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Abstract 

Renewable energy is energy that is regenerated naturally for infinite time. Renewable energy can 

be categorized into solar, hydro, wind, geothermal, and biomass. Biomass is an organic material 

such as agricultural, forest residues, energy crops (Jatropha, miscanthus, switch grass and etc) 

and algae.   The current study focusing on biomass based renewable and sustainable energy 

production from lignocelluloses biomass.  As the name suggest lignocellulosic biomass is made 

up of lignin, cellulose and hemicellulose and the cellulose, hemicellulose are made up of 

polymerized C5 and C6 sugars such as glucose, xylose, arabinose, mannose, and galactose. Due 

to the complex nature of lignocellulosic biomass, the sugars present in plant biomass are not 

readily accessible for production of biofuels and biochemicals. Hence, a pretreatment of 

lignocellulosic biomass to loosen up the lignocellulosic matrix, followed by a hydrolysis process 

with enzymes or acids is necessary to obtain a fermentable stream of monomeric sugars.  

 

The objectives of this study were to: 1) investigate the enzymatic production of fermentable 

sugars (glucose) from underutilized, low-cost lignocellulosic biomass such as poplar wood, and 

2) examine factors that can enhance the efficiency of enzymatic hydrolysis leading to higher 

glucose yields and lower production costs.  A two-stage steam-exploded poplar wood biomass 

was used as substrate in this work. Initially the effect of inhibitors that generally form during 

high temperature pretreatment was evaluated by washing the biomass with distilled water. There 

were no significant improvement in hydrolysis yield was obtained, perhaps significant reduction 

in sugar yield was noticed after 96h of hydrolysis. Therefore unwashed biomass was used in all 

our studies. There after the effect of original pH (3.0) of pretreated poplar pulp and optimum pH 

(5.0) of cellulase on hydrolysis yield was studied. Interestingly the commercial cellulase 
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preparation was active at pH 3.0, however pH 5.0 was chosen for further studies due to slightly 

higher sugar yield.  

 

To overcome the low hydrolysis efficiency, critical parameters such as enzyme loading, substrate 

consistency, hydrolysis time, and substrate recycling were evaluated. Based on the results, 5% 

enzyme loading and 5% substrate consistency were found to be optimal. Substrate recycling 

could possibly reduce the enzyme usage in successive hydrolysis cycling. A 50% reduction in 

sugar yield was observed after 2 successive recycling of substrate, hence adding fresh enzyme at 

low concentration was recommended. Further, the effect of different surfactants on hydrolysis 

was studied. Compared to the control (without surfactant), 1% PEG4000 produced highest sugar 

yield of 58.5% at 5% substrate consistency and 5% enzyme loading. Compared to PEG4000, 

other surfactants studied (PEG8000, Tween 20, and TritonX100) improved hydrolysis yield to a 

lower extent. Therefore, addition of surfactant can enhance the hydrolysis efficiency of enzymes. 

The most likely mechanism for this effect is believed to be by a surfactant-facilitated blocking of 

the non-productive sites on lignin, which results in increase in the concentration of free enzymes 

available for enzymatic hydrolysis.  
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Chapter 1 

1. INTRODUCTION 

Biomass is an important source of energy and biomaterials. Therefore understanding the nature 

of biomass (lignocellulosic biomass) and its successive conversion in to fuel and bio products is 

essential to develop a viable bioprocess. Hence this chapter attempts to critically review biomass 

conversion technologies such as types of biomass, different types of pretreatment, hydrolysis 

processes and fermentation techniques. Production of energy using biomass is expected to 

address challenges associated with the use of environmentally non-friendly and unsustainable 

fossil fuels [42]. Bioethanol is one amongst the biofuels produced from lignocellulosic biomass 

through biomass pretreatment, hydrolysis and fermentation [43]. However, the production of 

monosaccharides from lignocellulosic biomass is an energy intensive, tedious and laborious 

process. Thus, various technical and economic challenges have to be addressed to make such 

conversion route efficient and cost effective [4]. One among them is enzymatic hydrolysis of 

lignocellulosic biomass. Enzymatic hydrolysis is a green, specific and efficient method to 

convert biomass based cellulose into its monomeric form. There was ample research has been 

taken up in past decades. However, a cost effective hydrolysis method for biofuel production is 

not yet developed. Therefore this review also provides a quick insight into the lignocellulosic 

biomass, its structure, pretreatment, chemical/enzymatic hydrolysis, potential application and the 

different approaches to valorize it. 

1.1 Biomass Production 

Biomass is one of the abundant feedstock’s available in nature. With the increase in 

demand for biomass based products, the global biomass production has increased. Between 2000 
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and 2011, biomass production has increased by 49 million tons compared to oil equivalent [42, 

72]. Biomass is also regarded as the 4th leading source of energy and contributes to around 10% 

of global energy supply. Such enormous amount of biomass can potentially be converted into 

fuels to meet the world’s energy demand. Bioenergy from biomass is carbon neutral process due 

to the re growing of plants recaptures the CO2 from the atmosphere for producing energy through 

photosynthesis. Hence the net CO2 released from biofuel is nearly equivalent to the CO2 

captured. Considering the above facts a high importance has been given among the researchers 

across the globe to focus on developing an efficient method to valorize biomass feedstock 

generated energy [31]. 

Production of energy from biomass existed before the industrial revolution. Biomass was  

the primary source of energy (fire wood and plant oil) in the early days. Indeed, the first 

motorized vehicle (Ford model T) was run by plant-based oil [81]. With the discovery of fossil 

fuel, the use of biomass as a source of energy was phased out. However, with the increased 

energy demands across the world, fluctuating prices of fuels and environmental issues attached 

with  the use of fossil fuels, needs of biomass-based energy re-emerged in 1970. Since 1975, 

more attention was drawn towards the second-generation biofuels (i.e. Lignocellulose and 

nonfood crops and algae) than first generation (food crops).Between 1975 and 1980 countries 

such as the United States formulated policies to improve the research on biomass based biofuel 

technologies [29]. The utilization of biomass for energy generation gained more attention in 

1983 as forest thinning’s, wood waste and household wastes were being converted to energy. 

Due to the strict environmental policies, mandatory biofuel blending (two to five percent) with 

fossil fuels introduced to reduce the pollution [47]. The development of advanced bioreactors has 

also revolutionized the biofuel production from biomass [1].  



3 
 

The global biomass production was roughly estimated to be 13 billion metric ton dry 

matter per annum. Out of which 82% was used for food and fodder applications. An 11% of 

global biomass production was used for biofuel production along with 7% of biomaterials. 

However, the other renewable and sustainable biomass resources such as forest residues, food 

industry waste were underutilized [73].  

Canada has a highly diversified source of biomass attributed to its large landmass, forest, 

and vibrant agricultural industry. Biomass production and its application in energy sector 

contribute 4.4% of total energy demand, which makes it the second source of renewable energy 

after wind energy. The other renewable energy contributors are solar and tidal power [54]. It is 

also reported by Kumarappan et,al  that the high water demand associated with the production of 

biomass puts pressure on the environment [34].  

The disposal of agricultural waste such as wheat straws and corn stalks is cumbersome 

process considering their high volume of production. As a result, a large portion of the biomass 

was left as unutilized or used for mulching and composite production [80]. The form of disposal 

increases the likelihood of buildup of pest and diseases. Another option, which involves the 

incineration of the wastes, increases carbon footprint while disrupting the soil structure and 

causing potential loss of nutrients. Burning also does not offer any benefit other than heat 

energy, however, alternative use of agricultural waste in to liquid fuel can lead to increased 

revenue generation [25].  

1.2 Lignocellulosic biomass 

Lignocellulosic biomass (LCB) is regarded as a promising, renewable and sustainable 

substrate for biofuel production. Some of the reasons for the preference of lignocellulosic 

biomass include its low cost, availability and sustainable supply [36]. Examples of the 
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lignocellulosic biomass include the plant and plant-derived materials such as agricultural wastes 

including wheat straws and bagasse from sugar cane, corn stover, rice straw, reed and switch 

grass [43]. Energy crops such as willow and temperate grasses are the other examples of 

lignocellulosic biomass. Organic wastes obtained from municipal solid waste, pulp and paper 

industries and agricultural residues have also been considered as lignocellulosic biomass [5].  

The recalcitrant nature of lignocellulosic biomass reduces the access of available sugar 

polymers (i.e. cellulose). Hence, understanding the composition of the lignocellulosic biomass is 

important in developing a pretreatment approach to breaking down the biomass into its 

monomeric components followed by the production of biofuels [13].  

1.2.1 Structure and Composition of lignocellulosic biomass 

Structurally, the cellulosic fibrils of lignocellulosic biomass is embedded in lignin and a 

hemicellulosic portion (Figure 3), which gives the strength to the plant. The different 

components of lignocellulosic material are held together by various bonds such as covalent, 

intramolecular bridges and loose forces of attraction known as Vander Waals forces [79]. These 

forces make the lignocellulosic material hard to hydrolyze. The cellulose is tightly linked to 

hemicellulose through hydrogen bonds while the hemicellulose is bonded to lignin by covalent 

linkages [77]. The image below (Figure 3) shows the general structure of lignocellulose material 

[43].  



Figure 1: 

1.2.1.1 Cellulose  

β On the 

other hand, plants synthesize glucose as monomers, which are polymerized into cellulose, starch, 
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amylose (one of the polymeric compound in starch). The number of glucose molecules found in 

the cellulose chain depends on the source material. Cellulose found in native wood containing up 

to 10,000 glucose monomers compared to kraft pulped wood which contains an average of 1000 

glucose per fibril [36]. Cellulose in a lignocellulosic biomass forms an association called 

cellulose microfibrils that aggregate to form fibrils. The cellulose fibrils are linked by intra and 

inter-molecular hydrogen bonds that make the molecule to form a stiff complex structure that is 

70% crystalline in shape and 30% amorphous [14]. Depending on rigidity and polymerization, 

plant cellulose are classified in to crystalline and amorphous cellulose. Amorphous cellulose is 

non-orderly arranged glucose polymers. They do not have sharp melting point and it undergoes 

irregular breakage. On the other hand crystalline cellulose is orderly arranged long range 

cellulosic polymer, which melts at sharp temperature and can be cleaved along definite planes. 

The complex structure has high density and is more resistant to the enzymatic hydrolysis. The 

complexity of the cellulose fibrils makes the cellulose molecule insoluble in water or organic 

solvents. Figure 1 shows the aggregation of the cellulose units to semi-crystalline fibril structure 

[8].   

 

Figure 2: The image showing cellulose aggregation to form the complex fibril structure (82) 
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1.2.1.2 Hemicelluloses 

The second largest component that makes up the lignocellulosic biomass is hemicellulose 

that constitutes between 24-40% of the total biomass. Hemicelluloses are mainly found in the 

secondary cell walls and they often cover the cellulose fibrils. Unlike the cellulose, 

hemicelluloses are highly branched in nature. The molecule is made up of pentose and hexose 

sugars. The main pentose sugars found in hemicellulose include xylose and arabinose, while  

glucose, mannose and galactose are the major hexose sugars. An uronic acid such as α-D-

galacturonic acids also constitutes the hemicellulose structure. Hemicelluloses have low 

molecular weight (Average MW 132) compared to cellulose (162.1), lack the crystalline 

structure and are easy to depolymerize. Despite, the fact that hemicellulose is easy to hydrolyze, 

its presence adds complexity in break down of the biomass [14].  

The composition of the hemicellulose varies with the type of lignocellulose biomass. For 

plant material such as wheat straw, xylan is the main hemicellulose component while 

glucomannan is largely present in softwood. Based on the composition of hemicellulose, the 

pretreatment methods also vary. For instance, presence of high concentration of xylan requires 

acid or alkaline treatment while glucomannan extraction is performed in strictly alkaline 

conditions [18]. 

1.2.1.3 Lignin 

Lignin is one of the most abundant non-carbohydrate aromatic organic polymer after 

cellulose. The lignin constitutes 25-36% of the lignocellulose biomass. Lignin is amorphous, 

highly branched polyphenolic material copolymerized from coniferyl, synapyl and p-coumaryl 

alcohols [38]. Lignin forms a bond "gluing" together the other constituents of the lignocellulosic 

biomass [79]. Lignin molecule is resistant to hydrolysis and together with hemicellulose, it acts 

as a protective sheath to the cellulose chains. Figure 2 shows the structure of lignin molecule.  
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Figure 3: The structure of lignin molecule obtained from a hardwood [38] 

 

1.3 Conversion of biomass to energy and value-added products 

In general, biomass is used to generate heat energy by burning or combustion. For 

example, the sawdust along with lignin are used to generate heat in pulp and paper industry.. 

Hence, to convert the LCB to high energy fuels, it requires a set of processes that modify the 

LCB to liquids such as ethanol, propanol, and acetone or bio oil. This can be achieved by 

employing thermo-chemical and/or biochemical conversion processes [23].  

Thermochemical conversion of biomass to energy is based on the heat treatment of 

biomass under controlled conditions of pressure and oxygen supply. The end product of biomass 

thermochemical process can be heat, syngas (a mixture of carbon monooxide and hydrogen), or 

liquid (eg. bio oil) [50, 23]. Thermochemical conversion of biomass can be carried out using 

various approaches. A commonly used thermal conversion method includes gasification, 

combustion and pyrolysis [66]. Gasification involves the conversion of biomass to combustible 

gas (also known as syngas) using air gasifiers. Pyrolysis involves burning of biomass under 

controlled temperature and oxygen to convert biomass feedstocks into gas, oil or forms of 
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charcoal [76]. The production of biofuel using pyrolysis occurs at temperature ranging from 500-

800 °C and results in rapid conversion of biomass to biofuels [19]. However, the use of pyrolysis 

is impeded by high production cost, which is associated with energy input [11]. On the whole, 

most of these thermochemical processes are not sustainable, energy intensive and often 

associated with the irreversible destruction of organic matter [23].  

Biochemical conversion of biomass is regarded as more sustainable and environmentally 

friendly. The biochemical conversion of biomass can be carried out in two ways (i) anaerobic 

digestion (ii) fermentation. Anaerobic digestion of biomass can be carried out in two ways. First 

is primary anaerobic digestion that involves the use of anaerobic microbes to convert the 

lignocellulose biomass in to biogas and organic acids [23]. Second involves the anaerobic 

digestion of biomass, which involves the enzymatic break down of solid biomass to soluble 

compounds. The hydrolyzed products of the enzymatic process then undergo acidosis step to 

produce short chain organic acids. Finally, the short chain acids are converted to methane by 

strict anaerobes through methanogenesis [55]. The methanogenesis occurs at moderate pH (pH 

6.5-8.0) and at temperature ranging from 30-60⁰C. Although anaerobic digestion requires smaller 

production units, the method is associated with inflated cost and production of large volume of 

sludge [55].  

Fermentation is the alternative to the anaerobic digestion. Fermentation requires simple 

sugars. In order to make the lignocellulose biomass in to fermentable sugars, the biomass must 

be pretreated and saccharified using hydrolyzing enzymes. The fermentation process involves the 

microbial conversion of simple sugar into biofuels. The fermentation results in the production of 

alcohol such as bioethanol, biobutanol, acetone, propanol etc., which can be used as liquid fuels. 

The biomass used in this process includes the crops waste such as sorghum, cassava [2, 32]. 
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Apart from waste lignocellulosic materials, cellulose and hemicellulose from pulp and paper 

industries can also be used as substrates for ethanol fermentation process. Wayman et al.(1992) 

reported that a ton of waste paper can yield up to 400 liters of ethanol[70].  

1.4 Pretreatment methods 

Pretreatment of lignocellulose biomass helps in the disruption of the structure of 

lignocellulosic constituents and facilitates efficient hydrolysis of cellulose to simple sugars by 

making the substrate more accessible to the hydrolytic enzyme(s). There are four main types of 

lignocellulose pretreatment methods. This includes (i) physical (ii) physicochemical (iii) 

chemical and (iv) biological pretreatment method. 

1.4.1 Physical/Mechanical 

Physical pretreatment methods can disrupt the crystalline structure of cellulose through 

activities such as grinding and milling. This approach is termed a "comminution" [12]. The 

physical pretreatment of biomass using UV light is indicated by structural variation by 

interfering with the cell wall and tissue structure. The UV rays are also effective in bond 

cleavage and the creation of free radicals that stimulate degradation of lignin structure [15]. 

Physical pretreatment of lignocellulosic biomass by use of ultrasonication disrupts the biomass 

structure by breaking the bonds in lignin thereby exposing cellulose for hydrolysis [75]. The use 

of ultrasound can be enhanced if it is used at high frequency and in combination with oxidizing 

agents such as hydrogen peroxide and peracetic acid [12].  

1.4.3 Chemical Pretreatment method  

Chemicals such as acids, alkalis and organic/ionic solvents have the property to change 

the structural integrity of the biomass. Alkali is known to interfere with the structure of the 
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lignocellulosic biomass by causing them to swell, and change in their internal surface area and 

reduction in cellulose crystallinity [12]. The uronic acids and acetyl molecules in the 

hemicellulose are also removed by alkalis. The treatment of lignocellulose with alkalis also leads 

to an alteration in the structure of lignin through the development of point breakages [9]. 

Examples of the alkalis used in the pretreatment of lignocellulosic biomass includes NaOH, 

Ca(OH)2 and anhydrous ammonia. The challenge with the use of alkalis is the high concentration 

required for pretreatment.  

Dilute acids such as H2SO4, HCl hydrolyze the hemicelluloses to their simplest sugars, 

hence exposing the cellulose for degradation. The acids are, however, not preferred due to their 

corrosive nature. When acids are used, alkalis should also be used to neutralize the hydrolysate. 

This adds to overall cost of production of value added compounds from biomass. Additionally, 

the hydrolysis of hemicelluloses mainly results in a pentose sugars such as xylose, which are not 

readily utilized by microorganisms as a carbon source. The variation in the temperature and the 

pretreatment holding time are associated with the generation of undesirable chemicals that 

include furfurals, hydroxymethyl furfurals (HMF) all of which inhibit the growth of fermentation 

microbes and therefore productivity [13]. Use of ionic liquids expose the cellulose by dissolving 

lignin and hemicellulose from lignocellulosic biomass [56]. However, use of such solvents can 

permanently inactivate the activities of cellulase enzyme used during the bioconversion process. 

Thus, use of alternative solvents such as N-methyl morpholine N-oxide for pretreatment of 

biomass has also been explored [21]. 

Chemical treatment can also be accomplished through wet oxidation, which involves the 

oxidization of the compounds dissolved in water using oxygen. Wet oxidation results in the 

decomposition of about 70% of the lignin. Wet oxidation can be combined with alkali treatment 
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to reduce the formation of inhibitors such as organic acids [12]. Treatment of lignocellulose with 

hydrogen peroxide disrupts the biomass through delignification. Hydrogen peroxide solubilizes 

lignin and disrupts the crystalline structure of cellulose by rupturing the intra chain hydrogen 

bonds [22].   

1.4.2 Physicochemical 

1.4.2.1 Steam explosion 

This approach uses the physical and chemical methods to disrupt the lignocellulose 

structure. Steam explosion disrupts the cellulosic fibrils through the use of high pressure and 

saturated steam followed a drastic depressurization. Fibril disruption leads to the exposure of the 

cellulose to degradation. Typical steam explosion conditions are 160-260°C with 0.69 to 4.83 

MPa pressure. Acid molecules formed during stem explosion solubilize hemicellulose [61]. On 

the other hand, use of acid catalyst under above-mentioned specified conditions improves 

hemicellulose disruption [51]. The catalyst reduces the formation of inhibitors while enhancing 

the disruption of hemicellulose. Lignin also undergoes structural changes when it is exposed to 

high temperature and pressure [62]. Chemical disruption of lignocellulosic material is achieved 

through the glycosidic bond cleavage and delignification.  

1.4.2.2 Ammonia fiber explosion (AFEX) 

AFEX is similar to steam explosion however the pretreatment process involves liquid 

ammonia at high pressure and temperature. The biomass is treated at a controlled temperature 

and pressure for a period of time and the pressure is released rapidly. The drastic drop in pressure 

decomposes the biomass, which improves the enzyme digestibility and water holding capacity of 

pretreated biomass. In other words, expansion of ammonia causes the biomass to swell altering 

the linkage of the different components of the lignocellulosic material. Ammonia fiber explosion 
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does not remove lignin but it disrupts the lignin-carbohydrate complexes [24].  

1.4.2.3 Carbon dioxide explosion 

Pretreatment of lignocellulosic biomass by use of carbon dioxide explosion occurs 

through the weakening of the cell wall structure as the carbon dioxide diffuse into the cellulose 

structure and explode [12].  Increased acidity due to the interaction between carbon dioxide and 

water in the biomass also disrupts the lignocellulosic structure. It is important to note that the use 

of carbon dioxide explosion pretreatment helps to reduce the carbon dioxide released into the 

atmosphere by utilizing the carbon dioxide produced during fermentation of sugars to bioethanol 

[60]. Other physicochemical pretreatment techniques include the liquid hot water, ammonia 

recycle percolation and supercritical fluid pretreatment.  

1.4.4 Biological  

Biological pretreatment of lignocellulosic biomass is regarded to be a mild and 

inexpensive, but time-consuming approach. Biological pretreatment is also eco-friendly and a 

sustainable. Biological pretreatment proceeds through the breakdown of lignin material by the 

enzymes secreted by microorganisms. The microbial breakdown of lignin and hemicellulose is 

achieved through the use of two main of groups of enzymes, which include the phenol oxidase 

and peroxidases [9]. Phenol oxidase, also is known as laccase, uses redox mediators in the 

breakdown of the non-phenolic lignin compounds and therefore, aid in the breakdown of lignin 

molecule. The laccase enzyme is found in both fungi such as Phanerochaete chrysosporium and 

in bacteria such as Bacillus subtilis [18]. Similarly, there are several groups of microbial 

peroxidases that help in the breakdown of lignin. Examples of the peroxidases include the lignin 

peroxidase, which is involved in the degradation of the lignin polymer to smaller chains. The 

degradation occurs through the catalytic breakdown of the β-o-4 ether bonds and of Cα–Cβ 
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bonds in the lignin structure. The disruption of the lignin structure by lignin peroxidase is also 

achieved through a catalytic cleavage of the aromatic ring and the formation of quinine. Another 

group of microbial peroxidases that breakdown the lignin structure is the manganese peroxidase. 

Lignin degradation by manganese peroxidase is influenced by the presence of hydrogen peroxide 

and manganese ions [69]. For efficient pretreatment of the lignocellulosic biomass, the laccase in 

combination with one of the microbial peroxidases should be used. Hence, it is important to 

identify microbes with the ability to produce laccase and peroxidases to attain effective 

biological pretreatment. fungi (Phanerochaete chrysosporium and Jungua separabilima) possess 

the capability to produce laccase enzyme and an array of peroxidase enzymes including the 

lignin peroxidase and manganese peroxidase [69]. Trichoderma reesei has the ability to degrade 

hemicellulose, meantime it produces high titers of cellulase. However, the organism is not able 

to breakdown lignin material. Furthermore, the incorporation of the biological agents in a 

lignocellulosic pretreatment process helps to reduce the build-up of undesirable products and 

inhibitors.   

One of the biggest challenges with the use of biological pretreatment method is its slow rate of 

reaction during the lignin degradation. It is indicated that the biological pretreatment can take 

more than 14 days. Meanwhile, biological pretreatment requires strict sample /media preparation 

and operation conditions. Hence, biological pretreatment is preferred in biomass with low levels 

of lignin. The approach can also be used as the first step when used in combination with other 

pretreatment methods [9]. The combination of the biological option with other forms of 

pretreatment helps to cut down on the operation cost mainly by reducing the initial energy 

requirement. Based on the literature review, physicochemical method has been found more 
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effective on lignocellulosic biomass since it removes lignin and hemicellulose effectively 

depending upon the chemical and physical condition. 

 

1.4.5 Biomass pretreatment for enzymatic hydrolysis  

The degradation action of hydrolytic enzymes is affected by various factors. One of the 

factors is the surface area of the substrate. The pretreatment should improve the surface are of 

cellulosic fibres on which the enzymes can attach and hydrolyze. Hence a good pretreatment 

condition substantially removes the hemicellulose and lignin from the biomass and improves the 

surface area of cellulosic fibres [59]. It is, therefore, important that the hemicellulose/lignin 

surface area should be reduced to enhance the activity of the hydrolytic enzymes [59]. 

Fermentation inhibition occurs when inhibitors such as aliphatic carboxylic acids and sorbic acid 

exist above the concentration of 200 to 450mMl-1 respectively [46].  

The consistency of the substrate (also known as biomass to enzyme loading ratio) and 

reaction kinetics determines the amount of sugars produced from the hydrolytic process. The 

consistency also influences the production costs. In the hydrolytic degradation of lignocellulose 

biomass, a consistency of less than 5% of the solid material is usually used. At this consistency, 

the enzymatic hydrolysis yields 5% sugar solution. Increased sugar output can be achieved by 

increasing the consistency. Increasing the consistency helps in reducing the operation cost and 

the capital requirement [37]. The increase of consistency from 5% to 8% is indicated to result in 

20% reduction in the cost associated with enzymatic hydrolysis of biomass. However, caution 

should be exercised when increasing the consistency to avoid inefficient mixing caused by high 

concentration of solid materials. It is indicated that a consistency of more than 10% results in 

poor enzymatic degradation due to inefficient mass transfer.  
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1.5 Types of biomass hydrolysis 

The conversion of biomass to sugars occurs through a process termed hydrolysis. The 

hydrolytic degradation of biomass involves the cleavage of glycosidic bonds that exist within 

carbohydrate polymers. There are two types of biomass hydrolytic processes - acid hydrolysis 

and enzymatic hydrolysis [23].  

Acid hydrolysis of biomass involves the use of dilute acid or concentrated acid. The 

dilute acid process involves two reactions with first reaction involving the hydrolysis of 

hemicellulose while the second reaction involves the hydrolysis of cellulose [68]. The reactions 

occur at same conditions leading to sugar generation and generation of unwanted material. The 

formation of byproduct leads to the inhibition of the fermentation process. The concentrated acid 

process is associated with enhanced glucose yield from cellulose. However, concentrated acid 

hydrolysis is associated with the formation of large amount of fermentation inhibitors [46, 14, 

68].  

Enzymatic hydrolysis involves the use of cellulolytic enzymes obtained from various 

microorganisms. In this regard, use of T. reesei for the production of cellulase enzyme has 

gained more attention due to the high enzyme productivity and effectiveness of enzyme 

produced. Cellulase is a multi-enzyme complex that works together (synergistic action) to break 

down cellulose to simple sugars (Serrano-Ruiz, & Dumesic, 2011). The endoglucanases 

hydrolyze the cellulose by cleaving the chain at random sites using their open active sites. Thus, 

resulting in the production of short chains that are then hydrolyzed to cellobiose by 

exoglucanases. The short chains of cellobiose and cellodextrins that are produced by the 

exoglucanases and cellodextrinases are then converted to simple sugars by β-glucosidases.  
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1.6 Enzymatic hydrolysis 

1.6.1 Approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass 

1.6.1.1 Enzyme and substrate recycling 

During the hydrolysis of lignocellulose, the accumulation of glucose can cause end-

product inhibition [64]. One of the approaches used to overcome the inhibition is through the use 

of high concentration of enzymes [65]. However, the cost associated with the use of high 

concentration of enzyme is discouraging [71, 77]. Enzyme recycling, however, provides a means 

of sustaining high enzyme concentration to ensure sustained production of sugars [71]. One of 

the enzyme recycling approaches is the readsorption of the free enzyme contained in the liquid 

phase of the hydrolysis process through the use of fresh substrates [64]. The addition of fresh 

substrates into the liquid phase can facilitate the recycling of up to 82% of the free enzymes in 

the liquid phase [64]. Another approach is through the recycling of the substrate [71]. The 

recycling of the insoluble biomass is based on the fact that close to 30% of the enzyme remained 

bound to the insoluble biomass during the hydrolysis process [64]. The recycling of solid 

biomass helps to sustain high production of sugars while facilitating the reduction of the required 

dosage of enzyme [71]. 

1.6.1.2 Addition of surfactants 

One of the challenges in the lignocellulose hydrolysis is the adsorption of cellulase to 

lignin, which results in the unavailability/inactivity of the enzymes [39]. The addition of anionic 

and non-ionic surfactants reduces the adsorption of the enzyme by 10% [16]. The addition of 

surfactant-polyethylene glycol has the potential to reduce the concentration of the adsorbed 

enzyme by 11.25% while increasing enzyme activity by 51.06%, hence increasing the production 

of sugars [78]. Tween 80 also increases desorption of the enzymes from lignin through 
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competitive adsorption [39]. Enhanced hydrolysis of the lignocellulose substrate is also achieved 

through the increase in the carboxylic content of lignin, which results in the reduction in the 

amount of the cellulase that is bound to lignin [44].  

1.6.1.3 High (substrate) solids processing 

Increased biofuel titer is achieved through high (substrate) solid processing [35]. 

However the economic importance of high solids processing can be realized by addressing the 

challenge of enzyme loading and energy costs [41]. The adoption of fed-batch enzymatic 

saccharification with simultaneous fermentation helps to solve some of the challenges 

encountered in the use of high solids [35]. Fed-batching of solids through sustained solid 

loadings leads to high ethanol titer at considerably low enzyme loading [35]. 

1.6.1.4 High temperature  

Increased production of sugars from lignocellulose biomass can be achieved through 

optimization of process temperature [53]. High temperature enhances enzymatic hydrolysis by 

reducing viscosity, therefore, increasing the mixing of biomass slurry. High temperatures also 

facilitate the high mass transfer and increased solid loadings. However, the advantages of high 

temperature can only be realized when using thermophilic enzymes that have the capability to 

withstand the high temperature of about 70-90 °C [53].  

1.6.1.5 Enzyme dose 

Increasing the enzyme dose leads to enhanced yield and rate of enzyme hydrolysis. 

However, the rate of increase varies based on the existing cellulase concentration. Below enzyme 

concentration of 10 FPU/g increase in enzyme dose leads to rapid increase in enzyme hydrolysis 

but the rate of increase in hydrolysis drops above the enzyme concentration of 10 FPU/g [60]. 

Effective hydrolysis of lignocellulose is also influenced by the time of enzyme dosing. To 
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achieve the required motion in a biomass slurry enzyme dosing should be done one hour before 

substrate dosing [60].  

1.6.1.6 Hydrolysis time 

Hydrolysis time influence the degree of cellulase hydrolysis. The amount of sugars produced 

increases with increase in the hydrolysis time given that other factors are not limiting [71]. 

However, it should be noted that without controlling for other limiting factors such as enzyme 

dose, the degree of hydrolysis is less time dependent [71].  

1.6.2 Types of cellulases  

Cellulase is a multienzyme complex. Each subunit of cellulase performs different 

function. Based on the microbe used for its production, the degree of each subunit varies [58]. 

One of the subunit known as endoglucanases hydrolyzes the cellulose polymers by randomly 

attaching to a site in the polymer and breaking it into shorter chains [53]. Examples of 

endoglucanases include the ROI 89-05: NREL’s endoglucanases obtained from Acidothermus 

cellulolyticus. These endoglucanases have high thermostability and can be used at high 

temperature (80°C). Another type of cellulases are the exoglucanases which are also termed as 

cellobiohydrolases. The exoglucanases, unlike the endoglucanases, hydrolyze the cellulose 

polymer by progressive removal of the sugar molecules from one end of the chain. The 

exoglucanases remove between two to four sugars residues from the end of the sugar polymer 

chain [58]. The exoglucanases can be further grouped based on the point from which they begin 

their progressive removal of oligosaccharides. The type 1 exoglucanases are those that remove 

the oligosaccharides from the reducing end of the polymer, while the type II exoglucanases 

cleave the short chains from the non-reducing end of the cellulose chain [53]. Another group of 

cellulase enzymes are the cellobiases whose function is to hydrolyze the cellobiose produced 
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from the degradation of cellulose by exoglucanases to glucose. The cellobiases are also termed 

as β-glucosidase. Similarly, certain groups of cellulase enzymes termed as oxidative cellulase 

hydrolyzes and cellulose phosphorylase hydrolyzes can hydrolyze the cellulose through radical 

reaction and phosphorylation reaction respectively [58].  

1.6.3 Cellulase structure 

The structure of cellulase enzymes (Figure 4) varies based on the type of source 

organism. For aerobic organism, the enzyme structure is characterized by a catalytic domain that 

is joined to cellulose binding domains while the catalytic domain is joined to a dockerin domain 

in aerobic organisms [10]. The cellulose-binding domain is important in enabling the binding of 

the cellulase to crystalline or the amorphous structure of cellulose. Other features that make up 

the structure of cellulase enzyme include the fibronectin-type III domain and NodB-like domain. 

 

Figure 4: Cellulase cel5G [49] 

Cellulose is as multienzyme complex generally made up of three types of activities 

includes, endo and exo-glucanase and β-glucosidase. Cellulose is produced by bacteria, fungi, 
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actenomycetes and algae. Based on the source the structure and function varies. The 3-D 

structure of the cellulase enzyme give information on their function. The active site of the 

enzyme is contained in an acidic cleft that is located at the carboxyl end of the barrel. Adjacent 

to the active site is a highly folded subdomain consisting of amino acid chain made up of 4 α-

helixes and 2 β-structure strands. The subdomain extends to the top of the barrel at one end to 

form a substrate-binding cleft. The proton donor (Glu-140) responsible for mediating the process 

of catalysis is also located in the active site [48].  

The 3-D structure of exoglucanases such as T. reesei cellobiohydrolase CbhII consists of 

a α/β barrel of 7 strands connected in α-helices except for the 6th and 7th that are connected by 

irregular strands. The carboxyl end of the barrel contains two extensive loops with side chains 

that form an enclosed tunnel with other side chains from the barrel. The tunnel provides a site 

where the non-reducing end of the carbohydrate polymer threads. The binding sites, a proton 

donor, and nucleophile are located in the tunnel [63].  

1.6. 4 Biosynthesis of cellulases  

Cellulases are naturally produced by certain microbes. New methods for obtaining the 

cellulase from microbes such as the use of genetically engineered microbes are being optimized. 

In this approach, bio prospecting is first done to identify the genetic make up the organism that 

can produce a higher titer of cellulase enzymes within a short period. Once the genetic 

combination has been identified and constructed, it is then inserted into a selected microbe 

through a process called transformation. The transformed organisms with the capability to 

express the inserted gene are then used as recombinant cellulase enzyme producers [74].  

Generation of the cellulase enzyme can also be carried out by providing conducive 

conditions to the enzyme-producing organism. It is indicated that the variation in the substrate on 
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which the microbes of interest are cultured influences the cellulose production. Cellulase activity 

was observed to increase 2 to 10 fold when Termitomyces clypeatus was cultured in soluble 

carbohydrate obtained from wheat bran [45]. The researchers added wheat bran to media in with 

mustard straw with high cellulose and hemicellulose was used as the only carbon source. The use 

of wheat bran was observed to increase enzyme production by 10 fold compared to the general 

media used in cellulose production.  

1.6.5 Mechanism of cellulase hydrolysis of cellulose 

Catalytic breakdown of cellulose by cellulase proceeds through two main mechanisms 

that include the retaining mechanisms and the inverting mechanism (Fig 5)[33]. The cleavage of 

the β-glycosidic bond between the residues occurs in a stereo selective manner. The bond 

cleavage through the retaining mechanism occurs in two steps in which the displacement 

reaction occurs twice leading to the retention of the configuration at anomeric carbon level. The 

first step of the retaining mechanism is mediated by an acid group that donates a proton to the 

glycosidic oxygen [33]. This result in the cleavage of the bond resulting 2 fragments, one with a 

non-reducing end and the other is glycosyl-enzyme intermediate that undergoes the second step 

of reaction resulting in the retention of the configuration. The retaining mechanism is usually 

observed in exoglucanases [33]. The inverting mechanism, however, consists of only one step 

and results in the change of configuration at anomeric carbon level [41]. In this mechanism of 

action, the proton donor such as the Glu-55 protonates the glycosidic oxygen. As protonation 

takes place a negatively charged aspartate-201 residue ionizes a water molecule resulting in the 

formation of hydroxyl ions, which target the anomeric carbon resulting in the inversion of the 

configuration and bond cleavage. The cleavage of the bond in the inverting mechanism do not 

result in the formation of glycosyl-enzyme intermediate but the reaction proceeds through an 
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oxocarbonium ion-like transition state as is the case for the retaining mechanism [41].  

 

Figure 5: general mechanism of cellulose hydrolysis by cellulase; CBH I- cleaves the 
reducing end of cellulose polymer and CBH II acts on non reducing end. Endo glucanase cleaves 
the open chains that created by CBH I &II and releases cellobiose units. β-glucosidases acts on 
cellobiose units and cleaves the β-1,4 glucoside link and releases glucose monomers. 

1.6.6 Inhibitors of enzymatic hydrolysis  

The main inhibitors of enzymatic hydrolysis are the end products or undesired 

compounds released during biomass pretreatment process. Beyond certain levels of 

concentration in the media, products formed during the fermentation can potentially inhibit the 

activity of enzymes used. Products which show such inhibition include the organic alcohol such 

as ethanol and butanol, the organic acids (butyric acid) and acetone. The inhibitors such as 

butanol work by suppressing the cellulolytic activities of the enzyme and saccharification of the 

pretreated substrate [6]. These inhibitors can work singly or can work in combination leading to 

increased inhibition.  

If chemical method such as acid pretreatment is used in combination with biological 

pretreatment methods, various compounds such as furfurals, hydroxymethylfurfural (HMF), 
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formic acids and acetic acids formed during the former process may inhibit the activity of latter 

process (i.e. biological) and during the fermentation [57].The other groups of inhibitors are the 

aromatic compounds produced from lignin degradation during the pretreatment process. 

Aromatic compounds can also be formed from sugars.]. Aliphatic acids such as acetic acids 

produced during the degradation of hemicellulose inhibit the growth of microbes and sometimes 

kill the organism by causing a decline in the intracellular pH. Accumulation of the products of 

enzyme hydrolysis such as cellobiose also results in enzyme inhibition [28].   

 

1.7 Summary  

The above literature review evaluates the use of LCB as a potential source of bioenergy. 

However, the conversion of LCB into biofuels or value added biomaterials will require a set of 

unique processes. Pretreatment of LCB removes hemicellulose or lignin from the biomass, helps 

to reduce the complex nature of biomass, and increases the surface area of cellulose. Hydrolytic 

enzymes can access and convert the pretreated biomass into fermentable sugars. Even though the 

research into biofuel production from LCB has a long tradition, a complete industrial process is 

not yet developed. Based on the literature review it is evident that the enzyme cost is one of the 

major bottlenecks in LCB to biofuels conversion. Hence, more research needs to address the 

issues related to substrate and enzyme recycling or recovery to improve the process economy.  
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ABSTRACT 
 

The current study aimed to evaluate the impact of critical parameters of enzymatic hydrolysis on 

enzymatic saccharification of poplar pulp to glucose using a commercial enzyme product 

(CTec2, Novozymes). It was found that pre-washing of biomass had no effect on enzymatic 

hydrolysis. However, adjusting the pH of the substrate to pH 5, as compared to the initial 

substrate pH of 3, improved hydrolysis efficiency. The optimum biomass and enzyme loadings, 

based on the maximum sugar yield obtained from poplar pulp (41.9% w/w), were both 5% w/w. 

However, hydrolysis efficiency was reduced by 19.3% at 15% substrate consistency. Increasing 

the enzyme loading from 1% to 10% resulted in a 2.1-fold increase in sugar yields. The substrate 

recycling was found to produce additional amounts of glucose, which further increased 

hydrolysis efficiency. After three consecutive repeated hydrolysis of substrate, 92.1% cellulose 

was converted in to glucose. Hence, substrate recycling can be used as a means to 1) extract 

additional amounts of sugar from the substrate, and 2) recover and reuse residual substrate-bound 

enzyme. Therefore, substrate recycling could reduce the overall cost of enzymatic hydrolysis. 

 

Keywords: Enzymatic hydrolysis, CTec2, Poplar pulp, Substrate recycling, Glucose yield  
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1. INTRODUCTION  

The ever growing concerns of the negative effect of fossil fuels on environment and fuel demand 

across the globe lead to renewable and sustainable fuels research [13]. An increasing demand for 

fossil fuels and petroleum based non-biodegradable products has assured a viable future for the 

development of alternative fuels/chemicals obtained from renewable sources such as 

lignocellulose biomass. Lignocellulose is the plant biomass that consists three polymers namely, 

lignin, hemicellulose, and cellulose. It is an essential feedstock for the production of renewable 

fuels including bio-ethanol [4]. Lignocellulosic biomass can broadly be categorized into energy 

crops, waste biomass, and virgin biomass [5; 6]. With its large resources, the forests in Canada 

represent an abundant and rich source of biomass such as biomass harvest residues and biomass 

plantations such willow and poplar species [7; 8]. Derbowka et al. [9] describe willows and 

poplars as shrubs and trees that belong to the members of “Salicaceae” family. Being among the 

fastest growing tree species as reported by Mamashita, Larocque et al. [10], hybrid poplars, are 

considered by both the provincial and federal governments as suitable for the production of bio-

energy to increase biomass-derived energy availability in Canada. Several efforts have been 

made to primarily boost the breeding as well as selection and assortment of poplar plants in 

Canada to enhance their potential as a sustainable and renewable biofuel resource. [8]. For 

efficient utilization of lignocellulose biomass for biofuel and biochemical synthesis, a primary 

removal of non-cellulosic materials is a pre requisite [11; 12]. Bensah and Mensah [13] reported 

the importance of chemical pretreatment of lignocellulosic biomass is a significant factor that 

plays an influential role in the cellulose conversion processes. In the study of Amin et al. [14] on 

the pretreatment methods of lignocellulosic biomass for anaerobic digestion, the observed that 

pretreatment was an influential factor in changing the cellulosic biomass structure, making 
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cellulose readily accessible to the enzymes responsible for converting carbohydrate polymers 

into soluble and fermentable sugars. Pretreatment of the lignocellulosic material is performed to 

overcome recalcitrance through the amalgamation of structural and chemical changes to 

carbohydrates and lignin [14]. In this regard substrate washing and non-washing have been 

widely studied for different feedstock especially waste biomass enzymatic hydrolysis [15]. 

Toquero and Bolado [16] investigated four pretreatments techniques followed by a washing step 

to remove the inhibitors formed during the pretreatment step. The authors reported that washed 

alkaline peroxide pretreated biomass provided the highest sugar concentrations (31.8 g/L 

glucose, and 13.8 g/L xylose). Further, the above study revealed that the washing of pretreated 

biomass could attribute a higher yield of ethanol (17.4g/L) upon fermentation. Also, Zheng et al. 

[17] reported that washing helped in the neutralization and deashing of the substrate before 

saccharification. Frederick, Zhang et al. [15] investigated the effect of washing of pretreated 

biomass on enzymatic hydrolysis and fermentation to ethanol from poplar wood pulp. The 

authors reported that the biomass washed with 3 volumes of water produced the highest ethanol 

yields (up to 0.4 g g−1 glucose) and was significantly greater than those from the non-washed 

sample (≤0.3 g g−1 glucose).   

Cellulosic ethanol is one of the viable products from lignocellulosic biomass synthesized by 

three major steps, namely, pretreatment, hydrolysis, and fermentation [18; 19].  In hydrolysis, 

hemicelluloses and cellulose are broken down into monomeric sugars through the addition of 

enzymes or acids [20; 21]. Enzymatic hydrolysis of lignocellulosic biomass is affected by 

substrate consistency [22; 23], enzyme dosage [24; 25], reaction temperature [26; 27], addition 

of surfactant [28; 29], pH [30], and substrate pretreatment [16; 31].  
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Elsewhere, Weiss et al. [32] studied insoluble solids recycling during enzyme-catalyzed 

lignocellulose hydrolysis to improve cellulase productivity. The authors demonstrated that 

recycling the insoluble biomass fraction could lead to: 1) increased glucose production and 2) 

recovery of a substantial amount of cellulase activity that resulted in 30% reduction in enzyme 

dosage while achieving the same yields of glucose under the most conducive conditions.  

With the above background in mind, this study posed to study the factors such as effect of 

pretreatment inhibitors, pH, enzyme and substrate loading in biomass hydrolysis. Further the 

study is aimed to recover the substrate bound enzyme (substrate recycling) to reduce the use of 

enzyme in hydrolysis.  

 

2. MATERIALS AND METHODS  

2.1. Substrate  

Steam exploded poplar was used as a substrate for enzymatic hydrolysis in the present study. 

Poplar wood chips (8 kg) were soaked in water at 1:4 ratio (w/v) overnight and then drained 

through a sieve of mesh size 4 (pore/opening size of 4750 µm). The soaked chips were then 

loaded into a custom-made pressurized percolation reactor and pre-steamed at 100oC for 60 min, 

followed by cooking with saturated steam at 170oC for 120 min. To adjust temperature, the 

purging steam was frequently discharged from the reactor, condensed and collected (liquid 

purge). At end of the cooking, the pressure of the reactor was instantly released to atmosphere 

through a discharge valve, which caused fibrillation of the wood chips. The fiber-like biomass 

was then pressed in a custom-made hydraulic press cylinder at 3,000 psi through a sieve of mesh 

size 80 (pore/opening size of 180 µm) for 25 min until the liquid (prehydrolysis liquor) in 

biomass was completely drained. The steam-pretreated PP was stored at 4oC until use.  



 

2.2. Impact of washing on production of cellulosic sugars 

µ

µ
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a column (Aminex HPX-87H, Bio-Rad, Hercules, California, USA)  and a refractive index 

detector (RID) [34]. The mobile phase (5mM H2SO4) flow rate was 0.5 mL/min. The column and 

detector temperatures were maintained at 60°C and 35°C, respectively. The analysis was 

performed by adding  1 ml of the aliquot to 2 ml centrifuge tubes and further diluted by 1 ml of 

distilled water in the tubes. The samples were centrifuged at 13000 × g for 3 min, followed by 

filtration using a 0.2 µm syringe (manufacturer) filter before HPLC injection. Samples were 

prepared and run in triplicate. 

 

2.3. Impact of pH 

For this experiment, 15 g of unwashed poplar pulp with the of the actual substrate pH (3) and the 

pH of a fresh sample (15 g) of unwashed poplar pulp was adjusted to 5.0 using 2 M sodium 

hydroxide. In order to stabilize the pH of substrates, after adjusting the pH the samples were 

placed in the refrigerator for 24 h. After 24h the samples were retrieved and brought to room 

temperature and the pH was readjusted to 5.0. The substrate consistency was equally determined 

using moisture analyzer after which 137.82 mL distilled water was added to each of the 

substrates [33].  Glass beads (10 g) were added to flask to improve sample homogenization. The 

enzymes volume added to the flask was calculated as described in  Eq.1.  

 

2.4. Impact of enzyme dosage  

Four samples of 15 g of unwashed poplar pulp adjusted to pH 5 using 2 M sodium hydroxide 

were used for the analysis. All four samples were placed in the refrigerator for 24 h. The samples 

pH level was adjusted and determined after the refrigeration period to conform with the initial 

pH of the substrates. The substrate consistency was adjusted to 5% by the addition of 137.82mL 
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of distilled water to all the four samples. Glass beads (10 g) was added to the flask for better 

mixing.  

The samples were incubated for thirty minutes (pre-warmed) before the addition of enzyme. Four 

levels of enzyme dosages (CTec 2,  Novozymes) were studied as follows: 1% (125 µL), 5% (625 

µL), 8% (1000 µL), 10% (1250 µL) to appropriately labelled sample of 15g unwashed substrate 

containing 51%w/w total solid.The total reaction volume was 150ml in all experiments[33]. The 

volume of enzyme added to the flask was determined based on substrate dry weight using Eq.1. 

The substrate was incubated at 50 °C,  agitation speed of 200 rpm for 96 hours. During the 

incubation period, aliquot sampling was carried out at a time interval of 24, 48, 72, and 96 hours.  

 

2.5. Impact of substrate consistency  

The effect of substrate consistency on the production of soluble sugars was carried out according 

to Zhao, Song et al. [35].  The pH of three samples of 15g each of unwashed poplar pulp was 

adjusted to 5 using 2M Sodium hydroxide. All the three samples were refrigerated for 24 h.  The 

pH level of the substrates was adjusted after the refrigeration period once the samples were 

reached room temperature. The substrate consistencies of three samples were adjusted to 5%, 

10% and 15% and the total volume of the reaction was maintained at 150ml [36]. The substrate 

consistency was calculated based on Equation 2. Homogeneous mixing of the substrates was 

achieved by adding 10 g of glass beads. The volume of enzymes required for the experiment was 

determined using Eq.1 based on substrate dry weight. A constant amount of enzyme (5%) 

quantified as  625 µL was used for all the samples. 

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒`𝑛𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑖𝑑𝑠(𝑔𝑙 )

𝑇𝑜𝑡𝑎𝑙𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑚𝐿 ∗ 100 (𝐸𝑞. 2) 

 



2.6. Impact of substrate recycling  



3. RESULTS AND DISCUSSION 

3.1. Impact of substrate washing and pH of enzymatic hydrolysis 

et al.

Fig. 1:



Fig. 2:
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3.2. Impact of enzyme dosage 

The influence of enzyme dosages was examined at four levels (1, 5, 8, and 10% w/w). The 

lowest sugar conversion efficiency (23.1% glucose yield) was noticed at 1% w/w enzyme (Fig. 

3). As expected, increasing the enzyme dosage resulted in high cellulose to glucose conversion. 

A high sugar yield of 48.9 % was obtained with 10% w/w enzyme charge, followed by 8% w/w 

(46.9%) and 5% w/w (40.6%). The above results were comparable with the work reported by 

Yang et al [38], where hydrolysis of poplar pulp resulted in 48.2% sugar yield. Comparing 1% 

with 5, 8 and 10% enzyme dosages, a significant improvement in hydrolysis was attained. It is 

obvious that the free enzyme concentration or substrate to enzyme ratio is higher at higher 

enzyme loading. However, statistical analysis showed a less significant effect on enzyme 

concentration on hydrolysis when 5, 8, and 10 wt.% was used (p<0.05) (Fig. 3). Increasing 

enzyme load 5% w/w enzyme to 10% w/w resulted in only 8.39% increase in sugar yield, which 

is statistically insignificant. Similarly, the statistical differences in sugar yields between 5 and 

8%w/w enzyme and 8 to 10%w/w enzyme were not significant. Mussatto et al [39] reported that 

high enzyme concentration is one of the highly significant principal factors that affect the 

hydrolysis in lignocellulosic biomass. In the present study 5%w/w (enzyme/g of biomass)  

(6.7FPU/g) enzyme loading resulted in 40.6% hydrolysis efficiency and increasing the enzyme 

loading resulted in slightly higher hydrolysis efficiency. However in the study conducted by 

Mussatto et, al.(2008) reported an enzyme loading of 45FPU/g of substrate resulted in 99.4% 

conversion. Compared to the above study the enzyme loading was 6.7 fold lesser in the present 

case. However the figure 3 reveals an increasing hydrolysis trend upon hydrolysis time. Hence 

increasing the hydrolysis time with high enzyme loading can result better cellulose conversion.  

[39].   



Fig. 3:

3.3. Effects of substrate consistency 
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pulp. Lowest yield of sugar was obtained at highest substrate consistency. There was no 

significant difference (p<0.05) between 10 and 15% substrate consistencies. At low substrate 

concentration, an increase in substrate concentration resulted in increase of the sugar 

concentration and possible improvement in hydrolysis reaction rate [40; 41]. From Fig. 4 it is 

evident that increasing the substrate consistency negatively affected the total sugar yield. The 

current experiment shows a 41.9% w/w sugar yield at 5% substrate loading and 5% w/w enzyme 

loading. A linear decrease in sugar yield is evident indicating that high substrate concentrations 

can hinder the enzyme hydrolysis.  Similar results were obtained by Jørgensen, Kristensen et al. 

[42], Rosgaard, Andric et al. [22], and Shen, Hu et al. [41].  Cara et al. [43] reported that 

enzymatic hydrolysis at high substrate concentration (≥20%) is possible, yielding a concentrated 

glucose solution (>50 g/L). This could be due to the free enzyme availability in the reaction 

mixture. On the other hand, feedback inhibition of cellulolytic enzymes was reported to reduce 

the hydrolysis efficiency at high substrate concentrations. At high substrate concentration, 

cellobiose inhibits the β-glucosidase activity considerably [44]. Moreover, in the current study, 

no surfactants were used to facilitate the enzyme adsorption and desorption from the substrate or 

to reduce the non-productive binding of the enzyme on lignin. Increasing the hydrolysis time 

may lead to enzyme deactivation, which in turns results in poor hydrolysis. Eventually, a high 

substrate concentration during hydrolysis might cause substrate inhibition, which substantially 

lowers the rate of hydrolysis while the extent of substrate inhibition depends on the ratio of the 

total substrate and enzyme dosage [45].   



 

Fig. 4:

3.4. Impact of substrate recycling  



Fig. 5:

4. CONCLUSIONS 
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and accumulation of lignin, which is a known inhibitor of enzymatic and fermentative processes. 

However, recycling of the substrate provides the opportunity to more efficiently utilize the 

substrate for glucose release, and reuse some of the substrate-bound enzyme, which may lead to 

the use of lower enzyme dosages. This approach has the potential to enhance the cost-efficiency 

of enzymatic hydrolysis and will be further optimized for developing an economically-viable 

process of sugar production from renewable, low-cost biomass sources.  
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Abstract  Addition of surfactants to enzymatic hydrolysis has been reported to enhance the 

hydrolytic potential of enzymes in bioconversion of lignocellulosic biomass to fermentable 

sugars. The objective of this investigation was to evaluate the effects of four non-ionic 

surfactants (PEG4000, PEG8000, TritonX-100, and Tween 20) on the efficiency of enzymatic 

hydrolysis of steam-pretreated poplar using a commercial cellulase preparation (Cellic® CTec2). 

Statistical discriminant analysis at four variable factors (surfactant type, surfactant concentration, 

hydrolysis time, and substrate consistency) revealed that enzymatic hydrolysis was significantly 

enhanced in presence of PEG4000, with 19.2% increase in glucose yield over control without 

surfactant, whereas ANOVA test indicated substrate consistency and hydrolysis time as the most 

significant factors (P<0.05). Hydrolysis of poplar pulp at 5% w/w pulp consistency with CTec2 

in presence of 1 % w/w PEG4000 produced the highest glucose yield of 58.5% after 96 h 

reaction time.  

 

 

Keywords Enzymatic hydrolysis, HTec2 cellulase, Poplar pulp, Non-ionic surfactants, 

Fermentable sugars, Discriminant analysis  

 
 
 
 
 
 
 

 

 

 



58 
 

 

1. Introduction  

Lignocellulosic biomass is the only renewable resource on Earth that holds the key to a 

sustainable production of fuels and chemicals without compromising human food security. 

Furthermore, plant biomass has the potential to significantly decrease and eventually substitute 

the use of oil-derived products of environmental concern, increase energy security and 

independence, and enhance rural economy [1].  

Production of high-yield fermentable sugars from plant biomass is a prerequisite for the 

establishment of economically feasible bioconversion process to value-added products such as 

bioethanol, organic acids, enzymes, solvents, etc. For this reason, enzymatic hydrolysis of 

lignocellulosic biomass into soluble sugars has been extensively investigated [2-4]. The efficient 

production of sugars from cellulosic biomass is impeded by several factors [5]. The rapid 

decrease in hydrolysis rate with hydrolysis time leads to low yields and long processing times 

[6]. High cellulose conversion rates are normally attained at high enzyme dosages, which 

increases production costs [6-10]. In addition, enzyme recovery and reuse is problematic due to 

enzyme adsorption to residual lignocellulose and non-specific and non-productive binding to 

lignin, which results in enzyme activity loss [6,7]. Furthermore, the presence of sugar and lignin 

degradation products formed during biomass pretreatment may inhibit enzyme activities and 

hydrolysis efficiency [8, 9].  

Several researchers have attempted to elucidate the factors responsible for the decreasing rate 

of cellulose hydrolysis [6,8, 9-11]. In the investigation of  Pihlajaniemi et al. [9] on the rate-

constraining changes in the enzymatic saccharification of wheat straw, the authors concluded 

that partial permanent activity loss due to irreversible non-productive enzyme binding may be 
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responsible for the declining hydrolysis rates. Irreversible binding of cellulases by lignin and 

steric hindrance of enzymes were pointed as the most likely causes for the gradual slowing down 

of the reaction rate during enzymatic hydrolysis of pretreated poplar and switchgrass. The other 

factors included substrate	 availability	 in	 a	 hydrolysis.	 Cellulose	 surface	 area	 decreased	

linearly	with	 hydrolysis,	 in	 correlation	with	 total	 cellulose	 content,	 hence	 the	 hydrolysis	

efficiency	decreases	corresponding	to	increasing	hydrolysis	time	and	cellulose	content [12]. 

The presence of lignin in complex lignocellulosic substrates has been reported to exert a negative 

effect on enzymatic hydrolysis in several studies [12-14] 

The use of additives, such as surfactants and polymers, has shown promise in improving the 

enzymatic digestibility of cellulose and hydrolysis yields [17-22]. Although the exact mechanism 

of the surfactant-substrate-enzyme interaction is not fully understood, it is believed that 

surfactants prevent the non-productive enzyme adsorption onto lignin, which in turn increases 

the amount of free enzyme available for cellulose saccharification [15,16]. The effects of 

different types of surfactants have been examined on cellulosic substrate hydrolysis by several 

researchers.  Cao, Aita [17] studied the enzymatic hydrolysis and ethanol production of 

combined surfactant and diluted ammonia-treated sugarcane bagasse. The authors showed that 

PEG 4000 and Tween 80 gave the highest cellulose digestibility (62%, 66%) and ethanol yields 

(73%, 69%) as compared to the use of only dilute ammonia (38%, 42%) or water (27%, 26%) as 

catalysts, respectively. Similarly, an enhanced enzymatic hydrolysis of sugarcane bagasse with 

ferric chloride pretreatment and surfactant was developed by Zhang et al. [18]. A synergistic 

surfactant-assisted ionic liquid pretreatment of lignocellulosic waste improved the enzymatic 

hydrolysis by 21% upon surfactant addition [19]. In another study, applying a surfactant-

mediated ionic liquid, the rate of enzymatic hydrolysis was significantly increased and 12.5% 
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more lignin was removed from sugarcane bagasse using surfactants as compared with ionic 

liquid alone Nasirpour et al. [20].  

The type of surfactant, substrate and enzyme all influence the enzymatic hydrolysis of 

lignocellulose biomass, and improved hydrolysis rates and yields in presence of surfactants may 

be attributed to one or most likely a combination of synergistic effects such as: a) surfactant 

effect is higher at low cellulase concentration [10]; b) surfactants adsorb at the air–liquid 

interface and increase enzyme stability thus protecting enzymes from possible denaturation 

during hydrolysis [21-23], c) surfactants prevented enzyme inactivation and facilitate enzyme 

desorption from substrate [24,25], d) surfactants  promote availability of reaction sites which 

leads to increased hydrolysis rates [19,15], e) adsorption of enzymes to cellulose during 

hydrolysis decreases in presence of surfactants [24], f) surfactants assists in increase of the 

available cellulose surface and/or removal of inhibitory lignin [26].  

Henceforth, the aim of this study was to evaluate the effectiveness of different types of non-

ionic surfactant in enzymatic hydrolysis of poplar pulp (PP). We attempted to (i) enhance 

glucose yields from PP by addition of surfactants to enzymatic hydrolysis; (ii) to better 

understand the relationship between significant factors that influence the efficiency of enzymatic 

hydrolysis.  

 

2. Materials and methods 

2.1. Poplar pulp 

Steam-pretreated PP was used as a substrate in the hydrolysis experiments. Poplar wood chips (8 

kg) were soaked in water at 1:4 ratio (w/v) overnight and then drained through a sieve of mesh 

size 4 (pore/opening size of 4750 µm). The soaked chips were then loaded into a custom-made 
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pressurized percolation reactor and pre-steamed at 100oC for 60 min, followed by cooking with 

saturated steam at 170oC for 120 min. To adjust temperature, the purging steam was frequently 

discharged from the reactor, condensed and collected (liquid purge). At end of the cooking, the 

pressure of the reactor was instantly released to the atmosphere through a discharge valve, which 

caused fibrillation of the wood chips. The fibre-like biomass was then pressed in a custom-made 

hydraulic press cylinder at 3,000 psi through a sieve of mesh size 80 (pore/opening size of 180 

µm) for 25 min until the liquid (prehydrolysis liquor) in biomass was completely drained. The 

steam-pretreated PP was stored at 4oC until use.  

 

2.2. Chemical composition  

The carbohydrate composition of PP was determined according to procedures described by 

Sluiter et al [27].  An automated moisture analyzer (Sartorius MA37-1, Goettingen, Germany) 

was used to measure the total solid content of PP. In order to determine the monomeric sugar 

composition, 0.3±1g of moisture corrected sample was weighed into a clean screw capped test 

tube, and to that, 3 ml of 72% w/v H2SO4 was added. The well-mixed sample was hydrolyzed at 

30⁰C for 2 h with intermediate mixing. After 2 h of initial hydrolysis, 84 mL of deionized water 

was added and the sample was autoclaved at 121⁰C for 1 h. Thereafter the sample was cooled 

down to room temperature and filtered through a Whatman 0.45 µm filter paper. The solid 

residue collected on the filter paper was used for ash and acid insoluble (Klason) lignin 

determination. The supernatant was neutralised to pH 5.5-6.0 with CaCO3 and filtered through a 

Whatman 0.2µm filter paper prior to sugar analysis. The cellulose content of PP was calculated 

as % of total biomass dry weight according to Eq. 1: 

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 % = !"#$%&' !"#$%#$
!"!#$% !"#! !"# !"#$!! 

×0.9 ×100         (1)  
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where glucose content is the amount of glucose (g) released from poplar pulp upon complete 

acid hydrolysis of PP, and poplar pulp dry weight is the amount of dry (water-free) poplar pulp 

(g) used for the determination. 0.9 is the conversion factor for glucose to cellulose. 

 

2.3. Surfactants 

Four non-ionic surfactants were used in this study: polyethylene glycol PEG8000 (Fisher 

Scientific, NJ, USA), polyethylene glycol PEG4000 (Alfa Aesar, MA, USA), polyethylene 

glycol octyl phenol ether, TritonX-100 (Sigma Aldrich, MO, USA), and poly(oxyethylene)20 

sorbitan monolaurate, Tween20 (Sigma Aldrich, MO, USA). 

 

2.4. Enzymatic hydrolysis  

Enzymatic hydrolysis of PP was carried out with a commercial cellulase preparation Cellic(®) 

CTec2 (Novozymes A/S, Bagsvaerd, Denmark). Cellic(®) CTec2 was used according to the 

manufacturer recommendations under optimum pH of 5.0 and temperature of 50oC. The enzyme 

loading applied on PP was 5% (w/w). The total reaction volume was 150mL with 7.5g of total 

solid. The enzyme loading and the surfactant concentrations were calculated based on the 

equitation’s 2 and 3. PP was enzymatically treated at a pulp consistency of 5, 10, and 15 % 

(w/w) for up 96 h. pH was adjusted to 5.0 using 2 M sodium hydroxide. The impact of 

surfactants on enzymatic hydrolysis was studied as described by Börjesson et al. [23]. Following 

pH and consistency adjustment, surfactants were mixed with PP at three concentrations of 1, 5 

and 8 % (w/w) 24 h before addition of CTec2 cellulase. To facilitate mixing during enzymatic 

hydrolysis, glass beads were added to each flask (250 ml) and samples (each containing 15 g dry 
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weight of PP) were placed in a shaking incubator (Innova 44, Maine, USA) at 200 rpm. All 

samples were analyzed in triplicate. 

𝐸𝑛𝑧𝑦𝑚𝑒  𝑣𝑜𝑙𝑢𝑚𝑒 = !"#$%&'%( !"# !"#$!! × !"#$%& %

!"#$%& !"#$%&' !.! !
!"!"# !"#$!

                                                              (2) 

𝑆𝑢𝑟𝑓𝑎𝑐𝑡𝑎𝑛𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = !"#$%&'%( !"# !"#$!! × !"#$%&'%(' %
!"#$%&'%(' !"#$%&' 

                                             (3) 

Where substrate dry weights is the total biomass added and the enzyme density is the weight of 

1ml of Novozymes CTech 2 cellulose preparation. In the case of enzyme and surfactant addition 

total, dry biomass was considered as 100% 

2.4.1. Sugar analysis 

Following enzymatic treatment of PP, enzymatic hydrolyzates were analyzed for glucose in a 

1200 Series High-Performance Liquid Chromatography (Agilent Technology, Toronto, Canada) 

using a refractive index detector (RID) and an Aminex HPX-87H column (300 x 7.7). For 

elution, 5 mM sulfuric acid was used as an isocratic eluent at a flow rate of 0.5 mL/min. The 

column and RID temperature were maintained at 60oC and 35oC, respectively.  

2.4.2. Glucose yield 

Glucose yield (%) was calculated as follows: 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑦𝑖𝑒𝑙𝑑 % = !"!"#$% !"#"$%"&
!"!#!$% !"#$%&'

×100           (4)  

where glucose released is the amount of glucose (g) produced by enzymatic hydrolysis of PP, 

and initial glucose is the amount of glucose (g) contained in PP prior to enzymatic hydrolysis. 

2.4.3. Statistical analysis 

A full factorial design was used to verify the effects of the surfactants on the conversion of PP to 

glucose. Statistical analysis was carried out to investigate the effect of individual factors, 

leverage and desirability using JMP® (Statistical Analysis Systems, Version 13.0.0, SAS Institute 
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Inc., Cary, NC, USA). Discriminant analysis was used for the classification of the surfactant 

types using canonical variate analysis (CVA) [28]. To predict a suitable surfactant that could best 

enhance enzymatic hydrolysis of PP, a discriminant analysis of all four  surfactants was carried 

out using surfactant concentration, reaction time, and substrate consistency. Fischer test (F-

value) and probability (P-value) were applied to determine the significance of the model and 

individual parameter. F-value was determined to compare the variance of the corresponding term 

with the residual variance, and was estimated as mean square of the term to the mean square of 

variance. P-value of any term is the probability of getting F-value of a size in which a P-value of 

less than 0.05 (P<0.05) is considered to have a significant effect, whereas P>0.05 is deemed 

insignificant.  

 

3. Results and discussion  

3.1. Chemical composition of poplar pulp 

The chemical composition of pretreated PP is presented as % of the total dry weight of substrate 

in Table 1. The PP biomass constituted 81.6% polysaccharides (cellulose and hemicellulose). 

Assuming all glucose was derived from hydrolysis of the cellulose fraction, the cellulose content 

of poplar pulp was 66.1%. According to the literature [29], untreated poplar wood contains from 

42.2 to 47.5% w/w cellulose, which suggests that the steam pre-treatment applied in this work 

was successful in enriching the carbohydrate, in particular, cellulose content of biomass. The 

high sugar content, of which nearly 90.5% was glucose (comparing the total reducing sugars), 

suggests that PP is a suitable feedstock for biorefinery applications [30].  
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Table 1 Carbohydrate composition of poplar pulp 

 

 

 

 

 

3.2. Effect of hydrolysis time  

Four non-ionic surfactants were evaluated for their ability to enhance enzymatic hydrolysis of PP 

The surfactants are described to have several advantages; 1) it can extract and block lignin and 

hemicellulose degradation products, 2) it protects the enzyme from denaturation at high 

temperature, 3) improved electrostatic interaction between surfactant monomer or micelles and 

enzyme causes an enhanced enzyme activity, and  4) reducing the surface tension and viscosity 

of liquid that in turn diminishes the contact of enzyme with air-liquid interface. In the present 

investigation, four different surfactants based on their ethylene oxide (EO) group was used to 

evaluate the hydrolysis (PEG4000/8000 10 -180 EO units and Tween80 and TritonX100 10 -19 

EO units)[37]. The efficiency of the enzymatic hydrolysis was evaluated based on the glucose 

yield obtained after 24, 48, 72, and 96 h of hydrolysis time (Fig. 1). As evident from Fig. 1, a 

nearly linear increase in glucose yield with time was observed with or without surfactant and 

irrespective of the surfactant type. For example, the glucose yield obtained after enzymatic 

hydrolysis of PP for 96 h in absence of surfactant (control) was 39.3% w/w. In presence of 1% of 

PEG4000, the glucose yield increased from 39.6% (at 24 h) to 58.5% (after 96 h).  Similarly, in 

presence of 1% Tween80, the glucose yield increased 17.1% when hydrolysis time was 

prolonged from 24 h to 96 h. Furthermore, all surfactants improved the glucose yield over the 

Component %  w/w 

Glucose 73.9±2.8 

Xylose 5.6±0.7 

Arabinose 2.1±0.2 



Fig. 1 
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the effectiveness of enzymatic hydrolysis by feedback inhibition [33]. Moreover, the residence 

time of enzymatic hydrolysis could be dependent upon the biomass composition and structure, 

reaction conditions and availability of free enzyme [34]. Hence, a proper optimization of resident 

time is an essential factor for enhancing the yield of fermentable sugars from lignocellulosic 

biomass. 

3.3. Effect of surfactant concentration  

The effect of surfactant concentration on hydrolysis efficiency was evaluated and compared 

with the control conditions (Fig. 2). As stated above, at 1% w/w surfactant concentration, 

enzymatic hydrolysis in presence of PEG4000 produced the greatest glucose yield of 58.5% 

whereas the lowest sugar yield of 40.3% was observed in presence of 1% w/w TritonX-100. 

However, with the exception of TritonX-100, the increase in the surfactant concentration to 5% 

and 8% did not lead to any further improvements in the glucose yield, and in fact, a decrease in 

the sugar release from PP was observed (Fig. 2). This decrease was more evident at 8% w/w 

surfactant concentration than 5% w/w, suggesting that the surfactant effect on enzymatic 

hydrolysis is both surfactant type and concentration dependent. Our results suggest that increased 

surfactant concentrations can lead to enzyme inhibition by denaturation and loss of enzyme 

activity, which negatively affects the cellulose conversion efficiency.   

 

Literature reports on surfactant impact on hydrolysis are controversial. Zhang et al. [35] 

reported a positive correlation in reducing sugar concentration with surfactant (PEG4000) 

concentration up to an equilibrium point at a surfactant concentration at which the non-

productive sites in biomass had been surfactant-counteracted. Further increase in surfactant 

concentration did not improve sugar yields but caused a decline in the hydrolysis efficiency 



Fig. 2   



69 
 

 

3.4. Effect of substrate consistency 

Substrate consistency is another factor in enzymatic hydrolysis of lignocellulosic biomass which 

directly affects the sugar yields increasing the substrate/solids concentration improves the overall 

sugar concentrations/titers. However, the substrate consistency is a dependent parameter, which 

could be influenced by the amount of free enzyme and surfactant in the hydrolysis reaction.  

In the current study, the effect of substrate (PP) consistency was evaluated (Fig. 3) at three 

different levels (5, 10 and 15% w/w) with varying surfactant concentrations (1, 5 and 8% w/w). 

As noted, the highest hydrolysis yield was obtained with PEG4000 at 5% w/w PP consistency. 

The increase in substrate consistency from 5 to 10 and 15% w/w significantly affected the sugar 

yield. For example, at 10% w/w PP consistency and 1% w/w PEG4000 concentration, an 18.4% 

drop in sugar yield over control was detected (Fig. 3b).  The cellulose to glucose conversion 

efficiency at 15% w/w solids was significantly lower (2.2-fold) than 5% w/w substrate 

consistency. With PEG4000, over 50% loss in glucose yield was noticed at 15% w/w compared 

to 5% w/w solids (Fig. 3c). However, increasing the PEG8000 concentration from 1 to 5% w/w 

with 15% substrate loading resulted in 13.8% improvement in sugar yield, compared to 1% w/w 

surfactant dose. Similarly, with all other surfactants, a slight improvement in glucose yield was 

attained when the surfactant concentration was proportionally increased to the substrate solids 

(Fig 3a,b,c). Interestingly, compared to 1% w/w surfactant concentration and 5% w/w solids (Fig 

3a), a significant increase in the glucose yield of 57.5% was recorded with TritonX-100 at 5% 

w/w surfactant concentration (Fig. 3b). This could be explained by the effect of formation of 

hydrated “micelles ” in presence of phenolic compounds (such as TritonX-100) that have the 

affinity to bind to lignin as a highly branched phenolic polymer which results in the release of 



Fig. 3 
a b c
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3.5. Discriminant analysis of surfactant impact 

The substrate consistency, reaction time, surfactant type, and surfactant concentration were used 

as variable factors to statistically classify the best surfactant suitable for high glucose yield from 

PP hydrolysis. This analysis equally provided information on the hierarchy of level of 

significance of each of the parameters on glucose production from PP. A total of 156 lines of 

data that comprised all the selected parameters were used for the discriminant analysis. Stepwise 

variable selection model was employed from JMP 13.0, a statistical analysis software for the data 

classification and analysis. Fig. 4 shows the scatterplot matrix and discriminant analysis results 

used to determine the best surfactant suitable for the high conversion of PP to fermentable 

sugars. From Fig. 4a, the scatterplot of the surfactants type revealed that PEG4000 showed the 

highest influence on the conversion of PP to soluble sugar. It was also confirmed that the glucose 

yield increased with reaction time and decreased with substrate consistency. The scatterplot 

equally revealed a decrease in the conversion of PP with an increase in the surfactant 

concentrations. CVA has the capacity to classify the product effect in the two-way (product and 

subject) multivariate ANOVA model, which is the natural extension of the classical univariate 

approach consisting of ANOVA of every attribute [41,28].  
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Fig. 4 Discriminant analysis of surfactant effect on enzymatic hydrolysis of poplar pulp under 
different conditions of hydrolysis time, substrate consistency, surfactant type and concentration  
a scatterplot matrix, b discriminant analysis of surfactant effect 

 

Fig. 4b displays the discriminant results of the effect of surfactants on the enzymatic 

hydrolysis of PP. PEG4000 was found to have the highest positive impact on the hydrolysis of 

PP to glucose, followed by TritonX-100. This finding was based on the combined effects of all 

the selected parameters. TritonX-100 produced better results at 5% surfactant concentration and 

10% substrate consistency (Fig.4b). The control had the highest negative effect on the 

conversion of PP to glucose, which means that the addition of surfactant significantly improved 

the hydrolysis process. Similar results were reported by Jin et al. [26] in their investigation of the 

effects of Tween80 to enhance enzymatic saccharification of steam-exploded biomass and 

ethanol production by lessening cellulase absorption with lignin in common reed. The authors 

reported that Tween80 specifically blocks lignin absorbing with cellulase for high biomass 

b 
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digestion. A ranking screening of the parameters involved in the discriminant analysis of the 

surfactant effects was presented in Table 2.  Surfactant type was ranked third out of four while 

surfactant concentration was the least significant parameter in the ranking. The substrate 

consistency was ranked as the most important parameter for enhancing the glucose yield from PP 

biomass. High substrate consistency requires the use of high surfactant concentrations to limit 

the negative impact of non-specific enzyme bonding to lignin and possible enzyme inhibition. 

Further analysis of multivariate pairwise comparison of the three discrete variables with the 

soluble sugar yield from PP was performed (Table 3). Pairwise comparison between sample 

consistency and reaction time with the glucose yield was found to significantly (P<0.05) 

influence the conversion of PP to glucose. From the analysis of variance (ANOVA), surfactants 

significantly (P<0.05) influenced the conversion of lignocellulosic biomass to soluble sugars. 

The contribution of each surfactant to the conversion of lignocellulosic biomass (PP) declined in 

the following descending order: PEG4000 > Tween80 > PEG8000 > TritonX-100.  

Table 2 Effects of predictor screening of parameters on glucose yield 

 

 

 

 

 

 

 

 

 

Predictor Contribution Portion  Rank 

Substrate consistency 2321.35 0.4844  1 

Time 1637.47 0.3417  2 

Surfactant type 760.22 0.1586  3 

Surfactant concentration 72.86 0.0152  4 
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Table 3 Multivariate pairwise comparison of variables 

 

4. Conclusion  

The current investigation highlighted the importance of surfactants as additives to enzymatic 

hydrolysis that can enhance the efficiency of cellulose conversion and yields of fermentable 

sugars for biorefinery applications such as the production of biofuels and biochemicals. Addition 

of surfactants (PEG4000) proved efficient at concentrations as low as 1% w/w, and their effects 

on glucose yield were both surfactant type and concentration dependent. Enzymatic 

saccharification of poplar pulp for 96 h was significantly enhanced in presence of PEG4000, 

yielding 58.5% glucose which translates into 19.2% increase in glucose yield over control 

without surfactant. The discriminant analysis employed in this study appears as a useful tool for 

classifying, identifying, and discriminating the impact of different surfactants on glucose 

production from biomass.The most significant factors (P<0.05) that can positively influence the 

outcome of enzymatic hydrolysis were a substrate (poplar pulp) consistency and reaction time. 

Overall, with exception of TritonX-100, the increase in the surfactant concentration and substrate 

consistency reduced the glucose yield from poplar pulp. At a given glucose yield, the use of 

surfactants in enzymatic hydrolysis of lignocellulosic biomass would allow reduction of the 

Variable by Variable Correlation Count Lower 95% Upper 95% Signif Prob 

Surfactant concentration Glucose yield 0.0189 156 -0.1387 0.1755 0.8153 

Pulp consistency Glucose yield -0.7374 156 -0.8017 -0.6564 <.0001* 

Pulp consistency Surfactant concentration 0.0000 156 -0.1571 0.1571 1.0000 

Time Glucose yield 0.4802 156 0.3495 0.5927 <.0001* 

Time Surfactant concentration 0.0000 156 -0.1571 0.1571 1.0000 

Time Sample 0.0000 156 -0.1571 0.1571 1.0000 
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enzyme (cellulase) dosage and potentially improve the economics of any biorefinery process that 

requires second-generation fermentable sugars as feedstock. Work is underway to optimize the 

amounts of PEG4000 and cellulase for the establishment of a cost-effective process for sugar 

production from currently underutilized biomass sources such as poplar.    
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Chapter 4 

CONCULSIONS AND FUTURE WORK 

The objective of this work was to examine enzymatic hydrolysis as a tool to utilize a 

currently underutilized biomass source (poplar) for sustainable production of sugars (glucose) as 

the feedstock for numerous biorefinery applications. Providing an inexpensive source of glucose 

is the key to unlocking the enormous potential of lignocellulosic biomass for the establishment of 

Integrated Biorefineries as a major pillar for the emerging Bioeconomy. Lignocellulosic biomass 

is the only renewable resource on Earth that can be utilized for sustainable production of fuels 

and chemicals without compromising human food security. Furthermore, plant biomass has the 

potential to significantly decrease and eventually substitute the use of oil-derived products of 

environmental concern, increase energy security and independence, and enhance rural economy. 

 Chapter 1 provided an extensive and critical review of recent literature, with 80 most 

recent references on the topic, emphasizing sugar production from plant biomass by enzymatic 

hydrolysis, composition of biomass, pretreatment methods, drawbacks and opportunities for 

enhancing sugar yields from biomass, and ways to make enzymatic hydrolysis more cost-

efficient. The review points out to the fact that more research is needed to address and overcome 

challenges related to process economics that currently prevent large-scale biorefinery 

applications. In this context, enzyme cost is one of the major bottlenecks in the biomass 

valorization to value-added products.  

In Chapter 2, the impact of critical parameters of enzymatic hydrolysis on enzymatic 

saccharification of poplar pulp to glucose using a commercial enzyme product (CTec2, 

Novozymes) was investigated. It was found that prewashing of biomass had no effect on 

enzymatic hydrolysis. However, adjusting the pH of the substrate to pH 5, as compared to the 
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initial substrate pH of 3, improved hydrolysis efficiency. The optimum biomass and enzyme 

loadings, based on the maximum sugar yield obtained from poplar pulp (41.87% w/w), were 

both 5% % w/w. However, hydrolysis efficiency was reduced by 19.3% at 15% substrate 

consistency. The substrate and enzyme consistency and hydrolysis time were identified as 

significant factors in hydrolysis. The higher the substrate consistency the lower the enzymatic 

hydrolysis yield of glucose from poplar pulp. On other hand, increasing the enzyme loading 

resulted in increased pulp to sugar conversion. For example, increasing the enzyme loading from 

1% to 10% resulted in a 2.1-fold increase in sugar yields. The substrate recycling was found to 

produce additional amounts of glucose which further increased hydrolysis efficiency, although 

sugar yields declined two-fold after two consecutive recycling runs.  The reduction in the 

glucose yield was most likely due to reduced availability of easily hydrolysable substrate in 

poplar pulp, and accumulation of lignin, which is a known inhibitor of enzymatic and 

fermentative processes. However, recycling of the substrate provides the opportunity to more 

efficiently utilize the substrate for glucose release, and reuse some of the substrate-bound 

enzyme, which may lead to use of lower enzyme dosages. This approach has the potential to 

enhance the cost-efficiency of enzymatic hydrolysis and will be further optimized for developing 

an economically-viable process of sugar production from renewable, low-cost biomass  sources.  

In Chapter 3, the effect of surfactants addition to enzymatic hydrolysis to enhance the 

hydrolytic potential of enzymes in bioconversion of lignocellulosic biomass to fermentable 

sugars was investigated. Addition of surfactants to enzymatic hydrolysis has been reported to 

enhance the hydrolytic potential of enzymes in bioconversion of lignocellulosic biomass to 

fermentable sugars. The objective of the work was to evaluate the effects of four non-ionic 

surfactants (PEG4000, PEG8000, TitronX-100, and Tween 20) on the efficiency of enzymatic 
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hydrolysis of steam-pretreated poplar using a commercial cellulase preparation (Cellic® CTec2). 

Statistical discriminant analysis at four variable factors (surfactant type, surfactant concentration, 

hydrolysis time, and substrate consistency) revealed that enzymatic hydrolysis was significantly 

enhanced in presence of PEG4000, with 19.2% increase in glucose yield over control without 

surfactant, whereas ANOVA test indicated substrate consistency and hydrolysis time as the most 

significant factors (P<0.05). Hydrolysis of poplar pulp at 5% w/w pulp consistency with CTec2 

in presence of 1 % w/w PEG4000 produced the highest glucose yield of 58.5% after 96 h 

reaction time. This chapter highlighted the importance of surfactants as additives to enzymatic 

hydrolysis that can enhance the efficiency of cellulose conversion and yields of fermentable 

sugars for biorefinery applications such as production of biofuels and biochemicals. Addition of 

surfactants proved efficient at concentrations as low as 1% w/w, and their effects on glucose 

yield were both surfactant type and concentration dependent. The discriminant analysis 

employed in this study appears as a useful tool for classifying, identifying, and discriminating the 

impact of different surfactants on glucose production from biomass. The most significant factors 

(P<0.05) that can positively influence the outcome of enzymatic hydrolysis were substrate 

(poplar pulp) consistency and reaction time. At a given glucose yield, the use of surfactants in 

enzymatic hydrolysis of lignocellulosic biomass would allow reduction of the enzyme (cellulase) 

dosage and potentially improve the economics of any biorefinery process that requires second-

generation fermentable sugars as feedstock.  

Finally, this study also paves the way for further related research on the topic of cost-

effective production of fermentable sugars from lignocellulosic biomass: 1) better understanding 

of the mechanisms of surfactant action and interaction with biomass during enzymatic 

hydrolysis; 2) optimization of surfactant and enzyme doses; 3) optimization of substrate 



83 
 

recycling; 4) investigation into enzyme recycling and optimization of enzyme recycling; 5) 

optimization of the combined effects of surfactant, substrate and enzyme recycling for maximal 

sugar production at minimal production costs; 6) techno-economic analysis of the developed 

enzymatic hydrolysis process; 7) investigation of pathways to utilize the fermentable sugars 

generated through the developed enzymatic process for cost-effective production of biofuels and 

value-added biochemicals.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 


