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ABSTRACT 

Disturbance is a potent driver of forests. Components of disturbance such as frequency (i.e., time 

since last stand-replacing disturbance) and intensity (e.g., stand-replacing vs. non-stand-replacing 

disturbance) plays a major role in influencing plant species diversity. However, majority of 

studies often consider the effect of disturbance frequency alone on plant species diversity, few 

studies consider interactive effects between disturbance frequency and intensity of disturbance 

on plant species diversity. In this dissertation, my first goal was to conduct a meta-analyses to 

examine the relationship between overstory tree species diversity and disturbance frequency and 

intensity of disturbance. Across tropical and temperate biomes, tree species richness was greatest 

at intermediate disturbance frequency with intermediate intensity of disturbance (i.e., non-stand-

replacing disturbance).  

Furthermore, research on diversity-disturbance relationships (DDRs) often exclude other 

critical factors such as climate and local site conditions and thus limit understanding on DDR. 

Using observational data from a natural forest in Canada, I examine DDR, under the influences 

of climate and local site conditions. I found that the most important factor regulating tree species 

diversity was disturbance frequency and local site conditions, indicating that they are important 

factors in maintaining biodiversity in the boreal forest landscape.  

Empirical evidence often show that wildfire frequency is strongly influence by local site 

factors, but broad-scale driver of fires such as climate is rarely considered. I evaluated effects of 

local site factors and climate on fire regimes across a large natural boreal forest (about 892,000 

ha) with no commercial forest harvesting activity; as such, human influences on wildfire is 

relatively little. My results indicated that mean annual temperature and precipitation were the 

two most crucial factors driving fire regime in the natural boreal forest studied. 
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Species diversity has often been linked to temporal stability of ecosystem functions; 

however, forest stand development, species composition and soil resource availability may affect 

community stability, but these predictors are often overlooked. I investigated whether 

community stability (measured as stand level basal area) relates to tree species diversity, forest 

stand development, tree species composition and soil resource availability. Temporal stability 

was measured as coefficient of variation, which is a principal component of ecosystem stability. I 

used repeated measurement plot data from a central boreal forest, which is often associated with 

non-stand-replacing disturbances such as spruce budworm and forest tent caterpillar outbreaks, 

which selectively kill trees. I highlighted that temporal stability of stand basal area is influenced 

by forest stand development and species composition depending on the type of insect outbreak.  

 

Key-words:  climate, composition, diversity-stability relationships, intermediate disturbance 

hypothesis, soil drainage class, species diversity, structural equation models, time since fire.  
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CHAPTER 1: GENERAL INTRODUCTION 

Disturbance is an integral part and a critical driver of global forest ecosystems (Bowman et al. 

2009). In boreal forest of North America, both wildfire disturbance (Johnson 1996, Wang et 

al. 2014) and insect outbreaks are common (Fleming et al. 2002), affecting ecosystem 

processes and regulating biodiversity (Johnson et al. 1995). Time since fire (TSF) is a 

principal regulator of plant species richness and succession (Grandpré et al. 2000, Clark et al. 

2003, Taylor and Chen 2011).  

In spite of the importance of disturbance, its effect on species coexistence is still 

poorly understood. Intermediate disturbance hypotheses (IDH) is a widely investigated 

concept explaining how disturbance influences species coexistence (Connell 1978). Even 

though Connell is often credited as the originator of the IDH, other researchers such as Grime 

(1973) had previously discussed higher diversity at intermediate level of disturbance 

(Wilkinson 1999). The IDH predicts that species diversity peaks at intermediate frequency, 

intensity and/or extent of disturbance. However, patterns of diversity and disturbance 

relationships (DDRs) can be variable, with hump-shaped (Mayor et al. 2012) and U-shaped 

patterns occurring (Gosper et al. 2013). A possible explanation for the contrasting 

relationships is that previous studies only consider frequency of disturbance, and not 

disturbance intensity and thus provide partial information on DDR. Another explanation is the 

exclusion of local site conditions and climatic factors which are primary determinants of 

DDR. For example, previous study consider disturbance as a sole predictor of plant species 

richness (Bongers et al. 2009). But, in forest ecosystems local site conditions and climate 

variables such as mean annual temperature and precipitation have been shown to strongly 

influence plant species diversity (Francis and Currie 2003, Zhang et al. 2014).  
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Fire regimes in the boreal forest are spatially dependent on a variety of factors, 

including topography, drainage, proximity to water bodies, soil surficial deposits, latitude and 

longitude (Larsen 1997, Cyr et al. 2007). Temporally, fire regimes are also influenced by 

changes in mean annual temperature, precipitation and drought frequency(Parisien et al. 

2011). Although wildfire is recognized as a critical disturbance process in many forests, 

causal relationship between large fires and the climatic factors, has been rarely investigated in 

most studies (Westerling et al. 2006, Cyr et al. 2007). For example, Westerling et al. (2006) 

found a strong positive association between large fire frequency and mean summer 

temperature. However, mechanistic link between climatic factors and wildfire was not 

considered, partly because the forest landscaped was highly fragmented by logging and 

agriculture activities which make it difficult to partition the relative contribution of climate 

and anthropogenic factors to the fire frequency. Here, we studied a natural boreal forest 

landscape, having limited road access combined with absence of timber harvesting. Such a 

less fragmented landscape provides a unique opportunity to study spatial and temporal fire 

regime with minimum local influences by humans.  

Plant species richness strongly influences ecosystem functions, including temporal 

stability of ecosystem functions (Tilman et al. 2006). A measure of temporal stability, defined 

as coefficient of variation in abundances of plant species, decreases as species richness 

increases (Tilman 1996, Morin et al. 2014). Other factors such as species composition, stand 

developmental stage and soil resources availability are potent factors influencing ecosystem 

stability (Huston 1997) and other ecosystem processes (Hooper and Vitousek 1998). Despite 

the critical importance of understanding the role of these factors in influencing ecosystem 

stability (Huston 1997), most studies focus on species richness, and ignore species 
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composition, forest stand development, and soil resource availability in natural systems 

(DeClerck et al. 2006, Xu et al. 2014). Understanding forest ecosystem stability to non-stand-

replacing disturbance, which constitutes majority of forest disturbance worldwide (Edwards 

and Laurance 2013), is of critical importance especially in the boreal forest where increases in 

insect outbreaks and range expansion are occurring (Pureswaran et al. 2015), and that could 

affect the provision of goods and services which human derives from the forest. 

The overall purpose of this study is to improve understanding regarding how 

disturbance and local environmental factors influence plant species diversity and stability, as 

well as test if fire regimes vary with spatial and temporal factors. Specifically, this 

dissertation was compiled to address the following (1) to examine the influence of 

disturbance frequency and intensity on tree species richness; (2) to examine the response of 

species richness to TSF, local site conditions, mean annual temperature and precipitation; (3) 

to test how fire frequency varies as a result of local environmental factors, such as soil 

drainage, latitude and longitude, and how mean annual temperature, mean annual 

precipitation, and mean annual drought may have affected fire frequency; and (4) to test 

whether CV of forest stand basal area relates to tree species diversity, stand development, 

composition and soil resource availability. Chapter two reviews published studies on 

disturbance frequency and intensity of disturbance and examines their effects on tree species 

diversity; Chapter three presents a field study of the relationship between tree species 

diversity and disturbance frequency, while controlling for climate and local site conditions; 

Chapter four examines the causes of spatial and temporal variation of wildfire; and Chapter 

five focuses on diversity and stability relationship. 
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CHAPTER 2: DIVERSITY–DISTURBANCE RELATIONSHIP IN 

FOREST LANDSCAPES 

2.1 Abstract 

Despite decades of research, there is an intense debate about the consistency of the humped-

shaped pattern describing the relationship between diversity and disturbance as predicted by 

intermediate disturbance hypothesis (IDH). Previous meta-analyses have not explicitly 

considered interactive effects of disturbance frequency and intensity of disturbance on plant 

species diversity in terrestrial landscapes. Here we conducted meta-analyses to test the 

applicability of IDH by simultaneously examining the relationship between species richness, 

disturbance frequency (quantified as time since last disturbance as originally proposed) and 

intensity of disturbance in forest landscapes. The effects of disturbance frequency, intensity, 

and their interaction on species richness were evaluated using a mixed-effects model. 

We found that species richness peaks at intermediate frequency after both high and 

intermediate disturbance intensities, but the richness-frequency relationship differed between 

intensity classes.  

Our study highlights the need to measure multiple disturbance components that could help 

reconcile conflicting empirical results on the effect of disturbance on plant species diversity.  

2.2 Introduction 

The relationship between disturbance and plant species diversity has been studied for decades 

(Connell 1978, Huston 1979, Sousa 1984), but there is still a debate about the patterns of 

diversity and disturbance relationships (Mackey and Currie 2001, Svensson et al. 2012). A 

popular theory explaining the linkage between disturbance and diversity, the intermediate 
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disturbance hypothesis (IDH), predicts that low disturbance frequency, intensity, or extent 

(i.e., area disturbed) would enhance dominance of late-successional species, high disturbance 

frequency, intensity, or extent would favors early-successional species, whereas intermediate 

disturbance frequency, intensity, or extent would lead to co-existence of both late and early-

successional species, and thus promote overall high diversity (Connell 1978). 

Nonetheless, there is still no general empirical consensus in support of IDH. For 

example, Mackey and Currie (2001) used a vote counting method and found that of 116 

species richness-, 53 Shannon's index-, and 28 evenness-disturbance relationships published 

between 1985 and 1996, only 16, 19, and 11% of relationships supported IDH. However, 

performing a meta-analysis of 28 studies focusing on IDH analyses, Svensson et al. (2012) 

reported that the relationship between species richness and disturbance showed a hump-

shaped pattern, supporting the IDH. 

Multiple disturbance components (i.e., disturbance frequency, intensity or extent) 

operate interactively and could account for differences in diversity response to disturbance in 

terrestrial landscapes (Moloney and Simon 1996, Paine et al. 1998, Shea et al. 2004). For 

example, it has been theorized that the coexistence of two species peaks at low, intermediate 

or intensity of disturbance depending on disturbance frequency (Miller et al. 2011).Previous 

meta-analyses and empirical studies of diversity-disturbance relationships (DDRs) reveal that 

considering only one component of disturbance, most commonly disturbance frequency, has 

led to conflicting results, general confusion regarding DDRs (Mackey and Currie 2001, 

Mayor et al. 2012, Svensson et al. 2012). A potential cause for this discrepancy is that the 

responses of diversity to disturbance frequency differ with disturbance intensity. Here, we 

conducted meta-analyses to test the IDH for the relationship between species richness and 
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disturbance frequency and intensity. We also examined whether the relationship between 

species richness and disturbance frequency may be dependent on the type of disturbance such 

as fire vs. logging.  

2.3 Materials and methods 

2.3.1 Definition of terms 

We used species richness as a measure of diversity, defined as the number of overstory tree 

species within a forest stand. We defined disturbance as any event that  killed individuals 

within a stand (Sousa 1984). Disturbance frequency was measured as time since last 

disturbance (age in years), assuming that all stands originated from the last stand-replacing 

disturbance (Clark et al. 2003, Brown and Gurevitch 2004, Zhang et al. 2014). We considered 

two levels of disturbance intensity; high disturbance intensity (i.e., > 60˗100% stand basal 

destroyed) and intermediate intensity (i.e., up to 60% stand basal area destroyed (Schweitzer 

and Dey 2011, Taylor and Chen 2011, Edwards and Laurance 2013).  

2.3.2 Data collection and selection criteria  

We compiled a database of studies that reported on overstory tree species richness and 

gradients of disturbance. Our literature search covered a broad range of studies that tested the 

IDH and reported species richness. We included studies published from 1950 to 2013 

catalogued in ISI Web of Knowledge, Google Scholar, Forest Science Database, and 

Biological Abstracts. The first topic keywords were always intermediate disturbance and 

diversity. The next keywords were forests, plants, or a combination of forests and plants to 

search within studies from those initially selected from the search results obtained from the 

first keywords. Shannon's index and species evenness were not considered in the final meta-
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analyses as only11 studies were found providing insufficient data to perform meaningful 

analyses. 

Studies selected for analyses satisfied four conditions: (1) measured overstory tree 

species (i.e., trees having ≥ 10 cm diameter at breast height, dbh); (2) involved forest biomes; 

(3) examined both disturbance frequency and intensity; and (4) provided information on mean 

richness, standard deviation and sample size. Disturbance frequency was quantified as time 

since last disturbance as originally defined by Connell (1978). Disturbance intensity was 

classified as high (stand replacing) and intermediate based on the descriptions from original 

studies. A total of 41 studies that satisfied the criteria were retrieved for tropical and 

temperate biomes (Supplementary Table S2.1). However, we found no studies involving 

boreal forests that satisfied the selection criteria. Note that studies on understory layers were 

excluded from our search because DDRs differ among understory and overstory layers 

(Zhang et al. 2014). Two studies including all trees ≥ 5 cm in DBH were included in our 

dataset. Analysis with or without these two studies did not alter qualitative results, so they 

were included in our final analysis to avoid loss of information. 

2.3.3 Data analysis 

Most measures of effect size (ES) require a control to determine response ratio 

(Hedges et al. 1999), but here we introduce a new measure of effect size based only on 

multiple independent observations. We calculated the ES of disturbance on species richness 

as:  
U

D
 =ES

i

ij

 ij
    (1) 

where Dij (i =1, 2.....41; j = 1, 2.....ni) is the mean richness of the j
th 

observation in the i
th 

study 

and Ui is the grand mean of all observations within each study. By using this calculation of 
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ES, we were able to include a larger number of studies than if other metrics, such as 

Shannon’s index or evenness had been used. The corresponding sampling variance (sij
2
) and 

sample size (nij)
 
for the ES were derived from the original studies. Each ESij was then 

weighted by the inverse of sij
2
/nij in subsequent analyses.  

We checked publication bias by performing regression tests of asymmetry and found 

no publication bias in the data. We developed a mixed effects, multiple linear regression 

model for richness in which we evaluated the effects of disturbance frequency, intensity, and 

their interaction on ES (Hall et al. 2012). The response variables were the Eij. The full model 

included all the predictors including a quadratic term for disturbance frequency in a mixed-

effects model with study as a random factor. To achieve the most parsimonious model, we 

used Akaike Information Criterion (AIC) to choose among all alternative models as subsets of 

the full model. We considered the model to be the most parsimonious when it's AIC was 

smallest. The regression coefficients for the fitted mixed-effects model were considered 

significant at α = 0.05. As recommended (Mittelbach et al. 2001, Chase and Leibold 2002), 

the significance of quadratic relationship was further confirmed with a Mitchell-Olds and 

Shaw (1987) test. We performed analysis in package metafor 1.6 (Viechtbauer 2010) in R 

3.1.0 (R Development Core Team 2014) as well as linear mixed effect models by R package 

lme4 (Bates et al. 2013), and both analyses produced the same results. We consequently 

reported the results from linear mixed effect models.  

2.3.4 Assessing possible problems with methodology 

A variety of disturbance types, such as selective logging, stand-replacing fire, clearcutting, 

windthrow, and hurricanes were included in the dataset. Wildfire and logging disturbances 

have different effects on tree species diversity (Taylor et al. 2013) as some tree species may 
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respond differently to wildfire and logging (Ilisson and Chen 2009). Consequently, we 

conducted separate analyses for studies involving logging and wildfire. Disturbance by 

logging consisted of 23 studies with 91 observations and wildfire were 15 studies with 51 

observations. Unfortunately, fewer than 13 studies were found involving all remaining 

disturbances, so no meaningful analyses could be performed on these studies. Species 

diversity could be influenced by variation in sampling plot sizes because the number of 

species increases with plot size (Rosenzweig 1995). Thus, we tested the association between 

weighted ES and plot size by using Kendall's Tau correlation. The Kendall's correlation 

showed no significant relationship between the ES and the plot sizes (P = 0.7), indicating that 

differences in the plot sizes, which ranged from 0.1 ha to 1.5 ha, had negligible effect on ES. 

2.4 Results 

We found an overall significant quadratic relationship between effect size and disturbance 

frequency (Table 2.1; Fig. 2.1), indicating that species richness increased initially with time 

since disturbance, but declined in old forests. With high and intermediate disturbance 

intensity analyzed separately, effect size peaked at intermediate disturbance frequency after 

both high and intermediate disturbances. However, the magnitude of the estimate maximum 

richness and the age at which this maximum occurred was lower for intermediate than for 

high disturbance intensity (Fig. 2.1), as well as weaker significance of the quadratic term for 

intermediate disturbance intensity (Table 2.1).  

Table 2.1 Relationships between effect size and disturbance frequency (measured as years 

since disturbance) overall (n = 175) and following high intensity of disturbance (n = 68), and 

intermediate intensity of disturbance (n = 107) across tropical and temperate biomes.  

Model  Predictor Estimate 

Standard 

error P-value 
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Overall relationship  Intercept 0.64060 0.06897 <0.001 

 

Frequency 0.01182 0.00259 <0.001 

 

Frequency^2 -0.00004 <0.00001 <0.001 

High intensity of 

disturbance Intercept 0.53670 0.09427 <0.001 

 

Frequency 0.01428 0.00163 <0.001 

 

Frequency^2 -0.00004 <0.00001 <0.001 

Intermediate intensity of 

disturbance 

Intercept 0.5814 0.09768 <0.001 

Frequency 0.01707 0.00587 0.005 

 Frequency^2 -0.00010 0.00005 0.048 
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Fig. 2.1 Relationships between effect size and disturbance frequency (measured as time since 

disturbance in years) overall (n = 175) and following high intensity of disturbance (n = 68), 

and intermediate intensity of disturbance (n = 107) across tropical and temperate biomes. 

Fitted models are presented in Table 2.1.  

 

When data were analyzed by disturbance types (fire or logging), the full model with 

disturbance intensity and frequency exhibited differing levels of significance of predictors 
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(Table 2.2). By AIC, we found that the most parsimonious models were the ones without a 

frequency term as a predictor, indicating that the full models (Table 2.2) were over-fitted. The 

effect size on average was smaller after intermediate intensity fire than high intensity fire 

(Fig. 2.2a). Similarly, the effect size was smaller after intermediate intensity logging than 

high intensity logging. However, the effects of disturbance intensity resulted partially from 

different disturbance frequencies associated with disturbance intensities, i.e., higher ranges of 

frequencies associated with high intensities (Figs. 2.2b and 2.2d).  

 

Table 2.2 The effects of disturbance intensity and frequency on effect size for disturbance by 

fire (n = 58) and by logging (n = 91) in tropical and temperate biomes.  

Model Source Sum of square F P 

Disturbance by fire Intensity 0.377 11.549 0.001 

 Frequency 0.302 9.245 0.004 

 Frequency^2 0.269 8.233 0.006 

 Frequency×Intensity 0.310 9.490 0.003 

 Intensity×Frequency^2 0.272 8.340 0.006 

Disturbance by logging Intensity 0.677 6.039 0.016 

 Frequency 0.334 2.983 0.088 

 Frequency^2 0.462 4.121 0.045 

 Frequency×Intensity 0.410 3.660 0.059 

 Intensity×Frequency^2 0.494 4.410 0.039 
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Fig. 2.2 Relationship between effect size, disturbance intensity and disturbance frequency 

following fire (n =58) and logging (n =91). (a) The effect of intermediate intensity vs. high 

intensity fire. (b) The response of effect size to disturbance frequency following fire. (c) The 

effect of intermediate intensity vs. high intensity logging. (d) The response of effect size to 

disturbance frequency following logging.  

 

2.5 Discussion 

Our meta-analysis has demonstrated a quadratic relationship between species richness and 

disturbance frequency following high intensity of disturbance. We also found a quadratic 

relationship between species richness and disturbance frequency following intermediate 

intensity of disturbance with the decline of species richness occurring sooner than following 

high intensity of disturbance. The original prediction of the IDH is that plant species diversity 

peaks at an intermediate level of disturbance (Connell 1978), but it does not consider how 

interactions among components of disturbance can influence the shape of DDRs. Our work 

builds upon the IDH, showing that the responses of species richness to disturbance frequency 
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are dependent on disturbance intensity. Theoretical (Miller et al. 2011, Miller et al. 2012) and 

experimental research have also reported interactive effects between disturbance frequency 

and intensity on species diversity (Collins et al. 2001, Hall et al. 2012), but ours is the first 

study that provides empirical support for the theoretical predictions. The interactive effects 

between components of disturbance on species diversity has also been noted in a narrative 

review (Shea et al. 2004). While a recent review (Svensson et al. 2012) supports the IDH 

(Connell 1978), Mackey and Currie (2001) questioned the general validity of the IDH, 

identifying that the lack of support for the IDH is likely attributed to an insufficient range of 

disturbance frequency. We provide a different perspective on DDRs by simultaneously 

considering disturbance frequency and intensity and demonstrate that species richness peaked 

at intermediate disturbance frequency following both high and intermediate intensity 

disturbance, but the maximum richness and the age or frequency at which it occurred differed 

between intensity classes. The empirical evidence from our work provides a unique insight 

into how disturbance components can interactively influence the shape of DDRs and help 

reconcile conflicting empirical results on the effect of disturbance on species diversity 

summarised by Mackey and Currie (2001).  

 We found that the relationship between species richness and disturbance frequency 

with intermediate intensity of disturbance showed a humped-shaped pattern of diversity, as 

suggested by Miller (1982). We speculate that colonisation and competitive exclusion could 

be the primary mechanisms for the pattern of diversity. For example, at the mid successional 

stage, intermediate disturbance intensity in forest ecosystems, which may selectively remove 

size-classes or specific species, may decrease species diversity (Cooke and Roland 2007, 

Clark and Covey 2012). Our data, analyzed separately by fire and logging origins, confirm 
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that species diversity decreases following intermediate intensity fire and logging without 

sufficient time for recovery. Given sufficient time for recovery, the decrease in species 

diversity after intermediate disturbance may be offset by colonisation from seed sources of 

new or the resident late successional species, or by vegetative reproduction, regeneration from 

seedbanks, or advanced regeneration of the late successional species. Longer-term monitoring 

will be needed to fully understand the recovery process following intermediate disturbance 

intensity.  

Tree species diversity may respond differently to disturbance types (Taylor et al. 

2013), another potential source of the debate regarding the IDH  (Bongers et al. 2009, 

Kershaw and Mallik 2013). The different responses to disturbance frequency between 

wildfire and logging could be attributed to the fact that logging, in particular selective 

logging, leaves behind advance regeneration of trees, whereas stand-replacing wildfire kills 

trees non-selectively (Attiwill 1994, Ilisson and Chen 2009). However, the limited number of 

existing studies has precluded us from reaching a firm conclusion on how disturbance origins 

such fire vs. logging can alter the response of species diversity to disturbance frequency. The 

choice of diversity measure, and the influenced of unmeasured factors such as stand 

productivity could also influence the shape of DDRs (Kondoh 2001, Svensson et al. 2012, 

Zhang et al. 2014), but they are beyond the scope of this study. Research into the influence of 

the components of diversity and stand productivity on DDRs would further resolve the debate 

over the validity of the IDH. 

A global decrease in species diversity is having negative impacts on ecosystem 

function (Vitousek et al. 1997, Barnosky et al. 2011). A possible resolution to the concerns 

about global biodiversity loss is that forest management strategies can utilize the concept of 
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IDH, by manipulating disturbance frequency and intensity of applied disturbances to 

maximise diversity in managed forests. Management strategies incorporating the concept of 

IDH could be applied extensively (Keddy 2005) because selective logging after major fire 

disturbance is a common forestry practice worldwide, especially in tropical forest (Edwards 

and Laurance 2013).  

2.6 Conclusion 

Overall, we found that multiple disturbance components act interactively to influence 

the shape of DDRs of overstory tree species, providing a deeper understanding of the IDH. 

Nonetheless, several other factors are also likely to affect the shape of DDRs, such as species 

diversity of understory plants (Zhang et al. 2014), and understanding these effects would 

further enhance our understanding of the IDH. Future studies should design large scale 

experiments to investigate patterns of plant species diversity and the possible underlying 

mechanisms driving those patterns. Specifically, multiple disturbance components deserve 

considerable research attention to provide broad assessment of the effects of disturbance on 

plant species diversity in forest landscapes.  
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CHAPTER 3: TREE SPECIES RICHNESS DECREASES WHILE 

SPECIES EVENNESS INCREASES WITH DISTURBANCE 

FREQUENCY IN A NATURAL BOREAL FOREST LANDSCAPE 

3.1 Abstract 

Understanding species diversity and disturbance relationships is important for biodiversity 

conservation in disturbance-driven boreal forests. Species richness and evenness may respond 

differently with stand development following fire. Furthermore, few studies have 

simultaneously accounted for the influences of climate and local site conditions on species 

diversity. Using forest inventory data, we examined the relationships between species 

richness, Shannon's index, evenness, and time since last stand-replacing fire (TSF) in a large 

landscape of disturbance-driven boreal forest. TSF has negative effect on species richness and 

Shannon's index, and a positive effect on species evenness. Path analysis revealed that the 

environmental variables affect richness and Shannon's index only through their effects on 

TSF while affecting evenness directly as well as through their effects on TSF. Our results 

demonstrate that species richness and Shannon’s index decrease while species evenness 

increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance 

frequency, local site conditions, and climate simultaneously influence tree species diversity 

through complex direct and indirect effects in the studied boreal forest.  

3.2 Introduction 

The relationships between disturbance and plant species diversity have been studied for 

decades, since Connell (1978) proposed the intermediate disturbance hypothesis (IDH), 

which predicts plant species diversity to peak at intermediate levels of disturbance 
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frequencies, intensities and extents (i.e., area disturbed). However, the patterns of diversity 

and disturbance relationships and the possible mechanisms driving those patterns remain the 

subject of debate (Mackey and Currie 2001, Shea et al. 2004, Svensson et al. 2012). For 

example, Mackey and Currie (2001) reviewed 116 species richness-, 53 Shannon`s index-, 

and 28 evenness-disturbance relationships in studies published from 1985 through 1996, and 

found support for the IDH in only 16% of richness, 19% of Shannon`s index, and 11% of 

evenness relationships, respectively. Theoretical research has even concluded that the IDH 

should be abandoned because the three proposed mechanisms that support IDH are logically 

invalid (Fox 2013). However, recent field studies continue to provide evidence of support for 

the IDH in tropical (Bongers et al. 2009) and boreal forests (Mayor et al. 2012). Patterns of 

diversity and disturbance relationships are more frequently reported to be positively or 

negatively linear than the IDH predicted hump-shaped relationship (Mackey and Currie 

2001). The negative linear relationship is consistent with initial floristic composition 

hypothesis, which states that all species occur immediately after disturbance and temporal 

changes in diversity and succession are driven by local extinction of species from overstory 

vegetation through differential rates of growth, competition and longevity (Egler 1954).  

There are several reasons for the different outcomes in the testing of the IDH. Firstly, 

the range of disturbance frequency and intensity may influence the outcomes. For example, if 

only the range from high to intermediate disturbance frequencies are considered in the IDH, a 

positive diversity and disturbance relationship would be expected. The positive relationship, 

however, would be inappropriate in rejecting the IDH (Mackey and Currie 2001). Secondly, 

the relationships between different components of diversity and disturbance may differ 

(Mackey and Currie 2001, Zhang et al. 2014). Despite the crucial importance of 
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understanding the role of species evenness in ecosystem function (Hillebrand et al. 2008, 

Zhang et al. 2012), substantially fewer studies have examined species evenness-disturbance 

relationships in natural systems, and mechanisms responsible for species presence and 

absence and their relative abundance may differ with forest stand development (Chen et al. 

2009, Chen and Taylor 2012). Lastly, diversity is strongly influenced by climatic factors 

(Francis and Currie 2003) and local site conditions (Huston 1993, Zhang et al. 2014). Failing 

to consider the influences of climatic factors and local site conditions may also contribute to 

the outcomes of testing the IDH.  

Some of the disparities in disturbance—diversity relationships (DDR) may be 

resolved by considering the multiple interacting mechanisms that influence plant coexistence 

in natural forests (Shea et al. 2004, Grace et al. 2007). Stand-replacing fire disturbance is 

widespread, particularly in the boreal forest (Bowman et al. 2009). Time since fire (TSF) 

plays an important role in influencing plant coexistence, succession and/or other ecosystem 

processes (Johnson 1996, Grandpré et al. 2000, Clark et al. 2003, Wardle et al. 2008). Fire 

regimes in boreal forest vary spatially due to local site conditions, such as soil drainage, 

which imposes differential fuel moisture levels among locations, and thus moderate the 

spread of incidence fire (Larsen 1997, Cyr et al. 2007, Mansuy et al. 2010). Fire regimes are 

also influenced by climate such as changes in mean annual temperature and percipitaiton 

(Parisien et al. 2011). Given the importance of multiple ecological interactions (Grace et al. 

2007), testing the IDH requires untangling the multiple mechanisms that influence plant 

diversity. 

Here, we examined the relationships between species richness, Shannon's index, 

evenness and TSF in the central boreal forest, where stand-replacing fire is frequent (Senici et 
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al. 2010, Senici et al. 2013). We examined how each measure of diversity responded to TSF 

using boosted regression trees by simultaneously accounting for the effects of climate and 

local site conditions. We also explored the multiple relationships among tree species 

diversity, TSF, local site conditions, and mean annual temperature using structural equation 

models (SEMs). In the SEMs, we tested (1) the effects of temperature and local site 

conditions on TSF and (2) the effects of TSF, local site conditions and temperature on species 

richness, Shannon's index and evenness. Since most tree species can re-establish immediately 

following fire in the western and central boreal forest of North American (Gutsell and 

Johnson 2002, Chen et al. 2009, Ilisson and Chen 2009), we hypothesize species richness to 

decrease with TSF since local extinction may occur for early-successional, shade-intolerant 

species such as Pinus banksiana that are incapable of regenerating under canopy (Chen and 

Popadiouk 2002). We predict that Shannon's index will decrease with TSF, suggested by the 

theory of initial floristic composition (Egler 1954). We also hypothesize species evenness to 

increase with TSF because dominance of early-successional species tends to decrease with 

stand development (Bergeron 2000, Chen and Taylor 2012, Bergeron et al. 2014).  

3.3 Materials and methods 

3.3.1 Study area 

This study was located in Wabakimi Provincial Park in northwestern Ontario (Supplementary 

Fig. S1). The study area is a remote wilderness park with minimal road access, virtually no 

human activity, and the absence of commercial forest harvesting. Hence, the park provides an 

ideal landscape to test the effects of relatively natural fire frequency on species diversity. This 

park is the second largest in Ontario, covering a total area of 892,000 ha and situated within 

the boundaries of 50°00'N to 51°30'N and 90°30'W to 88°30'W. Mean annual temperature 
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and annual precipitation recorded, from 1971 to 2010, at the nearest climate station in 

Armstrong, were -1.3 ºC, and 700 mm, as suggested by (Environment Canada 2011). 

Elevation is between 328 to 462 m above sea level (Soil Landcapes of Canada Working 

Group 2010). Soils consist of sand, silt and clay types, and the predominate soil orders are 

Brunisol and Podzol (Soil Landcapes of Canada Working Group 2010). Common tree species 

within the park include: Pinus banksiana Lamb., Populus tremuloides Michx., Populus 

balsamifera (L.), Betula papyrifera March., Picea mariana (Mill) Britton, Picea glauca 

(Moench) Voss, Abies balsamea (L.) Mill., and tamarack (Larix laricina (Du Roi) K. Koch).  

3.3.2 Sampling strategy 

Stratified random sampling was employed to quantify the forest composition and productivity 

associated with diverse local site conditions and stand age classes based on interpreting aerial 

photographs, by the Ontario Ministry of Natural Resources. A total of 1018 sample plots were 

spatially interspersed across the park with a distance of at least 500 m between the closest 

sampled plots, in order to avoid the effects of spatial autocorrelation (Legendre and Legendre 

2012). For each plot, a transect of 200 m was laid, and prism sweeps were taken at ten points 

of 20 m apart using a wedge prism with a basal area factor of two. At every sampling point, 

living trees with diameter at breast (dbh, 1.3 m above root collar) ≥10 cm were tallied by tree 

species and used to determine the stand basal area and tree species composition (Avery and 

Burkhart 2002).  

3.3.3 Species diversity 

We considered diversity indices including tree species richness, Shannon's index, and species 

evenness. Species richness pertained to the number of species that were observed in each 
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sample plot. Shannon's index was calculated by utilizing the basal area proportions of the 

constituent species within each sample plot. We used the inverse of Simpson's dominance 

index as the measure of species evenness, which is considered to be independent of species 

richness and a preferred index over Shannon`s index (Smith and Wilson 1996). The evenness 

index was also determined using the basal area proportions of the constituent species.  

3.3.4 Explanatory variables  

To understand DDR, we assessed the effects of TSF, mean annual temperature, average 

annual precipitation and local site conditions on species richness, Shannon's index, and 

evenness. Disturbance frequency was measured as TSF (age in years) as originally proposed 

by Connell (1978). The TSF was determined by using either fire data from Ontario fire 

history maps, which document all fires ≥ 200 ha since 1921, or by coring trees. We used these 

fire records to initially determine TSF for fires that occurred since 1921. Because of potential 

inaccuracy of fire maps due to escaped patches, as well as the lack of records for fires < 200 

ha, field validation was conducted by coring the dominant trees to the pith at the dbh from 

three dominant trees (Bergeron 1991, Senici et al. 2010). In cases where there was a 

discrepancy in the TSF between the fire map and the ring counting, we used TSF estimated 

from the latter approach for analyses. For fires occurring before 1921, we used tree ages to 

determine TSF. In the field, tree species known to regenerate immediately post fire (Bergeron 

and Brisson 1990) were preferentially selected in the following order: Pinus banksiana, 

Populus tremuloides, Betula papyrifera, and Picea mariana (Chen and Taylor 2012). All 

acquired cores were returned to the laboratory where the rings were counted under a 

dissecting microscope until an identical count was obtained in triplicate. From the tree ring 

counts, TSF was determined by adding 7, 8, or 17 years when ring counts were from Pinus 
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banksiana, Populus sp. (or Betula papyrifera), or Picea mariana (Vasiliauskas and Chen 

2002). For stands dominated by shade tolerant species such as Picea glauca or Thuja 

occidentalis, it was assumed that the trees of shade intolerant species present at the sites did 

not regenerate immediately post-fire. In such cases, the age of the oldest tree was used 

regardless of the tree species as an approximation of the stand age (Senici et al. 2010). The 

mean stand age was 89 years (Supplementary Table S3.1). 

Soil drainage class (SDC), which is comparable to soil moisture regime and nutrient 

regime classification (Chen et al. 2002), was used to represent local site conditions. SDC 

represents a composite measure of overall site quality, which is assessed from soil texture, 

soil thickness, and topographic position, soil permeability, depth of water table, and organic 

layer depth. SDC was determined on site using soil pits to the parent material, or 120 cm 

deep. SDC was ranked from 0 to 9, which represent dry, moderately fresh, fresh, very fresh, 

moderately moist, moist, very moist, moderately wet, wet, and very wet soil, respectively. 

To determine the effects of temperature and precipitation on species diversity, we 

derived long-term (1921-2010) climate estimates from BioSIM R: produced in Quebec, 

Canada (https://cfs.nrcan.gc.ca/projects/133), which generates scale-free climate data based 

on latitude, longitude, and elevation (Hogg 1997). The climate estimates were used to 

calculate mean annual temperature (MAT) and mean annual precipitation (MAP).  

3.3.5 Statistical analysis  

We developed individual models for measures of diversity through the use of TSF, SDC, 

MAT, and MAP as predictors. We employed generalized linear model and boosted regression 

trees (BRT) to examine the effects of these predictors on diversity indices. Both modelling 

https://cfs.nrcan.gc.ca/projects/133
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approaches yield similar results. For simplicity, we reported the results from the generalized 

linear models. 

We also constructed separate SEM models for diversity indices. SEM possesses a 

unique strength for analyzing complex relationships, in that the same variable may be treated 

as a predictor and as a response variable (Grace et al. 2007, Grace et al. 2010). Goodness-of-

fit for the model was determined from the maximum likelihood χ
2
 test, and the model was 

judged as having a good fit if P > 0.05, which indicates that the model is consistent with the 

data (Rosseel 2012). The chi-square test can be influenced by sample size, therefore, we also 

reported the comparative fit index (CFI) which is least affected by sample size (Bentler and 

Bonett 1980, Bentler 1990, Rosseel 2012). In a preliminary model, we included MAP as a 

predictor in SEMs; however, the model did not yield a good fit. Accordingly, as 

recommended (Grace et al. 2007, Grace et al. 2010), we modified SEMs to include the effects 

of MAT and SDC, on TSF, and TSF, MAT and SDC on diversity, with or without the 

quadratic term for SDC. We treated SDC as a regular numeric variable in SEMs since SDC is 

an ordinal variable and we were interested whether species diversity could be quadratically 

related to SDC (Rosseel 2012, Zhang and Chen 2015).We determined the magnitude of direct 

effect from SEM coefficients. We also estimated the total effects of a given exogenous 

variable on different components of diversity by adding standardized direct and indirect 

effects. The statistical significance for the SEM coefficients were evaluated using a bootstrap 

method, as bootstrapped estimates do not assume any particular distribution and thus, are 

often suitable for non-normal data such as the number of species (Bollen and Stine 1992). 
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3.4 Results 

The final generalized linear models explained the 18, 21, and 21% variation of tree species 

richness, Shannon's index, and evenness, respectively (Table 3.1). TSF and SDC were the 

strongest predictors, whereas MAT and MAP were less important in all models (Table 3.1). 

Species richness decreased with TSF, increased with MAT and MAP, and was higher in 

intermediate SDC (Fig. 3.1). Species evenness, however, increased with TSF, decreased with 

MAT and MAP, and was higher in very moist and moderately wet sites than other SDCs. 

Shannon's index had similar relationships to the predictors as species richness (Fig. 3.1).  

 

Table 3.1. Percent variance explained by time since fire (TSF, years), soil drainage class 

(SDC), mean annual temperature (ºC), and mean annual precipitation (mm) on tree species 

richness, Shannon’s index, and species evenness (n = 1018). Percent variance explained by 

each individual predictor is calculated as the sum of squares associated with the predictor 

divided by the total sum of squares for each model. The reported models including TSF, 

SDC, MAT, and MAP as predictors are better than the models with a quadratic term of TSF 

as an additional predictor based on Akaike information criterion; for all diversity indices, the 

quadratic term of TSF was statistically insignificant (P > 0.05). 

Diversity index TSF SDC MAT MAP Error distribution R
2
 

Richness  11.13 5.53 0.01 0.86 Poisson 0.18 

Shannon's index 11.72 8.52 0.07 0.78 Gaussian 0.21 

Evenness 12.42 7.77 0.11 1.01 Gaussian 0.21 
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Fig. 3.1 Bivariate relationships between diversity indices and time since fire, soil drainage 

class, mean annual temperature and mean annual precipitation. (a) Species richness. (b) 

Shannon's index. (c) Species evenness. Soil drainage classes from A to J represent dry, 

moderately fresh, very fresh, moderately moist, moist, very moist, moderately wet, wet, and 

very wet soil, respectively. Values in the figures associated with soil drainage classes are 

mean + 1 s.e.m. Dots and lines in other figures are observed values and fitted linear 

regressions.  

 

The SEM models with the quadratic term of SDC yielded an inadequate fit of data to 

the model for species richness (P < 0.001, df = 1, CFI = 0.931), Shannon's index (P < 0.001, 

df = 1, CFI = 0.938) and evenness (P < 0.001, df = 1, CFI = 0.938). As recommended (Grace 
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et al. 2010), these models were modified by eliminating non-significant direct effects of the 

quadratic term of SDC. The modified model yielded adequate fit of data for species richness 

(P > 0.05, CFI = 1), Shannon's index (P > 0.05, CFI = 1) and evenness (P > 0.05, CFI = 1). 

There was a significantly negative direct effect of TSF on richness and Shannon's index, but a 

positive effect on evenness (Fig. 3.2). MAT had a negative direct effect and SDC had a 

positive direct effect on TSF in the richness model (Fig. 3.2). SDC had a negative indirect 

influence on species richness through TSF (Table 3.2).  

 

 

Fig. 3.2 Results of structural equation modelling (SEM) relating tree species diversity to 

disturbance frequency. Solid lines represent significant (P < 0.05) SEM coefficients and 

dashed lines represent insignificant ones (P ≥ 0.05). (a) Species richness. (b) Shannon's index 

(H). (c) Species evenness. TSF, MAT and SDC represent time since last fire (years), mean 

annual temperature (°C) and soil drainage class, respectively.  
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Table 3.2 The direct, indirect, and total standardized effects on tree species richness, 

Shannon's index and evenness based on structural equation models (SEM). The total effect 

was estimated by adding standardized direct and indirect effects.  

SEM model Predictor 

Pathway to each 

component of diversity Effect P-value 

Model for species richness 

in Fig. 3a Time since fire Direct -0.3 <0.001 

  

Indirect effect - - 

  

Total effect -0.3 <0.001 

 

Soil drainage 

class Direct -0.05 0.103 

  

Indirect effect through time 

since fire -0.1 <0.001 

  

Total effect -0.15 <0.001 

 

Mean annual 

temperature Direct 0.01 0.887 

  

Indirect effect through time 

since fire 0.11 <0.001 

  

Total effect 0.12 <0.001 

Model for Shannon's index 

in Fig. 3b Time since fire Direct -0.27 <0.001 

  

Indirect effect - - 

  

Total effect -0.27 

 

 

Soil drainage 

class Direct -0.19 <0.001 

  

Indirect effect through time 

since fire -0.1 <0.001 

  

Total effect -0.29 <0.001 

 

Mean annual 

temperature Direct 0.05 0.121 

  

Indirect effect through time 

since fire 0.12 <0.001 

  

Total effect 0.17 <0.001 

Model for species evenness 

in Fig. 3c Time since fire Direct 0.26 <0.001 

  

Indirect effect - - 

  

Total effect 0.26 <0.001 

 

Soil drainage 

class Direct 0.23 <0.001 

  

Indirect effect through time 

since fire 0.09 <0.001  

  

Total effect 0.32 <0.001 

 

Mean annual 

temperature Direct -0.05 0.114 

  

Indirect effect through time -0.11 <0.001 
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since fire 

  

Total effect -0.16 <0.001 

 

3.5 Discussion 

Despite a wide range of stand ages included in our study, our analysis demonstrated that 

species richness of overstory trees decreased with time since fire in the studied boreal forest. 

Based on the prediction of IDH, a recently disturbed forest stand would consist of early 

successional species, and shade tolerant species would grow into the stand, and eventually 

outlast early-successional species. This succession process would result in young stands 

consisting of early-successional species, old stands consisting of late-successional species, 

and intermediate aged stands having both early- and late-successional species-diversity peaks 

in intermediate aged stands. However, in boreal forests, most tree species can re-establish 

immediately following fire (Gutsell and Johnson 2002). The decrease of species richness over 

time is attributable to age-dependent local extinction of short-lived early successional, shade-

intolerant species (Chen and Popadiouk 2002, Luo and Chen 2011).  

By contrast, other empirical studies conducted in forests with long stand-replacing 

disturbance intervals indicate that species richness and/or Shannon’s index peaks at 

intermediate stand age (Zhu et al. 2009, Zhang et al. 2014). These contrasting findings appear 

to be attributable to long-term ecosystem-specific adaptive responses to disturbance 

frequencies: In fire-frequent western and central boreal forests of North America (Weir et al. 

2000, Senici et al. 2010), evolutionary selection has resulted in a pool of tree species that can 

establish immediately after fire (Johnson 1996, Gutsell and Johnson 2002), whereas in forests 

with long stand-replacing disturbance intervals, as originally hypothesized by (Connell 1978), 

late-successional species establish after local site environments have been modified by early-
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successional species (Zhu et al. 2009, Zhang et al. 2014). Furthermore, disturbance and 

species richness relationships are dependent on whether understorey species are considered. 

For example, Gosper et al. (2013) found a ‘U’-shaped diversity – time since fire relationship 

with species from all forest strata considered because the species of subdominant functional 

types are suppressed under intensive resource competition during self-thinning stage of stand 

development.  

We found a positive linear evenness-TSF relationship. This result is consistent with 

our hypothesis. The increase in species evenness with stand age is attributable to that the 

dominance of early-successional species, i.e., Pinus banksiana, Populus spp., decreases with 

stand development (Taylor and Chen 2011, Chen and Taylor 2012, Bergeron et al. 2014).  

Previous studies have demonstrated that tree species diversity is strongly influenced 

by disturbance frequency alone, advancing our understanding of DDRs (Brown and 

Gurevitch 2004, Gosper et al. 2013), which could be explained by controlling for a single 

factor, rather than multiple factors. However, in a large landscape other drivers (e.g., local site 

conditions) contribute to plant species diversity, and thus, we partitioned the effect of stand 

age from SDC, MAT and MAP, and found that TSF and SDC are equally important factors in 

regulating tree species diversity, which is coherent with previous work (Zhang et al. 2014). 

SDC contributes significantly to tree species diversity (Huston 1993, Roberts and Gilliam 

1995, Zhang et al. 2014), such that topographic soil moisture (Moeslund et al. 2013) and soil 

nutrient supply (Huston 1993, Cornwell and Grubb 2003) may directly control plant species 

diversity patterns. Previous studies have shown that climate exerts a potent influence on 

DDRs, particularly at regional and global levels (Francis and Currie 2003, Mayor et al. 2012); 

however, we observed that through TSF, SDC indirectly influenced tree species richness and 
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evenness. These findings reflect the important role of SDC in influencing plant coexistence, 

and therefore deserve attention in DDR (Roberts and Gilliam 1995, Zhang et al. 2014).  

Theoretical studies often acknowledge that plant species coexistence is not 

attributable to a single mechanism, but rather, are the outcome of complex interacting 

mechanisms (Shea et al. 2004, Agrawal et al. 2007, Hughes et al. 2007), albeit empirical 

evidence is lacking. Thus, we have built on theoretical work by providing empirical insights 

on DDR, in which we explored multiple mechanisms underlying tree species diversity 

patterns using SEM. The SEM results demonstrated that in natural forest ecosystem subject to 

complex causal factors, several processes act simultaneously to influence plant species 

diversity. For example, we found a strong direct effect of SDC and MAT on TSF, while 

through TSF, MAT indirectly influenced species richness and evenness. These results provide 

a deeper understanding of DDR and provide some resolution to the disputes surrounding the 

IDH. 

3.6 Conclusion 

In conclusion, our results demonstrated that tree species richness decreases, while 

species evenness increases with time since fire in a boreal forest landscape. These results are 

attributed to the establishment of most trees species soon after fire and the decline of 

dominance of early-successional, shade-intolerant species with stand development. Moreover, 

our results demonstrated complex causal links between climate, local site condition, time 

since fire and measures of species diversity in the boreal forest. 
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CHAPTER 4: SPATIAL AND TEMPORAL VARIATION OF WILDFIRE 

IN A NATURAL BOREAL FOREST LANDSCAPE  

 

4.1 Abstract 

Previous studies often show that climate strongly correlate with fire regimes, but cause-and-

effect relationships are rarely considered, because it is difficult to separate contribution of 

climate to fire regimes from human activities. Furthermore, the relative contribution of 

climate to fire regimes compared with local environmental factors is poorly understood. Our 

objective was to test how mean annual temperature (MAT), mean annual precipitation 

(MAP), drought (measured as climate moisture index), and local environmental factors 

(including soil drainage and firebreaks) may have affected spatial variation in fire frequency. 

We evaluated the spatial and temporal variation in fire frequency across a large natural boreal 

forest (about 892,000 ha), where human impact on forest wildfire is relatively little because 

of absence of timber harvesting and no other human activities with minimal road access. Fire 

history was reconstructed using fire records and dendroecological survey. We tested the 

effects of numerous local environmental factors (e.g., soil drainage and firebreaks), MAT, 

MAP, CMI on spatial variation of fire frequency, using survival analyses. We conducted 

Akaike information criterion (AIC) analyses to determine best fit model, selecting the model 

with smallest AIC as most parsimonious model. We found that model with MAT and MAP as 

predictors were the most parsimonious model. Fire frequency increased with MAT and 

decreased with MAP. Overall, our results suggest that across very large forest landscape 

future changes in climate could lead to increase wildfire disturbance. 
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4.2 Introduction 

Wildfire is one of the most common natural disturbance processes in forest ecosystems 

worldwide (Bowman et al. 2009, Wang et al. 2014). In the boreal forest, fire regimes are 

predicted to be substantially altered by global climate change (Kasischke and Turetsky 2006, 

Jolly et al. 2015). Given these potential changes in fire regimes, determination of direct causal 

factors controlling wildfire at multiple spatial and temporal scale is important because of its 

profound consequences on forest ecosystem functions (Cyr et al. 2007, Bond-Lamberty et al. 

2014). For example, increase fire occurrence can lead to significant release of carbon through 

direct combustion of biomass, affecting global carbon cycle (Amiro et al. 2001, Bond-

Lamberty et al. 2007). 

 Previous fire-history studies in North America have reported higher fire frequency in 

western (Weir et al. 2000) than the eastern boreal forest (Bergeron et al. 2001), likely 

explained by the contribution of temperature and precipitation variation in the respective 

regions (Krawchuk et al. 2009). Even though fire frequency has increased temporally in 

North America (Westerling et al. 2006, Flannigan et al. 2009), temporal changes in humid air 

masses circulation and precipitation have historically (i.e., since 1800s period of the little ice 

age) correlated with a reduction in fire frequency in some forests in the western (Larsen 1996, 

Weir et al. 2000) and eastern boreal forests of Canada (Bergeron et al. 2004). Within a 

particular region, fire frequency is influenced by variation in local environmental factors, 

including proximity to water bodies, soil drainage, elevation, latitude and longitude, and 

surficial deposits (Cyr et al. 2007, Mansuy et al. 2010). Fire regimes also vary significantly 

due to effects of human activities such as timber harvesting and fire suppression in the 1900s 

(Weir et al. 2000, Taylor and Scholl 2012).  
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In contrast to local environmental factors, spatial variation in climate is a broad-scale 

factor controlling fire regimes (Drever et al. 2008, Fauria and Johnson 2008, Parisien et al. 

2011). In particular, drought frequency, changes in mean annual temperature (MAT) and 

precipitation (MAP) are the most critical drivers of fire regimes in  forest ecosystems (Amiro 

et al. 2004, Girardin et al. 2006, Parisien et al. 2014). For instance, Westerling et al. (2006) 

found a strong positive association between fire frequency and mean summer temperature in 

western US. In the Canadian boreal forest, strong effects of the local environmental factors on 

fire regime have been observed, together with the decreasing fire frequency in eastern 

(Bergeron et al. 2004) and an increasing fire frequency in northwestern Ontario (Senici et al. 

2010). Most of the studies often suggest that the changes in frequency is attributed to climate, 

but empirical evidence is lacking (Senici et al. 2010). Thus, more research into the relative 

contribution of climate and the local environmental factors to fire regimes is needed, as well 

as investigation on climate-fire relationship to improve our understanding on how changes in 

climate may have affected fire regimes differently among forest ecosystems in North 

America.  

Although strong correlation between climate (i.e., spring and summer temperature) 

and wildfire has been recognized (Westerling et al. 2006), cause-and-effect relationship were 

overlooked. The lack of causality could be attributed to the challenge of partitioning climate 

control on fire regimes from other anthropogenic factors, which typically affect fire regimes 

in disturbance-driven boreal forest of North America (Cyr et al. 2007, Senici et al. 2010). 

Here, our objective was to understand how numerous local environmental factors (e. g., soil 

drainage, elevation, latitude and longitude) and spatial variation in mean annual drought 

(quantified as climate moisture index), mean annual temperature and mean annual 
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precipitation affect fire frequency (i.e., broad-scale climate vs. local site factors). We also 

tested if fire frequency has change temporally, and how the temporal changes in fire 

frequency relates to temporal changes in climate. Our study was conducted in a large natural 

boreal forest landscape, i.e., Wabakimi Provincial Park, where land-use histories have 

relatively little effect on fire regimes because of the absence of timber harvesting activities, 

combined with very limited road access. We expect a trend of temporal increase in fire 

frequency similar to observations in central boreal region of Ontario, due to increase dryness 

in the region which strongly correlate with occurrence of large forest fires (Wotton et al. 

2003, Beverly and Martell 2005). 

4.3 Materials and methods 

4.3.1 Study area 

We conducted this study in Wabakimi Provincial Park in northwestern Ontario. The park 

covers an area of 892,000 ha and is located within the boundaries of 50°00'N to 51°30'N and 

90°30'W to 88°30'W. Mean annual temperature is -1.3 ºC and mean annual precipitation is 

700 mm, suggested by Environment Canada (2011). The park is a well known remote 

wilderness park with no exploitation of timber and was used by aboriginal people for fishing 

and animal hunting purposes until 1983 when the park was created (Beverly 1998, Peter et al. 

1998). There are many water bodies which provide relatively cool summer and warm winter 

temperatures due to moderating lake effect of Lake Nipigon or Whitewater Lake (Figure 1). 

Elevation varies between 328 to 462 m above sea level (Soil Landscapes of Canada Working 

Group 2010). Sand, silt and clay are common in the park and the dominant soil orders are 

Brunisols and Podzols (Soil Landscapes of Canada Working Group 2010). The Brunisols are 

associated with glaciofluvial deposits which have rapid drainage, such as excessive to very 
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well-drained classes. But the Podzols are mostly located on morainal deposits with moderate 

drainage class (Soil Landscapes of Canada Working Group 2010). The forest is characterized 

by the following tree species: Pinus banksiana Lamb., Populus tremuloides Michx., Populus 

balsamifera (L.), Betula papyrifera March., Picea mariana (Mill) Britton, Picea glauca 

(Moench) Voss, Abies balsamea (L.) Mill., and tamarack (Larix laricina (Du Roi) K. Koch). 

4.3.2 Fire history 

Fire history of the park was reconstructed by either utilizing existing fire data from Ontario 

fire history maps or by dendrochronological analyses. The fire data consist of fire dates, 

location and spatial extent of large fires (≥ 200 ha) since 1921. But, we only obtained fire 

records from 1964 to 2011 because of uncertainties associated with fire detection in the 

isolated and remote areas. Fires occurring in the period before 1964 were assessed by coring 

trees to determine the amount of time elapsed since the most recent fire.  

The fire history reconstruction started with constructing a preliminary TSF map for 

the park in ArcGIS (ESRI, Redland, Canada); by using the fire dates from the available fire 

records. A systematic plan was use to sample the park after constructing the TSF map. The 

park was divided into hexagons of 40 km
2 

each, resulting in a total of 292 hexagon sampling 

units of gapless network throughout the park (Figure 1). A total of 112 (38%) hexagons were 

assigned TSF based on known fire records for the period from 1964 to 2011. For hexagons 

burnt by multiples fires, the TSF was weighted based on the proportional areas burned by fire 

and the terrestrial land area within each hexagon.  
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4.3.3 Field sampling 

A total of 180 remaining hexagons that required field sampling, we used tree ages to 

determine TSF. A transect of 200 m was laid and coring of dominant trees to the pith at the 

dbh (diameter at breast height, 1.3 m above root collar) was done from three dominant trees 

(Bergeron 1991, Senici et al. 2010). Canopy tree species of pioneers were given preference in 

selection based on their ability to regenerate immediately post fire (Bergeron and Brisson 

1990). These trees were selected according to the following sequence: Pinus banksiana, 

Populus tremuloides, Betula papyrifera, and Picea mariana (Chen and Taylor 2012). The 

increment cores were all returned to the laboratory, placed under a dissecting microscope, and 

tree rings counted until an identical count was obtained in triplicate. From the tree ring 

counting, TSF was determined by adding 7, 8, and 17 years to Pinus banksiana, Populus sp. 

(or Betula papyrifera), and Picea mariana, respectively, allowing us to correct for 

underestimation of tree ages (Vasiliauskas and Chen 2002). In forest stand dominated by 

Picea glauca, Thuja occidentalis or Abies Balsamea, we assumed that trees of shade 

intolerant species present at the sites did not regenerate immediately post fire. In such cases, 

TSF for a hexagon corresponded to the age of the oldest tree sampled, which is considered as  

minimum age (i.e., censored observation) because the exact date of the last fire is unknown 

(Senici et al. 2010).  

4.3.4 Explanatory variables  

Spatially, fire frequency is influenced by soil texture, surficial deposits (coded as dummy 

variables), aspects, elevation, soil drainage, latitude and longitude (in decimal degrees) and 

distance (in meters) to fire breaks. The surficial deposits, aspects, elevation, soil drainage 

class were adapted from Soil and Landscape of Canada (Soil Landscapes of Canada Working 
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Group 2010), which comprise of all the key soils and their characteristics based on series of 

GIS coverage for the land of Canada. The soil types included clayey, sandy or loamy types, 

evaluated following protocol used in Ontario's forest inventories (Ontario Ministry of Natural 

Resources 2015). The distance to fire breaks was calculated as the mean distance to a water 

body, considered as any nearby river or lake from a randomly generated points during field 

sampling in each hexagon, measured in all cardinal directions and their intermediates 

represented on a 1:250000 topographic map (Cyr et al. 2007, Senici et al. 2010). To examine 

effect of aspect on fire frequency, we converted aspect into x and y coordinates. Each aspect 

class, north, north-east, east and south was positioned on a trigonometric circle of radius 1 

and then centered at the origin where the angle is equivalent to azimuth of the dominant 

aspect of the slope, so that the horizontal axis corresponds to the west-east axis, whereas the 

vertical axis was represented by the south-north axis. The following coordinates represented 

each aspect class: north (0, 1), south (0, -1), east (1, 0), west (-1, 0), north-east (0.7071, 

0.7071), south-east (0.7071, -0.7071), north-west (-0.7071, 0.7071), south-west (-0.7071, -

0.7071) where sin (45
0
) = cos (45

0
).  

To understand climate-fire relationship, we derived long-term (1921-2011) climate 

estimates for the park, from BioSIM produced in Quebec, Canada, providing scale-free 

climate estimates that were derived based on latitude, longitude and elevation of plot within 

each hexagon (https://cfs.nrcan.gc.ca/projects/133). The climate estimates were used to 

calculate annual temperature (MAT), mean annual precipitation (MAP) and climate moisture 

index (CMI; mean annual precipitation - annual potential evapotranspiration) (Hogg 1997).  

 

https://cfs.nrcan.gc.ca/projects/133
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4.3.5 Statistical analyses 

Fire frequency and fire cycle was estimated using several methods. The fire frequency (burn 

rate) means annual percent area burned and it is inversely related to fire cycle. The fire cycle 

is defined as the time required to burn a given area equal in size to that area. During 1964-

2011 when fire records were available, fire cycle was estimated by dividing the total 

terrestrial land area (i.e., 768,000 ha) by the average annual area burnt in that time period 

(Heinselman 1973). The burn rate method of calculating fire cycle precludes us from 

estimating fire cycle prior to 1964. Thus, fire cycles for different time periods (including 

1883-2011) were calculated to examine if fire cycle has remained constant over time, using 

survival analysis. Based on the survival analysis, we developed Cox regression model and 

then extracted cumulative fire hazards (i.e. the accumulation of hazard over time) with coxph 

and base hazard functions (Tsiatis 1978). The hazard function means instantaneous 

probability of fire frequency and is statistically equivalent to the fire frequency. From the 

accumulation of hazard over time, we estimated fire cycle by averaging all the hazard over a 

specified time period, so that the inverse of the hazard represented the fire cycle (Johnson and 

Gutsell 1994). 

Survival analyses has unique strength for analyzing censored data (Allison 2011). The effect 

of environmental variables on fire frequency was tested by developing a suite of models, 

using Cox regression which is estimated by partial likelihood (Cox 1972). Cox regression 

analysis do not make any assumption that burning increases with stand age because baseline 

hazard of burning is derived from empirical TSF distribution (Allison 2011). We developed a 

Cox regression model, with climate and local site factors included in same model. We also 

developed 14 alternative models as subsets of the full model. We conducted Akaike 
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information criterion (AIC) analyses to evaluate model performance, selecting the model with 

smallest AIC as the most parsimonious model. From the best model, we tested the 

significance of each predictor with the base hazard function. That is, hazard ratios from the  

selected model was estimated as the percentage change in the hazard for every one-unit 

increase in a predictor (Allison 2011). To understand climate control on temporal changes in 

fire frequency, TSF was converted into decades, and the TSF for each decade determined. A 

cumulative function analyses with cumulative TSF as dependent variable, and TSF for each 

decade as a predictor was developed, so that we can estimate predicted values of cumulative 

TSF for entire park. This analysis was done using generalized linear model. The long-term 

climate data for MAT for the same period as the decadal fire data was used to examine the 

climate-fire relationship. We tested the association between cumulative TSF and MAT, using 

Kendall's Tau correlation. Statistical analysis was performed in R with survival package, 

using coxph and basehaze functions from the package (R Development Core Team 2015).  

4.4 Results 

The total area burnt from 1964 to 2011 was 105,515 ha, corresponding to about 12% of the 

landscape burnt. Fire burned an average of 2245 ± 644 ha (mean + 1 SD) per year, 

representing 0.29% of fires annually. The 1990s was the most active fire decade, whereas the 

1960s was the least active decade (Fig 4.1). There was a fire cycle of 342 years for the 1964-

2011 time period (Table 4.1). 
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Fig. 4.1 Location of Wabakimi Provincial Park in the boreal forest of Ontario, Canada. 

Table 4.1 Fire cycle calculation for Wabakimi Provincial Park in Ontario, Canada. 

Method Time period investigated Fire cycle (years) 

Burning rate 1964-2011 342 

Inverse hazard 1964-2011 184 (178 - 190)
1
 

 

1883-2011 65(64 - 65) 
1
95 % confidence interval in parentheses 

 

By AIC, we found that the most parsimonious model was the one with MAT and MAP as 

predictors (Table 4.2). Fire frequency increase with spatial variation in MAT (Table 4.3). 

Spatially, fire frequency was influenced significantly by MAT and MAP, but MAT had a 

stronger effect than MAP (Table 4.3 and 4.4). The cumulative time since fire distribution in 

relation to TSF reveals that fire cycle has increased since the 1883-2011 period (Fig. 4.2). 

When TSF was converted into decades, cumulative time since fire distribution in relation to 

TSF showed that fire cycle has increased in the park (Fig.4.3). Further analyses of data 

reveals strong negative association between predicted cumulative time since fire distribution 

and temporal changes in MAT (r = -0.36, P < 0.001). 
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Table 4.2 Survival analyses results comparing different models 

Model 

AIC 

score 

Mat 2025 

Mat+Map 2016 

Mat+Map+Cmi 2018 

Mat+Map+Cmi+Distw 2020 

Mat+Map+Cmi+Distw+Elev 2022 

Mat+Map+Cmi+Distw+Elev+Lat 2022 

Mat+Map+Cmi+Distw+Elev+Lat+Long 2024 

Mat+Map+Cmi+Distw+Elev+Lat+Long+Dmg 2023 

Mat+Map+Cmi+Distw+Elev+Lat+Long+Dmg+Dme 2023 

Mat+Map+Cmi+Distw+Elev+Lat+Long+Dmg+Dme+Doutw 2025 

Mat+Map+Cmi+Distw+Elev+Lat+Long+Dmg+Dme+Doutw+Db 2026 

Mat+Map+Cmi+Distw+Elev+Lat+Long+Dmg+Dme+Doutw+Db+St 2034 

Mat+Map+Cmi+Distw+Elev+Lat+Long+Dmg+Dme+Doutw+Db+St+Dra 2036 

Mat+Map+Cmi+Distw+Elev+Lat+Long+Dmg+Dme+Doutw+Db+St+Dra+Xas 2038 

Mat+Map+Cmi+Distw+Elev+Lat+Long+Dmg+Dme+Doutw+Db+St+Dra+Xas+Yas 2037 

Mat, mean annual temperature (
o
C); Map, mean annual precipitation (mm); Cmi, climate 

moisture index (cm yr
-1

); Distw, distance to waterbodies (m); Elev, elevation (m); Lat, 

latitude (decimal degrees); long, longitude (decimal degrees); Dmg, ground moraine, Dme, 

end moraine; Doutw, outwash deposit; Db, beach and aerolian deposit; St, soil texture; Dra; 

soil drainage class, Xas, west-east axis; Yas, north-south axis. Detail description for each 

predictor is provided in Table S4.1. 

 

Table 4.3 Results from Cox proportional hazard model (n = 292) showing the effects of mean 

annual temperature (MAT) and precipitation (MAP) on fire frequency. The model with mean 

annual temperature and precipitation as predictors was better than other models based on 

Akaike information criterion (AIC). 

  

Final model 

Predictors Fire frequency ratio Prob > χ2 AIC 

MAT 2.711 <0.001 2016.14 

MAP 0.896 

  The χ2 value is likelihood ratio test. As recommended by Allison (1995), the magnitude of 

effect associated with each predictor is calculated as: 100 (fire frequency ratio - 1) %. Hence, 

fire frequency ratio for MAT shows an increase in fire frequency with MAT.  

 

Table 4.4 Results for partitioning of variance for each predictor  

Predictors Sum of square F P 

MAT 21080 15.26 <0.001 

MAP 17954 12.99 <0.001 
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Fig. 4.2 Time since fire distribution for Wabakimi Provincial Park in northwestern Ontario, 

Canada. 
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Fig. 4.3 Time since fire distribution for fires grouped into decades in Wabakimi Provincial 

Park, Canada. 

 

4.5 Discussion 

Our findings indicate that across a large natural boreal forest, spatial variation in climate 

drives fire frequency. The result indicates that MAT is one of the most important predictors 

of fire frequency, which is consistent with predictions for increase temperature-driven fire 

frequency among different locations in the North American boreal forest (Wotton et al. 2010, 

Parisien et al. 2011). Previous studies showed that fire frequency varies spatially due to soil 



43 

orders (Senici et al. 2010) and elevation (Cyr et al. 2007), but spatial variation in climate has 

often been overlooked. In contrast, we simultaneously examined spatial variation in climate 

and several environmental factors, and found that fire frequency is controlled primarily by 

broad-scale climatic factors. The result showed that temporal variation in wildfire frequency 

positively correlated with MAT. Strong positive correlation between wildfire frequency and 

mean spring or summer temperature has also been reported by Westerling et al. (2006). In 

spite of progress on climate-fire relationship, cause-and-effect relationship was not 

considered, because the study which was conducted in fragmented forest makes it difficult to 

separate contribution of climate to large fires from human activities. However, we studied a 

natural forest landscape with relatively little human influences; as such we have demonstrated 

that fire frequency is caused by MAT.  

MAP is another important factor controlling fire frequency in the boreal forest. The 

result supports previous study by Whitman et al. (2015), who showed that forest fire regimes 

are strongly dependent on summer precipitation. There is growing recognition that fire 

regimes can vary significantly across the boreal forest of North America because of 

differences in the amount and frequency of precipitation (Amiro et al. 2004, Girardin et al. 

2004). For instance, considerable change in forest area burn in British Columbia has been 

attributed to increases in amount of precipitation (Girardin and Wotton 2009, Meyn et al. 

2013). 

Our study revealed that fire cycle increased significantly over the 1883-2011 time 

period. The temporal increase in fire cycle is in agreement with Bergeron et al. (2004) who 

showed that fire cycle increased temporally in Quebec. However, fire cycle has decreased 

temporally in other forest of northwestern Ontario (Senici et al. 2010), but the causes of that 
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change are unclear. On the other hand, the temporal pattern of increasing fire cycle in our 

study is explained by MAT. For example, our result showed that the decade of 1990 

experienced the greatest area burned in the park. In northwestern Minnesota with similar 

climate, fire activity also increased markedly during the 1900s, primarily due to exceptionally 

warm and dry conditions (Clark 1988).  

Our result showed differences in fire cycle calculations between the burn rate and 

survival analysis method for the same time period, as reported in previous study. We 

speculate that the discrepancy in fire cycle is likely due to fire occurrences which were 

missed when creating fire maps for the park, thereby leading to a longer fire cycle using the 

burn rate method. 

Because of the strong linkage between temporal variation in climate and fire regime, 

changes in climate can be a major challenge for forest  management (Girardin et al. 2013). 

For instance, any extreme temperature experienced in the boreal forest region could increase 

the risk of wildfire (Beverly and Martell 2005, Jolly et al. 2015), unless it’s compensated for 

by increase in precipitation. The longer fire cycle we observed can also lead to a potential 

shift towards older forest stands, affecting tree growth and mortality (Bond-Lamberty et al. 

2014). As fire cycle is lengthening in the boreal forest of North America, future outbreaks of 

forest insects and expansion in range could render the boreal forest of North America  

vulnerable to extensive insect damage (Pureswaran et al. 2015).  

4.6 Conclusion 

We have demonstrated that fire cycle increased temporally in the natural boreal forest we 

studied. The increase in fire cycle was driven primarily by changes in mean annual 

temperature and precipitation. Additionally, spatial variation in climate was a primary driver 
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of fire frequency. Within the same central boreal region, the different temporal patterns of fire 

frequency between our natural forest and others fragmented by human activities suggest that 

control on fire regimes is dependent on forest type, with climate effects on fire regimes more 

important for the landscape we studied than the influences of local environmental factors. 
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CHAPTER 5: TEMPORAL STABILITY OF BOREAL FOREST STANDS 

ARE NOT INFLUENCED BY TREE SPECIES DIVERSITY  

5.1 Abstract 

Disturbances are common in boreal forest, in particular non-stand-replacing insect outbreaks, 

which may affect stability of ecosystem functions in response to such disturbances. Empirical 

evidence in manipulated grassland experiments often shows a positive relationship between 

species diversity and ecosystem stability. However, it remains unclear whether the effect of 

diversity in grassland is applicable to natural forest ecosystems where the influences of 

critical factors such as stand development, species composition and soil resource availability 

on diversity-stability relationship are often overlooked. We test if the variability (measured as 

coefficient of variation, CV) in stand level basal area in response to the insect outbreaks is 

influenced by tree species richness, evenness, stand age, species-specific compositions (e.g., 

Populus sp. or Betula papyrifera Betula, and Picea glauca or Abies balsamea basal area 

proportions) and soil moisture regime. We hypothesized that increase species diversity 

(measured as species richness or evenness) decreases variability in stand level basal area, 

because many randomly and independently varying species contribute to total abundance of 

plants, such that adding more species result in more averaging of their fluctuations and hence 

less variation in total abundance, as suggested by theory of statistical averaging. 

Alternatively, we expect that increase species richness has no effect, but rather species 

composition and changes in abundance of particular species affect the variance. We used 

repeated measurements plots data to assess the variation in stand level basal area in responses 

to spruce budworm (SBW) and forest tent caterpillar (FTC) outbreaks, which selectively kill 
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trees in the boreal forest of Canada. Models were developed separately for SBW and FTC, 

using generalized linear model. We performed a multiple regression model, with tree species 

richness, evenness, stand age and soil moisture regime considered as predictors in the same 

model. We also developed alternative models by adding a quadratic term for stand age to the 

predictors.We conducted Akaike information criterion (AIC) analyses, selecting the model 

with smallest AIC as most parsimonious model. We found that tree species richness had no 

effect on the CV for stand level basal in responses neither to SBW nor FTC. In both models 

for SBW and FTC, cubic model performed better than other models. Variability in stand basal 

area decreased initially, i.e., up to about 100 years, increased sharply in older stands, and then 

slightly increased in the oldest stands. The most important factors influencing variation in 

stand level basal area in response to SBW were composition of Abies balsamea and the stand 

age. Our results suggest that in disturbance-driven forests, temporal stability of ecosystem is 

driven by stand development and species composition, depending on the disturbance agent. 

5.2 Introduction 

Understanding the relationship between species diversity and ecosystem stability has been the 

subject of much debate over the past several decades (MacArthur 1955, May 1973, Tilman et 

al. 2006, Isbell et al. 2015). However, there is now growing consensus that increasing species 

richness leads to greater temporal stability of ecosystem functions in grasslands (Tilman et al. 

2006, Gross et al. 2014). Similarly, Isbell et al. (2015) who combined data from 46 

experiments in grasslands showed strong evidence in support of positive diversity-stability 

relationships (DSR).  

Nonetheless, whether the diversity effects reported in manipulated grassland 

experiment is applicable to natural forest ecosystems remains unclear (Grossiord et al. 2014). 
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One reason is that plant species in herb-dominated grasslands change rapidly in relative 

abundance among years, whereas shift in community composition occur much slower in 

forest typically associated with long-lived trees; such differences may contribute to the 

outcomes of testing the DSR (Huston 1997). Furthermore, abundance of a particular species  

strongly influence ecosystems functions rather than species richness (Winfree et al. 2015). 

Failing to consider the influence of plant species abundances may contribute to the disparities 

in the DSR. Even though ecosystem stability is only improved by diversity when evenness is 

high (Hillebrand et al. 2008), species evenness-stability relationship is often overlooked and 

thus limit understanding on DSR in previous studies. Thirdly, forest ecosystem stability is 

strongly influenced by stand development, but substantially fewer studies consider stand age 

effect on DSR. For example, Dovciak and Halpern (2010) found a positive linear effect of 

stand age on DSR for forest stands up to forty years. However, the stand stage effect on DSR 

over longer period (i.e., in stands > 40 years old) is unknown. Such information is important 

because during stand development the abundance of slow-growing coniferous species 

increases with stand age as fast-growing deciduous species decreases (Chen and Taylor 

2012), which potentially influences DSR. Another challenge about DSR is that soil resource 

availability is rarely considered (Huston 1997). Some studies have partly resolved the 

problem by directly controlling soil moisture levels, suggesting that soil moisture levels 

contributes significantly to DSR (Xu et al. 2014). Understanding the effect of soil resource 

availability on DSR is of critical importance because of a wide range of variation in soil 

resource availability, which could influence functions in natural ecosystems (Zhang and Chen 

2015).  
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Understanding DSR in forest ecosystems is crucial because societies around the world utilize 

forest for animal hunting, industrial wood production and other ecosystem functions (e.g., 

global carbon cycle). Because of these benefits, we urgently need to improve our 

understanding concerning how forest ecosystem may respond to potential changes in 

disturbance regimes, such as increasing incidence of insect outbreaks associated with global 

climate change (Percy et al. 2002, Boyd et al. 2013, Gray 2013). Insect outbreaks have 

tremendous influences on forest ecosystems, affecting about three times greater the area of 

fire in the North American boreal forest (https://www.ontario.ca/page/annual-report-forest-

management-2012-2013). Spruce budworm and forest tent caterpillar outbreaks are the 

significant insect pests, which selectively kill Abies balsamea and Populus sp., respectively. 

Potential increases in such insect outbreaks and range expansion could have profound 

consequences on tree mortality and major losses of merchantable timber (Hennigar and 

MacLean 2010).  

Temporal stability in plant species abundances, measured as coefficient of variation, 

(CV), decreases with increasing species diversity (Tilman 1996, DeClerck et al. 2006). A 

major theory explaining why multiple species are stable is the statistical averaging or 

portfolio effect, which states that if abundances of different species (each varies randomly and 

independently through time) contribute to total abundance of plants, then adding more species 

together leads to more averaging of their fluctuations and hence less variation in total 

abundance (Doak et al. 1998, Tilman et al. 1998). The stability of forest ecosystem functions 

in response to non-stand-replacing disturbance is important because majority of disturbances 

in global forests are non-stand replacing (Edwards and Laurance 2013), especially in 

Canada's boreal forest (Natural Resource Canada 2014). Our objective is to test whether CV 

https://www.ontario.ca/page/annual-report-forest-management-2012-2013
https://www.ontario.ca/page/annual-report-forest-management-2012-2013
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of stand basal area relates to tree species richness, evenness, stand development, species 

composition and soil resource availability. We hypothesize that CV of forest stand basal area 

will decrease with increase species richness, suggested the theory of statistical averaging 

(Doak et al. 1998). Alternative hypothesis is that species richness has no effect on CV of 

stand basal area, but rather species composition and changes in abundance of particular 

species which are most vulnerable to insect outbreaks (i.e., Populus sp.  Betula papyrifera, 

Abies balsamea) drives the ecosystem function (Winfree et al. 2015). We expect that increase 

in tree species evenness will decrease CV of forest stand basal area because different species 

contribute evenly to stand basal area. We predict that the shape of the relationship between 

CV for stand basal area and stand stage might be nonlinear if forest succession is ≥ 40 years, 

because fast growing shade intolerant species will be replaced by slow-growing late 

successional species (Chen and Taylor 2012). We also hypothesize that CV of stand basal 

area will decrease on moist and wet sites than drier sites because of higher mortality of 

coniferous trees such as Abies balsamea on drier sites than moist and wet sites (Dupont et al. 

1991). 

5.3 Materials and methods 

5.3.1 Study area  

The study was conducted in northern Ontario, where annual mean temperature is about 1.3
 o
C 

and annual mean precipitation is roughly 831 mm (Environment Canada 2011). Dominant 

tree species in the area include: Pinus banksiana Lamb., Populus tremuloides Michx., Betula 

papyrifera March., Picea mariana (Mill) Britton, Picea glauca (Moench) Voss, Abies 

balsamea (L.) Mill. The predominant natural disturbance in the area include wildfire, spruce 

budworm (Choristoneura fumiferana), forest tent caterpillar (Malacosoma disstria), and 
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windthrow, which typically affect most boreal forests in Canada (Bergeron et al. 2001, 

Fleming et al. 2002, Bouchard et al. 2006). 

5.3.2 Sampling strategy 

Stratified random sampling was utilized to select a wide range of stand compositions, ages, 

and site conditions based on Forest Resource Inventory by Ontario Ministry of Natural 

Resources (OMNR). We also acquired insect infestation maps for Ontario from Forest Insect 

and Disease Survey conducted using aerial photos taken annually since 1941 by Canadian 

Forest Service. Our study focused on sampling stands affected only by non-stand-replacing 

insect disturbance, which selectively kill trees in boreal forests (Maclean 1984, Cooke and 

Roland 2007). Disturbance by SBW and FTC were described as non-stand-replacing 

disturbance where up to 60 % stand basal area destroyed (Schweitzer and Dey 2011, Taylor 

and Chen 2011). As reported by Chen and Taylor (2012), each sampled stand was re-

measured by combining ground survey and aerial photo interpretation measurement, yielding 

a total of 78 repeated measurements plots for the insect outbreak disturbances. Each sampled 

stand for our dataset was re-measured multiple times, ranging from three to six times (Chen 

and Taylor 2012). For each of the sampled stand, the re-measurement time interval varied 

among plots, over 14 to about 20 years. This time interval involves both the ground survey 

and the aerial photo interpretation measurement. During field data collection, a 200 m 

transect was laid in each sampled stand and 10 variable-radius point samples taken at 20 m 

apart using wedge prism with basal area factor two. Then, all living tree stems ≥10 cm at 

breast height were tallied by tree species and used to determine tree species composition 

based on species-specific stand basal area proportions (Avery and Burkhart 2002). In each 

200 m transect, three trees were selected, with dbh, heights and ages measured. The heights 
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and ages of the tree samples were used to determine site index (Chen et al. 2002). Priority in 

sampling was given to pioneer tree species because of their ability to colonized immediately 

after fire (Bergeron and Brisson 1990). The sampling was prioritized according to these 

sequence; Pinus Banksiana, Populus tremuloides, Betula papyrifera, and Picea Mariana. 

Stand age was determined in the field by coring the tree samples to the pith at the dbh to 

extract one increment core from each of the sampled trees. 

Aerial photos were taken for the sample stands and interpreted by a qualified 

photogrammetry technician. To interpret each sampled stand on the photo, every effort was 

made to precisely locate the ground survey transect line on the photo. Stand composition from 

aerial photos were quantified from crown cover of individual species by using a rectangular 

plot of 2 ha (100×200 m) located on the transect line. The following factors such as site index 

derived from ground survey, crown closure from photo interpretation, stand age and the 

proportion of individual species were combined to determine stand basal area from the photo 

interpretation. 

5.3.3 Dependent and independent variables  

The dependent variable was the CV for stand basal area, a standardized variable which 

allowed us to compare plots having large differences in average basal area due to different 

census intervals (Tilman 1996, Morin et al. 2014). As described in Taylor et al. (2000), soil 

moisture regime (SMR) was used as indicator of soil resource availability. The SMR is 

considered as a composite variable which consist of several factors including soil texture, soil 

thickness, and depth of water table, topographic position, and soil permeability classification 

(Chen et al. 1998, Chen et al. 2002). SMR was determined on site involving soil pit 

excavations. SMR was ranked from 1 to 3, meaning dry, moist and wet sites.  
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Overstory tree species richness was determined from the number of species observed 

in each sample plot. Other indices of diversity such as species evenness (i.e., inverse of 

Simpson's dominance index) were determined using the basal area proportions of the 

constituent species. The evenness index is considered to be independent of species richness 

and a preferred index over Shannon`s index (Smith and Wilson 1996). Stand composition was 

determined by the percentage basal area of the constituent species including Populus sp., 

Betula papyrifera, Picea glauca and Abies balsamea.  

Tree ring counting was used to determine TSF (i.e., stand age) or by using fire date 

from Ontario fire history maps which provide record of all fires ≥ 200 ha since 1921. Using 

the fire date to determine TSF could potentially be inaccurate due to residual stands that 

escape fire and small fire < 200 ha. Field validation was thus performed for all sampled 

stands by coring the three tree samples to the pith at the dbh (diameter at breast height, 1.3 m 

above root collar). In the event where discrepancy occurs in TSF between fire date and the 

ring counting, the TSF from the ring counting was used for analyses. TSF for all stands 

originated before 1921 was determined from tree ring counts. All cores were sent back to the 

laboratory and the rings counted with hand held magnifier until the same count was obtained 

three times. The following corrections were made to tree ages from ring count by adding 7 

years to the ages at diameter at breast height (dbh) if stand was dominated by Populus sp. or 

Betula papyrifera, 8 years if dominated by Pinus Banksiana, 17 years if dominated by Picea 

Mariana or other shade tolerant species, based on empirical model developed specifically for 

our region (Vasiliauskas and Chen 2002).  
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5.3.4 Statistical analysis 

We tested the effects of species richness, evenness, stand age, stand composition, and SMR 

on the temporal stability, using GLM. We performed a multiple regression model including 

all variables, with richness and evenness considered in the same model. Gaussian distribution 

was assigned in the GLM (Zuur et al. 2009). We also developed alternative models by adding 

a quadratic term for stand age to the predictors. Further analyses of data included interaction 

terms in the model, but were removed in the final model because none was significant. Model 

performance was evaluated by conducting Akaike information criterion (AIC) analyses, 

selecting the model with smallest AIC as most parsimonious model. Because disturbance by 

SBW and FTC selectively kill Picea mariana and Populus tremuloides, models were 

developed separately for SBW and FTC insect outbreaks. Stand age is often related to species 

richness; thus, we assessed potential correlation among predictors, using Spearman's rho 

correlation. There was significant correlation between stand age and species richness (P < 

0.05). This problem can be resolved using different approaches. Firstly, we included all 

predictors in one model without assigning priorities. Secondly, we use residual and sequential 

regression by assigning priority to one predictor, and then modeling the effect of the other 

predictor on the residual (Graham 2003). Lastly, we reversed the priority in the second 

approach. There was no logical or theoretical basis for prioritizing one variable over the other, 

and thus included all important variables in our analysis, as in previous study (Chen and Luo 

2015). Assigning priority to stand age would marginalize richness effect, whereas stand age 

would be marginalized if we consider richness as a priority, thereby leading to spurious 

conclusions (Brown et al. 2011).  
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5.4 Results 

The final models for SBW and FTC explained 45 and 28% variation in CV of stand basal 

area, respectively (Table 5.1). The cubic model was better than quadratic one in the model for 

SBW (Supplementary Table S5.2). Species richness was unrelated to CV for stand basal area 

in all models (Fig. 5.1). Stand age and abundance of Abies balsamea significantly influence 

CV for stand basal area in response to SBW. Temporal stability of stand basal area increased 

initially, i.e., stands age up to about 100 years, and decreased in stand ages > 100 (Fig. 5.2). 

There was a positive linear relationship between CV for stand basal area and composition of 

Abies balsamea (Fig. 5.3). 
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Fig. 5.1. Effect of tree species richness on coefficient of variation (CV) for stand basal area in 

response to spruce budworm outbreaks in the boreal forest of Canada. The fitted line is linear 

(r
2 

= 0.01, p = 0.32). 

 

Table 5.1 Regression results for spruce budworm outbreak (n = 78) in the boreal forest of 

Ontario, Canada. 

 

Predictor Estimate P-value R
2
 AIC 

Intercept 69.700000 <0.001 0.45 549 

Richness -2.634000 0.372 

  Evenness -5.876000 0.803 
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Abies 

balsamea 0.483000 <0.001 

  Picea glauca 0.253600 0.305 

  Moist sites -6.723000 0.087 

  Wet sites 0.510700 0.947 

  Stand age -0.681700 0.027 

  Stand age^2 0.003479 0.047 

  Stand age^3 -0.000005 0.102 
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Fig. 5.2. Stand age effect on coefficient of variation (CV) for stand basal area in response to 

spruce budworm outbreaks in the boreal forest of Canada. The fitted line is in cubic form (r
2 

= 

0.08, p = 0.08). 

 

Stand composition (% Abies balsamea)

0 20 40 60 80 100

C
V

 o
f 

s
ta

n
d

 b
a

s
a

l 
a

re
a

0

20

40

60

80

100

 



57 

Fig. 5.3 Effects of composition of Abies balsamea on coefficient of variation (CV) for stand 

basal in response to disturbance by spruce budworm outbreak. The fitted line is linear (r
2
 = 

0.24, p < 0.001). 

 

In the model for FTC, the cubic model also performed better than other models (Table 

5.2; Supplementary Table S5.2). Temporal stability of stand basal area increased initially, i.e., 

stands age up to 100 years, decreased sharply in the older stands, i.e., stand age > 100, 

followed by a slight decrease in the oldest stands (Fig. 5.3). There was no significant effect of 

SMR on CV of stand basal area.  

 

Table 5.2 Results of regression models for disturbance by forest tent caterpillar (n = 78) in 

the boreal forest of Canada. 

Predictor Estimate Standard error P-value R
2
 AIC 

Intercept 99.760 22.940 <0.001 0.28 542 

Richness -5.170 3.857 0.185 

  Evenness 8.767 20.830 0.675 

  Populus spp. -0.115 0.097 0.241 

  Betula 

papyrifera 0.178 0.144 0.220 

  Stand age -1.630 0.543 0.004 

  Stand age^2 0.012 0.005 0.019 

  Stand age^3 0.000 0.000 0.059 
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Fig. 5.3. Effects of stand age on coefficient of variation (CV) of stand basal area for the 

disturbance by forest tent caterpillar in the boreal forest of Canada. The fitted line is in cubic 

form (r
2 

= 0.21, p < 0.001). 

 

5.5 Discussion 

We have shown that in forest ecosystem overstory tree species richness and species evenness 

are not the primary drivers of ecosystem stability, contrary to the prediction of statistical 

averaging (Doak et al. 1998). However, a study in grassland reported that species richness 

strongly stabilizes ecosystem stability (Isbell et al. 2015). Other empirical studies have also 

shown that temporal stability increased with species richness (Tilman 1996, Jucker et al. 

2014, Morin et al. 2014). The disparity in the results is because of failing to account for 

effects of critical drivers of ecosystem stability such as species composition and stand age, 

which can override species richness effect on ecosystem stability. The stabilizing effect of 

diversity on ecosystem stability as reported in grasslands is often based on the assumption 

that species composition is flexible among years, but slower compositional change over time 

in structurally complex forests could lead to differences in DSR between grasslands and 

forests. Our observation that DSR was not affected by tree species richness complement 

results by other studies who showed that species richness does not necessarily influence DSR 

in all forests (DeClerck et al. 2006, Grossiord et al. 2014). 

A major finding from our research is that composition of Abies balsamea strongly 

influences stability of stand basal area in response to SBW. Our result is consistent with 

previous studies that showed that ecosystem stability is dependent on how presence of plant 

life history traits responds to disturbance (Johnson et al. 1996, Tilman et al. 2006). For 

instance Abies balsamea often experience mortality more than Picea glauca during SBW 

outbreaks (Nealis and Regniere 2004), which explains why Abies balsamea increase in 
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percentage abundance leads to reduce stability of stand basal area. The positive linear 

relationship between CV for stand basal area and composition of Abies balsamea confirms 

that the life history traits are good predictors of ecosystem response to global changes 

including insect disturbance. 

We have demonstrated that stand age plays a critical role in influencing DSR, a 

consistent observation regardless of the type of insect outbreak. The quadratic relationship 

between CV for stand basal area and stand stage support our hypothesis. SBW outbreak 

selectively kills host-tree species such as Picea glauca. and Abies balsamea, reducing tree 

growth during insect outbreak while allowing non-host tree species (e.g., Populus sp.) 

abundances to increase following the outbreak (Nealis and Regniere 2004). Our result for 

FTC outbreak indicates a positive effect of stand age on DSR during the initial stand 

development. In contrast, a negative effect of stand age on DSR was found in older 

communities. This result could be attributed to significant increase in growth rate of early 

successional species in young stands (Caspersen and Pacala 2001, Rozendaal and Kobe 

2014). The trend in DSR for the older stands is probably due to selective killing of 

broadleaves (e.g. Betula sp.) by FTC (Cooke and Roland 2007), allowing dominance of 

competing shade-tolerant and slow-growing conifers (Moulinier et al. 2013), resulting in the 

decreased in stability of stand basal area in the older stands.  

The result for FTC outbreak also showed that stability of stand basal area decreased 

slightly in the oldest stands. We speculate that in the oldest stands, especially in the old 

growth stage of stand development, tree mortality usually intensifies due to ageing and insect 

outbreaks which takes time before eventually killing heavily defoliated broadleaf trees (Chen 

and Popadiouk 2002, Moulinier et al. 2013). As a result, small gaps develops in the forest 
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canopy which improves light availability that favors release and recruitment of advance 

regeneration of coniferous from subcanopy into the overstory canopy (Kneeshaw and 

Bergeron 1998, Moulinier et al. 2011), leading to a marginal decrease in temporal stability of 

stand level basal area in the oldest stands. 

Disturbance regimes are being modified by global climate change with expected 

changes in incidence of insect outbreaks (Percy et al. 2002), together with human domination 

of Earth's ecosystems lead to drastic changes with profound losses in biodiversity, potentially 

affecting services that human derive from ecosystems (Vitousek et al. 1997, Chapin et al. 

2000). The result for SBW is much needed for long-term forest management planning 

purposes due to ongoing range expansion and increases in SBW outbreaks in Canadian 

forests (Pureswaran et al. 2015). 

5.6 Conclusion 

In summary, our findings showed that temporal stability of stand level basal area was 

not directly related to overstory tree species diversity. Species composition and stand stage 

were the most important factors influencing variation in stand level basal area in response to 

SBW. Additionally, stand age influenced variation in stand level basal area in response to 

FTC. Our findings suggest that temporal stability of ecosystem functions in boreal forest is 

influenced by stand development and species composition depending on the type of insect 

outbreak. 
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CHAPTER 6: GENERAL CONCLUSION 

This study provides evidence that there is a strong interactive effect between 

frequency of disturbance and disturbance intensity, suggesting that the relationship between 

species richness and disturbance frequency depends on disturbance intensity. Tree species 

richness peaked at intermediate frequency of disturbance following both high and 

intermediate disturbance intensity. These findings indicate that the IDH is a universal 

hypothesis that can be applied as a predictive model for the protection and conservation of 

plant species diversity when disturbance frequency with intermediate intensity of disturbance 

is manipulated in forest management practices in tropical and temperate biomes.  

Nonetheless, the IDH was not supported in the natural boreal forest landscape, in that 

both positive and negative patterns of diversity were observed for overstory trees species 

following time since fire. Time since fire and local site conditions were rather the two 

greatest drivers of tree species diversity, implying that both are essential for maintaining 

biodiversity in the North American boreal forest. The result also revealed that through time 

since fire, local site conditions indirectly influenced tree species diversity. This evidence 

reflects the critical role of local site condition in influencing plant coexistence which cannot 

be overlooked in predictive models because forest managers are likely to deal with a wide 

range of site conditions, especially in the boreal forest which is associated with heterogeneous 

landscape. Although the analysis adequately explain patterns of diversity and disturbance 

relationships for tree species alone, it is likely that other plant types such as understory layer 

would respond differently. Therefore, future research into diversity patterns should focus on 

the understory layer.  
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The study highlighted that complex interacting mechanisms could drive patterns of 

diversity and disturbance relationships in the natural forest. For instance, local site conditions 

and mean annual temperature had strong direct effect on TSF, while through TSF; mean 

annual temperature indirectly influenced species richness and evenness. This result is useful 

for explaining why simplistic theories of species coexistence (e.g., IDH), seem to fail 

empirically, because multiple environmental factors often act simultaneously in maintaining 

plant species coexistence, especially in natural forest ecosystems.  

Furthermore, changes in mean annual temperature and precipitation were the two 

principal regulators of fire frequency in the studied boreal forest, despite controlling for 

several local environmental factors. Implying that climate control on fire regimes overrides 

effects of local site factors. Fire cycle increased substantially over the 1883-2011 time period, 

attributed to the influences of climatic factors in the large natural boreal forest.  

My research also revealed that in the boreal forest of North America, temporal 

stability of stand basal area was unaffected by tree species diversity. The composition of 

Abies balsamea strongly influenced temporal stability of stand basal area in response to 

SBW. As a result, future increase in basal area proportion of Abies balsamea would lead to 

extensive damage of forest stands during SBW outbreaks; therefore, these stands should be 

identified and selected for early preventative harvesting. 

Finally, temporal stability of stand basal area was strongly influenced by stand 

development in response to SBW and FTC outbreaks. The evidence also showed that stand 

age up to about 100 years generally provides greater ecosystem stability in response insect 

outbreaks than older forest stands. Therefore, the shift towards older forest stands from longer 

fire cycle poses threat to the boreal forest of North America during insect outbreaks, except 
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where younger forest stands predominate the landscape. During such outbreaks, management 

interventions should aim at selecting older stands for salvage logging to reduce the 

vulnerability of stands to the insect outbreaks, which could also serve as source of revenue 

generation for forest landowners. 
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APPENDIX I. SUPPLEMENTAL INFORMATION FOR CHAPTER 2 

Table S2.1 Original source of data used in the meta-analysis. 

Author Title Source 

Aweto 1981 

Secondary succession and soil fertility 

restoration in south-western Nigeria: I. 

succession Journal of Ecology 

Berry et al 

2008 

Impacts of selective logging on tree diversity 

across a rainforest landscape: the importance 

of spatial scale Landscape Ecology 

Brown and 

Gurevitch 

2004 

Long-term impacts of logging on forest 

diversity in Madagascar 

Proceedings of the 

National Academy of 

Sciences of the United 

States of America 

Capitanio 

and 

Carcailler 

2008 

Post-fire Mediterranean vegetation dynamics 

and diversity: a discussion of succession 

models 

Forest Ecology and 

Management 

Carreno-

Rocabado et 

al 2012 

Effects of disturbance intensity on species and 

functional diversity in a tropical forest Journal of Ecology 

Dickson 

2009 

Secondary diversity: ecological and spectral  

dimensions of secondary succession following 

smallholder cultivation in the southern 

Yucatan 

ProQuest and 

Information and 

Learning Company 

Ding et al 

2012 

Recovery of woody plant diversity in tropical 

rain forests in southern China after logging 

and shifting cultivation Biogical Conservation 

Dolanc et al 

2003 

The effects of silvicultural thinning on trees 

regenerating in strip clear-cuts in the Peruvian 

Amazon 

Forest Ecology and 

Management  

Ehrensperger 

et al 2013 

Fire impact on thewoody plant components of 

dry deciduous forest in Central 

Menabe,Madagascar 

Applied Vegetation 

Science 

Gemerden 

2003 

Recovery of conservation values in Central 

African rain forest after logging and shifting 

cultivation 

Biodiversity and 

Conservation 

Howorth and 

Pendry 2006 

Post-cultivation secondary succession in a 

venezuelan lower montane rain forest 

Biodiversity and 

Conservation 

Imai et al 

2012 

Effects of selective logging on tree species 

diversity and composition of Bornean tropical 

rain forests at different spatial scales Plant Ecology 

Ito 1997 

Diversity of forest tree species in Yanbaru, the 

northern part of Okinawa island Plant Ecology 

Jenkins and Composition and diversity of woody Forest Ecology and 
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Parker 1998 vegetation in silvicultural openings of southern 

Indiana forests 

Management  

Kapelle et al 

1995 

Changes in diversity along a successional 

gradient in a Costa Rican upper montane 

quercus forest 

Biodiversity and 

Conservation 

Kapelle et al 

1996 

Successional age and forest structure in a 

Costa Rican upper montane quercus forest 

Journal of Tropical 

Ecology 

Klanderud et 

al 2010 

Recovery of plant species richness and 

composition after slash-and-burn agriculture in 

a tropical rainforest in Madagascar 

Biodiversity and 

Conservation 

Makana and 

Thomas 

2006 

Impacts of selective logging and agricultural 

clearing on forest structure, floristic 

composition and diversity, and timber tree 

regeneration in the Ituri Forest, Democratic 

Republic of Congo 

Biodiversity and 

Conservation 

Mandle 2012 

Balancing biodiversity and human land use: 

effects of fire, grazing and harvest on plant 

individuals, populations and communities in 

the western Ghats, India 

ProQuest and 

Information and 

Learning Company 

Mo et al 

2011 

Traditional forest management has limited 

impact on plant diversity and composition in a 

tropical seasonal rainforest in SW China Biogical Conservation 

Pascarella et 

al 2000 

Short-term response of secondary forests to 

hurricane disturbance in Puerto Rico, USA Ecosystems 

Peet 1981 Forest vegetation of the Colorado front range  Vegetatio 

Rivera et al 

2000 

Forest recovery in abandoned agricultural 

lands in a Karst region of the Dominican 

Republic Plant Ecology 

Saldarriaga 

1988 

Long-term chronosequence of forest 

succession in the upper Rio Negro of 

Colombia and Venezuela Journal of Ecology 

Schnitzer 

and Carson 

2001  

Treefall gaps and the maintenance of species 

diversity in a tropical forest Ecology 

Shono et al 

2006 

Regeneration of native plant species in 

restored forests on degraded lands in 

Singapore 

Forest Ecology and 

Management  

Slik et al 

2002 

Effects of fire and selective logging on the tree 

species composition of lowland dipterocarp 

forest in east Kalimantan, Indonesia 

Biodiversity and 

Conservation 

Tang et al 

2013 

Plant diversity patterns in subtropical 

evergreen broad-leaved forests of Yunnan and 

Taiwan Ecological Research 

Toniato and 

Oliveira-

Filho 2004 

Variations in tree community composition and 

structure in a fragment of tropical semi 

deciduous forest in southeastern Brazil related 

Forest Ecology and 

Management  
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to different human disturbance histories 

Tyynela et al 

2003 

Indigenous livelihood systems in industrial 

tree-plantation areas in west Kalimantan, 

Indonesia: Economics and plant-species 

richness Agroforest Systems 

Uhl and 

Jordan 1984 

Succession and nutrient dynamics following 

forest cutting and burning in Amazonia Ecology 

Uhl et al. 

1988 

Abandoned pastures in eastern Amazonia. i. 

patterns of plant succession Journal of Ecology 

Uriate et al 

2004 

Effects of land use history on hurricane 

damage and recovery in a neotropical forest Plant Ecology 

Villela et al 

2005 

Effect of selective logging on forest structure 

and nutrient cycling in a seasonally dry 

Brazilian Atlantic forest 

Journal of 

Biogeography 

Wardle et al 

2008 

The response of plant diversity to ecosystem 

retrogression: evidence from contrasting long-

term chronosequences Oikos 

Weimin Xi 

2005 

Forest response to natural disturbance: 

changes in structure and diversity on a North 

Carolina piedmont forest in response to 

catastrophic wind events 

ProQuest and 

Information and 

Learning Company 

Whitfeld 

2011 

Phylogenetic diversity, functional traits, and 

tropical forest succession  

ProQuest and 

Information and 

Learning Company 

Woods 1989 

Effects of logging, drought, and fire on 

structure and composition of tropical forests in 

Sabah, Malaysia Biotropica 

Wu et al 

2013 

Early response of stand structure and species 

diversity to strip-clearcut in a subtropical 

evergreen broad-leaved forest in Okinawa 

Island, Japan 

Annals of Forest 

Science 

Zhang and 

Zang 2011 

Relationship between species richness of plant 

functional groups and landscape patterns in a 

tropical forest of Hainan Island, China 

Journal of Tropical 

Forest Science 

Zhu et al 

2009 

Changes in plant species diversity along a 

chronosequence of vegetation restoration in 

the humid evergreen broad-leaved forest in the 

rainy zone of west China Ecological Research 
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APPENDIX II. SUPPLEMENTAL INFORMATION FOR CHAPTER 3 

 

Fig. S3.1. The study plots (n = 1018) located in northwestern Ontario, Canada. 
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Table S3.1 Characteristics of study plots sampled (n = 1018) in the Wabakimi Provincial 

Park of Canada.  

Characteristic Mean Minimum Maximum 

Species richness 3.14 2 8 

Shannon's index 0.66 0.05 1.80 

Species evenness 0.61 0.20 0.99 

TSF*  89.00 20 209 

MAT -0.29 -0.83 0.42 

MAP 711.40 701.0 724.8 

SDC 1 0 9 

*TSF, time since fire (years); MAT, mean annual temperature (ºC); SDC, soil drainage class 

(median is reported instead of mean), MAP, mean annual precipitation (mm). 
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APPENDIX III. SUPPLEMENTAL INFORMATION FOR CHAPTER 4 

Table S4.1 Characteristics of different variables used for the survival analyses. 

Climate MAT 

 

Broad scale Continous (ºC) 

 

MAP 

 

Broad scale Continous (mm) 

 

CMI 

 

Broad scale Continous (cm per year) 

Georgraphy Latitude 

 

Broad scale  (decimal degrees) 

 

Longitude 

 

Broad scale  (decimal degrees) 

Physiography 

and 

topography 

Surficial 

deposit Ground moraine Broad scale Nominal 

  

End moraine Broad scale 

 

  

Outwash deposit Broad scale 

 

  

Beach and 

aerolian deposit Broad scale 

 

 

Soil 

Texture (Sandy 

to loamy soils) Local scale Nominal 

 

Soil 

drainage 

class 

Scale, from 0 

(dry soil) to 9 

(very wet soil) Local scale Ordinal 

 

Slope 

aspect 

West-east axis 

(x) Local scale Continous (x, y) 

  

South-north axis 

(y) Local scale 

 

  

Mean waterbreak 

distance Intermediate Continous (m) 

  

Elevation Local scale Continous (m) 

MAT, mean annual temperature; MAP, mean annual precipitation; CMI, climate moisture 

index  
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APPENDIX IV. SUPPLEMENTAL INFORMATION FOR CHAPTER 5 

Table S5.1 Comparison of different models for spruce budworm.  

Model R
2
 AIC 

Intercept+R 0.005 662 

Intercept+R+E 0.031 661 

Intercept+R+E+Bf 0.246 627 

Intercept+R+E+Bf+Sw 0.296 555 

Intercept+R+E+Bf +Sw+MR 0.349 554 

Intercept+R+E+Bf+Sw+MR+stand age 0.350 555 

Intercept+R+E+Bf+Sw+MR+stand age+stand age^2 0.419 550 

Intercept+R+E+Bf+Sw+MR+stand age+stand age^2+stand age^3 0.448 549 

Intercept+R+E+Bf+Sw+MR+stand age+stand age^2+stand age^3+stand 

age^4 0.457 550 

R, species richness, E, evenness, Bf, Abies balsamea, Sw, Picea glauca, MR, soil moisture 

regime. 
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Table S5.2 Comparison of different models for FTC.  

Model R
2
 AIC 

Intercept+R 

 

658 

Intercept+R+E 0.01 660 

Intercept+R+E+P 0.01 661 

Intercept+R+E+P+B 0.07 552 

Intercept+R+E+P+B+stand age 0.09 553 

Intercept+R+E+P+B+stand age+stand age^2 0.24 544 

Intercept+R+E+P+B+stand age+stand age^2+stand age^3 0.28 542 

Intercept+R+E+P+B+MR+stand age+stand age^2+stand age^3+stand 

age^4 0.31 543 

R, species richness, E, evenness, P, Populus spp., B, Betula papyrifera, MR, soil moisture.  
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