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ABSTRACT 

The dynamic vibration absorber, or tuned mass damper, has been one of the most commonly 

used passive vibration control devices over the past hundred years. With an optimally designed 

vibration absorber, significant vibration suppression can be achieved to maintain structure health 

and integrity. On the other hand, researchers are seeking effective energy harvesting techniques 

to harvest energy from ambient vibration for purposes such as powering sensor networks and 

microsystems. This has brought light to the investigation of simultaneous vibration suppression 

and energy harvesting. This research is thus motivated to develop an apparatus with a 

non-traditional vibration absorber in order to achieve vibration control and energy harvesting 

simultaneously. 

For a traditional vibration absorber installed to a single-degree-of-freedom primary system, the 

absorber damper is connected between the primary mass and the absorber mass. The tuning 

strategies of such a traditional absorber have been thoroughly studied and energy harvesting 

techniques have also been applied to the combined system. This research studies a 

non-traditional vibration absorber whose absorber damper is connected directly between the 

absorber mass and the base. An apparatus is developed in which an electromagnetic damper used 

as both the absorber damper and energy harvester is placed between the absorber mass and the 

base. The principle of the electromagnetic damping is discussed, and the optimum parameters of 

the non-traditional vibration absorber are studied with respect to different performance indexes 

under various types of excitation. Analytical derivation, numerical simulation and experiment 

results are presented in the investigation of each of the tuning strategies. The study has indicated 

that despite the inevitable trade-off between vibration suppression and energy harvesting, the 

proposed apparatus is capable of achieving the dual goal with a satisfying performance.   
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Chapter 1 Introduction 

The motivation of this research is to investigate the behaviour of a non-traditional vibration 

absorber coupled with an electromagnetic damper which is used to achieve simultaneous 

vibration suppression and energy harvesting. This chapter provides an extensive literature review 

on vibration absorbers, energy harvesting techniques, as well as the topic of simultaneous 

vibration control and energy harvesting, which leads to the motivation and novelty of this work. 

1.1 Literature review 

1.1.1 Dynamic vibration absorber/tuned mass damper 

Machines or structures in real life are often subjected to vibrations, e.g. rotary machines with 

unbalanced mass, high-rise buildings under wind excitation and earthquakes. Vibrations are 

usually undesired because they can induce noises, discomfort for riding experiences, and even 

damage to structural components which may lead to disastrous result. Researchers and engineers 

have dedicated enormous researches and investigations to the elimination of unwanted vibration 

with various techniques and devices. The damped vibration absorber (DVA), or tuned mass 

damper (TMD), is one of the commonly-used passive control devices for structural vibration 

suppression. Figure 1.1 (a) shows the model of the traditional vibration absorber. The primary 

system to be controlled is simplified as a single-degree-of-freedom (SDOF) system. By attaching 

a mass-spring-damper system to the SDOF primary structure, the vibration of the primary system 

can be significantly reduced over a wide frequency band. This has been widely applied to fields 

like mechanical engineering and civil engineering. For example, the TMD installed in the Taipei 

101 building has been successfully serving its purpose of vibration mitigation to protect the 

building from typhoons and earthquakes since 2004.  
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The key aspects of designing a TMD are associated with the determination of two important 

variables: a) the frequency tuning ratio ( ), which is related to the absorber stiffness ( ak ) and 

defined as the ratio of the natural frequency of the TMD to that of the primary structure; and b) 

the damping ratio ( ), which is related to the absorber damping coefficient ( ac ) and can be 

defined as the ratio of the absorber damping coefficient to either the critical damping coefficient 

for the TMD or the product of critical damping coefficient and the reciprocal of the frequency 

tuning ratio. Various researches have been conducted to find the optimum values of these 

parameters. The first analytical theory, known as the classical “fixed-points” theory, was 

proposed by Hartog (1940) to tackle the optimum solution of a damped TMD attached to an 

undamped primary system. Based on the optimality he proposed, he found the optimum 

frequency tuning ratio while failing to obtain the optimum damping ratio. In continuation of this 

work, Brock (1946) derived the analytical expression of the optimum damping ratio for both 

optimum as well as constant tuning. This research was then extended to various excitation 

conditions (Warburton, 1982). The transient responses of the system have also been studied with 

derived optimum parameters (Yamaguchi, 1988). While the above work investigated an 

undamped primary system, the inherent damping of the primary system was later also taken into 

consideration, requiring computationally intensive numerical optimization (Rana & Song, 1998). 
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(a) Model A 

 

(b) Model B 

Figure 1.1 Two configurations of TMD. 

The above mentioned works are dedicated to the examination of the traditional TMD shown in 

Figure 1.1 (a), often referred as “model A”. The formulae for optimum parameters are listed in 

Table 1.1. As the damper is connected between the primary mass and the absorber mass, this can 

be challenging when the damper requires a certain stroke space and there is limited space for 

TMD. Figure 1.1 (b) shows a variant design of TMD, also known as “model B”, where the 

damper is connected between the absorber mass and the ground directly. For an undamped 

primary structure attached with a model B TMD and subjected to a harmonic force excitation, 

the optimum parameters of the model defined in absolute displacement coordinates were derived 

using the classical “fixed-points” theory by Ren (2001). The results were verified by K. Liu and 

Liu (2005) later using a slightly different approach. Their results show that model B can achieve 

greater vibration reduction for the primary system than model A. The optimum parameters of 

model B were also found by minimize the normalized velocity magnitude by Chueng and Wong 

(2009). 

Despite the demonstrated effectiveness using the “fixed-points” theory, it has been found that the 

non-traditional TMD following the classical design methodology does not lead to the global 

minimum resonant amplitude for an SDOF system under harmonic force excitation (Chueng & 
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Wong, 2011a; Xiang & Nishitani, 2014). Chueng and Wong (2011a) derived the H
 optimum 

parameters of the non-traditional TMD for an SDOF system which resulted in lower maximum 

amplitude response than the previously found results. The same authors (2011b) also derived the 

2H  optimum parameters to minimize the total vibration energy of an SDOF system under 

random excitation and made a comparison with the traditional TMD. Xiang and Nishitani (2014) 

proposed a different optimum design method from the standpoint of obtaining a wider 

suppression bandwidth. When the damping of the primary structure is considered, different 

methods are required to find the optimum tuning parameters. K. Liu and Coppola (2010) 

presented an approximate closed-form solution for the optimum tuning parameters that was 

validated using two different numerical methods: the Chebyshev’s equi-oscillation theorem 

(Pennestri, 1998) and sequential simplex method (Belegundu & Chandrupatla, 1999). Anh and 

Nguyen (2014) proposed a dual equivalent linearization technique to derive the approximate 

analytical solutions for the H
 optimum parameters for this variant TMD attached to a damped 

structure subjected to force excitation. 

For model B attached to an undamped primary system under a harmonic ground excitation, 

Wong and Chueng (2008) investigated the optimum parameters using the “fixed-points” theory, 

with the performance index defined as the maximum magnitude of the frequency response 

function (FRF) that is the ratio of the primary structure’s absolute displacement to the ground 

displacement. Xiang and Nishitani (2015) used the displacement coordinates relative to the 

ground motion to define the model. In their work, the FRF was defined as the ratio of the relative 

displacement magnitude of the primary mass to the relative static deflection of the primary 

spring due to the inertia force. Using the maximum magnitude of the FRF as the performance 

index, the optimum parameters were derived. In addition, Xiang and Nishitani (2015) also 

adopted the stability maximization criterion (SMC) to allow the free vibration of the primary 
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structure to decay optimally and demonstrated the effectiveness of the SMC-based TMD both 

numerically and experimentally. 
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 Authors Performance Index opt  
opt  

Undamped Hartog (1940) 

Brock (1946) 
1 1/abs stX X 

 in harmonic force excitation 1
1 

 3
8(1 )





 

Warburton (1982) 1 1/abs stX X 
 in harmonic base excitation 1 2

21








 3
4(1 )(2 )



  

 

Warburton (1982) 2 2
1 1 1[ ] / ( / )fE X S k  in random force excitation 1 2

21








 (4 3 )
8(1 )(2 )
 

 



 

 

Warburton (1982) 2 2
1 1 1[ ] / (2 / )fE X S k   in random force excitation 

2
  1

1 

 

Yamaguchi (1988) max (Re[ ])i i  in transient vibration 1
1 

 
1




 

Damped Rana and Song 
(1998) 

Numerical optimization required 

 

Table 1.1. Optimum parameters for model A 
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 Authors Performance Index opt  
opt  

Undamped Ren (2001) 
1 1/abs stX X 

 in harmonic force excitation 1
1 

 3
4(2 )





 

 K. Liu and Liu 
(2005) 1 1/abs stX X 

 in harmonic force excitation 1
1 

 3
4(1 )(2 )



  

 

Chueng and 
Wong (2009) 1 1/abs stV V 

 in harmonic force excitation 1 1 2
1 2



 

 



 2 2 2

2 3 4 5

2 3 4 5

1 2
8 1 2 ( 7 2 4 (3 2 4) 1 2 )

16 48 12 84 3 15
16 64 28 112 61 38

A B

A
A



      

    

    

 

       

     

      

 

Wong and 
Chueng (2008) 1 1/abs stV V 

 in harmonic base excitation 1
1 

 (3 )
8

   

Chueng and 
Wong (2011b) 

2
1 1[ / ]abs stE X X 

  in random force excitation Value as large as possible 4 2

2

(2 ) 1
4

  



    

Xiang and 
Nishitani (2015) 

max (Re[ ])i i  in transient vibration 1 1 4
2





   1 1 4
2

   

Damped K. Liu and 
Coppola (2010) 1 1/abs stX X 

 in harmonic force excitation 
21 4

1
p







 Closed-form solution not available 

 Anh and Nguyen 
(2014) 1 1/abs stX X 

 in harmonic force excitation 
2

2
2 2 2

1

1 ( 1 )
( 2) 2p p

 
  

 
  

 

 Closed-form solution not available 

Undamped 
or damped 

Xiang and 
Nishitani (2014) 

Suppression bandwidths in harmonic base 
excitation 

1


 Closed-form solution not available 

 

Table 1.2. Optimum parameters for model B. 
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1.1.2 Simultaneous vibration suppression and energy harvesting 

The idea of energy harvesting using ambient vibration has been vastly explored with a significant 

impact on the development of wireless sensor networks (Lynch & Loh, 2006), low-power 

actuators (Paradiso & Starner, 2005), microsystems (Beeby, Tudor, & White, 2006), etc. One of 

the most commonly used vibration-based energy harvesting techniques is the piezoelectricity. 

Studies on the fundamental properties and modelling of piezoelectric material are presented in 

several literatures (Feenstra, Granstrom, & Sodano, 2008; Ng & Liao, 2005; Shahruz, 2008; 

Sodano, Park, & Inman, 2004; Stephen, 2006). A significant amount of researches has been also 

dedicated to the performance of piezoelectric devices under different external excitations and the 

optimization of the harvested power with respect to electro-mechanical components of the device 

as well as the control strategy (Chtiba, Choura, Nayfeh, & El-Borigu, 2010; Sodano, Inman, & 

Park, 2005; Stephen, 2006; Yoon, 2008). Similarly, a great amount of research has been 

conducted for another popular harvesting method of using electromagnetic devices (Beeby, 

Torah, & Tudor, 2007; Cepnik, Radler, Rosenbaum, Strohla, & Wallrabe, 2011; Deng & Wang, 

2010; Elvina & Elvinb, 2011; Harne, 2012; Kremer & Liu, 2014; Mann & Sims, 2010; Masoumi 

& Wang, 2016; Shen, Zhu, & Xu, 2012; Sneller & Mann, 2010). For both the above energy 

harvesting approaches, they are commonly implemented as mass-spring-damper devices. 

Considering the interaction between the energy harvesting unit and the primary structure, 

researchers have been developing devices capable of both attenuating the structural vibration 

while converting the absorbed energy into electrical power (Tang & Zuo, 2012a, 2012b; Wang & 

Inman, 2012; Zuo & Cui, 2013).  

The idea of simultaneous vibration suppression and energy harvesting has promising applications 

in many engineering fields. For example, piezoelectric materials can be used to form composite 

sandwich structures for the purpose of self-controlling and self-powering unmanned aerial 

vehicles (Wang & Inman, 2013). Researchers have explored inerter-based vibration suppression 



8 

 

devices that harvest energy using electro-magnetic tuned inerter damper (Gonzalez-Buelga, 

Clare, Neild, Jiang, & Inman, 2015a). Tuned mass damper is another widely investigated device 

where researchers combine its ability for vibration control with energy harvesting by introducing 

piezoelectricity or electro-magnetic coupling (Gonzalez-Buelga et al., 2014; Gonzalez-Buelga, 

Clare, Neild, Burrow, & Inman, 2015b; Y. Liu, Chi-Chang, Jason, & Zuo, 2016). Studies on 

energy harvesting-enabled tuned mass damper inerter (TMDI) can also be found in literature 

where both a TMD and an inerter are employed (Salvi & Giaralis, 2016). It should be noted that 

all the aforementioned configurations employed model A. Gonzalez-Buelga et al. (2014) 

investigated an optimized tuned mass damper/harvester device where the energy-dissipating 

damper of the TMD is replaced with an electro-magnetic device to transform mechanical 

vibration into electrical energy. The absorber system is attached to the primary structure with the 

absorber damper connected between the primary mass and the absorber mass, which is the model 

A configuration. The paper considered both direct excitation and base excitation and the results 

for using both adaptive and semi-active control laws were presented. 

1.2 Objectives and contributions 

From the previous literature review, it is noted that there has not been any report on simultaneous 

vibration suppression and energy harvesting based on the model B TMD. This study is motivated 

to address this need. An apparatus of the model B TMD is first developed which consists of a 

primary structure subjected to base excitation and a tunable vibration absorber. The tunable 

vibration absorber is composed of a cantilever beam and an electromagnetic device. Two 

magnets are used as the absorber mass and subjected to the effect of the electromagnetic device 

which serves as both the damper and the energy harvester. The vibration absorber is tunable in 

such a way that the frequency tuning is achieved by adjusting the length of the cantilever beam 

and the damping tuning is obtained by varying the load resistance of the energy harvesting 
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circuit. This allows for the achievement of different tuning conditions and thus the effectiveness 

of different tuning strategies can be validated experimentally. 

The objectives of this study are as follows: (1) to develop a tunable model B TMD; (2) to study, 

design and build an electromagnetic device used as the absorber damper and energy harvester; 

(3) to investigate different tuning strategies of the developed model B TMD, and (4) to explore 

the ability of simultaneous vibration suppression and energy harvesting with the developed 

apparatus. One manuscript that is based on Chapter 2 and 3 has been submitted to Journal of 

Intelligent Material Systems and Structures and another manuscript that is based on Chapter 7 

has been submitted to Journal of Vibration and Control. 

1.3 Thesis outline 

In the following chapter, the developed apparatus will be introduced and the principles of the 

electromagnetic device will be explained. With these backgrounds, the remainder of this thesis 

investigates the model B TMD installed to a SDOF system in three different perspectives, in 

Chapter 3, 4 and 5 respectively, where the optimum tuning condition will be explored with 

regard to vibration suppression and energy harvesting. Chapter 6 introduces a situation when the 

non-traditional absorber is employed in a multi-degree-of-freedom (MDOF) system and provides 

some discussion which intrigues thoughts for future work. In Chapter 7, a discussion on the 

condition assessment of a vibration absorber is also provided. At the end, the conclusions are 

drawn to summarize the work.  
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Chapter 2 Apparatus and Modelling 

In this chapter, the developed apparatus of a model B TMD is introduced, followed by the 

explanation of the principles of the employed electromagnetic device. This lays a foundation for 

the remaining investigation of this thesis. 

2.1 Developed apparatus 

 

(a) 

 

(b) 

Figure 2.1. (a) Schematic of the developed apparatus; (b) photo of the experiment set-up. 
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The apparatus developed for this work is shown in Figure 2.1. On the top is the schematic of the 

system while the bottom figure is a photo of the experiment set-up. The primary system consists 

of an Acrylonitrile Butadiene Styrene (ABS) filament platform supported by two aluminum 

plates. The lower ends of the plates are clamped to a base that is fastened to a slipping table. The 

TMD consists of an aluminum cantilever beam and two permanent magnets. One end of the 

beam is clamped in a slot built in the primary mass platform. The beam’s length can be adjusted 

by sliding it in the slot. The two magnets are attached at the free end of the beam by their 

attracting magnetic force. The properties of the beam and the magnets can be found in Table 2.1. 

A pair of coils are fastened directly to the base. The magnets are situated inside the coils such 

that they form two electromagnetic dampers. An electric circuit is formed by connecting the coils 

in series with a variable resistor that serves as a load. Comparing Figure 2.1 (a) with Figure 1.1 

(b), it can be seen that the developed apparatus represents a model B TMD: the absorber mass is 

subjected to the force from the absorber spring which connects the absorber mass to the primary 

mass, and the force from the absorber damper (coils) which is fixed to the base.  

Table 2.1. Parameters of the absorber system. 

Aluminum beam Oscillating magnet 2  

Width (mm) 11.12 Length (mm) 25.4 

Thickness (mm) 1.5 Diameter (mm) 12.7 

Length range (mm) 100-150 Material Type NdFeB (N40) 

  Mass (kg) 0.024 2  

Figure 2.1 (b) is a photo of the experiment set-up. The base is driven by a B&K type 2809 shaker 

through a stinger. The shaker is driven by a B&K type 2718 power amplifier whose current can 

be monitored. An accelerometer is attached to the base to monitor the base acceleration. Three 

Wenglor CP24MHT80 reflex lasers (RF) are used to measure the displacements of the primary 

mass, absorber mass, and the base, respectively. Figure 2.2 is a schematic of the experimental 
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system. The computer used in this study is equipped with a dSPACE dS1104 data acquisition 

board that collects all the sensor signals and outputs the excitation signal to the power amplifier. 

A Simulink model is developed and connected to the dSPACE Control Desktop software to 

control the experiment. 

 

Figure 2.2. Schematic of the experiment system. 

This research is focused on studying this developed apparatus both analytically and 

experimentally. Before mathematic models of the apparatus are introduced, the principles of the 

electromagnetic dampers are to be discussed. 

2.2 Electromagnetic damper 

2.2.1 System modelling 

In order to investigate different tuning strategies for the model B TMD, it would require the 

absorber system to be tunable both on the frequency tuning ratio (absorber stiffness) and the 

damping ratio (absorber damping coefficient).The proposed apparatus allows to adjust the 

absorber stiffness by varying the beam length, and the electromagnetic damper employed in this 

study offers a convenient way to adjust the damping level by varying the load resistance.  
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Figure 2.3. Modelling of the electromagnetic damper: (a) equivalent SDOF system; (b) coil and oscillating magnet 

diagram; (c) electric circuit diagram. 

To study the principles of the electromagnetic damper, the system is first considered as an SDOF 

structure with the magnet oscillating in the coil as shown in Figure 2.3 (a). The equation of 

motion is given as, 

 1 1 1m e bm z c z k z F m y       (2.1) 

where by  is the base motion, z is the displacement relative to the base, 1m  is the mass of the 

magnet, mc  is the mechanical damping coefficient, 1k  is the stiffness of the spring, eF  is the 

electro-magnetic force induced by the interaction of the moving magnet and the coil.  

When the magnet is oscillating along the coil's axis, Faraday's law of induction predicts that an 

electric potential will be generated across the coil's lead. For a single loop coil, the so-called 

electromotive force (EMF) is given by, 

 ( )s loop
V d  v B L   (2.2) 

where dL  is the differential length of the loop, v  is the velocity of the magnet and B 

represents the magnetic flux density generated by the magnet. The above equation can be 

expanded by expressing the vectors in terms of components, 
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 ( ) ( ( , ) ( , ) )s a a a r r lloop
V z B y r B y r dl     e e e e   (2.3) 

where ae  is the unit axial vector, re  is the unit radial vector, l
d
dl


Le  is the unit vector 

pointing along the tangential direction of the wire, ( , )aB y r  is the axial magnetic flux density 

and ( , )rB y r  is the radial magnetic flux density in which y is the axial distance between the 

center of the magnet and the loop and r represents the radial coordinate. After performing vector 

operations, Eq. (2.3) is reduced to, 

 ( , )s r sloop
V z B y r dl z     (2.4) 

where ( , )s rloop
B y r dl    is defined as the transduction factor for a single loop coil. 

Now consider a magnet moving along the coil axis as shown in Figure 2.4. magr  is the radius of 

the magnet, magl  is the length of the one magnet, coilA  is the cross-sectional area of the coil, 

coilh  is the height of the coil and 1,2r  is the inner/outer radius of the coil. The total transduction 

factor for one coil located at a distance S is given by, 

 2 2

1 1
( ) ( , )

r ywire
coil rr y

coil

lS B y r dydr
A

       (2.5) 

where, 

 1 2,
2 2
coil coilh hy S y S      (2.6) 

wirel  is the total length of the wire of the coil. The total transduction factor for two identical coils 

connected in series is ( ) 2 ( )coilS S   . 
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Figure 2.4. Magnet moving in a coil. 

A closed circuit is formed by connecting a load resistor to the coils as shown in Figure 2.3 (c). 

Applying Kirchhoff's law to the circuit yields 

 2 (2 )coil coil load
diL R R i z
dt
      (2.7) 

where coilL  and coilR  are the inductance and resistance of one coil, respectively, i is the 

induced current and loadR  is the load resistance. For the coils used in this study, the inductance 

of the coil is found to be 2 2.0 mHcoilL   through measurement. With a maximum driving 

frequency of 20 Hz, the maximum reactance due to the inductance is 

2 (2 20) 251.33 mZ      which accounts for approximately 5% of the total resistance in the 

coils. Thus, the coil inductance is neglected in this study to avoid unnecessary analytical 

complexity. Eq. (2.7) now yields, 

 
2 coil load

i z
R R





  (2.8) 

Comparing Eq. (2.1), the electro-magnetic (Lorentz) force eF  induced by the current has the 

form (Elvina & Elvinb, 2011) eF i  which yields, 
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2

2e
coil load

F z
R R





  (2.9) 

The electrical damping coefficient is defined as: 

 
2

2e
coil load

c
R R





  (2.10) 

Eq. (2.10) shows that the electrical damping coefficient decreases with increase of the load 

resistance and is proportional to the squared value of the transduction factor. 

Table 2.2. Parameters of the coils. 

Coil 2  

Inner radius 1r  (mm) 12.175 Turns N 320 

Outer radius 2r  (mm) 18.525 Wire length wirel  (m) 29.8 

Height coilh  (mm) 31.75 Resistance coilR  ( ) 2.4 

The properties of the coils are listed in Table 2.2. Following the method used by Kremer and Liu 

(2014), a finite element analysis software Finite Element Method Magnetics (FEMM) is used to 

calculate the magnetic flux density of the magnet. Using an axisymmetric model, the radial flux 

density is found and shown in Figure 2.5 (a). As shown, the radial flux density reaches the 

maximum magnitude at the ends of the magnets and decreases along the positive radial direction. 
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Figure 2.5. (a) Radial magnetic flux density of the oscillating magnet; (b) total transduction factor for two coils. 

For each coil location S, which is defined as the distance between the center of the magnet and 

the center of the coil, the double integral in Eq. (2.5) is numerically computed using the 

trapezoidal method and the relationship between the total transduction factor ( )S  and S is 

found and shown in Figure 2.5 (b). The maximum value of the transduction factor 

max 2.596 Tm   corresponds to two locations 25.4 mmS   , indicating that the maximum 

electrical damping can be achieved by placing one of the magnet ends at the center of the coil. 

2.2.2 Experimental results 

The damping effect of the electro-magnetic damper is first experimentally investigated before a 

detailed discussion on the model B TMD. The test is conducted on the standalone TMD system, 

including the oscillating magnets, the cantilever beam, the damper and the electric circuit. The 

system is fastened to a stationary base with a laser sensor capturing the displacement of the 

absorber mass (i.e. magnets). As listed in Table 2.1, the absorber mass is found to be 0.048 kg. 

The length of the cantilever beam is set to be 116 mm. The natural frequency of the TMD system 
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is found out to be 14 Hzaf   through free vibration tests. Thus, the absorber stiffness is 

calculated as 371.94 N/mak  . By tapping the absorber mass gently, free vibration responses 

are generated. From the response data, the ratio of mechanical damping is found to be 

0.002m  . Thus the inherent mechanical damping coefficient is 0.0357 Ns/mmc  .  

In order to find out the electrical damping coefficients under different load resistances, the 

resistance of the load resistor loadR  is varied from 0 to 200  . Multiple sets of free vibration 

tests are conducted to calculate damping ratios. The electrical damping coefficients are 

determined by subtracting the mechanical damping coefficient from the total damping 

coefficients. Figure 2.6 compares the identified electrical damping coefficients with the ones 

calculated using Eq. (2.10). 
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Figure 2.6. Electrical damping coefficients under different load resistances. 

The identified values agree well with the analytical ones. The maximum electrical damping 

coefficient achieved by the damper is found to be max( ) 1.4156 Ns/mec   when 0 loadR   . In 

this case, this maximum value corresponds to a damping ratio of approximately 17%. During the 

experiment, it is observed that the absorber mass oscillates only 3 cycles when the electric circuit 

is directly closed. As the load resistance grows from zero to 40  , the damping coefficient 

decreases significantly to 0.1437 Ns/m. When the load resistance is increased further, the 

damping coefficient experiences a steady decay to 0.0447 Ns/m that corresponds to a damping 

ratio of 0.5%. 
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Chapter 3 Harmonically-excited Responses 

The first tuning strategy is discussed in this chapter using the classical “fixed-points” theory. The 

detailed derivation of the optimum parameters for the model B TMD subjected to a ground 

motion in terms of relative displacements is presented first. With the employed electromagnetic 

damper, the efficiency on vibration control and energy harvesting is also discussed. 

3.1 Derivation of optimum parameters 

Consider a model B TMD shown in Figure 1.1 (b). In order to apply the “fixed-points” theory, 

the mechanical damping of the primary system is ignored. This is reasonable since the inherent 

primary damping is usually small and negligible comparing to the electrical absorber damping 

discussed in the previous chapter. When the system is subjected to a ground motion, the 

equations of motion can be given as, 

 ( )a a amx k k x k x my       (3.1) 

 a a a a a a a am x c x k x k x m y       (3.2) 

where m and am  are the primary mass and the absorber mass, respectively, k and ak  are the 

primary spring stiffness and the absorber spring stiffness, respectively, ac  is the damping 

coefficient of the absorber damper, x and ax  are the displacement of the primary mass relative 

to the base and the displacement of the absorber mass relative to the base, respectively and y is 

the base displacement. In order to find the steady state responses, assume a harmonic ground 

motion, i.e. j ty Ye   where Y is the amplitude and   the excitation frequency. The 

steady-state responses of the primary mass and absorber mass can be assumed to be: 

 ,j t j t
a ax Xe x X e     (3.3) 
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Substituting j ty Ye   and Eq. (3.3) into Eqs. (3.1) and (3.2) results in: 

 
2 2

2 2

( )a a

aa a a a a

Xm k k k m Y
Xk jc m k m Y

 

  

        
    

       
  (3.4) 

After some manipulation, the amplitude of the steady-state response of the primary mass is 

obtained as: 

 
2 2 2

2
3 2 4 2 2 2 2

( ) ( )
( ) ( )

a a a a a

a a a a a a a a a a

c m mm k m k mX Y
c m c k c k mm km k m k m kk

 


      

   


       
  (3.5) 

The performance index is defined as the displacement transmissibility ratio given as: 

 
2 2 2 2

2 2 2 2 2 2 2 2 2 2

(2 ) [( 1) ]
(2 ) (1 ) [(1 )( ) ]st

X r rG
X r r r r r

  

   

  
 

     
  (3.6) 

with the following normalized variables  

 
2

, ,  ,  ,  ,  ,  
2

a a a a
st p a

a p p a p p

k m cm Y kX r
k m m m m

 
    

  
         (3.7) 

stX  is defined as the static deflection of the primary mass due to an inertia force 2m Y , p  is 

the natural frequency of the primary system, a  is the natural frequency of the absorber system, 

  is called the frequency tuning ratio,   is the mass ratio,   is the damping ratio and r is 

the exciting frequency ratio.  

When the curves of G vs. r for different damping ratios are plotted, two fixed points (named as P 

and Q for convenience) can be observed. According to the optimality proposed by Hartog (1940), 

the optimum tuning happens when those two points have equal height and the curve passes 

through them horizontally. A detailed derivation on the optimum parameters   and   with 

regard to mass ratio   is provided below. 
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To find the abscissas of points P and Q, Eq. (3.6) is expressed in the form, 

 
2

2

A BG
C D








  (3.8) 

where, 

 

2

2 2 2

2 2 2 2

2 2 2 2 2 2

(2 )
[( 1) ]
(2 ) (1 )
[(1 )( ) ]

A r
B r
C r r
D r r r

 



 



  

  

   

  (3.9) 

As G is independent of   at P and Q, we have A C
B D
  which yields, 

 
2 2

2 2 2 2 2 2 2

1 ( 1)
1 (1 )( )

r
r r r r

 

  

 
 

    
  (3.10) 

Negative sign should be chosen for the term on the right-hand side of the above equation as a 

plus sign would result in an expression of 2 0  . The solutions for Eq. (3.10) are, 

 
2 2 4 2

1,2
(3 2) 2 ( 2) 4( 2) 4

4
r

          
   (3.11) 

The ordinates of points P and Q can be found by letting    in Eq.(3.6): 

 2 2 2

1
(1 )

G
r


 

  (3.12) 

The optimum value for   is obtained by setting 1 2( ) ( )G r G r , 

 2 2 2 2 2 2
1 2

1 1
(1 ) (1 )r r 

 
   

  (3.13) 
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which yields the optimum frequency tuning ratio, 

 2
2opt





  (3.14) 

The abscissas and coordinates of points P and Q can be found by substituting opt  in Eqs. (3.11) 

and (3.12), 

 1,2 1 2
2 2 2,  ( ) ( )

2 2
r G r G r  

 

 
  


  (3.15) 

Now Brock's approach (1946) is used to find the optimum damping ratios. In order for the curve 

of G vs. r to pass horizontally through point P, one first requires that it passes through a point 

P  of abscissa 2 2
1r r    and the ordinate 2

2
G 




 , and then let   approaches to zero as 

a limit. From Eq. (3.6), one can have: 

 
2 2 2 2 2 2 2 2 2 2

2
2 2 2 2 2

[( 1) ] [(1 )( ) ]
4 [ (1 ) 1]
r G r r r
r G r

   




     


  
  (3.16) 

Substituting 2 2
1r r    and 2

2
G 




  into the above equation, the following can be derived: 

 
2 3

2 0 1 2 3
2 3

0 1 2 3

A A A A
B B B B

  


  

   


   
  (3.17) 

Since Eq. (3.17) assumes the indeterminate form 0
0

 if 0   as the curve of G vs. r for all 

values of   passes through P, it is easy to see that 0 0 0A B  . As   is a very small number, 

one can neglect the higher order terms which results in, 
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 2 1

1

A
B

    (3.18) 

Using the approximations: 4 4 2 6 6 3 8 8 4
1 1 1 1 1 12 , 3 , 6r r r r r r r r r        , the following can be 

obtained: 

 

2 6 2 2 4 2 2 2 2 2 2
1 1 1 1

2 2 2

2 4 2 2 2 2 2 2
1 1 1

4 6 [1 (1 ) ] 2{1 2 [1 (1 ) ] }
2 { [1 (1 ) ] (1 )}
12 16 (1 ) 4 (1 ) 4

A G r G r G G r
G

B G r G r G

    

   

 

         

    

     

  (3.19) 

Now substituting 2
1r  of Eq. (3.15) and *  of Eq. (3.14) into 1( , )G r  , the above equations 

yield, 

 2
1

6 2 2
4( 2) 2 2 2

 


  

 


  
  (3.20) 

Using similar procedure with 2
2r ,  

 2
2

6 2 2
4( 2) 2 2 2

 


  

 


  
  (3.21) 

As suggested by Brock (1946), a convenient average value, 

 
2 2 2

1 2
2

1 ( 8 12)
2 2 ( 2)( 2 4)opt

    


  

  
 

  
  (3.22) 

can be used as the optimum damping ratio. The results obtained here are the same as those in 

literature (Xiang & Nishitani, 2015) where a differently defined damping ratio was used. 

Figure 3.1 shows G vs. r for a system with the parameters of m=1.0 kg, k=8900 N/m and under 

different damping ratio. The frequency tuning ratio is set to the optimum value of 1.0398opt  . 
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The optimum damping ratio is calculated to be 0.246opt  . The existence of two invariant 

points can be observed from Figure 3.1. Also, when the system is optimally tuned, the two fixed 

points have equal height and the curve of G vs. r passes through them almost horizontally (since 

the optimum damping ratio is not a global optimization solution). 

 

Figure 3.1. Displacement transmissibility ratio when        and  opt=1.0398.  

The constant tuning case is now also investigated. When 1opt  , as can be seen from Figure 

3.2, the ordinate of point Q is greater than that of point P. The optimum damping ratio is 

considered to be the value for which the G vs. r curve passes horizontally through point Q.  
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Figure 3.2. Displacement transmissibility ratio when        and  opt.=1.0. 

Substituting 1opt   into Eq. (3.11) yields the abscissas of points P and Q, 

 
2

1,2
3 4 8

4
r    

   (3.23) 

For point Q, the ordinate is found to be: 

 2 2 2 2 2 2
2

1 16
(1 ) ( 8 )

G
r   

 
   

  (3.24) 

Following the similar procedure, Eq. (3.19) is now, 
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  (3.25) 

The optimum damping ratio is of the form, 



27 

 

 1

1

12 ( 8)
8 3 4 ( 8)opt

A
B

  


  

  
 

  
  (3.26) 

after substituting 2r  of Eq. (3.23) and 2G  of Eq. (3.24). The optimum damping ratio shown in 

Figure 3.2 is calculated to be 0.1931opt  . 

3.2 Energy harvesting using the model B TMD 

In this section, the effectiveness of using a model B TMD for energy harvesting is investigated. 

Consider the system described in Section 3.1. When the structure is subjected to harmonic 

ground excitation, the instantaneous input power can be defined as, 

 ( ) ( )[ ( ) ( )] ( )[ ( ) ( )]in a ap t my t y t x t m y t y t x t       (3.27) 

Substituting the assumption of ( ) ,  ( ) ,  ( )j t j t j t
a ay t Ye x t Xe x t X e      into Eq. (3.27), the 

instantaneous input power can be written in the form of 2( ) j t
in inp t P e   and the amplitude of 

the input power inP  is found to be, 
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  (3.28) 

For the electro-magnetic damper, the instantaneous dissipated power is defined by, 

 
2

2 2 2( ) ( ) ( ) ( )
2e e a a a a

coil load

p t c x t c x t x t
R R


  


  (3.29) 

In the above equation, for the sake of simplicity, the mechanical damping of the absorber system 

mc  is neglected. The amplitude of the dissipated power by the electro-magnetic damper is found 

to be: 
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To study the damper’s effectiveness in vibration suppression, the dissipated power ratio, which is 

the ratio of the dissipated power amplitude to the input power amplitude, is defined as, 

 1
e

in

PM
P

   (3.31) 

A portion of the power dissipated by the electro-magnetic damper is harvested by the load 

resistor. The instantaneous harvested power is defined as 2( ) ( )load loadp t i t R . Recalling Eq. (2.8), 

this equation can be written as, 
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  (3.32) 

Comparing Eqs. (3.29) and (3.32) yields, 

 ( )( )
( ) 2

load load
load

e coil load

p t Rf R
p t R R

 


  (3.33) 

This term represents the percentage of power available for harvesting from the dissipated power 

by the electrical damping. It can be known that increase of load resistance results increase in the 

harvested power. This is contradictory to the previous results that a smaller load resistance is 

associated with higher damping ratio and better vibration suppression. It will be of interest to 

examine what influence the load resistance has on the harvested power with respect to the input 

power. The harvested power ratio, which is the ratio of the harvested power amplitude to the 

input power amplitude, is thus defined as, 

 2
load

in

PM
P

   (3.34) 



29 

 

where loadP  is the amplitude of harvested power. 

Numerical investigation is performed to study Eqs. (3.31) and (3.34). The parameter values used 

in simulation are given as m = 0.34 kg, 0.048 kgam   and 2520 N/mpk  . With the optimum 

tuning parameters, the absorber spring stiffness is found to be 283 N/mak  . The natural 

frequencies of the combined system is found to be 11.53 and 16.9 Hz. The harmonics base 

excitation has a frequency range of 6 to 20 Hz with the acceleration amplitude equals to 21 m/s . 

The load resistance varies from 0 to 100   and the transduction factor of the coils is 

approximated as constant with a value of 2.596 Tm.  

Figure 3.3 shows the simulation results of the dissipated power ratio. Figure 3.3 (a) is a contour 

plot of the dissipated power ratio vs. the exciting frequency and load resistance. It can be seen 

that high dissipated power ratio occurs around three frequencies 11.53 Hz, 15 Hz, and 16.9 Hz. 

Apparently, the first and third frequencies are the resonance frequencies. The second frequency 

is the so-called anti-frequency at which the greatest vibration suppression is achieved by the 

absorber. With a minimal vibration of the primary system, the absorber mass vibrates with a 

largest velocity amplitude, resulting in the dissipation of a greatest amount of power. When the 

system is excited around the aforementioned three frequencies, the dissipated power ratio is close 

to 1. When the exciting frequency is away from these three frequencies, the ratio decreases 

quickly with the increase of load resistance. A clearer view of how the exciting frequency 

influences the dissipated power ratio under different load resistance is shown in Figure 3.3 (b). 

When the load resistance is 0  , the performance of the damper is robust when the exciting 

frequency is between 12 to 16 Hz. The dissipated power ratio experiences more fluctuations in 

the same frequency range when the load resistance increases. 



30 

 

 

Figure 3.3. Dissipated power ratio. 

The harvested power ratio is shown in Figure 3.4. When the system is excited with a frequency 

near the resonance frequencies (11.53 Hz and 16.9 Hz), or the anti-resonance frequency (15 Hz), 

the harvested power amplitude increases with an increasing load resistance and is able to reach 

approximately 95% of the input power amplitude when 100 loadR   . When the exciting 

frequency is away from these ranges, the ratio increases from 0   to its maximum point with a 

load resistance ranging from 5 to 20   and decreases quickly with a higher load resistance. 

Recalling Eq. (3.33), increase of load resistance will result in a lower damping ratio but higher 

portion of power harvested from the dissipated power. Still in this case when the mechanical 

damping is not considered, the trade-off is not quite significant and both the satisfactory 

dissipated power ratio and harvested power ratio can be achieved within the load resistance range 

from 5 to 20  . Figure 3.4 (b) shows how the harvested power ratio varies with the exciting 

frequency under four different load resistances. Note that no power is harvested when 

0 loadR   . It can be seen that over the frequency range from 12 Hz to 16 Hz, the lower the load 
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resistance, the smaller and more uniform the harvested power ratio. With increase of the load 

resistance, the harvested power ratio increases with a large variation over the frequency range. 

 

Figure 3.4. Harvested power ratio. 

Presence of inherent mechanical damping is also considered. A low damping ratio of 1% is 

introduced into both the primary and absorber systems. Assuming that the inherent damping is 

low is justifiable as there is no need to control vibration of a heavily damped system The time 

history and amplitude of the instantaneous input power, dissipated power, and harvested power 

are obtained using Eqs. (3.27), (3.29) and (3.32), respectively. Given the range of the load 

resistance and exciting frequency, a large series of numerical simulation are conducted and the 

results are presented in Figure 3.5 and Figure 3.6. Comparing Figure 3.5 and Figure 3.3 reveals 

that a presence of a light inherent damping in the primary system and absorber system does not 

alter the general trend of the dissipated power ratio. However, the power dissipated by the 

electromagnetic damper becomes smaller than that of the system free of inherent damping. This 

is expected as portion of the input power is consumed by the inherent damping. 



32 

 

 

Figure 3.5. Dissipated power ratio when mechanical damping is present. 

Comparing Figure 3.6 and Figure 3.4 yields the similar observation. However, when the inherent 

damping is considered, the trade-off between the power dissipation and the power harvesting 

becomes more obvious. When setting the load resistance to 15   to achieve a better harvesting 

efficiency, the dissipated power ratio within the optimum operation range decreases to around 70% 

and the corresponding damping ratio is approximately 4%. The harvested power ratio is also 

closely examined in Figure 3.6 (b) under four different load resistances. Note that no power is 

harvested if 0 loadR   . Comparing to other two cases, the case with 8 loadR    reveals a 

satisfactory balance between the magnitude and robustness of the harvested power ratio. 
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Figure 3.6. Harvested power ratio when mechanical damping is present. 

Table 3.1 lists some quantitative results on the damper’s performance with the inclusion of 

mechanical damping under four load resistances. The term /
pfG G  measures the damping 

effect. Figure 3.7 illustrates the definition of G  and 
pfG  where 

pfG  is the displacement 

transmissibility ratio of the primary mass without the absorber and G  is the difference 

between the displacement transmissibility ratio of the primary mass after the absorber is attached 

and 
pfG . Compared to the original displacement transmissibility at resonance, i.e. 

pfG , the 

primary mass experiences much smaller resonance amplitudes with the absorber. The lower the 

load resistance, the more suppression is obtained. G  is also calculated at the original 

resonance frequency (13.7 Hz) and it can be seen that great suppression has been achieved. The 

harvested power ratio values at the resonance frequencies and the anti-resonance frequency are 

also listed in the table. As discussed earlier, the higher the load resistance, the higher the energy 

harvesting efficiency. 
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Figure 3.7. Displacement transmissibility ratio with mechanical damping,  opt.=1.0373  

Table 3.1. Quantitative results on vibration suppression and energy harvesting. 

 ( )loadR   /
pfG G  2M   ( )eP mW   ( )loadP mW  

 1f  pf  2f  1f  antif  2f  1f  antif  2f  1f  antif  2f  

0 0.92 0.95 0.94 0 0 0 7.53 4.42 2.24 0 0 0 

2 0.89 0.96 0.93 0.23 0.26 0.16 9.96 3.22 2.93 3.02 0.98 0.8 

8 0.82 0.96 0.91 0.47 0.53 0.38 15.2 1.77 4.31 9.65 1.12 2.74 

20 0.72 0.97 0.87 0.51 0.60 0.44 20.2 0.92 5.45 16.4 0.75 4.43 

Table 3.1 also gives the values of the dissipated power and harvested power at the 

aforementioned three frequencies. Figure 3.8 shows eP  vs. f and loadP  vs. f for four different 

load resistances, respectively. As it can be seen, eP  and loadP  both reaches maximum values at 

natural frequencies. Despite the fact that more percentage of power is dissipated at lower load 
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resistances thus higher damping levels, eP  is lower, yet more uniform, at lower resistances. The 

story is different for loadP  where its values increases with load resistance. 

 

Figure 3.8. (a) Dissipated power; (b) Harvested power, with mechanical damping. 

3.3 Experiment results 

This subsection presents the experiment results to validate the previously derived optimum 

parameters and the simulation results on simultaneous vibration suppression and energy 

harvesting. Recall Figure 2.1 (b) where the photo of the experiment set-up is shown, the 

identified system parameters are listed in Table 3.2 

Table 3.2. Identified system parameters 

Primary mass 0.279 kgpm   

Primary natural frequency 13.7 Hzpf   

Primary stiffness 2(2 ) 1951.28 N/mp p pk m f   

Primary damping ratio 0.004p   

Absorber mass 0.048 kgam   
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3.3.1 Vibration suppression 

With a mass ratio of approximately 0.14, the optimum tuning parameters are found to be: 
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  

  (3.35) 

which requires an absorber stiffness of 360.98 N/mak  . The natural frequencies of the 

combined system are found to be 11.53 and 16.89 Hz. The frequencies corresponding to the two 

fixed points are also found to be 12.75 and 16.42 Hz.  

It is expected that the system should be excited by ground motion with a constant base 

acceleration. An accelerometer attached to the base is used to monitor the acceleration. The 

root-mean-square (RMS) value of the base acceleration is computed and the amplitude of the 

signal sent to the shaker is adjusted accordingly. A base acceleration of 0.56 m/s2 is used and 

kept relatively constant throughout the experiment. 

First, a non-optimally tuned case is examined. The length of the absorber beam is set to 125 mm. 

The maximum load resistance used is set to be 20   to ensure no direct contact between the 

oscillating magnets and the inner wall of the coil when the system is under resonance with the 

lowest damping ratio. By conducting a sweeping excitation test within the frequency range of 6 

to 20 Hz, the displacement responses of the primary mass, absorber mass, and the base are 

recorded. Relatively displacement of the primary mass is calculated as well as the displacement 

transmissibility ratio. The test is then repeated for three other load resistances: 8  , 2   and 

0   representing damping ratios of 6%, 11%, and 17% respectively. Figure 3.9 (a) shows the 

displacement transmissibility ratios under four different damping levels. It can be seen that there 
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exists two fixed points where all the curves intersect. The coordinates of these two points are 

12.6 HzPf  , 2.501PG   and 16.0 HzQf  , 3.99pG   respectively. 

 

Figure 3.9. Displacement transmissibility of the primary mass under four different damping levels: (a) a non-optimally 

tuned system; (b) the optimally tuned system. 

Then the optimum absorber beam length is determined using the above calculated absorber 

stiffness. After a slight tuning, the absorber beam length is set to be 117 mm. The experiment is 

repeated again and the result is shown in Figure 3.9 (b). As shown in the figure, the ordinates of 

the two fixed pints are almost equal to each other. The abscissa and ordinates of the fixed points 

are 12.75 HzPf  , 3.145PG   and 16.45 HzQf  , 3.111pG   respectively, that are very 

close to the calculated ones. The system can be considered optimally tuned in respect to the 

frequency tuning ratio. It is worth noting that the optimum damping ratio is calculated to be 

24.1%, corresponding to a damping coefficient of approximately 1.9 Ns/m. This is beyond the 

maximum damping coefficient achievable by the developed damper. Nevertheless, it should be 

noted that the displacement transmissibility curve becomes flatter as the load resistance 

decreases and damping ratio increases. When the load resistance is 0  , the curve reaches a 
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local maximum value at the second fixed point. It is reasonable to expect that the curve will 

reach its global maximum value at two fixed points if the optimum damping ratio is achievable.  

3.3.2 Energy harvesting 

When the system is optimally tuned with respect to the tuning parameter, the voltage across the 

load resistor is recorded under four different damping level ( 20,  8,  2,  0.2 loadR   , where the 

case of 0.2 loadR    is considered to be very close to the closed circuit case). As only the 

displacement signals available, the velocity and acceleration data are obtained through numerical 

differentiation. With the velocity and acceleration responses, the input power, dissipated power, 

and harvested power are calculated using Eqs. (3.27), (3.29) and (3.32), respectively. 

It is worth noting that numerical differentiation is very susceptible to noise present in signals and 

each differentiation will amplify noise. To minimize the effect of noises, several measures are 

taken. First, to obtain better results on the numerical differentiation, the displacement signals are 

filtered by a low-pass filter with a cut-off frequency of 80 Hz. Then the filtered signals are 

interpolated using cubic spline approximations. The second measure is taken regarding to the 

calculation of the power amplitudes. Recalling Section 4, when the system is excited under a 

certain frequency, the instantaneous input power, dissipated power, and harvested power are 

essentially harmonic signals with constant offsets. Removing the offsets, the root-mean-square 

(RMS) value of the remaining signal is proportional to the peak-to-peak amplitude of the original 

signal. Thus in the experiment, the RMS value of the input power, dissipated power and 

harvested power over a time period of 15 seconds are conveniently calculated after the mean 

values of each variable are removed. 

Figure 3.10 (a) shows the results of the percentage of the dissipated power amplitude to the input 

power amplitude. For each load resistance, the calculated dissipated power ratios are marked as 
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colored dots in the figure. It can be seen that noise still exerts effects after taking the 

aforementioned measures. Hence, cubic smooth spline is used to fit the data points which gives a 

better presentation of how the ratio changes with varying exciting frequencies and load 

resistance. A good agreement between the experiment results and the simulation results is 

observed. With decrease in load resistance, more power is dissipated in a steady manner within 

the exciting frequency range of 11 to 17 Hz. The maximum dissipated power ratio occurs around 

the exciting frequency of11.5, 17.0 and 15.0 Hz with the first two frequencies being the natural 

frequencies of the structure and the third one the anti-resonance frequency. 

 

Figure 3.10. Experiment results: (a) Dissipated power ratio; (b) Harvested power ratio. 

Figure 3.10 (b) shows the ratio of the harvested power amplitude to the input power amplitude. 

Optimum exciting frequency range remains the one within 11 to 17 Hz. Although the maximum 

harvesting ratio is achieved at 20 loadR   , the curve experiences more fluctuation. When 

0.2 loadR    the curve becomes quite flat with ratio values near 0. 

Table 3.3 shows the values of the dissipated power ratio and the harvested power ratio under 

natural frequencies and anti-resonance frequency with four different load resistance. It also gives 



40 

 

the values of the dissipated power amplitude and harvested power amplitude obtained from 

Figure 3.11. The results from the experiment agree well with the simulation ones. eP  and loadP  

are reasonably small given the size of the apparatus and the excitation level. 

Table 3.3. Experiment results on energy harvesting. 

 ( )loadR   1M  2M   ( )eP mW   ( )loadP mW  

 1f  antif  2f  1f  antif  2f  1f  antif  2f  1f  antif  2f  

0.2 0.72 0.87 0.54 0.00 0.00 0.00 1.93 1.38 0.83 0.02 0.01 0.01 

2 0.65 0.74 0.49 0.19 0.26 0.18 2.33 0.59 0.59 0.65 0.21 0.21 

8 0.64 0.74 0.45 0.28 0.45 0.30 6.44 0.57 1.83 3.91 0.48 1.50 

20 0.61 0.63 0.51 0.44 0.57 0.46 7.26 0.68 2.06 5.20 0.57 1.89 

 

Figure 3.11. Experiment results: (a) dissipated power ratio; (b) harvested power ratio. 
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Chapter 4 Transient Responses 

The transient responses of the system installed with a model B TMD are investigated in this 

chapter. The tuning strategies are based on: (a) the stability maximization criterion (SMC); and 

(b) the energy harvesting efficiency. Both the simulation and experiment results are presented to 

validate the tuning strategies.  

4.1 System modelling 

4.1.1 SMC 

The SMC was developed by Nishitani and Matsihisa (1997) and applied to the design of a model 

B TMD by Xiang and Nishitani (2015). The idea of the SMC is outlined in this subsection and 

the energy harvesting efficiency is also considered. 

Consider a linear system of the order N with a scalar input, the state-space model can be written 

as, 

  X AX Bu   (4.1) 

where X and u are the state vector and input, respectively, A is the state matrix or system matrix, 

and B is the input vector. If all the eigenvalues  ( 1, , )i i N   are distinctive, A is 

diagonalizable and semi-simple. The free vibration response can be written as, 
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where iP  is given by such Lagrange’s interpolation polynomial as, 
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The degree of stability is defined as the absolute value of the maximum real part of the 

eigenvalues, 

 max Re( )ii
     (4.4) 

where 0   and the following inequality holds, 

 0 0( ) ( )
0 0

1
e ( ) ( )

N
t t t t

i
i

t t e  




A X PX   (4.5) 

For a damped SDOF primary system equipped with a model B TMD, the equations of motion for 

the system are given as 

  ( )a a amx k k x k x cx my        (4.6) 

 a a a a a a a am x c x k x k x m y       (4.7) 

where m and am  are the primary mass and the absorber mass, respectively, k and ak  are the 

primary spring stiffness and the absorber spring stiffness, respectively, c and ac  are the 

damping coefficient of the primary structure and the absorber damper, respectively, x and ax  

are the displacement of the primary mass relative to the base and the displacement of the 

absorber mass relative to the base, respectively and y is the base displacement. Similar to Section 

3.1, a set of variables are defined to facilitate the analysis, 

 ,  ,  ,  ,  ,
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Equations. (4.6) and (4.7) now become, 
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Introducing a new time scale pt  , with 
2 2

2 2
2 2 ,p p p p

d x d x dx dxx x x x
dt d dt d

   
 

       , 

Eq. (4.9) becomes, 
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With [ , , , ]T
a ax x x x X , the state matrix A can be expressed as, 
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  (4.11) 

Solving the characteristic equation yields four eigenvalues in complex conjugate pairs denoted as 

1,2 1 1 3,4 2 2,a jb a jb       . By defining ag  , the characteristic equation can be 

obtained as, 

 4 3 2 2 2 2 2 22( ) ( 4 1 ) 2( ) 0p p pg g g g                         (4.12) 

which can also be written using the eigenvalue solutions, 

 1 1 1 1 2 2 2 2( )( )( )( ) 0a jb a jb a jb a jb              (4.13) 

Comparing the coefficients of   from the above two equations, the following can be obtained, 

 1 22( ) 2( )pg a a     (4.14) 

 2 2 2 2
1 2 1 24 1 4p g s s a a          (4.15) 

 2 2 2 2
1 1 2 22( ) 2( )p g g a s a s         (4.16) 
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 2 2 2
1 2s s    (4.17) 

where 2 2 2
1 1 1s a b   and 2 2 2

2 2 2s a b  . It can be seen from Eq. (4.14) that the degree of stability 

will be maximized if 1 2a a  and meanwhile g is maximized. By substituting Eq. (4.14) into 

Eqs. (4.15) and (4.16) with the condition of 1 2a a , the following can be obtained, 

 2 2 2 2 2
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Substituting Eq. (4.18) into Eq. (4.19) yields, 

 2 2 2( )[ (1 ) 1] 0p pg g           (4.20) 

This will result in, 

 2 2(1 ) 1pg         (4.21) 

It can be seen that g will be maximized if   is maximized. 

From Eq. (4.17) the following should be satisfied, 

 
2 2
1 2

2
s s




   (4.22) 

The equality holds when 1 2s s  and   will be maximized. Hence g will be maximized. 

Based on the above discussion, the degree of stability will be maximized when (Xiang & 

Nishitani, 2015), 

 1 2 1 2,  a a s s    (4.23) 
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4.1.2 Energy harvesting 

The absorber’s efficiency in energy harvesting is also considered. When the system is given an 

initial disturbance 0 0 0 0( , , , )a aX V X V  where 0X  and 0V  are the initial relative displacement 

and relative velocity of the primary mass to the base, and 0aX  and 0aV  are the initial relative 

displacement and relative velocity of the absorber mass to the base. The initial energy of the 

system is give as, 

 2 2 2 2
0 0 0 0 0

1 1 1 1( )
2 2 2 2in a a a aE kX mV k X X m V       (4.24) 

Recalling Section 2.2, the current induced in the electric circuit has the expression of, 

 
2 a

coil load

i x
R R





  (4.25) 

The harvested power can be written as, 

 
2

2 2
2( ) ( ) ( )

(2 )
load

load load a
coil load

Rp t i t R x t
R R


 


  (4.26) 

The total harvested energy from the transient response is the integration of the harvested power 

over the entire time period (T) of the vibration, 

 ( )
T

load loado
E p t dt    (4.27) 

A performance index is thus defined as the ratio of the harvested energy to the initial energy, 

 load

in

EI
E

   (4.28) 

When the primary system is damped, Eq. (4.28) can also be written as, 
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 load

cm ce

EI
E E




  (4.29) 

where cmE  is the energy dissipated by the primary damping and ceE  is the energy dissipated 

by the absorber damper. After neglecting the mechanical damping of the absorber system which 

is negligible comparing to the electrical damping coefficient, the amount of harvested energy 

satisfies, 

 
2

load
load ce

coil load

RE E
R R




  (4.30) 

if one recalls Eq. (3.33).  

4.2 Simulation results 

To investigate the SMC criterion for designing a model B TMD and the energy harvesting 

efficiency, simulations are conducted using the following system parameters: m =0.34 kg, 

13.7 Hzpf   and 0.048 kgam  .  

4.2.1 Undamped primary system 

The primary system is first considered to be undamped. The optimum parameters derived 

according to the SMC are given as, 

 

1 1 4
2

1 1 4
2

opt

opt









 


 


  (4.31) 

which are calculated to be, 
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1.205
0.4124

opt

opt








  (4.32) 

To verify the derivation, the Genetic Algorithm toolbox in MATLAB is utilized with the 

problem defined as a multi-objective optimization. The objective functions are written as, 

 
1 1 2 1 2

2 2 2 2
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J a a a a

J a b a b

 

 

 

   
  (4.33) 

The algorithm searches for the minimum value of 1( , )aJ    and 2( , )aJ    within the range of 

0 1.5   and 0 1a  . The optimum parameters are found to be, 

 
1.2048
0.4122

opt

opt








  (4.34) 

with the following objective function values, 

 1

2

( , ) 0.0001
( , ) 0.0352

a

a

J
J

 

 




  (4.35) 

The optimum values are nearly identical to the ones obtained through the analytical method, 

validating the derivation. 

The transient response of the system is simulated with the initial condition of (0.01, 0, 0, 0). 

Figure 4.1 shows the displacement response of the primary mass when the system is tuned with 

respect to the SMC, both from the analytical method and Genetic Algorithm, and the 

“fixed-points” theory. It can be seen that the response of the primary structure decays faster 

when the system is tuned with the SMC than with the “fixed-points” theory. 
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Figure 4.1. Transient response of the primary mass using different tuning methods 

Simulations are also conducted to evaluate the relationship between the frequency tuning ratio 

 , the damping ratio a  and the degree of stability. The eigenvalues of the system are 

calculated and the maximum value of the real parts of the eigenvalues is plotted in contour plot 

as shown in Figure 4.2. The maximum point corresponds to the condition when 1.2   and 

0.41a  . This is another validation on the analytical method as well as the optimization results 

using Genetic Algorithm. The plot also indicates that the system possesses higher degree of 

stability with both larger damping ratio a  and frequency tuning ratio  . 
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Figure 4.2. Degree of stability for an undamped primary system 

When the mechanical damping in the absorber is neglected, i.e. 
2

e
a e

a a

c
m

 


   where 
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2e
coil load

c
R R





  (4.36) 

the degree of stability and the percentage of the harvested energy are investigated with respect to 

the frequency tuning ratio   and the load resistance loadR . As investigated in Chapter 2, the 

electromagnetic damper used in this study has a coil resistance of 2.3 coilR    and a 

transduction factor of 2.596 Tm . Figure 4.3 (a) shows a contour plot of the degree of 

stability. The highest degree of stability is achieved with the lowest load resistance. This is 

understandable as the damping ratio is reversely proportional to the load resistance. A higher 

damping coefficient is achieved with a lower load resistance. Figure 4.3 (b) shows the percentage 

of the harvested energy during the free response. As predicted in the previous section, given a 

load resistance, regardless of the   value, the percentage remains a constant. The larger the 
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load resistance, the higher the percentage of the harvested energy. When the load resistance has a 

value close to zero, almost no energy can be harvested. This represents a significant trade-off 

situation when the smallest load resistance is associated with the highest degree of stability but 

the least amount of the harvested energy. 

 

Figure 4.3. (a) Degree of stability; (b) percentage of harvested energy, when employing an electromagnetic damper. 

4.2.2 Damped primary system 

The optimum tuning parameters for a damped primary system with different mass ratio and 

primary damping level can be found in a comprehensive table in literature (Xiang & Nishitani, 

2015). The procedure of using Genetic algorithm would be straightforward and thus not 

presented here. 

Introducing a damping ratio of 1% into the primary system, the contour plot of the system’s 

degree of stability is shown in Figure 4.4. The point with the maximum degree of stability 

corresponds to the tuning condition when 1.2   and 0.41a  . The introduction of a low 
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level of the primary damping does not have a significant influence on the tuning parameters for 

the highest degree of stability. 
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Figure 4.4. Degree of stability when  p=0.01. 

 

Figure 4.5. (a) Degree of stability; (b) percentage of harvested energy, when  p=0.01. 

Figure 4.5 shows the degree of stability and the percentage of the harvested energy when using 

an electromagnetic damper for the absorber. It can be seen that with the primary damping, a large 

load resistance does not necessarily bring a high amount of the harvested energy. This is because 
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the increase in load resistance will lower the absorber damping ratio and the amount of the 

energy dissipated by the absorber especially when the absorber damping level is lower than the 

primary damping one. Given a primary damping ratio, there exists an optimum load resistance 

value which remains the same regardless of the frequency tuning ratio  . As it can be obtained 

from Figure 4.5 (b), when the primary damping ratio equals to 1%, the optimum load resistance 

is approximately 20   that corresponds to 3.3%a  . 

Figure 4.6 shows the degree of stability and the percentage of the harvested energy when the 

primary damping ratio is set to be 5%. The optimum load resistance is found to be around 13   

that corresponds to 4.6%a  . Even though a closed-form solution for the optimum load 

resistance is not readily available, it can be concluded that for a system with higher primary 

damping, a lower optimum load resistance is required in order to harvest the maximum amount 

of energy from the transient response. 

 

Figure 4.6. (a) Degree of stability; (b) percentage of harvested energy, when  p=0.05. 

Another feature to be observed from Figure 4.5 and Figure 4.6 is the trade-off situation between 

the degree of stability and the energy harvesting efficiency. To increase the system’s stability, a 
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lower load resistance is desired for the maximum absorber damping coefficient. However, this 

does not guarantee the maximum amount of harvested energy and a certain load resistance is 

required in order to optimize the energy harvesting efficiency. Given this trade-off situation, a 

multi-objective optimization is proposed. The Genetic Algorithm toolbox in MATLAB is again 

utilized with the objective functions written as 

 1

2

( , )
( , )

a

a

J
J I

 

 

 

 
  (4.37) 

The negative sign is introduced as the algorithm searches for the minimum value of the objective 

functions. With a primary damping ratio of 1%, given the range of 0 1.5   and 

0 100loadR  , the Pareto Front is found and shown in Figure 4.7. The parameters of the 

obtained solutions are listed in Table 4.1. 

 

Figure 4.7. Pareto Front for the multi-objective optimization. 
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Table 4.1. Solutions in the Pareto Front 

   ( )loadR   I    

1.0986 0.0005 0.0001 8.4866 

1.0989 0.2652 0.0548 8.0363 

1.1043 0.7932 0.1471 7.2165 

1.1050 0.5432 0.1061 7.5317 

1.1052 3.3349 0.4027 5.1139 

1.1147 6.2759 0.5323 3.7120 

1.1236 2.2825 0.3261 5.5917 

1.1437 3.0811 0.3876 5.1684 

1.1461 3.9818 0.4463 4.4665 

1.2110 6.0371 0.5357 3.4238 

1.4863 7.0964 0.5919 2.4423 

For a multi-objective optimization problem, all solutions in the Pareto Front are considered 

equally optimal. As can be seen that the obtained frequency tuning ratio   are mainly within 

1.0 to 1.3, and the load resistance loadR  are under 10  . This provides a reference when 

designing the absorber and it’s feasible that an optimum energy harvesting and vibration 

suppression device can be achieved with a properly chosen design criterion. 

It is worth noting that the simulation results given here are subjected to the use of the specific 

electromagnetic damper involved in this study whose transduction factor is limited. For the 

primary system under investigation, the achievement of the optimum damping ratio requires the 

lowest load resistance for the electromagnetic damper. Figure 4.8 shows the two performance 

criteria when the transduction factor is equal to 10 Tm, which is near four times of that of the 

current damper. It can be seen that even though the optimum load resistance increases after 

raising the transduction factor, the achievement of the maximum degree of stability no longer 
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requires the lowest load resistance and the trade-off situation is less significant than the previous. 

It would be justifiable to assume that an electromagnetic damper with higher transduction factor 

would alleviate the trade-off significance and better achieve simultaneous optimum vibration 

suppression and energy harvesting. 

 

Figure 4.8. (a) Degree of stability; (b) percentage of harvested energy, when  =10 Tm and  p=0.05. 

4.3 Experimental results 

This subsection presents the results of an experimental validation. The identified system 

parameters can be found in Table 3.2. For reference, an analytical model is established with the 

identified system parameters. By adjusting the length of the absorber beam, different frequency 

tuning ratio   can be achieved. The electromagnetic damper has a transduction factor of 2.596 

Tm and the load resistance varies from 0 to 100  . 

Transient response tests are conducted by releasing the primary mass at the displacement of 4.2 

mm with 0 00,  4.2 (mm) and 0a aoV X V   . The displacements of the primary mass, absorber 
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mass and the voltage across the load resistance (V(t)) are recorded, and the energy harvesting 

efficiency, i.e. the percentage of the harvested energy to the initial energy, is calculated using, 

 

2

0

2
0

( )
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load load

in
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E R
E kX
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

  (4.38) 

 

Figure 4.9. Transient responses of the primary mass with different load resistance when  =1.0. 

Figure 4.9 shows the response of the primary mass under the load resistance of 1, 10 and100   

when 1.0  . Such a   value is achieved when the length of the absorber beam is adjusted so 

that the identified natural frequencies of the system are nearly identical to the ones calculated 

from the analytical model. As it can be seen that the lower the load resistance, the shorter the 

oscillation due to the higher absorber damping. In Figure 4.9, the first star points out the first 

oscillation peak while the second star indicates the first following peak whose amplitude is 5% 

of the first peak. As the degree of stability   is not readily available from the experimental 

results, a different criterion is adopted: the decaying time ( t ) the system needs for the 
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displacement of the primary mass to decrease to 5% of its first oscillation peak. The smaller the 

t  value, the more stable the system. From Figure 4.9 one can also observe that the smallest 

load resistance corresponds to the smallest energy harvesting efficiency, which reminds us of the 

trade-off discussed previously. It should be noted that the calculated percentage is much lower 

than the expected because the primary mass is not able to oscillate back to a position close to the 

initial release position, resulting the initial energy to be higher in calculation than its actual 

value.  

By changing the frequency tuning ratio,   1.0, 1.1, 1.2 and adjusting the load resistance to be 

loadR =0.2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 25, 50 and 100   under each frequency 

tuning ratio, two criteria, t  and percentage of the harvested energy, are investigated and the 

results are shown in Figure 4.10 and Figure 4.11, respectively. As the measurement is very 

susceptible to noise, similar to Section 3.3, band-pass filter and spline curve-fitting are used 

during data processing and the results are also presented using spline approximation. 
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Figure 4.10. (a) Experiment results: Criterion 1,     ; (b) simulation results,  .  

Figure 4.10 (a) shows how system’s stability varies with different load resistance under different 

frequency tuning ratio  . For comparison, simulations are conducted using the established 

analytical model with consideration of the primary damping and Figure 4.10 (b) gives the results 

on the degree of stability  . In order to better compare the experiment results with the 

simulation results, the reciprocal of the decaying time t  is taken. The higher the load 

resistance, the lower 1/ t  value. The system is less stable with a low absorber damping. In 

addition, with a higher   value, the system needs more time to return to the equilibrium. From 

Figure 4.10 (b), it can be seen that system possesses higher stability as   increases when   

increases from 0.9 to 1.1. When   further increases, the system becomes less stable. Given the 

possible error in measurement and the difficulty to achieve the exact   value, the experiment 

results agrees fairly with the simulation ones. 
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Figure 4.11. (a) Experiment results: Criterion 2, percentage of harvested energy, (b) simulation results. 

Figure 4.11 (a) shows the percentage of the harvested energy under different tuning conditions. 

As it can be seen that there exists an optimum load resistance for three different   values 

where the highest percentage of harvested energy is achieved. The value for this optimum load 

resistance is found to be approximately 25  . The simulation results using the experiment 

system parameters are also given in Figure 4.11 (b). The percentage of harvested energy 

increases as   increase from 0.9 to 1.2 and start decreasing as   reaches 1.3. The optimum 

load resistance for the maximum percentage of harvested energy is found to be around 22  . 
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Figure 4.12. Experimental results of the energy harvesting criterion under different tuning conditions 

Figure 4.12 provides references when achieving optimum tuning condition with respect to the 

two different criteria. The abscissa and ordinate present the two criteria, respectively and the 

color of the curve corresponds to different values of load resistance with a lighter color 

representing a higher load resistance. As discussed before, lower load resistance can help the 

system restore equilibrium faster at the cost of energy harvesting efficiency. A satisfying balance 

can be achieved when the value of the tuning parameters fall in the area enclosed by a square in 

Figure 4.12. Depending on the design criterion, an optimum vibration absorber/energy harvester 

can be achieved using the proposed apparatus. 
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Chapter 5 Responses under Random Excitation 

In this chapter, the tuning strategies of a model B TMD are investigated with the intention to 

minimize the power dissipated by the primary damping and maximize the power dissipated by 

the absorber damper in order to achieve effective vibration suppression and harvest more energy 

from the system. Following the procedure employed by Zilletti, Elliott, and Rustighi (2012), 

analytical results are first provided with a detailed derivation according to different performance 

criteria. The effectiveness of a model B TMD will be examined based on the dissipated power 

both by the primary and absorber damping. The energy harvesting efficiency is also considered 

when the proposed electromagnetic damper is installed as the absorber damper. Simulations are 

conducted to validate the derivation and experimental results are also presented. 

5.1 Analytical investigation 

5.1.1 General discussion on the model B TMD 

Consider a damped SDOF primary system installed with a model B TMD. The equations of 

motion can be written as, 

 
( )a a a

a a a a a a a a

mx k k x k x cx my
m x c x k x k x m y

     

    
  (5.1) 

The parameters have been defined in the previous chapters. To measure the response magnitudes 

the mean square relative velocity is used (Zilletti et al., 2012), 
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where G  is the velocity response function of the primary mass, aG  is that of the absorber 

mass and ( )yS   is the input mean square spectral density function. In order to find out the 

velocity response functions of the primary and absorber mass, harmonic ground motion 

j ty Ye   is first assumed. Thus the  steady-state responses of the primary system and absorber 

system are defined by j tx Xe   and j t
a ax X e  , respectively. The steady-state velocity 

response magnitudes of the primary mass and the absorber mass are found to be, 

 2 1 1( ) ( ) a jbV j X j Y
c jd

  
 

 
 

  (5.4) 
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  (5.5) 

where, 
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By defining the following variables, 

 , , , , , ,
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Equations (5.4) and (5.5) can be normalized as the following velocity response functions, 
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 (5.9) 

If the input spectrum is assumed to be ideally white, i.e. 0( )yS S  , Eqs. (5.2) and (5.3) can 

then be re-written as, 
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Two indexes are defined as, 
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where the constant 02 S k  is introduced to ensure that the performance indexes are 

dimensionless. The index 1pI  represents the power dissipated by the primary damping while the 

index 2pI  the power dissipated by the absorber damping. Based on Eq. (5.10), the mean square 

value of the relative velocity of the primary mass times the mechanical damping c can be 

expressed as follow, 
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Similarly based on Eq. (5.11) for the absorber damping, 
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Thus the performance indexes become, 
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Equation (5.16) is investigated first. By writing Eq. (5.8) into a convenient form, one has 
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 (5.19) 

The integral in Eq. (5.16) can be performed using the formula in literature (Newland, 2012) and 

it results in, 
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  (5.20) 

Similarly, Eq. (5.17) is found to be, 
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  (5.21) 

5.1.1.1 Undamped primary system  

The special case where the primary structure is undamped is first considered. When 0p  , 

Eqs. (5.20) and (5.21) can be reduced to, 

 1 0pI    (5.22) 

 
2 2

1 1
4pI 




   (5.23) 

Equation (5.22) is self-explanatory as no power is dissipated if the primary system is free of 

damping. Equation (5.23) indicates that the power dissipated by the absorber damper is constant. 

This is easy to understand from the energy balance point of view. When there exists no primary 

damping, the input power will be equal to the power dissipated by the absorber damping and 

since the excitation is assumed to be ideally white, the value of the dissipated power remains 

constant. 

Even though the dissipated power by the primary damping is zero in this case, the mean square 

relative velocity of the primary mass is still investigated in order to find the optimum frequency 

tuning ratio   and damping ratio a  to minimize the following objective function, 

 
21

2pI G dr





    (5.24) 

In order to do that, the following conditions need to be satisfied, 
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  (5.25) 

which lead to, 
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  (5.26) 

The above equations yield, 

 2 6 4 2( ) (2 2 ) (3 6) 4 0               (5.27) 

 
2

2
1   ( 1)

2 4a


 



 


  (5.28) 

respectively. For Eq. (5.27) to have real positive roots, the following needs to be satisfied, 

 5 4 3 227 72 184 87 12 4 0              (5.29) 

which holds true only when 0.15  . 

Figure 5.1 shows the contour of pI  when 0.05  . As it can be seen, no global minimum 

points exist. Eq. (5.28) is plotted as the black dashed curve in Figure 5.1 and the local minimum 

and maximum points are marked as '*' and 'o' on the line, respectively. The local minimum point 

has the corresponding tuning parameters of 1.03   and 0.12a  . Table 5.1 lists the 

optimum values of   and a  when   ranges from 0.03 to 0.14.   



68 

 

 

Figure 5.1. Contour of Ip when  =0.05. 

Table 5.1. Optimum values of   and  a for undamped primary system 

  opt  opt
a  

0.03 1.016 0.090 

0.04 1.022 0.105 

0.05 1.028 0.119 

0.06 1.035 0.132 

0.07 1.042 0.145 

0.08 1.051 0.158 

0.09 1.060 0.171 

0.10 1.069 0.184 

0.11 1.081 0.199 

0.12 1.095 0.215 

0.13 1.113 0.235 
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0.14 1.146 0.268 

Figure 5.2 shows the contour of pI  when 0.18  . Since Eq. (5.29) is no longer satisfied, 

there exists no local minimum point. 

 

Figure 5.2. Contour of Ip when  =0.18. 

It is worth noting that the performance index under discussion here is the mean squared relative 

velocity of the primary mass instead of the absolute velocity. Thus the index 2[ ]E V  does not 

strictly represent the kinetic energy of the primary mass. A mathematical difficulty is 

encountered when investigating the kinetic energy of the primary mass. Here is a brief 

explanation. 

The absolute velocity of the primary mass is found out to be, 
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  (5.30) 

which can be normalized to be, 
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 (5.31) 

It is difficult to use the reference formula (Newland, 2012) to calculate the following integral, 

 
2 2

2
0 0[ ]abs abs p absE V S G d S G dr 

 

 
     (5.32) 

Thus the performance index for the primary kinetic energy is not investigated. Nevertheless, the 

index 2[ ]E V  is representative of the primary kinetic energy. 

5.1.1.2 Damped primary system  

In order to minimize the power dissipated by the primary damping and maximize the power 

dissipated by the absorber, the following conditions have to be satisfied, 
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  (5.33) 
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  (5.34) 

Substituting Eq. (5.20) into Eq. (5.33) yields 
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  (5.36) 

Substituting Eq. (5.21) into Eq. (5.34) yields 
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  (5.38) 

Comparing the above four equations, it can be seen that Eq. (5.37) is equivalent to Eq. (5.35) and 

Eq. (5.38) is to Eq. (5.36). This indicates that the minimization of the dissipated power by the 

primary damping and maximization of the power dissipated by the absorber both correspond to 

the same optimum value of   and a , provided that   and p  are not zero. 
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Equations (5.37) and (5.38) can be rewritten as 
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Solving the above equations can be mathematically challenging. Hence a different approach is 

employed. Given the values of   and p , a real positive   value can be obtained by solving 

Eq. (5.39) with a specific a  value. By repeating this procedure, a set of data points ( ,  )a   

can be obtained and can be plotted into a curve which represents the relationship of these 

optimum parameters. Same for Eq. (5.40). With two curves available, the optimum value of   

and a  can be determined from the intersection point. Figure 5.3 shows the contour of 1pI  

when 0.05   and 0.05p  . The purple and black curves correspond to Eqs. (5.39) and 

(5.40), respectively. These two curves intersect at two points: '*' represents the local minimum 

point and 'o' the local maximum. 
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Figure 5.3. Contour of Ip1 when  =0.05 and  p=0.05. 

Figure 5.4 shows the contour of 1pI  when 0.15   and 0.05p  . As can be seen, the curves 

do not intersect. This is similar to the case with an undamped primary system where there exists 

no local minimum points when 0.14  . 
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Figure 5.4. Contour of Ip1 when  =0.15 and  p=0.05. 

5.1.2 Discussion on the model B TMD with the electromagnetic damper 

In this section, the dissipated power index 3pI  and harvested power index 4pI  are defined for 

a model B TMD equipped with an electromagnetic damper.  

For the dissipated power: 
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where, 
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For the sake of simplicity, the mechanical damping of the absorber is neglected. As the absorber 

damping consists entirely of electrical damping, 3pI  has the same analytical form as 2pI  with 

e a  . Recall Eq. (2.10), the electrical damping coefficient is defined as,  
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coil load
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R R





  (5.43) 

where   is the transduction factor and is equal to 2.596 Tm for the electromagnetic damper 

used in this study, 2 coilR  and loadR  are the coil resistance and load resistance, respectively. 3pI  

varies with the frequency tuning ratio   and load resistance loadR . Equations (5.39) and (5.40) 

yield two curves which capture the relationship of   and loadR . 

Given the relationship between the dissipated power and harvested power, the harvested power 

index is defined as, 
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Numerical investigations are conducted with the following system parameters: m = 0.34 kg and 

13.7 Hzpf  . For 0.05   and 0.05p  , Figure 5.5 (a) shows the contour of 3pI . The 

maximum point is label in “*” and corresponds to a frequency tuning ratio of 1.02   and load 

resistance 15 loadR   . This is the same as that found in Figure 5.3 where the maximum point 

represents the following: 1.02   and 0.12a  . 
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Figure 5.5. Contour of (a) Ip3; (b) Ip4, when  =0.05 and  p=0.05. 

The contour of 4pI  for 0.05   and 0.05p   is shown in Figure 5.5 (b) with the curves 

from Figure 5.5 (a). The curves are plotted as a reference to see the trade-off between vibration 

suppression and energy harvesting. From Figure 5.5 (b) it can be seen that the intersection point 

is located in the proximity of the points with high harvested power, which means that the 

trade-off situation is not significant as a satisfactory amount of the dissipated power and 

harvested power can be achieved at the same time with the given system parameters. 

Figure 5.6 shows the contour of 3pI  and 4pI  for 0.08   and 0.05p  . The intersection 

point is label in ‘’*” and corresponds to a frequency tuning ratio of 1.05   and load 

resistance 4 loadR   . With a higher mass ratio, the system requires a higher absorber damping 

ratio, i.e. a lower load resistance, to achieve the greatest amount of the dissipated power. 

However, the intersection point which represents the optimum state for power dissipation only 

corresponds to a fair amount of the harvested power. The increase of mass ratio worsens the 

trade-off situation. 
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Figure 5.6. Contour of (a) Ip3; (b) Ip4, when  =0.08 and  p=0.05. 

On the other hand, increase of the primary damping ratio has little effect on the trade-off 

situation. Figure 5.7 shows the contour of 3pI  and 4pI  for 0.08   and 0.15p  . The 

intersection point in Figure 5.7 (a) corresponds to a tuning ratio of 1.003   and load 

resistance 5 loadR   . With a larger primary damping ratio, the system requires a smaller 

frequency tuning ratio for the maximum amount of the dissipated power. The trade-off remains a 

moderate level as it can be seen from Figure 5.7 (b). 
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Figure 5.7. Contour of (a) Ip3; (b) Ip4, when  =0.08 and  p=0.15. 

5.2 Simulation results with the band-limited white noise 

Simulations are conducted to validate the results discussed above. The following parameters are 

used: m = 0.34 kg, 13.7 Hzpf   and 0.05p  . The ground motion is approximated by a 

band-limited white noise with a frequency range of 5 to 25 Hz. The mean squared relative 

velocities of the primary mass and absorber mass are calculated and the performance indexes are 

obtained using Eqs. (5.12) and (5.13) with an approximate spectral density of 5
0 8.98 10S    

2N s/rad . This spectral density value is calculated by averaging the squared magnitude of the 

Fourier Transform of the input over the time interval.  

Figure 5.8 shows the contour of 1pI  and 2pI  when 0.05   and 0.05p  . As it can be 

seen that the minimization of the power dissipated by the primary damping is equivalent to the 

maximization of the power dissipated by the absorber damping, and local minimum/maximum 

point exists as expected. 
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Figure 5.8. Contour of (a) Ip1; (b) Ip2, when  =0.05 and  p=0.05. 

Figure 5.9 shows the contour of 1pI  and 2pI  when the mass ratio is increased to 0.15  . 

The local maximum point does not exist anymore and the maximum dissipated power increases 

with increase of the frequency tuning ratio and damping ratio. 
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Figure 5.9. Contour of (a) Ip1; (b) Ip2, when  =0.15 and  p=0.05. 

When the system is installed with an electro-magnetic damper, simulations are also conducted to 

investigate the relationship between the frequency tuning ratio  , load resistance loadR  and the 

dissipated and harvested power. The mechanical damping of the absorber system is neglected. 

Figure 5.10 shows the contours of 3pI  and 4pI  when 0.05   and 0.05p  . Compared 

with Figure 5.5, they show a good agreement with the analytical investigation. 
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Figure 5.10. Contour of (a) Ip3; (b) Ip4, when  =0.05 and  p=0.05. 

Figure 5.11 shows the contour of 3pI  and 4pI  when 0.05   and 0.15p  . The increase 

of the primary damping has lowered the optimum tuning ratio value but barely affected the 

trade-off situation. 
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Figure 5.11. Contour of (a) Ip3; (b) Ip4, when  =0.05 and  p=0.15. 

Figure 5.12 shows the contours of 3pI  and 4pI  when 0.15   and 0.15p  . As predicted, 

the trade-off between the dissipated power and harvested power has become more significant 

with the increase of the mass ratio.  
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Figure 5.12. Contour of (a) Ip3; (b) Ip4, when  =0.15 and  p=0.15. 

5.3 Experimental results 

The experiment is conducted with the intention to show how the four performance criteria, i.e. 

1,2,3,4pI  vary with different frequency tuning ratios and damping ratios/load resistances. In order 

to achieve a certain range of   and especially, a  using the proposed electromagnetic 

damper, a different primary structure is used. The apparatus is shown in Figure 5.13. The 

identified system parameters are listed in Table 5.2. 
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Figure 5.13. Photo of the experiment set-up. 

Table 5.2. Identified system parameters 

Primary mass 0.697 kgpm   

Primary natural frequency 5.2 Hzpf    

Primary stiffness 2(2 ) 744.05 N/mp p pk m f     

Primary damping ratio 0.001p    

Absorber mass 0.048 kgam   

Table 5.3. The beam lengths vs. the frequency tuning ratios and the load resistances vs. the absorber damping ratios. 

Beam length (mm)   Load resistance ( ) a  

250 1.440 0.2 0.4476 

255 1.347 2.5 0.3026 

260 1.264 5 0.2238 

265 1.189 7.5 0.1776 
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270 1.121 10 0.1472 

275 1.059 12.5 0.1256 

280 1.003 15 0.1096 

285 0.952 17.5 0.0972 

290 0.904 20 0.0873 

295 0.861 22.5 0.0793 

300 0.821 25 0.0726 

305 0.784 30 0.0621 

  35 0.0543 

  40 0.0482 

  50 0.0394 

  75 0.0270 

  100 0.0205 

  200 0.0105 

 

In order to achieve different frequency tuning ratios and damping ratios, the length of the 

absorber beam is adjusted from 250 mm to 305 mm with a 5 mm increment. At each length, the 

load resistance is varied from 0.2   to 200  . This yields a parameter range of 

0.78 1.44   and 0.01 0.45a  . When the system is tuned within this parameter range, 

random base motion is used to excite the system. The input signal is chosen as band-limited 

white noise with a range of 1 to 15 Hz. The natural frequencies of the combined system lie 

within the chosen frequency band so that the system dynamics can be fully excited. To obtain 

smoother results, 10 sets of random excitations are used and average values of the criteria are 

calculated. As shown in Figure 5.14, each set of excitation lasts 10 seconds followed by 10 

seconds of interval. The base acceleration is calculated by differentiating the displacement twice 
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and the power spectral density of the base acceleration is calculated for 10 sets of excitation and 

the results are summed and averaged, resulting in an approximate spectral density of 

4 2
0 1.5 10  N s/radS   . 

 

Figure 5.14. Base displacement for one set of random excitation 

The displacements of the base, primary mass, and absorber mass are recorded as well as the 

voltage across the load resistance. The velocities of the base, primary mass, and absorber mass 

are then obtained by differentiating the displacement signal and the criteria are calculated using 

the following formulas 
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[ ] 1 ( )
4 4

p p
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


  (5.48) 

where T is the excitation period and 2 3p pI I  as the mechanical damping of the absorber was 

neglected. 

As the laser sensors are susceptible to noises which can introduce a significant error in the 

differentiation of displacement signal, the measured signal is first filtered by a low-pass filter 

with a cut-off frequency of 80 Hz. The filtered displacement signal is then interpolated using 

cubic spline approximation before numerical differentiation to obtain the velocity. 

Figure 5.15 shows from both 3D and 2D perspectives how the power dissipated by the primary 

damping 1pI  varies with the frequency tuning ratio   and the damping ratio a  which is 

calculated from the load resistance. To better distinguish each curve, the line color is adjusted 

according to   value. The color of the lines changes from dark red to light yellow as the   

value increases. For the red curves which correspond to a   value less than 1.2, as the damping 

ratio increases, 1pI  decreases to the minimum point and then starts increasing. As   increases 

to 1.2, the increasing trend for 1pI  with a further increase of damping ratio is lessened. When 

  exceeds 1.2, 1pI  decreases monotonically with an increase of the damping ratio. 

As a reference, simulations are also conducted using the identified system parameters. The 

system is under a ground motion of band-limited white noise (1 to 15 Hz) with an approximate 

power spectral density of 5 2
0 8.56 10  N s/radS   . The primary damping ratio is slightly 

increased to 0.5% as the quality of the simulation results deteriorates significantly and does not 
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show a clear pattern of the performance criterion when the primary damping ratio decreases to 

0.1%. This measure of increasing the primary damping in simulation is justifiable as the 

simulation results are presented here to demonstrate the pattern of the performance criterion for 

reference purpose. The frequency tuning ratio   varies from 0.8 to 1.5 with an increment of 

0.05 and the damping ratio a  changes from 0.01 to 0.5. The simulation results of 1pI  are 

presented in Figure 5.15 (c) and (d) in both 3D and 2D views. As it can be seen, both the 

experimental and simulation results share the same pattern that, with an increase of  , 1pI  

starts decreasing monotonically with an increase of a  instead of reaching a minimum point 

first and then start increasing. The lowest 1pI  value from the simulation is achieved when 

1.05  , shown as an orange-color curve. This value is close to the one obtained from the 

experiment which is 1.003   despite the slight excessive descending pattern. 

Figure 5.16 shows how the dissipated power by the absorber damper 2pI  is affected by the 

frequency tuning ratio   and damping ratio a . When   is smaller than 1.2, with an 

increase of the damping ratio, 2pI  experiences a gradual increase before it decreases while 

when   is greater than 1.2, 2pI  keeps growing with a larger value of the damping ratio. This 

is similar to the results obtained from the simulation which are shown in Figure 5.16 (c) and (d). 

Despite the slight non uniformity of the experimental results and its minor discrepancy with the 

simulation results, the experimental results are considered representative of the system 

behaviors. Comparison of subplots (a) and (b) of Figure 5.16 and those of Figure 5.15 also 

validates that the minimization of 1pI  is equivalent to the maximization of 2pI . 
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Figure 5.15. Experiment results of Ip1 (a) 3D; (b) 2D; simulation results of Ip1 (c) 3D; (d) 2D. 
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Figure 5.16. Experiment results of Ip2 (a) 3D; (b) 2D; simulation results of Ip2 (c) 3D; (d) 2D. 



91 

 

Figure 5.17 show the variation of 3pI  with respect to the frequency tuning ratio   and load 

resistance loadR . As it can be seen, 3pI  experiences different trends when the   value is 

smaller or greater than 1.2. Given consideration on all sources of the measurement errors and the 

discrepancy induced from the displacement differentiation, the experiment results are considered 

acceptable. 

The harvested energy 4pI  under different tuning ratios and load resistances is shown in Figure 

5.18. As predicted in the previous discussion, under different frequency tuning conditions, the 

harvested energy peaks with a certain load resistance and decays with the increase of load 

resistance. Among the maximum points for each frequency tuning condition, the peak point at a 

  value near 1 has the greatest magnitude. Given a loadR  value, 4pI  increases as    

approaches 1 and then starts decreasing with a greater   value. 
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Figure 5.17. Experiment results of Ip3 (a) 3D; (b) 2D; simulation results of Ip3 (c) 3D; (d) 2D. 
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Figure 5.18. Experiment results of Ip4 (a) 3D; (b) 2D; simulation results of Ip4 (c) 3D; (d) 2D. 
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Chapter 6 Model B TMD in Multi-degree-of-freedom (MDOF) System 

This chapter is dedicated to the investigation of a 2-DOF primary system with a model B TMD 

installed between the two main floors. The schematic of the system under consideration is shown 

in Figure 6.1. Due to the limitation of this study’s scope, only simulation results are presented 

and the discussion on different tuning strategies are limited in depth. Based on the results in this 

chapter, future work can be intrigued for more detailed investigation. 

 

Figure 6.1. MDOF primary structure installed with a non-traditional vibration absorber. 

6.1 Harmonic base excitation 

6.1.1 Vibration suppression 

When the above structure is under base excitation, the equation of motion can be written in the 

following matrix form, 
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 (6.1) 

where 1m , 2m  and am  are the masses for the first floor, the second floor and the absorber, 

respectively, 1k  , 2k  and ak  are the spring stiffness for the first floor, the second floor and the 

absorber, respectively, and 1c , 2c  and ac  are the damping coefficients for the first floor, the 

second floor and the absorber mass, respectively, y represents the base displacement, 1x , 2x  

and ax  are the displacements of the first floor, the second floor and the absorber, each relative 

to the base displacement. The following variables are defined for the absorber system, 

 ,  ,  
2

a a a
a i ai

a pi a pi

k c
m m


  

 
     (6.2) 

a  is the natural frequency of the absorber system, pi  is the ith natural frequency of the 

primary structure, i  is the frequency tuning ratio regarding the ith mode and ai  is the 

damping ratio regarding the ith mode. Assume the base motion to be harmonic in the form of 

j ty Ye   with   representing the exciting frequency, the steady-state response of the 

displacements for the first floor, second floor, and the absorber mass can be written as 

 1 1 2 2,  ,  j t j t j t
a ax X e x X e x X e       (6.3) 

where 1X , 2X  and aX  are the amplitudes of the displacement of the first floor, second floor, 

and the absorber mass, respectively. By substituting Eq. (6.3) and j ty Ye   into Eq. (6.1) and 

performing matrix operation and the complex algebra, the displacement amplitudes of the two 
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floors and the absorber mass can be obtained. This can be accomplished through Maple program 

and the expressions for each displacement are not given here due to the length and complexity of 

the formulae (See Appendix A). Similar to Chapter 3, the displacement transmissibility ratios for 

each floor is defined as, 

 2 ,  1, 2i i
i

i

X k
G i

m Y
    (6.4) 

To simplify the investigation, an undamped primary system is considered with the following 

system parameters: 1 2 0.5 kgm m  , 1 2 980 N/mk k  . The natural frequencies of the 

primary structure are found to be 1 4.35 Hzpf   and 2 11.40 Hzpf  . The first mode is to be 

suppressed with an absorber having the mass of 1 0.048 kgam  . The subscript 1 means the 

absorber is designed to suppress the 1st mode of the primary structure. The natural frequency of 

the absorber is first set equal to the first natural frequency of the primary system, resulting in a 

frequency tuning ratio of 1 1.0   and an absorber stiffness of 1 35.94 N/mak  . 

As the first mode is under suppression in which the second floor experiences the bigger 

vibration, the displacement transmissibility of the second floor of the primary system is plotted 

against the exciting frequency with different absorber damping ratio, as shown in Figure 6.2. The 

curve for the primary structure without the absorber is also shown in the figure for comparison. It 

can be seen that, similar to a SDOF primary system attached with an absorber, there exists two 

fixed points for a 2-DOF primary system with a vibration absorber under different absorber 

damping ratios. 
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Figure 6.2. Displacement transmissibility ratio of the second floor. 

The discovery and discussion on the two invariant points for MDOF primary system installed 

with a vibration absorber can be found in literature with a focus on the traditional vibration 

absorber (Chueng, Wong, & Cheng, 2015; Greco, Lucchini, & Marano, 2015; Nishimura, 

Yoshida, & Shimogo, 1989). One of the analytical methods to attack the problem of finding the 

optimum frequency tuning ratio and damping ratio is to employ the Sherman-Morrison matrix 

inversion formula (Ozer & Royston, 2004, 2005). However, this method is found to be not 

applicable to the case with a non-traditional vibration where the absorber damper is directly 

attached between the absorber mass and the floor below. Other researchers have also explored 

numerical methods with different performance criteria to find the optimum parameters for the 

system (Zuo & Nayfeh, 2002, 2004). To the best knowledge of the author, there has not been 

discussion on the optimization of MDOF system with a non-traditional absorber. 

With the two ‘fixed points’, it would be natural to first apply the fixed-points theory of Den 

Hartog to find the optimum parameters. The performance index is the displacement 



98 

 

transmissibility of the second floor. Since the existence of the two fixed points is independent of 

the absorber damping, 2G  can be expressed in the following form, 

 
2

2 2
2 2

2 2

m a m

m a m

A c BG
C c D





  (6.5) 

The expressions of 2mA , 2mB , 2mC  and 2mD  are not given here due to their lengths (For 

reference, Appendix A gives the displacement magnitudes of the steady-state response of the 

primary mass and absorber mass). It is expected that if one follows the derivation for a SDOF 

system, which includes finding the abscissas of the fixed points, letting the two coordinates to be 

equal to find the optimum 1 , and finding the optimum damping ratio 1a  with Brock’s 

approach, the optimum parameters for a MDOF system with a vibration absorber can be 

obtained. However, with multiple degrees of freedom in presence, the derivation loses its 

mathematical elegance and simplicity as for a SDOF system. Thus a numerical optimization 

method, Genetic Algorithm in MATLAB, is employed and combined with the ‘fixed-points’ 

theory. The process of finding the optimum parameters is shown below with the system 

parameters same as above. 

Recalling Eq.(6.5), the abscissas of the two fixed points can be found after solving the following 

equation, 

 2 2

2 2

m m

m m

A C
B D

   (6.6) 

This yields a 4th order equation for 2  whose roots can be found using the ‘root’ function in 

MATLAB. The abscissas of the fixed points are calculated to be, 

 1 23.98 Hz,  4.80 Hzf f    (6.7) 
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The optimum frequency tuning ratio 1  is expected to be one that makes the coordinates of the 

two points equal. To achieve this, an objective function is defined as the absolute value of the 

difference between 2 1( )G f  and 2 2( )G f . Calculations are carried out through the range of 

10.8 1.2   and the optimum 1  is found to be, 

 1 0.9556opt    (6.8) 

with a 0.0032 difference in the two coordinates. 

To find out the optimum damping ratio 1a , it is required that the curve of 2G  passes through 

the two fixed points horizontally, which means the coordinates of the points are equal to that of 

the nearest natural frequency. A multi-objective optimization problem is defined and the 

objective functions are, 

 1 1 2 1 2 1

2 1 2 2 2 2

( ) ( ) ( )

( ) ( ) ( )
a c

a c

J G f G f

J G f G f





 

 
  (6.9) 

where 1 3.73 Hzcf   and 2 4.84 Hzcf   are the first two natural frequencies of the combined 

system. After a certain amount of iterations, the following two damping ratios are found and 

each corresponds to the condition when, 

 1 1 1 1 2 1

1 2 1 1 2 1

( ) 0.1126,  ( ) 0.0001,  ( ) 1.7506
( ) 0.1359,  ( ) 1.5380,  ( ) 0.0000

a a a

a a a

J J
J J

  

  

  

  
  (6.10) 

This is again similar to the derivation for an SDOF system where it is impossible for the curve to 

pass horizontally through the fixed points simultaneously. Hence, a convenient average value is 

used for the optimum damping ratio, 
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Figure 6.3 shows the displacement transmissibility for the second floor respectively under the 

optimum tuning ratio and different damping ratios including the optimum one. 

 

Figure 6.3. Displacement transmissibility of the second floor when  1=0.9556. 

The suppression of the second mode is also studied. The first floor experiences greater vibration 

when the second mode is suppressed. Figure 6.4 shows the displacement transmissibility of the 

first floor when the absorber is tuned using the second mode, i.e. 2 1.0   and different 

damping ratios. One can also observes the two fixed points. The optimum tuning parameters for 

tuning the second mode can also be found using a similar procedure as discussed above. 
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Figure 6.4. Displacement transmissibility of the first floor when  2=1.0. 

A second absorber is added with the same absorber mass 2 1 0.048 kga am m   to enable tuning 

of both the modes. Figure 6.5 shows the schematic of such a configuration. Figure 6.6 show the 

displacement transmissibility for each floor when both the modes are under suppression with 

different damping ratios and 1 0.9556   and 2 1.0  .The suppression of the first mode 

appears to is compromised with addition of another vibration absorber installed between the first 

floor and the base to tune the second mode. Another interesting phenomenon to notice is that for 

1G  there exist four fixed points near the second mode of the original system when both the 

absorbers are tuned to suppress both the modes, which invites more rigorous mathematical 

investigation. It should be noted that the existence of four fixed points has been mentioned in 

literature (Vakakis & Paipetis, 1986). The authors discussed the effect of a traditional vibration 

absorber on a linear 2DOF structure and the derivation suggested four fixed points in the plot of 

force transmissibility vs. the exciting frequency. The analytical model was simplified where the 

floor masses of the primary structure are equal to each other and so is the stiffness. However, the 
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method of attack is also only applicable to a traditional vibration absorber where an equivalent 

mass is used for the absorber system (Harris & Crede, 1976)  
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Figure 6.5. MDOF system with both modes tuned by vibration absorbers. 

 

Figure 6.6. Displacement transmissibility of (a) the first floor; (b) the second floor, when  1=0.9556 and  2=1.0. 

6.1.2 Energy harvesting 
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When an electromagnetic damper is used as the absorber damper, the energy harvesting 

efficiency is again brought to attention along with the vibration suppression. Following a similar 

process as that in Chapter 3, this subsection investigates two performance criteria regarding 

vibration suppression and energy harvesting. 

For the system shown in Figure 6.1, with the vibration absorber tuned to suppress the first mode 

of the primary structure under harmonic base excitation, the instantaneous input power can be 

written as, 
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  (6.12) 

where inP  is the amplitude of the input power. The instantaneous dissipated power can be 

written as, 
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where eP  is the amplitude of the dissipated power. The harvested power is given as, 
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where loadP  is the amplitude of the dissipated power. Two performance criteria are defined: the 

dissipated power ratio and the harvested power ratio with the same definition as in Chapter 3, 

 1
e

in

PM
P

   (6.15) 

 2
load

in

PM
P

   (6.16) 
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Simulations are conducted with the same system parameters as above, 1 2 0.5 kgm m  , 

1 2 980 N/mk k  . The absorber has a mass of 1 0.048 kgam   and is tuned with regard to the 

frequency tuning ratio. According to the previous discussion, 1 0.9556opt  . The natural 

frequencies of the combined system are found to be 1 3.73 Hzpf   , 2 4.84 Hzpf    and 

3 11.42 Hzpf   .The exciting frequency ranges from 1 to 15 Hz and the load resistance is 

adjusted between 1 to 100  . Figure 6.7 shows the contour of the two performance criteria 

when no mechanical damping is considered. 

 

Figure 6.7. (a) Dissipated power ratio; (b) harvested power ratio, for MDOF system 

The above figure presents a few interesting features. The highest dissipated power ratio is 

achieved when the exciting frequency is equal to the first natural frequency of the primary 

system at 4.35 Hz when the load resistance is low. As the load resistance increases, when the 

system is excited at its first two natural frequencies, the dissipated power ratio reaches the 

highest value. When the exciting frequency is equal to the third natural frequency, however, 

small dissipated power ratio is observed. A large amount of power is dissipated at two exciting 
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frequencies near the third natural frequency and the dissipated power decreases when the load 

resistance is increased. The harvested power ratio presented in Figure 6.7 (b) follows a similar 

pattern and it can be seen that the trade-off between vibration suppression and energy harvesting 

is not very significant. 

After adding mechanical damping to the primary structure with 1 1 10.01 2 0.44 Ns/mc m k   

and 2 2 20.01 2 0.44 Ns/mc m k  , the two performance criteria are again investigated and 

shown in Figure 6.8. Despite a similar pattern as with the undamped primary system, both the 

ratios have been reduced significantly at higher exciting frequencies. When the exciting 

frequency is near the first natural frequency of the system, the value of the dissipated power ratio 

decreases with an increasing load resistance. The harvested power ratio reaches the maximum 

point at certain load resistance near 25  . 
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Figure 6.8. (a) Dissipated power ratio; (b) harvested power ratio, for MDOF system with mechanical damping 

6.2 Random base excitation 

This subsection considers the random base excitation. The non-traditional TMD is installed 

between the first floor and the second floor and the first mode of the primary system is to be 

suppressed. The previous defined performance criteria can also be defined, 
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where 1 2,  and aV V V  are the relative velocity of the first floor, second floor and the absorber 

mass to the base motion, respectively, and 0S  is the spectral density of an ideally white input. 
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1pcI  represents the power dissipated by the damping of the first floor and 2pcI  the second floor. 

The total dissipated power by the primary damping is defined to be 1pI  which is summation of 

1pcI  and 2pcI . 2pI  is the power dissipated by the absorber damping. When an electromagnetic 

damper is employed, 2pI  can also be defined into, 
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if the mechanical damping of the absorber is neglected. Another performance criterion is defined 

as the harvested power by the absorber, 
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  (6.21) 

Simulations are conducted on the system used in the previous section with the following 

parameters: 1 2 0.5 kgm m  , 1 2 980 N/mk k  , 1 1 10.01 2 0.44 Ns/mc m k  and 

2 2 20.01 2 0.44 Ns/mc m k  . The absorber has a mass of 1 0.048 kgam  . A band-limited 

white noise signal is used as the base excitation with a frequency range of 1 to 15 Hz. The 

spectral density is found out to be approximately 41.85 10 . The above performance criteria are 

calculated within the range of 10.8 1.5  , 10.01 0.7a   and 0 100 loadR   . 
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Figure 6.9. (a) Ipc1; (b) Ipc2; (c) Ip1; (d) Ip2. 

Figure 6.9 shows the contour of the criteria of 1pcI , 2pcI , 1pI  and 2pI . The minimum point of 

1pcI  corresponds to the tuning condition of 1 0.93   and 1 0.15a  . When 1 0.94   and 

1 0.32a  , 2pcI  reaches the lowest point. With the two criteria summed, in order for the 

primary damping to dissipate the minimum amount of power, 1  needs to be set to 0.93 and 

1a  0.18. When 1 0.92   and 1 0.06a  , 2pI  has the largest value and the absorber 

dissipate the amount of power, achieving an optimum state of vibration suppression. Unlike in a 

SDOF primary system where the maximization of the dissipated power by the absorber is 

equivalent to the minimization of the dissipated power by the primary damping, it can be seen 

from Figure 6.9 (c) and (d) that this does not apply to the MDOF system. 
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Figure 6.10. (a) Ip3; (b) Ip4. 

Figure 6.10 shows the contour of 3pI  and 4pI  with regard to the frequency tuning ratio and 

load resistance. It reveals a trade-off situation between vibration suppression and energy 

harvesting which is far less severe than that in an SDOF system. 

  



111 

 

Chapter 7 Condition Assessment of Dynamic Vibration Absorber 

This chapter presents a study conducted during the course of Master’s thesis research. The 

majority contents of this thesis are dedicated to the investigation of an optimum model B TMD. 

While an optimally designed TMD can significantly suppress the structural vibration, de-tuning 

often occurs due to various reasons like change in operating conditions or variation in primary 

structure properties, resulting in degradation of TMD's performance. In order to restore its 

performance, it is necessary to estimate the modal properties of the primary structure and 

perform the re-tuning process. Such an exercise requires powerful signal processing methods to 

successfully extract the structural modes in presence of closely-spaced modes. In view of the 

advantages and limitations of existing modal identification methods, a new technique that 

combines the second-order blind identification (SOBI) method with the empirical wavelet 

transform (EWT) to delineate closely-spaced frequencies is proposed. While the SOBI method 

does not guarantee the separation of closely-spaced modes and suffers from the limitation of 

generating mixed modes, the EWT operates on the modal responses estimated by the SOBI and 

yields the closely-spaced natural frequencies. 

The proposed method is illustrated using a six-storey simulation model with a wide range of 

de-tuning cases. An experiment on a three-storey bench-scale model equipped with a TMD is 

also conducted to validate the applicability of the proposed method. Before the simulation and 

experiment results are presented, a brief introduction on each involved identification method is 

provided followed by the explanation of the proposed method. In order to avoid an overlapping 

use of the frequency symbol f, the symbol   is used in this chapter to represent frequency. 
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7.1 Background 

7.1.1 Second-order blind identification (SOBI) 

A brief explanation of the SOBI is presented in this subsection. Consider a linear, classically 

damped and lumped-parameter nDOF system subjected to an external force F(t) with the 

equation of motion defined as, 

 ( ) ( ) ( ) ( )t t t t  MX CX KX F   (7.1) 

where X(t) is the displacement vector, M, C, K are the mass, damping and stiffness matrix, 

respectively. When F(t) is assumed to be Gaussian and broadband, the response of the system 

can be expressed in terms of vibration modes superposition with the following form, 

 n N n n n N   X q   (7.2) 

where   is the mode shape matrix and q is the matrix of modal coordinated which gives the 

information about natural frequencies of the structure. Comparing to the problem statement of 

the BBS, which is given by, 

 
( ) ( )
( ) ( )
k k
k k





x As
y Wx

  (7.3) 

Where n NA  is the instantaneous mixing matrix, n nW  is the un-mixing matrix to be 

determined and y is the estimate of the source s(k), it is easy to recognize the similarity: the 

modes of the system represent the independent sources and the modal coordinates are contained 

in the mixing matrix. 
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The basic framework of SOBI is the simultaneous diagonalization of two covariance matrices 

(0)XT  and ( )pXT  evaluated at the time-lag zero and p, respectively. This can be written as 

(Belouchrani, Abed-Meraim, Cardoso, & Moulines, 1997), 

 
(0) { ( ) ( )} (0)
( ) { ( ) ( )} ( )

T T
s

T T
s

E n n
p E n n p p
 

  

X

X

T X X AT A
T X X AT A

  (7.4) 

where, 

 ( ) { ( ) ( )}T
s p E n n p T s s   (7.5) 

The signal X(t) is first whitened with a whitening matrix n NQ  expressed as, 

 
1
2( ) ( ) ( )Tt n n



  X XX QX V X   (7.6) 

where X  and XV  are the eigenvalues and eigenvectors of the covariance matrix (0)XT , 

respectively. The whitened covariance matrix ( )pXT  is defined as, 

 ( ) ( ) T Tp p SXT QAT A Q   (7.7) 

This equation states that by diagonalizing the whitened covariance matrix at a particular time lag, 

the unitary matrix product QA can be determined, resulting in the mixing matrix, A. The second 

step involves diagonalizing the matrix ( )pXT  whose eigenvalue decomposition satisfies, 

 ( )T p X X X XV T V    (7.8) 

Hence the mixing matrix can be estimated by, 

 
1

1 2ˆ   X X XXA Q V V V   (7.9) 



114 

 

where Â  is the estimated matrix of A. The problem now becomes one of unitary 

diagonalization of the correlation matrix ( )pXT  at one or several non-zero time lag. This step is 

commonly known as the joint approximate diagonalization, implemented numerically. Denoting 

( )T p XD U T U , the problem is now to find the minimum performance index J given by (A. 

Belouchrani et al. 1997; F. Musafere et al. 2016), 

 
2

1
( , ) p

ij
p i j n

J p D
  

 U   (7.10) 

Then, the unitary matrix U corresponding to the minimum J over fixed iterations is considered to 

be an approximate joint diagonalizer. Once the unitary matrix is computed, Â  can be estimated 

and the source s is obtained using the following pseudo-inverse, 

 1ˆˆ s A X   (7.11) 

which for the nDOF system under consideration is essentially, 

 1ˆˆ q X   (7.12) 

7.1.2 Empirical Wavelet Transform (EWT) 

Wavelet transform is one of the most popular and useful tools in signal analysis. In the temporal 

domain, a mother wavelet function ( )t  is defined as zero-mean and normalized as (Mallat, 

1999), 

 
*

2

( ) 0

( ) ( ) ( ) 1

t dt

t t t dt



  











 




  (7.13) 

With a scaling parameter c greater than zero and a translating parameter u, an orthonormal basis 

can be obtained using multi-resolution property of discrete wavelet, and is defined by, 
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 , ,

1{ ( ) ( )}|c u u R c R

t ut
cc

   


   (7.14) 

Via wavelet transform, a one-dimensional signal f(t) can be mapped to a two-dimensional 

coefficient ( , )f c uW  which is computed through the inner product ( , 0 ,( ),f c u c uW f t   . If c is a 

continuous variable then ( , )f c uW  is called the continuous wavelet transform while if 2 jc   

then it is called the discrete wavelet transform with a common dyadic choice of 2 jc  . For the 

details of classical wavelet theory, readers are referred to the literature (Mallat, 1999). 

The Empirical Wavelet Transform (EWT) is recently proposed with the intention to build a 

family of wavelets adapted to the processed signal (Gilles, 2013). One of the key steps is to 

segment the Fourier spectrum, separating the spectrum into portions corresponding to different 

modes i.e. centered around a specific frequency and of compact support. The segment boundary 

detection can be achieved through different techniques, one of which is the “LocalMaxMin” 

detection (Gilles, 2013) employed in this paper. The first step is to detect the local maxima of the 

Fourier spectrum and sort them in decreasing order. This method then seeks the lowest local 

minima between two consecutive maxima and defines the boundary as in the position of the 

minima. With N number of detected maxima, there will be (N-1) boundaries defined and the 

spectrum is then divided into N supports. The empirical wavelets are then defined as bandpass 

filters on each segment where the empirical scaling and wavelets function are defined 

respectively as (n = 1, 2, ...) (Gilles, 2013). 

 

1 if 
1ˆ ( ) cos[ ( ( ))] if 

2 2
0 otherwise
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  (7.15) 
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  (7.16) 

with the notation f̂  representing the Fourier transform and f  representing the inverse Fourier 

transform which will appear later. The function ( )x  is chosen to be, 

 4 2 3( ) (35 84 70 20 )x x x x x       (7.17) 

The choice of n  is simplified to n  and by properly choosing the parameter  (0 1)   , 

a tight frame can be obtained. 

The EWT of function f ( ( , )fW n t ), can now be defined in the same way as for the classic wavelet 

transform with the detail coefficients being, 
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

   (7.18) 

And the approximation coefficient being, 
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1
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

   (7.19) 

where ˆ ( )n   and 1̂( )   are defined in Eqs. (7.15) and (7.16), respectively. The signal f(t) is 

then reconstructed as, 
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1
1
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where the symbol “ ” presents the inner product. The empirical mode kf  is defined as, 

 0 1( ) (0, ) ( )

( ) ( , ) ( )
f

k f k

f t W t t

f t W k t t









 

 
  (7.21) 

The following is an example of using EWT to decompose signal with multiple frequency 

component. The testing signal is comprised of two harmonic component with frequencies of 4 

and 7.5 Hz, 

 1 2

1 2

( ) cos(8 ), ( ) 0.5cos(15 )
( ) ( ) ( )

t t

sig t t

f t t f t t
f t f t f t

  

 
  (7.22) 

The time history of sigf  is shown in Figure 7.1 (a) and Figure 7.1 (b) shows the detected 

boundary on the Fourier spectrum of sigf  as obtained using the EWT. The EWT decomposes 

the original signal into two modes which are shown in Figure 7.1 (c). The Fourier spectrum of 

each identified mode can be found in Figure 7.1 (d) revealing the signal decomposition 

capability of the EWT. It is worth noting that the number of modes of the signal is fixed apriori 

to ensure the best performance of the EWT. This is not the case in general when there is no such 

available information. A simple way to estimate the appropriate number of modes can be found 

in literature (Gilles, 2013) and further investigation is required for robust performance of the 

EWT. 
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                    (a)                                     (b) 

 

                    (c)                                    (d) 

Figure 7.1. Example of using EWT for signal decomposition 

7.2 Proposed method 

The performance of the SOBI is not guaranteed for all cases to be satisfactory. In spite of its 

good separation of the higher modes of the structure, mode-mixed responses in lower modes 

with closely-spaced frequencies are often observed (Musafere, Sadhu, & Liu, 2016). In view of 

both the advantages and limitations of the SOBI and EWT, a combined method, i.e., SOBI-EWT 

method, is introduced. 
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Figure 7.2. Flowchart of the proposed method 

The main idea is to use the EWT to further decompose the separated sources from the SOBI 

which contain mode-mixing signals in case of closely-spaced frequencies. A flowchart of the 

proposed method is given in Figure 7.2. The measurement n mX  (n is the number of sensors 

and m is the number of data points) is first used as the input to the SOBI algorithm. After 

performing the SOBI, the estimated sources are given as, 

 1ˆˆ q X   (7.23) 

which represent the modal coordinates. 

Applying the Fast Fourier Transform (FFT) to the extracted modal coordinates, the spectra give 

information on the modal frequencies and reveal whether there is any mode-mixed signal. If the 

modes are well-separated, ˆn mq  is accepted as the final result. Otherwise, the estimated modal 

responses with mixed modes are processed by the EWT algorithm. Adaptive bandpass filters are 
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built based on the information contained in the spectrum of the mode-mixing signal, which has 

certain dominant frequencies after the SOBI operation. 

For the case studied in this chapter, only one TMD is used to suppress a single-mode vibration. 

The SOBI is more capable of separating the higher order of frequencies, leaving the first two 

modal responses both mixed with the first two natural frequencies. The EWT yields those two 

frequencies using either of the first two columns of the estimated source matrix q̂  from the 

results of the SOBI. The coefficients are given as, 
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Where ˆiq  represents the ith column of q̂ . Empirical modes are then obtained as, 
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Combining the higher modes identified by the SOBI, the complete structural modes are acquired. 

In summary, the proposed method is an integration of the SOBI and EWT method. On one hand, 

the separation result of the SOBI method is improved by the employment of the EWT as the 

EWT can better handle the remaining mixed modal response of closely-spaced modes. On the 

other hand, the extracted modal responses by the SOBI provide a decent source for the EWT to 

separate the mode-mixing signals. 

7.3 Simulation results 

7.3.1 Numerical model 

A 6-storey model is utilized in simulation to demonstrate the effectiveness of the proposed 

methodology. Each floor mass of the primary 6DOF structure is given as (Pioldi, Ferrari, & Rizzi, 
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2016): 51.44 10  kg, i=1,2, ,6im   . The stiffness coefficients are given as: 

9
1 3.045 10  N/mk   , 9

2 2.842 10  N/mk   , 9
3 2.639 10  N/mk   , 9

4 2.436 10  N/mk   , 

9
5 2.233 10  N/mk    and 9

6 2.03 10  N/mk   . The natural frequencies are listed in Table 2. 

Rayleigh damping approximation is used to form the damping matrix p p p  C M K  where 

pM  is the mass matrix and pK  is the stiffness matrix of the primary system. 0.7716   and 

0.0025   assuming that the first two damping ratios are 5%. Using white Gaussian noises as 

the floor excitations in the primary structure, the modal responses are extracted using the SOBI 

method and the natural frequencies are indented from the FFT spectra of the modal responses as 

shown in Figure 7.3. Table 7.1 compares the true natural frequencies i  with the identified ones 

ˆi . 
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Figure 7.3. FFT spectra of the identified modal response of the primary structure 

Table 7.1. Identified natural frequencies of the primary structure by the SOBI 

Mode No. 1 2 3 4 5 6 

 (Hz)i  1.67 4.67 7.45 9.79 11.57 13.08 

ˆ  (Hz)i  1.66 4.69 7.23 9.73 11.26 12.22 

A model A TMD is installed on the top floor to suppress the vibration of the first mode. 

According to Den Hartog’s “fixed-points” theory, the optimum tuning parameters for the 

single-degree-of-freedom (SDOF) system are given as, 

 

3

1
1

3
8(1 )
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
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
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







  (7.26) 

with the following notation, 

 , , , ,
2

a a a a
p a

p a p a

m c kk
m m m m


    

 
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where m and am  are the primary mass and absorber mass respectively, k and ak  are the 

primary spring stiffness and absorber spring stiffness, respectively, ac  is the damping value of 

the absorber damper. This method to design an optimum TMD for a SDOF system can be 

extended to suppress a single mode of the 6DOF structure under consideration, provided that the 

modal mass is obtained using a mode shape vector normalized with respect to the element 

corresponding to the location of the TMD (Rana & Song, 1998). Assuming that the TMD is 

attached to the last mass, the mode shape vector of the first mode for the 6DOF structure is 

normalized with respect to the last element in the array. 

 13 1511 12 14
1

16 16 16 16 16

[      1]n
   


    

   (7.28) 

Hence the modal mass is obtained using 1 1 1
T
n nM   M . Assuming a mass ratio   of 5%, the 

mass of the TMD is taken as 42.20 10  kgam   . According to Eq. (7.26), the absorber damping 

coefficient would be 46.5 10  Ns/mac   . 

The state-space model of the combined system is given as, 

 ss ss ss

ss ss ss

 

 

X A X B U
Y C X D U

  (7.29) 

Where X is the state vector and Y is the output governed by the ssC  matrix. Matrix ssB  

determines the location of the excitation and matrix ssU  is the input matrix. System matrix ssA  

is constructed using the mass, stiffness and the damping properties of the structure: 
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  (7.30) 

where I represents identity matrix.  

7.3.2 Identification results 

The responses of the above described system under base excitation are calculated in MATLAB 

with a Gaussian white noise as the input signal. The proposed method is then implemented to 

conduct modal identification and the results are presented below. 

7.3.2.1 Optimally tuned TMD  

Figure 7.4 compares the Fourier spectrum of the each floor response of the primary structure 

with that of the structure equipped with the optimally-tuned TMD. It is clear that the vibration of 

the first mode is significantly suppressed. FFT spectra of the modal responses extracted by the 

SOBI method are shown in Figure 7.5, revealing that the first two modes are mixed. 
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Figure 7.4. FFT spectra of the floor response of the structure equipped with an optimally-tuned TMD 

 

 

Figure 7.5. Identified results using the SOBI method 

A close-up image of the Fourier spectrum of the first modal response is shown in Figure 7.6. The 

identified frequency values are listed in Table 7.2 with the computed ones listed for comparison. 
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For the first two sub-figures, the frequencies corresponding to the two peaks are 1 1.56 Hzs   

and 2 1.81 Hzs   with the second peak over-passing the first one. This renders the 

identification of the first natural frequency a manual job when the algorithm is programmed to 

pick the frequency corresponding to the highest peak, in which the first two natural frequencies 

are identified to be the same as 1.81 Hz. Therefore, in presence of closely-spaced modes, the 

SOBI is inaccurate. Hence the EWT is used with the input being the mode-mixed responses from 

the SOBI. The FFT spectra of the decomposed EWT components are shown in Figure 7.7. The 

frequencies corresponding to the peaks in both figures are 1 1.56 Hze   and 2 1.81 Hze   

respectively that fairly match with the correct values. 

  

Figure 7.6. FFT spectra of the first two modal responses 

extracted by the SOBI 

Figure 7.7. FFT spectra of the first two modal responses 

extracted by the EWT 

Table 7.2. Identified natural frequencies of the structure with the TMD by the proposed method 

 Optimally tuned Detuned 

Mode No. 1.026   0.9   1.2   

 i  ˆi  i  ˆi   ˆi  

1 1.50 1.56 1.40 1.42 1.57 1.56 

2 1.81 1.81 1.78 1.76 2.11 2.05 

3 4.69 4.69 4.68 4.64 4.70 4.64 

i



127 

 

4 7.45 7.57 7.45 7.67 7.46 7.62 

5 9.79 9.62 9.79 9.97 9.79 9.89 

6 11.5 11.19 11.59 11.53 11.59 11.53 

7 13.08 12.07 13.08 12.12 13.08 12.21 

7.3.2.2 Detuned TMD  

The performance of the TMD can be severely affected by the de-tuning. In order to restore the 

TMD's optimum performance, it is important to estimate the modal properties of the system and 

conduct re-tuning process. The performance of the proposed method in de-tuning cases is 

investigated and presented in this section. The de-tuning is simulated with the variation of the 

parameter  (  as optimum), and two values of (  and 1.2) are chosen. 

 

Figure 7.8. FFT spectra of the floor responses of the structure with a de-tuned TMD ( =0.9). 

When , Figure 7.8 shows that the de-tuning has significantly affected the performance of 

the TMD with little suppression on the first mode. The identification results of the SOBI method 

are shown in Figure 7.9 and Figure 7.10, revealing significant mode mixing and inconsistent 

1.026  0.9 

0.9 
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estimation in the first two modes. The EWT method is then employed to separate the 

mode-mixed as shown in Figure 7.11. The identified frequency values ( ˆi ) are listed in Table 7.2 

with the computed ones ( i ). The frequencies corresponding to the two peaks are 1ˆ 1.42Hz   

and 2ˆ 1.76 Hz  , respectively. 
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Figure 7.9. FFT spectra of the modal responses extracted by the SOBI ( =0.9). 

  

Figure 7.10. FFT spectra of the first two modal responses 

extracted by the SOBI ( =0.9). 

Figure 7.11. FFT spectra of the first two modal responses 

extracted by the EWT ( =0.9). 

When 1.2  , the suppression of the first mode of vibration also deteriorates due to the 

de-tuning. The FFT spectra of the first two modal response are given in Figure 7.12. The 

identification result from the EWT is shown in Figure 7.13 with the two natural frequencies 

identified as 1ˆ 1.56Hz   and 2ˆ 2.05 Hz  , respectively. The identification results are listed 

in Table 7.2 that corroborate with the accuracy of the proposed method. 
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Figure 7.12. FFT spectra of the first two modal responses 

extracted by the SOBI ( =1.2). 

Figure 7.13. FFT spectra of the first two modal responses 

extracted by the EWT ( =1.2). 

In terms of the measurement noise in the data which is the general case for practical applications, 

the performance of the proposed method is also investigated. The results are shown in Table 4 

with the signal-to-noise ratio (SNR) of 5 and 20 respectively. It may be observed that the 

proposed method is insensitive to the presence of noise and can be used as a powerful tool to 

separate closely-spaced frequencies using the responses contaminated with measurement noise. 

Table 7.3. Identification results of the 6-DOF model using the proposed method. 

 Optimally tuned TMD Detuned 

Mode 
 

SNR 

 0.9   1.2   

 20 5  20 5  20 5 

          

1 1.50 1.56 1.56 1.40 1.47 1.47 1.57 1.56 1.61 

2 1.81 1.81 1.81 1.78 1.76 1.76 2.11 2.05 2.05 

3 4.69 4.69 4.69 4.68 4.64 4.64 4.70 4.64 4.64 

4 7.45 7.57 7.57 7.45 7.67 7.67 7.46 7.62 7.62 

5 9.79 9.67 9.62 9.79 9.97 9.97 9.79 9.87 9.87 

6 11.59 11.19 11.19 11.59 11.53 10.99 11.59 11.19 11.19 

7 13.08 12.07 12.07 13.08 12.26 12.26 13.08 12.21 12.21 

1.026 

i ˆi ˆi i ˆi ˆi i ˆi ˆi
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7.4 Experiment results 

The proposed method is now applied to identify detuning of a TMD attached to a 3- storey 

model. Figure 7.14 shows the experimental setup and measurement system. The TMD consists of 

a cantilever beam with an aluminum block attached to its free end. The mass of the aluminum 

block is found to be 0.156 kg. The cantilever beam has a total length of 259 mm and can be 

adjusted to achieve both optimum tuning and detuning cases. 

 

 

Figure 7.14. Experimental model. 

System identification is first conducted on the primary system. The identified system parameters 

are listed in Table 7.4. The mass of each floor are obtained from measurement. Free vibration 

tests are conducted, resulting in the natural frequencies of the primary system. With the modal 

responses of the primary structure by the SOBI, autocorrelation functions are calculated and 

yields the modal damping ratios (Figure 7.15). With the mass of the floor and the natural 
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frequencies, the stiffness of each DOF is found out by a numerical optimization with the 

Nelder-Mead sequential complex method. 

Table 7.4. Identified primary system parameters. 

Floor mass 
1( )

2( )

3( )

0.99 kg
2.63 kg
4.27 kg

top

middle

bottom

m
m
m







 

Frequency 
1

2

3

6.25 Hz
17.55 Hz
29.45 Hz













 

Stiffness 
1

2

3

13900 N/m
22300 N/m
20700 N/m

k
k
k







 

Damping ratio 
1

2

3

0.5%
0.3%
0.2%












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Figure 7.15. Damping estimation of the primary structure. 

Based on the obtained parameters, the mass and stiffness matrices are formed and a 

mathematical model of the test apparatus is established. By solving the eigenvalue problem, the 

mode shape of the structure is obtained. Following the design procedure stated in the previous 

section, the first modal mass is found to be, 

 1 1 1

4.732 0.690.69
2.632 0.93 5.3 kg0.93

0.990 1.001.00

T

T
n nM

    
      
    
         

 M   (7.31) 

The mass of the TMD aluminum block is found to be 3% of the first modal mass. For an 

optimum TMD, the criterion is to set the frequency ratio 1.015  , i.e., 6.35 Hza  . The 

stiffness of the cantilever beam is thus found to be 248 N/m which corresponds to a beam length 

of 159 mm. With a minor adjustment, the length of the beam is first set to be 165 mm. Free 

vibration test is conducted on the standalone TMD and the damping ratio of the TMD is found to 

be approximately 0.6% through logarithmic decrement method. After the installation of TMD, 

free vibration test is conducted and the resulting FFT spectra of the data (as shown in Figure 7.16) 
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yield natural frequencies of the structure. These results also serve as the baseline for the 

comparison with the identified frequencies as shown in Table 7.4. 

 

Figure 7.16. FFT spectra of free vibration of the experimental model with the optimum TMD. 

A modal shaker (model number: 2100E11) manufactured by Modal Shop is employed in the 

experiment to simulate the excitation. The shaker is capable of applying sine, shock, sine sweep 

and random excitation. The system is first subjected to a harmonic excitation with an exciting 

frequency of 7 Hz which is close to the first natural frequency of the primary system. Segments 

of acceleration time-histories of the top floor of the structure, with and without the optimal TMD, 

are shown in Figure 7.17. It can be noticed that the presence of TMD has successfully reduced 

the structure vibration, justifying the effectiveness of TMD. During the modal identification, in 

order to excite all the structural modes, the model is now subjected to a base excitation with band 

limited random signal having a center frequency of 25 Hz and the frequency range of 50 Hz. 

Figure 7.18 shows the measured base excitation within 15 seconds and its FFT spectra. The 

proposed method is then implemented to conduct the modal identification. 
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Figure 7.17. Comparison of the top floor response under 

harmonic excitation 

Figure 7.18. Ground excitation and its FFT spectra. 

The FFT spectra of the modal responses extracted by the SOBI are shown in Figure 7.19. As can 

be seen, the higher two modes are well separated. Yet mode-mixed responses are witnessed in 

the figures of the first row and a close-up view is presented in Figure 7.20. It can be seen that 

SOBI yields partially inaccurate modal identification where both the peak frequencies are 6.21 

Hz. The EWT is further employed and the FFT spectra of the separated modal responses are 

shown in Figure 7.21. A detailed comparison of actual and estimated values of frequencies are 

listed in Table 7.5. 
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Figure 7.19. FFT spectra of the modal response extracted by SOBI ( =0.03, optimally tuned) 

  

Figure 7.20. FFT spectra of the first two modal responses 

identified by the SOBI ( =0.03, optimally tuned) 

Figure 7.21. FFT spectra of the first two modal responses 

identified by the EWT ( =0.03, optimally tuned) 

The de-tuning case is also investigated by changing the length of the TMD pendulum to 125 mm. 

The results identified by the SOBI is presented in Figure 7.22 and Figure 7.23. Figure 7.24 

shows the FFT spectra of the modal responses further separated from Figure 7.23 by the EWT. 

The identified frequency values, as well as those from free-response test, are listed in Table 7.5, 

revealing the accuracy of the proposed method. 
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Figure 7.22. FFT spectra of the modal response extracted by SOBI ( =0.03, detuned) 

  

Figure 7.23. FFT spectra of the first two modal responses 

identified by the SOBI ( =0.03, detuned) 

Figure 7.24. FFT spectra of the first two modal responses 

identified by the EWT ( =0.03, detuned) 

Another type of optimum tuning case is emulated by attaching an additional mass to the TMD. 

The mass ratio is changed to 5%. In Figure 7.25 and Figure 7.26, mode-mixed is observed in the 

identification results by the SOBI. The proposed method is then undertaken and the results are 

shown in Figure 7.27. The identified frequency values, as well as that of a detuning case, are 

reported in Table 7.5. The results further reveal that the proposed method is effective in 

identifying the closely-spaced frequencies under both optimally tuned and de-tuned cases. 
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Figure 7.25. FFT spectra of the modal response extracted by SOBI ( =0.05, optimally tuned) 

  

Figure 7.26. FFT spectra of the first two modal responses 

identified by the SOBI ( =0.05, optimally tuned) 

Figure 7.27. FFT spectra of the first two modal responses 

identified by the EWT ( =0.05, optimally tuned) 

Table 7.5. Identification results of the experimental model using the proposed method 

 Optimally tuned Detuned 

Mode 
No. 

0.03   0.05   0.03   0.05   

i  ˆi  i  ˆi      

1 5.64 5.67 5.45 5.21 5.98 5.81 5.72 5.81 

2 6.68 6.54 6.86 6.68 7.45 7.41 7.41 7.21 

i ˆi i ˆi
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3 17.54 17.89 1.54 17.89 17.56 18.02 17.56 17.89 

4 29.46 29.44 29.19 29.17 29.39 29.44 29.39 29.17 
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Chapter 8 Conclusion 

 The intended goal of this research is to use a non-traditional vibration absorber to achieve 

simultaneous vibration suppression and energy harvesting. For this purpose, an apparatus is 

designed in which a model B TMD is installed to an SDOF primary system with the absorber 

damper connected directly between the absorber mass and the base. The absorber system consists 

of two magnets as the absorber mass, an aluminum beam with adjustable length, and a pair of 

coils which, in interaction with two magnets, comprise an electromagnetic damper. By using 

such an electromagnetic device, vibration control can be achieved while energy is harvested by 

the load circuit. Chapter 2 has provided a detailed description of the proposed apparatus and the 

principle of the electromagnetic damper is discussed mathematically. It has been shown out that 

the higher the transduction factor and the lower the coil resistance, the higher the electrical 

damping of the damper. However, the damping coefficient of the damper is inversely 

proportional to the load resistance. 

 The dynamic model of the system has been defined using displacements of the primary mass and 

absorber mass relative to the base. The system’s response under harmonic base excitation has 

been studied in Chapter 3. The displacement transmissibility ratio of the primary mass is used as 

the performance criterion. The optimum parameters, including the frequency tuning ratio   

and the damping ratio  , have been derived using the classical “fixed-points” theory. To 

measure the performance of the electro-magnetic damper two indexes have been defined, namely 

the dissipated power ratio and the harvested power ratio. A computer simulation has been 

conducted. It has been found out that the dissipated power ratio reaches higher value at the 

resonance frequencies and anti-resonance frequency of the combined system with lower load 

resistance. When the inherent mechanical damping is taken into consideration, the ratio 

decreases quickly as the electrical damping decrease to the level close to the mechanical 

damping. The amount of the harvested power is proportional to the load resistance. This brings 
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up a trade-off situation as when the load resistance is increased, the electrical damping drops as 

well as the amount of the power dissipated by the damper. An experimental study has also been 

carried out. The effectiveness of the developed damper is tested. The identified damping ratios 

agree well with the analytical ones. Four sets of sweeping excitation tests have been conducted 

on the combined system. By tuning the absorber stiffness, the displacement transmissibility 

ratios at the fixed points can be made equal. By tuning the load resistance, the displacement 

transmissibility ratio curve can be made almost flat between the fixed points. The absorber’s 

robust performance in vibration suppression is validated with the maximum achievable damping 

ratio of 17%. With regards to the energy harvesting, the experimental results also agree well with 

the simulation results. Among the four load resistances used in the experiment (

20,  8,  2,  0.2 loadR   ), the resistance of 8   appears to offer a good trade-off between 

vibration suppression robustness and energy harvesting efficiency. 

 The transient responses of the system have been investigated in Chapter 4. The degree of 

stability of the system is defined as the first performance criterion and the optimum parameters 

are derived according to the Stability Maximization Criterion (SMC). This criterion describes the 

absorber’s ability to suppress the transient response of the primary system. Another performance 

criterion is defined as the percentage of the harvested energy which evaluates the energy 

harvesting efficiency. It has been found that given a lower load resistance, higher absorber 

damping can be achieved which maximizes the degree of stability of the system but reduces the 

percentage of the harvested energy. By employing the genetic algorithm for a multi-objective 

optimization, the trade-off situation is addressed. The findings are validated by an experimental 

study. It is feasible to develop a model B TMD to achieve a balanced objective of vibration 

suppression and energy harvesting. 

 Chapter 5 has been dedicated to investigate the system subjected to random base excitation. The 

study is focused on the optimum parameters of the system to minimize the power dissipated by 
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the primary damping and maximize the power dissipated by the absorber damper as well as the 

power harvested by the load circuit. For the undamped primary system subjected to a white noise 

base excitation, the power dissipated by the absorber damping has a constant value which only 

varies with the mass ratio of the system. Local minimum point for the mean squared value to the 

relative velocity of the primary mass only exists when the mass ratio of the system is smaller 

than 0.15. When the primary system is damped, the minimization of the power dissipated by the 

primary damping is equivalent to the maximization of the power dissipated by the absorber 

damping. Local minimum/maximum point exists only when 0.15  . For the damped primary 

system attached by the model B TMD, the trade-off between the dissipated power and harvested 

power is not significant with a low mass ratio, e.g. 0.05  . An increase of the primary 

damping ratio does not affect the trade-off situation and only lowers the optimum tuning ratio 

value. An increase of the mass ratio, on the other hand, causes a more significant trade-off 

situation. 

 Chapter 6 has been dedicated to application of a model B TMD to a MDOF primary system. 

Using a 2DOF primary system as an example a similar investigation procedure for the SDOF 

primary system can be applied to study the combined MDOF system. Several results such as 

using the “fixed-points” theory to derive the optimum parameters, studying the energy dissipated 

by the absorber and harvesting efficiency under harmonic or random base excitation have been 

presented. The study in Chapter 6 is a preliminary one that reveals some interesting aspects that 

deserve more rigorous and thorough study for future. 

 Chapter 7 presents a course project conducted by the author. In this study, an integrated method 

called the SOBI-EWT method has been proposed for identification of closely-spaced modes 

commonly encountered in structures such as a multi-storey building attached with a TMD. The 

method first utilizes the second-order-blind-identification (SOBI) to extract the modal responses 

using the ambient vibration measurements. Since the SOBI alone does not guarantee the 
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separation of closely-spaced modes, the estimated mode-mixed response is further decomposed 

using the Empirical Wavelet Transform (EWT). The method demonstrates satisfactory 

performance based on the fact that the SOBI can achieve better separation with regards to higher 

order well-separated modes and provide valuable frequency-domain information for the EWT to 

build bandpass filter for the detection of the closely-spaced modes. Simulation results on a 

6-storey model show that the proposed method is robust to a relatively higher level of noise, up 

to the order of 20%. The investigation is also extended to experimental results which indicate 

that the proposed method is capable of separating closely-spaced frequencies under a wide range 

of de-tuning situations. 
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Appendix A Displacement Response Functions of a 2-DOF Structure Attached 

with a Non-traditional TMD 

For a 2-DOF structure attached with a non-traditional absorber shown in Figure 6.1, the 

displacements of floors, each relative to the base, are found to be: 
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Appendix B Parametric Study of the Electromagnetic Damper 

This appendix briefly explains how to calculate the transduction factor of an electromagnetic 

damper based on the coil dimensions and a parametric study is conducted to reveal some 

interesting results and provide references for designing a more effective electromagnetic damper. 

Recalling Chapter 2, in order to calculate the transduction factor ( ) of the electromagnetic 

damper, a Finite Element Analysis software called FEMM is used to first analyze the magnetic 

field generated by the oscillating magnets. An axisymmetric model is built and Figure B.1 shows 

the results of the calculated magnetic flux density of the oscillating magnets with the same 

dimensions as in Table 2.1 but a higher grade at N52. The horizontal axis represents the radial 

direction r and the vertical axis the axial direction z. A detailed tutorial of how to perform FE 

analysis in FEMM is available online at http://www.femm.info/wiki/MagneticsTutorial. 

 

Figure B.1. Magnetic flux density of the oscillating magnets. 

FEMM does not offer a direct access to the calculation results. To obtain the axial and radial 

magnetic flux density of the magnets, a “.lua” script is needed and an example is shown below in 
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Figure B.2. This script accesses the calculated radial magnetic flux density within the area of 

6 60r   and 70 70z    (mm) with an increment of 0.1 mm and save the data into the file 

named “Br.dat”. 

 

Figure B.2. An example of “.lua” script 

For an electromagnetic damper, recall Eq. (2.5), the transduction factor of the coil depends on 

the coil dimensions, 

 2
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2

2
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To build a parametric model of the electromagnetic damper, three parameters are specified 

regarding the coil dimensions: 

 1 2( , , )N N r    (B.2) 
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1N  is the number of layers of wire on the coil, 2N  is the number of turns of wire per layer and 

r  is the radial gap between the magnet and the inner wall of the coil. Given a wire gauge, the 

diameter of the wire can be found and is defined as wd . The parameters in Eq. (B.1) can be 

expressed as, 

 1 magr r r    (B.3) 

 2 1 1 wr r N d    (B.4) 
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 2
1 2coil wA N N d   (B.6) 

assuming that the wire is ideally wound as shown in Figure B.3. 

 

Figure B.3. Wire on the coil. 

From the previous investigations it has been found out that there exists an optimum position of 

the coils which results in the maximum value of transduction factor max . This is usually 

achieved by aligning the center of the coils to the ends of the magnets. Recalling Eq. (2.10), the 
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coil resistance can be found after identifying the resistance per length value lR  for the coil wire 

from the table of American wire gauge sizes, 

 coil i wireR Rl   (B.7) 

and the highest electrical damping coefficient is achieved when the load resistance is zero, 

 
2
max

max( )
2e

coil

c
R


   (B.8) 

Numerical investigations are conducted to examine how the maximum transduction factor max  

and maximum electrical damping coefficient of the damper max( )ec  are affected by the 

aforementioned parameters: the number of layers of wire on the coil 1N , the number of turns of 

wire per layer 2N  and the radial gap between the magnet and the inner wall of the coil r . 

The parameters of the magnets are shown in Table 2.1 and the magnets have the grade of N52. 

The coil is wound from the gauge #16 wire with the properties of 1.291 mmwd   and 

13.17 m /miR   . 

The radial gap is first set to be 1.25 mm, i. e. 1.25 mmr  . Figure B.4 shows how the 

maximum transduction factor max  changes when 1N  varies from 1 to 20 and 2N  varies 

from 10 to 50. To better distinguish the curves, the color of the curves are adjusted such that as 

the layers of the wire increases, the color changes from dark blue to light green. From Figure B.4 

it can be seen that max  increases with the increase of 1N  and 2N . This is easy to understand 

as it is indicated in Eq. (B.1) that the bigger the cross sectional area of the coil, the higher 

transduction factor after the double integration on the cross sectional area. 
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Figure B.4. Maximum transduction factor when   =1.25 mm: (a) 3D view; (b) 2D view. 

However, a bigger cross sectional area of the coil also means longer wire length and higher coil 

resistance. From Eq. (B.8) it can be seen that the electrical damping coefficient does not simply 

increase with the increase of the transduction factor. It also decreases with the increase of coil 

resistance. Figure B.5 shows how the maximum electrical damping coefficient changes with 1N  

and 2N . max(c )e  increases with more layer of wire ( 1N ). However, an increasing number of 

turns of wire per layer ( 2N ) does not necessarily brings up max(c )e . The optimum 2N  value is 

within 15 to 20 when 11 20N   and is increasing with a higher 1N  value. 
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Figure B.5. Maximum electrical damping coefficient when   =1.25 mm: (a) 3D view; (b) 2D view. 

To investigate the effect of the radial gap r  has on the maximum transduction factor and 

electrical damping coefficient, another set of simulation is conducted with four different r  

value, 0.75, 1.00, 1.25, 1.50 mm. For each r  value, max  and max( )ec  are calculated for 

11 20N   and 210 50N   and the results are plotted as a surface shown in Figure B.6 (a) 

and Figure B.7 (a). For better clarification, three sets of curves are extracted from Figure B.6 (a) 

which corresponds to 1N  =4, 12 and 20, respectively. As shown in Figure B.6 (b), the curves 

have the same color when they are extracted from the same surface which presents a specific r  

value. The curve color changes from blue to green as r  increases. The maximum transduction 

factor decreases when one expands the radial gap between the magnets and the coil. This is as 

expected because the farther the coil is to the magnets, the lower the radial magnetic flux density 

among the coil region and according to Eq. (B.1), the lower the transduction factor. 
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Figure B.6. Maximum transduction factor under different radial gaps. 

A similar feature is observed in Figure B.7 (b) for the maximum electrical damping coefficient. 

The optimum number of turns of wire per layer exists regardless of the radial gap and the bigger 

the gap, the smaller the electrical damping the damper can achieve. 
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Figure B.7. Maximum electrical damping coefficient under different radial gaps. 

In conclusion, after performing a parametric study, the effects of the three specified parameters 

on the performance of the damper are found. The maximum transduction factor the coil can 

achieve increases with the increase of 1N  and 2N , and decreases with the increase of r . 

Increasing 1N  and decreasing r  also help in raising the maximum electrical damping 

coefficient of the damper. However, there exists an optimum 2N  to optimize ec  and it is 

within 15 to 20 when there is less than 20 layers of wire on the coil. 

 


