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ABSTRACT 

Miller, S.T. 2010. Is wood characteristics mapping an opportunity to optimize 
the value chain in northwestern Ontario? A case study considering eastern 
larch (Larix laricina (Du Roi) K. Koch) grown in the Thunder Bay district. 241 
pp. 

Keywords: eastern larch, northwestern Ontario tree species, value chain 
optimization, wood characteristics mapping, wood morphology, wood products. 

Wood characteristic mapping was considered as a means for optimizing 
the value chain of northwestern Ontario tree species. A literature review was 
completed which investigated the relationship of wood morphology to wood 
characteristics and end use as related to potential opportunities for northwestern 
Ontario. It was found that there was insufficient study on the area of interest to 
make any definitive conclusions; save that research is needed. The literature 
did, however, provide a general understanding on issues being assessed. 

Based on the findings of the literature review, a case study on mapping 
wood characteristics of eastern larch (Larix laricina (Du Roi) K. Koch) grown in 
the Thunder Bay district was completed. It was found that the greatest 
variability displayed by eastern larch wood grown in Thunder Bay district was 
between sites and radial position within trees. In all cases of statistical analysis, 
variance between sites was significant. Radial variability was significant for all 
the selected wood properties tested except for MOE perpendicular to the grain. 
Longitudinal or axial variability was significant in all the selected wood properties 
tested except for wood density. 

Breast height sampling was found to be unsuitable for wood 
characteristics mapping since it only provides a general understanding of the 
grand means for the selected wood properties. The findings indicated that 
breast height sampling becomes less useful in second growth and small 
diameter trees, which would have a higher proportion of reaction wood than old 
growth stands at that axial position. 

It was found that eastern larch is unique in that it has the morphology of a 
softwood but displays wood properties variance patterns which are more 
consistent with hardwoods. The results of the eastern larch case study indicate 
that eastern larch has fairly homogeneous wood properties within the stem with 
respect to end use design criteria and that a predictive model for the species is 
possible. 

Wood characteristics mapping of eastern larch grown in the Thunder Bay 
district was found to be possible. It was found that mapping of wood 
characteristics of eastern larch would allow the forest sector of northwestern 
Ontario to optimize the value and increase the overall value of eastern larch by 
as much as 31%. 
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1.0 Introduction 

The demand for forest products traditionally produced in Canada has 

levelled off in recent years as a result of a variety of offshore issues, while over 

the last 10 years the overall demand for wood products throughout the world has 

increased. According to the literature, Canada's wood products exports have 

been diminishing since 2000 (Figure 1) (Statistics Canada, 201 0), while world 

wide demand for wood products has increased steadily in areas including bio-

fuels, engineered wood products, wood composite products and value-added 

products (Roberts, 2007). The problem seems to stem from the approach the 

Canadian forest sector uses to develop their product lines, and how they deal 

with their clients. 
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Figure 1. Export value of wood products and pulp and paper manufacturing subsectors 
(Statistics Canada 201 0). 

The forest sector in Canada has traditionally used a product push versus 

pull approach in developing products for sale. They identify a product that can 

be produced cost effectively, and maximize efforts to produce a low cost product 

for massive sales. However, this approach does not seem to be working in the 
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changing global market place due to the emergence of many low cost products. 

A more responsive Canadian forest sector must identify which products are in 

demand, and what are the best tree species and manufacturing processes 

needed to supply the products that customers require. This market-response 

approach requires a research-based understanding of the useful characteristics 

and limitations of the harvestable wood. 

1. 1 Forestry- economic engine 

Today, the forest sector continues to be an integral part of the Canadian 

economy and is the largest natural resource based sector. The Canadian forest 

sector has two main manufacturing subsectors: wood products manufacturing, 

which includes value-added wood products; and pulp and paper manufacturing. 

Between 1999 and 2005 the wood products manufacturing subsector had a 

steadily increasing Gross Domestic Product (GOP) (Figure 2) (Statistic Canada, 

201 0). By 2004 the Canadian forest sector was impressive by any measure of 

economic activity (Pricewaterhouse Coopers, 2004): 

• $50.7 billion total sales, with exports contributing $39.5 billion 

• $1.4 billion net earnings; making $7.2 billion in payments to various levels 
of government 

• 10.4% of total Canadian exports, adding $32.8 billion to Canada's trade 
balance 

• 895,000 jobs, through direct and indirect employment. 
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Figure 2. GOP of wood products manufacturing subsector (Statistics Canada 2010). 

In contrast to the wood products subsector, the pulp and paper subsector 

has had a relatively flat GOP growth between 2000 and 2005, and has negative 

growth in GOP for the last 5 years (Figure 3) (Statistic Canada, 201 0). 

However, despite these problems the forest sector ranks second only to the 

automotive industry in terms of national economic impact, and is the largest 

source of employment in many regions of Canada, such as northwestern 

Ontario (Service Ontario, 2008; Natural Resources Canada, 2009). Ontario's 

forest industry is the major employer in more than 50 northern communities. 

Prior to the recent global recession, Ontario's forest sector employed almost 

90,000 people, producing over $15 billion a year in wood products and exporting 

over $9 billion. The forest sector is clearly one of Ontario's largest industries 

(Pricewaterhouse Coopers, 2004; Rosehart, 2008; Service Ontario, 2008). 
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Figure 3. GOP of the pulp and paper manufacturing subsector (Statistics Canada 2010). 

Unfortunately, 88.8% of these exports were to the United States, a 

market which has been in decline since 2006 (Table 1). Such a heavy 

dependence on a single market has placed the forest industry in northwestern 

Ontario on the verge of collapse. 

Table 1. Wood products manufacturing- top 3 export markets (Statistics Canada 2010). 
Country 2005 2006 2007 2008 2009 
United States 88.8% 86.4% 82.1% 77.4% 74.3% 
China 6.0% 6.9% 7.1% 9.1% 9.4% 
Japan 0.5% 0.6% 1.2% 2.2% 4.8% 

The Ontario Government understood the significance of the forest 

industry when it created the Minister's Council on Forest Sector 

Competitiveness. The purpose of the council was to remove barriers to maintain 

a sustainable industry which "is the economic bedrock of Northern Ontario." The 

report stated that more than 40 communities rely on the forest industry for jobs 

and revenue; and for some, "the industry is the only major employer." The 
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Council has made a number of recommendations to close the competitiveness 

gap with global markets (Millard, 2005). 

1.1.1 Objectives 

The broad goal of this thesis is to review the current state of knowledge 

regarding the wood characteristics of northwestern Ontario tree species and 

identify new market opportunities for the region's forest sector using wood 

characteristics mapping. The purpose of this thesis is to assess whether wood 

characteristics mapping of northwestern Ontario tree species will increase the 

understanding of the available wood resources in the region to match end use 

characteristics with the wood characteristics at harvest. 

To accomplish the objectives of this thesis, the paper is divided into two 

broad sections of research: 

1. investigation of the relationship between wood morphology and 
wood quality, using secondary information on northwestern Ontario 
tree species; and 

2. mapping the wood characteristics of eastern larch (Larix laricina 
(Du Roi) K. Koch), which encompasses destructive testing of wood 
specimens to determine the physical and mechanical wood 
properties for the species. 

It is anticipated that by understanding these key areas, we will assist the forest 

sector in determining which products can be made from wood grown in 

northwestern Ontario, allowing the forest sector to exploit its competitive 

advantages and overcome market risks. 
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1.1.1.1 Research questions 

To ensure the objectives of this thesis are met the following research 

questions were considered: 

1. Is research needed on the wood characteristics of northwestern 
Ontario tree species? 

2. Does the wood characteristics of eastern larch display axial and radial 
variability? 

3. Does the procedure of breast height sampling provide a reliable 
prediction of the overall wood properties of eastern larch? 

4. Is there significant correlation between relative density and 
mechanical properties of eastern larch to develop a predictive model? 

The scope of research question 1 was limited to the following commercial tree 

species, identified as important to northwestern Ontario by the Ontario Ministry 

of Natural Resources (Figure 4): 

• black spruce (Picea mariana (Mill.) B.S.P.); 

• trembling aspen (Populus tremuloides Michx.); 

• jack pine (Pinus banksiana Lamb.); 

• white birch (Betula papyrifera Marsh.); 

• balsam fir (Abies balsamea (L.) Mill.); 

• eastern white cedar (Thuja occidentalis L.); 

• eastern larch (Larix laricina (Du Roi) K. Koch); 

• white spruce Picea glauca (Moench) Voss; 

• red pine (Pinus resinosa Ait.); 

• eastern white pine (Pinus strobus L.); 

• black ash (Fraxinus nigra Marsh.); 

• red maple (Acer rubrum L.). 
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Figure 4. An overview of northwestern Ontario's forests (Service Ontario 2008). 

The remaining research questions are limited in scope to eastern larch grown in 

the Thunder Bay District. These questions comprise a case study, using 

eastern larch, which contemplates the importance of wood characteristics 

mapping to the forest sector, while considering the relevance and validity of the 

available research on northwestern Ontario tree species. 
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2.0 Literature review 

2. 1 Relationship of wood morphology to wood quality 

2.1.1 Tree growth 

Trees grow by converting sugars, manufactured in the leaves through the 

process of photosynthesis, into organic compounds, which support new cell 

growth. In the presence of chlorophyll, captured sunlight in the green leaves is 

combined with water from the soil and carbon dioxide from the air to form 

glucose and other five and six carbon sugars. The by-product of the 

manufacture of the sugar is oxygen (Wilson, 1984; Walker, 1989; Bowyer and 

Smith, 2000; Bowyer eta/ .. , 2003). 

Tree growth is dictated through genetic programming, which controls tree 

species responses to environmental conditions, thereby determining the range 

of growth. In northwestern Ontario, for example, each species has evolved to 

avoid mortality or damage due to frost and drought by initiating and terminating 

annual growth by responding to increased moisture and average air temperature 

between 6 to 8° C (Rossi eta/., 2007; Thibeault-Marte!, 2008; Rossi eta/., 2008; 

Gruber eta/., 2009). In the spring, once the minimum air temperature and 

moisture levels are present for a species, the roots transport water and stored 

nutrients to the crown of the tree to initiate bud burst. Wood growth begins after 

leaves are produced: 

1. Height growth; to expand the crown, and 

2. Diameter growth; to support the crown. 
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Research completed on cambial activity and wood growth, in the different parts 

of the tree, has produced contradictory results. What seems clear is that 

cambial activity and wood growth are highly variable within a tree, within a 

species, and between species. (Panshin and de Zeeuw, 1980; Wilson. 1984; 

Walker. 1989; Bowyer and Smith. 2000; Bowyer eta/., 2003; Rossi eta/., 2007; 

Thibeault-Marte!. 2008; Rossi eta/., 2008; Gruber eta/., 2009). 

2.1.1.1 Growth in height 

Height growth initiation closely follows the emergence of new leaves. 

Height growth is a result of repeated cell division of specialized reproducing cells 

in the tip of the main stem, the tips of the branches and the roots. These growth 

zones are areas of intense activity called apical meristems. As new cells are 

formed at the apical meristems, the specialized reproducing cells are pushed 

outward, leaving new tissue behind. The new cells, like bricks in a wall, are 

added to the top of an existing column of tissue, resulting in height growth 

(Panshin and de Zeeuw, 1980; Walker. 1989; Bowyer and Smith. 2000). 

As illustrated by Table 2, different species grow to different heights. The 

literature indicates that not much is known about the mechanism that controls 

total height growth, other than heredity. However, site conditions are always a 

factor in all cell growth (Probine, 1963; Burns and Honkala, 1990; Harlow eta/., 

1996; Powell, 2009). For example, white spruce grown in the Hudson Bay 

Lowland is shorter than is typical for the species (Jozsa, 2004). 
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Table 2. Variation of tree height within northwestern tree species (Zhang and Koubaa, 
2008; Burns and Honkala, 1990a; Burns and Honkala, 1990b . 

Percent 

Tree Species of NWO. Volume of 
NWO Average Maximum 

Forests Height (m) Height (m) 
black spruce (Picea mariana (Mill.) B.S.P.) 49.6 15.5 33.5 
trembling aspen (Populus tremuloides Michx.) 21.1 26.5 48.0 
lack pine (Pinus banksiana Lamb.) 14.6 20.0 30.5 
white birch (Betula papyrifera Marsh.) 5.2 21.0 26.5 
balsam fir (Abies balsamea (L.) Mill.) 4.1 18.0 27.4 
eastern white cedar (Thuja occidentalis L.) 1.7 15.2 24.4 
eastern larch (Larix laricina (Du Roi) K. Koch,) 1.7 20.0 35.1 
white spruce (Picea glauca (Moench) Voss) 1.2 30.0 55.0 
Other Conifers (incl. eastern white pine (Pinus 
strobus L.) and red pine (Pinus resinosa Ait.)) 0.6 26.8 61.0 
Other Hardwoods (Incl. red maple (Acer 
rubrum L.) and black ash (Fraxinus nigra 
Marsh.)) 0.2 28.0 26.5 

Trees in northwestern Ontario have not been studied to any great extent, 

however, the literature indicates that there is considerable variation between 

tree species and within species with regards to height of mature trees. Tree 

height is an important consideration when assessing the economic viability of 

harvesting and manufacturing wood products (British Columbia Forest Service, 

2002). 

2.1.1.2 Growth in diameter 

Diameter growth takes place in the vascular cambium, a lateral meristem 

zone, composed of a tangential band of one to several cells thick located just 

beneath the inner bark. This very thin cambium layer completely sheaths the 

stem and branches (Figure 5) (Panshin and de Zeeuw, 1980; Walker, 1989; 

Bowyer eta/., 2003). 
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Figure 5. Illustration of cambium growth (Bowyer eta/., 2003). 

The cambium cells have the capacity to divide repeatedly. These 

intensive activity cells may divide in one of two ways (Wilson, 1984; Walker, 

1989; Bowyer and Smith, 2000; Bowyer eta/., 2003). The first type of cambium 

division results in two new cells: 

• the first new cell remains in the cambium to further divide and produce of 
new cells; and 

• the second cell becomes either a xylem (wood cell) or phloem cell (bark 
cell). 

The second type of cambium cell division results in two new cambium cells in 

a tangential direction, both of which can divide and produce new cells. It is the 

dual role of the cambium cells that allows the cambium to increase in diameter 

as the tree diameter increases from new wood and bark cells (Figure 6) (Wilson, 

1984; Walker, 1989; Bowyer and Smith, 2000). 
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Figure 6. Cell division with the vascular cambium meristem (Bowyer and Smith 2000). 

Figure 7 shows the process of development from new cambial cell to 

wood cell. All the cells (cambium, wood, and bark) were formed by cell division 

within the vascular cambium meristem. This process of cell division and 

development causes the cambium cell to expand the diameter of the tree by 

pushing outward (Wilson, 1984; Walker, 1989; Bowyer and Smith, 2000). 

This process continues throughout the growing season, with the cambium 

producing new wood and new bark cells. However, the literature states that 

variation in diameter growth within a tree and a stand can vary greatly. The 

factors effecting growth are age, environmental conditions, and heredity. 

Heredity is thought to be the main cause for variation in diameter growth 

(Wilson, 1984; Walker, 1989; Bowyer and Smith, 2000; Bowyer eta/., 2003). 
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Figure 7. Growth in diameter- from cambium to wood and bark (Bowyer and Smith 2000). 

The role of the cambium sheath in diameter growth allows the tree to cover up 

branch stubs and other wounds during diameter growth. This also produces 

wood with different characteristics within a stem. As the tree ages the bole 

becomes free of branches and the tree produces wood with higher strength 

properties (Panshin and de Zeeuw, 1980; Walker, 1989; Bowyer eta/., 2003). 

As Figure 5 showed, diameter and height growth collectively constitute 

expansion of the cambium sheath. Thus, diameter growth, like height growth, is 

an important consideration when assessing the economic viability of harvesting 

and manufacturing wood products (British Columbia Forest Service, 2002). 

Heredity seems to be the primary mechanism affecting diameter growth; 

therefore, variation in diameter growth between species and within a species is 

considerable (Table 3) (Bowyer and Smith, 2000). 



14 

Table 3. Available data of variation of average ring width and percent of latewood for 
northwestern Ontario commercial species(Zhang and Koubaa 2008). 

Species Average Ring Width (mm) 
black spruce (Picea mariana (Mill.) B.S.P.) 2.51 to 4.05 
white spruce (Picea glauca (Moench) Voss) 1.66 to 4.03 

jack pine (Pinus banksiana Lamb.) 1.10to3.97 
red pine (Pinus resinosa Ait.) No data 
eastern white pine (Pinus strobus L.) No data 
eastern white cedar (Thuja occidentalis L.) No data 
eastern larch (Larix laricina (Du Roi) K. Koch,) 1.2 
balsam fir (Abies balsamea (L.) Mill.) 1.5 

trembling aspen (Populus tremuloides Michx.) No data 
black ash (Fraxinus nigra Marsh.) No data 
red maple (Acer rubrum L.) No data 
white birch (Betula papyrifera Marsh.) No data 

2.1.2 Wood anatomy 

Wood anatomy is important in defining the wood characteristics of a 

species. Features commonly identified in wood include: annual growth rings, 

consisting of alternating bands of earlywood and latewood; straight and spiral 

grain; microfibril angle; and tight and intergrown knots. It is important to 

understand why these features are formed in wood, as they affect the 

characteristics of the wood and the potential end uses of the wood. 

2.1.2.1 Formation of wood 

After cell division, a newly created wood cell lies just inside the cambium. 

This cell increases in diameter and length, and begins to develop a secondary 

wall layer. The cell has started the process of lignification, or hardening of 

tissue through the deposition of lignin during development of the secondary cell 

wall (Panshin and de Zeeuw, 1980; Bowyer and Smith, 2000; Bowyer eta/., 

2003). 
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Rays (Figure 8) provide radial transport of the sap, which contains the 

basic building blocks for the creation of cellulose, hemicellulose, and lignin, to 

the newly formed wood cells (Wilson, 1984; Walker, 1989; Bowyer and Smith, 

2000; Bowyer eta/., 2003; Panshin and de Zeeuw, 1980). 

Figure 8. One years' growth (Jozsa and Middleton 1994). 

Figure 9 shows the start of the development of the secondary cell wall, 

which forms as three distinct layers; S1, S2, and S3 (Bowyer and Smith, 2000; 

Bowyer eta/., 2003; Panshin and de Zeeuw, 1980). 

The S 1 layer forms with the coating of the ultra-thin inner surface of the 

primary wall. While S1 thickens, about four to six layers of microfibrils are 

deposited. Microfibril deposition within the S1 layer is oriented almost 

perpendicular to the long axis of the cell (Bowyer and Smith, 2000; Bowyer et 

a/., 2003; Panshin and de Zeeuw, 1980). 
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Figure 9. Development of secondary cell wall- disposition of microfibrils and lignification 
(Bowyer and Smith 2000). 

The S2 layer forms just to the inside of S1, but is 8 to 30 times thicker. 

Microfibril layering within the S2 layer ranges from 30 microfibril layers in 

earlywood (EW) to 120+ layers in latewood (LW). The heavy layering of 

latewood accounts for the dense wood cells. Microfibril deposition within the S2 

layer is oriented almost parallel to the long axis of the cell (or at no more than a 

15° to 30° angle from parallel) (Bowyer and Smith, 2000; Bowyer eta/., 2003; 

Panshin and de Zeeuw, 1980). 

The S3 layer forms just to the inside of S2, and is the same thickness as 

the S1. Similar to S1, S3 displays four to six layers of microfibrils. Microfibril 

deposition within the S3 layer, like within S1, is oriented almost perpendicular to 

the long axis of the cell (Bowyer and Smith, 2000; Bowyer eta/., 2003; Panshin 

and de Zeeuw, 1980). 
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Development of the S2 layer has the primary effect over wood quality due 

to its substantial volume relative to the S 1 and S3 Layers. Changes to the S2 

layer will affect wood quality greater than S1 and S3 layers combined. As the 

literature indicates, there is significant variation in S2 development within a stem 

and between species (Panshin and de Zeeuw, 1980). However, there has not 

been any direct research on the variability of S2 development within 

northwestern Ontario species. 

2.1.2.2 Sapwood and heartwood 

As growth slows in the fall, a surplus of photosynthate or sap starts to 

accumulate in the cambium. Most of the surplus sap is stored in the root system 

to support bud burst in the spring. Surplus sap, which has been delivered to the 

rays from the cambium, continues along the rays towards the pith, to the limit of 

radial movement associated with pit aspiration. Accumulated sugar-rich 

photosynthate begins to break down overtime and produce a variety of new 

compounds called extractives (Panshin and de Zeeuw, 1980; Mullins and 

McKnight, 1981; Jozsa and Middleton, 1994). 

Heartwood development creates unique properties that are directly 

related to the death of parenchyma cells and the character and quantity of 

extractives present. The accumulation of extractives generally causes the wood 

at the heart of the tree to become dark compared to the outer wood, thus 

making heartwood distinguishable from sapwood (Figure 1 0) (Panshin and de 

Zeeuw, 1980; Jozsa and Middleton, 1994; Hoadley, 2000). 
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Figure 10. Cross section showing the living and dead parts of the stem (Wilson 2003). 

Extractable compounds include waxes, oils, resins, fats, and tannins, 

along with aromatic and colouring materials. These compounds plug up the 

intricate structure of cell lumens and pits. The result is that cells near the centre 

of the tree are rendered non-functional as the extractives accumulate (Panshin 

and de Zeeuw, 1980; Jozsa and Middleton, 1994; Bowyer eta/., 2003). 

The development of heartwood does not change the thickness or 

structure of the wood's cell walls. The wood cells are just impregnated with a 

variety of compounds, resulting in a large area in which all of the cells are non-
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functional (Panshin and de Zeeuw, 1980; Jozsa and Middleton, 1994; Hoadley, 

2000; Bowyer eta/., 2003). 

The formation of heartwood also disrupts the movement of water between 

cells because all cell lumens and pits become plugged. Thus, there is generally 

no difference in the strength of sapwood and extracted heartwood (heartwood 

where the extractives are removed) at equal moisture content. However, 

heartwood tends to have lower moisture content than sapwood, which affects 

how the two regions of wood should be dried when processed. The plugged cell 

lumens and pits tend to make heartwood more difficult to impregnate with 

chemical treatments that prevent decay compared to sapwood (Panshin and de 

Zeeuw, 1980; Jozsa and Middleton, 1994; Bowyer eta/., 2003). 

As stated earlier, the unique properties of heartwood can be associated 

with the character and quantity of the extractives present. These properties 

could be a change in odour, as you would find in the heartwood of cedars 

(Thuja), or an increased resistance to decay and increased durability found in 

eastern larch (Larix Jaricina (Du Roi) K. Koch). Some extractives are toxic to or 

retard decay fungi.- If one or more of these extractives is present in sufficient 

quantity, the heartwood may have increased durability. Thus, while the 

heartwood would have increased durability there would be no change in 

durability to the sapwood of the same tree (Table 4) (Bowyer and Smith, 2000; 

Bowyer eta/., 2003; Jozsa and Middleton. 1994). 

The proportion of heartwood to sapwood can be highly variable between 

species and within species. Age, growth rate and site conditions all affect the 

proportion of heartwood to sapwood. Eastern larch sapwood is whitish, while 
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heartwood ranges in colour from yellowish brown to russet brown, and the 

heartwood of fast growing eastern larch can have a reddish brown colour. Small 

saplings and young fast growing trees are void of heartwood as the entire stem 

is involved in sap conduction (Wang and DeGroot, 1996; Burns and Honkala, 

1990a; Burns and Honkala, 199Gb; Zhang and Koubaa, 2008). 

Table 4. Grouping of some northwestern Ontario tree species by natural durability of 
heartwood (Zhang and Koubaa, 2008; Burns and Honkala, 1990a; Burns and Honkala, 
1990b W d D G t 1996) ' ang an e roo, 
Highly Durable Moderately Durable Slightly or Non Durable 
eastern white cedar eastern larch black ash 

eastern white pine balsam fir 
white birch 
red maple 
pines (other than eastern 
white pine) 
poplars 
spruces 

2.1.2.3 Growth rings 

As discussed, earlywood cells have thinner secondary walls and large 

lumens than the latewood cells. These differences in latewood and earlywood 

are particularly pronounced in softwoods, where the density of latewood is 

higher than that of earlywood (Panshin and de Zeeuw, 1980; Jozsa and 

Middleton, 1994; Bowyer and Smith, 2000; Bowyer eta/., 2003). 

Growth rings are formed as a result of seasonal growth displaying 

difference in density between earlywood and latewood, which creates rings of 

dark and light wood (Figure 11 ). When the stem is viewed in cross section, a 

ring of the lighter earlywood plus the ring of the darker latewood forms one 

growth ring. 
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Figure 11. Growth rings are the latewood and earlywood growth within a single year 
(Jozsa and Middleton 1994). 

The percentage of earlywood and latewood produced during cambial 

development can be highly variable between species, within species and within 

the stem. The proportion of earlywood to latewood is a genetic response to 

factors which include age, growth rate and site conditions, and therefore may be 

predictable. In some species, such as southern yellow pine (Pinus elliotti 

Engelm.), a large percentage of each growth ring is typically latewood, while in 

other species, such as eastern white pine (Pinus strobus L.), the percent of 

latewood is very small (Panshin and de Zeeuw, 1980; Mullins and McKnight, 

1981; Jozsa and Middleton, 1994; Bowyer eta/., 2003). Table 5 illustrates the 

variation in average percentage of latewood within northwestern Ontario tree 

species. 
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Table 5. Variation of average percentage of latewood within northwestern Ontario tree 
species (Zhang and Koubaa 2008). 
Species Percent of Latewood (%) 
black spruce (Picea mariana (Mill.) B.S.P.) 13.3 to 27.0 
white spruce (Picea g/auca (Moench) Voss) 12.0 to 26.2 
jack pine (Pinus banksiana Lamb.) 20.7 to 42.1 
eastern larch (Larix laricina (Du Roi) K. Koch,) 30.0 to 40.0 
balsam fir (Abies balsamea (L.) Mill.) 17.5 

The percentage and variability of earlywood and latewood within a stem 

affects the wood characteristics and its end uses. The density and shrinkage 

properties of wood are directly correlated to the ratio of earlywood to latewood. 

A higher proportion of earlywood to latewood within a stem produces lower 

density and a higher rate of shrinkage within the wood (Panshin and de Zeeuw, 

1980; Isenberg eta/., 1980a; Isenberg eta/., 1980b; Mullins and McKnight, 

1981; Jozsa and Middleton, 1994; Bowyer and Smith, 2000; Bowyer eta/., 

2003). 

For example, the literature indicates that the earlywood of eastern larch 

usually makes up two thirds of a growth ring with an abrupt transition to a highly 

dense latewood band, however, the width of growth rings of eastern larch are 

reported to be highly variable from year to year. Thus, the physical wood 

properties of eastern larch are highly variable and we would expect the wood of 

this species to be difficult to work with; a conclusion supported by the literature 

(Isenberg eta/., 1980a; Panshin and de Zeeuw, 1980; Zhang and Koubaa, 

2008). 
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2.1.2.4 Softwood anatomy 

Softwoods have a relatively simple cellular composition; longitudinal 

tracheids and wood rays (Figure 11) (Bowyer and Smith, 2000; Bowyer eta/., 

2003; Panshin and de Zeeuw, 1980). 

Longitudinal tracheids, or wood fibres make up between 94% to 96% of 

the volume of all softwoods. Softwood fibres are 3 to 8 mm long, hollow, and 

pitted. Longitudinal tracheids are long wood fibres with tapered ends. The 

overall proportions are very similar to a soda straw; this gives softwood a 

uniform honeycomb-like appearance. Rays are radially aligned strips of short 

brick-shaped parenchyma cells (Panshin and de Zeeuw, 1980; Isenberg eta/., 

1980a; Mullins and McKnight, 1981; Jozsa and Middleton, 1994). 

1.2.2.5 Hardwood anatomy 
Hardwoods' structures, by contrast, are more complex than softwoods 

with considerable variability between species (Figure 12). Hardwoods have four 

major cell types: fibres, vessels, parenchyma and ray cells. For example, black 

ash (Fraxinus nigra Marsh.) has a percent of wood volume comprised of 69.4% 

fibres, 11.6% vessels, 12.0% rays and 7.0% parenchyma. While American 

sycamore (Platanus occidentalis L.) has a percent wood volume comprised of 

28.9% fibres, 51.9% vessels and 19.2% rays. (Panshin and de Zeeuw, 1980; 

Isenberg eta/., 1980b; Mullins and McKnight, 1981; Jozsa and Middleton, 1994; 

Leitch. 2008). 
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Figure 12. hardwood -wood structure (Jozsa 2004). 

2.1.3 Juvenile wood versus mature wood 

As the tree starts to mature, the structure of the wood cells produced in 

the stem change slightly. We refer to the wood produced by a maturing tree as 

mature wood, and wood produced by an immature tree as juvenile wood 

(Panshin and de Zeeuw, 1980; Jozsa and Middleton, 1994; Bowyer eta/., 2003). 

When we consider the anisotropic nature of trees, we should understand 

that a maturing tree will produce both juvenile and mature wood. If we separate 

the maturing tree into two areas of growth, the bole and crown, it is easy to 
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contemplate how this may occur (Isenberg eta/., 1980a; Isenberg eta/., 198Gb; 

Mullins and McKnight, 1981; Bowyer and Smith, 2000). 

Wood growth in the bole of a maturing tree is restricted to tangential and 

radial growth, while the crown also grows in the longitudinal direction. Thus, a 

maturing tree will produce juvenile wood in the crown and mature wood on the 

bole (Figure 13). It seems evident, that the development of mature wood may 

be associated with the mechanism of self pruning (Panshin and de Zeeuw, 

1980; Bowyer eta/., 2003; Leitch, 2008). 
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Figure 13. Stem juvenile wood -mature wood distribution (Jozsa and Middleton 1994). 

There seems to be a correlation between the percent live crown and the 

development of mature wood. Thus, juvenile wood is commonly referred to as 

crown wood; which provides a more accurate description. Therefore, an open 

grown tree with a 100% live crown would produce significantly less mature wood 

than a tree grown in a closed canopy with 35% live crown. Other factors that 

influence mature wood development are: 
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• heredity, 

• time (age), 

• competition, and 

• site regime. 

The greatest influences on mature wood development are time and heredity 

(Zobel, 1992; Willcocks and Bell, 1995; Burdon eta/., 2004; Leitch, 2008). 

Changes in wood cell structure from juvenile wood to mature wood are 

significant in relation to wood characteristics and wood quality. Mature wood 

has (Panshin and de Zeeuw, 1980; Mullins and McKnight, 1981; Zobel, 1992; 

Willcocks and Bell, 1995; Bowyer eta/., 2003; Burdon eta/., 2004; Leitch, 2008): 

• longer cell fibres, 

• thicker cell walls, 

• higher percentage of latewood, 

• straighter fibril angle, 

• less spiral grain, 

• less longitudinal shrinkage, 

• less compression wood, 

• higher volume of cellulose, 

• lower volume of lignin, 

• higher density; by 10 to 15%, 

• higher strength; by 15 to 30%, and 

• superior wood for pulping. 

Mature wood development seems to occur between 10 to 30 years after 

initial growth at the pith, depending on tree spacing. Once mature wood 

development has occurred within the stem, transition from juvenile wood to 

mature wood seems to occur 10 years after initial terminal growth within the 
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crown. However, according to the literature, transition between juvenile wood 

and mature wood is difficult to predict due to the variability in species genetics, 

and the dynamic nature of stand development (Mullins and McKnight, 1981; 

Jozsa and Middleton, 1994; Bowyer eta/., 2003). 

The distinctive differences between mature wood and juvenile wood 

affect their potential end use. Figure 14 shows changes in relative density over 

time in nine softwood species grown in Canada. We can see that there is a 

definite change in wood properties over time, which is highly variable between 

species, within species and between forests stands (Panshin and de Zeeuw, 

1980; Bowyer and Smith, 2000; Bowyer eta/., 2003). 
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Figure 14. Average ring density trend from pith to bark at breast height (Jozsa and 
Middleton 1994). 

The main difficulty in determining the transition point between mature 

wood and juvenile wood is that the changes in wood structure occur at the 

microscopic level, thus the macroscopic features of the wood remain 
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unchanged. According to the literature, the transition between juvenile wood to 

mature wood occurs when the 82 layer of the wood cell thickens, fibre length 

increases, and fibril angle of the 82 layer of the wood cell decreases. It is 

believed that once mature wood develops, the wood cell structure becomes 

stable. The mature wood zone within a stem has been identified by the 

appearance of an increase in relative density or fibre length that remained stable 

to the bark. This procedure assumes that mature wood can be identified using a 

single factor, which has yet to be proven and produces conflicting reports 

(Panshin and de Zeeuw, 1980; Mullins and McKnight, 1981; Bowyer eta/., 2003; 

Leitch, 2008). 

For example, eastern larch (Larix laricina (Du Roi) K. Koch) fibre length 

increases from pith to bark, however, the greatest change in fibre length occurs 

within the first 10 years of cambial growth, followed by stable growth to the bark 

(Zhang and Koubaa, 2008; Yang eta/ .. 1987; Wang eta/ .. 1985; Balatinecz. 

1983). Thus, the literature reports that mature wood seems to occur within 

eastern larch after 10 years of juvenile growth (Zhang and Koubaa, 2008). 

However, relative density radial profiles, for eastern larch, are highly variable 

from pith to bark. Further, Beaudoin eta/. (1989) reported that most of the 

physical and mechanical properties of eastern larch are higher in the juvenile 

wood than the mature wood, which contradicts the improved and stable 

properties, that the literature indicates should be in mature wood (Zhang and 

Koubaa, 2008; Yang eta/ .. 1987; Wang eta/ .. 1985; Balatinecz. 1983). 

When we consider general wood characteristics, distinct structural and 

morphological differences exist between softwoods and hardwoods. According 
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to the literature, both softwoods and hardwoods develop mature wood over time. 

However, the differences between mature and juvenile wood are more 

pronounced in softwoods than in hardwoods. Further, in ring porous hardwoods 

the improvements to wood characteristics seem to fade over time (Figure 15) 

(Panshin and de Zeeuw, 1980; Mullins and McKnight, 1981; Jozsa and 

Middleton, 1994; Bowyer eta/., 2003). 

Wood density vs. tree age 
for distinct ring softwoods 

Ring Porous Hardwood Density 
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Age (years) 

70 
Age (years) 

5 65 

Figure 15. Improvements to wood characteristics due to mature development over time 
(Bowyer and Smith 2000). 

2.1.4 Fibres 

Hardwood and softwood fibres have several differences. Where 

softwood fibres, called tracheids, are long and rectangular shaped, hardwood 

fibres tend to be round in shape and shorter. This is why softwood tracheids are 

preferred, especially black spruce (Picea mariana (Mill.) B.S.P.) tracheids, for 

use in making strong paper. The proportion of wood volume comprised of fibres 

is lower and highly variable in hardwoods; ranging from 15 to 60%. In contrast, 

softwoods tracheids make up between 94% to 96% of the wood volume. Figure 

16 shows a comparison, in a cross sectional view, of the hardwood black ash 
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(Fraxinus nigra Marsh.) and the softwood eastern white pine (Pinus strobus L.) 

fibres (Panshin and de Zeeuw, 1980; Mullins and McKnight, 1981; Bowyer eta/., 

2003; Leitch, 2008). 

Figure 16. Comparison between softwood and hardwood fibre (Lakehead University 
Wood Science Testing Facility 2010). 

2.1.4.1 Fibre length 
Fibre length varies greatly between softwoods and hardwoods, and 

between juvenile wood and mature wood. There are direct relationships 

between fibre length and age, radial position in the stem, and species. In Figure 

17 clearly illustrates how fibre length are directly related to age (Panshin and de 

Zeeuw, 1980; Mullins and McKnight, 1981; Jozsa and Middleton, 1994). 
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Figure 17. Fibre length as a function of age (Jozsa and Middleton 1994). 

Although it appears that fibre length may be related to the improved wood 

characteristics in mature wood, there is no direct evidence that fibre length 

improves strength properties of solid wood. However, fibre length is extremely 

important to sheet strength and finish in paper production (Figure 18). Thus, 

fibre length is considered less important in the manufacturing of solid wood 

products than in pulp and paper manufacturing (Panshin and de Zeeuw, 1980; 

Mullins and McKnight, 1981; Horn and Setterholm, 1990; Jozsa and Middleton, 

1994). 
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Figure 18. Correlation between fibre length and strength of paper (Horn and Setterholm 
1990). 

2.1.4.2 Fibril angle 
Fibril angle directly affects wood quality and is of extreme concern when 

drying wood. As discussed, maturing trees produce mature wood over time 

starting at the bottom of the tree bole moving up in longitudinal position. If we 

consider these factors collectively, we can see that fibril angle varies throughout 

the tree as a factor of age and longitudinal position (Figure 19) (Panshin and de 

Zeeuw, 1980; Jozsa and Middleton, 1994; Bowyer eta/ .. 2003). 
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Figure 19. Fibril orientation in normal, juvenile and reaction wood (source Jozsa and 
Middleton 1994). 
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Panshin and de Zeeuw (1980) reported that fibril angle generally varies 

between cell wall layers as follows: 

• 81 layer; 50 to 70 degrees to the cell axis, 

• 82 layer; 1 0 to 30 degrees to the cell axis, 

• 83 layer; 60 to 90 degrees to the cell axis. 

However, these ranges in fibril angle can only be used as indication of the 

variability between cell wall layers. Donaldson and Xu (2005) found that radiata 

pine fibril angle varied considerably within the species as follows: 

• 81 layer (radiata pine); 79 to 113 degrees to the cell axis, 

• 82 layer (radiata pine); 1 to 59 degrees to the cell axis, 

• 83 layer (radiata pine); 50 to 113 degrees to the cell axis. 

Further, fibril angle changes with age and increase in the length of cambial 

initials (Panshin and de Zeeuw, 1980; Jozsa and Middleton, 1994; Bowyer eta/ .. 

2003). Liese and Dadswell (1959) reported that fibril angle generally increased 

from juvenile to mature wood as follows: 

• 82 layer (softwoods); from 55 to 20 degrees to the cell axis, 

• 82 layer (hardwoods); from 28 to 10 degrees to the cell axis. 

2.1.5 Reaction wood 

When trees are grown on an angle other than vertical, such as trees 

growing on creeping or windy slopes, abnormal wood is formed called reaction 

wood. Reaction wood occurs in both hardwood and softwood stems as well as 

branches, as a genetic response to stem inclination angle. Reaction wood 

forms as compression wood in softwoods and tension wood in hardwoods. As 
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shown in Figure 20, tension and compression forces causes the stem to react in 

different ways (Table 6) (Leitch, 2008; Wiemann and Williamson, 2010). 

Reaction Wood 
Bending a vertical column 
causes differing stresses 

Figure 20. Bending from the vertical causes reaction wood (Laks 2010). 

Table 6. Influence of reaction wood on softwoods and hardwoods (Leitch, 2008; Wiemann 
and Williamson, 201 0). 

Com_f>ression wood Tension wood 
softwoods hardwoods 
underside of branches or leaning stem top of branches or leaning stem 
commonly in juvenile wood commonly in juvenile wood 
elliptical appearance is similar in most elliptical appearance is less consistenet between 
species species 

Reaction wood results in increased fibril angle and causes the cells to 

shrink along the grain during drying. Thus, reaction wood is difficult to process 

for both solid wood and pulp wood manufacturing (Panshin and de Zeeuw, 

1980; Jozsa and Middleton, 1994; Bowyer and Smith, 2000; Bowyer eta/., 

2003). 

When there is a high percentage of reaction wood present, it can be 

easily identified because it typically has an eccentric shape. However, reaction 

wood forms at different degrees depending on the stem or branch angle and can 
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be very difficult to detect. Yamashita eta/. (2006) reported that the degree of 

reaction wood development increases with an increase in stem inclination angle 

to a maximum of 30 degrees in gymnosperms. Thus, the influence of reaction 

wood on wood development is highly variable and is often not recognized until 

processing, usually during drying. In addition to affecting shrinkage, reaction 

wood reduces strength properties. Unidentified reaction wood in weight bearing 

members has led to failures in wood structures (Panshin and de Zeeuw, 1980; 

Jozsa and Middleton, 1994; Bowyer and Smith, 2000; Bowyer eta/., 2003). 

Due to the inherent nature of reaction wood, its percent volume is 

variable between species, within species and within a tree. For example, 

eastern larch (Larix /aricina (Du Roi) K. Koch) is known to have a high 

component of reaction wood even during normal growth, as earlywood cells go 

through spiral thickening. The percent volume of reaction wood increases in 

eastern larch, with an increase in tree spacing, which promotes wind 

interception and increased growth (Zhang and Koubaa. 2008; Panshin and de 

Zeeuw. 1980; Isenberg eta/ .. 1980a; Isenberg et at., 1980b;). 

2.1.5.1 Knots 
As a tree increases in height, the crown rises vertically away from the 

base, and the leaves on the lower branches become less efficient at 

photosynthesis than those of higher branches. Over time, the photosynthesis 

rate of these leaves falls below the energy required to support the growth 

needed, therefore the tree terminates leaf production on the branch. Eventually, 

the branch dies and falls off and the tree overgrows the branch stub through 
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diameter growth forming a knot (Wangaard, 1981; Forest Products Laboratory, 

1999; Rowell, 2005). It is common for knots to be referred to as live and dead 

knots. Live knots, or red knots, are intergrown with the surrounding wood, 

whereas dead knots, or black knots, have lost their connection with the 

surrounding wood and can easily loosen and fall out (NLGA, 2003a). 

Knots can affect wood in a number of ways. Until branch stubs are 

completely overgrown, knots are an avenue for pathogens and insects to attack 

the tree and degrade the wood. Knots can cause other defects to form within 

the stem and reduce the strength properties of wood (Wangaard, 1981; Forest 

Products Laboratory, 1999; Rowell, 2005). 

Essentially, knots are holes in the wood which affect the slope of the 

grain in the surrounding wood. The increase in fibre angle in the wood 

surrounding the knot causes a reduction in strength parallel to the grain of the 

wood surrounding the knot. The direct affect of the knots on strength in terms of 

disruption of clear wood is dependent on the size, frequency and location. In 

solid wood manufacturing, knots affect wood strength subject to size, number, 

and orientation within the wood. 

Figure 21 shows the effect of size and location of knots on the reduction 

of bending strength as a percentage of knot-free wood. For example, a 3 inch 

knot in a 2 X 10, located on the edge of the board, referred to as the tension 

edge, will reduce the strength of the beam by 50% of that of clear wood (Bowyer 

and Smith, 2000). However, if the same knot is located in the centre of the 

board, or on the neutral axis, it will reduce the strength by only 30% of that of 



37 

clear wood (Wangaard, 1981; Forest Products Laboratory, 1999; Bowyer and 

Smith, 2000; Rowell, 2005). 
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Figure 21. Percent loss in strength as related to size and location of knot. 

Canada's forest industry is currently in a transition from old growth forests 

to the smaller diameter second growth and plantation forests. This transition to 

younger smaller diameter trees makes knots a real concern for both solid wood 

and pulp wood manufacturers. Wood from the old natural grown forests had a 

high percentage of clear wood, which is not present in the second growth. 

(Panshin and de Zeeuw, 1980; Jozsa and Middleton, 1994; Bowyer and Smith, 

2000; Bowyer eta/., 2003). 
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2.1.6 Wood chemistry 

Wood chemistry may provide northwestern Ontario the greatest 

opportunity for new products. Sic-product development is one of the fast 

growing areas of research in the world, as we try to change from a hydrocarbon 

based economy to a carbohydrate economy. (Jaworski and St-Louis, 2001; 

Industry Canada, 2003; de Ia Roche, 2008; Soderholm and Lundmark, 2009). 

2.1.6.1 Components of wood 
Wood is hydroscopic, thus, it not surprising that the major chemical 

component of a living tree is water. However, a wood cell is an interconnected 

network of cellulose, hemicelluloses and lignin, with minor amounts of 

extractives and inorganics, which form a three-dimensional biopolymer 

composite (Figure 22) (Wilson, 1984; Walker, 1989; Rowell, 2005). There is 

significant variability between hardwoods and softwoods with regards to the 

percent volume of these chemical components (Table 7) (Bowyer eta/., 2003; 

Rowell, 2005; Leitch, 2008). 

s, 

53 
Lignin 
Cellulose 
Hemicellulose 

Lignin 28.0 
Cellulose 40.3 
Hemicellulose 28.7 

9.1 
Cellulose 32.7 
Hemicellulose 18.4 

Figure 22. Wood cell chemical composition of Scot pine (Rowell 2005). 
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Table 7. Organic makeup of wood (%of oven-dry weight) (Leitch, 2008; Rowell, 2005; 
Bowyer and Smith, 2000). 

Cellulose Hemicellulose Lignin 
Hardwoods 38 to 49 15 to 35 18 to 30 
Softwoods 40 to 45 20 to 32 25 to 35 

The chemical structure of wood is more homogenous throughout the 

stem than fibres. Yeh (2005) states, "differences in chemical structure between 

the various wood specimens are less significant." Therefore, assessing end use 

potential of the chemical elements of wood, may be less costly than experienced 

with wood fibres. However, there is significant variability between species with 

regards to the amounts of these chemical components (Table 8). 

Table 8. Typical chemical properties (Zhang and Koubaa, 2008; Leitch, 2008; Rowell, 
2005) 

Species Lignin Cellulose Hemicellulose Ash Extractives 
(%) (%) (%) (%) (%) 

black spruce (Picea mariana 25-28 43-46 15-28 0.2 2.0- 3.5 (Mill.) B.S.P.) 
trembling aspen (Populus 25.3 33.5 - 2.8 3.6 tremuloides Michx.) 
jack pine (Pinus banksiana 27-29 45.2 16.2 0.2 3.2-4 Lamb.) 
white birch (Betula 21.2 49.4 - 2.9 2.6 papyrifera Marsh.) 
balsam fir (Abies balsamea 27-30 42.2 15-26 0.2- 3.6 (L.) Mill.) 0.4 
eastern white cedar (Thuja 30-34 43-49 0.2- 1.3-1.4 occidentalis L.) - 0.6 
eastern larch (Larix laricina 22-29 43-45 0.2 -
(Du Roi) K. Koch) - 0.5 -
white spruce (Picea glauca 26-30 39.5 16-28 0.2- 2.1-2.3 (Moench) Voss). 0.3 
eastern white pine (Pinus 25-28 40-60 14.1 0.2- 8.3 strobus L.) 0.4 
red pine (Pinus resinosa Ait.) 23-28 46-49 15.1 0.2 -
red maple (Acer rubrum L.) 22.8 44.5 - 5.2 2.5 
black ash (Fraxinus nigra 26 40 - - -Marsh.) 

Cellulose, the major component of wood, is a straight long-chain polymer 

which gives wood its strength. Cellulose is formed when glucose anhydride 
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units polymerize or link end-to-end to form the long-chain polymer (Figure 23). 

Glucose anhydride is composed of tens of thousands of individual glucose 

molecules which are linked together when glucose (CsH1206) loses water 

(Panshin and de Zeeuw, 1980; Bowyer and Smith, 2000; Bowyer eta/., 2003; 

Rowell, 2005). 
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Figure 23. Long-chain cellulose polymer (Bowyer and Smith 2000). 

Nanocrystalline cellulose is the smallest physical sub-unit of cellulose, 

measuring 200 nm long and 10 nm wide (de Ia Roche, 2008). Strength 

properties increase as particle size is reduced, and load sharing between broken 

and intact particles has less effect on strength than with fibres (Simonsen, 

2005). Nanocrystalline cellulose is said to be stronger than steel (de Ia Roche, 

2008) and 25% to 30% of the strength of carbon nanotubes (Wegner, 2007). 

Defects in the substance are also reduced as particle size is reduced 

(Simonsen, 2005). 

Unlike cellulose, only about 150 individual sugar molecules polymerize to 

produce hemicelluloses. Hemicelluloses are a polymers that are branched, 
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have low molecular weight, and are composed of five or six carbon sugars 

(Figure 24) (Bowyer and Smith. 2000; Rowell, 2005). 

Hemicellulose 

~H 
H2C~\ H OH 

H 0 

5 
Figure 24. Sugar molecules combine (polymerize) to produce hemicellulose (Bowyer and 
Smith 2000). 

The role of hemicelluloses in the cell wall has received little attention. 

According to Atalla (2005), the popular view is that hemicelluloses assist in 

"coupling cellulose and lignin to enhance the mechanical properties of the walls". 

There are different types of hemicellulose. In softwoods, the main 

hemicelluloses are galactoglucomannan and arabinoglucuronoxylan, while in 

hardwoods glucuronoxylan is the main hemicellulose (Rowell, 2005). 

The base chemical unit of lignin is phenylpropane. Lignin is a random three 

dimensional polymer (Figure 25); having a very high molecular weight. The 

lignin has a number of functions in wood (Rowell, 2005): 

• binding and stiffening plant fibres, 

• decreases water permeation through the cell walls of the xylem, and 

• impedes penetration of destructive enzymes increasing natural defence 

of tree against degradation. 
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Figure 25. Structure of lignin (Bowyer and Smith 2000). 

Sugar-rich photosynthate which has accumulated in the centre of the tree, 

begins to break down overtime and produces a variety of new compounds called 

extractives. Extractable compounds include waxes, oils, resins, fats, and 

tannins, along with aromatic and colouring materials (Rowell, 2005; Cole, 2006). 

Extractives can be removed using a solvent (Rowell, 2005; Cole, 2006). Some 

extractives can be removed by simply soaking wood in cold water (Bowyer and 

Smith, 2000; Rowell, 2005). Others require solvents like ether, acetone, 

ethanol, or hot water to be removed (Bowyer and Smith, 2000; Rowell, 2005; 

Cole, 2006). 

Extractives are chemicals with relatively small molecules, which comprise on 

average 1 to 5% of wood volume. The extractives found in wood are species 



43 

specific and vary greatly within species, between species and within trees 

(Rowell, 2005; Cole, 2006). Table 9 lists the common extractive components 

found in wood. According to the literature, hardwoods do not accumulate resin 

acids or monoterpenes extractives. In softwoods, resin acids account for 40 to 

45% of extractive volume and fatty acids account for 40 to 60% of extractive 

volume. In hardwoods, extractives are dominated by fatty acids, which make up 

60 to 90% of extractive volume (Rowell, 2005; Cole, 2006). 

Table 9. Common extractive components found in softwoods and hardwoods. 
Softwoods Hardwoods 

Resin acids, 

Fatty acids, 

Monoterpenes, 

Phenolics 

Fatty acids 

Phenolics 

Extractives can be very valuable once removed. For example, extractive 

components can be used in turpentine, flavour and fragrance chemicals, and 

rosin and sizing agents. Phenolic extractive components can be used in tanning 

agents, adhesives, and as an antioxidant (Rowell, 2005; Cole, 2006). 

2.2 Wood quality 

Wood quality is one of the most difficult attributes to define since it is 

subject to the interpretation of the user. What quality means to one user group 

does not mean quality to another. For example, forest managers seem to define 

quality in relation to growth and yield; focusing on producing fast growing trees 

that produce a large volume of wood by harvest age. Lumber manufacturers 
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may see quality as logs with top diameter ranging between 25 to 35 em, with 

minimal taper and free of knots. Pulp manufacturers may define quality wood as 

having long fibres with a high cellulose and low lignin content. Other 

stakeholders, may look at the aesthetic qualities of the forest along with the 

carbon sequestering properties of wood. Home owners may see wood quality in 

the thermal attributes of wood, which they need to heat their homes. (Zobel, 

1984; Kellison eta/., 1984; Kellogg, 1989; Kliger eta/., 1994; Zhang, 2003). 

Perhaps the difficulty in defining wood quality lies in the bias each group 

uses to value wood. If we considered just the word "quality" generically, we can 

define it as a distinctive attribute or characteristic considered important or 

beneficial. The must commonly used definition is "wood quality is the resultant 

of physical and chemical characteristics possessed by a tree or a part of a tree 

that enable it to meet the property requirements for different end products" 

(Zhang, 2003). 

According to the literature, most people agree that a definition of wood 

quality must consider specific end uses (Zhang, 2003). In his paper Wood 

Quality Attributes and Their Impacts on Wood Utilization, Zhang states that "as 

wood properties affect various aspects of the manufacturing process, wood 

quality must be defined in terms of the value recovery chain". He defines wood 

quality as "all wood characteristics that affect the value recovery chain and the 

serviceability of end products" (Zhang, 2003). 

When studying wood, forest managers and researchers view wood by 

three surfaces; transverse surface or cross section, radial surface and tangential 

surface. When wood is viewed in these three surfaces, it assists us to better 
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identify tree species, cell characteristics, and wood properties (Table 1 0) 

(Bowyer and Smith, 2000). 

Cross Section 
or 

Transverse Increment 

~. surface that is viewed when looking at the end of a log or the top of a 
pis known as a cross section. This surface is sometimes also referred 

as a transverse surface. Heartwood and sapwood zones, annual growth 
and rays can be seen on this surface. 

ial Surface 

surface created by cutting along a radius of a round cross section is 
nown as the radial surface. 

surface created by cutting at a tangent to the growth rings, or the 
you would see if you were to view the outside of a log with the bark 
, is called the tangential surface. 

2.2.1 Mechanical properties 

Mechanical properties are observed when a material is subjected to an 

applied external force. These are important properties to understand as they 

are directly related to end use characteristics and manufacturing processes 

(Wangaard, 1981; Zobel, 1984; Kellison eta/., 1984; Kellogg, 1989; Kliger eta/., 

1994; Forest Products Laboratory, 1999; Zhang, 2003; Rowell, 2005). 

Mechanical properties recorded in Canada are generally reported as an 

average with respect to a species, they "attempt to give a fair estimate" for the 

species throughout the growth range and are limited to species of commercial 

importance (Jessome, 2000). Therefore, knowledge of mechanical properties at 

the regional and stand level represents a fundamental gap in the knowledge of 

wood characteristics within Canada, especially in northwestern Ontario. 
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As discussed, mechanical property testing of various species are 

standardized tests of small, clear (defect free) specimens at set moisture 

conditions for comparison. Large specimens of various species are also tested 

with respect to standard grades of lumber, so that strength data can be derived 

based on number of defects (Wangaard, 1981; Zobel, 1984; Kellison eta/., 

1984; Kellogg, 1989; Kliger eta/., 1994; Forest Products Laboratory, 1999; 

Zhang, 2003; Rowell, 2005). 

From Table 11, we can make the general observation that moisture 

content reduces the strength properties of wood at varying degrees specific to 

species (Rowell, 2005). Further, there is a direct correlation between density of 

mature wood and strength properties. Finally, wood is 7 to 10 times stronger 

longitudinally than radially (Panshin and de Zeeuw. 1980; Mullins and McKinight, 

1981; Bowyer and Smith, 2000). 

It may be helpful in understanding how property values reported in the 

literature are derived. Let us consider two of the commonly reported strength 

values for wood; modulus of elasticity (MOE) and modulus of rupture (MOR) 

from static bending. MOE is a measure of resistance to bending; or a measure 

of rigidity. MOR is a measure of absolute strength; or a measure of the ultimate 

load-carrying capacity of a beam. MOE and MOR values are determined 

through the static bending test (Wangaard, 1981; Zobel, 1984; Kellison eta/., 

1984; Kellogg, 1989; Kliger eta/., 1994; Forest Products Laboratory, 1999; 

Zhang, 2003; Rowell, 2005). 
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In a 3 point flexure static bending test, an increasing load is applied to the 

centre of a specimen (usually 2 em X 2 em X 30 em or 2.5 em X 2.5 em X 30 

em), which is supported near the two ends. As a specimen is tested, a record is 

produced of the specimen's deflection (bending) in response to the load being 

applied. Initially, the load deflection curve is linear; each increment of load 

results in an equal increment of deflection. This means that at any point along 

the linear portion of the load deflection curve, the specimen would return to its 

previous condition; if the load is removed as shown in green in Figure 26 

(Wangaard, 1981; Zobel, 1984; Kellison eta/., 1984; Kellogg, 1989; Kligereta/., 

1994; Forest Products Laboratory, 1999; Zhang, 2003; Rowell, 2005). 

Once the specimen is loaded beyond a certain point, deflection increases 

at a greater rate than the rate of loading and the line of the graph arches; this 

point is known as the proportional or elastic limit (Wangaard, 1981; Zobel, 1984; 

Kellison eta/., 1984; Kellogg, 1989; Kligereta/., 1994; Forest Products 

Laboratory, 1999; Zhang, 2003; Rowell, 2005). 
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Figure 26. A load deflection curve resulting from a static bending test (Bowyer and Smith 
2000). 

Once the load applied to the specimen exceeds the proportional limit, it is 

then loaded beyond its elastic limit, and even if the load were removed it would 

no longer be able to return to its original shape; rather it is now permanently set. 

MOE is determined from the slope of the linear portion of the load deflection 

curve. Load is applied to the specimen until it breaks, thus deflection continues 

to accelerate to the point of specimen failure (Wangaard, 1981; Forest Products 

Laboratory, 1999; Rowell, 2005). MORis calculated from the maximum load 

value reported by the testing equipment software using (Equation 1) for 3 point 

loading (Panshin and de Zeeuw. 1980; Mullins and McKinight, 1981; Bowyer 

and Smith, 2000; Hoadley, 2000): 



MOR= 

Where: 

1.5PL 
bh2 

P = maximum load (N) 
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L =distance between supports (m) 
b = is the width of the specimen (m) 
h = is the depth of the specimen (m) 

Equation (1) 

Since MOE is related to the slope of the linear section of the load 

deflection curve, then we can say that the smaller the deflection the larger or 

higher the MOE will be; since deflection is the denominator. 

Further, if we know the MOE, we can determine the dimensions of the 

beam needed to prevent rupture using (Equation (2) (Wangaard, 1981; Zobel, 

1984; Kellison et at., 1984; Kellogg, 1989; Kliger et at., 1994; Forest Products 

Laboratory, 1999; Zhang, 2003; Rowell, 2005): 

MOE = 48((b*h3)/12)"'0 

Where: 
P =maximum load (N) 
l =distance between supports (m) 
b = is the width of the specimen (m) 
h =is the depth of the specimen (m) 
D = is the deflection at mid span (m) resulting 
tromP 

Equation (2) 
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2.2.2 Moisture content 

In wood cells, water is found in the cell walls and the lumen. The water 

held in the lumen, referred to as free water varies from season to season. The 

water in the cell walls, referred to as bound water, is held by surface absorption. 

Surface absorption is the attraction of water molecules to hydrogen-bonding 

sites present in cellulose, hemicellulose and lignin. The amount of water 

present within wood, free water plus bound water, is referred to as the moisture 

content of wood; expressed as percent of wood weight (Wangaard, 1981; Zobel, 

1984; Kellison eta/., 1984; Kellogg, 1989; Kliger eta/., 1994; Forest Products 

Laboratory, 1999; Zhang, 2003; Rowell, 2005). 

The moisture content of wood is constantly changing in response to the 

atmospheric conditions surrounding the wood. Even if the wood has been kiln 

dried, it will readily regain moisture if placed in a humid environment (Wangaard, 

1981; Zobel, 1984; Kellison eta/., 1984; Kellogg, 1989; Kligereta/., 1994; 

Forest Products Laboratory, 1999; Zhang, 2003; Rowell, 2005). 

Wood dries by the movement of free water through lumens, bound water 

through cell walls, and water vapour through void spaces. As wood dries, it 

loses the free water first; which depending on atmospheric humidity can occur 

quite rapidly. However, the cell walls stay saturated with water until all the free 

water has been lost. The point at which the lumen contains no water, but the 

cell walls remain saturated, is referred to as the fibre saturation point (FSP); 

occurring between 25 to 30% moisture content. The characteristics of wood do 

not change significantly due to the loss of free water, however below FSP wood 
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begins to shrink or swell (Wangaard, 1981; Zobel, 1984; Kellison eta/., 1984; 

Kellogg, 1989; Kliger eta/., 1994; Forest Products Laboratory, 1999; Zhang, 

2003; Rowell, 2005). 

Moisture content (MC) is expressed as a percentage of the dry weight of 

wood and is determined using (Equation (3) (Wangaard, 1981; Zobel, 1984; 

Kellison eta/., 1984; Kellogg, 1989; Kliger eta/., 1994; Forest Products 

Laboratory, 1999; Zhang, 2003; Rowell, 2005): 

Green Weight- Oven Dry 
MC%= Weight X 100% Equation (3) 

Oven Dry Weight 

Oven dry weight is the weight of wood after all the water has been removed; 

which is considered a constant (Wangaard, 1981; Zobel, 1984; Kellison eta/., 

1984; Kellogg, 1989; Kliger eta/., 1994; Forest Products Laboratory, 1999; 

Zhang, 2003; Rowell, 2005). 

Wood is constantly losing and gaining water as a result of changes in 

atmospheric humidity. When the moisture of wood is at a level, that is in a state 

of equilibrium relative to the atmospheric humidity, it is said to have reached the 

equilibrium moisture content (EMC). However, if the wood loses more water 

than it gains, evaporation or drying takes place. If the converse occurs and the 

wood gains more water than it loses, then wetting takes place and the wood 

increases in moisture content (Wangaard, 1981; Zobel, 1984; Kellison eta/., 

1984; Kellogg, 1989; Kliger eta/., 1994; Forest Products Laboratory, 1999; 

Zhang, 2003; Rowell, 2005). 
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Moisture content affects the properties of wood. When moisture content 

is reduced in wood, the strength properties of the wood increase (Figure 27). 

The degree moisture affects wood properties varies between tree species, within 

species and within trees (Panshin and de Zeeuw, 1980). 

flml A- Modulus of Rupture 
B -Fiber siress at proportional limit 

in siatic bending 
t4Wl C- Ma:x. crushing stnmgth parall~l 

to the grain 
D- Fiber siress at proportional limit 

12101 perpendicular to the grain 

flml 

o 5 m ~ ~ ~ ~ ~ ~ ~ ~ 

~foisture Content (\~ of dry weigh~ 

Figure 27. Affect of moisture on wood properties (Bowyer and Smith 2000). 

When we state that strength properties improve with reduced moisture 

content, we mean in general terms, that strength increases 1% to 6% per 1% 

reduction in moisture content dry weight basis below FSP. For example, Figure 

27 shows that the strength values at 10% MC dry weight basis are about double 

the values at 25% MC dry weight basis. This is just one reason that controlling 

moisture in wood through proper drying is the primary method of controlling 

defects in wood (Wangaard, 1981; Zobel, 1984; Kellison eta/., 1984; Kellogg, 
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1989; Kliger eta/., 1994; Forest Products Laboratory, 1999; Zhang, 2003; 

Rowell, 2005). 

2.2.3 Shrinking and swelling 

When the moisture content of wood drops below the fibre saturation point 

changes in the wood structure occur; shrinkage being the most notable. Wood 

shrinks as a result of bound water being removed from the microfibrils in the cell 

walls. Shrinking begins when the moisture content of wood drops below the 

FSP; which in general terms is about 30% MC dry weight basis. When wood 

gains moisture, bound water returns to the cell walls first until they are once 

again saturated, then free water returns to the lumens. During the period of 

bound water attraction wood swells and continues to swell until the fibre 

saturation point is reached (Wangaard, 1981; Zobel, 1984; Kellison eta!., 1984; 

Kellogg, 1989; Kliger eta/., 1994; Forest Products Laboratory, 1999; Zhang, 

2003; Rowell, 2005). 

The S-2 layer is the thickest layer within the wood cell and microfibril 

orientation in the S-2 layer of mature wood is almost parallel to the long axis of 

the wood cells. As a result, the S-2 layer has the greatest influence on how 

wood responds to shrinking and swelling. When bound water leaves the cell 

walls, microfibrils move closer together resulting in shrinkage occurring 

tangentially and radially (Figure 28). Conversely, when bound water returns to 

cell walls, microfibrils move farther apart, causing swelling in the radial and 

tangential directions (Wangaard, 1981; Zobel, 1984; Kellison eta/., 1984; 
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Kellogg, 1989; Kliger eta/., 1994; Forest Products Laboratory, 1999; Zhang, 

2003; Rowell, 2005). 
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Figure 28. Normal dimensional change of wood due to drying (Bowyer and Smith 2000). 

At this point, it should be understood, that some woods will shrink and 

swell more than others (Table 11). To accommodate the variation in shrinkage 

between species, the forest sector has developed drying schedules for species 

groups with similar classification of wood shrinkage and dimensional stability. 

For example, the most common kiln-drying schedule used in northwestern 

Ontario is pine spruce; developed for stable wood with low shrinkage. The pine 

spruce kiln-drying schedule can accommodate 70% of the harvestable volume 

of wood produced within the region. However, major defects are produced in 

eastern larch (Larix laricina (Du Rei) K. Koch) wood when this schedule is 

employed during drying. Eastern larch is classified as having moderate stability 

and low to medium shrinkage, with a high percent of reaction wood, thus eastern 
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larch has its own kiln-drying schedule (Peck, 1957; Cech and Pfaff, 1980; Boone 

eta/., 1993; Jessome, 2000; NLGA, 2003a; Leitch, 2008). 

In juvenile wood and reaction wood, the microfibrils in the S-2 layer may 

be oriented at a considerable angle from the direction of the grain. This causes 

warping as the cells to shrink along the grain (Figure 29). The degree of 

shrinkage in wood is based on a number of factors including (Wangaard, 1981 ; 

Zobel, 1984; Kellison eta/., 1984; Kellogg, 1989; Kliger eta/., 1994; Forest 

Products Laboratory, 1999; Bowyer eta/., 2003; Zhang, 2003; Rowell, 2005): 

• amount of cell wall material (density), 

• microfibril angle, 

• extractive content, 

• lignification, 

• presence of ray tissue, and 

• ratio of earlywood to latewood. 

Juvenile or 
Compression 

Wood 
c::: > 

,. ; ' ' 

' 
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Norn1al 
Wood 
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l I ' 

Shrinkage 
Figure 29. Abnormal dimensional change of wood due to drying (Bowyer and Smith 2000). 
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Since wood is anisotropic, having properties that differ according to the 

direction of measurement, it is not surprising that wood shrinks differently in 

each direction (Table 11). Tangential and radial shrinkage are greatest at 4.7% 

to 12.7% and 2.1% to 7.9% respectively; longitudinal shrinkage is relatively 

insignificant at 0.1% to 0.3%, thus it is not generally listed. Tangential shrinkage 

is generally 1.5 to 2 times greater than radial shrinkage (Bowyer and Smith. 

2000). The anisotropic manner in which wood dries is the chief cause of defects 

in wood products; longitudinal, radial, tangential shrinkage occurs at a ratio of 

1:50:100 respectively (Figure 30) (Wangaard, 1981; Zobel, 1984; Kellison eta/., 

1984; Kellogg, 1989; Kliger eta/., 1994; Forest Products Laboratory, 1999; 

Zhang, 2003; Rowell, 2005). 

10: 

lengthwise shrinkage 
0 ---- ------ ------------------------------

0 5 10 15 20 25 30 

moisture content of wood (%) 
Figure 30. Anisotropic nature of wood shrinkage (Stiemer 2010). 
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2.2.4 Relative density (specific gravity) 

Density is the mass (or weight) per unit volume of a material; expressed 

as either grams per cubic centimetre (g/cm3) or kilograms per cubic metre 

(kg/m3). Relative density at an oven-dry state (relative density0 o), which is also 

called specific gravity, is the ratio of the density of oven-dry wood to the density 

of an equal volume of water at 4 degrees Celsius; since it's a ratio it has no units 

(Equation (4 and Equation (5). 

Density of oven-dry wood 
Relative Density00 (Specific Gravity) = ----"------=-----

Density of equal volume of water 

Mass of oven-dry wood Relative DensitYMc = _______ __:_ ____ _ 
Volume of wood at Moisture Content 

Equation (4) 

Equation (5) 

The relative density of wood is closely correlated to most mechanical 

properties of wood. For example, there is correlation between relative density 

and strength, where the higher the relative density observed the higher the 

strength of mature wood (Figure 31). Other properties that are generally 

correlated to specific density include (Panshin and de Zeeuw. 1980; Mullins and 

McKinight, 1981; Bowyer and Smith, 2000; Hoadley, 2000): 

• yield of pulp per unit volume, 

• heat transmission, 

• heat release in combustion, and 

• shrinking and swelling of wood. 
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0.30 0.40 0.50 0.60 
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Figure 31. Correlation between specific gravity I relative density00 and strength in wood 
at different moisture levels (Bowyer and Smith 2000). 

Knowing the density and relative density are essential to proper 

management of the value-chain. While relative density is a good indicator of 

wood properties for end use considerations, density is an indicator of operational 

considerations, including identifying appropriate logging and milling equipment 

(Wangaard, 1981; Zobel, 1984; Kellison eta/., 1984; Kellogg, 1989; Kligereta/., 

1994; Forest Products Laboratory, 1999; Zhang, 2003; Rowell, 2005). There 

are standard moisture contents used for the comparison of wood characteristics, 

these are oven-dry (00), nominal or air-dry (12% MC) and basic (30% MC) 

(Table 12). 

a e an ar mo1s ure con en s use T bl 12 St d d . t t t d. th In f e com panson o woo c arac ens 1cs. d h t . f 
Standard Relative Density Density 
Moisture Content MC of Mass MC of Volume MC of Mass MC of Volume (MC) 
Oven-Dry (OD) OD OD OD OD 
Nominal or Air-dry OD 12% 12% 12% 
Basic 00 30% 30% 30% 
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Relative density is the most common wood property used for comparison in 

wood science research, and provides us with a means for measuring variation 

between species, within species and within a tree: e.g., 

• balsa wood (Ochroma pyramidale) known to be extremely soft and light-
weight has a wood densityoo of 0.16 g/cm3 , and 

• lignum-vitae (Guaiacum sanctum) known to be hard heavy and very 
strong has a wood density00 of 1.4 g/cm3. 

These seem to be very different woods, yet when we consider these same two 

species with respect to relative density, they are surprisingly similar. These 

woods are similar because the relative density of solid matter in their wood cells 

is equal. In other words, if we remove all the void spaces, such as, the lumens, 

pit openings, and pit cavities, and measure the relative density of what's left, it 

will be the same for all wood and every species of tree; just under 1.5 g/cm3 

(Panshin and de Zeeuw. 1980; Mullins and McKinight, 1981; Bowyer and Smith, 

2000). Therefore, we can conclude that (Brown, 2008): 

• the variance in cellulose between species, within species and within trees 
is insignificant, especially in the 82 layer of the cell wall; as the relative 
density00 of the cell material is approximately 1.5 (g/cm\ 

• the configuration of void space elements within a wood cell determines 
the wood characteristic of a tree species and individual trees within a 
species, 

• the highest possible relative densitYoo for any wood must be under 1.5, 
and 

• the percentage void spaces for any wood can be predicted by dividing the 
oven-dry relative density of the wood by 1.5. 
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2.3 Influencing wood quality 

The challenge for the forest sector is to manage Canada's forests so that 

the wood produced is of the quality required to meet the projected end use. 

How do we influence wood quality through forest management? 

As discussed, trees produce wood to support the vertical growth of the 

crown; either by transporting material between the roots and the crown, or by 

supporting the structure of the crown. This allows the tree to maintain vertical 

position over shorter competing vegetation to capture more sunlight. Thus, a 

trees interaction with the surrounding environment will be with respect to 

maintaining a dominant vertical position over competing vegetation (Ruddick, 

1982). 

According to Zobel (1992) forest management is concerned with 

understanding what "causes a change in the (normal) growth pattern or form of 

a tree that may result in differing wood properties." Therefore, it is important to 

understand what affects wood growth in natural grown stands before 

considering silvicultural treatments. 

2.3.1 Genetics 

According to Eriksson and Ekberg (2001) heredity or tree genetics has 

the greatest influence on how a tree will respond to its surrounding environment, 

dictating the growth pattern and form of the tree. Although our understanding of 

tree gene functions is limited, the literature clearly indicates that genetics, not 

environment, has a greater effect on wood characteristics (Eriksson and Ekberg, 
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2001; Beaulieu eta/., 2005; Leitch, 2008). For example, phenotypic variation 

within a tree species can account for substantial variation in physical and 

mechanical properties (Beaulieu eta/., 2005; Leitch, 2008); a conclusion based 

primarily on studies of wood density variation (Leitch, 2008; Zhang and Koubaa, 

2008). Thus, genetics offers us the greatest potential to influence wood quality. 

Genetic research of northwestern Ontario tree species has been 

centered on tree improvement initiatives driven by a national or provincial 

perspective. Direct research within the region is very limited and focused on a 

few species. Black spruce (Picea mariana (Mill.) B.S.P.) is the most 

economically important species in Canada (Peng eta/., 2004), and has received 

the most attention in this area (King, 1967; Zhang and Koubaa. 2008). Table 13 

summarizes the research completed on improving wood quality of northwestern 

Ontario commercial species through forest genetics. 

Northwestern Ontario has a long history of tree improvement initiatives 

dating back to 1953 (Thompson, 2005), through: 

• identifying trees which exhibit superior growth and form, 

• collecting seeds from these superior trees, and 

• producing seedlings with the superior characteristics in a nursery (Forest 

Genetics Ontario, 2009). 

In other parts of the world, genetic modification of tree species has been 

employed to produce clones that are fast growing trees which will produce wood 

of normal to higher than normal volume (Leitch, 2008). 
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Table 13. Research summary of primary findings on genetic variation of northwestern 
0 t . . It . n ano commerc1a ree spec1es. 
Species Primary Findings 

black 
• Wood characteristics associated with pulp quality can be improved through tree 

improvement programs except for fibre wall thickness, 
spruce • Most variation within a provenance is between trees, (Picea 
mariana • Knot properties, although highly variable between trees, is predictable, and 

(Mill.) • Growth rate has less effect on wood density with an increase in age. 

B.S.P.) (Zhang and Koubaa, 2008; Lemieux et at., 2001; Zhang, 1998; Zhang et at., 1996; 
Villeneuve et at., 1987; Zhang and Morgenstern, 1995; Khalil, 1985) 

jack pine • Attempts to improve wood quality and growth rate, 

(Pinus • Variance observed to be greatest between sites, 

banksiana • Improving wood quality and yield simultaneously proved to be the best strategy. 

Lamb.) (Zhang and Koubaa, 2008; Zhang and Chui, 1996; Morris and Parker, 1992; 
Magnussen and Keith, 1990; Keith, 1986; Grigal and Sucroff, 1966) 

white • Tree improvement programs focused on tree form, growth rate, and hardness, 

spruce • Studies on wood quality are limited, and 

(Picea • Genetic response to environmental factors highly variable. 

gtauca (Zhang and Koubaa, 2008; Beaulieu et at., 2007; Knudson eta/., 2006; 

(Moench) Magnussen, 1993; Yanchuk and Kiss, 1993; Corriveau et at., 1991; Kiss and 

Voss) Yanchuk, 1991; Corriveau et at., 1990; Kiss and Yeh, 1988; Merril and Mohn, 
1985; Beaulieu and Corriveau, 1985; Taylor eta/., 1982; Holst, 1960) 

eastern 
white cedar • Relatively no information on the genetics of this species, and 
(Thuja • Variance between trees is significant. 
occidentatis (Zhang and Koubaa, 2008; Zobel and van Buijtenen, 1989; Maejlin, 1973) 
L.) 

eastern • Limited studies on the genetics of this species, 

larch (Larix • Genetic response to environmental factors highly variable, 

taricina (Du • Greatest variance within the tree, and 

Roi) K. • Wood density does not vary significantly between sites and trees. 
Koch) (Zhang and Koubaa, 2008; Yang and Hazenberg, 1987; Balatinecz, 1983; Vallee 

and Stipanicic, 1983) 

• Known to have uniformed wood properties with limited genetic variation, 

red pine • Limited variance compared to other pine species, 

(Pinus • Significant variance observed to be between sites, and 

resinosa • Variance between trees accounts for as much as 12% of total variance. 

Ait.) (Zhang and Koubaa, 2008; Larocque, 1997; Mosseler et at., 1992; Lee and 
Wahlgren, 1979; Fowler and Morris, 1977; Fowler and Lester, 1970; Gilmore, 
1968; Rees and Brown, 1954) 

eastern • Limited studies on the genetics of this species, 
white pine • Significant variance observed to be between sites, and 
(Pinus • Variance between trees accounts for at least 80% of total variance. 
strobus L.) (Zhang and Koubaa, 2008; Beaulieu et at., 1990) 
balsam fir • Limited studies on the genetics of this species, and 
(Abies • Significant variance observed to be between sites . 
batsamea (Zhang and Koubaa, 2008; Li et at .. 1997; Zobel and van Buijtenen, 1989; 
(L.) Mill.) Gilmore, 1968) 
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According to the literature, it may be possible to produce genetically 

modified trees to produce wood with: 

• long fibers, 

• uniform density, 

• heartwood extractives, 

• low proportions of lignin and juvenile wood, 

• resistant to climate fluctuations or plant hardiness, and 

• minimal branch development. 

However, there are pitfalls to genetic modification (Bowyer and Smith, 2000; 

Bowyer eta/ .. 2003; Leitch, 2008). 

According to Koehler (1939) first generation hybrid clones tend to display 

vigorous growth that may not be duplicated in the second generation (Koehler, 

1939). Trees have a longer rotation age than other genetically modified plant 

species, and the literature states that assessing the relative success or failure of 

genetic modification cannot be undertaken until trees are at least 25 years of 

age (Koehler, 1939; Eriksson and Ekberg, 2001 ). Further, genetic modification 

may cause a change in how the tree may respond to the surrounding 

environment. Storm events, climate change or response to competition may 

trigger dormant genes which could change the normal growth pattern or form of 

the tree, causing undesirable results. Finally, interbreeding between plantation 

clones and natural species could have disastrous results (Leitch, 2008; Eriksson 

and Ekberg, 2001; Koehler, 1939). 
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2.3.2 Silviculture 

The word silviculture comes from the Latin words silva, meaning a wood, 

and cultura, meaning cultivate (Hawkins and Allen, 1991 ). Thus, silviculture 

literally means to cultivate a wood. Today, this definition could be expressed as 

the management of tree growth for wood production. However, there are a 

number of different definitions for silviculture. According to the British Columbia 

Forest Service, the most common definition for silviculture is, "the art and 

science of controlling the establishment, growth, composition, and quality of 

forest vegetation for the full range of forest resource objectives" (Zielke and 

Bancroft, 1999). In other words, it is managing a forest to meet a set of shared 

attitudes, values, goals and practices that are characterized by a stakeholder 

group (Calfee and White, 2008). Thus, cultivating wood is just one of many 

management goals. 

In the discussion on wood morphology, we have been trying to 

understand the factors associated with cultivating wood which provide 

opportunities for development of woods products in Northwestern Ontario. We 

have identified wood quality as the principle factor which affects the potential for 

product development. Further, we know that any factor which changes the 

normal "growth pattern or form of a tree may result in differing wood properties" 

(Zobel, 1992) and ultimately influence wood quality. We also have identified a 

number of gaps in the knowledge and understanding of wood morphology, 

especially in northwestern Ontario. 
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Given what we have discussed thus far, this new and broader definition of 

silviculture presents us with a number of challenges in understanding how 

silviculture may influence wood quality, and what are the future opportunities for 

northwestern Ontario with respect to new product development. Zobel (1992) 

states, "the crux of the problem is the 'may'. Sometimes wood is affected by 

forest practices, and sometimes it is not" (Zobel, 1992). Zobel (1992) points out 

that because of phenotypic variation trees growing next to each other can 

respond differently to the same silviculture treatment. Therefore, it is difficult or 

even impossible to make generalizations on how silvicultural practices may 

influence wood quality (Zobel, 1992). It is not surprising then that the literature 

on the effects of silviculture on wood quality is contradictory (Zobel, 1992; Zielke 

and Bancroft, 1999; B.C Forest Service, 2002; Gartner, 2005). 

Silviculture uses management techniques to maximize the wood volume 

yielded and wood quality at harvest which include: 

• site preparation, 

• planting, 

• genetically improved, 

• tree spacing, 

• selective or commercial thinning, and 

• harvesting systems. 

For the purposes of the discussion, we will focus on the silviculture practices 

commonly used in northwestern Ontario. 

In Ontario, silviculture treatments are not legislated, as in other 

jurisdictions. The Forest Operations and Silviculture Manual states: 



67 

"Rather than give forest managers a set of strict rules that must be 
followed, Ontario relies on the professional judgment, within a set 
of broad guidelines and principles, of the people given the 
responsibility to manage the forest resource" (OMNR, 2000). 

It is generally understood, that silviculture practices which increase growth rate 

result in degrading the mechanical properties of the wood. However, there is 

little or no information available on the relationship between changes in growth 

rate and the mechanical properties of the northwestern Ontario commercial tree 

species. 

Table 14 summaries the research completed on improving wood quality 

of northwestern Ontario commercial species through silvicultural practices. No 

studies were available on eastern white cedar (Thuja occidentalis L.) 

Rotation age may be one of the best ways for a silviculturist to influence 

wood quality. Harvesting trees too early, reduces the percent of mature wood 

per volume available, and reduces the amount of clearwood, thus, reduces the 

overall quality of wood harvested. Harvesting trees too late creates over mature 

trees with declining wood production and high susceptibility to pest attack and 

disease (Zobel, 1984: Zobel, 1992; Zielke and Bancroft, 1999; B.C Forest 

Service, 2002; Gartner, 2005). 
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Table 14. Research summary of primary findings on the influence of silvicultue on the 
wood quality of northwestern Ontario commercial tree species. 
Species Primary Findings 

black 
spruce 
(Picea 
mariana 
(Mill.) 
B.S.P.) 

jack pine 
(Pinus 
banksian 
a Lamb.) 

white 
spruce 
(Picea 
glauca 
(Moench) 
Voss) 

eastern 
larch 
(Larix 
laricina 
(Du Roi) 
K. Koch) 

red pine 
(Pinus 
resinosa 
A it.) 
eastern 
white 
pine 
(Pinus 
strobus 
L.) 
balsam fir 
(Abies 
balsa mea 
(L.) Mill.) 

• Increased spacing results in a corresponding increase in growth rate and a decrease in 
wood density and the percentage of mature wood, 

• Small to moderate spacing results in longer fibers with no significant change in wood 
density or the percentage of mature wood, 

• Increase in thinning intensity results in corresponding increase in growth rate and a 
decrease in wood density, and 

• Trenching, to manage drainage, results in an increase growth rate with a decrease in 
wood density and fibre length. 

(Zhang and Koubaa, 2008; Yang and Hazenberg, 1994; Yang, 1994; Yang and Hazenberg, 
1992; Wang eta/., 1985) 

• Spacing is the most effective method of influencing the wood quality of jack pine, 
• Increase in spacing results in an increase in growth, knot size, branch angle, stem taper, 

and decrease in wood density, MOE, MOR, and pulping properties, and 
• Thinning resulted in reduced knot size with relatively no change in the lumber bending 

properties or tree height. 
(Zhang and Koubaa, 2008; Zhang eta/., 2005; Morris eta/., 1994; Morris and Parker, 1992; 

Bell eta/., 1990; Magnussen and Yeatman, 1987) 

• Increase spacing results in a corresponding increase in the growth rate and a decrease in 
the percentage of mature wood, 

• Thinning- no information available, 
• Trenching, to manage drainage, results in an increased growth rate with decreases in 

wood density and fibre length, and 
• Pruning beneficial but not cost effective. 
(Zhang and Koubaa, 2008; Yang and Hazenberg, 1994; Yang, 1994; Yang and Hazenberg, 
1992; Berry, 1964) 

• Few studies available, 
• Thinning results in increased growth rate with a decrease in wood density and fibre length, 

and 
• Trenching, to manage drainage, results in increased growth rate with a decrease in wood 

density and fibre length. 
(Zhang and Koubaa, 2008; Koga eta/., 1996; Wang eta/., 1985) 

• Spacing and thinning results in minor changes in wood quality. 
(Zhang and Koubaa, 2008; Chauret and Zhang, 2004; Laroque and Marshall, 1995; Jayne, 
1958) 

• Thinning and pruning results in increase growth rate without degrading the lumber 
properties during processing and drying activities. 

(Zhang and Koubaa, 2008; Page and Smith, 1994) 

• Increases in thinning intensity results in corresponding increase in the growth rate and a 
decrease in wood density. 

(Zhang and Koubaa, 2008; Koga eta/., 2002) 
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For example, the lumber bending properties of jack pine (Pinus 

banksiana Lamb.) were significantly degraded, 36.1% lower, using a 50 year old 

rotation age. However, using a 70 year old rotation age showed no difference in 

lumber bending properties from 90 year old stands (Duchesne, 2006). Table 15, 

shows the average rotation age and average maximum age of Northwestern 

Ontario tree species. 

Table 15. Average rotation age and average maximum age of northwestern Ontario tree 
spec1es. 

Max Average Age Average Rotation Age 
Species of Second Growth (years) (years) 
black spruce (Picea mariana (Mill.) B.S.P.) 280 70 to 100 
white spruce (Picea glauca (Moench) Voss) 250-300 75 to 125 
jack pine (Pinus banksiana Lamb.) 160 60 to 100 
red pine (Pinus resinosa Ait.) 300 60 to 100 
eastern white pine (Pinus strobus L.) 300 60to120 
eastern white cedar (Thuja occidentalis L.) 400 to 500 70to160 
eastern larch (Larix laricina (Du Roi) K. Koch) 150 to 180 30 to 120 
balsam fir (Abies balsamea (L.) Mill.) 150 60 to 90 
trembling aspen (Populus tremuloides Michx.) 120 to 200 15 to 90 
black ash (Fraxinus nigra Marsh.) 250 to 300 70+ 
red maple (Acer rubrum L.) 150 70 to 100 
white birch (Betula papyrifera Marsh.) 140 30 to 70 
Note: This table presents the range of averages reported by the literature (Burns and Honkala, 
1990a; Burns and Honkala, 1990b; Archibald and Arnup, 1993; OMNR, 1997; Kevan and 
Murphy, 2007; Zhang and Koubaa, 2008; OMNR, 201 0). 

Site preparation increases plantable spots by either physical, mechanical 

or chemical disturbance to the forest floor, thus, increasing site productivity. 

There are very few studies investigating the influence of site preparation on 

wood quality (Zobel, 1984; Zobel, 1992; Zielke and Bancroft, 1999; B.C Forest 

Service. 2002). There is conflicting evidence that site preparation can influence 

wood quality, however, trenching can improve plantable spots, and drain excess 

water off a site. The responses to trenching are increased wood yield on a site, 
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and improved growth in some species (Hillman and Roberts, 2006). However, 

studies show that improved growth from trenching, results in a decrease in wood 

density in some species (Berry, 1964; Wang eta/.. 1985; Hillman and Roberts, 

2006). Site preparation, in combination with proper regeneration and stand 

tending, may play a key role in developing high quality uniform wood in 

northwestern Ontario. However, further study is required before this could be 

said with any certainty. 

Renewal of forest stands in northwestern Ontario are either through 

artificial regeneration or natural regeneration. Artificial regeneration includes 

planting seedlings and direct seeding (OMNR, 1997). Under the Ministry of 

Natural Resources Directive FOR 06 02 01, seed used in renewal must be from 

"climatically-based seed zones to ensure that tree seed and stock used in 

artificial regeneration activities are adapted to local climatic conditions" (OMNR, 

2001). There are 13 seed zones in northwestern Ontario (Figure 32) (OMNR, 

2001). 

As discussed, tree genetics has the greatest influence on how a tree 

responds to its surrounding environment, thus, dictates growth pattern and form 

of the tree. The seed zone directive of the Province of Ontario will promote 

phenotypic variation within tree species of northwestern Ontario and will 

influence variation in wood quality for a given species from one seed zone to 

another (Zobel, 1992; Lei eta/., 2004; Beaulieu eta/., 2005). Many jurisdictions 

throughout the world, have developed similar seed zone policies (OMNR, 2001). 

This may affect the relevance of data when comparing studies between different 

jurisdictions. 
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Figure 32. Provincially designated seed zones located in northwestern Ontario (OMNR 
2001). 

The intensity of regeneration or stocking levels has been shown to 

influence wood quality. As discussed, when trees are open grown or widely 

spaced, mature wood development is delayed, thus reducing wood quality 

(Wangaard, 1981; Zobel, 1984; Kellison eta/., 1984; Kellogg, 1989; Kliger eta/., 

1994; Forest Products Laboratory, 1999; Zhang, 2003; Rowell, 2005). 

Therefore, under stocking during renewal can significantly influence wood 

quality. Planting trees too close can suppress height growth in some species 

(Zobel, 1984; Zobel, 1992; Zielke and Bancroft, 1999; B.C Forest Service. 

2002). The literature shows that stocking levels or spacing can affect relative 

density, fibre length, wood volume yield, and percentage of mature wood. 

Higher stocking (decreased spacing between trees) can increase fibre length, 

wood density, and the percentage of mature wood (Jayne, 1958; Magnussen 

and Yeatman, 1987; Yang and Hazenberg, 1987; Bell eta/., 1990; Morris and 
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Parker, 1992; Yang and Hazenberg, 1992; Barbour eta/., 1994; Yang and 

Hazenberg, 1994; Yang, 1994; Larocque and Marshall, 1995; Yang, 1995; 

Zhang and Chauret, 2000; Zhang eta/., 2002; Chauret and Zhang, 2004; Zhang 

eta/., 2005; Leitch, 2008; Zhang and Koubaa, 2008). 

Generally speaking, when stocking levels are under 2000 stems per 

hectare, relative density is significantly reduced. While stocking levels over 

3000 stems per hectare, seem to have little or no effect on relative density 

(Zobel, 1984; Zobel, 1992; Willcocks and Bell, 1995; Zielke and Bancroft, 1999; 

B.C Forest Service, 2002; Zhang eta/., 2001 ). Having said this, the literature 

indicates, that optimum stocking levels are site specific. For example, on less 

dense wetter sites, spacing between stems can be greater, resulting in lower 

stocking levels (Willcocks and Bell, 1995; B.C Forest Service, 2002). 

Stand tending in Northwestern Ontario appears to be limited to promoting 

tree growth and increasing volume by the removal of competing vegetation 

(Willcocks and Bell, 1995; OMNR, 2000). Tending can influence wood quality 

primarily by affecting stocking levels within the stand (Willcocks and Bell, 1995; 

OMNR, 2000). Reducing competition within a stand (Shepard, 1980; Smith, 

1984; Yang and Hazenberg, 1994; Barbour eta/., 1994; Morris eta/., 1994; 

Willcocks and Bell, 1995; Koga eta/., 1997; Zielke. and Bancroft, 1999; B.C 

Forest Service, 2002; Chauret and Zhang, 2004): 

• Increased volume, 

• Decreased density, and 

• Reduced vertical growth on some sites. 
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2.3.3 Environment 

As discussed, genetics not environment has a greater effect on wood 

characteristics (Eriksson and Ekberg, 2001; Zobel, 1984; Beaulieu eta/., 2005; 

Leitch, 2008). However, this does not mean that environmental conditions do 

not influence wood quality. Rainfall, length of growing season and soil factors 

clearly affect tree growth and may influence wood quality (Eriksson and Ekberg, 

2001; Zobel, 1984; Beaulieu eta/., 2005). Environmental factors may be 

mitigated through silviculture treatments such as delaying harvesting, irrigation 

or fertilization (Zobel, 1984; Beaulieu eta/., 2005). These treatments are site 

specific and may require a prescription of a number of treatments to achieve the 

desired effect (Zobel, 1992; Willcocks and Bell, 1995; Zielke and Bancroft, 1999; 

B.C Forest Service, 2002). For example, Table 16 illustrates how variable the 

growth environment can be for the commercial species of northwestern Ontario 

within their growth range (Burns and Honkala, 1990a; Burns and Honkala, 

1990b; OMNR, 1997; Zhang and Koubaa, 2008). 

When reviewing Table 16, we must keep in mind the vast differences in 

growth ranges between nothwestern Ontario tree species. The growth range for 

red pine, red maple, eastern white cedar, eastern white pine, and black ash are 

limited to eastern North America. While the remaining commercial species of 

northwestern Ontario have growth ranges stretching across Canada and the 

northern United States (Burns and Honkala, 1990a; Burns and Honkala, 1990b; 

OMNR, 1997; Zhang and Koubaa, 2008). 



Table 16. Environmental variation, requirements, and toleran.ce to environmental stress of northwestern Ontario tree species (Zhang and 
,,..,w..,au •vvv1 .....,..,.,,.,,, ,..,..,. ... ... I 18 81 IU I lVI IRUIUI I ..,"""VU - ... 111¥ .. ,,_ 11.-lln._l_l IVVV-J• 

Environmental Variation In Growth Range Environmental Requirements Tolerance to Environmental Stress 

Species Range in Range in Zone of Prolonged High 
Temperature Precipitation 

Frost Free Days Water Nutrients Shade 
Rooting Drought 

Flooding 
Frost 

Temp 
Wind 

60 to 140 days Low to lntennediate Organic/ Low to Low to Black Spruce -62 to41" C. 150 to 1520 mm less Moderate Low to Tolerant Mineral Moderate Low Low - Moderate near tree line. 

White 20 to 180 days 20 lntennediate Low to Low to Low to Low to 
Spruce -54 to43" C 250 to 1270 mm days near Moderate Moderate to Tolerant Mineral Moderate Moderate Moderate - Moderate tree line. 

Jack Pine -46 to 38" C 250 to 1400 mm 50 to 173 days Low Low Very Mineral High Low Moderate Moderate 
Intolerant - to High • .. 

Red Pine -40to 38" C 510to1520mm 40 to 160 days Low Low to Intolerant Mineral Moderate Low Moderate High I 
Moderate to High -

I 

Eastern July Daily Average 510 to 2030 mm 90 to 180 days Moderate Moderate lntennediate Mineral Moderate Low to Moderate Moderate! 
White Pine 18to23" c Moderate to High - to High I 

East em -12 to 22" c 510 to 1400 mm 80 to 200 days Moderate Low to Tolerant Organic/ Moderate Moderate to Moderate Low to 
White Cedar Moderate Mineral High to High - Moderate 

~ 

Eastern -62 to43" C 180 to 1400 mm 75 to 180 days Low to Low to Very Organic/ Low to Moderate Moderate Low to 
larch Moderate Moderate Intolerant Mineral Moderate - Moderate 

Balsam Fir -18 and -18" C 150 to 1400 mm 80 to 180 days Moderate Moderate Very Tolerant Organic/ Low Moderate Low to Low Mineral Moderate -
Trembling -57 to 41" c 180 to 1020 mm 30 to 160 days Moderate Moderate Very Mineral Low to Low to Low Low Moderate Poplar to Hlah to High Intolerant Moderate Moderate 

Black Ash -12 to 22" C 510 to 1400 mm 80 to 180 days High Moderate Intolerant Organic/ Low Moderate to Moderate Low Mineral High to High - . 
Widest tolerance to Extreme moisture Low to Low to Moderate to 

Red Maple climatic conditions conditions very 80 to 240 days Moderate Moderate Tolerant Mineral Moderate High Low - Moderate 
of all the Maples wet or quite dry. 

White Birch July Daily Average 300 to 1520 mm 80 to 140 days Moderate Moderate Very Mineral Moderate Low Low Low Moderate 13to21"C Intolerant 
- --
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Figure 33 illustrates the environmental variation of four northwestern 

Ontario tree species. We cannot assume wood characteristics for these 

species will be unchanged throughout their growth range. Site specific forest 

management for these species is recommended by the literature, and this 

paradigm should carry forward along the value chain for all northwestern Ontario 

species (Burns and Honkala, 1990a; Burns and Honkala, 1990b; Zobel, 1992; 

Willcocks and Bel, 1995; OMNR, 1997; Zielke and Bancroft, 1999; B.C Forest 

Service, 2002). 
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Figure 33. Growth range of trembling aspen, white birch, black spruce, and eastern larch 
(Burns and Honkala, 1990a; Burns and Honkala, 1990b). 

We have not always understood how environmental conditions influence 

wood quality. Only through research, have foresters and wood scientists 

increased their knowledge on wood morphology over the last century. For 
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example, in the 1930s it was postulated that "environment has a very 

pronounced influence on wood quality and therefore may mask lesser hereditary 

differences" (Koehler, 1939). It was felt, that environment was the driving factor 

on wood quality and almost any wood element was attributed to environmental 

factors (Koehler, 1939). Today the literature pertaining to influences on wood 

quality clearly indicates that genetics and environment are key factors (Eriksson 

and Ekberg, 2001; Zobel, 1984; Beaulieu eta/., 2005; Leitch. 2008). 

No studies were found on investigating the influence of environment on 

the wood quality of the tree species of northwestern Ontario specifically. 

However, studies were found for these species growing in other regions. These 

studies showed significant difference in wood density between geographic 

locations that may be attributed to climatic differences between sites (Aiemdag, 

1984; Singh, 1986). 

2.4 Wood uses 

As discussed, very little research has been completed on the wood 

characteristics of northwestern Ontario tree species. The challenge is to identify 

what products can be made from northwestern Ontario tree species without 

having certainty as to their actual wood characteristics. 

A number of studies have been completed comparing regional variation 

of wood characteristics to published baseline data such as Jessome's (2000). 

Singh (1986) observed that there were regional variations in reported wood 

density of -10.0% to +18.2% between the Jessome (2000) study and the same 
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tree species study in three other areas of Canada. Further, he reported that 

Alemdag (1984) experienced similar results when comparing 28 Ontario tree 

species. 

According to the literature, the best way to maximize the value chain of 

the forest industry is to match end use characteristics with the wood properties 

of available tree species (Gartner, 2005; de Ia Roche, 2008). As we do not have 

regional data on wood properties for northwestern Ontario tree species Table 17 

lists wood characteristics, working properties and uses as report by Mullins and 

McKnight (1981), Henderson (1981), Burns and Honkala (1990). Table 17 

shows that knowing the characteristics is just one part of the equation to 

matching choice of tree species to end use; processing properties of wood are 

also important. 

In northwestern Ontario wood products manufacturing has been limited to 

(Moazzami, 2006): 

• Pulp and Paper, 

• Lumber, Panels, 

• Engineered Wood Products, 

• Chemical Extractives, and 

• Value-added; although only minorly. 
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Table 17. Wood characteristics of northwestern Ontario tree species (Zhang and Koubaa, 
2008; Burns and Honkala, 1990; Mullins and McKnight, 1981; Henderson, 1981 ). 

Tree Species of Wood Characteristics Working Properties Uses northwestern Ontario. 

Wood mechanically is Wood use primarily 
not very resistant to pulpwood for paper 
bending or end-wise Wood is easily and composites, and 
compression, is worked and finishes lumber products. 
moderately strong with a satin-like Secondary products 
(stronger than white surface. It glues well, primarily millworks. 

black spruce spruce) with above Also food 
average stiffness. Dries average in paint- containers, boxes, 
easily with moderately holding ability, but ladders, canoe rates low in nail-high shrinkage. Is holding capacity. paddles and oars, 
straight, even grained, scaffolding, wood 
medium to fine textured, siding, and crates. 
and soft. 

Wood machines Used mainly as 
Wood mechanically is easily however care pulpwood and 
moderately strong with most be given to fuelwood. 
above average stiffness prevent a slightly Secondary products 
comparable to white fuzzy surface. It include structural 

Trembling Aspen spruce. Is straight holds nails poorly to lumber, wood 
grained, light and soft fairly well and does composite, veneer, 
with uniform texture. not split when nailed. millworks, furniture 
Has good dimensional It turns, bores, sands, parts, match sticks, 
stability and low to and holds paint well. tongue depressors, 
moderate shrinkage. It is moderate to easy paneling, and milled 

to glue. house logs. 

Wood mechanically is Mainly pulpwood 
(70% in Ontario) for moderately strong in paper and bending and moderate Wood is generally composites, and to low in compressive knotty average lumber. Secondary strength, moderately workability with tools. products include 

Jack Pine resistant to impact, and It has fair nail-holding timber, post and moderately low in capacity and glues pole products, stiffness. Is coarse 
textured and resinous, well, however is liable pilings, railway ties, 

moderately light in to split when nailed. slack cooperage, 
veneer, form work, weight, and low to joinery, packing moderate shrinkage. cases, panelling,. 
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Table 18 continued 

Used mainly as 
pulpwood and 
fuelwood. 

Wood mechanically is Wood is difficult to Secondary products 
include lumber, weak and not resistant work with hand tools, veneer, plywood, White Birch to impact. Wood is fine moderately easy to furniture, and wood with uniform texture and glue, but easily flooring. Can be has high shrinkage. machined. tapped in the spring 
to obtain sap from 
which syrup, wine, 
beer, or medicinal 
tonics can be made. 
Wood use primarily 
pulpwood for paper 

Wood mechanically has and composites and 
low bending and Wood works easily lumber. Secondary 
compressive strengthen with both hand tools products include 
in stiffness and and machine paneling, timbers, 
resistance to impact and operations, low nail boxes, creates, 

Balsam Fir shear. Better strength holding capacity, but ladders, oars, canoe 
properties than white good splitting paddles, and wood 
spruce but less than resistance. Finishes siding. Extractives, 
black spruce. Wood is well, and takes paint, oleoresin used in 
light weight, soft, and varnish, and polish microscopy, 
has moderate well. medicinal 
shrinkage. compounds, and 

spirit varnishes. 

Used mainly for its 
superior durabilty 
and strength 
features. Lumber, 

Wood mechanically has primarily boards for 

the lowest density of secondary 
manufacturing. any commercial Secondary products: domestic wood, thus Wood machines easy best wood for use in bending and to average works with outdoor furniture or compressive strength, using hand tools any products that hardness, stiffness, and Eastern White Cedar resistance to impact and easily. It glues well, come into to contact 

splitting are all low. It holds paint well, and with the ground or 
does not hold nails or water. Boats, soft with an even grain screws well .. canoes, posts, and fine texture. It dries 

easily with very little fencing, wood 
siding, poles, pilings, shrinkage and no roof acsent, wood warping. shingles, and 
pulpwood for 
specialty 
composites. 
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Table 18, continued 

Depending on the 
region, either 
pulpwood or lumber 
are the main 
products produced. 
Historically, 

Wood mechanically is tamarack was the 
preferred species for intermediate to high in rail ties. Secondary strength, stiffness, and The wood is not products include hardness, but low 

resistance to impact. simple to work with, wood composites, 

The wood is fairly however works well in wood flooring, 
Eastern Larch most instances when outdoor furniture, coarse to medium in great care is taken. It wood siding, texture and spiral grain is the best wood for paneling, doors and is common. Drying is outdoor applications door frames, window difficult with moderate 

shrinkage with a and frame parts, 
house logs, poles, tendency to warp. pilings, fencing, and 
engineered wood 
products. Superior 
to most other NWO 
species for bio-fuel 
and bio-chemical 
products 
Wood use primarily 
pulpwood for paper 
and composites, and 

Wood mechanically is lumber products. 
Secondary products moderately strong with include plywood, above average stiffness. Wood is easily veneer products, 

White Spruce Dries easily with worked and finishes millworks, food moderate shrinkage. Is with a satin-like containers, musical moderately light, soft, surface. instruments, with straight even transmission poles, 
grained. furniture parts, 

match sticks, tongue 
depressors, and 
oanelinq .. 
Wood used in 
lumber and 

Wood mechanically has secondary products. 
low to medium strength, Wood is machined Secondary products 
stiffness, and resistance and worked with tools include house logs, 
to impact; the weakest easily. It stains, glues, siding, millwork, 

Eastern White Pine eastern pine. Is light and finishes well, with doors, furniture, 
weight, soft, straight good nail and screw caskets and burial 
grained with uniform holding ability. It is a boxes, toys, and 
texture, is dimensionally highly regarded wood woodware. 
stable and shrinkage is in the United States. Extractives produce 
low. white pine tar, an 

antiseptic and 
expectorant. 
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Table 18, continued 

Primarily lumber and 
roundwood; 
including 
transmission poles, 

Wood mechanically is pilings, house logs, 
intermediate in density, posts and columns. 
moderately strong, Secondary products 
moderately stiffness, Wood is machined include pulpwood for 
resistant to impact, and worked with tools paper and 

Red Pine bending, and easily. It glues, composites; from 
compression. Is finishes well, with chips and low grade 
moderately heavy, with good nail and screw logs. Wood toys, 
straight even grain, and holding ability. carving, 
medium texture. Dries woodenware, 
easily with little novelties, and 
shrinkage. outdoor furniture. 

Extractives used in 
tanning, and for 
turpentine and rosin 
production. 
Primarily fuelwood 
and lumber. Wood 

Wood mechanically is use in lumber, 
veneer, timber, pulp, low in strength, Wood is harder to and secondary stiffness, and impact. work than softer products. The wood is resistant to woods, turns well, 

Red Maple abrasion and has high stains and polishes Secondary products 
include veneer, shrinkage. Wood is fine, well, intermediate in timbers, pulpwood, soft, and straight gluing, and has high wood flooring, grained with uniform nail-holding ability. furniture, woodware, texture. and novelties. Sap 
from for maple 
syrup. 
Wood is used 
exclusively used in 

Wood mechanically is It has high nail- secondary products. 
moderate in strength, holding ability, Fuelwood, wood 
stiffness, and resistant moderately difficult to floors, furniture, 

Black Ash to impact. Wood is glue, above average millwork, baseball 
straight grained, heavy, machining and cricket bats, 
hard, it wears smooth, characteristics, but paddles, bows, 
and moderate tends to split in musical instruments, 
shrinkage. nailing. joinery, veneer, 

woodware, and 
novelties. 



82 

2.4.4 Value-added products 

Value-added wood products, or secondary wood products, add value to 

other wood products along the value chain through further manufacturing or 

specialty processing (Industry Canada, 2000). Value-added wood products 

include (Industry Canada, 2000): 

• remanufactured products (lumber specialties, fencing, etc.), 

• engineered wood products (MSR lumber, laminated beams, trusses, 
wood 1-beams, etc.), 

• millwork (doors, windows, architectural woodwork, turnings, etc.), 

• cabinets (kitchen and vanity cabinets, cabinet doors, countertops, etc.), 

• furniture (household furniture, ready-to-assemble furniture, commercial 
and institutional furniture, patio furniture, etc.), and 

• pallets and containers. 

In addition to finished and pre-finished wood products, custom services like 

specialty milling (cut to customer specification) and custom drying are also 

value-added products (Industry Canada, 2000). 

Northwestern Ontario has a minor value-added wood products sector 

compared to southern Ontario (Manson and Rose, 2005). According to Shahi 

(2008) there is only one computer numerical control (CNC) machine in all of 

northwestern Ontario. This is one area that northwestern Ontario's forest 

industry could diversify. 

According to Manson and Rose (2005), the value-added sector is one 

area the north could readily expand their lumber market. Currently, the majority 

of the wood supplying southern Ontario's $2.2 billion value-added sector is from 
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Quebec. Quebec supplies 41.5% of southern Ontario's value-added sector, 

while United States supplies 15%. Ontario, all regions, supplies only 38.1% of 

its own value-added wood products sector's needs (Manson and Rose, 2005). 

2.4.5 Pulp and paper products 

Pulp is produced by one of two ways (Cohen eta/., 1996; Shahi, 2008.): 

1. Mechanical Pulp; produced using mechanical force with heat to separate 
fibres from the other components of wood. 

2. Chemical Pulp; produced by using chemical reagents with heat to 
separate fibres from other components of wood. 

Pulp is used to make various materials, including paper, paperboard, hardboard, 

insulation board and a variety of moulded fibre products (Bowyer eta/., 2003). 

Pulp and paper production has been the stable but cyclical flagship of 

northwestern Ontario's forest industry. However, in 2003, while world demand 

for pulp was increasing, demand for northwestern Ontario pulp was declining 

(Figure 34) (Thornton, 2008). The reason for the decline was the cost of 

northwestern Ontario's higher quality and more expensive pulp (Moazzami, 

2006; Leitch, 2008). The pulp mills of northwestern Ontario are struggling to 

compete with the low cost pulp coming from Chile and other southern 

hemisphere countries made from fast growing clone plantations (Leitch, 2008; 

Shahi, 2008). This illustrates that wood characteristics alone are not a 

guarantee to product success. 

Northwestern Ontario needs to identify new premium wood products in 

demand within the global market place. According to the literature, areas it 
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should be researching are value-added wood products, bioproducts and 

nanotechnologies. 
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Figure 34. Sales trend for NWO's major wood products (Thornton 2008). 

1.5.6 Future products 
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Bioproducts are produced wholly or in part from renewable resources. 

There are three categories of bioproducts (Jaworski and St-Louis, 2001 ): 

1. biofuels 

2. biochemicals, and 

3. biomaterials. 

Bioproducts present northwestern Ontario with a potential growth market that 

integrates well with the regions pulp and paper manufacturing infrastructure 

(Winandy eta/., 2008). For example, underutilized tree species such as eastern 

larch and trembling aspen, are suitable for pulpwood for composite wood 

products, biofuels, and biochemicals (Table 17). Integrating these fast growing 

Boreal tree species into the existing pulp and paper manufacturing infrastructure 
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may provide the region the competitive advantage necessary to make the 

products from these tree species economically viable. 

Nanotechnology is another avenue to develop nnew product suited well 

for northwestern Ontario's pulp and paper producers. For the forest industry, 

nanotechnology can be considered in two ways; as a wood product and as an 

additive to make a specialized wood product. Biomaterial includes 

nanotechnology substances such as nanocrystalline cellulose, the smallest 

physical sub-unit of cellulose (de Ia Roche, 2008; Winandy eta/., 2008). Also, 

other nanotechnologies can be incorporated into value-added wood products to 

make such things as smart papers and self-cleaning counter tops (de Ia Roche, 

2008; Winandy eta/., 2008). 

Integration with existing manufacturing operations is key to these new 

products viability. As Figure 35 illustrates, bioproducts will rely on residual 

products from other manufacturing processes and extensive research (de Ia 

Roche, 2008; Winandy eta/., 2008). 

Figure 35. Integration of existing manufacturing with bioproducts and nanotechnology 
(Winandy et a/. 2008). 
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Life cycle research and development seems to be another gap, which 

impedes successful product development and diversification of northwestern 

Ontario's Forest Industry. Figure 36 shows the lifecycle of wood products within 

the global market place (Thornton, 2008). Note, that the majority of the products 

northwestern Ontario produces are nearing maturity (which represents stagnant 

growth in demand) or are already in decline (Shahi, 2008; Thornton, 2008). 

R&D I fntroduction Growth Maturity 

Time Horizon 

Figure 36. Life cycle of certain forest products (Thornton 2008). 

2.5 Opportunities for northwestern Ontario 

We have identified a number of opportunities for Northwestern Ontario's 

forest industry and a number of constraints associated primarily with gaps in the 

knowledge with respect to forest inventory wood characteristics and trends in 

the global market place. Before the forest industry can capitalize on 

opportunities in the global market place and exploit any competitive advantages 

they may have, they must first shift their management philosophy from a 

production to a market paradigm. 
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1.6.1 Production paradigm 

In his presentation, "Forest: Building Blocks of the New Bio-Economy at 

the conference Growing Forest Value: Opportunities in Northern Ontario," lan de 

Ia Roche, former President and CEO of FP Innovations, pointed out that the 

forest industry has become single minded in their manufacturing of wood 

products (de Ia Roche, 2008). In the lumber sector, for example, industry 

focused their efforts on being the most efficient at producing a cheap product. 

"We became so good at being efficient, that only those mills that could produce 

the cheapest products survived" (de Ia Roche, 2008). While, we were 

becoming the most efficient at producing a single commodity, the global market 

place changed and producing a cheap product no longer guaranteed survival 

(de Ia Roche, 2008). 

De Ia Roche was describing the classic production marketing paradigm 

(Webster, 1992; Almeder, 2007; Shahi, 2008). The production paradigm is a 

marketing system that is (Webster, 1992; Almeder, 2007; Shahi, 2008): 

• a production driven system, 

• a cost efficient production being the main goal, 

• defined by high quality standardized goods, 

• indifferent to the market (taken as a given). 

According to the literature, the global forest industry began shifting from the 

traditional commodity production paradigm to a customer based market 

paradigm during the recession of the 1980s (Aimeder, 2007; Shahi, 2008). The 
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change in marketing philosophy was in response to a changing market. A 

market that had (Webster, 1992; Almeder, 2007; Shahi, 2008): 

• more sophisticated consumers, 

• short product life cycles, 

• increased product variety and direct product alternatives, and 

• global competition in a heterogeneous market. 

The increase in global competition can be directly attributed to the economic 

growth in the developing world, which has been the driving force in growth in 

international markets (Shahi, 2008). 

According to de Ia Roche (2008), the forest sector needs to change its 

approach to product development. In order to compete successfully, the forest 

sector needs to optimize the value chain for its customers when developing 

products (Webster, 1992; Almeder, 2007; de Ia roche. 2008; Shahi). 

2.5.2 Market paradigm 

What de Ia Roche (2008) is describing is the market paradigm. The market 

paradigm is not just a philosophy it is a management system, affecting every 

aspect of the business (Shahi, 2008; Almeder, 2007; Webster, 1992). The 

market paradigm means (Shahi, 2008; Almeder, 2007; Webster, 1992): 

• customers are thought of as individual rather than average, 

• quickly responding to rapidly changing expectations, 

• do not expect customer loyalty, 

• operations are centred on the customer; creating 'internal customers.' 
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Webster (1992) explains that marketing can no longer be the sole responsibility 

of a few specialists. Rather, everyone in the firm must be charged with 

responsibility for understanding customers and contributing to developing and 

delivering value for them (Webster, 1992; Shahi, 2008; Almeder, 2007). For 

example, if a customer calls the janitor, the janitor must know how to transfer the 

call to the 'right' person (Webster, 1992). Thus, the market paradigm is a market 

management system (Webster, 1992; Shahi, 2008; Almeder, 2007). 

The market management system, centred on the customer, optimizes the 

value chain for its customers as one of its execution strategies. The changing 

role of marketing in a corporation, requires the marketer to manage three sets of 

relationships; customers, suppliers, and re-sellers. To do this, the corporation 

must develop sector clusters to deliver products and services to its customers. 

Figure 37 shows the forest sector cluster for northwestern Ontario and was 

developed by Moazzami (2006) for the northwestern Ontario forest council in 

2006. The cluster diagram clearly shows the potential strengths of the 

northwestern Ontario forest sector, however, we can see gaps in the cluster 

(Moazzami, 2006). The gaps are (Moazzami, 2006; Shahi. 2008): 

• millwork, 

• prefabricated wood building systems manufacturing; requires CNC 
equipment, 

• bioproducts, 

• nanotechnology, 

• asphalt roofing industry 
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• value-added manufacturing in office furniture, or other furniture requiring 
CNC equipment, and 

• Underdeveloped forestry service industry 
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Figure 37. NWO forest sector cluster (Moazzami 2006). 
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Thus, we can say with certainty, that northwestern Ontario's forest sector has a 

number of the key direct and indirect manufacturing and support services 
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necessary to operate successfully under a market management system 

(Moazzami, 2006; Shahi. 2008). 

2.5.3 Characteristics of end use products 

Under a market management system research and development are key 

to competitiveness. It is crucial that a corporation have a diverse basket of 

products and services that are constantly changing to meet the needs of their 

customers. This has been one of the failings of northwestern Ontario's forest 

sector. 

What is key is that the business will be defined by its customers, not its 

forest tenures or factories or offices (Webster, 1992; Almeder, 2007; Shahi, 

2008). Thus, product development is driven (Figure 38) and executed (Table 

18) by customer value chain optimization (de Ia Roche, 2008; Leitch, 2008; 

Shahi, 2008). 

CHAIMCTER!STICS-
PHYSiCAl, MECHI\NICAl, & 
CHEMICAL PROPERHE57 

VALUE CHAIN 

WHAT /\RE THE WORKING 

PROPERTIES OF THE WOOD 7 

WI-IAT PROCESSES ARE 
REQUIRED TO MEET 

PRODUCT DEM1\ND? 

Figure 38. Value chain optimization (de Ia Roche 2008). 

WH~\T DOES THE 
MARKET WANT? 
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T bl 18 K a e ld b now e sge ase gaps /b 'h amers w1t h . respect to va ue c am attributes. 
Value chain attribute Knowledge base gap I barrier 

Lack of research and development based on customer needs. 
Market demand Majority of wood products are at zero or negative growth within their 

life cycle. 
Shift to market based management system at initial stages. 
Unknown if current manufacturing capacity is able to produce new 

Processing products, such as smart products using nanotechnology, and 
bioproducts. 
Minor underdeveloped value-added sector, only one CNC in NWO. 
Few studies completed on wood characteristics of NWO Forest 
Inventory. Those completed were primarily on black spruce and 
Jack Pine. 

Raw materials No data on NWO's second growth forests managed under 
government silvicultural policy. Level of genetic variance due to 
artificial regeneration is unknown. Effect on stocking standards on 
second growth wood characteristics is unknown. Inventory of 
chemical extractives is unknown. 

2. 6 Validating the literature reviewed 

The need for further forest research has been identified for some time 

now. For example, between 1959 and 1968, during a series of symposia on 

wood quality, it was identified in Ladell eta/. (1968), "that there was a serious 

lack of information regarding the structure and variability of wood of 

commercially important species of Ontario." Since the pulp and paper industry 

dominated the provincial economy, it was decided to study the characteristics of 

black spruce as they related to the desired paper properties (Ladell eta/., 1965). 

"It was hoped that the results (would) be useful in the management of existing 

stands as well as furnish information that will assist in the selection of superior 

trees for breeding purposes" (Ladell eta/., 1968). 

It is clear from the literature reviewed, that some species have been more 

thoroughly sampled than others (Jessome, 2000); with few studies being 
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completed within northwestern Ontario. Properties vary from tree to tree and 

from location to location within a species, but Jessome (2000) believed that the 

data reported on the northwestern Ontario species are fair estimates of their 

properties throughout the growth range (Jessome, 2000). 

If you consider the range of eastern larch (Figure 33) and the species 

variability in height and diameter growth, it is important to understand what is 

meant by "a fair estimate" of the properties "throughout the growth range" 

(Jessome, 2000). For example, Jessome's research on eastern larch 

(tamarack), was limited to a total of 11 trees over two sites across its growth 

range, which is insufficient to develop design criteria for end use products for 

this species, under the National Lumber Grades Authority's (NLGA) procedures, 

outlined in the Wood Reference Handbook, and the Lumber Properties Project 

Report (CWC, 1994; CWC, 1997). The sampling procedures for the NLGA 

requires that: 

sampling be conducted throughout the full growth region for each 
commercial species group ... and each growth region (be) subdivided into 
homogeneous sampling regions ... for the species (CWC, 1994; CWC, 
1997). 

The NLGA procedure refers to each species size, grade and property 

combination as a sample "cell", and requires a minimum target sample for a 

given property of 360 specimens per cell across the growth region. For the 

major commercial species of Canada, 27 main cells were used to develop their 

internationally accepted grades; 3 specimen sizes, 3 properties tested, and 3 

visual grades (CWC, 1994; CWC, 1997). The species group Spruce-Pine-Fir 

(SPF) is Canada's most important commercial species groups. All other species 
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groups in northwestern Ontario are referred to as northern species, since they 

have not undergone the same intensive wood properties testing as the SPF 

species group. Further, within northwestern Ontario, most of the species within 

the SPF species group, are considered a northern species when graded as a 

single species (Table 19). 

Table 19. Northwestern Ontario tree species listed by individual and species group grade 
stamp (NLGA, 2003a). 
Species Individual Species Species Group 

NLGA Grade Stamp NLGA Grade Stamp 
black spruce (Picea mariana B.Spr (N) S-P-F (Mill.) B.S.P.) 
white spruce (Picea glauca W.Spr (N) S-P-F (Moench) Voss) 
jack pine (Pinus banksiana J.Pine (N) S-P-F Lamb.) 
eastern white pine (Pinus EW.Pine (N) S-P-F strobus L.) 
red pine (Pinus resinosa Ait.) R.Pine S-P-F 
balsam fir (Abies balsamea B. Fir (N) S-P-F (L.) Mill.) 
eastern larch (Larix laricina Tam (N) Hem-Tam (N) (Du Roi) K. Koch) 
eastern white cedar ( Thuja EW.Cedar (N) N.Species occidentalis L.) 
white birch (Betula papyrifera W.Birch N.Species Marsh.) 
trembling aspen (Populus Aspen (N) N.Aspen tremuloides Michx.) 
black ash (Fraxinus nigra N.Species N.Species Marsh.) 
red maple (Acer rubrum L.) N.Species N.Species 

Most of the findings on wood characteristics reported for species found in 

northwestern Ontario, are from trees studied in eastern Ontario, other provinces, 

or the United States. For example, only 5 of the 12 commercial tree species of 

northwestern Ontario studied by Jessome (2000) included test samples from 

trees grown in the Province of Ontario. Thus, we can conclude, that the wood 

properties, or raw resource attributes, reported in the literature, for northwestern 

Ontario's species, must be validated in order to support proper forest 
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management and new wood products development. A reliable knowledge base 

of raw resource attributes are essential to maximizing the value chain (NLGA. 

2003a). 

2.6.1. Prioritizing the validation research 

We must keep in mind that the goal for validating the reported wood 

characteristics of northwestern Ontario's commercial tree species, is to identify 

new market opportunities for the region for these species. The purpose for 

validating the reported wood characteristics of the commercial species is to 

identify gaps within the knowledge base of these species with respect to 

maximizing the value chain of northwestern Ontario's forest sector. Validating 

the wood characteristics is a costly and labour intensive process. Thus, it 

would be helpful to prioritize which species should undergo validation research 

based on: 

• level of previous study, 

• potential market opportunity, 

• potential to increase utilization, and 

• available volume. 

Using these four criteria, we can prioritize the validation research methodically 

(Table 20), ensuring the research completed is economically beneficial to the 

region, the province and the rest of Canada. 
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T bl 20 N rth a e 0 t wes ern 0 t . t . "t f h n ano ree spec1es pnorlly o researc . 
Species Validation Research Priority for Northwestern Ontario 

Very few studies completed on species, 

eastern white cedar 
underutilized, 
high potential for value-added and specialty products, 
superior wood characteristics for outdoor use; especially outdoor 
furniture. 
Few studies completed on species, 

eastern larch 
underutilized within region 
high potential for pulpwood, value-added, and specialty products, 
fast growing species and well suited for intensive silviculture, 
suited for outdoor use. 
Few studies completed on species, although some were done in 

black ash Ontario, 
underutilized, 
high potential for value-added and specialty products. 
Few studies completed on species, 

trembling aspen 
underutilized within region, 
high potential for pulpwood, value-added, and specialty products, 
fast growing species and well suited for intensive silviculture, 
accounts for 21% of the region's harvestable volume. 
Few studies completed on species, 

white birch underutilized within region, 
high potential for value-added, and specialty products, 
accounts for 5% of the region's harvestable volume. 

black spruce 
Most important economic species in Canada and the region, 
accounts for 50% of the regions harvestable volume, 
majority of the studies focused on pulpwood properties. 
Few studies completed on species, although some were done in 

balsam fir Ontario 
high potential for value-added products, 
accounts for only 4% of the region's harvestable volume. 

eastern white spruce 
Few studies completed on species, 
well suited for value-added products, 
accounts for only 1.2% of the region's harvestable volume. 
Few studies completed on species, although some were done in 

red maple Ontario 
well suited for value-added, 
accounts for less than 0.1% of the region's harvestable volume, 

eastern white pine 
Few studies completed on species, although some were done in 
Ontario, well suited for value-added products, 
accounts for less than 0.3% of the region's harvestable volume. 

jack pine 
Some studies were done in Ontario and within the region 
well suited for value-added products, 
accounts for less than 15% of the region's harvestable volume. 
Least variable species within the region, 

red pine 
studies on this species have been completed in Ontario; although 
very few within the region, 
well suited for value-added products, 
accounts for less than 0.3% of the region's harvestable volume. 
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2.6.2 Eastern larch wood characteristics mapping 

The purpose of mapping the wood properties of eastern Larch is to 

validate previously reported wood characteristics for the northwestern Ontario 

region, and identify whether sections or zones of unique wood characteristics 

can be found which will: 

• identify value-added market potential, and 

• increase utilization of the species. 

According to the literature reviewed, eastern larch, which grows 

throughout the province, is an underutilized tree species, which accounts for 

1.7% of the available harvestable volume for the region (OMNR, 2008). Eastern 

larch is a deciduous conifer, which has a strong association with black spruce in 

mixed stands, and shares similar habitat requirements; growing on moderate to 

well drained wet to moist organic soils (Burns and Honkala, 1990a; OMNR, 

1997; Zhang and Koubaa, 2008). Eastern larch is extremely shade intolerant, 

can grow on sites with extreme fluctuation in weather, however, cannot survive 

prolonged exposure to flooding or drought (Burns and Honkala, 1990a; OMNR, 

1997; Zhang and Koubaa, 2008). Eastern larch is a highly adaptable, or plastic 

species, it is one of the earliest species, along with white spruce, to populate 

areas following glaciations (Burns and Honkala, 1990a). Eastern larch is 

generally considered to be a medium size tree, however, tree growth varies 

greatly within its growth range due to local environmental factors (Burns and 

Honkala, 1990a; OMNR, 1997; Zhang and Koubaa, 2008). Eastern larch is best 
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described as (Aiemdag, 1984; Wang eta/., 1985; Yang eta/., 1986; Burns and 

Honkala, 1990; Koga et a/., 1996; Zhang and Koubaa, 2008): 

• range in height 3 to 35 m, 

• range in diameter 7 to 60 em, 

• highest variability is within a tree, 

• significant variability between sites, and 

• ratio of earlywood to latewood accounts for most wood density variability. 

The literature indicates that some patterns exist for within tree variation, 

however, no significant variations in wood density between sites are reported 

(Balatinecz, 1983; Singh, 1984; Singh, 1986; Yang and Hazenberg, 1987; 

Zhang and Koubaa, 2008). Radial wood density decreases initially to a 

minimum followed by a slight increase, however, it is reported that heartwood 

density is higher than sapwood density (Balatinecz, 1983; Doucet eta/., 1983; 

Yang and Hazenberg, 1987; Zhang and Koubaa, 2008). Patterns in radial 

variation appear to be more stable with an increase in height (Balatinecz, 1983; 

Doucet eta/., 1983; Yang and Hazenberg, 1987; Zhang and Koubaa, 2008). 

Longitudinal variation for density is reported to show a general pattern of 

decreasing with an increase in stem height, however, tracheid length appears to 

increase from the base of the tree to a maximum at mid-height then decreases 

upward to the crown (Balatinecz, 1983; Yang et at., 1986; Zhang and Koubaa, 

2008). Generally the physical and mechanical properties of eastern larch 

decrease from juvenile wood to mature wood (Beaudoin eta/., 1989, Zhang and 
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Koubaa, 2008). Thus, eastern larch seems to exhibit wood morphology more 

consistent with hardwoods than softwoods. 

A large variety of products can be produced from eastern larch, however, 

in northwestern Ontario the species was historically used to produce rail ties, 

lumber and pulpwood (Mullins and McKnight, 1981; Henderson, 1981; Burns 

and Honkala, 1990; Zhang and Koubaa, 2008). A number of bio-products can 

be produced from eastern larch, including holistic medicines, resins, tannins and 

bio-fuels (Mullins and McKnight, 1981; Henderson. 1981; Burns and Honkala, 

1990; Zhang and Koubaa. 2008). 

The wood of eastern larch has a medium to fine texture, with intermediate 

strength, stiffness, and hardness (Mullins and McKnight, 1981; Henderson, 

1981; Burns and Honkala, 1990; Zhang and Koubaa, 2008). The wood is 

heavy, durable and moderately decay-resistant, and generally works or 

machines well, however, it is difficult to penetrate with coatings (Mullins and 

McKnight, 1981; Henderson, 1981; Burns and Honkala, 1990; Zhang and 

Koubaa, 2008). 
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3.0 Methodology 

3. 1 Experimental design 

The wood characteristics mapping of eastern larch involved mapping the 

radial and longitudinal changes in physical and mechanical proprieties of twelve 

eastern larch trees from four sites grown within the Thunder Bay District (Figure 

39). 
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Figure 39. Experimental design for the wood characteristics. 

Wood properties for each tree were tested from specimens collected from 

11 bolts and 4 radial positions of each bolt, from pith to bark. The bolts 

represented 10 longitudinal or axial positions set every 10% of total height from 

the butt to a 10 em minimum diameter at the top of the tree, and from the pith of 

the bolt set at 25% intervals of total diameter of the bolt. An 111h one metre bolt 

was set at breast height. The 4 radial sections of the bolts represented the 

juvenile core (0 to 25% zone), outer heartwood (25% to 50% zone), inner 

sapwood (50% to 75% zone), and the zone of outer sapwood and cambial 

activity, (at 75% to 100% of bolt diameter). The experimental design of the study 
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was simple, balanced, with an inference space limited to the Thunder Bay 

District. 

As shown in Figure 40, the wood properties examined were: 

• relative density, density, and ring density; at oven-dry and 12% 
MC, 

• shrinkage (tangential, radial, longitudinal, and volumetric}, 

• MOE/ MOR, 

• compression parallel to grain, and 

• Janka ball side hardness. 
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Figure 40. Diagram of specimens collected per tree for the wood characteristics. 
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3. 2 Field Procedures 

3.2.1 Site Selection 

Working with staff of the Ontario Ministry of Natural Resources' (OMNR) 

Thunder Bay District, four sites were randomly selected within the Dog River 

Matawa SFL (Figure 41 ). The chosen sites were then provided to the forestry 

staff of AbitiBowater, who helped identify and finalize one sample stand within 

each site. 

1032 

Figure 41. Location map of the four sample sites for the wood characteristics mapping of 
eastern larch grown in the Thunder Bay District. 
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3.2.2 Sample Tree Selection and Collection 

Selected stands within sample sites were located in the field by using 

map sheets provided by AbitibiBowater and satellite images. Once stands were 

located, two mature dominant eastern larch trees and one juvenile tree were 

selected for destructive testing; all trees were free of defects. The literature 

indicates that mature wood development begins between 25 to 30 years of age, 

and mechanical properties should not be tested on trees less than 10 years of 

age; because of the high proportion of reaction wood and knots. Thus, trees 

over 30 years of age were considered mature, and trees 10 to 30 years of age 

were considered juvenile (Bowyer eta/., 2003; Jozsa and Middleton, 1994; 

Panshin and de Zeeuw, 1980; Mullins and McKinight, 1981). 

Sample trees were felled using a chain saw then measured for total 

height, height to 10 em diameter and height of lowest live branch. Once the 

sample trees were felled, 10 equal sections, from the butt to a 10 em diameter 

minimum, were marked onto logs using logger's paint. The sections had a 1 m 

bolt marked at the bottom of each section using logger's paint, and then a 1 m 

bolt was marked at breast height (Figure 42). All 11 bolts, from each of three 

trees, were bucked and labelled on site, and returned to the LUWSTF for 

processing into test specimens. 
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Figure 42. Picture of bolt processing of an eastern !arch sample tree on site ~. 

3.3 Laboratory procedures 

3.3.1 Processing specimens 

Once the samples were transported to the LUWSTF, each bolt had a 7.5 

em disk bucked off the butt end for processing into X-ray densitometry 

specimens. Bolts were then cut into 3 em thick waney boards using the 

LUWSTF's Woodmizer LT40 Hydraulic Portable Band Saw. The boards were 

then trimmed to produce two 40 em lengths; the bottom lengths produced MOE, 

MOR, compression, and relative density specimens, and the top lengths 

produced hardness specimens. As the bolts were processed, they were further 

labelled to ensure sample continuity and left to air dry down to 30% moisture 

content. 
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3.3.1.1 Processing of relative density, MOE, MOR, and compression 
specimens 

Once at the target moisture content, the bolts' bottom lengths were cut 

into 2.5 X 2.5 X 40 em test specimens for MOE, MOR, compression, and relative 

density testing, using a conventional table saw in the LUWSTF workshop. 

These specimens were referred to as MOE sticks. As the MOE sticks were 

processed into specimens, they were further labelled to ensure sample 

continuity and left to air dry down to 14% moisture content. 

Once at the target 14% moisture content, the MOE sticks were further cut 

down to 2.0 X 2.0 X 40 em, then all specimens were placed into the Thermo 

Scientific Forma Environmental Chamber (conditioning chamber), where they 

were left to stabilize to 12% moisture content, within an environment of 20 

degrees Celsius and 60% relative humidity. Once the 2.0 X 2.0 em test 

specimens were stabilized, they were further trimmed into 2.0 X 2.0 X 30 em 

Modulus of Elasticity (MOE) test sticks, 2.0 X 2.0 X 6.0 em compression test 

sticks, and 2.0 X 2.0 X 3.0 em relative density cubes. During trimming the 

specimens were labelled and sorted to remove cull specimens, to ensure only 

clear samples were returned to the conditioning chamber until testing. Figure 43 

illustrates cull features removed during sorting of speciemens for MOE I MOR 

perpendicular to the grain. 
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Grading of specimens 

'..,:, ' ! : :· ~ ': 

Defects that affect the 
strength of specimens 

;:;._ 

Figure 43. MOE I MOR specimen defects culled during sorting (Stiemer 201 0). 

3.3.1.2 Processing of hardness specimens 

The bolts' top sections were further trimmed to a length of 25 em to 

produce Janka Ball hardness specimens. As the hardness specimens were 

processed, they were further labelled to ensure sample continuity and left to air 

dry down to 14% moisture content. Once the target 14% moisture content was 

reached, the specimens were placed into the conditioning chamber, where they 

were left to stabilize to 12% moisture content for testing (Figure 44). 
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II. Disks cut frorn the bottor>1 of each bolt air drying. B. Bolts cut into 3 Cf"l boards, dir drying. 
C. (Top) Whole bolt cut from sample tree. (Middle) Bolt cut into 3 Cf"l boards. (Botton, from left to rit~ht) Bolt'; bottom lengths trimr-Hod 

to 40 em. 7.5 ern disk. bolt's top lcnBths trir1med to 25 em ; the trim end~ were stored for a thermal testing at J later date. 
D. Bolt's bottorllen,;ths being cut into MOE/MOK. Cor1prcssion. and wood density spr_\cir.lcnr, using a table saw. 
E. (f-rom lert to ri~~ht) Bolt ·s bottom length5: trir.1r1cd to ..:.o ern . with specimen labels, and cut then culled MOE/ l\r10K specir"1cns. 
F. )p~ciMen~ stc1biHzing in the Conditioning ChJmbcr. 
G. r~st :,pecirncn~(FroM top to bottom) 2S cr:1 Junka Ball Hardness. 2. X 1 X 3. eM wood d<..:n-:.itv. l X l X G cr' Compression p;..Halle\ 'Zo ~~rain, 

and MOE/fV10K perpendicular f~rain. 

Figure 44. Picture of specimen processing for the wood characteristics mapping. 

3.3.1.3 Processing of shrinkage specimens 

One mature tree from each site was randomly chosen to produce 

shrinkage samples. A 10 em board was cut from the top of the breast height 

bolt of each of the four chosen trees. The shrinkage samples were immediately 

processed into clear specimens of 25 millimetres (mm) (longitudinal) x 25 mm 

(tangential) x 100 mm (radial), Once processed, the specimens' dimensions 

were measured and then placed into the conditioning chamber to stabilize to 

12% moisture content. Once at 12% moisture content, their dimensions were 

again measured and they were placed into the laboratory's oven to stabilize to 

an oven dry 0% moisture content. The oven dry specimens were further 
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measured one last time. The measurements were used to produce shrinkage 

values. 

2.3.1.4 Labelling convention 

Specimen labels indicate the site number, tree number, bolt number, 

radial position relative to the pith, and radial direction; north, south, east, or 

west. For example, a specimen with the label S1T2B3N4W3, came from site 1, 

tree 2, bolt 3, 4 radial positions from the pith oriented to the north by 3 radial 

positions from the pith oriented to the west Figure 45, illustrates how labels 

relate to specimen position in the bolt. Labelled specimens were graded so that 

only specimens containing clear wood were tested. 

Bolt 1 from Tree 2 Site 3 
with specimen labels 

LUWSTF Quadrant Testing 
labeling grid 

Figure 45. Specimen labelling used in the wood characteristics mapping of eastern larch. 
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3.3.2 Testing of wood properties 

. The American Society for Testing and Materials (ASTM) standard D143-

09 Standard Test Methods for Small Clear Specimens of Timber, D4442 

Standard Test Methods for Direct Moisture Content Measurement of Wood and 

Wood-Based Materials, and D2395- 07a Standard Test Methods for Specific 

Gravity of Wood and Wood-Based Materials procedures were followed to 

determine eastern larch wood properties. 

ASTM D5536-94 Standard Practice for Sampling Forest Trees for 

Determination of Clear Wood Properties dictates that standard procedures are 

followed when processing multiple bolts. The ASTM procedure for producing 

test specimens (Figure 46), creates a bias by including the pith. In the ASTM 

procedure, the bolt pith was included in processing test specimens, and only 

eight specimens per radial position are processed. However, culling of clear 

wood specimens of northwestern Ontario species can create a case where there 

are insufficient specimens per radial position to be statistically viable. Thus, 

LUWSTF has developed quadrant testing procedures, for wood density and 

MOE testing, to ensure specimen viability for statistical analysis of test bolts. 
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Figure 46. Comparison of ASTM bolt labelling procedure and LUWSTF labelling 
procedure (ASTM 05536, 2004; Leitch, 2008). 

Wood density specimens were trimmed to a 2 em X 2 em X 3 em 

dimension then sorted for cull. Due to their small size, culling of wood density 

specimens was not problematic to statistical viability, one of the main reasons 

why wood density dominates wood science research. However, wood density 

specimens had to be processed from the same sample stick as MOE specimens 

to accommodate property modeling; discussed later. Thus, limitation on wood 

density specimen viability was limited to MOE specimen viability. 

MOE testing, using 2 em X 2 em X 30 em specimens, had a target of 

eight specimens for each radial position; as per ASTM procedures discussed 

earlier. If the pith was included in specimen processing, as ASTM procedures 

require, the resulting effect would have been zero specimens from the centre of 

the bolt, thus biasing the MOE test results. Pith wood had the highest proportion 

of reaction wood relative to other radial positions. You will recall that pith wood 
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was originally apical growth at the top of the crown. Thus, to ensure specimen 

viability throughout the bolt, LUWSTF developed a modified processing 

procedure for specimen processing. 

The quadrant testing procedure required that if there were not the target 8 

MOE test specimens within the modified standard's cross section, then 

replacement specimens would be recovered from the quadrant in order, from 

next available specimen closest to the standard's cross section outward. 

3.3.2.1 Mechanical testing 

A Tinius Olsen H10KT and HSOKT Universal Wood Testing Machines, with 

Test Navigator software, were used to determine: 

• MOE; reported in mega pascal (MPa) using the 3 point flexure tool, 

• side hardness; reported in Newtons (N) using the Janka Ball tool, and 

• compression parallel to the grain; reported in mega pascal (MPa) using 

the compression parallel to the grain tool. 

Using the maximum load (Newton) reported by the Universal Wood Testing 

Machines during MOE testing, MOR was calculated using Equation 1 (Panshin 

and de Zeeuw. 1980; Mullins and McKinight, 1981; Bowyer eta/., 2003). 

3.3.2.2 Physical properties 

Relative density cubes were first weighed to establish their mass at 12% 

moisture content and then volume was determined using a water displacement 

test. The cubes were then placed into the oven until their mass stabilized. 

Once the samples were stabilized, mass and volume were measured to 

determine relative density at Oven Dry moisture (Figure 47). 
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A. establish mass of specimens. 
B. Press probe into earlywood of specimen. 
C. Dunk specimen into a breaker filled with distilled water and record displacement (volume). 

Wood density= Mass/Volume 
Figure 47. Water displace method for determining wood density and moisture content. 

The dimensions of each shrinkage specimen were measured at the green 

volume (wood having a Moisture Content >30%), once stabilized at 12% 

moisture content in the conditioning chamber, and after being stabilized in the 

oven. Radial and tangential shrinkage values were calculated based on the 

dimensional changes from the green to 12% to oven-dry conditions. Volumetric 

shrinkage was calculated based on the results of radial and tangential 

shrinkage. 

3.3.3 Processing and testing x-ray densitometry specimens 

The sample disks, bucked during initial bolt processing, were air dried 

down to 30% moisture content. Once at the target moisture content, x-ray 

densitometry disks were processed using a standard table saw, to produce 

2 mm X 25 mm specimen. As shown.in Figure 48, disks were cut to intersect 

the pith, so that the specimen was centered on the pith. The processed 
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specimens were then placed in the conditioning chamber to stabilize before 

testing. 

A. U~if'g t!~c ~U\!\'STFs Den~~ton~etry Table Sav11, put or; ;nc:~;o:-: c~~ the out~ide of U-~e ~o~t rdfs~~' 
B. Leaving a 2 X 25 mm siice on the outside or the disk, 
C. Cutoff the X-Ray Demitornetry ~pecimen u~ing a ~Lraighl edge. 

Figure 48. Processing of x-ray densitometry specimen for site 4 tree 1 bolt 3. 

Once specimens were stabilized, they were placed into the Quintek X-ray 

Densitometer for scanning. Since relative density was measured for each bolt, 

the corresponding relative density value for a bolts' x-ray densitometry specimen 

were entered as the target density, or calibration density. This procedure 

provided us with the best possible result when determining ring width and 

latewood to earlywood ratios. 

3.4 Statistical analysis 

Our analysis of variance (AN OVA) model allowed us to attribute a level of 

significance to an observed variation within eastern larch to a given factor within 

the statistical model. Our ANOVA model is based on three main assumptions; 

• groups are independent, both within and between samples, 

• groups are homogenous, and 

• errors are normally distributed (DeVeaux eta/., 2008; Shahi, 2009). 
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3.4.1 Statistical design 

Test results underwent a statistical analysis using the following design: 

Y ijklm = Jl+S;+ T(iJ1+Hk+RrrSH;k+SR;j+ TH(i)Jk+ TR(i)JrrSHR;kJ+ THR(i)Jkrrf: (ijkl)m 
i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; I = 1, 2, 3, 4; m = 1; 

Where: 
Yijklm = 
Jl 
S; 

= 
= 
= 

the measured response. 
the overall mean. 
the random effect of the 4 sites. 
the fixed effect of the 3 trees per site, which is nested in the site T(iJJ 

effect. 
Hk = the fixed effect of the 11 longitudinal positions. 
R, 
SH;k 

= the fixed effect of the 4 radial positions. 
= the mixed effect of the site factor with the longitudinal position 
factor. 

SRi/ = the mixed effect of the site factor with the radial position factor. 
TH(i)Jk = the mixed effect of the tree factor with the longitudinal position 

TR(iJJI = 
SHR;kF 

THR(i)Jkl = 
E (ijkl)m = 

factor. 
the mixed effect of the tree factor with the radial position factor. 
the mixed effect of the site factor with the longitudinal position 
factor and the radial position factor. 
the mixed effect of the tree factor with the longitudinal position 
factor and the radial position factor. 
the random effect of 11h radial positions from k1h longitudinal 
positions from lh trees from i1h sites. 

The null hypothesis stated that there would be no significant difference in wood 

properties with changes in radial, longitudinal, and geographic (site) positions. 

In order for the null hypothesis to be accepted, all of the following conditions had 

to occur: 

1. radial position within the tree had no effect on wood properties, 

2. axial position within the tree had no effect on wood properties, and 

3. geographic position (site) of a tree had no effect on wood 
properties. 
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The wood properties' test results were compiled and then analysed using 

SPSS 18 software. An ANOVA was carried out using a general linear model 

and a Duncan's post hoc test at 95% probability. Variance was determined 

using averages of each test ring from the pith out to bark for each bolt. 

During the statistical analysis, interactions were pooled when no 

significance was found. Based on the literature reviewed, it was anticipated that 

variance due to longitudinal position would be insignificant, while radial position 

and sites would be significant. 

To determine the variance of tb_e wood characteristics of eastern larch 

grown within the Thunder Bay District, over 15,700 test specimens were 

analysed for relative density, modulus of elasticity perpendicular to the grain 

(MOE), modulus of rupture perpendicular to the grain (MOR), compression 

parallel to the grain, Janka ball side hardness, and ring analysis. 
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4.0 Results and discussion 

Using the Sims eta/. (1997) and Racey eta/. (1996) the ecosystem 

classifications for the four sites were found to be as follows: 

Site 1: ES20 Spruce-Pine I Feathermoss: Fresh, Sandy-Course Loamy 
Soil; a dry fast growing site with eastern larch dominance; 

Site 2: ES34 Treed Bog: black spruce I Sphagnum: Organic Soil; a poorly 
drained wet site with eastern larch I black spruce mix, 

Site 3: ES19, Hardwood-Fir-Spruce Mixedwood: Fresh, Sandy-Course 
Loamy Soil; a well drained site with high competition from mixture 
of hardwoods and softwoods, and 

Site 4: ES36 Intermediate Swamp: black spruce (Tamarack): Organic 
Soil; a very wet site with black spruce dominance. 

Ecosystem classifications were consistent with the forest resource inventory 

data provided by the OMNR and AbitibiBowater. Figure 49 summarizes the 

ecological data of the four sample sites and shows that we were successful in 

sampling a range of environmental conditions representative of eastern larch's 

growth range within the Thunder Bay District. Sites 2 and 4 are ecosystems 

where eastern larch is more commonly found within its growth range. Sites 1 

and 3 are more atypical of environments where eastern larch is expected to be 

found, however, the literature confirmed that the species can perform well on 

these sites until over taken by competition (Johnston and Carpenter, 1985; 

Burns and Honkala, 1990a; Bell, 1991 ). 
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Figure 49. Ecological information on Thunder Bay District sample sites. 

Table 21 presents the mean wood properties for each sample site, grand 

means for the study, and reported values from the literature for discussion. 

Trees grown on the dry fast growing site with eastern larch dominance, site 1, 

exhibited accelerated growth (using growth ring width) resulting in reduced 

relative density and mechanical properties, and increased shrinkage. While, the 

well drained site with high competition, site 3, exhibited good growth while 

effects on wood properties were mixed. Site 3's relative density means were 

lower than all the sample sites, however, MOE was found to be highest on this 

site. The very wet site with black spruce dominance, site 4, produced the best 
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wood characteristics. Finally, site 2, the poorly drained wet site with eastern 

larch I black spruce mix, was the site most representative of the grand mean 

values. 

Table 21. Summary of findings on the wood characteristics mapping of eastern larch 
grown in the Thunder Bay District (Zhang and Koubaa, 2008; Forest Products Laboratory, 
1999; Jessome, 2000; *Panshin and de Zeeuw, 1980). 
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4. 1 Validating findings 

When the findings are compared to published values from Forest 

Products Laboratory (1999) and Jessome (2000) there are differences. For 

comparison of the values published by Jessome (2000) and Thunder Bay 

District (TBD) findings, the observed differences were within +/- 1 0%; an 

acceptable range of variance according to the literature (Bowyer eta/., 2003; 

Singh, 1986; Alemdag, 1984). The average value for side hardness at breast 

height was 15% higher than the values reported by Jessome (2000). This 

difference can be accounted for by the variability in side hardness observed 

between sample sites. 

Comparison between values reported by the Forest Products Laboratory 

(1999) and the TBD findings showed a higher range of variability. Eastern larch 

from the TBD had 26% lower average MOE, 42% higher average side hardness, 

an equal average relative density12 and 3% lower relative densitYoo than the 

Forest Products Laboratory (1999) published values. There are many factors 

that could account for this variation. Within the TBD study, variation between 

MOE sites means was as much as 31%. The Jessome (2000) values also had 

a relatively high percent difference to the Forest Products Laboratory (1999) 

values; confirming that eastern larch is variable between sites. 
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4.2 Variance in wood properties 

4.2.1 Variance in ring data 

4.2.1.1 Variance in ring width 

X-ray densitometry analysis on disks cut from the bottom of each bolt, 

showed variable ring width from pith to bark. Further, when densitometry 

results of different bolts are compared by cambial age, differences in growth are 

very apparent. Figure 50 compares the annual ring width, at three axial heights 

(bolt 1, breast height bolt, and bolt 1 0), of a 101 year old eastern larch tree 

grown on site 4. Figure 50 presents the annual ring width of the selected axial 

positions plotted on a single graph on the left, and graphed separately on the 

right; to clearly illustrate the radial variance observed. 
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4.2.1.2 Variance in ring density 

In addition to annual growth, x-ray densitometry analysis allowed us to 

study ring density. We observed significant variation in ring density from pith to 

bark, however, unlike the radial variance observed for ring width (Figure 50), 

ring density displayed a distinct pattern of variance similar to that of the relative 

density and density specimens (Figure 51). This indicated that age, rather than 

annual growth, had more influence on ring density or relative density in general. 
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Figure 51. Comparison of ring density, at different bolt heights, of a 101 year old eastern 
larch tree grown in the TBD. 

In Figure 52 we compared box plots of ring width variance, on the left, 

and ring density variance, on the right. The direct comparison of site data 

showed that ring width is more variable between sites than ring density, while 

ring density is more variable within sites than ring width. This pattern of ring 
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density variance was consistent with relative density and density observations 

and was supported by the results reported by Doucet eta/. (1983). 
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Figure 52. Box plot comparison of site variance between ring width and ring density. 

The x-ray densitometry results indicated that the ring density of eastern 

larch varied between a low of 202 kg/m3 on site 2 and a high of 849 kg/m3 on 

site 1, with a grand mean in the TBD of 562 kg/m3 (Table 22). Ring width varied 

between a low of 0.23 mm on site 2 and a high of 6.86 mm on site 1, with a 

grand mean in the of 2.47 mm. The grand mean for percent latewood in the 

TBD was 39.0%. 

T bl 22 R I f a e esu ts rom x-ray d I . ens1tometry ana1ys1s. 

Earlywood Latewood 
Site density density 

Rin Width(mm) (Kg/m3) (Kg/m3) Density (Kg/m3) 
Minimum Maximum Mean Mean Mean Minimum Maximum Mean 

1 0.59 6.86 3.64 324 682 366 849 511 
2 0.23 3.61 1.30 358 820 202 870 573 
3 0.84 4.96 2.74 348 722 312 853 583 
4 0.36 5.93 2.20 354 798 347 813 582 

Study 0.23 6.86 2.47 346 755 202 849 562 



123 

Comparison of the ring analysis grand means to published values (Table 

23) showed that eastern larch grown in TBD had 20% higher ring density and 

latewood proportion than published values, consistent with differences in relative 

density to Forest Products Laboratory (1999) values, which were discussed. 

Table 23. R esults rom x-ray ens1tometry analysis. f d 
Ring Earlywood Latewood Minimum Maximum Latewoood 

Study density density density density density proportion 
(Kg/m3) (Kg/m3) (Kg/m3) (Kg/m3) (Kg/m3) (%) 

TBD. 562 346 755 202 849 39.0 (2010) 

Zhang 
and 471 351 707 268 845 32.7 Koubaa. 
(2008) 

Ring density data was analyzed using SPSS 18 software. The AN OVA 

results indicated that the variation patterns for ring density were similar to wood 

density. The ANOVA showed a significant variance existed between ring 

density means for sites and radial position, however, no significance between 

axial positions or interactions between factors were found, at 95% probability. 

Based on the ANOVA results the null hypothesis, no variance in ring density, 

was rejected. 

A Duncan's post hoc test was performed on the ring density means for 

radial position indicating three subsets of significance. Figure 53 shows that the 

three subsets were: 

subset 1; included the juvenile core, 

subset 2; included the outer heartwood and inner sapwood zones, 

subset 3; included the zone of outer sapwood and cambial activity. 
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Zones of radial significance for Ring Density, 
identified by the Duncan Post Hoc Test 

Figure 53. Diagram of Duncan's post hoc test subsets for radial position of ring density 
means. 

The Duncan's post hoc test results on sites indicated two subsets: 

subset 1; included site 1 the dry fast growing site with eastern larch 
dominance, 

subset 2; included site 2 the poorly drained wet site with eastern larch I 
black spruce mix, site 3 the well drained site with high 
competition, and site 4 the very wet site with black spruce 
dominance. 

The findings indicated that, increased growth rate did affect the density of 

eastern larch at the extreme of its growth range within the TBD; similar 

observations were made by Yang and Hazenberg (1987) and Dong (1996). 

These findings are consistent with Zhang and Koubaa (2008), which reported 

that plantation eastern larch, grown to produce maximum biomass within 30 

years, had reported wood density values, 22% lower than natural grown trees. 

4.2.2 Variance in relative density (specific gravity) and density 

Relative densitYoo and 12 I density12 data were analyzed using SPSS 18 

software. The ANOVA results (Table 24) indicated that the variation between 

site and radial means for the dependant variables was significant, however, axial 

variance and interactions between factors were insignificant at 95% probability. 
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The ANOVA results indicated that the variation patterns for relative densityoo and 

12 and density12 were very similar. Relative density00 values were higher than 

relative density12. while densitY12 had the highest values. This relationship is an 

important principle in wood science, where increased percent moisture content 

resulted in higher density values and lower relative density values (Panshin and 

de Zeeuw, 1980; Mullins and McKnight, 1981; Bowyer eta/., 2003). 

T bl 24 ANOVA a e I f If d resu ts or re a 1ve ens1tYoo and 12 /d ensitYoo· 
Source Dependent Type Ill Sum 

Variable of Squares df Mean Square F Siq. 
Corrected ROO 114818.2978 15 7654.553 4.869 .000 
Model ... 012 174234.484° 15 11615.632 4.867 .000 

RD12 104790.797c 15 6986.053 4.863 .000 
Intercept ROO 9.815E7 1 9.815E7 62429.256 .000 

-- 012 1.490E8 1 1.490E8 62410.542 .000 
RD12 8.966E7 1 8.966E7 62412.318 .000 

Site ROO 81102.934 3 27034.311 17.195 .000 
·- 012 123152.609 3 41050.870 17.199 .000 

RD12 74131.009 3 24710.336 17.200 .000 
Bolt ROO 15013.953 9 1668.217 1.061 .392 

-- 012 22747.091 9 2527.455 1.059 .393 
RD12 13647.628 9 1516.403 1.056 .396 

Radial ROO 18701.409 3 6233.803 3.965 .009 
-- 012 28334.784 3 9444.928 3.957 .009 

RD12 17012.159 3 5670.720 3.947 .009 
Error ROO 477953.250 304 1572.215 

····- 012 725598.637 304 2386.838 

RD12 436730.425 304 1436.613 

Total ROO 9.874E7 320 
... 012 1.499E8 320 

RD12 9.020E7 320 

Corrected Total ROO 592771.547 319 

·- 012 899833.122 319 

RD12 541521.222 319 

a., b. and c. R Squared = .194 (Adjusted R Squared = .154) 

The ANOVA results indicated that relative density00 of eastern larch 

varied between 458 and 658 kg/m3, with a grand mean in the TBD of 554 kg/m3 

(Figure 54). The ANOVA showed that a significant variance existed between 
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relative densitYoo means for radial position and sites, however, no significance 

in axial position or interactions between factors at 95% probability was found. 

Site 

700 

Figure 54. Box plot comparison of site relative density00 means for eastern larch sites. 

The ANOVA results indicated that relative density12 of eastern larch 

varied between 437 and 629 kg/m3, with a grand mean in the TBD of 530 kg/m3 

(Figure 55). The ANOVA showed that a significant variance existed between 

relative density12 means for radial position and sites, however, no significance in 

longitudinal position or interactions between factors at 95% probability was 

found. 
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Figure 55. Box plot comparison of site relative density12 means for eastern larch sites. 
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The ANOVA results indicated that density12 of eastern larch varied 

between 564 and 811 kg/m3, with a grand mean in the TBD of 683 kg/m3 (Figure 

56): comparison of site density12 means. The ANOVA showed a significant 

variance existed between density12 means for radial position and sites, however, 

no significance in axial position or interactions between factors at 95% 

probability was found. 

6SQOO 

s:.ooo 

500 C{} 

400 00 

100 300 

Site 

Figure 56. Box plot comparison of site density12 means for eastern larch sites. 

Site 4, the wettest site, had the highest wood density values and the least 

variance. Site 3, the well drained site, exhibited the highest variance, however, 

average wood density values were similar to site 2, the poor drained wet site, 

which exhibited the second highest variance. Finally, site 1, the dry site, had the 

lowest wood density values, which were expected for this fast growing site. 

Variance for site 4, however, was similar to site 1. 
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Radial variance of relative densityoo and 12 and densitY12 means were very 

consistent between sites and bolts, (Figure 57 and Figure 58). Doucet eta/. 

(1983) reported that the general radial wood density patterns for eastern larch, 

decreased to minimum from the pith, then increased to the bark (Doucet eta/., 

1983; Zhang and Koubaa, 2008). Eastern larch in the TBD consistently 

displayed the opposite pattern reported by Doucet eta/. (1983), increasing from 

the pith to a maximize at the heartwood I sapwood transition, then decreasing to 

the bark. However, Balatinecz (1983) reported that heartwood has a higher 

wood density than sapwood (Balatinecz, 1983; Zhang and Koubaa, 2008), which 

was observed on all four sites. Due the consistency of TBD's radial variance 

patterns the contradictory results with Doucet eta/. (1983) may be attributed to 

different processing and calculation methods (Aiemdag, 1984). 
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Figure 57. Line graph comparison of sites' radial variance of wood density means. 
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Figure 58. Line graph comparison of bolts' radial variance of wood density means. 

Based on the ANOVA results the null hypothesis, no variance between 

wood density means, was rejected at 95% probability. There was significant 

variance observed in eastern larch between sites and radial positions within 

stems, while variance between axial means was insignificant; this was also 

supported by the literature (Balatinecz, 1983; Singh, 1984; Singh, 1986; Yang 

and Hazenberg, 1987; Zhang and Koubaa, 2008). 

A Duncan's post hoc test was performed on the relative densitYoo and 12 

and density12 means for sites and radial position. For sites, the post hoc test 

indicated three subsets of similarity: 

subset 1; included site 1 the dry fast growing site with eastern larch 
dominance and site 3 the well drained site with high competition, 

subset 2; included site 2 the poorly drained wet site with eastern larch I 
black spruce mix and site 3, and 

subset 3; included site 4 the very wet site with black spruce dominance. 
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However, given the level of variance between means observed, subset 1 was 

corrected to exclude site 3. Thus, based on similarities exhibited within site 

variance, and the Duncan's post hoc test of wood density means, sites 2 and 3 

had the greatest similarity between sites (Figure 59). 

Subset 1 
1<. 

1 

Subset 2 

l ~ 

Sites 

Subset 3 
·4' 

Figure 59. Graph of corrected Duncan's post hoc test subsets for sites' wood density 
means. 

The Duncan's post hoc test on radial variance of wood density means 

identified two subsets of similarity (Figure 60): 

subset 1 ; included the juvenile core and zone of sapwood and cambial 
activity, 

subset 2; included the zones of outer heartwood and inner sapwood. 

These subsets consistently displayed recurring radial pattern of variance 

exhibited in all bolts, and was supported by the literature reports of higher 

relative density and density in the heartwood than sapwood in eastern larch. 
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Zones of radial significance for Relative 
Density, identified by the Duncan Post 
Hoc Test 

Figure 60. Diagram of Duncan's post hoc test subsets for radial position of wood density 
means. 

We have considered the statistical analysis of wood density of eastern 

larch, and identified subsets of similarity amongst wood density means. 

However, when end use classifications of wood density are considered, the 

variance observed during the statistical analysis becomes extremely limited. 

Density, at 12% (air-dry) moisture content, classifications are typically (Gardiner, 

2010): 

1. exceptionally light- under 300 kg/m3 

2. light- 300 to 450 kg/m3 

3. medium- 450 to 650 kg/m3 

4. heavy- 650 to 800 kg/m3 

5. very heavy- 800 to 1000+ kg/m3
. 

The five density12 classifications were assigned a numeric value 1 to 5; 1, being 

exceptionally light, and 5 being, very heavy, and analysed using SPSS 18 

software. The resulting ANOVA table and Duncan's post hoc test indicated that 

bolts had two subsets of significance (Figure 61): 

subset 1; included bolt 90% to bolt 100%, 

subset 2; included bolt 10% to bolt 80%. 
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Zones of significance for Density w identified 
by Duncan Post Hoc Test 
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Figure 61. Diagram of Duncan's post hoc test subsets for density12 classification means. 

Although the variability of wood density axial means was insignificant it 

was also inconsistent between trees; which was supported by Wahlgren et al 

(1966). By using density classifications, two subsets of significance could be 

identified, which will assist in developing a wood characteristics map. 

It has been generally accepted that for softwoods increased wood density 

resulted in increased mechanical properties. We must keep in mind that eastern 

larch contains a high proportion of reaction wood and spiral grain, therefore, the 

medium wood density observed would not necessarily result in corresponding 

mechanical properties (Balatinecz, 1983; Zhang and Koubaa, 2008). However, 

for pulpwood end use products increased wood density was directly related to 

increased pulp yield, and directly affected pulp properties (Balatinecz, 1983; 

Zhang and Koubaa, 2008). It was found that wood density of eastern larch in 

the TBD was very consistent between sites, with significant variance limited to 
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the juvenile core and crown wood. The wood density findings suggest that 

eastern larch was well suited to produce pulpwood products. 

4.2.3 Variance in MOE 

MOE data was analyzed using SPSS 18 software, the ANOVA results 

(Table 25) indicated that MOE of eastern larch varied between 5,130 and 11,273 

MPa, with a grand mean in the TBD of 8,355 Mpa (Figure 62). The ANOVA 

showed a significant variance existed between MOE means for sites and axial 

position, however, no significance in radial position and interactions between 

factors at 95% probability was found. 

Table 25. ANOVA results for MOE. 

Source Type Ill Sum of 

Squares df Mean Square F Siq. 

Corrected Model 1.647E8 15 1.098E7 8.211 .000 

Intercept 2.232E10 1 2.232E10 16685.439 .000 

Site 1.286E8 3 4.288E7 32.058 .000 

Bolt 2.765E7 9 3072634.776 2.297 .017 

Radial 8451983.175 3 2817327.725 2.106 .099 

Error 4.066E8 304 1337554.292 

Total 2.289E10 320 

Corrected Total 5.714E8 319 

a. R Squared = .288 (Adjusted R Squared = .253) 

Figure 63 showed that site 3, the well drained site, had the highest 

average MOE at 8,935 MPa and high variance similar to site 4. Site 4, the very 

wet site, exhibited the highest variance, however, average MOE was similar to 

site 3 at 8, 765 MPa. Site 2, the poorly drained wet site, had the lowest variance 

in MOE with average a value of 8,145 MPa; close to the grand mean. Finally, 
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site 1, the dry fast growing site, had the lowest MOE average at 7,306 MPa and 

moderate variance. 
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Figure 62. Box plot of MOE means. 
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Figure 63. Box plot comparison of site MOE means. 
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Axial variance of MOE means were very consistent between sites and 

within bolts. Balatinecz (1983) reported that the general axial patterns for 

mechanical properties were variable, however, generally decreased in value 

from base to crown (Balatinecz, 1983; Yang eta/., 1986; Zhang and Koubaa, 

2008). Eastern larch in the TBD consistently displayed an axial variance 

pattern, which had a sharp increase from bolt 1 to 2, then proceeding up the 

stem, although fluctuating, generally increasing to a maximum around the mid 

stem, followed by a pronounced decrease in MOE to the crown (Figure 64). 
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Figure 64. Graph of MOE means axial variance with trend line. 

Radial variance of MOE means were insignificant according to the 

ANOVA results, however, it did display a pattern of variance, which was 

--100 

I ~~~ 
~-•eo 

consistent on all sites. Yang eta/. (1986) reported that the juvenile wood had 

higher mechanical properties than mature wood. Radial variance patterns in 

MOE for eastern larch grown in the TBD, were consistent with Yang eta/. (1986) 

findings, increasing from pith to a maximum in the heartwood/sapwood transition 
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zone, then decreasing in value proceeding to the bark (Figure 65). Radial 

variance patterns of MOE for eastern larch are more consistent with hardwoods 

than softwoods. 
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Figure 65. Graph of MOE means radial variance with Trend line. 
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Based on the ANOVA results the null hypothesis, that there is no 

variance in MOE, was rejected at 95% probability. There is significant variance 

in eastern larch sites and axial position within stems, while interaction affects 

and radial means are insignificant; which was consistent with other studies 

(Balatinecz, 1983; Yang eta/., 1986; Zhang and Koubaa, 2008). 
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A Duncan's post hoc test was performed on the MOE means for sites and 

axial positions. For sites, Figure 66 shows that the post hoc test indicated three 

subsets of similarities: 

subset 1; included site 1 the dry fast growing site with eastern larch 
dominance, 

subset 2; included site 2 the poorly drained wet site with eastern larch I 
black spruce mix, 

subset 3; included site 3 the well drained site with high competition from 
mixed species and site 4 the very wet site with black spruce 
dominance. 
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Figure 66. Graph of Duncan's post hoc test subsets for site MOE means. 

5 

As Figure 67 shows, the Duncan's post hoc test of MOE means indicated 

two axial subsets of similarity: 

subset 1; included bolt 2 to bolt 9, the main stem, 

subset 2; included bolt 1 and bolt 10, areas of high compression wood. 
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Zones of significance for MOE, identified by 
Duncan Post Hoc Test 

Subset 1 

tOO 

90 

Although the radial variances of MOE means were not significant, A 

Duncan's post hoc test was performed to identify zones of similarity, which 

would be used in wood characteristics mapping. Two zones of similarity were 

identified for MOE radial position (Figure 68): 

subset 1; included the juvenile core and the zone of outer sapwood and 
cambial activity, 

subset 2; included the outer heartwood and inner sapwood zones. 

Zones of radial significance for MOE, 
identified by the Duncan Post Hoc Test 

Figure 68. Graph of Duncan's post hoc test subsets for radial MOE means. 
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The juvenile core consistently had the highest number of cull specimens, 

and the least number of test specimens, compared to the other radial positions. 

While the zone of outer sapwood and cambial activity had the highest moisture 

content, which led to high levels of culled specimens due to warping and pitch 

pockets. Compression wood, knots, pith eccentricity, pitch pockets, and warping 

were the main causes of specimen cull. 

The relative consistency of moderate MOE means observed within stems 

and between sites suggests that eastern larch would be suitable for a variety of 

solid wood and pulpwood products. Further, the similarity between wood 

density radial variance and MOE suggests there may be a correlation between 

the two properties. 

4.2.4 Variance in MOR 

MOR data was analyzed using SPSS 18 software, the ANOVA results 

(Table 26) indicated that MOR of eastern larch varied between 51 and 107 MPa, 

with a grand mean in the TBD of 79 MPa (Figure 69). The ANOVA showed a 

significant variance existed between MOR means for sites, and radial and axial 

positions, however, no significant interactions between factors at 95% probability 

were found. 

Figure 70 shows that site 4, the very wet site, had the highest average 

MOR at 88 MPa and a high variance similar to site 1. Site 1, the dry site, 

exhibited a high variance, however, average MOR was the lowest at 68 MPa. 
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Site 2, the poorly drained wet site, had moderate variance in MOR, similar to site 

3, with an average MOR of 82 MPa. Finally, the well drained site, site 3's 

average MOR at 80 MPa was closest to the grand mean and the site had 

moderate variance. 

Table 26. ANOVA results for MOR. 

Source Type Ill Sum of 

Squares df Mean Square F Sig. 

Corrected Model 20532.375" 15 1368.825 22.533 .000 

Intercept 2018030.450 1 2018030.450 33220.092 .000 

Radial 638.375 3 212.792 3.503 .016 

Bolt 1686.175 9 187.353 3.084 .001 

Site 18207.825 3 6069.275 99.910 .000 

Error 18467.175 304 60.747 

Total 2057030.000 320 

Corrected Total 38999.550 319 

a. R Squared= .526 (Adjusted R Squared = .503) 
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Figure 69. Box plot of MOR means. 
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Figure 70. Box plot comparison of site MOR means. 

Axial variances of MOR means were very consistent between sites and 

within trees. The literature reported that the general axial patterns for 

mechanical properties were variable, however, generally decreased in value 

from base to crown (Balatinecz, 1983; Yang et at., 1986; Zhang and Koubaa, 

2008). Eastern larch grown in the TBD, consistently displayed the variable axial 

pattern for MOR reported by the literature, with a general decrease from base to 

tip (Balatinecz, 1983; Yang et al., 1986; Zhang and Koubaa, 2008) (Figure 71). 
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Figure 71. Graph of MOR means axial variance with trend line. 
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Radial variance of MOR means displayed a pattern of variance, which 

was consistent on all sites. Radial MOR values increased from pith to a 

maximum in the heartwood/sapwood transition zone, and then decreasing in 

value proceeding to the bark (Figure 72). 

Based on the ANOVA results the null hypothesis, no variance in MOR, 

was rejected at 95% probability. There was significant differences in eastern 

larch MOR between sites, radial and axial position within stems, while 

interaction affects were insignificant. 
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Figure 72. Graph of MOR means radial variance with trend line. 
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A Duncan's post hoc test was performed on the MOR means for sites, 

radial and axial positions. For sites, Figure 73 shows that the post hoc test 

indicated three subsets of similarity: 

subset 1; included site 1 the dry fast growing site with eastern larch 
dominance, 

subset 2; included site 2 the poorly drained wet site with eastern larch I 
black spruce mix and site 3 the well drained site with high 
competition from mixed species, 
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subset 3; included site 4 the very wet site with black spruce dominance. 

These findings suggested that eastern larch MOR can be affected by tree 

spacing and trenching silvicultural treatments, as observed for MOE. 
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Figure 73. Graph of Duncan's post hoc test subsets for site MOR means. 

As Figure 7 4 shows, the Duncan's post hoc test of MOR means indicated 

two axial subsets of similarity for axial position: 

subset 1; included bolt 7 to bolt 10, high proportion of compression wood 
and large knots, 

subset 2; included bolt 1 to bolt 7, small knots in whorls with sections of 
clearwood. 

A Duncan's post hoc test identified two subsets of similarity for MOR 

means' radial position (Figure 75): 

subset 1; included the juvenile core and outer heartwood, 

subset 2; included the inner sapwood and zone of outer sapwood and 
cambial activity. 
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Zones of significance for MOR, identified by 
Duncan Post Hoc Test 
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Zones of radial significance for MOR, 
identified by the Duncan Post Hoc Test 

Figure 75. Graph of Duncan's post hoc test subsets for radial MOR means. 

4.2.5 Variance in compression parallel to grain 

Compression specimens were limited to the first 3 sites, as samples were 

unavailable for site 4. Compression data was analyzed using SPSS 18 software, 

the ANOVA results (Table 27) indicated that compression of eastern larch varied 
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between 33 and 59 MPa, with a grand mean in the TBD of 46 MPa (Figure 76). 

The ANOVA showed a significant difference existed between compression 

strength means for sites, and radial and axial positions, however, no significant 

interactions between factors at 95% probability were found. 

Table 27. ANOVA results for compression. 

Source Type Ill Sum of 

Squares df Mean Square F Sig. 

Corrected Model 3114.100a 14 222.436 11.966 .000 

Intercept 504808.538 1 504808.538 27157.359 .000 

Site 2096.400 2 1048.200 56.390 .000 

Bolt 584.754 9 64.973 3.495 .000 

Radial 432.946 3 144.315 7.764 .000 

Error 4182.363 225 18.588 

Total 512105.000 240 

Corrected Total 7296.462 239 

a. R Squared = .427 (Adjusted R Squared = .391) 
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Figure 76. Box plot of compression means. 

Figure 77 shows that site 2, the poorly drained wet site, had the highest 

average compression strength at 49 MPa and highest variance between means. 

Site 1, the dry site, exhibited the least variance between means, however, the 
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average compression was the lowest at 41 MPa. Site 3, the well drained site, 

had moderate variance in compression, with an average value of 47 MPa, which 

was closest to the grand mean. 
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Figure 77. Box plot comparison of site compression means. 

Axial differences of compression means were very consistent among 

sites with fluctuations in the bottom 1/3rd of the stem, with a minor increase in 

values proceeding up the stem through the middle 1/3rd, followed by a minor 

decrease in values in the top 1/3rd of the stem (Figure 78). However, a similar 

pattern of variance was reported by Balatinecz ( 1983) for axial variance in 

mature wood tracheid lengths. 
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Figure 78. Graph of compression means axial variance with trend line. 
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Radial compression strength means displayed consistent variance 

patterns on all sites, increased from pith to a maximum in the 

heartwood/sapwood transition zone, and then decreasing in value proceeding to 

the bark (Figure 79). 

Based on the ANOVA results the null hypothesis, no variance in 

compression, was rejected at 95% probability. There is significant variance in 

eastern larch sites, radial and axial position within stems, while interaction 

affects are insignificant. 
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Figure 79. Graph of compression radial variance means. 
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A Duncan's post hoc test was performed on the compression means for 

sites, and radial and axial positions. For sites, Figure 80 shows that the post 

hoc test indicated three subsets of similarity: 

subset 1; included site 1 the dry fast growing site with eastern larch 
dominance, 

subset 2; included site 3 the well drained site with high competition from 
mixed species, 

subset 3; included site 2 the poorly drained wet site with eastern larch I 
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Figure 80. Graph of Duncan's post hoc test subsets for site Compression means. 

As Figure 81 shows, the Duncan's post hoc test of compression means 

indicated two axial subsets of similarity for axial position: 

subset 1; included bolt 1 to bolt 3, 

subset 2; included bolt 4 to bolt 10. 
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by Duncan Post Hoc Test 
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Figure 81. Graph of Duncan's post hoc test subsets for axial Compression means. 
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A Duncan's post hoc test identified three subsets of similarity for 

compression means' radial position (Figure 82): 

subset 1; included the juvenile core, 

subset 2; included the outer heartwood and zone of outer sapwood and 
cambial activity, 

subset 3; included the inner sapwood and zone of outer sapwood and 
cambial activity. 

Zones of radial significance for Compression, 
identified by the Duncan Post Hoc Test 

Figure 82. Graph of Duncan's Post Hoc Test subsets for 

4.2.6 Variance in Janka ball side hardness 

Hardness data was analyzed using SPSS 18 software, the ANOVA 

results (Table 28) indicated that hardness of eastern larch varied between 2845 

and 4825 Newton (N), with a grand mean in the TBD of 3686 N (Figure 83). The 

ANOVA showed a significant variance existed between hardness means for 

sites, and radial and axial positions, however, no significance interactions 

between factors at 95% probability was found. 
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Table 28. ANOVA results for hardness. 

Source Type Ill Sum of 

Squares df Mean Square F Sig. 

Corrected Model 1.872E7 15 1248085.107 11.546 .000 

Intercept 4.348E9 1 4.348E9 40221.537 .000 

Radial 835880.259 3 278626.753 2.578 .054 

Bolt 4675823.066 9 519535.896 4.806 .000 

Site 1.321E7 3 4403191.095 40.735 .000 

Error 3.286E7 304 108094.646 

Total 4.399E9 320 

Corrected Total 5.158E7 319 

a. R Squared = .363 (Adjusted R Squared = .332) 
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Figure 83. Box plot of hardness means. 

Figure 84 shows that site 4, the very wet site, had the highest average 

hardness at 3935 N and with high variance between means. Site 1, the dry site, 

exhibited the least variance between means, and average hardness was the 

lowest at 3451 N. Site 2, the poorly drained wet site, had high variance in 

hardness, with an average value of 3525 N, which was closest to the grand 

mean. Finally, site 3, the well drained site, had an average hardness of 3834 N, 

with high variance. 
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Figure 84. Box plot comparison of site hardness means. 

Axial variances between hardness means were very consistent among 

sites. Within trees average hardness values decreased from the base 

proceeding up the tree to a minimum at mid stem, between bolts 6 to 7, then 

increased with axial position to the crown (Figure 85). It has been reported that 

the mechanical properties of eastern larch generally decrease in value from 

base to crown (Balatinecz, 1983; Yang eta/., 1986; Zhang and Koubaa, 2008). 

However, the majority the studies completed on the axial changes of mechanical 

properties of softwoods, are based on four bolt testing; 25%, 50%, 75%, and 

100%. Further, under ASTM Test Standard 1430, dimensions of hardness 

specimens shall be 50 by 50 by 150 mm of clear wood. Due to the percentage 

of compression wood and knots at the top of the stem, the 100% axial position, 

viable hardness specimens are limited. Thus, observations on axial variation on 

mechanical properties may be limited to trends displayed in the lower 75% of the 

stem. 
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Figure 85. Graph of hardness means axial variance with trend line. 

Many of the softwood studies reviewed limited their observations to 

mature wood or outer wood, to avoid the influence of juvenile and reaction 

wood. This is problematic for studies on eastern larch, as mature wood has 

lower mechanical values than juvenille wood (Balatinecz, 1983; Yang et a/., 

1986; Zhang and Koubaa, 2008). Further, the axial position of mature wood 

transition is difficult to determine through conventional testing procedures. 

l S:l~ , ___ ,,, 
l :c-o 
~ JOO J-<C'; 

I 
I 

I 

Therefore, it can be argued that patterns in axial hardness variation displayed by 

eastern larch grown in the TBD were within the expected range. 

Radial variation of hardness means displayed a pattern of variance, 

which was consistent on all sites. Radial variance patterns in hardness 

increased from pith to a maximum in the heartwood/sapwood transition zone, 

and then decreased in value proceeding to the bark (Figure 86). 
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Figure 86. Graph of hardness means radial variance between sites. 
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Based on the ANOVA results the null hypothesis, no variance in 

hardness, was rejected at 95% probability. There is significant variance in 

eastern larch sites, radial and axial position within stems, while interaction 

effects are insignificant. 

A Duncan's post hoc test was performed on the hardness means for 

sites, and radial and axial positions. For sites, Figure 87 shows that the post 

hoc test indicated two subsets of similarity: 

subset 1; included site 1 the dry fast growing site with eastern larch 
dominance, and site 2 the poorly drained wet site with Eastern 
Larch I black spruce, 

subset 2; included site 3 the well drained site with high competition from 
mixed species, and site 4 the very wet site with black spruce 
dominance. 

These findings were supported by Hillman and Roberts (2006), who reported 

that eastern larch is a species that likes moist and drained sites. While OMNR 

(1997) report eastern larch had low to moderate tolerance of drought and 
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flooding (Burns and Honkala, 1990a). Extreme changes in moisture seem to 

reduce the mechanical properties of eastern larch grown in the TBD. 
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Figure 87. Graph of Duncan's post hoc test subsets for site hardness means. 

As Figure 88 shows, the Duncan's post hoc test of hardness means 

indicated two axial subsets of similarity for axial position: 

subset 1; included bolts 1, 2, and 1 0; highest percentage of reaction 
wood, and 

subset 2; included bolt 3 to bolt 9, juvenile/mature wood mix. 

As was found with the other mechanical properties, these findings suggested 

that eastern larch trees response to competition were uniform among sites once 

seedlings were established, and free to grow over competition. 

A Duncan's post hoc test identified two subsets of similarity for hardness 

means' radial position (Figure 89): 

subset 1; included the juvenile core and zone of sapwood and cambial 
activity, 

subset 2; included outer heartwood and outer sapwood zone. 
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Zones of significance for Hardness, identified 
by Duncan Post Hoc Test 
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Figure 88. Graph of Duncan's post hoc test subsets for axial hardness means. 

Zones of radial significance for side Hardness, 
identified by the Duncan Post Hoc Test 

Figure 89. Graph of Duncan's post hoc test subsets for radial hardness means 
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4.2.7 Variance in juvenile wood 

Specimens for the juvenile core wood properties study were obtained 

from two sources for each site: 

• juvenile core of the two mature trees (over 30 years of age), and 

• one juvenile tree (under 30 years of age). 

The factors studied were the relative density00, MOE, and hardness of the 

juvenile core, using three trees from 4 sites at 10 axial positions; 10% to 100%. 

4.2.7.1 Juvenile core relative density0 o 

Juvenile core relative densitYoo data was analyzed using SPSS 18 

software, the ANOVA results (Table 29) indicated that juvenile core relative 

densityoo of eastern larch varied between 408 and 637 kg/m3 , with a grand 

mean in the TBD of 541 kg/m3
; (Figure 90). The ANOVA showed a significant 

variance existed between juvenile core relative density00 means for sites, no 

significance in axial position or interactions between factors at 95% probability 

were found. 

Table 29. ANOVA results for juvenile core relative density00• 

Source Type Ill Sum of 

Squares df Mean Square F Sig. 

Corrected Model 45888.550a 12 3824.046 1.860 .056 

Intercept 2.337E7 1 2.337E7 11366.109 .000 

Site 22913.000 3 7637.667 3.715 .016 

Bolt 22975.550 9 2552.839 1.242 .285 

Error 137741.250 67 2055.840 

Total 2.355E7 80 

Corrected Total 183629.800 79 

a. R Squared = .250 (Adjusted R Squared= .116) 
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Figure 90. Box plot of Juvemle core relative dens1ty00 means. 

Figure 91 shows that site 4, the very wet site, had the highest average 

juvenile core relative density00 at 569 kg/m3, and with moderate variance 

between means. Site 3, the well drained site, exhibited the highest variance 

between means, and the average juvenile core relative density00 was the lowest 

at 526 kg/m3. Site 2, the poorly drained wet site, had high variability in juvenile 

core relative density00 , with an average value of 533 kg/m3. Finally, site 1, the 

dry site, had moderate variance with an average juvenile core relative densitYoo 

of 534 kg/m3, which was closest to the grand mean. 
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Figure 91. Box plot comparison of site juvenile core relative density00 means for eastern 
larch tree grown in the TBD. 
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Based on the ANOVA results the null hypothesis, no variance in relative 

densityoo within the juvenile core, was rejected at 95% probability. There is 

significant variance in eastern larch between sites, while axial position and 

interaction affects are insignificant. 

A Duncan's post hoc test was performed on the juvenile core relative 

densitYoo means for sites. For sites, Figure 92 shows that the post hoc test 

indicated two subsets of similarity: 

subset 1; included site 1 the dry fast growing site with eastern larch 
dominance, site 2 the poorly drained wet site with eastern larch 
I black spruce, site 3 the well drained site with high competition 
from mixed species, 

subset 2; included site 4 the very wet site with black spruce dominance. 

These findings suggested that site environmental factors, primarily wind and 

snow load, affect wood density within the TBD. Site 4 was more susceptible to 

wind exposure and heavy snow load than the other three sites. 
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Figure 92. Graph of Duncan's post hoc test subsets for site juvenile core relative 
density00 means. 
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Patterns in axial variance of juvenile core relative densityoo means, although not 

significant, are interesting. Axial variance was consistent between sites, 

however, within trees variance patterns decreased from the base proceeding up 

the tree to a minimum at mid stem, between bolts 4 to 5, then increased with 

axial position to the crown (Figure 93). 
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Figure 93. Graph of juvenile core relative density00 means axial variance with trend line. 

4.2.7.2 Juvenile core MOE perpendicular to grain 

Juvenile core MOE data was analyzed using SPSS 18 software, the 

ANOVA results (Table 30) indicated that juvenile core MOE of eastern larch 

varied between 5,130 and 10,950 MPa, with a grand mean in the TBD of 8,091 

MPa (Figure 94). The ANOVA showed a significant variance existed between 

juvenile core MOE means for only sites, no significance in axial position or 

interactions between factors at 95% probability was found. 
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T bl 30 ANOVA a e It f MOE. "I resu s or JUVem e core. 

Source Type Ill Sum of 

Squares df Mean Square F Sig. 

Corrected Model 4.216E7 12 3513328.429 1.887 .052 

Intercept 5.237E9 1 5.237E9 2813.250 .000 

Bolt 4531889.512 9 503543.279 .270 .981 

Site 3.763E7 3 1.254E7 6.738 .000 

Error 1.247E8 67 1861615.877 

Total 5.404E9 80 

Corrected Total 1.669E8 79 

a. R Squared = .253 (Adjusted R Squared = .119) 
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Figure 94. Box plot of juvenile core MOE means. 

Figure 95 shows that site 4, the very wet site, had the highest average 

juvenile core MOE at 8,736 MPa and with high variance between means. Site 1, 

the dry site, exhibited the moderate variance between means, and average 

juvenile core MOE was the lowest at 6,954 MPa. Site 2, the poorly drained wet 

site, had the lowest variance in MOE juvenile core, with an average value of 

8,179 MPa, which was closest to the grand mean. Finally, site 3, the well 

drained site, had the highest variance with an average juvenile core MOE of 

8,496 MPa. 
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Figure 95. Box plot companson of s1te JUVemle core MOE means. 

Based on the ANOVA results, the null hypothesis, no variance in MOE 

within the juvenile core, was rejected at 95% probability. There is significant 

variance in eastern larch between sites, while axial position and interaction 

affects are insignificant. 

A Duncan's post hoc test was performed on the juvenile core MOE 

means for sites. For sites, Figure 96 shows that the post hoc test indicated two 

subsets of similarity: 

subset 1; included site 1 the dry fast growing site with eastern larch 
dominance, 

subset 2; included site 2 the poorly drained wet site with eastern larch I 
black spruce, site 3 the well drained site with high competition 
from mixed species, and site 4 the very wet site with black 
spruce dominance. 

These findings suggested that increased tree growth decreased juvenile core 

MOE within the TBD. 
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Figure 96. Graph of Duncan's post hoc test subsets for site juvenile core MOE means. 

Patterns in axial variance of juvenile core MOE means, although not 

significant, are interesting. Axial variance was consistent between sites, 

however, within trees variance patterns increased from the base proceeding up 

the tree to a maximum at mid stem, between bolts 4 to 5, then decreased with 

axial position to the crown (Figure 97). 
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3.2.7 .3 Juvenile core hardness 

Juvenile core hardness data was analyzed using SPSS 18 software, the 

ANOVA results (Table 31) indicated that juvenile core hardness of eastern larch 

varied between 2,845 and 4,497 N, with a grand mean in the TBD of 3,617 N 

(Figure 98). The ANOVA showed a significant variance existed between 

juvenile core hardness means for sites, no significance in axial position or 

interactions between factors at 95% probability was found. 

Table 31. ANOVA results for juvenile core hardness. 

Source Type Ill Sum of 

Squares df Mean Square F Siq. 

Corrected Model 4.016E6 12 334680.508 3.095 .002 

Intercept 1.046E9 1 1.046E9 9674.663 .000 

Bolt 1304948.863 9 144994.318 1.341 .233 

Site 2711217.238 3 903739.079 8.356 .000 

Error 7246075.888 67 108150.386 

Total 1.058E9 80 

Corrected Total 1.126E7 79 

a. R Squared = .357 (Adjusted R Squared = .241) 
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Figure 98. Box plot of juvenile core hardness means. 
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Figure 99 shows that site 4, the very wet site, had the highest average 

juvenile core hardness at 3,869 N and with medium variance among means. 

Site 1, the dry site, exhibited the lowest variance between means, and average 

juvenile core hardness was the lowest at 3,418 N. Site 2, the poorly drained wet 

site, had the high variance in MOE juvenile core, with an average value of 3,465 

N. Finally, site 3, the well drained site, had the high variance with an average 

juvenile core hardness of 3,714 N, which was closest to the grand mean. 
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Figure 99. Box plot comparison of site juvenile core hardness means. 

Based on the ANOVA results, the null hypothesis, no variance in 

hardness within the juvenile core, was rejected at 95% probability. There is 

significant variance in eastern larch between sites, while axial position and 

interaction affects are insignificant. 

A Duncan's post hoc test was performed on the juvenile core hardness 

means for sites. For sites, Figure 100 shows that the post hoc test indicated two 

subsets of similarity: 

subset 1; included site 1 the dry fast growing site with eastern larch 
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dominance, and site 2 the poorly drained wet site with eastern 
larch I black spruce, 

subset 2; included site 3 the well drained site with high competition from 
mixed species, and site 4 the very wet site with black spruce 
dominance. 
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Figure 100. Graph of Duncan's post hoc test subsets for site juvenile core hardness 
means. 

Patterns in axial variance of juvenile core hardness means, although not 

significant, are interesting. Axial variance was consistent between sites, 

however, within trees variance patterns decreased from the base proceeding up 

the tree to a minimum at mid stem, between bolts 6 to 7, then increased with 

axial position to the crown (Figure 101 ). 
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Figure 101. Graph of juvenile core hardness means axial variance with trend line. 
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4.3 Sampling 

As we have discussed, one of the purposes of this section of the thesis 

was to validate the published physical and mechanical wood properties of 

northwestern Ontario species, using eastern larch as a case study. We have 

also identified, that the majority of the research completed on wood properties, 

primarily wood density, has reported generalized observations based on single 

height sampling; breast height. Zobel and van Buijtenen (1989) reported that 

breast height sampling produced statistically valid results when a variety 

sampling procedures were employed, including: 

• comparison of mature wood or outerwood samples only, 

• comparison of juvenile wood or innerwood samples only, 

• comparison of samples from pith to bark, and 

• comparison of samples by cambial age. 

However, the results discussed in this report have identified eastern larch as 

being an anomalous species; a softwood species displaying variation patterns in 

wood characteristics similar to hardwoods. Thus, it would be prudent to validate 

the sampling procedures used in obtaining the reported values for this species 

(Shahi, 2008; Zobel and van Buijtenen, 1989). 

Validation of sample procedures focused on determining whether breast 

height and 10 bolt means differ significantly. Thus, a t-test was used in the 

comparison of the analytical results obtained from breast height and 10 bolt 

sampling procedures in order to confirm whether both methods provide similar 

analytical results or not. The outcome of the t-tests is the acceptance or 
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rejection of the null hypothesis (H0); both methods provide the same analytical 

results. (Zar, 1984; McClave and Dietrich, 1994; DeVeaux eta/., 2008; Shahi, 

2009): 

4.3.1 Breast height sampling 

4.3.1.1 Comparison of breast height relative density0 o 

The comparison of relative density0 o means between 10 bolt sampling 

and breast height sampling were analyzed using SPSS 18 software, the t-test 

results (Table 32) indicated that the means for the two sampling methods were 

not significantly different at 99.9% probability. These findings are consistent 

with Zobel and van Buijtenen (1989), who reported that wood density means 

using breast height and multiple bolt sampling of softwood trees were not 

significantly different. However, (Figure 1 02) variance between means is 

greater in breast height sampling than 10 bolt sampling, and breast height 

sampling had a higher grand mean than 10 bolt sampling. 

Table 32. T-test results for breast height and 10 bolt sampling comparison of relative 
d 't t 0 001 enSHYoo means a p< . 

T-test for Equality of Means 

95% Confidence Interval 

Sig. (2- Mean Std. Error of the Difference 

t df tailed) Difference Difference Lower Upper 

RD Equal variances -.730 62 .468 -7.03125 9.62857 -26.27849 12.21599 

assumed 
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Figure 102. Box plot of breast height and 10 bolt sampling comparison of relative 
density00 means at p<0.001. 

Figure 103 shows that breast height sampling reported higher radial 

means for relative densitYoo at varying degrees between sites, and displayed a 

less abrupt decrease in relative densityoo from the outer heartwood zone to the 

bark. The reduced radial variance pattern displayed by breast height sampling 

of relative density00 means may explain the conflicting values reported on 

northwestern Ontario tree species reported across Canada. 
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Figure 103. Graphical comparison of breast height and 10 bolt sampling of relative 
density00 means at p<0.001. 
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Figure 104 compared the relative density00 grand means reported across 

Canada by the literature. The percent difference between 10 Bolt and breast 

height relative density0 o grand means for the TBD study was 1%. The percent 

difference between the TDB 1 0 bolt means and other breast height studies' 

grand means ranged between -2% to -9%. Alemdag (1984) attributed these 

differences to different processing and calculation methods. 
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Figure 104. Comparison between 10 bolt sampling to breast height sampling relative 
density grand means across Canada. 

Alemdag (1984) used 4 bolt sampling to determine relative density30% 

grand means. Alemdag (1984) reported the same -2% percent difference 

between his 4 bolt study on wood density of eastern larch and Jessome (2000), 

as was found with the TDB 1 0 bolt sampling of wood density and Jessome 

(2000). Thus, wood density values for northwestern Ontario tree species 

reported from breast height sampling studies, are merely "fair estimate(s)" 

(Jessome, 2000) of the species' populations. 

http://Pio.mt.tfv
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Based on the t-test results, the null hypothesis, no difference between the 

relative densityo0 results of the two test procedures, was accepted at 99.9% 

probability. 

4.3.1.2 Comparison of breast height MOE 

The comparison of MOE means between 10 Bolt sampling and breast 

height sampling were analyzed using SPSS 18 software, the t-test results (Table 

33) indicated that breast height and 10 bolt MOE means were not significantly 

different at 99.9% probability. Figure 105 shows variance between means is 

greater in breast height sampling than 10 bolt sampling, and breast height 

sampling had a higher grand mean than 10 bolt sampling. 

Table 33. T -test results for breast height and 10 bolt sampling comparison of MOE means 
t 0 001 a _j)_< • 

t-test for Equality of Means 

95% Confidence 

Interval of the 

Sig. (2- Mean Std. Error Difference 

t df tailed) Difference Difference Lower Upper 

MOE Equal variances -1.085 62 .282 -264.125 243.523 -750.921 222.671 

assumed 
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Figure 105. Box plot of breast height and 10 bolt sampling comparison of MOE means at 
p<0.001. 
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Figure 1 06 shows that breast height sampling reported mixed effects on 

radial means for MOE at varying degrees between sites, displaying greater 

radial variance generally and a more abrupt decrease in MOE from the inner 

sapwood zone to the bark. Breast height sampling produced lower MOE site 

means for sites 2 and 3 and higher MOE site means for bolts 1 and 4. The 

percent difference between 10 Bolt and breast height MOE grand means for the 

TDB study was 3%. 
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Figure 106. Graphical comparison of breast height and 10 bolt sampling of MOE means at 
p<0.001. 

The comparison between breast height and 1 0 bolt MOE means of 

eastern larch supports the earlier findings for wood density, that there is no 

significant difference between the means of the two sampling methods, however 

variance patterns are different. Based on the t-test results, the null hypothesis, 

no difference between the MOE results of the two test procedures, was 

accepted at 99.9% probability. 
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4.3.1.3 Comparison of breast height MOR 

The comparison of MOR means between 10 Bolt sampling and breast 

height sampling were analyzed using SPSS 18 software, the t-test results (Table 

34) indicated that breast height and 10 bolt MOR site means were not 

significantly different at 99.9% probability. Figure 107 shows variance between 

means is greater in breast height sampling than 10 bolt sampling, due to 

outliers, and breast height sampling reported a higher grand mean than 10 bolt 

sampling. 

Table 34. T-test results for breast height and 10 bolt sampling comparison of MOR means 
t 0 001 a p< . 

t-test for Equality of Means 

95% Confidence 

Interval of the 

Sig. (2- Mean Std. Error Difference 

t df tailed) Difference Difference Lower Upper 

MOR Equal variances -1.451 62 .152 -3.43750 2.36977 -8.17460 1.29960 

assumed 
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Figure 107. Box plot of breast he1ght and 10 bolt sampling companson of MOR means at 
p<0.001. 
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Figure 108 shows that breast height sampling reported mixed effects on 

radial means for MOR at varying degrees between sites, displaying greater 

variance with regard to the degree that MOR increased from the pith to the outer 

sapwood. Breast height sampling produced higher MOR site means for site 1 

and lower MOR site means for bolts 2, 3, and 4. The percent difference 

between 10 Bolt and breast height MOR grand means for the TDB study was 

3%. 

The comparison between breast height and 10 bolt MOR means of 

eastern larch supports the earlier findings for wood density and MOE, that there 

is no significant difference between the means of the two sampling methods, 

however variance patterns are different. Based on the t-test results, the null 

hypothesis, no difference between the MOR results of the two test procedures, 

was accepted at 99.9% probability. 
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Figure 108. Graphical comparison of breast height and 10 bolt sampling of MOR means at 
p<0.001. 
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4.3.1.4 Comparison of breast height compression parallel to grain 

The comparison of compression strength means between 10 Bolt 

sampling and breast height sampling were analyzed using SPSS 18 software, 

the t-test results (Table 35) indicated that breast height and 10 bolt compression 

site and radial position means were not significant difference at 99.9% 

probability. Figure 109 shows variance between means is greater in breast 

height sampling than 10 bolt sampling, and breast height sampling reported a 

higher grand mean than 10 bolt sampling. 

Table 35. T-test results for breast height and 10 bolt sampling comparison of 
compression means at p<O 001 

t-test for Equality of Means 

95% Confidence 

Interval of the 

Sig. (2- Mean Std. Error Difference 

t df tailed) Difference Difference Lower Upper 

Comp Equal variances -1.282 46 .206 -1.91667 1.49551 -4.92698 1.09365 

assumed 

Bolt 
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Figure 109. Box plot of breast height and 10 bolt sampling comparison of compression 
means at p<0.001. 
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Figure 110 shows that breast height sampling reported higher on radial 

means for compression at varying degrees between sites, displaying greater 

variance with regards to the degree that compression increased from the pith to 

a maximum at the outer sapwood and decrease to the bark. Breast height 

sampling produced higher compression strength site means, with an overall 

percent difference between 10 Bolt and breast height compression grand means 

for the TDB study of 4%. 

Estimated Marginal Means of Compression Estimated Marginal Means of CompBH 
55;»-~--- ·--·l ~"·· l s,,. 

1
·-- 1( 

51 00 ·2i 

" 

I .. 
"" I :E 

I 
HCQ-

I 
I 

J .lOCO 
,/ 

J.:SOO 

~s 50 :":) 'X :s 
R>di•l 

-· _ ...... · /. 

:o 

.,~- --· -~--- --~. 
//" 

/ 
"",,./.-

--,-.- I 
i'i 100 

R•dl•l 

·--~, 00 
::o:· 
3~ 

Figure 110. Graphical comparison of breast height and 10 bolt sampling of compression 
means at p<0.001. 

The comparison between breast height and 10 bolt compression strength 

means of eastern larch supports the earlier findings for wood density, MOE, and 

MOR, that there is no significant difference between the means of the two 

sampling methods, however variance patterns are different. Based on the t-test 

results, the null hypothesis, no difference between the compression results of 

the two test procedures, was accepted at 99.9% probability. 
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4.3.1.5 Comparison of breast height Janka ball side hardness 

The comparison of hardness means between 10 Bolt sampling and 

breast height sampling were analyzed using SPSS 18 software, the t-test results 

(Table 36) indicated that breast height and 10 bolt MOR site means were not 

significantly different at 99.9% probability. Figure 111 shows variance between 

means is greater in breast height sampling than 10 bolt sampling, and breast 

height sampling reported a higher grand mean than 10 bolt sampling. 

Table 36. T-test results for breast height and 10 bolt sampling comparison of hardness 
t 0 001 means a p< . 

t-test for Equality of Means 

95% Confidence 

Interval of the 

Sig. {2- Mean Std. Error Difference 

t df tailed) Difference Difference Lower Upper 

Hard Equal variances -1.828 62 .072 - 97.80245 - 16.75431 

assumed 178.75000 374.25431 
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Figure 111. Box plot of breast height and 10 bolt sampling comparison of hardness 
means at p<0.001. 
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Figure 112 showed that breast height sampling reported higher radial 

means for hardness at varying degrees between sites, displaying greater 

variance with regards to the degree that hardness increased from the pith to the 

outer heartwood. Breast height sampling produced higher hardness site means, 

with an overall percent difference between 10 bolt and breast height hardness 

grand means of 5%. 
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Figure 112. Graphical comparison of breast height and 10 bolt sampling of hardness 
means at p<0.001. 

The comparison between breast height and 10 bolt hardness means of 

eastern larch supports the earlier findings for the other wood properties that 

there is no significant difference between the means of the two sampling 

methods, however variance patterns are different. Based on the t-test results, 

the null hypothesis, no difference between the hardness results of the two test 

procedures, was accepted at 99.9% probability. 
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4.3.2 Standards sampling compared to quadrant sampling 

Relative density00 and MOE perpendicular to the grain were considered 

with respect to sampling methods. The data for these selected wood properties 

were analysized based on ASTM standard sampling procedures and 100% 

quadrant sampling. At-test comparison between the means of ASTM standards 

sampling and 100% quadrant sampling was then completed. 

4.3.2.1 Comparison of quadrant testing relative densityoo 

The t-test comparison between quadrant and standards sampling relative 

densityoo means were analyzed using SPSS 18 software. The t-test results 

(Table 37) indicated that differences between standards and quadrant sampling 

relative densitYoo means were not significant at 99.9% probability. The 

standards sampling grand mean for relative density0 o was 553.7 and 553.4 for 

quadrant sampling. 

Table 37. T -test results for standard testing and quadrant testing comparison of relative 
d 't t <0 001 enSI[Yoo means a p 

t-test for Equalit of Means 

95% Confidence 

Interval of the 

Sig. (2- Mean Std. Error Difference 

t df tailed) Difference Difference Lower Upper 

RD Equal variances .048 158 .962 .28750 6.01133 -11.58543 12.16043 

assumed 

Figure 113 shows variance between grand means was minimal; quadrant 

sampling means ranged from 479 to 658 kg/m 3, while standards sampling 

means ranged from 491 to 658 kg/m3
; standard deviations were 37 and 38 

respectively. 
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Figure 113. Box plot of standard and quadrant testing comparison of relative density00 
means at p<0.001. 

Figure 114 shows that there was minimal variance between the relative 

density00 site means for the two sampling procedures. Standards and quadrant 

sampling procedures produced equal relative densityoo site grand means for 

sites 2, 3 and 4. For site 1, quadrant sampling relative density00 grand mean 

was 538.6 kg/m3 compared to 537.5 kg/m3 for standards sampling; a difference 

of0.2%. 

Based on the t-test results, the null hypothesis, no difference between the 

relative density00 means of the two sampling procedures, was accepted at 

99.9% probability. These findings supported LUWSTF's hypothesis, that 

quadrant sampling improved specimen viability without degrading wood 

properties test results. 
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Figure 114. Box plot comparison between standards and quadrant testing relative 
density00 site means at p<0.001. 

4.3.2.2 Comparison of quadrant testing MOE 

At-test comparison of MOE means between quadrant and standards 

sampling was completed using SPSS 18 software. The t-test results (Table 38) 

indicated that the difference between standards and quadrant sampling MOE 

means was not significant at 99.9% probability. The standards sampling grand 

mean for MOE was 8,356 MPa and 8,353 MPa for quadrant sampling. 

T bl 38 T t t It f t d d d a e - es resu s ors an ar an qua ran samp mg o d t r fMOE t 0 001 means a p< . 

t-test for Equalit of Means 

95% Confidence 

Interval of the 

Sig. (2- Mean Std. Error Difference 

t df tailed) Difference Difference Lower Upper 

MOE Equal variances -.015 158 .988 -2.85000 189.48360 - 371.39757 

assumed 377.09757 



181 

Figure 115 shows variance between MOE grand means was moderate; 

quadrant sampling means ranged from 5,660 to 11,090 MPa, while standards 

sampling means ranged from 5,618 to 10,947 MPa; standard deviations were 

1210.2 and 1186.5 respectively. 

f ~-~-~-~ ---- --1 

l 
-. -·-- --. -- ·--·· ~-· -- -·- ~ ~~~-·~·---1 

: I I T 
I 

T 

~ 
I I I 

i ,·l I . a g ~ I:. 
I -~ '--r-- ! 

I 
I I l 
i -~ 1 _L 

' .;. tXJE,~- MOlE"''"'"""' 

Figure 115. Box plot of breast height and quadrant testing comparison of MOE means at 
p<0.001. 

Figure 116 shows that the difference between the MOE site means of the 

two sample methods was consistent, with quadrant sampling having 1% higher 

variance within site means than the standards sampling method. 
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Figure 116. Box plot companson between standards and quadrant sampling MOE site 
means at p<0.001. 
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Based on the t-test results, the null hypothesis, no difference between the 

MOE results of the two test procedures, was accepted at 99.9% probability. 

These findings support LUWSTF's hypothesis, that quadrant testing improves 

bolt specimen viability without degrading wood properties test results. 

4.4 Identifying a predictor of wood quality 

Understanding the interrelationships or correlations between wood 

characteristics is important for a number of reasons. With respect to wood 

morphology, understanding how changes in wood growth affect wood quality is 

important to identify. This thesis has identified that accelerated wood growth 

generally results is lower wood density in softwoods as observed by others 

(Zobel, 1984; Kellogg, 1989; Zobel and van Buijtenen, 1989; Kliger eta/., 1994; 

Zhang, 1995; Zhang, 2003; Rowell, 2005). Further, it was identified that the age 

of eastern larch is related to a decrease in physical and mechanical properties 

(Beaudoin eta/., 1989; Zhang and Koubaa, 2008). We have also found that 

there is minimal variance in wood properties within the juvenile core between 

young and mature eastern larch trees. These are examples of 

interrelationships, which can affect the quality of wood at harvest and can be 

used as predictors of wood quality at different rotation ages. 

To assess the level of correlation between variables the correlation 

coefficient squared (squared correlation) or coefficient of determination, R2 was 

used. The R2 value tells us the level of variance which is accounted for by the 

data, because it is a fraction of the variance in the dependent variable that is 
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accounted for by the independent variable. R2 values are always between 0 and 

1, thus are commonly reported as a percentage. The simplest way to 

understand R2 is that a value of 1 means all of the variance in the dependant 

variable is accounted for by the independent variable and is said to be a perfect 

fit. An R2 value of 0 means that none of the variance in the dependant variable 

is accounted for by the independent variable (Zar, 1984; DeVeaux eta!., 2008; 

Shahi, 2009; UCLA Academic Technology Services, 201 0). 

4.4.1 Relative density as a predictor of mechanical properties 

Relative density was reported to be correlated or interrelated, in some 

degree, to most of the mechanical properties of wood (Zobel, 1984; Kellogg, 

1989; Zobel and van Buijtenen, 1989; Kliger eta!., 1994; Zhang, 2003; Rowell, 

2005). In softwoods correlations between relative density, MOE I MOR 

perpendicular to the grain, and compression parallel to the grain are generally 

linear (Zobel and van Buijtenen, 1989; Stiemer, 201 0; Wiemann and 

Williamson, 201 0). Further, it is generally accepted that correlation between 

wood density and mechanical properties of juvenile wood in softwoods was 

weak, while mature wood had a strong correlation (Wangaard, 1981; Zobel, 

1984; Kellison eta/., 1984; Kellogg, 1989; Kliger eta/., 1994; Forest Products 

Laboratory, 1999; Zhang, 2003; Rowell, 2005). While Zhang (1994) reported 

that mechanical properties of both hardwoods and softwoods are generally more 

influenced by changes in growth rate than specific gravity (relative density00). 
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The literature seems to be contradictory on the relationship between 

wood density and mechanical properties. Predicting mechanical properties from 

relative density values seems to require a species specific approach (Zobel and 

van Buijtenen, 1989; Zhang, 1995). Our findings indicate that eastern larch 

variance patterns in mechanical properties are similar to that of hardwoods. 

Thus, the linear trend in relative density correlation to mechanical properties 

generally expected in softwoods may not exist for eastern larch. 

Using SPSS18 software, model summary and parameter estimates with 

scatter plot graph showing three trend line regression formulae (linear, 

exponential, and logarithmic), were completed for each of the selected 

mechanical properties examined in relation to relative density12. 

4.4.1.1 Relative density of mature wood as a predictor of MOE 

Relative density12 and MOE had a positive correlation. Table 39 shows 

that there is significant relationship between the dependant variable (MOE) and 

the independent variable (relative density12) at 99.9% probability. 

T bl 39 M d I a e o e summary an d f I f d "t parameter estimates or re a 1ve ens1!Y12 an d MOE t 0 001 a p< . 

Dependent Variable: MOE perpendicular to Qrain 

Equation Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 

Linear .0700 11.938 1 158 .001 4123.825 8.263 

Logarithmic .0697 11.883 1 158 .001 -18955.180 4379.495 

Exponential .0628 10.632 1 158 .001 5035.048 .001 

The independent variable is relative densityn 

A comparison between actual and predicted MOE means was analyzed 

using SPSS 18 software, the t-test results (Table 40) indicated that actual and 
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predicted MOE means were not significantly different at 99.9% probability, and 

that the two groups had approximately equal variance. 

Table 40. T-test comparison between actual and predicted MOE means at p<0.001. 

t-test for Eguality of Means 

95% Confidence Interval of 

Sig. (2- Mean Std. Error the Difference 

t df tailed}_ Difference Difference Lower Upper 

MOE Equal .003 318 .998 .29375 105.42908 -207.13291 207.72041 

variances 

assumed 

4.4.1.2 Relative density of mature wood as a predictor of MOR 

Relative density12 and MOR had a positive correlation. Table 41 shows 

that there is a significant relationship between the dependant variable (MOR) 

and the independent variable (relative density12) at 99.9% probability. 

Table 41. Model summary and parameter estimates for relative density12 and MOR at p<0.001. 

Dependent Variable: MOR perpendicular to grain 

Equation Model Summary Parameter Estimates 

R Square F df1 df2 Sig Constant b1 

Linear .130 23.548 1 158 .000 29.085 .098 

Logarithmic .132 24.023 1 158 .000 -247.620 52.401 

Exponential .123 22.184 1 158 .000 41.379 .001 

The independent variable is relative density12. 

A comparison between actual and predicted MOR means was analyzed 

using SPSS 18 software, the t-test results (Table 42) indicated that actual and 

predicted MOR means were not significantly different at 99.9% probability, and 

that the two groups had approximately equal variance. 
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T bl 42 a e . T -test Table comparison between actual and predicted M 0 0 001 R values at p< . 

t-test for Equality of Means 

95% Confidence Interval of 

Sig. (2- Mean Std. Error the Difference 

t df tailed) Difference Difference Lower Upper 

MOR Equal variances - 318 .869 -.15625 .94485 -2.01519 1.70269 

assumed .165 

4.4.1.3 Relative density of mature wood as a predictor of compression 

Relative density12 and compression parallel to grain had a positive 

correlation. Table 43 shows that there is a significant relationship between the 

dependant variable (compression) and the independent variable (relative 

densitY12) at 99.9% probability. 

Table 43. Model summary and parameter estimates for relative density12 and compression at 
p<0.001. 
Dependent Variable: compression parallel to grain 

Equation Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 

Linear .214 32.182 1 118 .000 17.045 .058 

Logarithmic .224 34.008 1 118 .000 -148.398 31.279 

Exponential .212 31.819 1 118 .000 24.689 .001 

The independent variable is relative densitY12-

A comparison between actual and predicted compression means was 

analyzed using SPSS 18 software, the t-test results (Table 44) indicated that 

actual and predicted compression means were not significantly different at 

99.9% probability, and predicted MOR means were not significantly different at 

99.9% probability, and that the two groups had approximately equal variance. 
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Table 44 T-test comparison between actual and predicted compression values at p<O 001. 

t-test for Equalit) of Means 

95% Confidence 

Interval of the 

Sig. (2- Mean Std. Error Difference 

t df tailed) Difference Difference Lower Upper 

Compression Equal -.172 238 .863 -.09167 .53251 -1.14070 .95736 

variances 

assumed 

4.4.1.4 Relative density of mature wood as a predictor of hardness 

Relative density12 and Janka ball side hardness had a positive correlation. 

Table 45 shows that there is a significant relationship between the dependant 

variable (hardness) and the independent variable (relative densitY12) at 99.9% 

probability. 

Table 45. Model summary and parameter estimates for relative density12 and hardness at 
p<0.001. 

Dependent Variable: Janka ball side hardness 

Equation Model Summary Parameter Estimates 

R Square F df1 df2 Siq. Constant b1 

Linear .188 36.479 1 158 .000 1391.011 4.385 

Logarithmic .186 35.985 1 158 .000 -10807.568 2316.298 

Exponential .189 36.802 1 158 .000 1984.507 .001 

The independent variable is relative densitY12. 

A comparison between actual and predicted hardness means was 

analyzed using SPSS 18 software, the t-test results (Table 46) indicated that 

actual and predicted hardness means were not significantly different at 99.9% 

probability, and that the two groups had approximately equal variance. 
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T bl 46 a e 0 • T -test comparison between actual and predicted hardness values at p<O.O 1. 

t-test for Equality of Means 

95% Confidence 

Interval of the 

Sig. (2- Mean Std. Error Difference 

t df tailed) Difference Difference Lower Upper 

Hardness Equal .005 318 .996 .19375 36.06841 -70.76912 71.15662 

variances 

assumed 

4.4.1.5 Limitation of Relative density as a predictor of mechanical 
properties 

Eastern larch wood seems to have a positive linear relationship between 

relative density12 and the mechanical properties investigated, however, only 

40% of the predicted values were at 99.9% accuracy. The correlation analysis 

produced similar results for logarithmic and exponential regression models. No 

prediction models for wood quality or mechanical properties were found for 

eastern larch. Modeling of eastern larch's resource attributes seems limited to 

some growth and yield models on mixed forest types which included eastern 

larch as a minor species component. The Forest Products Laboratory (1999) 

has developed general exponential models which use relative density to predict 

mechanical properties of softwoods and hardwoods (Table 47). 

Table 47. Functions relating to selected mechanical properties to specific gravity of clear, straight-
grained wood (metric) (Forest Products Laboratory 1999) 

Specific gravity-strength relationship 
Wood at 12% moisture content 

Property Softwoods Hardwoods 
MOR (kPa) y = 170,700 xl.ul y = 171,300 X·'" 

MOE (MPa) y = 20,500 XU.O't y = 16,500 XU./ 

Compression parallel (kPa) y = 93,700 XU. '<I y = 76,000 XU.O'<l 

Side hardness (N) y = 85,900 x
1

·
0 y = 15,300 XL.U" 
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Using the TBD eastern larch test data, a comparison between the Forest 

Product Laboratories (1999) mechanical properties prediction models for 

softwoods (USDA softwoods) and hardwoods (USDA hardwoods), and TBD 

predictive models was completed for the selected four mechanical properties. 

Table 48 to Table 51 shows the comparison between predicted grand means for 

each mechanical property to actual values. 

Table 48. Descriptive statistics comparison of three models for actual versus predicted MOE 
t 0 001 values a _j)_< • 

99.9% Confidence Interval 
Dependent Variable MOE Mean Std. Error Lower Bound Upper Bound 
TBDActual : . 8471 ·. 88.142 8175 8767 
TBD Model 8471 25.720 8385 8557 
USDA Hardwood Model 10519 43.375 10373 10664 
USDA Softwood Model 11948 59.246 11749 12147 

Table 49. Descriptive statistics comparison of three models for actual versus predicted MOR 
values at p<0.001. 

99.9% Confidence Interval 
Dependent Variable MOR Mean Std. Error Lower Bound Upper Bound 

TBD actual 81 .603 79 83 
TBD model 81 .309 80 82 
USDA softwood Model 89 .531 87 91 
USDA hardwood Model 83 .550 81 85 

Table 50. Descriptive statistics comparison of three models for actual versus predicted 
compression values at p<O 001 

99.9% Confidence Interval 
Dependent Variable compression Mean Std. Error Lower Bound Upper Bound 

TBD actual . 47 .370 46 48 
TBD model 47 .228 46 48 
USDA softwood Model 42 .285 41 43 
USDA hardwood Model 50 .360 48 51 

: 
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Table 51. Descriptive statistics comparison of three models for actual versus predicted hardness 
t 0 001 values a p< . 

99.9% Confidence Interval 

Dependent variable hardness Mean Std. Error Lower Bound Upper Bound 

TBD actual 3698 . 26.879 3608 3789 
TBD model 3698 13.650 3652 3744 
USDA softwood Model 3286 29.386 3187 3384 
USDA hardwood Model 4025 50.648 3855 4195 

As expected, the TBD model produced the closest predictions to actual 

values with the lowest standard error. However, the USDA hardwoods model 

produced superior predictions for the mechanical properties of eastern larch 

grown in the TBD than the USDA softwoods models. 

The USDA hardwoods models for MOR and hardness were within 3 and 

9% respectively of actual values, compared to the USDA softwood models 

predictions for these properties which were 11 and -12% respectively. The 

USDA hardwoods model for MOE prediction was 24% higher than actual values 

while the USDA softwoods model prediction was 41% higher than actual eastern 

larch MOE values. The USDA softwood model for compression was 5% higher 

than actual values, which was superior to the USDA hardwoods model 

prediction at 10% of actual values. 

The comparison between predictive models supports the earlier 

observation that variance patterns in the wood properties of eastern larch grown 

in TBD are similar to that of hardwoods. Further, the model comparisons 

illustrates that there are limitations to the relationship between relative density 

and mechanical properties that require site specific investigation. This seems 
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particularly evident for a species like eastern larch with such a large growth 

range. 

To better illustrate the need for site specific investigation of tree species' 

wood characteristic within northwestern Ontario, a comparison of the 3 

predictive models was completed using the national averages for eastern larch 

wood properties reported by the Forest Products Laboratory (1999) for the 

United States and Jessome (2000) for Canada. Table 52 compares the grand 

mean predictions of the models to the reported national averages for eastern 

larch's mechanical properties using relative density12-

Table 52. Comparison of three models for actual versus predicted using three different sources 
for relative density12 and mechanical properties values at p<O 001. 

Source Relative MOR MOE Compressi Hardne 
densitY12 (Mpa) (Mpa) on (Mpa) ss (N) 

USDA Wood Handbook (Forest 0.53. 80.0 . 11300 49.4 2600 Products Laboratory, 1999) 
USDA Softwood Wood Model 89.9 12027 50.6 3314 
USDA Hardwood Wood Model 83.6 10580 43.2 4059 
TBD Model 81.0 8503 47.8 3715 
Canadian forest Service (Jessome, 0.506 76.0 •.9380 44.8 3220 2000) 
USDA Softwood Wood Model 85.8 11568 48.4 3092 
USDA Hardwood Wood Model 79.3 10242 41.4 3684 
TBD Model 78.7 8305 46.4 3610 

The TBD model provided the overall best fit between predictive and 

reported values for eastern larch using both Forest Products Laboratory (1999) 

and Jessome (2000) relative density averages. The TBD model produced the 

closest MOR predictions, which were within 1.3% of the Forest Products 

Laboratory ( 1999) reported values and within 3.5% of the Jessome (2000) 

reported values. The TBD model provided the closest predictions to the 

reported values for MOE using the Jessome (2000) eastern larch averages for 



192 

Canada, however, provided the weakest prediction of MOE using the Forest 

Products Laboratory (1999) data for eastern larch grown in the United States. 

The TBD model produced the closest compression strength predictions which 

were within -3.3% of the Forest Products Laboratory (1999) reported values and 

within 3.6% of the Jessome (2000) reported values. The TBD model for 

hardness provided a weak prediction for both Forest Products Laboratory (1999) 

and Jessome (2000) compared to the USDA softwood model. TBD model for 

hardness predictions were within 42.9% of reported values by Forest Products 

Laboratory (1999) for the United States and 12.1% of the Jessome (2000) 

values. You will recall that variation in side hardness between sites was 31% for 

the study, and the Forest Products Laboratory (1999) reports side hardness can 

vary as much as 20% within in clearwood test. Thus, hardness is an example of 

a mechanical property model, which may require local correction when using 

relative density as the independent variable. 

The USDA hardwoods models provided better predictions than the USDA 

softwood models using the Jessome (2000) data set for eastern larch. 

However, USDA hardwoods models provided the weakest predictions for the 

mechanical properties of eastern larch grown in the United States reported by 

Forest Products Laboratory (1999). 

The findings on the performance of the three predictive models using the 

national averages for eastern larch grown in the United States and Canada 

indicate that the relationship between relative density and mechanical properties 

seem generally consistent within a species. However, developing predictive 

models specific to hardwoods and softwoods may be too generalized to be 
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useful. These findings are consistent with Zhang (1995) who examined the 

relationships between grouped or categorized tree species, relative density0 o 

and selected mechanical properties; MOE, MOR, and compression. Zhang 

(1995) reported that relative density0 o and mechanical properties vary differently 

with changes in silvicultural and environmental factors and between the species 

groups. 

The Forest Products Laboratory (1999) reports that after reviewing the 

variance in mechanical properties from clear specimens testing of over 50 tree 

species grown in the United States, that the magnitude of variance within the 

selected wood properties are: 

• MOR up to16% variance, 

• MOE up to 22% variance, 

• compression parallel to grain up to 18% variance, 

• hardness up to 20% variance, and 

• relative densityoo up to 10% variance. 

As discussed, the degree of variance of these properties changes based on 

species and environmental factors and that the direction of change (increase or 

decrease) is specific to tree species or species group. Therefore, it seems 

unlikely that relative density alone can provide an accurate prediction without 

site specific correction (Zhang, 1995; Forest Products Laboratory, 1999). 

Mistakes in reporting wood density values are common errors and limit 

our understanding to the interrelationships of wood characteristics. For 

example, specific gravity, relative density, and density have been used 
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interchangeably in the literature. The USDA's Forest Products Laboratory's 

publications have commonly reported a specific gravity, rather than relative 

density, at oven-dry mass in relation to a volume at a specified moisture content, 

which has caused some confusion within the literature. Johnston and Carpenter 

(1985) reported, "based on the ovendry weight and green volume, eastern 

larch's specific gravity (relative density3o) averages 0.49, and eastern Larch 

density at 12 percent moisture content is about 35 pounds per cubic foot 

(Density1 2% approximately 0.56 g/cm3)." However, the Forest Products 

Laboratory (1999) reports two specific gravity values, ovendry weight and green 

volume (relative density3o) of 0.49 g/cm3, and ovendry weight and 12% MC 

(relative density12%) of 0.53 g/cm3. This has created confusion within the 

literature, which has commonly reported the specific gravity of eastern larch as 

0.49 g/cm3 or 0.53 g/cm3; meaning the relative density00. In order to develop 

accurate correlation models between relative density and mechanical properties 

the moisture content based on ovendry weight of the properties investigated 

must be consistent. 

The importance of clearly understanding the relationships between 

relative density and the strength properties of northwestern Ontario tree species 

can not be emphasized enough. Design criteria of wood products are based on 

these relationships at the lower 5% probability of test values to ensure public 

safety (Figure 117) (Stiemer, 2010). When our understanding of the wood 
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Figure 117. Example of down grading test values to ensure public safety (Stiemer, 2010). 

characteristics of a tree species is unclear it reduces the utilization and value of 

the wood. For example, Pucci (2006) reported that the current Northern Species 

specific gravity used in Machine Stress Rated (MSR) lumber under valuates 

eastern larch within the market. Increasing the understanding of the "Real" 

specific gravity with regard to strength properties would make eastern larch "a 

commercially viable market species with the potential of making it the preferred 

species in specific uses" (Pucci, 2006). 

4.4.1.6 Relative density and strength classes 

The National Lumber Grade Authority (NLGA) regulates visual and MSR 

grades. Lumber grades are divided into three basic categories: 

1. structural framing products; visually and/or mechanically graded (MSR) 
for strength and physical working , 
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2. appearance products; graded for aesthetic qualities in non-structural 
applications, 

3. industrial products, including a variety of structural and non-structural 
grades. 

MSR grading uses nondestructive mechanical testing equipment inline 

with lumber processing, which measures and sorts the stiffness of the lumber 

into various MOE grades. MSR grading does not replace visual grading. Visual 

grades overrides machine decisions when visual defects are identified (NLGA, 

2003b). 

According to Stiemer (2010) MSR grading eliminates tree species as a 

consideration to material selection by designers and engineers. MSR grades 

can be produced from a multitude of wood species from a number of different 

sources. Thus, clients have the ability to (Stiemer, 2010): 

• produce higher quality products with fewer failures, 

• increase available suppliers do to standardized uniformity within 
grades, 

• substitute expensive or scarce wood species with cheaper more 
abundant species. 

According to Rozek (201 0) MSR grading presents northwestern Ontario with the 

potential to better market the high-density under utilized species from the boreal 

forest, once it is recognized that they possess superior properties to the current 

Northern Species grade (Pucci, 201 0). 
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Although MSR grades are divided into MOE classes, the grades are 

based on the interrelationship between specific gravity and select mechanical 

properties (NLGA, 2003a; NLGA, 2003b): 

• Bending, 

• Tension parallel to grain, 

• Shear parallel to grain, 

• compression parallel to grain, 

• compression perpendicular to 
grain, 

• Modulus of Elasticity. 

For northwestern Ontario the Northern Species grade is used for all tree species 

other than Spruce-Pine-Fir. Thus, interrelationship between wood density and 

mechanical properties are based on a specific gravity (relative density0 o) of 0.42 

g/cm3. According to NLGA (2003b): 

"Specific gravity (SG) qualifications and subsequent quality 
control are required when the SG value exceeds the value 
assigned to the grade set forth." 

For corporations like Buchanan Lumber, this grade rule required them to bare 

the extra expense for the continual testing of wood density so that they could 

market their products using the appropriate MSR grade (Pucci, 201 0). 

MSR grading of eastern larch provides use with a new measure for 

strength and variance of wood characteristics. Since MSR grades are strength 

classes based on set relative density00 and mechanical property values, it 

provides use with a measure of variance based on practical application or 

design value. These classes are based on thresholds, thus variance is reduced 

as the scale of comparison is broadened. 
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For example, using the strength groups from the Australian standard 

grading for seasoned structural timber (Gardiner, 2010) (Table 53), eastern larch 

specimens were given a strength group number and analyzed using SPSS 18 

software. The ANOVA results (Table 54) indicate, strength group variance 

within eastern larch was limited to sites at 99.9% probability. 

Ta bl 53 A e I' ustra 1an stan d d' f I . ard gra mg or seasona structura t1mber ar iner (G d 2010 ). 

Minimum values for Strength Groups 

Strength Group Modulus of Modulus of Rupture Maximum Crushing 
Elasticity (Mpa) (Mpa) Strength (Mpa) 

SD1 10500 150 80 
SD2 10500 130 70 
SD3 10500 110 61 
SD4 10500 94 54 
SD5 10500 78 47 
SD6 10500 65 41 
SD7 9100 55 36 
SD8 7900 45 30 

Table 54. AN OVA table o strengt groups or eastern arch. f h f 

Source Type Ill Sum of 

Squares df Mean Square F Sig. 

Corrected Model 34.0628 15 2.271 5.652 .000 

Intercept 18361.800 1 18361.800 45702.484 .000 

Site 30.625 3 10.208 25.409 .000 

Bolt 3.263 9 .363 .902 .524 

Radial .175 3 .058 .145 .933 

Error 122.137 304 .402 

Total 18518.000 320 

Corrected Total 156.200 319 

a. R Squared= .218 (Adjusted R Squared= .179) 

A Duncan's post hoc test indicated there were two subsets of similarity 

(Table 55). Based on ANOVA results the null hypothesis, that no variance in 

strength groups, was rejected at 99.9% probability. These findings indicate that 
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the site variance of strength values can affect end use suitability of TDB eastern 

larch. Thus it appears that TDB eastern larch is generally homogeneous within 

sites and trees; when product design criteria is the dependant variable. 

Table 55. Duncan's post hoc test subsets of similarity for the strength groups of eastern 
larch. 

Subset 
Site N 

1 2 
3 80 7.00 
4 80 7.00 
2 80 8.00 
1 80 8.00 

Sig. .383 .383 

Using SPSS 18 software a regression curve of relative density0 o and 

strength group was completed; which produced a predictive model (Equation 

(6). 

y = -0.0051x + 10.272 (R2 = 0.0882) Equation (6) 

Predicted strength values were compared for fit with actual strength values 

using SPSS 18 software, the t-test results (Table 56) indicated that actual and 

predicted strength values means were not significantly different at 99.9% 

probability, however, approximately equal variance between the two groups was 

not assumed. Based on these findings the null hypothesis, that there was no 

difference between predicted and actual values, was accepted at 99.9% 

probability. 
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Table 56. T -test comparison between actual and predicted strength values means at p<0.001. 

t-test for Equality of Means 

95% Confidence 

Interval of the 

Sig. (2- Mean Std. Error Difference 

t df tailed) Difference Difference Lower UQQ_er 

Strength Equal -1.853 318 .065 -.12500 .06745 -.25771 .00771 

variances not 

assumed 

The predictive model decreased the strength values means of site 3 and 

4 by 9% and increase strength values means of sites 1 and 2 by 3% (Figure 

118). Grouping mechanical properties seem to prevent the development of a 

useful predictive model for strength groups. 

Site Site 

Strength Strength_Predict 

Figure 118. Histogram comparison between strength class actual and predicted. 

4. 5 Wood characteristics mapping 

Wood characteristics mapping charts the general variance patterns in 

wood characteristics based on zones of axial and radial similarity. Based on the 

test results and statistical analysis we have identified three broad zones of axial 
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variance, and three zones of radial variance in TDB eastern larch (Figure 119). 

Each one of these zones of similarity possesses unique characteristics, which 

affect the potential end uses. 

For example, variability in wood density was significant between radial 

positions but not axial positions. However, the percent volume of wood 

composed of knots and reaction wood increased with an increase in height. As 

we progress from the base of the tree to the tip, the axial and radial 

characteristics interact to create nine distinct zones of similarity. 

Zones of Axidi 
Zones of radial similarity 
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Differences between the zones of similarity can be subtle, yet statistically 

significant. These zones of similarity could allow the forest sector of 

northwestern Ontario to better utilize eastern larch, making the species 

economically important. For example, LUWSTF analyzed a case study for 

eastern larch using optimization modeling software "Buck 2", comparing 

conventional harvesting and processing bucking lengths to the TDB wood 

characteristics map (Figure 120). When the zones of similarity were used as log 

processing criteria, overall tree value increase by 31% from $46.318/ha using 

conventional processing to $60,817/ha (Leitch eta/., 201 0). 

Based on the site variance finding of this study, it may be necessary to 

create two wood characteristics maps to ensure proper optimization of eastern 

larch. Eastern larch grown in extreme site conditions produce significantly 

different strength properties than trees grown on moist sites with some drainage 

(the classic eastern larch habitat). It is predicted that fast growing eastern larch, 

which would include plantation trees, would require a separate wood 

characteristics map in order to ensure maximum utilization and economic 

benefit. 
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5.0 Conclusions 

The results of the literature review indicated that there was insufficient 

study on the tree species of northwestern Ontario and research is needed. The 

literature did, however, provide a general understanding on issues being 

assessed to allow for some specific conclusions: 

1. Research to date has been driven by economic criteria alone, creating a 

knowledge gap between species. Research should be prioritized based on 

four criteria: 

a. level of previous study, 

b. potential market opportunity 

c. potential to increase utilization, and 

d. available volume. 

2. Priority of research should be given to the following northwestern Ontario 

tree species: 

Softwoods; eastern white cedar (Thuja occidentalis L.), eastern larch 
(Larix laricina (Du Roi) K. Koch), and black spruce (Picea mariana (Mill.) 
B.S.P.), 

Hardwoods; black ash (Fraxinus nigra Marsh.), trembling aspen (Populus 
tremuloides Michx.), and white birch (Betula papyrifera Marsh.). 

3. There appears to be a direct relationship between market end use attributes, 

manufacturing process attributes, and raw resource attributes or wood 

quality. This relationship indicates that understanding the morphology of 

wood is essential for: 

• proper forest management that promotes high quality wood, 
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• using the different woods of northwestern Ontario 
appropriately, 

• producing premium high value products, 

• utilizing all northwestern Ontario tree species, and 

• optimizing the value chain to meet customer needs. 

4. The best opportunity for product development identified for northwestern 

Ontario appears to be value-added wood products, bio-products, and 

integrating nanotechnology with existing manufacturing capacity to develop 

smart products. However, this requires extensive research and development 

activities. Research on wood characteristics related to end use design 

criteria, especially wood density, should be a priority for all species. 

The greatest variability displayed by eastern larch wood grown in TBD 

was between sites and radial variance within trees. In all cases of TBD 

statistical analysis, variance between sites was significant. Radial variance was 

significant for all the selected wood properties tested except for MOE 

perpendicular to the grain. Longitudinal or axial variance was significant all the 

selected wood properties tested except for wood density. These findings 

support the following conclusions: 

1. Increased growth rate affected the density of eastern larch at the extreme of 

its growth range; very dry sites had decreased density and sites with 

seasonal flooding had increased density. 

2. It was found that the mechanical properties of eastern larch decreased with 

age, thus a short rotation age, between 30 to 60 years, is recommended. 
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3. Eastern larch was found to be very responsive to changes in site conditions. 

For example, increasing tree spacing and trenching increased growth, which 

decreased MOR and MOE values. Reducing tree spacing after site 

preparation would help maintain wood quality of TBD eastern larch while 

improving site conditions. 

4. Our findings indicated that eastern larch had superior side hardness values 

compared to other softwoods grown in northwestern Ontario. Thus, eastern 

larch is well suited for value-added and specialty wood products. 

5. Although the wood characteristics of eastern larch are significantly different 

between sites, the pattern of variance of the selected wood properties 

considered were highly consistent between sites. 

6. Eastern larch has been reported be to highly variable, however this was not 

found to be true in the TBD study. A regression curve analysis of eastern 

larch relative density1z correlated with mechanical properties allowed us to 

develop a simple linear model, which produced reasonable predictions, 

within 0.003% to 0.25% of actual grand means, for the selected mechanical 

properties of eastern larch grown within the TBD. 

A t-test comparison between 10 bolt and breast height sampling showed 

no significant difference between the grand means, however, radial variance 

patterns displayed notable differences. Axial variance was not considered with 

breast height sampling, which was significantly variable in all the selected 

mechanical properties tested. When 10 bolt versus breast height sampling is 

considered with respect to wood characteristics mapping, some specific 

conclusions can be made: 
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1. Breast height sampling only provides a general understanding of the grand 

means for the selected wood properties, and is not helpful in understanding 

variability of wood characteristics within a stem. 

2. Breast height sampling becomes less useful in second growth and small 

diameter trees, which have a higher proportion of reaction wood than over 

mature and old growth stands at that axial position. 

Based on the results from a comparison of the TDB model to Forest 

Products Laboratory (1999) softwood and hardwood predictive models, we can 

conclude that eastern larch is unique in that it has the morphology of a softwood 

but displays wood properties variability patterns which are more consistent with 

hardwoods. Eastern larch's variance patterns are inconsistent with other 

softwoods which has led other researchers to conclude that the species is highly 

variable. The results of the eastern larch case study indicate that eastern larch 

has fairly homogeneous wood properties within the stem with respect to end use 

design criteria and that a predictive model for the species is possible. Thus 

wood characteristics mapping of eastern larch wood is possible. These findings 

support the following conclusions: 

1. Mapping of wood characteristics of eastern larch will allow the forest sector 

of northwestern Ontario to optimize the value and utilization of the species 

and increase the overall value of eastern larch by as much as 31%. 

2. Our findings indicate that the variance in wood properties of eastern larch is 

primarily related to the ratio of earlywood to latewood within the growth rings. 

Thus, correlations at this level of testing would produce better predictions for 

the species. 
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3. Comparing the results from wood property testing using SilvaScan, acoustic 

and x-ray diffractometry scanning would allow us to segregate mature wood, 

juvenile wood, and reaction wood and determine wood density and MOE 

values at the growth ring level. 
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7. 1 Mature trees data sets 

7.1.1 Mature trees data sets site 1 

7 .1.1.1 Mature trees data sets site 1 tree 1 
Site 1 Tree 1 
Site Tree L R ROo,. 012 R0,2,. MOE 

1 1 0.1 0.25 533 657 509 7010 

1 I 0.1 0.50 521 642 498 8460 

I 1 0.1 0.75 498 613 476 7845 

I I 0.1 1.00 505 622 482 6590 

I 1 0.2 0.25 526 648 503 8570 

1 1 02 0.50 557 686 532 9050 

I 1 0.2 0.75 562 1392 537 9325 

1 1 0.2 100 523 644 500 9595 

1 1 0.3 0.25 510 628 487 8023 

I 1 0.3 0.50 554 683 530 8380 

1 1 0.3 0.75 530 653 507 7940 

1 1 0.3 1.00 530 653 507 7090 

1 1 0.4 0.25 557 686 532 9010 

1 I 0.4 0.50 585 72'1 559 8330 

I 1 0.4 0.75 556 687 533 7480 

I 1 0.4 1.00 529 652 506 7240 

1 I 0.5 0 25 594 732 568 8505 

1 1 0.5 0.50 616 759 589 7635 

I 1 0.5 0.75 594 732 568 7470 

1 1 0.5 1.00 499 615 477 6450 

1 1 0.6 0.25 594 732 568 5130 

1 1 0.6 0.50 616 759 589 7810 

1 1 06 0.75 594 732 568 9485 

1 1 0.6 1.00 499 615 477 9485 

1 I 0.7 025 605 745 578 5700 

1 1 0.7 0.50 601 740 574 5700 

I 1 0.7 0.75 562 692 537 8255 

1 1 0.7 1.00 562 692 537 8255 

1 I 0.8 0 25 658 811 629 5700 

I 1 0.8 0.50 658 811 629 5700 

I 1 1)8 0 75 658 811 629 7900 

1 I 0.8 1.00 658 811 629 7900 

I 1 09 0.25 520 641 497 5660 

1 1 0.9 0.50 520 641 497 51360 

1 1 0.9 0.75 520 641 497 5660 

1 1 0.9 1.00 520 641 497 5660 

1 I I 0.25 520 641 497 5660 

I I 1 0.50 520 641 497 5660 

1 1 I 0.75 520 641 497 5GGO 

1 I 1 1.00 520 641 497 56130 

MOR Comp Hard ·;trenath 

80 41 3937 8 

78 40 3809 8 

78 39 3420 8 

67 38 3290 e 
62 42 3370 3 

86 45 3523 7 

77 46 3550 7 

81 44 3380 7 

78 35 3448 8 

77 44 3180 8 

75 47 3305 8 

64 45 3220 3 

86 43 3195 7 

84 46 3358 3 

71 48 3550 3 

64 44 3580 8 

84 36 3318 8 

78 41 3468 8 

62 44 3263 8 

63 41 3070 8 

41 38 3528 8 

61 38 3528 3 

78 48 3703 7 

76 47 3510 7 

59 42 3930 8 

59 42 3930 8 

68 42 3785 8 

68 47 3710 a 
59 413 3683 8 

59 46 3683 8 

74 40 3615 8 

74 44 3615 3 

51 44 3410 8 

51 44 3410 8 

51 41 2960 a 
51 41 2960 8 

51 44 3383 3 

51 44 3383 8 

51 43 3383 a 
51 43 3383 8 
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7 .1.1.2 Mature trees data sets site 1 tree 2 
Site 1 Tree 2 
Site Tree L R ROo" 012 RD12"' MOE MOR Comp Hard S!r-:!ngth 

I 2 0.1 025 520 641 497 631"1 68 33 3548 s 
1 2 0.1 050 534 657 510 7218 68 36 3705 8 

1 2 0.1 0.75 531 654 507 8077 70 38 4033 8 

I 2 0.1 1.00 527 649 504 8290 72 41 . 3578 8 

I 2 0.2 0.25 491 f'i05 469 6920 70 36 3370 8 

I 2 0.2 0 50 520 640 497 7600 72 37 3523 8 

1 2 0.2 0.75 528 650 505 8486 77 45 3550 8 

1 ., 
-'- 0.2 100 550 678 526 7875 78 49 3380 8 

1 2 0.3 0.25 466 574 445 6030 56 35 3448 8 

I 2 0.3 0.50 490 603 468 6030 56 34 3118 8 

1 2 0.3 0.75 513 632 490 5355 56 36 3305 8 

1 2 0.3 1.00 534 658 510 5355 56 33 3220 8 

1 2 0.4 0 25 501 617 478 7140 71 36 3195 8 

1 2 0.4 0.50 509 627 487 6799 67 41 3358 8 

I 2 0.4 0.75 518 638 495 ·~599 67 44 3550 8 

1 2 0.4 1.00 531 654 508 5930 66 41 3580 8 

1 2 0.5 0.25 509 627 487 5830 58 39 3318 8 

1 2 0.5 050 526 648 503 7120 67 45 3468 8 

1 2 0.5 0.75 518 638 495 7706 71 49 3263 8 

I 2 0.5 1.00 510 628 487 7150 72 47 3070 8 

1 2 0.6 0 25 540 665 516 5643 57 38 3528 8 

1 2 0.6 0 50 539 664 515 7330 62 38 3528 8 

1 2 0.6 0.75 536 660 512 7510 68 42 3703 8 

1 2 06 1.00 536 660 512 7510 68 41 3510 8 

1 2 0.7 0.25 551 678 526 8067 70 43 3930 8 

1 2 0.7 050 551 678 526 8067 70 43 3930 8 

1 2 0.7 0.75 524 646 501 8295 73 46 3785 a 
1 2 0.7 1.00 524 646 501 8295 73 46 3710 8 

1 2 0.8 0.25 532 655 508 5870 70 39 3318 8 

1 2 0.8 0.50 532 655 508 6870 70 39 3318 8 

1 2 0.8 0.75 503 620 481 7360 62 44 3150 s 
I 2 0.8 1.00 503 620 481 7350 62 44 3150 8 

1 2 0.9 0.25 523 644 499 8460 67 45 3410 8 

I 2 0.9 0.50 523 644 499 8460 67 45 3410 a 
1 2 0.9 0 75 490 604 468 7850 71 41 2960 8 

1 2 0.9 1.00 490 604 468 7850 71 41 2960 8 

1 2 1 0.25 506 623 484 7830 71 40 3383 8 

1 2 I 050 506 1323 484 7830 71 40 3383 8 

1 2 1 0.75 524 1346 501 7930 63 43 3383 8 

1 2 I 1.00 524 646 501 7930 63 43 3383 8 
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7 .1.2 Mature trees data sets site 2 

7 .1.2.1 Mature trees data sets site 2 tree 1 
Site 2 Tree 1 
Site Tree L R ROo"' o,2 Ro,,._ MOE MOR Comp Hard ~.tr-"'nqth 

2 1 0.1 0.25 558 687 533 9327 85 45 3474 7 

2 1 0.1 0.50 599 738 572 8778 85 45 3710 a 
2 1 0.1 0.75 552 680 528 9008 86 49 3815 7 

2 1 0.1 1.00 545 671 521 8220 95 46 4030 8 

2 1 0.2 0 25 532 655 508 9218 84 47 3387 7 

2 1 02 0.50 551 679 527 9130 86 47 3478 7 

2 1 0.2 0.75 560 6i39 535 8470 85 50 4550 3 

2 1 0.2 1.00 579 713 553 6450 76 48 3830 8 

2 1 0.3 0.25 494 609 472 7525 70 37 3188 s 
2 1 0.3 0.50 540 665 516 7793 14 44 3556 a 
2 1 0.3 0.75 533 657 510 7340 74 43 3710 6 

2 1 03 1.00 553 681 528 8980 84 43 3865 8 

2 1 0.4 0.25 496 611 4H 7475 71 37 28,15 8 

2 I 0.4 0.50 517 637 494 7404 74 41 3440 8 

2 I 0.4 0.75 509 628 487 7620 80 44 3760 8 

2 I 0.4 I 00 542 667 518 8167 80 48 3573 8 

2 1 OS 0.25 498 613 476 7254 69 38 3035 8 

2 1 0.5 0.50 513 632 491 7580 74 46 3010 8 

2 1 0.5 0.75 538 663 514 7370 76 44 3380 6 

2 1 0.5 1.00 545 671 521 8340 84 43 3433 8 

2 1 0.6 0 25 511 629 488 8060 80 41 3045 a 
2 I 0.6 0.50 524 646 501 8551 80 46 3297 8 

2 1 0.6 0.75 524 64S 501 8535 80 46 3513 8 

2 1 0.6 1.00 504 621 482 9110 83 46 3690 7 

2 1 0.7 0.25 496 611 474 7870 76 42 3037 a 

2 1 0.7 0.50 500 616 478 8577 83 42 3065 8 

2 1 0.7 0.75 503 620 481 8463 83 43 3165 8 

2 1 0.7 1.00 535 659 511 8470 85 47 3215 8 

2 1 0.8 0.25 512 631 490 7687 72 40 3080 8 

') I 08 0.50 515 635 492 8673 77 40 3080 a 

2 1 0.8 0.75 528 6SO 504 8688 83 44 3235 8 

2 1 0.8 1.00 528 650 504 8588 83 44 3355 8 

2 l 0.9 0.25 529 652 506 3120 88 47 3258 7 

2 I 0.9 0.50 531 655 508 9120 88 47 3258 7 

2 1 0.9 075 493 607 471 9693 95 48 3435 7 

2 1 0.9 1.00 493 607 471 9693 95 45 3435 7 

2 1 I 0.25 525 6413 502 82EO 78 48 3673 8 

2 1 1 0.50 563 694 538 8260 78 48 3673 8 

2 1 1 0.75 596 734 570 9578 90 51 3715 7 

2 1 1 1 DO 596 734 570 9'578 90 51 3715 7 
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7 .1.2.2 Mature trees data sets site 2 tree 2 
Site2 Tree 2 
S1te Tree L R RDo% De RD12% MOE MOR Cornp Hard Str~nath 

2 2 0.1 0.25 581 715 555 8073 87 46 3850 8 

2 " 0.1 0.50 583 719 557 8100 89 46 3850 e 
2 2 0.1 0.75 653 805 624 8165 93 51 3937 8 

2 2 0 I 1 00 635 782 607 8165 93 54 3120 a 
2 2 02 1)_25 494 609 472 8498 82 53 3990 8 

2 2 0.2 0.50 589 726 563 8780 84 53 3990 8 

2 2 02 0.75 585 721 559 9100 91 58 4183 7 

2 2 0.2 1.00 522 643 499 9100 91 59 3300 7 

2 2 0.3 0.25 552 680 528 7915 79 45 3353 8 

2 2 0.3 0.50 604 744 577 8185 83 45 3353 a 
2 2 0 ·~ . .:J 0.75 581 715 555 8580 83 50 3648 a 
2 2 0.3 1.00 515 634 492 8580 83 50 3648 8 

2 2 04 0.25 575 708 549 7230 75 53 3805 8 

) 2 0.4 0.50 598 737 572 8565 84 53 3805 8 

2 2 0.4 0.75 595 732 568 8270 88 56 3650 8 

2 2 0.4 1.00 595 732 568 8270 88 56 3650 8 

2 2 0.5 0.25 547 674 523 8435 83 55 3970 8 

2 2 0.5 0.50 602 742 576 8435 83 55 3970 G 

2 2 0.5 0.75 542 667 518 8508 84 58 3265 6 

2 2 0.5 1.00 542 667 ,. 518 8508 84 58 3265 8 

2 2 0.6 0.25 551 679 527 8650 85 52 3600 8 

2 2 0.6 050 602 742 575 8650 85 52 3600 8 

2 2 0.6 0.75 532 655 508 8500 87 56 3130 8 

2 2 0.6 1.00 532 655 508 8500 87 56 3120 3 

2 2 0.7 0.25 563 694 539 8270 78 56 3340 8 

2 2 0.7 0.50 625 770 597 8270 78 56 3340 8 

2 2 0.7 · o75 585 721 559 8430 78 54 3257 8 

2 2 0.7 100 585 721 559 8430 78 54 3257 8 

2 2 0.8 0.25 595 734 569 8210 74 51 3377 8 

2 2 0.8 0.50 597 735 571 8210 74 51 3377 8 

2 2 0.8 0.75 549 677 525 8570 87 54 3500 8 

2 2 0.8 1.00 549 677 525 8570 87 54 3500 3 

2 2 0.9 0.25 587 723 561 8245 78 56 3640 8 

2 'J 0.9 0.50 594 731 567 8245 78 56 3640 8 

2 2 0.9 0.75 570 70.3 545 8245 78 47 3370 8 

2 2 0.9 1.00 570 703 545 8245 78 47 3370 8 

2 2 I 0.25 630 777 603 8255 79 54 4350 8 

2 2 1 0.50 575 708 550 8255 79 54 4350 3 

2 2 1 0.75 532 655 508 8255 79 54 3730 8 

2 ., 
~ 1 1.00 532 555 508 82.;5 79 54 3730 3 
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7 .1.3 Mature trees data sets site 3 

7 .1.3.1 Mature trees data sets site 3 tree 1 
Site 3 Tree 1 
S1te Tree L R ROo.., 012 RDI::.% MOE 

3 1 0.1 0.25 517 637 494 7783 

3 1 0.1 0.50 549 677 525 7460 

3 1 0.1 0.75 478 589 457 7490 

3 1 01 1.00 458 564 437 5975 

3 I 0.2 0.25 495 609 473 6770 

3 1 02 0.50 526 648 503 8670 

3 I 0.2 0.75 529 552 506 8730 

.) I 0.2 I 00 501 517 479 8758 

3 1 0.3 0.25 481 593 460 8830 

3 1 0.3 0.50 524 646 501 9230 

3 I 0.3 0 75 527 649 503 9247 

3 1 0.3 1.00 469 578 449 8240 
3 I 0.4 0.25 485 598 464 9490 

3 I 0.4 050 538 663 515 10725 

3 I 0.4 0 75 498 613 476 10243 

3 1 0.4 1.00 519 639 496 10243 

3 1 0.5 0.25 488 602 467 7820 

3 1 0.5 0.50 523 644 500 8950 

3 1 0.5 0.75 508 626 485 8150 

3 1 0.5 1.00 485 598 464 9760 

3 1 06 0 . .,~ 4., 486 599 464 10050 

3 .I 06 0.50 497 612 475 9215 

3 1 06 0.75 546 672 522 9250 

3 1 0.6 1.00 502 618 479 9250 

3 1 0.7 0.25 463 571 443 6995 

3 1 0.7 0.50 500 616 478 8370 

3 1 0.7 0.75 513 632 491 8855 

3 1 0.7 1.00 494 609 472 8855 

3 1 0.8 0.25 493 607 471 8220 

3 I 0.8 0.50 528 650 505 8220 

3 I 0.8 0.75 499 614 477 8765 

3 I 0.8 100 471 580 450 87135 

3 1 0.9 0.25 509 627 486 5930 

3 1 0.9 0.50 508 625 485 59:30 

3 1 0.9 0.75 481 593 460 8313 

3 1 09 1.00 481 593 460 8313 

3 I I 0.25 510 628 487 5680 

3 I 1 0.50 510 623 487 5880 

3 1 1 0.75 472 582 452 7510 

3 I 1 100 472 582 452 7510 

MOR Comp Hard Str~ncth 

78 42 4098 8 

78 48 4340 8 

76 42 4403 8 

67 38 3475 a 
72 39 3147 8 

78 47 3767 e. 
83 50 3578 8 

84 47 3580 8 

74 40 3385 8 

77 49 3707 7 

79 49 3375 7 

83 39 3325 8 

77 41 3213 7 

79 51 3538 b 

77 51 3623 6 

77 51 3510 6 

79 40 3013 e 

81 46 3563 8 

77 47 4110 8 

85 49 3990 7 

89 40 3480 6 

82 40 3520 7 

80 48 4030 7 

80 44 3390 7 

63 42 3035 a 
71 42 3035 8 

77 47 3268 8 

77 49 3480 8 

77 44 3320 8 

77 44 3320 e 

78 45 3455 8 

78 41 3455 :3 

67 44 3267 8 

67 44 3267 3 

66 42 3245 8 

66 42 4660 8 

75 42 3643 8 

75 42 3643 8 

78 42 3643 3 

78 42 3643 8 
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7 .1.3.2 Mature trees data sets site 3 tree 2 
Site 3 Tree 2 

Site Tree L R ROo% 0·12 Ro, ... , 

3 2 0.1 0.25 629 775 602 

3 2 0.1 0.50 624 768 596 

3 2 0.1 0.75 592 729 566 

3 2 0.1 1.00 578 712 553 

3 2 0.2 0.25 597 735 570 

3 2 0.2 0.50 629 775 602 

3 2 0.2 0.75 637 784 608 

3 2 0.2 1.00 606 747 579 

3 2 0.3 0.25 537 662 513 

3 2 0.3 0.50 590 717 564 

3 2 0.3 0.75 657 809 628 

3 2 0.3 1.00 . 560 690 536 

3 , 04 0.25 565 697 540 ~ 

3 2 0.4 050 571 703 545 

3 2 04 0.75 639 787 611 

3 2 0.4 1.00 555 684 530 

3 2 0.5 0.25 566 698 541 

3 2 0.5 0.50 586 722 560 

3 2 0.5 0.75 641 790 613 

3 2 0.5 1.00 589 726 563 

3 2 0.6 0.25 553 681 528 

3 2 0.6 0.50 619 763 592 

3 2 0.6 0 75 603 742 576 

3 2 0.6 IIJO 586 7?1 560 

3 2 0.7 0.25 593 731 567 

3 2 0.7 0.50 562 693 538 

3 2 0.7 0.75 605 746 578 

3 2 0.7 1.00 573 706 548 

3 2 08 0.25 595 733 568 

3 2 0.8 0.50 595 733 568 

3 2 0.8 0.75 534 658 511 

3 2 0.8 1.00 534 658 511 

3 2 0.9 0.25 531 654 507 

3 2 0.9 I) 50 588 724 562 

3 2 0.9 0.75 561 691 536 

3 2 0.9 1.00 561 691 536 

3 2 1 0.25 623 768 596 

3 2 1 0.50 560 690 535 

3 2 1 075 586 72~ 561 

3 2 1 1.00 586 722 561 

MOE MOR Comp Hard strenath 

7031 77 41 4497 8 

7200 80 47 4460 8 

7020 81 45 4315 8 

6100 74 40 4335 8 

5800 57 46 4040 8 

7830 69 52 3890 8 

8480 70 53 4167 3 

9110 82 54 3870 7 

9980 78 44 3583 7 

10970 86 44 3938 6 

11117 86 51 4077 6 

11117 86 48 4090 6 

8900 79 44 3880 8 

8717 85 44 4213 8 

8015 86 50 4170 8 

8015 86 49 3770 3 

8350 68 45 3950 8 

8783 89 45 3950 s 

10310 90 54 4450 6 

10310 90 55 3680 6 

9934 87 50 4135 7 

10497 87 50 4135 6 

•11040 86 55 3828 6 

11040 86 54 3850 6 

10370 83 52 4180 6 

10195 83 52 4180 6 

10195 83 54 4600 6 

9720 75 49 4240 7 

10620 88 53 4150 6 

10620 88 53 4150 6 

11~73 91 48 3873 6 

'1'1273 91 48 3873 6 

10950 88 52 4253 6 

10950 88 52 4253 6 

10510 90 52 4620 6 

10510 90 52 4620 6 

9420 81 49 4015 7 

9420 81 49 4015 7 

9420 81 49 3950 7 

9420 81 49 3950 .; 
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7 .1.4 Mature trees data sets site 4 

7 .1.4.1 Mature trees data sets site 4 tree 1 
Site 4 Tree 1 
Site Tree L R ROo% 012 RD 1 :<~> MOE MOR Cornp Hard S1r.ar,qth 

4 1 0.1 0.25 584 719 558 8709 85 4,040 8 

4 1 0.1 0.50 643 792 614 10350 88 4,040 6 

4 1 0.1 0.75 658 810 628 10493 95 4,600 6 

4 1 0.1 1.00 632 778 604 12329 106 3,990 5 

4 1 02 0.25 570 702 545 9046 82 4130 7 

4 1 0.2 0 so 637 785 609 9136 84 5250 7 

4 1 0.2 0.75 629 775 601 10044 95 4580 6 

4 1 0.2 1.00 608 749 581 10076 102 4660 6 

4 1 0.3 0.25 607 748 580 8367 79 4825 8 

4 1 0.3 0.50 608 749 581 8652 84 4135 8 

4 1 0.3 0.75 591 728 565 9599 94 3980 7 

4 1 0.3 1.00 585 721 559 9893 101 4230 7 

4 1 0.4 0.25 570 702 545 8562 71 4135 8 
I 

4 1 0.4 0.50 576 710 551 8559 89 3760 8 

4 1 0.4 0.75 560 690 535 9259 89 3980 7 

4 I 0.4 1.00 538 663 514 9259 89 3583 7 

4 1 0.5 0.25 553 681 529 7828 73 3633 8 

4 I 0.5 0.50 598 737 572 9407 94 z 3968 7 

4 1 0.5 0.75 575 708 550 9664 107 0 3675 7 

1 0.5 1.00 556 685 531 9664 107 
(J) 

3060 4 Q) 7 

4 1 0.6 0.25 595 733 569 7376 79 .3 3385 8 -o 
4 1 0.6 0.50 605 745 578 7376 79 CD 3385 8 

4 1 0.6 0.75 551 679 527 9470 85 (J) 3375 7 

4 1 06 1.00 551 679 527 9470 85 3810 7 

4 1 0.7 0.25 602 742 575 6921 78 .- 4183 8 

4 1 0.7 0.50 606 747 579 8185 83 4183 8 

4 1 0.7 0.75 580 715 554 8775 83 4500 a .·· 

4 1 0.7 1.00 580 715 554 8775 83 3170 8 

4 1 0.8 0.25 604 7 44 577 5723 64 4165 8 

4 I 0.8 0.50 595 733 569 6370 74 - 4165 8 

4 1 0.8 0.75 557 686 532 7766 83 4485 a 
4 1 0.8 100 557 686 532 7766 83 4485 8 

4 1 0.9 0.25 561 691 536 6873 72 3723 8 

4 1 0.9 0.50 561 691 536 6873 72 3723 8 

4 1 0.9 0.75 620 764 593 6873 72 4365 8 

4 1 0.9 1.00 620 764 593 6873 72 4365 8 

4 1 I 0.25 568 700 543 5618 63 3.685 8 

4 1 1 0.50 568 700 543 5618 63 . 3,685 8 

4 1 I 0.75 568 700 543 5618 63 3,685 8 

4 I 1 1.00 568 700 543 5618 63 
. 

3.685 8 
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7 .1.4.2 Mature trees data sets site 4 tree 2 
Site4 Tree 2 
S1te Tree L R ROo% Dtz Ro, ... 

4 ~ 0 1 0 25 607 748 580 

4 2 0.1 0.50 572 704 546 

4 2 0.1 0.75 541 667 517 

4 2 0.1 1.00 579 714 554 

4 2 0.2 0.25 594 732 568 

4 2 02 0.50 592 729 565 

4 2 0.2 0.75 561 691 536 

4 2 0.2 1.00 568 700 543 

4 2 0.3 0 25 554 683 530 

4 2 0.3 0.50 577 710 551 

4 2 0.3 0.75 549 676 525 

4 2 0.3 1.00 596 734 570 

4 2 0.4 0.25 5.t5 67! 521 

4 2 0.4 0.50 556 685 531 

4 2 0.4 0.75 542 668 518 
4 2 0.4 1.00 551 679 527 

4 2 0.5 0.25 583 718 557 
4 2 0.5 0.50 589 726 563 

4 2 0.5 0.75 552 680 528 

4 2 0.5 1.00 553 681 529 

4 2 0.6 0.25 574 707 549 
4 2 0.6 0 50 578 712 552 

4 2 0.6 0.75 558 687 533 

4 2 0.6 100 558 687 533 

4 2 0.7 0.25 591 728 565 

4 2 0.7 0.50 589 726 563 

4 2 0.7 0.75 593 731 567 

4 2 0.7 1.00 593 731 567 

4 2 0.8 0.25 597 736 571 

4 2 0.8 0.50 597 736 571 

4 2 0.8 0 75 529 652 506 

4 2 0.8 1.00 529 652 506 

4 2 0.9 0.25 579 713 553 

4 2 0.9 0.50 579 713 553 

4 2 0.9 0.75 609 750 582 

4 2 0.9 1.00 579 713 553 

4 2 1 0.25 583 718 557 

4 2 1 0.50 583 718 557 

4 2 1 0.75 574 707 549 

4 2 1 1.00 57-I 707 549 

MOE MOR Camp Hard '.Str-=.ncth 

9240 96 4040 7 

9238 94 4273 7 

7975 84 4400 8 

6535 80 4122 8 

10210 92 4068 6 

9870 105 4423 7 

9940 103 4148 7 

7190 86 4090 8 

10883 100 3708 6 

10923 96 3905 6 

10090 95 3948 6 

8220 81 3150 8 

9810 99 3280 7 

9451 92 3-153 7 

9087 89 3550 7 

7660 83 3330 8 

10500 95 3655 6 

10173 90 z 3790 6 

8160 87 0 3811 8 

8160 87 w 3360 8 

9803 94 3 31-tl 7 
"'0 

9803 94 ro 37H 7 

8975 92 (J) 3768 a 
8975 92 3505 8 

10600 95 3683 6 

10800 95 3683 6 

9030 91 3818 7 

9030 91 3720 7 

9480 94 3805 7 

9480 94 3805 7 

8737 95 4170 8 

8737 95 4170 s 
9480 94 4090 7 

9480 94 4090 7 

8737 95 4090 8 

8737 95 4090 8 

9480 94 .t060 7 

9480 94 4060 7 

8737 95 4060 s 

8737 95 4060 8 
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7.2 Juvenile trees data sets 

7 .2.1 Juvenile trees data sets site 1 and 2 
Site 1 JV Site 2 JV 

Site Tree L RDoo,;, Site Tree L ROo% 
1 1 0.1 533 2 1 0.1 494 
1 1 0.2 526 2 1 0.2 511 
1 1 0.3 510 2 1 0.3 479 
1 1 0.4 557 2 1 0.4 498 
1 1 0.5 594 2 1 0.5 474 
1 1 0.6 594 2 1 0.6 501 
1 1 0.7 605 2 1 0.7 471 
1 1 0.8 658 2 1 0.8 518 
1 1 0.9 520 2 1 0.9 510 
1 1 1 520 2 1 1 521 
1 2 0.1 503 2 2 0.1 581 
1 2 0.2 486 2 2 0.2 494 
1 2 0.3 440 2 2 0.3 552 
1 2 0.4 488 2 2 0.4 575 
1 2 0.5 501 2 2 0.5 547 
1 2 0.6 532 2 2 0.6 551 
1 2 0.7 535 2 2 0.7 563 
1 2 0.8 526 2 2 0.8 595 
1 2 0.9 535 2 2 0.9 587 
1 2 1 522 2 2 1 630 
1 3 0.1 597 2 3 0.1 598 
1 3 0.2 543 2 3 0.2 578 
1 3 0.3 544 2 3 0.3 609 
1 3 0.4 577 2 3 0.4 655 
1 3 0.5 502 2 3 0.5 609 
1 3 0.6 480 2 3 0.6 599 
1 3 0.7 495 2 3 0.7 667 
1 3 0.8 487 2 3 0.8 579 
1 3 0.9 480 2 3 0.9 564 
1 3 1 495 2 3 1 547 
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7.2.2 Juvenile trees data sets site 3 and 4 

Site 3 JV Site 4 JV 
Site Tree L ROo% Site Tree L ROo% 
3 1 0.1 476 4 1 0.1 593 
3 1 0.2 508 4 1 0.2 576 
3 1 0.3 476 4 1 0.3 577 
3 1 0.4 476 4 1 0.4 556 
3 1 0.5 477 4 1 0.5 556 
3 1 0.6 485 4 1 0.6 579 
3 1 0.7 463 4 1 0.7 599 
3 1 0.8 493 4 1 0.8 586 
3 1 0.9 408 4 1 0.9 572 
3 1 1 509 4 1 1 582 
3 2 0.1 629 4 2 0.1 637 
3 2 0.2 559 4 2 0.2 505 
3 2 0.3 537 4 2 0.3 554 
3 2 0.4 565 4 2 0.4 506 
3 2 0.5 566 4 2 0.5 503 
3 2 0.6 552 4 2 0.6 509 
3 2 0.7 593 4 2 0.7 597 
3 2 0.8 595 4 2 0.8 642 
3 2 0.9 530 4 2 0.9 575 
3 2 1 623 4 2 1 583 
3 3 0.1 644 4 3 0.1 564 
3 3 0.2 647 4 3 0.2 530 
3 3 0.3 652 4 3 0.3 517 
3 3 0.4 624 4 3 0.4 519 
3 3 0.5 648 4 3 0.5 469 
3 3 0.6 592 4 3 0.6 472 
3 3 0.7 587 4 3 0.7 444 
3 3 0.8 579 4 3 0.8 439 
3 3 0.9 614 4 3 0.9 443 
3 3 1 610 4 3 1 443 
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7.3 Breast height sampling data 

7 .3.1 Breast height sampling data site 1 and 2 

Site 1 & 2 
Site Tree L R ROo% MOE MOR Corn press Hardness Strength 

1 1 Avg 0.25 562 6897 67 41 3520 8 
1 1 Avg 0.50 575 7239 68 43 3527 8 
1 1 Avg 0.75 560 7702 69 44 3453 8 
1 1 Avg 1.00 534 7393 66 43 3372 8 
1 1 BH 0.25 526 8570 82 42 3370 8 
1 1 BH 0.50 557 9050 86 45 3523 7 
1 1 BH 0.75 562 9325 77 46 3550 7 
1 1 BH 1.00 523 9595 81 44 3380 7 
1 2 Avg 0.25 514 7010 66 39 3445 8 
1 2 Avg 0.50 523 7332 67 40 3474 8 
1 2 Avg 0.75 518 7517 68 43 3468 8 
1 2 Avg 1.00 523 7355 68 43 3354 8 
1 2 BH 0.25 491 6920 70 36 3370 8 
1 2 BH 0.50 520 7600 72 37 3523 8 
1 2 BH 0.75 528 8486 77 45 3550 8 
1 2 BH 1.00 550 7875 78 49 3380 8 
2 1 Avg 0.25 515 8179 77 42 3202 8 
2 1 Avg 0.50 535 8387 80 45 3357 8 
2 1 Avg 0.75 534 8537 83 46 3628 8 
2 1 Avg 1.00 542 8620 85 46 3614 8 
2 1 BH 0.25 532 9218 84 47 3387 7 
2 1 BH 0.50 551 9130 86 47 3478 7 
2 1 BH 0.75 560 8470 85 50 4550 8 
2 1 BH 1.00 579 6450 76 48 3830 8 
2 2 Avg 0.25 568 8178 80 52 3727 8 
2 2 Avg 0.50 597 8370 82 52 3727 8 
2 2 Avg 0.75 572 8462 85 54 3567 8 
2 2 Avg 1.00 558 8462 85 54 3396 8 
2 2 BH 0.25 494 8498 82 53 3990 8 
2 2 BH 0.50 589 8780 84 53 3990 8 
2 2 BH 0.75 585 9100 91 58 4183 7 
2 2 BH 1.00 522 9100 91 59 3300 7 
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7.3.2 Breast height sampling data site 3 and 4 

Site 3 and 4 
Site Tree L R ROo% MOE MOR Compress Hardness Strength 

3 1 Avg 0.25 493 7857 75 41 3360 8 
3 1 Avg 0.50 520 8345 76 45 3570 8 
3 1 Avg 0.75 505 8655 77 46 3673 8 
3 1 Avg 1.00 485 8568 77 44 3651 8 
3 I 1 BH 0.25 495 6770 72 39 3147 8 
3 I 1 BH 0.50 526 8670 78 47 I 3767 8 
3 1 BH 0.75 529 8730 83 50 3578 8 
3 1 BH 1.00 501 8768 84 47 3580 8 
3 2 Avg 0.25 579 9135 79 48 4068 7 
3 2 Avg 0.50 592 9518 84 49 4118 7 
3 2 Avg 0.75 606 9738 85 51 4205 7 
3 2 Avg 1.00 573 9662 84 50 4028 7 
3 2 BH 0.25 597 5800 57 46 4040 8 
3 2 BH 0.50 629 7830 69 52 3890 8 
3 2 BH 0.75 637 8480 70 53 4167 8 
3 2 BH 1.00 606 9110 82 54 3870 7 
4 1 Avg 0.25 581 7502 75 '~ 3990 8 
4 1 Avg 0.50 600 8053 81 ' ~ -- 4029 8 
4 1 Avg 0.75 589 8756 87 4123 7 
4 1 Avg_ 1.00 579 8972 89 3904 7 

' ~-

4 1 BH 0.25 570 9046 82 4130 7 
4 1 BH 0.50 637 9136 84 5250 7 .... 
4 1 BH 0.75 629 10044 95 z 4580 6 0 

4 1 BH 1.00 608 10076 102 UJ 4660 6 'Q) 

4 2 Avg 0.25 581 9969 95 3 ~ 3813 7 "'0 . ' 

4 2 Avg 0.50 581 9870 95 ·~ CD - 3922 7 C/) 

4 2 Avg 0.75 561 8947 92 3977 8 
4 2 Avg 1.00 568 8198 89 3760 8 
4 2 BH 0.25 594 10210 92 4068 6 
4 2 BH 0.50 592 9870 105 4423 7 
4 2 BH 0.75 561 9940 103 4148 7 
4 2 BH 1.00 568 7190 86 4090 8 



7.4 Ring analysis data 

7 .4.1 Ring density data 
Site 1 

Site Tree L R 
1 1 0.1 0.25 
1 1 0.1 0.5 
1 1 0.1 0.75 
1 1 0.1 1.0 
1 1 BH 0.25 
1 1 BH 0.5 
1 1 BH 0.75 
1 1 BH 1.0 
1 1 1.0 0.25 
1 1 1.0 0.5 
1 1 1.0 0.75 
1 1 1.0 1.0 
1 2 0.1 0.25 
1 2 0.1 0.5 
1 2 0.1 0.75 
1 2 0.1 1.0 
1 2 BH 0.25 
1 2 BH 0.5 
1 2 BH 0.75 
1 2 BH 1.0 
1 2 1 0.25 
1 2 1 0.5 
1 2 1 0.75 
1 2 1 1.0 
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Ring 
\Nidlh RD,z 
4.39 711 
6.57 679 
5.61 661 
3.41 624 
4.41 549 
3.41 588 
4.52 564 
3.00 458 
2.50 432 
3.05 458 
8.14 596 
4.78 578 
2.57 546 
527 563 
3.91 525 
228 503 
4.19 509 
4.97 560 
3.84 539 
1.92 496 
2.81 552 
4.03 545 
4.09 488 
2.39 464 

Site 2 
Ring 

Site Tree L R \Nidlh RD,z 
2 1 0.1 0.25 2.61 674 
2 1 0.1 0.5 2.34 631 
2 1 0.1 0.75 3.48 541 
2 1 0.1 1.0 2.81 530 
2 1 BH 0.25 2.31 627 
2 1 BH 0.5 221 625 
2 1 BH 0.75 2.80 583 
2 1 BH 1.0 3.02 528 
2 1 1 0.25 2.11 729 
2 1 1 0.5 3.15 609 
2 1 1 0.75 2.51 471 
2 1 1 1.0 2.14 492 
2 2 0.1 0.25 2.61 603 
2 2 0.1 0.5 2.61 631 
2 2 0.1 0.75 0.90 645 
2 2 0.1 1.0 1.03 622 
2 2 BH 0.25 2.46 577 
2 2 BH 0.5 2.11 571 
2 2 BH 0.75 0.80 519 
2 2 BH 1.0 0.72 442 
2 2 1 0.25 0.76 635 
2 2 1 0.5 1.16 569 
2 2 1 0.75 1.31 521 
2 2 1 1.0 0.90 448 



246 

Site 3 Site4 
Ring Ring 

Site Tree L R Width RDt2 Site Tree L R Width RDt2 
3 1 0.1 0.25 2.61 674 4 1 0.1 0.25 2.02 566 
3 1 0.1 0.5 2.34 631 4 1 0.1 0.5 2.22 631 
3 1 0.1 0.75 3.48 541 4 1 0.1 0.75 1.55 665 
3 1 0.1 1.0 2.81 530 4 1 0.1 1.0 1.62 567 
3 1 BH 0.25 2..31 tr21 4 1 BH 0.25 220 604 
3 1 BH 0.5 221 tr25 4 1 BH 0.5 2_67 631 
3 1 BH 0.75 3_17 585 4 1 BH 0.75 1_trl 588 
3 1 BH 1.0 3_02 528 4 1 BH 1.0 1_43 509 
3 1 1 025 2.11 729 4 1 1 0.25 1.73 621 
3 1 1 0.5 3.15 609 4 1 1 0.5 1.11 519 
3 1 1 0.75 2.51 471 4 1 1 0.75 1.20 571 
3 1 1 1.0 2.14 492 4 1 1 1.0 0.89 485 
3 2 0.1 0.25 1_89 573 4 2 0.1 0.25 1_33 656 
3 2 0.1 0.5 1_95 573 4 2 0.1 0.5 1_51 577 
3 2 0.1 0.75 3_01 529 4 2 0.1 0.75 2_81 567 
3 2 0.1 1.0 2..41 470 4 2 0.1 1.0 2..69 489 
3 2 BH 0.25 2.85 691 4 2 BH 0.25 1.72 601 
3 2 BH 0.5 3.40 681 4 2 BH 0.5 1.25 600 
3 2 BH 0.75 3.61 622 4 2 BH 0.75 2.02 564 
3 2 BH 1.0 3.89 470 4 2 BH 1.0 2.23 567 
3 2 1 0.25 3_51 607 4 2 1 0.25 2_37 680 
3 2 1 0.5 3_34 574 4 2 1 0.5 1_!~6 545 
3 2 1 0.75 321 512 4 2 1 0.75 1_09 541 
3 2 1 1.0 221 531 4 2 1 1.0 U5 555 
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7.4.2 Ring ANOVA 

Source Dependent Variable Type Ill Sum of 

Corrected Model RingDensity 

PercentLatewJod 

LatewoodRingOensity 

RingWidth 

Intercept R1ngOensity 

PercentLatewo od 

La tevvoo dRin gOensit~' 

R1nq\,'fldth 

Site Ring Density 

PercentLatevvood 

LatewoodRin 'JOens1ty 

RingWiclth 

Bolt RingOensity 

PercentLate'r~J ocl 

La tevvoo dR1n gOensity 

RingVVidth 

Error RingOensity 

PercentLatevvo od 

LatevvoodRingOensity' 

RinqV\fldth 

Total RingOensity 

PercentLatewood 

LatevvoodRingOensity 

Rinq\iliidth 

Corrected Total RingOensity 

PercentLatewo od 

LatewoodRingDens1ty 

RinqWidth 

a R Squared = .881 (.il·.cljusted R Squared= 837) 

b R Squarecl = .588 (.A.djustecl R Squared= .438) 

c. R Squared = 715 (.A.cljusted R Squared = .611) 

d. R Squared= 1300 (.A.dJUSted R Squ:3red = 455) 

Squares 

24905 .250' 

88.750b 

57424.500° 

15.240d 

5029927 563 

24025000 

8664192.250 

105.216 

18465187 

:32 500 

4 2662 250 

12.426 

6440.063 

56 250 

14762250 

] 814 

3376.188 

62.250 

22941.250 

10.156 

5058209.000 

24176 000 

8744558.000 

130612 

28281.438 

151.000 

80365.750 

25.396 

df Mean Square F Sig. 

4 6226.313 20.286 DOD 
4 22 188 3.921 032 

4 14356 125 6.:384 .005 

4 3:310 4.127 .028 

I 5029927.56:3 16388.072 000 

1 '24025 000 4245 382 .000 

1 8664192.250 4154.356 000 

1 105.216 113 9132 000 
., 
"' 61550132 20 054 .000 

:3 10 833 1 914 .186 

3 14 220 750 6.819 .007 

:3 4.142 4 486 .027 

I 6440.063 20.982 .001 

1 56.250 9 940 .009 

1 14 762.250 7.078 .022 

1 2.814 3.048 109 

11 3013926 

11 5.659 

11 2085.568 

11 .923 

16 

16 

16 

16 

15 

15 

15 

15 



248 

7 .4.3 Ring width and percent latewood 

De:::c:ri pti ··.··e :3tati :::ti ·~::: 
:speo:::imen 
~ . . ~· .... ,_. ~ . ·~·- . 

s·t n 8·t RinoJ~··.tidth 

rs ·1 n 8 b h R in !~•Nidth 

;s ·t T 1 8 w F: in oJ•Nidth 

i::; ·1 T2 8 ·1 F: in oJWidth 

:s ·1 T2 8 b h F: in g•l•.tidth 

1S ·1 T2 8 ·t 0 R in g•.i•Jidth 

Aver a,, e 
I ·~ 
l 

::;2 T 181 R in w••.tidth 

;s2 T ·1 8 b h F: in g•Nidth 

;s2 T ·1 8 ·t 0 R in !~t.Midth 
:S2 T2 8 ·1 R in !~•Nidth 

:32 T2 8 b h F: in 9\'•Jidth 

;S2 T2 8 ·1 0 R in g•..-~•idth 

iS3T18·1 F:ingt.l•.tidth 

~83 T ·1 8 b h R in g•.r•.•idth 
f 
fS3 n 8 ·1 0 R in g•Nidth 

[:3:3T28·1 F:in•:t•.ovidth . . 
i::;J T2 8 b h R in qtNidth ' ~ [s3 T2 8 ·1 oF: in g•J•Jidth 
t 

f 
:s4 n 81 R in •i•Jt.•' idth 
i 
lS4 T 1 8 b h F: in !:ti.fll io:fth ' . 
:s4 T 1 8 ·1 oF: in •:t•.i•Jidth . .. 
:s4T28·1 Rinq•.o•.•idth 

,s4 T2 8 b h F: in gv•Jidth 

~::;4 T2 8 ·1 0 F: in 9•.1•.1idth 

:;..··.tera·~e . 

i 
;. 

L 

t 

t 

Mean 
; 

4.65951 
l 

.-. "T3·"'n1 .,:.. . .' . .j-! 

4 nn-=··:-1 . - - ._,.._.t 

.... ·t4""'f' .,j. .;., •t 
i' 

:3.:3427~ 

2.9:34oi 
i 

:;:.e-4! 
I .. 
i 

1 .5006; 
·1 .8·125; 

~ 

·1 .·1352f 
l 

·t .4099t 

·1 .·1368 

.!;&862.~ 

·t.3d 
....... ., .. t 

l 
' 2.752:3f 

2.6044\ 

2.4509;, 
i 

~3 .:376:3t 
! 
' 

2.25:371 
I 

2 .!d7:~:~3!. 
! 

2.74{: 
• ! 

5. ·t~3:::2;. 
i· 

·1 ·=-·t·=·4. ·'-' ·-· ~ 
( 

1 . ·1600! 

1 .:::442 
·1 .7002 

r 
i 

1 .4695[ 

2.20~ 

De:::•::ri pti ··.··e Stati :::ti .::::: 
:Specimen 
S·1 T·181 Latet.•i.to)O:•dPer•:::ent 

:3·1 T·18bhlat>!:I.••J•)odPero::ent 

S·1 T-1 8·tOLat~NoodPer·~ent 
S ·1 T2 8 ·1 Late•No •)d P ero::e nt 

S·1 T28bhlat~NoodPer•:::er.t 

:; ·1 T2 8 ·10 Lat~.o~•o .: .. j F'e r•:::er.t 
:. ···v,.rag"' f'"M. - . -

::;2 T ·1 8 ·t Late•.••.tu o:•d F' er o::e nt 
:32 T·l 8 b h Lat~.•\'1)•) d F'e r•::e nt 

S2n 8·10Lat~,;IJoodPero::ent 

S2T2B·1 Late•N•)>:odPer•:::ent 

82 T2 8 b h Lat~.•i.") >:o d Pe ro::e nt 

S2 T2 8 ·1 OLatt1.t·•.tO:•.;. ,j Per•::e nt 

:.A.ve r a q e 
' . 

S3 T·1 8 ·1 Latet(•.tQ •:uj P er•:::e nt 

S3 T·t8 b h Lat>!:I.•'•JO:• o d Per•:::e nt 

S3T·t810Lat~.···J•)odPero::ent 

s:3 T2 81 Latet(l."' od P ero::e nt 

S3 T2 8 b h Lat~_..,,., o d Pe ro::e r,t 
S3 T2 8 ·1 0 Lat~.n.to o d Pe ro::e nt 

::A T-1 8 ·1 Late•A•O:••:•d P er•:::e nt 
::;4T·18bhlat~i•.h)•)dPer•::ent 

:;4·1 T8 ·1 0 Lat~N•) O:• d Pe r.;:e nt 

:::AT28·1 Late'.l•.h:ll)dF'ero::er.t 

::A T2 8 b h Lat~.•i.I•:O o:o d Pe ro::e nt 

:34 T2 8 ·1 0 Lat~.oi.IO o d Pe rc:e nt 

-----, 
Mean 

41 

:37 

:37 

4·1 

4( 
4·1 ~ 

• 
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7 .4.4 Earlywood density, latewood density, and ring density 

~·1 T1 BbhEari>,•WO•ldDensibt 

1 l'1 B·10Earti•WoNdD>HGity' 

~ ·1 T2B·1 Earh,woodDensity 

~.1 T2BbhEart>,•>NOo•jD ensity 

:>·1 T2B·10Earh;>NoodC>ensity 

·\verag-l' 

~2T1 B 1 Ear~·woodDensity· 
~zn Bbh EarhJ'.'<IoodC• ens it>r 

~2T1 B·10Ear~".o\IO•)dDer,;ity 

0 2T2B·1 Eartyt•·•.IOodDensit>t 

-.2 T28bh Earl>.""-"'"'j(J e r,; ~~ 

2T2810Ear~JWO•)•jDer,; it)• 

··.verage 

33T·181 Earh,,,,1oodDensitl' 

~3 T'IBbhE artl''"'''''dD e r,; ity 
33T·18·10Ear~,woodDer,;ity 

~3T28·1 EartywoodDensitv 

~3T2BbhE arh1W•lodC•e ns ity 
3T28 10Eart>,·~·•.IC"),j[) er.s dy 

.verage 

~4T'1 8·1 EarhJl•uoodDensit)·· 

34T-1 Bb bE artywood[) e nsity 

34T·1 B 10Ear~·woodDensit)• 

'4 T2 8 ·1 E a ri>,•W•l odD ens~~ 

~4T2BbhEarfywo•ldDensit1•· 

'4 T2B·10Eart>,•A"'" dD e rt> it\• 

348 

346 
389 

340 

t 353 

.... 1 ... _. _____ :-_~: 

S·1l'1 8·1 Latelf<IOodC•-.nsit>f 

S 1 T1 BbhLat<'AA•oodDensity 

S1 T1 8 10Lat"-'.II!•NdDensity 

S ·1 T2 B 1 Latew•' •)d Density 

S 1 T2BbhLat .. NoodDensitv 

S 1 T2 8 ·1 0 Lat"-'J•JO o d (>ens it>/ 

•we rage 

S2T·1 B 1 Lat;,INO•ldDensit>J 

32T-1 BbhLatewoodDer.sit>i 

S2 T 1 B ·1 0 Lat"'-'\10 odD ens ity 

:·2 T2 B 1 Late1.<\IO •)d Density 

f-;2 T2 8 b h Lat"'-''·"' o d (>en; ity 

32 T28·1 OLata.t•.IOO dDe ns it~~ 

A.verage 

S3T-1 B 1 Late<•\~<Jo•jDensity 

S3T1 BbhLat,M•lodOensity· 

S3T-1 8 10Lat"-'J•JO•)d(,er.sibj 

~:3T28 1 Late<••.<O•ldDen·.;ity 

S3 T2 Bb h Lat"'-•'.10 •l d (;ens ibj 

53T28 10Lat"'.o.<Oo•j Der.s ity 

Average 

S4l'1 BbhLat~oodOer.sit)• 

! 

I 

I 

I 
! 

l 
l 
I 

665 

62"1 
682 

:342 
79<1 

83::. 
:3:37 

729 

820 

727 

:323 

67C 
731 

722 

720 
877 

~4l'1B·ILat<:INOOdDensity· 1

1

; 

S4T·1 8 10LataMoodDert>ity l 727 

S4T2B 1 LatewoodDensit)• 798 

S4T28bhLata<<~>lodDer.sit>l 872 

~4T28·10Lat...,~oo.jDer<>it\' I 791 

~~:.~,:~~.:-. ~--~•·~ ~--.,~- ~.u•->~· ·~j-~•·•·~· .1~-,-·.,~M?~ 

'3H181Dens~,o 

S1 T18t•h!::Oensity-

S 1T18 10C•en:r.ity 

S1T281Densiti 

S 1 T28bhDensit>J 

S·1 T28'10Density· 

~verag>a! 

S2l'1 8·1 Density· 

S2T1 Bbh!)ens~.< 

S2l'1B·10Densibr 

S2T2B 1 Densit>t 

S2T28t,hr~ensrt~l 

S2 T2810Densibl 

S3T18·1 Density· 

S3T·1BbhDensit:f 

S3l'1 B·ICIDensity 

S3 T2B·t Density 

S3T2BbhO~nsft\~' 

S3T2B10Density 

A.verage 

S4l'1 B·!Dens~.< 

S4T18bhDensibf 

S4T1 B·10Densitl' 

I 

I 

S4T281[:rensrt~r 

1 S4T28bhDensity· I 
S4T28·10Densit>J 

506 
5:35 
492 

5:30 

520 

511 

568 
555 
557 
629 

549 

573 

600 
596 
570 

541 

567 

60"1 
616 

538 

579 

~~:.~~?.: ~ .. . .. .. . .. .. . .. . . _ . ____ L.-... ..~?:: 


