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ABSTRACT 

Hagens, J. 2008. Object-oriented and pixel-based image classification using Landsat 
multispectral and Hyperion hyperspectral imagery in boreal conditions. 159 pp. 

Key Words: eCognition, GIS, hyperspec:tral, Hyperion, image classification, Landsat, 
multispectral, Ontario land cover database, remote sensing, segmentation. 

Current environmental trends dictate a need for new methods, initiatives, and 
technologies that provide reliable, up-to .. date forest information. Canada, which is 
home to ten percent of the Earth's forests, has made national and international 
commitments to better monitor the sustainable development of its forest ecosystems. In 
Ontario, the Ministry ofNatural Resources monitors its natural resources through the 
Ontario Land Cover Database (OLCD). The OLCD is a large area land classification 
that uses Landsat multispectral imagery with a traditional pixel-based classifier. The 
goal of this thesis is to explore new ways to improve upon large area land classifications 
such as the OLCD. This thesis evaluates two alternative approaches: (1) it compares 
Landsat-5 TM multispectral imagery to Hyperion hyperspectral imagery, and (2) it 
compares a traditional pixel-based classifier to eCognition's object-oriented image 
classifier. Eight boreal cover classes were used consisting of water, wetland (aggregated 
marsh, fen and bog), black spruce, jack pine, mixedwood, dense deciduous, sparse 
deciduous and clearcuts. 

The objectives of this study were to: (1) identify the optimal method for 
reducing image dimensionality, (2) identify wavelength regions that best contribute to 
the separation between taxonomic groups and species, (3) determine whether a 
hyperspectral sensor can improve classification accuracy over a multispectral sensor, 
(4) identify ecological factors that can be used to explain classification error, and (5) 
explore the potential of eCognition's object-oriented image classifier. Feature selection 
using six Landsat bands and a discriminant function analysis for Hyperion was a more 
optimal method in reducing image dimensionality than principal component analysis for 
both sensors. Hyperion wavelengths used range from 0.50 Jlm to 2.32 Jlm. Ecological 
factors used to explain classification error included age of vegetation, ecosystem type 
and species composition. Overall accuracy using a pixel-based classifier was 87.82% 
for Hyperion and 79.69% for Landsat. Overall accuracy using an object-oriented 
classifier was 87.82% for Hyperion and 85.04% for Landsat. The main finding of this 
study is that, although hyperspectral imagery can improve classifications, it is not 
necessary to wait for hyperspectral imagery to become economically feasible in order to 
improve classifications. For the present time, the most practical method for potentially 
improving large land cover classification accuracy, such as the OLCD, is to change 
from a pixel-based to an object-oriented image classifier. 
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INTRODUCTION 

Current environmental trends dictate a need for new methods, initiatives, and 

technologies that provide reliable, up-to-date forest information. Canada, which is 

home to ten percent of the Earth's forests, has made national and international 

commitments to better monitor the sustainable development of its forest ecosystems 

(Goodenough et al. 2002). International commitments, such as the Kyoto Protocol 

(United Nations 1998), obligate Canada to provide accurate reports on environmental 

sustainability. National commitments, such as the Canadian Biodiversity Strategy, 

acknowledge the need for reliable up-to-date information on biodiversity (Environment 

Canada 1995). In response to the increasing pressure, the Canadian Forest Service and 

the Canadian Space Agency developed the Earth Observation for Sustainable 

Development afForests (EOSD) initiative. This initiative involves the use and 

development of space-based technology for land cover mapping, monitoring change, 

and estimating biomass. 

Large-area land cover mapping programs in Canada presently use multispectral 

satellite imagery with traditional pixel-based image classifiers. The 1995 Land Cover 

Map of Canada, for example, uses low 1 km spatial resolution Advanced Very High 

Resolution Radiometer (A VHRR) imagery (Cihlar et al. 1999). This map was produced 

by Natural Resources Canada and the Canada Centre for Remote Sensing, and consists 

of 29 broad land cover classes (Franklin and Wulder 2002). The most detailed 

provincial wide land cover map in Ontario is the Ontario Land Cover Classification 

Database (OLCD). It was produced by the Ontario Ministry ofNatural Resources 
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(OMNR), and was derived from medium 30m resolution Landsat imagery, and consists 

of 27 classes (Spectranalysis 1999). 

The newest edition to satellite remote sensing imagery is the hyperspectral 

sensor, such as Hyperion on the EO-I spacecraft. This technology has the potential to 

improve upon the use of multispectral sensors (Goodenough et al. 2002). Existing 

methods and automated tools to deal with hyperspectral imagery, however, are 

primitive and more research is needed before large-area applications are feasible. In 

addition to new satellite sensors, new knowledge-based classifiers, such as Definiens' 

eCognition object-oriented image classifier, have been developed. Although 

eCognition has potential for improving traditional image classifiers, it is currently not 

used for large-area land cover classifications in Canada. 

This thesis compares the ability of Hyperion hyperspectral and Landsat 

multispectral satellite imagery to perform large-area land cover classifications similar to 

that of the OLCD. The use of both a traditional pixel-based and eCognition's object-

oriented image classifier are addressed. The focus taxonomic groups and species used 

in this thesis are found in the upland areas of the boreal forest of northwestern Ontario, 

an area not yet researched with the Hyperion sensor. If research shows that these new 

technologies can provide improvements over currently used technology, then it may be 

worth investing more into new technologies, so that they become more economically 

feasible for large-area land classification programs in the future, and contribute to 

Canada's commitments to monitoring the sustainability of its forest ecosystems. 



3 

GOALS & OBJECTIVES 

This thesis assesses the feasibility of medium resolution multispectral and 

hyperspectral imagery to perform large-area land classification using pixel-based and 

object-oriented classifiers. It focuses on upland taxonomic and species classes in the 

boreal forest. The goal of this thesis is to discover new ways to improve large area land 

classifications such as the OLCD, using alternative methods applicable for the present 

time, as well as for in the future when new advances in spatial, spectral and radiometric 

properties of remotely sensed imagery bc~come available. The specific objectives of this 

thesis are as follows: 

1. Identify the optimal method (principal component analysis or feature 
selection) for reducing image dimensionality. Current image classifiers 
perform poorly if too many bands, such as the large number found in 
hyperspectral imagery, are used in a classification. It is difficult to 
hypothesize which method will be optimal because of the lack of literature 
on this subject; 

2. Identify the wavelength regions that best contribute to the separation between 
taxonomic groups and species. Bands located in the infrared region are 
expected to best contribute to the separation, because infrared is the most 
sensitive to vegetation; 

3. Determine whether a hyperspectral sensor can improve classification accuracy 
over a multispectral sensor. Since hyperspectral imagery contains more 
spectral information then multispectral, it is expected that the hyperspectral 
will produce a more accurate classification. If this is true, then it may be 
worth investing more into hyperspectral technology for future use; 

4. Identify ecological factors that can be used to explain classification error. 
The understanding of the factors that cause error in a classification is essential 
for improving future classifications. It is expected that factors such as 
vegetation age, ecosystem class and species composition will contribute to 
classification error; 

5. Determine whether eCognition's new object-oriented classifier can improve 
accuracy over a traditional pixel-based classifier. ECognition is expected to 
provide a more accurate classification because of its ability to also include 
spatial information into its classification. 
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LITERATURE REVIEW 

3.1 REMOTE SENSING 

Remote sensing is the study of an object, area or phenomenon through the use of 

a data capturing device not in contact with the object, area or phenomenon (Lillesand et 

a!. 1994 ). For the purpose of this thesis, remote sensing refers to sensors from 

spacecraft and aircraft that capture electromagnetic energy in the form of digital images 

used for mapping the Earth's surface. 

Objects on the earth's surface reflect electromagnetic radiation from the Sun's 

rays. This reflected energy can be measured by a remote sensor at different 

wavelengths along the electromagnetic spectrum (Figure 1 ). The human eye for 

example, captures reflections within the blue (0.4- 0.5 J..lm), green (0.5 - 0.6 Jlm), and 

red (0.6- 0.7 JLm) wavelengths, known as the visible component ofthe spectrum. 

Although the human eye cannot detect radiation within infrared range of the 

electromagnetic spectrum, infrared is optimum for obtaining information on vegetation 

(Jensen 2005). This study focuses on the remote sensors that record data within the 

visible and infrared range of the electromagnetic spectrum. 
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Figure 1. Section of the electromagnetic spectrum measured in micrometers (Jlm) 
(Lillesand and Kiefer 1994). 
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3.2 MULTISPECTRAL IMAGERY 

Commercial multispectral satellite sensors have been around since 1972, when 

the first Landsat satellite was launched into space. The term multispectral refers to 

images from remote sensors that have a few spectral bands covering broad ranges of the 

electromagnetic spectrum (Jensen 2005). For example, a blue band may record the 

average wavelength of 0.4-0.5,um, instead of a more narrow wavelength range of 0.448-

0.458,um. In general, each band represents an average wavelength range. 

Since the launch of the first multispectral satellite, Landsat-1, many more 

multispectral satellite sensors, with varying spatial and spectral resolutions, have 

become commercially available and viable. Advanced Very High Resolution 

Radiometer (A VHRR) for example, is a low cost sensor available since 1978 (NOAA 

2005). It has a 1 kilometer (km) spatial resolution, and cost $190 US per image, with 

each image covering 2400 by 6400 km's in size (USGS 2006). Spatial resolution refers 

to the ground area in which a pixel covers (Jensen 2005). The most recent Satellite 

Probatoire d'Observation de la Terre sensor (SPOT-5) was launched in 2002 and offers 

a lOrn multispectral image covering the green to mid infrared (MIR) range ofthe 

spectrum (Spot Image 2006). A full size SPOT image is 60 by 60 km's in size, and cost 

approximately $1900 and $3375 for a 20m and lOrn spatial resolution image 

respectively (Spatial Mapping 2007). IKONOS offers a 4 m spatial resolution image at 

$18 CAN per square km with a small 11-13 km image width. The Quickbird senor 

offers a multispectral image with the highest spatial resolution commercially available 

(2.44m), and has a standard image size is 16.5 by 16.5km. With a cost of 

approximately $22 per square km, it is also the costliest. The most widely used satellite 
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sensors are from the Landsat series. Landsat-5 TM for example, offers an image with a 

30m spatial resolution for all bands exc(:pt for the thermal which is 120m. Each image 

cost approximately $500 and covers and an area of 185 by 172 km (MacDonald, et al. 

2007). 

Current available Landsat sensors include Landsat-5 and 7. Although Landsat-5 

Thematic Mapper (TM) has been available since 1984, and is past its life expectancy, it 

continues to record images. Its seven bands cover the blue (0.45-0.52,urn) green (0.52-

0.60 ,urn), red (0.63-0.69 ,urn), Near-infrared NIR (0.76-0.90 ,urn), mid-infrared MIR 

(1.55-1.75 ,urn), far-infrared FIR (2.08-2.35 ,urn) and thermal (10.40-12.50 ,urn) ranges of 

the spectrum. Landsat-7 Enhanced Thematic Mapper (ETM+) was launched in 1999. It 

has similar bands to Landsat-5, but its thermal band is 60m and also has a panchromatic 

(black and white) band. In May 2004, the scan line corrector (SLC) failed on the 

Landsat-7, resulting in dark stripes throughout the image. The next sensor to collect 

Landsat like data will be the Operational Land Imager (OLI) and is scheduled to be 

launched in 2011. Landsat-5 TM is the first of the two sensors compared in this thesis. 

3.3 HYPERSPECTRAL IMAGERY 

Hyperspectral satellite sensors are the newest addition to remote sensing 

technology. The first such sensor, known as Hyperion, was launched in 2000 onboard 

NASA's Earth Observation-! (E0-1) satellite (USGS 2005). The term hyperspectral 

refers to images from remote sensors that have many spectral bands, each covering 

narrow sections of the electromagnetic spectrum. For example, instead ofhaving one 

blue band that recorded an average of 0.4-0.5 ,urn similar to multispectral imagery, a 
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hyperspectral image can have many bands within the blue section ofthe spectrum (e.g. 

0.401-0.410, 0.411-0.420 ... 0.491-0.500 pm). 

There are currently only two hyperspectral satellites sensors commercially 

available, known as Hyperion and the Compact High Resolution Imaging Spectrometer 

(CHRIS). The CHRIS sensor is on the European Space Agency's Project for On-Board 

Autonomy (PROBA) satellite. It was launched in 2001 on a technology 

validation/demonstration mission, and has 63 bands with a 36m spatial resolution 

(European Space Agency 2005). The Hyperion sensor is the second oftwo sensors 

compared in this thesis. Its imagery is collected with two spectrometers, one collecting 

within the visible and nir-infrared (VNIR) range ofthe spectrum (bands 1-70, 356-

1058nm), and the other within the short wave infrared (SWIR) range of the spectrum 

(bands 71-242, 852-2577nm), totaling 242 bands (Barry 2001). Hyperion has a 30m 

spatial resolution with images 7.5 km wide and 40-100 km long, and has a poorer 

quality signal-to-noise (SIN) ratio than Landsat-5 TM. The cost can range from 

approximately 1-4 thousand dollars US depending on scene length and tasking 

requirements (USGS 2007). 

3.4 MULTISPECTRAL VS. HYPERSPECTRAL 

The main difference between multispectral and hyperspectral imagery is the 

spectral resolution. Hyperspectral sensors have high spectral resolutions and collect 

many continuous spectral bands with narrow wavelengths (Aspinall et al. 2002; Smith 

2001 ). Multispectral sensors have relatively low spectral resolutions and collect only a 

few spectral bands with broad wavelengths (Aspinall et al. 2002; Smith 2001). 
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Since many surface materials have diagnostic absorption features that are 10 to 

20 nm wide, hyperspectral imagery has an advantage over multispectral imagery in 

identifying surface material (Jensen 2005). Figures 2 and 3 compare the spectral 

properties of jack pine with Landsat multispectral and Hyperion hyperspectral data 

collected in this thesis. The hyperspectral data clearly provides more detailed spectral 

information than the multispectral data. Hyperspectral imagery, however, has poorer 

quality signal to noise ratio than multispectral imagery and atmospheric correction is 

usually necessary (Jensen 2005). 
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One advantage of the high spectral resolution of hyperspectral imagery is the 

ability to measure canopy chemistry. Canopy chemistry can be used to identify tree 

species, measure old and new foliage (age), and detect stress (Goodenough et al. 2001; 

Martin et al. 1998). Figures 4 and 5 graphically demonstrate the ability of measuring 

reflectance to observe canopy chemistry such as stress, and show differences among 

vegetation. 
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Figure 5. Spectral reflectance curves showing differences between water, clear cuts, 
jack pine, black spruce, poplar and white birch samples collected in this thesis. 

Studies comparing multispectral and hyperspectral imagery demonstrate that 

hyperspectral produces higher accuracy results when classifying forest species. 

Goodenough et al. (2002) showed that classifying forests on Vancouver Island with 

Hyperion and Landsat satellite sensors yield overall accuracies of 92.9% and 75% 

respectively. Foster and Townsend (2004) demonstrated overall accuracy 

improvements with single date Hyperion over multi-date Landsat imagery for forest 

classification in the Central Appalachians. In their study, Hyperion and Landsat 

imagery yielded accuracies of 64.4% and 62% respectively. Thenkabail et al. (2004) 

compared Hyperion imagery to multispectral imagery (IKONOS, Advanced Land 

Imager, Landsat ETM+), to quantify and model biomass of tree, shrub and weed 

species, as well as characterizing forest land use/land cover classes (LULC) in an 

African rainforest. Results showed that multispectral models only explained 13-60% of 
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the variability in biomass, whereas Hyperion models explained 36-60% of the 

variability. The overall accuracy for LULC was between 42-51% for multispectral 

imagery, and 96% for Hyperion. 

3.5 LAND COVER MAPPING 

3.5.1 Forest Resource Inventory (FRI) 

In Ontario, both forest companies and government estimate forest resource 

inventory (FRI) attributes, such as speci{:s composition, stand density, height, age, 

quantity, site index, and crown closure for forest management purposes. Extracting FRI 

data of this nature is expensive and time consuming to update and develop 

(Goodenough et al. 2002). The traditional and most utilized method for extracting FRI 

data uses manual interpretation of high resolution aerial photographs along with ground 

collected data (Treitz and Howarth 1996; Gillis and Leckie 1996). 

Since September 29, 2005 the Ontario Ministry ofNatural Resources has been 

undergoing a program to update Ontario's FRI (OMNR 2007). Digital aerial 

photography capturing black and white imagery at 20 em resolution and color infrared 

imagery at 40 em resolution will be used. Ground survey plots will be used to 

supplement aerial photographs in acquiring forest and non-forest attributes. As part of 

the new FRI mandate, FRl's in Ontario will be updated on a 10 year cycle (OMNR 

2007). 

Studies using single-date medium resolution multispectral imagery for FRI 

purposes have shown mixed results. Karteris (1990) showed that Landsat Thematic 

Mapper (TM) imagery is capable of separating conifer species with an overall 
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classification accuracy of 92.4% in central Michigan. Fiorella and Ripple (1993) 

demonstrated that Landsat TM imagery c;an be used to classify conifer succession stages 

in the central Cascade Range of Oregon conifers with an overall accuracy of 78.3%. 

Wordoyo and Jordan (1996), however, found Landsat TM classification accuracies not 

accurate enough for forest management applications in New Brunswick. In their study, 

the overall accuracy was 79% and 52% for species type and age class classification 

respectively. Only four broad forest units, such as hardwood and softwood, were used 

in their study. Moore and Bauer (1990) studied the use of Landsat TM imagery for 

classifying forest units appropriate for forest management purposes in north central 

Minnesota. Their study obtained overall accuracies between 63-67%. One method that 

could be use to increase single-date classification accuracies is to use a multi-temporal 

dataset. Multi-temporal refers classifications that use two or more images over a single 

area taken at different times of the year. 

Research using multi-temporal multispectral imagery has demonstrated 

improved results over single-date imagery. Mickelson et al. (1998) demonstrated an 

overall accuracy of 78.9% when classifying genus level forest classification in 

northwestern Connecticut using Landsat TM imagery. Wolter et al. (1995) also showed 

that multi-temporal Landsat TM imagery can produce an overall species level accuracy 

of 80.1% in northwestern Wisconsin. One of the major drawbacks of using multi-

temporal dataset, is that it is difficult to receive multiple cloud free images over an area 

within a single growing season. It could therefore take several years to get a complete 

dataset, particularly for classifications covering a large area. 
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Regardless of the ability for medium resolution multispectral imagery to classify 

forests at the FRI level, it is currently not being used in Canada. Possible reasons for 

this, other than classification accuracies, is its inability to be used for the collection of 

other FRI attributes such as stand density, height, age, quantity, site index, and crown 

closure. If medium resolution imagery is used, all additional attributes must still be 

collected in the field which would be costly. In essence, medium resolution satellite 

imagery is designed for acquiring cover types, not detailed information such as species 

classification, species composition and age level characteristics such as found in the 

FRI. 

3.5.2 Land Cover Map of Canada 

The Land Cover Map of Canada was developed by Natural Resources Canada 

and the Canada Centre for Remote Sensing (Natural Resources Canada 2004). It is 

based on satellite imagery obtained in 1995 by the Advanced Very High Resolution 

Radiometer (A VHRR). Its pixels, which have a 1 km spatial resolution, are classified 

into 31 general classes; 12 forest; 3 shrub land; 7 tundra/grasslands; 7 developing land 

types and 2 water classes. Forest types include 6 coniferous forests with varying 

densities and northern/southern locations, one broadleaf forest, 3 mixed wood forests, 

and 2 types ofburns. The role ofthe Land Cover Map of Canada is to provide 

information for international environmental conventions on climate, desertification and 

biodiversity. With its large spatial resolution and general classes, the Land Cover Map 

of Canada is not capable of monitoring vegetation at a more detailed level such as found 

in the Ontario Land Cover Database (OLCD). 
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3.5.3 Ontario Land Cover Database (OLCD) 

The OLCD is the most detailed provincial wide land classification in Ontario. It 

is produced by the OMNR using 30m spatial resolution data obtained by Landsat-5 and 

7. The first edition was developed in 1995. The second and most recent edition, known 

as the 2000 Edition, consists of27 broad land cover types across Ontario {Table 1). It 

was completed in 2004 and uses data obtained in 1999 and 2000. This thesis uses cover 

types similar to the OLCD. See Appendix I for a detailed description of the OLCD 

classes that are similar to those used in this thesis. 



15 

Table 1. Hierarchy of the OLCD 2nd edition land cover classes. 

Category Category Category Class Class 
Level 1 Level2 Level3 Name Number 

Deep or Clear Water - Deep or Clear 1 
Water Shallow or Water- Shallow or 

Sedimented Sedimented 2 

Settlement/ Settlement/Infrastructure 3 Non- Infrastructure 
Vegetated Sand/Gravel Sand/Gravel/Mine 4 Land Tailings 

Bedrock Bedrock 5 
Mudflats Mudflats 6 

Depletion Cuts Cuts 7 
Bums Bums 8 
Regenerating Regenerating Depletion 9 Depletion 
Sparse Sparse Fa rest 10 

Forest Deciduous Forest 11 
Dense Mixed Fa rest 12 

Coniferous Forest 13 
Intertidal Marsh 15 

Marsh Supertidal Marsh 16 
Vegetated Inland Marsh 17 

Swamp Deciduous Swamp 18 

Wetland Coniferous Swamp 19 
Fen Open Fen 20 

Treed Fen 21 
Bog Open Bog 22 

Treed Bog 23 
Tundra Tundra Tundra Heath 24 

Agriculture Pasture Pasture 25 
Cropland Cropland 27 

Other (Undefined) 28 
Other Other Other Cloud and Shadow 29 

3.5.4 Research and Development 

Canadian forest measuring and monitoring research with hyperspectral satellite 

sensors is being carried out through the Earth Observation for Sustainable Development 

afForests (EOSD) initiative. EOSD programs are researching into the development 

large area land cover maps, including the development of change monitoring 
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techniques, estimating biomass, and automating processes (Natural Resources Canada 

2004). The two EOSD branches that research Hyperspectral satellite sensors are the 

evaluation and validation ofE0-1 for sustainable development (EVEOSD) branch, and 

the evaluation and validation of CHRIS for national forests (EVC) branch. Research 

areas include the Victoria and Clayoquot Sound British Columbia, Hilton Alberta, 

Northern Manitoba, Central Saskatchewan, and Algoma Ontario (Natural Resources 

Canada 2003). 

Canadian projects exploring the use of new potential image classifiers, such as 

Definiens' eCognition object-oriented image classifier, are limited. One project that 

does exist involves the Canadian Space Agency, Ducks Unlimited, Environment 

Canada and several other organizations working on a project using eCognition in the 

development of a Canadian National Wetland Inventory (PCI Geomatic 2003). 

3.6 SAMPLING 

The most ideal method of performing error estimation when classifying an 

image is to use ground reference test pixels through the use of ground truth plots. 

Ground truth plots can be obtained either in the field using a GPS, or from remotely 

sensed imagery that has a higher spatial resolution than the image being classified, as 

such derived from aerial photography. In addition, the reliability of a ground truth plot 

can vary depending on its size compared to the spatial resolution of the classified 

Image. 

Congalton and Kass (1999) describe the 3x3 pixel as the most common choice 

for sample unit size, and acknowledge how this method takes a one pixel image 
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rectification error into consideration. Image rectification error, also known as 

geometric error, refers to distortion between an image and the GIS data it is associated 

with. They also recommend a minimum sample size of 50 samples per class as a 

general guideline for each land cover category, and a minimum of75-100 samples per 

class for areas greater than 404,685 ha (one million acres) or for more than 12 classes. 

Stehman 2001, indicated that a land classification sample size of 1 00 per class ensures 

accuracy assessments with a standard error of 0.5 or less. Others such as Goodchild et 

a/. 1994, recommend a minimum of 30 to 50 samples per class. 

3. 7 IMAGE CLASSIFIERS 

The most common approach to extracting thematic information from remotely 

sensed imagery, as used for land cover classifications, is through statistical pattern 

recognition (Jensen 2005). This automated approach can categorize pixels based on 

characteristics such as spectral value, image texture, spatial size, and spatial relationship 

to surrounding pixels. This thesis uses two main types of statistical pattern 

recognitions. The first is the traditional method, also known as per-pixel analysis, 

where each individual pixel is classified based on its individual spectral value. The 

second is a newer object-oriented approach, in which pixels are first grouped 

(segmented) into objects, then classified based on pattern, texture, object size and 

spectral value and relationship to surrounding objects and pixels (Jensen 2005). 

3. 7.1 Traditional (Pixel-based) Classification 

Traditional (pixel-based) image classifiers, are well established and commonly 

utilized methods in land cover mapping. These classifiers class each individual pixel 



18 

separately. Two of the most universal traditional classifier algorithms are known as 

supervised and unsupervised classification. Unsupervised classification is generally 

used when ground reference data is not available and land cover types are not well 

defined or known. It groups pixels based on spectral characteristics using unique 

statistical clustering. Supervised classification is generally used when ground reference 

data is available and land cover types are clearly defined. This thesis takes a 

supervised classification approach for its traditional classifier. 

With the supervised classification algorithm, the analyst uses training sites, or 

pixels that intersect ground reference data grouped into homogeneous land cover types, 

to provide data for the algorithm. The algorithm uses spectral properties of the training 

pixels to calculate multivariate statistics such as mean, standard deviation, covariance 

matrices and correlation matrices. Based on the multivariate statistics, each individual 

pixel is classified into a cover type. 

The supervised classification algorithm can use either parametric or non-

parametric decision rules. Parametric methods assume the remotely sensed data is 

normally distributed, where as non-parametric does not (Jensen 2005). This thesis used 

the Gaussian Maximum Likelihood Classifier parametric rule, one of the most widely 

used supervised classification algorithms. It utilizes the mean vector and a covariance 

matrix to create statistical probabilities, assigning each unknown pixel to a class based 

on highest probability. Other decision rules such as the non-parametric Parallelepiped 

and the parametric Minimum Distance are disadvantaged comparatively because they 

can leave pixels that lie outside the decision region unclassified, where as Maximum 

Likelihood does not (Jensen 2005). 
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Although traditional classification methods are known to be effective methods in 

extracting land-cover data (Loveland et al. 1999; Huang, 2002), there are, notable 

limitations. These limitations include the inability to use characteristics such as texture, 

scale, size, relation to other classes, and shape of surrounding pixels into the 

classification algorithm. As a result of these limitations, the company Definiens with 

its' eCognition software, has developed a new rule based object-oriented image 

classifier (Jensen 2005). 

3. 7.2 Object-Oriented Classification 

Definiens' eCognition is a relatively new object-oriented image classifier that 

takes a rule-based approach to image classification, aimed at solving some of the 

challenges per-pixel classifiers have encountered. Object-oriented classification 

essentially allows the analyst to use spectral and spatial information into the 

classification, an approach to image classification not yet available with traditional 

pixel-based classifiers (Jensen 2005). 

There are two primary steps to object-oriented classification. The first is image 

segmentation and the second classification. Segmentation groups, or delineates, 

connected pixels into meaningful homogeneous objects (Definiens 2006). These 

homogeneous objects are based on user defined characteristics such as scale, color, 

shape, smoothness and compactness. A homogeneous object for example, may consist 

of a body of water, or a conifer stand surrounded by deciduous forest. A 

segmentations' scale parameter determines the average image object size. Color and 

shape work together when setting segmentation parameters. An increase in color 

criterion, which sets an object's minimum spectral standard deviation range, will 
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decrease the influence of the shape of an object decreases (Definiens 2006). 

Smoothness and compactness parameters work together similarly. Segmentations with 

high compactness values create square like objects, where as segmentations with high 

smoothness value create objects less square like with smoother segmented boundaries. 

Figure 6 for example, shows a segmentation with a scale parameter of0.8, with 

composition of homogeneity criterion of 0.9 color, 0.1 shape, 0.0 compactness and 1.0 

smoothness. Segments (the blue lines) delineate image objects which are then classified 

using a fuzzy logic based supervised nearest neighbor classifier. In this example, color 

and smoothness have the most influence in the segmentation. If shape and compactness 

had higher values, the segments would appear more square in shape. 
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Figure 6. Example segmentation user interface (left) with segmented image (right). 

The second step to object-oriented image classification, which occurs after 

segmentation, is classification. Definiens' eCogntion uses a nearest neighbor classifier 

algorithm. Nearest neighbor classifiers compute the euclidean distance from an 

unknown pixel its neighbour training sight pixels (Jensen 2005). The unknown pixel is 
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assigned to the category with the nearest training sight pixel. This type of classifier can 

yield useful results if training data are well separated in n-dimensional space, but yield 

poor results if not well separated (Jensen 2005). 

In addition to the nearest neighbor classifier, rules are placed on image objects 

(Definiens 2006). Although this rule based system is the key to the success of an image 

object classification, it has a steep learning curve, even for advanced remote sensing 

analysts. These rules are based on object levels, object hierarchy as well as object 

features, and are used to assist the classifier into a more meaningful classification. An 

image object level (Figure 7) is the collective of image objects formed by a single 

segmentation. Once classified, image objects can be merged by class, andre-segmented 

at a new lower level. Image object hierarchy refers to every image object of a lower 

level being linked to image objects of its super-level (Definiens 2006). For example, 

figure 8a shows the class hierarchy for a project showing 3 levels. The first level is the 

pixel-level and is shown in figure 8b. The next level is a broad level used to classify 3 

super-objects (cut, forest, water). It was segmented based on the pixel level (Figure 8c), 

then classified. Once classified, the segments were merged together by class (Figure 

8d). Figure 8e shows a new lower level created by segmenting within the super-objects. 

This is where image object hierarchy comes into play. At this level, cut and water 

classes exist within super-objects cut(super) and water(super). Conifer, deciduous and 

mixedwood are sub-objects which exist within super-object class forest(super). 

Although samples are no longer need to classify water and cut segments, they are used 

to further classify forest(super) into conifer, deciduous and mixedwood. 
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Figure 8. Example eCognition classification process. 

Membership functions also play a key role object-oriented image classification. 

These functions are rules applied to object features (Definiens 2006). For example, in 

the boreal forest, clearcuts can look spectrally similar to and get misclassified with open 

bogs. To avoid misclassi:tying a bog as a clearcut, exiting datasets such as wetlands 

extracted from aFRIcan be used to ensure that an object in a clearcut class does not 
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exist within the FRI's wetland boundary. To avoid a clearcut object from being 

misclassified into a bog, a 'relative border to' class related membership function can be 

applied to objects classified as bogs. If the relative border of bogs to cuts is set less 

than 90%, then the object remains a bog, if it is equal to or over 90% then it is not a 

bog. As a final example, a membership function can be used to enforce spectral 

thresholds for particular bands. For example, a rule can be made to ensure that a 

mixedwood class is only composed of objects with a mean NIR band ranging between 

0.3 and 0.4 in brightness value. 

Studies using object-oriented classifiers have shown improve results over single 

pixel classifiers. Lobo (1997) demonstrated a 22.5% improvement when using object-

oriented over pixel-based classification for land cover analysis. Whiteside and Ahmad 

(2005), found a 9% improvement in overall accuracy when using object-oriented and 

per-pixel classifiers with medium resolution ASTER imagery with 10 land-cover 

classes in Australia. Oruc et al. 2004, found a 14% improvement when using object-

oriented over per-pixel classifiers. Their study used Landsat ETM+ imagery with 7 

land cover classes. 

3.8 IMAGE REDUCTION METHODS 

There are several disadvantages in applying traditional image classification 

methods, such as the supervised maximum likelihood classifier, to hyperspectral data. 

First, the increase in the number of bands vastly increases the complexity of an 

algorithm (Lillesand et al. 2004). Secondly, the maximum likelihood classifier 

optimally requires 10 to 100 times the number of training pixels compared to the 
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number of bands (Lillesand et al. 1994). These disadvantages have led to the 

development of image reduction methods. This thesis covers two of these methods, 

known as principal component analysis and discriminant function analysis. 

3.8.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a widely accepted transformation 

technique used to reduce the dimensionality of original multispectral and hyperspectral 

image datasets (Jensen 2005). It compresses an image into fewer bands, each 

representing uncorrelated linear combinations that are easier to interpret and contain 

most ofthe information in the original dataset. Components are capable of non-

correlation by creating new bands with rotated x and y axes that define the greatest 

variability in the data. The amount of variance in the original images accounted for by 

each component is represented by the eigenvalue. The percent variance explained by 

each PC band can be computed by multiplying the eigenvalues by 100 and dividing the 

sum of the eigenvalues for all PC's. The cumulative percent variance represents the 

amount of variance explained by several PC together. The first PC band always 

represents the largest percentage of variance in an image, followed by succeeding PC's 

in a decreasing percentage (Jensen 2005). 

3.8.2 Discriminant Function Analysis 

Forward stepwise discriminant function analysis is used to decrease the number 

of independent variables used for discrimination of groups. For the purpose of remote 

sensing, independent variables are the image bands, in which each bands' spectral data 

are used for discrimination. DF A creates a discriminant function which is based on 
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linear combinations of the independent variables that best separate groups (species or 

taxonomic classes). 

Clark et al. (2005), achieved an 88% overall image classification accuracy when 

using DF A with a maximum likelihood classifier, for identifying individual tree crown 

classification in tropical rain forest conditions. Gong et al. (2000) used DF A to 

distinguish canopy hyperspectral in situ data between 6 conifer species. Using DF A on 

Hyperion data, Galvao et al. (2005), achieved an 87.5% overall accuracy in classifying 

five Brazilian sugarcane species. Aardt (2000) used DF A to determine spectral 

separability among six tree species using hyperspectral in situ tree crown data. 

3.9 ACCURACY ASSESSMENT 

There are several discrete multivariate techniques used to measure the accuracy 

of a classified remote sensing dataset. The fundamentals of these techniques are based 

on an error matrix that measures error within the classification. Some of these 

techniques include the overall accuracy, producer's accuracy, user's accuracy and 

Kappa statistics. 

3.9.1 Error Matrix 

The error matrix is a standard method of measuring errors with classified 

remotely sensed datasets. It shows the number of samples from a particular class that 

get misclassified into other classes. This is done through the use of a spatial 

relationship between pixels or polygons and ground reference data to find errors within 

a dataset. In the error matrix, columns represent reference (ground truth) data and rows 

represent classified pixels. Table 2 shows a sample error matrix used in Jensen (2005). 



26 

Table 2. Sample error matrix derived from Landsat data of Charleston, SC (Jensen 
2005). 

Classified Reference Data 
Data Residential Commercial Wetland Forest Water Total 

Residential 70 5 0 13 0 88 
Commercial 3 55 0 0 0 58 

Wetland 0 0 99 0 0 99 

Forest 0 0 4 37 0 41 

Water 0 0 0 0 121 121 

Total 73 60 103 50 121 407 

Overall Accurac_y 

Overall accuracy measures the image classification accuracy as a whole. It is 

computed by totaling the number of correctly classified samples for all classes and 

dividing by the total number of samples (Jensen 2005). 

Example from Table 2: 

0 11 A 
_ Total correct pixels 382 

93 860/ 
vera ccurcy - = -- = . . ;ro 

Total number of pixels 407 

3.9.3 Producer's Accuracy 

Producer's accuracy measures the classification accuracy on each individual 

class (Jensen 2005). It indicates the probability of a reference pixel being correctly 

classified. Producer's accuracy is derived by dividing the total number of correct pixels 

in a class by the total number of pixels in that class (column total). It is also known as a 

measure of omission (1 00%- producer's accuracy). 

Example from table 2. 

Total number correct pixels in a class Producer's Accuracy = ________ _____::____ ____ _ 
Total pixels in that class 
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Residential= 70/73 = 96% (4% omission error) 
Commercial= 55/60 = 92% (8% omission error) 
Wetland= 99/103 = 96% (4% omission (~rror) 
Forest= 37/50 = 74% (26% omission error) 
Water= 1211121 = 100% (0% omission error) 

User's accuracy 

User's accuracy measures the classification on individual classes as well. It 

measures the reliability of a classified pixel actually being that class (Jensen 2005). 

User's accuracy is derived by dividing the total number of correct pixels by the total 

number of pixels classified into that class (row total). It is also known as a measure of 

commission (1 00% -user's accuracy). 

Example from table 2. 

Total number correct pixel in a class User's Accuracy= _______ ___::.__ ___ _ 
Row total 

Residential= 70/88 = 80% (20% omission error) 
Commercial= 55/58 = 95% (5% omission error) 
Wetland= 99/99 = 100% (0% omission (~rror) 
Forest= 37/41 = 74% (10% omission error) 
Water= 121/121 = 100% (0% omission error) 

Kappa Statistics 

The Kappa coefficient of agreement, denoted by Khat or K, is a measure of 

agreement or accuracy between the classified image and reference data due to chance 

(Jensen 2005). Values ofK >80% represent a strong relationship between the classified 

image and the reference data. Value of K < 40% represent a poor relationship. Kappa 

may be calculated as follows: 
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Where N is the total number of observations, xii is the number of observations in row i 

and column i, xi+ and x+i are the margin totals for row i and column i respectively, and 

k is the number of rows (classes) in the matrix. 

Example from table 2: 

K . . = N(xu)-(xi+ xx+i) = 407(70)-(88x73) = 75 .18% 
Reszdentza/ N(x;J-(xi+ xx+J 407(88)-(88x73) 

i-1 

k LX;; =(70+55+99+37+121)=382 
i=l 

k 

~)xi+ x x+J = (88x 73) + (58x 60) + (99x 103) + (41x 50)+ (121 x 121) = 36,792 
i=l 

3.10 FUTURE SENSORS 

Presently, the low cost and large image size of Landsat TM multispectral 

imagery makes it a practical sensor for large-area land classifications. As compared to 

Landsat, the low availability, small image size and high cost ofhyperspectral satellite 

imagery makes hyperspectral sensors, such as Hyperion, impractical for large-area land 

classification. For example, it would take approximately 25 Hyperion scenes and 

$25,000- $68,000 to cover an equivalent area of one Landsat scene. In addition, 

Hyperion' s 16-day orbit cycle, acquiring leaf-on mid summer imagery of a forest the 
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size of several Landsat scenes, could take several years with Hyperion due to the 

possibility of cloud cover (USGS 2005). 

In the future, however, hyperspectral imagery is expected to play a significant 

role in the next generation of Earth observing satellite sensors (Stuffler 2004). For 

example, a German team is proposing the Environmental Monitoring and Analysis 

Program (EnMap) sensor, as part of the next German satellite mission. The EnMap 

hyperspectral sensor, which is scheduled for launch in 2009, has a 30m spatial 

resolution, 200 continuous spectral bands, a 30km width, and a maximum swath length 

of 1 OOOkm (Stuffler 2004). In Canada, the Canadian Space Agency (CSA) is preparing 

for the launch of its own hyperspectral earth observation satellite mission (CSA 2003). 

The CSA is planning to launch the hyperspectral satellite sensor known as 

Hyperspectral Earth and Resource Observer (HERO) within the next ten years, as part 

of its SmallSAT program (Boyce 2004). As more hyperspectral satellites become 

available, and the size of hyperspectral images increase, and the price of hyperspectral 

imagery decreases, hyperspectral imagery could then play a financially feasible 

alternative role to conventional aerial photography in extracting forest inventory data. 

The partial failure of Landsat 7 ETM+ in May 31 2003, provides a concern for 

the future of the Landsat program, and it use within this study. The problem with 

Landsat 7 lies in the failure of the Scan Line Corrector (SLC), which compensated for 

satellite movement, and is not turned off. Although Landsat 7 is still acquiring imagery 

with the same radiometric and geometric quality, there are lines containing no data. As 

a result, Landsat TM 4 and 5 have been reactivated and are currently producing 

imagery. They have, however, exceeded their life expectancy and it is unknown when 
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they will no longer produce imagery. Fortunately, the USGS and NASA are supporting 

the Landsat Data Continuity Mission (LDCM), in which a new Landsat sensor called 

the Operational Land Imager (OLI) will be produced. The OLI is scheduled for launch 

in 2009 (NASA 2007). 

With the prospect of future commercial hyperspectral satellites capable of 

capturing larger images at a lower cost and producing improved accuracies, there is a 

potential for hyperspectral imagery to become a feasible alternative for large-area land 

classifications. Research, however, must first demonstrate the potential improvements 

hyperspectral imagery could have over multispectral imagery. There is therefore a 

need to better understand the potential use and benefits of hyperspectral imagery in 

large-area land classification applications. Presently, this are no research studies using 

satellite based hyperspectral imagery with focus taxonomic groups and species found in 

the upland areas ofthe boreal forest of northwestern Ontario. 



31 

METHODOLOGY 

4.1 STUDY AREA 

The study area is located in the south central section of the Dog River-Matawin 

Forest Management Unit, 150 km west of Thunder Bay, Ontario (Figure 9). The size of 

the study area is approximately 7.5 by 42 km, and is encompassed within the Boreal 

Forest Region (Rowe 1972). Common tree species include black spruce Picea mariana 

(Mill.) B.S.P., jackpine Pinus banksiana, white birch Betula papyrifera, trembling 

aspen Populus tremuloides and balsam fir Abies balsamea. Common wetlands consist 

of marsh, fen and bog. Criteria used in choosing the study area was based on the 

location of an existing Hyperion image, cloud cover in remotely sensed imagery, road 

access, and existing wetland ground truth plots. 

Figure 9. Geographic location of the Dog River Matawin Forest Management Unit and 
the study area used within. 
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The study area was subset into two overlapping areas (Figure 1 0). Study area 1 

is 7.5 by 42 km and is the larger of the two. Its northern most limit extends to a gravel 

pit. This pit was used to collect in situ spectral reflectance measurements for 

atmospheric correction, and its southern limit extends to the southern most section study 

area 2. Study area 2 is 7.5 by 30km and was used for collecting ground truth plots and 

analysis. 
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Figure 10. Hyperion image showing boundaries ofthe two study areas used. 
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4.2 RADIOMETRIC CORRECTION 

4.2.1 Hyperion Abnormal Pixel Correction 

Hyperion images are processed from level 0 (raw) to level1a before 

distribution. Level 1a processing includes radiometric correction, smear correction, 

echo correction, background removal, bad pixel repair, and image quality checking 

(Han 2002). After visually inspecting individual bands, however, it became apparent 

that abnormal pixels (dark vertical stripes) are still present. 

Abnormal pixels in Hyperion level 1 a mainly appear in columns as continuous 

and intermittent dark stripes (Han 2002). There are four classes of abnormal pixels 

(Table 3). Class 1 abnormal pixels occur continuously throughout an entire column and 

consistently have atypical DN (digital number) values such -32768 or 0 (Figure 11). 

Class 2 abnormal pixels occur continuously throughout a column and have pixels with 

DN values lower than their immediate left and right neighbors (Figure 11 ). Class 3 

abnormal pixels occur intermittently throughout a column and have atypical DN values, 

appearing as dark dots. Class 4 abnormal pixels, the most common, occur intermittently 

throughout a column, are not constant in value, and have DN values lower than their 

immediate left and right neighbors (Han 2002) (Figure 12). The difficulty in visually 

detecting, as well as the intermittent nature of class 3 and 4 abnormal pixels makes the 

use of standard remote sensing software functions that replace entire bad columns with 

the average of neighboring pixel values an impractical and incorrect solution to fixing 

Hyperion's abnormal pixels. These abnormal pixels, however, must be corrected prior 

to further analysis (Han 2002). 
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Table 3. Abnormal pixel classes in level la Hyperion imagery. 
Class Type 

Class 1 
Class 2 
Class 3 
Class 4 

Description 

Continuous with atypical DN values 
Continuous with constant DN values 
Intermittent with atypical DN values 
Intermittent with lower DN values 

Figure 11. Band 94 (left) showing class 1 abnormal pixels and band 11 (right) showing 
class 2 abnormal pixels. 

Figure 12. Band 57 showing class 4 abnormal pixels. 
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There are multiple possible causes for the occurrence of abnormal pixels in 

Hyperion imagery. Hyperion's pushbroom imager uses separate detectors for each 

column within an image (Han 2002). Dark vertical strips could occur from improper 

detector calibration. Atypical abnormal pixels could be created during the SWIR smear 

and echo correction, in which the correction algorithm does not account for negative 

numbers. This could have been corrected by setting negative values to zero after the 

smear correction and before the echo correction (Han 2002). 

Abnormal pixels can be corrected by replacing their DN values with the average 

DN value of their immediate left and right neighbors (Han 2002). This method can be 

used because all four classes commonly run in vertical strips (in columns) and have DN 

values less than their left and right neighbors. These similarities can be used to create 

an automated correction process using customized computer programming software. 

Han (2002), created an Interactive Data Language (IDL) program to automate the 

abnormal pixel correction process, using a three-dimensional array. In his program, 

each pixel's DN value was compared to its left and right neighbor, and labeled as 

abnormal if its value is less than both neighbors. The program then counts the total 

number of abnormal pixels and total number pixels in each column. If the number of 

abnormal pixels in a column is greater than a threshold of 50% of the total number of 

pixels in a column, and if the number of consecutive abnormal pixels exceeds a user-

defined-threshold-value (longest vertical ground feature, usually five pixels), then the 

abnormal pixel DN values are replaced with the average of their immediate left and 

right neighbors (Han 2002). 
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I used Visual Basic programming with a series of scripts in collaboration with 

ERDAS Imagine, ESRI's ArcObjects and Microsoft Excel Objects to correct abnormal 

pixels based on the parameters described in Han (2002). ERDAS modeler was first 

used to separate the Hyperion image into individual bands. See Appendix II to view an 

example model. Each band was named after the band number. For example, the first 

band was name 'band I' and the second band was named 'band2'. Each band name 

thereafter was utilized in a dynamic naming system throughout the series of scripts to 

follow. Using a dynamic naming system through scripting avoided user input errors 

which could have easily occurred with the large number of bands which were required 

to be processed. 

The separated images were then converted from raster to ASCII format through 

customized script in ArcMap using VBA with ArcObjects (Chang 2005). See 

Appendix III to view the script's code. The user adds all images into ArcMap (See 

Appendix IV for illustration), and then runs the script. The script uses a folder browser 

dialog box to allow the user to pick a folder to save the ASCII files (ESRI Forums 

2006). It then loops through each image layer and exports an ASCII file for each 

image, saving each file with same name as its image layer. 

ASCII files, representing individual bands, were dynamically imported into 

Excel format using a customized script run in Excel. See Appendix IV for illustration 

and Appendix V for programming code. This script opens a file browser dialog box 

which allows the user to select an ASCII file to import (Anonymous 2006, Peason 

2005). A browse folder dialog box is then used to select an output folder in which the 

new Excel document is to be saved. The script then imports the ASCII file using a 
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space delimiter and deletes the first six rows that contain header information. The name 

of the new Excel document is then saved based on the name of the ASCII file 

(Anonymous 2006, Peason 2005). 

The correction of abnormal pixels was accomplished through a script written 

with VBA using Excel Objects (Peason 2005). See Appendix VI to view the script's 

code. The script loops through each column and counts the number of pixels with DN 

values less than their immediate left and right neighbors. If the total number of 

abnormal pixels in a column exceeds a threshold of fifty percent of the total number of 

pixels in the column, then the program loops through that column again. During the 

column's second pass, the program counts the number of consecutive abnormal pixels. 

If the number of consecutive abnormal pixels exceeds a threshold of five pixels, the DN 

value of those abnormal pixels are replaced with the average of its immediate left and 

right neighbor DN values. The script then saves the Excel document. See Appendix IV 

for an illustration of a correct image in Excel. 

Corrected abnormal pixel Excel documents were exported back into ASCII 

format, through a script written with VBA using Excel Objects (Anonymous 2006, 

Peason 2005). See Appendix VII to view the script's code. The script then uses a space 

delimiter to separate Excel cell values in the ASCII file. The new ASCII file is 

dynamically saved using the name of the Excel document. See Appendix VIII to view 

the script's code. Header information was then copied from the original ASCII 

document when exported from image format to ASCII, and pasted into the new ASCII 

file with corrected abnormal pixels. 
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ASCII files with the corrected abnormal pixels were converted back to image 

format using ESRI's ASCII to Raster tool. ERDAS modeler was used to combine each 

corrected band back into a single image composed of 242 bands. The model utilized the 

Stacklayers function to combine the images, and utilized the data type option to bring 

the image data type to its original signed 16-bit format. See Appendix IX for an 

example model. Once abnormal pixel were no longer present the image was ready to be 

converted from raw DN values to radiance. 

4.2.2 Convert to Radiance 

Absolute spectral radiance, which is the most precise radiometric measurement 

in remote sensing, was used as a common scale for Landsat and Hyperion pixel values 

prior to atmospheric correction. Spectral radiance units used are measured in watts per 

square meter per steradian per micrometer [W/(m2 • sr ·,urn)]. Hyperion levell b raw 

DN values were converted to absolute radiance using parameters described in Barry 

(2001). Landsat TMS raw DN values (Level 0 (LO)) were converted to spectral 

radiance (Level 1 (Ll )) using the radiometric calibration procedure described in 

Chander and Markham (2003). 

Converting Hyperion DN values to radiance requires dividing the VNIR bands 

(1-70) by 40 and the SWIR bands (71-242) by 80. The procedure used included the 

separation of the VNIR from the SWIR bands, and the use of ERDAS modeler to divide 

the VNIR bands by 40 and SWIR bands by 80. Appendix X shows the model used in 

this processing step. The image was converted from signed 16-bit to 32-bit floating 

single data during processing. 
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Converting Landsat LO DN values (Qcal) to radiance (LA.) requires knowledge of 

original calibration rescaling factors used on a scene by scene basis. This information, 

such as the gain (Grescale) and biases (Brescale), which are band-specific rescaling factors, 

can be found in the header files provided with the imagery. This is due to changes in 

the instrument because of aging (Chander and Markham 2003). The equation used in 

this conversion is LA. = Grescale X Qcal + Brescale, where: 

LA.= spectral radiance at the sensor's aperture in W/(m2 • sr ·,urn) 
Grescale = (LMAXA.- LMINA./ Qcal max) X Qcal + LMINA. 
Qcal =quantized calibrated pixel value in DNs 
Qcalmin =maximum quantized calibrated pixel value (DN = 0) 
Qcalmax =maximum quantized calibrated pixel value (DN = 255) 
LMINA. =spectral radiance that is scaled to Qcalmin in W/(m2 

• sr ·,urn) 
LMAXA. = spectal radiance that is scaled to Qcalmax in W/(m2 • sr ·,urn) 

Calculations used on each band is summarized in table 4. Once converted to radiance, 

the images are ready for atmospheric correction. See Appendix XI to view the model 

used to convert raw level 0 Landsat DN values to absolute radiance. 

Table 4. Equations used to convert Landsat TM5 bands from LO DN values to Ll 
spectral radiance. 

Band Equation 

1 0.762824 * Qcal + (-1.52) 
2 1.442510 * Qcal + (-2.84) 
3 1.039880 * Qcal + (-1.17) 
4 0.872558 * Qcal + (-1.51) 
5 0.119882 * Qcal + (-0.37) 
7 0.065294 * Qcal + ( -0.15) 

4.3 ATMOPHERIC CORRECTION 

Empirical Line Calibration (ELC) within ERDAS's Spectral Analysis 

Workstation was used to atmospherically correct the Landsat and Hyperion images, 
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which were previously radiometrically corrected. In situ data was collected on July 

22/2004 (2-3pm) with an Analytical Spectral Devices (ASD) FieldSpec Pro 

spectroradiometer, which has a 0.35-2.50 ,urn spectral range, a 0.001 ,urn band width, 

and a 10 nm spatial resolution. Objects used for in situ data collection include a gravel 

pit located in the northern most section of study area 1, as well as a deep water sample 

from a lake within the study area. The in situ data was collected by Jason Freeburn. 

4.4 BAD BAND REMOVAL 

In this thesis, the term bad band with Hyperion imagery refers to bands that are 

non-calibrated, have extreme values due to water absorption, spectral overlap, or poor 

image quality. Hyperion imagery is collected with 242 bands, of which 198 are 

calibrated. See Appendix XII for average wavelength value for each band for the 

original242 band image. Non-calibrated bands include bands 1-7 (355-426nm), 58-76 

(852-1058nm) and 225-242 (2405-1577nm). These bands were removed before 

classification because their Level 0 DN values were equal to zero and do not represent 

surface reflectance values. Band 77 (912nm) was removed because it has spectral 

overlap with band 56 (915nm). Bands 8 (427nm) and 221-224 (2365-2395nm) were 

removed because visual inspection showed poor image quality. Water absorption bands 

120-143 (1346-1578nm) and 165-186 (1800-2012nm) removed as well. Table 5 

provides a summary ofbad bands and the reason for each bands removal. In total 87 

bands were considered bad bands and removed prior to classification, resulting in an 

image with 155 useful bands. Figure 13 shows a graph of a deciduous tree sample with 

all242 bands depicting the bad bands. The 155 band Hyperion image was used for 



41 

further processing and interpretation to follow. See Appendix XIII for wavelength 

information on each band for the 155 band Hyperion image. 

Table 5. Summary table showing which bands were removed prior to classification and 
the reason why they were removed. 

Band Reason for Band Removal 

1-7, 58-76, 225-242 
8, 221-224 

Not calibrated 
Poor image quality 
Spectral overlap 

~ 
0 
~ 
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Figure 13. Illustrates reflectance and location of bad bands using a deciduous tree 
sample with all242 bands. 

4.5 GEOMETRIC CORRECTION 

The 2004 Hyperion image was geometrically corrected to a 2002 Landsat TM 

image with a 25m spatial resolution, which was previously geometrically corrected 

using an Ontario Base Map (OBM) drainage layer. Image to image rectification was 
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thereafter used to geometrically correct the 2004 Landsat image the geometrically 

correct Hyperion image. A RMS less than one pixel was accomplished for both 

geometric corrections. Nearest Neighbor with a 30m spatial resolution was used for re-

sampling purposes. The projected coordinate system used was North American Datum 

1983 Universal Transverse Mercator Zone 15 North. 

4.6 CLOUD REMOVAL 

Clouds and cloud shadows were removed from both images. Areas identified as 

cloud were converted to vector format and removed from the FRI. This avoided the 

collection of samples in clouded areas. This process involved creating and combining 

areas of interests around clouds in both images. DN values within areas of interested 

were changed to abnormally high brightness values using ERDAS Fill tool's max 

option. This allowed clouded areas to be easily separated from the rest of the image 

using an unsupervised classification. Once classified, clouds were recoded to a value of 

one and the rest of the image to a value of zero. ESRI's Raster to Polygon tool was 

used to convert the image to vector format and used to cut out clouds from the FRI. 

Because clouds were different in each image, clouds and cloud shadows were 

permanently removed from both images and not used in the classification analysis. 

4.7 SAMPLE DESIGN 

4.7.1 Field Sample Units 

The Dog River-Matawin forest resource inventory (FRJ) was used as a base to 

collect samples. The FRI is a set of polygons containing data such as age, forest unit 

type, and species composition. This FRI consists of 11 units for mature forest, including 
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balsam fir, white birch, mixed conifer 1, mixed conifer 2, mixed hardwood, other 

conifer, jack pine, poplar, red/white pine, spruce lowland and spruce upland. In 

addition to these units, clear cuts 5 years old or younger were found within the study 

area, and the OBM lakes layer was used to sample water. Details on units used to 

collect samples are summarized in Table 6. Once collected, samples were aggregated 

into appropriate classes for analysis. Visual comparison of imagery with the FRI 

indicated that the FRI needed to be updated to account for recent harvested areas prior 

to ground truthing. A combination of Landsat and SPOT Sm panchromatic imagery 

was used to update the FRI using ESRI's digitizing tools. 

Table 6. Sample units used for collecting field data. 

Sample 
Unit 
BFI 

BWI 

MCI 

MC2 

MHI 

OCI 

PJI 

POI 
PRW 

SPL 

SPU 

CUT 
WATER 

Description 

Balsam Fir 

White Birch 

Mixed Conifer 1 

Mixed Conifer 2 

Mixed Hardwood 

Other Conifer 

Jack Pine 

Poplar 
Red/White Pine 

Spruce Lowland 

Spruce Upland 

Clear Cut 
Lake 

Parameters 

Bf>= 60% 

Bw>= 70% 

Sb + Sw + Bf + Pj + Pr + Pw + Ce + La >= 50% AND 
Po<= 20% AND Po+ Bw <= 30% 

Sb + Sw + Bf + Pj + Pr + Pw + Ce + La >= 60%, OR 
Sb + Sw + Bf + Pj + Pr + Pw + Ce + La>= 50% AND 

WG in Sb, Sw, Pj, Bf, Ce, La, Pr, Pw, OC 

Po + Bw + OH >= 50% 
Ce +La>= 60% 

Pj >= 60% AND Po <=20% 

Po>= 70% 

Pr+ Pw>= 30% 

Ecosite in 34, 35, 36 OR Ecosite = 37 AND Sb >= 70% 
WG = Sb OR Sw, AND Sb + Sw >= 70% 

AND Po + Bw <= 20% 
Age<=5 

OBM Lakes layer 
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4.7.2 Sample Plot Design 

A systematic point sample design, developed by the Minnesota Department of 

Natural Resources (DNR) as an Arc View extension, was used to generate random 

upland ground truth plots. This extension creates a random point shapefile of 

systematically placed points within a selected polygon using user defined parameters. 

Sample points were based on forest units provided by the FRI. Parameters within the 

design required points to be located within a minimum of 60m from the edge of FRI 

boundaries, and 60m between points. Plots inaccessible due to natural objects such as 

rivers were removed. If the number of sample points within a forest unit contained in 

excess of 500 points, then number of points within that forest unit was reduced to 500, 

using Arc View's select features randomly extension. Table 7 summarizes the number 

of potential ground truth sample points available for each sample type after point 

reductions described above. 

Table 7. Summary ofthe number of potential sample plots after removal of inaccessible 
plots and plots exceeding the 500 maximum points parameter. 

Forest Unit Number of 
Type Potential Plots 

BFl 23 
BWl 137 
MCl 500 
MC2 500 
MHl 500 
OCl 12 
OHl 61 
PJl 500 
PO 407 
PR 141 
SPL 500 
SPU 160 

Clearcut 200 
Water 100 
Total 3741 
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4. 7.3 Sample Collection 

Ground truth plots were 3 by 3 pixels (90x90m) in size (Figure 14.). Sample plot 

spatial locations were recorded using a Garmin Map 76 GPS in the center of each plot. 

The goal for the minimum number of samples collected per sample type was 30-50. A 

sample was accepted if the forest unit was uniform within a 45m radius of the center of 

each plot. A sample was rejected if the forest unit varied within a plot. The focus of 

each plot was based on species composition that would be seen from an aerial 

perspective. Effort was made to collect points in a wide variety of stands, ages and 

species composition, while taking access and time into consideration. While ground 

truthing, sample plots were allowed to be moved up to one half pixel (15m) if it was 

necessary to meet the criteria for an acceptable plot. 

SPL SPL SPL 

SPL GPSPoillt • SPL 90m 
SPL 

SPL SPL SPL 

Figure 14. A 3x3 pixel (90x90m) homogeneous sample area ofblack spruce lowland 
with a GPS point taken in the centre. 

The OBM lakes layer was used to generate water plots based on a systematic 

point sample design. Parameters within the design required points to be located within 

a minimum of 60m from the edge of water boundaries, and 60m in distance between 

points. One hundred samples were randomly selected from this grid using an Arc View 

extension, and used in the analysis (Table 7). Water samples were not visited in the 
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field, but were visually inspected using Landsat, Hyperion and Spot panchromatic 

imagery for confirmation. 

Wetland ground truth plots were collected prior to the start of this thesis, and 

·were provided by Jason Freeburn. These sample plots were collected using a 3 by 3 cell 

plot size with a GPS coordinate taken in the center of each plot. A random sample 

design was not used for wetland plots using FRI, as used with upland plots, because the 

FRI was not designed for monitoring spatial wetland data boundaries and classes. 

Instead, the location of ground plots was determined in the field. The Terrestrial and 

Wetland Ecosites ofNorthwestern Ontario (NWST) Field Guide was used with to 

collect ecosite types. Table 8 summarizes the ecosite types found in the study area. 

Appendix XIV provides further description for each ecosite. These ecosites were 

generalized into marsh, fen and bog for the initial classification purposes, and then 

further generalized into one class (wetland) for the final accuracy assessment. This 

generalization of wetlands was done for two reasons; the first was due to the focus of 

this study being on upland habitat; and the second was to not impose upon Jason 

Freeburn's similar concurrent remote sensing study focusing on wetlands in which the 

wetland samples use in this thesis were taken from. 
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Table 8. NWST wetland ecosite's found within study area. 
Ecosite Name 

34 Treed Bog 
39 Open Bog 
40 Treed Fen 
41 Open Poor Fen 
42 Open Moderately Rich Fen 
45 Shore Fen 
46 Meadow Marsh 
47 Sheltered Marsh 
48 Exposed Marsh 

4. 7.4 Sample Aggregation 

A total of 556 upland ground truth plots were collected in the field. All upland 

classes had more than 30 samples except for BFl, PR, and OC1, which were excluded 

from further analysis. These latter three classes either had samples rejected in the field 

or did not have enough samples to start with. Although there were 50 jack pine samples 

collected, the majority had a species composition of 60-70% jack pine. With the lack of 

jack pine samples representing a species composition of 80-100% jack pine, 100 

samples were randomly selected from FRI stands with a species composition equal to or 

greater than 80% jack pine. In addition to upland plots, 1 00 water samples extracted 

from the OMB lakes layer and 140 existing wetland plots were used. Sample types 

used in further analysis include BW, MC1, MC2, MH1, OH1, PJ, PO, SPL, SPU, Cut, 

Marsh, Fen, Bog, and Water, totaling 893 samples (Table 9). After field sampling, 

samples were generalized for analysis into 11 classes consisting of water, marsh, fen, 

bog, black spruce, jack pine, mixedwood, dense deciduous, sparse deciduous, and cuts. 
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Training and testing sites were extracted. from these samples, using 50% for training and 

50% for testing. 

Table 9. Number of samples collected per class. 

Class Number of Class Number of 
Samples Samples 

Water 100 Jack Pine 150 
Marsh 27 Mixedwood 120 

Fen 33 Dense Deciduous 132 
Bog 80 Sparse Deciduous 48 

Black Spruce 125 Cut 78 

4.8 CLASSIFICATION (PIXEL-BASED) 

4.8.1 Introduction 

Two levels of classification were used in the analysis (Figure 15). Level 1 was 

used as a preliminary step and produce six general classes consisting of water, wetland, 

conifer, mixedwood, deciduous and cuts. This level was used to separate water, 

wetland, and upland, as well as create general upland classes. In level 2, pixels 

classified as conifer and deciduous from level 1, were separated and further classified 

into spruce, jack pine, dense deciduous and sparse forest. The final classified image 

consisted of 8 classes, including water, wetland, black spruce, jack pine, mixed wood, 

dense deciduous, sparse deciduous and clear cuts. 
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CLASSIFICATION CLASSIFICATION 
LEVEL 1 LEVEL2 

Water Water 
Marsh 

Fen Wetland 

Bog 
(Marsh, Fen, Bog) 

Conifer 
Black Spruce 

Jack Pine 
Mixedwood Mixed wood 

Deciduous 
Dense Deciduous 
Sparse Deciduous 

Cut Cut 
Ftgure 15. Classes used mlevel 1 and 2 supervised classifications. 

Level 1 classification was used to generate six general classes ranging from 

water to upland (Table 1 0). Although I focused on upland habitat classification, the 

presence and possible spectral similarities between water, upland and wetland classes 

cannot be ignored. Due to spectral differences, marsh, fen, and bog classes were 

initially used during the level 1 supervised classification. Once classified, their pixels 

were aggregated into one class called wetland for the accuracy assessment. 

Table 10. Classes used in first classification level. 

Class Class Name Description 

1 Water OBM lakes 

2 Wetland (Marsh) Shadow, Sheltered, Exposed 

3 Wetland (Fen) Treed, Open Poor, Open Moderately Rich, Shore 

4 Wetland (Bog) Treed, Open 

5 Conifer Sb + Pj+ Bf+ Ce+ La+ Pr+ Sw + Pw >= 80% and Age > 5 

6 Mixedwood Sb + Pj+ Bf+ Ce+ La+ Pr+ Sw + Pw < 80% and 
Po + Bw + Ah + Mh + Ms < 80% and Age > 5 

7 Deciduous Po + Bw + Ah + Mh + Ms >= 80% and Age > 5 

8 Cut Age<= 5 
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The level2 classification produced the final classes for the analysis. Using 

masking techniques, conifer was further classified into black spruce and jack pine, 

deciduous into dense and sparse forest. As well, marsh, fen, and bog were aggregated 

into a single class called wetland. This produced a final classification consisting of 8 

classes: Water, Wetland, black spruce, jack pine, mixedwood, dense deciduous, sparse 

deciduous, and cuts (Table 11). 

Table 11. Classes used in the level 2 (final) classification. 

Class Class Name Description 

1 Water OBM lakes 

2 Wetland Marsh, Fen, Bog 

3 Black Spruce (Sb) Sb + Pj+ Bf+ Ce+ La+ Pr+ Sw + Pw > 80% and 
Sb >= Pj and Age > 5 

4 Jack Pine (Pj) Sb + Pj+ Bf+ Ce+ La+ Pr+ Sw + Pw > 80% and 
Pj > S b and Age > 5 

5 Mixedwood (Mxwd) Sb + Pj+ Bf+ Ce+ La+ Pr+ Sw + Pw < 80% and 
Po + Bw + Ah + Mh + Ms < 80% and Age > 5 

6 Dense Deciduous Po + Bw + Ah + Mh + Ms >= 80%, Age > 5 and 
Canopy Closure > 50% 

7 Sparse Deciduous Po + Bw + Ah + Mh + Ms > 80%, Age > 5 and 
Canopy closure < 50% 

8 Cut Age<= 5 

4.8.2 Feature Selection (Levell) 

For the Hyperion image, a stepwise discriminant function analysis was used to 

select the best combination of bands to be used in a supervised classifier with the 

classes in Ievell. Using spectral values of samples from the eight classes, the DF A 

produced 37 possible steps (band combinations) that could be used for band selection. 

Step 9, a 9 band combination, produced the most desirable results and was therefore 

chosen for analysis. These bands include bands 7, 26, 28, 31, 40, 82, 86, 89 and 120. 
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For the Landsat image, all bands, except the thermal band, were used for band 

selection. A stepwise discriminant function analysis was not used to select Landsat 

bands because of the limited number of bands. The second reason a discriminant 

function analysis was not used on the Landsat imagery, was because initial 

classification trials, which are not reported in this thesis, showed best results with using 

the six band combination as opposed to any other combination of bands. 

4.8.3 Classifying Spruce and Pine 

The Hyperion and Landsat images were clipped to the level 1 conifer class 

defined by each image, then further classified into black spruce and jack pine. Black 

spruce was defined with a species composition of black spruce greater or equal to jack 

pine, and jack pine was defined with a species composition of jack pine greater than 

black spruce. Hyperion used a stepwise discriminant function analysis to select the best 

combination of bands to classify spruce and pine with a supervised classifier. Step 9, a 

9 band combination, produced the most desirable results and was therefore chosen for 

analysis. Bands used include bands 14, 68, 60, 13, 25, 32, 17, 138, 152. Landsat used a 

six band combination to run in a supervised classifier. Accuracy assessment was not 

documented until the pixels in the new classes were added back into a full 8 class final 

image. 

4.8.4 Classifying Dense and Sparse Deciduous 

The Hyperion and Landsat images were clipped to the level 1 deciduous class 

defined by each image, and then further classified into dense and sparse deciduous 

forest. Dense deciduous was defined as having a canopy closer >50% and sparse forest 

was defined as having a canopy closure of <50%. Hyperion used a stepwise 
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discriminant function analysis to select the best combination of bands to classify dense 

and sparse deciduous with a supervised classifier. Step 8, an eight band combination, 

produced the most desirable results and was therefore chosen for analysis. Bands used 

include bands 77, 64, 23, 130, 99, 115, 104 and 138. Landsat used a six band 

combination to run in a supervised classifier. Accuracy assessment was not 

documented until the pixels in the new classes were added back into a full 8 class final 

image. 

4.8.5 Principal Component Analysis (PCA) 

4.8.5.1 Landsat Levell 

Principal component bands 1 through 3 were chosen for the Landsat supervised 

classification. The first PCs account for 97.31% of the variance in the original six band 

dataset (Table 12). The second PC accounts for 2.33% of the remaining variance. 

Cumulatively, these first two PC account for (explain) 99.65% ofthe variability in the 

original image. The third component accounts for another 0.24%, bringing the total to 

99.89%. The remainder components cumulatively represent 0.11% of the variability in 

the original image. The first PC is most positively correlated with Landsat's NIR band 

(Table 13). The second PC is most negatively correlated with Landsat's MIR and FIR 

bands. The third PC is most negatively correlated with Landsat's green band. Visual 

inspection of the PC bands shows good image quality in PC 1 through 3, and poor 

image quality in PCs 4 through 6 (Appendix XV). 
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Table 12. Eigenvalues from TM PCA. 

PC1 PC2 PC3 PC4 PC5 PC6 Total 

Eigenvalues 0.0364 0.0009 0.0001 0.0000 0.0000 0.0000 0.0374 
%Variance 97.31 2.33 0.24 0.04 0.04 0.03 100 
Cumulative 97.31 99.65 99.89 99.94 99.97 100 

Table 13. Eigen matrix from TM PCA. 

Band PC 1 PC2 PC 3 PC4 PC 5 PC 6 

1 0.054 -0.194 -0.319 0.793 0.448 0.167 
2 0.135 -0.283 -0.676 -0.522 0.162 0.382 
3 0.090 -0.339 -0.420 0.089 -0.329 -0.764 

4 0.871 0.464 -0.099 0.072 -0.103 0.004 
5 0.415 -0.540 0.469 -0.203 0.484 -0.201 
6 0.197 -0.510 0.190 0.209 -0.648 0.448 

4.8.5.2 Landsat Level 2 

Principal components 1-3 were used for the level2 classification as well. 

Several preliminary steps were taken after level 1 classification and before the final 

level 2 accuracy assessment. First, level 1 conifer pixels masked and further classified 

into black spruce and jack pine. Secondly, classified Ievell deciduous pixels were 

masked and further classified into dense and sparse forest. Thirdly, marsh, fen and bog 

were aggregated into one wetland class. Finally, pixels classified as water, mixed wood 

and cut from level 1, were combined with wetland, black spruce, jack pine, dense 

deciduous, and sparse deciduous classified pixels from level 2 to produce a final image 

consisting of 8 classes (Table 11 ). This image was used in a final accuracy assessment. 

4.8.5.3 Hyperion Levell 

Principal component bands 1 through 4 were chosen for the Hyperion 

supervised classification. The first PC accounts for 95.94% of the variance in the 
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original dataset (Table 12). The second PC accounts for 2.87% ofthe remaining 

variance. Cumulatively, these first two PCs account for (explain) 98.81% of the 

variability in the original image. The third component accounts for another 0.36% and 

the fourth component accounts for 0.10%, bringing the total to 99.28%. The remaining 

components cwnulatively represent 0.72% ofthe variability in the original image. The 

first PC is most positive correlated with Hyperion NIR section (bands 32-48) of the 

VNIR bands (Appendix XVI). The second PC is most positively correlated with 

Hyperion SWIR bands (122-137). The third and fourth PC's are most positively 

correlated with Hyperion's red green and blue VNIR bands (1-23). Visual inspection 

of the PC bands shows good image quality in PC 1 through 4, and a poor decreasing 

image quality in the remaining PC's (Appendix XVII). 

Table 14. Eigenvalues from Hyperion PCA. 

PC1 PC2 PC3 PC4 PC5 PC6 PC I 55 Total 

Eigenvalues 0.941 0.028 0.004 0.001 0.001 0.001 0.000 0.981 
%Variance 95.94 2.87 0.36 0.10 0.09 0.07 0.00 
Cumulative 95.94 98.81 99.18 99.28 99.36 99.43 100 

4.8.5.4 Hyperion Level 2 

Principal components 1-4 were used for the level 2 classification as well. 

Several preliminary steps were taken after level 1 classification and before the final 

level 2 accuracy assessment. First, level 1 conifer pixels masked and further classified 

into black spruce and jack pine. Secondly, classified Ievell deciduous pixels were 

masked and further classified into dense and sparse forest. Thirdly, marsh, fen and bog 

were aggregated into one wetland class. Finally, pixels classified as water, mixed wood 

and cut from level 1, were combined with wetland, black spruce, jack pine, dense 



55 

deciduous, and sparse deciduous classified pixels from level 2 to produce a final image 

consisting of 8 classes (Table 1 0). This image was used in a final accuracy assessment. 

4.8.6 Final Classification 

Pixels classified as water, wetland, mixedwood and cut from level 1, were 

combined with spruce, pine, dense deciduous, and sparse classified pixels from level 2 

to produce a final image with 8 classes (Table 10 above). This process was done 

separately for Landsat and Hyperion, producing two final images with pixel values from 

1 to 8 which were used for final accuracy assessment. 

4.9 OBJECT -ORIENTED IMAGE ANALYSIS 

4.9.1 Introduction 

Definiens' eCognition vS.O software was used for the object-oriented image 

classification. In general, individual pixels were segmented into objects and classified 

based on a nearest neighbor classifier, each class having a unique set of rules. 

Segmentation was avoided in pixels where clouds are present in the image by assigning 

a global no data value to an image with pixels values of zero where clouds exist and 

values of one for pixels to be analyzed. Bands 1-6 were used to classify with Landsat 

and a discriminant function analysis was used to select bands to classify with Hyperion. 

The same training and testing samples used in the pixel-based analysis were used for the 

object-oriented analysis. 

4.9.2 Landsat 

Three object levels were used to classify the Landsat image using bands 1 to 6. 

The first level (level 3) is the coarsest, and was used to generate two classes; cut and no 
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cut. Child classes of no-cut included water, marsh, fen, bog, conifer, mixedwood and 

deciduous (Figure 16a). The only concern at this level is to not confuse between cuts 

and no-cuts. Misclassification among no-cut child classes such as conifer and 

mixedwood or deciduous and mixedwood, is not a concern because these classes are 

merged after level 3 is classified. 

Level 3 multiresolution segmentation was based on the pixel level. Parameters 

used in the segmentation were bands 2-6 having a weight of 1, a scale of 1.8, and a 

color composition of homogeneity of one (Figure 17). This segmentation created large 

image objects (Figure 16b ). Once classified (Figure 16c ), image objects classified as 

no-cut were merged into one single no-cut class (Figure 16d). Image objects classified 

as cuts were merged with objects within their own class and remained as cuts for the 

rest of the analysis. 
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Figure 16. Level3 hierarchy (a), segmentation (b), classification (c) and final cut and 
no-cut objects (d). 
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Figure 17. Segmentation interface showing parameters used in level3. 
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The second level (level2) is less coarse than the previous, and was used to 

further classify no-cuts from level 3, into general classes consisting of water, marsh, 

fen, bog, conifer, mixedwood and deciduous. See Figure 18 for class hierarchy. In this 

hierarchy, bog, fen and marsh are child classes of the parent class wetland. A child 

contains the same class properties as a parent class (wetland), and a parent class will 

hold all the objects of its children. Essentially, the wetland class was used to aggregate 

marsh, fen and bog into a single class for the final classification at the next level. 

Level2 segmentation was based on super-objects from level 3. Objects created 

in this segmentation were smaller than objects in the previous level (Figure 19). 

Parameters used in the segmentation were bands 2-6 having a weight of 1, a scale of 

0.2, and composition of homogeneity was 0.9 for color, 0.1 for shape, 0.1 for 

compactness and 0.9 for smoothness. Segmentation parameters were based on best 

initial classification using nearest neighbor classifier and inheritance rules. Cuts did not 

require the nearest neighbor classifier because its final objects were generated in the 

previous level. Feature-related and class-related rules were not used for the initial 

classification in determining segmentation parameters, but were used afterwards to 

improve the classification. Inheritance rules used are shown in table 15. An example of 

how these rules work can be described with level 3 no-cut and level 2 water. If one 

inheritance rule for level 2 water is that the existence of super-object no-cut from level 

3 is equal to 1, the only level 2 objects that can be classified as water, must be located 

or contained within the same spatial area as no-cut from level 3. 
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Figure 19. Level 2 segmentation. 

Table 15. Inheritance rules used at level2. 

Class 

Water 
Marsh 
Fen 
Bog 

Conifer 

Mixedwood 
Deciduous 

Cut 

Inheritance Rules 

Existence of super-objects level 3 no-cut = 1 
Existence of super-objects level 3 no-cut = 1 
Existence of super-objects level 3 no-cut = 1 
Existence of super-objects level 3 no-cut = 1 
Existence of super-objects level 3 no-cut= 1 
Existence of super-objects level 3 no-cut = 1 
Existence of super-objects level 3 no-cut= 1 

Existence of super-objects level 3 cut = 1 
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Once the initial Level 2 classification was generated, a set of feature-related and 

class-related rules were developed to improve the classification. Feature-related rules 

were created using membership functions. These membership functions were simply 

spectral thresholds applied to classes, and were based on the average spectral value of 

all pixels contained in an object. For example, figure 20 shows the mean spectral 

values for all mixedwood sample objects. A smaller than membership function was 

applied to band 3 with a left border of0.04 and a right border of0.05. This means that 

the probability of an object being classified as mixedwood is good if its band 3 mean 

spectral value is less than 0.04. As the mean ofband 3 increases from 0.04 to 0.05, its 

potential of being classified as mixedwood decreases. Objects with mean band 3 values 

greater than 0.05 cannot be classified as mixedwood. A smaller than membership 

function was used on conifer mean band 6, deciduous mean band 5, mixedwood mean 

band 3 and mixedwood mean band 4. Details on left and right border values used are 

shown in figure 21. A greater than membership function was used on bog mean band 4 

and fen mean bands 4, 5 and 6. Details on left and right border values used are shown 

in figure 22. 
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Figure 20. Landsat spectral graph of mixedwood samples illustration a membership 
function being applied to band 3. 
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Figure 21. Smaller than member function curve used for class-related features. 
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Figure 22. Greater than member function curve used for class-related features. 
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Membership functions were also used to created class-related rules. The 

'relative border to' membership function was applied to several classes. This function 

refers to the ratio of shared border between neighboring classes. For example, figure 23 

shows a classified image consisting of water in blue, fen in purple, and land in green. If 

the relative border of a water object to marsh is equal to 1, then that water object is 

completely surrounded by fen. If the relative border of a water object to marsh is equal 

to 0 then there is no fen touching that water object border. In this study, a relative 

border to marsh was applied to classified water objects, a relative border to water was 

applied to classified marsh objects, and a relative border deciduous was applied to 

classified fen objects. A smaller than membership function curve was used for all three 

rules. Details on left and right border values used are shown in figure 24. The 'loop 

until nothing changes' option was applied to the classifier when the relative border to 

function was used. Once classified, segments for individual classes were merged prior 

to segmenting the next level. 

Figure 23. Illustration showing the relative border of water objects to marsh. 
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Figure 24. Smaller than relative border to membership function curve applied to water, 
marsh and fen. 

The third level (level 1) contained the final classes in which the accuracy 

assessment was based on. It was used to further classify conifer into black spruce and 

jack pine, as well as deciduous into dense and sparse deciduous. It was also used to 

illustrate some addition capabilities of object-oriented image classification. The class 

hierarchy consist ofwater, wetland (aggregated marsh, fen and bog), black spruce, jack 

pine, mixedwood, dense deciduous, sparse deciduous, cuts (Figure 25). Once these 

eight classes were classified, their segments were merged by class. After the merge, 

water was further classified into 4 child classes based on size and a new class called 

island was also produced. 
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Figure 25. Class hierarchy used in Ievell. 
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The final segmentation (level 1) was based on super-objects from level 2. 

Parameters used in this segmentation were bands 2-6 having a weight of 1, a scale of 2, 

and the composition of homogeneity was 0.9 for color, 0.1 for shape, 0.1 for 

compactness and 0.9 for smoothness. Objects created in this segmentation were larger 

than the previous level (Figure 26). Segmentation parameters were based on best initial 

classification of spruce, pine, dense deciduous and sparse deciduous, using a nearest 

neighbor classifier with inheritance rules. Details on inheritance rules are shown in table 

16. 
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... 
Figure 26. Level 1 segmentation used to classify conifer into spruce and pine as well as 

deciduous into sparse and dense. 

Table 16. Inheritance rules used at level 1. 

Class 

Water 
Wetland 

Black Spruce 
Jack Pine 

Mixedwood 
Dense Deciduous 
Sparse Deciduous 

Cut 

Inheritance Rules 

Existence of super-objects level 2 water= 1 
Existence of super-objects level 2 wetland = 1 
Existence of super-objects level 2 conifer = 1 
Existence of super-objects level 2 conifer= 1 

Existence of super-objects level 2 mixedwood = 1 
Existence of super--objects level 2 deciduous = 1 
Existence of super--objects level 2 deciduous = 1 

Existence of super-objects level 2 cut = 1 

Once the initial Level 1 classification was generated, a set of feature-related and 

class-related rules were developed to classify islands and further classify water into four 

child classes based on area. These child water classes are shown in table 17. The large 

lake class was defined by applying an area threshold greater or equal to 5 square 
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kilometers (Figure 27). The medium lake class was defined by using a membership 

function constraining the area of the class between 1 and 5 square kilometers (Figure 

28). The small lake class was defined by using a membership function with the same 

curve as the medium size lake but limiting the area to between 0.1 and 1 square 

kilometers. The fourth child water class consisted of all other objects classified as 

water. A threshold was applied to this class, limiting the area to less than 0.1 square 

kilometers. Finally, a class based algorithm called 'find enclosed by class' was used to 

classify islands. This algorithm found black spruce, jack pine, dense deciduous, sparse 

deciduous, mixedwood and cut objects that were completely contained within water, 

and classified them as island. For example, figure 29 shows some spruce, pine, 

mixedwood and dense deciduous objects that were enclosed by water and reclassified 

into islands. 

Table 17. Child classes of parent class water. 

Class Name 

Lake: Large (>5 sq km) 
Lake: Medium (1-5 sq km) 
Lake: Small (0.1-1 sq km) 

Other: (<0.1 sq km) 

Entire range of 0 ... 419.913 

Figure 27. Threshold used to classify large lakes with an area greater than 5 km2
• 
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Figure 28. Membership function used to classify medium lakes between 1 and 5 km2 • 

Figure 29. Illustration showing the change of spruce, pine, mixed wood and dense 
deciduous classes enclosed by water being classified into island (yellow). 
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4.9.3 Hyperion 

Four object levels were used to classify the Hyperion image. The same bands 

selected from the pixel-based discriminant function analysis were used for object-

oriented classification. The first level (level 4) was the coarsest, and was used to 

generate two classes; cut and no-cut. Child classes of no-cut included water, marsh, 

fen, bog, conifer, mixedwood and deciduous. See figure 30a for class hierarchy. The 

only concern at this level was to not confuse between cuts and no-cuts. 

Misclassification among child classes of no-cut, such as conifer with mixed wood or 

deciduous with mixedwood, was not a concern because theses class objects were 

merged after level 4 was classified. 

Level 4 multiresolution segmentation was based on the pixel level. Parameters 

used in this segmentation were bands 7, 8, 11, 12, 13, 14, 17, 23, 25, 26, 27, 28, 31, 32, 

33,34,40,44,47,57,58,60,64,67,68, 73, 77, 79,80,82, 74,86,89,90,92,96,99, 

104, 110, 111, 113, 114, 115, 120, 130, 137, 138, 139, 152, and 154 having a weight 

equal to 1. These bands are DF A bands in which SPSS declared as variables used in 

each DF A used in the pixel-based analysis. Other parameters include a scale of 1.2 and 

a color composition of homogeneity of 1.0 (Figure 31 ). This segmentation produced 

large objects (Figure 30b). Once classified (Figure 30c), image object classified as no-

cut were merged into one single no-cut class (Figure 30d). Image objects classified as 

cuts were merged with objects within their own class and remained as cuts for the rest 

ofthe analysis. 
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Figure 30. Hyperion Level4 hierarchy (a), segmentation (b), classification (c) and final 
cut and no-cut objects (d). 
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The third level (level 3) is less coarse than the previous, and was used to further 

classify super-object no-cuts from level4, into general classes consisting of water, 

marsh, fen, bog conifer, mixedwood and deciduous. See Figure 32 for class hierarchy. 

In this hierarchy, bog, fen and marsh are child classes of the parent class wetland. 

Essentially, the wetland class was used to aggregate marsh, fen and bog into a single 

class for the final classification level to follow. 

Level 3 segmentation was based on super-objects from level 4. Objects created 

in this segmentation were smaller than in the previous level (Figure 33). Parameters 

used in the segmentation were bands 11, 33, 44, 86 having a weight equal to 1, a scale 

of0.2, and composition ofhomogeneity was 0.9 for color, 0.1 for shape, 0.1 for 

compactness and 0.9 for smoothness. Bands selected for segmentation were based 

standardized canonical DF A coefficients (from level 1 pixel-based DF A) while 

attempting to select bands dispersed across the electromagnetic spectrum. 
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Figure 32. Hyperion's level 3 class hierarchy. 

Figure 33. Hyperion's level 3 segmentation. 

Segmentation parameters were based on best initial classification using a nearest 

neighbor classifier and inheritance rules. Bands selected for the nearest neighbor 

classification were based on the level1 pixel-based DFA. Step 13, which consisted of 

bands 7, 14, 26, 28, 31, 40, 57, 82, 86, 89, 92, 114, 120 provided to optimal initial 

classification. Cuts did not require the nearest neighbor classifier because its final 

objects were generated in the previous level. Feature-related and class-related rules 
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were not used for the initial classification in determining segmentation parameters, but 

were used afterwards to improve the classification. Inheritance rules used are shown in 

table 18. 

Table 18. Inheritance rules used at level 3. 

Class 

Water 
Marsh 

Fen 
Bog 

Conifer 

Mixedwood 

Deciduous 

Cut 

Inheritance Rules 

Existence of super objects level 4 no-cut = 1 

Existence of super objects level 4 no-cut = 1 
Existence of super objects level 4 no-cut = 1 
Existence of super objects level 4 no-cut = 1 

Existence of super objects level 4 no-cut = 1 

Existence of super objects level 4 no-cut = 1 

Existence of super objects level 4 no-cut = 1 

Existence of super objects level 4 cut = 1 

Once the initial Level 3 classification was generated, a set of feature-related and 

class-related rules were developed to improve the classification. A smaller than 

membership function was used on deciduous mean band 8, deciduous mean band 13, 

mixedwood mean band 34, bog mean band 7, fen mean band 7, and marsh mean bands 

7 and 44. Details on left and right border values used are shown in figure 34. A greater 

than membership function was used on bog mean bands 34 and 44, as well as fen mean 

bands 13, 34, and 89. Details on left and right border values used are shown in figure 

35. 
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Deciduous mean band 8: left border= CUJ38, Ri:ght border= (1046 
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Figure 34. Smaller than member function curve used for class-related features. 
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Figure 35. Greater than member function curve used for class-related features. 
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Membership functions were also used to created class-related rules. A 'relative 

border to' marsh membership function was applied to classified water objects, a 

'relative border to' water was applied to classified marsh objects, and a 'relative border 

to' deciduous classes was applied to classified fen objects. All three rules had a smaller 

than membership function curve. Details on left and right border values used are shown 

in figure 36. The 'loop until nothing changes' option was applied to the classifier when 

the relative border to function was used. Once classified, segments for individual 

classes were merged prior to segmenting the next level. 

Membetship function 
Mal<imum value 

0.6048192771/0.81 
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~21 ~ .• • I ~2J 
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Rehtive border of 'ivate:r tto marsh: left border-= OA5, Right bordet: = LO 
Relative border of marsh to \Vater: left border= 0.70, Right border= 0.8 
Relative border- of fen to deciduous: left border= 0.50, Rilght bocdier = LO 

Figure 36. Smaller than relative border to membership function curve applied to water, 
marsh and fen showing left and right border values. 

The third level (level 2) was used to further classify deciduous into dense and 

sparse deciduous. Level 2 segmentation was based on super-objects from level 3. See 

Figure 3 7 for class hierarchy. In this hierarchy, bog, fen and marsh are aggregated into 

a single class called wetland. Objects created in this segmentation were smaller than 
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level 4 and larger than the previous level3 (Figure 38). Parameters used in the 

segmentation were bands 11, 33, 44, 86 having a weight equal to 1, a scale of2, and 

composition of homogeneity was 0.9 for color, 0.1 for shape, 0.1 for compactness and 

0.9 for smoothness. Segmentation parameters were based on best initial classification 

using a nearest neighbor classifier and inheritance rules. Bands selected for the nearest 

neighbor classified were based on the level 1 pixel-based DF A. 

For the classification parameters, step 8 from the pixel-based DFA which 

discriminated dense from sparse deciduous was found to be the optimum band 

combination. These bands consisted ofbands 23, 64, 77, 99, 104, 115, 130, and 138. 

Cut, wetland, conifer, water and mixedwood did not require the nearest neighbor 

classifier because their final objects were generated in the previous level. Inheritance 

rules used are shown in table 19. Feature related and class related rules were not 

applied to dense and sparse deciduous classes. Once classified, segments for individual 

classes were merged prior to segmenting the next level. 
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Figure 37. Hyperion's level2 class hierarchy. 
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Figure 38. Level 2 segmentation used to classify deciduous into dense and sparse 
deciduous. 

Table 19. Inheritance rules used at level 1. 
Class 

Water 
Wetland 

Black Spruce 
Jack Pine 

Mixedwood 

Dense Deciduous 
Sparse Deciduous 

Cut 

Inheritance Rules 

Existence of super-objects level 2 water"' 1 
Existence of super -objects level 2 wetland = 1 
Existence of super-objects level 2 conifer= 1 
Existence of super-objects level 2 conifer "' 1 

Existence of super-objects level 2 mixedwood "' 1 

Existence of super-objects level 2 deciduous = 1 
Existence of super-objects level 2 deciduous "' 1 

Existence of super-objects level 2 cut "' 1 

The fourth level (level 1) contained final classes in which the accuracy 

assessment was based on. It was used to further classify conifer into black spruce and 

jack pine, as well as illustrate some additional capabilities of using an object-oriented 

classification approach. See Figure 39 for class hierarchy. The class hierarchy consist 

of water, wetland (aggregated marsh, fen and bog), black spruce, jack pine, mixedwood, 

dense deciduous, sparse deciduous, cuts. Once these eight classes were classified, their 

segments were merged by class. After the merge, water was further classified into four 

child classes based on size and a new class call island was also produced. 
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Levell segmentation was based on super-objects from level2. Objects created 

in this segmentation were the same size as level 3 (Figure 40). Parameters used in the 

segmentation were bands 11, 33, 44, 86 having a weight equal to 1.0, a scale of 0.2, and 

composition of homogeneity was 0.9 for color, 0.1 for shape, 0.1 for compactness and 

0.9 for smoothness. Segmentation parameters were based on best initial classification 

using a nearest neighbor classifier and inheritance rules. Bands selected for the nearest 

neighbor classified were based on the level 2 pixel-based DF A, discriminating spruce 

and pine. 

For the classification parameters, step 11 from the pixel-based DF A which 

discriminated pine from spruce was found to be the optimum band combination. These 

bands consisted ofbands 14, 17, 25, 32, 47, 58, 60, 68, 138, 152, and 154. Cut, 

wetland, conifer, water, mixedwood, sparse deciduous and dense deciduous did not 

require the nearest neighbor classifier because their final objects were generated in the 

previous levels. Inheritance rules used are shown in table 20. Once classified, 

segments for individual classes were merged prior to classifying islands and further 

classifying water into four child classes. 
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Figure 39. Hyperion's level 1 class hierarchy 

Figure 40. Level 1 segmentation used to classify conifer into black spruce and jack 
pme. 

Table 20. Inheritance rules used at level 1. 

Class 

Water 
Wetland 

Black Spruce 
Jack Pine 

Mixedwood 
Dense Deciduous 
Sparse Deciduous 

Cut 

Inheritance Rules 

Existence of super objects level 2 water = 1 
Existence of super objects level 2 wetland = 1 
Existence of super objects level 2 conifer "' 1 
Existence of super objects level 2 conifer "' 1 

Existence of super objects level 2 mixedwood = 1 
Existence of super objects level 2 deciduous = 1 
Existence of super objects level 2 deciduous = 1 

Existence of super objects level 2 cut = 1 
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Once the initial Level I classification was generated, a set of feature-related and 

class-related rules were developed to classify islands, spruce, pine and further classify 

water into four child class which based on area. A smaller than membership function 

was applied to the spectral value of jack pine (Figure 4I ). A larger than membership 

function was applied to the spectral value of both jack pine and black spruce (Figure 

42). 

Child water classes are shown in table I6 above. The large lake class was 

defined by applying an area threshold greater or equal to 5 square kilometers (Figure 

27). The medium lake class was defined by using a membership function constraining 

the area of the class between I and 5 square kilometers (Figure 28). The small lake 

class was defined by using a membership function with the same curve as the medium 

size lake but limiting the area to between 0.1 and I square kilometers. The fourth child 

water class consisted of all other objects classified as water. A threshold was applied to 

this class, limiting the area to less than O.I square kilometers. Finally, a class based 

algorithm called 'find enclosed by class' was used to classify islands. This algorithm 

found black spruce, jack pine, dense deciduous, sparse deciduous, mixedwood and cut 

objects that were completely contained within water, and classified them as island. 
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CHAPTERS 
RESULTS 

5.1 RADIOMETRIC CORRECTION 

5.1.1 Hyperion Abnormal Pixel Correction 

Visual comparison between level 1 a and level 1 b Hyperion bands clearly 

indicated that the abnormal pixel correction process was successful. Figure 43 shows 

the obvious dark continuous class one abnormal pixel strip no longer present in the 

corrected image. Figure 44 shows that less obvious class 2 abnormal pixels are no 

longer present in the corrected image either. Figure 45 shows an improvement in the 

common but difficult to see class 4 intermittent abnormal pixels. 

i i 
Figure 43. Band 94 level 1 a (left) and level 1 b (right) Hyperion imagery, showing 

Class 1 abnormal pixel correction. 
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i i i i i i 
Figure 44. Band 11 level 1 a (left) and level 1 b (right) Hyperion imagery, showing 

Class 2 abnormal pixel correction. 

i iii i iii 
Figure 45. Band 57 level 1a (left) and level1 b (right) Hyperion imagery, showing 

class 4 abnormal pixel correction. 
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5.1.2 Convert to Radiance 

The conversion of raw Hyperion DN values to spectral radiance changed the 

reflectance scale (Figures 46 and 47). A greater decrease in SWIR bands DN values 

than in the VNIR bands were also observed. The conversion of Landsat LO toLl 

radiance showed greatest changes with the decrease in the blue, and MIR and FIR 

(Figure 48 and 49). Both Hyperion and Landsat graphs resemble radiometrically 

corrected datasets of vegetation as found in literature such as Jensen 2005. 
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Figure 47. Deciduous vegetation from a radiometrically correct Hyperion image. 
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Figure 49. Deciduous vegetation from radiometrically corrected Landsat image. 

5.2 ATMOSPHERIC CORRECTION & BAD BAND REMOVAL 

The visual inspection of vegetation graphs demonstrated that atmospheric 

correction resulted in graphs similar to atmospherically corrected datasets illustrated in 

remote sensing text books such as Jensen (2005). Atmospherically correcting with 

Landsat was straightforward, and the output image was ready for geometric correction 
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(Figure 50). Hyperion, however, was problematic, and the presence of bad bands 

within the Hyperion dataset was evident and needed to be removed. 

During the atmospheric correction process of the Hyperion image, the spectral 

analysis workstation required non-calibrated bands (1-7, 58-76, 225-242) to first be 

removed, resulting in an image with 198 bands. Figure 51 shows a graph of a 

deciduous sample from the atmospheric correct image with non-calibrated bands 

removed. Ofthe 198 bands, however, there still remained bad bands that contain 

extreme values. These bands were the water absorption bands and bands that show 

poor visually image quality. Figure 52 shows a graph of a deciduous sample that is 

atmospherically corrected and has all bad bands removed. With the completion of the 

atmospheric correction and the removal of all bad bands, the new Hyperion image 

consisted of 155 good bands, and was ready for geometric correction. See appendix 

XIII for new wavelengths of each new band number. 
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5.3 IMAGE ANALYSIS (PIXEL-BASED) 

5.3.1 Discriminant Function Analysis (Levell) 

Stepwise discriminant function analysis (DF A) was used as a feature (band) 

selection method for Hyperion. Hyperion imagery has high correlations(> 0.90) 

between bands (predictor variables) when wavelengths are close to one another. 

Appendix XVIII shows a pooled within-groups correlation matrix showing average 

correlations for the first 19 bands. Bands 5 through 19 showed a high correlation with 

one or more other bands. In addition, some bands selected in the stepwise DF A showed 

high correlations as well (Appendix XIX). Although datasets with high correlated 

predictor variables is a violation of one of the assumptions in stepwise DF A, it is 

unavoidable with the nature ofhyperspectral imagery and DFA was used with this 

violation. 

Discriminant scores represent individual case (sample) values that result from 

applying a discriminant function formula. Overall, the discriminant function analysis 

worked well. Figure 53 uses discriminant functions 1 and 2 to show how well the 

functions separate each group. Discriminant function 1 separates water and cuts well 

from all other classes, except for some overlap with marsh. It does not however, 

separate deciduous, mixedwood, conifer, fen and bog well from one another. Although 

function 2 shows some overlap between mixedwood with deciduous and conifer, it does 

separate deciduous from conifer, marsh, bog and fen well. Both functions show some 

overlap with marsh, fen and bog. All group means are well separated except for mixed 

wood and fen, and conifer and bog. 
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Figure 53. Scatter plot of canonical discriminant function scores for functions 1 and 2. 

Wilks' Lambda measures unexplained variability in the data, and shows how 

well each function separates cases into groups (Appendix XX), with smaller values 

indicating better separation. The null hypothesis of the Wilks' Lambda test is that 

group means are equal. Group function scores differed significantly for all functions 

(p< 0.001). The null hypothesis was rejected, and therefore all test of functions separate 

the groups. Functions 1-7 (< 0.1%), 2-7 (0.4%), and 3-7 (3.8%) showed low 

unexplained variability in the model. Functions 4-7 showed moderate unexplained 
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variability in the model (20.8%). Functions 5-7 (52.9%), 6-7 (70.9%) and 7 (86.7%) 

showed higher unexplained variability in the model. 

Canonical correlation indicates how much relationship there is between the 

discriminant scores on that axis and the group structure. The square of the canonical 

correlation is the percent of total variability in scores explained by differences among 

groups. In general, a higher the canonical correlation represents greater separation in 

scores amoung groups. Functions 1-4 hold the highest amount of variability in the 

discriminant scores based on group structure (Appendix XX). Ninety point six percent 

(0.9522) of the variability in the discriminant scores of function 1 is based on group 

structure, which is high. Sixty point seven percent (0.7792) of the variability in the 

discriminant scores of function 4 is based on group structure. Twenty-five point four 

percent (0.5042) of the variability in the discriminant scores of function 5 is based on 

group structure, which is low. 

Standardized canonical discriminant function coefficients compare the 

importance each band (independent variable) has on individual functions. Coefficients 

with large positive or negative values correspond to variables with greater 

discriminating ability. Appendix XXI lists the coefficients for functions 1-4. 

Discriminant function 1 is most correlated with transition band 32 between red and 

NIR, as well as NIR band 44. Function 2 is most correlated with transition bands 28 

and 31 between visible red and NIR, as well as SWIR bands 84 and 86. Function 3 is 

most correlated with SWIR bands 84 and 86, and function 4 is most correlated with NIR 

bands 31 and 34. 
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5.3.2 Discriminant Function Analysis (Level 2) 

5.3.2.1 Black Spruce and Jack Pine 

Stepwise discriminant function analysis (DF A) was used as a feature (band) 

selection method, for separating groups (spruce and pine). The boxplot in Figure 54 

was used as a graphical way of comparing the separation of groups (spruce and pine) 

defined by a factor variable (scores from function 1). Overall, it shows good separation 

between groups. The box represents the interquartile range, which is derived by the 

upper and lower quartiles, and represents 50% of the data (Wikipedia 2007). The lower 

quartile (1st quartile) cuts off the lower 25% of the scores and the upper quartile (3rd 

quartile) cuts offthe highest 25% of the scores. This results in a box stretching from the 

lower 25th percentile to the upper 75th percentile. The non-overlapping the interquartile 

ranges in this case indicates the groups are well separated. The horizontal line within a 

box represents the median. The medians in this case are well separated indicating good 

separation between groups. The whiskers, which are lines attached to the boxes, 

represent the minimum and maximum score values, except for outliers. They extend a 

maximum of 1.5 times the 1st and 3rd quartile value. The non-overlapping of the 

whiskers when comparing the two groups indicated good separation. The overlapping 

of some outliers from pine with the whiskers of spruce, indicates a small amount of 

misclassification when separating the two groups. Outliers are extreme cases with data 

values that fall outside the extent of the whiskers (Wikipedia 2007). 
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Figure 54. Box plot of spruce and pine function 1 discriminant scores. 

Wilks' Lambda for Function 1 showed a low 16.5% of unexplained variability 

of the data in the model, indicating good separation of cases into groups (Appendix 

XXII). Test of function 1 was significant (p<O. 00 1 ), meaning function 1 significantly 

separates the groups. Canonical correlation indicated that 83.54% (0.9142
) of the 

variability in the discriminant scores of function 1 is based on group structure 

(Appendix XXII). Standardized canonical discriminant function coefficients indicate 

that function 1 is most correlated with NIR bands 40 and 41 and SWIR band 59 

(Appendix XXII). 
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5.3.2.2 Dense and Sparse Deciduous 

The discriminant function analysis produced one function to separate the dense 

and sparse deciduous forest for the Hyperion image. The box plot in Figure 55 

compares the discriminant scores for function 1 for dense and sparse deciduous. The 

non-overlapping of the interquartile ranges and associated whiskers indicates good 

separation between classes. There is however, one overlapping outlier which indicates 

that the separation of groups is not complete. 
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Figure 55. Boxplot of function 1 discriminant scores for dense and sparse deciduous. 

Wilks' Lambda for Function 1 showed a low 19.2% of unexplained variability 

of the data in the model, indicating good separation of cases into groups (Appendix 

XXIII). Group scores differed significantly in function 1 (p<0.001), meaning function 1 

significantly separates the groups (Appendix XXIII). Canonical correlation indicated 
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that 80.8% (0.8992) of the variability in the discriminant scores of function 1 is based on 

group structure (Appendix XXIII). Standardized canonical discriminant function 

coefficients indicate that function 1 is most correlated with NIR band 77 (Appendix 

XXIII). 

5.3.3 Error Matrices (Feature Selection) 

Error matrices used for the final classification comparing Landsat (standard 6 

bands) and Hyperion (DFA) are shown in tables 21 and 22. Both sensors misclassified 

wetlands with water, spruce and sparse deciduous. In addition Landsat also 

misclassified wetlands with cuts, whereas Hyperion did not. Spruce got misclassified 

with jack pine and mixedwood only once with both sensors. Hyperion misclassified 

jack pine with spruce less often than Landsat. Both sensors misclassified mixedwood 

with spruce, jack pine, and dense deciduous. Landsat misclassified sparse deciduous 

with dense deciduous whereas Hyperion perfectly classified sparse deciduous. 

Hyperion also perfectly classified cuts where as Landsat misclassified cuts with 

wetlands. See appendices XXIV and XXV for an illustration of the classified images. 

Table 21. Error matrix for Landsat final supervised classification using band selection. 
Classified Reference Data Row 
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Data Water Wetland Black Jack Mixed- Dense Sparse Cut Total 
Spruce Pine wood Dec. Dec. 

Water 48 2 0 0 0 0 0 0 50 
Wetland 2 59 15 0 3 0 0 2 81 

Black 0 5 46 12 17 0 0 0 80 Spruce 
Jack Pine 0 0 1 59 4 0 0 0 64 
Mixed- 0 0 1 4 30 6 0 0 41 wood 
Dense 0 0 0 0 6 59 6 0 71 Dec. 
Sparse 0 3 0 0 0 0 19 0 22 Dec. 

Cut 0 2 0 0 0 0 0 37 39 
Column 50 71 63 75 60 65 25 39 448 Total 

Table 22. Error matrix for Hyperion final supervised classification using band selection. 

Classified Reference Data Row 
Data Water Wetland Black Jack Mixed- Dense Sparse Cut Total 

Spruce Pine wood Dec. Dec. 
Water 48 0 0 0 0 0 0 0 48 

Wetland 2 64 12 0 0 0 0 0 78 
Black 0 5 49 5 12 0 0 0 71 Spruce 

Jack Pine 0 0 1 66 2 0 0 0 69 
Mixed- 0 0 1 4 39 2 0 0 46 wood 
Dense 0 0 0 0 7 63 0 0 70 Dec. 
Sparse 0 2 0 0 0 0 25 0 27 Dec. 

Cut 0 0 0 0 0 0 0 39 39 
Column 50 71 63 75 60 65 25 39 448 Total 

5.3.4 Accuracy Assessment (Feature Selection) 
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Accuracy assessment comparing Landsat and Hyperion showed that Hyperion is 

capable of distinguishing among classes better than Landsat. Overall classification 

accuracy's were 79.69% and 87.72% for Landsat and Hyperion respectively (Table 23). 

Hyperion Producer's accuracy was consistently equal to or higher than Landsat in all 

classes. The most notable difference was with sparse deciduous were Hyperion had a 

100.00% and Landsat had a 76.00% producer's accuracy. User's accuracy and Kappa 

statistics were consistently higher with Hyperion in all classes. Overall Kappa statistic 

was 76.50% and 85.81% for Landsat and Hyperion respectively. 

Table 23. Accuracy assessment comparing Landsat and Hyperion from band selection 
su2ervised classification. 

Class Producers Accuracy (%) Users Accuracy(%) Kappa Statistics (%) 
Landsat Hyperion Landsat Hyperion Landsat Hyperion 

Water 96.00 96.00 96.00 100.00 95.50 100.00 
Wetland 83.10 90.14 72.84 82.05 67.72 78.67 

Black Spruce 73.02 77.78 57.50 69.01 50.55 63.94 
Jack Pine 78.67 88.00 92.19 95.65 90.62 94.78 

Mixedwood 50.00 65.00 73.17 84.78 69.02 82.43 
Dense Dec. 90.77 96.92 83.10 90.00 80.23 88.30 
Sparse Dec. 76.00 100.00 86.36 92.59 85.56 92.15 

Cut 94.87 100.00 94.87 100.00 94.38 100.00 
Overall 

Classification 79.69 87.72 76.50 85.81 
Accuracy (%) 

5.3.5 Principal Component Analysis (PCA) 

5.3.5.1 Error Matrices (PCA) 

Error matrix for Landsat and Hyperion's final classes produced with a maximum 

likelihood supervised classifier using PC bands are shown in tables 24 and 25. Both 

sensors misclassified water with wetlands. Landsat misclassified wetland with spruce 

and sparse deciduous, whereas Hyperion misclassified wetland with water, spruce, pine 
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and mixedwood. Both sensors misclassified spruce with wetland, pine, and 

mixedwood, as well as misclassified pine with spruce and mixedwood. Landsat and 

Hyperion misclassified mixedwood with wetland, spruce, pine and dense deciduous. In 

addition Landsat also misclassified mixedwood with sparse deciduous. Although both 

sensors misclassified dense deciduous with sparse and mixedwood, Landsat also 

misclassified mixedwood with wetland. Hyperion perfectly classified sparse deciduous, 

whereas Landsat misclassified sparse with dense deciduous and wetland. Hyperion 

perfectly classified cuts, whereas Landsat misclassified cuts with wetland. 

Table 24. Error matrix for Landsat final supervised classification using PC's 1-3. 

Classified Reference Data Row 
Data Water Wetland Black Jack Mixed- Dense Sparse Cut Total 

Spruce Pine wood Dec. Dec. 
Water 46 0 0 0 0 0 0 0 46 

Wetland 4 68 26 0 2 4 1 2 107 
Black 0 2 31 15 9 0 0 0 57 Spruce 

Jack Pine 0 0 3 52 6 0 0 0 61 
Mixed- 0 0 3 8 40 9 0 0 60 Wood 
Dense 0 0 0 0 2 45 2 0 49 Dec. 
Sparse 0 0 0 1 7 22 0 31 Dec. 

Cut 0 0 0 0 0 0 0 37 37 

Column 50 71 63 75 60 65 25 39 448 Total 

Table 25. Error matrix for Hyperion final supervised classification using PC's 1-4. 
Classified Reference Data Row 

Data Water Wetland Black Jack Mixed- Dense Sparse Cut Total 
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Spruce Pine wood Dec. Dec. 
Water 44 1 0 0 0 0 0 0 45 

Wetland 6 67 36 0 5 0 0 0 114 
Black 0 1 21 1 1 0 0 0 24 Spruce 

Jack Pine 0 1 2 67 17 0 0 0 87 
Mixed- 0 1 4 7 34 7 0 0 53 wood 
Dense 

0 0 0 0 3 53 0 0 56 Dec. 
Sparse 0 0 0 0 0 5 25 0 30 Dec. 

Cut 0 0 0 0 0 0 0 39 39 
Column 50 71 63 75 60 65 25 39 448 Total 

5.3.5.2 Accuracy Assessment (PCA) 

Accuracy assessment comparing PC bands with Landsat and Hyperion showed 

that Hyperion is generally capable of distinguishing among classes better than Landsat. 

Overall classification accuracy's were 76.12% and 78.13% for Landsat and Hyperion 

respectively (Table 26). Overall Kappa Statistic's were 72.39% and 74.66% for 

Landsat and Hyperion respectively. Producer's, user's and Kappa statisitics showed 

that both sensors could distinguish cuts and water well, but had difficulties classifying 

the remainder classes. For example, although Landsat's producer's accuracy for 

wetland was 95.77%, its Kappa statistic was 56.69%. This indicates that although the 

probability of a reference pixel being correctly is high, the reliability of a pixel actually 

being in that class is low. 

Table 26. Accuracy assessment comparing TM and Hyperion supervised classification 
using PC's. 

Class Producers Accuracy (%) Users Accuracy (%) Kappa Statistics (%) 
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Landsat Hyperion Landsat Hyperion Landsat Hyperion 
Water 92.00 88.00 100.00 97.78 100.00 97.50 

Wetland 95.77 94.39 63.55 58.77 56.69 51.01 
Black Spruce 49.21 33.33 54.39 87.50 46.92 85.45 

Jack Pine 69.33 89.33 85.25 77.01 82.28 72.39 
Mixedwood 66.67 56.67 66.67 64.15 61.51 58.61 
Dense Dec. 69.23 81.54 91.84 94.64 90.45 93.73 
Sparse Dec. 88.00 100.00 70.97 83.33 69.25 82.35 

Cut 94.87 100.00 100.00 100.00 100.00 100.00 
Overall 

Classification 76.12 78.13 72.39 74.66 
Accuracy (%) 

5.3.6 Comparing Feature Selection to PCA 

Feature selection, through the use ofDFA with Hyperion and selecting the 

standard six bands from Landsat, proved to be more efficient than PCA. Landsat's 

overall classification accuracy was 76.12% and 79.69% for PCA and feature selection 

respectively (Table 27). Hyperion's overall classification accuracy was 78.13% and 

87.72% for PCA and feature selection respectively. Feature selection was therefore 

determined to be the optimum method for reducing the dimensionality of the imagery 

and was therefore chosen to be used in further object-oriented image analysis. 

Table 27. Overall classification accuracy comparing feature selection to PCA methods 
of Landsat and Hyperion imagery. 

Landsat Hyperion 
Feature PCA Feature PCA Selection Selection 

Overall 
Classification 79.69 76.12 87.72 78.13 
Accuracy (%) 

5.4 IMAGE ANALYSIS (OBJECT -ORIENTED) 

5.4.1 Error Matrices 
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Error matrices for the final classification of Landsat and Hyperion using an 

object-oriented approach are shown in tables 28 and 29. Landsat misclassified wetland 

with water, spruce and pine. Hyperion misclassified wetland with water, spruce, and 

mixed-wood. Both sensors misclassified spruce with wetland, pine and mixedwood. 

Both sensors also misclassified jack pine with spruce, and mixed wood. Both sensors 

misclassified mixedwood with spruce, pine and dense deciduous. In addition, Hyperion 

also misclassified mixedwood with wetland. Although both sensors misclassified dense 

deciduous with mixedwood, Landsat also misclassified dense deciduous with wetland. 

Both sensors classified sparse deciduous and cuts perfectly. See Appendices XXVI and 

XXVII for an illustration of the object-oriented classified images. 

Table 28. Error matrix from Landsat object-oriented image analysis. 

Classified Reference Data Row 
Data Water Wetland Black Jack Mixed- Dense Sparse Cut Total 

Spruce Pine wood Dec. Dec. 
Water 49 2 0 0 0 0 0 0 51 

Wetland 1 60 13 0 0 2 0 0 76 
Black 0 7 45 3 7 0 0 0 62 Spruce 

Jack Pine 0 2 1 65 7 0 0 0 75 
Mixed- 0 0 4 7 36 1 0 0 48 wood 
Dense 0 0 0 0 10 62 0 0 72 Dec. 
Sparse 0 0 0 0 0 0 25 0 25 Dec. 

Cut 0 0 0 0 0 0 0 39 39 
Column 50 71 63 75 60 65 25 39 448 Total 

Table 29. Error matrix from Hyperion object-oriented image anall:sis. 

Classified Reference Data Row 
Data Water Wetland Black Jack Mixed- Dense Sparse Cut Total 

Spruce Pine wood Dec. Dec. 
Water 49 1 0 0 0 0 0 0 50 
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Wetland 1 58 7 0 1 0 0 0 67 
Black 0 11 52 2 8 0 0 0 73 Spruce 

Jack Pine 0 0 1 68 5 0 0 0 74 
Mixed- 0 1 3 5 39 2 0 0 50 wood 
Dense 0 0 0 0 7 63 0 0 70 Dec. 
Sparse 0 0 0 0 0 0 25 0 25 Dec. 

Cut 0 0 0 0 0 0 0 39 39 
Column 50 71 63 75 60 65 25 39 448 Total 

5.4.2 Accuracy Assessment 

Accuracy assessment comparing pixel-based to object-oriented approaches for 

Landsat are shown in Table 30. Landsat's overall classification accuracy was higher 

with object-oriented (85.04%) than with pixel-based (79.69%). Producer's accuracy for 

object-oriented was higher than pixel-based for all classes except spruce. The most 

notable differences were a 1 0% increase in mixedwood, and sparse deciduous and cuts 

changing to 100% accuracy, with a 26% increase in sparse deciduous. Contrary to 

producer's accuracy, user's accuracy showed a 15.08% increase in spruce with object-

oriented over pixel based, and decrease in pine. User's accuracy showed an increase in 

all other classes. Kappa statistics showed that object-oriented increased all classes 

except for jack pine and black spruce. Overall Kappa statistic was 76.50% and 82.70% 

for pixel-based and object-oriented respectively. 

Table 30. Accuracy assessment for Landsat comparing pixel-based to object-oriented 
image classification. 

Class 
Producers Accuracy (%) Users Accuracy (%) Kappa Statistics (%) 

Pixel- Object- Pixel- Object- Pixel- Object-
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Based Oriented Based Oriented Based Oriented 
Water 96.00 98.00 96.00 96.08 95.50 97.74 

Wetland 83.10 84.50 72.84 78.95 67.72 81.34 
Black Spruce 73.02 71.43 57.50 72.58 50.55 66.84 

Jack Pine 78.67 86.67 92.19 86.67 90.62 83.99 
Mixed wood 50.00 60.00 73.17 75.00 69.02 55.20 
Dense Dec. 90.77 95.38 83.10 86.11 80.23 94.50 
Sparse Dec. 76.00 100.00 86.36 100.00 85.56 100.00 

Cut 94.87 100.00 94.87 100.00 94.38 100.00 
Overall 

Classification 79.69 85.04 76.50 82.70 
Accuracy (%) 

Accuracy assessment comparing pixel-based to object-oriented approaches for 

Hyperion are shown in Table 31. Hyperion's overall classification accuracy was 

identical with object-oriented (87.72%) <md pixel-based (87.72%). Producer's accuracy 

showed a small increase in water, spruce, and pine with object-oriented, a decrease in 

wetland, and remained the same for mixedwood, dense deciduous, sparse deciduous and 

cuts. User's and Kappa statistics showed similar small fluctuations in class accuracies. 

The overall Kappa Statistic was 85.81% and 85.80% for pixel-based and object-oriented 

respectively. 

Table 31. Accuracy assessment for Hyperion comparing pixel-based to object-
oriented image classification 

Class 
Producers Accuracy(%) Users Accuracy(%) Kappa Statistics(%) 

Pixel- Object- Pixel- Object- Pixel- Object-
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Based Oriented Based Oriented Based Oriented 
Water 96.00 98.00 100.00 9~LOO 100.00 97.75 

Wetland 90.14 81.69 82.05 86.57 78.67 78.47 
Black Spruce 77.78 82.54 69.01 71.23 63.94 79.14 

Jack Pine 88.00 90.67 95.65 91.89 94.78 88.82 
Mixed wood 65.00 65.00 84.78 78.00 82.43 60.60 
Dense Dec. 96.92 96.92 90.00 90.00 88.30 96.35 
Sparse Dec. 100.00 100.00 92.59 100.00 92.15 100.00 

Cut 100.00 100.00 100.00 100.00 100.00 100.00 
Overall 

Classification 87.72 87.72 85.81 85.80 
Accuracy (%) 

5.5 HYPERSPECTRAL WAVELENGTHS 

Hyperion has many highly correlated bands, of which only a select few were 

actually used in the analysis. Since the large number of bands in hyperspectral imagery 

can be overwhelming, as well as increase the amount required image preparation, 

processing time, and analysis time, it may be desirable to select only a few bands for 

future sensors. It was therefore one of the objectives in this thesis to document the 

wavelengths that were most correlated to the discriminant functions and the bands used 

for classification. These bands and their wavelengths are illustrated in figure 56 and 

listed in table 32. 
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Figure 56. Graph of Hyperion bands and their wavelengths contributing to the 

classification. 

Table 32. Wavelengths of bands contributing to the classification. 

Band Average Band Average Band Average 

Number Wavelength Number Wavelength Number Wavelength 
(f.!m) (f.!m) (f.!m) 

7 0.498 34 0.773 86 1.286 
13 0.559 40 0.834 89 1.316 
14 0.569 41 0.844 99 1.568 
17 0.600 59 1.013 104 1.619 
23 0.661 60 1.023 115 1.730 
25 0.681 64 1.064 120 1.780 
26 0.691 68 1.104 130 2.103 
28 0.712 77 1.195 138 2.184 
31 0.742 82 1 .. 245 152 2.325 
32 0.752 84 1.266 

L21 

l~H 
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DISCUSSION 

6.1 INTRODUCTION 

This discussion covers the hyperspectral wavelengths that contributed to the 

classification, reasons for choosing the classes used in this study, the optimal method in 

reducing image dimensionality, as well as some factors effecting classification and 

classification error. The advantages and disadvantages of using multispectral and 

hyperspectral imagery, as well as using pixel-based and object-oriented classifiers, are 

also covered. Finally, it discusses the OLCD and how it could possibly be improved, as 

well as makes recommendations for future research and development. 

6.2 CLASSES USED 

The classes used in this analysis were similar to those used in the OLCD. There 

are, however, some differences. First, the 1995 OLCD edition broke up conifer into 

spruce and pine. In the 2000 edition the OLCD used a single conifer class. I separated 

spruce and pine for several reasons. The first was to increase the number of classes, the 

second to push the limits of the imagery, and the third to better explain misclassification 

among classes. The other class difference between the OLCD and this thesis is the 

wetlands. The OLCD breaks bogs into open and treed bog, and fen into open and treed 

fen. I did not break these classes apart bt:cause of the small number of samples 

available. 
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6.3 ECOLOGICAL FACTORS 

Classification error occurs when samples from different classes have similar 

spectral properties. In general, the classes that became misclassified with each other 

were similar for Landsat and Hyperion when using both pixel-based and object-oriented 

classifiers. Spatial relationships between samples and classes were used to determine 

some of the reasons for classification errors. Some of these reasons for 

misclassification can be traced to ecosystem, species composition, sample design and 

age. 

6.3.1 Age and Ecosystem 

Age and ecosystem or ecosite type can be used to explain some of the 

misclassification among classes. Since a single cover class can have numerous ecosites, 

it makes sense that some samples within a class will have an ecosite approaching 

similar properties to the next cover class. In addition, young vegetation can be 

spectrally different then older vegetation. 

Misclassification between water and wetland was partially due to sample design 

and ecosystem type. Sample design is described later on in this chapter. The type of 

wetland being misclassified with water was Exposed Marsh (ES48). Exposed marsh is 

an emergent mineral substrate with greater than 25% of its plants emergent and occurs 

along shores. It is a transition ecosystem between wetland and water. 

Wetland and black spruce were commonly misclassified with one another. 

When looking at misclassified spruce samples, it was mainly young spruce as well as 

the samples with FEC types V37 that were misclassified into wetland, and treed bog 

samples misclassified into spruce. Spruce samples included Vl7-20, V31, and V33-37, 
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which ranged from upland black spruce to poor wetland black spruce. The type of bogs 

included treed bogs (ES34) and open bogs (ES39). When comparing low land black 

spruce V37 to treed bog ES34, they were nearly identical. The description in NWST 

states that treed bog (ES34) has the same characteristics as V37. One solution to this 

problem would be to consider V37 samples as treed bog in the future. Age also played 

a role in misclassification between spruce and wetland. This was expected because a 

younger spruce stand has a greater soil exposure than a mature spruce stand, giving the 

younger similar spectral properties to a treed bog. 

Age also played a role in Landsat's misclassification between wetland and cuts 

when using the pixel-based approach. Although the physical properties of wetlands and 

cuts are drastically different, this was expected because wetlands and cuts can look 

similar spectrally (Figure 57). The age of cuts ranged between 1-5 years old. The two 

misclassified cut samples were four years old, and were misclassified into marsh. The 

misclassification of older cuts into wetlands was expected because preliminary analysis 

used an age class less than 1 0 years or younger to represent cuts, which was the same as 

the Ontario Land Cover. The preliminary analysis, however, showed a higher amount 

of misclassification between cuts and wetlands when using cuts older than five years. 

This indicates that the optimal threshold for classifYing cuts could be between five and 

ten years of age. 

It is difficult to determine reasons why dense and sparse deciduous separated 

from each other so well. Although there was some spectral overlap between dense and 

sparse deciduous, sparse samples generally had higher infrared values than dense 

deciduous. One possible reason for this is that the sparse deciduous samples had a thick 
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mountain maple, alder and beaked hazel understory which would have been well 

exposed to the satellite sensor. In addition, the ecosites also differed, with sparse 

deciduous consisting ofV2 (black ash hardwood and mixedwood) and V3.1 (maple-

yellow birch - hardwood - mixed wood), whereas dense deciduous consisted of V 4 

(white birch hardwood and mixedwood), V5 (aspen hardwood), V6 (aspen- birch-

balsam fir-mountain maple), V7 (aspen- balsam fir), V8 (aspen- white birch-

mountain maple), V9 (aspen- mixedwood) and VlO (aspen- spruce- jack pine). 

Figure 57. Landsat image showing spectral similarities between cuts and wetlands. 

6.3.2 Species Composition 

Species composition can be used to explain classification errors among upland 

classes such as spruce, pine, mixedwood, and dense deciduous. When taking species 

composition into consideration, a spruce sample could have a species composition 

similar to a jack pine sample. For example, spruce is defined having more than 80% 
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conifer, with spruce being greater or equal to jack pine. Jack pine is defined as having 

more than 80% conifer with jack pine greater than spruce. It is therefore possible to 

have a jack pine species composition of 60% jack pine and 40% black spruce, as well as 

a black spruce composition of 50% jack pine and 50% black spruce. Chances are that 

these samples are spectrally similar to one another, and as differences in species 

composition between jack pine and black spruce increase, the spectral differences 

between the two will increase as well. This logic can also be applied to classification 

errors between jack pine and mixedwood as well as mixedwood and dense deciduous. 

6.3.3 Sample Design 

The sample design played a role in the misclassification between wetland and 

water. As mentioned above, the type of wetland that got misclassified with water was 

exposed marsh (ES48). The reason the sample design played a role in this 

misclassification was because the water samples were not collected in the field, they 

were extracted using a systematic random point design the OBM Lakes layer. The 

exposed marsh samples, however, were collected in the field and were located inside 

the OBM lakes boundary. Essentially, some random water samples were located near 

the edge of lakes where they could be considered as exposed marsh. 

6.3.4 Number of Samples 

One source of error in this analysis is the small number of samples used per 

class. According to sources such as Congalton and Green (1999) and as Goodchild et 

a!. (1994), this study needed a minimum of 30-75 samples per class. Classes that did 

not meet the minimum number of samples include sparse deciduous, marsh, and fen. 

The reason for the wetlands not having enough samples was because they were supplied 
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by another concurrent study and by the time they were received it was too late in the 

season to collect more samples. The reason sparse deciduous did not have enough 

samples was because I did not take the 50% training and 50% testing into account when 

setting up the sample design. Training refers to the sample plots used to drive the 

classifier and testing refers to the samples used to assess the accuracy of the 

classification. 

It is possible that the low number of samples affected the classification of the 

hyperspectral imagery by limiting the number of bands that could be used in the 

classification. For example, when determining the optimum band combination for 

Hyperion, the classification accuracy would increase as the number of bands increase. 

This would occur until a certain point where the accuracy of the classes with lowest 

number of samples dropped dramatically, indicating that a greater number of bands 

require a greater number of samples. If there were more samples used in the analysis, 

Hyperion's accuracy may have been increased, and there may have been a greater 

difference between the multispectral and hyperspectral imagery. An increase in the 

number of samples however, can greatly increase a project's budget costs, as well as 

extended the time in which it takes to complete a project. 

6.4 REDUCING IMAGE DIMENSIONALITY 

Reducing the dimensionality of a dataset can save processing time, hardware 

space and simplify an analysis. With hyperspectral imagery, this reduction is 

mandatory because present classifiers cannot deal such large numbers of bands. Feature 

selection and PCA were applied to Landsat and Hyperion to determine the optimum 
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method of reducing the dimensionality of the imagery. Feature selection proved to be 

the optimum method over PCA for both sensors. This was shown through the overall 

classification accuracy, producer's error, user's error and Kappa statistics. 

There was no expectation in classification accuracy when comparing feature 

selection to PCA for Landsat. With Hyperion, however, feature selection was expected 

to be the optimum method over PCA. This was because of the Hyperion's low signal to 

noise ratio and high correlation between bands. One alternative to using PCA is to use 

a Minimum Noise Fraction (MNF). MNF is a form of principal components designed 

for hyperspectral datasets that contain low signal to noise ratio's. Although MNF was 

not included in the analysis, it was included in classification trials. The MNF bands 

produced, however, were poor in quality with various brightness gradients across the 

MNF bands. The quality was simply too poor to be used in an analysis. The reason for 

the poor MNF bands was due to the 'smile' effect. The 'smile' effect refers to an 

across-track shift in wavelength from the center wavelength, caused by change in 

dispersion angle with field position (Goodenough et al. 2003). The only approach found 

in literature that can correct the brightness gradient without causing false spectra is 

through moving linear fitting and interpolation (Goodenough et al. 2003). This method, 

however, requires many in situ data sample locations across an image, in which data 

was not available for this study, and is not practical for large area land classifications. 

Hopefully, future space borne hyperspectral satellites will not have this 'smile' effect. 

The use of a stepwise DF A with SPSS for Hyperion feature selection worked 

well. One challenge when using a DF A on imagery is extracting sample pixel values. 

This was a challenge because ERDAS and eCognition do not have a DF A tool built into 
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their software. In this study, a script was written in ArcMap that looks at the spatial 

relationship between a sample and its intersecting pixel, and writes the pixel values to 

the shapefile database. This process was tedious and would be even more difficult and 

time consuming for an analyst without programming knowledge, particularly if there 

was a large number of samples were manual pixel value extraction is not an option. 

With ERDAS, it would be optimal to have a DF A tool build into the signature editor. 

£cognition has a similar tool to a DF A called 'Feature Space Optimization'. This tool 

picks optimum features to use in the classification at different dimensions. Initial trials 

with this tool did not work as well as the DF A, most likely due to the high correlation 

between bands. It is therefore also recommended that eCognition develop a DF A tool 

within their software. 

Although the DF A worked well, finding the optimum DF A step or band 

combination was time consuming. In this thesis, steps 6 through 20 were tested for 

each classification. It can take 24 hours to use ERDAS's signature editor, run a 

supervised classification, recode the classified image and run the accuracy assessment 

to find the optimal step. This time can accumulate into weeks or months of time when 

considering an analyst is still developing the optimum classes to use in his or her 

analysis, as well as considering the properties of each class such as the species 

composition and ecosystem types. 
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6.5 MULTISPECTRAL VS. HYPERSPECTRAL 

6.5.1 Cost 

The high cost ofHyperion's hype:rspectral imagery makes it, at the present time, 

impractical for large area classifications such as the OLCD. In addition, Hyperion's 

image size is a fraction of Landsat's. The rational behind the comparison of 

multispectral to hyperspectral is that if hyperspectral shows improvements over 

multispectral, then there is a need for further development ofhyperspectral imagery. 

With this development, in the future, hyperspectral imagery may one day be as cheap 

and come with image sizes as large as Landsat's. Only then will hyperspectral imagery 

become practical for large area land classifications such as the OLCD. 

6.5.2 Preprocessing 

Preprocessing of Landsat multispectral imagery is simple and straight forward, 

whereas Hyperion's hyperspectral imagery is difficult. There are few publications 

dealing with Hyperion, making it difficult to find resources to follow. In addition, 

software such as ERDAS and eCogntion, have an insufficient number of tools to deal 

with hyperspectral imagery. Although there was no tool to fix the abnormal pixels, for 

the purpose of this thesis, it will be assumed that images from future hyper spectral 

sensors will have abnormal pixels corrected upon purchase. 

The requirement for atmospheric correction using in situ data with hyperspectral 

imagery is a concern. This requirement makes rationalizing hyperspectral imagery's 

applicability for large area land classifications a challenge. For example, even if 

Hyperion's imagery was the same cost and size as Landsat's, it would still require 

atmospheric correction. In order for each Hyperion image to be atmospherically 
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corrected, in situ data would have to be collected for atmospheric correction, which can 

be difficult and costly to obtain. Landsat's multispectral sensor does not require 

atmospheric correction with in situ data and is therefore much simpler to use. 

6.5.3 Accuracy 

The main advantage hyperspectral imagery has over multispectral imagery is its 

greater ability to distinguish among classes. Accuracy assessment using both pixel-

based and object-oriented showed that hyperspectral imagery can distinguish between 

classes better than multispectral imagery.. There is also potential for hyperspectral 

imagery to show an even greater ability to distinguish between classes then 

multispectral as the number of classes increase. 

6.6 PIXEL-BASED VS. OBJECT -ORIENTED 

This study showed that when using Landsat's multispectral imagery, an object-

oriented classifier can provided better separation among classes than the pixel-based 

classifier. This indicates that there is room to improve current pixel-based 

classifications. Once an analyst has experience with eCognition, it can be just as fast, if 

not faster than using a traditional pixel-based classifier. Ecognition's object-oriented 

classifier could therefore be a practical alternate for large area classifications, such as 

the OLCD, at the present time. 

As mentioned in Chapter I, the OLCD 2000 edition updated all of Ontario 

except for southern Ontario. Some of the classes in the OLCD, known to have a low 

level of confidence, include settlement/infrastructure, agriculture, and pasture 
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(Spectralanalysis 1999). This low level of confidence could be a reason why southern 

Ontario was not updated in the 2000 edition. Although these low confidence level 

classes were not included in this study, the ability of feature based rules such as size, 

area, shape, and texture being incorporated into object-oriented classification, may help 

improve the confidence level of study classes. More research needs to be done using 

Landsat and eCognition with classes found in southern Ontario. 

Hyperion's overall classification was identical when comparing pixel-based and 

object-oriented classifiers. Based on the results from Landsat, this was not expected. 

One possible reason for this was that there was not much room for improvement 

because the pixel-based classification accuracy assessment was already high. For 

example, two of the eight classes (sparse deciduous and cut) already had a producer's 

accuracy of 100% with the pixel-based classifier. Ofthe remaining six class, three of 

them (water, wetland and dense deciduous) had accuracies over 90%. This resulted in 

only three classes with accuracies less than 90%. 

One disadvantage of using eCognition is its high cost. ECognition is expensive 

and is only designed for analysis, which means image processing software such as 

ERDAS is still required. The main advantage eCogntion is its ability to develop rules 

which can lead to a more meaningful classification than pixel-based. Having rules and 

steps clearly shown within eCognition's processing tree and embedded into each class, 

could make it easier for classifications to be updated, particularly if different analysts 

are used. Also, eCognition has superior masking abilities over pixel-based software. 

With eCognition, masking takes place within the project through the use of different 

levels. With pixel-based software, separate masking images and models must be 
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created which it time consuming and can become confusing. Finally, pixel-based 

classifications can look noisy, having a 'salt and pepper' effect. Object-oriented 

classifications do not have this 'salt and pepper' effect to the degree as pixel-based 

classifications. 

6.7 RECOMMENDATIONS 

6. 7.1 Software Improvements 

It is recommended that ERDAS and eCognition both build a DF A tool within 

their software. In addition, eCognition has a steep learning curve, even for advanced 

remote sensing analysts. It is therefore recommended that eCognition provides more 

examples in their user guide and provides a better explanation on how the program 

works. 

6.7.2 Ontario Land Cover 

The OLCD was developed using a pixel-based classifier. With the results of this 

study showing that an object-oriented approach can distinguish among classes better 

than a traditional pixel-based classifier, it is recommended that the MNR explores the 

use of an object-oriented classifier for the OLCD. 

6. 7.3 Future Research 

It is recommended that more research is needed in developing hyperspectral 

sensors with larger images. This will help hyperspectral imagery become more 

applicable for large area land classifications. If in situ data is required for the 

atmospheric correction ofhyperspectral imagery, research may be needed in developing 

a method for standardizing in situ data across Ontario. One possible solution is to 
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investigate the set up of permanent in situ stations across Ontario. Another solution is 

to improve space-based calibration instruments to eliminate the need for in situ data for 

hyperspectral atmospheric correction. 

ECognition has the ability to easily incorporate hydrological models as well as 

other source data, such as from an FRI, into a classification. Although not recorded in 

this study, I did explore the use of slope into the object-oriented classification. Slope 

did not appear to be useful in improving classification accuracy, possibly due to the 

coarse spacing between available elevation points. For example, the current FRI digital 

terrain model (DTM) is 30m around lakes and streams and lOOm everywhere else. 

Fortunately, the Ontario MNR is creating a new FRI with a new DTM, hopefully more 

detailed than the existing DTM. With an improved FRI, other hydrological models may 

assist in reducing misclassification between wetland and upland classes. 

The most applicable and simple analysis that can be done in the future is to 

integrate the new FRI wetland data into eCognition, once it is available. Assuming the 

new FRI wetland boundaries are more accurate than the current version, a rule could be 

developed that would not allow upland classes to be located within wetlands. This 

method was used in preliminary trials of this study, but was not used because the 

current FRI wetland boundaries were poorly delineated and too coarse. With the 

assumption of the new FRI having improved wetland boundaries, this application could 

potentially eliminate wetland samples being misclassified into upland classes. 
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CONCLUSION 

This study showed that there is potential to increase the confidence level of 

classes used in current large area land classifications, such as in the OLCD. Hyperion's 

hyperspectral imagery for example, was capable of distinguishing among classes better 

than Landsat's currently used multispectral imagery. Hyperspectral imagery, however, 

is not yet practical for large area classifications because of its high cost, small image 

size, and lack of available software tools.. In addition to improving the imagery, 

improving the way images are classified can also improve accuracy levels. 

£cognition's object-oriented image classifier, for example, showed improvements over 

the traditional pixel-based classifier. The main finding of this study is that, although 

hyperspectral imagery can improve classifications, it is not necessary to wait for 

hyperspectral imagery to become economically feasible in order to improve 

classifications. For the present time, the most practical method for potentially 

improving large land cover classification accuracy, such as the OLCD, is to change 

from a pixel-based to an object-oriented image classifier. 
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APPENDIX I 
SUMMARY LIST OF THE LAND COVER CLASSES OF THE SECOND-EDITION 

ONTARIO LAND COVER DATA BASE 

Class Class Class 
Number Name Description 

1 Water - Deep or Clear Deep or clear waterbodies. 

2 Water- Shallow Shallow waterbodies and waterbodies with a 
or Sedimented high concentration of suspended sediment. 

3 Settlement/Infrastructure Clearings for human settlement and economic 
activity; major transportation routes. 

4 Sand/Gravel/Mine Beach deposits, aggregate quarries and sand 
Tailings dunes; mines and mine tailings. 

5 Bedrock Exposed bedrock, lacking vegetation cover. 

Unvegetated coastal areas of the Hudson Bay-
6 Mudflats James Bay Lowlands, partly submerged at high 

tide. 

7 Cutovers Forest clearcuts estimated to be less than 10 
years of age. 

8 Bums Forest bums estimated to be less than 10 years of 
age. 

9 Regenerating Depletion Old bums supporting very sparse vegetation. 
A patchy or sparse forest canopy composed of 

10 Sparse Forest coniferous or deciduous species or a combination 
of the two. 

11 Deciduous Forest Largely continuous forest canopy composed 
primarily of deciduous species. 
Largely continuous forest canopy composed of 
both deciduous and coniferous species. In more 

12 Mixed Forest northerly areas, a greater component of 
coniferous species can be expected; in more 
southerly areas, a greater component of 
deciduous species can be expected. 

13 Coniferous For est Largely continuous forest canopy composed 
primarily of coniferous species 
Coastal marshes of the Hudson Bay-James Bay 

15 Intertidal Marsh Lowlands lying between the coastal mudflats and 
the supertidal zone. 
Coastal marshes of the Hudson Bay-James Bay 

16 Supertidal Marsh Lowlands lying inland of both the coastal 
mudflats and intertidal marshes, and subject to 
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only exceptionally high tides. 

17 Inland Marsh Lakeshore and inland marshes of Southern 
Ontario. 
Hardwood swamps of Southern Ontario 

18 Deciduous Swamp occurring along rivers and in old lakebeds and 
other low-lying areas. 

19 Coniferous Swamp Swamps with dense conifer tree or shrub cover 
occurring in Southern Ontario. 

Fens generally lacking tree cover that may 

20 Open Fen support some shrub cover and tamarack. Open 
fens include fens with an open water surface, 
graminoid fens, pattern fens, and shrub-rich fens. 

21 Treed Fen Fens supporting a sparse to dense cover of trees 
or shrubs. 

22 Open Bog Bogs generally lacking tree cover. 

23 Treed Bog Bogs supporting a sparse to dense cover of trees. 
Low tundra vegetation growing on slightly raised 

24 Tundra Heath beach deposits and strand lines along the Hudson 
Bay coast. 

25 Pasture Open grassland with sparse shrubs in rural land. 

Landcover conditions not accurately defined by 
any other landcover class. This class includes the 

28 Other following: undefined clearings in disturbed areas; 
small, unburned areas within recent burns; and 
undefined transitional areas between classes, 
such as some wetland boundaries. 

29 Cloud and Shadow Areas of cloud or shadow on the satellite images. 
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APPENDIX II 
EXAMPLE OF ERDAS MODEL USED TO SEPARATE BANDS 

http://o58.hvp.jyo.cipl
http://JnJS_hyp.uo.cVpi
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APPENDIX III 
SCRIPT CONVERTING RASTER TO ASCII 

Private Sub RastertoASC II_ Click() 
'Project Name: Export multiple J:a::;ter::; to ascii 
'Description: 

' Createcl. by: 
'La;:::t. Updated: 
'Soft.~.:rare: 

Exports rasters to ascii by looping through 
each rast.er layer in table of contents. 
Jevon Hagens 
AUt;rust 2006 
Created in ArcMap 9.1 

On Error GoTo Errorhandler 
'--Par:t. 1: Get Cl.lrt:ent. map •:l.o•:;l.mlent. 
Dim pMxDoc As IMxDoc\.11\lent 
Dim pMap As !Map 
Set. pMxDoc = ThisDocument 
Set pMap = pMxDoc.FocusMap 

'--P AP.T2: get folder mune as path t.o save file in 
Dim strStartDir As String 
strStartDir = ~c:\" 

Diw objSearchApp As Object. 
Din1 objFolder As Object 
Set objSearchApp = CreateObject (~shell. Application~) 
Set objFolder = objSearchApp.BrowseForFolder 

(0, "Please ehoose folder to save file in:", 0) 
If objFolder Is Nothing Then 

MsgBox "You did not choose a folder~ 

Exit Sub 
End If 
Diw strFolderName As String 
strFolderName = objFolder.Items.Item.Path 

'--Part3: loop through each raster layer and export as asii 
Dilll indexP.Layer As Integer 
For indexP.Layer = 0 To pMap.LayerCount- 1 'loop 

Diw pP.asterLayer As IRasterLayer 
Set pRasterLayer = pMap.Layer(indexRLayer) 
If Not TypeOf pRasterLayer Is IRasterLayer Then 

MsgBox ~Please insert raster layers to export to ascii" 
Exit Sub 

End If 
Diw pP.aster As IP.aster 
Set pRaster = pRasterLayer.Raster 
'get name of raster (cut off . illl\;.f at the end) 
Diw NameTewp As String 
NameTemp = pRasterLayer.Name 
D in1 intName As Int.eger 
intName = Len(NameTemp) 
D in1 Name As String 
Name= Left(NameTemp, intName- 4) 
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'get rasterband collection 
Dim pRasterBandCol As IRasterBandCollection 
Set pRasterBandCol = pRaster 
Dim pRasterDSet As IRasterDataset 
'process band in each rasterlayer (only 1 anyways) 
Set pRasterDSet = pRasterBandCol.Item(O) .RasterDataset 
'Set. out.put. file name 
Dim OutASCIIName As St.ring 
OutASCIIName = strFolderName & "\" & Name & ".asc" 
'Export. P.aster 
Dim pRasterExportOp As IRasterExportOp 
Set pRasterExportOp = New RasterConversionOp 
pRasterExportOp.ExportToASCII pRasterDSet, OutASCIIName 

Next indexRLayer 
'display message when complete 
MsgBox "Processing Complete" 

'-------Error Handling------------
Exit Sub 'Exit to avoid error handler 
Errorhandler: 'Error-handling routine 

MsgBox Str(Err.Number) & ": " & Err.Description, , "Error" 
End Sub 
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APPENDIX IV 
ILLUSTRATIONS Of PROCESS USED TO CORRECT ABNORMAL PIXELS 

ArcMap document showing images loaded into the table of contents prior to running the 
script that converted each image into ASCII format 

· Eile t;dit yiew Insert ~election Iools :iiindaw t!elp 

RastertoASCTI © SumAbnorma!Colums 

Band 12 showing script output of ASCII file (left) imported into Excel (right) 

~r TextPad- [F:\thesis_j ... ~~f~ 
[il Eile Edit S.earch !£ie'.ll.• Iools Macros 
~onfigure ~ndo•,,,, !jelp - !5I X 

ncols 252 ~ nrows 1394 
xllcorner 2.5 ·=; 
yllcorner 979.5 
cellsize 1 2251 NODATA value -9999 2197 t214 22'09 22-t(f 2174 i225 2231 2137 2225 21 -+ 21:51 2085 206:3 19$9 2209 2352 2254 2206 2156 21 
2209 2398 2357 2251 2225 2C 2209 21H :2'1}26 1943 
2197 2214 2209 2240 2225 2( 2243 2042 213<60 2'034 
2151 2088 2083 1989 1995 1S 21:28 1961 19•91 1989 
2209 2111 2026 1943 1869 1S 21'9? Hl27 2048 1666 
2243 2042 2060 2034 1915 1E 20~70 19(!~ 1~'J<GS 1$CG 
2128 1961 1991 1989 1927 lEv: 1:305 1824 1820 HGC v 

U5~,~~ 
·.-~ 

":_· I~ ' • ~~ \Sh~t~l ~he<!tl.l {: > I 
For Help, press. F1 ru~ 

file://F:/thesis_j
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Band 91 DN values before (left) ~md after (right) abnormal pixel correction 

4531 
56157 0 6143 
5055 0 56gJ 4858 45ml 45&9 
5425 0 &691 4623 4521 4661 
5159 0 5667 4445 4406 458~! 

4410 0 4199 4092 4220 4251 
5~l01 0 4024 4142 418Ei 432Ei 
6228 0 4870 4169 39·10 3986 
5000 0 4556 4021 36~11 35~l1 

5038 0 4322 v 4221 4014 3910 V· 
I. • • .I:\ !;~~!ll ?hEj ( > 

, ....• I. • • •1 .\S.hf?le.!tl.l$h1E I ( > ,. 
Nllf., NLfl\11 
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APPENDIXV 
SCRIPT CONVERTING ASCII TO EXCEL 

Public Sub ImportASCII_To_dbf () 
'Project Narne: Import Ascii into Excel 
'Description: Imports ascii files created from ArcGIS, using 

a space delimiter. Deletes header info in first 
six rows, then saves as . dbf based on nan1e of ima.;;.fe 
each raster layer in t.able of cont.ent.s. 

'Crea.t.ed by: ~1evon. Hagens 
'Last Updated: August 2006 
'Software: Created in Excel 2003 

On Error GoTo EndMacro: 
'---partl: clear all cells 
'Cells.Select 
Cells.Deletel 
'set. active cell to colrunnl rot.rl 
Cells(l, l).Select 

'---Part2: get file to import 
Dim FName As Variant 
FName = Application.GetOpenFilename 

(filefilter:="ASCII Files(•.asc),•.txt,All Files (•.•),•.•") 
If FName = False Then 

HsgBox "You didn't select a file" 
Exit Sub 

End If 

'---Pa.rt3: Save application as . dbf using dynamic natning syst.em 
'get length of FName st.r ing 
Dim intFName As Integer 
intFName = Len(FName) 
'get rid of .asc at end of string 
Dim FName2 As String 
FName2 = Left(FName, intFName- 4) 
'get length of FNan1e2 
Dim intFName2 As Integer 
intFName2 = Len(FName2) 
'get index of "band" in string 
Dim intNameBand As Integer 
intNameBand = InStr (FName2, "band") 
'get final name 
Dim NameSave As St.ring 
NameSave = Right(FName2, intFName2 - intNameBand + 1) & ".dbf" 
'get folder name as pat.h t.o save file in 
Dim strStartDir As String 
strStartDir = "C:\" 
Dim objSearchApp As Object 
Dim objFolder As Object 
Set objSearchApp = CreateObject ("Shell. Application") 
Set objFolder = objSearchApp.BrowseForFolder 

(0, "Please choose folder to save file in:", 0) 
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If objFolder Is Nothing Then 
MsgBox ''You did not choose a folder rr 
Exit Stlb 

End If 
Dim strFolderNeune As St.rin•;r 
strFolderName = objFolder.Items.Item.Path 

'---PART4: Import file 
Dim RoT.JNdx As Int.eger 
Dim Co lNdx As Int.eger 
Dim TempVal As Variant 
Dim ~holeLine As String 
Dim Pos As Integer 
Dim NextPos Jl.s Int.eger 
Dim SaveColNdx As Integer 
'set. a space delimiter used to seperate col1..mms 
Dim Sep As String 
Sep = " " 
Application.ScreenUpdating = False 
SaveColNdx = ActiveCell.Column 
RoT.JNdx = ActiveCell.RoT.J 
Open FNeune For Input Access Read As #1 
~hile Not EOF ( 1) 

Line Input #1, ~holeLine 

If Right(~holeLine, 1) <> Sep Then 
mholeLine = mholeLine & Sep 

End If 
ColNdx = SaveColNdx 
Pos = 1 
NextPos = InStr(Pos, ~holeLine, Sep) 
~hile NextPos >= 1 

TempVal = Mid(~holeLine, Pos, NextPos - Pos) 
Cells(RoT.JNdx, ColNdx) .Value= TempVal 
Pos = NextPos + 1 
ColNdx = ColNdx + 1 
NextPos = InStr(Pos, ~holeLine, Sep) 

mend 
RoT.JNdx = RoT.JNdx + 1 

~end 

'delete first 6 roT.Js 
Rows("1:6u) .Select 
'shift deleted rol•JS up 
Select ion. Delete Shift: =x 1 Up ' RolJS nmst be se lee ted 
'set activ·e cell 
Cells(1, 1) .Select 
'save application 
Active~orkbook. SaveAs Filenarne: =strFolderName & "\" & NameSave 
MsgBox uprocess Complete1 

EndMacro: 
On Error GoTo 0 

Application.ScreenUpdating 
Close #1 

End Sub 

True 
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APPENDIX VI 

I 3::f:.:.:;a.re: 

SCRIPT CORRECTING ABNORMAL PIXELS 

::e·7·.:n H-s..;ens 
A~ .. 1~:JS:: 2J·:I6 

On E:rrc:r GaTe E:r:rc:r:n.an.dler 

D.i:m Ex•:elLa . .::cCell A.s Ran.ge 

Set ExcelLa.::tCell = Act.i ves:r~eet .• Cells. Spec:i.alCell.:: [xlLa.=;tCeJ.l) 

D.i:m intLa.::tRm .. r .As Irltege:r 
int.:::.ascRow = Exc.elLa:.::tCell. Ro,;.;r 
Dim Raw As Integer 
Rm.; =• ExcelLa.stCell. RoT,; 
De l'Ih.i.le Appl:~.cation. Ccr.:~.ntA f.Act.i,re.Sneet .• Ra\••s (Ro•,r:! J 

Rar,..r = Row - 1 
Loop 
intLastRaw =• Ro1:.J ' RC'ii nurr:.t:er 
'Dese:rrrdne the last c.cl:.tillD r..-.d·:b dat.a 
Dim intLa . .::tCo.l .A.:: Integer 
intLa.stCol = Ex.celLastC:ell. Column 
Dim Cal As Integer 
Col = ExcelLe.::tCell.Column 
Do 1•Ih.ile Application. Co,.:~.ntA 1;Act.i ves:r,eet. C:ol1.:mm . .:: 1: Call )· 

Col =• Col - 1 
Loo:r;: 
.:in.t.LastCal =: Cal 1 C>:lu:rttil rn . .ll't'lte:r 

Dim .int'!hreshnold As String 
.int'EI'l.re.slh.Hold = intLa.stRo•ll' / 2. 

D.im int1'hres:i':l::-Iold:Str.ip As String 
.intThreshHoldStrip = 5 
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D~m st%Ce11Val~e As 3t=~ng 
Dlm 
Ihm 
Fc:r 

R A.5 Integer 
As Intege::: ,. 

·~ 

c = 1 Io intLastCcl 
Dlm ~ntCo~~t As Intege= 
intCcrilnt =: 0 

- ,-~~- ·~ •,_, ·- -~ _.,_, ,._M -

If c- :;, ..1. And C < ir:tLastGal T!"1en 
For R = l Ic intLastRcw 

Cells 1;R, C) . Select 

lf Ac.ti.""~~"eCel..l .. 'I;JJ"'al::~.e < A·=t . .:J..":..;"eCelJ.. .. )~i£.set(~t 1. -1.:1- .And 
;t.~..ct.l. -:;,reC'ell. ":laJ:..:Le < Acti ,~i'eCell .. C:ffS:et ( () ,.. l!. r~.er..t 

. --l n .:=; ·::: .;: ..... ·u~n:.r: 

iD.tC'c·~:u:.t =· ir.:x.Ccr..Ar.;.t -+ 1 
End .If 

Next :R 

I.f intCa·~nt :>- .int"Ib.re:.shE.cld !'J:te:n 
Dim R2 As Integer 
R2 =· 1 
For :R2 1 To in.t:i:..ast:Ror,, 

Cell!! (R2, C'}. Seleo::::t 
t c.c}·,J.n::. n·l..:rr:!De.r: .::f ·::cr.i.si::·>J'!:_l~:?e a.~:.f!~:.rm,:s;_l ~ixe.ls 

"if ·;:·i:x.el lS .:;:::>ncrrn.al ( .;cur.r::in9 s~rip.s; 

If ]l.ctiveCell. Value < li.ctiveCell. Offset 1;(:1, -ll 
And Active Cell. Va1·11e < Ac.ti';•eCell. Of:fset 1,0, 1) Then 

D.im .iLn.t;C:O\;Lnt.2 A.:: Integer '.::;:cun:.ei 
intCount2 = CJ 
Dim R3 A.s Integer ':ne'"·' rcr,.; index 
R3 = Rl' 

Ce~la(R3, Ct.Select; 

Do Until (Acti'.'eCell. Valu.e >= A•:::tiveCell. Offset. (.::•,. -li 
O:r A.c.t~i. \reCell. T\Va:.l;:Je ~= Acti. "'~.teC'ell .. C'ffset •: (I,. 1). l 
Or R3 > intLaatRot.; -+ 1 

Loop 

Celle(R3, C) .Select 

intCm:m.t2 
R3 = R3 + 1 

intCount2 -t 1 

.intCa:~nt2 = int:.Ccunt2 - 1 

http://ActaveCeli.Val-.ie
http://iE.tCoa.nt2
http://int.CoaE.t2


135 

::f .:..r:t;:=:·..:;J:t2 > :..~L.T:::res~:3cld.3t:::..p rt~en 

D.:1rr1 R~ A.3 ::nt.ege.r 

De 7Jr.:X.J..l R~! = :..:r.rt.:a~t.F'.:.x 

Lccp 
End If 

End If 
Next R2 

End "If 
End If 

Next C: 

Acti veWork-.baak. 5a'.>e 

,-------Err~r Handllng------------
Ex~c 5'± 
E;z:ror:tan.dler: 

l .. !gg·3ox .St:r CE:r:r .. l~:r·~ .. :b.e:rJ & ''·: '". ~ :Er:r .. Descr.ipt.ion.,... ~ ttErrc::r'"'' 
End sru:: 

http://intr.ast.Fax
http://Ex.it
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APPENDIX VII 
SCRIPT CONVERTING EXCEL TO ASCII 

Public Sub Export_dbfToAscii () 
1 Project. Name: Export Exce11: .dbf) to ascii 
'Descript.ion: Exports Excel grid to ascii format using a space 

delimiter. 
~Jevon H•Stgen5 
Aw;rust. 2006 

1 Creat.ecl by: 
'Last Upclatecl: 
1 Soft r,rare: Created in Excel 2003 

I ---PARTl: get naroe of file to export 
Dint intNameliJBook As Int.eger 
intNameliJBook = Len(ActiveYorkbook.Name) 
1 ~fet name of workbook t.:ri thou·t ex tens ion 
Dim strNameliJBook As St.ring 
strNameliJBook = Left(ActiveliJorkbook.Name, intNameliJBook- ~) 
1 get folder natile of path to save £ i le in 
Din1 objSearchApp As Object 
Dim objfolder As Object 
Set. objSearchApp = CreateObjE~ct ("Shell. Application") 
Set objfolder = objSearchApp.Browseforfolder 

(0, "Please choose folder to save file in:", 0) 
If objFolder Is Nothing Then 

MsgBox "You did ~ot choose a folder" 
Exit Stili 

End If 
Dim strFolderName As String 
strfolderName = objfolder.Items.Item.Path 
' get f ina! folder and pat.h nrune 
Dim strAsciifilePathName As String 
strAsciifilePathName = strfo.lderName & "\" & strNameYBook & ".asc" 

'uses a space delimeter 
Dim Sep As St.r ing 
Sep = " " 

Din1 WholeLine As String 
Dim fNum As Integer 
Dim RowNdx As Long 
Dim ColNdx As Integer 
Di1n StartRow As Long 
Dim EndRow As Long 
Dim StartCol As Integer 
Dim EndCol As Integer 
Dim CellValue As String 

Application.ScreenUpdating 
On Error GoTo EndMacro: 
fNum = freefile 

False 
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'export the entire worksheet 
hlith ActiveSheet.UsedRange 

StartRow = .Cells(l) .Row 
StartCol = .Cells(l) .Column 
EndRoTi1 
EndCol 

End lifith 

.Cells(.Cells.Count) .RoTi1 
= .Cells(.Cells.Count) .Column 

Open strAsciiFilePathNrune For Out.put Access tJrite As #FNUl'l'l 
'loop through each row and write each line 
For RowNdx = 5tartRow To EndRow 

1iJholeLine = '"' 
For ColNdx = StartCol To EndCol 

If Cells(RowNdx, ColNdx) .Value = "" Then 
CellValue = "" 

El~e 

CellValue = Cells(RowNdx, ColNdx) .Text 
End If 
1iJholeLine = 1iJholeLine & CellValue & 5ep 

Next ColNdx 
1iJholeLine = Left(lJholeLine, Len(lJholeLine) - Len(Sep)) 
Print #FNum, 1iJholeLine 

Next RowNdx 

'display messagebox the finished 
MsgBox "Process Complete" 

'-------Error Handling------------
EndMacro: 
On Error GoTo 0 
Application.5creenUpdating 
Close #FNum 
End Sub 

True 
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APPENDIX VIII 
SCRIPT SAVING EXCEL DOCUMENT TO DBF IV 

Pub 1 ic Sub SaveAsd.b£ IV() 
1 Project. Name: Save as Exce 1 (. dbf IV) format. 
'Description: 

'Creat.ed by: 
'Last Update1j: 
1 Soft~Jare: 

Save an existing Excel doctunent. as . dl:::1f IV 
dynrunically based on previous ~•orkl::)ook name 
Jevon Hagens 
August 2006 
Created in Excel 2003 

'get length o:E active ~,rorkbook name 
Dim intFileLength As Integer 
intFileLength = Len(ActiveTJorkbook.Name) 
'cut off .-r;-r;-r; from filenartle 
Di1r1 strFileNarne As Strin9 
strFileName = Le£t(ActiveTJorkbook.Name, intFileLength- 4) 
1 dynrunically save neu file as dbfiV based on previous nrune 
ActiveTJorkbook.SaveAs Filename:=ActiveTJorkbook.Path & "\" & 

strFileName, FileFormat:=xlDBF4 
ActiveTJorkbook.Close 

End Sub 
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APPENDIX IX 
EXAMPLE OF ERDAS MODEL USED TO COMBINE CORRECTED BANDS 

nl_bandl n2_band5 

n 13_bands lto 1 0 

n7_band7 n6_band8 n10_band9 n11_band10 
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APPENDIX X 
ERDAS MODEL USED TO CONVERT RAW LEVEL IB HYPERION 

DN VALUES TO ABSOLUTE RADIANCE 

VNlR Bands / --110 S\VJ!R Bands / 80 
~ 

n2_memor_y 

n9_h_yp1 b242_radcor 
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APPENDIX XI 
ERDAS MODEL USED TO CONVERT RAW LEVEL 0 LANDSAT TM5 

DN VALUES TO ABSOLUTE RADIANCE 

n13_memory 

n15_tm5_radiance 
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APPENDIX XII 
AVERAGE WAVELENGTHS FOR ORGINAL 242 BAND 

HYPERION IMAGE 

Average Average Average Average 
Band Wavelength Band Wavelength Band Wavelength Band Wavelength 

(nm) (nm) (nm) (nm) 

1 355.59 33 681.20 57 925.41 97 1114.19 
2 365.76 34 691.37 79 932.64 98 1124.28 
3 375.94 35 701.55 58 935.58 99 1134.38 
4 386.11 36 711.72 80 942.73 100 1144.48 
5 396.29 37 721.90 59 945.76 101 1154.58 
6 406.46 38 732.07 81 952.82 102 1164.68 
7 416.64 39 742.25 60 955.93 103 1174.77 
8 426.82 40 752.43 82 962.91 104 1184.87 
9 436.99 41 762.60 61 966.11 105 1194.97 
10 447.17 42 772.78 83 972.99 106 1205.07 
11 457.34 43 782.95 62 976.28 107 1215.17 
12 467.52 44 793.13 84 983.08 108 1225.17 
13 477.69 45 803.30 63 986.46 109 1235.27 
14 487.87 46 813.48 85 993.17 110 1245.36 
15 498.04 47 823.65 64 996.63 111 1255.46 
16 508.22 48 833.83 86 1003.30 112 1265.56 
17 518.39 49 844.00 65 1006.81 113 1275.66 
18 528.57 71 851.92 87 1013.30 114 1285.76 
19 538.74 50 854.18 66 1016.98 115 1295.86 
20 548.92 72 862.01 88 1023.40 116 1305.96 
21 559.09 51 864.35 67 1027.16 117 1316.05 
22 569.27 73 872.10 89 1033.49 118 1326.05 
23 579.45 52 874.53 68 1037.33 119 1336.15 
24 589.62 74 882.19 90 1043.59 120 1346.25 
25 599.80 53 884.70 69 1047.51 121 1356.35 
26 609.97 75 892.28 91 1053.69 122 1366.45 
27 620.15 54 894.88 70 1057.68 123 1376.55 
28 630.32 76 902.36 92 1063.79 124 1386.65 
29 640.50 ·55 905.05 93 1073.89 125 1396.74 
30 650.67 77 912.45 94 1083.99 126 1406.84 
31 660.85 56 915.23 95 1094.09 127 1416.94 
32 671.02 78 922.54 96 1104.19 128 1426.94 
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Average Average Average Average 
Band Wavelength Band Wavelength Band Wavelength Band Wavelength 

(nm) (nm) (nm) (nm) 

129 1437.04 164 1790.19 199 2143.34 234 2496.39 
130 1447.14 165 1800.29 200 2153.34 235 2506.48 
131 1457.23 166 1810.38 201 2163.43 236 2516.59 
132 1467.33 167 1820.48 202 2173.53 237 2526.68 
133 1477.43 168 1830.58 203 2183.63 238 2536.78 
134 1487.53 169 1840.58 204 2193.73 239 2546.88 
135 1497.63 170 1850.68 205 2203.83 240 2556.98 
136 1507.73 171 1860.78 206 2213.93 241 2566.98 
137 1517.83 172 1870.87 207 2224.03 242 2577.08 
138 1527.92 173 1880.98 208 2234.12 
139 1537.92 174 1891.07 209 2244.22 
140 1548.02 175 1901.17 210 2254.22 
141 1558.12 176 1911.27 211 2264.32 
142 1568.22 177 1921.37 212 2274.42 
143 1578.32 178 1931.47 213 2284.52 
144 1588.42 179 1941.57 214 2294.61 
145 1598.51 180 1951.57 215 2304.71 
146 1608.61 181 1961.66 216 2314.81 
147 1618.71 182 1971.76 217 2324.91 
148 1628.81 183 1981.86 218 2335.01 
149 1638.81 184 1991.96 219 2345.11 
150 1648.90 185 2002.06 220 2355.21 
151 1659.00 186 2012.15 221 2365.20 
152 1669.10 187 2022.25 222 2375.30 
153 1679.20 188 2032.35 223 2385.40 
154 1689.30 189 2042.45 224 2395.50 
155 1699.40 190 2052.45 225 2405.60 
156 1709.50 191 2062.55 226 2415.70 
157 1719.60 192 2072.65 227 2425.80 
158 1729.70 193 2082.75 228 2435.89 
159 1739.70 194 2092.84 229 2445.99 
160 1749.79 195 2102.94 230 2456.09 
161 1759.89 196 2113.04 231 2466.09 
162 1769.99 197 2123.14 232 2476.19 
163 1780.09 198 2133.24 233 2486.29 
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APPENDIX XIII 
AVERAGE WAVELENGTHS FOR 155 BAND HYPERION IMAGE 

WITH BAD BANDS REMOVED 

N Average N Average N Average N Average N Average ew ew ew ew ew 
B d Wavelength B d Wavelength B d Wavelength B d Wavelength B d Wavelength 

m ~ m ~ m ~ m ~ m (nm) 

1 436.99 33 762.60 65 1073.89 97 1548.02 129 2092.84 
2 447.17 34 772.78 66 1083.99 98 1558.12 130 2102.94 
3 457.34 35 782.95 67 1094.09 99 1568.22 131 2113.04 
4 467.52 36 793.13 68 1104.19 100 1578.32 132 2123.14 
s 477.69 37 803.30 69 1114.19 101 1588.42 133 2133.24 
6 487.87 38 813.48 70 1124.28 102 1598.51 134 2143.34 
7 498.04 39 823.65 71 1134.38 103 1608.61 135 2153.34 
8 508.22 40 833.83 72 1144.48 104 1618.71 136 2163.43 
9 518.39 41 844.00 73 1154.58 105 1628.81 137 2173.53 
10 528.57 42 854.18 74 1164.68 106 1638.81 138 2183.63 
11 538.74 43 864.35 75 1174.77 107 1648.90 139 2193.73 
12 548.92 44 874.53 76 1184.87 108 1659.00 140 2203.83 
13 559.09 45 884.70 77 1194.97 109 1669.10 141 2213.93 
14 569.27 46 894.88 78 1205.07 110 1679.20 142 2224.03 
15 579.45 47 905.05 79 1215.17 111 1689.30 143 2234.12 
16 589.62 48 915.23 80 1225.17 112 1699.40 144 2244.22 
17 599.80 49 925.41 81 1235.27 113 1709.50 145 2254.22 
18 609.97 50 922.54 82 1245.36 114 1719.60 146 2264.32 
19 620.15 51 932.64 83 1255.46 115 1729.70 147 2274.42 
20 630.32 52 942.73 84 1265.56 116 1739.70 148 2284.52 
21 640.50 53 952.82 85 1275.66 117 1749.79 149 2294.61 
22 650.67 54 962.91 86 1285.76 118 1759.89 150 2304.71 
23 660.85 55 972.99 87 1295.86 119 1769.99 151 2314.81 
24 671.02 56 983.08 88 1305.96 120 1780.09 152 2324.91 
25 681.20 57 993.17 89 1316.05 121 1790.19 153 2335.01 
26 691.37 58 1003.30 90 1326.05 122 2022.25 154 2345.11 
27 701.55 59 1013.30 91 1336.15 123 2032.35 155 2355.21 
28 711.72 60 1023.40 92 1497.63 124 2042.45 
29 721.90 61 1033.49 93 1507.73 125 2052.45 
30 732.07 62 1043.59 94 1517.83 126 2062.55 
31 742.25 63 1053.69 95 1527.92 127 2072.65 
32 752.43 64 1063.79 96 1537.92 128 2082.75 
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APPENDIX XIV 
NWST WETLAND SAMPLE TYPES 

ES34 Treed Bog (Black spruce I sphagnum: organic soil) 

ES39 Open Bog (Ericaceus shrub I sedge I sphagnum: organic soil) 

ES40 Treed Fen (Tamarack-black spruce I sphagnum: organic soil) 
! ···-~----------···-,.·- ·--···- -~----- ------ ------------ -------··· 

ES41 Open Poor Fen (Ericaceous shrub-sedge I sphagnum: organic soil) 
-------------- . ---------- ---- ------- -------- -------- . -------

http://i-.il
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ES42 Open Moderately Rich Fen (Ericaceous shrub I sedge: organic soil) 
- . - ~- ' ' --·--

ES4,~ __ Shor~_F en_(Qrga!_li_c soil}_ __ 

ES4 7 Sheltered Marsh (Emergent sedimentary peat substrate) r------ ------- --- --------- ------------------------ . ---------------

1"~ I 

ES48 Exposed Marsh (Emergent mineral substrate) 
······--·--·-···· 
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APPENDIX XV 
TM PRINCIPAL COMPONENT IMAGES 

PCl PC2 

PC5 PC6 
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APPENDIX XVI 
EIGEN MATRIX FROM HYPERION PCA 

Band PC 1 PC2 PC3 PC4 PC5 PC6 PC 155 

0.025 0.035 -0.176 -0.127 0.030 0.029 -0.234 
2 0.020 0.037 -0.142 -0.103 0.025 0.020 -0.236 
3 0.019 0.038 -0.133 -0.097 0.024 0.015 -0.996 
4 0.021 0.038 -0.145 -0.105 0.026 0.020 -0.689 
5 0.020 0.041 -0.134 -0.097 0.025 0.017 0.100 
6 0.020 0.040 -0.135 -0.096 0.024 0.019 0.556 
7 0.019 0.044 -0.125 -0.090 0.023 0.015 0.106 
a 0.020 0.042 -0.125 -0.090 0.023 0.016 0.120 
9 0.025 0.043 -0.132 -0.094 0.025 0.016 0.322 
10 0.032 0.037 -0.142 -0.101 0.026 0.018 0.701 
11 0.034 0.035 -0.131 -0.094 0.025 0.014 0.828 
12 0.038 0.036 -0.136 -0.098 0.027 0.014 0.537 
13 0.038 0.036 -0.133 -0.096 0.026 0.014 0.506 
14 0.036 0.042 -0.136 -0.097 0.028 0.017 0.905 
15 0.034 0.048 -0.141 -0.101 0.029 0.020 -0.992 
16 0.032 0.052 -0.137 -0.097 0.028 0.020 -0.759 
17 0.032 0.055 -0.140 -0.099 0.029 0.021 -0.742 
18 0.031 0.056 -0.135 -0.095 0.028 0.020 0.177 
19 0.028 0.059 -0.125 -0.088 0.026 0.018 -0.237 
20 0.028 0.061 -0.125 -0.088 0.026 0.019 0.055 
21 0.027 0.063 -0.123 -0.085 0.026 0.018 0.269 
22 0.026 0.065 -0.119 -0.083 0.025 0.016 -0.429 
23 0.025 0.066 -0.120 -0.083 0.024 0.016 0.813 
24 0.022 0.067 -0.106 -0.074 0.022 0.011 -1.099 
25 0.023 0.069 -0.106 -0.073 0.021 0.010 0.678 
26 0.025 0.069 -0.108 -0.074 0.022 0.011 -0.124 
27 0.036 0.061 -0.117 -0.079 0.024 0.013 -2.748 
28 0.066 0.023 -0.098 -0.072 0.022 -0.001 0.407 
29 0.086 -0.013 -0.074 -0.062 0.013 -0.023 1.438 
30 0.104 -0.051 -0.043 -0.048 0.002 -0.053 -0.383 
31 0.117 -0.078 -0.018 -0.039 -0.005 -0.075 1.104 
32 0.126 -0.093 -0.002 -0.035 -0.008 -0.084 -2.534 
33 0.130 -0.101 0.007 -0.033 -0.012 -0.096 0.726 
34 0.127 -0.098 0.004 -0.028 -0.013 -0.093 0.400 
35 0.128 -0.097 0.008 -0.029 -0.011 -0.090 -0.204 
36 0.128 -0.096 0.005 -0.031 -0.010 -0.088 -0.144 
37 0.129 -0.096 0.010 -0.027 -0.011 -0.089 -0.239 
38 0.126 -0.091 0.002 -0.033 -0.008 -0.079 -0.559 
39 0.125 -0.090 0.001 -0.031 -0.009 -0.080 0.231 
40 0.125 -0.091 0.010 -0.024 -0.011 -0.083 0.246 
41 0.127 -0.091 0.011 -0.024 -0.010 -0.083 0.015 
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42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 

PC 1 

0.127 
0.127 
0.128 
0.126 
0.125 
0.124 
0.124 
0.118 
0.120 
0.098 
0.094 
0.105 
0.105 
0.106 
0.104 
0.107 
0.107 
0.104 
0.104 
0.106 
0.107 
0.110 
0.109 
0.109 
0.111 
0.107 
0.107 
0.108 
0.105 
0.097 
0.094 
0.090 
0.093 
0.092 
0.092 
0.094 
0.092 
0.094 
0.095 
0.097 
0.098 
0.098 
0.101 
0.100 

PC2 

-0.090 
-0.088 
-0.090 
-0.086 
-0.083 
-0.081 
-0.078 
-0.069 
-0.072 
-0.060 
-0.051 
-0.054 
-0.055 
-0.057 
-0.055 
-0.056 
-0.055 
-0.052 
-0.052 
-0.053 
-0.054 
-0.054 
-0.054 
-0.053 
-0.053 
-0.051 
-0.050 
-0.046 
-0.043 
-0.038 
-0.031 
-0.025 
-0.023 
-0.021 
-0.019 
-0.018 
-0.016 
-0.017 
-0.018 
-0.019 
-0.018 
-0.018 
-0.018 
-0.019 

PC 3 

0.009 
0.008 
0.016 
0.008 
0.003 
-0.001 
-0.012 
-0.046 
0.005 
0.020 
-0.022 
-0.033 
0.003 
0.041 
0.032 
0.027 
0.024 
0.011 
0.012 
0.004 
0.005 
0.010 
0.011 
0.007 
0.002 
0.011 
0.023 
-0.004 
-0.013 
0.016 
0.011 
0.022 
0.020 
0.023 
0.025 
0.021 
0.011 
0.025 
0.026 
0.014 
0.008 
0.009 
0.005 
0.014 
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PC4 

-0.026 
-0 026 
-0.021 
-0.025 
-0.030 
-0.030 
-0.036 
-0.057 
-0.007 
0.008 
-0.018 
-0.022 
0.003 
0.029 
0.023 
0.019 
0.017 
0.007 
0.008 
0.002 
0.004 
0.007 
0.007 
0.005 
0.001 
0.008 
0.016 
-0.003 
-0.005 
0.018 
0.016 
0.025 
0.023 
0.025 
0.027 
0.024 
0.017 
0.027 
0.028 
0.020 
0.016 
0.016 
0.015 
0.021 

PC 5 

-0.009 
-0.009 
-0.010 
-0.008 
-0.006 
-0.006 
-0.004 
0.001 
-0.001 
-0.003 
0.003 
0.004 
-0.001 
-0.006 
-0.004 
-0.003 
-0.002 
0.000 
0.000 
0.001 
0.001 
0.001 
0.001 
0.002 
0.003 
0.001 
0.000 
0.004 
0.003 
-0.001 
-0.001 
-0.002 
-0.001 
-0.002 
-0.002 
-0.001 
0.001 
-0.001 
-0.001 
0.001 
0.002 
0.002 
0.003 
0.001 

PC 6 

-0.081 
-0.080 
-0.082 
-0.076 
-0.067 
-0.066 
-0.061 
-0.047 
0.033 
0.042 
0.048 
0.049 
0.037 
0.026 
0.027 
0.031 
0.032 
0.032 
0.032 
0.036 
0.037 
0.038 
0.038 
0.040 
0.043 
0.040 
0.040 
0.056 
0.065 
0.047 
0.046 
0.038 
0.038 
0.036 
0.036 
0.039 
0.041 
0.039 
0.039 
0.042 
0.043 
0.043 
0.045 
0.041 

PC 155 

0.088 
0.064 
-0.069 
-0.110 
-0.470 
0.250 
0.132 
0.357 
0.582 
-0.087 
0.154 
0.282 
0.208 
-0.050 
-0.135 
-0.137 
-0.141 
-0.041 
-0.037 
-0.066 
-0.174 
-0.291 
-0.090 
-0.112 
0.031 
-0.183 
-0.357 
-0.180 
0.163 
0.069 
0.049 
0.064 
0.089 
0.123 
0.174 
0.214 
0.311 
0.270 
0.202 
0.304 
0.293 
0.323 
0.464 
0.446 
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86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

PC 1 

0.100 
0.100 
0.098 
0.093 
0.092 
0.096 
0.055 
0.058 
0.059 
0.063 
0.067 
0.069 
0.068 
0.071 
0.070 
0.073 
0.072 
0.073 
0.074 
0.073 
0.078 
0.078 
0.077 
0.078 
0.077 
0.078 
0.076 
0.075 
0.076 
0.077 
0.078 
0.075 
0.072 
0.071 
0.068 
0.066 
0.030 
0.029 
0.031 
0.023 
0.053 
0.050 
0.039 
0.041 

PC2 

-0.017 
-0.014 
-0.010 
-0.005 
0.001 
0.001 
0.098 
0.096 
0.094 
0.092 
0.086 
0.081 
0.075 
0.072 
0.070 
0.070 
0.066 
0.064 
0.063 
0.060 
0.063 
0.062 
0.061 
0.060 
0.060 
0.061 
0.061 
0.061 
0.063 
0.066 
0.071 
0.073 
0.073 
0.073 
0.079 
0.079 
0.151 
0.156 
0.181 
0.203 
0.155 
0.150 
0.146 
0.144 

PC 3 

0.014 
0.016 
0.018 
0.019 
0.018 
0.035 
-0.006 
-0.001 
0.022 
0.027 
-0.002 
-0.001 
-0.002 
-0.004 
0.010 
0.010 
0.006 
0.022 
0.013 
0.013 
0.017 
0.016 
0.014 
0.008 
0.015 
0.019 
0.016 
0.020 
0.016 
0.004 
0.025 
0.038 
0.022 
0.014 
0.069 
0.088 
0.027 
0.061 
0.063 
0.138 
-0.040 
-0.007 
0.050 
0.048 
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PC4 

0.021 
0.023 
0.025 
0.027 
0.026 
0.040 
0.014 
0.017 
0.033 
0.037 
0.018 
0.019 
0.018 
0.017 
0.027 
0.027 
0.023 
0.035 
0.030 
0.029 
0.032 
0.032 
0.030 
0.026 
0.031 
0.034 
0.031 
0.034 
0.030 
0.022 
0.038 
0.047 
0.036 
0.029 
0.069 
0.082 
0.026 
0.053 
0.025 
0.041 
-0.015 
0.010 
0.040 
0.038 

PC 5 

0.001 
0.001 
0.001 
0.000 
0.000 
-0.002 
0.005 
0.005 
0.001 
0.001 
0.005 
0.004 
0.004 
0.004 
0.002 
0.003 
0.003 
0.001 
0.002 
0.002 
0.002 
0.002 
0.002 
0.003 
0.002 
0.001 
0.001 
0.001 
0.001 
0.003 
0.001 
-0.001 
0.001 
0.002 
-0.006 
-0.010 
-0.001 
-0.005 
-0.004 
-0.015 
0.010 
0.005 
-0.002 
-0.001 

PC6 

0.042 
0.043 
0.042 
0.040 
0.041 
0.046 
0.010 
0.011 
0.003 
0.005 
0.015 
0.016 
0.018 
0.020 
0.018 
0.021 
0.021 
0.019 
0.025 
0.026 
0.026 
0.027 
0.026 
0.028 
0.024 
0.024 
0.024 
0.023 
0.023 
0.026 
0.021 
0.017 
0.019 
0.020 
0.008 
0.005 
-0.066 
-0.063 
-0.040 
-0.064 
-0.055 
-0.056 
-0.037 
-0.033 

PC 155 

0.343 
0.280 
0.154 
0.153 
-0.042 
-0.154 
0.241 
0.221 
0.159 
0.148 
0.152 
0.054 
0.093 
0.093 
-0.202 
-0.073 
0.052 
0.001 
-0.181 
-0.265 
-0.177 
-0.262 
-0.356 
-0.305 
-0.350 
-0.525 
-0.173 
-0.151 
0.016 
0.070 
-0.100 
-0.168 
-0.401 
-0.472 
-0.963 
-0.844 
-0.215 
-0.576 
0.419 
1.196 
0.774 
0.725 
0.811 
0.928 
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Band PC 1 PC2 PC 3 PC4 PC 5 PC 6 PC 155 

130 0.049 0.141 0.031 0.032 0.001 -0.027 0.245 
131 0.049 0.131 0.020 0.024 0.002 -0.023 0.122 
132 0.047 0.126 -0.008 0.000 0.006 -0.003 0.710 
133 0.049 0.131 -0.004 0.003 0.006 -0.003 0.731 
134 0.051 0.117 0.013 0.027 0.001 -0.017 -0.328 
135 0.050 0.118 0.031 0.041 -0.002 -0.022 -0.655 
136 0.045 0.140 0.081 0.061 -0.004 -0.027 -0.589 
137 0.045 0.136 0.080 0.061 -0.004 -0.025 -0.607 
138 0.052 0.101 -0.017 0.005 0.007 0.002 -0.333 
139 0.049 0.095 -0.001 0.016 0.004 0.000 -0.409 
140 0.046 0.110 0.073 0.061 -0.004 -0.021 0.337 
141 0.047 0.109 0.065 0.056 -0.003 -0.017 0.344 
142 0.058 0.100 -0.021 0.005 0.006 0.007 0.001 
143 0.060 0.104 -0.013 0.010 0.005 0.005 0.041 
144 0.045 0.109 0.093 0.072 0.012 -0.026 -0.564 
145 0.046 0.104 0.054 0.041 0.019 -0.018 -0.175 
146 0.048 0.095 -0.007 0.009 0.002 -0.006 0.405 
147 0.050 0.095 -0.037 -0.012 0.005 0.000 0.594 
148 0.044 0.096 0.030 0.034 -0.001 -0.017 -0.022 
149 0.039 0.107 0.091 0.076 -0.009 -0.039 -0.229 
150 0.047 0.115 0.026 0.035 -0.007 -0.023 -0.381 
151 0.050 0.110 -0.027 -0.002 -0.001 -0.011 -0.164 
152 0.050 0.094 -0.088 -0.049 0.017 0.014 -0.065 
153 0.043 0.100 -0.037 -0.014 0.011 -0.001 -0.170 
154 0.043 0.091 -0.091 -0.035 -0.079 0.012 -0.321 
155 0.043 0.099 -0.092 -0.028 -0.118 0.009 -0.448 
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APPENDIX XVII 
FIRST SIX HYPERION PRINCIPAL COMPONENT IMAGES 

PCl PC2 

PC3 PC4 

PC5 PC6 



Band 1 2 3 
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APPENDIX XVIII 
POOLED WITHIN-GROUPS CORRELATION MATRIX SHOWING AVERAGE 

CORRELATIONS BETWEEN HYPERION'S FIRST 19 BANDS 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1.00 0.72 0.75 0.75 0.74 0.72 0.73 0.72 0.72 0.70 0.67 0.65 0.64 0.65 0.65 0.65 0.64 0.63 0.62 
2 0.72 1.00 0.82 0.84 0.83 0.82 0.81 0.82 0.82 0.80 0.76 0.74 0.73 0.74 0.75 0.74 0.73 0.72 0.70 
3 0.75 0.82 1.00 0.89 0.88 0.86 0.86 0.86 0.86 0.83 0.79 0.77 0.76 0.77 0.78 0.77 0.76 0.76 0.74 
4 0.75 0.84 0.89 1.00 0.91 0.90 0.90 0.90 0.89 0.86 0.81 0.80 0.79 0.81 0.82 0.82 0.81 0.81 0.79 
5 0.74 0.83 0.88 0.91 1.00 0.93 0.93 0.92 0.91 0.88 0.83 0.81 0.81 0.84 0.85 0.85 0.84 0.84 0.83 
6 0.72 0.82 0.86 0.90 0.93 1.00 0.94 0.94 0.93 0.87 0.83 0.81 0.80 0.83 0.86 0.87 0.87 0.87 0.86 
7 0.73 0.81 0.86 0.90 0.93 0.94 1.00 0.95 0.94 0.89 0.84 0.82 0.82 0.85 0.88 0.90 0.89 0.89 0.88 
8 0.72 0.82 0.86 0.90 0.92 0.94 0.95 1.00 0.95 0.91 0.86 0.85 0.85 0.88 0.90 0.91 0.91 0.91 0.90 
9 0.72 0.82 0.86 0.89 0.91 0.93 0.94 0.95 1.00 0.95 0.92 0.91 0.90 0.92 0.93 0.93 0.92 0.92 0.90 
10 0.70 0.80 0.83 0.86 0.88 0.87 0.89 0.91 0.95 1.00 0.97 0.96 0.96 0.96 0.95 0.93 0.90 0.89 0.86 
11 0.67 0.76 0.79 0.81 0.83 0.83 0.84 0.86 0.92 0.97 1.00 0.98 0.98 0.96 0.94 0.91 0.88 0.86 0.83 
12 0.65 0.74 0.77 0.80 0.81 0.81 0.82 0.85 0.91 0.96 0.98 1.00 0.98 0.97 0.94 0.91 0.88 0.86 0.83 
13 0.64 0.73 0.76 0.79 0.81 0.80 0.82 0.85 0.90 0.96 0.98 0.98 1.00 0.98 0.95 0.92 0.90 0.88 0.84 
14 0.65 0.74 0.77 0.81 0.84 0.83 0.85 0.88 0.92 0.96 0.96 0.97 0.98 1.00 0.98 0.96 0.93 0.92 0.89 
15 0.65 0.75 0.78 0.82 0.85 0.86 0.88 0.90 0.93 0.95 0.94 0.94 0.95 0.98 1.00 0.98 0.97 0.96 0.94 
16 0.65 0.74 0.77 0.82 0.85 0.87 0.90 0.91 0.93 0.93 0.91 0.91 0.92 0.96 0.98 1.00 0.98 0.98 0.97 
17 0.64 0.73 0.76 0.81 0.84 0.87 0.89 0.91 0.92 0.90 0.88 0.88 0.90 0.93 0.97 0.98 1.00 0.98 0.98 
18 0.63 0.72 0.76 0.81 0.84 0.87 0.89 0.91 0.92 0.89 0.86 0.86 0.88 0.92 0.96 0.98 0.98 1.00 0.98 
19 0.62 0.70 0.74 0.79 0.83 0.86 0.88 0.90 0.90 0.86 0.83 0.83 0.84 0.89 0.94 0.97 0.98 0.98 1.00 
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APPENDIX XIX 
POOLED WITHIN-GROUPS CORRELATION MATRIX SHOWING AVERAGE 

CORRELATIONS BETWEEN SELECTED BANDS IN DFA STEP 16 
USED IN LEVEL 1 CLASSIFICATION 

Band 7 14 26 27 28 31 40 57 82 84 86 89 92 114 120 138 Number 

7 1.00 0.85 0.82 0.78 0.49 0.12 0.11 0.18 0.29 0.30 0.30 0.33 0.64 0.53 0.54 0.62 
14 0.85 1.00 0.74 0.82 0.76 0.42 0.39 0.45 0.54 0.54 0.55 0.56 0.66 0.65 0.64 0.62 
26 0.82 0.74 1.00 0.92 0.49 0.04 0.06 0.16 0.29 0.30 0.30 0.35 0.80 0.60 0.65 0.77 
27 0.78 0.82 0.92 1.00 0.74 0.32 0.33 0.41 0.52 0.53 0.53 0.56 0.82 0.73 0.74 0.78 
28 0.49 0.76 0.49 0.74 1.00 0.82 0.82 0.84 0.86 0.86 0.86 0.84 0.59 0.75 0.68 0.52 
31 0.12 0.42 0.04 0.32 0.82 1.00 0.99 0.96 0.90 0.90 0.89 0.86 0.30 0.60 0.50 0.23 
40 0.11 0.39 0.06 0.33 0.82 0.99 1.00 0.97 0.91 0.91 0.90 0.87 0.32 0.62 0.52 0.25 
57 0.18 0.45 0.16 0.41 0.84 0.96 0.97 1.00 0.96 0.96 0.96 0.93 0.44 0.72 0.63 0.37 
82 0.29 0.54 0.29 0.52 0.86 0.90 0.91 0.96 1.00 0.99 0.99 0.98 0.61 0.85 0.77 0.54 
84 0.30 0.54 0.30 0.53 0.86 0.90 0.91 0.96 0.99 1.00 0.99 0.98 0.62 0.86 0.78 0.55 
86 0.30 0.55 0.30 0.53 0.86 0.89 0.90 0.96 0.99 0.99 1.00 0.99 0.63 0.86 0.78 0.55 

89 0.33 0.56 0.35 0.56 0.84 0.86 0.87 0.93 0.98 0.98 0.99 1.00 0.68 0.89 0.83 0.61 
92 0.64 0.66 0.80 0.82 0.59 0.30 0.32 0.44 0.61 0.62 0.63 0.68 1.00 0.90 0.92 0.92 
114 0.53 0.65 0.60 0.73 0.75 0.60 0.62 0.72 0.85 0.86 0.86 0.89 0.90 1.00 0.96 0.85 
120 0.54 0.64 0.65 0.74 0.68 0.50 0.52 0.63 0.77 0.78 0.78 0.83 0.92 0.96 1.00 0.87 

138 0.62 0.62 0.77 0.78 0.52 0.23 0.25 0.37 0.54 0.55 0.55 0.61 0.92 0.85 0.87 1.00 
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APPENDIX XX 
SPSS OUTPUT FOR LEVEL 1 DISCRIMINANT FUNCTION ANALYSIS USING 

HYPERION IMAGERY 

Wilks' Lambda 

Wilks' 
Test of Function(s} Lambda Chi-sguare df Sig. 
1 through 7 .000 6865.707 245 .000 
2 through 7 .004 4810.360 204 .000 
3 through 7 .038 2838.419 165 .000 
4 through 7 .208 1366.980 128 .000 
5 through 7 .529 554.451 93 .000 
6 through 7 .709 299.709 60 .000 
7 .867 123.832 29 .000 

Eigenvalues 

Canonical 
Function Eigenvalue % of Variance Cumulative % Correlation 
1 
2 
3 
4 
5 
6 
7 

9.603a 38.5 38.5 
8.634a 34.6 73.2 
4.421a 17.7 90.9 
1.543a 6.2 97.1 
.340a 1.4 98.5 
.224a .9 99.4 
.153a .6 100.0 

a. First 7 canonical discriminant functions were used in the 
analysis. 

.952 

.947 

.903 

.779 

.504 

.428 

.364 
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APPENDIX XXI 
STANDARDIZED CONICAL DISCRIMINANT FUNCTION COEFFICIENTS 

FOR HYPERION LEVEL 1 CLASSIFICATION 

Band Function 
Number 1 2 3 4 

3 0.20 -0.06 0.36 0.23 
6 -0.37 -0.16 -0.14 0.25 
7 -0.20 -0.23 0.49 0.27 

11 0.04 -0.64 0.49 -0.95 
12 -0.89 0.29 -0.34 -0.71 
14 0.22 0.46 -0.29 0.50 
17 0.03 -0.13 -0.90 1.17 
26 0.75 0.49 1.37 -0.14 
27 -0.32 0.89 -1.24 -0.28 
28 0.97 -2.08 -0.47 0.31 
31 0.50 2.12 0.81 -3.33 
32 2.81 -0.02 0.34 -0.48 
33 1.47 0.60 0.93 -0.88 
34 0.21 -1.37 1.33 3.13 
44 -2.82 0.26 -1.61 0.21 
47 -1.15 -0.22 -0.33 0.91 
50 -0.11 -0.44 0.16 0.24 
57 0.19 -0.76 1.09 0.92 
62 -0.53 0.50 -0.86 -1.89 
69 -0.07 -0.65 0.59 0.79 
74 -0.18 0.15 0.75 1.61 
77 0.11 -0.86 0.96 0.83 
79 -0.36 -0.52 0.76 2.55 
82 -1.78 -1.26 0.31 2.00 
84 -0.23 2.07 -1.98 -1.21 
86 0.00 2.18 -2.27 -2.38 
88 0.48 1.09 -1.35 -1.90 
89 1.18 0.78 -0.07 -0.42 
92 -0.61 -0.19 0.21 -0.67 
97 -0.16 0.33 0.18 1.08 
111 0.73 -1.12 0.53 -0.72 
114 -0.58 -1.14 0.69 0.15 
120 0.73 -0.31 0.01 -0.16 
136 0.28 -0.18 0.26 0.03 
138 0.66 0.19 -0.09 -0.42 
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APPENDIX XXII 
SPSS OUTPUT FOR LEVEL 2 DISCRIMINANT FUNCTION ANALYSIS 

SEPARATING BLACK SPRUCE AND JACK PINE 

Wilks' Lambda 

Wilks' 
Test of Function(s) Lambda Chi-square df Sig. 
1 .165 403.259 22 .000 

Eigenvalues 

Canonical 
Function Eigenvalue % of Variance Cumulative % Correlation 
1 5.051 8 100.0 100.0 

a. First 1 canonical discriminant functions were used in the 
analysis. 

Function 1 standardized conical DF coefficients 

Band Coefficient Band Coefficient 

7 0.422 68 -1.492 
8 -0.578 73 1.255 
10 0.588 90 -1.090 
14 0.687 94 0.964 
17 0.535 96 0.834 
25 -0.631 110 -1.074 
40 -2.766 125 0.283 
41 2.289 128 -0.352 
52 -0.330 138 -0.468 
56 -0.687 149 -0.255 
59 2.147 153 0.278 

.914 
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APPENDIX XXIII 
SPSS OUTPUT FOR LEVEL 2 DISCRIMINANT FUNCTION ANALYSIS 

SEPARATING SPARSE AND DENSE DECIDUOUS 

Wilks' Lambda 

Wilks' 
Test of Function(s) Lambda Chi-square df Sig. 
1 .192 280.154 17 .000 

Eigenvalues 

Canonical 
Function Eigenvalue % of Variance Cumulative % Correlation 
1 4.2228 100.0 100.0 

a. First 1 canonical discriminant functions were used in the 
analysis. 

.899 

Function 1 standardized conical discriminant function coefficients for all selected 
stepwise bands 

Band Function 1 Band Function 1 

7 -.342 110 -.879 
23 -.278 113 .809 
67 -1.504 115 .857 
77 2.445 120 .415 
79 1.727 130 .499 
80 -1.230 137 -.242 
90 -.819 138 -.873 
99 -.467 139 .502 
104 -.514 
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APPENDIX XXIV 
FINAL (LEVEL 2) CLASSIFIED LANDSAT IMAGE USING A PIXEL-BASED 

SUPERVISED CLASSIFIER WITH SIX BANDS 

l.egend 
CJ Clm.Jd:-"Backgmund 
.. V~"ater 
f 7 ·.. l 1i1VeUarnd 
~ Black Spruce 
..... tac:kPine 
c=J r~~·lixed1.1\I'Ood 
- Dernse [)edduous 
~~~ Sparse Deciduous 
[ jCILlli: 
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XXV 
FINAL (LEVEL 2) CLASSIFIED HYPERION IMAGE USING A PIXEL-BASED 

SUPERVISED CLASSIFIER WITH STEPWISE DF A BANDS 

L.egend 

D Cloud/Background 
- '1l!1'ater 
C J V\11'atlanrl 
-Black Spruce 

Jack Pine 
Pvb:edwo.od 

-Dense De·ciduous 
Sparse De·ciduous 

CJCut 
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APPENDIX XXVI 
FINAL CLASSIFIED LANDSAT IMAGE USING AN OBJECT-ORIENTED 

SUPERVISED CLASSIFIER WITH SIX BANDS 

l':i • le.,tell l'Flnan ' ' 0 Island 
c':' • Land 

~~, e co.nifel' 
.. Black Sprw:::e e Jack Pine 

0 Cut 
-· e Deciduous 

e Dense 
e Sparse 

• Mi:xed'INO<Od e ·~;vetland 

:....: e V1/ater 
e Lake:: Large (>5 sq km} e Lake: Medium {1-5 sq km} e Lake·: SmaH (0 .. 1-1 sq km} 
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XXVII 
FINAL CLASSIFIED HYPERION IMAGE USING AN OBJECT -ORIENTED 

SUPERVISED CLASSIFIER WITH STEPWISE DFA BANDS 

!.:.! e Conifer e Black Spruce 
• Jack Pine 

Ocut 
..:1 e Deciduous 

·• D•ense e Sp·arse 
8 Mi:xed'wood 
f) ·v~.retland 

-~ e Vr.l'ater e Lake:. Large (>5 sq krn} e Lake: Medium (1-5 sq km) e Lake: Small (0 .. 1-1 sq km} 
Other:: 


