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Abstract 

Activation of brown adipose tissue in mice, through the use of the amino acid 

leucine, was investigated. Brown adipose tissue has become a topic of interest in 

recent years, as activation of this tissue has been proposed as a potential target 

for obesity and type 2 diabetes treatment. This is because activation requires 

large amounts of energy, as well as circulating glucose, and stores of 

triglycerides. Previous work involving brown adipose tissue activation focuses on 

drugs with a known beta-adrenergic stimulus, which is one method of activation 

of brown adipose tissue, but few focus on potential dietary treatment. In order to 

assess activation due to leucine, 18F-FDG uptake was measured using positron 

emission tomography after treatment with leucine. Using an analysis method of 

calculating standardized uptake value and maximum standardized uptake value, 

the level of 18F-FDG uptake was quantified and used to judge activation. It was 

shown that leucine causes an additional increase to brown adipose tissue 

activation in a hyperglycaemic state. This finding opens the door for future 

research involving the method of action of leucine or testing if leucine treatment 

has the potential to treat hyperglycaemia.  
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Lay Summary 

The following work was completed within the Department of Biology and thus 

adds to the the understanding of biology and fits with the department mission 

statement, “Faculty and students in the Department of Biology are bound 

together by a common interest in explaining the diversity of life, the fit between 

form and function, and the distribution and abundance of organisms”. It may not 

be immediately clear the fit of the following research to this mission statement, 

but the work allows for a better understanding of the underlying biological 

mechanisms that are at play in relation to the physical form of a mouse. Through 

research involving the internal bodily component called brown adipose tissue, a 

better understanding of the function of the tissue in the mouse is found. The 

research completed was to determine if treatment with the amino acid leucine 

can increase glucose uptake in brown adipose tissue, which would indicate that 

the tissue is active. Activity of this tissue is linked with an increase in energy 

expenditure, use of sugar from the blood stream, and stored fat use. It is thought 

that through activation of brown adipose tissue, hyperglycaemia, which is 

common in obesity and diabetes, can be treated or prevented. This knowledge 

on brown adipose tissue function could also allow for a translational link between 

mice and humans and relate these two very diverse species through this tissue, 

giving a better understanding of the function of the human brown adipose tissue. 
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1. Introduction: 

With approximately 2 million Canadians suffering from type two diabetes (T2D) 

and 37% of Canadians being overweight, 24.5% of those being obese, there is a 

growing need for additional treatment and therapies to address this disease and 

health concerns [1], [2]. One growing area of interest to address this need is with 

brown adipose tissue (BAT). BAT has been known to be prevalent in small 

animals and infants. Due to advancements in imaging technology, recent studies 

have shown the presence of BAT in adult humans. As seen in Figure 1, depots 

are symmetrically located at the cervical-supraclavicular, paravertebral, 

mediastinal, and periadrenal regions [3]–[8].  
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Figure 1: Fused positron emission tomography (PET)/computed tomography (CT) 

images showing 18F-FDG uptake in human cervical-supraclavicular, paracertebral, 

mediastinal, and periadrenal regions that have been confirmed to be BAT depots 

[8]. Taken from D. Richard, et al., 2010.  



With the discovery of BAT in adult humans interest in its function has peeked. 

BAT is known to be responsible for non-shivering thermogenesis as well as 

acting as an endocrine organ [9]. These properties make it ideal for increasing 

energy expenditure of the body and reducing the amount of glucose and fats in 

the blood stream, which can be useful when being applied to diabetic and 

overweight individuals [10]–[13]. 

Insulin is a hormone normally secreted from the β-cells of the pancreas, primarily 

in response to a meal or glucose intake. β-cells, that are clustered in islets, sense 

changes in plasma glucose levels and release insulin from secretary granules. 

The β-cells also respond to other nutrients in the blood stream such as 

monosaccharides, amino acids, and fatty acids, but to a lesser extent. Once 

released, insulin binds to insulin receptors located at various locations, which 

causes the use or storage of glucose within the body. In individuals with type 1  

diabetes (T1D) and T2D, pancreatic β-cell dysfunction is an important factor to 

the disease pathogenesis. In T1D the mass and insulin secretary function of β-

cells is decreased; the cause of this is linked to autoimmunity. The immunological 

activity, primarily through T lymphocytes, within the pancreas causes the 

destruction of β-cells. Conversely, chronic insulin resistance and loss of β-cell 

mass and function result in T2D; the primary cause of this is chronic 

hyperglycaemia, which is linked to obesity. Obesity is associated with impairment 

in energy metabolism, leading to increased intracellular fat content in skeletal 

muscle, liver, fat, and pancreatic islets. This chronic insulin resistance will 
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progress to T2D when the β-cells can no longer secrete necessary amounts of 

insulin to compensate for decreased insulin sensitivity and chronic 

hyperglycaemia. Hyperglycaemia is the constant entry of glucose into β-cells, 

which leads to insensitivity to glucose stimulation. This leads to the exhaustion of 

β-cell stores of insulin [14]. Eventually this leads to glucotoxicity and irreversible 

damage, leading to apoptosis of the β-cells. Chronic exposure of the β-cell to 

glucose and fatty acids is thought to be the cause of hyperglycaemia. 

The diminished insulin response is often discussed in terms of stimulation from 

glucose, mainly caused after ingestion of a meal, but as mentioned previously, 

other nutrients have been shown to stimulate insulin release. Some amino acids 

have been shown to have this ability, often through enhancement of glucose 

stimulation, but also through adenosine triphosphate (ATP) production, and 

incretin-dependent pathways. Amino acids are organic compounds that contain 

an amine group as well as a carboxyl group, along with varying side chains, and 

make up the basis of many tissues within the body. Amino acids play important 

roles in biological functions and can be classified into various categories based 

on structure, properties, or relation to diet and activity. In terms of diet the classes 

of amino acids are essential, non-essential, and conditional. Essential amino 

acids are ones that are required by the body, but cannot be produced and 

instead must be supplied through diet. Non-essential amino acids can be 

produced within the body, either through the breakdown of proteins or from 

essential amino acids. Conditional amino acids are only required in times of 
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stress or illness. Of these categories, further properties can be subcategorized. 

Not all amino acids have the same effect on insulin release, some do not seem to 

elicit a response, such as isoleucine and valine as examples. Others, such as 

glutamic acid have a negative effect on insulin release. Lastly, as mentioned 

previously some amino acids produce an increase in insulin release; examples of 

these include glycine, leucine, serine, and alanine [15]. Leucine specifically has 

been shown to have the greatest effect out of these. Due to these responses it 

has been suggested that amino acids could play a role in diet recommendations 

for individuals with T2D or other insulin related diseases.  

To look at the prospect of treatment with amino acids further, leucine has been 

investigated and is a main component of the proposed study. Leucine is a 

branched chain essential amino acid, that has been of interest originally for 

muscle protein synthesis purposes, due to it’s ability to increase this process as 

well as increase muscle protein synthesis sensitivity to insulin [16]-[19]. As well 

as increasing protein synthesis, leucine has been shown to increase glucose 

uptake in skeletal muscle [20], [21]. The effect of leucine on glucose uptake in 

other tissues has not been investigated to the same extent as skeletal muscle, 

but it has been shown to improve glucose metabolism and reduce diet induced 

obesity. There is some evidence that this may partially be due to effects on BAT 

[21]. It is also known that leucine increases insulin release, which could partially 

explain the response of BAT due to it being an insulin sensitive tissue. The 

method of action of leucine in BAT has not been fully elucidated, the role of 
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insulin sensitivity as well as other potential pathways must be investigated 

further. 

Promoting insulin sensitivity in BAT could be beneficial to metabolic expenditure 

as well as non-shivering thermogenesis. This is due to the fact that insulin 

resistance in BAT could have adverse effects on metabolic expenditure as well 

as non-shivering thermogenesis since it has been shown to limit β-adrenergic 

activity and reduces glucose uptake.  Improving insulin sensitivity should improve 

β-adrenergic activity and in turn increase glucose uptake. Glucose uptake in BAT 

has been overlooked in the past, but recently its importance has become 

apparent, being it indicates activity within the tissue [22], [23]. This activity can be 

caused by either non-shivering thermogenesis or diet induced thermogenesis. 

Both of which are important for reducing glucose and fatty acid levels from the 

blood stream, as well as increasing metabolic expenditure. Developing strategies 

to stimulate BAT metabolism as well as understanding its function through 

diagnostic imaging could be an important tool in managing insulin resistance.  

Literature indicates that an increase in BAT volume and BAT activity can improve 

glucose tolerance and insulin sensitivity in mice. One such tested this through 

transplantation of BAT in mice. The mice receiving the transplant had an increase 

in glucose tolerance, and compared to sham operated control mice, did not see a 

decrease in insulin sensitivity over time. These mice also saw a decrease in 

weight, fat mass. It was then tested if the transplantation could affect mice who 
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were fed a high-fat diet  before and after BAT transplant from a chow-fed mouse. 

It was found that mice who received BAT transplant were able to avoid insulin 

resistance [24]. Other studies have indicated increasing BAT activation has had 

similar results in weight loss, fat mass, and insulin resistance [23], [25]-[27]. 

These results indicate BAT related therapies could be used as a treatment for 

insulin resistance, obesity, and in turn T2D; furthering the importance of 

understanding BAT function and stimulation via diagnostic imaging.  

1.1. Research Question 

To deal with the increasing and prominent issues associated with obesity and 

T2D, activating BAT is offered as a solution. Can leucine be used in a safe and 

effective way to activate BAT and which treatment creates the greatest effect? 

Can these treatments activate BAT without initial cold activation? What signalling 

pathway in BAT is being activated in response to leucine? 

1.2 Specific Aims 

1. To determine if glucose treatment can increase glucose uptake in BAT. 

Rationale: Glucose’s ability, when given with 2-deoxy-2-(18F)fluoro-D-glucose 

(18F-FDG), to cause an increased insulin release, leading to an increased 

glucose uptake in BAT will be determined using positron emission 
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tomography (PET).  It is known that an increase in glucose levels stimulates 

insulin release in healthy individuals, causing normal glucose disposal. BAT 

has been shown to be an insulin responsive tissue, as well as diet 

responsive; the level of insulin release caused by the given glucose and the 

ability of this released insulin to in turn cause BAT to uptake glucose should 

be determined. 

Hypothesis: With mice fasted for 5 hours prior to experiments, plasma 

glucose levels will be stable prior to glucose injection. It is hypothesized that 

the addition of glucose will increase BAT glucose uptake, due to the insulin 

responsive nature of BAT [28]-[31].  

2. To determine if leucine alone or in the presence of glucose can increase 

glucose uptake in BAT. 

Rationale: Leucine is a branched chain essential amino acid that has strong 

links with muscle protein synthesis along with insulin sensitivity [32]. Leucine 

has been shown to cause the greatest insulin release, upon infusion, 

compared to other amino acids. It also has little effect on plasma glucagon 

levels, only suppressing it slightly. It has been suggested that, due to these 

characteristics it can enhance glucose utilization in peripheral tissues [33]. 

Studies related to muscle protein synthesis and glucose uptake in muscle 

after an infusion of leucine, have shown that leucine does not increase 
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muscle protein synthesis unless also in the presence of glucose. This 

suggests that leucine increases the sensitivity of the tissue to insulin [16], 

[34]. Therefore, I propose to test the effect of leucine alone, and in 

combination with glucose, on glucose uptake in BAT.  

Hypothesis: Based on the previously published data on effect of leucine and 

glucose on muscle protein synthesis, it is hypothesized that the leucine in 

combination with glucose will increase the glucose uptake of BAT, and not 

leucine alone. 

3. To determine if glutamic acid in conjunction with glucose can increase uptake 

in BAT. 

Rationale: Glutamic acid is a non-essential amino acid. It has been shown to 

produce no positive effects on insulin or glucagon production in vivo, unlike 

some other amino acids [33]. Some amino acids, such as  leucine, serine, 

alanine, and glycine, for example, cause significant changes in insulin levels 

after infusion, and/or glucagon production. These amino acids cause an 

increase in both insulin and glucagon levels, with the exception of leucine, 

which only increases insulin levels, but not glucagon. Glutamic acid, however, 

does not cause any significant changes in either of these levels [33]. It will be 

used as an amino acid and glucose combination that will produce no uptake 

in order to compare with positive uptake results.  
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Hypothesis: It is hypothesized that there will be no increase in glucose uptake 

in BAT in response to the treatment of glutamic acid and glucose. 

4.  To determine the roles of insulin and β-adrenergic signalling targets in the 

stimulation of glucose uptake. 

Rationale: Using known targets of both the insulin stimulated signalling 

pathway as well as the β-adrenergic signalling pathway will help determine 

the method of action of the treatments. Phosphorylated protein kinase B (p-

Akt) will be used as an insulin stimulated signalling pathway target. During 

insulin stimulation insulin receptor substrate 1 (IRS-1) is phosphorylated at 

one of its tyrosine phosphorylation sites, allowing the docking of 

phosphatidylinositol 3-kinase (PI3K). This in turn leads to a signalling cascade 

that results in protein kinase B (Akt) phosphorylation. For a β-adrenergic  

stimulated signalling target, glycogen synthase kinase 3β (GSK-3β) will be 

used. This is a target of both insulin stimulated signalling as well as β-

adrenergic signalling, however using information of both p-Akt and GSK-3β 

signalling conclusions about which pathway is active can be suggested.  
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Hypothesis: It is hypothesized that the combination of leucine and glucose will 

will activate both the insulin and β-adrenergic signalling pathways. Through 

the adrenergic pathway due to cold activation to produce thermogenesis, but 

will also activate through an insulin responsive pathway shown through 

phosphorylated AKT levels [35]–[38]. 

Figure 2: Signalling pathway due to insulin receptor activation and 

norepinephrine (NE) stimulation through the β-adrenergic receptor. The insulin 

receptor auto-phosphorylates causing insulin receptor subunits (IRS) to 

phosphorylate, leading to downstream Akt phosphorylation and inhibition of 

GSK-3β phosphorylation. The β-adrenergic receptor leads to the production of 

cAMP leading to eventual inhibition of GSK-3β.



5. To determine if inhibition of the β-adrenergic receptors will diminish BAT 

uptake in vivo. 

Rational: Activation of BAT for non-shivering thermogenesis has been shown 

to occur through sympathetic activation of the β3 adrenoceptor. This activation 

causes the increase in cyclic adenosine monophosphate (cAMP) levels, 

which in turn cause the activation of protein kinase A (PKA), leading to 

thermogenesis, refer to Figures 2 and 7. Literature suggests that diet-induced 

thermogenesis occurs through an insulin sensitive pathway, so by blocking 

nervous system and norepinephrine stimulation this pathway should still 

remain [22], [23], [39], [40]. If the measured BAT glucose uptake is lowered 

below a readable level using a beta-blocker, all activation is occurring through 

a β3 mediated pathway and not an insulin sensitive pathway. If there is 

measured BAT glucose uptake remaining, activation is also occurring through 

a different pathway, likely insulin sensitive, and is likely due to the given 

treatments and not cold activation.  

Hypothesis: It is hypothesized that some BAT uptake will remain after 

inhibition. 

1.3 Study Purpose 

The purpose of the proposed study is to evaluate and further understand the 

mechanisms of glucose uptake specific to the tissues of interest. The ability to 

assess BAT activation using PET, through the level of glucose uptake in 
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response to various treatments and conditions will be determined. This will lead 

to whether leucine alone, or the presence of a hyperglycaemic conditions, can 

stimulate a BAT response. It will be assessed, whether these treatments have an 

effect on glucose uptake in other prominent tissues in the body. The aim of these 

studies is to provide insight into treatments that could be promising to be utilized 

to help treat obese or diabetic patients as a long-term treatment or in tandem 

with other medications and treatments. If promising candidates are identified, 

more research into the method of action and potential therapeutic use could be 

investigated by future researchers.  

2. Literature Review 
2.1 Positron Emission Tomography 

PET is a medical imaging modality that makes use of a radiotracer to image 

internal processes of the body. A radiotracer is a chemical compound that has a 

radioactive positron emitting isotope attached. This radiotracer is injected into the 

body where it generally mimics the non-radioactive form of the same compound. 

The radiotracer travels through the body following the metabolic pathway of the 

compound, until reaching the final destination or until the altered chemical 

makeup does not allow further metabolic processing. As the tracer travels and 

once it reaches the desired destination, positrons and neutrinos are emitted from 

the radioactive isotope as they spontaneously decay, refer to Figure 3 [41], [42].  

	

�12



 

This positron travels a small distance, depending on positron energy, where it will 

reach an electron present within the body. A positron emitted from a decaying 

fluorine-18 atom has a maximum energy of 0.635MeV, corresponding to a 

maximum range of 2.4mm and a mean range of 0.6mm [42]-[44]. These 

distances are what determine the maximum resolution that can be achieved with 

PET, since where the positron is emitted, to where it travels will differ by the 

range it can travel. At this point there is an annihilation of the positron and 

electron, where coincident gamma rays, with an energy of 511keV, are released. 

These gamma rays are emitted 180° from each other and at the same time. 

Detectors located in either a ring or panel set around the subject detect these 

gamma rays. The detectors rely on coincidence electronics and analysis to 

determine the origin of the gamma rays detected. A line of response is created 

from the location of detection of a pair of gamma rays. The line of response leads 
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Figure 3: An illustration of fluorine 18 spontaneously decaying to oxygen 18. A 

proton from the fluorine 18 nucleus decays to a neutron. The products of this 

decay are a β+ particle known as a positron and a neutrino.



to the location of the initial annihilation event [41], [42]. A visual of the line of 

response and determination of coincidence can be seen in Figure 4. 

 

 

2.1.1 Limiting Factors 

In an ideal situation the detected gamma rays are perfectly coincident, but in 

practice there are some anomalies that affect image quality. The emitted gamma 

rays can be scattered, which causes one or both to leave the line of response. 

Though a scattered event is a true coincidence event, because the line of 

response will be off, the spatial resolution and image contrast will be diminished. 
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Figure 4: Typical PET system geometry. The object being scanned is usually 

surrounded by rings of detectors. Each detector acts as a single event detector 

(records single gamma-ray events). When single events occur within a short time of 

each other, they are considered in coincidence and saved as a prompt event. The 

time difference to be considered in coincidence is usually a few nanoseconds [45]. 

Taken from T. K. Lewellen, 2008.  



There can also be accidental coincidence that happens at random. In this case 

two positrons annihilate, creating a gamma ray from each of the annihilations. 

Examples scattering and random coincidence are shown in Figure 5. If these two 

events occur close enough together, the electronics will link the two events as a 

true coincidence event. Since this last form of coincidence occurs randomly, 

there will be an even distribution throughout the detection time and many will be 

excluded by imposing a coincidence window. A coincidence window is often used 

to minimize this and can be seen in Figure 6. To minimize the effects of these 

events on image quality, detector properties should be optimized to have high 

energy and timing resolution to reject scattered and accidental events [41], [42], 

[45]. 
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Figure 5: The three types of coincidence events. True coincidences occur when 

the two gamma rays from single positron annihilation are detected and neither 

gamma ray undergoes Compton scattering. Scatter coincidences are true 

coincidences where one or both of the gamma rays undergo Compton scattering 

before being detected. Random coincidences occur when only one gamma ray, 

from two independent positron annihilations, is detected within the timing window 

of the coincidence system [45]. Taken from T. K. Lewellen, 2008.  



 

2.1.2 The PET Radiotracer 

The usefulness of PET comes from the use of a specific radiotracer to suit the 

needs of the study or test. PET can be applied to numerous applications 

depending on the radiotracer. One of the most widely used PET tracers is 18F-

FDG, which is a glucose analog [42], [46]. 18F-FDG is initially treated by glucose 

utilizing tissues in the same fashion as non-radioactive glucose (deoxyglucose or 

DG), and is transported into cells using the same GLUT transporter proteins. 

Once in the cell 18F-FDG has differences from its non-radioactive form. 18F-FDG 

is phosphorylated, to 18F-FDG-6-phosphate, by hexokinase, or glucokinase in the 
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Figure 6: If a time spectrum is generated (the number of events versus the time 

between detector 1 and detector 2 responding), a peak is formed. This peak is 

usually termed the coincidence or prompt peak. During acquisition, a delayed 

time window can be used to measure random coincidence events [45]. Taken 

from T. K. Lewellen, 2008. 



brain, liver, pancreas, and gut [47]–[49]. Once phosphorylated to 18F-FDG-6-

phosphate, it can no longer follow normal metabolic pathways or be transported 

out and becomes trapped in the cell; this trapping is due to the fluorine attached 

in place of the hydroxyl group. Only through glucose-6-phosphatase can the 18F-

FDG-6-phosphate leave the cell, but this mechanism is slow moving and limited. 

In the liver, however, due to the presence of glucose-6-phosphatase, 18F-FDG-6-

phosphate  can be dephosphorylated and 18F-FDG is released from the cells 

more quickly. In the fasted state hepatic glycogenolysis is activated, causing 

glucose-6-phosphatase to activate, releasing 18F-FDG-6-phosphate into the 

blood as 18F-FDG. Eventually, 18F-FDG will again be taken up into the liver, but at 

a lesser quantity [50]. In tissues other than the liver, the trapping of this enzyme 

allows accumulation in high glucose uptake tissues, where decay can occur [46], 

[49], [51]. 18F-FDG is only useful as a tracer to evaluate tissues with high glucose 

uptake, and is heavily used in oncology, since tumours have increased glucose 

uptake. Other tissues that have strong glucose uptake in response to treatments 

or conditions can be evaluated with this tracer, such as muscle, liver and adipose 

tissues [46].  

2.2 Adipose Tissue 

There are two prominent forms of adipose tissue in mammals, both of which play 

a role in systemic metabolic regulation within the body. White adipose tissue 

(WAT) is a loose connective tissue that is heavily loaded with adipocytes; these 

are cells that are primarily involved with the storing of triglycerides and the use of 

free fatty acids [52], [53]. WAT’s role is heavily based on balancing caloric needs 
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using lipid droplets [54]. The other form of adipose tissue is BAT. BAT is a 

mitochondria rich tissue that is primarily responsible for non-shivering 

thermogenesis. 

2.2.1 Distribution of BAT 

Functional BAT has been known to be present in small animals and infants, but 

has recently been proven to be present within a large fraction of adult humans. 

The exact percent of individuals with active BAT is varied throughout studies, 

ranging anywhere from 2% to 100%. The discrepancies between studies is 

largely attributed to the variation in conditions and study groups; study 

temperature, participant age, and body mass index (BMI) all have drastic effects 

on the percentage of active BAT found [25]. Through the use of PET and CT, 

areas having above average glucose uptake, but were not tumours, were 

located. These regions were then identified as BAT, with depots discovered in the 

cervical-supraclavicular, paravertebral, and periadrenal regions. This finding 

opens the door for translational research from mouse models to humans, 

focusing on the energy balance and endocrine aspects of BAT [4], [6], [7].  

2.2.2 Functions of BAT 

The primary function of BAT is non-shivering thermogenesis. Non-shivering 

thermogenesis is the production of heat without the action of muscles shivering. 

It is used during mild cold exposure in adults, when mechanical shivering is not 

necessary. This is especially important to small animals or infants to maintain 
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body temperature in times of cold exposure. As illustrated in Figure 7, it occurs 

through uncoupling oxidation in the mitochondria. Electron transport is uncoupled 

from oxidative phosphorylation through the use of carbohydrates and lipids; this 

results in energy dissipated as heat [27], [55].  

Figure 7: Method of heat production in BAT, through uncoupling protein 1. 

Found in the inner membrane of the mitochondria, uncoupling protein-1 

(UCP-1) acts as a proton translocator. Once activated, it dissipates the proton 

build up across the inner membrane during oxidation. These protons are 

usually what drives the phosphorylation of adenosine diphosphate (ADP) to 

ATP, by ATP synthase, in other tissues. In the stimulated BAT, ATP synthesis is 

low. Fatty acids represent the main source of energy for UCP-1 and also are 

responsible for the formation of the electron donors in the reaction, 

nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide 

(FADH2) [56]. Adapted from D. Richard and F. Picard, 2011 



The process of uncoupling oxidative phosphorylation, also known as 

mitochondrial proton leak, is able to occur due to the presence of uncoupling 

protein one (UCP-1) within the cristae of the mitochondria [27], [57]. As a 

consequence lipids can be brought into the cell in order to have unrestricted 

oxidation. This process makes use of intracellular triglycerides as well as fatty 

acids from circulation. It is suggested that it is limited by the size of intracellular 

triglyceride stores; as oxidation occurs, triglyceride stores have been shown to 

deplete, limiting the level of thermogenic activity from stimulation [56], [58]. This 

limitation is due to the lack of triglycerides that are required for thermogenesis. 

This activation of BAT can be stimulated by cold exposure, causing non-shivering 

thermogenesis, as well as food intake, known as diet-induced thermogenesis.  

Examples of stimulation causes and resulting activation are illustrated in Figure 

8. Carbohydrates and other macronutrients have been shown to be activators of 

the sympathetic nervous system, which is the main activation pathway of BAT [7]. 

It is thought that BAT becomes active after a meal in order to lower metabolic 

efficiency and dispose of some energy as heat [23], [59], [60]. Studies in both 

mice and humans have indicated that a single meal can cause increased BAT 

blood flow, oxygen consumption, which activates the proton conductance 

pathway to provide an outlet for the thermic effect. It has also been noted that a 

single meal increases guanosine diphosphate (GDP) binding in the mitochondria, 

indicative of the rate of uncoupling respiration [61], [62]. Meals that are high in 

carbohydrates or starches as well as low in protein elicit the largest thermogenic 
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effect [63]. Studies suggest that norepinephrine and insulin could play a role in 

the diet-induced thermic effect [35], [64].  
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Figure 8: BAT control system. Likely through the ventromedial hypothalamic nucleus 

(VMN), information regarding body temperature, feeding status, and body energy 

reserves are coordinated. When there is a demand to increase the rate of food 

combustion or produce heat, the sympathetic nervous system communicates to the 

brown adipocytes, mainly through the β3 adrenergic receptors, via norepinephrine 

(NE). This signal initiates triglyceride breakdown This releases fatty acids (FFA) 

from the triglycerides, which is a substrate for thermogenesis as well as a regulator 

of uncoupling protein-1 (UCP1) activity. Combustion of FFA in the respiratory chain 

(RC) allows for mitochondrial combustion of substrates. The outcome is that an 

increased fraction of the food and oxygen available in the blood is taken up by BAT, 

combusted, and leads to heat production [35]. Taken from B. Cannon, 2004.  



For non-shivering thermogenesis, cold exposure activates thermogenesis in 

order to warm the body without the stimulation of muscular shivering. Through β3 

adrenergic receptors, brown adipocytes are stimulated by the nervous system. 

Following a cascade through the production of cAMP and PKA, triglycerides 

release free fatty acids, which provide a substrate for thermogenesis, increase 

UCP-1 levels as well as activity within the cell [27], [65]. Previous studies show 

activation in both humans, with mild cold exposure, as well as mice, with mild to 

extreme cold exposure, which is similar to diet-induced thermogenesis in that 

both mice and humans have activation due to comparable stimulus [4], [5], [66], 

[67].  Both activation rates, due to cold response and diet, were shown to be 

decreased in obese individuals. There is also an inverse correlation in brown 

adipose depot size and BMI; this suggests a potential role  for BAT in promoting 

weight loss and increasing insulin sensitivity [4].  

In adipose tissue it is suspected that one mechanism of insulin resistance is 

linked to inflammation. This inflammation is determined by the number and 

composition of immune cells. Macrophages, which are immune cells that 

contribute to adipose tissue function and normally comprise around 5% of cells 

within the tissue are suspected to play a role in obesity driven inflammation. In 

obese individuals, the percentage of macrophages increases to 50% and they 

begin to exhibit pro-inflammatory properties. Other immune cells have been 

shown to be present in adipose tissue during obesity, and the inflammation that is 
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linked to these has been correlated to whole body insulin resistance along with 

adipose tissue insulin resistance [39]. BAT has been shown to be more resistant 

to this inflammatory response during obesity, but is not entirely immune, showing 

inflammation after longer-term high fat diets [40]. 

BAT has also been shown to have endocrine features along with being 

responsible for non-shivering thermogenesis. It has been suggested that BAT 

releases endocrine factors such as insulin-like growth factor 1, interleukin-6, and 

fibroblast growth factor-21. These factors are released during thermogenic 

activation [9]. The suggestion of this role was made after mice with genetically 

ablated BAT, through the use of UCP-1 promoter-driven diphtheria toxin, were 

shown to suffer from more metabolic effects than those related to just 

thermogenesis including hyperphagia, obesity, hyperglycemia, insulin resistance, 

and hyperlipidemia [68], [69]. These adverse effects are hypothesized to be 

related to glucose metabolism of BAT, due to the tissue being a large consumer 

of glucose. 

2.3 Glucose Metabolism 

Glucose metabolism provides energy that is normally utilized by many organs 

throughout the body. Other sources of energy, such as fat or protein, can also be 

utilized, but many tissues require glucose, and the nervous system normally 

requires glucose as an energy source. Acquired primarily through diet, glucose is 

essential for many bodily functions [70]. 
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2.3.1 Digestion and Absorption of Glucose 

In normal instances, glucose uptake within tissues would begin through entry in 

the gut, following a meal. Glucose, being a monosaccharide, is able to cross the 

brush border of the intestines through diffusion, but this process is slow. The 

predominant method of transport into the enterocytes of the gut is a carrier-

mediated mechanism. A sodium (Na+) dependent glucose transporter binds with 

the glucose as well as Na+ at different sites. Due to a higher concentration of 

sodium ions within the gut lumen compared to the interior of the enterocyte, 

sodium travels down the concentration gradient into the cell, bringing glucose 

with it. This glucose is then transported out of the cell into circulation through the 

transport protein GLUT-2 [70].  

2.3.2 Glucose Uptake of the Pancreas and Insulin Release 

After a meal dietary glucose quickly reaches the pancreas. Glucose is 

transported into pancreatic β-cells through GLUT-2, and is phosphorylated by 

glucokinase. This causes glucose metabolism to be stimulated, resulting in an 

increased ATP/ADP ratio within the cell. Due to this increase, the ATP sensitive 

potassium channels in the membrane close, causing the cell to depolarize and 

voltage dependent calcium channels to open. Calcium passes through this 

channel into the cell, activating calcium-dependent kinases, which stimulate 

insulin release from the cell into circulation. Once in circulation insulin acts on a 

number of tissues [70].  
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2.3.3 Glucose and Insulin Action on the Liver 

When glucose enters circulation it also encounters the liver, where it once again 

comes across GLUT-2, which allows it to enter the hepatic cells. Inside the 

hepatocyte glucokinase converts the glucose to glucose-6-phosphate, causing 

glucose to enter all the major glucose metabolism pathways: glycolysis, the 

pentose pathway, and glycogenesis. The primary role of glucose in the liver is 

glycogenesis, which causes the production of glycogen, a polysaccharide 

storage form of glucose. The most concentrated store of available glycogen is in 

the liver, which is used in-between meals to maintain blood glucose levels, 

through glycogenolysis. In skeletal muscle, glucose is also converted to 

glycogen, but the primary use for this glycogen is energy metabolism, instead of 

blood glucose maintenance. The liver is also affected by circulating insulin, 

released by the pancreas after a meal. Circulating insulin binds to the insulin 

receptor, causing it to autophosphorylate, leading to phosphorylation of insulin 

receptor substrates (IRS) and adaptor proteins. Next, PI3K is activated which 

leads to Akt activation. In the liver specifically, this phosphorylation of Akt causes 

GSK-3β to phosphorylate and become inactive. This leads to the storage of 

glucose as glycogen. Insulin also blocks gluconeogenesis and glycogenolysis in 

the liver which inhibits the production and release of glucose [70]. 

2.3.4 Glucose and Insulin Action on Skeletal Muscle 

Like the liver, skeletal muscle stores glycogen, but due to the lack of a glucagon 

receptor or glucose-6-phosphatase it cannot be released to maintain blood 
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glucose levels. Instead skeletal muscle glycogenolysis is activated in response to 

epinephrine or during physical activity [71], [72]. Skeletal muscle also responds 

to insulin stimulation similarly to the liver through the insulin receptor leading to 

phosphorylation of Akt; at this point however, the increase in Akt activity causes 

the glucose transport protein GLUT 4 to translocate from inside the cell to the 

membrane. This facilitates the uptake of glucose into the cell; leading to glycogen 

synthesis for storage, as well as glucose metabolism processes, and the influx of 

amino acids aiding in protein synthesis [70].  

2.3.5 Glucose and Insulin Action on Adipose Tissue 

Both WAT and BAT are responsive to insulin and glucose, but differ in some 

minor ways. BAT is similar to skeletal muscle in insulin signalling from the IR, 

leading to IRS-1 and insulin receptor substrate 2 (IRS-2) phosphorylation. IRS-1 

phosphorylation causes Akt activation, IRS-2 phosphorylation causes binding to 

a subunit of PI3K. The increase in Akt activity causing GLUT 4 to be translocated 

to the cell membrane and glucose be transported into the cell. This pathway is 

similar to that of WAT, except that BAT contains a higher amount of GLUT 4 and 

in turn is more responsive to insulin than WAT. There is also an IR dependent, 

but PI3K independent pathway that has been shown to cause GLUT4 

translocation. This pathway is thought to initially act by recruiting the proto-onco 

protein Cbl (Cbl) to the activated IR through adapter proteins c-Cbl associated 

protein (CAP) and adapter protein with Plekstrin homology and Src homology 

domain (APS). APS becomes phosphorylated by IR, leading to the 
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phosphorylation of Cbl, causing Cbl association with CAP and CT10-related 

kinase (CrkII). Through the lipid raft protein flotillin TC10 in lipid rafts is activated. 

TC10 binds to a number of downstream effectors, all of which have roles in actin 

dynamics. Actin cytoskeleton reorganization is critical in GLUT4 vesicle tracking 

and translocation to the plasma membrane. This pathway can also be 

responsible for insulin stimulated glucose uptake through GLUT 4 [73]. Either of 

these pathways will lead to glucose entry to the cell. After entering the cell, 

glucose stimulates de novo fatty acid synthesis and the synthesis of triglycerides. 

It can also be stored as glycogen, which will occur when animals are warm and 

BAT is not generating heat. BAT is one of the most insulin responsive tissues, 

with respect to stimulated glucose uptake and has been shown to have an effect 

on whole body insulin sensitivity, making it an ideal target for new T2D therapies 

[35]. 

2.3.6 Pathogenesis of Insulin Signalling 

T2D is a syndrome that affects fuel metabolism and is characterized by 

hyperglycaemia leading to neural and vascular complications. The development 

of T2D is strongly linked with genetic factors, however lifestyle factors, such as 

poor diet, obesity, and physical inactivity, often unmask the disease. Age is also a 

factor as most patients who develop T2D are over 40 years of age. The 

pathogenesis is a combination of insulin resistance leading to impairment of 

insulin secretion in its final stages. Initially insulin resistance presents as 

hyperinsulinemia, but with a normal glucose concentration. The increasing levels 
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of insulin will at one point become insufficient to offset the tissue resistance and 

an increase in glucose concentration during fasting can result; this is known as 

impaired fasting glucose. There can also be an impairment during high glucose 

intake, known as impaired glucose tolerance (IGT). Eventually, a further insulin 

resistance leading to impairment of insulin secretion leads to T2D development. 

This development process can take years to develop and if aware of the early 

changes, the development can be slowed or in some cases reversed [70].  

Tissues can be susceptible to insulin resistance, primarily insulin sensitive 

tissues. Insulin sensitive tissues are ones that, in response to insulin, will take up 

glucose from the blood stream. These tissues include, but are not restricted to, 

skeletal muscle, both BAT and WAT, the heart, and the liver. In diabetic or insulin 

resistant individuals, some of these tissues display tissue specific insulin 

resistance. In cardiac tissue the exact mechanism for insulin resistance has not 

been elucidated. Insulin resistance in heart tissue is often associated with 

diabetes and heart diseases [74], [75]. Sixty-five percent of people with T2D die 

from a form of cardiovascular disease and stroke [76]–[78]. In skeletal muscle, 

adipose tissue, and liver, insulin resistance occurs due to dysfunction in a 

signalling process post IR phosphorylation, but not all methods of action are 

known. In skeletal muscle it is suspected that a mitochondrial oxidative potential 

is impaired in individuals with T2D and in obese individuals with insulin 

resistance, but who are not diabetic. It is suggested that skeletal muscle insulin 

resistance is an early indicator and linked to T2D development [79]. 
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Understanding tissue specific insulin resistance and how it plays into whole body 

insulin resistance is important for understanding treatment and prevention.  

2.3.7 Complications and Effects 

The most common acute complication of T2D is hypoglycaemia, which is a result 

of an imbalance between circulating insulin levels, carbohydrate supply, and 

physical activity. The cause of this can stem from an incorrect dose of insulin or 

missing a meal, in severe late stage T2D. Another consideration is the amount of 

exercise, since physical activity increases the insulin-independent tissue glucose 

uptake. The severity of hypoglycaemia can vary from mild, which can be 

managed with glucose rich foods, or sever which requires medical attention [70].  

Ketoacidosis is another potential side effect of T2D. Although not common, it is a 

severe medical emergency. It can develop rapidly in individuals with T2D after a 

major metabolic stress, such as a myocardial infarction. Ketoacidosis is when 

there is an excess of acetyl-CoA, which is a substrate for the production of 

ketone bodies. This increases the amount of ketone bodies in the plasma. The 

overproduction of acetoacetic and β-hydroxybutyric acid increases the blood 

hydrogen ion concentration, or in other terms causes a pH decrease. It can 

become life threatening if left untreated [70].  

The most common life threatening complication of diabetes, however, is 

cardiovascular disease. It is the main cause of death among people with T2D. It 
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is linked with metabolic syndrome, which is the cluster of dyslipidemia, increased 

arterial blood pressure, obesity, insulin resistance, and glucose intolerance. 

Metabolic syndrome is also linked with low-grade inflammation, which affects the 

vasculature, and an increased tendency to thrombosis [70]. The common 

denominator between all these risk factors for cardiovascular disease is still not 

completely known, but T2D and cardiovascular disease are strongly related and 

may share common genetic and environmental antecedents [79].  

2.4 PET for Assessing Tissue Specific Glucose & Insulin Kinetic 
Changes 

Due to the relation between T2D, early indications of tissue specific insulin 

resistance, and cardiac disease, research in the linkage of these conditions and 

progression continues to be undertaken. As well as whole body effects and 

relations, tissue specific linkages and risk factors are being looked at, mainly in  

muscle, BAT, and cardiac tissue. Due to the insulin sensitivity of these tissues of 

interest, PET shows promise as a method to investigate tissue specific glucose/

insulin kinetic changes related to T2D.  

2.4.1 Insulin Resistance Linked Cardiac Conditions 

Whole body insulin resistance has been linked to multiple diseases of the heart 

such as chronic heart failure (CHF), hypertrophy, coronary artery disease (CAD), 

myocardial infarction, and idiopathic dilated cardiomyopathy (IDCM) [74], [80]–
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[82]. In all of these tissues a decrease in cardiac tissue specific glucose uptake, 

both insulin stimulated and  basal, has been found. Studies have also suggested 

that myocardial insulin resistance may be the cause of, or play a role in, the 

development of some of these disorders. Specifically it has been suggested that 

myocardial insulin resistance may cause CAD, IDCM, and CHF [74], [75]. 

Furthermore, a relationship between severity of insulin resistance and the 

severity of heart disease has been shown. Meaning increased insulin resistance 

is shown to correlate to worsened heart failure and a lesser survival time [75], 

[81]. These findings make a case for studying early indications of insulin 

resistance in cardiac tissue.  

2.4.2 Cardiac Tissue Study Methods 

Unlike BAT, which came into interest with the advent and use of PET, cardiac 

tissue has been studied prior with various ex vivo methods. The main methods 

used are perfusion and cell culture models. Perfusion models generally involve 

the use of a Langendorff apparatus, which has been in practice since 1897. 

Although it has evolved since its initial conception, the term can be used to 

describe numerous variations of heart perfusion. The Langendorff perfusion 

model’s complete method description can be found in Skrzypiec-Spring et al. 

[83]. To summarize, the heart of the animal is attached to a cannula on the 

apparatus, which provides oxygenated perfusion solution, which is kept at 37°C 

and gassed with 5% CO2 in order to maintain a physiological pH of 7.4. This 

solution will perfuse the entire ventricular mass of the heart and exit via the 

�31



coronary venous circulation. This apparatus is often water-jacketed to maintain a 

temperature of 37°C for all components.  

This system has been used to study isolated heart tissues and has provided 

valuable information about heart function. The method continues to be used due 

to the reproducible results, ease of use, and low cost [83], [84]. The method 

provides information about physiological, morphological, biochemical and 

pharmacological parameters including contractile function, heart rate, coronary 

vascular function, cardiac metabolism, morphology and electrical activity. The 

downside of the method is that the heart has been removed from the body and all 

outside signalling has been removed. There are also a number of outside factors 

and differences between the perfusion model and an in vivo heart that can 

impact results. The heart is also sensitive to contusion injuries while connecting 

to the apparatus, as well as contamination once connected. The main issue, 

however, is the degradation of the heart over time. It has been reported that there 

is a 5%-10% reduction in heart function every hour [84], [85]. Also, due to the 

lack of outside factors and signalling this model can fail to be completely 

physiological when studying endocrine related systems.  

The second method currently used is a cell culture model. In these models 

cardiomyocytes are commonly used. Cardiomyocyte isolation and culture was 

developed many years ago and has provided great insights into response to 

drugs and conditions. These cells are collected from various species, including 
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humans. Immortalized cell lines, which can be used instead of primary cell 

collections, also exist. Cell culture models provide an isolated microscopic view 

of the heart system and responses. They provide the ability to change conditions 

of growth or investigate responses to added drug treatments easily without 

outside bodily functions affecting response. The downside of this method is 

similar to the perfused heart models; outside signalling events and responses of 

other areas of the body to the heart cannot be measured or taken into account 

[85]–[87]. 

2.4.3 Cardiac Specific PET 

In order to overcome the obstacles of the models in use for cardiac insulin 

sensitivity, an in vivo method would be advantageous. Due to recent 

advancements, PET is being investigated as an in vivo analysis method and 

alternative to perfusion and cell culture models. PET imaging provides a non-

invasive alternative, which does not require removal and potential damage to the 

heart. All endocrine signalling and effects from other tissues remain, in order to 

provide a more physiological view of treatments. Through the use of 18F-FDG, 

glucose uptake can be measured in the heart tissue specifically and the results of 

treatments or diseases on this uptake can be compared.  

2.4.4 BAT Study Methods 

Like previously mentioned BAT came into the spotlight with the advent and 

advancement of PET, however other methods of studying the tissue are often 
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used. Some of these methods include cell culture of brown adipocytes, 

thermography, histology, and the use of 2-deoxy-D-[H3] glucose (2DG) followed 

by euthanasia, tissue collection, and glucose/radiation level measurement [25], 

[26], [88]. Methods involving cell culture of brown adipocytes, like cell culture 

models of cardiac tissues, allow for a simplistic view of responses to treatments, 

however lack the effects of other tissues and responses in the body or 

environment, which could play a major role in BAT response in humans. 

Thermography provides BAT temperature, which is linked to activation, but does 

not provide information regarding intracellular function or pathways of activation. 

It is also unknown if temperature changes between individuals are consistent 

with a similar level of activation. Histology and 2DG use do not allow for repeated 

measures from the same animal, since tissue collection is required to perform the 

experiments. 2DG use however, does allow for quantifiable uptake values, and 

the potential for un-anesthetized treatment and glucose uptake periods [26]. 

 2.4.5 BAT Specific PET 

PET is widely used for BAT glucose uptake research, particularly using 18F-FDG 

as the radiotracer of choice. Using PET to research BAT has the advantage of 

providing quantifiable values of glucose uptake in the specific tissue, while still 

providing complete interaction between BAT and other components of the body. 

The added benefit of PET over other methods, such as 2DG uptake analysis, is 

that PET can be performed multiple times on the same animal and does not 

require euthanasia for measurement of results. It also allows for real time uptake 
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through the use of dynamic scans, however this does require anesthesia. There 

are also other radiotracers that are being developed or used to measure other 

processes in BAT, such as 4-18F-fluorobenzyltriphenyl phosphonium (18F-

FBnTP), which targets the electrochemical gradients and accumulates in 

mitochondria as a function of their uncoupling state [88]. Continued development 

of PET tracers and methods will allow PET to remain one of the best methods for 

assessing BAT activity and/or glucose uptake. 

2.4.6 Skeletal Muscle Study Methods 

Similar to BAT and cardiac muscle, skeletal muscle can be studied using cell 

culture models. These models are quite prevalent, and provide a way to assess 

the action of many specific compounds and muscles from different species and 

locations. The cells can be primary cells isolated from an animal or human or 

from an immortalized cell line. Primary cells in theory provide a better 

representation of muscle in the body and should have more similar 

characteristics. These cells however, have a shorter life span in culture than cell 

lines and only a finite number can be collected from one individual, leaving 

variation among animals as a factor in studies. Cell lines are more likely to be 

consistent between sets and can be cultured for longer. They may have different 

characteristics or changes that have occurred since they are not directly isolated 

from the source each time, but rather continually cultured. Both of these methods 

however, do not allow for a whole picture of the body and processes that may 

have an effect on the muscle in vivo. Another method of study is tying a muscle 
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up in a bath. This is similar to what was described for cardiac tissue, and allows 

for the use of various bath conditions surrounding the muscle, stimulation from 

electricity to simulate contraction, and the measurement of channel currents 

using patch clamps [89]. Once again the downside to this method is the lack of 

outside factors that may play a role in the response of the muscle, as well as the 

potential damage to the muscle due to surgical procedures [90].  

2.4.7 Skeletal Muscle Specific PET 

Similar to cardiac muscle PET, skeletal muscle PET would benefit research in the 

area by allowing in vivo analysis of animals and individuals. This would allow for 

other factors and stimulus to be accounted for in studies, since the muscle of 

interest would remain intact. This would also allow repeated measurements on 

the same subjects, since euthanasia is not required to assess glucose uptake, or 

uptake using other radiotracers that measure different metabolic pathways. This 

also removes the risk of damage to the muscle tissue that can occur during 

removal and the tying up procedure. Current literature using PET to analyze 

skeletal muscle has been able to show response of muscle to insulin, dietary 

state, temperature, as well as differences between healthy and T2D subjects in 

response to insulin [82], [91]. It has been confirmed that both dynamic and static 

PET imaging give similar results in insulin stimulated glucose utilization, and 

would both be good tools for skeletal muscle insulin resistance tests [92]. It has 

also been demonstrated using the radiotracer [11C] palmitate, that obesity is 

characterized by elevated fatty acid oxidation and a slow fractional transfer of 
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fatty acids into triglycerides in skeletal muscle [23]. These findings prove the 

usefulness of PET in skeletal muscle, with the use of 18F-FDG or other tracers 

that have or will be developed.  

3. Methodology and Experimental Design 

3.1 Institutional Animal Care Approval 

All animal experiments were performed in accordance with the institutional 

animal care committee guidelines at Lakehead University. C57BL/6 male mice 

were obtained from Charles River Laboratories Inc. at 6-8 weeks of age. Mice 

were housed in Innovive disposable cages (Innocage®) with the pre-filled 

bedding replaced with All Living Things® Small Pet Bedding. A small amount of 

bedding from the mouse transport box was added to cages to help with 

adjustment. Mice had access to water and food at all times, except where 

otherwise stated. Food was LabDiet 5001 Rodent Diet (Land of Lakes Inc., Arden 

Hills, Minnesota, U.S.A.). Mice were housed in Innovive Innorack® IVC mouse 

racks. Enrichment was provided with plastic enrichment domes in each cage. 

Mice were acclimatized after arrival for at least one week before experiments 

begin. Housing temperature and humidity levels were controlled, at 22°C ± 3°C 

and 50% ± 9% respectively, mice were kept on a 12hr light/dark cycle.  
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3.2 Experimental Protocol 

3.2.1 Limitations and Basic Assumptions 

Animal models are often used to represent a better environment for testing 

physiological treatments, compared to cell culture models. In this study an animal 

model is used for all experiments. The first limitation is that one strain of mouse is 

used exclusively, C57BL/J mice. This strain is an inbred normal mouse, no other 

strains of mice are used in the study and it is assumed that this strain of mouse 

represents healthy normal physiological conditions. It is also assumed that these 

mice are in good health and lack any pre-existing conditions, health reports from 

the vendor are provided, but do not account for all physiological conditions. 

Another limitation related to animal models is the environmental factors that can 

unknowingly affect the animal. All mice are kept in the same environment, but 

some small uncontrollable variations may occur. The extent of the effect these 

variations may have is not known, neither is it known if they will relate to the area 

of interest of the study. It is also assumed that these mice will consume the same 

amount of food and water and remain well hydrated and fed, except during 

fasting time periods, as well as that there are no differences amongst the mice 

that would alter the outcome of the experiments. It is also assumed that the G4 

microPET system was operating properly and results from this equipment are 

accurate.  
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3.2.2 Delimitations 

Image analysis was performed by a single individual. Due to the nature of the 

analysis software some amount of personal judgement is needed. A single 

individual was used to analyze the data to limit variation between the personal 

judgement of individuals and keep the style consistent. Using a single individual 

does not allow for comparison to account for any bias or skew, but due to the 

issues with consistency, time constraints, and lack of available personnel it was 

decided that one individual would perform the analysis exclusively. 

3.2.3 Treatments 

To asses BAT glucose uptake and signalling, treatments given were either a 

control with no accompanying injections in addition to 18F-FDG, 60mg dextrose 

(2g/kg bodyweight) (Fischer, Whitby, Ontario, Canada) made to 100µl in cell 

culture grade water, 1.2mg L-leucine (40µg/g bodyweight) (Sigma Aldrich, 

Oakville, Ontario, Canada) made to 100µl in cell culture grade water (Leucine), 

60mg dextrose treatment + 1.2mg L-leucine treatment (Glucose + Leucine), or 

1.3mg L-glutamic acid (45µg/g bodyweight) (Sigma Life Science, St. Louis, 

Missouri, U.S.A.) made to 100µl in cell culture grade water + 60mg dextrose 

treatment (Glutamic Acid + Glucose). 

To assess inhibition of β-adrenergic action, above treatments were repeated with 

an additional injection of 150µg/mouse of propranolol hydrochloride (St. Louis, 

Missouri, United States of America).  
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To asses cardiac uptake, treatments of 10U/kg insulin (humulin (Eli Lilly Canada), 

Toronto, Ontario, Canada) with 60mg dextrose were given with the 18F-FDG.  

3.2.4 Static Image Acquisition 
  

At least five days prior to experiments mice were individually housed, a handful 

of bedding from the original group housed cages was added to the individual 

cage to help with adjustment.Five to seven hours prior to experimentation mice 

were placed into clean cages, with no food for the fasting period, but free access 

to water. Mice were transported to the experimentation room, where a  constant 

temperature was maintained (22°C ± 1°C) for the course of the experiments.  

18F-FDG  (2-deoxy-2-(18F)fluoro-D-glucose) (Center for Probe Development and 

Commercialization, Hamilton, Ontario Canada) was obtained on experiment 

days. Following the “FDG Dilution Worksheet” (see appendix) a concentration of 

approximately 200µCi/ml of 18F-FDG diluted with sterile saline was made. A 

mouse was anesthetized with 2% isoflurane anesthetic (Fresenius Kabi Canada 

(formerly PPC), Richmond Hill, Ontario, Canada) for three minutes inside a 

vapour induction chamber. At this time intraperitoneal injections of the volume of 

diluted 18F-FDG to provide a dose of approximately 20µCi were given. Any other 

treatments were also given with an intraperitoneal injection. A fifteen-minute wait 

time existed between treatment injections of each subsequent mouse to avoid 

scan time overlap. One hour after treatment injection, mice were anesthetized 

with 2% isoflurane again for three minutes. Mice were then placed in the imaging 
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chamber in prone position and inserted into the G4 PET/X-Ray scanner (Sofie 

Biosciences, Culver City, California, United States of America). The imaging 

chamber contains a nose cone for isoflurane administration and the bed was 

heated to 37°C. Image acquisition proceeded for ten minutes. In this imaging 

time isoflurane anesthesia was lowered to 1.5% to reduce dose, while 

maintaining lack of consciousness. Each mouse was subsequently imaged under 

the same parameters one hour after the treatment injections. After the scan was 

completed an x-ray was performed as per the specifications of the G4 scanner. 

Once the x-ray is complete mice were returned to fasting cages to recover from 

anesthesia. After experimentation mice were returned to original cages, used 

prior to fasting, and food was returned.  

3.2.5 Dynamic Scan Acquisition 

For preliminary analysis to determine scan time dynamic scans were completed. 

Visual depictions of the results are found in the appendix. The dynamic scan was 

completed following the same protocol as the static scanning, with the following 

differences. A one hour fifteen-minute wait time existed between treatment 

injection of each subsequent mouse to avoid scan time overlap. Immediately 

after treatment injection, the mouse was placed in the imaging chamber (37°C 

heated bed) in the prone position, with its nose inserted into the nose cone to 

ensure isoflurane inhalation. The imaging chamber was placed in the G4 PET/X-

Ray scanner and a 70 minute acquisition performed (7x600). During the initial 

five minutes of the scan the isoflurane was lowered to 1.5%.  
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After the scan was completed an x-ray was performed as per the specifications 

of the G4 scanner. The mouse was then moved back to its fasting cage, which 

was placed on a heating pad (37°C) to help recovery from anesthetic. Upon 

completion of experiments, mice were returned to their original cages used prior 

to fasting.  

3.2.6 Image Analysis 

VivoQuant™ (Version 1.23, invicro, Boston) image analysis software was used to 

reconstruct and quantify uptake values within specific tissues. Regions of interest 

were selected to encompass a specific tissue. A volume of the entire tissue was 

drawn using a spherical draw tool. Once the entire tissue was encompassed 

standardized uptake values (SUV) as well as SUVMAX were calculated.

SUV was reported in g/ml, SUVMAX was reported in SUV/mm3. SUVMAX is the 

calculated SUV on the image pixel that has the highest SUV in the region of 

interest. Tissues analyzed were bladder, heart, tongue, harderian glands, 

interscapular brown adipose tissue (IBAT), which was chosen due to the size, 

ease of visualization, and lack of surrounding tissue interference, paraspinal 

muscles, and a combined region containing biceps brachii and triceps brachii 

also called the upper forelimb skeletal muscle (UFSM). SUV and SUVMAX were 



calculated for each tissue for each treatments group, as long as the tissue was 

visible.  

Analysis of dynamic scans were completed in a similar way to the static scans, 

except regions of interest were drawn over tissues in all time intervals used. For 

a 7x600 scan, seven 10 minute intervals were analyzed. 

3.2.7 Statistics 

Outliers were identified as greater than 1.5 times the interquartile distance above 

the third quartile or less than 1.5 times the interquartile distance below the first 

quartile, which is the standard SPSS outlier definition. Significance was 

determined using a one-way fixed effects ANOVA with a Fischer LSD post-hoc 

with Bonferroni correction.  

3.2.8 Tissue Collection 

Mice were fasted for 5hr, then treatments of Control, Glucose, Leucine, Glucose 

+ Leucine, and Insulin were administered to the intraperitoneal cavity. State of 

temperature and wakefulness were determined by comparing static and dynamic 

imaging results for optimal conditions. Fifteen minutes after injection of the 

Insulin treatment, and 30 minutes after the injections of all other treatments mice 

were anesthetized under 5% isoflurane anesthetic and the hearts removed. IBAT 

and soleus muscle were then removed and immediately frozen on dry ice for 

future analysis.  
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3.2.9 Tissue Lysis 

Frozen IBAT was homogenized in ice-cold lysis buffer (25mmol/L Tris pH = 7.5, 

150 mmol/L NaCl, 1 mmol/L EDTA, 1% Triton-X 100) with an addition of Sodium 

Fluoride (NaF) (Sigma Life Science, St. Louis, Missouri, U.S.A.) and Protease 

Inhibitor Cocktail (Sigma Life Science, St. Louis, Missouri, U.S.A.). 

Homogenization was completed using the Qiagen TissueLyser. Samples were 

then centrifuged at 16000 g for 10 minutes at 4°C, supernatants were then 

collected and stored at  -80°C until further analysis could be completed. Protein 

assays were completed (PierceTM BCA Protein Assay Kit, Thermo Scientific, 

Rockford, Illinois, U.S.A.) in order to determine protein content for western blot 

analysis.  

3.2.9 Western Blotting 

Protein was loaded and resolved by SDS-PAGE on 10% polyacrylamide gels, 

and transferred to nitrocellulose membranes. Immunoblotting was performed 

using the primary antibody: anti-AKT(phosph S473) (Abcam, 66138, Cambridge, 

MA, USA), Akt (pan) (C67E7) (Cell Signalling Technology, 4691, Danvers, MA, 

USA) , Anti-GSK3 beta [3D10] (Abcam, AB93926, Cambridge, MA, USA), 

Phospho-GSK-3β (Ser9) (D85E12) XP® Rabbit mAb (Cell Signalling Technology, 

5558, Danvers, MA, USA), and UCP1 (D9D6X) Rabbit mAb (Cell Signalling 

Technology, 14670, Danvers, MA, USA). After incubation the secondary antibody: 

Pierce antibody Goat-anti rabbit IgG (H + L) (Thermo Scientific Pierce, 31460, 

Rockford, IL, USA) was used, except for the case of Anti-GSK3 beta [3D10], in 
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which the secondary antibody Stabilized Goat anti-Mouse IgG (H+L) Peroxidase 

Conjugated (Thermo Scientific, 32430, Rockford IL, USA) was used. Detailed 

steps can be found in the Lees lab SOP for Western Blotting (see appendix). The 

immunoreactive complexes were detected with enhanced chemiluminescence 

(ChemiDocTM XRS, Bio-Rad, Hercules, CA, USA) and quantified using ImageJ 

software.  

4. Results 

4.1 Modulation of Glucose Uptake in BAT 

4.1.1 Glucose Treatment Increases Glucose Uptake in BAT 

Mice that were given treatments of 2g/kg glucose one hour prior to a 10minute 

PET scan exhibited increased 18F-FDG uptake in IBAT compared to control mice. 

This increase is represented as an increase in both SUV and SUVMAX in the 

region, compared to control (Figure 9).Glucose-stimulated 18F-FDG uptake was 

not observed in any of the other tissues examined (Figure 10). In forelimb skeletal 

muscle and heart no change was observed, compared to control (Figure 10). 

However, a significant decrease in 18F-FDG SUVMAX was seen in harderian 

glands and tongue and a significant decrease in SUV was seen in harderian 

glands (Figure 9). 
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4.1.2 Leucine Potentiates Glucose-Stimulated 18F-FDG Uptake in IBAT 

When 40µg/g body weight leucine was given to mice, glucose uptake in IBAT 

exhibited a non-significant decrease of 11% compared to control mice (Figure 9). 

However, when the leucine treatment was given in combination with the glucose 

treatment, a significant increase in glucose uptake in IBAT was seen compared to 

control (Figure 9). In fact, 18F-FDG uptake was also higher than that seen with 

the glucose treatment alone. In the other tissues analyzed, leucine alone 

produced no significant changes in glucose uptake from control. However, a 

significant decrease in 18F-FDG uptake was observed in harderian glands 

following glucose alone and glucose and leucine in combination, compared to 

control. The changes in 18F-FDG  uptake are represented as both SUV and 

SUVMAX in the region respectively (Figure 10).  

4.1.3 Glutamic Acid Does Not Increase Glucose Uptake in BAT 

When mice were given the 45µg/g bodyweight of glutamic acid with 2g/kg 

glucose treatment, there was no increase in 18F-FDG uptake in IBAT observed 

(Figure 11). Similarly, no differences were observed in the heart and paraspinal 

skeletal muscle, however, significant decreases were observed for the harderian 

glands (SUV and SUVMAX ), upper forelimb skeletal muscle (SUVMAX), and tongue 

(SUV and SUVMAX) (p≤0.05).  

�46



4.2 Leucine and Glucose Treatment Increases Glucose Uptake 
Through an Adrenergic Dependent Pathway 

In order to determine if Leucine + glucose-stimulated 8F-FDG was acting through 

adrenergic signalling, a beta blocker, propranolol, was used. A significant 

decrease in 18F-FDG uptake was observed in IBAT following pretreatment with 

propranolol (Figure 12) (p<0.05).  While insulin + glucose was able to increase 

18F-FDG compared to control, pretreatment with propranolol before insulin + 

glucose did not prevent this effect (Figure 12) (p<0.05).  These data indicate that 

insulin + glucose mediate 18F-FDG uptake is not dependent on adrenergic 

signalling. However, pretreatment with propranolol before leucine +  glucose did 

prevent any increase in 18F-FDG uptake, indicating that adrenergic signalling is 

required for leucine +  glucose mediated 18F-FDG uptake (Figure 12)(p<0.05). 

The other tissues analyzed are shown in Figure 13. Of note, the heart 

demonstrated an ~3-fold increase in 18F-FDG uptake as a result of insulin + 

glucose treatment (p<0.05), which was not prevented with propranolol 

pretreatment.  

4.2.1	Glucose	And	Insulin,	Either	Alone	Or	In	Combina>on,	Did	Not	Produce	Detectable	
Changes	In	insulin	Signalling.	

In order to assess the effect of the various treatments on insulin signalling, IBAT 

and soleus (hindlimb skeletal muscle) were collected following treatment and 

western blots for pan and p-Akt and pan and p-GSK-3β were performed. The 
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soleus served as a control tissue since insulin mediated signalling is well known 

for this tissue. As expected, insulin resulted in elevated p-Akt/pan-Akt ratios 

(Figure 14) (p<0.05). Insulin also increased the p-Akt/pan-Akt ratio for IBAT 

(Figure 15) (p<0.05). Unexpectedly, insulin did not cause increased p-GSK-3β/

GSK-3β ratios in either IBAT or soleus. Glucose and leucine, either alone or in 

combination did not cause an increase in the p-Akt/pan-Akt ratio, indicating that 

these treatments did not increase 18F-FDG uptake. However, it is possible that 

any increase in the insulin signalling through Akt and GSK-3β were too small to 

be detected via western blots. 
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Figure 9: A 10 minute static PET scan was completed, SUV and SUVMAX were 

measured to determine changes in glucose uptake in IBAT. Treatments Glucose 

(2g/kg bodyweight), Leucine (40μg/g bodyweight), and Glucose & Leucine (2g/kg 

bodyweight glucose & 40μg/g leucine). A) SUV reported in g/ml, analyzed using a 

region of interest encompassing the entire tissue. B) SUVMAX reported in SUV/

mm3, analyzed using the same region of interest as SUV calculations, but with 

the pixel with the highest uptake used for determination of the value. “a” denotes 

a significant change from control, “b” denotes a significant change from leucine 

(p<0.05 for all). n=6-8, if tissue was not visible in scan image it was excluded. 
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Figure 10: A 10 minute static PET scan was completed, SUV and SUVMAX were 

measured to determine changes in glucose uptake in the heart, harderian glands,  

skeletal muscle (represented as paraspinal (PSM), and upper forelimb (UFSM), 

and the tongue). Treatments Glucose (2g/kg bodyweight), Leucine (40μg/g 

bodyweight), and Glucose & Leucine (2g/kg bodyweight glucose & 40μg/g 

leucine). A) SUVMAX reported in SUV/mm3, analyzed using the same region of 

interest as SUV calculations, but with the highest uptake pixel used for 

determination of the value. B) SUV reported in g/ml, analyzed using a region of 

interest encompassing the entire tissue. “a” denotes a significant change from 

control, “b” denotes a significant change from leucine (p<0.05 for all) n=4-8, if 

tissue was not visible in scan image it was excluded. 
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Figure 11: A 10 minute static PET scan was completed 1hr after injection with the 

glutamic acid with glucose treatment (45μg/g bodyweight glutamic acid and 2g/kg 

bodyweight glucose) or the control treatment. Regions of interest were drawn to 

encompass the entire tissue of interest. A) SUVMAX reported in SUV/mm3

measurements. B) SUV measurements reported in g/ml using same ROIs as 

SUVMAX measurements. n=3-7, tissues that were not measurable were excluded. 

“a” denotes a significant difference from control, p<0.05. 
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Figure 12: A 10 minute static PET scan was completed 1hr after injection with 

Control, Glucose & Leucine (2g/kg bodyweight glucose and 40μg/g bodyweight 

leucine), or Insulin & Glucose treatments (10U/kg bodyweight insulin and 2g/kg 

bodyweight glucose), either with or without an injection of 150μg/mouse of 

propranolol 30 minutes prior to treatment injection. Regions of interest were 

drawn to encompass the entire IBAT. A) SUVMAX reported in SUV/mm3

measurements. B) SUV measurements reported in g/ml using same ROIs as 

SUVMAX measurements. n=3-7, tissues that were not measurable were excluded. 

“a” denotes a significant difference from control, “b” denotes significance from  

Control + Propranolol and “c” denotes significance from Glucose & Leucine + 

Propranolol (p<0.05 for all). 
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Figure 13: A 10 minute static PET scan was completed 1hr after injection with 

Control, Glucose & Leucine (2g/kg bodyweight glucose and 40μg/g bodyweight 

leucine), or Insulin & Glucose (10U/kg bodyweight insulin and 2g/kg bodyweight 

glucose) treatments, either with or without an injection of 150μg/mouse of 

propranolol 30 minutes prior to treatment injection. Regions of interest were 

drawn to encompass the entire tissue of interest. A) SUVMAX reported in SUV/

mm3 measurements. B) SUV measurements reported in g/ml using same ROIs 

as SUVMAX measurements. n=3-7, tissues that were not measurable were 

excluded. “a” denotes a significant difference from control, “b” denotes 

significance from  Control + Propranolol (p<0.05 for all). 
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Figure 14: Results from western blots on collected and prepared soleus samples 

from mice. Treatments Glucose (2g/kg bodyweight), Leucine (40µg/gg 

bodyweight), Glucose & Leucine (2g/kg bodyweight glucose & 40µg/g leucine), 

and Insulin (10U/kg bodyweight). 30µg of protein, probed with A) P-Akt antibody, 

signal quantified and normalized against Akt antibody probed sample pairs. B) 

GSK-3β antibody, quantified, and normalized against P-GSK-3β antibody probed 

sample pairs. C) Representative blot of soleus sample with P-Akt and pan-Akt 

probing. D) Representative blot of soleus sample with GSK-3β and P-GSK-3β. 

�54

P-Akt

pan-Akt

P-GSK-3β

GSK-3β

Contro
l

Glu
co

se
 &

 L
eu

cin
e

In
su

lin

Leu
cin

e

Glu
co

se
 

0.0

0.5

1.0

1.5

Treatment
G

S
K

-3
β 

N
or

m
al

iz
ed

 t
o 

P-
G

SK
-3
β 

Contro
l

Glu
co

se
 &

 L
eu

cin
e

In
su

lin

Leu
cin

e

Glu
co

se
 

0.0

0.2

0.4

0.6

0.8

Treatment

P
-A

kt
 N

or
m

al
iz

ed
 t

o 
A

kt
 

A B

C D



 

Figure 15: Results from western blots on collected and prepared IBAT samples 

from mice. Treatments Glucose (2g/kg bodyweight), Leucine (40µg/gg 

bodyweight), Glucose & Leucine (2g/kg bodyweight glucose & 40µg/g leucine), 

and Insulin (10U/kg bodyweight). 30µg of protein, probed with A) P-Akt antibody, 

signal quantified and normalized against Akt antibody probed sample pairs. B) 

GSK-3β antibody, quantified, and normalized against P-GSK-3β antibody probed 

sample pairs. C) Representative blot of IBAT sample with P-Akt and pan-Akt 

probing. D) Representative blot of IBAT sample with GSK-3β and P-GSK-3β. 
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5. Discussion 

In this investigation the efficacy of the leucine as a method of increasing glucose 

uptake in BAT was analyzed. Literature suggests that leucine plays role in 

activation of insulin signalling pathways, as well as glucose uptake in skeletal 

muscle [31]. Similar pathways are responsible for glucose uptake in BAT under 

certain circumstances, thus it was hypothesized that leucine may act in a similar 

manner on BAT as it does in skeletal muscle. Leucine is also known to cause 

increases in circulating insulin when infused, which could lead, indirectly, to 

stimulation of glucose uptake in tissues such as BAT [32], [33]. This may be one 

of the methods of action responsible in skeletal muscle as well. It was confirmed 

through this study that leucine does increase glucose uptake in IBAT when under 

hyperglycaemic conditions. Following treatment with both glucose, to increase 

conditions to hyperglycaemia, and leucine, IBAT glucose uptake was significantly 

increased compared to the control treatment. Interestingly, the results of the 

present study indicate that adrenergic signalling, and not insulin, are responsible 

for the leucine-mediated potentiation of glucose uptake in IBAT in 

hyperglycaemic conditions. To my knowledge, this is the first study to identify the 

additive effect of glucose and leucine on IBAT glucose metabolism.  

5.1 Other Tissues Assessed 

Other tissues did not experience significant changes in glucose uptake when 

leucine was given, with the exception of the harderian glands. It is uncertain why 
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no increase was observed in the areas that represent skeletal muscle: paraspinal 

muscles, UFSM, and tongue or in the cardiac tissue. There is evidence that 

epinephrine can inhibit insulin-stimulated glucose uptake in skeletal muscle. 

Stress from the imaging experience or epinephrine released due to the 

temperature being below thermo-neutral for a mouse could cause this [93]. It is 

also possible that in skeletal muscle and cardiac tissue there was a stealing 

effect due to the high uptake of 18F-FDG in IBAT. Uptake of 18F-FDG in IBAT 

during the glucose and glucose and leucine treatments was increased 

substantially, and could have taken more of the available 18F-FDG leaving the 

skeletal muscle and cardiac tissue to take up less. Differences in the tongue are 

likely due to activity of the tongue, such as grooming. Grooming actions use the 

tongue extensively and would cause changes in uptake due to contraction of the 

muscle. It is thought that the mice given glucose were actively grooming less, 

causing the decrease in glucose uptake seen (observations noted during the 

completion of the study). In the harderian glands a significant decrease in 18F-

FDG uptake was measured in treatments with glucose. The exact reason for this 

is not known, but experimental conditions that affect lubrication of the eyes, 

which is a main function of the harderian glands, have been shown to alter 18F-

FDG uptake in the tissue [94]. Since all other experimental conditions were kept 

the same between treatments a stable glucose uptake value was expected; it is 

thought that the increase in competition between 18F-FDG and glucose caused a 

decrease in 18F-FDG uptake in the harderian glands, similar to what is seen in 

�57



tumours [60]. This effect might not be seen in IBAT due to the large increase in 

total uptake, following leucine and glucose treatment. 

5.2 Glucose Treatment 

When glucose treatment was given alone, an increase in glucose uptake in IBAT 

was measured. This increase is likely due to the insulin responsiveness of BAT. 

The dose of glucose given is based on the amounts given in a glucose tolerance 

test (GTT) which will elicit a release of endogenous insulin into circulation [95]. 

Due to the insulin response seen in BAT this increase in insulin would lead to  

activation of the IR pathway causing the eventual translocation of GLUT 4 to the 

cell membrane and increase of glucose entering the cell [35]. In both skeletal 

muscle representative tissues and cardiac tissue, no increase was seen due to 

glucose treatment. These results are similar to that seen in the treatment with 

glucose paired with leucine, and is unexpected due to the known insulin 

responsiveness of these tissues. While the reason for this is unknown, perhaps 

the magnitude of the insulin response and resulting glucose and 18F-FDG uptake 

were not sufficiently elevated to offset the competition between 18F-FDG and 

glucose, resulting in increases in glucose uptake, but not 18F-FDG. This would be 

due to the increase in non-labeled glucose given through injection diluting the 

ratio of 18F-FDG to glucose. As mentioned previously this could also be due to a 

stealing effect, caused by the increase in IBAT 18F-FDG uptake with glucose 

treatment. This could be potentially tested or solved by giving more 18F-FDG, 

however the microPET set-up used during the duration of this experiment has a 
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maximum amount that can be tolerated, that would prevent the completion of this 

test.  

5.3 Glucose and Leucine 

One important aspect of the present study involves the finding that leucine alone, 

did not increase glucose uptake in IBAT, however, when combined with glucose 

and additive effect was observed in the stimulation of 18F-FDG uptake. This result 

was unexpected since previous findings have shown that leucine increases 

circulating insulin [15] and glucose uptake in skeletal muscle [17], [20]. However, 

it has been reported in literature that leucine treatment can increase insulin 

sensitivity of tissues [21]. In this case an explanation may be that the magnitude 

of the insulin increase, even with the increase in insulin sensitivity may not be 

high enough to over come competition between other tissues in this fasted state. 

When glucose is added in addition to the leucine the increase in circulating 

insulin would meet an increase in insulin sensitivity leading to greater uptake. 

The amount of stimulation caused by the glucose and leucine together would be 

enough to see a measurable increase in uptake in IBAT and have enough to 

overcome competition. 

5.4 Glutamic Acid 

Experiments completed using an alternative amino acid, glutamic acid, did not 

give the same results as leucine. The glutamic acid treatment was given with the 

addition of glucose to mimic the successful increase seen by the leucine and 
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glucose treatment. It was determined that glutamic acid did not have the same 

enhancement effect on glucose uptake in IBAT when under hyperglycaemic 

conditions. This is expected since results reported in literature, which infuse 

glutamic acid did not cause changes in insulin or glucagon levels, which were 

seen with leucine. This negative result indicates that amino acid action is specific 

to particular amino acids, versus all amino acids. In other tissues the lack of 

glucose uptake increase continued. In the harderian gland the decrease in 

glucose uptake seen in other treatments containing glucose was continued. In 

skeletal muscle, however, there was decreased 18F-FDG uptake with glutamic 

acid paired with a glucose injection in some of the regions examined (UFSM and 

tongue). 

5.5 Signalling Pathway 

In order to gather information related to the signalling pathway responsible for the 

increase in glucose uptake resulting from the treatment with leucine and glucose, 

tissues were collected after treatments and analyzed. IBAT and soleus muscle 

were collected following treatments and western blotting performed and probed 

with P-Akt/pan-Akt and P-GSK-3β/GSK-3β. Knowing that the insulin stimulated 

pathway leads to the phosphorylation of Akt (activations) and GSK-3β (inhibition) 

and that increased beta adrenergic activity only leads to the inhibition of GSK-3β 

(increased phosphorylation) conclusions about treatment activation can be 

drawn. In IBAT there were no significant differences in P-Akt levels except 

between insulin treatment and all other treatments. There was a significant 
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increase in the phosphorylation of Akt after insulin treatment. Non-significant 

increases in p-Akt/pan-Akt of 17%, 16%, and 11% were observed for glucose 

and leucine, leucine, and glucose treatments, respectively. p-GSK-3β/GSK-3β 

ratio in IBAT were not significantly different for any treatment. Non-significant 

increases in p-GSK-3β/GSK-3β of 7%, 30%, and 15% were observed for glucose 

and leucine, leucine, and glucose treatments, respectively. One possible 

explanation is that the effect on signalling in the tissues due to these treatments, 

was below detection limits using the method of western blot and ECL used. 

Insulin was the only treatment able to cause measurable significant increases in 

P-Akt signalling. 

In addition to quantifying cell signalling, the use of a beta blocker prior to imaging 

was investigated. The beta blocker propranolol has been shown to have a near 

complete blocking effect on beta receptor action in mice. Propranolol is a non-

specific beta blocker that acts on all beta receptors [27]. Since the action of non-

shivering thermogenesis occurs through a beta adrenergic receptor, propranolol 

would nearly abolish all action through this pathway. The method of action of the 

leucine treatment is uncertain and could have beta-adrenergic involvement. By 

blocking this method of activation it can be determined if another pathway of 

action, such as an insulin related action, is involved. If a increase in glucose 

uptake in IBAT remains after pretreatment, then another method of activation is 

involved. Pretreatment with propranolol did prevent a significant increase in 18F-

FDG uptake in response to leucine and glucose. This finding does indicate the 
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involvement of beta adrenergic signalling in the stimulation of leucine and 

glucose-mediated 18F-FDG uptake. However, a non-significant increase of 41% 

was still observed. Therefore, it is possible that the method of action is not 

completely through a beta-adrenergic pathway, and the role of insulin signalling 

should not be ruled out. To test if this pathway is still active after pretreatment 

with propranolol, a near maximal dose of insulin was given, both with and without 

propranolol. Insulin did increase 18F-FDG uptake in IBAT, with no significant 

difference observed with propranolol pretreatment before insulin. This indicates 

that this pathway is not inhibited due to the use of propranolol. The slight 

increase in glucose uptake in the IBAT between glucose with leucine and control, 

both with propranolol pretreatment, might then be due to activation through a 

small increase in circulating insulin caused by leucine injection. It should be 

noted however that this slight increase could be caused by a different pathway of 

activation, such as a CBL related pathway acting on the IR through a PI3K 

independent pathway. This pathway, however, is suggested to be downstream of 

IRS-1, requiring activation to initiate eventual GLUT4 translocation [95]. This 

would mean that insulin would be required for either of these methods of 

activation. Suggesting that an increase of glucose uptake in IBAT would come 

from an insulin related pathway. Since the majority of basal glucose uptake (non-

stimulated) is blocked with propranolol, the major pathway of activation is β-

adrenergic, but it cannot be said if this is caused by the treatment or by activation 

caused by non-shivering thermogenesis. This pathway could be active since 

mice are thermo-neutral between 30°C and 34°C and the housing and 
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experiment conditions was 22°C ± 3°C [60]. therefore the BAT was 

thermogenically active in our studies and all of the treatment effects were in the 

presence of beta-adrenergically activated tissue. It is possible that when this 

main form of activation is blocked the treatment effect of glucose and leucine 

may be less. It is also possible that the main form of activation caused by the 

treatment is β-adrenergic. Further signalling studies with either insulin action 

antagonists and imaging or collected tissues would need to be performed to 

determine the method of action.  

In skeletal muscle there were no significant differences seen between the 

groups, but a slight increase in treatments that had pretreatment with 

propranolol. Literature suggests that beta-adrenergic activity on skeletal muscle 

decreases the amount of GLUT 4 in the muscle [96]. If the propranolol blocked 

beta-adrenergic action in the muscle, it is possible that membrane GLUT 4 

content could increased. There is however little data on beta-blocker use and 

GLUT 4 response and more information is needed to formulate a better picture of 

the effects. However, it has also been reported that the use of beta-blockers can 

reduce peripheral blood flow, which can limit glucose disposal into skeletal 

muscle [97]. This was not seen in the present study, but it is also suggested in 

literature that the reduced peripheral blood flow during initial use of a beta-

blocker is offset by a rise in vascular resistance [98]. Since the use of propranolol 

is not long term these affects may have been offset for these experiments. In 

cardiac tissue propranolol lowered glucose uptake, which is expected due to beta 
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receptor antagonists lowering heart rate, contractility, conduction velocity, and 

relaxation rate [99]. The leucine and glucose injections seemed to negate the 

effects of the beta-blocker seen with the pretreatment of propranolol. This could 

be due to increases in circulating insulin caused by the treatment, since cardiac 

tissue is highly insulin responsive [100]. The reason this increase was not seen 

with previous treatments could be due to the activity from the adrenergic 

receptors masking the response from the slight circulating insulin increase. Like 

seen previously glucose uptake in the harderian gland was decreased with 

treatments containing glucose; propranolol seemed to have no effect on this 

tissue. 

5.6 The Use of PET Imaging for Quantifying Glucose Uptake in Tissues 

These results indicate that PET imaging is a good candidate for assessing tissue 

specific glucose uptake in some organs. It is able to detect differences in BAT 

glucose uptake due to various treatments, which is useful for future BAT work as 

it continues to be of interest for metabolic disease prevention and treatment. The 

benefit of PET is the non-invasive nature of this testing as well as the speed of 

measurement. Considering most tissue specific glucose measurements require 

dissection it is not viable in human studies, PET opens the opportunity for clinical 

work in this field. These results also indicate that leucine has good potential to 

help activate BAT in hyperglycaemic conditions which has promise to aid in 

treating insulin resistance and metabolic disease.  

�64



Another application that can make use of PET for tissue specific glucose uptake 

measurements is cardiac tissue. Current methods of testing heart tissue specific 

insulin resistance are done through cell culture models or perfusion models [84], 

[101]. These methods are not testable in live individuals and are done ex vivo. 

Developing testing practices that can be completed in live patients could have 

positive impacts on mechanism of action, diagnosis, and prevention for at risk 

individuals. This development is important since cardiovascular disease and 

stroke are the number one cause of death in individuals, especially those with 

diabetes. In this study differences in heart were not seen with the treatments 

given, however it is suspected this is related to other causes, not the inability of 

PET to distinguish differences. This is because in preliminary imaging and during 

testing with insulin, differences where seen with insulin treatment as well as 

varying fasting conditions. 

6. Conclusion 

Hyperglycaemia is a prominent clinical outcome in obese and T2D populations 

[70]. Using dietary methods to aid in controlling these glucose levels as well as to 

potentially prevent the development of T2D could be an important key in a 

growing epidemic. Current methods focus on drug treatments as well as a 

controlled diet and exercise regime, however the latter can often be difficult to put 

into practice. The use of a dietary supplement has the benefit of being easy to 

implement. The amino acid leucine, shows to be a promising candidate at 
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increasing glucose uptake as well as energy expenditure, through BAT activation, 

in a hyperglycaemic state. PET imaging of glucose uptake in IBAT following 

treatment shows increases in glucose uptake, which is correlated to activation of 

the tissue.  
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List of Abbreviations  

ADP  Adenosine Diphosphate 

Akt  Protein Kinase B 

APS  adapter protein with Plekstrin homology and Src Homology domain 

ATP  Adenosine Triphosphate 

BAT  Brown Adipose Tissue 

BMI  Body Mass Index 

CAD  Coronary artery disease 

cAMP  Cyclic Adenosine Monophosphate 

CAP  c-Cbl Associated Protein 

CBL  proto-onco protein Cbl 

CHF  Chronic heart failure 

CrkII  CT10-related kinase 

CT  Computed Tomography 

FADH2 Flavin Adenine Dinucleotide 

FFA  Free Fatty Acids 

GDP  Guanosine Diphosphate 

GSK-3 β Glycogen Synthase Kinase 3 β 

GTT  Glucose tolerance test 

IBAT  Interscapular Brown Adipose Tissue 

IDCM  idiopathic dilated cardiomyopathy 

IGT  impaired glucose tolerance 

IR  Insulin Receptor 
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IRS  Insulin Receptor Substrates 

IRS-1  Insulin Receptor Substrate 1 

IRS-2  Insulin Receptor Substrate 2 

NADH  Nicotinamide Adenine Dinucleotide 

NE  Norepinephrine 

P-Akt  Phosphorylated Protein Kinase B 

PET  Positron Emission Tomography 

PI3K  phosphatidylinositol 3-kinase 

PKA  Protein Kinase A 

RC  Respiratory Chain 

SUV  standardized uptake value 

SUVMAX Maximum Standardized Uptake Value 

T1D  Type 1 Diabetes 

T2D  Type 2 Diabetes 

UCP-1 Uncoupling Protein-1 

VMN  Ventromedial Hypothalamic Nucleus 

WAT  White Adipose Tissue 

2DG  2-deoxy-D-[H3] glucose 

18F-FBnTP 4-18F-fluorobenzyltriphenyl phosphonium  

18F-FDG 2-deoxy-2-(18F)fluoro-D-glucose 
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Western!Blot!

Day$1$&$Gel$Preparation$and$Running$

What!you!need:!
8gel!apparatus!with!sponges!(bench)!

8glass!plates!(2!sized!(1.5mm),!2!short!plates)!(bench)!
82!green!plate!holders!(bench)!
8combs!same!size!as!glass!plates!(bench)!

82x!50mL!beakers!(bench)!
81x!50mL!tube!
810ml!serological!pipettes!!

82!transfer!pipettes!
8Distilled!water!(DW)!
81.5M!Tris!pH!8.8!(4oC)!

80.5M!Tris!pH!6.8!(4oC)!
810%!SDS!(bench)!
840%!acrylamide!(4oC)!!

8Ammonium!persulfate!(APS,!4oC)!
8TEMED!(chemical!storage!cabinet)!
820%!methanol!(bench)!

80.1%!SDS!(bench)!
8standard!ladder!(molecular!marker)!(820oC)!
8gel!running!apparatus!and!container!(bench)!

810ml!syringe!with!needle!
!

*First!remove!samples!from!880oC!to!thaw!on!ice.!If!a!white!precipitate!is!present!after!thawing,!place!
samples!at!37oC!(using!a!heat!block)!until!they!are!clear.!This!should!only!take!a!few!minutes)*!
!

1. Obtain!glass!plates!from!drying!rack!on!bench.!If!there!is!anything!to!clean!off,!use!a!kimwipe!
with!DW!

2. Place!glass!plates!in!green!holders!with!the!doors!open,!making!sure!both!plates!lay!flush!with!

the!surface!of!the!bench,!and!with!each!other.!Next,!while!applying!slight!pressure!to!the!tops!of!
the!glass!plates,!close!the!doors.!

3. Place!the!well!combs!between!the!glass!plates.!Measure!11mm!from!the!bottom!of!the!well!

comb!and!place!a!mark.!This!is!your!pour!line!for!your!gel.!Remove!the!combs!and!set!aside.!
4. Prepare!10%!APS!in!a!1.5ml!eppendorf!tube:!add!0.1g!APS!(kept!at!4oC)!to!1ml!DW.!Triturate!

until!dissolved.!Make!fresh!daily.!

5. Prepare!your!separating!gel!in!a!50ml!beaker!with!a!stir!bar.!Your!gel!percentage!depends!on!the!
weight!of!your!target!protein.!Use!the!chart!below!to!choose!the!appropriate!percentage!of!gel!
to!make.!

!
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!
Volume!(ml)!

Stock$
Component$

5%$ 7.5%$ 10%$ 12%$ 15%$

Distilled!Water! 12.3! 10.93! 9.68! 8.68! 7.18!
1.5M!Tris,!pH!8.8! 5! 5! 5! 5! 5!
10%!SDS! 0.2! 0.2! 0.2! 0.2! 0.2!
40%!Acrylamide! 2.5! 3.75! 5! 6! 7.5!
!
The$percentage$of$acrylamide$determines$the$percentage$of$gel$you$are$making.$So,$if$you$have$30%$
acrylamide$to$start,$you$will$need$to$adjust$volumes$accordingly.$For$example,$for$a$10%$gel,$you$will$

need$6.67ml$of$30%$acrylamide,$and$8.01ml$of$DW.$The$DW$is$to$make$up$the$final$volume$of$the$
solution$to$~20ml.$
!

!
6. Once!the!stock!components!are!mixed!for!the!appropriate!separating!gel!percentage,!place!the!

glass!plates!that!are!in!the!green!holders!onto!the!sponges!of!the!gel!apparatus.!Clip!them!in.!

Ensure!they!are!sitting!flush!on!the!sponges.!
7. *See$note$below.$Place!the!beaker!on!a!stir!plate,!mixing!gently!so!as!not!to!introduce!bubbles.!

While!mixing,!quickly!add!100ul!10%!APS!and!20ul!TEMED.!Allow!to!mix!for!30!more!seconds.!
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8. Using!a!transfer!pipette,!pipette!gel!mixture!quickly!between!the!plates,!moving!back!and!forth!
between!the!two!sets!of!plates!after!each!pipette8ful.!Fill!each!set!of!plates!to!your!marker!line.!

9. Carefully!overlay!the!separating!gel!with!20%!methanol!using!a!syringe.!Allow!to!polymerize!for!
30!mins.!*Tip:$leave$your$transfer$pipette$in$your$beaker$containing$left$over$gel$solution.$If$this$is$
polymerized$after$30$minutes,$your$gel$between$the$plates$will$be$too.!

10. During!this!polymerization,!mix!your!stock!components!for!your!stacking!gel!in!a!50ml!beaker!
containing!a!stir!bar:!

!!!!!!!!!!Volume!(ml)!

Stock$
Component$

4%$

Distilled!Water! 12.68!
0.5M!Tris,!pH!6.8! 5!
10%!SDS! 0.2!
40%!Acrylamide! 2!

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Note$the$use$of$a$different$Tris$buffer$
$

11. Once!the!gel!is!polymerized,!pour!the!methanol!down!the!sink!and!rinse!the!empty!area!
between!the!plates!three!times!with!0.1%!SDS!in!a!syringe!(keep!gels!on!the!apparatus!during!
this!time).!Ensure!all!SDS!is!emptied!from!this!area!by!tilting!the!apparatus!to!the!side!and!

holding!kimwipes!to!the!top!edge!of!the!glass!plates.!
12. Place!the!beaker!on!a!stir!plate,!mixing!gently.!While!mixing,!quickly!add!100ul!10%!APS!and!

20ul!TEMED.!Allow!to!mix!for!30!more!seconds.!

13. Using!a!transfer!pipette,!overlay!the!separating!gel!with!the!stacking!gel!solution,!filling!to!the!
top!of!the!plates.!Insert!comb!on!an!angle!slowly!so!as!not!to!introduce!bubbles!or!displace!too!
much!gel!solution.!Allow!to!polymerize!for!30!mins!

!
*Note:!If!a!vacuum!degasser!system!is!available,!make!up!both!the!separating!and!stacking!gel!solutions!
in!their!beakers!with!stir!bars!(without!the!APS!and!TEMED),!mix!briefly!on!the!stir!plate!and!place!both!

beakers!into!the!degasser.!Put!the!lid!on!and!turn!the!vacuum!pump!on.!Leave!for!20!minutes!to!remove!
the!air!from!the!solutions.!After!20!minutes,!turn!the!pump!off,!remove!the!separating!gel,!and!while!
gently!mixing!on!the!stir!plate,!continue!as!for!step!7.!While!the!separating!gel!is!polymerizing,!put!the!

lid!back!on!the!degasser!to!protect!the!stacking!gel.!!
!

14. Put!your!molecular!marker!(ladder)!on!ice!

15. Prepare!your!1X!Running!Buffer!as!described!in!the!Buffers!section.!This!can!be!prepared!in!
advance!and!stored!at!4oC!

16. Once!the!gel!is!polymerized,!remove!the!combs!by!pulling!them!straight!up!and!out.!Remove!the!

glass!plates!carefully!from!the!holders!and!place!them!onto!the!middle!section!of!the!apparatus!
(containing!the!electrodes).!The!short!plates!of!each!set!should!be!facing!each!other.!Place!this!
section!into!the!beige!middle!part!with!clear!“doors”.!The!doors!should!be!open!while!the!

electrode!is!being!inserted.!Apply!gentle!downward!pressure!to!the!electrode!section!while!
closing!the!doors.!Place!this!in!the!clear!container.!
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17. Fill!the!middle!section!between!the!two!gels!with!1X!Running!buffer.!Next,!fill!the!clear!

container!half!way!

18. Fill!a!Styrofoam!box!with!ice.!Create!a!spot!to!put!the!gel!container.!Place!the!gel!container!in!

this!spot!and!push!the!ice!against!the!sides!of!the!container.!

19. Begin!loading!your!samples!and!ladder!into!the!wells!of!the!gel.!You!should!load!the!wells!of!the!

gel!closest!to!you!first,!and!then!turn!the!whole!Styrofoam!box!to!load!the!other!gel.!

Typically,$5ul$of$ladder$is$loaded$into$the$first$well$on$your$left.$All$wells$should$be$filled$to$ensure$
the$samples$run$straight$down.$

20. Once!all!samples!are!loaded,!place!the!lid!onto!the!container!(black!to!black!electrode,!red!to!

red!electrode).!Plug!the!cords!into!the!power!supply!and!turn!on.!Turn!the!voltage!up!to!200V!

and!press!the!button!that!looks!like!a!man!running.!Make!sure!to!observe!bubbles!in!the!running!

buffer,!signifying!the!gel!is!running.!

21. The!samples!are!condensed!into!a!solid!blue!line!while!they!run!through!the!stacking!gel.!This!

ensures!that!all!samples!enter!the!separating!gel!at!the!same!time,!and!therefore!have!the!same!

amount!of!time!to!run!through!the!gel.!

22. Allow!your!gel!to!run!until!the!blue!dye!front!completely!runs!off!the!bottom!of!the!gel.!This!

typically!takes!just!over!1!hour.!While!this!is!happening,!gather!your!transfer!supplies!and!make!

fresh!1X!Transfer!Buffer,!as!per!the!Buffers!section.!This!can!be!made!in!advance!and!stored!at!

4oC.!

!

Gel$Transfer$

What!you!need:!

8transfer!apparatus!and!container!(bench)!

82x!cassettes!(bench)!

82!plastic!containers!for!soaking!filter!paper,!sponges,!and!membranes!(bench)!

82!plastic!containers!for!soaking!the!gels!(bench)!

84x!black!sponges!(bench)!

84x!filter!paper!(bench)!

82x!nitrocellulose!membrane!(bench)!

8flat!forceps!(bench)!

81x!transfer!buffer!(4oC)!

8ice!pack!(820oC)!

8stir!bar!

8gel!wedge!

!

23. Once!the!gel!is!finished!running,!bring!the!entire!container!to!the!sink!and!dump!out!the!running!

buffer.!Do$not$reuse$this$buffer.$Disassemble!the!apparatus!to!remove!the!glass!plates.!

24. Using!the!gel!wedge,!release!the!gel!from!the!big!plate!so!the!gel!is!kept!on!the!short!plate.!Cut!

the!stacking!gel!off!using!the!wedge!and!discard.!Make!a!nick!in!the!top!left!corner!(usually!the!

corner!containing!your!ladder).!
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25. Add!1x!Transfer!buffer!to!a!container.!Place!the!short!plate!with!the!gel!on!it!over!the!top!of!the!
container.!By!allowing!the!buffer!to!make!contact!with!the!gel,!it!should!take!the!gel!off!of!the!

plate!itself.!If!this!does!not!work,!or!if!the!gel!stayed!on!the!big!plate!rather!than!the!short!plate,!

use!the!wedge!to!gently!lift!the!gel!off!of!the!plate!and!place!into!the!buffer.!Repeat!with!second!

gel!in!a!separate!plastic!container.!

26. Cut!two!membranes!from!the!nitrocellulose!roll!using!the!filter!paper!as!a!size!guide.!Be!careful!

not!to!touch!the!membrane!with!your!gloves.!Keep!the!blue!paper!on!while!cutting.!

27. In!another!plastic!container,!place!one!sponge,!one!filter!paper,!one!membrane,!one!filter!

paper,!one!sponge,!and!fill!with!1X!Transfer!buffer.!Repeat!for!second!membrane.!

28. Place!all!plastic!containers!on!the!belly!dancer!for!15!minutes,!with!slight!agitation.!This!is!

necessary!to!equilibrate!all!components!of!the!transfer!“sandwich”!

29. While!these!components!are!soaking,!wash!the!running!apparatus.!To!do!this,!re8assemble!

without!the!glass!plates!and!fill!the!container!with!DW.!Discard!and!repeat!for!a!total!of!3!times.!

Allow!to!dry!on!the!drying!rack!or!paper!towel.!Do$not$hang.!

30. Assemble!the!sandwiches!out!of!buffer!on!paper!towel!on!the!bench!in!the!following!order:!

clear!side!down,!sponge,!filter!paper,!membrane!(move!with!forceps),!gel!(move!with!gel!wedge,!

place!so!that!cut!corner!remains!on!your!left,!ensure!no!bubbles),!filter!paper.!

31. Use!a!50ml!tube!to!roll!out!any!bubbles!by!starting!in!the!middle!of!the!filter!paper!and!rolling!

outward.!Repeat!in!opposite!direction.!Complete!the!sandwich!by!placing!the!second!sponge!

onto!the!filter!paper.!Close!the!sandwich!and!repeat!with!the!second!one.!

32. Place!the!sandwiches!in!the!centre!of!the!transfer!apparatus!with!the!black!side!of!the!cassettes!
facing!the!black!side!of!the!apparatus.!Place!the!apparatus!in!the!clear!container!(same!one!used!

for!running!of!gel),!add!a!stir!bar,!and!place!the!ice!pack!in!the!unfilled!space!in!the!container.!

33. Fill!the!container!up!to!the!edge!with!fresh!1X!Transfer!buffer!!
34. Move!the!apparatus!to!the!clear!door!fridge!onto!the!stir!plate.!Turn!the!stir!plate!on!to!low,!

making!sure!the!stir!bar!moves!easily.!Place!lid!on!top,!red!to!red!electrode!and!black!to!black!

electrode.!

35. Turn!the!power!supply!on!to!30V!and!run!overnight.!
!

!

Day$2$–$Ponceau$S,$Blocking,$and$Primary$Antibody$

What!you!need:!

82x!plastic!containers!(bench)!

8flat!forceps!(bench)!

8scalpel!(bench)!

8Ponceau!S!stain!(bench,!in!the!dark)!

80.1M!NaOH!(bench)!

81XTBST!(bench)!

81!clear!plastic!sheet!(bench)!

8Blocking!Solution!

8primary!antibody!(storage!conditions!dependent!on!antibody)!
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850ml!conical!tube!
!

36. Press!stop!on!the!power!supply,!turn!off!the!stir!plate!and!return!the!apparatus!to!the!bench.!
37. On!paper!towel!on!the!bench,!open!the!sandwich!(black!side!down)!and!cut!the!membrane!to!

size!using!the!scalpel,!following!the!outline!of!the!gel!below!it.!If!the!transfer!was!successful,!you!

will!see!the!ladder!on!the!membrane.!Cut!the!nick!in!the!corner!again!and!flip!the!membrane!
over!so!that!the!nick!is!now!on!your!left!and!place!in!a!container.!To!keep!track!of!which!side!is!
which,!this!nick!should!always!be!on!your!left,!the!side!with!your!ladder.!Repeat!with!the!second!

sandwich.!
38. Rinse!the!membranes!with!DW!quickly!then!discard!and!add!Ponceau!S!to!the!container!(enough!

to!cover!the!membrane).!Place!on!belly!dancer!at!low!speed!for!5!minutes.!

39. During!this!staining,!wash!the!transfer!apparatus!as!you!did!the!running!apparatus.!Allow!to!dry!
on!the!drying!rack.!

40. Discard!the!Ponceau!stain!down!the!sink!and!rinse!the!membranes!with!DW!until!all!residual!

background!red!is!gone,!and!only!red!bands!remain.!Scan!this!image!on!the!computer.!!
a. Open!Canoscan!
b. Ethanol!the!scanner!surface!

c. Lay!membranes!down!on!the!surface,!ensuring!no!bubbles!
d. Lay!a!clear!plastic!sheet!over!the!membranes!and!close!the!scanner!
e. Select!“Scan1”,!source=platen,!save!to!your!file,!click!“ok”!

f. After!the!scan!completes,!the!image!is!saved!automatically.!Check!to!make!sure!the!
picture!is!clear!before!destaining!the!membrane!

g. Ethanol!the!scanner!surface!again.!
41. Destain!the!membranes!by!adding!0.1M!NaOH!to!the!container!with!agitation.!It!should!destain!

within!minutes.!

42. Discard!and!rinse!with!DW,!then!wash!the!membrane!for!five!minutes!on!the!belly!dancer!at!
medium!speed!in!1XTBST!(recipe!in!Buffers!section,!this!can!be!made!in!advance!and!stored!at!
room!temperature)!

43. During!this!wash!step,!prepare!your!blocking!solution.!Make!sure!to!check!the!antibody!
information!sheet!of!the!antibody!you!will!use!to!choose!the!appropriate!blocking!solution.!
Typically,!5%!milk!is!sufficient,!but!BSA!is!also!sometimes!used.!Skim!milk!is!in!a!bag!in!the!weigh!

room!and!BSA!is!kept!at!4oC.!Make!this!fresh!daily!in!1XTBST.!Typically,!25ml!is!used!per!
membrane.!

44. Once!the!wash!step!is!complete,!discard!the!1XTBST!and!add!blocking!solution!to!the!container.!

Place!on!the!belly!dancer!at!room!temperature!on!a!low!speed!for!1!hour.!
*Tip:$If$after$you$complete$your$western$it$comes$out$with$nonspecific$antibody$binding,$you$can$
increase$your$blocking$percentage$to$8%$to$attempt$to$eliminate$that.$

45. Just!before!the!blocking!step!is!complete,!make!up!the!primary!antibody!in!a!50ml!tube.!The!
antibody!information!sheet!should!suggest!a!starting!concentration!for!the!antibody,!as!well!as!
what!to!make!it!in.!Typically,!5ml!of!antibody!solution!(5%!milk!or!BSA!made!in!1XTBST)!is!made!

per!membrane.!!
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46. Once!the!blocking!step!is!complete,!if!you!are!probing!for!multiple!targets!that!run!far!enough!
apart!on!the!gel,!you!can!cut!your!membrane!into!two!pieces!and!probe!two!at!once.!If!you!do!

this,!you!will!cut!using!the!scalpel,!and!use!the!smaller!sectioned!container.!Each!half!of!the!gel!
should!fit!perfectly!into!the!sections,!allowing!for!the!use!of!2.5ml!of!antibody!solution.!If!you!do!
not!cut!the!membrane,!move!the!membrane!to!the!smaller!coloured!containers!that!fit!the!

whole!membrane!perfectly.!This!container!requires!5ml!of!antibody!solution.!Place!the!
container!of!choice!on!the!rocker!in!the!fridge!(4oC)!at!a!low!speed.!Leave!overnight.!

!

The$information$sheet$that$comes$with$your$

antibody$has$suggested$blocking$
percentages$as$well$as$antibody$
concentrations.$It$also$lists$species$

reactivity,$meaning$which$animal$species$
they$can$detect.$Ensure$the$antibody$you$
choose$is$specific$for$the$species$of$your$

sample.$Some$primary$antibodies$are$
specific$to$multiple$animals.$Your$secondary$
antibody$is$made$to$target$your$primary$

antibody$based$on$the$animal$that$your$
primary$antibody$was$made$in.$So,$if$your$
primary$antibody$is$a$goat$antiSrat$ILS6,$it$is$

detecting$rat$ILS6$in$your$sample,$and$was$
made$in$a$goat.$This$means$your$secondary$

antibody$must$be$antiSgoat.$Do$not$use$a$
secondary$antibody$that$is$specific$to$your$
sample$species.$This$will$cause$unspecific$

binding.$So,$if$your$sample$comes$from$a$rat,$your$secondary$should$not$be$antiSrat,$and$therefore$your$
primary$cannot$be$made$in$a$rat.!

$

Day$3$&$Secondary$antibody$

What!you!need:!
82x!plastic!containers!

81XTBST!(bench)!
8Blocking!solution!(made!fresh!daily)!
8secondary!antibody!(storage!conditions!dependent!on!antibody)!

815mL!tubes!(bench)!
!
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47. Remove!membranes!from!the!fridge!and!place!in!plastic!containers.!Add!1XTBST!to!cover!and!
wash!the!membranes!for!a!total!time!of!25!mins!(medium!speed!on!the!belly!dancer),!changing!

the!buffer!every!5!minutes!(discard!down!drain).!
48. During!the!last!wash,!prepare!the!secondary!antibody!as!per!the!antibody!information!sheet.!

Typically,!25ml!of!solution!(usually!in!5%!milk!made!in!1XTBST)!is!used!per!membrane.!

49. Following!washes,!discard!the!1XTBST!and!add!the!secondary!antibody!solution.!Place!on!belly!
dancer!for!1!hour!at!room!temperature!at!a!low!speed.!

50. Discard!the!secondary!antibody!solution!and!perform!wash!steps!as!per!step!47.!

51. During!the!final!wash!steps,!prepare!your!detection!solution!(If!using!enhanced!
chemiluminescence,!continue!as!below)!and!set!up!the!computer!

!

!
!
Enhanced$Chemiluminescence$(ECL)$$

!
What!you!need:!
81XTBST!(bench)!

81.0M!Tris!pH!8.5!(4oC)!
8DW!
830%!H2O2!(4

oC)!

8Coumeric!acid!8!light!sensitive!(820oC)!
8Luminol!8!light!sensitive!(820oC)!

81x!clear!plastic!sheet!(bench)!
82x!50mL!tubes,!one!wrapped!in!tinfoil!(bench,!tinfoil!in!autoclave!room)!
8plastic!wrap,!taped!flat!to!the!bench!

8kimwipes!
81ml!pipette!and!tips!
8flat!forceps!for!membrane!handling!

!
*Take!out!coumeric!acid!and!luminol,!wrap!in!tinfoil!and!thaw!on!bench!
!

Label!two!50ml!tubes!as!“Solution!1”!and!“Solution!2”.!Add!components!listed!below!and!keep!solution!
2!covered!with!tinfoil.!

!

Solution$1$ $ $$$$$$$ $$$$$$$$Solution$2!
!
!

!
!
!

!
!

Component$ Volume$ Component$ Volume$
1.0M!Tris!pH!8.5! 2mL! 1.0M!Tris!pH!8.5! 2mL!

30%!H2O2! 12uL! 90mM!Coumeric!acid! 88uL!
Distilled!Water! 8mL! 250mM!Luminol! 200uL!

! ! Distilled!Water! 8mL!
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Computer$Set&Up$
a. Turn!on!the!ChemiDoc!imager!(2!things!to!turn!on:!black!box!beside!the!computer!first,!then!big!

beige!imager)!
b. Open!“Quantity!One”!on!the!computer,!press!“EPI!White”!on!the!imager!
c. In!the!program,!“File”!>!“ChemiDox!XRS”!>!“Select”!>!“Custom”!>!“Western!MWM”!

d. Change!the!filter!on!the!imager!to!the!middle!position!(black!stick!on!top)!
!

52. After!the!final!wash,!discard!the!wash!buffer.!Using!the!flat!forceps,!move!the!membranes!to!the!

plastic!wrap.!!
53. Pour!ECL!solutions!together!into!one!50ml!tube!and!mix!by!inverting.!Pipette!the!mixed!ECL!

directly!onto!the!membranes,!being!sure!to!cover!every!part!of!it.!Continue!for!one!minute.!

54. Dab!excess!ECL!solution!from!membranes!onto!kimwipe!by!touching!the!corner!of!the!
membrane!to!the!kimwipes,!handling!with!the!flat!forceps.!Place!membranes!onto!clear!plastic!
sheet!and!move!to!imager!

55. Open!drawer!on!imager!to!place!membranes!on!sheet!inside.!In!program,!click!“Live!Focus”!>!
“Freeze”!(once!it!is!in!the!appropriate!position;!it!can!be!focused!using!the!buttons!on!the!
imager)!>!“Auto!Expose”!>!“Save”.!You!now!have!an!image!of!your!ladder!saved!which!is!used!to!

determine!band!size.!
56. To!detect!your!chemiluminescence,!“File”!>!“ChemiDox!XRS”!>!“Select”!>!“Custom”!>!“Sean!

Bryan!Western”,!turn!off!the!“Epi!White”!on!the!imager,!change!the!filter!to!the!first!position!(a!

O),!click!“Live!Acquire”,!and!fill!in!as!300!second!exposure!with!photos!taken!every!60!seconds.!
Click!“Save”!and!it!will!run.!This!time!can!be!altered!based!on!your!target!protein!and!how!easily!

it!can!be!imaged.!You!will!have!an!idea!of!how!well!this!timing!is!working!after!the!first!minute!
when!the!first!picture!pops!up.!

57. Once!all!images!have!been!taken,!the!membrane!can!be!discarded!or!stored!at!4oC!in!1XTBS!

(1XTBST!without!the!Tween!20)!until!a!decision!is!made.!The!membrane!can!be!stripped!and!re8
probed!for!another!target!if!necessary.!

!

!
!
Buffers!and!Reagents!

!
Tris$0.5M$pH$6.8$
!
Tris!Base!812.1g!
dH2O!8!200mL!
!
Directions!8!Add!Tris!base!to!~150mL!of!dH2O,!stir!to!dissolve!completely.!Adjust!pH!to!6.8!using!
concentrated!HCl!and!adjust!final!volume!to!200mL.!Check!pH!and!store!in!4°C.!!
!
Tris$1.0M$pH$8.5$
!
Tris!Base!824.23g!
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dH2O!8!200mL!
!
Directions!8!Add!Tris!base!to!~180mL!of!dH2O,!stir!to!dissolve!completely.!Adjust!pH!to!8.5!using!
concentrated!HCl!and!adjust!final!volume!to!200mL.!Check!pH!and!store!in!4°C.!!
!
Tris$1.5M$pH$8.8$
!
Tris!HCl87.38g!
Tris!Base!–!30.78g!
dH2O!8!200mL!
Adjust!pH!to!8.8!if!necessary!using!concentrated!HCl.!Store!in!4°C.!!
!
10%$SDS$
!
Sodium!dodecylsulfate!(SDS)!8!10g!
dH2O!8!100mL!
!
4x$Reducing$Loading$Buffer$
!
0.5M!Tris!pH!6.8!8!10mL!
dH2O!–!4.06mL!
SDS!–!2g!
Bromophenol!blue!–!5mg!
Glycerol!8!10mL!*add!last!!
8make!1ml!aliquots!and!store!at!820oC.!Before!use,!add!110ul!β8mercaptoethanol!to!1ml.!
!
1x$Running$Buffer$
!
Glycine!–!14.4g!
Tris!Base!8!3g!
SDS!–!1g!
Make!up!to!1L!with!dH2O!
!
1x$Transfer$Buffer$
!
Glycine!–!2.93g!
Tris!Base!–!5.82g!
dH2O!–!700ml!
70%!Methanol!8!200ml!
Make!up!to!1L!with!dH2O,!store!at!4

oC!
!
10x$TBS$
!
Tris!Base!–!5.56g!
Tris!HCl!–!24.24g!
dH2O!–!800mL!
8check!pH,!adjust!with!12N!HCl!to!pH!7.6!



FDG Dilution 

1. Measure	activity	of	received	sample.	If	in	a	tube,	transfer	to	a	syringe.		

i. For	Large	Volumes:	If	activity	is	high	enough	that	1ml	will	contain	
enough	activity	(100+µCi)	then	add	to	eppendorf	tube	until	the	
1ml	line	is	reached.	Measure	the	activity.	

ii. For	Small	Volumes:	Add	full	syringe	to	eppendorf	tube	and	Kill	
remaining	amount	with	saline	until	the	1ml	line	is	reached.	
Measure	the	activity.	

2. Obtain	concentration	based	on	the	activity	measurement	and	volume	(µCi/1ml).		

3. Want	Kinal	concentration	of	200µCi/ml.	Determine	saline	volume	and	FDG	
volume	to	acquire	the	desired	concentration.		

Ci (µCi/ml) Vi (ml) =    Cf  (200 µCi/ml) Vf (1ml) 

Ex: 

#  

4. With	a	new	syringe	take	up	saline	volume	Kirst	(1000µl-Vi)	and	then	the	FDG	
volume	(Vi).		

5. Eject	this	into	a	new	eppendorf	tube	and	take	up	into	the	syringe	again	for	
injection.		

6. Check	actual	activity	(concentration)	present	and	determine	amount	to	inject	
20µCi	into	the	mouse.	Should	be	100µl.	t	
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NaCl!8!87.6g!
Make!up!to!1L!with!dH2O!
!
1x$TBST$
!
dH2O!–!900mL!
10xTBS!–!100mL!
Tween!20!–!1mL!
$
Ponceau$Stain$
$
dH2O!8!475mL!
Acetic!acid!8!25mL!
Ponceau!8!0.5g!
!
*Note!8!light!sensitive!
!
Luminol$
!
Luminol!8!0.44g!
DMSO!8!10mL!
!
Directions!8!Dissolve!luminol!in!DMSO!by!vortexing.!Pipette!420mL!into!eppendorf!tubes!and!store!in!8
20°C.!*Note!8!light!sensitive!
!
Coumeric$Acid$
!
Para8coumeric!acid!8!0.15g!
DMSO!8!10mL!
Directions!8!Dissolve!coumeric!acid!in!DMSO!by!vortexing.!Pipette!100mL!into!eppendorf!tubes!and!store!
in!820°C.!*Note!8!light!sensitive!
!
!
!
!
!
!



Dynamic Scan Images 
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Results of preliminary 7x600 frame dynamic PET scan used to determine timing 

of static scanning. Scan completed immediately after injection of ~20µCi of 18F-

FDG through intraperitoneal injection. Anesthesia given for injection and 

throughout duration of scan, 2% isoflurane. Heated to 37°C for duration of scan. 

Time stamp in top left corner of image indicates time since injection of 18F-FDG. 


