrates and are mainly evaluated based on the procedure of Kubicek (Kubicek 1982).  In one 

chromogenic method, p-nitrophenol-β-glucoside (pNPG) is used as the substrate.  The liberated p-

nitrophenol will be measured in order to determine the hydrolysis rate in optimal temperature and pH.  

Reaction conditions such as temperature and pH of different β-glucosidases vary based on the enzyme 

(Table 1).  pNPG as the substrate at the optimal concentration (usually 1-5 mM) will be added to an 

appropriate buffer with optimal pH, containing the enzyme and incubated at the optimal temperature.  

After 10-min incubation, the reaction will be stopped by adding 3 volumes of sodium tetraborate saturated 

solution, and then the absorbance will be read at 405 nm.  One unit of β-glucosidase is defined as the 

amount of enzyme that liberates 1 μmol of p-nitrophenol per minute (Chandra et al. 2009).  However, in 

the case of nonchromogenic substrates different methods can be used depending on the substrates.  For 

example when oligo- or di-saccharides (such as cellobiose) are used as the substrates, the liberated 

glucose can be evaluated by the glucose oxidase (GOD) method with a commercial kit.  Nevertheless, 

when the substrate is a polysaccharide, reducing sugars liberated will be measured by the 3,5-

dinitrosalicylic acid (DNS) method.  Using polysaccharides as the substrate to determine substrate 

specificity, the enzyme unit will be determined as the amount of enzyme required for the liberation of one 

micromole of glucose or reducing sugar per minute.  Moreover, substrate specificity of enzymes can be 

determined using different substrates listed in Table 1 and applying the above mentioned methods. 

β-glucosidase activity measurement using chromogenic substrates such as pNPG is a common 

technique used in many different studies (Bhatia et al. 2005; Daroit et al. 2008; Joo et al. 2009; 
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Karnchanatat et al. 2007; Korotkova et al. 2009; Murray et al. 2004; Tsukada et al. 2008; Yang et al. 

2008; Yoon et al. 2008).  However, correlation between β-glucosidase activity on the analog substrates 

(e.g. pNPG) and the natural substrate (e.g. cellobiose) is not clear.  As a natural substrate, cellobiose has 

been used in β-glucosidase screening experiments using 96-well microtitre plates (McCarthy et al. 2004).  

However, this method is not preferred for screening of a large library of enzyme producing 

microorganisms due to its disadvantages such as being time-consuming and costly (Liu et al. 2009).  

Recently, several thermostable β-glucosidase (BGLA) mutants from Paenibacillus polymyxa have been 

identified using novel and fast combinatorial selection/screening approach.  In this study a big mutant 

library including 100,000 clones were generated using error-prone PCR and cloned and expressed in E. 

coli. Approximately 30 thermostable β-glucosidase mutants have been identified in a two-step process 

using a natural substrate (cellobiose): 1) selection for mutants with adequate β-glucosidase activity; 2) 

screening for improved thermostability.  In the first step, cells were grown on selection plates containing 

minimal growth medium plus cellobiose as the sole carbon source and thus, only cells expressing active 

β-glucosidase could grow on the medium.  Colonies on the selection plate were duplicated using a nylon 

membrane and then incubated at 60 °C for 10 min to break the cells and release intracellular β-

glucosidase.  Also, heat treatment deactivated most of the β-glucosidase mutants and only thermostable β-

glucosidase mutants will remain active and will be able to hydrolyse cellobiose to glucose on the 

screening plate.  In the second step, the membrane was overlaid on the soft agar screening plate 

containing minimal medium with cellobiose as the sole carbon source.  In addition to that, the medium 

contained an indicator strain of E. coli which was enabled to utilize glucose only (but not cellobiose).  

After incubation the growth of the indicator strain on the screening plate was used as an indicator to 

detect the clones expressing thermostable BGLA mutants.  This screening method enable scientists to 

screen larger libraries within a shorter time.  In this case, a thermotolerant mutant with 11-fold greater 

thermotolerance compared to the wild-type has been selected (Liu et al. 2009).  
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chromatography (Schwald et al. 1988).  Recently a few novel assays with ease of operation and high 

reproducibility have been developed.  Table 2 summarizes some cellulase assays using novel techniques. 

One of the most recent novel assay methods uses a quartz crystal microbalance (QCM) 

piezoelectric-sensing technique, for measuring cellulase activity, and relates crystallinity of different 

substrates to the cellulase activity (Hu et al. 2009).  The piezoelectric property of quartz crystal allows the 

production of an ultrasensitive mass balance.  Changes in frequency of a quartz crystal can be used to 

measure viscosity and density changes in a solution used to incubate a given cellulose substrate, after 

enzymatic hydrolysis.  The results can be used to quantify the enzyme activity.  Here, the quantification 

of cellulase activity using QCM was closer to those results obtained by measuring the actual reducing 

sugars (IUPAC assay).  QCM is advantageous to use because it is easier to implement by eliminating the 

need for colour development during the standard redox methods.  It also allows for flexibility in the 

properties of substrates used. However, some difficulties arise from the thickness of substrates used as 

well as the sensitivity of the crystal. 

Also recently, a miniaturized assay for the determination of total enzyme activity based on the 

colorimetric DNS method has been developed (King et al. 2009).  In this study, the mini-assay proved 

useful for high-throughput bioprospecting of novel enzymes for biofuel production.  Reducing sugar 

released from filter paper, Avicel, corn stalk, switchgrass, carboxymethylcellulose, and arabinoxylan were 

measured for a variety of fungal isolates and cellulase/hemicellulase activities comparable or greater than 

activities of the widely used wild-type T. reesei were observed.  The enzyme extracts collected from 

cultures of biomass/substrate treated samples were aliquoted to 96-well microtitre plates and then DNS 

was added to stop the enzymatic reaction and measure the reducing sugars. The reagents were reduced 

producing the miniaturized assay (King et al. 2009).  This miniaturized assay can be used not only for 

bioprospecting novel enzymes but also can be used to replace the traditional colorimetric cellulase assays 
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to measure and compare the activity of known cellulases.  It is advantageous because it allows operators 

to reduce reagents, thereby reducing costs, aliquoting errors and ultimately the time for quantification.  

Similarly, the possibility of complete automation of a cellulase assay was fully exemplified by 

Decker et al (2003).  This group created an automated version of the traditional filter paper assay using a 

Cyberlabs C400 robotics deck equipped with customized incubation, reagent storage, and plate reading 

capabilities.  The goal of such an automated assay was to reduce operator error during determination of 

cellulase activity and to reduce the amount of reagent usage as well as lower reagent disposal costs, while 

allowing for a high throughput of samples to be assayed.  The maximum throughput of samples of the 

automated procedure is 84 enzymes per day.  After the initial cost associated with the purchase of such a 

piece of equipment the high efficiency and low reagent usage will allow this technology to be successful, 

however at its current stage this automated assay is not comparable to the traditional FPA (Decker et al. 

2003). 

Furthermore, a more sensitive cellulase assay was developed using fluorescent microfibrils from 

bacterial cellulose prepared using DTAF (5-(4,6-dichlorotriazinyl) aminofluorescein) as a grafting agent.  

Fluorescent dyes such as DTAF which bear dichlorotriazinyl groups are known to react with hydroxyl 

groups of polysaccharides making DTAF a good candidate.  A protocol to graft microfibrils with DTAF 

was developed which does not modify the physical integrity of the substrate.  This grafted DTAF-

cellulose was created by dissolving 10-70 mg of DTAF into 10 mL of a suspension containing 100 mg of 

cellulose microfibrils in 0.1 N NaOH.  These mixtures were stirred at room temperature for 24 h.  

Cellulose digestion resulted in the release of fluorescent cellodextrins and reducing sugars.  This method 

allowed for a comparison between the amount of released fluorescence and that of released reducing 

sugar from which one could differentiate between processive exo- and endo-cellulase activities.  This 

research group also casted films of DTAF-grafted microfibrils to the bottom of microwell titre plates 

producing sensitive cellulase detection and allowing for possible automation. Sensitivity of detection can 

be increased by optimization of the grafting conditions which maximizes the quantity of soluble products.  
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The main advantages for using fluorescent microfibrils is it allows for measurement of nanomolar 

amounts of cellulase activity and it reduces the dependency on using substrates such as carboxymethyl 

cellulose which are far different from native cellulosic substrates.  Cellulose microfibrils produced by 

algae and bacteria have been well characterized and shown to contain most of the structural and 

morphological characteristics of “real” cellulose materials. Being in a dispersed state, these cellulose 

microfibrils reduce cellulase-substrate accessibility problems (Helbert et al. 2003). 

Moreover, Hildén et al. (2001), set out to create a faster, more convenient, yet equally reliable 

method for determining cellulase activities of a series of samples.  They achieved this by using an 

amperometric redox polymer-based biosensor to determine the total concentration of soluble 

oligosaccharides.  The biosensor was produced based on cellobiose dehydrogenase from Phanerochaete 

chrysosporium wired by a redox polymer.  This newly applied method of measuring cellulase activity 

provides several advantages over traditional methods.  Firstly, it is rapid, allowing analysis of a maximum 

30 samples in an hour.  In addition, the biosensor can be readily used without prior planning because it 

can be stored in water in flow injection analysis.  Furthermore, the enzyme solution may be recovered 

after passing the electrode due to its non-destructive nature.  Not to mention, no harmful chemicals, 

boiling or cooling is required with this method simplifying implementation.  Finally, the precision of the 

method is equivalent to traditional methods such as the Somogyi-Nelson technique with high sensitivity 

detection to the same order of magnitude for cellobiose, cellotriose, and cellotetraose however without 

distinction of individually different sugars (Hilden et al. 2001).     

Despite the newly emerging cellulase activity assays, the filter paper assay is still the most widely 

used method.  Perhaps automation of the FPA will help researchers achieve reproducibility while 

reducing costs.  However, biosensors are becoming more popular and may offer a similar promising 

solution to the evaluation of cellulase activity which will give results comparable to the direct 

measurement of reducing sugars via FPA.   
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Figure 1. Different cellulase assays which are classified within two groups: 1) total cellulase 

activity, and 2) individual cellulase activity including endo-, exoglucanases and β-glucosidases.  

Filter paper assay can be improved by adding supplemental β-glucosidase which is indicated by 

the broken arrow.  Released reducing sugars can be measured using different reducing sugar 

assay methods such as DNS (dinitrosalicylic acid), GOD (glucose oxidase), and HPLC.  

Recently a few novel assays with ease of operation and high reproducibility have been 

developed.  
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electrochemical techniques with enzymatic biosensors may potentially increase demands for investigation 

on cellulase assays to design high performance biosensing systems in terms of selectivity, sensitivity, 

reliability, durability, and low cost.  An example of an amperometric biosensor with potential application 

in cellulase assays is the glucose-oxidase biosensor.  The enzyme glucose oxidase is incorporated in the 

membrane of the electrode to detect glucose and ultimately relay glucose concentration.  The glucose 

oxidase biosensor cannot detect small oligosaccharides such as cellobiose and cellotetraose which may be 

products of cellulase activity relating to endo- and exo- glucanases.  However, the previously discussed 

cellobiose dehydrogenase containing amperometric biosensor is capable of measuring such products.  For 

an accurate analysis of total cellulolytic activity we propose the production of a mixed enzyme membrane 

for biosensor detection.  Combining glucose oxidase with an additional enzyme such as cellobiose 

dehydrogenase would allow the detection of all cellulose hydrolysis products. 
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Chapter 2: Characterization of some efficient cellulase-producing bacteria 
isolated from paper mill sludges and organic fertilizers 
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2.1 Abstract 
 

 The wide variety of bacteria in the environment permits screening for more efficient cellulases to help 

overcome current challenges in biofuel production. This study focuses on the isolation of efficient cellulase 

producing bacteria found in organic fertilizers and paper mill sludges which can be considered for use in 

large scale biorefining. Pure isolate cultures were screened for cellulase activity. Six isolates: S1, S2, S3, 

S4, E2, and E4, produced halos greater in diameter than the positive control (Cellulomonas xylanilytica), 

suggesting high cellulase activities. A portion of the 16S rDNA genes of cellulase positive isolates were 

amplified and sequenced, then BLASTed to determine likely genera. Phylogenetic analysis revealed 

genera belonging to two major Phyla of Gram positive bacteria: Firmicutes and Actinobacteria. All 

isolates were tested for the visible degradation of filter paper; only isolates E2 and E4 (Paenibacillus 

species) were observed to completely break down filter paper within 72 and 96 h incubation, respectively, 

under limited oxygen condition. Thus E2 and E4 were selected for the FP assay for quantification of total 

cellulase activities. When grown in Dubois salts medium it was shown that 1% (w/v) CMC could induce 

total cellulase activities of 1652±61 and 1456±30 nM of glucose equivalents for E2 and E4, respectively. 

CMC could induce cellulase activities 8 and 5.6X greater than FP, therefore CMC represented a good 

inducing substrate for cellulase production. The genus Paenibacillus are known to contain some excellent 

cellulase producing strains, E2 and E4 displayed superior cellulase activities and represent excellent 

candidates for further cellulase analysis and characterization. 

Keywords: Biodegradation, cellulase-producing bacteria, Firmicutes, Actinobacteria  
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2.2 Introduction 
 

 Increasing demand and the rising cost of fossil fuels, as well as a concern for global climate 

change have shifted global efforts to utilize renewable resources for the production of a „greener‟ energy 

replacement [1]. Lignocellulosic biomass, („plant biomass‟), is a renewable, abundant and inexpensive 

resource for the bioconversion to biofuels and bioproducts. It is comprised of mainly cellulose, a 

homologous polymer of glucose molecules connected by β-1,4 linkages (the most abundant organic 

polymer in the world). It also contains some hemicellulose (a heterologous polymer of 5- and 6-carbon 

sugars) and even less so lignin (a complex aromatic polymer). Known as abundant, there are a great many 

sources to derive lignocellulosic biomass from such as municipal waste, agricultural residues, forestry or 

pulp and paper excesses, and, energy crops (i.e. Switchgrass) [2].    

 Several microorganisms including both bacteria and fungi have been found to produce a variety 

of cellulases for the degradation of cellulose. Primarily, cellulases are classified into three main groups: 

the exoglucanases, endoglucanases (cleaving β-1,4-glycosidic bonds from chain ends and internally 

within chains, respectively) and β-glucosidases (cleave the final β-1,4 linkage of cellobiose or small 

polysaccharides) [3]. Bacteria and fungi have been found to produce and secrete these enzymes freely in 

solution; however, some microorganisms have also been found to produce cell-bound enzymes and multi-

protein complexes expressing cellulases and hemicellulases called cellulosomes. The cellulosome was 

first discovered in 1983 from the anaerobic, thermophilic spore-forming Clostridium thermocellum [4]. 

One major obstacle facing the development of lignocellulosic biofuels is the cellulose hydrolysis 

stage. Generally speaking, there is a lack of microorganisms which can produce sufficient amounts of all 

three types of cellulases to efficiently breakdown crystalline cellulose to glucose. Moreover, the 

biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly 

hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or 

basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases 

to help overcome these challenges. 
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 Although molecular engineering is leading researchers in the field of biorefining towards developing 

microorganisms which can produce a greater number of more efficient cellulases, the traditional 

microbiological technique of isolation still plays an important role. New isolates lay the foundation for 

molecular engineering strategies, perhaps a new cellulase-degrading strain may represent a good host or 

framework to further improve or add new enzyme-encoding genes for further improvement. Similarly, a 

cellulase produced by an isolate may be more efficient and whose gene may be worth cloning and 

introducing to an already good industrial cellulase producer to further improve its cellulose-degrading 

repertoire. Each small step will make biorefining and ethanol production more economically feasible and 

will help take reliance off of petroleum based fuels and allow progression towards a more renewable fuel 

source.     

  In this study, several efficient aerobic cellulase-producing microorganisms were isolated from 

different pulp and paper mill sludges and one commercial microbially enhanced soil amendment sample. 

The purpose was to identify and characterize those isolates displaying the greatest cellulase activity for 

the possible use in large scale biorefining.  

 

2.3 Materials & Methods 
 

2.3.1. Lignocellulosic samples and media used 
 

The lignocellulosic samples for isolation of cellulase-producing bacteria were obtained from a few 

sources. Two samples were obtained from the area of Red Rock, Ontario, Canada and were labeled B 

(black-coloured solid sludge) and W (wood-like solid sludge). Both B and W were dry, aged waste 

products leftover from pulp and paper mill processing. The exact stage and treatment of the sludge is not 

known. Additionally, a sludge material (S) produced from the kraft processing of fine paper was obtained 

from a paper mill in Thunder Bay, Ontario, Canada. The center of the sludge sample displayed microbial 
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activity which was observed by a change in colour of the sludge from white to grey. Finally, a 

commercial fertilizer was analyzed which is called Efficient Microorganism Dust (RedRock, ON) (E).  

 The growth media used in the experiments include R2A agar (0.5g l-1 yeast extract, 0.5g l-1 protease 

peptone, 0.5g l-1 casamino acids, 0.5g l-1 glucose, 0.5g l-1 soluble starch, 0.3g l-1 dipotassium phosphate, 

0.5g l-1 magnesium sulfate 7H2O, 0.3g l-1 sodium pyruvate, 15.0g l-1 agar), LB liquid media (10.0g l-1 

peptone, 5.0g l-1 yeast extract, 5.0g l-1 NaCl), and carboxymethyl cellulose agar (0.5g CMC, 0.1g NaNO3, 

0.1g K2HPO4, 0.1g KCl, 0.05g MgSO4, 0.05g yeast extract, 1.5g agar, per 100 ml ddH2O, pH 7.4) [5]. 

2.3.2. Isolation of bacteria from lignocellulosic samples using R2A 

To isolate bacteria, 1 g of each sample was suspended in 20 ml of sterile potassium phosphate buffer 

solution (PPB) by vortexing for 2 min on maximum speed. Following, a 10X serial dilution of the 

suspension was made in PBS. Thereafter, 200µl of each dilution in the series was spread onto the surface 

of R2A agar using the standard spread plate technique. All plates were incubated at 28°C for 24 h before 

sampling and then they were incubated for an additional 48 and 72 h to allow growth of slower growing 

microorganisms for further sampling. From the growth observed over 24, 48 and 72 h, various colonies 

were selected based on their morphology, size and colour. The colonies selected were then streaked out 

on separate R2A plates to ensure purity. Colonies were further subcultured on R2A if more purification 

was required. After purification, the cultures were compared visually to eliminate those of similar size, 

morphology and colour. The plates were then photographed and described for a database (database not 

shown here).  

2.3.3. Screening for carboxymethyl cellulose activity 

Isolates were grown in 10 ml of LB broth for 24 h, shaking at 28°C, slower growing isolates were left to 

incubate for an additional 48 h. The positive control used was Cellulomonas xylanilytica. This strain was 

also grown in the LB medium; however it required incubation for a 5 day period using the same growth 
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conditions. The incubation of C. xylanilytica was determined based on the colony growth rate which 

requires four days incubation before colony development, the 5th day representing 48h colony presence. 

The negative control used was Escherichia coli JM109, also grown in LB broth overnight; however, it 

grows at 37°C for 18 h. All resulting broth cultures (isolates, positive control and negative control) were 

tested for cellulase activity via the Gram‟s iodine method [5]. In this method, 5µl of each broth culture 

were singly dropped onto a plastic Petri dish containing carboxymethyl cellulose (CMC) agar and then 

incubated for 48 hours at 28°C. The positive control was incubated for an additional 60 h longer than the 

isolates and negative control due to its slow growth rate. After the allotted growth time, the CMC agar 

plates with the isolates and controls were stained at room temperature with Grams iodine solution (2.0g 

KI and 1.0g I, per 300ml ddH2O) to visualize the cellulase activity. This solution stains the agar 

containing CMC brown and leaves areas without CMC clear, described here as halos. The appearance of 

clear halos around the drops confirms cellulase activity by the bacteria. Each plate was flooded 

completely with approximately 5 ml of the Grams iodine solution using a Pasteur pipette. The plates were 

allowed to sit for 5 minutes until the dye settled into the media and then they were photographed for a 

database not shown here. The cellulase positive isolates were then re-grown in LB broth and drop plated 

onto smaller CMC plates (50mm × 9mm) using the same techniques and conditions previously described, 

shown in Figure 1. From the new, smaller, CMC plates, the halo diameters were measured using a ruler 

for a semi-qualitative comparison of cellulase activity among the isolates. The halo measurement is used 

to relate cellulase activity to bacteria position on the phylogenetic tree as shown in Figure 2. 

2.3.4. DNA isolation and 16S rDNA amplification 

The cellulase producing isolates as well as the positive control were grown up in LB broth for 24 h at 

28°C. DNA was isolated from each isolate broth culture using the Fungi/Yeast Genomic DNA Isolation 

Kit from Norgen Biotek Corporation, Canada. The resulting isolated DNA was used as a template in a 

PCR reaction to amplify a region of the 16S rDNA. Universal primers designed within conserved regions 
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of the 16S rDNA for Eubacteria were used: HAD-1 (5 -́GACTCCTACGGGAGGCAGCAGT) and 

E1115R (5 -́AGGGTTGCGCTCGTTGCGGG), they amplify approximately a 796 bp fragment [6]. The 

PCR reaction mixtures contained 10 ng of genomic DNA individually from each positive isolate, 10 pmol 

of both forward and reverse primers, 10x Taq buffer with KCl, 25 mmol l-1 MgCl2, 0.2 mmol 

deoxynucleoside triphosphate, and 5 U Taq DNA polymerase per 50 µl reaction.  The PCR program was 

as follows: primary denaturation 3 minutes at 95C, followed by 33 amplification cycles consisting of 

denaturing at 95C for 1 minute, annealing for 1 minute at 63C, and extension at 72C for 1 minute, 

upon completion of 33 amplification cycles a final extension step was done at 72C for 10 minutes. The 

PCR products were then viewed on a 1% agarose gel to confirm size, quantity and purity. Then, PCR 

products were sequenced using standard run modules on the ABI 3730xl automatic sequencer (Eurofins 

MWG Operon, Canada).  

2.3.5 Isolate Identification and Relatedness 

Sequencing results were individually inputted online into the nucleotide blast tool through the NCBI 

database (http://blast.ncbi.nlm.nih.gov/) to identify the possible genera of the isolates. Sequencing results 

of the isolates and positive control were also inputted into a sequence alignment program called ClustalX 

to determine the phylogenetic relatedness of the different species. They were aligned using the UPGMA 

algorithm, which considers the rate of evolution to be constant between species, to develop a phylogenetic 

tree based on sequence homology. The resulting alignment was opened into a program called TreeView 

which allowed the phylogenetic tree to be viewed.  

2.3.6. Qualitative filter paper activity 

Isolates displaying cellulase activity on the CMC plates were further screened for quality of cellulase 

activity by transferring 100 µl of an overnight culture to 5 mL of Dubois salts media (K2PO4 1g l-1, KCl 

0.5 g l-1, MgSO4 0.5g l-1, NaNO3 0.5g l-1, FeSO4 0.01 g l-1, pH 7.4) with a 7 mm wide strip of filter paper 

(FP) and one drop of 10 mM glucose in glass culture tubes, where n=3. Glucose is suggested to induce 
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cellulase production. The cultures were incubated for a maximum of 10 days and viewed daily for visual 

evidence of filter paper degradation. Those strains capable of completely degrading the filter paper within 

96 h were selected for further quantitative analysis. The test was done using aerobic culture techniques 

and repeated under limited oxygen conditions by sealing the tubes with parafilm. 

2.3.7. Total cellulase activity assay 

Two isolates (E2 and E4), displaying the greatest cellulase activity qualitatively were selected for further 

study and quantification of total cellulase activity.  Isolate E1 and E2 were grown (n=3), as similarly 

described in 5 mL of Dubois salts media with FP (1%, w/v) or CMC (1%, w/v) in glass culture tubes, 

under limited oxygen conditions at 28°C, shaking at 180 rpm. The cultures were incubated for 48 h and 

cellulase activities were measured.  One militre of culture (n=3), was removed and centrifuged at 17,000 

g for 1 min and the supernatant containing enzymes were used in the assay. A microplate-based filter 

paper assay using the DNS method to measure reducing sugars, modified from Xiao et al. 2004 [7], was 

used to measure the total cellulase activity for the two isolates displaying the highest cellulolytic activity.   

Modifications included the use of 50mM TrisHCl buffer, pH 7 in place of 50 mM NaAc buffer, pH 4.8. 

Bacterial enzymes do not work efficiently at such low pH. Additionally, the enzymes (20 µl) with the 

buffer (40 µl) and filter paper substrate were allowed to incubate at 50ºC for 2 h instead of 1 h, due to the 

known smaller quantities of enzymes produced by bacteria. All samples were loaded to the microtitre 

plate in triplicate. 

 

2.4 Results 

2.4.1. Carboxymethyl cellulase activity 

A total of 53 isolates were described based on size, colour, and morphology, labeled and 

photographed for a database (not shown here). From the database 30 of 53 isolates were removed due to 

similar size, colour and morphological characteristics. The resulting 23 isolates were then tested on CMC 
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agar for cellulase activity; 19 of the 23 isolates exhibited cellulase activity and are shown in the 

photographs of Figure 1 along with positive (Cellulomonas xylanilytica) and negative (E. coli JM109) 

controls. The following 6 cellulase-producing isolates had the greatest halos after 48h incubation on CMC 

agar:  S1, S2, S3, S4, E2, E4 (Figure 1). The halos were measured in centimeters using a standard ruler. 

The diameters of the halos can be seen in Figure 2 plotted beside each genus in the phylogenetic tree.  

2.4.2. 16S rDNA amplification 

Genomic DNA was successfully isolated from all 19 cellulase-producing isolates using Gram positive 

DNA isolation methods. The universal 16S rDNA primers were used in conjunction with PCR to 

successfully amplify 16S rDNA gene fragments from all 19 isolates. Confirmation of the 16S rDNA gene 

fragments was validated by a band on a 1% agarose gel with an approximate expected size of 800 bp.   

2.4.3. Sequencing and sequence analysis of 16S rDNA PCR products 

Sequencing results were successfully obtained for all 19 different 16S rDNA PCR products.  The 

resulting sequences were inputted to the nucleotide blast feature of the NCBI database to obtain possible 

identities based on homology. From BLAST search results, genera of all 19 isolates were determined 

based on 97-99% homology. The nucleotide BLAST results are shown in Table 1. The majority of 

sequences yielded 99% homology in nucleotide database with very few as low as 97% homology. All 19 

isolates belong to genera of Gram positive bacteria, several of which were shown to belong to the genus 

Bacillus and Paenibacillus, while one strain from the genus Microbacterium and Streptomyces were also 

found (Table 1). 

2.4.4. Phylogenetic analysis of 16S rDNA sequences 

The sequences were then inputted into a sequence alignment program called ClustalX. An alignment was 

then done using UPGMA algorithm which finds the relatedness between the isolates assuming that the 

rate of evolution is constant. The aligned sequences were then uploaded into a program called TreeView 
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which allows us to view the phylogenetic tree produced from the alignment information using the 

UPGMA algorithm. The phylogenetic tree displays two main groups of Gram positive bacteria; the 

Firmicutes (blue) more closely related than the Actinobacteria (red). The Firmicutes are made up of 

Bacillus and Paenibacillus sp., while the Actinobacteria include the genera Streptomyces, 

Microbacterium and positive control Celluomonas xylanilytica. The yellow to green colour legend 

represents a visual of the halo diameter (cm) from smallest to greatest halo, respectively. Data was 

collected from the CMC plates. The Paenibacillus sp. all have relatively larger halos  and the Bacillus sp. 

has halos of varying sizes. The Actinobateria exhibits a variety of halo sizes and Streptomyces seems to 

be the greatest producer of cellulases in this Phylum (Figure 2).   

2.4.5. Filter paper activity  

All of the positive cellulase-producing isolates were grown with FP as a sole carbon with one drop of 10 

mM glucose to possibly induce cellulase production [8], for qualitative observation of filter paper activity. 

This was done in both aerobic and oxygen limited environments. The ability to degrade filter paper, more 

than likely represents the production of more than one type of enzyme and the ability to degrade 

crystalline cellulose, thereby being a more efficient cellulase-producing isolate. The following two 

strains: E2 and E4 were found to completely degrade the filter paper cellulose in 72 and 96 h incubation, 

respectively, as can be seen in Figure 3. 

2.4.6. Total cellulase activity  

The total cellulase activity is determined by the amount of glucose and cellobiose released from filter 

paper after 2 h incubation and is referred to in glucose equivalents. Similarly, the CMCase activity is also 

a measure of the glucose and cellobiose released however after 20 min incubation; it is also referred to as 

glucose equivalents. The activity for total cellulases was evaluated for whole cells of Paenibacillus sp. E2 

and E4. It was found that using CMC as the culture carbon substrate, E2 and E4 total cellulase activity 

was 1587±215 and 1652±61 nM of glucose equivalents, respectively, not significantly different. 
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However, when FP was used as the cellulase inducing substrate, total cellulase activity of E2 and E4 was 

202±66 and 260±157 nM of glucose equivalents. No significance difference in total cellulase activity was 

observed between E2 and E4; however, CMC induced greater activity. The quotient of CMC to filter 

paper was 8±0.4 and 6±0.1 for E2 and E4, respectively (Table 2).   

2.5 Discussion 
 

Several isolates could be recovered by aerobic spread plates from the different industrial and commercial 

samples. For those isolates displaying cellulase activity on the CMC containing plates four different 

genera of isolates including Bacillus, Paenibacillus, Microbacterium, and Streptomyces species were 

found.  According to our phylogentic analysis, these bacteria can be grouped into two main Phyla based 

on sequence homology: Actinobacteria and Firmicutes.  Both Phyla consist of Gram positive bacteria 

distinguished by high and low GC content, respectively; and both groups of bacteria contain species 

capable of degrading organic materials. Thus, it is not surprising that many of the genera can produce 

cellulases. Several strains of Paenibacillus, Bacillus, Microbacterium and Streptomyces have been found 

to produce cellulases and their cellulases have been well studied; these strains represent important 

cellulase degrading genera.  

For example, researchers have characterized a novel endoglucanase (Cel9P) from a newly isolated 

Paenibacillus sp. BME-14. Endoglucanase Cel9P displayed 65% of its maximal activity at 5°C, which 

could be beneficial for some industries which have processes at lower temperatures [8]. Similarly, in 

other newly isolated Paenibacillus sp., multienzyme complexes called cellulosomes have been 

characterized in the degradation of lignocellulosic substrates [9-11]. Cellulosomes, such as the 

cellulosome of Clostridium thermocellum can have high efficiency for the degradation of crystalline 

celluloses, higher than that of Trichoderma reesei [12]. In addition, cellulases have also been well 

characterized in Bacillus species; most recently a unique Bacillus sp. was observed to maintain up to 70% 
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stable CMC activity at a range of pH 6-8 [13]. Similarly, many of the modular enzymes present in 

Paenibacillus are also present in Bacillus species [10]. 

  Moreover, Microbacterium sp. displaying cellulase activities have been isolated from a variety of 

environmental samples and uniquely this strain has been isolated from the gut of termites [14]. One 

Microbacterium sp. exhibited particularly high filter paper activity and xylanase activity when a 

consortium of aerobic cellulase producing bacteria was studied [15].  

Additionally, Streptomyces sp., have also been previously studied by researchers for cellulase 

production and found to produce a variety of unique cellulases including some of which were found to be 

thermoalkotolerant [16,17]. Also interestingly, Streptomyces sp. has been used in successful co-culturing 

trials. They have been found to work synergistically with Thermomonospora fusca and Trichoderma 

reesei to degrade cellulose [18]. 

All of the cellulase producing bacteria isolated and identified in this study have potential for 

further use and study, such as looking at individual enzyme activities to isolate efficient or novel 

cellulases with unique characteristics, or potential to use the strains to create microbial consortia with a 

high efficiency for degrading complex cellulose containing biomass such as lignocellulose.     

Evaluating cellulase production between isolates can be a challenge because bacteria produce 

multiple types of cellulases (endoglucanase, exoglucanase, and -glucosidase), which can be found to 

exist as free extracellular enzymes as well as found in enzyme complexes or cellulosomes expressed on 

the cell membrane [19]. Thus, we initially use qualitative tests such as the CMC test and filter paper 

degradation test. CMC agar allows us to identify isolates with cellulase activity on soluble cellulose such 

as CMC thus representing mainly endoglucanase and beta-glucosidase activities [5]. Secondly, we then 

screened isolates displaying cellulase activity on CMC for activity on crystalline insoluble cellulose such 

as filter paper. Due to the crystalline structure of filter paper, degradation of the filter paper would imply 
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multiple cellulase activities including exoglucanase activities because these enzymes work in crystalline 

regions [20]. From these tests we could select isolates displaying the greatest activity based on ability to 

degrade soluble and crystalline cellulose for quantitative analysis of FP activity. All isolates may vary in 

growth properties which would not allow us to easily compare and quantify cellulase activities of all 

cellulase positive isolates in an equal manner. Difficulty also arises because some strains may secrete 

enzymes to solution while others may harbor enzymes on the cell surface or internally, and still some 

cellulase may end up in solution from cell lysis [21]. Additionally, some bacteria grow more rapidly than 

others, and cellulase production may be induced by different substrates for varying species. Thus, using 

qualitative screening methods is essential to narrow down isolates which may be more unique for further 

cellulase study in the future.  

Narrowing down our isolates led us to the greatest cellulase producers, Paenibacillus sp. E2 and 

Paenibacillus sp. E4 for further analysis. These isolates displayed some of the greatest halos on CMC 

agar (Figure 1) and were the only strains capable of completely degrading filter paper after 72 and 96 h 

incubation, respectively, under oxygen limited conditions (Figure 3); qualitatively speaking cellulase 

activity in these strains was greater than the positive control.  The cellulase activity could be further 

studied under facultative anaerobic conditions. Similarly, researchers have shown that under anaerobic 

conditions, Paenibacillus species will exhibit high levels of xylanases which can degrade xylan, a more 

branched portion of the cell wall [11].  

Focusing on Paenibacillus sp. E2 and E4 for further study, it was shown that after 48 h shaking 

incubation in oxygen limited condition with CMC and FP as the cellulase inducing substrate isolate E2 

displayed total cellulase activities of 1587±215 and 202±66 nM of glucose equivalents, respectively.  

Similarly, isolate E4 displayed total cellulase activity of 1652±61 and 260±157 nM of glucose equivalents 

for CMC and FP, respectively. Results show that 48h growth with CMC can induce more cellulases than 

48 h growth with FP by approximately 8.1X and 5.5X for E2 and E4, respectively. There was no 
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difference in total cellulase activity for either cellulosic substrate when whole cells were used versus 

when cells were lysed, thus data were not shown. This may suggest a high amount of cellulases are on the 

outside surface of the cells or secreted in the medium but not internalized.  

Our results show that Paenibacillus species E2 and E4 may be good potential candidates for 

biorefining and the ultimate production of bioethanol and additional value-added bioproducts such as 

organic acids.  These isolates are of particular interest because cellulase activities were higher and 

comparable to the well-known positive control, Cellulomonas xylanilytica. Future work will be done on 

E2 and E4 to optimize cellulase production and evaluate individual cellulase activities to look for novel 

cellulases. 

 According to this study, our isolation, screening and identification methods were quick and 

efficient for allowing us to identify several good cellulase producing bacteria from a wide variety of 

samples. Moreover, we were able to distinguish the isolates displaying the greatest cellulase activity for 

future study.   Finding naturally occurring cellulase degrading bacteria from the environment is important 

in the field of biorefining to help overcome costly hurdles in the biorefining process. All of our cellulase 

positive isolates may be an integral part of future work to develop good cellulases or produce efficient 

cellulase producing systems such as microbial consortia which can be used for industry. Isolation and 

characterization may provide a good starting point for the discovery of such beneficial enzymes.   
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Table 1. The BLAST search results for the sequenced cellulase-producing isolates.  
Isolate Homology 

(%) 
Genus 

B1 99 Microbacterium 
B2 99 Bacillus 
B3 99 Bacillus 
B4 99 Bacillus 
B5 98 Bacillus 
B6 99 Bacillus 
B7 99 Streptomyces 
E1 99 Bacillus 
E2 98 Paenibacillus 
E3 99 Paenibacillus 
E4 98 Paenibacillus 
SM1 97 Bacillus 
SM2 98 Bacillus 
SM3 98 Bacillus 
SM4 99 Paenibacillus 
SM5 97 Bacillus 
WC1 99 Bacillus 
WC2 98 Bacillus 

 

 

Table 2. Total cellulase activity of Paenibacillus sp. E2 and E4 shown in glucose equivalents (nM) after 
48 h growth with CMC (1%,w/v). 

 Total Cellulase Activity (glucose equivalents (nM)) 

Substrate (1%, w/v)  Paenibacillus E2                    Paenibacillus E4 

Carboxymethyl cellulose  1652 ±61  1456±30 

Filter paper  202±66  260±157 

Quotient (CMC/FP)  8±0.4  6±0.1 
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Figure Legend 
 

Figure 1. Nineteen cellulase-producing isolates grown on CMC for 48 h at 28°C, grouped based on the 

samples they were derived from, and a positive and negative control, C. xylanilytica and E. coli JM109, 

respectively.   

Figure 2. Phylogenetic tree produced from the alignments of 16S rDNA fragments from the isolates, 

presented in TreeView. Closer related isolates outlined in blue belong to the phylum Firmicutes and the 

most distantly related isolates outlined in red belong to the phylum Actinobacteria. The diameter of halos 

the isolates produced on CMC agar is respectively shown with a colour scale indicating small to large 

halos, qualitative cellulase activity.  

Figure 3. Qualitative results for the 2 isolates capable of completely degrading filter paper within 96 h 

incubation: A) Negative control (E. coli JM109), B) Positive control (C. xylanilytica), C) Paenibacillus 

E2 and D) Paenibacillus E4. 
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Chapter 3: Newly isolated and characterized bacteria with great application 
potential for decomposition of lignocellulosic biomass 
 

Published: Journal of Molecular Microbiology and Biotechnology (2012) 22, 156-166.  

Authors: Miranda L Maki, Amna Idrees, Kam Tin Leung, Wensheng Qin 

                                                          

3.1 Abstract 
 

This study focuses on the isolation and characterization of bacteria from municipal waste and peat to 

determine those with good potential for modification and decomposition of lignocellulosic biomass for 

industrial application. Twenty cellulase-producing bacteria belonging to four major phyla: Firmicutes, 

Actinobacteria, Proteobacteria and Bacteriodetes were found when screened on CMC-containing agar. 

Six isolates also exhibited activities towards filter paper as the sole carbon source in salts media; while 12 

exhibited activities towards xylan when screened on xylan-containing plates.  Moreover, five isolates 

survived in and increased absorbance of 1% black liquor in salts media by an average of 2.07-fold after 

21 days incubation. Similarly, these five isolates increased the absorbance of 0.1% pure lignin at 280 nm 

in salts media, indicating modification of lignin. Additionally, FTIR analysis of 1% barely straw treated 

for 21 days with these 5 strains showed a preference for consumption of hemicelluloses over lignin; 

however a change in lignin was observed. A Bacillus strain (55S5) and Pseudomonas strain (AS1), 

respectively, displayed the greatest potential for lignocellulose decomposition due to a variety of cellulase 

activities, as well as xylanase activity, and modification of lignin. Several of these isolates have good 

potential for industrial use in the degradation of lignocellulosic biomass. 

Keywords: Biodegradation, lignocellulase-producing bacteria, xylanase, lignase, Bacillus, Pseudomonas 
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3.2 Introduction 
 

 In recent years, global climate change and rising fuel costs have caused an increased awareness 

and potential for renewable fuels sources such as biofuels from lignocellulosic biomass [Schneider, 

1989]. There are many reports of microorganisms such as bacteria and fungi which possess hydrolytic 

activities on cellulose, the major component of lignocellulosic biomass. However, there are several 

limitations to this approach; for example, lignocellulosic biomass is also comprised of some 

hemicelluloses (heterologous polymers of 5- and 6-carbon sugars), the majority of which have a xylan 

backbone [Scheller and Ulvskov, 2010]. Furthermore, celluloses and hemicelluloses are entrapped by 

lignin, a more complex aromatic polymer. The combination of mainly these components make up the 

structure of plant cell walls and provide the plants with structural integrity and protect plants from such 

things as disease, pests, wind and mechanical wounds. 

  Lignocellulosic biomasses such as agricultural residues and energy crops currently undergo 

extensive pretreatment using acid hydrolysis and steam or high temperature treatments to remove lignin 

and hemicellulose to expose the cellulose for enzymatic hydrolysis [Galbe and Zacchi, 2007].  Thus, 

microorganisms with abilities to decompose or modify lignin and hemicellulose in addition to cellulose 

have greater potential in industrial production of biofuels, as they can help reduce the associative costs 

with pretreatment. 

Researchers have typically focused on one group of enzymes during isolation, such as cellulases, 

hemicellulases or lignases. For example, white rot fungi are best studied for their remarkable ability to 

degrade lignin [Otjen and Blanchette, 1982]. However, anaerobic bacterium Clostridium thermocellum 

and aerobic fungi Trichoderma reesei have been well studied for their abilities to efficiently degrade 

crystalline cellulose [Ng and Zeikus, 1981]. Nonetheless, none of these microorganisms is efficient at 

cellulolytic, hemicellulolytic and ligninolytic activities simultaneously, rendering the opportunity for 

discovery of better lignocellulase-producing isolates. Here we define “lignocellulase-producing” as 
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microorganisms which can produce different enzymes such as cellulases, hemicellulases and lignases 

collectively, for the decomposition of lignocellulosic biomass. 

We have focused on the isolation of lignocellulolytic bacteria. That is, bacteria which produce a 

greater variety of enzymes including here cellulases, xylanases and lignases in hopes of finding bacteria 

which can have an overall greater decomposing impact on complex biomass which could thus  be 

potentially applied in industrial practices. Use of such strains in industry could thereby reduce the need 

for extensive pretreatments or reduce limitation on the types of biomass used for cost-competitive 

markets.  

 Fungi and yeasts have frequently been applied in the development of industrial enzymes. 

However, bacteria have several advantages over the use of such microorganisms, such as many strains 

have short generation times and can be easily cultured making the use of bacteria in the biofuel industry 

more amenable. Additionally, bacteria also have increased resilience to environmental stresses due to 

their biochemical versatility (i.e. temperature variations, salinity, oxygen limitation and change in pH) 

[Daniel and Nilsson, 1998].         

 Several studies have focused time and again on isolation strategies for targeting bacteria with 

more specific activities such as efficient cellulase producing bacteria, yet some studies isolated bacteria 

with cellulase and xylanase activity, however very few with lignase activities in addition to the previous 

[Maki et al., 2009; Maki et al., 2011; Sizoza et al., 2011].  In this study, we developed a strategy for 

finding bacteria which can produce celllulaes, xylanases and potential lignases, and therefore can be more 

efficient in decomposing lignocellulosic biomass making them more practical in industrial use. 

In this study, several efficient aerobic cellulase-producing microorganisms were isolated from 

various sites within a municipal landfill and peat core samples from a poor nutrient fen. The purpose was 

to characterize lignocellulosic abilities of all cellulase positive isolates and identify those isolates 

displaying the greatest variety of activity towards lignocelluolosic biomass for the possible more practical 

use in large scale biorefining. 
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3.3 Materials and Methods 
 

3.3.1. Lignocellulosic samples and media  

The lignocellulase-producing bacteria were isolated from several samples of two main sources: municipal 

waste and peat. The first set of samples was obtained from the City of Thunder Bay Solid Waste and 

Recycling Facility, Ontario, Canada. The second set of samples was obtained using a peat corer to 1.5 m 

deep of a poor fen near Raith, Ontario, Canada.  

 The growth media used in the experiments include R2A agar (0.5 g/l yeast extract, 0.5 g/l protease 

peptone, 0.5 g/l casamino acids, 0.5 g/l glucose, 0.5 g/l soluble starch, 0.3 g/l dipotassium phosphate, 0.5 

g/l magnesium sulfate 7H2O, 0.3 g/l sodium pyruvate, 15.0 g/l agar), LB liquid media (10.0 g/l peptone, 

5.0 g/l yeast extract, 5.0 g/l NaCl), and carboxymethyl cellulose agar (0.5 g CMC, 0.1 g NaNO3, 0.1 g 

K2HPO4, 0.1 g KCl, 0.05 g MgSO4, 0.05 g yeast extract, 1.5 g agar, per 100 ml ddH2O, pH 7.4) [Kasana 

et al., 2008].  

3.3.2. Isolation of bacteria from lignocellulosic samples  

The method of Maki et al., as utilized in the previous chapter was used to isolate bacteria. Briefly, 1 g of 

each sample was suspended in 20 ml of sterile potassium phosphate buffer solution (1X PPB) by 

vortexing for 2 min on maximum speed. Following, a 100X serial dilution of the suspension was made in 

PBS. Thereafter, 200 µl of each dilution in the series was spread onto the surface of R2A agar using the 

standard spread plate technique. All plates were incubated at 28°C for 24 h before isolating individual 

colonies and then they were incubated for an additional 48 and 72 h to allow growth of slower growing 

microorganisms. From the growth observed over 24, 48 and 72 h, various colonies were selected based on 

their morphology, size and colour. The colonies selected were then streaked out on separate R2A plates 

until purity. After purification, the cultures were compared visually to eliminate those of similar size, 

morphology and colour [Maki et al., 2011]. 
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3.3.3. Screening for carboxymethyl cellulase activity 

The method described by Maki et al. in 2011, was used to screen isolates for carboxymethyl activity. As 

described, isolates were grown in 10 ml of LB broth for 24 h, at 28°C, shaking at 200 rpm, slower 

growing isolates were left to incubate for an additional 48 h. The positive control used was Cellulomonas 

xylanilytica XIL11 [Rivas et al., 2004]. This strain was also grown in the LB medium; however it 

required incubation for a 5 day period using the same growth conditions. C. xylanilytica requires 4 days 

growth on solid media to detect colonies, it was grown an additional day to allow 48 h with visible 

colony. The negative control used was Escherichia coli JM109, also grown in LB broth overnight; 

however, it grows at 37°C for 18 h. All resulting broth cultures (isolates, positive control and negative 

control) were tested for cellulase activity via the Gram‟s iodine method [Kasana et al., 2008]. Briefly, 5µl 

of each broth culture were singly dropped onto a plastic Petri dish containing carboxymethyl cellulose 

(CMC) agar, incubated for 48 hours at 28°C and flooded with Grams iodine solution (2.0 g KI and 1.0 g I, 

per 300 ml ddH2O) for 5 minutes to visualize and photograph the cellulase activity. The agar containing 

CMC stains brown and areas without CMC are clear, described here as halos, as seen in Figure 1. Halo 

diameters were measured using a ruler for a semi-qualitative comparison of cellulase activity among the 

isolates after 48 h incubation. The halo measurement is used to relate cellulase activity to bacteria 

position on the phylogenetic tree as shown in Figure 2, as similarly done by Maki et al. [2011]. 

3.3.4. DNA isolation and 16S rDNA amplification 

The cellulase producing isolates as well as the positive control were grown up in LB broth for 24 h at 

28°C. DNA was isolated from each isolate broth culture using the Fungi/Yeast Genomic DNA Isolation 

Kit from Norgen Biotek Corporation, Canada. The resulting isolated DNA was used as a template in a 

PCR reaction to amplify a region of the 16S rRNA gene. Universal primers designed within conserved 

regions of the 16S rRNA gene for Eubacteria were used: HAD-1 (5 -́

GACTCCTACGGGAGGCAGCAGT) and E1115R (5 -́AGGGTTGCGCTCGTTGCGGG), they amplify 
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approximately a 796 bp fragment [Giannnino et al. 2009]. The PCR reaction mixtures contained 10 ng of 

genomic DNA individually from each positive isolate, 10 pmol of both forward and reverse primers, 10x 

Taq buffer with KCl, 25 mmol/l MgCl2, 0.2 mmol deoxynucleoside triphosphate, and 5 U Taq DNA 

polymerase per 50 µl reaction.  The PCR program was as follows: primary denaturation 3 minutes at 

95C, followed by 33 amplification cycles consisting of denaturing at 95C for 1 minute, annealing for 1 

minute at 63C, and extension at 72C for 1 minute, upon completion of 33 amplification cycles a final 

extension step was done at 72C for 10 minutes. The PCR products were then viewed on a 1% agarose 

gel to confirm size, quantity and purity. Then, PCR products were sequenced using standard run modules 

on the ABI 3730xl automatic sequencer (Eurofins MWG Operon, Canada).  

3.3.5. Isolate Identification and Relatedness 

Sequencing results were individually inputted online into the nucleotide blast tool through the NCBI 

database (http://blast.ncbi.nlm.nih.gov/) to identify the possible genera of the isolates. Sequencing results 

of the isolates and positive control were also inputted into a sequence alignment program called ClustalX 

to determine the phylogenetic relatedness of the different species. They were aligned using the UPGMA 

algorithm, which considers the rate of evolution to be constant between species, to develop a phylogenetic 

tree based on sequence homology. The resulting alignment was opened into a program called TreeView 

which allowed the phylogenetic tree to be viewed.  

3.3.6. Filter paper activity 

Isolates displaying cellulase activity on the CMC plates were further screened for quality of cellulase 

activity by transferring 100 µl of an overnight culture to 5 ml of Dubois salts media (K2PO4 1 g/l, KCl 

0.5 g/l, MgSO4 0.5 g/l, NaNO3 0.5 g/l, FeSO4 0.01 g/l, pH 7.4) with a 7 mm wide strip of filter paper 

(FP) and one drop of 10 mM glucose in glass culture tubes, in triplicate (n=3). The cultures were 

incubated for a maximum of 10 days at 28°C, shaking at 180 rpm and viewed daily for visual evidence of 

filter paper degradation. The release of reducing sugars by those strains capable of completely degrading 
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the filter paper within 96 h was measured and all triplicates using the DNS method [Xiao et al., 2004] and 

was expressed as nM glucose equivalents.   

3.3.7. Screening for xylanase activity 

Qualitative evidence for xylanase activities of all of the cellulase-positive isolates was evaluated using the 

same method described for the screening of cellulase activity. However, for the xylanase activity, 0.5 g of 

Beechwood xylan (Sigma Aldrich) was substituted for CMC. Once again, the presence of halos after 

Gram‟s staining in room temperature after 48 h incubation at 28°C, indicated evidence of xylanase 

activities.  

3.3.8. Modification of black liquor and cell survival 

Overnight cultures isolate were prepared by inoculating one colony to 10 ml of LB and incubated at 28°C, 

shaking 180 rpm. From an overnight culture 200 µl of cells for each isolate were inoculated in triplicate to 

100 ml of Dubois salts media supplemented with 1% (w/v) black liquor from Resolute Pulp and Paper, 

ON (pH 6.5) and incubated at 30°C, shaking 150 rpm.  Samples were collected at days 0, 1, 3, 5, 7, 10, 14 

and 21 (n=3). For decolorization experiments, 500 µl of cell suspensions and one untreated sample were 

diluted with 500 µl of PPB then centrifuged at 17,000 g in a microcentrifuge tube for 4 min. In triplicate, 

300 µl of the supernatant were loaded into a microtitre plate and the absorbance or intensity of colour (at 

425 nm), of the samples were measured by an xMark Microplate Spectrophotometer (Bio-Rad, Canada).  

Simultaneously, to determine cell survival, 500 µl of cell samples were collected for the drop plate 

counting technique on LB agar to determine cell density (CFU/ml). Additionally, a change in pH of black 

liquor after treatment with the isolates was measured using an Accument Combination pH electrode with 

silver reference (Thermo Fisher Scientific, Canada).  
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3.3.9. Reflectance of lignin at 280 nm 

Isolates capable of modifying the colour of black liquor at 425 nm were selected for further analysis on 

98% pure lignin extracted from black liquor.  For each, 100 µl of an overnight culture were inoculated in 

triplicate to 6 ml of Dubois Salts media supplemented with 0.1% (w/v) pure lignin, 0.3% (w/v) peptone 

and 0.5% (w/v) glucose, and incubated at 30°C, 150 rpm for 21 days. All tubes were sealed with parafilm 

to eliminate evaporation. After 21 days incubation, 1 ml aliquots of each cell suspension and one 

untreated sample, were centrifuged for 4 min at 17,000 g.  Following, supernatant was diluted 1000x in 

1X PPB before reading the reflectance at 280 nm.  The data is presented in Figure 6 as percentage change 

in lignin degradation which was calculated by substracting the absorbance of the untreated sample from 

the absorbances of the isolates and dividing the product by the absorbance of the untreated.   

3.3.10. FTIR analysis of isolates on barely straw 

The isolates displaying modification of lignin were further analyzed for lignase activities using FTIR 

analysis after 21 days incubation with 1% (w/v) barely straw in Dubois Salts media supplemented with 

0.3% (w/v) peptone and 0.5% (w/v) glucose. In triplicate, 1 ml of isolate overnight cultures were 

inoculated to 100 ml of barley straw media and incubated at 30°C, shaking at 150 rpm (n=3). After 21 

days incubation, isolate cultures and one untreated barely straw control were filtered through Whatman 

filter paper and washed once with 10 ml of distilled water. The barely straw was collected and oven dried 

at 60°C for 48 h prior to FTIR spectra analysis. Dried treated and untreated barely straw samples were 

loaded in triplicate directly to a Bruker Tensor 37 Fourier Transform Infrared Spectrophotometer 

equipped with an InGaAs detector (Bruker Optics Ltd., Canada).  Peak height and area were measured by 

constructing a baseline connecting the lowest data points on either side of the peak using an interpolation 

calculation through Excel software. Areas were then used to compare to control and determine percentage 

preference [Pandey and Pitman, 2003].   
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3.4 Results 
 

3.4.1. Carboxymethyl cellulase activity 

A total of 57 isolates were described based on size, colour, and morphology, labeled and photographed 

for a database (not shown here). From the database, 25 of 57 isolates were removed due to similar size, 

colour and morphological characteristics. The resulting 32 isolates were then tested on CMC agar for 

cellulase activity; 20 of the 32 isolates exhibited cellulase activity and are shown in the photographs of 

Figure 1 along with positive (Cellulomonas xylanilytica) and negative (E. coli JM109) controls. The 

following 7 cellulase-producing isolates had the greatest halo diameters after 48h incubation on CMC 

agar:  CDS1B, CDS2B, AS2B, CTS1A, CTS2, GH2OS1 and 6S4 (Figure 1). The diameters of the halos 

were measured in centimeters using a standard ruler. The diameters of the halos can be seen in Figure 2 

plotted beside each genus in the phylogenetic tree.  

3.4.2. 16S rDNA amplification 

Genomic DNA was isolated from all 20 cellulase-producing isolates using Gram positive DNA isolation 

methods. The universal 16S rRNA gene primers were used in conjunction with PCR to amplify 16S 

rRNA gene fragments from all 20 isolates. Confirmation of the 16S rRNA gene fragments was validated 

by a band on a 1% agarose gel with an approximate expected size of 800 bp.   

3.4.3. Sequencing and sequence analysis of 16S rDNA PCR products 

Sequencing results were obtained for all 20 different 16S rRNA gene PCR products.  The resulting 

sequences were inputted to the nucleotide blast feature of the NCBI database to obtain possible identities 

based on sequence similarity. The genera of all 20 isolates were determined from the BLAST search, 

based on a high sequence similarity ranging from 96-100%. The nucleotide BLAST results are shown in 

Table 1. The majority of sequences yielded 100% similarity in nucleotide database with very few as low 

as 96 and 97% sequence similarity. Many of the 20 isolates belong to genera of Gram positive bacteria, 
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such as the genus Bacillus, Paenibacillus, Rhodococcus, Arthrobacter, Exiguobacterium and 

Microbacterium. Some strains of Gram negative bacteria were also found belonging to the genera 

Pseudomonas, Aeromonas, Duganella and Chryseobacterium (Table 1). 

3.4.4. Phylogenetic analysis of 16S rDNA sequences 

The phylogenetic tree displays two main groups of more closely related Gram positive bacteria; the 

Firmicutes and the Actinobacteria, while the more distantly related Gram negative bacteria were grouped 

into two main phyla, the Proteobacteria and Bacteriodetes. Chryseobacterium the only genera belonging 

to the phylum Bacteriodetes was least related to all of the isolates. The yellow to green colour legend 

represents a visual of the halo diameter (cm) from smallest to greatest halo on CMC agar, respectively.  In 

this study, isolates belonging to the phylum Firmicute and Proteobacteria contain genera of bacteria with 

relatively larger halos than genus of bacteria found belonging to the phyla Actinobacteria and 

Bacteriodetes (Figure 2).   

3.4.5. Filter paper activity  

All of the positive cellulase-producing isolates were grown with FP as a sole carbon with one drop of 10 

mM glucose to possibly induce cellulase production, for qualitative observation of filter paper activity. 

This was done in both aerobic and oxygen limited environments. The ability to degrade filter paper, more 

than likely represents the production of more than one type of enzyme and the ability to degrade 

crystalline cellulose.  The following 6 strains:  6S1, 55S5, AS1, CDS1B, CH2OS1, and CTS1B were 

found to completely degrade the filter paper cellulose within 96 h incubation similar to the positive 

control, as can be seen in Figure 3. Degradation was confirmed by the amount of sugars released into 

solution after complete degradation for Bacillus sp. 6S1, Bacillus sp. 55S5, C. xylanilytica (+), 

Pseudomonas sp. AS1, Aeromonas sp. CDS1B, Bacillus sp. CH20S1, Bacillus sp. CTS1B and found to 

be similar at 782.6, 978.0, 1043.5, 847.8, 913.0, 608.7, and 1065 nmoles of glucose equivalents, 

respectively. There were no sugars detected in the negative control (E. coli).  
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3.4.6. Xylanase activity 

The 20 cellulase positive isolates were further screened for evidence of hemicellulase activity on xylan 

containing media. It was observed that 12 of 20 isolates were able to utilize xylan as a source of carbon 

by producing halos after staining.  Isolates: Bacillus sp. 55S5, Bacillus sp. 6S1, Bacillus sp. CDS2B, 

Pseudomonas sp. CDS3, Pseudomonas sp. GH2OS1 produced the greatest halo diameters suggesting high 

production of xylanase, as can be seen in Figure 4.   

3.4.7. Modification of black liquor and cell survival 

From 20 isolates screened for growth and survival in 1% (w/v) black liquor, a total of 11 isolates were 

capable of surviving 21 days incubation. Absorbance at 425 nm allowed observation of change in colour 

of the black liquor. No isolates were capable of decreasing the absorbance after 21 days. However, 5 

strains: Pseudomonas sp. AS1, Microbacterium sp. AS4, Bacillus sp. 65S3, Paenibacillus sp. 65S5 and 

Bacillus sp. CH2OS1 were capable of increasing the absorbance of black liquor after 21 days incubation 

of an average 10,000-fold greater than the absorbance at day 0, indicating a modification of black liquor. 

The pH was recorded after 21 days and for the 5 previously mentioned strains an increase in colour was 

related an increase in pH from 6.5 to 9.5 (Figure 5A).  Similarly, these five strains could also grow and 

proliferate, increasing their initial cell densities on average by 50- fold and maintaining these cell 

densities up to 21 days incubation, as determined by cell survival in black liquor (Figure 5B).  

3.4.8. Reflectance of lignin at 280nm 

Modification of 0.1% (w/v) pure lignin extracted from black liquor, was observed by measuring the 

absorbance at 280 nm after 21 days incubation for each strain displaying modification of black liquor: 

AS1, AS4, 65S3, 65S3 and CH2OS1 (Figure 6). All 5 strains increased the absorbance of lignin at 280nm 

compared to the untreated control sample.  Isolates AS1 and AS4 were capable of increasing absorbance 

the greatest by 23.8% and 21.8%, respectively, compared to the control. Whereas, isolate CH2OS1 only 
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increased absorbance by 6.3% compared to control.  The remaining 2 isolates, 65S5 and 65S3 increased 

absorbance by 13.9 and 11.1% compared to the control, respectively.  

3.4.9. FTIR analysis of isolates on barely straw 

The FTIR spectra data was used to analyze the preference of all 5 previously mentioned potential lignin 

modifying isolates (AS1, AS4, 65S3, 65S5 and CH2O) for hemicellulase and lignin compared to 

cellulose, as shown in Figure 7. For comparison, the cellulase positive control (C. xylanilytica) which 

could not survive in black liquor and displayed minimal hemicellulase activity was also used. The results 

showed that C. xylanilytica had no preference for lignin and a 43.2% preference for hemicellulose 

compared to cellulose, as was expected. Also, displaying relatively low preferences for lignin were 

isolates CH2OS1 and 65S5, with 6.5 and 27.2% preferences, respectively; whereas, they preferentially 

consumed hemicellulose with preferences of 93.2 and 92.7%, respectively. In contrast, strains AS1, 65S3 

and AS4 had greater preferences for lignin of 56.5, 49.0 and 42.0%, respectively. Additionally, they 

consumed hemicellulose with greater preferences of 97.6, 68.7 and 61.8%, respectively.       

3.5 Discussion 
 

A variety of bacterial isolates were recovered from different samples of municipal waste and peat. 

Phylogenetic analysis of 16S rRNA gene sequences of all bacteria displaying cellulase activity on CMC 

plates revealed four main phyla of bacteria: Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes.  

Within these four phyla various genera of bacteria were isolated including Bacillus, Paenibacillus, 

Exiguobacterium, Rhodococcus, Arthrobacter, Microbacterium, Pseudomonas, Aeromonas, Duganella 

and Chryseobacterium. There is little research done on cellulase, let alone lignocellulase production from 

genera such as Duganella and Chryseobacterium; however, it is not surprising that several of these 

bacteria produce cellulases as these four phyla contain important genera of bacteria capable of 

biodegradation of organic compounds and these species can be found ubiquitously in the environment.  



100 

 

Therefore, these strains represent good potential candidates for greater lignocellulolytic activities 

including degradation of crystalline cellulose, xylanase activities and abilities to modify or even degrade 

lignin. 

Generally speaking, all of the isolates displayed good industrial potential for degradation of 

lignocellulosic biomass; however, some displayed greater potential. For example, from 20 isolated 

bacteria, a total of 6 could degrade filter paper in addition to soluble cellulose. Moreover, 12 isolates 

could degrade xylan, 5 of which were among those capable of degrading filter paper. Additionally, 5 

isolates displayed modification of lignin, while 2 of these isolates: 55S5 and AS1 a Bacillus sp. and 

Pseudomonas sp., respectively, displayed all 3 activities including degradation of crystalline cellulose, 

xylanase activity and modification of lignin. In the near future, our lab will focus particular attention on 

isolates 55S5 and AS1 for optimization of lignocellulolytic abilities of these strains on complex biomass 

such as barley straw and paper mill sludge. These two isolates displayed the greatest variety of activities 

and have great potential for industrial applications in the degradation of more complex biomass such as 

agricultural residues and energy crops.  

 Characterization of cellulase and xylanase producing bacteria has gained an immense amount of 

attention due to the readily available abundance of cellulosic and hemicellulosic carbon sources in the 

world, which can be degraded into reducing sugars and ultimately fermented to value-added by-products 

such as bioethanol [Ragauskas et al., 2006]. Therefore, evaluating these activities in our isolates is 

pertinent to finding an efficient lignocellulosic bacterium. As a result, it was important for us to 

distinguish those strains which can degrade amorphous and crystalline cellulose in addition to xylanase 

activity. Hence, we could obtain 5 isolates displaying activities towards soluble and crystalline cellulose 

in addition to activities on beechwood xylan ultimately leading us to distinguish the greatest 

lignocellulase-producing isolates: 55S5 and AS1.  
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Furthermore, it is no surprise that 5 of the isolates (including 55S5 and AS1) displayed evidence 

for modification of lignin in black liquor and pure lignin extracted from black liquor. Several researchers 

reported strains of Bacillus and Paenibacillus which displayed the abilities to decolorize kraft black liquor 

[Chandra et al., 2007; Chandra et al., 2008 and Hassan and Amr, 2009].  Moreover, Raj in 2010, reported 

the decolorization of black liquor by a newly isolated bacterium, Aneurinibacillus aneurinilyticus. 

Remarkably, after 6 days incubation, A. aneurinilyticus was able to reduce the colour of black liquor by 

58% and reduce lignin content by 43% [Raj et al., 2010]. Similarly, Chandra and Abhisshek recently 

reported in 2011 that mixed cultures of Citrobacter sp. could increase reduction of colour in black liquor 

to 79% and reduction in lignin to 60% after just 6 days incubation. Perhaps mixed cultures could serve to 

improve the activities of our isolates collective effects on lignin modification and carbohydrate 

degradation lending to greater lignocellulosic abilities. Most of our isolates were derived from similar 

sources, suggesting they co-exist in the environment and may therefore have great potential in the 

production of a lingocelluose-degrading bacterial consortium, which may be examined in the future. 

Although members of Pseudomonas species have not been as readily reported in the 

decolorization of black liquor, they are suggested to have ligninolytic activities.  For example, some 

Pseudomonas sp. have been recently described for the abilities to degrade dyes such as Malachite Green 

(MG) and Direct Orange 39 (Orange TGLL) with such lignases as peroxidases [Du et al., 2011 and 

Jadhav et al., 2010], thus explaining why our Pseudomonas sp. also has good potential for industrial 

degradation of lignocellulosic biomass.  

Of 20 isolates, not all could survive and proliferate in 1% black liquor, due to the toxicity 

associated with lignins and modified kraft lignins, including the remaining components of black liquor. 

The 10 strains could survive most likely due to an activation of their stress survival response systems 

[Guiliordori et al., 2007], as can be seen by the initial decline and then rebound in cell density prior to 5 

days incubation.  Although 10 strains could adapt and survive 21 days incubation in the presence of black 
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liquor only 5 strains caused a change in the colour of black liquor, however the colour did not decrease in 

absorbance but increased, corresponding to an increase in pH. There is minimal discussion regarding such 

an increase in colour because decreasing the colour in black liquor is important for paper mill industries 

which wish to detoxify the black liquor before release to the environment.  

Additionally, for the same strains, there was also an increase in the absorbance of lignin at 280 

nm, while the FTIR analysis revealed that there was a greater preference for carbohydrates like 

hemicellulose in addition to a notable change in lignin compared to our cellulase positive control C. 

xylanilytica which could not use lignin evident by the negative value. With the support of our FTIR 

analysis, we suggest that strains: AS1, AS4, 65S3, 65S5 and CH2OS1 all have the ability to modify lignin 

however the exact mechanism is still unknown despite recent tests for lignase activities including: 

manganese peroxidase (MnP), lipase (LiP), and Laccase (Lac) (data not shown).  

There are some speculations for the resultant increase in colour of black liquor after treatment 

however. Increase in reflectance at 280 nm could also be caused by increased concentration of proteins in 

solution which also absorb in this range as displayed in the Bradford assay [Bradford, 1976]. Moreover, 

some researchers have reported from ultraviolet spectra an increase in absorbance at 260 nm of white-rot 

fungi treated lignin; while others have reported an increase in peak absorbance to 360 nm during 

ultraviolet spectra analysis of Polyporus versicolor treated fungi. They propose the increase in absorbance 

to be due to structural changes such as a possible increase in acidic moieties and an increase in benzyl 

carbonyl groups and pheonolic units, respectively [Kirk and Lundquist, 1970; Thivend and Lebrevon, 

1969]. It has also been said that the structure, including intermonomer linkages and various functional 

groups give microorganisms the opportunity to make limited changes without necessarily affecting 

significant decomposition [Kirk, 1971].   Structural changes or modifications and even possibly by-

products in solution could be capable of increasing the pH which would thereby suggest the lignin is more 
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soluble. This could be valuable information in building a unique bacterial system for the decomposition 

of lignocellulosic biomass. 

 According to this study, we have identified two isolates: a Pseudomonas sp. AS1 and Bacillus sp. 

55S5, with potential for industrial use in the conversion of lignocellulosic biomass for the production of 

bioethanol and other valuable by-products such as organic acids. In addition, many of our isolates 

characterized here also have potential in industrial use, some of which are more efficient in cellulase, and 

xylanase production. Others may possess undiscovered lignase genes. These isolates lay the foundation 

for the current exploitation of these enzymes by further investigation.  Also, these strains may have great 

potential for developing bacterial consortia in the near future to enhance the decomposition of 

lignocellulosic biomass and help overcome costly hurdles being faced in the industrial production of 

biofuels.   
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Table 1. The BLAST search results for the sequenced cellulase producing isolates. 

  

 

 

 

 

 

 

 

 

 

  

 Isolate Identity 
(%) 

Likely genus 

 AS1 100 Pseudomonas 
Municipal AS2A 97 Rhodococcus 
Waste AS2B 100 Exiguobacterium 
 AS3 100 Arthrobacter 
 AS4 100 Microbacterium 
 CDS1B 99 Aeromonas 
 CDS2A 97 Chryseobacterium 
 CDS2B 100 Bacillus 
 CDS3 100 Pseudomonas 
 CTS1A 100 Bacillus 
 CTS1B 100 Bacillus 
 CTS2 100 Bacillus 
 GH201 100 Pseudomonas 
 55S1 99 Bacillus 
Peat 55S2 98 Duganella 
 55S5 100 Bacillus 
 65S3 97 Bacillus 
 65S5 96 Paenibacillus  
 6S1 100 Bacillus  
 6S4 100 Duganella 
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Figure Legend 
 

Figure 1. Twenty cellulase-producing isolates grown on CMC agar for 48 h at 28°C and grouped based 

on A) bacteria isolated from peat and B) the bacteria derived from municipal waste. Additionally, a 

positive and negative control, C. xylanilytica and E. coli JM109, respectively, are included in B.   

Figure 2. Phylogenetic tree produced from the alignments of 16S rDNA fragments from the isolates, 

presented in TreeView. Closer related isolates and their respective Phyla are outlined as indicated in the 

legend. The diameter of halos the isolates produced on CMC agar is respectively shown with a colour 

scale indicating small to large halos, qualitative cellulase activity.  

Figure 3. Qualitative results for the 6 isolates grown at 28°C and shaking at 180 rpm, capable of 

completely degrading filter paper within 10 days incubation: A) 6S1 Bacilus, B) 55S5 Bacillus, C) 

positive control C. xylanilytica, D) negative control E. coli, E) AS1 Pseudomonas, F) CDS1B Bacillus, 

G) CH20S1 Bacillus, H) CTS1B Bacillus.  

Figure 4.  Xylanase positive isolates on xylan agar grown for 48 h at 28°C, shown by the appearance of 

halos after staining with Gram‟s iodine solution. Grouped into A) bacteria isolated from peat and B) those 

isolated from municipal waste, including positive and negative controls (C. xylanilytica and E. coli 

JM1O9, respectively).   

Figure 5. A) Change in colour (Abs425nm) of 1% black liquor with recorded final pH and B) Survival of 

all isolates reported as cell density (log CFUml-1), for all isolates which can tolerate 1% black liquor for 

21 days incubation at 28°C, shaking 180 rpm. Isolates: AS1 (■), AS4 (♦), CH2OS1 (●), 65S3 (▲), 

CTS1B (□), CTS1A (◊), 65S5 (○), 55S1 (Δ), 55S5 (x), 6S1 (+).  
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 Figure 6. The percentage change in reflectance at 280nm of 0.1% pure kraft lignin after 21 days 

incubation at 28°C, shaking at 180 rpm with black liquor tolerant isolates (■) and compared to untreated 

sample (■).   

Figure 7. FTIR analysis of all potential lignin modifying isolates comparing percentage preference for 

hemicellulose and lignin over cellulose after growth 21 days growth with 1% barely straw at 28°C, 

shaking 180 rpm. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

Figure 1  

*Controls: C. xylanilytica (positive) and E. coli JM1O9 (negative). 
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Figure 5B 
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Figure 7 
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4.1 Abstract 
 

β-glucosidase A (bglA) in Clostridium thermocellum 27405 was increased by expression from 

shuttle vector pIBglA in attempts to increase cellulase activity and ethanol titre by lowering the end-

product inhibition of cellulase.  Through a modified electrotransformation protocol C. thermocellum 

transformant (+MCbglA) harbouring pIBglA was produced. The β-glucosidase activity of +MCbglA was 

2.3- and 1.6-fold greater than wild-type (WT) during late log and stationary phases of growth. Similarly, 

total cellulase activity of +MCbglA was shown to be 1.7-, 2.3- and 1.6-fold greater than WT during, log, 

late log and stationary phases of growth. However, there was no significant correlation found between 

increased cellulase activity and increased ethanol titres for +MCbglA compared to the WT. C. 

thermocellum has industrial potential for consolidated bioprocessing (CBP) to make a more cost effective 

production of biofuels; however, the hydrolysis rate of the strain is still hindered by end-product 

inhibition. We successfully increased total cellulase activity by increased expression of bglA and thereby 

increased the productivity of C. thermocellum during the hydrolysis stage in CBP. Our work also lends 

insights into the complex metabolism of C. thermocellum for future improvement of this strain.  

 

4.2 Introduction 
 

The production and commercialization of biofuels has gained a great deal of attention and support 

yet there remain some major bottlenecks with its current status; namely, there is a lack of biocatalysts that 
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can work efficiently at high temperatures and under extreme pH conditions. Moreover, few 

microorganisms produce all the required enzymes for efficient hydrolysis of hemicellulose and cellulose. 

Additionally, hydrolysis and fermentation of lignocellulosic biomass-derived sugars requires separate 

steps (i.e. fungal enzymes and Saccharomyces cerevisiae, respectively), which in turn is less cost-

effective.1 However, Clostridium thermocellum is a great potential candidate for biofuel production due to 

its ability to combine cellulase production and saccharification of biomass with fermentation in a process 

referred to as consolidated bioprocessing (CBP).2 In addition, C. thermocellum is a Gram positive, 

anaerobic, thermophilic, ethanologenic and cellulosome-producing bacteria. This means that during the 

production of biofuels from cellulosic and hemicellulosic biomass, C. thermocellum could decompose the 

biomass using highly versatile cellulosomes in addition to free cellulases and hemicellulases, and ferment 

6-carbon sugars to ethanol without the addition of oxygen. Also, the thermophilic nature, (growth 

optimum 60°C), would allow easier extraction of the ethanol which requires higher temperatures to 

volatilize and precipitate.3 Currently, C. thermocellum has yet to be widely exploited in the production of 

biofuels due to several limiting factors. For example, C. thermocellum can hydrolyze both cellulose and 

hemicellulose; however, it can only ferment 6-carbon sugars and thus 5-carbon sugars are not being 

utilized. Additionally, end-products of fermentation such as lactic and acetic acids, as well as ethanol can 

be toxic to C. thermocellum. Also, stresses such as toxicity and oxygen exposure can cause sporulation 

because it is a spore-forming bacterium.4,5 Further, cellulase activity in Clostridium cellulolyticum is 

shown to be inhibited by end-products such as cellobiose.6 Inhibition of cellulase activity ultimately 

represents one of the greatest limitations to using C. thermocellum for biofuels. Without maximum 

hydrolysis of cellulosic biomass we cannot begin to consider optimum ethanol production and we cannot 

begin to change the economic viability of biofuels.  Researchers have suggested and shown that by adding 

exogenous β-glucosidase isolated from Aspergillus niger one can increase the total cellulase activities of 

the cellulosome from C. thermocellum by 10-fold, in vitro.7 However, the purification and then addition 

of exogenous β-glucosidase would not be cost-effective for large-scale biofuel production. The genetic 
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modification of the thermophilic anaerobe C. thermocellum, has been limited due to the strict restriction 

endonuclease system, which is described as a Dam+ phenotype.8,9 Also, many Gram positive bacteria 

with their thick cell walls have been reported as difficult to electrotransform.10,11 In this study, we have 

increased the copy number of β-glucosidase A gene (bglA) in C. thermocellum 27405 by 

electrotransforming it with a newly constructed shuttle vector (pIBglA) to ultimately increase cellulase 

activity and evaluate the overall effects on valuable end-product formation such as ethanol.  

 

4.3 Materials and Methods 
 

4.3.1. Media, strains and cultivation conditions 

The strain Clostridium thermocellum (ATCC 27405) was obtained from the American Type Culture 

Centre through Cedarlane in Canada. C. thermocellum cells were grown at 60°C in the chemically defined 

medium Clostridium thermocellum Medium (ATCC media 1191), which according to the ATCC protocol 

contains a mineral elixir, reducing solution and vitamin solution. Either cellobiose or Avicel were 

included as the carbon source for appropriate experiments at a concentration of 0.5% and 1%, 

respectively.12,13 The following antibiotics were used for all growth, experiments transformant to maintain 

selection: 100 μg/ml ampicillin and 20 μg/ml lincomycin (Sigma-Aldrich, Canada). All of the work in this 

study using C. thermocellum cells was done inside a Coy Anaerobic Chamber (Coy Laboratories, USA) 

under 5% hydrogen, 95% nitrogen mixed atmosphere, except applying the electric potential to the cells, 

centrifugation of cells and genomic DNA or enzyme extraction. The other strain used in this study 

Escherichia coli JM1O9, was grown at 37°C in Luria Bertani broth or on Luria Burtani agar containing 

100 μg/ml of ampicillin for selection of transformants when appropriate.  
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4.3.2. Cloning β-glucosidase A from C. thermocellum 

The genomic DNA of C. thermocellum was extracted from 3 ml of 48 h broth cultures using the 

Fungi/Yeast Genomic DNA Isolation Kit (Norgen Biotek Corporation, Canada) according to the 

instructions for Gram positive bacteria provided by the supplier. Two primers, BglPFW and BglSRV 

(shown in table 1), were used to amplify the complete sequence of bglA from C. thermocellum with 

promotor and temerinator. The primers were designed to contain the restriction cut sites for PstI and SacI 

for BglPFW and BglSRV, respectively, in addition to nucleotides complementary to bglA. The PCR 

reaction mixtures contained 10 ng of C. thermocellum genomic DNA, 10 pmol of both forward and 

reverse primers, 10x Taq buffer with 500 mmol KCl, 25 mmol/l MgCl2, 0.2 mmol deoxynucleoside 

triphosphate, and 5 U Pfu DNA polymerase per 50 μl reaction. The PCR program was as follows: primary 

denaturation 3 minutes at 95°C, followed by 35 amplification cycles consisting of denaturing at 95°C for 

1 minute, annealing for 1 minute at 54°C, and extension at 72°C for 1 minute, upon completion of 35 

amplification cycles a final extension step was done at 72°C for 10 minutes. The resulting amplicon of 

approximately 1.3 kb was confirmed by sequencing on ABI 3730xl automatic sequencer (Eurofins MWG 

Operon, Canada). The complete bglA was confirmed by complementation and alignment of sequencing 

results using DNAMAN software. The bglA product was then digested with restriction enzymes PstI and 

SacI (Fermentas, Canada) by combining 5 μl of bglA PCR product with 0.6 μl of SacI and PstI and 2 μl 

of 10x Tango buffer, incubated for 3 h 37°C.  

4.3.3. Source and construction of plasmid pIBglA 

Plasmid pIKm1 was a gift from Lee Lynd (Dartmouth College, USA). The pIKm1 DNA was isolated 

from E. coli using Ultra Clean 6 Minute Mini Plasmid Kit (Mo Bio Laboratories, Canada) following the 

directions provided by the supplier. No sequence information was available for plasmid pIKm1 therefore 

we designed the primers KmFW and KmRV, (Table 1). The primers were designed within the kanamycin 

cassette gene to sequence the flanking multiple cloning sites. Restriction maps were produced from 
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resulting sequences using DNAMAN software and cross referenced to the sequence of bglA. Two 

restriction endonucleases were chosen and used for digestion of pIKm1: PstI and SacI (Fermentas, 

Canada), restriction digest was performed by combining 0.8 μg/μl of pIKm1 DNA with 6.3 U of SacI and 

2 μl of 10X Tango Buffer (Fermentas), this mixture was then incubated at 37°C in a water bath for 1 h. 

After 1 h time, 6.3 U of PstI was added and then the mixture was incubated for an additional 2 h at 37°C. 

Digestion resulted in two bands, one approximately 1.5 kb and the other approximately 5 kb. The 5 kb 

representing the remainder of the vector minus most of the kanamycin cassette was gel extracted using the 

NucleoSpin Extraction II kit (Clonetech Laboratories, Canada) following instructions provided by the 

distributor. Previously cloned, digested and cleaned bglA were ligated to the approximate 5 kb vector 

using T4 DNA ligase (Fermentas, Canada). The ligation reaction mixture contained 2 μl of ligation 

buffer, 5 U T4 DNA ligase, 15 μl of 80 ng μ/l bglA DNA and 2 μl of 100 ng μ/l of digested pIKm1 DNA, 

and allowed to incubate at ambient temperature for 3 hr. After ligation, the resulting DNA was 

transformed to E. coli JM1O9 using 40 μl of prepared electrocompetent cells premixed with 1 μl of 

ligation reaction in a 0.4 cm cuvette at a capacitance of 25 μF using the Bio- Rad Gene Pulser apparatus 

(Bio-Rad Laboratories, Canada). Transformants were screened using colony PCR for the presence of two 

genes: bglA and ampicillin (amp) (Table 1).  

4.3.4. Electrotransformation of C. thermocellum with pIBglA 

Electrocompetent C. thermocellum cells were prepared precisely following the method described by 

Tyurin et al. in 2004, however no isoniacin was used.14 Final cell suspension was approximately 9x1010 

cells/ml and 40 μl aliquots were divided into 0.4 cm gap electroporation cuvettes and chilled on ice for 5 

minutes. One microlitre of ~2 μg of pIBglA DNA extract was premixed under anaerobic conditions with 

the chilled 40 μl cells. The cuvettes with cell + DNA on ice were removed from the anaerobic chamber 

120 and immediately place under a constant stream of N2 where the Bio-Rad Gene Pulser apparatus was 

used to electroporate the cells at a capacitance of 25 μF. Still under N2, the cells were then immediately 
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removed from the cuvette with a 1 ml syringe and injected through the rubber stopper of hungate tubes 

(Bellco Glass, Canada) in prewarmed (55°C) C. thermocellum media supplemented with 0.5% (w/v) 

cellobiose and 0.75% (w/v) agar and 100 μg/ml ampicillin and 20 μg/ml lincomycin. PCR was carried out 

with primers designed for the ampicillin gene (Table 1) using total DNA from the ampicillin-lincomycin 

resistant clones as a template. To determine the approximate stability of the vector, cell densities were 

measure by reading O.D.600nmm absorbance readings every 24th hour with the the addition of antibiotics 

to C. thermocellum medium over 8 subcultures and without the addition of antibiotics for 8 generations in 

separate triplicate experiments.  

4.3.5. β-glucosidase activity of wild-type C. thermocellum and C. thermocellum+MCbglA  

The β-glucosidase activity of wild-type- (WT-) C. thermocellum and the transformant containing multiple 

copies of bglA (MCbglA-C. thermocellum) was assayed by measuring the increase of absorbance at 

400nm via the release of p-nitrophenol from p-nitrophenyl-β-D-glucopyranoside (PNPG).15 Briefly, WT- 

and MCbglA- C. thermocellum were pre-cultured for 48 h in 6 ml of Clostridium broth with 1% (w/v) 

cellobiose as the sole carbon source (n=3). Then 200 μl of each culture were subsequently inoculated in 

triplicate to 40 ml of the same broth. Growth was monitored over 48 h during batch culture and 3 ml of 

samples were collected for each strain at early exponential phase (0.25 O.D.600nm), late exponential 

phase (0.5 O.D.600nm) and stationary phase (0.7 O.D.600nm) in triplicate for enzyme analysis. To 

extract total cellular β-glucosidase, cells were harvested at 17,000 g for 1 min; then washed twice with 

chilled 100 mM PBS (pH 7.0) before final resuspension in 1 ml of PBS. Microbeads were filled to 0.5 μl 

mark of the 1.5 ml microcentrifuge tubes then samples were vortexed at full speed for 5 min, then chilled 

in an ice bath for 5 min; this procedure was repeated 2 more times for a total of 15 min vortexing. 

Following, the samples were centrifuged at 17,000 g for 1 min. In a 96 well microtitre plate, 50 μl of 100 

mM PBS (pH 7.0) containing 4 mM PNPG was loaded per well, plus the addition of 50 μl of enzyme 

extract for each strain and each growth phase in triplicate. The microtitre plate was then incubated at 
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55°C for 30 min. Thereafter, the reaction was stopped by adding 100 μl of chilled 1M Na2CO3, followed 

with a 10 min incubation at 4°C. The absorbance was measured on a Bio-Rad Laboratories xMark 

spectrophotometer at 400 nm. The β-glucosidase activity was defined as the amount of p-nitrophenol 

(PNP) released per 30 min incubation.15  

 

4.3.6. Total cellulase activity of wild-type and +MCbglA C. thermocellum  

Total cellulase activity was defined as the amount of glucose and cellobiose released from 1% Avicel and 

expressed in glucose equivalents (µM). Wild-type C. thermocellum (WT) and C. thermocellum+MCbglA 

(+MCbglA) were cultured for 48 h in 6 ml of C. thermocellum media supplemented with 1% Avicel (w/v) 

as the sole carbon source (n=3), then 200 μl of each strain was subsequently transferred in triplicate to a 

fresh new 40 ml of the same media for batch cultures. Samples were collected in 1.5 ml aliquots from 

each vial to determine total cellulase activity during exponential (0.25 O.D.600nm), late exponential (0.5 

O.D.600nm) and stationary (0.7 O.D.600nm) phases of growth. A microplate assay using the di-

nitrosalicylic acid (DNS) method to measure reducing sugars, modified from Xiao et al.16 was used.  

Briefly, 60 μl of supernatant from each strain during each growth phase was added to a well in triplicate, 

a 120 μl of DNS was also added to each well. The plate was then incubated at 95°C for 5 min. Finally, 36 

μl was removed from each well and added to 160 μl of ddH2O, mixed, and then the absorbance was read 

on a Bio-Rad xMark spectrophotometer at 545 nm. 

4.3.7. Analytical methods for ethanol  

Broth samples for ethanol analysis were collected from batch cultures used to measure enzyme activities 

from trials of WT- and +MCbglA- C. thermocellum on both cellobiose and Avicel containing media 

previously mentioned, by aliquoting 1.5 ml of culture supernatant into 1.5 ml Eppendorf tubes. All 

samples were stored at -20°C until analysis. The samples were then analyzed using an Agilent 6850 Gas 
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Chromatograph fitted with a Carbowax column (30m x 0.32 mm, film thickness 0.25 μm) and flame 

ionization detector. In preparation for analysis, the samples were thawed at room temperature, centrifuged 

at 17,000 g for 5 min and 1 ml of each sample was transferred to a fresh 1.5 ml Eppendorf tube. Prior to 

injection, each sample was spiked with 100 μl n-butanol, which acted as an internal standard. Injection 

volume was 1μl and the inlet was run splitless. Nitrogen was used as a carrier gas with a flow rate of 1.5 

ml/min and the run time was 5 min/sample. The injection port temperature was set at 250°C, the column 

temperature was isothermally set at 75°C, and the detector temperature was 300°C. Standards were 

prepared the day of analysis using anhydrous ethanol and they were also spiked with 100 μl n-butanol per 

1 ml standard. 

4.4 Results 
 

4.4.1. Construction of plasmid pIBglA 

Plasmid pIBglA was constructed and transformed into Dam+ E. coli JM109. Due to the enzymatic 

limitations observed during experiments using SacI, which according to the distributer notes has several 

inhibitors causing low cutting efficiency, transformation of ligation products resulted in 1 positive bglA-

containing transformant from 68 ampicillin positive transformants. Plasmid extraction of pIBglA 

followed by 1% agarose gel electrophoresis confirmed an approximate size of 7 kb. Sequencing revealed 

the complete cloned sequence of bglA of approximately 1,800 bp.  

4.4.2. Verification of C. thermocellum electrotransformation with pIBglA 

The transformation of C. thermocellum with pIBglA was completed and selection was based on a 

combined resistance to appropriate concentrations of ampicillin and lincomycin in semi-solid agar. 

Electrocompetent C. thercmocellum cells were transformed at a rate of 5.17±3 transformants ml-1 of C. 

thermocellum media agar supplemented with appropriate concentrations of ampicillin and lincomycin. 

Thus, strain C. thermocellum+MCbglA (+MCbglA) was created. No spontaneous ampicillin-lincomycin 
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resistant C. thermocellum cells were detected after 6 days incubation. PCR was carried out as shown in 

Figure 1, the presence of the ampicillin gene resulted in a ~530 bp product (lane 2), confirmed by pIBglA 

plasmid DNA as a positive control (lane 3) and negative control (WT total DNA) (lane 4). Growth in 

ampicillin exhibited the same growth rate upon subuculturing; however, the loss of ampicillin resistance 

when continuously subcultured without antibiotics was observed at approximately the 5th generation as 

was observed through O.D.600nm absorbance readings (data not shown here). 

4.4.3. β-glucosidase activity of wild-type C. thermocellum  and C. thermocellum+MCbglA 

The β-glucosidase activity, was evaluated for WT- and +MCbglA- C. thermocellum and was found to be 

an average 1.9-fold greater in +MCbglA directly correlating with an increase in expression of β-

glucosidase from plasmid pIBglA. As seen in Figure 2, the β-glucosidase activity increased during late 

log and stationary phases of growth for +MCbglA and were found to be 2.3- and 1.6-fold greater than WT 

with a statistical significance of p<0.05 (Student‟s t test). However, biological and technical replicates 

revealed there was no significant difference in β-glucosidase activity during early log phases of growth 

for WT and +MCbglA. 

4.4.4. Total cellulase activity of wild-type and +MCbglA C. thermocellum  

The total cellulase activity, the amount of glucose equivalents released (μM) from 1% Avicel, of WT- and 

+MCbglA- C. thermocellum was evaluated to determine if an increase in expression of bglA could 

increase the overall cellulase activity during batch culture trials. The results in Figure 3 show that total 

cellulase activity of the +MCbglA was observed to be 1.7-, 2.3- and 1.6-fold significantly greater than the 

activity of WT during log, late log and stationary phases of growth, respectively, p<0.05 (Student‟s t test). 

Thus, total cellulase activity was an average 1.9-fold greater for +MCbglA compared to the WT. 
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4.4.5. Ethanol analysis for wild-type and +MCbglA C. thermocellum  

WT- and +MCbglA- C. thermocellum were grown in 1.5% cellobiose and 1% Avicel medium. Samples 

were taken when the cultures reached log and stationary phases of growth and analyzed for ethanol 

concentration (Figure 4). When +MCbglA reached stationary phase, the average ethanol concentration in 

the media was 2.5 g/l. This is slightly higher than what was observed for the WT C. thermocellum (1.9 

g/l), but this difference was deemed not to be statistically significant. Likewise, +MCbglA produced more 

ethanol during log phase growth, but it was not significantly different from the WT. Ethanol production 

by +MCbglA was also investigated in Avicel medium, and it yielded similar results to the cellobiose 

trials. No significant differences were observed between the bglA copy number mutant and the WT in 

both the log and stationary phases. Little difference was observed between ethanol concentrations at log 

and stationary phases.  

 

4.5 Discussion 
 

The opportunity to use C. thermocellum for CBP in the biorefining industry has exceptional potential if 

we can overcome some of the challenges facing its development. The majority of difficulty working with 

thermophilic anaerobic bacterial systems arises from the slow progress in genetic manipulation of these 

systems. Plasmid pIKM1 bearing a kanamycin cassette and with Gram negative and positive origins of 

replication was constructed by Mai et al. in 1997 and transformed into Thermoanaerobacterium sp. strain 

JW/SL-YS485 a close thermophilic anaerobic strain to C. thermocellum.17 Then, it was not until 2004, 

that Tyurin et al. developed an efficient protocol to transform C. thermocellum 27405 among two other C. 

thermocellum strains DSM 1313 and 4150 with plasmid pIKM1 using a uniquely designed 

electroporation system.14 More recently in 2010, Lin et al. developed a minimally invasive ultrasound-

based sonoporation method for simple and rapid transformation of thermophilic Gram positive 

anaerobes.18 In doing so, they transformed Thermoanaerobacterium sp. strain X514 with pIKM2 
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harboring a C. thermocellum β-1-4- glucanase gene, endoglucanase activity was observed in both 

electroporated and sonoporated X514 samples. Now for one of the first times reported, we expressed a 

functional gene (β -glucosidase A) from a Dam methylated plasmid pIBglA (constructed from pIKM1) in 

C. thermocellum 27405 using a modified electroporation protocol. In this research article, we strived to 

develop a C. thermocellum strain which can have greater total cellulase activity by reducing substrate 

specific end-product inhibition. Thus, we proposed increasing the copy number of β-glucosidase. The 

BglA gene was chosen because it is fully sequenced and also because it‟s native to C. thermocellum. 

Thus, this gene is suitable for expression in its thermophilic host. Due to the current lack of confident 

recombinant systems for C. thermocellum and for a concern in disruption of vital genes we chose to use 

plasmid pIKM1 shuttle vector with low copy number to increase expression of BglA without 

overburdening the cell.  

One of the greatest limitations to using any whole microorganism for hydrolysis of cellulose and 

hemicellulose is the end-product inhibition. Cellobiose is an inhibitor of cellulase activity in C. 

thermocellum and a previous report showed that the exogenous addition of β-glucosidase purified from 

Aspergillus niger could increase cellulase activity by 10-fold in C. thermocellum.7 Moreover, in 

Trichoderma reesei transformants the heterologous expression of a β-glucosidase gene from Penicillium 

decumbens resulted in an average 30% increase in filter paper activity (representing total cellulase 

activity).19 Therefore one may hypothesize that if there is an increase in copy number of β-glucosidase in 

C. thermocellum, there would also be an increase in β-glucosidase activity and this would ultimately 

increase total cellulase activity. In this study, the increase in copy number of bglA significantly increased 

both β-glucosidase activity as well as total cellulase activity during late log and stationary phases of 

growth by an average of 2.0-fold and 1.9-fold, respectively, for +MCbglA C. thermocellum over WT. 

Thus it appears the increase in β-glucosidase activity of C. thermocellum is also proportional to the 

observed increase in total cellulase activity. However, it was hypothesized here that the increase in total 
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cellulase activity would also result in a likewise increase in ethanol production during batch fermentation 

trials, due to an increase in glucose catabolism. 

 Nonetheless, there was no significant difference in ethanol production between WT- and 

+MCbglA- C. thermocellum suggesting that total cellulase activity is not directly proportional to 

fermentative metabolism of glucose under batch fermentation conditions. We suggest that this could be 

due to a metabolic overburden in +MCbglA from the presence of the shuttle vector pIBglA. This could 

potentially decrease the resistance of +MCbglA to toxic end-products such as ethanol, lactic and acetic 

acids. The toxicity of end-products such as ethanol in the fermentation of glucose for ethanogenic 

microorganisms such as C. thermocellum has gained a lot of attention in research for biotechnological 

implications. Ethanol is known to inhibit glycolytic enzymes and cause damage to cell membranes, thus 

inhibiting cell growth.20,21 From a commercial perspective titres of ethanol greater than 40 g/l are desired, 

for cost effective recovery.22 Thus, researchers have found the need to develop greater ethanol tolerant C. 

thermocellum strains such as by adaptation to levels as high as 50-55 g/l.22,23 However, to date, there 

remains a discrepancy whether increased ethanol tolerance can attribute to greater ethanol titres. The 

research presented here, also explored whether increased cellulase production could lend to an increase in 

ethanol. However, due to the lower levels of ethanol reported in this study, we suggest +MCbglA strain 

be produced in the future using recombinant DNA techniques to eliminate the stress of maintaining a 

plasmid.   

Anaerobic catabolism is a challenging yet refined process in C. thermocellum where the modest 

availability of ATP needs to support growth, cellulase production and the uptake; a complex process 

which still requires exploration.24,25  It has been shown that the uptake of oligosaccharides with the 

combined intracellular phosphorolytic cleavage of β-1,4-glucosidic bonds is bioenergetically favourable 

when C. thermocellum is specifically grown on cellulose.25 Despite the lack of  regeneration of ADP co-

factors produced through the hydrolytic activity of BglA, a greater overall cellulase activity could be 
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observed in +MCbglA compared to the WT due to a reduction in the cellulase end-product inhibitor 

cellobiose. Additionally, the lack of increased ethanol production shown here further lends insights into 

the complex metabolism of glucose in C. thermocellum.    

4.1 Conclusion 

Our work clearly demonstrates that by increasing expression of native BglA there will be a nearly 

proportion increase in total cellulase activity of C. thermocellum leading to the production of a more 

industrially applicable C. thermocellum. The hydrolysis step is a rate limiting step in the production of 

biofuels; however, more work on +MCbglA strain is required to increase ethanol titre for CBP potential. 

We will continue to test the following hypothesis: adapted increased tolerance to toxic end-products of 

+MCbglA will lead to increased ethanol production, in hopes to lend more insight into the application of 

C. thermocellum in biofuel production.     
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DNA 
target Forward 5‟-3‟ Reverse 5‟-3‟ 

Product 
(bp) 

BglA 
BglPFW-
ACAGAGCTCAGCTCCATTGTTGCTTAGC 

BglSRV-
AATCTGCAGACTGGTAAGTGATTGCCGG 1867 

pIKM1  KmFWD- CTGGGAAGAAGACACTCCA KmRV- TGGAGTGTCTTCTTCCCAG  N/A 
Ampicillin AmpFW- CGTTCATCCATAGTTGC AmpRV- GCACGAGTGGGTTACATCG 534 

Table 1. Primers used in this study. 
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Figure legend 
 

Figure 1. PCR amplification for confirmation of ampicillin fragment (~500bp). Lanes: 1. 1kb ladder, 2. 
+MCbglA total DNA, 3. plasmid pIbglA DNA (positive control), 4. WT total DNA (negative control).  

Figure 2.  The β-glucosidase activity of WT (■) and MCbglA (■) during log, late log and stationary 
phases of growth and expressed as the amount of p-nitrophenol (µM) released after 30 min incubation 
with 4 µM PNPG.    

Figure 3.  The total cellulase activity of WT (■) and MCbglA (■) during log, late log and stationary 
phases of growth and expressed in glucose equivalents (µM) released from 1% Avicel.  

Figure 4. The ethanol titres (g l-1) of WT (■) and MCbglA (■) produced from batch ferementation trials 
on cellobiose and avicel containing mediums. 
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Chapter 5: Development of a stable Clostridium thermocellum and 
Thermoanaerobacterium saccharolyticum co-culture for industrial production 
of bioethanol  
 

In preparation 

Authors: Miranda Maki, Lachlan Armstrong, Kam Tin Leung, Wensheng Qin  

 

5.1 Abstract 
 

The Clostridium thermocellum and Thermoanaerobacterium saccharolyticum co-culture has potential for 

application in the industrial production of biofuels. This co-culture has been favoured by researchers 

because of its potential to consolidate hydrolysis and fermentation steps in a process of consolidated 

bioprocessing (CBP) and potentially increase bioethanol titres in biofuel production by maximizing 

fermentation of 5- and 6-carbon sugars. However, there is little knowledge on the industrial application of 

this kind of co-culture including substrate conditions and the number of generations, all in conjunction 

with the effect on ethanol titres. The goal of this study was to develop a stable co-culture of C. 

thermocellum 27405 and T. saccharolyticum 31097 which can produce greater ethanol titres than mono-

cultures in batch fermentation. Comparison of C. thermocellum and T. saccharolyticum growth in 

reducing sugar (1% (w/v) cellobiose and 0.5% (w/v) xylose) and polysaccharide (1% (w/v) Avicel and 

0.5% (w/v) cellobiose) medium, showed that T. saccharolyticum could grow 2-fold faster in reducing 

sugar medium compared to C. thermocellum, whereas C. thermocellum grew to 2.3-fold greater turbidity 

in polysaccharide medium in mono-cultures. Correspondingly, co-culture batch fermentation trials 

revealed that both strains could only co-exist for one generation in reducing sugar medium, as confirmed 

by biomarker genes (bglA and xylB, respectively) detected by PCR, while in the consecutive generations 

only T. saccharolyticum was detected. In polysaccharide medium, both strains were detected for a 

continuous 4 generations in batch fermentation trials, using the same biomarker genes. After the fourth 
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generation, the co-culture requires re-establishing or further media optimization due to growth inhibition 

of strains, possibly a consequence of toxic by-products such as ethanol.  Additionally, the ethanol titres 

also increased by 2.01-fold in the first and second generation compared to the mono-cultures. However, 

third and fourth generations did not have significantly different ethanol titres. Nonetheless, C. 

thermocellum and T. saccharolyticum co-culture has potential application if added during the hydrolysis 

stage of complex polysaccharides but not if added to simple sugars such as mono-, di-, or short oligo-

saccharides of the fermentation stage. 

5.2 Introduction 
 

In the world today, pressures are mounting towards the development of an economically feasible, 

sustainable and „greener‟ fuel source. The bioconversion of lignocellulosic biomass into products such as 

bioethanol, offers potential towards a cleaner renewable fuel source; however, the current process lacks 

economic feasibility mainly due to costly pretreatment and rate-limiting hydrolysis (McMillan, 1997; 

Farrell et al., 2006).  Presently, bioconversion of lignocelluloses is a multi-step process; in particular, it 

requires the use of enzymes typically produced by Trichoderma reesei in a step called hydrolysis or 

saccharolysis, then in a separate step referred to as fermentation, yeast and/or bacteria are used to ferment 

5- and 6-carbon sugars to ethanol.  

The use of Clostridium thermocellum has been suggested by many researchers because of its 

ability to combine the hydrolysis and fermentation steps in a process referred to as consolidated 

bioprocessing (CBP) (Demain et al., 2005; Maki et al., 2009). C. thermocellum has one of the highest 

rates of hydrolysis for microcrystalline cellulose, comparable to T. reesei. Additionally, C. thermocellum 

is a Gram positive, anaerobic, thermophile, thus there would be no additional costs required for aeration, 

as well as less costs associated with cooling after pretreatment and reheating for ethanol evaporation 

(Demain et al., 2005). However, there are some important limitations; despite the ability to hydrolyze 



140 

 

both hemicelluloses (5- and 6-carbon sugars) and celluloses (glucose monomers). C. thermocellum can 

only ferment 6-carbon sugars; thus, the 5-carbon sugars would fall to waste.    

Co-culturing of C. thermocellum with a microorganism which can ferment 5- and 6-carbon sugars 

to ethanol has been readily suggested (Ng et al., 1981; Mori 1990; Demain et al., 2005). C. thermocellum 

has been shown to be amenable in growth with several closely related thermophilic anaerobic bacteria 

such as Clostridium thermosaccharolyticum, now classified as Thermoanaerobacterium saccharolyticum, 

(Venkateswaren and Demain, 1986; Saddler and Chan, 1985), Clostridium thermohydrosulfuricum (Ng et 

al., 1981; Saddler and Chan, 1985; Germain et al., 1986), Thermoanaerobacter ethanolicus (Wiegel and 

Ljungdahl, 1979) and Thermoanaerobium brockii (Lamed and Zeikus, 1980). Specifically, in 2005 

Demain et al. proposed a model whereby C. thermocellum would be amenable to grow with 

Thermoanaerobacterium saccharolyticum, an anaerobic thermophilic clostridia which has the ability to 

ferment 5- and 6-carbon sugars to ethanol. Thus, C. thermocellum would hydrolyze the cellulose and 

hemicelluloses but only ferment 6-carbon sugar products, while simultaneously T. saccharolyticum has 

the ability to ferment 5- and 6-carbon sugar products (Demain et al., 2005).  

 Bacteria co-exist in the environment living in concert with other microorganisms, sometimes in 

competition and while others maintain symbiotic relationships. Further still, some bacterial species may 

inhibit growth and others still promote growth. Thus, bacterial consortia have often been described as 

complex networks where the co-existence of all the microorganisms in a stable co-culture depends on a 

variety of factors including growth requirements such as temperature, media (carbon source) and 

atmosphere of each strain involved, not to mention the interactions of each strain in the community as 

previously described (Kato et al., 2005; Kato et al. 2008).   

The use of co-cultures for the industrial bioconversion of lignocelluloses is premature; however it 

represents a plausible means in the use of C. thermocellum for CBP. Another possibility to improve 

ethanol titres through the fermentation of 5-carbon sugars could include metabolic engineering; however, 
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there are limited advances in the genetic manipulation of this anaerobic thermophile with a strict 

restriction endonuclease system (Klapatch et al, 1996). By gaining more knowledge, including the 

generation times and inoculation times, one could potentially develop a stable co-culture with T. 

saccharolyticum to improve the use of C. thermocellum for CBP.   

In this study, we strive to further understand and develop a more stable co-culture of C. 

thermocellum and xylose-fermenting T. saccharolyticum to improve ethanol titres and application for 

CBP in the conversion of lignocellulosic biomass to bioethanol.   

 

5.3 Materials and Methods 
 

5.3.1. Media, strains and cultivation conditions 

The strains Clostridium thermocellum (ATCC 27405) and Thermoanaerobacterium saccharolyticum 

(ATCC 31907) were purchased from the American Type Culture Collection through Cedarlane Labs, 

Canada. C. thermocellum mono-culture cells were grown at 57°C in chemically defined Clostridium 

thermocellum Medium (ATCC medium 1191) with a mineral elixir, reducing solution and vitamin 

solution according to the ATCC recipe and T. saccharolyticum mono-cultures were grown in a rich 

chemically undefined beef liver medium for anaerobes (ATCC medium 38), also at 57°C. Two co-culture 

media: one reducing sugar and one polysaccharide, were developed here using Clostridium thermocellum 

medium as the base. Reducing sugar medium contained 1% (w/v) cellobiose and 0.5% (w/v) xylose; 

whereas, the polysaccharide medium contained 1% (w/v) Avicel and 0.5% (w/v) beechwood xylan, as the 

sole carbon sources. All of the work in this study using C. thermocellum and T. saccharolyticum cells was 

done inside a Coy Anaerobic Chamber (Coy Laboratories, USA) under 5% hydrogen, 95% nitrogen 

mixed atmosphere, except when reading the cell optical densities.  
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5.3.2. Growth curve analysis on reducing sugar and polysaccharide media 

Cells of C. thermocellum and T. saccharolyticum were individually inoculated under anaerobic conditions 

to 6 ml of reducing sugar and polysaccharide co-culture medium in 200 µl aliquots from 6 ml of 48 h 

cultures in their respective growth mediums. After 48 and 72 h of growth for reducing sugar and 72 h of 

growth for polysaccharide medium, respectively, they were subcultured one additional time, as previously 

described. C. thermocellum was grown for 72 h, while T. saccharolyticum for 48 h in reducing sugar 

medium due to the observed growth rate difference in them, while both had slower obsevered growth 

rates in polysaccharide medium.  

 Then, after 48 and 72 h or 72 h growth 500 µl of each strain were then inoculated to 40 ml of reducing 

sugar and polysaccharide co-culture medium in triplicate, respectively, creating an initial cell density of 

approximately 0.15 O.D.600nm. Triplicate samples of 300 µl were taken from each vial at various intervals 

for reducing sugar and polysaccharide medium: 0, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 41, 44, 48, 52, 

46, 60, 64 h; and 0, 24, 30, 35,40, 45, 50, 55, 60, 65 and 70 h, respectively. Each sample was loaded in 

triplicate to a 96-well microtitre plate and the absorbance at 600 nm was read using an xMark microplate 

spectrophotometer (Bio-Rad Laboratories, Canada).   

5.3.3. Co-culture and mono-culture batch culture trials 

As previously mentioned, cells of C. thermocellum and T. saccharolyticum were pre-grown twice in 

reducing sugar and polysaccharide co-culture media before final growth in 40 ml of appropriate co-

culture media to ~0.6 O.D.600nm. To create co-cultures, the growth curves were used to determine log 

phase inoculation times for each strain (C. thermocellum and T.saccharolyticum) from reducing sugar and 

polysaccharide co-culture media. For reducing sugar media, due to the accelerated growth rate of T. 

saccharolyticum compared to C. thermocellum cells were inoculated in triplicate to 50 ml of reducing 

sugar media in a 2:1 ratio for C. thermocellum and T. Saccharolyticum, respectively, based on volume 

using cell cultures of similar O.D.600nm ~0.6. However, to develop co-cultures in polysaccharide medium, 
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T. saccharolyticum and C. thermocellum were inoculated in triplicate in a 1:1 ratio, respectively, using 

similar O.D.600nm cultures.  All mono-culture and co-cultures on reducing sugar and polysaccharide media 

were allowed to grow to mid stationary phase (~0.8 O.D.600nm) at 57°C, to constitute one full growth 

culture based on growth response curve analysis. Consecutive cultures, subcultured from the previous, 

were inoculated in triplicate from mid stationary phase by transferring 500 µl of each mono- and co-

cultures to 50 ml of fresh reducing sugar and polysaccharide media.        

5.3.4. Detection of C. thermocellum and T. saccharolyticum persistence using biomarkers 

The presence of each strain: C. thermocellum and T. saccharolyticum, was detected in co-culture using 

uniquely designed biomarkers. For each strain in triplicate experiments, at each continuous subculture, 

(reducing sugar media subcultures 1-3, and polysaccharide media subcultures 1-5), 3 ml of mid stationary 

phase cells were collected for extraction of genomic DNA using the UltraClean Microbial DNA Isolation 

Kit (MediCorp, Canada), following the instructions provided by the supplier and using the 

troubleshooting option for „difficult to lyse cells‟. The β-glucosidase A gene (bglA) was selected as a 

biomarker for the presence of C. thermocellum. Forward and reverse primers were used to amplify a ~500 

bp region of bglA (primer sequences refer to Table 1). Similarly, the β-xylosidase B gene (xylB) was 

chosen to be the biomarker in detection of T. saccharolyticum. Forward and reverse primers were 

designed to amplify a ~700 bp region within xylB (for primer sequences refer to Table 1). The PCR 

reaction mixture contained ~10 ng of C. thermocellum/T. saccharolyticum genomic DNA, 10 pmol of 

both appropriate forward and reverse primers, 10x Taq buffer with 500 mM KCl, 25 mmol l-1 MgCl2, 0.2 

mmol deoxynucleoside triphosphate, and 5 U DNA polymerase per 50 μl reaction. The PCR program was 

as follows: primary denaturation 3 minutes at 95°C, followed by 35 amplification cycles consisting of 

denaturing at 95°C for 30 seconds, annealing for 1 minute at 54°C, and extension at 72°C for 30 seconds, 

upon completion of 35 amplification cycles a final extension step was done at 72°C for 10 minutes.   
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5.3.5. Analytical methods for ethanol  

Supernatant samples containing ethanol samples were collected from late stationary phase (~1.5 

O.D.600nm, 96h growth) batch culture trials of mono-cultures for C. thermocellum and T. saccharolyticum 

and co-culture batch culture trials from polysaccharide medium containing Avicel and xylan as previously 

mentioned, by aliquoting 1.5 ml of culture supernatant into 1.5 ml Eppendorf tubes. All samples were 

stored at -20oC until analysis. The samples were analyzed using an Agilent 6850 Gas Chromatograph 

fitted with a Carbowax column (30 m x 0.32 mm, film thickness 0.25 µm) and flame ionization detector. 

In preparation for analysis, the samples were thawed at room temperature and 1 ml of each sample was 

transferred to a fresh 1.5 ml Eppendorf tube and centrifuged at 17,000 g for 5 min. Prior to injection, each 

sample was spiked with 100 µl n-butanol, which acted as an internal standard. Injection volume was 1µl 

and the inlet was run splitless. Nitrogen was used as a carrier gas with a flow rate of 1.5 ml/min and the 

run time was 5 minutes/sample. The injection port temperature was set at 250oC, the column temperature 

was isothermally set at 75oC, and the detector temperature was 300oC.  Standards were prepared the day 

of analysis using anhydrous ethanol and they were also spiked with 100 µl n-butanol per 1 ml standard. 

5.4 Results 
 

5.4.1. Growth response curves in reducing sugar and polysaccharide media 
 
Cell counts were difficult to obtain due to the lower number of cells producing colonies in or on solid 

agar. Confocal scanning laser microscopy (CFLSM) was used to make direct cell counts using live and 

dead staining technique, however higher variation resulted in lower correlation with O.D.600nm 

spectrophotometer readings. Cell counts were not vital for the production of a stable co-culture. Growth 

curves were developed using spectrophotometry readings of turbidity at O.D.600nm.  In Figure 1, for 

reducing sugar medium containing cellobiose and xylose, it was found that mono-cultures of C. 

thermocellum and T. saccharolyticum were able to enter log phases of growth at approximately 30 and 15 

h growth, respectively.  Thus, C. thermocellum took twice as long to enter log phase of growth. However, 



145 

 

upon reaching stationary phases of growth at 56 h C. thermocellum and T. saccharolyticum had nearly 

equal turbidities O.D.600nm of 1.05 and 1.09, respectively.  

However, in Figure 2 polysaccharide medium, C. thermocellum and T. saccharolyticum entered log 

phases of growth at approximately equal time of 24 h. However, upon reaching stationary phases at 60 

and 50 h, respectively, turbidity readings at O.D.600nm were 1.441 and 0.632, respectively. Thus, C. 

thermocellum could reach a 2.3-fold greater turbidity than T. saccharolyticum on polysaccharide medium 

at stationary phases of growth.  

5.4.2. Determining co-culture stability with biomarkers 

PCR amplification of biomarker genes bglA and xylB were used to determine the presence of C. 

thermocellum and T. saccharolyticum in co-culture, respectively. As shown in Figure 4, for the control 

mono-cultures of C. thermocellum and T. saccharolyticum, PCR for each specific biomarker (bglA and 

xylB, respectively) only produced a single band of ~500 bp and 700 bp, respectively in the species it was 

designed for, making them excellent biomarker candidates. Batch fermentation co-culture trials in 

reducing sugar media, shown in Figure 3, show that C. thermocellum and T.saccharolyticum were present 

upon completion of first generations; however, in the second  and consecutive generations only xylB was 

detected, as was the case for subsequent generations not shown here. This indicated that T. 

saccharolyticum was the primary strain present. On the contrary, in polysaccharide media, both biomarker 

genes were detected continuously for generations 1 to 4 (Figure 4). The PCR biomarkers were not 

detected in the 5th generation for all triplicate fermentation trials.  

     

5.4.3. Ethanol titres from mono- and co-cultures in polysaccharide media 
 
Ethanol titres (g l-1) (Figure 5) were measured after 96 h growth upon reaching late stationary phase (~1.5 

O.D.600nm) for C. thermcocellum (CT) and T. saccharolyticum (TS) co-cultures of PCR detectable 

generations 1 through 4 in batch fermentation trials. Similarly, ethanol titres of mono-cultures for CT and 



146 

 

TS were also measured after stationary phase growth in polysaccharide medium. It was found that 

generations 1 through 4 had significantly greater ethanol titres than TS mono-cultures, p<0.05 (Student‟s 

t-test), having an average 4.7-fold greater ethanol production than TS mono-cultures. However, it was 

found that only generations 1 and 2 had significantly greater ethanol titres than CT mono-cultures, p<0.05 

(Student‟s t-test), with an average 2.1 fold greater ethanol titres. Generations 3 and 4 did not display 

significantly different ethanol titres than CT and TS mono-cultures.     

 

5.5 Discussion 
 

The use of C. thermocellum and T. saccharolyticum in co-culture to improve ethanol titres 

requires further knowledge for industrial application and cost reduction. Currently, there is a lack of 

knowledge on the number of generations and the overall effect on ethanol titres for the most cost effective 

industrial use.  

A variety of xylanase genes including β-xylosidases also exhibiting cellobiohyrdrolase activity 

(Lee and Zeikus, 1993; Lorenz and Weigel, 1997), endoxylanases (Lee et al., 1993; Lee and Zeikus, 

1993), and alpha-D-glucuronidases (Bronnenmeir et al., 1995) have been found and characterized in the 

extracellular production from T. saccharolyticum strains, however no endo- or exo-cellulases have been 

detected in this bacterial species indicating that the metabolism is different which may eliminate 

competition for substrate; this made it a good candidate for co-culture compatibility with C. 

thermocellum.  

In contrast, C. thermocellum is well known for its ability to degrade crystalline cellulose and its 

ability to produce free cellulases as well as those in multienzyme complexes referred to as cellulosomes 

(Lamed and Bayer, 1988). It has also been shown to produce several xylanases in cellulosome complexes 

(Gold and Martin, 2007). In co-culture with T. saccharolyticum, it has been suggested as the „work-horse‟ 

producing the majority of enzymes for effective degradation (Demain et al., 2005).  
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The enzymes produced and thus the metabolic capabilities of each strain lend knowledge into our 

development of a stable co-culture.  Therefore, the substrates used for media composition have a direct 

result on the sustainability of the co-culture as shown by our comparison of reducing sugar and 

polysaccharide media. T. saccharolyticum could grow more rapidly in reducing sugar media containing 

simple sugars such as xylose and cellobiose. No matter the inoculation ratio, we found that T. 

saccharolyticum always outgrew C. thermocellum by the second generation. We presume that the 

detection of C. thermocellum in the first generation was due to the higher inoculation densities required 

and not necessarily due to proliferation. Competition for substrates played a substantial role here which is 

referred to as antagonism between the species. Competition like this has been shown in the growth of 

bacteria in the gut of rats (Guiot, 1982) and in a variety of rumenal bacteria from ruminants (Russell and 

Baldwin, 1982). Thus, the use of a C. thermocellum and T. saccharolyticum co-culture for application of 

fermentation of simple sugars would be impractical for industrial production of biofuels. 

However, our results in polysaccharide medium, that is medium containing sugars with greater 

depolymerization such as xylan and Avicel, showed that at a 1:1 inoculation ratio of C. thermocellum and 

T. saccharolyticum could allow for their co-survival for 4 continuous generations in batch fermentation. 

This would suggest a synergism between each species (Kato et al., 2005). Moreover, this co-stability also 

rendered greater ethanol titres when compared to mono-culture batch fermentation trials with each strain. 

Similarly, in 2010 Fang observed increased ethanol titres when co-culturing C. thermocellum LQRI and 

T. pseudoethanolicus X514 or T. ethanolicus 39E when grown on the cellulosic substrate Solka Floc, 

compared to mono-cultures (Fang 2010).  

In polysaccharide medium, we saw significant growth (increase in turbidity) of C. thermocellum 

after 72 h. However, in growth curve analysis of T. saccharolyticum we observed little to no change in 

growth (turbidity) after 72 h.  This is a reflection on the metabolic activity of each strain. As previously 

mentioned C.thermocellum possessed the enzymes for efficient hydrolysis of Avicel and also contributed 

to the degradation of xylan, whereas T. saccharolyticum could not utilize these substrates without the 
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presence of C. thermocellum because it lacks the enzymatic capabilities of converting them to small poly- 

and oligo-saccharides which can be taken up by the cell and further metabolized by fermentation into 

ethanol. Thus, we suspect that after C. thermocellum initiates enzymatic degradation of the Avicel and 

xylan, T. saccharolyticum begins to grow thereby contributing to greater ethanol titres. 

However, the co-culture cannot be transferred to a 5th generation successfully in all triplicate 

experiments. We suggest that toxic inhibitory end-products such as ethanol and organic acids such as 

acetate and lactate, cause stress which disrupts cell growth rendering the cells non-culturable. Studies 

have mentioned time and again that ethanol, as well as organic acids have a toxic inhibitory effect on the 

limiting growth of these anaerobic ethanogenic bacteria (Lynd, 1989; Rani and Seenayya, 1999; Burdette 

et al., 2002; Zeng et al., 2004).  

Additionally, the apparent stability of our co-culture did not relay to stable ethanol titres for all 

four generations. It was observed that in the first two generations of co-culture there were greater ethanol 

titres than generations three and four, which were not significantly different from C. thermocellum mono-

cultures.  Large variation was also seen in the detection of ethanol, particularly in the fourth generation. 

The reduced ethanol production in third and fourth generation ethanol titres suggests changes in the 

dynamics of the co-culture. The changes may be attributed to a variety of issues such as end-product 

toxicity, shifts in the population densities over time or adaptive changes in the interactions between 

species, such as metabolism. However, all generations had significantly greater ethanol titres than T. 

saccharolyticum mono-cultures, which was not surprising due to the limited turbidity observed in 

comparison to C. thermocellum in polysaccharide medium growth curves.  

Nonetheless, our results show that C. thermocellum and T. saccharolyticum co-culture can 

represent a feasible means to decompose complex polysaccharides such as hemicelluloses and celluloses 

and ultimately convert them to bioethanol in a single process (CBP). With recent advancements in the 

development of strains with greater ethanol tolerance (Shao et al., 2011), higher cellulase degrading 

abilities and knockouts which do not produce acidic by-products such as acetate (Tripathi, et al., 2010) or 
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lactate (Desai et al., 2004), applied with our co-culture information can be used to improve the industrial 

production of biofuels from lignocellulosic biomass, making it economically more feasible.   
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Table 1. Primers designed for the application of biomarker genes and expected product size for i) 
Clostridium thermocellum (bglA), and ii) Thermoanaerobacterim saccharolyticum (xynB). 

Gene  Forward (5‟-3‟)  Reverse (5‟-3‟)  Product (bp)  

bglA  ATCTGGACTCGGAGGTGTAT  TTGTGCCATACCAACCATG  538  

xynB  ATACAGGTACGCCAAGAGGA  AGTAGTCAGCACCACCGCAT  684  
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Figure Legend 
 
Figure 1. Growth response curve of C. thermocellum (●) and T. saccharolyticum (▲) in reducing sugar 
medium, measure by turbidity at O.D.600nm.   
 
Figure 2. Growth response curve of C. thermocellum (●) and T. saccharolyticum (▲) in polysaccharide 
medium, measure by turbidity at O.D.600nm.    
 
Figure 3. PCR detection of C. thermocellum and T. saccharolyticum in reducing sugar medium batch 
fermentations using biomarkers bglA and xylB, respectively. Lanes: 1.1kb DNA ladder, 2-3. Generation 1 
and 4-5. Generation 2.  
 
Figure 4. PCR detection of C. thermocellum and T. saccharolyticum in polysaccharide medium using 
biomarkers bglA and xylB, respectively. Lanes: 1.1kb DNA ladder, 2-3. Generation 1, 4-5. Generation 2, 
6-7. Generation 3, 8-9. Generation 4.  
 
Figure 5. The ethanol titres (g l-1) of C. thermocellum and T.saccharolyticum co-culture generations 1 
through 4, and mono-cultures of C. thermocellum and T. saccharolyticum all in polysaccharide medium 
batach fermentation trials. 
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Chapter 6: General discussion and future directions 
 

Global climate change, uncertain sources of petroleum and rising costs of fuel have sparked a 

worldwide search for „greener‟ energy replacements (Schneider, 1989). Lignocellulosic biomass („plant 

biomass‟) is the least controversial, most abundant source of organic biomass which has been rapidly 

gaining attention for the bioconversion by microorganisms such as (fungi, bacteria and yeast) to products 

such as bioethanol and biobutanol, not to mention other value-added by-products such as organic acids. 

However, there are currently several challenges facing its economic development. For one, the conversion 

of lignocellulosic biomass to products such as bioethanol is a costly process which requires pretreatment 

with high temperature and often the addition of acids or bases to to increase surface area and porosity, 

remove lignin and hemicelluloses and disrupt the crystallinity of cellulose (Wyman et al., 2005). Further 

still, after pretreatment, cooling and neutralization may be required before the addition of enzymes in the 

hydrolysis step. Then in a consecutive step, there is the addition of subsequent microorganisms (i.e. 

Saccharomyces cerevisiae) to ferment short polysaccharides or monosaccharides to bioethanol 

(Philippidis et al., 1993; Lynd et al., 2005). Finally, the system must be heated and distilled to collect the 

ethanol. This process can be costly; as well as, damaging and toxic to the enzymes and microorganisms 

used.  

Furthmore, lignocellulosic biomass is composed of mainly cellulose (glucose monomers), then 

hemicellulose (5- and 6-carbon sugars) and least of all lignin (complex polyphenol). The content of each 

varies widely between plant parts and plant species, requiring different pretreatments and a large variety 

of enzymes to efficiently hydrolyze. Thus, there are no single microorganisms which can produce all the 

required enzymes to efficiently hydrolyze lignocellulosic biomass. Other challenges include, end-product 

inhibition of enzymes, microorganisms producing enzymes or performing fermentation. 

All of the work presented here in this thesis, approaches these challenges in the current 

production of biofuels from different perspectives with a main focus on bacteria. There were several 
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reasons for this choice, namely bacteria can be easily cultured, can be found inhabiting unlimited 

environments and can survive in extreme environmental stresses. These attributes lend to the potential 

exploitation of hardier enzymes for the industrial conversion of lignocelluloses to biofuels. Also, these 

attributes could allow for the development of whole cell systems which can work synergistically to 

consolidate processes such as hydrolysis and fermentation in a single step, known as consolidated 

bioprocessing (CBP) (Lynd et al., 2005). 

The research presented in this thesis led to the discovery of new cellulase- and lignocellulase-

producing bacteria with potential in future studies for the characterizarion and exploitatition of their 

enzymes in the hydrolysis of lignocellulosic biomass. Additionally, this work lends knowledge to the 

future study and use of C. thermocellum in the simultaneous hydrolysis and fermentation of cellulose to 

ethanol.   

Firstly, my work focused on the isolation and characterization of efficient cellulase-producing 

bacteria. With this work I was able to develop an efficient and economical method for screening large 

numbers of bacteria from different environmental and commercial sources to find the most efficient and 

potentially unique cellulase-producing bacteria which have potential for downstream application in the 

industrial production of biofuels. Two isolates, E2 and E4, both Paenibacillus species were found in this 

study to have the greatest total cellulase activity, representing activities towards soluble (carboxymethyl 

cellulose) and insoluble/crystalline cellulose (Whatman no.1 filter paper).  In biotechnological 

applications such as the production of biofuels from lignocellulosic biomasses looking for new industrial 

enzymes or bacteria producing enzymes, traditional microbiological isolation techniques are still 

important. There are several recent studies on the isolation and characterization of cellulases from newly 

isolated bacteria (Fu et al., 2010; George et al., 2010; Okeke and Lu, 2010; Yang et al., 2010). This is 

because the hydrolysis stage remains a rate-limiting step due to the efficiency of enzymes, such as 

cellulases (Rivers and Emert, 1988). 
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The total 18 cellulase-producing bacteria isolated in this study represent a foundation for the 

exploitation of unique cellulases which may be more efficient or resilient in the industrial environment. 

Future work is required to characterize those isolates exhibiting greater cellulase activities. This includes 

looking at the effects of pH, temperature and inducers, on the optimal conditions for increased expression 

of cellulases. To do such work, requires a smaller sample size (focus on one or two of the greatest 

cellulase producing strains such as E2 and E4). Moreover, if a future study focuses on just one or two 

strains, there is a greater potential to identify whether the enzymes are solely secreted in the supernatant, 

expressed internally or associated with the cell surfaces. Cell associated cellulases have been previously 

identified in Paenibacillus species (Pastor et al., 2001; Waeonukul et al., 2009; Pason et al., 2010). 

Identification of the source of enzymes, (i.e. supernatant or cell associated), is valuable information which 

can be used not only for the industrial production of such enzymes but also in lab-scale purification for 

further biochemical characterization.   

In my second study, I used our previously established microbiological techniques in the isolation 

and characterization of lignocellulase-producing bacteria. That is, to identify bacteria which have a 

greater effect on the overall degradation of lignocellulosic biomasses having activities towards not only 

cellulose, also hemicellulose and lignin. Isolates displaying multiple activities could potentially be 

applied on an industrial scale for the pretreatment or combined mechanical/chemical and biological 

treatment, of lignocellulosic biomass. Thus, the costs and environmental impacts associated with 

extensive pretreatment processes may be reduced by decreasing the amount of chemicals and or energy 

required. Here I propose the application of such lignocellulase producing bacteria during transportation 

and storage of lignocelluosic biomasses; or the potential application of such bacteria after shorter 

lignocellulosic biomass pretreatments such as mechanical treatments to lower pretreatment costs. There 

are a number of mechanical and chemical pretreatment routes and often combined mechanical and 

chemical routes which further increase pretreatment costs. Additionally, biological pretreatments have 

thus far included the application of white, brown and soft rot fungi, with potentially very limited costs; 
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however, the use of  these strains has proved to be very time consuming due to slow growth rates and 

activities (Sun and Cheng, 2002; Tengerdy and Szakacs, 2003; Cardona and Sanchez, 2007). If we add 

bacteria, the process could be potentially shorter due to more rapid growth rates.   

Moreover, there are few studies that have identified and characterized bacterial lignin-degrading 

enzymes and thus they have not been readily considered for the decomposition of lignins. The first lignin 

peroxidase gene was recently identified and characterized in 2011 by Ahmad et al., in Rhodococcus jostii 

RHA1 (Ahmad et al., 2011). The results suggest modification of lignin; this was shown by the increase in 

reflectance of pure lignin at 280 nm. Also, FTIR analysis, revealed preference for hemicellulose 

compared to lignin for the same isolates, however a change in lignin was evident when the area under the 

curves were compared to the cellulase positive control (C. xylanilytica). Barley straw was the biomass 

used for FTIR analysis and is shown in literature to contain approximately 14-15% mass as lignin, and 

24-29% mass hemicellulose, while 31-34% cellulose (Husseien et al., 2007). Although we cannot say 

lignin was degraded, I propose modification to allow for access to the hemicellulose and cellulose. I did 

however, attempt to measure lignin activities using microplate developed assays for lignin peroxidases 

(LiP), manganese peroxidases (MnP), laccases (Lac) and lipases (Bugg et al., 2011); however, the results 

were inconclusive because of a lack of ability to individually optimize the strains for enzymatic 

expression. Thus, future work will be focused on the investigation of lignase genes with focus on one or 

two strains displaying lignin modification. Once again, parameters such as pH, temperature and 

atmosphere should be examined in the expression.  

Recently, I have designed two degenerate primers (forward, D-FW 5‟-

GGNTTYGTNGAYGGNCANGARA-3‟ and  reverse, D-REV  5‟-HATYAAGTANTGNCCGTARTC-

3), which are currently being used to „fish‟ for new uncharacterized peroxidases in those isolates 

displaying lignin modification. These degenerate primers were designed based on the homologous regions 

of peroxidase genes from a variety of bacterial peroxidases. Thus, if lignin peroxidase-like genes are 
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found, cloning and expression in an E.coli host systems will be done for biochemical characterization. If 

the search for lignase genes is unsuccessful, purification of enzyme extracts displaying lignin 

modification is required to further characterize the activities due to the variety of enzymes associated with 

lignin degradation and modification. With the identification and biochemical characterization of lignin-

degrading enzymes there is potential for expression in other known efficient cellulose and hemicellulose 

degrading bacteria such as Clostridium thermocellum to enhance the efficiency and repertoire of biomass 

degrading enzymes.       

The remaining focus of my studies was to utilize molecular biology techniques to further improve 

a known cellulase-producing bacterial system. I chose the well-known anaerobic, thermophilic 

Clostridium thermocellum, which is known for its high cellulase activity towards microcrystalline 

cellulose, comparable to that of Trichoderma reesei (Ng and Zeikus, 1981). Furthermore, there were three 

other main advantages for choosing this strain over T. reesei. C. thermocellum is ethanogenic, thus it can 

ferment 6-carbons to ethanol along with other by-products. Additionally its anaerobic and thermophilic 

nature also makes using this strain more cost effective during the industrial production of biofuels from 

lignocellulosic biomass. However, with this unique system there are several limitations holding back its 

industrial application which were discussed throughout this thesis. One such limitation is the metabolism 

of carbons by C. thermocellum; it can only ferment the 6-carbon sugars, and 5-carbon sugars found in 

hemicelluloses are not fermented.  

Thus, my next project focused on the improvement of cellulose hydrolysis in C. thermocellum, by 

the relief of end-product inhibition. The addition of exogenous β-glucosidase from Aspergillus niger was 

shown to increase cellulase production (Lamed, et al., 1990). Thus, I chose to express β-glucosidase in C. 

thermocellum. Due to the difficulty in genetic modification of C. thermocellum and due to time 

constraints I chose to first increase copy numbers of β-glucosidase A (bglA) by cloning and expression in 

a shuttle vector (pIKM1). There would be no insertion to the genomic DNA due to a lack of recombinant 
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systems for thermophilic anaerobes. During this study, I was able to design a modified electroporation 

protocol to be used in future studies for C. thermocellum genetic modification. I also, expressed bglA 

from the shuttle vector and saw a significant increase in β-glucosidase and total cellulase activities. 

However, during this study I note two important factors which lend knowledge towards our future studies.  

Firstly, as can be expected for shuttle vectors, after 5 continuous generations without antibiotics 

there were no detectable transformants. The use of this transformed strain in industry would require 

addition of large amounts of antibiotics, such as the ampicillin used here. Thus, I propose future work 

includes the development of a recombinant system carrying β-glucosidase. In 2000, Mai and Weigel used 

PUC-based suicide plasmids, pUXK and pUXKK, to integrate and express a C. thermocellum 

cellobiohydrolase gene (cbhA) into the xylanase gene (xyl) of a Thermoanaerobacterium spp. (Mai and 

Weigel, 2000). 

Secondly, an increase in total cellulase activity does not appear to have a direct effect on ethanol 

production, as was shown by our results in this study. However, I will further test the effects on ethanol 

through more time sensitive sampling of the ethanol in continuous fermentation. That is, fermentation 

which with the continuous replacement of substrates and nutrients and the removal of toxic or inhibitory 

end-products. Thus, one can compare with the ethanol produced before reaching toxic levels.  

Additionally, I can measure other valued endo-products such as hydrogen, as well as lactic and acetic 

acids to assess the ability of the transformant compared to the wild-type.  

The variability seen in ethanol production between wild-type (WT) and transformed (+MCbglA) 

C. thermocellum suggests a requirement for further engineering. Literature suggests ethanol and organic 

acid production is toxic for ethanogenic bacteria (Lynd, 1989; Rani and Seenayya, 1999; Burdette et al., 

2002; Zeng et al., 2004). I propose that if a considerable increase in tolerance to ethanol and or organic 

acids is developed in C. thermocellum harbouring increased copies of β-glucosidase, I will also see an 

increase in ethanol titres. Studies have shown that increase in ethanol tolerance alone can increase ethanol 
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titres; however there is some controversy here (Shao et al., 2011; Williams et al., 2007). There is also an 

undefined tolerance to ethanol in C. thermocellum. Thus, I cannot say if the ethanol I saw produced is in 

fact at a toxic/inhibitory level.  

Moreover, knockout systems such as the Clostron have been developed and future work to 

improve ethanol titre in addition to greater cellulase activities should include knocking out genes involved 

in acetate and lactate production, such as phosphotransacetylase (pta) and L-lactate dehydrogenase (L-

ldh), respectively. Researchers have shown that the knockout of pta and L-ldh alone in C. thermocellum 

and T. saccharolyticum, respectively, allowed for increased tolerance to greater amounts of acetate  

(Tripathi, et al., 2010) or lactate (Desai et al., 2004), respectively. Thus, if future work can combine more 

resistant strains, produced via knockout or mutagenesis, with increased copy numbers of beta-glucosidase 

or cellobiophosphorylases a more industrially viable system could be applied for biofuel production and 

could be incorporated into co-cultures such as that developed in my last study.          

Therefore, in my last study, I investigated the development of a stable co-culture of C. 

thermocellum and T. saccharolyticum, which could improve consolidated bioprocessing in the production 

of biofuels. Two strains working synergistically have the potential to complete multiple tasks such as in 

this case, the fermentation of both 5- and 6-carbon sugars and ultimately increase ethanol titres. Using 

PCR-based biomarkers I found that the stability depended on our development of a media with 

polysaccharide sugars such as xylan and Avicel, versus media containing reduced sugars.  

This co-culture system developed here also lends knowledge for future improvements. Once 

again, I propose that the application of strains more resistant to toxic end-products such as ethanol and 

organic acid by-products could potentially prolong continuous co-culture generations. Thus, it is highly 

valuable to the anaerobic thermophilic research studies presented here if through mutation and selection 

or metabolic engineering strains with increased resilience to end-products be developed. 
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 Additionally, my current and continuing future work related but not presented here has been 

involved in the collaborative development of a fused C. thermocellum and T. saccharolyticum strain; 

whereby protoplast formation allows the genetic recombination between their genomes. Fusions will be 

screened for the ability to ferment 5- and 6-carbon sugars. Also, the genetic stability of such a fused strain 

will be tested using my biomarker system, as was developed during the co-culture study. Such a fusion, 

could present more industrial potential if the ethanol titres are comparable to our co-culture system. In an 

industrial setting, the growth and maintenance of one strain could be simpler and thus, more cost 

effective. 

Finally, with the success of my tansformation protocol one could potentially introduce unique 

genes such as lignase, xylanase or cellulase genes exploited from further studies on our isolates. C. 

thermcellum represents a unique host because of the cellulosome. If the type-I dockerin sequence is 

cloned and ligated to target genes it may be possible to have the genes expressed as part of the 

cellulosome. Cellulases have been cloned for production of mini-cellulosomes and expressed in hosts 

such as Bacillus subtilis (Cho et al., 2004). Also, genetic modification in thermophilic anaerobic 

organisms continues to advance rendering greater opportunities for the development of economically 

feasible greener technologies to produce lignocellulosic biofuels.  

In conclusion, all of the isolates, as well as the known cellulase-producing C. thermocellum 

transformant and co-culture must have their activities measured towards the use of reall hydrolysates such 

as corn husk or barely straw. This will allow one to determin the practibility of these bacteria in an 

industrial setting while addressing industrial environmental, technical and economic challenges. 
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