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Abstract 

Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi 

and bacteria which are capable of degrading lignocellulolytic materials. Fungi produce large amounts of 

extracellular cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-

glucosidases that work efficiently on cellulolytic residues in a synergistic manner. The ascomycete 

Hypocrea jecorina (anamorph Trichoderma reesei), an industrial (hemi)cellulase producer, can efficiently 

degrade plant polysaccharides. However, the biology underlying cellulase hyperproduction of T. reesei, 

and the conditions for enzyme induction in this organism are not completely understood. In this study, the 

optimum conditions for cellulase production by T. reesei strains were investigated. Three different strains 

of T. reesei, including QM6a (wild-type), and mutants QM9414 and RUT-C30, were grown on 7 soluble 

and 7 insoluble carbon sources, with the latter group including 4 pure polysaccharides and 3 

lignocelluloses. Maximum cellulase activity of QM6a and QM9414 strains, for the majority of tested 

carbon sources, occurred after 120 h of incubation, while RUT-C30 had the greatest cellulase activity 

after around 72 h. Maximum cellulase production was 0.035, 0.42 and 0.33 µmol glucose equivalents 

using microcrystalline celluloses for QM6a, QM9414, and RUTC-30, respectively. Increased cellulase 

production with the ability to grow on microcrystalline cellulose was positively correlated in QM9414 

and negatively correlated in RUT-C30. 

Although T. reesei is widely used as an industrial strain for cellulase production, its low yield of 

β-glucosidase has limited its industrial value. In the hydrolysis process of cellulolytic residues by T. 

reesei, a disaccharide known as cellobiose is produced and accumulates, inhibiting further cellulase 

production. In order to improve β-glucosidase production and ultimately overall cellulase activity of T. 

reesei, a thermostable β-glucosidase gene from the fungus Periconia sp. was engineered into the genome 

of the T. reesei QM9414 strain. The engineered T. reesei strain showed about 10.5-fold (23.9 IU/mg) 

higher β-glucosidase activity compared to the parent strain (2.2 IU/mg) after 24 h of incubation. The 

transformants also showed very high cellulase activity (about 39.0 FPU/mg) at 24 h of incubation, 
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whereas the parent strain showed almost no cellulase activity at 24 h of incubation. The recombinant β-

glucosidase was thermotolerant and remained fully active after two-hour incubation at temperatures as 

high as 60 °C. Additionally, it maintained about 88% of its maximal activity after a four-hour incubation 

at 25 °C across a wide range of pH values from 3.0 to 9.0. Furthermore, an enzymatic hydrolysis assay 

using untreated, NaOH- or Organosolv-pretreated barley straw or microcrystalline cellulose showed that 

the transformed T. reesei strains released more reducing sugars compared to the parental strain. These 

features suggest that the transformants can be used for β-glucosidase production as well as improving 

biomass conversion using cellulases. 

Xylitol, a naturally occurring five-carbon sugar alcohol derived from D-xylose, is currently in 

high demand by industries for its sweetening and anti-microbial properties. Biotechnological methods can 

be used for large-scale xylitol production since its current industrial production relies on chemical 

methods which are costly and energy intensive. While T. reesei is capable of selectively using D-xylose 

for xylitol production as an intermediate metabolite, its production can be enhanced by genetic 

engineering of the metabolic pathway. In this study, two T. reesei mutant strains were used, including a 

single mutant in which the endogenous xylitol dehydrogenase gene was deleted (∆xdh1), and a double 

mutant in which L-arabinitol-4-dehydrogenase was additionally deleted (∆lad1∆xdh1). The widely-

available agricultural residue barley straw was used for xylitol production by the strains after its 

pretreatment using NaOH- and Organosolv-pretreatment methods. High xylitol production by both strains 

was achieved when barley straw (untreated or pretreated) was supplemented with 2% D-xylose, whereas 

the D-glucose supplementation did not increase production. The highest production of xylitol was 6.1 and 

13.22 g/L obtained after 96 and 168 h of incubation, respectively, using medium supplemented with 2% 

Organosolv-pretreated barley straw and 2% D-xylose by single and double T. reesei mutant strains, 

respectively. Maximum saccharification of barley straw was observed after 120 h of incubation for 

NaOH-pretreated by single (692 ± 1.01 mg/g reducing sugars) and double T. reesei mutant (685 ± 11.9 

mg/g reducing sugars) strains, respectively. Moreover, the significant increase of xylitol production by the 
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T. reesei strains using medium containing Organosolv-pretreated barley straw supplemented with D-

xylose suggests that the pretreatment in combination with the added sugar favored xylitol production. 

These results suggest that agricultural residues, such as barley straw, could be a suitable resource for 

bioconversion to produce value-added products such as xylitol. 

Keywords: Bioconversion, biofuel, lignocellulase-producing fungi, cellulase, Trichoderma reesei, genetic 

engineering, β-glucosidase, bio-products, xylitol  
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Chapter 1: Literature Review 

1.1 Introduction 

Rising energy consumption, depletion of fossil fuels and increased environmental concerns have 

shifted the focus of energy generation towards biofuel use. Bioconversion of biomass has significant 

advantages over other alternative energy strategies because biomass is the most abundant and also the 

most renewable biomaterial on our planet. Lignocellulose is a renewable organic material and is the major 

structural component of all plants. Lignocellulosic wastes are produced in large amounts by many 

industries including those of forestry, pulp and paper, agriculture, and food. Lignocellulose mainly 

consists of three major components: cellulose, hemicellulose and lignin. Significant efforts, many of 

which have been successful, have been made to convert lignocellulosic residues to valuable products such 

as biofuels, chemicals and animal feed. Using lignocellulosic wastes as the main source for ethanol 

production will eliminate the concern originally caused by bioethanol industries where they have used 

sugars or corn as the feedstock. 

Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi 

and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei 

produce large amounts of extracellular cellulolytic enzymes. In filamentous fungi, cellulolytic enzymes 

including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on 

cellulolytic residues in a synergistic manner. The breakdown of lignocellulosic biomass involves the 

formation of long-chain polysaccharides, mainly cellulose and hemicellulose, and the subsequent 

hydrolysis of these polysaccharides into their component 5- and 6-carbon chain sugars. In biofuel 

production, these sugars can be converted to bioethanol through fermentation processes.  

The primary challenge in biomass conversion to bioethanol is achieving yields that make it cost-

competitive with current fossil fuel sources. Cellulose in the plant cell wall is not readily available to 

enzymatic hydrolysis. Pretreatment of the lignocellulosic residues is necessary because hydrolysis of non-

pretreated materials is slow, and results in low product yield. Many pretreatment methods rely on 
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applying high temperature, and addition of acids or bases at industrial scales. Thus, additional steps are 

included prior to hydrolysis step and this makes the overall process expensive, slow and inefficient. 

Additionally, pretreatment releases inhibitors which lower overall yield of the fermentation process.  

The main goal of this thesis is to approach the above mentioned challenges in biofuel production 

mainly using fungi. Obviously, fungi contribute significantly to the decay of lignocellulosic residues in 

nature by producing many different lignocellulolytic enzymes. Most fungal strains produce various 

enzymes in large amounts which are released in the environment and act in a synergistic manner. Despite 

the fact that some fungal strains have the advantages of being thermostable and producing cellulases, 

most of these fungal strains do not produce sufficient amounts of one or more lignocellulolytic enzymes. 

These enzymes are required for efficient bioconversion of lignocellulosic residues to fermentable sugars. 

T. reesei, for example, produces small amounts of β-glucosidase which inhibit further cellulose hydrolysis 

due to accumulation of the end product inhibitor (cellobiose). This became the key bottleneck in the 

process of biofuel production and thus new biotechnological solutions are needed to improve the 

efficiency. Many recent studies focused on improving fungal hydrolytic activity as well as finding stable 

enzymes capable of tolerating extreme conditions. 

 

The main objectives of this thesis include: 

1- Understanding the biology underlying cellulase hyperproduction in T. reesei, and the conditions 

for enzyme induction.  

2- Improving cellulase activity of the T. reesei QM9414 strain, through increasing its β-glucosidase 

activity using genetic engineering. 

3- Applying established fungal culture techniques to produce bio-products such as xylitol using 

metabolically engineered T. reesei strains. 
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Abstract 

The development of alternative energy technology is critically important because of the rising 

prices of crude oil, security issues regarding the oil supply, and environmental issues such as global 

warming and air pollution. Bioconversion of biomass has significant advantages over other alternative 

energy strategies because biomass is the most abundant and also the most renewable biomaterial on our 

planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi 

and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei 

and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and 

a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called the cellulosome, 

which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including 

endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic 

residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such 

as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together 

with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview 

of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated 

in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation 

mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the 

technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and 

heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust 

fungal strains. 

 

Keywords: Biomass, Lignocellulose, Bioconversion, Fungi, Cellulases, Cellulosome  
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Introduction 

Millions of years ago, atmospheric carbon was captured by plants in a process called 

photosynthesis, and over time was manifested into crude oil and coal. However, since the industrial 

revolution, we have used much of these energy sources, causing the excessive release of carbon back into 

the atmosphere. Thus, over the past 150 years atmospheric CO2 levels have increased from ~280 to ~380 

ppm [1,2]. In return, this is potentially causing warmer temperatures worldwide and leading to global 

climate changes [1,3,4].  

Rising energy consumption, depletion of fossil fuels and increased environmental concerns have 

shifted the focus of energy generation towards biofuel use. Global crude oil production is predicted to 

decline to one-fifth of its current level by 2050. Based on World Energy Council (WEC) calculations, the 

world-wide primary energy consumption is approximately 12 billion tonnes coal equivalent per year. 

United Nations calculations have shown that the world’s population will increase to about 10 billion 

people by 2050 which will in turn increase energy demands to at least 24 billion tonnes coal equivalent 

per year (twice of what we consume today) depending on economic, social and political developments  

[5,6]. 

Lignocellulose is a renewable organic material and is the major structural component of all 

plants. Lignocellulose consists of three major components: cellulose, hemicellulose and lignin. In 

addition, small amounts of other materials such as ash, proteins and pectin can be found in lignocellulosic 

residues, in different degrees based on the source [7]. Cellulose, the major constituent of all plant material 

and the most abundant organic molecule on the Earth, is a linear biopolymer of anhydroglucopyranose-

molecules, connected by β-1,4-glycosidic bonds. Coupling of adjacent cellulose chains by hydrogen 

bonds, hydrophobic interactions and Van der Waal’s forces leads to a parallel alignment of crystalline 

structures known as microfibril [8]. Hemicelluloses, the second most abundant component of 

lignocellulosic biomass, are heterogeneous polymers of pentoses (including xylose and arabinose), 

hexoses (mainly mannose, less glucose and galactose) and sugar acids. Composition of hemicelluloses is 

http://www.euronuclear.org/info/encyclopedia/coalequivalent.htm
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very variable in nature and depends on the plant source [9,10]. Lignin, the third main heterogeneous 

polymer in lignocellulosic residues, generally contains three aromatic alcohols including coniferyl 

alcohol, sinapyl and p-coumaryl. Lignin acts as a barrier for any solutions or enzymes by linking to both 

hemicelluloses and cellulose and prevents penetration of lignocellulolytic enzymes to the interior 

lignocellulosic structure. Not surprisingly, lignin is the most recalcitrant component of lignocellulosic 

material to degrade [7,11].  

Lignocellulosic wastes are produced in large amounts by different industries including forestry, 

pulp and paper, agriculture, and food, in addition to different wastes from municipal solid waste (MSW), 

and animal wastes (Table 1) [12-17]. These potentially valuable materials were treated as waste in many 

countries in the past, and still are today in some developing counties, which raises many environmental 

concerns [18,19]. Significant efforts, many of which have been successful, have been made to convert 

these lignocellulosic residues to valuable products such as biofuels, chemicals and animal feed [20]. 

Interestingly, in 2008 approximately 90% of the global ethanol fuel production (15,472.2 out of 17,335.2 

Million of Gallons) was concentrated in two countries, Brazil (6,472.2), and The United States of 

America (9,000) [21]. In Brazil, ethanol is usually produced from cane juice, whereas in the USA, starch-

crops such as corn are usually used for ethanol production [7]. Using sugars or corn as the main source for 

ethanol production caused a great deal of controversy due to its effect on food production and costs, 

which has made it difficult for ethanol to become cost competitive with fossil fuels. These concerns 

became a driving force in the generation of new biofuel research using lignocellulosic wastes produced by 

many different industries. The Iogen Corporation in Canada (http://www.iogen.ca/) is the world’s leading 

operating plant for bioethanol production from lignocellulosic residues, and uses up to 30 tonnes per day 

of wheat, oat and barley straw to produce up to 0.52 million gallons of ethanol per year [22].   

In nature, degradation of cellulosic biomass is performed by mixtures of hydrolytic enzymes 

collectively known as cellulases. The cellulases include endo-acting (endoglucanases) and exo-acting 

(cellobiohydrolases) enzymes, which act in a synergistic manner in biomass-degrading microbes. Many 

http://www.iogen.ca/


11 

 

microorganisms including fungi and bacteria had been found to degrade cellulose and other plant cell wall 

fibres. By 1976, over 14,000 fungal species capable of degrading cellulose had been isolated, but only a 

few of them were subjected to in-depth studies [23]. Obviously, fungi contribute significantly to the decay 

of lignocellulosic residues in nature by producing many different lignocellulolytic enzymes. Most fungal 

strains produce various enzymes in large amounts which are released in the environment and act in a 

synergistic manner. The breakdown of lignocellulosic biomass involves the formation of long-chain 

polysaccharides, mainly cellulose and hemicellulose, and the subsequent hydrolysis of these 

polysaccharides into their component 5- and 6-carbon chain sugars. In biofuel production, these sugars 

can be converted to bioethanol through fermentation processes [24].  

 

Table 1. Some of the lignocellulosic residues produced by different industries and potential for ethanol 

production 

Lignocellulosic Wastes Annual production  Potential contribution to 

ethanol production (billion 

litre/year) 

References 

World Agricultural Wastes1 

Corn stover 

Barley straw 

Oat straw 
Rice straw 

Wheat straw 

Sorghum straw 
Bagasse 

Subtotal 
 

Municipal Solid Waste (MSW)  

USA (2001) 
China (1998) 

Canada (2002) 

 

Animal Wastes5 

In Canada (2001) 

In USA (1995) 

Trillion grams/year (Tg/y) 
203.62  

58.45  

10.62  
731.34  

354.35  

10.32  
180.73  

1549.42  
 

Million metric tons (million MT) 

208  
127  

30.5  

 
 

177.5  

160  

 
58.6  

18.1 

2.78 
204.6 

103.8 

2.79 
51.3 

442.0 
 

 

13.7 2 

8.3 3 

2 4 

 
[12] 

[12] 

[12] 
[12] 

[12] 

[12] 
[12] 

 
 

 

[13] 
[14] 

[15] 

 
 

[16] 

[17] 
1 
Average values from 1997 to 2001 have been used to calculate world agricultural waste production [12]. 

2-4
Potential contribution of MSW in USA, China and Canada in 2001, 1998 and 2002 respectively, 

assuming a conservative yield of 66 L of ethanol/MT of MSW [13-15]. 
5
The fiber content (including 

cellulose and hemicellulose) of cattle manure, for example, is 52.6% (dry biomass basis). These sugars 

can be hydrolyzed and fermented to produce ethanol but the utilization of animal manures is more 

complicated due to its high protein content [16,17].  
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The primary challenge in biomass conversion to bioethanol is achieving yields that make it cost-

competitive with the current fossil-based fuels. Cellulose in the plant cell wall is not readily available to 

enzymatic hydrolysis (cellulases) due primarily to (1) low accessibility of (micro-) crystalline cellulose 

fibers, which prevents cellulases from working efficiently, and (2) the presence of lignin (mainly) and 

hemicellulose on the surface of cellulose, which prevents cellulases from accessing the substrate 

efficiently [25]. Thus, pretreatment of lignocellulosic residues before hydrolysis is a prerequisite and this 

can be performed by different methods (discussed in section 3.1.). High temperature and acid have been 

used initially for chemical cellulose degradation and they are still involved in pretreatment of 

lignocellulosic residues at industrial scales. However, this approach is expensive, slow and inefficient 

[26]. In addition, the overall yield of the fermentation process will be decreased because this pretreatment 

releases inhibitors such as weak acids, furan and phenolic compounds [27]. Some of these problems could 

be overcome by applying microorganisms such as fungi. For example, thermophilic fungal species such 

as Sporotrichum thermophile [28], Thermoascus aurantiacus [29] and Thielavia terrestris [30] have been 

proposed as good candidates for bioconversion of lignocellulosic residues to sugars and offer the great 

potential to be used at industrial scales. Applying thermophilic fungal species at industrial scales also 

allows energy savings because the costly cooling after steam pre-treatment is avoided and saccharification 

rates are improved. These fungi have been shown to produce cellulases and to degrade native cellulose; 

however, the enzyme activity in thermophilic organisms (e.g. S. thermophile) is usually low compared to 

mesophilic fungi such as T. reesei [28]. 

The initial conversion of biomass into sugars is a key bottleneck in the process of biofuel 

production and new biotechnological solutions are needed to improve their efficiency, which would lower 

the overall cost of bioethanol production. Despite the fact that some fungal strains have the advantages of 

being thermostable and producing cellulases, most of these fungal strains do not produce sufficient 

amounts of one or more lignocellulolytic enzymes required for efficient bioconversion of lignocellulosic 

residues to fermentable sugars. Wild-type T. reesei and its best extracellular cellulase producer mutants 
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(e.g. RUT-C30) for example, produce small amounts of β-glucosidase which inhibit further cellulose 

hydrolysis due to accumulation of the end product inhibitor (cellobiose). In addition, plant cell walls are 

naturally resistant to microbial and enzymatic (fungal and bacterial) deconstruction, collectively known as 

“biomass recalcitrance” [11]. These rate-limiting steps in the bioconversion of lignocellulosic residues to 

ethanol remain one of the most significant hurdles to producing economically feasible cellulosic ethanol. 

Improving fungal hydrolytic activity and finding stable enzymes capable of tolerating extreme conditions 

has become a priority in many recent studies. 

This review focuses on lignocellulosic bioconversion by the application of different 

lignocellulolytic enzyme-producing fungi. In addition, this review addresses recent efforts to create robust 

fungal strains using mutagenesis, co-culturing and heterologous gene expression techniques and how 

these robust organisms can help overcome some of the critical issues in biofuel production.  

  

Lignocellulolytic enzyme-producing fungi  

Lignocellulolytic enzymes-producing fungi are widespread, and include species from the 

ascomycetes (e.g. T. reesei), basidiomycetes including white-rot fungi (e.g. P. chrysosporium), brown-rot 

fungi (e.g. Fomitopsis palustris) and finally a few anaerobic species (e.g. Orpinomyces sp.) which 

degrade cellulose in gastrointestinal tracts of ruminant animals [31,32]. Biomass degradation by these 

fungi is performed by complex mixtures of cellulases [33], hemicellulases [31] and ligninases [7,34], 

reflecting the complexity of the materials. Cellulases and most hemicellulases belong to a group of 

enzymes known as glycoside hydrolases (GH). Currently more than 2500 GH have been identified and 

classified into 115 families (for more information please visit the CAZy web page; www.cazy.org) [35]. 

Interestingly, the same enzyme family may contain members from bacteria, fungi and plants with several 

different activities and substrate specifications. However, fungal cellulases (hydrolysis of β-1,4-glycosidic 

file:///C:/Users/Mehdi/HP-Computer/Biofuel/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Low/Content.IE5/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Low/Content.IE5/AppData/Local/AppData/Local/Temp/www.cazy.org
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bonds) have been mostly found within a few GH families including 5, 6, 7, 8, 9, 12, 44, 45, 48, 61 and 74 

[35,36]. Table 2 summarizes a few different fungi producing different lignocellulolytic enzymes.  

 

Fungal extracellular cellulases  

Hydrolysis of the β-1,4-glycosidic bonds in cellulose can be achieved by many different enzymes 

known as cellulases which use two different catalytic mechanisms, the retaining and the inverting 

mechanisms. All GH 12 cellulases, for example, hydrolyze glycosidic bonds by the retaining mechanism 

whereas family 6 cellulases use the inverting mechanism [33,36]. In both mechanisms, two catalytic 

carboxylate residues are involved and catalyze the reaction by acid-base catalysis. Many different fungal 

species have the ability to degrade cellulose by producing extracellular fungal cellulose-degrading 

enzymes including endo-cleaving (endoglucanases) and exo-cleaving (cellobiohydrolases).  

Endoglucanases can hydrolyze glycosidic bonds internally in cellulose chains whereas 

cellobiohydrolases act preferentially on chain ends. The products of the enzymatic reaction are mostly a 

disaccharide known as cellobiose and, to a lesser extent, cello-oligosaccharides, which will be further 

hydrolyzed by the third group of enzymes called β-glucosidases [56]. Cellulases mostly have a small 

independently folded carbohydrate binding module (CBM) which is connected to the catalytic domain by 

a flexible linker. The CBMs are responsible for binding the enzyme to the crystalline cellulose and thus 

enhance the enzyme activity [33]. Currently many CBMs have been identified and classified into 54 

families, however only 20 families (1, 13, 14, 18, 19, 20, 21, 24, 29, 32, 35, 38, 39, 40, 42, 43, 47, 48, 50 

and 52) have been found in fungi. Different fungal cellulolytic enzymes and their main features are 

summarized in Table 3. 
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Table 2. Examples of different fungi producing different lignocellulolytic enzymes and their substrates.  

 Group Fungal strain Enzymes Substrate References 

 

 

Aerobic fungi 

 

 

 

 

 

(Extracellular 

lignocellulolytic 

enzymes) 

 

 

 

 

 

 

Ascomycetes 

 

 

 

 

   

T. reesei 

Cellulases (CMCase, 

CBH, BGL), 
Hemicellulase 

(xylanase) 

 

Wheat straw 

 

[37,38] 

 

T. harzianum 

Cellulases (CMCase, 

CBH), β-1,3-glucanases 

Wheat bran, 

wheat straw  

 

[39,40] 

 
A. niger 

 
Cellulases, Xylanases 

Sugar cane 
bagasse 

 
[41] 

 
Pestalotiopsis sp. 

 
Cellulases (CMCase, 

CBH), Laccase 

 

 
Forest litter of 

Quercus 

variabilis 

 
[42,43] 

 

 

 

 

Basidiomycetes 

 

P. chrysosporium 

Cellulases (CMCase, 

CBH, BGL), CDH, LiP, 

MnP, Hemicellulase 
(xylanases) 

Red oak, grape 

seeds, barley 

bran, woodchips 

 

 

[7,44,45] 

 

F. palustris 

Cellulases (CMCase, 

CBH, BGL) 

Microcrystalline 

cellulose 

 

[32,46] 

 

 

Anaerobic rumen 

fungi 

(Chytridiomycetes) 

 

 

 

 

 

 

(Cell-wall 

associated 

lignocellulolytic 

enzymes, 

“cellulosome”) 

 

Anaeromyces 

 

 

Anaeromyces 
mucronatus 543 

Cellulase (CMCase), 

Hemicellulase 
(xylanase) 

 

Orchard grass hay 

 

[47,48] 

 

Caecomyces 

 

 
Caecomyces 

communis 

Cellulases, 
Hemicellulases 

(xylanase, β-D-

xylosidase) 

 
Maize stem 

 
[48-50] 

 

Cyllamyces 

 

 

Cyllamyces 

aberensis 

 

Cellulases, Xylanases  

 

Grass silage 

 

[48,51] 

 

Neocallimastix 

 

 
Neocallimastix 

frontalis 

 

Cellulases, 
Hemicellulase 

(xylanase, β-

galactosidase) 

 
Cotton fiber, 

wheat straw 

 
[48,52,53] 

 

 

Orpinomyces 

 

 

Orpinomyces sp. 

 

Cellulase (CMCase, 

CBH, β-glucosidase), 
Hemicellulases 

(xylanase, mannanases) 

 

 

 
Wheat straw 

 

 

 
[31,48,53,54] 

 

 

Piromyces 

 

 

 
Piromyces sp. 

 

Cellulases (CMCase, 

CBH, β-glucosidase) 
Hemicellulases 

(xylanase, mannanases) 

 

 
Maize stem 

 

 
[31,48,49,55] 

CMCase: Carboxymethylcellulases (endoglucanase), CBH: Cellobiohydrolases, BGL: β-glucosidases, 

CDH: Cellobiose dehydrogenase, MnP: Manganese peroxidises, LiP: Lignin peroxidises. 

 

Endo-1,4- β-glucanases (EC 3.2.1.4, endocellulase) 

Endoglucanases (EG) are also referred to as carboxymethylcellulases (CMCase), named after the 

artificial substrate used to measure the enzyme activity. EG initiate cellulose breakdown by attacking the 
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amorphous regions of the cellulose, making it more accessible for cellobiohydrolases by providing new 

free chain ends. This has been shown by the effect of the enzyme on carboxymethylcellulose and 

amorphous cellulose [8]. Fungal EGs are generally monomers with no or low glycosylation and have an 

open binding cleft. They mostly have pH optima between 4.0 and 5.0 and temperature optima from 50 to 

70 °C (Table. 3). Studies have shown that many fungi produce multiple EGs. For example, T. reesei 

produces at least 5 EGs (EGI/Cel7B, EGII/Cel5A, EGIII/Cel12A, EGIV/Cel61A and EGV/Cel45A) 

whereas three EGs were isolated from white-rot fungus P. chrysosporium (EG28, EG34 and EG44) 

[44,57]. In addition, some EGs lack a CBM while some other EGs with CBM have been described. For 

example, four of five EGs in T. reesei including EGI, EGII, EGIV and EGV have CBM whereas EGIII 

does not have a CBM [36]. 

 

Cellobiohydrolases (EC 3.3.1.91, exocellulase) 

Cellobiohydrolases (CBH) preferentially hydrolyze β-1,4-glycosidic bonds from chain ends, 

producing cellobiose as the main product. CBHs have been shown to create a substrate-binding tunnel 

with their extended loops which surround the cellulose [58,59]. Similar to EGs, CBHs are monomers with 

no or low glycosylation with pH optima mostly between 4.0 and 5.0, but the temperature optima are 

wider, from 37 to 60 °C (Table. 3). Studies have shown that some CBHs can act from the non-reducing 

ends and others from the reducing ends of the cellulosic chains, which increases the synergy between 

opposite-acting enzymes. For example, T. reesei has been shown to have two CBHs acting from non-

reducing (CBHII/Cel6A) and reducing (CBHI/Cel7A) ends, which results in a more efficient cellulolytic 

degrader. Moreover, both CBHI and CBHII of T. reesei have CBM at the carboxy-terminus or at the 

amino-terminus of the catalytic module respectively. Cellobiose, the end product of CBHs, acts as a 

competitive inhibitor, which can limit the ability of the enzymes to degrade all of cellulose molecules in a 

system [36,44,60]. 
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Table 3. Overview of the three groups of fungal cellulolytic enzymes and their main features. 

 Optimum 

Substrate 

Molecular 

mass (kDa) 

GH family: 

corresponding structural fold 
Optimum 

temperature (°C) 

pH 

optimum 

Glyco-

sylation 

Refere

nces 

 

 

 

 

 

Endo-1,4- β-

glucanases 

(EG) 

 
 

 

 
 

Cellulose 

(amorphous 
regions) 

 
 

 

 
 

Monomeric 

(22-45) 

 
5: (β/α)8 

 

6: Distorted (β/α) 
 

7, 12: β-jelly roll 

 
9, 48: (α/α)6 

 

45: β barrel 
 

61: - 

 
74: 7-fold β-propeller 

 
 

 

 
 

 

50-70 

 
 

 

 
 

 

Mostly 4-
5 

 
 

 

 
 

 

None or 
very low 

 
 

 

 
 

 

[33,35,
44] 

 

 

Cellobiohydr

olases (CBH) 

 

 

Cellulose 
(crystalline 

regions) 

 

 

Monomeric 
(50-65) 

 

6: Distorted (β/α) 

 
7: β-jelly roll 

 

9, 48: (α/α)6 

 

 

37-60 

 

 

Mostly 
4-5 

 

 

None or 
very low 

 

 

[33,35,
44] 

β-

glucosidases 

(BGL) 

 

Cellobiose, 

cellodextrins 

Monomeric

, dimeric, 

trimeric 
(35-450) 

 

1: (β/α)8 

 
3: - 

 

45-75 

 

Vary1 

 

Usually 

very high 

[33,35,

44,61-

63] 

1
pH optima of BGLs vary based on the enzyme localization. 

 

β-glucosidases (EC 3.2.1.21)  

β-glucosidases (BGL) have been isolated from many different fungal species including 

ascomycetes such as T. reesei, and basidiomycetes such as white-rot and brown-rot fungi. β-glucosidases 

hydrolyze soluble cellobiose and cellodextrins to glucose, and are thus competitively inhibited by 

glucose. BGLs have been placed in families 1 and 3 of glycoside hydrolases based on their amino acid 

sequences [64]. Family 3 includes β-glucosidases from fungi, bacteria, and plants whereas family 1 

includes β-glucosidases of bacterial, plant and mammalian origins which have galactosidase activity in 

addition to β-glucosidase activity. BGLs from both families hydrolyze β-1,4-glycosidic bonds using the 

retaining mechanism [65]. BGLs show the most variability among the cellulolytic enzymes due to their 

structure and localization. While some BGLs have a simple monomeric structure with around 35 kDa 

molecular mass (e.g. from Pleurotus ostreatus) [61] some others have dimeric (e.g. from Sporobolomyces 
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singularis with 146 kDa) [62] or even trimeric structures with an Mr over 450 kDa (e.g. from Pisolithus 

tinctorius) [63]. In addition, most of BGLs are glycosylated and in some cases, such as the 300 kDa 

monomeric BGL from Trametes versicolor, the glycosylation degree is up to 90% [66]. Regarding 

localization, BGLs can be grouped into three different types including intracellular, cell wall-associated 

and extracellular [67]. Not surprisingly, pH optima for the enzymes vary based on enzyme localization. 

However, the temperature optima range from 45 to 75 °C (Table 3). In T. reesei, for example, two β-

glucosidases (BGLI/Cel3A & BGLII/Cel1A) have been isolated from culture supernatant, but the 

enzymes were found to be primarily bound to the cell wall [68]. Moreover, BGL production in T. reesei is 

very low compared to other cellulolytic fungi such as A. niger. Attempts with some success have been 

made to improve BGL activity in T. reesei by transformation of the bgl gene from the thermophilic 

fungus Talaromyces emersonii (cel3a) [69]. More recently, the production of T. reesei β-glucosidase I 

was enhanced by homologous recombination using xylanase (xyn3) and cellulase (egl3) promoters which 

improved β-glucosidase activity to 4.0 and 7.5 fold compared to the parent, respectively [70].  

 

Fungal hemicellulases 

Several different enzymes are needed to hydrolyze hemicelluloses, due to their heterogeneity 

[10]. Xylan is the most abundant component of hemicellulose contributing over 70% of its structure. 

Xylanases are able to hydrolyze β-1,4 linkages in xylan and produce oligomers which can be further 

hydrolyzed into xylose by β-xylosidase. Not surprisingly, additional enzymes such as β-mannanases, 

arabinofuranosidases or α-L-arabinanases are needed depending on the hemicellulose composition which 

can be mannan-based or arabinofuranosyl-containing [71]. Similar to cellulases, hemicellulases are 

usually modular proteins and have other functional modules, such as CBM, in addition to their catalytic 

domains. Also similarly to cellulases, most of the hemicellulases are glycoside hydrolases (GHs), 

although some hemicellulases belong to carbohydrate esterases (CEs) which hydrolyze ester linkages of 

acetate or ferulic acid side groups [71,72]. Hemicellulases belong to 20 different GH families (1, 2, 3, 4, 
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5, 8, 10, 11, 26, 27, 36, 39, 43, 51, 52, 53, 54, 57, 62 and 67) and all of them except for 4 (families 4, 8, 

52 and 57) have been found in fungi. All but 1 (family 7) of the 7 different CE families (1, 2, 3, 4, 5, 6 

and 7) reported for hemicellulases have been found in fungi [35]. Similarly to cellulases, aerobic fungi 

such as Trichoderma and Aspergillus secrete a wide variety of hemicellulases in high concentrations (8 

and 12 hemicellulases, respectively) and these work in a synergistic manner [71].  

 

Fungal ligninases 

 Lignin, the most abundant renewable aromatic polymer on the Earth, is composed of non-

phenolic (80-90%) and phenolic structures [73]. It has been shown that fungi degrade lignin by secreting 

enzymes collectively termed “ligninases”. These include two ligninolytic families; i) phenol oxidase 

(laccase) and ii) peroxidases [lignin peroxidase (LiP) and manganese peroxidase (MnP)] [74]. White-rot 

basidiomycetes such as Coriolus versicolor [73], P. chrysosporium and T. versicolor [75] have been 

found to be the most efficient lignin-degrading microorganisms studied. Interestingly, LiP is able to 

oxidize the non-phenolic part of lignin, but it was not detected in many lignin degrading fungi. In 

addition, it has been widely accepted that the oxidative ligninolytic enzymes are not able to penetrate the 

cell walls due to their size. Thus, it has been suggested that prior to the enzymatic attack, low-molecular 

weight diffusible reactive oxidative compounds have to initiate changes to the lignin structure (as 

discussed below) [76,77].  

 

Oxidative (Non-lignocellulolytic) lignocellulose-degradation mechanisms in higher fungi 

A few decades ago, non-enzymatic degradation mechanisms for plant cell-wall polysaccharide 

degradation were also considered and over the time more evidence for these was found. The non-

enzymatic degradation mechanism is mostly assisted by oxidation through production of free hydroxyl 

radicals (•OH). In fact, many white and brown-rot fungi have been shown to produce hydrogen peroxide 
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(H2O2) which enters the Fenton reaction and results in release of •OH [78,79]. These free radicals attack 

polysaccharides as well as lignin in plant cell walls in a nonspecific manner providing some cleavages 

which make it easier for the lignocellulolytic enzymes to penetrate [80,81]. Three different pathways have 

been found for the generation of free radicals (discussed below) including cellobiose dehydrogenase 

(CDH) catalyzed reactions, low molecular weight peptides/quinone redox cycling and glycopeptide-

catalyzed Fenton reactions (Table 4) [44].  

CDH, an extracellular monomeric protein with some glycosylation, has been identified in a 

number of wood- and cellulose-degrading fungi including basidiomycetes (mostly white-rot fungi) and 

ascomycetes growing on cellulose. The enzyme is able to oxidize cellobiose, higher cellodextrins and 

other disaccharides or oligosaccharides with β-1,4 linkages. In addition, CDH with (in ascomycetes) or 

without CBM (in basidiomycetes) have been identified however even in the absence of CBM they are 

able to bind to cellulose through hydrophobic interactions [82]. It has been shown in some fungi that 

under cellulolytic conditions CDH production increases which helps cellulases and hemicellulases 

[83,84]. It is now widely accepted that CDH are able to degrade and modify all three major components 

of the lignocellulosic residues (cellulose, hemicelluloses and lignin) by producing free hydroxyl radicals 

in a Fenton-type reaction (for detailed information please refers to the review by Baldrin and Valaskova, 

2008 [44]).    

It has been shown that white and brown-rot fungi produce low molecular weight chelators which 

are able to penetrate into the cell wall. For example Gloeophyllum trabeum produces a low molecular 

weight peptide (known as short fiber generating factor, SFGF) which can degrade cellulose into short 

fibers by an oxidative reaction [81,85]. It has also been reported that some of these low molecular weight 

compounds are quinones which have to be converted to hydroquinones by some fungal enzymes (Table 4) 

and then through Fenton reaction, free hydroxyl radicals will be produced [73].  

 Different glycopeptides with different molecular weight (ranging from 1.5 to 12 kDa) have been 

found in many brown-rot fungi such as G. trabeum [86] and white-rot fungi such as P. chrysosporium 
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[77,87]. Similar to the other mechanisms, glycopeptides are able to catalyze redox reactions and thus 

produce free hydroxyl radicals. 

 

Table 4. Different mechanisms involved in production of 
•
OH in different fungi  

Fungi Mechanisms Other enzymes involved/their function References 

White-rot fungi (e.g. Dichomitus 

squalens) 

CDH catalyzed 

reaction 

Oxalate decarboxylase/regulation of oxalate concentration [88,89] 

Brown and white-rot fungi (e.g. 

Coniophora puteana, P. 

chrysosporium) 

Quinone redox 

cycling 

Benzoquinone reductases, CDH, sugar 

dehydrogenases/convert quinones to hydroquinones 

 

[83,90] 

Brown and white-rot fungi (e.g. F. 

palustris, P. chrysosporium) 

Glycopeptides-

catalyzed Fenton 

reaction 

Cell wall-associated reductase/reduction of glycopeptides  

[91] 

 

 

“Cellulosome”: non-free cellulases in anaerobic fungi 

 Anaerobic fungi represent a special group of microorganisms inhabiting the gastro-intestinal tract 

of ruminants and most non-ruminant herbivores. These fungi, along with some anaerobic bacteria (mainly 

from the class Clostridia e.g. Clostridium thermocellum [92]), produce a range of cellulolytic and 

hemicellulolytic enzymes in a multienzyme complex known as cellulosome. The first anaerobic gut fungi 

able to break down ingested lignocellulosic residues were identified in 1975 by Orpin [93] and since then 

6 genera and 18 species have been identified some of which are shown in Table 2. The cellulosome, 

however, was initially discovered in anaerobic bacteria (Clostridium thermocellum) in 1983 [94], and 

then first described in anaerobic fungi in 1992 (Neocallimastix frontalis) [95]. In anaerobic bacteria, the 

cellulosome is usually comprised of 20 or more different cellulolytic/hemicellulolytic enzymes. However, 

in anaerobic fungi such as N. frontalis and Piromyces, cellulosomes include at least six or ten 

polypeptides, respectively (cellulosome-type complex) [55,95,96]. All hydrolytic enzymes in the 
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cellulosome are bound together by noncatalytic scaffolding proteins. In addition to catalytic subunits, all 

enzymes have noncatalytic subunits known as “fungal dockerin domains” (FDD), which allow binding to 

cohesin modules of the scaffolding proteins. Interestingly, 50 fungal FDDs have been identified so far 

which present different amino acid sequences than those found in bacterial dockerins [31,97].  

Anaerobic fungi efficiently hydrolyze cellulose and hemicellulose by producing many 

lignocellulolytic enzymes. Most of the enzymes are associated with the cellulosome; however, some free 

enzymes also have been identified. In Piromyces sp. PC2, a cellulosome-producing anaerobic fungus for 

example, 17 lignocellulolytic enzyme encoding genes have been isolated including ten cellulases, one β-

glucosidases, five hemicellulases and one enzyme facilitating protein folding. Interestingly, FDD has 

been reported only for 11 of the genes, which indicates that these cellulases are cellulosome-associated. 

Moreover, CBM has been identified only in three of those 17 genes, including two cellulases and one 

hemicellulase [31]. Interestingly, the major product of cellulose digestion by fungal cellulosomes is 

glucose which eliminate the costly addition of β-glucosidase, whereas in the case of bacterial 

cellulosomes, cellobiose is the major product [98]. Despite many advantages of cellulosomes such as 

synergistic activity between the components and efficient hydrolytic activity on both cellulose and 

hemicellulose, fungal cellulosomes are much less well characterized compared to bacterial cellulosomes. 

  

Bioconversion and biotechnological aspects of lignocellulose degradation by microorganisms 

 The bioconversion of lignocellulosic residues to valuable materials such as ethanol is more 

complicated than the bioconversion of starch based residues and thus requires four steps of processing, of 

which the first three are bio-related processes and the fourth is primarily a chemical engineering process 

that will not be discussed in great detail in this review; i) pretreatment ii) de-polymerization 

(saccharification) of cellulose and hemicelluloses to soluble monomer sugars (hexoses and pentoses) by a 

process known as hydrolysis, iii) conversion of these monomeric sugars to valuable products such as 
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ethanol in a fermentation process and iv) separation and purification of the products (Figure 1). In order to 

improve the yield, each step in the bioconversion process has to be optimized. In addition, process 

integration has to be considered in order to minimize process energy demand [22]. 

 

Pretreatment  

Pretreatment of the lignocellulosic residues is necessary because hydrolysis of non-pretreated 

materials is slow, and results in low product yield. Some pretreatment methods increase the pore size and 

reduce the crystallinity of cellulose (Figure 1). Pretreatment also makes cellulose more accessible to the 

cellulolytic enzymes, which in return reduces enzyme requirements and thus the cost [99]. Many different 

pretreatment methods have been used, but they can be categorized into three broad groups: chemical (e.g. 

acid or alkali), physical/ physicochemical (e.g. physical ball milling or physicochemical steam explosion) 

and biological pretreatment by microorganisms [100]. In the chemical pretreatment method using acid for 

example, hemicelluloses will be targeted whereas in alkali-catalyzed pretreatment mainly lignin is 

removed [22]. It has been suggested that there is probably no general pretreatment procedure and that 

different raw materials will require different pretreatments [22]. Since many fungal cellulolytic enzymes 

(fungal-derived cellulases and β-glucosidases) work at lower pH (usually 4-5) acidic pretreatment seems a 

preferred option when fungal enzymes are chosen for the hydrolysis [22].  

Biological pretreatment uses microorganisms and their enzymes selectively for delignification of 

lignocellulosic residues and has the advantages of a low-energy demand, minimal waste production and a 

lack of environmental effects [101]. White-rot basidiomycetes possess the capabilities to attack lignin. P. 

chrysosporium, for example, has been shown to non-selectively attack lignin and carbohydrate [102]. P. 

chrysosporium was successfully used for biological pretreatment of cotton stalks by solid state cultivation 

(SSC) and results have shown that the fungus facilitates the conversion into ethanol [101]. Other 

basidiomycetes such as Phlebia radiata, P. floridensis and Daedalea flavida, selectively degrade lignin in 

wheat straw and are good choices for delignification of lignocellulosic residues [103]. Ceriporiopsis 
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subvermispora, however, lacks cellulases (cellobiohydrolase activity) but produces manganese peroxide 

and laccase, and selectively delignifies several different wood species [104]. 

 

Figure 1. Schematic picture for the conversion of lignocellulosic biomass to ethanol, including 

the major steps. Hydrolysis and fermentation can be performed separately (SHF, indicated by broken 

arrows) or as simultaneous saccharification and fermentation (SSF). In consolidated bioprocessing (CBP) 

however, all bioconversion steps are minimized to one step in a single reactor using one or more 

microorganisms. Different techniques such as mutagenesis, co-culturing and heterologous gene 

expression have been used to improve sugars utilization of the microbial biocatalyst as well as activity 

and/or stability of hydrolytic fungal-derived enzymes in order to improve the overall yields. For reduction 

of production cost, ethanol production can be integrated with a combined heat and power plant using 

lignin. 
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Hydrolysis 

 After pretreatment, cellulose and hemicelluloses are hydrolyzed to soluble monomeric sugars 

(hexoses and pentoses) using cellulases and hemicellulases, respectively (Figure 1). As mentioned earlier, 

many fungal species such as Trichoderma, Penicillium, Aspergillus and T. emersonii are able to produce 

large amounts of extracellular cellulases and hemicellulases. High temperature and low pH tolerant 

enzymes are preferred for the hydrolysis due to the fact that most current pretreatment strategies rely on 

acid and heat [105]. In addition, thermostable enzymes have several advantages including higher specific 

activity and higher stability which improve the overall hydrolytic performance [106]. Ultimately, 

improvement in catalytic efficiencies of enzymes will reduce the cost of hydrolysis by enabling lower 

enzyme dosages. Some fungal strains such as T. emersonii [107], T. aurantiacus [29], T. terrestris [30], S. 

thermophile [28], Chaetomium thermophilum [108] and Corynascus thermophilus [109] can produce 

thermostable enzymes which are stable and active at elevated temperatures (˃60°C) well above their 

optimum growth temperature (30 to ~55) [110]. Due to the promising thermostability and acidic tolerance 

of thermophilic fungal enzymes, they have good potential to be used for hydrolysis of lignocellulosic 

residues at industrial scales.  

 

Fermentation 

 In the fermentation process, the hydrolytic products including monomeric hexoses (glucose, 

mannose and galactose) and pentoses (xylose and arabinose) will be fermented to valuable products such 

as ethanol (Figure 1). Among these hydrolytic products, glucose is normally the most abundant, followed 

by xylose or mannose and other lower concentration sugars. Saccharomyces cerevisiae is the most 

frequently and traditionally used microorganism for fermenting ethanol from starch-based residues at 

industrial scales [22]. S. cerevisiae has a few advantages such as its wide public acceptance, high 

fermentation rate and high ethanol tolerance that make it a good candidate for fermentation processes. 

However, S. cerevisiae is unable to efficiently utilize xylose as the sole carbon source or ferment it to 
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ethanol [111]. To make industrial lignocellulosic bioconversion more economically feasible, it is 

necessary to choose microorganisms capable of fermenting both glucose and xylose. Therefore, many 

successful attempts have been made to improve xylose fermentation in S. cerevisiae since the first 

discovery of pentose-fermenting yeasts in 1981 by a Canadian group [112]. These efforts can be classified 

within two major groups: recombinant (e.g. metabolic engineering of S. cerevisiae with genes from other 

xylose-fermenting yeasts) and non-recombinant (e.g. adaptation) techniques. These improvements have 

reached the point where the deficient xylose-fermenting S. cerevisiae can now convert xylose to ethanol 

at an efficiency close to its theoretical value of 0.51 g g
-1

 (for extensive review please read Chu and Lee, 

2007 [111]). 

 In addition to xylose, S. cerevisiae is also unable to ferment arabinose, unless supplemented with 

rich media [113]. Therefore, recombinant S. cerevisiae harbouring xylose-fermenting genes have been 

engineered with arabinose-metabolizing genes from other microorganisms. The latest recombinant S. 

cerevisiae (TMB 3400) has been shown to successfully ferment both xylose and arabinose in addition to 

glucose [114].  

During fermentation of lignocellulosic-based biomass, S. cerevisiae faces yet another challenge: 

the presence of inhibiting compounds including low molecular weight organic acids, furan derivatives, 

phenolics and inorganic compounds. These compounds are released and formed during pretreatment 

and/or hydrolysis of the lignocellulosic residues [115]. Thus, it is necessary to detoxify hydrolytic 

products before the fermentation which increases process cost in addition to sugar loss [116]. 

Interestingly, S. cerevisiae is one of the least sensitive microorganisms to the inhibitory effect of 

lignocellulolytic hydrolysate inhibitors. In a recent study for example, glucose and xylose, the hydrolytic 

products of steam-pretreated corn stover were efficiently co-fermented to ethanol without detoxification 

using the recombinant S. cerevisiae strain TMB 3400 [117]. It is also possible to adopt recombinant 

xylose-fermenting S. cerevisiae to the hydrolysate inhibitors by continuous cultivation in the presence of 

the inhibitors [118].  
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Attempts have been taken to reduce by-product inhibition. In a recent study for example, wheat 

straw pellets were subjected to wet explosion pretreatment using three different oxidizing agents, H2O2, 

O2 and air [119]. Interestingly, the pretreatment with O2 has been shown to be the most efficient in 

enhancing conversion of the raw material to sugars. Using the method also has minimized the production 

of furfural as a by-product which improved enzymatic hydrolysis and minimized the enzyme loading to 

10 FPU/g with conversion rate of 70 and 68% for cellulose and hemicellulose respectively [119]. 

Ammonia fiber explosion (AFEX) pretreatment also has been shown to be a good candidate since it does 

not produce some inhibitory by-products such as furans. However, the disadvantage of the method is that 

some of the phenolic compounds in lignin may remain on the pretreated material, which then needs to be 

washed. This creates wastewater, which causes the process to become environmentally unfriendly [100]. 

 The last two steps of bioconversion of pretreated lignocellulolytic residues to ethanol (hydrolysis 

and fermentation) can be performed separately (SHF) or simultaneously (SSF) (Figure 1). In the separate 

hydrolysis and fermentation (SHF), the hydrolysate products will be fermented to ethanol in a separate 

process. The advantage of this method is that both processes can be optimized individually (e.g. optimal 

temperature is 45-50 °C for hydrolysis, whereas it is 30 °C for fermentation). However, its main 

drawback is the accumulation of enzyme-inhibiting end-products (cellobiose and glucose) during the 

hydrolysis. This makes the process inefficient, and the costly addition of β-glucosidase is needed to 

overcome end-product inhibition [120]. In simultaneous saccharification and fermentation (SSF), 

however, the end-products will be directly converted to ethanol by the microorganism. Therefore, 

addition of high amounts of β-glucosidase is not necessary and this reduces the ethanol production costs 

[121]. However, the main drawback of SSF is the need to compromise processing conditions such that 

temperature and pH are suboptimal for each individual step. However, the development of recombinant 

yeast strains (i.e. improved thermotolerance) is expected to enhance the performance of SSF [1]. Further 

process integration can be achieved by a process known as consolidated bioprocessing (CBP) which aims 

to minimize all bioconversion steps into one step in a single reactor using one or more microorganisms. 
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CBP operation featuring cellulase production, cellulose/hemicellulose hydrolysis and fermentation of 5- 

and 6- carbon sugars in one step have shown the potential to provide the lowest cost for biological 

conversion of cellulosic biomass to fuels, when processes relying on hydrolysis by enzymes and/or 

microorganisms are used (Figure 1) [122]. 

 

Methods used to improve fungal enzyme production, activity and/or stability 

 In order to increase ethanol yield in the bioconversion process, both cellulose and hemicellulose 

have to be completely hydrolyzed with minimum sugar degradation. Moreover, all monomeric sugars 

produced during hydrolysis have to be efficiently fermented to ethanol. Technologies required for 

bioconversion of lignocelluloses to ethanol and other valuable products are currently available but need to 

be developed further in order to make biofuels cost competitive compared to other available energy 

resources such as fossil fuels. Many attempts have been made to improve the overall process yield and 

cost with a main focus on enzyme production and activity. Not surprisingly, the application of different 

strains and processes which are selected on the basis of the biomass residues used make comparisons 

difficult, if not impossible. Nevertheless, the most recent and important improvements in 

production/activity of fungal enzymes using different techniques such as mutagenesis, co-culturing and 

heterologous gene expression of cellulases are discussed below and summarized in Table 5.  

 

Mutagenesis 

  Many fungal strains have been subjected to extensive mutagenesis studies due to their ability to 

secrete large amounts of cellulose-degrading enzymes. It has been four decades since Mandels and Weber 

(late 1960s) screened over 100 wild-type strains of Trichoderma species to isolate the best cellulolytic 

strain and came up with T. reesei (initially called T. viride QM6a) [123]. Cellulolytic activity of T. reesei 

QM6a has been improved by using different mutagenesis techniques including UV-light and chemicals at 
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the US Army Natick Laboratory, resulting in the mutant QM 9414 with higher filter paper activity (FPA) 

[124]. Other studies in different laboratories have also made significant contributions to strain 

improvements using mutagenesis techniques, leading to development of the mutant strains M7, NG14 

[125] and RUT-C30 [126]. T. reesei RUT-C30 is one of the best known mutants, producing 4-5 times 

more cellulase than the wild-type strain (QM 6a). A recent study by Kovács and et al. (2008) has shown 

that wild-type Trichoderma atroviride (F-1505) produces the most cellulase among 150 wild-type 

Trichoderma. Moreover, T. atroviride mutants were created by mutagenesis using N-methyl-N′-nitro-N-

nitrosoguanidine (NTG) as well as UV-light. These T. atroviride mutants (e.g. T. atroviride TUB F-1724) 

produce high levels of extracellular cellulases as well as β-glucosidase when they are grown on pretreated 

willow [127].  

Cellulase and xylanase activities in Penicillium verruculosum 28K mutants were improved about 

3-fold using four cycles of UV mutagenesis. The enzyme production was further improved by 2- to 3-fold 

in a two-stage fermentation process using wheat bran, yeast extract medium and microcrystalline 

cellulose as the inducer [128]. However, caution has to be taken during strain improvement by 

mutagenesis. Studies have shown that the best T. reesei mutant (RUT-C30) lacks an 85 Kb genomic 

fragment and is consequently missing 29 genes which include transcription factors, metabolic enzymes 

and transport proteins. In fact, these genotype changes are correlated with phenotypic changes such as 

poor growth on α-linked oligo- and polyglucosides or disturbance of osmotic homeostasis [129].  

 On the other hand, site-directed mutagenesis (SDM) has played a central role in the 

characterization and improvement of cellulases including their putative catalytic and binding residues. 

Different site-directed mutagenesis methods such as saturation mutagenesis, error-prone PCR and DNA 

shuffling have been used to improve specific enzyme properties. For example, by the application of SDM 

it was found that Glu 116 and 200 are the catalytic nucleophile and acid-base residues in Hypocrea 

jecorina (anamorph T. reesei) Cel12A, respectively. In the study, mutant enzymes were produced where 

Glu was replaced by Asp or Gln at each position (E116D/Q and E200D/Q). The specific activity of these 
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mutants was reduced by more than 98%, suggesting the critical role of these two residues in the catalytic 

function of the enzyme [130].  

In another study, the thermostable endo-1,4-β-xylanase (XynII) mutants from T. reesei were 

further mutated to resist inactivation at high pH by using SDM. All mutants were resistant to thermal 

inactivation at alkaline pH. For example, thermotolerance for one mutant (P9) at pH 9 was increased 

approximately 4-5 °C, resulting in better activity in sulphate pulp bleaching compared to the reference 

[131]. Also, the catalytic efficiency and optimum pH of T. reesei endo-β-1,4-glucanase II were improved 

by saturation mutagenesis followed by random mutagenesis and two rounds of DNA shuffling. The pH 

optimum of the variant (Q139R/L218H/W276R/N342T) was shifted from 4.8 to 6.2, while the enzyme 

activity was improved more than 4.5-fold [132]. Moreover, the stability of T. reesei endo-1,4-β-xylanases 

II (XynII) was increased by engineering a disulfide bridge at its N-terminal region. In fact, two amino 

acids (Thr-2 and Thr-28) in the enzyme were substituted by cysteine (T2C:T28C mutant) resulting in a 15 

°C increase in thermostability  [133].  

 

Co-culturing 

  Fungal co-culturing offers a means to improve hydrolysis of lignocellulosic residues, and also 

enhances product utilization which minimizes the need for additional enzymes in the bioconversion 

process. In the case of cellulose degradation, for example, all three enzymatic components (EG, CBH and 

β-glucosidase) have to be present in large amounts. However, none of the fungal strains, including the 

best mutants, are able to produce high levels of the enzymes at the same time. T. reesei for example 

produces CBH and EG in high quantities whereas its β-glucosidase activity is low [134]. A. niger 

however, produces large amounts of β-glucosidase, but has limited EG components [56]. In addition, 

hemicellulose hydrolysis must also be considered when lignocellulosic residues are subjected to biomass 

conversion. However, this will be determined by the pretreatment methods. Specifically in an alkali 
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pretreatment method, a part of lignin will be removed and thus hemicellulose has to be degraded by the 

use of hemicellulases, whereas in acid-catalyzed pretreatment, the hemicellulose layer will be hydrolyzed 

[22]. Again, some fungal strains have been shown to work more efficiently on cellulosic residues whereas 

others produce more hemicellulolytic enzymes and efficiently hydrolyze hemicellulosic portions [20,135]. 

Conversion of both cellulosic and hemicellulosic hydrolytic products in a single process can be achieved 

by co-culturing two or more compatible microorganisms with the ability to utilize the materials. In fact, in 

nature, lignocellulosic residues are degraded by multiple co-existing lignocellulolytic microorganisms. 

Co-culturing of two or more fungal strains in mixed culture fermentation is widely used in many 

biological processes including the production of antibiotics, enzymes and fermented food [136]. Mixed 

fungal cultures have many advantages compared to their monocultures, including improving productivity, 

adaptability and substrate utilization. Improving fungal cellulolytic activity of T. reesei and A. niger by 

co-culturing was the subject of extensive research including studies done by Maheshwari [137], Ahmad 

[138] and Juhász [139]. Moreover, other fungal strains have been co-cultured to obtain better cellulolytic 

activity such as co-culturing of T. reesei RUT-C30 and A. phoenicis [140] or A. ellipticus and A. 

fumigatus (Table 5) [141]. There are a few examples of co-culturing fungal strains for the purpose of 

combining cellulose and hemicellulose hydrolysis such as co-culturing T. reesei D1-6 and A. wentii Pt 

2804 in a mixed submerged culture [142] or co-culturing T. reesei LM-UC4 and A. phoenicis QM329 

using ammonia-treated bagasse [143]. In the both cases, enzyme activity for cellulases and hemicellulases 

was significantly increased. The main drawback of co-culturing however is the complexity of growing 

multiple microorganisms in the same culture [144].  

 Alternatively to co-culture, microorganisms can be metabolically engineered, which enables one 

microorganism to complete an entire task from beginning to end. This can be done by altering metabolic 

flux by blocking undesirable pathway(s) and/or enhancement of desirable pathway(s). For example by 

application of homologous recombination, the production of T. reesei β-glucosidase I was enhanced using 

xylanase (xyn3) and cellulase (egl3) promoters which improved β-glucosidase activity to 4.0 and 7.5 fold 
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compared to the parent, respectively. This will permit one fungal strain such as T. reesei to be more 

efficient on hydrolysis of cellulose to glucose which improve the yield and therefore lower the cost [70]. 

 

Heterologous expression of cellulases 

 Heterologous expression is a powerful technique to improve production yield of enzymes, as well 

as activity. In order to make a robust lignocellulolytic fungal strain, many different fungal cellulases with 

higher and/or specific activity based on the need for a functional cellulase system in the organism have 

been cloned and expressed. For example, thermostable β-glucosidase (cel3a) from thermophilic fungus T. 

emersonii was expressed in T. reesei RUT-C30 using a strong T. reesei cbh1 promoter. The expressed 

enzyme has been shown to be highly thermostable (optimum temperature at 71.5 °C) with high specific 

activity [69]. In the study for the improvement of biofinishing of cotton, T. reesei cellobiohydrolase (I & 

II) were overexpressed using additional copy(s) of the genes cloned under T. reesei cbh1 promoter. 

 The results have shown that the expression of CBHI was increased to 1.3- and 1.5-fold with one 

or two additional copies of the gene, respectively. In the case of CBHII, however, the expression was 

increased to 3- to 4-fold using just one additional copy of the gene [145]. In addition, chimeric proteins 

with specific applications have been designed using recombinant DNA technology. For example, an 

endoglucanase from Acidothermus cellulolyticus was fused to T. reesei cellobiohydrolase and expressed 

in T. reesei. This bi-functional endo- & exo-acting cellulolytic enzyme has been shown to improve 

saccharification yields [146]. Moreover, the structural and biochemical information obtained from family 

GH 12 homologues was used to create a wide range of H. jecorina Cel12 A variants which were 

heterologously expressed as secreted proteins in A. niger displaying temperature stability changes ranging 

from none to an increase of 3.9 °C (the most stable variant, P201C) (Table 5) [36]. 
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 Table 5. Some methods which have been used to improve fungal lignocellulolytic activity or stability. 

Methods Fungal strain Enzyme Altered feature Technique Reference 

 

 

 

 

 

 

 

Mutagenesis 

T. reesei RUT-

C30 

Cellulases Activity UV treatment followed by 2 rounds of 

NTG treatment  

[126,129] 

T. atroviride 
TUB F-1724 

β-glucosidase Activity 2 rounds of NTG treatment followed by 
UV treatment  

 
[127] 

P. verruculosum 

28K mutants 

Cellulases and 

xylanases 

Activity Four cycles of UV mutagenesis 

followed by two-stage fermentation 
process 

 

[128] 

T. reesei P9 

 

Thermophilic endo-

1,4-β-xylanase (XynII) 

pH stability 

(alkalinity), 
Thermostability   

SDM (using PCR and synthetic 

oligonucleotide primers) 
(N97R+F93W+H144K) 

 

[131] 

T. reesei 

(Variants L218H, 

Q139R/N342T)  

 

Endo-β-1,4-glucanase 

II 

 

Catalytic 

efficiency, pH 
optimum 

 

Saturation mutagenesis followed by 

random mutagenesis and two rounds of 
DNA shuffling 

 

[132] 

T. reesei 

(T2C:T28C 
mutant) 

Endo-1,4-β-xylanases 

II (XynII) 

 

Thermostability 

PCR and synthetic oligonucleotide 

primers (Engineering a disulfide bridge 
at N-terminal region) 

 

[133] 

 

 

 

 

 

 

 

Co-culturing 

T. reesei RUT-

C30 and A. niger 

LMA 

 

β-glucosidase 

 

Activity 

 

Fed-batch fermentor on a Cellulose-

Yeast extract medium 

 

[138] 

T. reesei RUT-

C30 and A. 

phoenicis 

 

β-glucosidase 

 

Activity 

 

Shake flask culture  

 

[140] 

A. ellipticus and 
A. fumigatus 

β-glucosidase Activity Solid state fermentation using 
pretreated sugarcane bagasse  

[141] 

T. reesei D1-6 and 

A. wentii Pt 2804 

Cellulases, xylanases  

Activity 

Mixed culture medium (M3) 

supplemented with trace metal & 
vitamin solutions 

 

[142] 

T. reesei LM-UC4 

and A. phoenicis 
QM329 

 

Cellulases, 
hemicellulases 

 

Activity 

 

Solid state fermentation using 
ammonia-treated bagasse 

 

[143] 

 

 

 

 

 

 

Heterologous 

gene 

expression 

 

T. reesei RUT-

C30 

Thermostable β-

glucosidase (cel3a) 

from thermophilic 
fungus T. emersonii 

 

Activity 

 

Heterologous gene expression using T. 

reesei cbh1 promoter 

 

 

[69] 

 

T. reesei 

 

Cellobiohydrolase (I 
& II) 

 

Activity 

 

Overexpression using T. reesei cbh1 
promoter 

 

[145] 

Acidothermus 

cellulolyticus and 

T. reesei 

Endoglucanase &  

cellobiohydrolase 

Bi-functional 

endo- & exo-

acting cellulase 

Chimeric protein,  

expressed in T. reesei 

 

 

[146] 

H. jecorina 
(P201C) 

Cel12 A Thermostability Mutation followed by heterologous 

expression in A. niger 

[36] 

SDM: site-directed mutagenesis 

 

Concluding remarks 

Lignocellulolytic microorganisms, especially fungi, have attracted a great deal of interest as 

biomass degraders for large-scale applications due to their ability to produce large amounts of 

extracellular lignocellulolytic enzymes. Many successful attempts have been made to improve fungal 
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lignocellulolytic activity including recombinant and non-recombinant techniques. Process integration has 

also been considered for the purpose of decreasing the production cost, which was partly achieved by 

performing hydrolysis and fermentation in a single reactor (SSF) using one or more microorganisms (co-

culturing). Moreover, recombinant S. cerevisiae with efficient fermenting activity for both 5- and 6-

carbon sugars in the presence of inhibitors contributed to process integration. These laboratory 

improvements should now be verified in pilot and demonstration plants, such as the projects completed at 

the Iogen pilot plant (Canada). Scaling up the production of lignocellulosic ethanol, however, requires 

further reduction of the production cost. Overall, in order to improve the technology and reduce the 

production cost, two major issues have to be addressed: i) improving technologies to overcome the 

recalcitrance of cellulosic biomass conversion (pretreatment, hydrolysis and fermentation) and ii) 

sustainable production of biomass in very large amounts. In the case of large scale biomass production, in 

addition to forest and crop residues, energy crops such as switchgrass and Miscanthus can be grown to 

meet the needs. On the other hand, biotechnological approaches including systems biology and 

computational tools are likely good candidates to overcome these issues.  
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Abstract 

Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. 

By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and 

prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some 

basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular 

ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic 

enzyme families produced by these fungi that are involved in wood decay processes, their molecular 

structures, biochemical properties and the mechanisms of action which render them attractive candidates 

in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases 

[lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory 

enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in 

a non-enzymatic manner by production of free hydroxyl radicals (
•
OH) are also discussed. 

Keywords: Lignocellulose, Bioconversion, Fungi, Lignin, Ligninases   

 

Lignocellulosic materials 

Lignocellulose is a renewable organic material and is the major structural component of all 

plants. Lignocellulosic wastes are produced in large amounts by many industries including those of 

forestry, pulp and paper, agriculture, and food. Such wastes are also present in municipal solid waste 

(MSW), and animal wastes [1-6]. These potentially valuable materials were treated as waste in many 

countries in the past, and still are today in some developing counties, which raises many environmental 

concerns [7,8].  

Lignocellulose consists of three major components: cellulose, hemicellulose and lignin. In 

addition, small amounts of other materials such as ash, proteins and pectin can be found in lignocellulosic 

residues in varying degrees based on the source [9]. Cellulose, the major constituent of all plant material 
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and the most abundant organic molecule on Earth, is a linear biopolymer consisting of 

anhydroglucopyranose-molecules (glucose) connected by β-1,4-glycosidic bonds. Coupling of adjacent 

cellulose chains via hydrogen bonds, hydrophobic interactions and Van der Waal’s forces results in the 

parallel alignment of crystalline structures known as microfibrils [10]. Unlike cellulose, hemicelluloses 

are heterogeneous polymers of pentoses (including xylose and arabinose), hexoses (mainly mannose, less 

glucose and galactose) and sugar acids. The highly variable composition of hemicelluloses is dependent 

on its plant source [11,12]. Lignin, the second-most abundant biopolymer on Earth and a heterogeneous 

polymer in lignocellulosic residues, is the only naturally synthesised polymer with an aromatic backbone. 

It generally contains three precursor aromatic alcohols including coniferyl alcohol, sinapyl and p-

coumaryl [13]. These precursors form the guaiacyl- (G), syringyl- (S) and p-hydroxyphenyl (H) subunits 

in the lignin molecule, respectively [14]. The subunits ratio, and consequently, the lignin composition, 

varies between different plant groups. Oxidative coupling of these lignin aromatic alcohol monomers 

creates a complex structure in lignin which is highly recalcitrant to degradation [15]. By linking to both 

hemicelluloses and cellulose, lignin acts as a barrier to any solutions or enzymes and prevents penetration 

of lignocellulolytic enzymes to the interior lignocellulosic structure. Not surprisingly, of the components 

of lignocellulosic material, lignin is the most resistant to degradation [9,16]. Although lignin resists attack 

by most microorganisms, basidiomycetes white-rot fungi, are able to degrade lignin efficiently [15,17]. 

 

Lignocellulolytic enzyme-producing fungi  

Lignocellulolytic enzymes-producing fungi are widespread, and include species from the 

ascomycetes (e.g. Trichoderma reesei) and basidiomycetes phyla such as white-rot (e.g. Phanerochaete 

chrysosporium) and brown-rot fungi (e.g. Fomitopsis palustris). In addition, a few anaerobic species (e.g. 

Orpinomyces sp.) are found to be able to degrade cellulose in the gastrointestinal tracts of ruminant 

animals [18,19]. Biomass degradation by these fungi is performed by complex mixtures of cellulases [20], 
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hemicellulases [18] and ligninases [9,21], reflecting the complexity of the materials. In nature, 

degradation of cellulosic biomass is performed by mixtures of hydrolytic enzymes collectively known as 

cellulases. Cellulases include endo-acting (endoglucanases) and exo-acting (cellobiohydrolases) enzymes, 

which behave in a synergistic manner in biomass-degrading microbes. Many microorganisms, including 

fungi and bacteria, have been found to be capable of degrading cellulose and other plant cell wall fibres. 

By 1976, over 14,000 fungal species expressing this ability had been isolated, but only a few of them 

were subjected to in-depth studies [22]. Most fungal strains produce and secrete various lignocellulolytic 

synergistically-acting enzymes into the environment, thus contributing significantly to the decay of 

lignocellulosic residues in nature. The breakdown of lignocellulosic biomass involves the formation of 

long-chain polysaccharides, mainly cellulose and hemicellulose, and the subsequent hydrolysis of these 

polysaccharides into their component 5- and 6-carbon chain sugars. In biofuel production, these sugars 

can be further converted to bioethanol through fermentation processes [23,24].  

In nature, efficient lignin degradation during the process of wood decay became possible mainly 

by basidiomycetes white-rot fungi. Many white-rot fungi simultaneously attack lignin, hemicellulose and 

cellulose whereas some other white-rot fungi preferentially work on lignin in a selective manner. For 

example, while Ceriporiopsis subvermispora [25], Phlebia spp. [26,27], Physisporinus rivulosus [28] and 

Dichomitus squalens [27] selectively attack lignin, Trametes versicolor  [29], Heterobasidium annosum 

[30] , P. chrysosporium [9] and Irpex lacteus [31] simultaneously degrade all cell wall components. 

Selective lignin degraders may have significant potential biotechnological applications when the removal 

of lignin is required to obtain intact cellulose such as in biopulping processes and also in procedures 

where the main objective is to provide an unprotected carbohydrate for subsequent use (e.g. animal feed 

and/or biofuel substrate) [32,33]. For example C. subvermispora, which lacks cellulase, has been selected 

for biopulping processes as a selective lignin degrader [32,34].   

In contrast to white-rot fungi, brown-rot fungi, such as Postia placenta, Laetiporus portentosus, 

Piptoporus betulinus and Gloeophyllum trabeum, can degrade wood carbohydrates, but not oxidized 
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lignin. As a result, brown-colored rot ensues [14,15]. Ascomycetes are mostly able to degrade cellulose 

and hemicellulose, while their ability to convert lignin is limited [14]. Plant pathogenic fungi such as 

Fusarium solani f. sp. glycines are able to degrade lignin by production of laccase and lignin peroxidase. 

Lignin degradation by the fungi is suggested to play a role in sudden death syndrome (SDS) in soybean 

[35].   

 

Fungal extracellular ligninases  

Fungi degrade lignin by secreting enzymes collectively termed “ligninases”. Ligninases can be 

classified as either phenol oxidases (laccase) or heme peroxidases [lignin peroxidase (LiP), manganese 

peroxidase (MnP) and versatile peroxidase (VP)] (Table 1) [14]. In general, laccases use molecular 

oxygen as electron acceptors while peroxidases use hydrogen peroxide as a co-substrate [33]. White-rot 

fungi variously secrete one or more of the lignin-modifying enzymes (LMEs) in addition to other  

compounds necessary for effective lignin degradation (discussed in section 2.2.) [36]. It has been shown 

that P. chrysosporium produces several LiP and MnP isoenzymes but no laccase [37]. Correspondingly, 

the genome of P. chrysosporium contains ten LiP and five MnP genes [38]. In addition, H2O2-generating 

enzyme, glyoxal oxidase (GLOX) has been found in P. chrysosporium cultures [39]. White-rot 

basidiomycetes, such as Coriolus versicolor [40], P. chrysosporium and T. versicolor [41], have been 

found to be the most efficient lignin-degrading microorganisms studied. Although LiP is able to oxidize 

the non-phenolic part of lignin (which forms 80-90% of lignin composition), it is absent from many lignin 

degrading fungi [40]. In addition, electron microscopy studies of the early stages of the fungal 

degradation of wood have shown that oxidative ligninolytic enzymes are too large to penetrate into the 

wood cell wall micropores [42]. Thus, it has been suggested that prior to the enzymatic attack, low-

molecular weight diffusible reactive oxidative compounds must initiate changes to the lignin structure (as 

discussed below) [42,43]. Figure 1 summarized the major steps and enzymes involved in lignin 

degradation by basidiomycetes white-rot fungi.   
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Table 1. The features of the main two groups of fungal ligninolytic enzymes. 

 

1
General reactions. 

2
Different enzymes from different species need different metal(s) or ion(s). 

3
Fungal 

laccases are mostly extracellular enzymes but cytoplacmic or intracellular laccases were also found 

especially in plants and bacteria [45]. 
4
Glycosylation degree varies between different fungal ligninolytic 

enzymes [68]. N/A: not applicable, 3-HAA: 3-hydroxyanthranilic acid, NHA: N-hydroxyacetanilide and 

ABTS: 2,2’-azinobis(3-ethylbenzthiazoline-6-sulphonate). 

  

Phenol oxidases (laccases)(benzenediol:oxygen oxidoreductases, EC 1.10.3.2) 

Laccases are glycosylated blue multi-copper oxidoreductases (BMCO) that use molecular oxygen 

to oxidize various aromatic and non-aromatic compounds through a radical-catalyzed reaction mechanism 
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(Table 1) [44,45]. Laccases couple the electron reduction of dioxygen into two molecules of water with 

the oxidation of a vast variety of substrates, such as phenols, arylamines, anilines, thiols and lignins 

(Figure 1, a) [46]. Four copper ions in their catalytic center mediate the redox process. These are 

classified as being type-1 (T1), type-2 (T2) and two type-3 (T3 and T3 ), based on the copper’s 

coordination and spectroscopic properties [47]. The oxidation reactions catalyzed by laccases lead to the 

formation of free radicals which act as intermediate substrates for the enzymes (Figure 1, b) [48]. These 

mediators can leave the enzyme site and react with a broad range of high-redox potential substrates and 

thus create non enzymatic routes of oxidative polymerizing or depolymerizing reactions (Figure 1, c). 

Ultimately, laccase-mediator system (LMS) becomes involved in a range of physiological functions such 

as lignolysis (Figure 1, d), lignin synthesis, morphogenesis, pathogenesis and detoxification [49]. 

Initially discovered in the Japanese lacquer tree Rhus vernicifera [50], laccases have since been 

found in many other plants and insects [44]. However, for the most part, laccases have been found and 

studied in white-rot fungi, such as Lentinus tigrinus [48], Pleurotus ostreatus D1 [51], Cerrena unicolor 

strain 137 [52], T. versicolor [53], Trametes sp. strain AH28-2 [54], Trametes pubescens [55] and 

Cyathus bulleri  [56]. Laccase production using a liquid culture has also been reported in brown-rot fungi, 

including Coniophora puteana [57]. Also, ascomycetes such as Melanocarpus albomyces [58], 

Chaetomium thermophile [59], Magnaporthe grisea [60], Myrothecium verrucaria 24G-4 [61] and 

Neurospora crassa [62] are able to produce laccases. In addition by application of gene-specific PCR 

primers, laccase genes were detected in a few different fungal species including Pycnoporus 

cinnabarinus, Pycnoporus coccineus, Pycnoporus sanguineus, Cyathus sp. and also in xylariaceous 

ascomycetes Xylaria sp. and Hypoxylon sp. [63]. Interestingly, laccases were also detected in some 

bacteria such as Bacillus subtilis [64], while other bacteria, like Streptomyces griseus [65], produce a 

laccase-like phenol oxidase. Also, laccase genes were detected in bacteria such as Bacillus licheniformis 

[66] and B. subtilis [67]. For extensive information please refer to the following website 

http://www.brenda-enzymes.org [68]. 

http://www.brenda-enzymes.org/
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As laccases work efficiently on a broad range of substrates without cofactors, they may have 

significant value in many biotechnological applications, such as pulp bio-bleaching [69], biosensors [70], 

food industries [71], textile industries [72], soil bioremediation [73] and in the production of complex 

polymers in synthetic chemistry [74]. However, commercial application of laccases face major obstacles, 

such as the lack of sufficient enzyme stocks and the cost of redox mediators [75]. Heterologous 

expression of the enzymes with protein engineering allows for the cost-effective creation of more robust 

and active enzymes. In addition, an improvement in immobilization methods would result in greater 

stability of laccases with long life times [76]. 

 

Heme Peroxidases 

Lignin peroxidases (LiP)(1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol:hydrogen-peroxide 

oxidoreductases, EC 1.11.1.14)  

LiPs are heme-containing glycoproteins and play a central role in the biodegradation of the cell 

wall constituent, lignin [77]. LiPs catalyze the H2O2-dependent oxidative depolymerization of a variety of 

non-phenolic lignin compounds (diarylpropane), β-O-4 non-phenolic lignin model compounds and a wide 

range of phenolic compounds (e.g. guaiacol, vanillyl alcohol, catechol, syringic acid, acteosyringone) 

with redox potentials up to 1.4 V (Table 1) [15]. LiPs oxidize the substrates in multi-step electron 

transfers and form intermediate radicals, such as phenoxy radicals and veratryl alcohol radical cations 

(Figure 1, e). These intermediate radicals undergo non-enzymatic reactions such as radical coupling and 

polymerization, side-chain cleavage, demethylation and intramolecular addition and rearrangement 

(Figure 1, f) [15]. Unlike the other peroxidises, like MnP, LiP is able to oxidize non-phenolic aromatic 

substrates and does not require the participation of mediators due to its unusually high redox potential 

(Figure 1, g) [15,40]. The crystal structure of the first LiP has shown that the heme group is buried in the 

interior of the protein and has access to the outer medium through a channel. Although the size of the 
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channel is not sufficient to allow the large polymer lignin to access the heme group, small molecule 

substrates can find a suitable binding site [77].   

Since the discovery of LiP in P. chrysosporium [78] in 1983, more LiPs have been found in 

different P. chrysosporium strains [79,80] and other white-rot fungi, such as T. versicolor [81]. In 

addition, LiP genes were detected in a few different fungal species including Panus sp., P. coccineus, P. 

sanguineus and Perenniporia medulla-panis [63]. LiP was also detected in some bacteria, such as 

Acinetobacter calcoaceticus NCIM 2890 [82] and Streptomyces viridosporus T7A [83]. 

 

 

Figure 1. Schematic diagram of lignin degradation by basidiomycetes white-rot fungi: the major steps 

and enzymes involved (refer to text).  
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Lac: laccase, LMS: laccase-mediator system, LiP: lignin peroxidase, MnP: manganese peroxidase, VP: 

versatile peroxidase, H2O2-GO: H2O2-generating oxidases, AAO: aryl-alcohol oxidase, GLOX: glyoxal 

oxidase, H2O2: hydrogen peroxide AAD: aryl-alcohol dehydrogenases, QR: quinone reductases and 
•
OH: 

free hydroxyl radicals. 

 

Manganese peroxidases (MnP)(Mn(II):hydrogen-peroxide oxidoreductases, EC 1.11.1.13) 

 MnPs are extracellular glycoproteins and are secreted in multiple isoforms which contain one 

molecule of heme as iron protoporphyrin IX [84]. MnP catalyzes the peroxide dependent oxidation of 

Mn(II) (as the reducing substrate) to Mn(III) (Figure 1, h), which is then released from the enzyme 

surface in complex with oxalate or with other chelators (Figure 1, i). Chelated Mn(III) complex acts as a 

reactive low molecular weight, diffusible redox-mediator (Figure 1, j) of phenolic substrates including 

simple phenols, amines, dyes, phenolic lignin substructures and dimers (Table 1) [15,36,84]. The 

oxidation potential of Mn(III) chelator is only limited to phenolic lignin structures. However, for the 

oxidation of non-phenolic substrates by Mn(III), reactive radicals must be formed in the presence of a 

second mediator (Figure 1, k). Organic acids, such as oxalate and malonate, are the primary compounds 

that act as second mediators in the production of reactive radicals like carbon-centered radicals (acetic 

acid radicals, COOH-C
•
H2), peroxyl radicals (COOH-CH2OO

•
), superoxide (O2

•-
) and formate radicals 

(CO2
•-
) [15,36,84]. In the absence of H2O2 (e.g. in fungi lacking H2O2-generating oxidases), these radicals 

can be used by MnP as a source of peroxides and increase the lignin-degrading efficiency of the fungi 

[15,36,85].    

 Since the discovery of MnP in P. chrysosporium in 1985 [86], more MnPs have been found in 

other basidiomycetes, such as Panus tigrinus [87], Lenzites betulinus [88], Phanerochaete flavido-alba 

[89], Agaricus bisporus [90], Bjerkandera sp. [91] and Nematoloma frowardii b19 [92]. 
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MnPs may be capable of rivalling the potential applications of laccases in biotechnology. This is 

evident in studies which illustrate that the presence of MnP can increase the degree of dye decolorization. 

One study in particular found that MnP was the main enzyme involved in dye decolorization by P. 

chrysosporium [93]. Also, in another study, MnP produced by P. chrysosporium was used for the 

decolonization of sulfonphthalein (SP) dyes [94]. Complete decolorization took place at pH 4.0. In 

addition, MnP from white-rot fungi is considered the primary enzyme responsible for biobleaching of 

kraft pulps. The main drawback in commercial applications of MnP is the unavailability of the enzyme in 

large quantities; this can be resolved with the use of DNA recombinant technology [95]. For example, 

wild-type MnP from white-rot fungi [96] and recombinant MnP (rMnP) expressed in Pichia pastoris [97] 

have been used to remove lignin from cellulose fibers in pulp bleaching experiments [95]. The rMnP used 

in the study was found to be effective in lignin degradation and removal in both hardwood and softwood 

unbleached kraft pulps [95]. 

 

Versatile peroxidases (VP) (EC 1.11.1.16)  

VPs are glycoproteins with hybrid properties capable of oxidizing typical substrates of other 

basidiomycetes peroxidases including Mn(II) and also veratryl alcohol (VA), MnP and the typical LiP 

substrate, respectively (Figure 1) [36,84,98]. VPs form an attractive ligninolytic enzyme group due to 

their dual oxidative ability to oxidize Mn(II) and also phenolic and nonphenolic aromatic compounds 

(Table 1) [36]. It has been found that VPs can also efficiently oxidize high redox-potential compounds 

such as dye Reactive Black 5 (RB5) as well as a wide variety of phenols, including hydroquinones 

[99,100]. It has been suggested that VPs can oxidize substrates spanning a wide range of potentials, 

including low- and high-redox potentials. This is a result of their hybrid molecular structures which 

provide multiple binding sites for the substrates [101]. This makes VPs superior to both LiPs and MnPs, 

which are not able to efficiently oxidize phenolic compounds in the absence of VA or oxidize phenols in 
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the absence of Mn(II), respectively [98]. Similar to the MnP mechanism, Mn(III) is released from VPs 

and acts as a diffusible oxidizer of phenolic lignin and free phenol substrates (Figure 1, h, i and j). Like 

other members of heme peroxidases, heme is buried in the interior of the protein and has access to the 

outer medium through two channels [100,101]. The function of the first channel is similar to that 

described for LiP and is conserved among all heme peroxidases. Conversely, the second channel is found 

to be specific to VP and MnP and is where the oxidation of Mn(II) to Mn(III) takes place [98]. 

Since the discovery of VP in 1999  in members of the genus Pleurotus, such as P. eryngii 

[101,102] and P. ostreatus [103], more VPs have been found in other basidiomycetes such as 

Bjerkandera adusta [100,104], Bjerkandera sp. strain BOS55 [105], Bjerkandera sp. (B33/3) [106], 

Bjerkandera fumosa [107] and Pleurotus pulmonarius [108]. Although P. chrysosporium did not show 

any VP activity, a putative extracellular peroxidase related to Pleurotus VP has been identified in its 

genome [109]. In addition, VP was detected in Polyporales basidiomycetes, including species from the 

genera Panus (e.g. P. tigrinus 8/18) [110]. 

Among basidiomycetes peroxidases, VPs have attracted the greatest biotechnological attention 

due to their catalytic versatility, which includes the degradation of compounds that other peroxidases are 

not able to oxidize directly. This unique feature allows VP to oxidize not only Mn(II) but also VA, 

phenolic, non-phenolic and high molecular weight compounds, including dyes in Mn-independent 

reactions [15,84]. Like Mn , V ’s primary disadvantage in commercial applications is its limited 

availability in large quantities, which can be resolved with the use of DNA recombinant technology 

[95,98]. Efforts have been made to produce VP using heterologous expression systems. For example, in 

an experiment in which VP from Pleurotus eryngii was expressed under control of the alcohol 

dehydrogenase (alcA) promoter of Aspergillus nidulans, and lowering the growing temperature further 

improved the expression level [111]. Alternatively, other basidiomycete peroxidases such as LiP or MnP 

can be engineered to create peroxidases with new functions that emulate those of natural occurring VPs. 

For example, the Mn(II) binding site was introduced into a P. chrysosporium LiP by site-directed 
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mutagenesis and the engineered enzyme also showed MnP activity while retaining its ability to oxidize 

VA (LiP activity) [112]. In another experiment, when a tryptophan residue analogous to the essential one 

in LiP was introduced to P. chrysosporium MnP by site-directed mutagenesis (single mutation, S168W), 

MnP with LiP activity was created while full MnP activity was maintained [113].  

 

Other lignin degrading enzymes and accessory enzymes 

In addition to ligninases, other fungal extracellular enzymes which act as accessory enzymes 

have been found to be involved in lignin degradation. These include oxidases generating H2O2, which 

provide the hydrogen peroxide required by peroxidases, and mycelium-associated dehydrogenases, which 

reduce lignin-derived compounds (Figure 1, l) [14]. Oxidases generating H2O2 include aryl-alcohol 

oxidase (AAO) (EC 1.1.3.7) found in various fungi, such as P. eryngii, and glyoxal oxidase (GLOX, a 

copper-radical protein) found in P. chrysosporium [39,114]. In addition, aryl-alcohol dehydrogenases 

(AAD) (a flavoprotein) and quinone reductases (QR) are also involved in lignin degradation by fungi 

(Figure 1, m) [115]. Moreover, it has been shown that cellobiose dehydrogenase (CDH), which is 

produced by many different fungi under cellulolytic conditions, is also involved in lignin degradation in 

the presence of H2O2 and chelated Fe ions [116]. It is proposed that the effect of CDH on lignin 

degradation is through the reduction of quinones, which can be used by ligninolytic enzymes or the 

support of a Mn-peroxidase reaction (Figure 1, n) (for detailed information please refer to the review by 

Henriksson et al. 2000 [117]).  

 

Oxidative (non-lignocellulolytic) lignocellulose-degradation mechanisms in higher fungi 

Over the last few decades, there has been emerging evidence in support of the involvement of 

non-enzymatic mechanisms in plant cell-wall polysaccharide degradation. These mechanisms are mostly 

assisted by oxidation through the production of free hydroxyl radicals (
•
OH). Many white and brown-rot 
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fungi have been shown to produce hydrogen peroxide (H2O2) which enters the Fenton reaction and results 

in release of 
•
OH (Figure 1, o) [114,118]. By attacking polysaccharides and lignin in plant cell walls in a 

non-specific manner, these radicals create a number of cleavages which facilitate the penetration of the 

cell wall by lignocellulolytic enzymes [119,120]. The pathways by which fungi generate free 
•
OH radicals 

are: cellobiose dehydrogenase (CDH) catalyzed reactions, low molecular weight peptides/quinone redox 

cycling and glycopeptide-catalyzed Fenton reactions (Figure 1 and Table 2) [121].  

 

Table 2. Mechanisms and enzymes involved in the production of 
•
OH in different fungi  

Fungi Mechanisms Other enzymes involved/their function References 

White-rot fungi (e.g. D. squalens) CDH catalyzed 

reaction 

Oxalate decarboxylase/regulation of oxalate 

concentration 

[136,137] 

Brown and white-rot fungi (e.g. C. 

puteana, P. chrysosporium) 

Quinone redox 

cycling 

Benzoquinone reductases, CDH, sugar 

dehydrogenases/convert quinones to hydroquinones 

 

[117,138] 

Brown and white-rot fungi (e.g. F. 

palustris, P. chrysosporium) 

Glycopeptides-

catalyzed Fenton 

reaction 

Cell wall-associated reductase/reduction of glycopeptides  

[139] 

 

CDH, an extracellular monomeric protein with some glycosylation, has been identified in a 

number of wood- and cellulose-degrading fungi, including basidiomycetes (mostly white-rot fungi) and 

ascomycetes, growing on cellulosic medium. This enzyme is able to oxidize cellobiose, higher 

cellodextrins and other disaccharides or oligosaccharides with β-1,4 linkages. In addition, CDH has been 

found with cellulose binding module (CBM) (in ascomycetes) and without CBM (in basidiomycetes). In 

the absence of CBM, CDH is able to bind to cellulose through hydrophobic interactions [122]. In some 

fungi, under cellulolytic conditions, CDH production increases, which in turn helps cellulases and 

hemicellulases [117,123]. It is now widely accepted that CDH is able to degrade and modify all three 

major components of the lignocellulosic residues (cellulose, hemicelluloses and lignin) by producing free 
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hydroxyl radicals in a Fenton-type reaction (Figure 1) (for detailed information please refer to the review 

by Baldrin and Valaskova, 2008 [121]).    

It has been shown that white and brown-rot fungi produce low molecular weight chelators which 

are able to penetrate into the cell wall. For example, G. trabeum produces a low molecular weight peptide 

(known as short fiber generating factor, SFGF) which can degrade cellulose into short fibers by an 

oxidative reaction [120,124]. It has also been reported that some of these low molecular weight 

compounds are quinones, which must first be converted to hydroquinones by particular fungal enzymes 

(Table 2) before free hydroxyl radicals can be produced through the Fenton reaction (Figure 1, o) [40].  

 Glycopeptides of varying molecular weights (ranging from 1.5 to 12 kDa) have been found in 

many brown-rot fungi, such as G. trabeum [125] and white-rot fungi, such as P. chrysosporium [43,126]. 

Similar to other mechanisms, glycopeptides are able to catalyze redox reactions and thus produce free 

hydroxyl radicals (Figure 1, o). 

 

Concluding remarks 

Lignocellulolytic microorganisms, especially fungi, have attracted a great deal of interest as 

potential biomass degraders for large-scale applications due to their ability to produce vast amounts of 

extracellular lignocellulolytic enzymes. Lignin, the most recalcitrant component of lignocellulosic 

material, acts as a barrier for any solutions or enzymes by linking to both hemicelluloses and celluloses 

and prevents penetration of lignocellulolytic enzymes to the interior lignocellulosic structure. It is 

primarily basidiomycetes white-rot fungi that are responsible for efficient lignin degradation in wood 

decay processes. Their production of extracellular enzymes known as lignin-modifying enzymes (LMEs) 

facilitates the degradation process. Based on their activity on lignin and other lignocellulosic materials, 

white-rot fungi are categorized into two groups, simultaneous and selective degraders. Selective lignin 

degraders white-rot fungi are most attractive for their potential biotechnological applications in removing 
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lignin, as in biopulping processes, and for providing an unprotected carbohydrate for subsequent use, as in 

animal feed and/or biofuel substrate. LMEs include mainly two ligninolytic enzyme families; i) phenol 

oxidase (laccase) and ii) heme peroxidases (LiP, MnP and VP). LMEs, especially VPs require more 

research to understand the efficiency of the enzymes on lignin oligomers and the mechanisms of their 

action. In addition, accessory enzymes, such as oxidases that generate the H2O2 required by peroxidases, 

have been found to be involved in lignin degradation. Hydrogen peroxide is used by many white and 

brown-rot fungi to produce 
•
OH in the Fenton reaction. Ultimately, these free radicals attack 

polysaccharides as well as lignin in plant cell walls in a non-specific manner creating some cleavage sites 

which allow for easier penetration by lignocellulolytic enzymes. 

Genome sequencing projects of 62 fungal species, including six basidiomycetes and 27 

ascomycetes, have been completed thus far [127]. Availability of the full genome sequence of white-rot 

fungi, such as that of P. chrysosporium, now allows for the creation of proteomic methods to identify all 

enzymes involved in lignin degradation. In turn, such methods may lead to the discovery of new enzymes 

involved in the degradation [17]. In order to achieve this, small sample sizes were used to identify the 

proteins released by P. chrysosporium grown in a solid-substrate culture (red oak wood chips). 

Traditional two-dimensional (2-D) gel electrophoresis was coupled to advanced instrumentation, such as 

matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) or 

capillary liquid chromatography-nanoelectrospray ionization-tandem MS (CapLC-ESI-MS/MS). Using 

this combination, 16 extracellular proteins were identified from over 40 proteins spotted on 2-D gel [17]. 

However, it was predicted that P. chrysosporium, which was found to have a 30-Mb genome with more 

than 10,000 gene models (based on computational analysis), could potentially release about 790 proteins 

into the culture medium [128]. The goal of this and other on-going projects is to identify the extracellular 

proteome (proteomic secretome) of P. chrysosporium or other basidiomycetes white-rot fungi when 

grown on a solid substrate. More recently, the first genome-level transcriptome study of P. chrysosporium 

was performed to determine all the gene products involved in wood degradation using red oak as a carbon 
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source. The results have shown that in addition to other lignocellulolytic enzymes, lignin peroxidase and 

alcohol oxidase (H2O2-generating enzyme) are highly expressed during lignin degradation [129]. Further 

investigation is needed to identify the novel proteins involved in fungal lignin degradation and their 

mechanisms of action. In addition, the suppression of lignin biosynthesis enzymes via plant genetic 

engineering may be of potential use in overcoming some of the problems related to the recalcitrance of 

lignin [130]. 
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Abstract 

Cellulose, the major constituent of all plant materials and the most abundant organic molecule on 

the Earth, is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds.  Enzymatic 

hydrolysis of cellulose requires mixtures of hydrolytic enzymes including endoglucanases, exoglucanases 

(cellobiohydrolases) and β-glucosidases acting in a synergistic manner.  In biopolymer hydrolysis studies, 

enzyme assay is an indispensable part.  The most commonly used assays for the individual enzymes as 

well as total cellulase activity measurements, including their advantages and limitations are summarized 

in this review article.  In addition, some novel approaches recently used for enzyme assays are 

summarized.  

Keywords: Biofuel, Biomass, Bioconversion, Cellulase, and Cellulase Assays  

  

Introduction 

Many microorganisms including fungi and bacteria had been found to degrade cellulose and other 

plant cell wall fibres.  In nature, degradation of cellulosic biomass is performed by mixtures of hydrolytic 

enzymes collectively known as cellulases.  The cellulases include endo-acting (endoglucanases) and exo-

acting (cellobiohydrolases, CBH) enzymes, which act in a synergistic manner in biomass-degrading 

microbes.  The cellobiose and cellodextran products of exoglucanases and cellobiohydrolases are 

inhibitory to their activity.  Thus, efficient cellulose hydrolysis requires the presence of β-glucosidases to 

cleave the final glycosidic bonds of cellobiose producing glucose (Dashtban et al. 2009; Maki et al. 

2009).  

Assays for determining cellulase activity have been classified differently over years of cellulase 

research.  Sharrock (1988) grouped cellulase assays into two basic approaches: 1) determining the 

activities of individual cellulases (endoglucanases, exoglucanases, and β-glucosidases), and 2) measuring 

the total saccharifying activity of a crude cellulase system (Sharrock 1988).  Whereas Zhang et al. (2006) 

classified all cellulase activity assays into three main groups: 1) assays in which the accumulation of 
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products after hydrolysis were targeted, 2) assays in which the reduction in substrate quantity were 

monitored, and 3) assays in which the change in the physical properties of the substrate were measured 

(Zhang et al. 2006).  Due to the complexity of cellulose-cellulase systems and differences between kinetic 

characteristics of initial hydrolysis reaction and the extended time, cellulase activity assays are either 

expressed based on the initial hydrolysis rate or using the end-point hydrolysis.  The first one is preferred 

when measuring an individual cellulase activity in a short time; however, the last one is a method of 

choice for the total enzyme activity assay within a given time (Wu et al. 2006; Zhang et al. 2006). 

Cellulase activity is mainly evaluated using a reducing sugar assay to measure the end products of 

cellulase hydrolysis activities.  Thus, the results of such an assay are typically expressed as the hydrolysis 

capacity of the enzymes.  There are several issues with this work: it cannot be easily expressed in a 

quantitative manner, lacks theoretical basis, and does not consider all effective factors, such as 

concentration of cellulose and cellulase, the hydrolysis time, the ratio of crystalline and amorphous 

cellulose, and the proportion between different individual components in the enzyme preparations (Wu et 

al. 2006).  Researchers have mainly focused on improving methods for measurement of cellulase activity 

which have already been widely used.  Developing new sufficient cellulase assays is hampered by the 

physical heterogeneity and limited enzyme-accessibility of cellulosic materials, and the complexity of 

cellulase enzyme systems (synergy and/or competition) (Zhang et al. 2006).  Thus, an accurate and 

reproducible assay for the measurement of cellulase hydrolysis rate is still required (Wu et al. 2006).  

 In this review article, total cellulase activity by application of filter paper (filter paper assay, 

FPA) will be explained and then individual cellulase activities including endoglucanases, exoglucanases 

and β-glucosidases will be discussed.  Moreover, we will also summarize some novel approaches such as 

(1) quartz crystal microbalance, (2) miniaturized colorimetric assay, (3) automated FPA for the 

measurement of cellulase activity, (4) fluorescent microfibrils, and (5) amperometric cellobiose 

dehydrogenase biosensor.  Figure 1 recaps the different cellulase assays discussed in the article.  This 
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review paper summarizes and compares past and present cellulase assaying techniques and suggests 

future directions important for the ever growing field of biofuel research. 

 

1. Filter paper assay (FPase activity): total cellulase activity  

To compare the efficacy of cellulase activity between microorganisms or their secreted enzymes, 

techniques for measuring total cellulase activity are required.  The filter paper assay (FPA) is the key 

method for analysis of total cellulase activity.  In 1976, the filter paper assay was developed by Mandels 

et al. (Mandels et al. 1976).  The filter paper assay became widely used since 1984, when the Commission 

on Biotechnology of the International Union of Pure and Applied Chemistry (IUPAC) proposed a number 

of standard procedures for the measurement of cellulase activity.  Traditionally, the filter paper assay uses 

a 1 × 6-cm strip of Whatman no. 1 filter paper, as the standard substrate because it is readily available and 

inexpensive (Coward-Kelly et al. 2003).  This standard filter paper method has been reviewed by Ghose 

(Ghose 1987).  The International Unit (IU) of filter paper activity (FPase) (FPU) is defined as the 

micromoles of glucose equivalent liberated per minute of culture filtrate under assay conditions such as 

specific pH and temperature values that depend largely on the properties of the enzyme, varying widely 

between cellulases and microorganisms.  Reducing sugar is estimated as glucose by the Miller method.  

This assay is performed so that 0.5 mL of diluted enzymes releases about 2.0 mg of glucose equivalents in 

60 min, as determined by the dinitrosalicylic acid (DNS) assay (Miller 1959; Wood and Bhat 1988). 

The DNS reagent is used as a colorimetric method for the determination of reducing sugars, such 

as glucose. It contains sodium potassium tartrate, which decreases the tendency to dissolve oxygen by 

increasing the ion concentration in the solution.  Phenol increases the amount of color produced during 

the color developing reaction. Sodium bisulphite stabilizes the color obtained and reacts with any oxygen 

present in the buffer.  Finally, an alkaline buffer is required for the redox reaction between DNS and 

glucose, or other reducing sugars.  DNS will be added at the last step of the enzyme assay to stop the 

reaction.  To promote full color development, samples have to be boiled vigorously and the absorbance of 
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diluted samples will be read at 540 nm (Zhang et al. 2009).  One disadvantage of using such a dye for 

quantification is that, some of the reducing sugars are degraded while the analysis is performed (Miller 

1959).  

There are several more concerns associated with using the filter paper assay to quantify total 

cellulase activity.  Although the FPA is commonly used, it is also known for being non-reproducible.  

Difficulties arise from the preparation of the DNS reagent which is a tedious task requiring optimal 

mixing ratios of the different components.  Additionally, DNS reagent requires appropriate temperature 

control to allow for proper colour development and colour stability (Miller 1959).  Furthermore, it is 

known that the decomposition of sugars in the alkaline solution recommended by the IUPAC method 

causes an increase of (measured) enzyme activity to values higher than the actual ones (Gilman 1943).  

To summarize, it is time-consuming, labor-intensive and requires large quantities of reagents.  It is also 

difficult to obtain adequate sensitivity and reproducibility when characterizing newly isolated cellulases 

using this method.  Factors that affect sensitivity and reproducibility often result from the fact that most 

natural cellulase complexes tend to have a shortage of β-glucosidase activity (Breuil et al. 1986; Coward-

Kelly et al. 2003). 

 Several methods have been developed to improve the filter paper assay for the evaluation of total 

cellulase activity.  Nordmark et al. (2007) designed a modified method for the filter paper assay which 

requires the use of protein stabilizers.  This method allows the sensitive measurement of cellulase activity 

below the level required for the detection of reducing sugars using the traditional filter paper assay.  The 

traditional filter paper assay requires a fixed degree of conversion of substrate, i.e. a fixed amount (2 mg) 

of glucose (based on reducing sugars measured by the DNS assay) released from 50 mg of filter paper 

within a fixed time (60 min).  Because of the heterogeneous (amorphous/crystalline) nature of filter paper, 

reducing sugar yield during hydrolysis is not a linear function of the quantity of cellulase enzyme in the 

assay mixture (Zhang et al. 2009).  To overcome this limitation, researchers usually measure two enzyme 

activities (slightly less than and slightly greater than 2.0 mg of Reducing Sugar Equivalents (RSE) in 1h).  
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It is difficult to measure activities greater than 2.0 mg RSE in 1 h for all cellulases because cellulases 

preparations typically have lower cellulase activity due to lower concentration.  Protein stabilizers (such 

as bovine serum albumin) extended the enzyme reaction time thereby allowing a proportionate calculation 

of cellulase activities on natural cellulosic substrates to those obtained in the IUPAC assay (Nordmark et 

al. 2007).  

Similarly, Coward-Kelly et al. (2003) found that the filter paper assay could be improved by 

adding supplemental β-glucosidase.  If an organism or enzyme complex has low β-glucosidase activity a 

high amount of cellobiose will be produced resulting in a lowered or ‘false’ absorbance reading for the 

DNS assay because it is not a reducing sugar.  Adding supplemental β-glucosidase can help to overcome 

this issue.  In this study, supplemental β-glucosidase increased the assay reading by 56%.  They also 

tested the hypothesis that extended boiling time will improve the filter paper assay but failed to find any 

such benefit.  A 5-min boiling time is sufficient; however, they suggest that the water bath boil vigorously 

to eliminate temperature excursions (Coward-Kelly et al. 2003).  

Finally, downsizing the filter paper assay has also been developed as an improvement to the assay, 

allowing researchers to assay a large number of samples simultaneously.  This has been achieved by 

reducing the volume of the reagents and substrate so the assay can be done in a 96-well microtitre plate.  

The overall enzymatic reaction volume was reduced from the IUPAC 1.5 mL standard to 60 µL.  An 

office hole puncher was used to create small disks of filter paper substrate to fit perfectly in the wells.  No 

significant difference was observed between the activities measured using the IUPAC filter paper assay 

compared to the minimized reactions in the microtitre plate (Xiao et al. 2004). 

 

2. Endoglucanases activity: carboxymethyl cellulase activity (CMCase) 

Endoglucanases (EG) can randomly hydrolyze internal glycosidic bonds in cellulose chains.  EGs 

activities can be measured using a soluble cellulose derivative with a high degree of polymerization (DP) 

such as carboxymethyl cellulose (CMC).  Carboxymethyl cellulase (CMCase) is mainly evaluated based 
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on the procedure described by Mandels et al. (1976).  In this method, CMCase activity is measured by 

determining reducing sugars released after 5 min of enzyme reaction with 0.5% CMC at pH 4.8 and 50 °C 

(Mandels et al. 1976).  Also, one unit (IU) of EG is defined as the amount of enzyme that liberates 1 μmol 

of glucose per minute under assay conditions.  Reducing sugar can be estimated by application of 

different methods such as high performance liquid chromatography (HPLC) (Fujita et al. 2002) or glucose 

oxidase/peroxidase reagent (Trinder 1969) or a colorimetric method such as the Somogyi-Nelson method 

which uses alkaline copper as an inorganic oxidant.  Cupric ions (Cu (II)) accept electrons from the 

donating aldehyde groups of reducing sugars and reduce to Cu (I). In the second step, reduced Cu (I) ions 

will be oxidized back to Cu (II) using a chromogenic compound.  The reduced chromogenic compound 

produces color which can be measured using a colorimeter and compared to standards prepared from 

reacting sugar solutions of known concentration, to determine the amount of reducing sugar present 

(Nelson 1944; Somogyi 1952). 

Although CMC is commonly used as a substrate to quantify EG activity, there are several 

concerns associated with using CMC.  It is known for being non-reproducible which is only linear to 

about 12% conversion (hydrolysis of CMC to glucose) due to interference by substituents.  In this case, 

substituted glucose units available in different CMCs are also accessible to cellulase which caused non-

reproducibility.  In addition, the quantity of reducing sugars produced and thus the unit values, will be 

highly affected by the particular type of CMC used in the assay (Eveleigh et al. 2009; Mandels et al. 

1976).  These difficulties arise from two important variable physical parameters of CMC: 1) the degree of 

substitution (DS), and 2) the degree of polymerization (DP) which will affect its solubility and viscosity, 

respectively.  It is recommended that a reducing sugar assay or viscosity assay should be limited to the 

first 2% hydrolysis of substrate when CMC is used as the substrate with DS=0.7, this is to ensure that 

only nonsubstituted glucose units are accessible to EG (Zhang et al. 2006).  Additionally, the DP of CMC 

has an important role in determination of viscosity reduction.  Therefore, to minimize the influence of 

some conditions such as pH and ionic strength on DP and thus viscosity, some substituted CMC 
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substrates such as ionic CMC have to be avoided for determining EG activity.  Whereas non-ionic 

substituted cellulose such as hydroxyethyl cellulose (HEC) is preferred (Guignard and Pilet 1976; Zhang 

et al. 2009). 

 EGs activities can be measured using dye, either by adding dye to soluble cellulose derivatives or 

by adding it to solid agar plates known as “zymograms”.   emazol Brilliant Blue   and  uthenium  ed 

are two examples of dyes that have been used in CMC assays.   ecently in a zymogram assay, Gram’s 

iodine has been used for a fast and easy detection of endoglucanase activity which makes a sharp and 

distinct zone around the cellulase producing microbial colonies in a bluish-black background within a 

short time (3-4 min) (Kasana et al. 2008).  This method and other zymogram methods are applicable for 

screening of a large number of colonies.  However, they do not provide a quantitative result for the 

enzyme activity due to the lacking of a linear relationship between halo zones and enzyme activity.  

Moreover, EGs activities can be measured using some other dyes by adding them to insoluble cellulose 

derivatives or substituting insoluble cellulose derivatives chemically to produce chromogenic CMC.  

Examples of these are Cibacron Blue 3GA (Ten et al. 2004) and chromogenic trinitrophenyl CMC (TNP-

CMC) (Huang and Tang 1976), respectively.  

 

3. Exoglucanases activity: Avicellulases  

Cellobiohydrolases (exoglucanases) are classified as exo-acting based on the assumption that they 

all cleave β-1,4-glycosidic bonds from chain ends releasing cellobiose and some glucose molecules.  

Commercial Avicel (also called microcrystalline cellulose or hydrocellulose) is used for measuring 

exoglucanase activity because it has a low degree of polymerisation of cellulose and it is relatively 

inaccessible to attack by endoglucanases despite some amorphous regions. 

Enzymes which show relatively high activity on Avicel and little activity on CMC are identified 

as exoglucanases (Maki et al. 2009).  However, Avicel contains some amorphous cellulose and soluble 
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cellodextrans which can act as substrates for both exo- and endo-glucanases.  There is no highly specific 

substrate to test exoglucanase activity in cellulase mixtures (Sharrock 1988; Wood and Bhat 1988). 

Different assays have been reported for selection of exoglucanase activity, nevertheless all of 

these assays have some sort of limitations.  Van Tilbeurgh and Claeyssens (1985) found that 4-

methylumbelliferyl-β-D-lactoside was an effective substrate for assaying CBHI of Trichoderma reesei, 

where hydrolysis of this substrate yields lactose, phenol and 4-methylumbelliferone (a fluorescent signal 

molecule) as products.  However, this substrate could not be used to determine CBHII activity of T. reesei 

thus it is not an effective representation of true exoglucanase activity for this strain (van Tilbeurgh et al. 

1982; van Tilbeurgh et al. 1985).   

Similarly, Deshpande et al. (1984) developed an assay for quantification of exoglucanase activity 

in the presence of endoglucanases and β-glucosidases (Deshpande et al. 1984).  This assay is based on the 

following: exoglucanases specifically hydrolyze the aglyconic bond of p-nitrophenyl-β-D-cellobioside to 

yield cellobiose and p-nitrophenol; β-glucosidase activity is inhibited by adding D-glucono-1,5-δ-lactone 

(Holtzapple et al. 1990); and, the influence of exoglucanase hydrolysis activities must be quantified in the 

assay procedure in the presence of added purified endoglucanases.  The limitations for this assay are that: 

(1) the CBHII activity cannot be measured using p-nitrophenyl-β-D-cellobioside, (2) the specific activity 

of the available purified endoglucanases may not be representative for all existing endoglucanases in the 

mixture, and (3) the product ratio from endoglucanase actions may be influenced by the presence of 

exoglucanases (Zhang et al. 2006). 

Other less commonly used substrates for measuring or detecting exoglucanase activity for both 

bacteria and fungi include the following: PNP-p-D-cellobioside (Kohring et al. 1990), bacterial 

microcrystalline cellulose (BMCC) (Caspi et al. 2008), and MU-β-D-cellobioside (MU-C) (Courty et al. 

2005).  Limitations of these substrates are not clearly defined. 
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4. β-glucosidases assay  

β-glucosidase activity can be measured using various chromogenic and nonchromogenic 

substrates and are mainly evaluated based on the procedure of Kubicek (Kubicek 1982).  In one 

chromogenic method, p-nitrophenol-β-glucoside (pNPG) is used as the substrate.  The liberated p-

nitrophenol will be measured in order to determine the hydrolysis rate in optimal temperature and pH.  

Reaction conditions such as temperature and pH of different β-glucosidases vary based on the enzyme 

(Table 1).  pNPG as the substrate at the optimal concentration (usually 1-5 mM) will be added to an 

appropriate buffer with optimal pH, containing the enzyme and incubated at the optimal temperature.  

After 10-min incubation, the reaction will be stopped by adding 3 volumes of sodium tetraborate saturated 

solution, and then the absorbance will be read at 405 nm.  One unit of β-glucosidase is defined as the 

amount of enzyme that liberates 1 μmol of p-nitrophenol per minute (Chandra et al. 2009).  However, in 

the case of nonchromogenic substrates different methods can be used depending on the substrates.  For 

example when oligo- or di-saccharides (such as cellobiose) are used as the substrates, the liberated 

glucose can be evaluated by the glucose oxidase (GOD) method with a commercial kit.  Nevertheless, 

when the substrate is a polysaccharide, reducing sugars liberated will be measured by the 3,5-

dinitrosalicylic acid (DNS) method.  Using polysaccharides as the substrate, the enzyme unit will be 

determined as the amount of enzyme required for the liberation of one micromole of glucose or reducing 

sugar per minute.  Moreover, substrate specificity of enzymes can be determined using different 

substrates listed in Table 1 and applying the above mentioned methods. 

β-glucosidase activity measurement using chromogenic substrates such as pNPG is a common 

technique used in many different studies (Bhatia et al. 2005; Daroit et al. 2008; Joo et al. 2009; 

Karnchanatat et al. 2007; Korotkova et al. 2009; Murray et al. 2004; Tsukada et al. 2008; Yang et al. 

2008; Yoon et al. 2008).  However, correlation between β-glucosidase activity on the analog substrates 

(e.g. pNPG) and the natural substrate (e.g. cellobiose) is not clear.  As a natural substrate, cellobiose has 

been used in β-glucosidase screening experiments using 96-well microtitre plates (McCarthy et al. 2004).  
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However, this method is not preferred for screening of a large library of enzyme producing 

microorganisms due to its disadvantages such as being time-consuming and costly (Liu et al. 2009).  

 ecently, thermostable β-glucosidase mutants (BGLA) from Paenibacillus polymyxa have been identified 

using novel and fast combinatorial selection/screening approach.  In this study a big mutant library 

including 100,000 clones were generated using error-prone PCR and cloned and expressed in E. coli. 

Thermostable β-glucosidase mutants have been identified in a two-step process using a natural substrate 

(cellobiose): 1) selection for mutants with adequate β-glucosidase activity; 2) screening for improved 

thermostability.  In the first step, cells were grown on selection plates containing minimal growth medium 

plus cellobiose as the sole carbon source and thus, only cells expressing active β-glucosidase could grow 

on the medium.  Colonies on the selection plate were duplicated using a nylon membrane and then 

incubated at 60 °C for 10 min to break the cells and release intracellular β-glucosidase.  Also, heat 

treatment deactivated most of the β-glucosidase mutants and only thermostable β-glucosidase mutants 

will remain active and will be able to hydrolyse cellobiose to glucose on the screening plate.  In the 

second step, the membrane was overlaid on the soft agar screening plate containing minimal medium with 

cellobiose as the sole carbon source.  In addition to that, the medium contained an indicator strain of E. 

coli which was enabled to utilize glucose only (but not cellobiose).  After incubation the growth of the 

indicator strain on the screening plate was used as an indicator to detect the clones expressing 

thermostable BGLA mutants.  This screening method enabled scientists to screen larger libraries within a 

shorter time.  In this case, a thermotolerant mutant with 11-folds improved thermotolerance compared to 

the wild-type has been selected (Liu et al. 2009).  
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5. Novel approaches for measurement of cellulase activity: Automated measurement of 

cellulase activity 

Traditionally, enzymatic assays, particularly the widely used FPA, are recognized for their 

complexity and sensitivity to operator error and are generally deemed tedious and time-consuming.  It 

appears obvious that new and/or improved assays are required; however, there are several difficulties to 

be addressed when developing assays to quantify the activity of enzymes such as cellulases.  Is the assay 

reproducible, reliable and can it be applied in a time- and cost-efficient manner?  The aphorism “You get 

what you screen for” implies that the screening method/assay is crucial for accurate, reproducible and 

high quality results.  Thus, researchers have focused on developing a wide variety of novel techniques for 

the measurement of cellulase activity in hopes of addressing some of these difficulties with currently used 

assays. 

There are a variety of different techniques used to evaluate cellulase activity as previously 

mentioned, such as colorimetric detection of reducing groups, chromogenic, fluorogenic group release, 

chromatographic substrates and viscometric detection methods, to highly sophisticated mainly research-

based methods such as ion, liquid, and anion exchange chromatography and high-performance liquid 
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chromatography (Schwald et al. 1988).  Recently a few novel assays with ease of operation and high 

reproducibility have been developed.  Table 2 summarizes some cellulase assays using novel techniques. 

One of the most recent novel assay methods uses a quartz crystal microbalance (QCM) 

piezoelectric-sensing technique, for measuring cellulase activity, and relates crystallinity of different 

substrates to the cellulase activity (Hu et al. 2009).  The piezoelectric property of quartz crystal allows the 

production of an ultrasensitive mass balance.  Changes in frequency of a quartz crystal can be used to 

measure viscosity and density changes in a solution used to incubate a given cellulose substrate, after 

enzymatic hydrolysis.  The results can be used to quantify the enzyme activity.  Here, the quantification 

of cellulase activity using QCM was closer to those results obtained by measuring the actual reducing 

sugars (IUPAC assay).  QCM is advantageous to use because it is easier to implement by eliminating the 

need for colour development during the standard redox methods.  It also allows for flexibility in the 

properties of substrates used. 

Also recently, a miniaturized assay for the determination of total enzyme activity based on the 

colorimetric DNS method has been developed (King et al. 2009).  In this study, the mini-assay proved 

useful for high-throughput bioprospecting of novel enzymes for biofuel production.  Reducing sugar 

released from filter paper, Avicel, corn stalk, switchgrass, carboxymethylcellulose, and arabinoxylan were 

measured for a variety of fungal isolates and cellulase activities comparable or greater than activities of 

the widely used wild-type T. reesei were observed.  The enzyme extracts from biomass/substrate treated 

samples were aliquoted to 96-well microtitre plates and DNS reagents were reduced producing the 

miniaturized assay (King et al. 2009).  This miniaturized assay can be used not only for bioprospecting 

novel enzymes but also can be used to replace the traditional colorimetric cellulase assays to measure and 

compare the activity of known cellulases.  It is advantageous because it allows operators to reduce 

reagents, thereby reducing costs, aliquoting errors and ultimately the time for quantification.  
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Similarly, the possibility of complete automation of a cellulase assay was fully exemplified by 

Decker et al (2003).  This group created an automated version of the traditional filter paper assay using a 

Cyberlabs C400 robotics deck equipped with customized incubation, reagent storage, and plate reading 

capabilities.  The goal of such an automated assay was to reduce operator error during determination of 

cellulase activity and to reduce the amount of reagent usage as well as lower reagent disposal costs, while 

allowing for a high throughput of samples to be assayed.  The maximum throughput of samples of the 

automated procedure is 84 enzymes per day.  After the initial cost associated with the purchase of such a 

piece of equipment the high efficiency and low reagent usage will allow this technology to be successful, 

however at its current stage this automated assay is not sufficiently comparable to the traditional FPA 

(Decker et al. 2003). 

Furthermore, a more sensitive cellulase assay was developed using fluorescent microfibrils from 

bacterial cellulose prepared using DTAF (5-(4,6-dichlorotriazinyl) aminofluorescein) as a grafting agent.  

Fluorescent dyes such as DTAF which bear dichlorotriazinyl groups are known to react with hydroxyl 

groups of polysaccharides making DTAF a good candidate.  A protocol to graft microfibrils with DTAF 

was developed which does not modify the physical integrity of the substrate.  This grafted DTAF-

cellulose was created by dissolving 10-70 mg of DTAF into 10 mL of a suspension containing 100 mg of 

cellulose microfibrils in 0.1 N NaOH.  These mixtures were stirred at room temperature for 24 h.  

Cellulose digestion resulted in the release of fluorescent cellodextrins and reducing sugars.  This method 

allowed for a comparison between the amount of released fluorescence and that of released reducing 

sugar from which one could differentiate between processive exo- and endo-cellulase activities.  This 

research group also casted films of DTAF-grafted microfibrils to the bottom of microwell titre plates 

producing sensitive cellulase detection and allowing for possible automation. Sensitivity of detection can 

be increased by optimization of the grafting conditions which maximizes the quantity of soluble products.  

The main advantages for using fluorescent microfibrils is it allows for measurement of minute amounts of 

cellulase activity and it reduces the dependency on using substrates such as carboxymethyl cellulose 
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which are far different from native cellulosic substrates.  Cellulose microfibrils produced by algae and 

bacteria have been well characterized and shown to contain most of the structural and morphological 

characteristics of “real” cellulose materials. Being in a dispersed state, these cellulose microfibrils reduce 

cellulase-substrate accessibility problems (Helbert et al. 2003). 

Moreover, Hildén et al. (2001), set out to create a faster, more convenient, yet equally reliable 

method for determining cellulase activities of a series of samples.  They achieved this by using an 

amperometric redox polymer-based biosensor to determine the total concentration of soluble 

oligosaccharides.  The biosensor was produced based on cellobiose dehydrogenase from Phanerochaete 

chrysosporium wired by a redox polymer.  This newly applied method of measuring cellulase activity 

provides several advantages over traditional methods.  Firstly, it is rapid, allowing analysis of a maximum 

30 samples in an hour.  In addition, the biosensor can be readily used without prior planning because it 

can be stored in water in flow injection analysis.  Furthermore, the enzyme solution may be recovered 

after passing the electrode due to its non-destructive nature.  Not to mention, no harmful chemicals, 

boiling or cooling is required with this method simplifying implementation.  Finally, the precision of the 

method is equivalent to traditional methods such as the Somogyi-Nelson technique with high sensitivity 

detection to the same order of magnitude for cellobiose, cellotriose, and cellotetraose (Hilden et al. 2001).     

Despite the newly emerging cellulase activity assays, the filter paper assay is still the most widely 

used method.  Perhaps automation of the FPA will help researchers achieve reproducibility while 

reducing costs.  However, biosensors are becoming more popular and may offer a similar promising 

solution to the evaluation of cellulase activity which will give results comparable to the direct 

measurement of reducing sugars via FPA.   



88 

 

 

Figure 1. Different cellulase assays which are classified within two groups: 1) total cellulase 

activity, and 2) individual cellulase activity including endo-, exoglucanases and β-glucosidases.  

Filter paper assay can be improved by adding supplemental β-glucosidase which is indicated by 

the broken arrow.  Released reducing sugars can be measured using different reducing sugar 

assay methods such as DNS (dinitrosalicylic acid), GOD (glucose oxidase), and HPLC.  

Recently a few novel assays with ease of operation and high reproducibility have been 

developed.  
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6. Concluding remarks 

Many different cellulase activity assays have been used and developed over the last few decades.  

However, only a few of them have been used consistently and they are discussed in this article.  Among 

these assays, total cellulase activity by application of filter paper and methods for measuring individual 

cellulase activities for endoglucanases, exoglucanases and β-glucosidases are the major cellulase assays.  

Some of the major obstacles for cellulase assays are heterogeneity of insoluble cellulose, complicated 

synergy/competition among endo- and exo-glucanases and changes of enzyme/substrate ratio (Zhang et 

al. 2009).  More recently, some novel approaches such as quartz crystal microbalance, miniaturized 

colorimetric assay, automated FPA, fluorescent microfibrils, and amperometric cellobiose dehydrogenase 

biosensors have been developed for the measurement of cellulase activity.  Among these novel 

approaches, biosensors are recently attracting more attention. 

Amperometric biosensors measure the changes of current of a working electrode resulting from 

biochemical and electrochemical reactions.  In amperometric biosensors the potential at the electrode is 

held constant while the current is measured.  The overall performance of the biosensor will mainly 

depend on, the properties of biosensing (enzyme) membrane and to a little extent on the instrumentation 

system used to acquire the signal generated by biochemical reaction at the biosensing membrane (Baronus 

et al. 2003; Chaubey and Malhotra 2002; Gopel and Heiduschka 1995).  The combination of modern 

electrochemical techniques with enzymatic biosensors may potentially increase demands for investigation 
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on cellulase assays to design high performance biosensing systems in terms of selectivity, sensitivity, 

reliability, durability, and low cost.  An example of an amperometric biosensor with potential application 

in cellulase assays is the glucose-oxidase biosensor.  The enzyme glucose oxidase is incorporated in the 

membrane of the electrode to detect glucose and ultimately relay glucose concentration.  The glucose 

oxidase biosensor cannot detect small oligosaccharides such as cellobiose and cellotetraose which may be 

products of cellulase activity relating to endo- and exo- glucanases.  However, the previously discussed 

cellobiose dehydrogenase containing amperometric biosensor is capable of measuring such products.  For 

an accurate analysis of total cellulolytic activity we propose the production of a mixed enzyme membrane 

for biosensor detection.  Combining glucose oxidase with an additional enzyme such as cellobiose 

dehydrogenase would allow the detection of all cellulose hydrolysis products. 
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2.1 Abstract 

The ascomycete Hypocrea jecorina, an industrial (hemi)cellulase producer, can efficiently 

degrade plant polysaccharides. At present, the biology underlying cellulase hyperproduction of T. reesei, 

and the conditions for the enzyme induction, are not completely understood. In the current study, three 

different strains of T. reesei, including QM6a (wild-type), and mutants QM9414 and RUT-C30, were 

grown on 7 soluble and 7 insoluble carbon sources, with the latter group including 4 pure polysaccharides 

and 3 lignocelluloses. Time course experiments showed that maximum cellulase activity of QM6a and 

QM9414 strains, for the majority of tested carbon sources, occurred at 120 hrs, while RUT-C30 had the 

greatest cellulase activity around 72 hrs. Maximum cellulase production was observed to be 0.035, 0.42 

and 0.33 µmol glucose equivalents using microcrystalline celluloses for QM6a, QM9414, and RUTC-30, 

respectively. Increased cellulase production was positively correlated in QM9414 and negatively 

correlated in RUT-C30 with ability to grow on microcrystalline cellulose. 

Keywords: Trichoderma reesei, cellulase, growth characterization, carbon sources 

 

2.2 Introduction 

The ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) is one of the most studied 

and industrially important cellulolytic fungi. T. reesei is a saprobic fungus capable of efficiently 

degrading plant cell wall polysaccharides such as cellulose and hemicelluloses [1]. It was first isolated in 

Solomon Islands in 1944 by the US Army [2]. The original T. reesei isolate known as T. reesei QM6a 

soon became an area of great interest, because of its high cellulolytic potential. For many years, random 

mutagenesis has been applied to improve cellulolytic activity of the strain for its industrial application. 

The creation of different mutant strains with several-fold increase in the amount of secreted cellulolytic 

enzymes compared to the wild-type strain has been achieved by both academic and industrial research 

programs [3, 4].  
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One of the most hypercellulolytic strains, RUT-C30, was originated from T. reesei QM6a by 

three rounds of mutagenesis including a UV-light treatment followed by N-nitrosoguanidine (NTG) and 

another round of UV-light treatments [5-7]. Two genetic changes were previously shown in this mutant 

strain. The first one was a truncation of the cre1 gene encoding CRE1, the carbon catabolite repressor 

protein that renders the mutant strain carbon catabolite derepressed [8]. The second mutation was a 

frameshift mutation in the glycoprotein processing β-glucosidase II encoding gene [9]. Recently, massive 

parallel sequencing of two mutant strains including RUT-C30 and its ancestor NG-14 (originated from T. 

reesei QM6a) have been reported. The studies have identified higher number of mutagenic events 

including 223 single nucleotides variants (SNVs), 15 small deletions or insertions, and 18 larger 

deletions, leading to the loss of more than 100 Kb genomic DNA. These led to mutations in 43 genes 

mainly involved in nuclear transport, mRNA stability, transcription, protein secretion and metabolism [5-

7]. These genetic changes altered the phenotype of RUT-C30 and, for example, it is unable to grow on α-

linked oligo- and polysaccharides because of the loss of the maltose permease gene. This alteration makes 

RUT-C30 an ineffective candidate for cellulolytic enzyme production on carbon sources containing starch 

and other α-linked glycans [5]. Conversely, RUT-C30 shows an enhanced growth rate on a number of 

simple carbon sources such as glycerol, D-fructose, D-mannitol and D-mannose which act as catabolite 

repressing carbon source in T. reesei [5]. This alteration may be caused by the loss of CRE1 function in 

the mutant strain. Recent studies using array comparative genomic hybridization (aCGH) identified 17 

new mutations in RUT-C30 and its ancestor NG-14 [10].    

The other well-known hypercellulolytic strain T. reesei QM9414 also originated from T. reesei 

QM6a; in this case, the two rounds of mutations were included by a particle accelerator [5]. However, the 

nature of the mutations leading to the mutant strain have never been elucidated [11]. The mutant T. reesei 

QM9414 strain created by irradiation mutagenesis produces two to four times more cellulases than QM6a. 

Electrophoretic karyotyping of several T. reesei strains showed that chromosomal rearrangements have 

occurred in many strains, and in that of QM9414 the size of the smallest chromosome is different from 
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that of QM6a [10, 12]. Using aCGH, over forty new identified mutations (various types) have been 

recently reported in QM9414 and/or its ancestor QM9123 [10]. 

 In order to better understand cellulolytic potential of T. reesei, the strain QM6a, with a genome of 

approximately 34 MB, was subjected to the genome sequencing by US Department of Energy Joint 

Genome Institute [13]. Although T. reesei is well-known for its hypercellulolytic potential, based on the 

sequencing results, it had the fewest cellulases among the analyzed fungal genomes. T. reesei produces 

seven cellulases in total including two exoglucanases and five endoglucanases in addition to a small set of 

hemicellulases and pectin degrading enzymes [6]. Additionally, T. reesei produces two β-glucosidases to 

hydrolyze cellobiose (end-product of cellulases) to glucose [14, 15].   

 The regulation of cellulolytic enzymes expression by hypercellulolytic T. reesei is a complex 

process and our knowledge is still incomplete. Expression of the cellulolytic enzymes in T. reesei is 

induced by cellulose and also by some disaccharides such as D-lactose, cellobiose and sophorose whereas 

the presence of preferred carbon sources such as D-fructose and D-glucose antagonized the induction 

effect [16, 17]. This is the case because most T. reesei cellulases are adaptive enzymes, meaning their 

transcripts are not formed during growth on monosaccharides, and their full expression requires the 

presence of an inducer. Although there are many theories regarding the regulation of cellulases, all of 

them agree that the actions of cellulases lead to the formation of a cellulase inducer [18]. The need for an 

inducer to stimulate cellulase gene expression represents tight regulation of the respective promoters. So 

far, three positive transcriptional activators (XYR1, ACE2 and the HAP2/3/5 complex) as well as two 

repressors (ACE1 and the carbon catabolite repressor CRE1) have been identified to be involved in the 

complex regulation of cellulases production by T. reesei [18].  

One approach to better understand the biology underlying cellulase hyperproduction is the 

analysis of improved T. reesei mutant strains as compared to the wild-type T. reesei QM6a. Although the 

factors that regulate the production of cellulase by T. reesei have been previously studied, we 

systematically determined the effect of different carbon sources on cellulase production by three 
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important T. reesei strains [19, 20]. Because all the experimental conditions were identical, our results 

provide a more meaningful comparison between different strains and different carbon sources. In order to 

expand our understanding of the conditions for the production and activity of cellulases by T. reesei, we 

investigated the effect of 14 different carbon sources (7 soluble and 7 insoluble including 4 pure 

polysaccharides and 3 lignocelluloses, table 1) on three different T. reesei strains including QM6a (wild-

type) and its two mutant strains QM9414 and RUT-C30. We also analyzed the appropriate cultivation 

time for highest cellulase activity for each strain growing on different carbon source. We further 

investigated the effect of different concentrations of the selected carbon sources on cellulase production. 

Furthermore, the effect of different carbon sources on the growth of the different strains is reported in this 

paper.  

 

2.3 Materials & Methods 

 

2.3.1. Chemicals 

All the chemicals and reagents were of analytical grade, and were obtained from Sigma-Aldrich 

(Sigma-Aldrich Canada Ltd). Microcrystalline cellulose was obtained from J. T. Baker (Phillipsburg, NJ, 

U.S.A.). Paper mill sludge (obtained from St. Marys Paper Corp., Sault Ste Marie, Canada) was grounded 

in a blender then dried at 70 °C and kept for later use. Grounded pine sample and organosolv pretreated 

pine samples were kindly provided by Dr. Charles Xu (Lakehead University, Canada). 

2.3.2. Strains and culture conditions 

Three different strains of T. reesei including QM6a (wild-type, ATCC13631, kindly provided by 

Dr. Monika Schmoll, Vienna University of Technology, Austria), and its two hyperproducing mutants 

QM9414 (ATCC 26921, kindly provided by Dr. Tianhong Wang, Shandong University, China) and RUT-

C30 (ATCC 56765, kindly provided by Dr. Xiaobin Yu, Jiangnan University, China) were used in 
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cellulase production experiments. The strains were grown and maintained on potato dextrose agar (PDA) 

containing 15.0 g/L starch, 20.0 g/L D-glucose, and 18.0 g/L agar [21]. Strains were grown in 250 mL 

flasks, on a rotary shaker (200 rpm) at 30 °C, and in a 50 mL of medium described by Mandel and 

Andreotti (MA) [22] with the respective carbon source at a final concentration of 1% (w/v). The media 

containing the respective carbon sources were autoclaved at 121 °C (15 lb psi) for 15 min. 

2.3.3. Inoculum preparation  

After 14 days of incubation at 30 °C, the greenish conidia were suspended in 5 mL of sterile 

saline solution (0.9% w/v, NaCl). The spores were separated from the mycelium by gentle filtration 

through 12 layers of lens paper (Fisher Scientific, Canada), and spores were counted using a Petroff-

Hausser cell counter. The isolated spores were added at 1.0 × 10
6
 (final concentration) to 250 mL flasks 

containing 50 mL of MA-medium with the respective carbon source at a final concentration of 1% (w/v). 

Three biological replicates were run for each carbon source. 

2.3.4. Carbon source for cellulase production 

To test the effect of different types of carbon sources on the mycelia growth and cellulase enzyme 

production, 14 different carbon sources (table 1) were used and incorporated into MA-medium at 1% 

(w/v). To examine total cellulase activity, a time course trial was conducted similar to that of Cianchetta 

et al (2010) [23]. Specifically, the flasks were incubated at 30 °C in an Innova 44 (New Brunswick 

Scientific, USA) incubator for a total of 120 hours. Samples of 500 µL each were taken from each of the 

flasks every 24 hrs in a 1300 Series A2 biosafety cabinet (Thermo Fisher Scientific, Canada) to maintain 

sterile conditions. These 500 µL samples were centrifuged at 13000 rpm for 5 min, and the supernatant 

was used as the source of enzyme [21].  
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2.3.5 Concentration of the carbon source 

For each strain, the carbon source with the highest level of reducing sugar production was 

selected for further study. The concentration of this carbon source was varied from 0.25 to 2% (0.25, 0.5, 

0.75, 1.0, 1.25, 1.5, 1.75 and 2.0%), and both the reducing sugar production (Section 2.3.7), and fungal 

growth (Section 2.3.6) were recorded at the time point of maximum activity (obtained from carbon source 

for cellulase production, Section 2.3.4). 

2.3.6. Determination of fungal growth 

To determine mycelia growth, agar plates were inoculated with a small piece of agar in the center 

of an 8-cm plate, containing MA-agar medium with the respective carbon source at a final concentration 

of 1% (w/v). The increase in colony diameter was monitored daily, and pictures were taken after 4 days. 

To measure growth in submerged cultures, dry biomass was recorded at the end of the study. Mycelia 

were harvested after the experiment was completed —usually 120 hrs—and washing extensively with 

distilled water. Then they were dried to constant weight in a 70 °C oven. This procedure was carried out 

for all three biological replicates. 

2.3.7. Filter Paper Assay (FPA) and determination of reducing sugar content 

A microplate based filter paper assay, similar to the one described by Xiao et al (2004), was 

carried out to measure the total cellulase activity [24]. The method is 25-fold scale down of the IUPAC 

protocol for FPA assay [25, 26]. In short, 20 μL of the undiluted cell free culture supernatant was added 

to 40 μL of 75 mM citrate buffer for a final volume of 60 μL. As noted by Cianchetta et al. (2010), the 75 

mM buffer was diluted to the desired 50 mM by the enzyme solution [23]. The final reaction volume, 

citrate buffer concentration and pH were 60 μL, 50 mM and 4.8, respectively. Each of these samples was 

placed in a well containing a 6 mm diameter filter paper disk (Whatman No. 1, with average weight of 3.0 

mg each, ThermoFisher Scientific, Canada) cut using a standard office hole punch. Reagent blank 

containing 60 μL of 50 mM citrate buffer and substrate control containing only the filter paper, and 60 μL 
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of 50 mM citrate buffer were also run [27]. To exclude the background of reducing sugars found in the 

enzyme supernatant from the results, a negative control was run with no filter paper. The absorbance of 

the no filter paper sets and substrate control were subtracted from the absorbance of the activity assay. A 

glucose standard curve with a range of 0 to 2 mg/mL was run once, and two standards at 0 and 1.5 mg/mL 

were run in all subsequent trials. All of the samples and the standards were run in triplicate, while the 

blanks were run in duplicate.  

 The microplates were sealed with paraffin wax, covered in a Ziploc bag and incubated at 50 °C in 

water bath for 60 min. To measure the released reducing sugar, 120 μL of 3,5-dinitrosalicylic acid (DNS 

reagent) was added, and the plate was resealed with paraffin [28]. Boiling in water bath for 5 min 

developed the color. A 36 μL aliquot was transferred to a new 96-well flat-bottom microplate containing 

160 μL of distilled water, and the absorbance at 540 nm was measured using an xMark Microplate 

Spectrophotometer (Bio-Rad, Canada). Total reducing sugars generated during the assay was estimated as 

glucose equivalents. To calculate glucose equivalents, the absorbance of the samples was converted into a 

concentration using the standard curve, once the negative control and the reagent blank were subtracted. 

This concentration was converted into glucose equivalents using the assay volume and the molar mass of 

glucose.  

2.3.8. Data processing and statistical analysis 

All experimental points are the average values of three independent experiments. The data were 

collected in a Microsoft Excel spreadsheet where the average and standard error of the mean were 

determined. A two-way analysis of variance (two-way ANOVA) at a confidence level of 95% (α= 0.05) 

was carried out with the software PRISM 5 to test the statistical significance of differences between the 

growth rates of the three different T. reesei strains on each of the carbon sources. A Bonferroni multiple 

comparisons post hoc test was conducted, also at a 95% confidence level. 
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2.4 Results and discussion 

2.4.1. Effect of carbon sources on the growth and total cellulase activity of T. reesei strains 

 In the current study three different T. reesei strains including QM6a, QM9414 and RUT-C30 

were selected to study the effect of carbon sources on cellulases production. Druzhinina et al. (2006) 

previously examined carbon source utilization of T. reesei QM6a, and some of its cellulase-over 

producing mutants including QM9414 [29]. In this study, carbon sources were divided into two main 

groups based on their solubility in water: soluble carbon sources and insoluble carbon sources (the latter 

further divided into two subgroups: pure polysaccharides and lignocelluloses (Table 1) [30]. By 

measuring the FPA every 24 hrs, the effect of incubation time on cellulolytic enzyme production by the T. 

reesei strains was examined. The effect of each carbon source on the growth of each strain was 

determined by harvesting the culture, and measuring the dry weight at the end of each experiment.  

It was found that the biological variation among the replicated fungal cultures was the main 

source of the variation observed in FPA studies (Sections 2.4.2. to 2.4.4.) This is in accordance with the 

other experiments involving T. reesei strains in shake flasks or solid fermentation [23, 31]. Three to four 

days was chosen by other investigators as the end point for shake flask experiments since at this time the 

enzyme production reached a plateau phase [23, 32]. This was only the case for RUT-C30, which reached 

its maximum activity earlier than QM9414 and QM6a. Thus, 5 days was defined as the end point for our 

shake flask experiment. 

2.4.2. Soluble carbon sources 

The three T. reesei strains were grown on D-glucose, D-xylose, D-lactose, cellobiose, malt 

extract, carboxymethyl cellulose (CMC) and potato dextrose in submerged culture in shake flasks and on 

agar plates. Growth rate of the strains were determined by measuring the dry weight (Fig. 1A). The 

carbon source was found to cause a significant variation in the growth rate of the strains (ANOVA, P< 

0.05). All three strains grew less effectively on MA-medium and CMC, as compared to the other soluble 
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carbon sources. The slow growth on MA-medium, suggests that the pure MA-medium contributed very 

little to the growth of the fungi. The mutant strains QM9414 and RUT-C30 grew significantly slower on 

malt extract compared to the wild-type QM6a (P< 0.001). RUT-C30 grew significantly faster than QM6a 

and QM9414 on potato dextrose (P< 0.05). The strains were also grown on the same carbon source on 

agar plates to visualize the growth (Fig. 1B). The similarities between the relative sizes of the agar 

culture, and the relative dry weight of the mycelium in the liquid culture, suggest that the effect of carbon 

source on the growth of the fungi is independent from the state of the medium. 

The effect of the soluble carbon sources on cellulolytic enzymes production by the fungi was 

determined using a FPA of the liquid culture supernatants (Fig. 1C-E). For QM6a strain, the highest total 

cellulase activity was obtained at 120 hrs using D-lactose as the carbon source with about 0.019 µmol 

glucose equivalents. This level of activity was significantly larger than the activity induced by any of the 

other soluble sugars (Fig. 1C). For the two mutant strains including QM9414 and RUT-C30, the highest 

total cellulase activity was also obtained using D-lactose at 120 or 72 hrs with about 0.055 and 0.14 µmol 

glucose equivalents, respectively (Fig. 1D and E). Thus, total cellulase activity of QM9414 and RUT-C30 

using D-lactose was, approximately, 3-fold and 7-fold higher than total cellulase activity of the wild-type 

QM6a, respectively. For QM9414, CMC stimulated high cellulase production at 120 hrs, while 

cellubiose, D-xylose, and malt extract exhibited a lower activity. D-glucose was found to be intermediate 

between these two groupings (Fig. 1D). In the case of RUT-C30, cellulase production occurred more 

quickly than in other strains (Fig. 1E). Levels of activity at 48 hrs were found to be within the range of the 

maximum activity of QM9414, and greater than the activity of QM6a, suggesting that RUT-C30 favours 

cellulase production.   

The background of reducing sugars present in the medium disappeared at different time points for 

the tested carbon sources. This could be monitored by the amount of the reducing sugars in the no filter 

paper control. D-xylose and potato dextrose were completely exhausted between 48 to 96 hrs by all the 

three strains. D-glucose was slowly exhausted from the medium by QM6a and RUT-C30 strains over 120 
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hrs, and was quickly exhausted by QM9414 after 48 hrs. D-lactose was also slowly exhausted from the 

medium over 120 hrs by the all three strains. Malt extract and cellobiose were completely exhausted 

between 48 to 96 hrs by QM6a and QM9414; however, high background sugars were obtained at every 

time point for RUT-C30. CMC was not exhausted, and the background sugar level stayed the same low 

level during the experiment which confirmed overall lower T. reesei growth rate using the sugar (Fig. 1A 

and B). 

2.4.3. Insoluble, pure polysaccharide carbon sources 

The three T. reesei strains were grown on xylan (oat spelt), cellulose powder (cotton linters) and 

two brands of microcrystalline cellulose including microcrystalline cellulose (J.T. Baker) and Avicel PH-

101(Sigma Aldrich) in submerged culture in shake flasks and on agar plates. Growth rate of the strains 

were determined by measuring the dry weight (Fig. 2A). The carbon source and the strain used were both 

found to have a significant effect on the growth rate of the mycelium (ANOVA, P< 0.05). All the three 

strains grew more effectively on cellulose powder (cotton linters), microcrystalline cellulose and Avicel, 

and less effectively on xylan. The mutant strain QM9414 grew significantly faster on microcrystalline 

cellulose compared to the wild-type QM6a and RUT-C30 (ANOVA, P< 0.0001). QM6a also produced 

significantly more biomass than RUT-C30, when grown on microcrystalline cellulose (P< 0.05). This is 

the only case where the growth rate of all three strains was found to be significantly different, and when 

compared with the high enzyme production of QM9414 on microcrystalline cellulose, this tentatively 

suggests that microcrystalline cellulose both stimulates the appropriate inducers of cellulase production 

and provides an effective source of metabolic substrates for QM9414. The strains were also grown on the 

same carbon source on agar plates to visualize the growth (Fig. 2B).  

The effect of the insoluble pure polysaccharide carbon sources on cellulolytic enzymes 

production by the fungi was determined using a FPA of the liquid culture supernatants (Fig. 2C-E). For 

QM6a strain, the highest total cellulase activity was obtained at 96 hrs using Avicel and followed by 

xylan as the carbon source with about 0.033 and 0.031 µmol glucose equivalents (Fig. 2C). For the two 
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mutant strains including QM9414 and RUT-C30, the highest total cellulase activity was obtained using 

microcrystalline cellulose and Avicel at 120 or 72 hrs with about 0.41 and 0.31 µmol glucose equivalents, 

respectively (Fig. 2D and E). Thus, total cellulase activity of QM9414 and RUT-C30 using 

microcrystalline cellulose or Avicel was, approximately, 12-fold and 9.5-fold higher than total cellulase 

activity of the wild-type QM6a, respectively. In the case of RUT-C30, cellulase production using the 

tested carbon sources occurred more quickly than in other strains and reached the peak (around 72 or 96 

hrs) and (Fig. 2E). Similar to QM6a, activity of RUT-C30 was decreased at 120 hrs using most of the 

tested insoluble carbon sources (Fig. 2C and E) whereas QM9414 reached its maximum activity at 120 

hrs (Fig. 2D). Except for one type of microcrystalline cellulose, the cellulase activity of RUT-C30 was 

higher than QM9414 among the tested insoluble pure polysaccharide carbon sources (Fig. 2D and E). For 

the most of the insoluble carbon sources tested here the background of reducing sugars present in the 

medium was not significant. The exception was xylan, which was exhausted after 48.    

2.4.4. Insoluble, lignocellulosic carbon sources 

The three T. reesei strains were grown on pine sample, organosolv pretreated pine sample and 

paper-mill sludge in submerged culture in shake flasks and on agar plates (Fig. 3A-E). The dry weight of 

the mycelium indicates the growth rate of the fungi, and both the carbon source and the strain were found 

to lead to a significant difference in this rate (ANOVA, P< 0.05) (Fig. 3A). All the three strains grew less 

effectively on all the lignocellulosic carbon sources compared to the other tested carbon sources (soluble 

and insoluble pure polysaccharides, Fig. 1A and Fig. 2A). Other studies have found that pre-treated 

lignocelluloses do not stimulate microbial growth or enzyme production [21]. In the case of the 

organosolv pretreated pine sample used in this study, the low activity and fungal growth may be as a 

result of the inhibitory effects of compounds generated during the pretreatment or the presence of the 

solvents used for the pretreatment [33]. Also, paper-mill sludge generated by the industrial sources 

contains a large number of ingredients, some of which are toxic for microbial growth [34]. The lack of 
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microbial growth and enzyme production was also observed using untreated pine sample (Fig 3A-E). This 

may have been a result of the enzymes inability to access the celluloses found within the wood chips, 

because of the presence of lignin [35].  

The effect of the insoluble lignocellulosic carbon sources on cellulolytic enzymes production by 

the fungi was determined using a FPA of the liquid culture supernatants (Fig. 3C-E). For QM6a strain, no 

significant cellulase activity was obtained using all the three different lignocellulosic carbon sources (Fig. 

3C). For the two mutant strains including QM9414 and RUT-C30, the highest total cellulase activity was 

obtained using organosolv pretreated pine sample at 120 hrs with about 0.04 and 0.07 µmol glucose 

equivalents, respectively (Fig. 3D and E). The greater activity of RUT-C30, when considered in 

conjunction with the similarity in dry weight between the two strains, indicates that RUT-C30 is more 

adept at producing cellulases under these conditions. No reducing sugar background was observed in the 

medium supplemented with the lignocellulosic carbon sources. Figure 4 summarizes cellulase production 

by the three fungal strains using all 14 different carbon sources as well as MA-medium (as the control) 

used in this study.  

2.4.5. Concentration of carbon source 

Based on the carbon source experiments (Fig. 1, 2 and 3), Avicel showed the highest activity for 

QM6a and RUT-C30, whereas microcrystalline cellulose showed the highest cellulase activity for 

QM9414. To identify the optimum concentration of carbon source for each T. reesei strain, various 

concentrations (0.25 to 2%) of Avicel or microcrystalline cellulose were used (Fig. 5A-C). The highest 

cellulase activity for QM6a was obtained using 1% Avicel with all concentrations above this exhibiting 

repressed cellulase (Fig. 5A). T. reesei QM9414 strain showed the highest cellulase activity at about 

1.25% microcrystalline cellulose, but stayed almost the same level when the carbon concentration 

increased up to 2% (Fig 5B). In the case of RUT-C30, cellulase activity using Avicel was gradually 

increased starting at 0.5%, peaked at about 1.5%, and then decreased when the carbon concentration 
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increased up to 2% (Fig. 5C). Growth rate of the strains using the selected carbon sources were also 

determined by measuring the dry weight (Fig. 5A-C). All the three strains showed the same trend with 

gradually increasing the dry weight when the concentrations of the carbon sources were increased. The 

maximum dry weight for all the three T. reesei strains was obtained at the highest carbon concentration 

level (2%). This suggests that an increase in enzyme production is directly caused by an increase in 

mycelium density, and may be a result of complex inducing factors. 

 

2.5 Conclusion 

Although the cellulase activity of the T. reesei mutant strains QM9414 and RUT-C30 were 

appreciably higher than the wild-type QM6a, the carbon source utilization profiles of these strains closely 

resembled each other. For all the three T. reesei strains maximum cellulase production was observed 

using two different types of microcrystalline celluloses. The highest cellulase activity for QM6a was 

obtained using 1% Avicel while RUT-C30 showed the peak at about 1.5%. QM9414 strain showed the 

highest cellulase activity at about 1.25% microcrystalline cellulose. All the three strains exhibited the 

same gradual increase in the dry weight of the mycelium, as the concentrations of carbon sources were 

elevated. This consistency in mycelium growth suggests that the enzyme production is not directly 

correlated with the growth of the mycelium, and may be a result of complex inducing factors. 
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Table 1. List of 14 different carbon sources tested for their effect on cellulase production. MA-medium 

without carbon source was used as the control. 

Type Carbon Source (1%, w/v) Abbreviation 

Soluble 

 

 

 

 

 

 

Insoluble 

D-Glucose 

D-Xylose 

D-Lactose 

Cellobiose 

Malt extract 

Carboxymethyl cellulose 

Potato dextrose 
a 

 

Glc 

Xyl 

Lac 

CB 

ME 

CMC 

PD 

Pure polysaccharides Xylan (oat spelt) 

Cellulose powder (cotton linters) 

Microcrystalline cellulose 

Microcrystalline cellulose (J.T. Baker) 

Avicel PH-101(Sigma Aldrich) 

 

Xylan 

CP 

 

MCC 

Avi 

Lignocelluloses Pine sample 

Organosolv pretreated pine sample 

               Paper-mill sludge 

 

PS 

OrS 

Slu 

a
 Becomes soluble in water when heated.   
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Figure 1. Effect of the different soluble carbon sources on growth rate and total cellulase activity of the 

three T. reesei strains. (A) Dry weight of the T. reesei strains cultured for 5 days at 30 °C. Letters denote a 

significant difference between the growth rate of the strains for each carbon source (P< 0.05). Carbon 

sources that exhibited no significant difference between any of the strains do not have letters; (B) growth 

comparison of the T. reesei mutant strains QM9414 and RUT-C30 to the wild-type strain QM6a on the 

different soluble carbon sources after 4 days; (C) total cellulase activity of T. reesei QM6a; (D) QM9414 

and (E) RUT-C30 grown on MA-medium supplemented with 1% of the different soluble carbon sources 

for 24-120 hrs. Error bars denote standard error of the mean.   
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Figure 2. Effect of the different insoluble pure polysaccharide carbon sources on growth rate and total 

cellulase activity of the three T. reesei strains. (A) Dry weight of the T. reesei strains cultured for 5 days 

at 30 °C. Letters denote a significant difference between the growth rate of the strains for each carbon 

source (P< 0.05). Carbon sources that exhibited no significant difference between any of the strains do 

not have letters; (B) growth comparison of the T. reesei mutant strains QM9414 and RUT-C30 to the 

wild-type strain QM6a on the different insoluble pure polysaccharide carbon sources after 4 days; (C) 

total cellulase activity of T. reesei QM6a; (D) QM9414 and (E) RUT-C30 grown on MA-medium 

supplemented with 1% of the different insoluble pure polysaccharide carbon sources for 24-120 hrs. Error 

bars denote standard error of the mean.    
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Figure 3. Effect of the different insoluble lignocellulosic carbon sources on growth rate and total 

cellulase activity of the three T. reesei strains. (A) Dry weight of the T. reesei strains cultured for 5 days 

at 30 °C. Letters denote a significant difference between the growth rate of the strains for each carbon 

source (P< 0.05). Carbon sources that exhibited no significant difference between any of the strains do 

not have letters; (B) growth comparison of the T. reesei mutant strains QM9414 and RUT-C30 to the 

wild-type strain QM6a on the different insoluble lignocellulosic carbon sources after 4 days; (C) total 

cellulase activity of T. reesei QM6a; (D) QM9414 and (E) RUT-C30 grown on MA-medium 

supplemented with 1% of the different insoluble lignocellulosic carbon sources for 24-120 hrs. Error bars 

denote standard error of the mean.   
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Figure 4. An outline of cellulase activity profiles of the wild-type QM6a strain of T. reesei, and its two 

hypercellulolytic mutants, QM9414 and RUT-C30 on 14 different carbon sources. The colour scale 

represents the magnitude of the maximum cellulase activity (µmol glucose equivalents) obtained for the 

strain when grown on each particular carbon source. The legend contains intermediate values within each 

colour range. 
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Figure 5. Effect of the selected carbon source concentration (0.25 to 2%) on the growth rate and total 

cellulase activity of the three T. reesei strains (A) QM6a; (B) QM9414 and (C) RUT-C30. T. reesei 

strains QM6a and RUT-C30 were grown on MA-medium supplemented with the different concentration 

of Avicel for 5 or 3 days, respectively. T. reesei strain QM9414 was grown on MA-medium 

supplemented with the different concentration of microcrystalline cellulose for 4 days. Bars represent dry 

weight plotted on the right axis, while lines represent glucose equivalents plotted on the left axis. Error 

bars denote standard error of the mean. 
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3.1 Abstract 

Background: Trichoderma reesei is a widely used industrial strain for cellulase production, but its low 

yield of β-glucosidase has prevented its industrial value. In the hydrolysis process of cellulolytic residues 

by T. reesei, a disaccharide known as cellobiose is produced and accumulates, which inhibits further 

cellulases production. This problem can be solved by adding β-glucosidase, which hydrolyzes cellobiose 

to glucose for fermentation. It is, therefore, of high value to construct T. reesei strains which can produce 

sufficient β-glucosidase and other hydrolytic enzymes, especially when those enzymes are capable of 

tolerating extreme conditions such as high temperature and acidic or alkali pH.  

Results: We successfully engineered a thermostable β-glucosidase gene from the fungus Periconia sp. 

into the genome of T. reesei QM9414 strain. The engineered T. reesei strain showed about 10.5-fold (23.9 

IU/mg) higher β-glucosidase activity compared to the parent strain (2.2 IU/mg) after 24 h of incubation. 

The transformants also showed very high total cellulase activity (about 39.0 FPU/mg) at 24 h of 

incubation whereas the parent strain almost did not show any total cellulase activity at 24 h of incubation. 

The recombinant β-glucosidase showed to be thermotolerant and remains fully active after two-hour 

incubation at temperatures as high as 60 °C. Additionally, it showed to be active at a wide pH range and 

maintains about 88% of its maximal activity after four-hour incubation at 25 °C in a pH range from 3.0 to 

9.0. Enzymatic hydrolysis assay using untreated, NaOH, or Organosolv pretreated barley straw as well as 

microcrystalline cellulose showed that the transformed T. reesei strains released more reducing sugars 

compared to the parental strain.  

Conclusions: The recombinant T. reesei overexpressing Periconia sp. β-glucosidase in this study showed 

higher β-glucosidase and total cellulase activities within a shorter incubation time (24 h) as well as higher 

hydrolysis activity using biomass residues. These features suggest that the transformants can be used for 

β-glucosidase production as well as improving the biomass conversion using cellulases. 

Keywords: Trichoderma reesei, genetic engineering, β-glucosidase, Periconia sp.  
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3.2 Introduction 

Lignocellulose, a renewable organic material, is the major structural component of plants. It is 

primarily composed of three major components: cellulose, hemicellulose, and lignin [1]. Large quantities 

of lignocellulosic wastes produced by different industries, such as the paper-making industry, are released 

to the environment on a daily basis causing a variety of environmental issues. Bioconversion of biomass 

is a promising solution to overcome some of the environmental issues associated with the lignocellulosic 

wastes as well as providing alternative energy resources such as bioethanol. Different microorganisms 

such as fungi and bacteria primarily initiate the bioconversion of lignocellulosic residues through a 

process known as hydrolysis. Fungi, however, have received the greatest interest due to their production 

of high quantities of extracellular cellulolytic enzymes. However, the disadvantage of the fungal system is 

that many natural fungal strains lack of some of lignocellulolytic enzymes necessary for efficient 

bioconversion processes [1, 2]. Thus, the initial bioconversion of biomass into sugars remains a key 

bottleneck in the process of biofuel production. To this end new biotechnological solutions, such as 

genetic engineering of microorganisms, to improve lignocellulolytic enzymes efficiencies and enzymes 

able to tolerate harsh conditions are necessary [2].  

  The ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) is one of the most studied 

and industrially important cellulolytic fungi. T. reesei is capable of efficiently degrading plant cell wall 

polysaccharides such as cellulose and hemicelluloses. T. reesei also produces a number of cellulases 

including cellobiohydrolases (exoglucanases) and endoglucanases as well as a set of hemicellulases and 

pectin degrading enzymes [2, 3]. Additionally, a few different β-glucosidases (BGL) have been identified 

in T. reesei. These three groups of cellulolytic enzymes, i.e., exoglucanases, endoglucanases and β-

glucosidases work efficiently on cellulolytic fibers in a synergistic manner. These β-glucosidases were 

reported to be extracellular [4], cell wall-bound [5], membrane-bound [6], and intracellular [7]. Most of T. 

reesei cellulases are inducible enzymes and their transcripts are not formed in the presence of 

monosaccharides in the growth medium. This means that an inducer is required in order for T. reesei to 
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produce cellulases [3]. Cellulose polymer acts as a natural inducer despite the fact that it cannot transfer 

through the cell membrane due to its insolubility. Different investigations into the cellulases gene 

regulation in T. reesei have resulted in different proposed models, however, they all tend to agree that the 

actions of cellulases lead to the formation of a cellulase inducer [3]. The leading candidate for control of 

cellulolytic enzymes production in T. reesei is β-glucosidase, which is responsible for the production of 

an inducer, sophorose [3]. This was supported by Mach (1995), who disrupted the gene cel3a (bgl1) 

encoding the major extracellular β-glucosidases in T. reesei and demonstrated a delay in the induction of 

the other cellulases genes only by cellulose, but not in the presence of sophorose [3, 8]. Thus, β-

glucosidase production remains a key bottleneck in the process of cellulase production by T. reesei. 

Efforts have been made to improve cellulases production in T. reesei by homologues or heterologous 

overexpression of β-glucosidase genes [9-11]. Additionally, β-glucosidase production is important for its 

potential applications in many different industries such as food [12], winemaking [13] and textile [14]. 

An endophytic fungus Periconia sp. belonging to phylum Ascomycota was selected among 100 

studied fungal strains by Harnpicharnchai et al. (2009) due to its highest β-glucosidase activity at elevated 

temperatures [15]. They ultimately identified the gene encoding β-glucosidase (bgl1), cloned and 

expressed it in Pichia pastoris. The purified protein was reported to have high β-glucosidase activity at 

higher temperatures, and was also active at a wide pH range [15]. Thermostable β-glucosidases with high 

enzyme activity are especially useful for the bioconversion of lignocellulosic residues at elevated 

temperature [1].     

In the current study, we overexpressed the β-glucosidase gene (bgl1) from Periconia sp. in T. 

reesei QM9414 under the control of a promoter region of T. reesei tef1α (encoding translation elongation 

factor 1-alpha). The β-glucosidase production and total cellulase activity of the BGLI-overexpressing 

transformants were significantly increased. Additionally, hydrolysis efficiency of the BGLI-

overexpressing transformants was also significantly increased using NaOH- or Organosolv-pretreated 

barley straw. 
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3.3 Materials and Methods 

3.3.1. Chemicals 

All the chemicals and reagents were of analytical grade. Microcrystalline cellulose was obtained 

from J. T. Baker (Phillipsburg, NJ, U.S.A.). Barley straw (obtained from Gammondale Farm, Thunder 

Bay, Canada) was grounded in a Wiley mill and then sieved to less than 20 mesh and dried in an oven to a 

constant weight at 70 °C before use. 

3.3.2. Pretreatment of barley straw 

Organosolv pretreatment of barley straw was done (in Dr. Charles Xu’s lab, Lakehead University, 

Canada) using a 1 L autoclave reactor (Autoclave Engineers, U.S.A.) [24]. Briefly, 50 g of previously 

grounded barley straw was used as the feedstock. The feedstock/solvent ratio was 1:10 (w/v) and 50% 

ethanol: water (v/v) was used as the solvent. The pressure was maintained at about 300 psi using nitrogen, 

and temperature was kept at 190 °C. The reaction was mixed at 130 rpm and maintained for 4 h. 

Pretreated barley straw was subjected to a wash using 100% acetone. Following this, lignin was removed 

using filtration and cellulose and hemicellulose were obtained as solid residues. Solid residues (SR) were 

dried at 105 C overnight before weighing. The gaseous product inside the reactor was collected into a 

pre-vacuum fixed-volume (2800 mL) gas-collecting vessel. Liquefied lignin was subjected to a rotary 

evaporation under reduced pressure at 40 C to remove acetone and ethanol. The weight of the dry lignin 

was measured in order to estimate the lignin percentage. Yields of lignin and SR were calculated by the 

wt% of the mass of each product to the mass of the dry feedstock loaded into the reactor. Using this 

method, the lignin and SR content of barley straw were 8.77 (17.54%) and 27.46 (54.99%) g/50 g barley 

straw, respectively. The aqueous and gaseous products of barley straw were 13.77 (27.54%) g/50 g barley 

straw.  

Alkali treatment was done using 2 g (2% w/v) of previously grounded barley straw according to 

the method described by Deshpande [25]. Briefly, the ground barley straw was subjected to alkali 
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treatment by soaking in NaOH solution at 2% (w/v) for 48 h at ambient temperature. The material was 

then washed thrice with water. The water for the fourth wash has 1% phosphoric acid added. The 

materials were subjected to two more washes with water and then dried to constant weight at 70 °C.  

For the estimation of various components of barley straw, sequential fractionation was carried out 

according to the method described by Arora and Sharma (2009) [26]. Briefly, one g of barley straw was 

suspended in 100 mL distilled water and kept at 100 °C for 2 h in a water bath. The slurry was filtered 

and the residue was dried at 80 °C to constant weight. The weight loss was considered as water soluble 

part (Table 1). To estimate hemicellulose and cellulose in barley straw, they were removed according to 

the TAPPI T222 protocol with some modifications as described by Sharma and Arora (2010) [27, 28]. 

Dried sample was briefly treated with 100 mL of 0.5 M H2SO4 at 100 ℃ for 2 h. The content was filtered, 

dried, weighed and the loss considered as hemicellulose content (Table 1). Following this, the dried 

sample was treated with 40 mL 72% H2SO4 at 30 ℃ for 1 h at 200 rpm. Subsequently, it was diluted to 

3% concentration of H2SO4 with distilled water and autoclaved at 121℃ for 45 min. The content was 

filtered, dried, weighed and the loss counted as cellulose content. Acid-soluble lignin was determined by 

measuring the absorbance of the supernatant at 205 nm according to the TAPPI Useful Method UM 250 

[29]. Finally, the acid-insoluble lignin content was measured after the weight of ash was measured by 

burning the samples in a muffle furnace at 525 ℃, according to the TA  I T211 protocol “Ash in wood, 

pulp, paper and paperboard: combustion at 525 ℃” [28] (Table 1). 

3.3.3. Microorganism strains and culture conditions 

Escherichia coli JM109 was used for vector construction and propagation. Endophytic fungus 

Periconia sp. (BCC2871, obtained from the BIOTEC Culture Collection, Thailand) was used as the bgl1 

gene provider. Cellulase hyperproducing mutant T. reesei QM9414 (ATCC 26921, kindly provided by 

Dr. Tianhong Wang, Shandong University, China) was used as a host for the overexpression of the bgl1 

gene. The fungal strains were grown and maintained on potato dextrose agar (PDA) containing 15.0 g/L 
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starch, 20.0 g/L D-glucose, and 18.0 g/L agar [30].  DA medium supplemented with 50 μg/mL 

hygromycin was used as a selection marker for screening of T. reesei transformants. Strains were grown 

in 250 mL flasks, on a rotary shaker (200 rpm) at 30 °C, and in 50 mL of medium described by Mandel 

and Andreotti (MA-medium) [31] with the respective carbon source at a final concentration of 1% (w/v). 

The media containing the respective carbon sources were autoclaved at 121 °C (15 lb psi) for 15 min. 

3.3.4. Construction of bgl1 expression cassette 

Periconia sp. total RNA was extracted using Ambion RNA extraction kit (Invitrogen, Canada) 

and cDNA was constructed using Fermentas first strand cDNA synthesis kit (Fermentas, Canada). The 

2601 bp bgl1 gene was amplified with PCR using Full-Beta primers (Table 2) designed according to the 

cDNA sequence of Periconia sp bgl1 (Accession No. EU304547) [15]. The T. reesei cellobiohydrolases I 

(cbh1) terminator region was used as the terminator. The 573 bp cbh1 terminator was amplified by PCR 

using cbh1 primers (Table 2) and T. reesei QM9414 chromosomal DNA as the template. The bgl1 and 

cbh1 PCR products were used as the templates to fuse the cbh1 terminator to the 3ʹ end of the bgl1 gene 

(to generate a bgl1-cbh1 cassette) through fusion PCR using bgl1-cbh1 fusion primers (Table 2). The 

fused PCR product (bgl1-cbh1 cassette) was gel extracted and used as a template for In-Fusion cloning 

(In-Fusion primers, Table 2) into ClaI linearized pPtef1-hph vector (kindly provided by Dr. B. Seiboth, 

Vienna University of Technology, Austria) [32] using In-Fusion
®
 Advantage PCR Cloning Kit (Clontech 

Laboratories, Inc., USA) to generate pPtef1-bgl1-cbh1. The plasmid carrying the bgl1-cbh1 cassette was 

transformed into E. coli and ampicillin was used to screen the transformants. The positive transformants 

were selected and inserted bgl1-cbh1 cassette into the plasmid was confirmed using DNA sequencing. 

3.3.5. Transformation of T. reesei QM9414 and molecular analysis of the transformants 

T. reesei QM9414 protoplasts were prepared according to Szewczyk [33]. The protoplasts were 

then transformed with pPtef1-bgl1-cbh1 containing hygromycin B phosphotransferase (hph) expression 

cassette as the selection marker, according to the method described by Szewczyk [33]. The transformants 
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were screened on PDA plates containing 50 μg/mL hygromycin as the selection marker. Single spore 

separation was done to ensure a pure culture. The integration of pPtef1-bgl1-cbh1 into the genome of T. 

reesei QM9414 was confirmed using full size Periconia sp. bgl1 primers (Table 2), with an expected 

fragment length of 2.6 kb. To identify the gene copy number in the obtained positive transformants, qRT-

PCR was carried out using extracted genomic DNA as the template and Real-Time primers (bgl1 and 

tef1a Real-Time primers, Table 2) according to the method described by Solomon [34]. Tef1α (translation 

elongation factor 1-alpha) was used to represent single copy region within the T. reesei genome (2279 bp 

in scaffold 6, from 764792-767070) confirmed by blasting tef1α sequence [GenBank: Z23012.1] [35] 

against T. reesei genome sequence using the T. reesei genome database v2.0 [36]. RT-PCRs were 

performed using a Bio-Rad CFX
TM

 96 Real-Time PCR Detection System with each well containing the 

following conditions: 10 μL Sso Fast
TM

 EvaGreen
®
 Supermix (Bio- ad, Canada), 5.0 μL of appropriately 

diluted genomic DNA, 1.0 μL of each primer (10 μM) (Table 2) and 3.0 μL of double distilled water with 

a total well volume of 20 μL.  T-PCR cycling was 120 seconds at 98 °C followed by 40 cycles of 5 

seconds at 98
 
°C and 5 seconds at 58

 
°C. Three technical replicates were tested for each transformant to 

ensure consistency and accuracy. To ensure specificity of primers, melt curves were produced for each 

RT-PCR experiment. All primers were shown to amplify specific sequences and showed only one melting 

temperature on the melting curve. Serial dilutions of genomic DNA and a temperature gradient were used 

in RT-PCR in order to determine the efficiencies of all reactions and were found to be between 90-110% 

efficient. Tef1a Real-Time primers were used for the reference gene and data were normalized using tef1α 

primers. 

3.3.6. Inoculum preparation and β-glucosidase production 

After 14 days of incubation at 30 °C, the greenish conidia from engineered T. reesei carrying 

pPtef1-bgl1-cbh1 were suspended in 5 mL of sterile saline solution (0.9% w/v, NaCl). The spores were 

separated from the mycelia by gentle filtration through 12 layers of lens paper (Fisher Scientific, Canada), 
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and spores were counted using a Petroff-Hausser cell counter (American Optical, USA). The isolated 

spores were added at 1.0 × 10
7
 (final concentration) to 250 mL flasks containing 50 mL medium (MA-

medium) with 1% glucose (w/v) as the carbon source and incubated at 30 °C for a total of 24 hours. Pre-

grown mycelia were washed three times by MA-medium with no carbon source to remove any residual 

glucose. The mycelia were then transferred into 250 mL flasks containing 50 mL cellulase-inducing 

medium (MA-medium) in which 1% glucose (w/v) was substituted with 1% microcrystalline cellulose 

(w/v) [37]. Three biological replicates were done for each transformant. To examine β-glucosidase 

activity and total cellulase activity, a time course trial was conducted similar to that of Cianchetta et al 

[38]. Specifically, the flasks were incubated at 30 °C for a total of 144 hours. Samples of 500 µL each 

were taken from each of the flasks every 24 h. These 500 µL samples were centrifuged at 16060 rcf for 5 

min, and the supernatant was used as the source of enzyme [30].  

3.3.7. Enzyme assays 

Fermentation broth was centrifuged, and aliquots of the supernatant were diluted to assay the 

enzyme activities. All enzyme activities were expressed as specific activities using international units per 

mg protein in the supernatant (one unit corresponds to the amount of enzyme required to liberate 1 μmol 

of product per minute under the standard assay conditions). The protein concentration in the supernatant 

was measured using the Fermentas Bradford Reagent and also Fermentas bovine serum albumin (BSA) 

standard set as the standard (Fermentas, Canada).  

β-glucosidase activity was determined according to method described by Korotkova using the 

initial rate of the accumulation of the colored reaction product [39]. Briefly, 20 µL of diluted enzyme 

(culture supernatant) was added into each microplate well (pre-heated at 70 °C for 10 min) containing 180 

µL of 5 mM pNPG in 50 mM sodium citrate buffer, pH 5.0 as the substrate. The plate was incubated at 70 

°C for 10 min before stopping the reaction by adding 100 µL of 1 M cold sodium carbonate. The release 

of p-nitrophenyl by enzymatic hydrolysis was indicated by the appearance of yellow color and monitored 
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at 405 nm by xMark Microplate Spectrophotometer (Bio-Rad, Canada). The absorbance of the samples 

was normalized by the enzyme blanks (20 µL enzyme and 180 µL of the assay buffer) and the substrate 

blank (20 µL of the assay buffer and 180 µL of the substrate).   

The optimal pH of BGLI activity was measured at pH ranging from 3.0 to 10.0 under the standard 

assay conditions at 70 °C for 10 min. The buffers used in the experiment were 50 mM sodium citrate (pH 

3.0-6.0), 50 mM sodium acetate (pH 4.0-6.0), 50 mM MOPS (pH 6.0-8.0), and 50 mM Tris (pH 8.0-

10.0). The pH stability was analyzed by pre-incubating 10 μL of BGLI in 90 μL of buffers mentioned 

above at 25 °C for 4 h. Of this, 20 μL of the enzyme mixture was then used to determine remaining 

activity at 70 °C in sodium citrate buffer, pH 5.0, for 10 min [15]. 

The optimal temperature of BGLI activity was determined by incubating the enzyme (aliquots of 

supernatant) at different temperatures ranging from 20 to 90 °C in 50 mM sodium citrate pH 5.0 for 10 

min. The thermostability of the enzyme was analyzed by measuring the residual activity at the optimal 

conditions (70 °C and 50 mM sodium citrate buffer, pH 5.0, for 10 min) after pre-incubating the enzyme 

at 30-90 °C for 30-120 min. Relative activity was calculated as enzymatic activity at the indicated 

temperature divided by the maximal activity at the optimal temperature [15]. 

For detection of in gel β-glucosidase activity, samples were analyzed by native PAGE using 8% 

and 5% polyacrylamide as separation and stacking gels, respectively. Electrophoresis was run at a 

constant current of 25 mA at 4 °C for 5 h using Hoefer SE 600 Ruby (Amersham Biosciences, USA). Gel 

was washed with distilled water and overlaid with 5 mM 4-methylumbelliferyl β-D-glucopyranoside 

(MUG, Sigma-Aldrich, Canada) in 50 mM sodium citrate buffer (pH 5.0) and incubated at 70 °C for 10 

min. The presence of fluorescent reaction product was visualized under UV light using a gel 

documentation system (Syngene, Canada).  

Total cellulase activity was measured using a microplate based filter paper assay according to a 

method described previously [37], which is a 25-fold scale-down of the International Union of Pure and 

Applied Chemistry (IUPAC) protocol for FPA assay [40-42]. In the assay, 6 mm diameter filter paper 
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disk (Whatman No. 1, with average weight of 3.0 mg each, ThermoFisher Scientific, Canada) in 75 mM 

citrate buffer (pH 4.8) was used as the substrate. The reducing sugars released were measured using 3,5-

dinitrosalicylic acid (DNS reagent) with the absorbance measured at 540 nm. The substrate control 

(containing only the filter paper, and the buffer) and enzyme control (containing enzyme and the buffer 

with no filter paper) were also tested and subtracted from the absorbance. Total reducing sugars generated 

during the assay were estimated as glucose equivalents. Filter paper unit (FPU/mL) was first calculated 

using the equation previously described by Xiao et al. [42] and then converted to FPU/mg using the 

protein concentration accordingly. One F U is defined as an average of one μmole of glucose equivalents 

released per min in the assay reaction. 

Endoglucanase activity (EG) was measured using 2% (w/v) carboxymethylcellulose (CMC) in 

citrate buffer (50 mM, pH 4.8) as the substrate according to the method described by Zhang et al. [43]. 

The enzymes were added to the substrate solution (pre-equilibrated at 50 °C) and incubated at 50 °C for 

30 min. Glucose released was measured by DNS method at 540 nm and using a glucose standard curve 

after deduction of the enzyme blank absorbance. Exoglucanase activity (Exo) was measured using 1.25% 

(w/v) Avicel (PH 105) in sodium acetate buffer (0.1 M, pH 4.8) as the substrate according to the method 

described by Zhang et al. [43]. The enzymes were added to the substrate solution (pre-equilibrated at 50 

°C) and incubated at 50 °C for 2 h. The total soluble sugars released in the assay were determined using 

phenol (5%)-sulfuric acid (98%) assay at 490 nm. The enzyme activity was calculated on the basis of a 

linear relationship between the total soluble sugar released and enzyme dilution [43]. One unit of 

exoglucanase activity is defined as the amount of enzyme that releases one micromole of glucose 

equivalent per minute from Avicel. 

3.3.8. Enzymatic hydrolysis of biomass by the BGLI-overexpressing T. reesei transformants 

In order to evaluate hydrolysis activity of the engineered T. reesei with enhanced β-glucosidase 

activity, either 3% (w/v) of barley straw (untreated, Organosolv- or NaOH-pretreated) or 3% of 
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microcrystalline cellulose were used according to method described by Cheng et al [44]. Substrate 

hydrolysis was catalyzed by the culture supernatants collected as described above. Experiments were 

started with 3% substrate concentration in 750 μl buffer (50 mM sodium citrate buffer at pH 5.0 with 1 

mM sodium azide to prevent microbial contamination) and 750 μl crude enzyme dosage at 50 °C for 72 h. 

For a control sample, the crude enzyme was replaced with the buffer. Samples were taken every 24 h and 

subjected to determination of the glucose and reducing sugar levels in the supernatant. The reducing 

sugars were detected by DNS method and the glucose concentration was measured using glucose oxidase 

assay kit (QuantiChrom™ Glucose Assay Kit, Medicorp, Canada). 

3.3.9. Data processing and statistical analysis 

All experimental points are the average values of three independent experiments. The data was 

collected in a Microsoft Excel spreadsheet where the average and standard error of the mean were 

determined. The graphs were created using the software PRISM 5.0. A one-way analysis of variance 

(one-way ANOVA) at a confidence level of 99% (α= 0.01) was carried out with the software   ISM 5 to 

test the statistical significance of differences between the Exoglucanases as well as Endoglucanases 

activities of the four T. reesei transformant strains (T1-T4) compared to the parental T. reesei strain 

(Figure 3C). 

  

3.4 Results and discussion 

3.4.1. Overexpression of extracellular β-glucosidase from Periconia sp. in T. reesei QM9414 

To increase the production of β-glucosidase, and ultimately the overall cellulolytic ability of T. 

reesei, the bgl1 gene encoding an extracellular β-glucosidase (BGLI) in Periconia sp. was selected. This 

gene was selected as it has been previously shown to produce a thermotolerent β-glucosidase [15]. 

Ultimately, bgl1 was isolated by Harnpicharnchai et al. (2009) from the strain and subsequently cloned 
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into P. pastoris [15]. The optimal temperature and pH for the enzyme was reported to be 70 °C and 5.0-

6.0, respectively. The enzyme retained 60% of its activity at 70 °C after 1.5 h incubation. Moreover, the 

enzyme remained fully active when incubated for 2 h at pH ≥ 6.0 [15]. BGLI belongs to family 3 

glycoside hydrolases (EC 3.2.1.21) and as the other members of the group showed high activity toward 

aryl β-D-glucosides, cellobiose, and cellooligosaccharides [15, 16]. Finally, the addition of BGLI to a 

commercial cellulase (Celluclast 
®
 1.5L) improved the hydrolysis rate of rice straw into simple sugars 

[15]. These attractive features were the basis for selecting BGLI as candidate for overexpression and thus 

improvement of β-glucosidase activity in T. reesei. 

In our study, Periconia sp. total RNA was extracted and cDNA was constructed. The 2601 bp 

bgl1 gene was amplified through PCR using Full-Beta primers (Table 2) designed according to cDNA 

sequence of Periconia sp bgl1 reported by Harnpicharnchai et al (Accession No. EU304547). However, 

our cDNA sequencing results showed that our cloned bgl1 sequence has 6 nucleotide differences 

compared to the reported cDNA sequence. To confirm the result, Periconia sp. bgl1 genomic DNA was 

also cloned and sequenced. The sequencing results using the genomic DNA confirmed the 6 nucleotide 

difference. These nucleotides included A660G, C678T, C851T, A903T, A914C and G921T (numbers are 

based on the cDNA sequences). Four of the six variations made changes in the codon, but coded the same 

amino acids (aa 220; A660G, aa226; C678T, aa301; A903T and aa307; G921T). The other two however, 

coded different amino acids (C851T: T→I, and A914C: N→T, aa 284 and aa 305, respectively). The 

2847 bp bgl1 genomic DNA contained three exons (1-60, 252-310 and 366-2847) and two introns (61-

191 and 180-250) was submitted to the GenBank [Accession No. JQ239427]. Periconia sp. bgl1 genomic 

DNA and cDNA were aligned using MultAlin software (multiple sequence alignment by Florence 

Corpet) and presented in Figure 1 [17].  

The T. reesei cellobiohydrolases I terminator region was used as the terminator to generate the 

bgl1-cbh1 expression cassette. The bgl1-cbh1 expression cassette was cloned into pPtef1 expression 

vector under the promoter regions of highly expressed gene tef1α to generate pPtef1-bgl1-cbh1 (Figure 
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2A) and then transformed into the T. reesei QM9414. The plasmid contains hygromycin B 

phosphotransferase (hph) expression cassette which was used as the selection marker. Four mitotic stable 

hygromycin-resistant transformants were obtained and were selected for the single spore isolation to 

insure for the pure culture. The four transformants (named T1-T4) were cultured for more than 6 

generations and bgl1 was confirmed to be in the genome of the transformants via PCR and DNA 

sequencing (Figure 2B). The copy number of the bgl1 expression cassette integrated into the T. reesei 

genome of the transformants was analyzed by quantitative Real-Time PCR (qRT-PCR) (Figure 2C). The 

result showed that three of the four transformants (T1, T2 and T3) obtained only one copy of the bgl1 

cassette whereas T4 received two copies.   

To test the β-glucosidase activity of the BGLI-overexpressing T. reesei transformants (T1-T4), 

they were cultivated in a microcrystalline cellulose containing medium as the cellulase inducer for 144 h. 

The β-glucosidase activity of the transformants was measured using the culture supernatant every 24 h 

and was compared to the parent strain (T. reesei QM9414) (Figure 3A). All the transformants showed 

very high β-glucosidase activity compared to the parent strain over the time course study. High β-

glucosidase activity in the transformants was seen at the first time point (24 h) after the induction with 

about 23.9 IU/mg for T3 which is 10.5-fold higher than the parental β-glucosidase activity (Figure 3A). 

The β-glucosidase activity of the transformants and the parent strain slowly increased over the rest of the 

time points with a peak at 120 h post induction. The maximum activity was seen in two transformants (T2 

and T3) at about 27 IU/mg at 120 h. The parent strain also showed the maximum activity at 120 h with 

about 8.4 IU/mg, which is 3.2-fold lower than the maximum activity obtained for the transformants (T2 

and T3). Although the transformant T4 received two copies of the bgl1 expression cassette, our results 

showed that its β-glucosidase activity resembled the same as the other transformants with the single 

integrated expression cassette (Figure 3A). Levels of transcription and recombinant protein production in 

fungal transformants are mainly correlated with two factors including the gene copy number and the loci 

of the integration [18]. However, it has been reported that in some cases, high copy number transformants 
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did not produce more recombinant protein in T. reesei [9, 18, 19]. This can be possibly due to different 

loci integration of the expression cassette in T. reesei genome. Improvement of β-glucosidase activity of 

T. reesei strains was previously reported by different groups where the activity was increased by 7.5 or 

3.7-fold compared to the parent strain after 168 or 36 h incubation time, respectively [9, 10]. Our results 

indicated that the activity of our constructed transformants is higher than (10.5-fold) previous studies. In 

addition, the transformants showed high β-glucosidase activity within a shorter induction time (24 h). Our 

recombinant strain (T3) showed β-glucosidase activity of 23.9 IU/mg after the first 24 h of incubation 

which is 2.8-fold higher than the maximal β-glucosidase activity of the parent strain (8.4 IU/mg) after 120 

h of incubation. Higher β-glucosidase production, as well as shorter incubation time, suggests that our 

transformants can be used for their potential industrial application for the production of β-glucosidase. 

Despite Aspergillus niger, T. reesei produces very low amounts of BGL causing the accumulation 

of cellobiose as the end product and thus inhibits further cellulose hydrolysis [1, 20]. Thus, it has been 

suggested that by improving the BGL activity of T. reesei its cellulose hydrolysis activity would also 

improve. Different studies have shown that overexpression of different BGL in different T. reesei strains 

results in higher cellulolytic activity. For example, total cellulase activity of different recombinant T. 

reesei strains such as RUT-C30 or PC-3-7 were improved by 2.3 or 1.3-fold respectively, when compared 

to their parent strains [9, 10]. Our four transformants (T1-T4) were grown in a cellulase-inducing medium 

(MA-medium containing microcrystalline cellulose) for 144 h and their total cellulase activity (or filter 

paper assay, FPA) were compared to the parent strain every 24 h (Figure 3B). The maximum FPA activity 

was seen for T4 with about 51.9 FPU/mg activity after 120 h of incubation. The parent strain also reached 

its maximum FPA activity (about 32.8 FPU/mg) at 120 h, which is 1.58-fold less compared to the activity 

obtained for T4. FPA activity of the parent strain was very low over the first 48 h of the incubation 

whereas high FPA activity was obtained for all the four transformants after the first 24 h of incubation 

(Figure 3B). For example, T3 showed high FPA activity with about 39.0 FPU/mg at 24 h of incubation 

which is 1.18-fold higher than the maximal FPA activity of the parent strain (about 32.8 FPU/mg) 
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obtained after 120 h of incubation. Thus, all the four transformants showed higher FPA activity within a 

shorter incubation time compared to the parent strain (Figure 3B). 

Cellobiohydrolase (exoglucanases, Exo) and endoglucanases (EG) activities of BGLI-

overexpressing transformants and the parental strain were also measured at 120 h, as this is where the 

maximal BGL and FPA activities were seen (Figure 3C). All the four transformants showed similar level 

of Exo activity compared to the parent strain. Although T2 and T4 showed slight decreased in Exo 

activity compared to the parent strain but no significant difference was obtained (ANOVA, P< 0.01). This 

may also be a result of different loci integration of the BGLI-overexpressing transformants. Similar result 

was also reported by Zhang study (2010) in which the Exo activity of some of the overexpressing 

transformants were lower than that of the parent T. reesei strain [9]. In the case of EG activity, however, 

transformants T1-T3 showed lower level of EG activity whereas the transformant T4 showed almost the 

same activity compared to the parent strain (Figure 3C). However, no significant difference in EG activity 

was obtained between the four transformants and the parent strain (ANOVA, P< 0.01). The total cellulase 

activity of our transformants was significantly higher than the parent strain despite the fact that their Exo 

and EG activities in two of the four transformants were slightly decreased. This supports the hypothesis 

that the lower β-glucosidase production by T. reesei causes the inhibition of further hydrolysis of 

cellulosic residues to the end product [1]. 

 3.4.2. Characterization of the BGLI-overexpressing transformants 

Identification of β-glucosidase BGLI-overexpressing transformants (T1-T4) was done using 4-

methylumbelliferyl β-D-glucopyranoside (MUG) in a MUG-zymogram assay (Figure 4). Proteins from 

the culture supernatant were first separated in an 8% native PAGE gel, with β-glucosidase activity 

ultimately detected using a MUG-zymogram assay (Figure 4). One enzymatically active protein was 

observed in the culture supernatant of both the BGLI-overexpressing strains as well as the parent strain T. 

reesei QM9414 (Figure 4, lanes T1-T4 and QM). This β-glucosidase activity has been reported as the 

native extracellular β-glucosidase in T. reesei strain (BGLI) with a molecular weight about 75 kDa [8]. 
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However, a second active β-glucosidase with higher molecular weight was only obtained from the 

transformants, which is correlated to the recombinant BGLI (Figure 4, lanes T1-T4). A sample from the 

culture supernatant of Periconia sp. (bgl1 donor) was also compared to confirm the presence of the 

recombinant BGLI in the BGLI-overexpressing transformants (Figure 4, lane P). Harnpicharnchai et al. 

(2009) also reported that the Periconia sp. BGLI showed a higher molecular weight band on the native 

gel (> 150 kDa) although its molecular weight predicted to be around 95 kDa [15]. This study also 

showed that overexpressed Periconia sp. BGLI (in P. pastoris) migrates slowly on a SDS-PAGE gel with 

a molecular weight around 130 kDa [15]. They proposed that the slower migration is due to the protein 

glycosylation (BGLI has 16 putative N-glycosylation sites predicted by PROSITE) which was also 

confirmed by the experimental approaches [15].  

The effect of pH on β-glucosidase activity of BGLI-overexpressing transformants was determined 

using p-nitrophenyl-β-D-glucopyranoside (pNPG) as the substrate. The culture supernatant of the selected 

transformant T3 (based on its β-glucosidase activity) was incubated at 70 °C for 10 min at different pH 

(3.0-10.0). Although, the maximal enzyme activity was obtained at pH 5.0, the enzyme showed over 80% 

activity in a pH range from 4.0 to 6.0 (Figure 5A). Harnpicharnchai and et al. (2009) reported similar 

results using purified Periconia sp. BGLI overexpressed in P. pastoris expression system [15]. For the 

determination of enzyme stability at different pH, the culture supernatant was incubated in the various pH 

buffers (3.0-10.0) for 4 h at 25 °C before determining the remaining β-glucosidase activity (Figure 5B). 

Our results indicated that the β-glucosidase remain over 88% active in a pH range from 3.0 to 9.0. 

However, the remaining activity decreased to about 76% when the pH increased to 10.0 (Figure 5B). 

Similar results were obtained for the pH ranges from 6.0-10.0 by the Harnpicharnchai study using the 

purified BGLI enzyme overexpressed in P. pastoris [15]. Nazir et al. (2009), also reported an active β-

glucosidase (BGI) from Aspergillus terreus after 4 h of incubation under a broad range of pH (5.0-10.0) 

[21]. In another study by Ng et al. (2010) pH stability of the crude β-glucosidase from Penicillium 

citrinum YS40-5 was tested over a wide pH range from 1.0-10.0 after 24 h incubation at 4 °C [22]. 
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Surprisingly, the enzyme retained over 85% of its maximal activity over the entire pH range [22]. Since 

citrate buffer at pH 5.0 gave the highest level of enzyme activity, it was chosen to be used as the standard 

assay condition in the all following experiments when the BGLI activity was measured.    

The temperature influence on β-glucosidase activity of BGLI-overexpressing transformants was 

determined by monitoring the hydrolysis of pNPG at 20-90 °C (Figure 5C). The maximal enzyme activity 

obtained at 70 °C but it exhibited more than 80% of the maximal activity between 65 and 75 °C. This is in 

accordance to the reported optimal enzyme temperature using pure Periconia sp. BGLI overexpressed in 

P. pastoris expression system [15] and also it is in the range of reported optimal temperature for different 

β-glucosidase (45-75 °C) [1]. For example, the optimal temperature of a thermotolerant β-glucosidase 

from moderately thermophilic fungus Talaromyces emersonii also overexpressed in T. reesei was 

determined to be at 71.5 °C [23]. The thermal stability of BGLI was tested by incubating the enzyme at 

different temperature (30-90 °C) for 30-120 min (Figure 5D). The residual activity was measured every 

30 min at the optimal pH and temperature (pH 5.0 and 70 °C). The enzyme maintained over 85% of its 

maximal activity after 2 h incubation at different temperatures up to 60 °C. The enzyme activity, 

however, decreased to about 40% of its maximal activity after 30 min of incubation at 70 °C. Higher 

temperatures (≥80 °C) inactivated the enzyme and only about 5% of the maximal activity was maintained 

after 30 min of incubation. Thermotolerant β-glucosidase from T. emersonii was reported to maintain 

50% of its maximal activity at 65 °C after 62 min of incubation [23].  

Our overexpressed BGLI also maintained its maximal activity after four months incubation at 4 

°C (data not shown here). Overall, our BGLI-overexpressing transformants showed very high β-

glucosidase activity which can tolerate a wide range of pH (3.0-10.0), high temperature (up to 60 °C) and 

also remain fully active after long time storage at 4 °C in the absence of any stabilizer. These unique 

features suggest that our BGLI-overexpressing transformants are superior candidates for their potential 

biotechnological applications. Many recent bioconversion research studies focused on two main strategies 

including enhancing overall fungal hydrolytic activities as well as identifying stable enzymes able to 
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function under harsh conditions [1]. Acidic pretreatment of lignocellulosic residues seems a preferred 

option due to fungal cellulolytic enzymes activity at lower pH (usually 4.0-5.0). Enzymes able to remain 

active at higher temperatures and also retain their activity at lower pH values are more suitable for 

pretreatment methods where acid and high temperatures are applied [1]. The overall hydrolytic activity 

can be enhanced by thermostable enzymes through their higher specific activity and higher stability [1]. 

β-glucosidases able to tolerate harsh conditions (i.e. acidic and/or basic pH conditions as well as high 

temperatures) have great potential biotechnological applications in different industries such as food [12], 

wine [13] and textile production [14]. Thermotolerant β-glucosidases, for example, represent valuable 

characteristics such as reduction of the risks associated with microbial contamination in the process as 

well as substrate viscosity which leads to higher reaction velocities and thus improved hydrolysis 

efficiency. 

3.4.3. Enzymatic hydrolysis of biomass by the BGLI-overexpressing T. reesei transformants 

Efficient hydrolysis of cellulose and hemicelluloses of lignocellulosic residues to their soluble 

monomeric sugars is an important step in bioconversion process. For this reason, much effort has been 

done to obtain efficient microorganisms with robust lignocellulolytic activities [1]. To this end, the 

hydrolysis efficiency of the BGLI-overexpressing T. reesei transformants using barley straw was 

investigated (Figure 6A-H).  

For the untreated barley straw (Figure 6A and B), all the transformants released higher amount of 

reducing sugars (RS) (maximum 4.21 mg/mL for T3) and glucose (G) (maximum 1.92 mg/mL for T3) 

which were 90 and 30% higher than the parent strain (2.21 mg/mL RS and 1.48 mg/mL G) over the first 

48 h of hydrolysis incubation time, respectively. Longer incubation time (72 h) slightly increased the RS 

and G released by the transformants (maximum for T2 with 4.90 and 3.0 mg/mL RS and G, respectively). 

In the case of the parental strain, the longer incubation time (72 h) also improved the hydrolysis rate and 

the level of RS and G was 3.92 and 2.14 mg/mL, respectively. This was 25 and 40% lower than the 

maximal RS and G productions by the transformant T2. This suggest that in the absence of any 
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pretreatment, our BGLI-overexpressing transformants efficiently hydrolyze barley straw within a shorter 

time compared to the parent strain.  

Hydrolysis of barley straw treated with NaOH was also tested using all four transformants and the 

parental strain (Figure 6C and D). The results indicated that after 72 h, all four transformants released 

higher amount of RS and G (maximum 24.96 and 11.0 mg/mL for T4, respectively), which were 2.33- 

and 1.77-fold higher than the enzymatic hydrolysis by the parent strain (10.71 and 6.18 mg/mL, 

respectively). Similar results were also observed when Organosolv-treated barley straw was used (Figure 

6E and F). After 72 h of the incubation time, the maximal RS and G released was obtained for T2 (19.42 

and 9.71 mg/mL, respectively), which were 3.67- and 2.55-fold higher than the parent strain (5.28 and 

3.80 mg/mL, respectively). Hydrolysis of microcrystalline cellulose was also tested using all four 

transformants as well as the parental strain (Figure 6G and H). After 72 h of the incubation time, all four 

transformants released higher amount of RS and G (maximum 22.80 and 12.20 mg/mL for T1, 

respectively), which were 2.34- and 1.89-fold higher than the enzymatic hydrolysis by the parent strain 

(9.71 and 6.45 mg/mL, respectively). Our results demonstrated that the BGLI-overexpressing 

transformants produced more efficient enzymes which facilitate hydrolysis of the cellulosic substrates. 

This may be a direct result of removing β-glucosidase limitation on further cellulose hydrolysis [1]. 

       

3.5 Conclusion  

In our study, a thermotolerant β-glucosidase (BGLI) from Periconia sp. was overexpressed in T. 

reesei QM9414. The β-glucosidase activity and total cellulase activity of the recombinant T. reesei strains 

overexpressing BGLI are significantly increased. The BGLI-overexpressing transformants showed higher 

biomass hydrolytic efficiency, suggesting that they can be used in the hydrolysis step in biomass 

conversion. High β-glucosidase activity, wide pH range tolerant and high temperature resistance makes 
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the transformants excellent candidates for their potential application for the production of β-glucosidase 

as well as improving the biomass conversion using cellulases. 
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Table 1. Composition of barley straw used in the study. Data are represented as the mean of three 

independent experiments and error denote standard error of the mean. 

 Soluble part Hemicellulose Cellulose  Acid-soluble 

lignin  

Acid-insoluble lignin Ash 

Untreated barley 

straw (%)   

13.13 ± 

 0.40 
 

26.46 ±  

3.67 

32.60 ±  

4.10 
 

1.49 ±  

0.53 

24.01 ±  

4.79 

1.03 ±  

0.06 
 

 

 

 

Table 2. List of oligonucleotides used in the study for the genes amplification (restriction sites are 

underlined). 

Primers set/gene Primer name Sequence (5'-3') Expected fragment size 

(bp) 

bgl1 

 

 

 

cbh1 

 

 

 

 

bgl1-cbh1 fusion 

 

 

 

 

In-Fusion 

 

 

 

bgl1 

 

 

 

tef1a 

Full-Beta-F 

Full-Beta-R  

 
 

cbh1-F 

cbh1-R  
 

 

F1 
Fuse-REV1 

Fuse- F2  

REV2 

 

 

In-Fusion-F  
In-Fusion-R 

 
 

bgl1-Realtime-F 

bgl1-Realtime-R  
 

 

tef1a-Realtime-F 
tef1a -Realtime-R  

ATGGCCTCCTGGCTTGCT 

TCAATACGACGACGAGGGAA 

 
 

AGGTCACCTTCTCCAACATC 

AGAGCGGCGATTCTACGGGT 
 

 

AGATCGATATGGCCTCCTGGCTTGCTCCTG 
AGAAGGTGACCTTCAATACGACGACGAGGGAA 

GTCGTATTGAAGGTCACCTTCTCCAACATC 

GGATCGATAGAGCGGCGATTCTACGGGTTA 

 

 

CACAAACCGTCATCGATATGGCCTCCTGGCTTGCT 
TGCAGGTCGACATCGATAGAGCGGCGATTCTACGGGTTA 

 
 

GCCATTCTATCCTTCGCC 

TGCCAACGCAGGCTTCAC 
 

 

ACCAAGGCTGGCAAGTTC 
GACACCAGTCTCGATACG 

2601 

 

 
 

573 

 
 

 

 
3187 

 

 

 

 

3205 
 

 
 

154 

 
 

 

162 
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Figure 1 Alignment of Periconia sp. bgl1 genomic DNA and cDNA using MultAlin software. Intron 

regions are shown in lower case in red while the coding regions are shown in upper case and black. The 6 

single-nucleotide differences between the genomic DNA (Accession No. JQ239427) and previously 

reported cDNA (Accession No. EU304547) (including: A660G, C678T, C851T, A903T, A914C and 

G921T) are shown in lower case and highlighted in boxes.  
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Figure 2 Construction of BGLI-overexpression T. reesei strain. (A) The structure of pPtef1-bgl1-cbh1 

expression vector using SimVector software. Ptef1 represents tef1 promoter; bgl1 represents β-

glucosidase gene from Periconia sp.; Tcbh1 indicates the cbh1 terminator; Pgpd1 represents gpd1 

promoter (glyceraldehyde-3-phosphate dehydrogenase gene); hph represents hygromycin B 

phosphotransferase gene; Tgpd1 indicates the gpd1 terminator. (B) PCR assay of the bgl1 gene in the 

selected overexpression transformants using full-bgl1 primers. All transformants (T1-T4) showed a 2601 

bp band whereas the parent strain (QM) did not amplified any specific PCR products. Periconia sp. 

genomic DNA (gP) as well as cDNA (cP) were used as the positive controls which amplified 2847 and 

2601 bp products, respectively. (C) qPCR analysis of the isolated genomic DNA from the transformants 

T1-T4 using Real-Time bgl1 and tef1a primers. The transformants T1-T3 received one copy of the bgl1 

gene whereas T4 obtained two copies. 
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Figure 3 The enzyme activities and time course study of BGLI-overexpressing transformants (T1-T4) 

and the parental strain (T. reesei QM9414). The strains were pre-grown on MA-medium containing 1% 

glucose for 24 h and then mycelia were washed and grown for 144 h on MA-medium containing 1% 

microcrystalline for the induction. Enzyme activities were expressed as specific activities using 

international units per mg protein in the supernatant. (A) The β-glucosidase activity was measured every 

24 h using the culture supernatant as the enzyme sources. The enzyme was incubated at 70 °C for 10 min, 

pH 5.0 using 50 mM sodium citrate buffer. (B) Filter paper activity (FPA) was measured every 24 h using 

the culture supernatant and incubated at 50 °C for 60 min, pH 4.8 using 75 mM citrate buffer. (C) 

Exoglucanases (Exo), and endoglucanases activities (EG) of the strains were measured after being 

induced with 1% microcrystalline cellulose for 120 h. No significant difference was obtained for Exo and 

EG activities of the four transformants compared to the parent strain using one-way ANOVA at a 

confidence level of 99% (α= 0.01). Data are represented as the mean of three independent experiments 

and error bars denote standard error of the mean. 
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Figure 4 Identification of β-glucosidase in BGLI-overexpressing transformants (T1-T4) by MUG-

zymogram assay. Proteins (culture supernatant) from BGLI-overexpressing transformants (T1-T4) and 

the parental strain (T. reesei QM9414, lane QM) were separated in 8% native PAGE. Culture supernatant 

of Periconia sp. (bgl1 donor strain) (lane P) grown on MA-medium containing 1% microcrystalline was 

used as the positive control. β-glucosidase activity was detected by MUG-zymogram assay. Lower arrow 

indicates the native extracellular β-glucosidase found in T. reesei strain (lanes T1-T4 and QM) whereas 

the upper arrow represents active β-glucosidase correlated to Periconia sp. BGLI only found in the BGLI-

overexpressing transformants as well as Periconia sp. (lanes T1-T4 and P). Lane M, molecular weight 

marker. 
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Figure 5 Effect of pH and temperature on β-glucosidase activity of the selected BGLI-overexpressing 

transformant (T3). (A) pH profile was determined by incubating the enzyme (culture supernatant) at 70 

°C for 10 min at different pH, using 50 mM sodium citrate (pH 3.0-6.0), sodium acetate (pH 4.0-6.0), 

MOPs (pH 6.0-8.0) and Tris buffer (pH 8.0-10.0). (B) The remaining β-glucosidase activity was 

determined (at 70 °C in 50 mM sodium citrate buffer, pH 5.0 for 10 min) after incubating the enzyme at 

25 °C for 4 h at the different pHs. (C) Temperature profile was determined by incubating the enzyme 

(culture supernatant) in 50 mM sodium citrate buffer (pH 5.0) for 10 min at different temperature (30-90 

°C). (D) Thermal stability was carried out by incubating the enzyme in 50 mM sodium citrate buffer (pH 

5.0) at different temperature (30-90 °C) for 30, 60, 90 and 120 min before the remaining activity was 

assayed (at 70 °C in 50 mM sodium citrate buffer, pH 5.0 for 10 min).  
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Figure 6 Enzymatic hydrolysis of barley straw and microcrystalline cellulose by BGLI-overexpressing 

transformants (T1-T4) and the parental strain (T. reesei QM9414). (A and B) Reducing sugars and 

glucose yield (mg/mL) released using untreated barley straw, respectively. (C and D) Reducing sugars 

and glucose yield (mg/mL) released using NaOH-pretreated barley straw, respectively. (E and F) 

Reducing sugars and glucose yield (mg/mL) released using Organosolv-pretreated barley straw, 

respectively. (G and H) Reducing sugars and glucose yield (mg/mL) released using microcrystalline 

cellulose, respectively. 750 μl of the culture supernatants (as the enzyme source) were added to tubes 

containing 750 μl of 50 mM sodium citrate buffer (pH 5.0) and 0.045 g (3%) either barley straw or 

microcrystalline cellulose. The tubes were incubated at 50 °C for 72 h and reducing sugars as well as 

glucose released were measured every 24 h. Data are represented as the mean of three independent 

experiments and error bars denote standard error of the mean. Total protein loading was as follow; T1: 

0.22 mg; T2: 0.26 mg; T3: 0.24 mg; T4: 0.19 mg, and QM9414: 0.22 mg. 
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4.1 Abstract 

Xylitol, a naturally occurring five-carbon sugar alcohol derived from D-xylose, is currently in high 

demand by industries. Trichoderma reesei, a prolific industrial cellulase and hemicellulase producing 

fungus, is able to selectively use D-xylose from hemicelluloses for xylitol production. The xylitol 

production by T. reesei can be enhanced by genetic engineering of blocking further xylitol metabolism in 

the D-xylose pathway. We have used two different T. reesei strains which are impaired in the further 

metabolism of xylitol including a single mutant in which the xylitol dehydrogenase gene was deleted 

(∆xdh1) and a double mutant where additionally L-arabinitol-4-dehydrogenase, an enzyme which can 

partially compensate for xylitol dehydrogenase function, was deleted (∆lad1∆xdh1). Barely straw was 

first pretreated using NaOH- and Organosolv-pretreatment methods. The highest xylitol production of 6.1 

and 13.22 g/L was obtained using medium supplemented with 2% Organosolv-pretreated barley straw and 

2% D-xylose by the ∆xdh1 and ∆lad1∆xdh1 strains, respectively. 

 

Keywords: Agricultural residues, Trichoderma reesei, xylitol production 

 

4.2 Introduction 

Large amount of lignocellulosic wastes are produced by different industries such as forestry, 

agriculture and food during pre-harvest, post-harvest and the processing steps (Dashtban et al., 2009). 

These lignocellulosic wastes are mainly composed of cellulose, hemicellulose and lignin. Recently, there 

is high interest in using hemicellulose-rich wastes generated as by-products from agricultural and food 

industries to produce high value bio-product such as xylitol, D-mannitol and D-xylonic acid (Nygard et 

al., 2011; Yu et al., 2011). Additionally, these wastes can be further processed to extract their monomeric 

sugars, such as D-xylose and L-arabinose which can be fermented to ethanol by microorganisms able to 

utilize pentose sugars (Dashtban et al., 2009; Seiboth and Metz, 2011). Pretreatment of lignocellulosic 
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waste however is a prerequisite step since lignin is the main barrier for accessing cellulose and 

hemicellulose by the catalyzing enzymes (Dashtban et al., 2010b; Taherzadeh and Karimi, 2008).  

D-xylose as the monomeric 5-carbon sugar creates the backbone of the β-1,4-xylan which is the 

major constituent of plant hemicelluloses (Dashtban et al., 2009). Different microorganisms including 

bacteria and fungi can use xylan as a carbon source for their growth. These microorganisms hydrolyze β-

1,4 linkages in xylan to produce oligomers using xylanases. Ultimately, the oligomers can be further 

hydrolyzed into D-xylose monomers by β-xylosidase (Dashtban et al., 2009). In fungi such as T. reesei, 

D-xylose enters into a three-step pathway before entering into the Pentose Phosphate Pathway (PPP) 

(Fig.1) (Seiboth et al., 2003). In the first step, D-xylose will be converted by D-xylose-reductase (XYL1; 

EC 1.1.1.21) into the 5-carbon sugar alcohol xylitol (Seiboth et al., 2007). Xylitol will be then used to 

produce D-xylulose by xylitol dehydrogenase (EC 1.1.1.9). Finally, D-xylulose will be converted into D-

xylulose-5-phosphate by D-xylose kinase (EC 2.7.1.17) and enters into the PPP (Seiboth et al., 2003). 

Deletion of the xylitol dehydrogenase gene xdh1 in T. reesei (∆xdh1) only partially impairs the growth of 

the ∆xdh1 strain on D-xylose and reduces the growth rates to about 50% (Seiboth et al., 2003). Thus, it 

was suggested that a second enzyme with xylitol dehydrogenase activity in T. reesei would exist. The 

responsible enzyme was identified as the L-arabinitol-4-dehydrogenase (LAD1) which could partially 

compensate for the loss of XDH1 function in ∆xdh1 strains and consequently a strain with deletions in 

both dehydrogenases (∆lad1∆xdh1) failed to grow on D-xylose and xylitol (Seiboth et al., 2003). Xylitol 

is also the first common intermediate of the interconnected D-xylose and L-arabinose pathways (Seiboth 

et al., 2007; Seiboth and Metz, 2011).  

Xylitol as a naturally occurring polyalcohol has been used as a natural sweetener due to its high 

sweetening power for years. Besides this, it has been used as an anticariogenic for oral health and caries 

prevention by preventing the growth of microorganisms involved in tooth decay (Yu et al., 2011). 

Additionally, oral administration of xylitol in animal models showed to be important for bone tissue and 

affect bone metabolism and ultimately increase bone density (Sato et al., 2011). According to Prakasham 
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et al., (2009), the annual global market for xylitol is $340 million and is estimated to grow. Xylitol can be 

produced either chemically using pure D-xylose or by applying biotechnological processes including 

fermentation by microorganisms and/or enzymatic approaches. Although, chemical production of xylitol 

has some disadvantages such as high cost and energy investment, there is still a case for its industrial 

production. Biotechnological methods for large-scale xylitol production which can replace the chemical 

method however are not yet available (Santos et al., 2008). Significant efforts, many of which have been 

successful, have been made to improve xylitol production by different microorganisms. These include 

genetic engineered bacteria, yeast and fungi (Ahmad et al., 2012; Akinterinwa et al., 2008; Khankal et al., 

2008; Seiboth et al., 2003). Besides, many recent studies focused on using pretreated agricultural residues 

as the feedstock for xylitol production by xylitol hyper-producing microorganisms. To this end, different 

lignocellulosic biomass such as corn cobs (El-Batal and Khalaf, 2004), sugarcane bagasse (Santos et al., 

2008), and corn stover (Rodrigues et al., 2011) were pretreated applying different pretreatment methods 

and ultimately the hydrolyzates were used for the xylitol production.  

In our study, we investigated the effects of two different pretreatment methods including 

Organosolv- and NaOH-pretreatment of barley straw. The hydrolyzates were used as the feedstock for 

xylitol production by two metabolically engineered T. reesei strains including single (∆xdh1) and double 

(∆lad1∆xdh1) deletion strains. To maximize xylitol production by these strains, different media 

compositions were also tested. Additionally, hydrolysis efficiency of the enzymes produced by the mutant 

strains was investigated using untreated and pretreated barley straw. 

 

4.3 Materials and Methods 

4.3.1. Chemicals 

Chemicals and reagents used in the study were of analytical grade. Barley straw (obtained from 

Gammondale Farm, Thunder Bay, Canada) was first ground in a Wiley mill, then sieved to less than 20 

mesh and dried in an oven to a constant weight at 70 °C before use. 
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4.3.2. Pretreatment of barley straw 

Barley straw (50 g of previously ground) was subjected to Organosolv pretreatment (in Dr. 

Charles Xu’s lab, Lakehead University, Canada) using a 1 L autoclave reactor (Autoclave Engineers, 

USA) and according to the method described by Cheng et al., (2010). Alkali treatment of ground barley 

straw (2% w/v) was done according to the method described by Deshpande et al., (2009).  

4.3.3. Particle size and particle size distribution of untreated and pretreated barley straw 

Particle size measurement was done in the instrumentation lab at Lakehead University (Ontario, 

Canada) using a Malvern Mastersizer 2000 particle size analyzer with Hydro 2000MU (Malvern 

Instruments Ltd, UK). An ultrasonic probe disperser was applied to all the sample measurements due to 

the high electro-static charge of the samples. The experiment was done using approximately 5 g of barley 

straw (untreated, Organosolv- or NaOH-pretreated) according to the manufacture’s instruction. The size 

of the particles were recorded and analyzed three times by the provided manufacture’s software using the 

same SOP. 

4.3.4. FTIR analyses of untreated and pretreated barley straw 

To investigate the modification of lignin functional groups of pretreated barley straw, Fourier 

transform infrared spectroscopic (FTIR) spectra (4000 to 800 cm
-1

) were obtained and compared to 

untreated barley straw (instrumentation lab, Lakehead University, Ontario, Canada) using a Tensor 37 

FTIR (Bruker Optics, Germany) with a resolution of 4 cm
-1

 and 32 scans per sample. The experiment was 

done using approximately 2 mg of each sample and applying a MIRacle ATR accessory with high-

pressure clamp (PIKE Technologies, Madison, WI, USA). 

4.3.5. Strains and culture conditions 

T. reesei knockout mutant xdh1 (∆xdh1) strain and double knockout mutant lad1 xdh1 

(∆lad1∆xdh1) strain were used in xylitol production experiments (Seiboth et al., 2003). The strains were 

grown and maintained on potato dextrose agar (PDA). Strains were grown in 50 mL of medium described 
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by Mandels and Andreotti, (1978) (MA-medium) in 250 mL flasks using a rotary shaker (200 rpm) at 30 

°C supplemented with different carbon sources at a final concentration of 2% (w/v). The media was 

autoclaved at 121 °C (15 lb psi) for 15 min. 

 4.3.6. Inoculum preparation and xylitol production by two mutant T. reesei strains 

The greenish conidia from the mutant T. reesei strains incubated for 14 days at 30 °C on PDA 

plates was suspended in 5 mL of sterile saline solution (0.9% w/v, NaCl). Ultimately, gentle filtration was 

applied in order to separate the spores from the mycelia using 12 layers of lens paper (Fisher Scientific, 

Canada), followed by spore counting using a Petroff-Hausser cell counter (American Optical, USA). The 

isolated spores were used to inoculate (1.0 × 10
7
, final concentration) 250 mL flasks containing 50 mL 

medium (MA-medium) with 2% glycerol (w/v) as the carbon source and incubated at 30 °C for a total of 

48 hours. These pre-grown mycelia were then washed three times by MA-medium without any carbon 

source to remove any residual glycerol. Equal amounts of mycelia (1 g) were then transferred into 250 

mL flasks containing 50 mL xylitol production media (MA-medium) in which 2% glycerol (w/v) was 

substituted with 2% (w/v) barley straw (untreated, Organosolv- or NaOH-pretreated) with or without 2% 

(w/v) monomeric carbon sources (either D-glucose or D-xylose). Two biological replicates were done for 

each experiment. To examine xylitol production, a time course trial of 168 h was conducted at 30 °C. 

Samples of 500 µL each were taken from each of the flasks every 24 h and were centrifuged at 16060 rcf 

for 5 min. The supernatant was used as the source for the xylitol measurement as well as xylanases 

enzyme assays (Gamerith et al., 1992). 

4.3.7. Analytical analyses 

During the 168 h incubation period, samples of 500 µL were extracted at 24 h intervals and 

centrifuged (16060 rcf for 5 min). The resultant supernatants were kept at 4 °C for further substrate and 

product analyses. These supernatants were used to determine extracellular concentration of xylitol 

produced by the two mutant T. reesei strains. The supernatant was appropriately diluted, followed by 



156 

 

filtration using 0.2 μm syringe filters (Ultident, Canada). Ultimately, they were analyzed by High-

Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAE-PAD) using 

a Dionex ICS3000 system (Dionex, Sunnyvale, USA) equipped with a 3x150 mm CarboPac PA20 

Carbohydrate Column and Guard (Dionex, Sunnyvale, USA). 0.52 M NaOH (isocratic) eluent was used 

at a flow rate of 0.5 mL min
-1

 and a full loop injection volume of 25 μL. The column was maintained at 

30 °C, and a gold (Au) electrode with quadruple potential was used for separation. Applying the same 

method, either D-Xylose or D-glucose concentrations in the supernatant were measured only whenever 

either of them presented in the supernatant (xylitol production experiment, section 3.3). The method was 

modified in order to determine D-glucose, D-Xylose and L-arabinose concentrations in the supernatant in 

the case of enzymatic hydrolysis of barley straw (section 3.4), where these sugars were released and 

mixed together. To this end, 0.36 M NaOH was used as eluent. 

4.3.8. Enzyme assays 

Xylanases (EC 3.2.1.8) activity was determined by measuring the release of reducing sugars 

using a dinitrosalicylic acid method (DNS) (Miller, 1959). The reaction mixture containing 25μL of 1% 

(w⁄v) birch wood xylan was prepared in 50 mM sodium citrate buffer (pH 4.8), and 25 μL of suitably 

diluted enzyme solution (culture supernatant) in the same buffer and incubated at 50°C for 10 min. The 

reaction was stopped by adding 150 μL DNS solution and kept in a boiling water bath for 5 min. 

Absorbance was read at 570 nm for xylanases activity (Gamerith et al., 1992). The xylanases activity was 

defined as IU/mL and one international unit (IU) was the amount of enzyme that released 1 μmole of 

reducing sugar (xylose) equivalents per minute calculated using a xylose standard curve. The background 

reducing sugars found in the enzyme supernatant were excluded from the results by adding negative 

controls (enzyme control) in the assay. The absorbance of the enzyme control sets and substrate control 

were subtracted from the absorbance of the activity assay (Gamerith et al., 1992). 
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Total cellulase activity was also measured using the DNS method and applying a microplate 

based filter paper assays according to a method described previously (Dashtban et al., 2011). Total 

reducing sugars released during the assay were estimated as glucose equivalents and represented as filter 

paper units (F U/mL) where one F U is defined as the amount enzyme that released one μmole of 

glucose equivalents per min in the assay reaction (Dashtban et al., 2010a). The protein concentration in 

the supernatant was measured using the Fermentas Bradford  eagent according to the manufacturer’s 

protocol and also a Fermentas bovine serum albumin (BSA) standard set as the standard (Fermentas, 

Canada). 

4.3.9. Enzymatic hydrolysis of barley straw by two T. reesei mutant strains 

Hydrolysis activity of the mutant T. reesei strains was investigated using 3% (w/v) of barley 

straw (untreated, Organosolv- or NaOH-pretreated) according to the method described before (Dashtban 

and Qin, 2012). Substrate hydrolysis was catalyzed using the culture supernatants of the mutant strains 

grown on MA-medium supplemented with 1% microcrystalline cellulose (MCC) for 168 h. Enzymatic 

hydrolysis of barley straw was started with 3% substrate concentration in 50 mM sodium citrate buffer at 

pH 5.0 (supplemented with 1 mM sodium azide to prevent microbial contamination) and equal amount of 

crude enzyme dosage for both strains at 50 °C for 120 h. A negative control was added in which the crude 

enzyme was replaced with the buffer. Samples were taken every 24 h and subjected to determination of 

released reducing sugars (RS) as well as the D-glucose, D-xylose and L-arabinose levels in the 

supernatant. The released reducing sugars were detected by the DNS method while the D-glucose, D-

xylose and L-arabinose concentrations were measured using HPAE-PAD. 

4.3.10. Data processing and statistical analysis 

All experimental points presented in the study are the average values of two independent repeats. 

Microsoft Excel spreadsheet was used to collect the data and for determination of average and standard 

error of the mean. The graphs were created using the software PRISM 5.0. 
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4.4 Results and discussion 

 

4.4.1. Effect of pretreatment on Particle size and particle size distribution of barley straw 

The effect of two different pretreatment methods on barley straw particle size distribution is 

shown in Fig. 2, A. The particle size profile of untreated barley straw presented a main peak with the 

volume percentage about 8.5% at 700 μm. Additionally, smaller particle size with very low percentage of 

particles was observed for untreated barley straw in the region ranging from 2-110 μm. However, 

different profiles were obtained for NaOH- and Organosolv-pretreated barley straw compared to untreated 

barely straw and the main peak was shifted to150 and 70 μm for the treatments, respectively (Fig. 2, A). 

In the bioconversion process, pretreatment of lignocellulosic biomass becomes an essential step before 

hydrolysis takes place. This is due to the fact that the hydrolysis of untreated lignocellulosic biomass is 

very slow which leads to lower product yield (Dashtban et al., 2009). It has been shown that particle size 

affects bioconversion of lignocellulosic biomass in which smaller particle size positively correlated with 

higher conversion rates (Vidal et al., 2011). For example, a study by Pedersen and Meyer (2009) showed 

that reduced particle size in pretreated wheat straw with about 53-149 μm particle sizes (oxidized) 

released more D-glucose and D-xylose compared to the untreated sample. Our results (section 3.5, 

enzymatic hydrolysis of biomass) also showed higher amounts of reducing sugars released from both 

pretreated barley straw compared to the untreated sample. However, it has been suggested that other 

important factors such as cellulose crystallinity also plays a major role in the hydrolysis process beside 

the particle size in pretreated biomass (da Silva et al., 2010; Dashtban et al., 2009). 

4.4.2. FTIR analyses of untreated and pretreated barley straw 

The FTIR was used to qualitatively determine the chemical changes in pretreated barley straw. 

The FTIR spectra for NaOH- and Organosolv-pretreated barley straw samples were compared to 

untreated barley straw and shown in Fig. 2 (B and C) while the main assignment of functional groups in 

FTIR bands are listed in Table 1. The general trends of chemical changes in barley straw after the 
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pretreatments (4000 to 800 cm
-1

) are compared to untreated barley straw (Fig. 2, B). The peaks around 

3,350 cm
-1

 are associated with O-H stretching of hydrogen bonds in cellulose (Chundawat et al., 2007; 

Hsu et al., 2010). Untreated and NaOH-pretreated barley straw showed similar absorption peaks however, 

at decreased levels in the Organosolv-pretreated barley straw. This indicated that similar to untreated 

barley straw most of the crystalline cellulose in NaOH-pretreated barley was not disrupted by the 

treatment. Organosolv-pretreatment however showed to be a more effective method and decreased the 

crystallinity of barley straw. The band at 2,900 cm
-1

 is attributed to C-H stretching of methylene cellulose 

which was less intense in both pretreatment methods used in this study (Hsu et al., 2010; Kumar et al., 

2009). The bands at 1200-1000 cm
-1 

representing structural features of carbohydrates and polysaccharides 

were also less intense in the pretreated barley straw compared to the untreated sample (Hsu et al., 2010; 

Wang et al., 2010) (Fig. 2, C). The peaks at 1,610 and 1,516 cm
-1

 are attributed to aromatic skeletal 

stretching in lignin and the bands at 2,860, 1,460 and 1,425 cm
-1

 are attributed to C-H deformation within 

the methyl groups of lignin (Guo et al., 2008; Hsu et al., 2010). Both pretreated barley straw samples 

showed decreased adsorption in bands compared to the untreated sample suggesting that lignin was 

removed in the pretreated samples. The band at 1,720 cm
-1

 is attributed to ester linkage C=O which is 

categorized as hemicellulose-lignin linkage and/or the acetyl group existing in hemicellulose structure 

(Chundawat et al., 2007; Hsu et al., 2010). Our results showed that the band adsorption in the 

Organosolv-pretreated barley straw decreased suggesting that the linkage between lignin and 

hemicellulose was removed. However, NaOH-pretreated barley straw showed almost the same band 

adsorption as untreated barley straw. The decrease in the 1,720 cm
-1

 band is suggested to be related to 

delignification of hemicellulose in the pretreated sample (Chundawat et al., 2007). The band at 1,640 cm
-1

 

attributed to the aldehyde group in hemicellulose and the decrease in the band represents hemicellulose 

hydrolysis which was the case for the both pretreatment methods used in the study (Chundawat et al., 

2007) (Fig. 2, C). 
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4.4.3. Xylitol production by the mutant T. reesei strains and the effect of different pretreatment methods 

on the production 

Two T. reesei strains which are blocked in the step from xylitol to D-xylulose were used for the 

xylitol production. Strain ∆xdh1 is partially impaired in xylitol oxidation while strain ∆xdh1∆lad1 is 

completely blocked in the further conversion of xylitol. Barley straw was used as the complex medium 

and also as an example for the application of agricultural waste. This would be essential to investigate 

since usually complex lignocellulosic wastes (agriculture or forestry-based) are targeted for bio-product 

productions by different microorganisms. In this study, MA-medium was supplemented with barley straw 

containing relatively high hemicellulose content (26.46 ± 3.67%). Barley straw was either pretreated with 

Organosolv or 2% NaOH. Alkali or Organosolv pretreatment methods have been shown to be able to 

remove lignin and possibly also part of the hemicellulose fraction and enhance saccharification rate by 

increasing cellulose accessibility to cellulases (Taherzadeh and Karimi, 2008). The xylitol production by 

the two T. reesei strains using untreated, Organosolv- and NaOH-pretreated barley straw is shown in Fig. 

3 (A-F). The media was also supplemented by either 2% D-glucose or D-xylose in order to enhance the 

production and increase the cell growth on the complex media. As shown in Fig. 3 (A and B), very low 

xylitol production was observed using untreated, Organosolv- and NaOH-pretreated barley straw in the 

absence of the supplementary sugars (D-glucose or D-xylose). The maximum production of 1.25 and 1.13 

g/L was obtained for single and double deletion strains using untreated and NaOH-pretreated barley straw 

after 96 and 168 h of incubation, respectively (Fig. 3, A and B). Our results showed that adding D-

glucose to the complex media did not improve xylitol production by either strain (Fig. 3, C and D). This 

confirmed that xylitol production is through a separate pathway and does not directly correlate with the 

cell growth on D-glucose. A study by Prathumpai et al., (2004) also showed that wild-type or mutant 

Aspergillus nidulans strains produced very low amount of xylitol (58.7 and 12.7 mg/L, respectively) 

either in the presence or absence of D-glucose in the fermentation medium. The highest xylitol production 

however was obtained when the media were additionally supplemented with D-xylose (Fig. 3, E and F). 
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For the ∆xdh1 strain, the maximum xylitol production of 6.1 g/L was obtained after 96 h of incubation 

using MA-medium supplemented with 2% Organosolv-pretreated barley straw and 2% D-xylose (Fig. 3, 

E). The ∆xdh1∆lad1 strain however, produced 2.17-fold more xylitol (13.22 g/L) compared to the single 

mutant strain after 168 h of incubation using the same medium condition (Fig. 3, F). This is in a good 

accordance with the previous studies where a partial compensation for the loss of xdh1 function in the 

∆xdh1 strain was observed (Seiboth et al., 2003). Lower xylitol was produced using other media 

compositions including untreated and NaOH-pretreated barley straw supplemented with D-xylose. This 

suggests that the Organosolv pretreatment method favors xylitol production by both strains from barley 

straw. A study by Prakash et al., (2011) also showed that higher xylitol production by Debaryomyces 

hansenii was observed when the hemicellulose fraction from sugarcane bagasse was supplemented with 

2% D-xylose. 

D-Glucose and D-xylose consumption by the two strains were monitored over the time course 

study (Fig. 3, C-F). As expected, both strains showed high D-glucose consumption within a short time 

and D-glucose concentration in the medium decreased from 20 g/L to about 5 g/L after the first 24 h of 

incubation (Fig. 3, C and D). Our results showed that D-glucose concentration in the medium remained at 

almost the same level over the rest of the incubation times. However, the two strains showed different 

trends for D-xylose consumption (Fig. 3, E-F). D-xylose was slowly used by the ∆xdh1 strain over the 

time point study and the concentration gradually decreased from 20 g/L to about 0.32 g/L after 168 h of 

incubation (Fig. 3, E). However, for the ∆xdh1∆lad1 strain no major changes in D-xylose concentrations 

were observed over the whole period and about the same amount of D-xylose was found at the end of the 

cultivation (Fig. 3, F). 

4.4.4. Xylanases activity of the mutant T. reesei strains and the effect of different pretreatments on the 

activity 

Xylanases activity of the two T. reesei strains grown on MA-media supplemented with barley 

straw (untreated or pretreated) and monomeric sugars (section 3.3) was also investigated here (Fig. 4, A-
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F). The single ∆xdh1 strain showed high xylanases activity using MA-media supplemented with only 2% 

barley straw (Organosolv- or NaOH-pretreated) with the highest activity at about 336 (IU/mL) after 168 h 

of incubation using MA-medium supplemented with NaOH-pretreated barley straw (Fig. 4, A). The 

∆xdh1∆lad1 strain however showed high xylanases activity only when the MA-medium was 

supplemented with Organosolv-pretreated barley straw at about 292 IU/mL after 120 h of incubation (Fig. 

4, B). Both strains showed the same trend for xylanases activity when the medium was additionally 

supplemented with 2% D-glucose (Fig. 4, C and D). Our results indicated that addition of D-glucose 

lowers the xylanases activity in most cases except when NaOH-pretreated barley straw was used. In this 

case xylanases activities of 253 and 267 IU/mL were obtained for ∆xdh1 and ∆xdh1∆lad1 strains grown 

on MA-medium supplemented with 2% NaOH-pretreated barley straw and 2% D-glucose after 144 and 

168 h of incubation, respectively (Fig. 4, C and D). Lower xylanases activity was also obtained when the 

medium was supplemented by D-xylose (Fig. 4, E and F). However, the ∆xdh1∆lad1 strain showed 

higher activity compared to the single ∆xdh1 strain. Specifically, the ∆xdh1∆lad1 strain grown on MA-

medium supplemented with 2% Organosolv-pretreated barely straw and 2% D-xylose showed high 

xylanases activity at about 338 IU/mL after 144 h of incubation (Fig. 4, F). This is in accordance with the 

xylitol production results (Fig. 3, F, section 3.3) where the highest xylitol production by the ∆xdh1∆lad1 

strain was obtained. 

4.4.5. Enzymatic hydrolysis of biomass by the mutant T. reesei strains 

Efficient hydrolysis is an important step in the bioconversion process where initially 

lignocellulosic polymers including cellulose and hemicelluloses break down to their monomeric soluble 

sugars (Dashtban et al., 2009). Thus, many studies have been focused on improving lignocellulolytic 

activity of different microorganisms in addition to their ability to produce value added bio-products 

(Dashtban et al., 2009). To this end, the hydrolysis efficiency of the two mutant T. reesei strains using 

barley straw was investigated here. In order to choose the right medium condition for the efficient 

hydrolysis activity, both strains were grown in different medium conditions and their total cellulases 
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activity as well as xylanases activity was monitored over a 168 h time course study (Fig. 5, A-D). In this 

experiment, MA-medium was supplemented with 1% microcrystalline cellulose (MCC) based on our 

previous study where the highest cellulase activity was obtained in three T. reesei strains (Dashtban et al., 

2011).  

Our results showed that high total cellulase activity was seen for both mutant strains only when 

grown on MA-medium supplemented with 1% MCC or a combination of MCC and Organosolv-

pretreated barley straw (Fig. 5, A and B). Total cellulase activity reached 20.83 and 14.46 FPU/mL using 

MA-medium supplemented with either 1% MCC or 1% MCC plus 1% Organosolv-pretreated barley 

straw for single or double mutant strains after 168 h of incubation, respectively (Fig. 5, A and B). 

However, very low cellulase activity was obtained for both strains using MA-medium supplemented with 

1% MCC in combination with 1% NaOH-pretreated barley straw. In the case of xylanases activity 

however, overall very high activity was obtained for both strains under the same culture condition over 

the entire time point study (Fig. 5, C and D). For the single mutant strain, the highest xylanases activity of 

about 281 IU/mL was obtained when MA-medium was supplemented with 1% Organosolv-pretreated 

barley straw in addition to 1% MCC (Fig. 5, C). The double mutant strain showed higher xylanases 

activity at about 342 IU/mL using MA-medium only supplemented with 1% MCC after 168 h of 

incubation (Fig. 5, D). Since high cellulases activity as well as high xylanases activity were obtained for 

both mutant strains using MA-medium supplemented with 1% MCC, the culture supernatants were used 

as the enzyme source for the following enzymatic hydrolysis of biomass experiment. 

Hydrolysis efficiency of both mutant strains was tested using 3% barley straw as the 

lignocellulosic biomass over a 120 h incubation time (Fig. 6, A-F). For the untreated barley straw (Fig. 6, 

A and B), both single and double mutant strains released the highest reducing sugars (RS) at the last time 

point (120 h) over the studied time points with about 200 and 230 mg/g, respectively. D-Glucose, D-

xylose and L-arabinose released by both strains using untreated barley straw were also monitored over the 

time points. The single mutant strain produced about 110, 41 and 5 mg/g, D-glucose, D-xylose and L-
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arabinose after 120 h of incubation while the double mutant strain was able to release about 115, 48 and 7 

mg/g, D-glucose, D-xylose and L-arabinose after 120 h of incubation, respectively (Fig. 6, A and B).  

Hydrolysis efficiency of both mutant strains was tested using Organosolv-pretreated barley straw 

(Fig. 6, C and D). The results indicated that both strains released higher amounts of RS compared to 

untreated barley straw. The amount of released RS gradually increased over the time point study with the 

highest production of 592 and 600 mg/g after 120 h of incubation for single and double mutant strains, 

respectively (Fig. 6, C and D). These were 2.96- and 2.59-fold higher than the maximum released RS 

from untreated barley straw by both single and double mutant strains, respectively. In the case of D-

glucose, the maximum production of 537 and 479 mg/g was achieved for single and double mutant strains 

after 120 h of incubation. This suggests that Organosolv-pretreatment significantly increased the 

accessibility of cellulose in barley straw leading to higher levels of release of D-glucose compared to 

untreated barley straw (Fig. 6, C and D). In the case of D-xylose and L-arabinose however, no detectable 

sugars were released by either strains indicating that most of the hemicellulose part of barley straw was 

removed following the Organosolv-pretreatment. This is in good accordance with the results obtained by 

Pan et al studies where most of the monomeric and oligomeric hemicellulosic sugars of Poplar became 

water-soluble after Organosolv-pretreatment and separated from solid residue (mostly cellulose) (Pan et 

al., 2006). 

Similar results with high released RS were also obtained when NaOH-pretreated barley straw was 

used as the substrate for the enzymatic hydrolysis experiment (Fig. 6, E and F). After 120 h of incubation 

time, the maximum RS released was obtained for both single and double mutant strains (692 and 685 

mg/g, respectively), which were 3.46- and 2.96-fold higher than the released RS from untreated barley 

straw by single and double mutant strains, respectively (Fig. 6, E and F). The single mutant strain 

produced about 417, 177 and 17 mg/g, D-glucose, D-xylose and L-arabinose after 120 h of incubation 

which was 3.78-, 4.33- and 3.2-fold higher than the released sugars using untreated barley straw, 

respectively. The double mutant strain however produced about 404, 155 and 17 mg/g, D-glucose, D-



165 

 

xylose and L-arabinose after 120 h of incubation which was 3.49-, 3.21- and 2.42-fold higher than the 

released sugars using untreated barley straw, respectively (Fig. 6, E and F). 

 

4.4. Conclusion 

In our study, we have used two T. reesei mutant strains as the cell factories for xylitol production. 

Barley straw was used as an example of agricultural residue. Barley straw was subjected to two 

pretreatment methods including NaOH- and Organosolv-pretreatment. High xylitol production was 

achieved when barley straw (untreated or pretreated) was supplemented with 2% D-xylose whereas D-

glucose supplement did not lead to any significant difference. The production reached to 6.1 and 13.22 

g/L using medium supplemented with 2% Organosolv-pretreated barley straw and 2% D-xylose by single 

and double mutant strains, respectively. Saccharification of pretreated barley straw showed that NaOH-

pretreatment significantly increases the accessibility of cellulose/hemicellulose leading to a greater 

release of reducing sugars, D-glucose, D-xylose and L-arabinose compared to untreated barley straw. 

Hydrolysis of Organosolv-pretreatment barley straw led to higher amounts of released D-glucose 

compared to untreated barley straw however, no detectable D-xylose or L-arabinose were found in the 

hydrolyzates using both strains. This indicated that Organosolv-pretreatment removed most available 

hemicellulose in barley straw. Organosolv-pretreatment was more effective than NaOH-pretreatment 

since it significantly increased xylitol production by both T. reesei strains. However, this was only the 

case when the medium was also supplemented with 2% D-xylose. This suggests that beside the 

accessibility of xylan, D-xylose concentration is also important for the xylitol production. The results 

suggest that agricultural residues, such as barley straw, could be a suitable resource for bioconversion to 

produce value-added products such as xylitol. 
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Table 1. Main assignments of lignin and polysaccharides FTIR bands of barley straw. 

 Wavenumber 

(cm-1) 

Assignments References 

Lignin 

 

 

 

 

 

 

 

 

Polysaccharides 

 

 

 

 

 

2860 
 

1610 

1516  
 

1460 

1425 
 

3350 

2900 
1720 

1640 

1030-1170 
1098 

 

900 

 

C-H stretching of methyl, methylene or methane groups 
of lignin 
Aromatic skeletal vibrations 
Aromatic C=Cstretching from aromatic ring of lignin plus 
C=O stretch  

Aromatic C-H vibrations  

Aromatic C=C stretching from aromatic ring 
 
O-H stretching (hydrogen bonds in cellulose) 
C-H stretching (methyl/methylene group of cellulose) 
Ester linkage C=O in hemicellulose-lignin linkage 
Aldehyde group in hemicellulose 
O-H stretching in alcohols 
C-O, C-C stretching or C-OH bending in hemicellulose 
and cellulose 

C-O-C vibrations at β-glucosidic linkages in 

hemicellulose and cellulose) 

 

(Guo et al., 2008; Hsu et al., 2010) 
 

(Guo et al., 2008; Hsu et al., 2010) 

(Guo et al., 2008; Hsu et al., 2010) 
 

(Guo et al., 2008; Hsu et al., 2010) 

(Guo et al., 2008; Hsu et al., 2010) 
 

(Chundawat et al., 2007; Kumar et al., 2009) 
(Hsu et al., 2010; Kumar et al., 2009) 

(Chundawat et al., 2007; Hsu et al., 2010) 
(Chundawat et al., 2007) 

(Chundawat et al., 2007) 

(Wang et al., 2010) 

 

(Wang et al., 2010) 
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Fig. 1. T. reesei D-xylose and L-arabinose catabolism pathway and created T. reesei single (∆xdh1) and 

double mutant (∆lad1∆xdh1) strains (modified from Seiboth et al., 2007). 
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Fig. 2. (A) Particle size distribution of untreated barley straw as well as NaOH- and Organosolv-

pretreated. (B and C) FTIR spectra for untreated and NaOH- and Organosolv-pretreated barley straw. (B) 

General trends of chemical changes in barley straw after the treatments and (C) selected FTIR spectra 

(1800 to 800 cm
-1

) region for functional changes after the treatments.  
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Fig. 3. Xylitol production by two mutant T. reesei strains using barley straw. (A and B) xylitol production 

by single or double mutant strains on MA-medium supplemented with 2% barley straw, respectively. (C 

and D) Xylitol production by single or double mutant strains on MA-medium supplemented with 2% 

barley straw in addition to 2% D-glucose, respectively. (E and F) Xylitol production by single or double 

mutant strains on MA-medium supplemented with 2% barley straw in addition to 2% D-xylose, 

respectively. As the controls, xylitol production by both strains was measured using MA-medium without 

any carbon source (MA, in A and B), or MA-medium supplemented either with 2% D-glucose (MA + 

Glu, in C and D) or D-xylose (MA + Xyl, E and F). D-Glucose (C and D) or D-xylose consumption by 

both strains (E and F) are also measured over the time point study. Data is represented as the mean of two 

independent experiments and error bars denote standard error of the mean. 
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Fig. 4. Xylanases activity of two mutant T. reesei strains grown on MA-media used in xylitol production 

experiment (Fig. 3). (A and B) Xylanases activity of single or double mutant strains on MA-medium 

supplemented with 2% barley straw, respectively. (C and D) Xylanases activity of single or double 

mutant strains on MA-medium supplemented with 2% barley straw in addition to 2% D-glucose, 

respectively. (E and F) Xylanases activity of single or double mutant strains on MA-medium 

supplemented with 2% barley straw in addition to 2%D-xylose, respectively. Data is represented as the 

mean of two independent experiments and error bars denote standard error of the mean. 
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Fig. 5. Cellulases and xylanases activities of two mutant T. reesei strains grown on MA-media.(A and B) 

Cellulases activity of single or double mutant strains grown on MA-medium supplemented with either 1% 

microcrystalline cellulose (MCC) or a combination of 1% MCC and 1% barley straw (untreated or 

pretreated), respectively. (C and D) Xylanases activity of single or double mutant strains grown on MA-

medium supplemented with either1% microcrystalline cellulose (MCC) or a combination of 1% MCC and 

1% barley straw (untreated or pretreated), respectively. Data is represented as the mean of two 

independent experiments and error bars denote standard error of the mean. 
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Fig. 6. Enzymatic hydrolysis of barley straw by two mutant T. reesei strains. (A and B) Reducing sugars 

(RS), D-glucose, D-xylose and L-arabinose yield (mg/g) released by single or double mutant strains using 

untreated barley straw, respectively. (C and D) Reducing sugars, D-glucose, D-xylose and L-arabinose 

yield (mg/g) released by single or double mutant strains using NaOH-pretreated barley straw, 

respectively. (E and F) Reducing sugars, D-glucose, D-xylose and L-arabinose yield (mg/g) released by 

single or double mutant strains using Organosolv-pretreated barley straw, respectively. 1000μl of the 

culture supernatants previously grown on MA-medium supplemented with 1% MCC (as the enzyme 

source) were added to tubes containing 1000 μl of 50 mM sodium citrate buffer (pH 5.0) and 0.06 g (3%) 

barley straw. The tubes were incubated at 50 °C for 120 h and reducing sugars as well as D-glucose and 

D-xylose released were measured every 24 h. Data is represented as the mean of two independent 

experiments and error bars denote standard error of the mean. Total protein loading of 0.5 mg (single or 

double mutant culture supernatant) was used and the volume was adjusted by the buffer. 
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Chapter 5: General discussion and future directions 

Many reasons such as rising energy consumption, depletion of fossil fuels and increased 

environmental concerns have shifted the focus of energy generation towards biofuel use. Lignocellulose is 

a renewable organic material and is the major structural component of all plants. Lignocellulosic wastes 

are produced in large amounts by many industries including those of forestry, pulp and paper, agriculture, 

and food [1-4]. Lignocellulose mainly consists of three major components: cellulose, hemicellulose and 

lignin. Significant efforts, many of which have been successful, have been made to convert these 

lignocellulosic residues to valuable products such as biofuels, chemicals and animal feed [1,5]. Using 

lignocellulosic wastes as the main source for ethanol production will eliminate the concern originally 

caused by bioethanol industries where they have used sugars or corn as the feedstock [1]. 

In nature, many microorganisms including fungi and bacteria had been found to degrade cellulose 

and other plant cell wall fibres. Degradation of cellulosic biomass is performed by mixtures of hydrolytic 

enzymes collectively known as cellulases which work in a synergistic manner in biomass-degrading 

microbes [1,6]. The breakdown of lignocellulosic biomass involves the formation of long-chain 

polysaccharides, mainly cellulose and hemicellulose, and the subsequent hydrolysis of these 

polysaccharides into their component 5- and 6-carbon chain sugars. In biofuel production, these sugars 

can be converted to bioethanol through fermentation processes [6]. 

The primary challenge in biomass conversion to bioethanol is achieving yields that make it cost-

competitive with current fossil fuel sources. Cellulose in the plant cell wall is not readily available to 

enzymatic hydrolysis. Pretreatment of the lignocellulosic residues is necessary because hydrolysis of non-

pretreated materials is slow, and results in low product yield [7]. Many pretreatment methods rely on 

applying high temperature, and addition of acids or bases at industrial scales [1,7]. Thus, additional steps 

are included prior to the hydrolysis step by enzymes which make the overall process expensive, slow and 

inefficient. Additionally, pretreatment releases inhibitors which lower overall yield of the fermentation 

process.  
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The main goal of this thesis was to approach the above mentioned challenges in biofuel 

production mainly using fungi. Obviously, fungi contribute significantly to the decay of lignocellulosic 

residues in nature by producing many different lignocellulolytic enzymes. Most fungal strains produce 

various enzymes in large amounts which are released in the environment and act in a synergistic manner 

[1]. More recently, fungi became industrially important and act as cell factories due to their high potential 

for protein production (native or heterologous) and thus can be a successful replacement for bacteria. T. 

reesei is one of the most studied and industrially important cellulolytic fungus capable of efficiently 

degrading plant cell wall polysaccharides such as cellulose and hemicelluloses [1,8]. During this Ph.D. 

study, we have used different T. reesei strains for three main projects as they are presented in chapters 2 

to 4. 

In our first study, we tried to understand the biology underlying cellulase hyperproduction of T. 

reesei, and the conditions for the enzyme induction. We have used three different strains of T. reesei, 

including QM6a (wild-type), and mutants QM9414 and RUT-C30. To this end, two parallel experiments 

were carried out. These included the effect of different carbon sources as well as a time point study to 

investigate the cellulase production by the three T. reesei strains. We have tested 14 different carbon 

sources including soluble and insoluble carbon sources (pure cellulose and lignocellulosic). We were also 

interested to investigate how the medium composition affects the fungal growth and ultimately the 

relationship between the cell growth and their cellulolytic activity. The carbon source utilization profiles 

of these strains closely resembled each other although the cellulase activity of the T. reesei mutant strains 

QM9414 and RUT-C30 were appreciably higher than the wild-type QM6a. For all three strains, 

maximum cellulase production was observed using two different types of microcrystalline celluloses. The 

other findings of the study included determining optimum culture conditions such as incubation time and 

the concentrations of carbon sources for the highest cellulase production by all three strains. These 

findings were applied in the other studies carried out later on during the Ph.D. study and they can also 

serve as a reference for other research studies using the same strains. Additionally, our study using the T. 
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reesei strains indicated that the enzyme production is not directly correlated with the growth of the 

mycelium, and may be a result of complex inducing factors. Thus, more in-depth studies need to be done 

to investigate different parameters involved in controlling the cell growth and cellulase production. Future 

studies on T. reesei strains can focus on the genes mainly involved in regulation of cellulase production. 

For example, transcription factor studies will provide valuable information for the conditions in which the 

cellulase genes are induced or repressed. Perhaps, discovery of the regulatory processes altered in 

cellulases hyperproducing T. reesei mutant strains can be one of the main tasks. 

Despite the fact that some fungal strains have the advantages of being thermostable and 

producing cellulases, most of these fungal strains do not produce sufficient amounts of one or more 

lignocellulolytic enzymes [1]. These enzymes are required for efficient bioconversion of lignocellulosic 

residues to fermentable sugars. T. reesei, for example, produces small amounts of β-glucosidase which 

inhibit further cellulose hydrolysis due to accumulation of the end product inhibitor (cellobiose) [1,8]. 

This became the key bottleneck in the process of biofuel production and thus new biotechnological 

solutions are needed to improve the efficiency. Many recent studies focused on improving fungal 

hydrolytic activity as well as finding stable enzymes capable of tolerating extreme conditions. 

The main focus of my Ph.D. study was to improve cellulase activity of the T. reesei strain, 

through increasing its β-glucosidase activity using genetic engineering and molecular biology techniques. 

For decades, T. reesei was targeted by many research studies and traditionally random mutagenesis was 

applied to improve its cellulolytic activity, leading to the creation of different mutant strains with several-

fold increases in the amount of secreted cellulolytic enzymes compared to the wild-type strain [9-11]. 

However, the hypercellulase producing T. reesei mutant strains still showed lower β-glucosidase activity. 

In our study we tried to improve β-glucosidase activity and ultimately its overall cellulase activity by the 

relief of end-product inhibition. 

A β-glucosidase gene (bgl1) from an endophytic fungus Periconia sp. was selected since the 

fungus showed to have very high β-glucosidase activity at elevated temperatures [12]. Thermostable β-
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glucosidases with high enzyme activity are especially useful for the bioconversion of lignocellulosic 

residues at elevated temperature [1]. This will be beneficial to biofuel industries by eliminating the extra 

step required to cool down pretreated lignocellulosic residues. In our study, the gene was successfully 

overexpressed in T. reesei QM9414 under the control of a promoter region of T. reesei tef1α (encoding 

translation elongation factor 1-alpha). Four mitotic stable BGLI-overexpressing T. reesei transformants 

were obtained in this study. Our results showed that the β-glucosidase activity and total cellulase activity 

of the recombinant T. reesei strains overexpressing BGLI are significantly increased. The BGLI-

overexpressing transformants showed higher biomass hydrolytic efficiency, suggesting that they can be 

used in the hydrolysis step in biomass conversion. High β-glucosidase activity, wide pH range tolerance 

and high temperature resistance makes the transformants excellent candidates for their potential 

application for the production of β-glucosidase, as well as improving the biomass conversion using 

cellulases. As future direction for the project, the activity of the recombinant T. reesei can be tested 

towards other biomass such as corn stover, wheat straw and the results can be compared to that of barley 

straw. Additionally, the β-glucosidase production by recombinant T. reesei can be studied using different 

conditions such as submerged and solid state fermentation. The results of these studies will be very useful 

for the potential application of the recombinant T. reesei by different industries such as biofuel, textile 

and food, and help for its transition from lab scale to actual industrial scale. 

During the cloning of bgl1 from Periconia sp., we have also identified three smaller genes with 

high sequence similarity to the full size bgl1. These genes were cloned and fully sequenced. Sequencing 

results showed that the smaller genes lost mainly part of their third exons. Our current and continuing 

future work related but not presented here has included the cloning and expression of these genes in a E. 

coli system. Our preliminary results showed very low expression level in the bacterial system. However, 

the proteins did not show any β-glucosidase activity toward the substrate suggesting that the expression 

system did not favor the protein folding. We are now working on the cloning and expression of these 
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genes in a fungal system (e.g. T. reesei) and ultimately, their activity will be compared toward the full 

size gene. 

In our third study, we were interested to apply our previously established fungal techniques and 

used T. reesei strains to produce bio-product. Our targeted product was xylitol which is a naturally 

occurring five-carbon sugar alcohol derived from D-xylose. Xylitol is currently in high demand by 

industries and biotechnological methods became more attractive for large-scale xylitol production. 

Agricultural residue was selected for xylitol production because of the large amount of availability and 

high hemicellulose content. T. reesei is capable of selectively using D-xylose for xylitol production as an 

intermediate metabolite and its production can be enhanced by genetic engineering of the metabolic 

pathway. In our study, we used two xylitol hyperproducing T. reesei mutant strains including a single 

mutant (∆xdh1) and a double mutant (∆lad1∆xdh1). Barley straw was subjected to two pretreatment 

methods including NaOH- and Organosolv-pretreatment. High xylitol production by both strains was 

achieved when barley straw (untreated or pretreated) was supplemented with 2% D-xylose whereas D-

glucose supplement did not lead to any significant difference. High xylitol production of 6.1 and 13.22 

g/L was obtained after 96 and 168 h of incubation using medium supplemented with 2% Organosolv-

pretreated barley straw and 2% D-xylose by single and double mutant strains, respectively.  

The effect of pretreatments on the cellulose and hemicellulose accessibility, as well as lignin 

modification of barley straw was tested using different techniques such as particle size distribution, FTIR 

analysis and saccharification. Our saccharification results showed that NaOH-pretreatment significantly 

increased the accessibility of cellulose/hemicellulose leading to increase the release of reducing sugars, 

D-glucose, D-xylose and L-arabinose compared to untreated barley straw. Organosolv-pretreatment also 

led to higher amounts of released D-glucose compared to untreated barley straw however, no detectable 

D-xylose or L-arabinose were found in the hydrolyzates. Although this indicated that Organosolv-

pretreatment removed most of available hemicellulose in barley straw, higher xylitol production by the T. 

reesei strains was achieved using medium containing Organosolv-pretreated barley straw supplemented 
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with D-xylose. This suggests that the pretreatment in combination with the added sugar favored the 

xylitol production. Thus, we suggest that beside the accessibility, D-xylose concentration is also important 

for xylitol production. Additional work can be done to determine the right D-xylose concentration which 

can optimize xylitol production. Moreover, it would be interesting to study the effect of other available 

pretreatment methods on barley straw and ultimately the xylitol production by mutant T. reesei strains. 

The results suggest that agricultural residues, such as barley straw, could be a suitable resource for 

bioconversion to produce value-added products such as xylitol. However, other lignocellulosic biomass 

such as corn stover, or wheat straw can be also pretreated and used as the feedstock for xylitol production 

by T. reesei mutant strains as the cell factories. 

Overall, my Ph.D. study opened a new toolbox for T. reesei strain improvement strategies as well 

as their industrial applications. T. reesei QM6a (wild-type) genomic DNA is now fully sequenced and the 

information can be used for further improvement strategies [9,10]. Future work on the strain improvement 

can focus on three main areas including; (1) further increasing enzyme expression levels by applying 

genetic engineering approaches, (2) increasing the efficiency of the enzyme mixture, and (3) metabolic 

engineering of the strain. These studies will accelerate the development of improved industrial strains that 

are highly efficient for production of biofuels and biochemical and ultimately will help to overcome the 

bottlenecks currently available in those industries.   
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