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ABSTRACT 
 Acid mine drainage (AMD) is one of the greatest challenges facing the mining industry 

globally. Methods for addressing this issue have been widely studied; however, few studies have 

addressed sites with a less common water quality problem resulting from AMD: neutral pH, 

metal-poor, and sulphate-rich water. The Steep Rock Iron Mine site in Atikokan, Ontario is 

utilized as a case study where AMD-affected waters have acidity neutralized by carbonate rocks, 

and metals precipitate out of solution as the pH rises. This process alleviates major 

environmental hazards associated with acidic waters and toxic metal concentrations; however, 

sulphate is not removed and presents toxic conditions for aquatic fauna. These sites are also a 

risk to human health, and can potentially contaminate drinking water supplies. Funding for the 

remediation of abandoned mine sites is limited, and innovative solutions utilizing passive 

treatment mechanisms are needed in order to deliver efficient and effective remediation. The 

goals of this project were: 1) to assess the capability of a permeable reactive barrier (PRB) 

system to remediate sulphate-rich, pH neutral, metal-poor water, 2) to assess nutrient balance 

within the system to ensure the availability of nutrients is not a rate-limiting factor for sulphate 

reduction, and 3) to improve reactive substrate selection procedures by determining which 

assessment tools are most useful in selecting substrates effective at stimulating sulphate reducing 

bacteria (SRB). 

 Candidate reactive substrates including cow, horse, poultry, rabbit, and sheep manures, as 

well as leaf compost and hay, were assessed according to their concentrations of vital nutrients 

for SRB, including carbon, nitrogen, and phosphorous. Additionally, their relative degradability 

was tested via a procedure known as easily available substances (EAS). This testing determined 

how readily a given substrate could be broken down by bacteria, as well as the change in 

concentration of desired nutrients in the substrate before and after EAS testing, which gives an 
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indication as to the availability of those specific nutrients. Plant and manure substrates were 

tested, with one of each type used in each reactive mixture. Based on this testing, poultry and 

sheep manures were selected as the most likely manure substrates to provide effective nutrition 

for SRB. In contrast, there was no significant difference found between hay and leaf compost. 

Poultry consistently performed the best in each test, with a C:N ratio of 11, a C:N:P ratio of 

1772:160:1, and an EAS mass loss of 71%. 

 Eight flow-through reactors were constructed and operated for a period of 23 weeks. Six 

of these reactors contained organic materials to stimulate SRB, while two were controls. Of the 

six reactors using organic materials, three mixtures were used, each containing a different 

combination of the four substrates. One control reactor assessed the impact of zero-valent iron 

which was also added to all of the organic reactors, while an additional control simulated the 

natural environment and contained only creek sediment and silica sand. Reactors 3 and 7 were 

the most effective at sustaining high rates of sulphate removal, with >80% sulphate removal 

maintained for the first 14 weeks. These reactors utilized a mixture of poultry manure and hay, 

validating the measures which indicated poultry manure as the most effective manure-based 

substrate. However, poultry manure was also used in reactors 1 and 5 in combination with leaf 

compost, and were not as effective for sulphate removal. These results indicate that hay was a 

more effective substrate than leaf compost. Comparing this finding against the original substrate 

testing presents two differences between hay and leaf compost; the C:N:P ratio and the 

availability of phosphorus in EAS testing both had stronger results for hay. This result indicates 

that phosphorus is a critical nutrient for SRB, and that tests considering phosphorus should be an 

integral part of reactive substrate selection procedures in systems attempting to stimulate SRB. 

The control reactors found that the addition of only zero valent iron did not have a significant 

impact on sulphate removal, as performance in this reactor was similar to the natural aquifer 
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conditions control reactor. Eh/pH conditions supported the activity of SRB; but did not support 

the stability of sulphide produced by SRB, and it is unclear of SRB were in fact active within the 

flow-through reactors. 

Significantly reduced sulphate concentrations in reactor effluent initially appeared to 

indicate the sulphate reduction was occurred as intended. However, in post-experiment analysis 

there was no evidence of iron sulphide formation that would confirm sulphide production by 

SRB, and Eh/pH conditions were not supportive of sulphide stability. Furthermore, saturation 

index calculations using PHREEQC determined that iron sulphides were highly under saturated 

in effluent waters. In contrast, sulphate minerals including barite, gypsum, and jarosite were 

slightly oversaturated, and present a viable sink for the sulphate removed from solution. 

Following experiment completion it was found that the reactors with the greatest sulphate 

removal also had the most significant declines in nutrient concentration, with 52-64% C, 45-58% 

N, and 24-62% P losses in reactors 3 and 7. This is strong evidence of a bacterially driven 

process for sulphate mineral precipitation. The reduced availability of these nutrients may have 

played a role in the decline of sulphate removal over time. 
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Chapter 1: Introduction 

1.1  Acid Mine Drainage and Pit Lakes 

 Acid mine drainage (AMD) is one of the most prevalent and costly issues facing the 

mining industry today. AMD is produced when sulphide bearing rocks are exposed to oxygen 

and precipitation, causing chemical reactions that produce water containing elevated metal 

concentrations, high acidity, and sulphate (Akcil and Koldas, 2006). Such waters are highly 

damaging to local watersheds and ecosystems, and can cause acute or chronic health impacts for 

organisms in contact with these waters. This process occurs naturally in the environment, and is 

not normally an issue, except when anthropogenic mining activities result in massive amounts of 

fresh material being exposed at the surface in a short period of time. In nature, this process would 

normally occur over thousands or millions of years, resulting in only weak concentrations of 

these contaminants which could be easily accepted into the local watersheds without harm. 

Commonly AMD occurs due to the disposal of tailings or waste rock from a mine site which 

contains sulphide minerals, with the most common source being pyrite (Johnson and Hallberg, 

2005; Lindsay et al., 2009). Pyrite, with the chemical composition FeS2, reacts with oxygen and 

water, producing Fe2+, SO4
2- and H+ as shown in equation 1 (Benner et al., 1997). The Fe2+ can 

further be oxidized to Fe3+, which can oxidize more pyrite and continue the process as shown in 

equation 2 (Akcil and Koldas, 2006). The Fe3+ can take the place of oxygen in the first equation, 

to continue the process, as seen in equation 3. 

(1) 2FeS2(s) + 7O2(g) + 2H2O(l) → 2Fe2+(aq) + 4SO4
2-(aq) + 4H+(aq).  

(2) 4Fe2+(aq) + O2(g) + 4H+(aq) → 4Fe3+(aq) + 2H2O(l).  

(3) FeS2(s) + 14Fe3+(aq) + 8H2O(l) → 15Fe2+(aq) + 2SO4
2-(aq) + 16H+(aq).  

 Methods of remediating sites and watersheds impacted by AMD have been extensively 

studied; e.g. Hoffert (1947), Olem and Unz (1980), Gazea et al. (1996), Benner et al. (1997), 
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lakes exhibit unique hydrologic behaviour due to their high depth to surface area ratio, which 

often produces significant thermal and chemical stratification within the water column (Castro 

and Moore, 2000). Water chemistry is dependent upon the interaction with groundwater, wall 

rocks, precipitation, evaporative effects, biological processes, and interaction with mine waste 

materials (Eary, 1999). At some sites carbonate wall rocks may be present to buffer the solution, 

acting as a natural remediative tool. If sufficient organic material is present, the lower portion of 

the water column, or hypolimnion, will likely become anoxic (Castro and Moore, 2000). The 

activity of anaerobic microorganisms in these anoxic environments may be able to assist in the 

remediation of water quality as sulphate reducing bacteria (SRB) can consume organic matter 

and sulphate, converting the sulphate to sulphide, which can precipitate as metal sulphides if 

sufficient divalent metals are available (Castro and Moore, 2000). Seasonal overturns of the 

water column can cause changes in the water composition, and re-introduce dissolved oxygen to 

the lower levels of the pit (Mikkelsen, 2012). A thorough understanding of the hydrodynamics of 

a given pit lake is crucial to effective management of water quality. 

1.3  Steep Rock Site Conditions 

The site is located approximately 5 km north of Atikokan, Ontario, and 180 km west-

northwest of Thunder Bay, Ontario. Geologically, the site is located within the south-central 

portion of the Wabigoon subprovince in the Superior province, just north of the contact with the 

Quetico subprovince (Kusky and Huddleston, 1999). The presence of iron at Steep Rock Lake 

has been known since 1891 (Taylor, 1978). The deposit was situated beneath Steep Rock Lake 

and this challenge prevented exploitation of the resource. During World War II the demand for 

iron for the war effort grew enormously, and available resources were not capable of providing 

sufficient iron to keep up with the demand. In 1938, the Steep Rock deposit was considered to be 

the richest undeveloped iron ore deposit in North America. As such, accelerated development of 
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the site was authorized under the War Measures Act (Sowa, 2002). Mine development required 

the diversion of the Seine River, which flowed through the lake, draining the middle and east 

arms of Steep Rock Lake, and the removal of approximately 15 million m3 of lake bottom silt 

and clay (Sowa, 2002). At the time this was considered one of the largest engineering projects 

ever undertaken in Canada. The west arm of Steep Rock Lake was eventually closed from the 

Seine River system in order for it to be used as a settling basin. This resulted in reducing the 

depth of the lake from 60 m to an average depth of 3 m due to the deposition of nearly 90 million 

m3 of dredged clayey silt from the areas to be mined (Sowa, 2002). In 1944, mining commenced 

at Errington Pit, before subsequent pits were developed at Hogarth, Roberts and finally Caland. 

Mining activities ceased in 1979 (Mikkelsen, 2012), and in 1988 the lands were officially 

returned to the province. At the time, environmental regulations did not legally require the 

company to undertake extensive remediation work, and as such minimal environmental cleanup 

was completed. The site was largely abandoned following this time, and the pits began filling 

with water once there were no efforts to prevent this. 

At this site, AMD is generated by the oxidation of pyritic tailings and waste rock disposal 

sites within the former mine property. At the present time, all water within the site flows to the 

large open pits remaining from mining operations, which have partially filled to form lakes. 

AMD has severely impacted water bodies throughout the site, with several locations containing 

high concentrations of metals, very low pH, and high sulphate concentrations (Macdonald, 2005; 

Vancook, 2005; Perusse, 2009). Once the AMD contaminated water flows to the pit lakes, the 

pH is neutralized due to the presence of carbonate wall rocks (Conly et al., 2007). These 

carbonate rocks are present in the Mosher Carbonate formation, one unit among the several 

sedimentary units comprising the Steep Rock Group (Kusky and Huddleston, 1999). The 

carbonate minerals are exposed in the pit walls, and act as a buffer to the acidic solution, causing 
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the pH to rise, and metals to precipitate out of solution (Godwin, 2009). High sulphate remains a 

problem however; with concentrations present in some of the pits which are toxic to aquatic life 

(Goold, 2008; Godwin, 2009). This situation of sulphate being the primary contaminant of 

concern due to AMD is much less common than typical AMD waters, and consequently is much 

less investigated. At the present time, there is no direct outflow from the lakes, and the lake 

levels continue to rise. Eventually the lake water will rise to such a level that the pit lakes merge, 

and eventually water must flow off-site. The ultimate lake level is shown in Figure 1.2.  

 
Figure 1.2: Google Earth image with outline of the eventual lake level of the merged Steep Rock 
Lake (provided courtesy Dr. A. Conly). 

 The eventual outflow from the lake presents a serious risk to nearby watersheds and 

ecosystems, which would be irreparably harmed by an influx of the sulphate rich water. In 

addition, the higher lake level will not have the commonly expected impact in pit lakes of 

preventing further oxidation of sulphide minerals, due to the shallow areas between the merged 

pit lakes. This creates a unique situation for pit lakes, the presence of a littoral zone. The 

existence of a littoral zone will permit long term interaction of shallow oxygenated waters with 
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waste rock materials, thus enabling continued production of acid-, sulphate-, and metal-rich 

waters. Consequently, a suitable treatment method is required in order to improve the water 

quality prior to release into external watersheds. This situation of a site where AMD is being 

generated, yet the pH and metals are mitigated by the presence of carbonate is much less 

common than the traditional AMD site issues. Consequently, little research has been conducted 

into the remediation of sites with this particular situation; however, it is an important 

environmental problem requiring innovative solutions. Most research into this area has focussed 

primarily upon the removal of dissolved metals and pH neutralization. The Steep Rock site will 

be utilized as a case study in this research; however, the results are applicable to other sites that 

are characterized by near neutral pH, low concentrations of dissolved metals, yet high 

concentrations of dissolved sulphate. Examples include Carlin-type Au deposits in which 

significant volumes of carbonate minerals are often able neutralize most generated acidity 

(Shevenell et al., 1999). 

1.4  AMD Treatment Methods 

 The treatment and prevention of AMD has been increasingly noted as an important facet 

of mine planning. In the past, environmental regulations were much less strict, and mines were 

permitted to release AMD to local environments with minimal treatment or concern regarding 

environmental impacts (Hoffert, 1947). Following major environmental disasters, such as Kam 

Kotia (Ontario), Britannia Beach (British Columbia), Berkeley (Montana), and more recently, 

Mount Polley (British Columbia), the devastating environmental impacts of AMD release 

became realized. In various regions legislation was introduced (e.g., 1992 and 1996 revisions to 

the Ontario Mining Act), to require mining companies to put in place extensive programs to 

mitigate the release of environmental contaminants (such as AMD) and ensure detailed closure 

and rehabilitation plans were developed. Significant initiatives and organizations such as the 
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Mining Environment Neutral Drainage (MEND) program and the International Network for Acid 

Prevention (INAP) have worked with industry to achieve improved environmental outcomes for 

a sustainable mining industry. Traditionally, AMD treatment has focussed upon the chemical 

treatment of metals and acidity. Liming has been a technique used extensively to combat the 

problem. In this technique, lime (CaO or CaOH) is applied directly to contaminated waters, 

waste rock, tailings piles, or mixed into a slurry of effluent (Johnson and Hallberg, 2005). This 

results in a neutralization of acidity, which further causes the precipitation of metals from 

solution. The relatively lower cost and simplicity of this technique has resulted in widespread 

use. However, lime treatment causes the formation of large volumes of metal-rich sludge which 

needs to be removed and treated (Johnson and Hallberg, 2005). Although lime is the most 

commonly used material to treat acidity, other materials used include ammonia, fly ash, calcium 

carbonate, sodium carbonate, sodium hydroxide, and kraft mill waste (lime mud residue) e.g., 

Catalan and Kumari (2005), Johnson and Hallberg (2005), and Wang et al. (2006). These 

materials can be applied directly to contaminated waters, or used as a reactive material in a 

treatment system, such as a constructed wetland, bioreactor, or permeable reactive barrier (PRB) 

(see section 1.6 for discussion on PRBs). A variety of chemical treatment plants are also 

available for high-level treatment and removal of contaminants, although these can have high 

capital and operational costs (Egiebor and Oni, 2007). Active treatment methods can be labour 

intensive, and have high capital and operational costs associated with them, and as such there has 

been extensive research into alternative measures (e.g., Gazea et al., 1996, Ziemkiewicz et al., 

2003, Johnson and Hallberg, 2005). 

 Passive treatment systems such as sulphate reducing bioreactors, anoxic limestone drains, 

successive alkalinity producing systems, and engineered wetlands have been utilized increasingly 

in recent years to treat AMD as a lower cost treatment method. Passive treatment requires an 
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initial capital investment; however, aside from water quality monitoring, the ongoing operational 

costs are greatly reduced as these systems are designed to use natural processes and the pre-

existing hydraulic gradient (Johnson and Hallberg, 2005). These systems are particularly 

attractive for implementation at remote abandoned mine sites which may not have access to 

electricity. The downside is that these systems are less controlled, and they may not be able to 

achieve as high contaminant removal rates as industrial scale treatment plants, and their 

performance may degrade over time. Anoxic limestone drains (ALDs) are one example of a 

passive treatment system. In an ALD, contaminated water flows through a bed of limestone 

gravel, and alkalinity is generated through reactions with the carbonate minerals. This treatment 

has lower costs than some alternative methods; however, longevity is a problem. Over time, the 

limestone gravel becomes coated, or “armoured” with metal hydroxide precipitates and 

performance declines (Johnson and Hallberg, 2005). Another passive treatment method is 

stimulation of biological processes which can assist in the remediation efforts. These processes 

may assist in the removal of metals, generation of alkalinity, and the reduction of sulphate. An 

example is the growth of SRB which can reduce sulphate, generate alkalinity, and subsequent 

reactions assist in metals removal (see section 1.7 for discussion on SRB). The specific treatment 

system in which the SRB are used can vary significantly, including constructed wetlands, 

bioreactors, and permeable reactive barriers. Variations on models for bioreactors and permeable 

reactive barriers include successive alkalinity producing systems (SAPS; Kepler and McCleary, 

1994) and reducing and alkalinity producing systems (RAPS; Younger et al., 2003). In 

constructed wetlands, a complex group of different processes can occur, with multiple biological 

processes, as well as bioaccumulation of metals, adsorption, ion exchange, and precipitation 

reactions possible (Egiebor and Oni, 2007). Commonly, one or more techniques may be utilized 

in order to achieve the optimal results for AMD treatment, such as a PRB which then flows into a 
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constructed wetland, or a PRB which combines both passive chemical (e.g., lime) and biological 

(e.g., SRB) processes. Because the characteristics of AMD are highly site specific, a detailed 

analysis of the site conditions and water quality must be undertaken to understand the necessary 

remediative measures for a given site. 

1.5  Scope of Present Study 

In this study a passive treatment system was designed, constructed, and tested as a 

concept for the treatment of pit waters at the Steep Rock site. Laboratory testing simulated a PRB 

designed to stimulate SRB activity by the addition of organic matter. In these experiments, stock 

water collected from Hogarth pit at the Steep Rock site was pumped into the flow-through 

reactors, where biological and chemical reactions were expected to result in decreased sulphate 

concentrations in effluent water. The use of different reactive mixtures assessed the capability of 

different substrates to stimulate SRB, and also allow for assessment of the effectiveness of the 

substrate selection process in order to improve procedures for reactive material selection in PRBs 

using SRB.  

This study involved three phases in order to: 1) determine the optimal PRB design, 

mixture substrates, and proportions; 2) conduct the flow-through reactor experiments; and 3) to 

understand the processes which occurred in the experiments and assess the effectiveness of the 

reactive mixture selection procedure. Phase one focussed on the design of the flow-through 

reactor setup and characterization of the candidate organic substrates to determine which 

materials are used in the reactor experiments. This characterization also allowed for the 

stoichiometric determination of the organic carbon requirement, such that the appropriate mass 

of substrate would be utilized. Phase two included the construction and operation of the flow-

through experiments, including weekly collection of effluent water samples and direct 

measurement of Eh (oxidation-reduction potential) to measure the performance of each reactor 
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over time. The final phase involved the deconstruction of the experiments and sampling and 

analysis of post-experiment materials in order to determine the processes which occurred inside 

the flow-through reactors. Additionally, a major focus was assessing the change in nutrient 

concentrations in order to determine if sufficient nutrients were available to SRB, as well as 

determine the effectiveness of the substrate selection procedure. 

1.6  Permeable Reactive Barriers 

 One example of a passive water remediation technology is permeable reactive barriers 

(PRBs). PRBs have been used to treat a wide variety of water contaminants at many different 

types of industrial sites, including sites experiencing AMD (e.g., U.S. E.P.A., 1998, Blowes et 

al., 2000, Scherer et al., 2000). A PRB is constructed as a trench below grade within the aquifer, 

and is filled with reactive material (Fig. 1.3). This trench will intercept contaminated 

groundwater flowing under natural hydraulic gradient, and the materials within will cause or 

promote chemical or biological reactions with the contaminant (U.S. E.P.A., 1998). These 

reactions result in precipitation, adsorption, reduction, oxidation, or otherwise convert the 

contaminant to a safer or less mobile form (Scherer et al., 2000). Specific materials will be 

selected based upon the conditions present at a given site, and the particular contaminants desired 

for removal. In the case of PRBs designed to treat AMD, the intent is to stimulate the activity of 

SRB, which will remove sulphate and dissolved metals from solution.  For sites in which the 

influent waters are highly acidic, alkaline materials will be needed in order to raise the pH of the 

solution in order to provide a hospitable environment for SRB.   
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Figure 1.3: Cross-sectional view of a permeable reactive barrier (from U.S. E.P.A., 1998). 

 While PRBs have been utilized worldwide for a wide variety of contaminants, their use in 

AMD remediation has been more limited. While many lab-scale studies have been conducted 

(e.g., Harris and Ragusa, 2001; Gibert et al., 2004; Neculita et al., 2007; Wu et al., 2010; Song et 

al., 2012); only five field sites worldwide are reported in scientific literature to have installed a 

full-scale PRB using natural organic materials for the treatment of AMD or acid rock drainage 

(ARD). This does not represent a lack of viability of the concept, but rather the lack of maturity 

of the technology. The first site known to have installed a PRB to treat AMD is the Nickel Rim 

Mine site, near Sudbury, Ontario, where sulphate removal rates ranged from 25-78% (Benner et 

al., 1997). However, sulphate removal declined by 30% after three years (Benner et al., 2002), 

and longer term data has not been published. The second site was an ore storage facility in 

Vancouver, British Columbia, where unprocessed ore was stored on the ground surface, and 

serious ARD issues were present on the site due to oxidation of the minerals present (Ludwig et 

al., 2002). A high rate of metals removal was observed; however, sulphate was not included in 
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the contaminants monitored among published documents, despite likely being a significant 

environmental contaminant at this site.  

 The third site to install a PRB for AMD treatment was the Shilbottle Mine in 

Northumberland, UK (Jarvis et al., 2006). AMD from coal spoil heaps was treated and averaged 

40% sulphate removal over a two year monitoring period. The fourth site to install a PRB for 

AMD treatment was the Aznalcollar Mine in Spain, where the failure of tailings pond retention 

dam resulted in the release of approximately 4 million m3 of AMD (Gibert et al., 2011). Serious 

design flaws and construction failures resulted in a failure to fully capture the contaminant 

plume, and a reduced ability to effectively treat contaminated water which did flow through the 

PRB. Sulphate removal rates ranged from 0 to 40%, and the barrier was unsuccessful in 

achieving some of the project goals (Gibert et al., 2011). This project is a significant 

demonstration of the importance of careful planning, site characterization, and appropriate 

construction techniques in PRB design and construction. Finally, the fifth PRB constructed to 

treat similar conditions was a fertilizer plant in South Carolina, USA. The plant utilized pyrite in 

its production processes, and improper disposal of this material produced ARD (Ludwig et al., 

2009). High rates of sulphate removal ranging from 66-99% were achieved. This study is 

unusual for PRBs treating acid rock drainage in that zero-valent iron (ZVI) was used as a 

reactive material. This was done in order to assist in the removal of arsenic; however, it may also 

have improved sulphate reduction as well, as sulphate can corrode ZVI in the following reaction 

(Blowes et al., 2000; Philips et al., 2000):   

4Fe0 + SO4
2- + 9H+ → 4Fe2+ + HS- + 4H2O 

This reaction produces both hydrogen sulphide and ferrous iron, which can then react to 

form an insoluble iron sulphide, such as mackinawite (FeS), or pyrite (FeS2). The same result is 
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achieved through the biological reduction of sulphate by SRB, and the combined effects of 

chemical and biological sulphate reduction may account for the high sulphate removal. 

 There are a variety of factors which must be taken into account in PRB design and 

construction which can impact performance. First among these is the selection of materials 

which will encourage and support the desired chemical or biological processes. Various water 

quality parameters besides those desired for treatment may impact these processes and therefore 

must be accounted for. Another very important consideration is the hydrogeology of the site and 

how the natural flow will interact with the PRB. A PRB must be designed to fully intercept the 

plume of contaminated water, and thus must have sufficient depth and width, and align 

perpendicular to the actual direction of flow (U.S. E.P.A., 1998). Furthermore, the PRB should 

have a hydraulic conductivity higher than that of the surrounding aquifer, such that even if there 

is porosity loss due to degradation of PRB materials, the hydraulic conductivity is not reduced 

below that of the surrounding materials. If the hydraulic conductivity were to fall below that of 

the surrounding aquifer, it is possible that water may divert around the PRB, resulting in a failure 

to capture the entire contaminant plume (U.S. E.P.A., 1998). In both lab-scale and field-scale 

PRBs, one of the most commonly noted problems is porosity loss, and consequently it is 

important to include sufficient non-reactive matrix support material which will maintain porosity 

within the barrier (Blowes et al., 2000).  

The development of preferential flow paths can also become a problem over time due to 

changes in PRB porosity, or the failure in initial construction to ensure a homogenous 

distribution of materials (Benner et al., 1997). Preferential flow paths can result in greatly 

reduced residence time, and the materials in a certain area being overexposed, while reactive 

materials in another area are not being utilized. This can result in a substantial reduction in PRB 

performance and longevity (Blowes et al., 2000). As flow paths and porosity greatly influence 
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the residence time; the desired residence time must be determined prior to construction of a PRB 

since the flow rate of groundwater cannot be controlled. If the groundwater flows through the 

barrier too quickly, resulting in a short residence time, there may be insufficient time for the 

desired reactions to occur, or occur to their full extent. An overly long residence time is also 

impractical due to construction cost considerations. Careful planning and attention during both 

design and construction phases can reduce the risk of these problems, and help to ensure the PRB 

is able to perform at a high level, and over a long period of time. 

1.7  Sulphate Reducing Bacteria 

 Sulphate reducing bacteria have been increasingly utilized as a remediation tool for 

sulphate and/or metal-rich water, and for the treatment of acid mine drainage (Neculita et al., 

2007). This is due to their unique ability to reduce sulphate, generate alkalinity, and produce 

sulphide which reacts with dissolved metals to form insoluble metal sulphides. In addition, the 

natural, passive, and self-sustaining operation of SRB can result in a significantly lower cost 

remediation program (Lindsay et al., 2009). Sulphate reducing bacteria are strictly anaerobic, 

which also makes them perfectly suited for use in a permeable reactive barrier which creates an 

anoxic environment. Sulphate reducing bacteria use organic carbon as an electron donor and 

dissolved sulphate as an electron acceptor; according to the following reaction (Waybrant et al., 

1998; Cocos et al., 2002; Neculita et al., 2007): 

2CH2O(s) + SO4
2-

(aq) → H2S(aq) + 2HCO3
-
(aq) 

CH2O represents a simple organic carbon molecule; the actual form of the organic carbon 

available will depend upon the specific organic substrates, biodegradation processes, and the 

specific types of bacteria responsible for biodegradation. The reaction produces hydrogen 

sulphide as well as bicarbonate. Hydrogen sulphide can be a significant pollutant on its own, and 

also has the potential to be oxidized back to sulphate if not removed (Johnson, 2003). Commonly 
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in PRB systems designed to treat AMD, the water is metal-rich and the hydrogen sulphide will 

react with dissolved divalent metals, producing metal sulphide precipitates, thus removing the 

undesirable contaminant from the water. This is achieved by the following reaction, in which 

Me2+ represents a divalent metal ion (Blowes et al., 2000; Neculita et al., 2007; Sheoran et al., 

2010):  

Me2+
(aq) + H2S(aq) → MeS(s) + 2H+

(aq) 

In Hogarth Pit at Steep Rock, the water is metal-poor and thus there are potentially 

insufficient metals available to react with dissolved sulphide. To remedy this problem, zero-

valent iron is used as an additional reactant to supply Fe2+ to the solution and allow iron to be 

available to react with sulphide. This reaction yields an additional benefit of providing H2, which 

some species of SRB can utilize as an alternative electron donor. Iron is supplied via the 

following reaction (Kumar et al., 2013):  

Fe0
(s) + 2H2O(l) → Fe2+

(aq) + 2OH-
(aq) + H2(g). 

 In order to maximize the growth and activity of SRB, a number of environmental 

conditions must be optimized. Firstly, SRB are strictly anaerobic, and thus precautions must be 

taken to ensure oxygen infiltration into the PRB does not occur beyond levels naturally dissolved 

in groundwater. Reducing conditions are required, with a redox potential (Eh) lower than -100 

mV considered optimal for SRB activity (Postgate, 1984). The pH of the water is an important 

parameter, with a pH in the range 5-8 being ideal for SRB activity (Willow and Cohen, 2003), 

although some strains of SRB can operate effectively outside of this range. This is an important 

factor to consider in the treatment of AMD, which is commonly very acidic and will require 

treatment to raise the pH prior to SRB treatment. Temperature also impacts SRB activity, and 

various strains have been reported to be able to function from -5°C to +75°C (Postgate, 1984). 

Lab and field scale testing has demonstrated that cold temperatures may cause a significantly 
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longer acclimation period, but once the population has been established and active, winter 

temperatures do not have a significant impact on sulphate reduction rates (Fortin et al., 2000; 

Zaluski et al., 2003; Tsukamoto et al., 2004). This balance in rates may also be accomplished by 

an increased population of SRB offsetting lower reduction rates during the winter, and lower 

winter flow rates also mitigate reduced SRB activity. 

 The selection of optimal organic carbon sources is important to ensure the highest 

possible rates of sulphate reduction, as organic carbon as the electron donor is often the rate 

limiting factor in sulphate reduction in sulphate rich water (Gibert et al., 2004). The ideal organic 

carbon sources are simple compounds which can be utilized directly by the SRB, such as lactate, 

which is considered the most effective organic carbon source (Nagpal et al., 2000). Other simple 

compounds such as methanol, ethanol, pyruvate, glucose, sucrose, and acetate are also highly 

effective sources for some strains of SRB (Dvorak et al., 1992; Tsukamoto et al., 2004; Neculita 

et al., 2007). Because the design from this study was intended to be able to be up-scaled to a 

field-scale PRB, it was necessary to use organic carbon sources which are available at low cost, 

in large volumes, and do not require ongoing replenishment or external storage. Such sources 

typically include animal manure, plant waste, sewage sludge, municipal compost, and spent 

mushroom compost (Neculita et al., 2007). Previous studies on PRBs and bioreactors utilizing 

SRB to treat mine waters have found that utilizing two different organic substrates significantly 

improved performance (Waybrant et al., 1998; Cocos et al., 2002; Neculita et al., 2007). This is 

attributed to differences in degradation rates, as well as potentially providing a better nutrient 

balance. To maximize this benefit, one manure and one plant based substrate was used in each 

reaction cell in this study in order to provide a balance in degradation rates. The manure degrades 

more quickly, providing nutrition to the bacteria at the start of the experiment, while the plant 

material degrades more slowly, providing progressive nutrition over the course of the experiment 
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(Neculita et al., 2007). The organic substrates will be degraded from complex organic 

compounds by fermenting and cellulolytic bacteria into simpler molecules which can be used by 

SRB.  

 The specific combinations of manure and plant materials were selected based upon the 

chemical composition of the candidate substrates. A variety of parameters have been utilized in 

past studies for the selection of organic carbon sources, although none have proven to be a 

definitive guide to resultant sulphate reduction rates, and there is considerable disagreement 

among authors as to which parameters are most useful (Prasad et al., 1999; Neculita et al., 2007). 

For this study, nutrient balance was the primary focus for selection between the candidate 

materials, as this is a critical requirement for biodegradation of organic materials and the 

metabolism of SRB (Waybrant et al., 1998; Prasad et al., 1999; Zagury et al., 2006). The primary 

consideration is C:N ratio, in which a 10:1 ratio is considered desirable for the biodegradation of 

complex organic carbon sources (Reinertson et al., 1984; Bechard et al., 1994; Prasad et al., 

1999; Zagury et al., 2006). Additional sources have also quoted a C:N:P ratio of 110:7:1 as 

optimal for the growth of SRB (Kuyucak and St-Germain, 1994; Cocos et al., 2002).  

1.8  Previous PRB Studies at Steep Rock  

 The issue of AMD treatment has a long and varied history, with most programs focussing 

on chemical treatment methods, with a bias towards acidity neutralization and metals removal. In 

recent years, studies have increasingly looked towards passive treatment systems utilizing 

biological treatment methods, with PRBs as a common approach (Blowes et al., 2000). Still, little 

attention has been given to sites such as the Steep Rock site where sulphate-rich waters are the 

primary concern. The design of a treatment system for the water conditions present at Steep 

Rock was first investigated in 2011 by S. J. Shankie as part of an M.Sc. thesis completed at 

Lakehead University. The study utilized batch reactor and flow through reactor experiments to 
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test reactive mixtures for their capacity to remove sulphate from water sampled from the Hogarth 

pit lake within the Steep Rock site. Experiments were set up to simulate PRB conditions in 

bench-scale testing. Organic matter was utilized to stimulate the activity of SRB in order to 

promote sulphate reduction to sulphide. The batch reactor tests were able to achieve up to 99% 

sulphate removal, using horse manure and wood chips as the organic matter source. Flow-

through reactor experiments, which more closely replicate PRB conditions, were able to achieve 

average sulphate removal in the range of 39-49% over the course of the 20 week experiment, 

depending on the exact mixture and structure of the reactive column. Performance of the flow-

through declined over time, with sulphate removal in the range of 25-40% at the end of the 

experiment.  

 A variety of factors have been identified as possible limitations in the performance of 

these flow through reactors. In the study, Shankie (2011) concluded that the availability of 

divalent metals, such as Fe2+, was a possible limiting factor in sulphide precipitation, and thus 

sulphate removal. Residence time was another factor identified that could be a negative influence 

on performance. Shankie (2011) identified a loss of permeability in the flow through reactors 

over time, which limited flow, and may have caused preferential flow channeling. Such 

behaviour would result in certain areas of the reactor becoming nutrient depleted, while other 

areas with constrained permeability having available nutrients, but the water is prevented from 

interacting with these areas. This loss of permeability can be caused by a combination of the 

breakdown of organic matter, precipitates formed over the course of the experiment, and gravity 

induced compaction in the vertically oriented reactors. Carbonate rock was used as one of the 

components in the reactive mixture, which is common in PRBs treating acidic waters. However, 

the waters in this situation are near neutral and thus do not require neutralization; consequently, a 

less degradable matrix support material might be more desirable.   
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1.9  Format of Thesis 

This thesis consists of two sections: Part One: Material Testing and Characterization, 

which discusses the process of analyzing and characterizing the candidate organic substrates in 

order to design the most effective possible reactive mixture for the stimulation of SRB; and Part 

Two: Flow-Through Reactor Experiments, which details the design, operation, and assessment of 

the flow-through reactor experiments. Part two combines the second and third phases of this 

research project as described in section 1.5. A combined Summary and Conclusions follows in 

Chapter 8. 
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Part 1: Material Testing and Characterization 
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Chapter 2: Analytical Methods for Material Testing 

2.1  ICP-AES Analysis 

 Cow, poultry, and sheep manures, and hay were provided courtesy of Sleepy G Farms, 

Pass Lake, Ontario. Horse manure was provided courtesy Cryderman Quarter Horses, Murillo, 

Ontario. Rabbit manure and leaves were provided courtesy A. Conly. All samples were analyzed 

at least once, with triplicates run for hay and rabbit manure in each assessment in order to 

confirm homogeneity of organic materials. To characterize the organic materials, an acid 

digestion method modified from Hseu (2004) and Peters (2003) was followed. In this procedure, 

finely milled samples were dried in an oven at 65°C for 48 hours, after which time 0.75 g of each 

sample was added to the digestion tube and 10 ml of concentrated HNO3 was added without 

heating. After one hour the solutions were heated to 95°C and allowed to digest for 8 hours, with 

repeated additions of HNO3 to prevent drying. After this period, samples were removed from 

heat and 3 ml of 30% H2O2 was added in 0.5 ml increments. Once the reaction had ceased, 

samples were returned to heat and allowed to digest at 95°C for one hour. After cooling, samples 

were then filtered using Whatman #42 filter paper, diluted to 100 ml in a volumetric flask, and 

shaken thoroughly to ensure a homogeneous solution. The solutions were transferred to 

centrifuge tubes, and submitted to the Lakehead University Instrument Lab (LUIL) for ICP-AES 

analysis to determine the elemental concentrations in the digests (See appendix A for list of 

elements assessed).  

 Digestion of the inorganic creek sediment followed United States Environmental 

Protection Agency (EPA) method 3050B (1996). Samples were finely milled and oven dried at 

65°C for 48 hours. One gram of each sample was added to the digestion tube, 10 ml concentrated 

HNO3 was added, and the tube was swirled to create a slurry. The solution was heated to 95°C 

for 10 minutes, after which time 5 ml of additional HNO3 was added. If brown fumes appeared, 
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the addition of HNO3 was repeated until brown fumes were no longer produced. The digestion 

was allowed to proceed for two hours, or until the solution volume decreased to 5 ml. The 

samples were removed from heat and allowed to cool, after which 2 ml of DI water and 3 ml of 

30% H2O2 were added (H2O2 added as single drops to prevent overly vigorous reaction). The 

samples were returned to heat at 95°C, and allowed to digest until effervescence ceased. At this 

point H2O2 was added in 1 ml aliquots until minimal effervescence occurred (a maximum of 10 

ml H2O2 could be added). The solution was allowed to digest for two hours, or until it was 

reduced to 5 ml. At this point, 10 ml of concentrated HCl was added, and allowed to digest at 

95°C for 15 minutes. After cooling, samples were then filtered using Whatman #42 filter paper, 

diluted to 100 ml, and shaken thoroughly to ensure a homogeneous solution. The solutions were 

transferred to centrifuge tubes, and submitted to the Lakehead University Instrument Lab (LUIL) 

for ICP-AES analysis to determine the elemental concentrations in the digests. 

2.2  Easily Available Substances (EAS) Analysis 

 In order to assess the potential for biodegradability of the candidate organic substrates, a 

testing procedure known as Easily Available Substances (EAS) was utilized (Prasad et al., 1999; 

Gibert et al., 2004). The EAS fraction is ‘‘the organic portion of a substrate that can be readily 

used by the microorganisms”. The test was conducted following the procedure described by 

Prasad et al. (1999) and Zagury et al. (2006). Samples were oven dried at 60°C for 24 hours. 

Two grams of material (measured to nearest 0.001 g) was transferred to a digestion tube, and 

then soaked with acetone, agitated, and allowed to soak for 5 minutes. This material was poured 

out and collected using a funnel and filter paper, and dried overnight. The dried material was 

transferred to a digestion tube, and digested in 5% HCl at 95°C for 1 hour, adding HCl as 

necessary to prevent drying. The material was poured out and collected using a funnel and filter 

paper, and residual material was dried for 48 hours. The final mass was measured, and the 
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difference between the initial mass and final mass represents the lost EAS fraction. This material 

was then collected for acid digestion and C/N/S analysis in order to determine what chemical 

fractions were contained within the EAS fraction. 

2.3  CNS Analysis  

 Carbon-nitrogen-sulphur (CNS) combustion analysis was used to determine the carbon, 

nitrogen and sulphur contents of the candidate organic substrates. Sample preparation for this 

analysis required milling samples to a powder, or in the case of hay, cutting the material to the 

finest degree possible. Samples for both raw substrate and EAS treated substrates were submitted 

to the Lakehead University Instrument Laboratory (LUIL) and analyzed using CHNS Elementar 

Vario EL analyzer in order to determine changes in composition following removal of the EAS 

fraction.  Samples were loaded into tin boats and then combusted through an automated process 

at 1150°C. The combustion process results in gasification of the sample. These gases are reduced 

to N2, CO2, and SO2, and carried in a helium gas stream. CO2 and SO2 are adsorbed while 

passing through the adsorption columns, while N2 is allowed to reach the detector. Following 

detection of the N2 peak, the CO2 column is heated to release CO2 and is detected. Finally the 

SO2 column is heated and SO2 is released and detected. A connected computer calculates the 

elemental concentration from the detector signal and sample weight based upon stored 

calibration curves (Elementar Vario EL cube technical brochure, undated). 

 

 

 

 

 



24 
 

 
 

Chapter 3: Material Testing Results 

3.1  ICP-AES and Easily Available Substances Analysis 

The complete results for ICP-AES and EAS analyses of candidate reactive materials are 

provided in Appendix A. The primary parameter of interest from the acid digestions is 

phosphorus (Fig. 3.1). Phosphorus is an important nutrient for bacterial metabolism, and has 

been reported to promote optimal levels of sulphate reducing bacteria activity when combined 

with carbon and nitrogen in a 110:7:1 (C:N:P) ratio (Kuyucak and St-Germain, 1994; Cocos et 

al., 2002).  

 
Figure 3.1: Phosphorus concentrations in untreated substrates as determined by ICP-AES. Error 
bar in top left illustrates a 3σ error. 

Poultry manure has the highest phosphorus content at 19,825 mg/kg, with plant based 

substrates, hay and leaves, having the lowest phosphorus content, with 2570 mg/kg and 2264 

mg/kg, respectively. The remaining substrates have somewhat higher phosphorus, with sheep at 

5853 mg/kg, cow at 5847 mg/kg, rabbit at 4453 mg/kg, and horse at 4276 mg/kg. All substrates 

had a significantly reduced phosphorus content following EAS treatment (Fig. 3.2). The general 
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proportions between the different substrates remained similar, with poultry having the highest 

concentration at 1497 mg/kg, and rabbit the lowest at 367 mg/kg.  

 
Figure 3.2: Phosphorus concentrations in EAS treated substrates as determined by ICP-AES. 
Error bar in top left illustrates a 3σ error.  
 
 While phosphorus was the primary constituent of interest, as it was needed in order to 

determine the reactive media used and the required proportions, the full array of elements 

available for detection by ICP-AES was also tested. The results for aluminum, iron, magnesium, 

sodium, and sulphur are presented in Figure 3.3, while calcium and potassium are presented in 

Figure 3.4. Horse manure contains elevated values for aluminum, iron, and magnesium, while 

poultry manure has elevated amounts of magnesium, sodium, sulphur, calcium, and potassium 

present relative to the other substrates tested. Hay generally has lower detected values for most 

parameters, with the exception of potassium, for which it has a higher than average 

concentration. Cow, leaf, sheep, and rabbit manure generally had unremarkable results compared 

to the other substrates. 
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Figure 3.3: ICP-AES determined concentrations of aluminum, iron, magnesium, sodium and 
sulphur in raw substrates. Error bars illustrate a 3σ error. Error less than symbol size for Fe and 
Na. 

 
Figure 3.4: ICP-AES determined concentrations of calcium (left) and potassium (right) in raw 
substrates. Error bars illustrate a 3σ error. Error less than symbol size for calcium. 

Two sets of EAS testing were conducted, and the averaged results are shown in Figure 

3.5. These results indicate that poultry manure is by far the most readily degraded substance, 

with an average mass loss of 70.5%. The two plant materials performed similarly to each other, 

with leaves losing 36.6% of the sample mass, while hay lost 35.5%. Rabbit and sheep manure 
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underwent moderate mass losses of 32.6% and 28.9%, respectively. Finally, horse and cow 

manure proved less readily degradable, losing 21.2% and 21.1%, respectively. 

 
Figure 3.5: Mass losses of organic substrates resulting from Easily Available Substances 
analysis. 

3.2  Carbon-Nitrogen-Sulphur  

Each of the candidate substrates was subjected to CNS combustion analysis to determine 

the proportion of carbon, nitrogen, and sulphur present. Carbon and nitrogen are critical 

parameters for determining the C:N ratio, an important tool for final substrate selection. In 

addition, the carbon content is needed to determine the final mass of substrate to use, based upon 

organic carbon nutrition requirements for sulphate reducing bacteria. In order to assess the 

availability of this carbon, the CNS combustion analysis was completed on untreated substrates 

as well as on EAS residue. These results are presented in Figure 3.6, with full results given in 

Appendix A. In EAS residues, the proportion of carbon rose in cow, hay, leaves, poultry and 

sheep; meaning that non-carbon bearing fractions were proportionally more degraded by the 

EAS test. Horse and rabbit manure did not exhibit significant changes, and thus the carbon 

fraction was degraded in a proportionate manner. 
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Figure 3.6: Carbon content by mass in raw substrates and EAS residues. Error bar in top left 
illustrates a 3σ error. 
 Nitrogen comprises a significantly smaller mass fraction of the substrates, ranging from 

1% in hay to 3.2% in poultry (Fig. 3.7). Horse, cow, sheep, rabbit, and leaves are comprised of 

1.3%, 1.7%, 1.9%, 1.9%, and 2.2% nitrogen, respectively. These proportions rose in cow, hay, 

and leaves for EAS residues, indicating that the nitrogen fraction is proportionately less 

degraded, while poultry has less nitrogen, meaning that the nitrogen fraction was more degraded. 

Horse, rabbit, and sheep manures are not significantly different following EAS testing. 

 
Figure 3.7: Nitrogen content by mass in raw substrates and EAS residues. Error bar in top left 
illustrates a 3σ error. 
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 Sulphur comprises less than 1% of the substrate by mass in all raw substrates and EAS 

residues (Fig. 3.8). In raw substrates, the lowest concentration was found in hay, at 0.06%, while 

poultry was by far the richest in sulphur; containing 0.55% sulphur by mass. Horse, leaves, 

sheep, cow, and rabbit are comprised of 0.14%, 0.14%, 0.20%, 0.22%, and 0.24% sulphur, 

respectively. With respect to the other substrates, these proportions are similar following EAS 

testing. The slight increase in sulphur content in all EAS residues suggests that the sulphur 

fractions are consistently less degradable than other fractions comprising the organic substrates. 

 
Figure 3.8: Sulphur content by mass in raw substrates and EAS residues. Error bar in top left 
illustrates a 3σ error. 
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Chapter 4: Implications for Reactive Media Design 

4.1 Reactive Media Performance Considerations 

Phosphorus is an important nutrient for bacterial metabolism, and has been reported to 

promote optimal levels of sulphate reducing bacteria activity when combined with carbon and 

nitrogen in a 110:7:1 (C:N:P) ratio (Kuyucak and St-Germain, 1994; Cocos et al., 2002). The 

results for other parameters determined by acid digestion (Section 3.1) are not critical in 

determining the ideal composition of the reactive mixtures. Figure 4.1 shows the phosphorous-

normalized abundances of carbon and nitrogen (phosphorus assigned a value of one), and allows 

for comparison against the desired C:N:P ratio of 110:7:1.  

 
Figure 4.1: Normalized C, N, P content, with P assigned a value of 1. Combined ICP and CNS 
data. 

These results show that phosphorus concentrations are too low to reach this ratio in any 

of the substrates tested. Due to the relatively higher phosphorus and lower carbon contents in 

poultry manure, the ratio for poultry of 1772:160:1 was the closest, while sheep manure had the 

next best result, with a ratio of 7730:325:1. Due to the low phosphorus content in the plant-based 
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substrates, both hay and leaves have C:P ratios in excess of 15000:1. The change in phosphorus 

content from raw samples to EAS treated samples was also assessed, in order to determine the 

relative availability of phosphorus in each substrate (Fig. 4.2). All substrates exceeded a 78% 

EAS loss, while poultry and rabbit manure exceeded 90% and phosphorus in leaf compost was 

the least mobile, at 79%. These results reinforce poultry manure as being the best source for 

phosphorus as it achieved the lowest C:N:P ratio and highest EAS mass loss. 

 
Figure 4.2: Phosphorus loss following EAS testing. 

EAS testing seeks to assess the potential for biodegradation in natural environments by a 

chemical treatment which can simulate the bioavailability of compounds in the organic materials 

in a short term test. According to Prasad et al. (1999) and Gibert et al. (2004), the EAS fraction is 

‘‘the organic portion of a substrate that can be readily used by the microorganisms”. The value of 

the EAS test is twofold: 1) this testing will help to ascertain which materials have greater 

biodegradability, and thus are more efficient substrates; and, 2) the values determined can be 

used as a guideline in determining the final masses of substrate required to sustain SRB activity 

over the life of the system. Based on this test alone; poultry, rabbit, and sheep would be manure 

candidates for further consideration, while both hay and leaves are worth further consideration as 
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the plant based substrate given that the results have not provided significant differentiation (Fig 

4.3). The limited mass lost (~20%) by horse and cow manure suggests that these substrates 

would be less readily degraded, and would therefore provide less nutrients to sulphate reducing 

bacteria. 

 
Figure 4.3: EAS determined mass losses of organic substrates. 

Carbon and nitrogen are required for microbial nutrition, assisting both with 

biodegradation as well as sulphate reduction. A C:N ratio near 10 is generally considered ideal 

for the stimulation of microbial activity and biological degradation of complex substrates 

(Reinertson et al., 1984; Bechard et al., 1994; Prasad et al., 1999; Zagury et al., 2006). The exact 

value of 10 is not critical; however, it acts as helpful guide for comparing potential substrates. 

Carbon-nitrogen determinations were conducted on raw samples and the residues from EAS 

testing. By analyzing the residue from EAS analysis, it was possible to determine which fractions 

are more readily degradable. The C:N ratio for each substrate is presented in Figure 4.4. Poultry 

manure is the closest to achieving the desired ratio, with a C:N ratio of 11, while leaves and hay 

are less effective with a C:N ratio of 18 and 41, respectively.   
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Figure 4.4: Carbon to nitrogen ratio of organic substrates. 

 CNS analysis of the residues from EAS testing can be used to assess the degree of 

degradation of organic substrates. The change in nitrogen and carbon values after EAS testing is 

given in Figure 4.5. For some substrates, such as horse and rabbit manure there is only a minor 

change in the proportions of nitrogen and carbon following EAS testing. However, others, such 

as hay and leaves underwent a significant (15-37%) increase in carbon and nitrogen content, 

meaning that fractions with low nitrogen and carbon content were preferentially removed, 

resulting in a higher concentration of nitrogen and carbon in the remaining substrate. This is a 

potential negative for nutrient supply, as the mass lost in EAS testing is not nitrogen- or carbon-

rich. Cow and sheep manure both have small (4-10%) increases in carbon and nitrogen content. 

Finally, poultry manure is unusual in that nitrogen content declined significantly, while carbon 

content increased significantly. This indicates that the material lost from poultry manure in EAS 

testing is nitrogen-rich and carbon-poor, and consequently would have a very low C:N ratio. 

However, in a mixed substrate situation, this might help to balance out the higher C:N ratio 

compounds released by hay or leaves. 
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Figure 4.5: Percentage change in nitrogen and carbon after EAS testing. 

Tables 4.1 and 4.2 summarize the results from the acid digestions, EAS, and CNS 

analyses. In each reactor one manure substrate and one cellulosic substrate were used, and thus 

the two types of substrates are ranked separately.  The score reflects the sum of ratings on each 

test, and thus a low score reflects good performance. ICP-AES results from digestions 

determined that poultry manure has by far the highest phosphorus content, as well as the best 

C:N:P ratio. Hay and leaves have lower phosphorus content than the manure substrates, with hay 

having a slightly better C:N:P ratio than leaves. EAS testing determined that the most readily 

degradable manure is poultry, while hay and leaves performed similarly, although leaves are 

slightly more degradable. CNS testing demonstrated that poultry yields the best C:N ratio for 

manures, although the EAS residue indicated that the degraded fraction would have a very low 

C:N ratio. This low C:N ratio in poultry manure would be mitigated in a mixed substrate 

situation, where cellulosic substrates have a higher than desired C:N ratio. Leaves produced a 

better C:N ratio than hay, and their degradability is similar.  
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Poultry manure consistently met the desired criteria in each substrate analysis, while 

sheep and rabbit manure were second and third, respectively. Based on this information, poultry 

and sheep manures were selected as the manure substrates for the flow-through reactor 

experiments. The two plant based substrates achieved similar results to each other, with the 

notable exception of C:N ratio, in which leaves produced a more desirable result. Based on this 

result, leaves were used in two of the three reactive mixtures, while hay was used in one. 

Table 4.1: Relative performance ranking of each manure substrate. 
 

  Phosphorus EAS CNS Score 
Cow 3 5 4 12 
Horse 4 4 5 13 
Poultry 1 1 1 3 
Rabbit 5 2 2 9 
Sheep 2 3 3 8 

 

Table 4.2: Relative performance ranking of each cellulosic substrate. 
 

  Phosphorus EAS CNS Score 
Hay 1 2 2 5 
Leaves 2 1 1 4 

 

4.2 Reactive Media Selection for Flow-Through Reactor Experiments 

 In order to determine the required mass of each substrate to be used in the reactor 

experiments, calculations were made based on the stoichiometric carbon requirement for 

operation of the flow through reactor over a period of six months at a flow rate of 0.1 mL/min 

(see Appendix B for details of these calculations). These calculations yield a theoretical mass of 

5.14 g of carbon per reactor as being required to remove all sulphate from solution, assuming an 

influent concentration of 1585 mg/L SO4
2-. In order to calculate the actual mass of substrate 

required, the hypothetical mass is corrected for the percentage of carbon in the substrate, as 

determined by CNS analysis. This mass is further corrected for the biodegradation potential as 
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determined by EAS testing, to yield an actual mass requirement for each substrate (Table 4.3).  

No attempt has been made to quantify potential losses, as DOC or POC, to effluent waters.  

Table 4.3: Organic substrate mass requirements per reactor. 

Substrate Carbon % Mass Required (g) EAS % Corrected Mass Required (g) 

Poultry 35.13 14.63 70.5 20.75 
Sheep 45.25 11.36 28.9 39.29 
Leaves 40.46 12.70 36.6 34.70 
Hay 41.60 12.35 34.5 35.80 

  
The requirement for zero valent iron was calculated in a similar fashion to the substrate 

requirements. The molar requirement of iron for the precipitation of FeS over six months, at a 

flow rate of 0.1 mL/min was determined to be 23.88 g per reactor. This value was adjusted to 

reflect the fact that only the surface of the iron spheres will be available for dissolution and that 

over the course of the experiment only a limited segment of the diameter may dissolve. It was 

determined that under a conservative scenario only 18% of the iron may dissolve, and therefore 

132.67 g of iron should be placed within each reactor. This conservative dissolution estimate is 

based upon equal 0.2 mm dissolution around the circumference of a 3.18 mm diameter iron 

sphere, and calculating the percent mass loss under that scenario. Similar to organic substrates, 

no attempt has been made to quantify potential losses to effluent, and increased proportions 

would likely be required for a long term field operation. 

 The final reactive mixture design is presented in Table 4.4. Each organic reactor had one 

replicate, with one control reactor simulating natural aquifer conditions, and one other control 

reactor testing the impact of zero valent iron only, in order to be able to quantify abiotic versus 

biotic sulphate reduction. The experimental setup only allowed for a total of eight reactors, 

therefore there could only be three organic reactor mixtures, since each mixture will be used 
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twice. Given this limitation, it was determined that the group of three different mixtures would 

test two manure substrates as well as two plant substrates. The higher rated leaves and poultry 

were used twice, while hay and sheep were only used once. Matrix support and creek sediment 

were used in sufficient mass to fill the reactors, with matrix support being the primary 

constituent in order to ensure porosity was maintained. Silica sand was selected for use as matrix 

support as it was expected to remain unreactive in the conditions present during the flow-through 

reactor experiments. 

Table 4.4: Reactive mixtures for flow-through reactor experiments. 
 
Reactor 1 g Reactor 2 g Reactor 3 g Reactor 4 g 
Leaf compost  35 Leaf compost  35 Hay  36 Matrix support 850 
Poultry  21 Sheep  36 Poultry  21 Creek sediment 320 
Matrix support 400 Matrix support 400 Matrix support 360 Zero-valent iron 133 
Creek sediment 200 Creek sediment 200 Creek sediment 180    
Zero-valent iron 133 Zero-valent iron 133 Zero-valent iron 133     
                
Reactor 5 g Reactor 6 g Reactor 7 g Reactor 8 g 
Leaf compost  35 Leaf compost  35 Hay  36 Matrix support 840 
Poultry  21 Sheep  36 Poultry  21 Creek sediment 340 
Matrix support 400 Matrix support 400 Matrix support 360    
Creek sediment 200 Creek sediment 200 Creek sediment 180    
Zero-valent iron 133 Zero-valent iron 133 Zero-valent iron 133     
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Chapter 5:  Flow-Through Reactor Methods and Design 

5.1 Reactor Setup 

 The reduction-oxidation cell pairs utilized in the flow-through experiments were designed 

to simulate the behaviour of a permeable reactive barrier (PRB) system, combined with a 

settling/oxidation pond. This system aimed to encourage the biochemical reduction of dissolved 

sulphate from the influent water, resulting in the precipitation of iron sulphides. This treatment 

should produce effluent water which has a much lower sulphate concentration, and is potentially 

suitable for release into the local environment adjacent to a field PRB installation. Stock water 

representing the toxic mine pit waters is pumped via peristaltic pump into each of the reduction 

cells for sulphate removal. Reduction cell effluent then flows to the oxidation cells for settling 

and oxidation of organics, before flowing to the combined waste collection container (Fig. 5.1).  

 
Figure 5.1: Diagram of experimental system. 
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 The experimental setup begins with a stock of the water to be treated. This water was 

previously collected (2009) from the Hogarth Pit at the Steep Rock site at a water depth of 18 m. 

All components prior to the oxidation cell were sealed with paraffin film as the system must 

maintain anaerobic conditions until water reaches the oxidation cell. The conditions are 

representative of the conditions of a field PRB, and critical to the activity of SRB, which are 

strictly anaerobic. A peristaltic pump operating at a flow rate of 0.1 mL/min provided a hydraulic 

gradient throughout the system, pulling water from the stock solution into the eight port manifold 

where water for each reactive cell pair was separated. The water was pumped into the bottom of 

each of the eight vertically oriented flow-through reduction cells, in order to operate in an up 

flow manner, to minimize gravitational settling. Each cell was composed of clear PVC, has a 

5.08 cm diameter, with a length of 40 cm, and a volume of 850 ml. Within each cell, a different 

mixture was prepared to test a variety of reactive mixtures. Six of the reactors contained mixtures 

of two different organic carbon sources, zero valent iron spheres, silica sand to provide matrix 

support, and creek sediment as a source of SRB and additional matrix support. Three different 

organic mixtures were used in order to allow each to have a replicate. Two control reactors were 

used, consisting of: A) zero valent iron spheres, silica sand, and creek sediment, in order to 

assess the effectiveness of abiotic sulphate removal by zero valent iron, and B) silica sand and 

creek sediment as a natural environment control. Each flow-through cell consists of a single 

reaction chamber with the reactants mixed and distributed throughout the chamber.  

 The organic components were selected based upon the results of the organic media 

characterization study (Chapter 4). Equal amounts of organic carbon are supplied by each 

organic component; however, the actual mass used was determined based upon: 1) the carbon 

content percentage (as determined by C/N/S combustion); and 2) the availability of the carbon as 

determined by EAS testing. Therefore, while the mass of each component varied, the organic 
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carbon available to sulphate reducing bacteria is the same for each substrate. Zero-valent iron 

accounts for a disproportionate amount of the total mass due to its high density.  In contrast, 

organic materials were of considerably lower density than other materials used and occupied a 

significant volume despite their limited mass. The mixtures and their mass proportions are given 

in Table 5.1. 

Table 5.1: Reduction cell mixtures and proportions. 
 

Reactor 1 % Reactor 2 % Reactor 3 % Reactor 4 % 
Leaf Compost 6 Leaf Compost 6 Hay 7 Silica Sand 65 
Poultry Manure 4 Sheep Manure 6 Poultry Manure 4 Creek sediment 25 
Silica Sand 49 Silica Sand 48 Silica Sand 48 Zero-valent iron 10 
Creek sediment 25 Creek sediment 24 Creek sediment 24 

 
  

Zero-valent iron 16 Zero-valent iron 16 Zero-valent iron 17     
                
Reactor 5  % Reactor 6  % Reactor 7  % Reactor 8  % 
Leaf Compost 6 Leaf Compost 6 Hay 7 Silica Sand 71 
Poultry Manure 4 Sheep Manure 6 Poultry Manure 4 Creek sediment 29 
Silica Sand 49 Silica Sand 48 Silica Sand 48 

 
  

Creek sediment 25 Creek sediment 24 Creek sediment 24 
 

  
Zero-valent iron 16 Zero-valent iron 16 Zero-valent iron 17     

  
The two organic carbon sources provided the electron donor for SRB, while zero valent 

iron provided Fe2+ to solution in order for aqueous sulphide produced by the SRB to precipitate 

as an iron sulphide. The mass of zero valent iron needed was determined based upon a molar 

calculation of the amount of sulphate to be removed over the course of the experiment, combined 

with very conservative estimates of the dissolution of zero valent iron. These calculations yielded 

a value of 132.67 grams of iron to be emplaced into the reduction cell (section 4.2). The iron 

spheres used have a diameter of 4.7625 mm. SRB are common in the natural environment, and 

sediment expected to contain SRB was extracted from the anaerobic zone of the McIntyre River 

on the Lakehead University campus. Manure also commonly contains SRB; however, it is 

uncertain whether any would be transferred into a PRB with the manure. This is due to the fact 
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that in a field-scale PRB; emplacement of manure directly in the groundwater flow would raise 

environmental concerns regarding bacterial contamination of the groundwater. Consequently, it 

is likely that the manure would have to be treated prior to emplacement in order to neutralize any 

bacteria present; manure was oven dried in order to be consistent with this requirement. Sheep, 

poultry, and cow manures, as well as hay, were collected from Sleepy G Farms, Pass Lake, ON. 

Horse manure was collected at Cryderman Quarter Horses, Murillo, ON.  Rabbit manure and 

leaves were provided courtesy A. Conly. Silica sand, included in order to maintain hydraulic 

conductivity through the reduction cell, was sub-rounded to sub-angular and had a grain size of 2 

to 3 mm.  

 The components within the reduction cell were mixed and equally distributed throughout 

the reaction chamber such that sulphate reduction could occur throughout, and equal flow 

through the reactor is permitted. Consistent and equal mixing is also important to prevent flow 

channeling which can significantly reduce residence time and limit water interaction with 

reactants. The reduction cells were wrapped in aluminum foil in order to prevent light from 

reaching the reaction chamber. This not only reflects the conditions of a field PRB, but also 

prevents the growth of photolithotrophic bacteria which could impact the results of the 

experiment. The peristaltic pump maintained a hydraulic gradient throughout the system, and 

forced water to flow through the reduction cell. At both the inlet and outlet ports of the reduction 

cells 300 µm nylon mesh screening was installed to prevent the loss of major particles. A 2 cm 

layer of silica sand was placed between the screening and the reactive mixture in order to 

maintain permeability in these critical junctions (Fig. 5.2).  
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Figure 5.2: Diagram of reduction cell. 

 From the reduction cell the water flows through the outlet port, and via Tygon tubing is 

carried to the oxidation cell. On the route to the oxidation cell a valve is present to divert water to 

a sampling port. This port allows for the measurement of redox potential (Eh), which is an 

important parameter for the successful growth of sulphate reducing bacteria. The oxidation cell 

will raise the Eh value and thus it is necessary to be able to measure it at this stage. The oxidation 

cell exists in order to mitigate the heavy load of organic matter in the reduction cell effluent. This 

remnant organic matter could pose a threat to the health of a recipient water body if it were 

discharged directly, in a similar manner to a release of untreated sewage. Such an influx of 

nutrients could greatly enhance the growth of plants and microorganisms to an unstable level, 

and these organisms would consume vast quantities of dissolved oxygen. This can lead to the 
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death of other aquatic organisms such as fish. For these reasons, such a high organic load 

discharge would not be permitted under environmental regulations such as the Ontario 

Environmental Protection Act. A bubbler was installed in the oxidation cell in order to create an 

aerobic environment. In an aerobic environment the oxygen can be used as an electron acceptor 

in the following reaction: CH2O + O2 → CO2 + H2O. The rate of bubbling activity relative to the 

rate of water flow will ensure that the effluent water remains well oxygenated. Carbon dioxide 

and air from the bubbler are able to escape via an air release line at the top of the oxidation cell. 

 The second purpose of the oxidation cell is to act as a settling tank. The effluent water 

from the reduction cells has a high concentration of total suspended solids (TSS), mostly 

consisting of organic matter. This is undesirable for release into a natural water body, and thus 

should be mitigated. The oxidation cell is a vertically oriented cylindrical tube, with inflow near 

the bottom, and outflow at the top. This arrangement should result in a significantly reduced 

value for TSS in water exiting the oxidation cell as compared to influent water. The bubbler has 

a negative impact upon the settling rate; however, the bubbler is placed at the halfway point in 

the column such that influent water is not initially disturbed. As well, by designing the cell to 

have a residence time of four days, it is expected that a sufficient reduction in TSS can occur. 

The settling tank was constructed from PVC tubing, with a diameter of 50.8 mm, and a length of 

284.2 mm (Fig. 5.3). One settling tank is provided for the effluent from each reduction cell. At 

the effluent port, water exits via Tygon tubing to be carried to the sample collection phase. 
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Figure 5.3: Diagram of an oxidation cell.  

 The effluent water was carried to a nine port manifold at which point it was possible to 

control which reactor is draining into the final stage of the system; a critical step for accurate 

sampling. Under operational conditions (as opposed to during sampling) all eight reactors were 

allowed to drain through the manifold, and all water was directed to the waste water container. In 

preparation for sample collection, the outlet valves from the oxidation cells were closed. Closing 

these valves 24 hours in advance of sampling allowed water to build up in the headspace at the 

top of the oxidation cell, providing sufficient volume of water to be sampled. Before sample 

collection can occur, the lines must be cleaned in order to ensure an accurate and representative 

sample was collected. The additional port in the manifold is for de-ionized water, which was run 

through the manifold and sampling lines after closing the valves. This step was done in order to 

wash the lines clear of effluent water such that samples were not contaminated by previous water 

or residuals. Once the manifold and sampling lines were cleaned, each reactors valve was 
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individually re-opened in order to allow water from that reactor to flow into the collection area. 

A 3-way valve was adjusted to direct water to the sampling port, rather than from waste 

collection. These design features are illustrated in Figure 5.1. This process was repeated for each 

of the eight samples to be taken, with de-ionized water run through between each sample. Each 

of the eight reduction-oxidation reactor pairs operated concurrently for 23 weeks, with samples 

collected weekly. 

5.2  Flow-Through Reactor Monitoring Methodology 

 Oxidation-reduction potential (Eh) was measured using an in-line Mettler Toledo LE501 

redox electrode, while water samples were collected for all other parameters. All samples to be 

filtered were centrifuged prior to filtration due to the heavy particulate load. One unfiltered 

sample was submitted to the Lakehead University Environmental Lab (LUEL) in order to 

determine alkalinity, conductivity, and pH; while a filtered sample was submitted for ion 

chromatography (IC) analysis to provide data for sulphate, nitrate, and chloride. Conductivity 

and pH were measured using a Mettler Toledo SevenMulti, while alkalinity was measured by 

titration. In the procedure for alkalinity, an automatic titrator was used to titrate the solution with 

H2SO4 (either 0.020 N or 0.100 N) to reach a pH of 4.5. The volume of acid required to reach 

this pH was used to calculate the alkalinity. The IC analysis was conducted on filtered samples 

using a Dionex ICS-1100 ion chromatograph. A filtered sample was submitted to LUIL for ICP-

AES analysis in order to measure metals and major ions. Each sample for ICP-AES analysis was 

treated with approximately 0.5 mL nitric acid.  

5.3 Post Experiment Analytical Methods 

5.3.1  Mineralogical Analyses 

The mineralogy of the samples was determined by powder x-ray diffraction (P-XRD) 

analysis. A small volume of representative material from each sample was hand milled using an 
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alumina mortar and pestle, with acetone used to expedite the process by keeping the powder 

from dispersing and creating a slurry to ensure improved milling to a fineness of <75 µm. Silica 

sand was used to clean the mill between samples. The powder sample was then back loaded into 

XRD mounts, and it was ensured that the material was non-oriented to prevent bias in the XRD 

results. The group of samples was assessed at the Lakehead University Instrument Laboratory 

(LUIL) using the Pananalytical Expert Pro Diffractometer. XRD analysis was conducted on a 

spinning stage using Cu k radiation, scanning from 5.0146o to 89.9926o, with a step size of 

0.0130o, at a rate of 67.3200 seconds per step, with generator settings of 40 mA and 45 kV. The 

results from this analysis were provided in a data file for each sample, which was analyzed using 

XPert Highscore Plus software to determine the composition of each sample. 

Selected samples were analyzed using a Hitachi SU-70 scanning electron microscope 

(SEM) with a beam current of 10,000 volts. Images were taken using back scattered electron 

(BSE) microscopy. Energy dispersive x-ray spectroscopy (EDS) was utilized to determine semi-

quantitative elemental concentrations. Aztek software was used to interpret data received from 

the instrument and observe spectral peak positions for each element. 

5.3.2  Bulk Sample and Sequential Extraction Analyses 

Acid digestions were conducted to determine the composition of the reactor materials 

following completion of the experiment. Four samples were taken within each reactor (5 cm 

above bottom, 15 cm above bottom, 25 cm above bottom, and 35 cm above bottom) and 

digestion methodology followed United States Environmental Protection Agency (EPA) method 

3050B (1996). Samples were finely milled and oven dried at 65°C for 48 hours. One gram of 

each sample was added to the digestion tube, 10 ml concentrated HNO3 was added, and the tube 

was swirled to create a slurry. The solution was heated to 95°C for 10 minutes, after which time 

5 ml of additional HNO3 was added. If brown fumes appeared, the addition of HNO3 was 
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repeated until brown fumes were no longer produced. The digestion was allowed to proceed for 2 

hours, or until the solution volume decreased to 5 ml. The samples were removed from heat and 

allowed to cool after which point 2 ml of DI water and 3 ml of 30% H2O2 were added (H2O2 

added as single drops to prevent overly vigorous reaction). The samples were returned to heat at 

95°C, and allowed to digest until effervescence ceased. H2O2 was added in 1 ml aliquots until 

minimal effervescence occurred following addition of H2O2 (a maximum of 10 ml H2O2 could be 

added). The solution was digested for two hours, or until the solution was reduced to 5 ml. 10 ml 

of concentrated HCl was added, and allowed to digest at 95°C for 15 minutes. After cooling, 

samples were filtered using Whatman #42 filter paper, diluted to 100 ml, and shaken thoroughly 

to ensure homogeneity. The solutions were transferred to centrifuge tubes, and submitted to the 

Lakehead University Instrument Lab (LUIL) for ICP-AES analysis to determine the elemental 

concentrations. 

Carbon-nitrogen-sulphur (CNS) combustion analysis was used to determine the carbon, 

nitrogen and sulphur contents of the post-experiment materials. Sample preparation for this 

analysis required milling samples to a powder. Samples were submitted to the Lakehead 

University Instrument Laboratory (LUIL) and analyzed using CHNS Elementar Vario EL 

analyzer.  Samples were loaded into tin boats and then combusted through an automated process 

at 1150°C. The combustion process results in gasification of the sample, these gases are reduced 

to N2, CO2, and SO2, and carried in a helium gas stream. CO2 and SO2 are adsorbed while 

passing through the adsorption columns, while N2 is allowed to reach the detector. Following 

detection of the N2 peak, the CO2 column is heated to release CO2 and is detected. Finally the 

SO2 column is heated and SO2 is released and detected as well. A computer calculates the 

elemental concentration from the detector signal and sample weight based upon stored 

calibration curves (Elementar Vario EL cube technical brochure, undated). 
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Sequential extractions were conducted in order to assess the different phases and 

compounds present within the post experiment materials. A six stage extraction was used 

(modified after Stover et al., 1976 and Rudd et al., 1988), in which the material was placed in a 

50 mL centrifuge tube, saturated in a solution, and agitated in a reciprocating rocker for a set 

period of time (Table 5.2). Following each stage liquids were centrifuged and then decanted into 

a 15 mL centrifuge tube, taking care to prevent solids loss, and preserved for ICP-AES analysis. 

De-ionized water was added to the 50 mL centrifuge tube to remove residual chemicals from the 

previous stage, the sample was then agitated, centrifuged, and decanted. Stage one used de-

ionized water to remove salts that may have precipitated from the reactor water during the drying 

process and agitated for 30 minutes. Stage two used 1 M KNO3 solution to remove metal 

fractions designated as “soluble and exchangeable” and was agitated for 16 hours, which is the 

amount of time used in each of the remaining stages. In stage three 0.5 M KF solution was used 

to remove adsorbed metals, while stage four used 0.1 M Na4P2O7 solution to dissolve organic 

matter. Stage five utilized 0.1 M EDTA solution to remove the carbonate fraction, while the final 

stage used 1 M HNO3 in order to dissolve sulphide species.  

Table 5.2: Time periods for sequential extraction steps. 
 

Stage Time 
1.   De-ionized water 0.5 hours 
2.   1 M Potassium Nitrate 16 hours 
3.   0.5 M Potassium Fluoride 16 hours 
4.   0.1 M Sodium Pyrophosphate 16 hours 
5.   0.1 M EDTA 16 hours 
6.   1 M Nitric Acid 16 hours 
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Chapter 6: Results of Flow-Through Reactor Experiments 

6.1 Reactor Monitoring Summary 

The reduction cells were constructed based upon the mixtures presented in Table 4.4 

(Section 4.2). Each reduction cell was paired with an oxidation cell, and the oxidation cell 

effluent was collected to provide all data presented in this section, with the exception of ORP 

(Eh) data, which was collected directly from reduction cell effluent. The reactors were operated 

for a total of 23 weeks. Full data for the parameters presented below as well as all others 

collected by IC and ICP-AES for effluent water quality monitoring is available in Appendix C. 

During the initial four weeks, many of the results contain highly elevated values as 

certain components (Cl, Fe, K, Mn, and Na) are rapidly flushed through the system, and the data 

for some parameters does not appear to follow a clear trend. After this period, most of the data 

began to follow more apparent trends; although for some parameters a high degree of variability 

from week to week was still present. Effluent volumes began to progressively decrease following 

week 10; this was assumed to be due to blockages within the reduction cells; however, it was 

later determined that precipitates had formed within the influent flow lines and manifold. This 

caused a drop in the influent flow volume, until the problem was identified and remedied after 

several flow-through reactors failed to produce sufficient effluent volume in week 18. This 

problem first impacted only reactor 6, and later reactor 2, which was why the problem was not 

realized to be located in the intake flow lines. Missing data for these reactors, as well for several 

other reactors in week 18 is due to this flow issue. As a result of fixing this problem, flow rates 

increased significantly ahead of week 19 sampling, and several values for week 19 show 

anomalies associated with this change. 
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In Figures 6.1 through 6.7, each individual reactor is represented by one line with 

markers for each data point, while the influent stock water is presented by red diamonds, without 

connecting lines.  

6.1.1  Sulphate and Total Sulphur 

 All reactors demonstrated an immediate ability to remove sulphate from solution, with 

reactors 1, 2, and 3 all producing sulphate concentrations below 150 mg/L (Fig. 6.1). By week 3, 

all reactors (except #5) containing organic substrates produced effluent with sulphate 

concentrations below 115 mg/L, while influent water contained 1760 mg/L sulphate. These 

values were generally sustained through week 7, after which time most of the reactors began to 

lose their capacity for sulphate removal. The sulphate concentration in influent water was also 

measured to have increased at this point. In week 9, reactors 3 and 7 (replicates) continued to 

produce high levels of sulphate removal, with 106 mg/L and 426 mg/L, respectively. The other 

organic amended reactors still removed significant sulphate, with concentrations from 650 mg/L 

to 900 mg/L. The two control reactors produced very similar results at this point, with reactor 4 

measured at 1891 mg/L and reactor 8 measured at 1849 mg/L, while the influent water contained 

2342 mg/L sulphate. Most of the reactors continued to show a progressive increase in sulphate 

concentrations over time, and by the end of the experiment, none of the reactors had 

concentrations below 1000 mg/L. The highest performing reactor with respect to sulphate 

removal at the end of the experiment was reactor 1 (poultry manure and leaves), at 1088 mg/L, 

while reactors 2 (sheep manure and leaves), 3 (poultry manure and hay), 5 (poultry manure and 

leaves), 6 (sheep manure and leaves), and 7 (poultry manure and hay) all were within the range 

1140 to 1210 mg/L. The two control reactors, 4 and 8, were 1791 mg/L and 1588 mg/L, 

respectively, while influent stock water was measured at 2099 mg/L. 
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Figure 6.1: Variation in dissolved sulphate content of the effluent over the 23-week duration of 
the flow-through experiment. 

Sulphur values increased progressively during the first half of the experiment, and then 

more rapidly during the final weeks (Fig. 6.2). It is important to consider the relationship 

between sulphate and total sulphur in this system. While there does not appear to be a direct 

relationship between sulphate and sulphur values, there is a long term pattern of rising values for 

each, with sulphate on average 250 to 450 mg/L higher than sulphur, with the exception of 

reactors 4 and 8 in which sulphate exceeds sulphur by 1000 mg/L on average (Fig 6.3). Molar 

concentrations are more similar between sulphur and sulphate for some reactors, while in others 

there is a strong difference. In reactors 1 and 5 the average sulphate concentration was 8.25 

mol/L, while the average sulphur concentration was 13.5 mol/L. In reactors 2 and 6 the average 

sulphate concentration was 5.10 mol/L, and the average sulphur concentration was 4.40 mol/L. 

In reactors 3 and 7 the average sulphate concentration was 4.91 mol/L, and the average sulphur 

concentration was 4.14 mol/L. Finally, in reactors 4 and 8, the average sulphate concentration 

was 15.87 mol/L, while the average sulphur concentration was 13.28 mol/L 
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Figure 6.2: Variation in total sulphur content of the effluent over the 23-week duration of the 
flow-through experiment. 

 
Figure 6.3: Variation in total sulphur and sulphate content for averaged replicate reactors from 
effluent water over the 23-week duration of the flow-through experiment. 
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6.1.2  pH and Conductivity 

The pH of the effluent waters remained within a relatively narrow range from 7 to 9, 

while stock water was typically near 8 (Fig. 6.4). Reactor 8, containing only creek sediment and 

silica sand had a notably lower pH throughout the experiment than the other reactors, reaching a 

minimum of 6.5 in week 3. In contrast, reactors 2, 3, and 6 had consistently higher pH values, 

with most results above 8 after week 5. 

Values for conductivity are missing for the first four weeks due to equipment failure. 

Following this point, most reactors had steady values over the course of the experiment, ranging 

between 2000 to 2500 µs/cm, although reactors 2, 3, and 6 started initially lower at ~1500 µs/cm, 

before reaching similar values to the other reactors by week 20. 

 
Figure 6.4: Variation in pH of the effluent over the 23-week duration of the flow-through 
experiment. 
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sulphide will not be removed from solution. Due to the low concentration of metals in the stock 

water, iron had to be added to the reactors as iron spheres, which upon reaction with the stock 

water would contribute iron to solution. Iron concentrations in the effluent waters are 

significantly elevated during the first three weeks when the fresh iron sphere surfaces were most 

reactive (Fig. 6.5).  Despite a sharp initial drop, a progressive decline in iron concentrations is 

observed through week 10. Reactor 7 had very high iron values for the first four weeks, and 

exceeded 100 mg/L for the first two weeks. Reactor 8 maintained higher iron values than all 

other reactors after week 3. Reactors 1 and 5 generally had the lowest iron concentrations 

through the duration of the experiment. All reactors contained higher iron content in their 

effluent than the influent water, with the exception of reactors 1 and 5 in week 13. After week 11 

iron concentrations are relatively consistent, with most reactors (excluding #8) near or below 0.1 

mg/L. 

 
Figure 6.5: Variation in iron content of the effluent over the 23-week duration of the flow-
through experiment. 
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6.1.4 Phosphorus 

The two control reactors which contain no added organic matter did not have detectable 

levels of phosphorus at any time (Fig. 6.6). Reactors 1, 3, 5, and 7 had highly variable 

phosphorus concentrations over the course of the experiment, ranging from <1 mg/L to 5 mg/L. 

Reactors 2 and 6 were much more consistent with values below 2 mg/L. 

 
Figure 6.6: Variation in phosphorus content of the effluent over the 23-week duration of the 
flow-through experiment. 
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consistently below -100 mV after week 8. In contrast, influent water was observed to have 

positive values between zero and 200 mV (Fig. 6.7). 

 
Figure 6.7: Variation in oxidation-reduction potential (Eh) of the effluent over the 23-week 
duration of the flow-through experiment. 

6.1.6  Alkalinity 

 Total alkalinity values (as mg/L CaCO3) were highly elevated in reactors containing 

added organic material during the first four weeks, with organic-bearing reactors above 850 

mg/L in week 3 and declining to below 600 mg/L in the final four weeks. Reactors 4 and 8, 

which contained no organic material, were consistently in the range of 100-200 mg/L over the 

course of the experiment.  

6.1.7  Major Cations  

Calcium was generally consistent over the course of the experiment, with reactors 1, 4, 5, 

7, 8 all within the range 150 to 300 mg/L. Reactors 2, 3, and 6 were more variable, ranging from 

50 to 200 mg/L.  

-400

-300

-200

-100

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

mV 

Week 

Reactor 1

Reactor 2

Reactor 3

Reactor 4

Reactor 5

Reactor 6

Reactor 7

Reactor 8

Stock



58 
 

 
 

Magnesium was also relatively constant over the duration of the experiment. Values for 

magnesium were slightly lower in most reactors during the first few weeks, except for reactors 4, 

5, and 8 which were consistent with later data. After week 9, all reactors consistently produced 

magnesium concentrations in the range of 150 to 200 mg/L.  

Sodium and potassium exhibited similar behaviour, with highly elevated values (>50 mg/L 

Na and >100 mg/L K) observed during the first three weeks, moderately elevated values (~30 

mg\L Na and 7 to 30 mg/L K) from weeks 4 through 10, and finally dropping to a stable level 

(~20 mg/L Na and ~6 mg\L K) after week 10.  

Manganese concentrations were elevated in all reactors, except #3, for the first 4 weeks; 

with reactors 7 and 8 extremely elevated (up to 14.3 mg/L in week 1). Following this initial 

period, all reactors (except #8) were below 2 mg/L by week 5 and below 1 mg/L by week 11. 

Reactor 8 continued to have elevated manganese values relative to the other reactors over the 

course of the experiment, although these values were below 2 mg/L by week 11.  

6.1.8  Anions  

Highly elevated chloride concentrations (50-130 mg/L) were observed during the first two 

weeks, after which values decreased to a generally more consistent in the range of 10 to 30 

mg/L. However, several inexplicable spikes and drops were observed in individual weeks, but 

values returned to typical levels in the following week.  

Nitrate values were generally low, with the majority of samples containing less than 0.2 

mg/L, and many below detection limit. An anomaly is observed in week 4 with all samples 

spiking to significantly higher values (highest was 0.943 mg/L in reactor 8); no laboratory error 

was found, and contamination is a possible explanation.  
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6.2  Post Experiment Materials Assessment 

 In order to thoroughly assess the composition of materials within the reactors following 

completion of the flow through experiment, four samples were taken within each reactor: Sample 

A represents the lower quarter of the reactor material (influent end); samples B and C represent 

the lower middle and upper middle quarters, respectively; and, sample D represents the top 

quarter (effluent end). Efforts were taken to limit the amount of water contained within the 

collected samples in order to prevent excessive precipitation of compounds during the drying 

process. However, it is likely that some precipitation did occur as the saturated materials dried. 

Complete data for all of the post experiment material assessments is provided in Appendix D. 

6.2.1 Acid Digestions 

 In order to assess the behaviour of the flow-through reactor experiments, it was necessary 

to compare the composition of the materials before and after the experiment. To achieve this, 

nitric acid digestions were conducted.  The results for selected parameters are presented in 

Figures 6.8 to 6.11, which combine results for samples from replicate reactors. Complete data for 

these digestions is available in Appendix D.  

The digestion results for reactors 1 and 5 are presented in Figure 6.8; these replicate 

reactors contained leaf compost and poultry manure as the organic components. Iron is the most 

abundant element detected in each sample, with values ranging between 1.5 (5C) and 2.4 wt% 

(1C). The concentrations of aluminum, calcium, magnesium, and sulphur are similar to each 

other (2-5 wt%), with sample 1C having the highest values for aluminum and magnesium, while 

1B has the highest values for calcium and sulphur. Potassium, sodium, and phosphorus have 

notably lower concentrations; the maximum potassium concentration of 5059 mg/kg corresponds 

to 5B, with 1B yielding the minimum value of 2367 mg/kg. Maximum and minimum sodium 

concentrations were measured in 1C (2523 mg/kg) and 5C (1470 mg/kg), respectively. 
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Phosphorus concentrations are highest in sample 1B with a value of 6909 mg/kg, while the 

minimum was 4218 mg/kg in 5C. Overall, the only apparent trend in this data is lower 

concentrations in sample 5C, which has the lowest concentration of the four elements. 

 
Figure 6.8: Post flow-through experiment digestion results for reactors 1 and 5.  

 In general, reactors 2 and 6 (Fig. 6.9) follow similar trends to those observed in Figure 

4.18. However, phosphorus concentrations are lower, while sulphur concentrations are higher. 

For reactors 3 and 7 (Fig. 6.10), the general patterns are once again very similar, although 

phosphorus concentrations returned to the higher levels observed in reactors 1 and 5, while 

sulphur concentrations rose again, becoming the second most abundant element detected after 

iron. Overall, little trend is observed between the samples, although sample 3B consistently has 

higher concentrations than sample 7C. 
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Figure 6.9: Post flow-through experiment digestion results for reactors 2 and 6. 

 
Figure 6.10: Post flow-through experiment digestion results for reactors 3 and 7. 
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 Digestion results for reactors 4 and 8 (Fig. 6.11) show some variation from the previously 

discussed samples, which is anticipated given that these reactors did not contain any added 

organic matter. Concentrations of aluminum, calcium, iron, magnesium, and sodium are not 

significantly different; however, the concentrations of phosphorus and sulphur are significantly 

lower, with maximum values of 2393 mg/kg and 11800 mg/kg, respectively. In contrast, the 

concentrations of potassium increased, with a maximum concentration of 6932 mg/kg in sample 

4C. Inexplicably, the concentrations of most parameters for samples 4B and 8C are consistently 

lower than those detected in samples 4C and 8B. 

A further technique to assess the chemical behavior of the reactors is to consider how 

their composition varied within the vertically oriented reactors. In each reactor, the influent flow 

port was at the bottom, while the effluent flow port was at the top. All four samples collected 

from each reactor are presented in order to assess these vertical variations, with sample A 

representing the material near the bottom, sample B the lower-middle portion, sample C the 

upper-middle portion, and sample D near the top. Sample 1D is noted to diverge substantially 

from all other samples in iron and potassium concentrations (Figs. 6.12 and 6.13) and is 

potentially contaminated and may be inaccurate for comparison.  
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Figure 6.11: Post flow-through experiment digestion results for reactors 4 and 8. 
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indicates a dramatic increase in iron concentration at the top of reactor 1. Reactors 2, 5, 6, 7, and 
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Figure 6.12: Iron concentrations within vertical orientation of reactors. Raw mixture represented 
as blank symbols corresponding to coloured symbols in legend. 

Potassium values (Fig. 6.13) also did not demonstrate any clear trends, although some 

samples (reactors 3, 5, 6, and 8) demonstrate slight increases from the bottom towards the top of 

the reactors. Sample 1D once again shows a sharp increase from all other samples at the top of 

the reactor, while reactors 2 and 4 decrease slightly from the bottom to top, and reactor 7 has 

slightly higher concentrations in the middle of the reactor.  

Sulphur concentrations (Fig. 6.14) have significantly greater variation between reactors 

than either iron or phosphorus. While there is not a definitive trend, several reactors have lower 

sulphur concentrations in the upper portion of the reactor (e.g., reactors 2, 4, 5, 6, and 8). Reactor 

1 has much lower concentrations in the middle of the reactor, while reactor 3 has a highly 

elevated concentration in sample B, and reactor 7 has slightly higher concentrations in the middle 

of the reactor. Overall, the primary trend observed is significantly higher sulphur concentrations 

in the samples collected after the experiment as compared to the unreacted material. However, 

this mass increase significantly exceeds the mass of sulphate removed from solution. The amount 
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of sulphur removed from solution as sulphate only accounts for 59% of the sulphur mass gain in 

reactors 1 and 5, 41% of the sulphur mass gain in reactors 2 and 6, and 31% of the sulphur mass 

gain in reactors 3 and 7. The source of this discrepancy is unclear. 

 
Figure 6.13: Potassium concentrations within vertical orientation of reactors. Raw mixture 
represented as blank symbols corresponding to coloured symbols in legend.  

 
Figure 6.14: Sulphur concentrations within vertical orientation of reactors. Raw mixture 
represented as blank symbols corresponding to coloured symbols in legend. 
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Phosphorus does not show any clear vertical variations in reactors 2, 4, 6, and 8 (Fig. 

6.15). In contrast, reactors 1, 3, 5, and 7 have higher overall concentrations and greater variation 

between samples and reactors. Reactor 3 is highly enriched in phosphorus in the middle of the 

reactor compared to the top or bottom, while only a slightly higher concentration was observed at 

the top compared to the bottom. Reactors 1, 5, and 7 demonstrated substantial variation between 

values, with no clear trend evident over the length of the reactor. Overall the vertical plotting of 

nutrient data did not reveal any clear trends, as the changes in concentration varied dramatically 

between reactors and different nutrients 

 
Figure 6.15: Vertical variation of phosphorus concentrations within reactors. Raw mixture 
represented as blank symbols corresponding to coloured symbols in legend. 
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 Sequential extractions were conducted in order to assess the compounds and phases in 

which various elements are contained in. In particular, this approach was intended to determine if 

sulphur contained within the sulphide fraction increased following the experiments, which would 

provide confirmation of bacterial sulphate reduction. A six stage extraction was used in which 

the material was saturated and agitated with a solution designed to remove certain phases.  
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 The results of these analyses appear to indicate that targeting of specific phases was not 

successful (Tables 6.1-6.3). The highest concentrations of aluminum, iron, magnesium, and 

silicon are consistently in stage six, the final stage of the extraction. Stage 6 is intended to 

remove the sulphide phase, as most other phases should have been removed by the preceding 

steps; however, the high concentrations of aluminum, magnesium, and silicon are not consistent 

with sulphide precipitates that could have formed in the flow-through reactors. Furthermore, the 

sulphur content is consistently low in stage 6 (typically 1-5 ppm), indicating that the dissolved 

phases do not contain a significant mass of sulphide minerals. The iron content is typically very 

high in stage 6, but without corresponding sulphur concentrations the iron is likely derived from 

oxide phases. Sulphur concentrations are highest in the initial phase treated with only de-ionized 

water, and are probably reflective of sulphate salts precipitated during the drying process. 

Calcium is more readily distributed across different stages; however, it is most frequently highest 

in the second stage, the “soluble and exchangeable” fraction.  
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Table 6.1: Sequential extraction results for reactors 1-4, values in ppm. 
 

Blank Al Ca Fe Mg S Si Targeted Fraction 

Step 1 BDL BDL 0.052 BDL BDL BDL Precipitated Salts 

Step 2 BDL BDL BDL BDL BDL BDL Soluble/ Exchangeable 

Step 3 0.6495 BDL 0.497 BDL 1.5335 9.155 Adsorbed Metals 

Step 4 BDL BDL 0.094 BDL BDL BDL Organically Bound 

Step 5 BDL 0.0505 BDL BDL 6.66 BDL Carbonates 

Step 6 BDL BDL BDL BDL BDL 0.072 Sulphides 

Sample 1A        

Step 1 0.5823 20.2 4.931 11.89 18.44 2.682 Precipitated Salts 

Step 2 0.101 76.6 1.3345 18.07 4.5975 1.0445 Soluble/ Exchangeable 

Step 3 0.4025 0.227 0.7495 BDL 4.5575 9.885 Adsorbed Metals 

Step 4 4.3795 39.815 26.02 7.77 2.7735 8.955 Organically Bound 

Step 5 2.155 29.335 47.655 3.522 8.575 7.48 Carbonates 

Step 6 37.48 20.42 481.3 33.09 1.243 61.86 Sulphides 

Sample 2B        

Step 1 0.3848 18.92 3.908 12.38 21.51 2.944 Precipitated Salts 

Step 2 0.101 71.9 2.689 23.64 4.1475 2.124 Soluble/ Exchangeable 

Step 3 0.807 0.1675 2.537 0.1575 3.7795 18.665 Adsorbed Metals 

Step 4 5 22.7 31.47 7.765 2.381 10.95 Organically Bound 

Step 5 3.34 6.755 53.05 3.451 7.945 11.26 Carbonates 

Step 6 47.83 19.61 573.2 36.75 1.004 78.66 Sulphides 

Sample 3A        

Step 1 0.2009 23.81 2.792 8.524 22.91 1.402 Precipitated Salts 

Step 2 0.101 35.335 1.323 4.9815 3.123 0.9765 Soluble/ Exchangeable 

Step 3 0.5185 0.0915 1.507 0.0515 3.4555 20.45 Adsorbed Metals 

Step 4 2.2095 27.195 13.145 3.632 1.751 6.265 Organically Bound 

Step 5 1.3065 7.965 22.51 2.0385 7.48 4.322 Carbonates 

Step 6 17.61 12.51 333.7 15.92 2.596 31.94 Sulphides 

Sample 4A        

Step 1 0.6779 7.599 5.037 6.073 8.589 2.565 Precipitated Salts 

Step 2 0.101 33.085 2.249 13.78 1.724 1.6 Soluble/ Exchangeable 

Step 3 0.8795 0.1865 2.78 0.26 2.835 22.455 Adsorbed Metals 

Step 4 5.315 11.09 25.475 6.125 1.587 10.81 Organically Bound 

Step 5 2.4395 5.635 29.455 3.6705 7.485 7.41 Carbonates 

Step 6 38.14 20.58 367.5 30.89 1.651 63.15 Sulphides 
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Table 6.2: Sequential extraction results for reactors 5-8, values in ppm. 
 

Sample 5A Al Ca Fe Mg S Si Targeted Fraction 

Step 1 0.6239 19.96 5.075 10.72 17.8 2.699 Precipitated Salts 

Step 2 0.101 76 1.968 17.14 4.1345 1.578 Soluble/ Exchangeable 

Step 3 0.379 BDL 1.0195 BDL 4.184 20.99 Adsorbed Metals 

Step 4 4.838 35.22 32.12 7.1 2.6495 9.675 Organically Bound 

Step 5 3.2685 10.075 48.3 2.732 8.235 9.85 Carbonates 

Step 6 49.72 16.21 512.7 34.02 3.012 74.6 Sulphides 

Sample 6B        

Step 1 0.2692 19.94 2.537 13.36 26.2 2.067 Precipitated Salts 

Step 2 0.101 87.4 2.8095 30.485 4.5995 2.1655 Soluble/ Exchangeable 

Step 3 0.586 BDL 1.919 BDL 2.9125 22.875 Adsorbed Metals 

Step 4 5.265 22.52 31.3 6.805 2.501 11.535 Organically Bound 

Step 5 3.292 6.155 50.95 2.553 8.515 10.54 Carbonates 

Step 6 50.27 18.66 579 37.75 1.138 80.47 Sulphides 

Sample 7A        

Step 1 0.4008 27.23 4.963 12 27.28 1.577 Precipitated Salts 

Step 2 0.101 56.3 2.51 10.225 5.65 0.9945 Soluble/ Exchangeable 

Step 3 0.3045 BDL 0.8395 BDL 3.3075 19.375 Adsorbed Metals 

Step 4 2.6655 45 16.88 4.8455 2.167 5.605 Organically Bound 

Step 5 1.9535 18.655 40.155 2.6525 8.09 5.965 Carbonates 

Step 6 33.44 13.56 539.6 26.63 3.342 58.2 Sulphides 

Sample 8B        

Step 1 0.6032 5.976 3.791 3.663 4.007 2.455 Precipitated Salts 

Step 2 0.3115 29.83 2.924 9.54 0.5365 2.2045 Soluble/ Exchangeable 

Step 3 0.731 0.083 2.4855 0.179 2.018 28.78 Adsorbed Metals 

Step 4 5.61 6.415 29.01 2.4035 1.216 11.045 Organically Bound 

Step 5 2.1465 3.034 24.275 1.5355 8.105 6.265 Carbonates 

Step 6 37.55 15.43 307.4 26.4 1.033 61.35 Sulphides 
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Table 6.3: Sequential extraction results for raw mixtures, values in ppm.  
 

 Al Ca Fe Mg S Si Targeted Fraction 

Mixture 1/5 
Step 1 0.2961 10.59 2.545 4.45 8.611 2.751 

Precipitated Salts 

Step 2 BDL 90.4 1.0955 14.135 1.7605 6.485 Soluble/ Exchangeable 

Step 3 0.2355 BDL 0.7955 BDL 2.228 32.43 Adsorbed Metals 

Step 4 3.4835 64.55 24.105 3.949 1.126 9.825 Organically Bound 

Step 5 2.1025 13.42 25.565 1.325 7.24 6.855 Carbonates 

Step 6 33.41 13.23 279.4 23.01 0.383 59.04 Sulphides 

Mixture 2/6        

Step 1 0.2893 11.95 2.059 6.68 3.9 3.406 Precipitated Salts 

Step 2 BDL 89 1.3765 24.01 1.2285 9.375 Soluble/ Exchangeable 

Step 3 0.6995 0.1825 2.3835 0.166 1.946 44.73 Adsorbed Metals 

Step 4 3.442 23.74 24.2 4.2305 1.0115 10.87 Organically Bound 

Step 5 1.801 4.4065 23.58 1.258 6.875 7.14 Carbonates 

Step 6 33.06 13.97 277.4 23.76 0.5157 60.35 Sulphides 

Mixture 3/7        

Step 1 1.228 19.6 9.963 12.07 18.86 5.691 Precipitated Salts 

Step 2 BDL 79.1 1.764 18.055 4.635 17.98 Soluble/ Exchangeable 

Step 3 0.412 0.142 1.6045 BDL 2.9735 37.135 Adsorbed Metals 

Step 4 3.878 84.35 28.745 3.56 1.519 11.515 Organically Bound 

Step 5 2.7835 33.825 31.295 1.565 7.485 9.4 Carbonates 

Step 6 41.74 19.36 324.5 29.34 1.662 69.33 Sulphides 

Mixture 4/8        

Step 1 0.6629 8.518 4.788 3.732 3.766 2.928 Precipitated Salts 

Step 2 BDL 28.785 1.978 8.11 0.9535 2.372 Soluble/ Exchangeable 

Step 3 1.0055 0.115 3.185 0.208 2.511 40.725 Adsorbed Metals 

Step 4 6.075 5.265 32.86 1.9975 1.461 11.44 Organically Bound 

Step 5 2.147 1.953 21.855 1.0325 7.685 6.42 Carbonates 

Step 6 34.97 13.13 279.7 22.61 2.311 60.89 Sulphides 

 

6.2.3 C/N/S Analysis 

 Among carbon, nitrogen, and sulphur, carbon is consistently the dominant fraction, with 

carbon concentrations in reactors with added organic matter in a range from 2-6%. Sulphur and 

nitrogen concentrations are lower, typically below 1%. In reactors 1 and 5 (Fig. 6.16) the carbon 

content is 3.88% C in sample 1B, while only 2.06% C is found in sample 5B. Sulphur values are 

considerably lower, with 0.66% S in sample 1B, and 0.34% in 1C. Nitrogen values are lower 

Poultry Manure and Leaf Compost 

Sheep Manure and Leaf Compost 

Poultry Manure and Hay 

Control – No Organics 
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than sulphur values, and demonstrate considerable variation on an individual basis. 1B has the 

highest value, with 0.22% N, while 5B had only 0.12% N. 

 
Figure 6.16: C/N/S results for reactors 1 and 5. 

 In reactors 2 and 6 (Fig. 6.17), concentrations for all three elements was notably higher 

than in the samples from reactors 1 and 5. Carbon concentrations are generally consistent around 

5%, while sulphur concentrations ranged from 0.76% to 1.07%, and nitrogen values ranged from 

0.26% to 0.32%. 
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Figure 6.17: C/N/S results for reactors 2 and 6. 

 Reactors 3 and 7 (Fig. 6.18) demonstrate similar results for carbon to reactors 1 and 5. 

Carbon concentrations are lower in comparison to reactors 2 and 6, with carbon content ranging 

from 2.7 to 3.7%. Sulphur results are similar to reactors 2 and 6 and range from 0.95 to 1.25%. 

Nitrogen concentrations range from 0.16 to 0.21%, which are higher than in reactors 1 and 5, but 

lower than in reactors 2 and 6. 

 
Figure 6.18: C/N/S results for reactors 3 and 7. 
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 In reactors 4 and 8 (Fig. 6.19), no organic material was added to the reactors, and thus it 

is not surprising to observe that carbon, nitrogen and sulphur concentrations are much lower in 

these samples. Carbon is still more abundant than either nitrogen or sulphur, but is considerably 

lower in these samples, ranging from 0.76% to 1.16%. Sulphur and nitrogen concentrations are 

also low, in a range from 0.04 to 0.11%.  

 
Figure 6.19: C/N/S results for reactors 4 and 8. 

With respect to the vertical distribution of materials within the reactors, carbon 

concentrations do not follow a uniform pattern, although several reactors do have slightly greater 

carbon concentrations at the bottom than at the top (Fig. 6.20). Reactors 1 and 6 show this 

pattern most sharply, while the decline in carbon contents in reactors 4, 7, and 8 is less 

pronounced. In contrast, carbon concentrations are higher in reactors 2, 3, and 5.  
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Figure 6.20: Vertical variation of carbon concentrations within reactors. Raw mixture 
represented as blank symbols corresponding to coloured symbols in legend. 

 Nitrogen concentrations do not demonstrate any clear trends with respect to vertical 

variation (Fig. 6.21). Reactors 1 and 6 have significantly higher concentrations at the bottom of 

the reactor, while reactors 4 and 8 are relatively uniform throughout. In contrast, reactors 2 and 3 

have significantly higher nitrogen concentrations at the top of the reactor, while reactor 5 has a 

slightly higher concentration at the top. Reactor 7 has its highest concentrations in the middle of 

the reactor, while concentrations at the top and bottom are slightly lower and nearly identical to 

each other. 
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Figure 6.21: Vertical variation of nitrogen concentrations within reactors. Raw mixture 
represented as blank symbols corresponding to coloured symbols in legend. 

6.2.4 X-Ray Diffraction 

 In order to determine minerals present in the reactor materials, samples were dried and 

milled for powder XRD analysis. The large volume of silica sand utilized in the reactor mixtures 

dominates the results, along with the lesser, although still significant, amount of creek sediment. 

Quartz was identified as the dominant mineral present in every sample, as was anticipated based 

on the volume of silica sand, and creek sediment would also be a significant source of quartz. 

The only other significant mineral present in every sample were feldspars, including anorthite 

and albite, which was consistent with XRD analysis of creek sediment alone, which was found to 

be quartz dominant. For most samples the XRD patterns are very consistent. A typical pattern is 

represented by sample 1A (Fig. 6.22) with quartz as the dominant fraction with lesser amounts of 

albite, while sample 8D (Fig. 6.23) was also dominated by quartz while anorthite represented the 

feldspar fraction. No evidence of precipitation or alteration products from the experimental 

procedure was found. The XRD technique is limited to detection of mineral species present with 
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at least 2% abundance in the sample; consequently trace mineral phases may not have been 

detected. 

 

 
Figure 6.22: XRD profile and reference patterns for sample 1A. Quartz in blue, albite in red. 
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Figure 6.23: XRD profile and reference patterns for sample 8D. Quartz in blue, anorthite in red. 
 
 

6.2.5 Scanning Electron Microscopy 

 Scanning electron microscopy (SEM) analysis was conducted on selected samples of 

dried reactor materials in order to identify trace phases that precipitated as a result of reactions 

resulting in removal of aqueous sulphate. It is important to note that the elemental concentrations 

derived from this method are semi-quantitative, but are applicable for phase identification. Due 

to the very large proportion of silica sand and creek sediment within the mixtures, these materials 
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were expected to be dominant throughout most areas assessed. Several sites supported this 

expectation with high concentrations of silicon present, and lesser amounts of other elements that 

would be contained within a feldspar or mica, such as aluminum, calcium, iron, magnesium, 

potassium, and sodium. A typical area of material representing these quartz and silicate grains is 

seen in Figure 6.24. The spectrum 1 site corresponds to quartz crystals, while spectrums 2, 3, and 

4 represent feldspar or mica, based on the presence of silicon, aluminum, calcium, iron and 

magnesium. 

 
Figure 6.24: Secondary electron image of sample 2C showing quartz and silicate grains of the 
silica sand and creek sediment. 

 Organic matter was found throughout the samples, and the organic structures were often 

easily identified as distinct from the inorganic materials. An example is presented in Figure 6.25, 

showing a fragment of organic material (spectrum sites 9 and 10) which dominates the field of 
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view and is surrounded by silicate detritus at spectrum site 11. A rib like structure which is 

probably plant matter is visible along the bottom of this material (spectrum 10), while the upper 

face is smooth (spectrum 9). At both spectrum 9 and 10 sites, carbon values are very high while 

oxygen was also detected along with low levels of iron, calcium, and sulphur. Carbon values are 

impacted by the carbon coating on all samples; however, the very high counts as compared to 

other samples indicate that this material is carbon rich, consistent with organic matter (G. Wu, 

personal communication, January 6, 2015). Spectrums 9 and 10 have very similar compositions, 

although higher counts for carbon, oxygen, and iron were detected in spectrum 10. Spectrum 11 

corresponds to silicates previous observed and is a feldspar or mica.  

 
Figure 6.25: Secondary electron image of organic matter surrounded by typical silicate grains in 
sample 1B. 
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In Figure 6.26 very fine spherical crystals have formed all along the underlying substrate, 

and all three sites within the field of view were found to be rich in iron and sulphur (Fig. 6.27), 

with an iron to sulphur ratio of 3.8:1. The high concentration of iron indicates that iron oxides are 

present, with a lesser amount of iron sulphide or sulphate possibly accounting for the sulphur 

content. This is consistent with qualitative observations of the reactor materials which sometimes 

appeared rust coloured, and rust like staining was also left on the reactor walls following 

deconstruction. 

 
Figure 6.26: Secondary electron image of fine iron precipitates in sample 1B. 
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Figure 6.27: Energy-dispersive x-ray spectrum #3, sample 1B. 

 Mineral grains containing high concentrations of phosphorus were also found. In Figure 

6.28, phosphorus was found to be most abundant element in two well defined mineral grains 

(spectrum sites 12 and 13), which were notably larger than other grains in the surrounding 

matrix. These are possibly a phosphate mineral, and also contain limited amounts of iron and 

magnesium in similar proportions in spectrums 12 and 13 (Fig. 6.29). Phosphorus may have been 

derived from organic material, the small quantity of phosphorus known to be present in the iron 

spheres, or it may have been present in creek sediment prior to emplacement in the reactors. 

Spectrum site 15, a finer mineral grain attached to the larger phosphorus rich grain was found to 

contain significant concentrations of calcium and phosphorus; this likely corresponds to apatite. 
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Figure 6.28: Secondary electron image of coarse grained phosphorus bearing minerals in sample 
1B. Finer grained typical silicate detritus at spectrum 14. 
 

Figure 6.29: Energy-dispersive x-ray spectrum #13, sample 1B. 
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 A final possible precipitate was found in sample 7A and is shown in Figure 6.29. It is 

observed to have a very rough, yet defined structure with a vaguely triangular base, while a 

spherical growth with jagged edges appears to rise from the center of the triangle. This spherical 

growth is similar to the structure of a sulphate rosette, while also vaguely resembling the 

structure of framboidal pyrite. Both sites analyzed were most abundant in sulphur, followed by 

iron, with trace amounts of silica, calcium and magnesium (Fig. 6.30). Sulphur and iron are 

present in a 1.67:1 ratio, which could potentially indicate a mixture of iron sulphides such as 

mackinawite (FeS) and pyrite (FeS2). 

 
Figure 6.30: Secondary electron (BSE) image of sulphur bearing mineral in sample 7A.  
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Figure 6.31: Energy-dispersive x-ray spectrum #9, sample 7A.  
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Chapter 7: Behaviour and Effectiveness of Reactors 

7.1  Evaluation of Flow-Through Reactor Performance  

7.1.1 Sulphate Removal Efficiency 

 The primary performance measure of the flow-through reactor experiment is removal of 

sulphate from Steep Rock pit lake waters. In this regard, all organic amended reactors were very 

successful for the first eleven weeks. Performance began to decline in week 12, although reactors 

3 and 7 maintained >80% sulphate removal through week 14. Following week 14, performance 

in all organic amended reactors underwent a progressive and significant decline in performance. 

Non-organic amended reactors (4 and 8) had significantly lower sulphate removal, and did not 

undergo as significant of long term changes in performance (Fig. 7.1). Complete reactor 

monitoring data is available in Appendix C. Sulphate removal % was calculated by subtracting 

the measured effluent sulphate concentration from the most recent influent sulphate 

concentration data. The resulting value was then divided by the influent sulphate concentration 

and multiplied by 100. 
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Figure 7.1: Percent sulphate removed over the duration of the flow-through reactor experiments.  
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While in other studies (e.g., Waybrant et al., 1998; Gibert et al., 2004; Neculita et al., 

2011; Shankie, 2011) batch reactor setups (no flow) have been able to exceed this level of 

sulphate removal, rarely have continuous flow reactors (without external chemical or nutrient 

feed) been able to achieve such high levels of sulphate removal. A variety of lab- and field-scale 

PRB systems using natural organic materials to stimulate SRB have only been able to achieve 

sulphate removal in the 40 to 60% range (e.g., Waybrant et al., 1998; Gibert et al., 2004; 

Caraballo et al., 2010; Neculita et al., 2011; Song et al., 2012). Consequently, while sustaining 

sulphate removal at a high level remains a challenge, the performance achieved here, particularly 

in reactors 3 and 7 (poultry manure and hay), is promising.  

Reactor 5 was unable to achieve the high rates of sulphate removal initially produced by 

the other organic reactors, although from weeks 7 to 16 there was excellent consistency in 

sulphate reduction values between reactor 5 and its replicate, reactor 1 (poultry manure and leaf 

compost). There is no clear explanation for the lower initial performance, although preferential 

flow channelling is a possibility. Reactors 2 and 6 (sheep manure and leaf compost) had 

intermediate levels of average performance between the best performing reactor pair, 3 and 7, 

and the poorest, 1 and 5. 

Reactors 4 and 8 did not contain any added organic material, and as expected sulphate 

removal rates were much lower than in the organic amended reactors. Reactor 4 contained zero 

valent iron (ZVI), while reactor 8 did not (allowing assessment of the ability of ZVI as a sulphate 

remediation tool on its own). Blowes et al. (2000) and Philips et al. (2000) have suggested that 

ZVI may be able to remediate sulphate on its own, with sulphate corroding the ZVI to release 

ferrous iron and convert sulphate to hydrogen sulphide, which can then react to precipitate an 

iron sulphide, resulting in the removal of both iron and sulphur. Reactor 4 was able to achieve a 
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slightly higher average sulphate removal, with an average rate of 23% over the duration of the 

experiment, while reactor 8 was able to achieve an average sulphate removal value of 21%. This 

relatively small difference does not support the concept of ZVI as a remediation tool on its own, 

at least under the conditions present within this study. However, this does not diminish the 

quality of ZVI as a useful tool in combination with sulphate reducing bacteria. 

Shankie (2011) conducted batch experiments to assess the capacity of candidate reactive 

mixtures prior to conducting flow through experiments. The study by Shankie (2011) utilized the 

same water source as used in the current study, providing an excellent comparison. In the batch 

experiments conducted by Shankie (2011), three mixtures were assessed, with treatment #1 

(wood chips and horse manure) the most effect mixture, achieving 99% sulphate removal. 

However, when this mixture was utilized in several flow-through reactors using different 

orientations of separated reaction cells within the reactor, the most effective reactor was only 

able to attain an average sulphate removal of 49%. Despite the use of wood chips in the study by 

Shankie (2011), it was not selected for assessment in the current study due to the high C:N ratio 

reported in several studies (Waybrant et al., 1998; Zagury et al., 2006; Neculita et al., 2008; 

Shankie, 2011). Shankie (2011) identified the lack of divalent metals available for the removal of 

sulphide as metal sulphide precipitates as a potential limiting factor for sulphate removal. This 

finding prompted the use of ZVI within the reaction mixtures in the current study in order to 

provide sufficient iron to solution. A more detailed substrate analysis was also conducted in 

order to ensure the most effective combination of carbon, nitrogen, and phosphorus would be 

available to SRB. These refinements are reflected in the significantly improved sulphate removal 

results in the current study compared to those achieved in the flow-through experiments by 

Shankie (2011); (Tables 7.1 and 7.2). Note that all flow-through reactors in Shankie (2011) 

utilize the same horse manure and wood chip organic source, with different internal structure. 
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Table 7.1: Comparison of maximum sulphate removal in current study vs. Shankie (2011).  
 

 This study; 
Reactor #1, wk 1 

This study; 
 Reactor #2, wk 3 

This study; 
Reactor #3, wk 10 

This study; 
Reactor #4, wk 10 

99 % 
Poultry/Leaves 

99 % 
Sheep/Leaves 

96 % 
Poultry/Hay 

41 % 
No Organic 

 

This study; 
Reactor #5, wk 7 

This study; 
 Reactor #6, wk 5 

This study; 
Reactor #7, wk 3 

This study; 
Reactor #8, wk 3 

70 % 
Poultry/Leaves 

95 % 
Sheep/Leaves 

97 % 
Poultry/Hay 

47 % 
No Organic 

 
 Shankie (2011) 

 Reactor #1, wk 4 
Shankie (2011) 

Reactor #2, wk 7 
Shankie (2011) 
Reactor #3, wk 3 

Shankie (2011) 
Reactor #4, wk 6 

86 % 51 % 47 % 44 % 
 

Shankie (2011) 
Reactor #5, wk 3 

Shankie (2011) 
Reactor #6, wk 9 

Shankie (2011) 
Reactor #7, wk 7 

Shankie (2011) 
Reactor #8, wk 6 

70 % 57 % 55 % 46 % 
 

Shankie (2011) 
Batch #1 

Shankie (2011) 
Batch #2 

Shankie (2011) 
Batch #3 

99 % 
Horse/Wood Chips 

99 % 
Organics w/o creek sed. 

0 % 
Molasses 

 
Table 7.2: Comparison of average sulphate removal in current study vs. Shankie (2011). 
 

 This study; 
Reactor #1 

This study; 
Reactor #2 

This study; 
Reactor #3 

This study; 
Reactor #4 

65 % 
Poultry/Leaves 

76 % 
Sheep/Leaves 

81 % 
Poultry/Hay 

23 % 
No Organic 

 

This study; 
Reactor #5 

This study; 
Reactor #6 

This study; 
Reactor #7 

This study; 
Reactor #8 

55 % 
Poultry/Leaves 

76 % 
Sheep/Leaves 

71 % 
Poultry/Hay 

21 % 
No Organic 

 
 Shankie (2011); 

Reactor #1 
Shankie (2011); 

Reactor #2 
Shankie (2011); 

Reactor #3 
Shankie (2011); 

Reactor #4 
40 % 32 % 36 % 33 % 

 

Shankie (2011); 
Reactor #5 

Shankie (2011); 
Reactor #6 

Shankie (2011); 
Reactor #7 

Shankie (2011); 
Reactor #8 

44 % 35 % 35% 36 % 
 

7.1.2 Limitations on Sulphate Removal  

The decline in performance is a common problem with permeable reactive barrier 

systems, in either bench or field-scale tests. A variety of problems can contribute to this decline, 



90 
 

 
 

including but not limited to: development of preferential flow paths, loss of permeability, 

armouring of reactive substrates with precipitates, inadequate residence time, unsuitable 

conditions for microbial activity (including nutrients, pH, and Eh), and insufficient availability of 

divalent metals for sulphide removal (Neculita et al., 2007; Sheoran et al., 2010). In the 

development of the experimental design for this study preventing loss of porosity was an 

important design consideration. Silica sand was used as the primary mixture component, as well 

as utilizing silica sand layers at the influent and effluent ports in order to maintain porosity. In 

contrast, preventing the development of preferential flow paths is more difficult, as flowing 

water can carve out these paths over time even without any pre-existing weaknesses in the 

distribution of materials. Armouring of reactive substrates (including organic matter and ZVI 

spheres) is also a possible factor contributing to the decline in performance. In the initial weeks, 

this fresh material would have been well exposed and highly reactive; however, it is likely that 

over time precipitates formed on the surfaces of these materials (Bartzas and Komnitsas, 2010), 

which limited their reactivity and ability to contribute necessary nutrients for microbial nutrition, 

or for ZVI to release iron to solution. This factor is confirmed by visual inspection of the ZVI 

spheres which have significant iron oxide formation on their surfaces following completion of 

the flow-through experiments (Fig. 7.2). These spheres were originally smooth, round, shiny, and 

grey in colour. 
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Figure 7.2: Oxidized iron spheres collected from post-experiment materials. 

The conditions for microbial activity appear to have been suitable, with steady near 

neutral pH conditions, and sufficiently negative Eh values. However, despite sufficiently 

reducing conditions for the activity of SRB, a problem arises due to the Eh being too high for the 

stability of aqueous sulphide produced by SRB (Fig. 7.3). Consequently, any aqueous sulphide 

produced by SRB may have been immediately converted to sulphate. After completion of the 

flow-through experiments, nutrient concentrations in the reactors were found to have declined 

significantly compared to the initial mixtures, which may have been a significant factor in the 

decline in sulphate removal effectiveness. Such a decline in nutrient availability has been cited in 

other studies as a factor limiting reactor performance (e.g., Waybrant et al., 2002; Neculita et al., 

2007). The overall balance of nutrient supply will be assessed in section 7.1.3.  
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Figure 7.3: Eh/pH diagram for the S-O-H system at 25°C. Modified after Brookins (1988). 

The decline in performance could also be related to alternative sulphate removal 

mechanisms which were effective in the initial weeks, but became less effective over time. For 

example, sulphate can be adsorbed onto soils (Curtin and Syers, 1990), although the capacity for 

this adsorption is limited and would likely be exhausted quickly in this system given the high 

sulphate concentrations. An additional factor which could reduce performance is related to the 

suppression of SRB activity. Excess H2S and HS- have been reported to have toxic effects on 

bacteria, and consequently a lack of sulphide removal can also depress the activity of SRB 

(Nagpal et al., 2000). Unreacted free sulphide will ultimately be re-oxidized back to sulphate if 

  
 

 

         Legend   

Reactor 3, Week 1 

Reactor 7, Week 1 

Reactor 3, Week 5 

Reactor 7, Week 5 

Reactor 3, Week 12 

Reactor 7, Week 12 

Reactor 3, Week 23 

Reactor 7, Week 23 



93 
 

 
 

oxidizing conditions are encountered (INAP, 2003), or it is also possible for H2S to escape 

solution in gaseous form (Benner et al., 2002); both of these conditions are possible as the 

effluent entered the oxidation cell. A pungent odour resembling H2S was observed within the 

area of the experimental setup during operation, consistent with H2S off gassing. 

Declining iron concentrations in the effluent point to a potential limiting factor for 

sulphate removal. The highest iron concentrations coincide with the highest rates of sulphate 

removal, and with the exceptions of reactors 7 and 8, all reactor effluent generally had iron 

concentrations at or below 0.1 mg/L after week 12 (Fig. 7.4).  Reactor 8 (natural aquifer control) 

consistently had the highest iron concentrations in effluent samples; a significant finding given 

that no iron spheres were added to the reactor 8 mixture, where any iron above what is already 

present in influent water must have been derived from the creek sediment. The significantly 

lower sulphate removal in this reactor may partially explain this; however, reactor 4 does not 

have the similarly elevated iron concentrates, while having similar sulphate removal rates due to 

the lack of organic carbon amendments. Other metals such as arsenic, cadmium, copper, nickel, 

lead, and zinc can also take the place of iron for metal sulphide precipitation (Benner et al., 1997; 

Neculita et al., 2007); however, these metals were almost always below detection limits for the 

duration of the experiment. Low iron concentrations are most likely due to precipitation of iron 

oxides, which have been observed visually as well as by SEM. Calculation of saturation indices 

using PHREEQC demonstrated that effluent solutions over the entire duration of the experiment, 

in all reactors, were oversaturated with respect to goethite and hematite. This finding accounts 

for the low iron concentrations, as precipitation of iron oxides was geochemically favoured. 

Precipitation of iron oxides accounts for the dramatic increase in iron concentrations in post-

experiment reactor materials. In reactor 1 and 5, the average iron concentration increase is 54%, 

in reactor 2 and 6 the average increase is 92%, in reactor 3 and 7 the average increase is 115%, 
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while in reactor 4 and 8, a small decline of 10% is the average change. Saturation index 

calculations also found that iron sulphides such as pyrite and mackinawite were highly under 

saturated in all effluent waters, and precipitation of these iron sulphides was not geochemically 

favoured. As a consequence of these findings, it appears that iron sulphide precipitation was not 

responsible for sulphate removal in any meaningful quantity. An additional source of iron 

precipitation may be as jarosite, which was also found to be slightly oversaturated in most 

reactor effluent samples, and may be responsible for some sulphate removal. See Appendix D for 

saturation index data. 

 
Figure 7.4: Iron concentration by week. 

7.1.3 Nutrient Balance 

 One of the key goals of this study was the refinement of procedures for reactive material 

selection and determination of requirements for bacterial nutrition. Very few published studies 

have attempted to compare the availability of nutrients both before and after the operation of a 
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passive treatment system using natural organic materials to stimulate SRB. Comparing the 

concentrations of the key nutrients for microbial activity (carbon, nitrogen, and phosphorus) 

before and after operation of the reactors helps to refine requirements for organic materials. 

Complete data for nutrient concentrations in post experiment materials is available in Appendix 

D. 

 Carbon concentrations are generally lower in post experiment samples as compared to the 

original mixtures (Fig. 7.5). This result was expected given that organic carbon is required as an 

electron donor for bacterial sulphate reduction where it is converted to bicarbonate (Cocos et al., 

2002; Neculita et al., 2007), and lost to effluent waters. A significant relationship is observed 

between sulphate removal percentages and the decrease in carbon content. Aside from a few 

outliers, the post-experiment samples are consistent in a relationship of approximately 2 mg/Kg 

gain in sulphur for each 1 mg/Kg loss of carbon. The carbon consumption may be related to a 

variety of bacterial processes, including sulphate reducers, iron oxidizers, and organic 

decomposers. The most effective reactors for sulphate removal were replicate reactors 3 and 7 

(poultry manure and hay), and similarly these reactors had the greatest decline (52-64%) in 

carbon concentration. Reactors 2 and 6 (rabbit manure and leaf compost) were the second most 

effective for sulphate removal and carbon concentrations decreased by 24-36%. Reactors 1 and 5 

(poultry manure and leaf compost) were the least effective organic amended reactors and had 

carbon content change in the range +6.9% to -43%. The control reactors 4 and 8 without added 

organic matter had carbon concentrations change by +3.1% to -32.4%. In the control reactors, no 

organic matter was added; however, it is likely that a limited amount of organic material was 

contained in the creek sediment. This relationship between sulphate removal and carbon loss 

provides support to a bacterial link for sulphate removal, given that higher rates of bacterial 

activity would result in greater consumption of organic carbon. With more than half of all carbon 
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lost in the most effective reactors, and an expectation that not all organic carbon will be available 

to bacteria, availability of organic carbon may have been a limiting factor in the later part of the 

experiments. This evidence also indicates that a greater mass of organic carbon would be 

required in order to sustain high rates of sulphate removal over a longer term treatment program. 

 
Figure 7.5: Changes in carbon concentrations from raw mixtures to post-experiment materials. 
Poultry manure and leaves in 1 and 5, sheep manure and leaves in 2 and 6, poultry manure and 
hay in 3 and 7, no organics added in 4 and 8. 

 Nitrogen is another important nutrient for microbial nutrition, with many publications 

citing a C:N ratio of 10:1 as ideal for the growth of bacteria such as SRB (Reinertson et al., 1984; 

Bechard et al., 1994; Prasad et al., 1999; Zagury et al., 2006). Similar trends in nitrogen loss are 

observed as those seen for carbon. The greatest decline in nitrogen concentration occurred in 

replicate reactors 3 and 7, where nitrogen decreased by 45 to 58% (Fig. 7.6). The most 

significant decline in nitrogen occurs in the same reactors which had the greatest declines in 

carbon content and effluent sulphate concentration, which further supports the expectation that 
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bacterial activity is related to sulphate removal. Reactor pairs 1 and 5, and 2 and 6, had 

intermediate levels of nitrogen loss, with losses in a range from 19 to 56% and 29 to 42%, 

respectively. Reactors 4 and 8 which did not contain added organic material had smaller changes 

in nitrogen concentration, ranging from a 17% gain in sample 4B to a 33% loss in sample 4C. 

The significant nitrogen loss in the most effective reactors for sulphate removal is consistent with 

the loss in carbon content, and provides further evidence that a greater mass of organic material 

would be required to support longer term testing. The loss of >50% of nitrogen also suggests that 

availability of nitrogen may have become an issue in the later stages of the reactor experiments 

within this study. 

 
Figure 7.6: Changes in nitrogen concentrations from raw mixtures to post-experiment materials. 
Poultry manure and leaves in 1 and 5, sheep manure and leaves in 2 and 6, poultry manure and 
hay in 3 and 7, no organics added in 4 and 8. 

 Phosphorus is the final nutrient considered for supporting the growth and activity of SRB. 

A C:N:P ratio of 110:7:1 has been cited as important for supporting high rates of SRB activity 
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(Kuyucak and St-Germain, 1994; Cocos et al., 2002). The patterns of change in phosphorus 

content are consistent with those for both carbon and nitrogen; and the highest nutrient loss is 

linked to the highest rates of sulphate removal. The relationship between nutrient loss and 

sulphate removal is strong evidence for bacterial activity within the flow-through reactor 

experiments. The most significant phosphorus loss occurred in reactors 3 and 7, with a loss from 

24-62% (Fig. 7.7). Reactors 1 and 5, and 2 and 6, had nearly identical ranges of phosphorus loss, 

with ranges from 16-49% and 17-50%, respectively. Finally the non-organic amended reactors 4 

and 8 had phosphorus losses from 7-26%. 

 
Figure 7.7: Changes in phosphorus concentrations from raw mixtures to post-experiment 
materials. Poultry manure and leaves in 1 and 5, sheep manure and leaves in 2 and 6, poultry 
manure and hay in 3 and 7, no organics added in 4 and 8. 

7.1.4 Mechanisms of Sulphate Removal 

The change in nutrient contents presented in section 7.1.3 is strong evidence for a 

connection between bacterial activity and sulphate removal. Consistently, carbon, nitrogen, and 
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while the smallest losses occurred in reactors with the least sulphate removal. PHREEQC 

software was utilized in order to determine saturation indices for minerals which could be 

expected to precipitate from solution. The calculated saturation indices demonstrated that iron 

sulphides such as pyrite and mackinawite were highly under saturated in all effluent waters. 

Therefore, iron sulphide precipitation appears unlikely to be a relevant mechanism for sulphate 

removal. In contrast, sulphate minerals including barite, gypsum, and jarosite were determined to 

be at saturation or slightly oversaturated in most effluent water samples. Precipitation of these 

minerals was geochemically favoured, and precipitation of these sulphate minerals presents a 

plausible alternative mechanism for sulphate removal from solution. Biogenic barite precipitation 

is widely reported in marine environments (Klump et al., 2000; Torres et al., 2003; Torres-

Crespo et al., 2015); however, given the low concentration of barite present in the mixture 

materials and influent water, it appears unlikely that barite could be a major sink for sulphate. In 

contrast, calcium is present at much higher concentrations, and precipitation of gypsum is 

consistent with 150-50 mg/L declines in calcium concentrations in effluent waters compared to 

influent water. Biomineralization of gypsum has been reported by Thompson and Ferris (1990) 

in mildly alkaline lake waters. 

In the digestions of post experiment materials in organic amended reactors, iron 

concentrations were consistently higher than in the prepared mixtures, while in non-organic 

amended reactors the concentrations were slightly lower. The increase in iron values during the 

flow-through experiments was due to iron derived from the iron spheres, which were not 

included in the acid digestions. The fact that there was a significant increase in iron 

concentration in organic-amended reactors, but not in the non-organic reactors implies that iron 

oxidizing bacteria were stimulated by the presence of organic matter. The greatest iron increase 

(sample 7B) occurred in one of the top performing reactors for sulphate removal, while the 
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minimum increase in organic reactors (sample 5C) was in one of the poorest performing reactors. 

Reactors 2, 3, 6, and 7 all had higher concentrations of both iron and sulphur. Comparing the 

iron-sulphur relationship, it is found that on average, sulphur increases 1.88 mg/Kg for each 1 

mg/Kg increase in iron. The rejection of the possibility of iron sulphide precipitation means this 

iron was not derived from iron sulphides. Increases in iron concentrations are most likely due to 

precipitation of iron oxides, which were found to be oversaturated in solution, and may be driven 

by iron oxidizing bacteria. Bacterially mediated iron oxidation can occur in aerobic or anaerobic 

environments, and anaerobic, non-light exposed, nitrate dependant oxidation of iron has been 

reported (Weber et al., 2006). Assuming sulphate mineral precipitation is the dominant 

mechanism for sulphate removal, a possible cause for the link between iron and sulphate removal 

could be jarosite precipitation. Jarosite is slightly oversaturated in most effluent water samples, 

and its chemical formula contains both iron and sulphate; consequently substantial precipitation 

of jarosite would result in high levels of both iron and sulphate deposition. However, based on 

visual observation and geochemical data, it is probable that jarosite only accounts for a limited 

portion of the deposited iron, with a majority in the form of iron oxides. The chemical formula 

for jarosite contains two molecules of sulphate and one molecule of iron; a ratio that is relatively 

close to the 1.88 S:Fe increase ratio reported above.  

Over the duration of the experiment, measured values for ORP, or Eh, became 

increasingly negative; after initially starting near or slightly below zero, values reached a range 

between -200 mv and -300 mv by week 18 (Fig. 7.8). The one exception to this is reactor 8, 

which was consistently near zero for the duration of the experiment. Other than reactor 8, the 

conditions are consistent with those necessary for SRB activity, which are known to require an 

anaerobic, reducing environment with a redox potential lower than -100 mv (Postgate, 1984). A 

dramatic spike observed in reactor 6 at week 10 was due to an equipment failure that allowed 
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oxygen to enter the influent flow line. An Eh/pH diagram for the Fe-S-O-H system presenting 

the water chemistry of the top performing reactor pair (3 and 7) is presented in Figure 7.8. Data 

is presented for the initial composition at week 1, after initial acclimatization at week 5, mid-

experiment at week 12, and final composition at week 23. Over the duration of the experiment 

the water was found to evolve towards a higher pH and lower Eh within the lower part of the 

Fe2O3 stability field, loosely following the slope of the phase boundary between Fe2O3 and FeS2. 

This finding indicates that while conditions were suitable for SRB activity, the formation of iron 

oxides is chemically favoured over iron sulphides. 

 
Figure 7.8: Variation in redox potential by week.  
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Figure 7.9: Eh/pH diagram for the Fe-S-O-H system at 25°C. Modified after Brookins (1988). 

In Figure 7.10, the equivalent Eh/pH data for the study by Shankie (2011) is presented. In 

this Eh/pH diagram, the two best performing reactors for sulphate removal are plotted using the 

data for the same weeks as used in Figure 7.9 for the present study. These reactors are 1 and 5, 

which used a mixture of horse manure and wood chips. This diagram shows that the Eh/pH 

conditions were very similar between the two studies, with results initially plotting above the 

sulphide/oxide boundary, with an evolution towards higher pH and lower Eh towards the end of 

the experiment. In Shankie (2011), one data point (reactor 1, week 20) does plot within the 

sulphide field; however, at this point in the experiment sulphate removal was poor. During the 

  
 

 

         Legend   

Reactor 3, Week 1 

Reactor 7, Week 1 

Reactor 3, Week 5 

Reactor 7, Week 5 

Reactor 3, Week 12 

Reactor 7, Week 12 

Reactor 3, Week 23 

Reactor 7, Week 23 



103 
 

 
 

most effective weeks for sulphate removal, weeks 3 to 7, the values plot well within the oxide 

field, consistent with the present study. These results indicate that in both studies the conditions 

were suitable to support SRB, but did not support sulphide formation, although the conditions in 

Shankie (2011) may have been more supportive as the Eh/pH values plot closer to the 

sulphide/oxide boundary. This also indicates that the use of zero valent iron in the present study 

did not have substantial impacts upon the Eh/pH conditions within the flow-through reactors. 

 
Figure 7.10: Eh/pH diagram for the Fe-S-O-H system at 25°C. Results from Shankie (2011). 
Modified after Brookins (1988). 
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 The XRD results for the reactor materials were consistent with findings for the original 

mixtures, which were dominated by silica sand and creek sediment and in mineralogy by quartz 

and feldspar. No evidence for the formation of additional mineral species during reactor 

operation was found. XRD is limited to a minimum 2% abundance for detection, and it is 

possible that small amounts of minerals may have formed without being detected by XRD.   

SEM analysis was consistent with creek sediment, silica sand, and organic matter. Fine 

iron spheres were detected and are probably mostly iron oxides, as the iron to sulphur ratio is 

3.8:1. These structures could have also formed prior to the experiment. Larger sulphur rich 

structures were also located, as seen in Figure 6.29; sulphur and iron are present in a 1.67:1 ratio, 

which could potentially indicate a mixture of iron sulphides such as mackinawite (FeS) and 

pyrite (FeS2), although the structure of the crystals more strongly resembles sulphate rosettes (A. 

Conly, personal communication). Because the work was conducted in a primarily qualitative 

manner, with only semi-quantitative data collected, it is not possible to make definitive 

determinations of specific mineral species. 

The sequential extraction results do not appear to have been completely effective at 

targeting the intended phases. As presented in Tables 6.1 to 6.3, the final stage using 1.0 M nitric 

acid contained significantly higher concentrations for several parameters, including elements 

such as silicon (Fig. 7.12) which are not likely to constitute a sulphide phase. The sulphide phase 

appears to be very small based on the low sulphur concentrations present in the extract from 

stage six.  Sulphur concentrations in stage six (Fig. 7.13) are less than 1% of iron concentrations 

(Fig. 7.11), which suggests that iron sulphide was not a significant source for the iron dissolved 

in this phase. Furthermore, most sulphur in the organic amended reactors was extracted during 

the first stage, a stage in which very little iron (2-5 ppm) was extracted.  
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Sulphur concentrations in the non-organic amended reactors (4 and 8) are presented in 

Figure 7.14, and significantly less sulphur was extracted in the first step, totalling 36% of total 

sulphur in reactor 4 (ZVI amended) and 24% in reactor 8 (creek sediment and silica sand only). 

In the organic amended reactors the first step extracted 44 to 54% of total sulphur; in the other 

steps the relative proportions of sulphur are similar between organic and non-organic amended 

reactors. Sulphur from the first stage is believed to represent sulphate salts which precipitated 

from sulphate rich waters during the drying process following experiment completion. However, 

the significant variation between organic and non-organic amended reactors implies that salts 

from the drying process represent only a portion of the sulphur. The higher sulphur in the organic 

amended reactors implies that a significant portion of this sulphur is derived from sulphate 

minerals that formed due to bacterial processes which were stimulated by the presence of organic 

materials.  

In the final step of the sequential extractions the high concentrations of iron and silicon 

combined with low concentrations of sulphur indicates that earlier stages failed to entirely 

remove their target phases, and that the final step dissolved non-sulphide phases that should have 

been removed in the previous steps. The high iron in stage six is likely indicative of iron oxides, 

which is supported by Eh/pH data as well as visual observation of rust discolouration on post 

flow-through experiment materials. These results imply that very little iron sulphides formed, 

although it is not clear that complete dissolution of iron sulphides (if present) was achieved. 
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Figure 7.11: Iron concentrations in sequential extractions for reactors 3 and 7. Step 1 targeted salt 
precipitates; step 2 the soluble/ exchangeable fraction; step 3 adsorbed metals; step 4 organically 
bound metals; step 5 carbonates, and step 6 sulphides. Step 6 actually removed silicates and iron 
oxides. 
 

 
Figure 7.12: Silicon concentrations in sequential extractions for reactors 3 and 7. Step 1 targeted 
salt precipitates; step 2 the soluble/ exchangeable fraction; step 3 adsorbed metals; step 4 
organically bound metals; step 5 carbonates, and step 6 sulphides. Step 6 actually removed 
silicates and iron oxides. 
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Figure 7.13: Sulphur concentrations in sequential extractions for reactors 3 and 7. Step 1 targeted 
salt precipitates; step 2 the soluble/ exchangeable fraction; step 3 adsorbed metals; step 4 
organically bound metals; step 5 carbonates, and step 6 sulphides. Step 6 actually removed 
silicates and iron oxides. 
 
 

 
Figure 7.14: Sulphur concentrations in sequential extractions for reactors 4 and 8. Step 1 targeted 
salt precipitates; step 2 the soluble/ exchangeable fraction; step 3 adsorbed metals; step 4 
organically bound metals; step 5 carbonates, and step 6 sulphides. Step 6 actually removed 
silicates and iron oxides. 
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 A significant problem with the sequential extraction results is that it appears that the 

majority of sulphur was not dissolved during any stage of the sequential extractions. Sulphur 

concentrations in post-experiment samples assessed by the sequential extraction procedure 

produced values only slightly greater than the concentration of sulphur in the pre-experiment 

mixtures, up to a maximum 33% increase. This result is in disagreement with the up to 1,549% 

increases in sulphur concentrations in post-experiment materials found by acid digestions (Fig. 

7.15). As well, comparison of the CNS analysis of the materials before and after the sequential 

extraction procedure confirms that a significant mass of sulphur remained following the 

sequential extraction. Only 7 to 15% of the original mass of material was consumed in the 

sequential extractions, and of this remaining residual material, maximum sulphur content loss of 

35% is observed (Table 7.3). In control reactor 8, the sulphur loss was -79%, meaning that the 

sulphur in this reactor (which comprised a much smaller portion than in the other reactors) was 

relatively immobile compared to other phases, and as a result comprises a greater % of the total 

proportion after these other phases were removed. This result means that while the sequential 

extractions correctly imply a significant iron phase that is not associated with sulphur, the 

majority of both iron and sulphur were not dissolved during the sequential extraction procedure. 

As measured by acid digestion, in samples 3B, 3C, 7B, and 7C, the iron to sulphur ratios are 

2.56:1, 3.50:1, 3.17:1, and 2.38:1, respectively. While these ratios are not indicative of dominant 

iron sulphide phases, which would require 1:1 or 1:2 ratios, they do indicate that the 

concentrations of these phases is much closer than indicated by the sequential extractions, 

particularly due to missing sulphur in the sequential extraction results.  
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Figure 7.15: Sulphur concentrations in post flow-through reactor materials and prepared 
mixtures. 
 
 
Table 7.3: Comparison of CNS results before and after sequential extraction. 
 

Mix type Post Flow-Through Materials   Post Sequential  Materials % Loss of S 
  Sample N% C% S%   Sample N% C% S% 

 organic 1A 0.190 3.330 0.831 
 

1A 0.15 1.99 0.542 34.78 

organic 2B 0.260 4.850 0.826 
 

2B 0.30 4.13 0.627 24.09 

organic 3A 0.120 2.330 0.865 
 

3A 0.15 2.11 0.672 22.31 

organic 3C 0.200 3.660 0.946 
 

3C 0.30 3.36 1.026 -8.46 

control 4A 0.060 1.350 0.266 
 

4A 0.09 0.90 0.228 14.29 

organic 5A 0.140 2.570 0.531 
 

5A 0.22 2.07 0.359 32.39 

organic 6B 0.320 5.370 1.074 
 

6B 0.34 4.83 0.831 22.63 

organic 7A 0.150 3.110 0.967 
 

7A 0.17 2.84 0.710 26.58 

control 8B 0.060 1.060 0.087   8B 0.08 0.69 0.156 -79.31 

 

The nature of the missing sulphur phase is not entirely clear. No sulphur bearing phases 

were detected by XRD, while SEM found indications of both iron oxides and an iron-sulphur 

phase. The concentration of sulphur detected by ICP-AES (5-8% of total mass in reactors 3 and 

7) proves that there is a significant sulphur phase that was not detected by XRD. However, if this 
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sulphur is contained in multiple phases it could fall below XRD detection limits, or it could also 

evade detection if the material is not sufficiently crystalline. In order to not be broken down by 

the nitric acid step in the sequential extraction, the sulphur bearing phase would have to be 

relatively immobile. Sulphur at some stage may have combined with organic material to form 

organic sulphur complexes. Such organic sulphur complexes are relatively immobile, and less 

susceptible to dissolution (Scherer, 2009). The sulphur phase is also found to have the highest 

concentrations in the reactors which achieved the highest levels of sulphate removal, confirming 

a link between sulphate removal and sulphur precipitation. The very high sulphate removal 

achieved in these reactors which were designed to stimulate the activity of SRB leads to the 

assumption that organic matter was successful in stimulating bacterial process which removed or 

favoured reactions removing sulphate from solution. The Eh/pH plots (Figs. 7.3 and 7.9) indicate 

that conditions were not sufficiently reducing in order to achieve iron sulphide formation.  

 Alternative mechanisms of sulphate removal such as adsorption of sulphates do not 

appear to present a viable alternative for the high levels of sulphate removal. The levels of 

sulphate removal achieved here have rarely been duplicated by other researchers, and no efforts 

were made to increase adsorption rates relative to other research. If adsorption was the primary 

mechanism, higher rates of sulphate removal would likely have been observed in the non-organic 

amended reactors as well. Multiple lines of evidence have demonstrated that iron sulphide 

precipitation did not occur as intended in the experimental design. Instead, organic matter 

stimulated iron oxidizing bacteria as well as bacteria which supported sulphate mineral 

precipitation. In reactors with high levels of sulphate removal, jarosite appears to have been a 

significant precipitate, and accounts for a connection between high levels of iron and sulphur 

precipitation. 
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 In comparison to other published studies which have utilized a mixture of organic carbon 

and zero valent iron to remove sulphate, it is unclear why sulphate reducing conditions were not 

achieved. In these studies, the authors consistently concluded that sulphate reducing bacteria 

were the responsible mechanism for sulphate removal (Phillips et al., 2000; Gandhi et al., 2001; 

Wilkin et al., 2002). The primary problem appears to be the Eh/pH relationship, in which at a 

neutral pH, the solution was not significantly reducing to support the stability of sulphides. This 

is also represented in the saturation index calculations, in which iron sulphides such as pyrite and 

mackinawite were highly under saturated. In several other studies, e.g. Guo and Blowes, 2009; 

Ludwig et al., 2009; the pH was lower, and the sloping nature of the oxide/sulphide stability field 

boundary (Fig. 7.9) resulted in conditions supportive of sulphide stability. Decomposition of 

organic matter and emplacement of zero valent iron have both been cited as supportive of 

strongly reducing conditions (Wilkin et al., 2002) however, in the current study these do not 

appear to have been sufficient. Future work in this area will need to investigate how to produce 

more strongly reducing conditions (more negative Eh) in a neutral pH environment. 

7.2 Evaluation of Reactor Effluent Relative to the Natural Environment 

An overall goal of this study was to find methods for passive remediation of 

contaminated water from the Steep Rock site, near Atikokan, Ontario. In order to assess the 

effectiveness of the work completed here, the water quality in treated effluent can be compared 

to natural waters in the Atikokan area. The Piper diagrams (Figs. 7.16-7.18) illustrate the 

compositions of five regional water samples, the eight reactor samples, and the contaminated 

water.  Three sets of Piper diagrams are presented, utilizing reactor effluent data from weeks 5, 

10, and 20, to give perspective of the relative effectiveness of the reactors at different levels of 

performance. The five regional water samples (black circles) plot very closely together, as 

calcium type waters on the cation plot and as bicarbonate type waters on the anion plot. The 
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influent contaminated mine water plots as sulphate type water on the anion plot, while plotting as 

a calcium bearing magnesium type water on the cation plot due to the higher proportion of 

calcium over sodium and potassium, and a significantly higher magnesium concentration than 

the regional water samples.  

 In the week five diagram (Fig. 7.16), the organic amended effluent waters plot relatively 

close to the regional water samples on the anion and combined plots due to the significantly 

reduced sulphate content. On the cation plot the effluent waters plot close to the influent water as 

magnesium type waters given that magnesium remains high, although reactor 3 actually plots 

above the influent water due to a drop in the calcium concentration. Reactors 4 and 8 which did 

not have added organic material plot very close to the influent water, as the water has not been 

substantially remediated. These plots illustrate that the water quality has dramatically improved 

following the reactor treatments, and is much closer to the regional water samples than the 

influent contaminated water. 
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Figure 7.16: Piper diagram comparing reactor effluent waters, week 5, and regional waters. 
Regional water data from A. Conly and P. Lee (2010), unpublished data. 

 In week 10, the ternary plots within the Piper diagram are similar to week 5; however, the 

organic amended effluent waters have moved upwards on the anion plot into sulphate type 

waters, and have moved upwards within the calcium/magnesium field on the combined plot due 

to the increasing sulphate concentrations (Fig. 7.17). The cation plot is unchanged compared to 

week 5, with the exception of reactor 6 rising towards the top of the plot due to a decline in 

calcium. 
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Figure 7.17: Piper diagram comparing reactor effluent waters, week 10, and regional waters. 
Regional water data from A. Conly and P. Lee (2010), unpublished data.  

 At week 20, the organic amended effluent waters have returned to plot much closer to the 

influent water (Fig. 7.18), while the reactors without added organic material show little change 

from the previous diagrams. The greater sulphate concentrations are largely responsible for the 

movement of the reactors upwards toward sulphate dominant fields on the anion and combined 

plots, while the cation plot is largely unchanged. These Piper diagrams illustrate that the reactor 

experiments were successful in improving water quality to levels much more comparable to local 

natural waters present in the general area of the study site, at least during periods of high 

sulphate removal. Sulphate is the primary control on the position within the ternary plots, while 

consistently high calcium and magnesium concentrations are also relevant factors. 
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Figure 7.18: Piper diagram comparing reactor effluent waters, week 20, and regional waters. 
Regional water data from A. Conly and P. Lee (2010), unpublished data. 

 The reactor experiments were somewhat less successful in producing water with similar 

alkalinity and pH conditions to local waters (Table 7.3). Alkalinity is dramatically higher than 

local waters, with concentrations ten to thirty times the values measured in regional water 

samples. Effluent pH values were also notably higher, with values in the most effective reactor 

for sulphate removal, reactor 3, approaching a pH of 9, compared to regional waters in with pH 

values from 6.5 to 6.9. 
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Table 7.4: Alkalinity and pH of influent, effluent, and regional water samples. Regional water 
data from A. Conly and P. Lee (2010), unpublished data. 
 

Water Source Alkalinity (mg/L CaCO3) pH 

Influent  50 7.91 

Reactor 1 Effluent (Week 10) 600 7.93 

Reactor 2 Effluent (Week 10) 636.6 8.43 

Reactor 3 Effluent (Week 10) 795.9 8.92 

Reactor 4 Effluent (Week 10) 149.4 8.40 

South Marmion Lake 36.7 6.88 

Raft Lake Dam - North 15.4 6.56 

Raft Lake Dam - South 25.5 6.70 

Perch Lake 17.7 6.57 

Finlayson Lake 16.1 6.64 
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Chapter 8: Summary and Conclusions 

A thorough analysis of the life-cycle of this lab-scale PRB system has permitted 

significant insight into the development of effective reactive mixture selection, the evolution of 

reactor effluents over time, and the consequent changes in composition of materials after 

experiment operation. This provides improved reactive mixture selection priorities in order to 

maximize sulphate removal rates, and can aid in the further refinement of PRB technology. 

Furthermore, this passive treatment system and the tested reactive mixtures have demonstrated 

considerable promise for sulphate removal from neutral pH, metal-poor mine waters. Despite the 

high sulphate removal performance of this system; the mechanisms of sulphate removal appear 

to be different from the design intention, with bacterial sulphate reduction replaced by 

biogenically driven sulphate mineral precipitation. It appears that sulphate was removed from 

solution via precipitation of sulphate minerals, such as gypsum, jarosite, and possibly to a limited 

extent, barite. Iron produced by the ZVI spheres was largely converted to iron oxides, while in 

the most highly effective reactors, higher iron concentrations are observed, and this may be 

attributable to jarosite precipitation. 

In the process for determining ideal mixture substrates, combinations, and final mixture 

proportions; the concentrations, availability, and proportions of nutrients were important 

considerations. The accuracy and effectiveness of this approach has been assessed against final 

nutrient concentrations and the relative sulphate removal effectiveness of each reactor. A variety 

of tools were utilized to assess the potential substrates, including C:N ratio, C:N:P ratio, relative 

biodegradability via EAS testing and the relative change in nutrient concentrations following 

EAS testing. The targeted C:N ratio of 10 was only closely matched by poultry manure, with a 

ratio of 11, while leaves were relatively close at 18.2. Poultry manure was the closest substrate to 

achieving the desired C:N:P ratio of 110:7:1, at 1772:160:1, while all other substrates were much 



118 
 

 
 

worse, with sheep manure at 7730:325:1, hay at 16183:394:1, and leaves at 17869:980:1. 

Regarding the relative biodegradability of each substrate, poultry manure was found to be the 

most readily degradable in the EAS testing, with 71% of the original mass lost, while leaves, 

hay, and sheep lost 37%, 35%, and 29%, respectively. The remaining material following EAS 

testing was assessed to determine if certain nutrients were more or less mobile. The poultry 

manure lost the greatest portion of its phosphorus fraction, with a 93% phosphorus loss; a 

proportion much greater than the overall mass loss, indicating that phosphorus is highly available 

for biodegradation. Sheep manure and hay lost 82% of their phosphorus content, indicating that 

phosphorus is highly mobile in these substrates as well. Leaf compost lost 78%, indicating that 

phosphorus is still highly mobile, but not to the same extent as in the other substrates. 

 Reactors 3 and 7 were the most effective for sulphate removal, and utilized a mixture of 

poultry manure and hay. These reactors were found to have the highest sulphur concentrations in 

post-experiment materials, confirming a connection between the amount of sulphate removal and 

the amount of sulphur deposition. This result supports the substrate testing procedure for the 

manures, as poultry was easily the highest scoring candidate substrate and was consequently 

used in two pairs of flow-through reactors. Poultry manure was also used in reactors 1 and 5, 

which exhibited much poorer sulphate removal effectiveness. However, reactors 3 and 7 used 

hay as the plant-based substrate, while reactors 1 and 5 used leaf compost. The significant 

difference in performance between these reactor pairs indicates that hay was considerably more 

effective than leaf compost in promoting sulphate removal. Results were mixed in the substrate 

testing, with no clear expectation of either hay or leaf compost performing better. The tests in 

which hay performed better than leaf compost were the C:N:P ratio and the proportion of 

phosphorus lost during EAS testing (and therefore assumed bioavailability of phosphorus). The 

higher performance of the mixture utilizing hay indicates that phosphorus is a highly important 
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component in substrate selection, and that phosphorus content and availability should be a 

significant factor in substrate selection procedures for similar systems.  

 The balance of available nutrients is an important component of this study in order to 

ensure that the availability of nutrients is not a limiting factor for sulphate removal. The most 

effective reactors for sulphate removal were replicate reactors 3 and 7, and these reactors had the 

greatest decline (52-64%) in carbon concentration. Similarly to carbon, the greatest decline in 

nitrogen concentration occurred in replicate reactors 3 and 7, where nitrogen decreased by 45-

58%. For phosphorus the pattern is maintained, with the most significant phosphorus loss 

occurring in reactors 3 and 7, with a loss from 24-62%. The relationship between carbon 

consumption and sulphate removal is strong evidence for a bacterial driven reaction leading to 

sulphate mineral precipitation. It is unknown how much of the remaining organic material is 

readily available to bacteria; however, such a substantial decline requires consideration of a lack 

of available organic matter as a major cause of the decline in reactor performance. Additionally, 

this level of carbon, nitrogen, and phosphorus loss indicates that a significantly greater % of the 

total reactive mixture mass would need to be comprised of organic material to support bacterial 

activity in a longer term field PRB.  

 A major problem preventing the intended removal of sulphur as iron sulphide precipitates 

may have been the Eh/pH relationship. While conditions were sufficiently reducing to support 

the activity of SRB, most effluent water samples indicate conditions above the sulphide/sulphate 

boundary, suggesting that sulphides may not have been stable and could have been converted 

back to sulphate. Additionally, saturation index calculations indicated that iron sulphides were 

strongly under saturated in effluent waters. Lower values for either Eh or pH would have resulted 

in conditions that favour sulphide stability. Alternatively, the availability of metals could also be 
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a contributing factor to declining performance. Aqueous sulphide produced by SRB will only be 

removed if sufficient divalent metals are available for it to react and precipitate with. The highest 

iron concentrations coincide with the highest rates of sulphate removal, and with the exceptions 

of reactors 7 and 8, all reactor effluent generally had iron concentrations at or below 0.1 mg/L 

after week 12. The mass of iron does not appear to have been a factor, as the iron spheres did not 

demonstrate substantial degradation. Using finer iron material (such is iron filings) could be an 

effective way to increase reactivity via increased surface area. Armouring and surface oxidation 

of the iron is a problem, as the iron spheres were observed to be covered in oxidation products 

following experiment completion. The development of preferential flow channels is another 

common problem impacting PRB performance.  

  The effectiveness of the flow-through reactor system studied here demonstrates an 

effective experimental design and rationale for reactive substrate selection on the basis of 

sulphate removal. However, the system was ineffective at reducing sulphate to iron sulphide 

precipitates, and instead precipitated sulphate minerals; probably primarily gypsum and jarosite, 

with possibly limited amounts of barite. These minerals are at greater risk of re-mobilization in 

the future, and may not present a viable solution for a long term, field-scale PRB. Comparison of 

effluent waters to natural waters in the area of the study site has demonstrated that at peak 

treatment effectiveness, effluent water compositions were much closer in composition to natural 

waters. In particular, the ability of reactors 3 and 7 to maintain sulphate removal at levels greater 

than 80% for 14 weeks is a significant achievement compared to similar systems previously 

constructed by other researchers. This result presents the combined use of poultry manure and 

hay as reactive organic substrates to be highly effective materials for the removal of sulphate. 

Further improvements of similar PRB systems will need to address the longevity problems, and 

assess the impact of increasing the mass of organic substrates. If improvements can be made to 
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sustain high rates of sulphate removal over a period of years, such a design could present a viable 

treatment system for removal of sulphate in field settings. Such a development would offer a 

valuable alternative to capital intensive chemical treatment plants presently in operation, 

particularly at remote, abandoned mine sites with limited resources available. This study utilized 

a relatively small mass of organic matter, and greater masses should be tested to determine if 

nutrient loss was a critical factor in the declining sulphate removal rates. As well, ensuring a 

constant flow rate over time without interruption from equipment problems over time is critical 

to ensure the validity of the results. Most critically, further studies will need to find methods to 

create more strongly reducing conditions supportive of iron sulphide stability, in order to ensure 

that the primary sulphur sink is a stable, immobile form such as pyrite, rather than sulphate 

minerals which are at greater risk of re-mobilization.  
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Abbreviations used in Appendices: 

<DL, BDL: Below Detection Limit 

EXC: Excluded due to interference from chemical solution in procedure. 

MDL: Minimum Detection Limit 

ND: Not Detected 
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Appendix A: Raw Material Testing Results 

Digested Raw Substrates 
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Digested EAS Residues 
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Creek Sediment Digestion Data 

 

 

 

 

 

 

 

 

 

Sample MDL 1 2 3 1 2 3
1.0099 1.0026 1.0027 1.0045 1.0062 1.0078
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

As 0.06 BDL 8.92 6.13 7.74 7.30 6.44
Ba 0.005 91.67 93.21 93.03 18.76 19.28 20.48
Be 0.001 0.455 0.469 0.459 0.119 0.119 0.119
Ca 0.01 4780.7 5100.7 5019.4 1697.4 1928.0 1870.4
Cd 0.01 BDL BDL BDL BDL BDL BDL
Co 0.008 BDL BDL BDL BDL BDL BDL
Cr 0.008 20.92 22.47 22.51 20.47 18.33 20.20
Cu 0.005 20.39 20.76 21.05 7.21 6.28 6.74
Fe 0.01 46242.2 47895.5 47691.2 26769.5 26982.7 27832.9
K 0.1 483.51 559.74 521.09 523.05 477.44 507.44
Li 0.05 11.24 11.50 11.45 9.00 8.26 8.51
Mg 0.01 5023.3 5199.5 5198.0 3149.8 3082.9 3224.8
Mn 0.002 510.84 532.42 535.45 106.12 106.94 112.52
Mo 0.02 BDL BDL BDL BDL BDL BDL
Na 0.01 598.87 688.61 631.20 353.91 419.90 395.61
Ni 0.01 14.90 15.53 15.55 9.40 9.11 9.75
S 0.1 2269.53 2354.88 2398.52 2288.70 1886.30 1998.41
Si 0.05 5.46 9.43 7.20 20.58 19.18 6.64
Sr 0.005 12.60 13.91 13.65 5.66 6.57 6.56
Ti 0.005 234.97 285.76 257.21 237.63 235.94 226.33
V 0.05 44.32 49.89 46.67 33.70 37.29 38.91
Y 0.01 4.94 5.17 5.04 1.43 1.45 1.57
Zn 0.01 85.49 90.14 90.07 23.48 25.09 25.46
Zr 0.01 8.54 9.69 9.09 9.39 8.43 8.51

Dry Mass Used (g)

Untreated EAS Treated
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Carbon, Nitrogen, Sulphur Combustion Results 

 

 

 

Sample N% C% S%

Raw Substrates
Creek Sed 1 0.20 3.83 0.286
Creek Sed 2 0.19 3.18 0.278
Creek Sed 3 0.18 3.21 0.287
Cow 1.75 45.64 0.221
Horse 1.34 36.84 0.141
Hay 1 1.08 41.45 0.069
Hay 2 0.91 41.72 0.051
Hay 3 1.05 41.63 0.049
Leaves 2.22 40.46 0.144
Poultry 3.18 35.13 0.546
Rabbit 1 1.95 44.50 0.245
Rabbit 2 1.91 44.61 0.228
Rabbit 3 1.95 44.37 0.235
Sheep 1.90 45.25 0.198

EAS Residues
Creek Sed 1 0.20 2.66 0.190
Creek Sed 2 0.17 2.40 0.203
Creek Sed 3 0.17 2.33 0.189
Cow 1.92 47.90 0.289
Horse 1.31 37.87 0.172
Hay 1 1.41 47.91 0.124
Hay 2 1.52 47.73 0.110
Hay 3 1.22 47.22 0.103
Leaves 2.92 49.88 0.226
Poultry 2.38 48.03 0.582
Rabbit 1 1.90 44.72 0.275
Rabbit 2 2.05 44.79 0.270
Rabbit 3 2.01 45.03 0.264
Sheep 1.98 47.47 0.238
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Easily Available Substances Testing  

 

 

 

 

 

 

Sample Initial Mass (g) Empty Dish (g) Full Dish (g) Remaining Mass (g) Mass Lost (g) EAS %

Hay 1 2.006 1.031 2.374 1.343 0.663 33.1

Hay 2 2.018 1.042 2.407 1.365 0.653 32.4

Hay 3

Leaves

Cow 2.021 1.031 2.693 1.662 0.359 17.8

Poultry 2.015 1.035 1.605 0.57 1.445 71.7

Horse 2.012 1.052 2.679 1.627 0.385 19.1

Sheep 2.011 1.041 2.569 1.528 0.483 24.0

Rabbit 1

Rabbit 2 2.021 1.051 2.483 1.432 0.589 29.1

Rabbit 3 2.014 1.047 2.410 1.363 0.651 32.3

Creek Sed 1 5.028 1.041 5.474 4.433 0.595 11.8

Creek Sed 2 4.998 1.040 5.445 4.405 0.593 11.9

Creek Sed 3 4.999 1.044 5.466 4.422 0.577 11.5

Initial Mass (g) Empty Dish (g) Full Dish (g) Remaining Mass (g) Mass Lost (g) EAS %

Hay 1 2.0141 1.016 2.2778 1.262 0.7523 37.4

Hay 2 2.0137 1.0248 2.318 1.293 0.7205 35.8

Hay 3 2.0007 1.0425 2.3272 1.285 0.716 35.8

Leaves 2.0026 1.0094 2.2624 1.253 0.7496 37.4

Cow 2.0061 1.0634 2.5782 1.515 0.4913 24.5

Poultry 2.0071 1.028 1.5664 0.538 1.4687 73.2

Horse 1.9997 1.0164 2.5526 1.536 0.4635 23.2

Sheep 2.0049 1.0574 2.3847 1.327 0.6776 33.8

Rabbit 1 1.9963 1.0508 2.3981 1.347 0.649 32.5

Rabbit 2 2.0041 1.0558 2.4338 1.378 0.6261 31.2

Rabbit 3 1.9967 1.0504 2.421 1.370 0.6265 31.4

Creek Sed 1 2.0037 1.0235 2.3714 1.348 0.6558 32.7

Creek Sed 2 2.0004 1.0254 2.3098 1.284 0.716 35.8

Creek Sed 3 2.0008 1.0096 2.3559 1.346 0.6545 32.7

Experiment Set 1

Experiment Error

Experiment Error

Experiment Error

Experiment Set 2
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Appendix B: Reactive Mixture Calculations 

 

Organic Carbon Requirements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Influent Water Calculation Data Flow Rates 
1585 mg/L SO4 96 molar mass SO4 (g) 0.1 mL/min

1.585 g/L SO4 32 molar mass S (g) 6 mL/hr
0.52833 g/L S 0.33333 S fraction of SO4 144 mL/day

12.01 g/mol C 0.144 L/day
0.01651 mol/L SO4 180 days for experiment 25.92 L over 180 days
0.01651 mol/L S

mol/L * total liters Therefore: Therefore:
0.4280 mol S to be removed 0.8559 mol C required 5.14 g C required per substrate

Mass Required (g) Mass Required (g)
Substrate % Carbon C req. x C % EAS % EAS Factor applied
Poultry 35.13 14.63 70.51 20.75
Rabbit 44.49 11.55 32.61 35.42
Sheep 45.25 11.36 28.91 39.29
Leaves 40.46 12.70 36.61 34.70
Hay 41.6 12.35 34.51 35.80
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Appendix C: Flow-Through Reactor Monitoring Data 

ICP-AES Results. All values in ppm. 
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IC and ORP Results. 

 

Alkalinity Conductivity Chloride Nitrate Sulphate pH ORP

MDL 1 0.2 0.05 0.009 0.03

Week 1 mg/L uS/cm mg/L mg/L mg/L mv

1 112.6 nd 5.17 0.021 12.14 7.05 -51.1

2 1164.8 nd 71.85 0.229 126.62 7.322 -26.7

3 483.3 nd 19.51 0.043 91.32 7.598 -59.8

4 152.5 nd 76.17 <DL 1240.2 7.087 1.5

5 1302.3 nd 126.08 <DL 733.17 7.169 -57.9

6 683.1 nd 133.1 0.033 522.27 7.588 -91.8

7 1191 nd 127.69 <DL 616.02 6.656 -41.4

8 165.3 nd 108.45 0.024 1216.58 7.366 -15.4

9 48.2 nd 14.15 1.083 1760.7 7.671 3.6

Week 2

1 741.2 nd 51.58 <DL 332.62 7.447 -34.3

2 945 nd 35.88 <DL 36.8 7.298 -127.6

3 1356.4 nd 58.08 0.136 255.43 8.775 -113.5

4 244.1 nd 36.23 <DL 1303.38 7.125 -35.4

5 1236.5 nd 46.34 <DL 699.2 7.662 -12.9

6 1091.4 nd 78.58 0.042 236.22 7.65 -83.5

7 1547.8 nd 56.11 0.236 357.67 6.826 -73.7

8 205.8 nd 34.02 0.017 1527.79 6.769 11.6

Week 3

1 889.5 nd 35.35 <DL 75.65 7.642 149.2

2 960.9 nd 28.29 <DL 4.12 7.53 -133

3 1143.6 nd 30.5 0.025 79.35 7.901 -126.8

4 227.4 nd 22.3 <DL 1331.65 7.235 -12.7

5 943.7 nd 32.36 <DL 590.6 7.494 -54.2

6 1133.7 nd 25.85 <DL 112.62 7.554 -19.4

7 1581.5 nd 34.31 <DL 59.09 7.097 -72.2

8 67.7 nd 13.71 <DL 934.32 6.545 53.7

Week 4

1 1166.5 nd 31.56 0.18 210.23 7.552 3.6

2 925.5 nd 19.08 0.258 36.71 7.444 -57.4

3 852.1 nd 25.36 0.733 139.18 7.716 -47.7

4 223.5 nd 21.51 0.303 1300.12 7.471 -20.2

5 788.3 nd 27.28 0.182 701.18 7.556 -132.1

6 806.7 nd 42.36 0.247 110.22 7.763 3.6

7 1357.2 nd 25.17 0.328 83.75 7.237 -62.1

8 130.2 nd 19.96 0.943 1570.6 6.681 16.3

Week 5

1 794.1 2050 22.48 <DL 337.15 7.509 -156.9

2 844 1564 22.47 <DL 43.27 7.549 -44.5

3 655.7 1404 18.82 0.013 139.61 7.703 -101.3

4 208.6 2160 52.44 0.084 1303.93 7.384 -70.7

5 739.8 2240 26.9 <DL 626.58 7.58 -224.4

6 784 1512 22.78 <DL 85.78 8.128 -60.4

7 1199.7 2280 22.88 0.015 136 7.375 -105.4

8 121.9 2330 17.59 0.058 1545.34 6.72 25.9
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Alkalinity Conductivity Chloride Nitrate Sulphate pH ORP

MDL 1 0.2 0.05 0.009 0.03

Week 6 mg/L uS/cm mg/L mg/L mg/L mv

1 671.8 2010 22.08 <DL 478.74 7.556 -227.3

2 873.9 1628 19.01 <DL 79.75 7.965 -99

3 661.4 1446 18.08 0.018 178.01 8.128 -74.7

4 203.9 2220 16.19 0.048 1220.16 8.065 -16

5 660.9 2070 19.22 <DL 588.58 7.844 -71.8

6 718.1 1442 20.78 0.012 180.12 8.72 -61.6

7 1070.2 2070 18.36 0.026 157.53 7.619 -91.9

8 147.1 2260 18.49 0.052 1384.91 6.937 31.7

Week 7

1 631.4 1857 26.09 <DL 479.24 7.616 -255.9

2 815.5 1491 0.52 <DL 91.3 8.328 -91.9

3 650.6 1298 0.33 <DL 108.35 8.342 -149.4

4 162.2 2160 18.85 <DL 1282.71 8.372 -35.1

5 710.1 2040 0.57 <DL 523.77 7.989 -244.8

6 558.8 1261 22.87 <DL 226.02 8.878 -154.7

7 1091.5 2010 0.74 <DL 112.46 7.575 -118.4

8 165.9 2400 19.95 <DL 1464.05 6.917 33.4

Week 8

1 603.2 1995 25.41 <DL 857.32 7.535 -295.6

2 784.6 1636 23.93 <DL 329.53 8.453 -92.4

3 660 1305 22.63 <DL 123.6 8.409 -68.8

4 148.3 2230 22.69 0.039 1833.62 8.343 -33.1

5 657.7 2040 24.28 <DL 895.02 8.08 -293.8

6 477.4 1341 22.82 <DL 446.68 8.959 -31.7

7 937.4 1972 24.53 <DL 329.04 7.727 -89.1

8 164.4 2390 21.63 0.052 1875.62 6.964 1.9

9 49.1 2500 18.81 0.893 2342.57 7.907 160.1

Week 9

1 518.6 1821 24.18 <DL 895.55 7.557 -256.8

2 624.9 1723 21.93 <DL 643.45 8.381 -124

3 778.3 1400 22.79 0.04 106.08 8.717 -111

4 161.2 2290 23 0.028 1890.79 8.201 -165.1

5 776.1 2240 25.03 0.036 756.88 7.806 -318.4

6 392.7 1476 23.25 0.153 658.03 8.778 -283.5

7 937.5 2060.2 24.5 0.092 425.73 7.66 -155.8

8 146.5 2370 20.08 0.06 1848.8 6.954 -59.8

Week 10

1 600 2040 24.38 7.498 642.45 7.793 -327.3

2 636.6 1937 22.46 9.106 594.08 8.43 -225.4

3 795.9 1393 28.2 <DL 91.09 8.916 -166.6

4 149.4 2290 70.02 <DL 1373.05 8.399 -173.4

5 635.5 2130 29.46 <DL 709.19 8.119 -284.2

6 406.4 1463 24.05 8.406 467.15 8.806 132.9

7 914.3 2040 20.98 <DL 337.79 7.76 -163.6

8 147.3 2330 70.54 0.107 1391.32 7.209 36.4
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Alkalinity Conductivity Chloride Nitrate Sulphate pH ORP

MDL 1 0.2 0.05 0.009 0.03

Week 11 mg/L uS/cm mg/L mg/L mg/L mv

1 521.6 1915 17.5 <DL 714.75 8.222 -330.4

2 549.4 1872 29.09 0.075 653.25 8.316 -205.6

3 772 1462 0.18 0.011 137.85 8.786 -121.2

4 143.9 2220 15.02 0.046 1416 8.252 -119.6

5 575.3 2160 16.7 0.021 795.5 8.306 -276.8

6 498.1 1337 32.85 <DL 257.75 8.668 34.5

7 886.1 2070 0.35 <DL 408.5 7.904 -102.2

8 152.8 2340 13.98 <DL 1373.5 7.191 -5.8

Week 12

1 397.1 1775 26.46 <DL 1077.15 7.804 -290.6

2 572.8 1942 26.35 0.048 872.66 8.326 -199.6

3 760.6 1447 20.37 <DL 234.41 8.943 -188

4 151.1 2360 20.56 <DL 1737.4 8.574 -115.9

5 510.9 2130 19.73 <DL 1068.62 8.277 -284

7 895.3 2110 36.9 <DL 508.57 7.944 -198.1

8 151.6 2350 18.53 <DL 1886.04 7.164 12.4

9 50.2 2490 17.79 0.807 1987.65 7.915 368.7

Week 13

1 509.5 2090 14.53 <DL 845.48 8.11 -341.1

2 499.8 1820 14.07 <DL 695.72 8.665 -202.9

3 695.5 1443 15.25 0.015 194.69 8.934 -244.6

4 122.2 2390 14.99 0.027 1433.74 8.602 -108.4

5 551.7 2250 14.56 0.042 819.78 8.341 -292.2

7 1015.2 2250 23.12 0.059 353.52 7.847 33.4

8 162 2440 13.75 <DL 1430.2 7.108 24.9

Week 14

1 527.5 2200 14.94 <DL 813.95 8.225 -343.7

2 610.6 1932 14.65 <DL 588.92 8.564 -235.5

3 793.8 1588 14.64 <DL 206.11 8.708 -122

4 151.1 2320 13.9 <DL 1310.12 8.382 -250.8

5 5681 2220 14.34 <DL 803.93 8.278 -291

7 1014.7 2210 18.01 <DL 335.04 7.998 38.3

8 178.7 2450 13.83 <DL 1412.07 7.269 17.6

Week 15

1 470.1 2060 16.75 <DL 959.85 8.054 -340

3 680.2 1575 16.45 <DL 338.78 8.808 -260.9

4 135.8 2240 17.32 <DL 1483.15 8.331 -283.4

5 542.8 2190 16.59 <DL 904.75 8.372 -307.5

7 932.5 2230 16.64 <DL 492.88 7.801 -73.5

8 170.7 2400 16.68 <DL 1500.45 7.396 19.8

9 50.1 2490 16.72 0.678 1754.4 7.948 205.4
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Alkalinity Conductivity Chloride Nitrate Sulphate pH ORP

MDL 1 0.2 0.05 0.009 0.03

Week 16 mg/L uS/cm mg/L mg/L mg/L mv

1 486.1 2160 16.8 <DL 978.5 7.959 -349.5

3 704.6 1805 17.51 <DL 477 8.479 -194.6

4 145.1 2310 18.43 <DL 1476 8.269 -245.6

5 510 2240 17.31 <DL 944.5 8.376 -300.4

7 838 2230 16.97 <DL 601.25 7.789 -225.1

8 168.3 2360 17.92 <DL 1518.5 7.227 2.4

9 50.5 2530 17.91 0.71 1795 7.946 82.2

Week 17

1 499.8 2100 15.85 <DL 866 8.247 -369.1

3 754.9 1963 17.92 <DL 474 8.005 -171.5

4 227.7 2220 18.15 <DL 1399 7.637 -244.6

5 496.2 2150 18.01 <DL 1005 8.177 -313.5

7 820.2 2240 15.36 <DL 684.75 7.954 -257.5

8 180.8 2430 17.98 <DL 1561.5 7.285 -33.3

Week 18

4 294.9 2280 21.01 <DL 1353.85 7.986 -240.5

5 501.1 2200 21.87 <DL 1069.96 8.195 -294.9

7 746.3 2180 25.13 0.068 846.26 8.13 -256.2

8 185.6 2440 19.98 0.043 1680.72 7.554 56.8

9 50 2510 16.61 0.802 1941.44 7.939 51

Week 19

1 542.9 2030 39.25 0.05 800.04 7.875 -356

2 727.2 1594 5.61 <DL 274.28 8.314 -234.9

3 604.2 1436 24.24 <DL 377.74 8.553 -260.1

4 94.4 2280 68.4 0.051 1739.77 7.691 -273.3

5 482.6 2390 57.89 <DL 1195.93 8.136 -335.2

6 945.3 1965 78.22 <DL 430.99 8.858 -242.6

7 508 2300 27.23 <DL 1278.34 7.656 -275.7

8 178 2450 21.09 <DL 1727.71 7.313 -19.7
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Alkalinity Conductivity Chloride Nitrate Sulphate pH ORP

MDL 1 0.2 0.05 0.009 0.03

Week 20 mg/L uS/cm mg/L mg/L mg/L mv

1 463.5 2140 24.65 <DL 1042.07 8.154 -346.1

2 487.7 1991 24.93 0.119 921.89 8.427 -198.6

3 393.9 1828 16.51 <DL 961.56 8.686 -291.6

4 89.8 2460 16.88 0.063 1827.47 8.049 -260.3

5 416.6 2360 16.73 <DL 1255.97 8.194 -318.2

6 417.1 1926 26.74 <DL 887.33 8.264 -244

7 434.7 2310 17.07 0.053 1348.19 8.1 -219.7

8 169.5 2470 16.3 <DL 1749.63 7.216 1.4

9 48.4 2550 14.9 <DL 2000.92 7.48 110.5

Week 21

1 460.7 2080 15.67 <DL 962.08 8.043 -238.5

2 483.5 2180 17.01 0.087 1015.95 8.448 -235.7

3 378.4 1906 16.1 0.072 1019.54 8.359 -210.5

4 95.5 2430 16.78 <DL 1681.31 8.16 -210.9

5 429.2 2340 16.93 <DL 1110.7 8.145 -238.2

6 322.8 1929 17.5 <DL 939.31 8.492 -201.8

7 425.4 2250 16.57 0.067 1278.07 8.209 -238

8 164.6 2470 16.15 <DL 1622.49 7.74 -12.4

Week 22

1 470.6 1985 24.34 <DL 1028.54 8.06 -340.8

2 519.9 2300 24.56 0.226 1187.3 8.597 -262.5

3 399.9 2140 24.26 0.185 1174.55 8.865 -202.2

4 110.4 2650 39.58 0.165 1855.12 8.332 -184.1

5 446.3 2330 24.67 <DL 1218.18 8.188 -306.8

6 358.3 2050 25.24 <DL 1088.94 7.987 -268.1

7 445.1 2250 18.37 <DL 1282.45 8.097 -252.3

8 152.8 2440 35.4 <DL 1726.47 7.303 0.9

9 47.9 2530 30.69 0.831 1961.07 7.488 112

Week 23

1 451.7 2250 19.56 <DL 1088.2 8.094 -281

2 472.5 2230 18.43 <DL 1160.91 8.502 -217.6

3 370.8 2130 23.92 0.185 1185.82 8.794 -290.7

4 110.3 2660 25.97 <DL 1791.31 8.438 -254.3

5 418.4 2370 24.17 <DL 1254.86 8.283 -312.3

6 406.4 2130 25.02 <DL 1146.95 8.61 -299

7 455.7 2280 21.26 <DL 1203.54 8.535 -256.5

8 174.7 2520 27.86 <DL 1588.04 7.16 -19.5

9 66.7 2870 34.33 1.146 2098.65 8.06 87.9
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Appendix D: Post-Experiment Testing Results 

Digestion ICP-AES Results 

Samples 15A/B, 26A/B, 37A/B, and 48A/B are raw mixtures corresponding to the reactors they 
were used in. 

 

 

Al As B Ba Be Ca Cd Co Cr Cu Fe K Mg 

1A 37248 BDL 78.399 286.07 BDL 50342 BDL BDL 84.1 92.7 203336 2718.9 23486

1B 30229 BDL 77.348 319.34 BDL 56796 BDL BDL 72.5 93.6 173007 2367.8 23236

1C 47166 BDL BDL 458.29 BDL 41889 BDL BDL 101.6 103.7 237097 3541.5 25668

1D 138414 BDL BDL 1194.59 BDL 106595 BDL BDL 329.7 254.1 571171 17081.1 69928

2A 41198 BDL 62.338 233.62 BDL 33088 BDL BDL 78.1 74.7 195527 4310.2 22713

2B 34796 BDL 53.876 301.18 BDL 27569 BDL BDL 69.5 64.5 191590 3099.9 19514

2C 32624 BDL 62.166 305.86 BDL 28752 BDL BDL 62.9 57.2 155541 3270.1 17962

2D 34582 BDL 72.080 371.17 BDL 33952 BDL BDL 64.3 63.6 169511 3502.9 20729

3A 14445 BDL BDL 86.55 BDL 20556 BDL BDL 27.9 53.8 91540 2003.0 8071

3C 36185 BDL 46.509 324.79 BDL 53711 BDL BDL 75.3 89.4 176251 2720.2 20022

3D 43030 BDL BDL 342.42 BDL 36667 BDL BDL 91.6 84.0 185690 3532.0 24478

4A 51890 BDL BDL 301.59 BDL 40202 BDL BDL 129.0 108.2 250101 5492.1 32958

4B 47307 BDL BDL 441.55 BDL 27513 BDL BDL 126.6 85.1 210115 4985.7 21487

4C 56602 BDL BDL 498.06 BDL 38971 BDL BDL 137.9 102.9 238301 6932.0 29578

4D 33235 BDL BDL 308.48 BDL 21483 BDL BDL 79.7 61.9 137594 3660.0 16560

5A 33553 BDL BDL 285.03 BDL 36069 BDL BDL 84.9 77.3 182237 3301.0 19243

5B 39564 BDL BDL 337.39 BDL 48234 BDL BDL 60.1 70.4 214335 5006.9 21856

5C 29501 BDL BDL 298.34 BDL 50776 BDL BDL 68.2 79.9 151054 3639.6 22458

5D 34198 BDL BDL 319.90 BDL 44750 BDL BDL 77.8 89.1 178973 4903.7 19892

6A 31853 BDL 45.778 248.86 BDL 32278 BDL BDL 74.5 71.2 186830 3389.3 19713

6B 29108 BDL 50.903 265.12 BDL 26907 BDL BDL 69.8 63.3 163770 3195.3 17494

6C 24075 BDL BDL 265.41 BDL 32977 BDL BDL 57.4 54.9 128451 3194.0 16511

6D 34651 BDL BDL 357.81 BDL 38041 BDL BDL 78.7 68.3 172021 4250.7 23071

7A 24801 BDL BDL 184.21 BDL 40862 BDL BDL 62.3 74.2 179007 2873.9 15701

7B 37359 BDL BDL 252.42 BDL 34147 BDL BDL 88.5 81.6 203849 3454.5 20730

7C 26910 BDL BDL 301.10 BDL 48020 BDL BDL 71.0 99.2 156465 3073.8 17268

7D 21467 BDL BDL 208.43 BDL 36535 BDL BDL 58.3 63.2 148433 2637.9 17929

8A 49132 BDL BDL 299.07 BDL 36021 BDL BDL 123.9 116.2 241789 4016.0 30547

8B 56351 BDL BDL 505.19 BDL 37674 BDL BDL 139.9 103.4 240716 5220.0 29785

8C 43526 BDL BDL 455.45 BDL 28910 BDL BDL 104.7 95.3 198910 3914.2 23815

8D 56761 BDL BDL 514.86 BDL 32541 BDL BDL 128.5 110.9 242604 5539.2 27265

15A 32709 BDL 78.019 337.00 BDL 47817 BDL BDL 62.1 75.2 124365 11493.8 16223

15B 32054 BDL 92.840 349.02 BDL 44815 BDL BDL 61.5 75.4 128261 10840.3 16428

26A 21608 BDL 59.805 248.75 BDL 23523 BDL BDL 41.9 44.2 86216 7537.1 12852

26B 20618 BDL 57.675 238.25 BDL 22943 BDL BDL 40.1 43.2 79922 7952.9 12516

37A 22198 BDL 44.048 219.87 BDL 35522 BDL BDL 45.8 62.4 85577 14926.7 12179

37B 20138 BDL 40.414 219.82 BDL 35778 BDL BDL 43.0 66.4 83964 15726.0 11883

48A 67631 BDL BDL 658.16 BDL 34582 BDL BDL 127.4 113.2 248312 7032.6 29021

48B 68425 BDL BDL 658.84 BDL 37044 BDL BDL 121.5 96.7 242431 7301.1 30718

All in mg/kg



149 
 

 
 

 

 

 

 

 

 

Mn Mo Na Ni P Pb S Si Sr Ti V Zn Zr 

1A 2168.5 BDL 1931.6 60.72 4749.0 BDL 52310 439.5 208.2 1311.6 BDL 371.14 BDL

1B 2058.4 BDL 1591.2 52.57 6909.2 BDL 35249 467.6 220.8 1012.8 BDL 355.80 BDL

1C 2951.6 BDL 2523.0 68.20 4974.7 BDL 24171 802.5 197.0 1811.1 BDL 401.38 BDL

1D 7254.1 BDL 9466.7 BDL 9553.2 BDL 63820 3789.2 776.6 5032.4 BDL 1021.62 BDL

2A 2005.8 BDL 2542.6 55.56 2590.2 BDL 60967 383.0 161.2 1515.2 BDL 315.58 BDL

2B 2082.8 BDL 1968.5 50.72 3185.3 BDL 39790 378.7 135.5 1226.5 BDL 307.23 BDL

2C 1690.4 BDL 2063.7 39.24 2610.2 BDL 44841 341.4 162.3 1231.1 BDL 295.41 BDL

2D 1797.8 BDL 2076.2 39.44 2464.0 BDL 46877 483.7 182.9 1289.6 BDL 339.52 BDL

3A 448.7 BDL 758.5 33.51 2471.8 BDL 47423 707.6 100.5 508.3 BDL 159.13 BDL

3C 2336.4 BDL 1918.6 49.59 7510.7 BDL 50335 512.7 208.7 1294.1 BDL 312.92 BDL

3D 2308.1 BDL 2328.3 58.42 3675.1 BDL 50572 432.8 152.7 1867.0 BDL 311.11 BDL

4A 2456.0 BDL 2821.6 91.20 2175.2 147.19 24820 997.7 174.3 2575.8 273.30 418.18 95.53

4B 2322.1 BDL 2864.5 58.74 1894.3 BDL 9103 1366.5 141.3 2320.9 244.70 362.46 86.53

4C 2665.5 BDL 2801.0 97.09 2229.1 BDL 11801 1398.1 201.9 3003.4 289.81 413.59 131.07

4D 1345.2 BDL 1904.5 41.42 1424.5 BDL 6268 1817.0 133.3 2103.0 BDL 257.99 74.95

5A 1868.4 BDL 1796.1 45.56 3657.9 94.24 28651 1364.1 148.2 1568.1 178.45 307.89 46.22

5B 2263.5 BDL 2855.5 40.14 5316.5 BDL 27982 1707.3 196.3 1699.5 151.83 308.26 44.04

5C 1750.6 BDL 1470.6 38.26 4218.1 BDL 24233 552.3 184.7 1296.9 147.87 329.39 44.55

5D 1783.6 BDL 1897.0 48.78 4657.3 BDL 24483 732.5 181.5 1573.8 162.77 349.94 58.54

6A 1963.9 BDL 1755.7 57.67 2587.4 76.58 49028 423.9 131.8 1480.6 163.14 313.22 47.37

6B 1685.1 BDL 1565.5 43.57 2554.2 77.31 48916 343.1 127.0 1337.5 149.32 302.71 46.05

6C 1256.7 BDL 1299.5 45.71 1909.8 BDL 39925 390.4 148.3 1158.8 123.31 317.44 42.86

6D 1684.0 BDL 2105.9 55.78 2517.2 BDL 26478 509.8 162.4 1563.6 165.40 334.33 62.31

7A 1265.3 BDL 1008.6 43.78 6348.3 BDL 59626 455.7 164.7 1074.5 129.37 260.21 37.92

7B 1783.7 BDL 1787.7 65.56 3730.6 83.48 64247 403.6 144.1 1766.4 204.11 318.38 52.82

7C 1450.7 BDL 1185.5 49.82 7177.5 BDL 65741 371.1 174.3 1156.6 142.15 318.63 35.06

7D 1278.1 BDL 834.1 39.05 3934.0 BDL 58698 533.3 125.6 1037.0 115.12 226.40 35.20

8A 2564.8 BDL 2298.0 85.71 2437.9 181.58 12302 710.8 147.1 1998.9 262.48 437.12 69.43

8B 2853.3 BDL 2976.4 86.58 2393.9 BDL 8644 924.5 164.9 2852.6 301.61 419.68 97.67

8C 2027.5 BDL 1853.6 85.31 2138.9 BDL 5095 1318.5 151.7 2063.5 246.92 395.73 82.46

8D 2365.6 BDL 3028.0 86.81 2425.4 BDL 10745 1319.2 176.3 2738.6 296.83 444.74 100.17

15A 1778.6 BDL 3413.3 43.96 8534.1 BDL 4898 1323.8 169.3 1105.0 BDL 319.04 BDL

15B 1834.8 BDL 3441.4 42.33 7965.4 BDL 4733 1697.9 155.5 1108.1 BDL 318.02 BDL

26A 1340.5 BDL 1873.0 28.06 3744.0 BDL 3952 1006.1 85.9 780.7 BDL 245.47 BDL

26B 1271.2 BDL 1822.5 30.70 3940.2 BDL 3863 795.6 86.0 743.3 BDL 239.14 BDL

37A 1276.6 BDL 2840.7 29.95 9743.6 BDL 4375 671.1 116.0 785.1 BDL 220.51 BDL

37B 1278.8 BDL 2934.9 31.11 10142.2 BDL 4687 538.3 111.4 632.0 BDL 221.54 BDL

48A 3282.3 BDL 5307.8 99.29 2663.5 BDL 9231 5262.4 181.8 2486.8 BDL 427.23 BDL

48B 3176.8 BDL 5397.8 84.25 2459.1 BDL 4970 5190.6 196.7 2639.8 BDL 426.52 BDL

All in mg/kg
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Sequential Extraction ICP-AES Results 

 

All in ppm Al As B Ba Be Ca Cd Co Cr Cu Fe K Mg 

MDL 0.05 0.06 0.04 0.005 0.001 0.01 0.01 0.008 0.008 0.005 0.01 0.1 0.01

BL-1 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.05 EXC. BDL

1A-1 0.582 BDL 0.058 0.014 BDL 20.20 BDL BDL BDL 0.006 4.93 EXC. 11.89

2B-1 0.385 BDL 0.046 0.016 BDL 18.92 BDL BDL BDL BDL 3.91 EXC. 12.38

3A-1 0.201 BDL BDL 0.005 BDL 23.81 BDL BDL BDL 0.007 2.79 EXC. 8.52

3C-1 0.473 BDL BDL 0.019 BDL 28.08 BDL BDL BDL 0.013 4.26 EXC. 13.34

4A-1 0.678 BDL BDL 0.008 BDL 7.60 BDL BDL BDL BDL 5.04 EXC. 6.07

5A-1 0.624 BDL 0.045 0.018 BDL 19.96 BDL BDL BDL 0.006 5.08 EXC. 10.72

6B-1 0.269 BDL 0.052 0.019 BDL 19.94 BDL BDL BDL BDL 2.54 EXC. 13.36

7A-1 0.401 BDL BDL 0.010 BDL 27.23 BDL BDL BDL 0.008 4.96 EXC. 12.00

8B-1 0.603 BDL BDL 0.021 BDL 5.98 BDL BDL BDL BDL 3.79 EXC. 3.66

15-1 0.296 BDL 0.086 0.017 BDL 10.59 BDL BDL BDL 0.032 2.55 EXC. 4.45

26-1 0.289 BDL 0.095 0.023 BDL 11.95 BDL BDL BDL 0.009 2.06 EXC. 6.68

37-1 1.23 BDL 0.131 0.047 BDL 19.60 BDL BDL BDL 0.142 9.96 EXC. 12.07

48-1 0.663 BDL BDL 0.029 BDL 8.52 BDL BDL BDL 0.007 4.79 EXC. 3.73

BL-2 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL EXC. BDL

1A-2 0.020 BDL BDL 0.052 BDL 15.32 BDL BDL BDL BDL 0.267 EXC. 3.61

2B-2 0.020 BDL BDL 0.100 BDL 14.38 BDL BDL BDL BDL 0.538 EXC. 4.73

3A-2 0.020 BDL BDL 0.011 BDL 7.07 BDL BDL BDL BDL 0.265 EXC. 1.00

3C-2 0.020 BDL BDL 0.086 BDL 17.26 BDL BDL BDL BDL 0.556 EXC. 3.59

4A-2 0.020 BDL BDL 0.050 BDL 6.62 BDL BDL BDL BDL 0.450 EXC. 2.76

5A-2 0.020 BDL BDL 0.084 BDL 15.20 BDL BDL BDL BDL 0.394 EXC. 3.43

6B-2 0.020 BDL BDL 0.139 BDL 17.48 BDL BDL BDL BDL 0.562 EXC. 6.10

7A-2 0.020 BDL BDL 0.029 BDL 11.26 BDL BDL BDL BDL 0.502 EXC. 2.05

8B-2 0.062 BDL BDL 0.142 BDL 5.97 BDL BDL BDL BDL 0.585 EXC. 1.91

15-2 BDL BDL BDL 0.104 BDL 18.08 BDL BDL BDL BDL 0.219 EXC. 2.83

26-2 BDL BDL BDL 0.158 BDL 17.80 BDL BDL BDL BDL 0.275 EXC. 4.80

37-2 BDL BDL BDL 0.099 BDL 15.82 BDL BDL BDL BDL 0.353 EXC. 3.61

48-2 BDL BDL BDL 0.154 BDL 5.76 BDL BDL BDL BDL 0.396 EXC. 1.62

BL-3 0.130 BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.099 EXC. BDL

1A-3 0.081 BDL BDL BDL BDL 0.045 BDL BDL BDL BDL 0.150 EXC. BDL

2B-3 0.161 BDL BDL BDL BDL 0.034 BDL BDL BDL BDL 0.507 EXC. 0.032

3A-3 0.104 BDL BDL BDL BDL 0.018 BDL BDL BDL BDL 0.301 EXC. 0.010

3C-3 0.115 BDL BDL BDL BDL 0.036 BDL BDL BDL BDL 0.364 EXC. 0.017

4A-3 0.176 BDL BDL BDL BDL 0.037 BDL BDL BDL BDL 0.556 EXC. 0.052

5A-3 0.076 BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.204 EXC. BDL

6B-3 0.117 BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.384 EXC. BDL

7A-3 0.061 BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.168 EXC. BDL

8B-3 0.146 BDL BDL BDL BDL 0.017 BDL BDL BDL BDL 0.497 EXC. 0.036

15-3 0.047 BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.159 EXC. BDL

26-3 0.140 BDL BDL BDL BDL 0.037 BDL BDL BDL BDL 0.477 EXC. 0.033

37-3 0.082 BDL BDL BDL BDL 0.028 BDL BDL BDL BDL 0.321 EXC. BDL

48-3 0.201 BDL BDL BDL BDL 0.023 BDL BDL BDL BDL 0.637 EXC. 0.042
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All in ppm Mn Mo Na Ni P Pb S Si Sr Ti V Zn Zr

MDL 0.002 0.02 0.01 0.01 0.1 0.05 0.1 0.05 0.005 0.005 0.05 0.01 0.01

BL-1 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.023 BDL

1A-1 0.055 BDL 1.36 BDL 0.218 BDL 18.44 2.68 0.083 0.018 BDL 0.010 BDL

2B-1 0.061 BDL 1.71 BDL 0.298 BDL 21.51 2.94 0.072 0.009 BDL BDL BDL

3A-1 0.013 BDL 1.48 BDL 0.272 BDL 22.91 1.40 0.110 0.005 BDL BDL BDL

3C-1 0.068 BDL 1.58 BDL 0.496 BDL 27.43 2.42 0.103 0.014 BDL BDL BDL

4A-1 0.062 BDL 1.04 BDL 0.017 BDL 8.59 2.57 0.030 0.020 BDL BDL BDL

5A-1 0.068 BDL 1.64 BDL 0.229 BDL 17.80 2.70 0.074 0.017 BDL BDL BDL

6B-1 0.061 BDL 2.08 BDL 0.325 BDL 26.20 2.07 0.084 0.006 BDL BDL BDL

7A-1 0.039 BDL 1.54 BDL 0.319 BDL 27.28 1.58 0.114 0.012 BDL BDL BDL

8B-1 0.173 BDL 0.99 BDL 0.022 BDL 4.01 2.46 0.019 0.018 BDL BDL BDL

15-1 0.082 BDL 8.01 BDL 8.373 BDL 8.61 2.75 0.026 0.011 BDL 0.010 BDL

26-1 0.160 BDL 5.28 BDL 7.967 BDL 3.90 3.41 0.024 0.006 BDL 0.013 BDL

37-1 0.316 BDL 14.20 BDL 27.47 BDL 18.86 5.69 0.056 0.048 BDL 0.050 BDL

48-1 0.530 BDL 4.10 BDL 0.172 BDL 3.77 2.93 0.023 0.017 BDL BDL BDL

BL-2 BDL BDL 0.312 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

1A-2 0.008 BDL 0.452 BDL BDL BDL 0.920 0.209 0.070 BDL BDL BDL BDL

2B-2 0.025 BDL 0.563 BDL BDL BDL 0.830 0.425 0.068 BDL BDL BDL BDL

3A-2 BDL BDL 0.453 BDL BDL BDL 0.625 0.195 0.031 BDL BDL BDL BDL

3C-2 0.012 BDL 0.614 BDL 0.129 BDL 0.936 0.305 0.082 BDL BDL BDL BDL

4A-2 0.024 BDL 0.635 BDL BDL BDL 0.345 0.320 0.033 BDL BDL BDL BDL

5A-2 0.011 BDL 0.629 BDL BDL BDL 0.827 0.316 0.066 BDL BDL BDL BDL

6B-2 0.054 BDL 0.811 BDL BDL BDL 0.920 0.433 0.088 BDL BDL BDL BDL

7A-2 0.005 BDL 0.663 BDL 0.101 BDL 1.130 0.199 0.055 BDL BDL BDL BDL

8B-2 0.206 BDL 0.671 BDL BDL BDL 0.107 0.441 0.022 BDL BDL BDL BDL

15-2 0.019 BDL 1.043 BDL 0.830 BDL 0.352 1.297 0.044 BDL BDL BDL BDL

26-2 0.154 BDL 0.895 BDL 0.598 BDL 0.246 1.875 0.041 BDL BDL BDL BDL

37-2 0.044 BDL 1.259 BDL 1.999 BDL 0.927 3.596 0.050 BDL BDL BDL BDL

48-2 0.342 BDL 0.733 BDL BDL BDL 0.191 0.474 0.018 BDL BDL BDL BDL

BL-3 BDL BDL 2.34 BDL BDL BDL 0.307 1.83 BDL BDL BDL BDL BDL

1A-3 0.002 BDL 1.68 BDL 0.90 BDL 0.912 1.98 BDL BDL BDL BDL BDL

2B-3 0.005 BDL 1.48 BDL 0.38 BDL 0.756 3.73 BDL BDL BDL BDL BDL

3A-3 BDL BDL 1.88 BDL 0.81 BDL 0.691 4.09 BDL BDL BDL BDL BDL

3C-3 0.004 BDL 1.50 BDL 2.57 BDL 1.078 3.38 BDL 0.005 BDL BDL BDL

4A-3 0.006 BDL 1.61 BDL BDL BDL 0.567 4.49 BDL 0.010 BDL BDL BDL

5A-3 BDL BDL 1.49 BDL 0.91 BDL 0.837 4.20 BDL BDL BDL BDL BDL

6B-3 0.004 BDL 1.21 BDL 0.19 BDL 0.583 4.58 BDL BDL BDL BDL BDL

7A-3 BDL BDL 1.41 BDL 1.39 BDL 0.662 3.88 BDL BDL BDL BDL BDL

8B-3 0.009 BDL 1.43 BDL BDL BDL 0.404 5.76 BDL 0.010 BDL BDL BDL

15-3 BDL BDL 1.62 BDL 2.29 BDL 0.446 6.49 BDL BDL BDL BDL BDL

26-3 0.021 BDL 1.43 BDL 0.60 BDL 0.389 8.95 BDL 0.014 BDL BDL BDL

37-3 0.006 BDL 1.53 BDL 4.05 BDL 0.595 7.43 BDL BDL BDL BDL BDL

48-3 0.009 BDL 1.40 BDL BDL BDL 0.502 8.15 BDL 0.009 BDL BDL BDL
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All in ppm Al As B Ba Be Ca Cd Co Cr Cu Fe K Mg 

MDL 0.05 0.06 0.04 0.005 0.001 0.01 0.01 0.008 0.008 0.005 0.01 0.1 0.01

BL-4 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.019 7.66 BDL

1A-4 0.876 BDL BDL 0.007 BDL 7.96 BDL BDL BDL 0.008 5.20 57.18 1.554

2B-4 1.000 BDL BDL 0.009 BDL 4.54 BDL BDL BDL 0.007 6.29 71.38 1.553

3A-4 0.442 BDL BDL BDL BDL 5.44 BDL BDL BDL 0.006 2.63 31.35 0.726

3C-4 0.758 BDL BDL 0.015 BDL 17.02 BDL BDL BDL 0.013 6.13 69.85 1.666

4A-4 1.063 BDL BDL 0.006 BDL 2.22 BDL BDL BDL 0.008 5.10 39.25 1.225

5A-4 0.968 BDL BDL 0.011 BDL 7.04 BDL BDL BDL 0.011 6.42 47.95 1.420

6B-4 1.053 BDL BDL 0.010 BDL 4.50 BDL BDL BDL 0.006 6.26 57.11 1.361

7A-4 0.533 BDL BDL BDL BDL 9.00 BDL BDL BDL 0.006 3.38 59.51 0.969

8B-4 1.122 BDL BDL 0.009 BDL 1.28 BDL BDL BDL 0.007 5.80 30.89 0.481

15-4 0.697 BDL BDL 0.024 BDL 12.91 BDL BDL BDL 0.007 4.82 45.32 0.790

26-4 0.688 BDL BDL 0.019 BDL 4.75 BDL BDL BDL BDL 4.84 71.78 0.846

37-4 0.776 BDL BDL 0.028 BDL 16.87 BDL BDL BDL 0.007 5.75 74.66 0.712

48-4 1.215 BDL BDL 0.010 BDL 1.05 BDL BDL BDL 0.009 6.57 49.25 0.400

BL-5 BDL BDL BDL BDL BDL 0.01 BDL BDL BDL BDL BDL 0.234 BDL

1A-5 0.43 BDL BDL 0.057 BDL 5.87 BDL BDL BDL 0.018 9.53 3.92 0.70

2B-5 0.67 BDL BDL 0.074 BDL 1.35 BDL BDL BDL 0.015 10.61 5.38 0.69

3A-5 0.26 BDL BDL 0.023 BDL 1.59 BDL BDL BDL 0.011 4.50 1.88 0.41

3C-5 0.97 BDL BDL 0.132 BDL 12.57 BDL BDL BDL 0.032 16.25 6.51 0.91

4A-5 0.49 BDL BDL 0.032 BDL 1.13 BDL BDL BDL 0.009 5.89 2.67 0.73

5A-5 0.65 BDL BDL 0.082 BDL 2.02 BDL BDL BDL 0.017 9.66 3.74 0.55

6B-5 0.66 BDL BDL 0.080 BDL 1.23 BDL BDL BDL 0.016 10.19 5.45 0.51

7A-5 0.39 BDL BDL 0.052 BDL 3.73 BDL BDL BDL 0.015 8.03 3.81 0.53

8B-5 0.43 BDL BDL 0.035 BDL 0.61 BDL BDL BDL 0.008 4.86 2.84 0.31

15-5 0.42 BDL BDL 0.067 BDL 2.68 BDL BDL BDL 0.014 5.11 3.61 0.27

26-5 0.36 BDL BDL 0.051 BDL 0.88 BDL BDL BDL 0.011 4.72 5.12 0.25

37-5 0.56 BDL BDL 0.085 BDL 6.77 BDL BDL BDL 0.014 6.26 5.17 0.31

48-5 0.43 BDL BDL 0.033 BDL 0.39 BDL BDL BDL 0.006 4.37 3.35 0.21

BL-6 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 0.057 BDL

1A-6 37.5 BDL 0.07 0.226 BDL 20.42 BDL 0.080 0.104 0.108 481.3 4.2 33.1

2B-6 47.8 BDL 0.08 0.266 BDL 19.61 BDL 0.079 0.121 0.105 573.2 6.8 36.8

3A-6 17.6 BDL BDL 0.077 BDL 12.51 BDL 0.035 0.049 0.103 333.7 2.7 15.9

3C-6 61.1 BDL 0.09 0.322 BDL 26.96 BDL 0.094 0.154 0.167 645.5 7.5 48.5

4A-6 38.1 BDL 0.05 0.165 BDL 20.58 BDL 0.064 0.099 0.076 367.5 4.1 30.9

5A-6 49.7 BDL 0.07 0.252 BDL 16.21 BDL 0.080 0.122 0.106 512.7 5.3 34.0

6B-6 50.3 BDL 0.09 0.265 BDL 18.66 BDL 0.085 0.131 0.113 579.0 6.7 37.8

7A-6 33.4 BDL 0.05 0.181 BDL 13.56 BDL 0.056 0.092 0.105 539.6 3.9 26.6

8B-6 37.6 BDL 0.05 0.145 BDL 15.43 BDL 0.059 0.097 0.073 307.4 3.8 26.4

15-6 33.4 BDL 0.07 0.172 BDL 13.23 BDL 0.050 0.082 0.073 279.4 4.2 23.0

26-6 33.1 BDL 0.09 0.171 BDL 13.97 BDL 0.051 0.085 0.084 277.4 5.3 23.8

37-6 41.7 BDL 0.05 0.216 BDL 19.36 BDL 0.059 0.107 0.115 324.5 5.7 29.3

48-6 35.0 BDL BDL 0.152 BDL 13.13 BDL 0.054 0.091 0.077 279.7 4.2 22.6
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All in ppm Mn Mo Na Ni P Pb S Si Sr Ti V Zn Zr

MDL 0.002 0.02 0.01 0.01 0.1 0.05 0.1 0.05 0.005 0.005 0.05 0.01 0.01

BL-4 BDL BDL EXC. BDL EXC. BDL BDL BDL BDL BDL BDL BDL BDL

1A-4 0.215 BDL EXC. BDL EXC. BDL 0.555 1.79 0.013 0.033 BDL 0.055 BDL

2B-4 0.316 BDL EXC. BDL EXC. BDL 0.476 2.19 0.008 0.033 BDL 0.050 BDL

3A-4 0.037 BDL EXC. BDL EXC. BDL 0.350 1.25 0.009 0.015 BDL 0.033 BDL

3C-4 0.416 BDL EXC. BDL EXC. BDL 0.571 1.73 0.029 0.038 BDL 0.056 BDL

4A-4 0.195 BDL EXC. BDL EXC. BDL 0.317 2.16 0.005 0.035 BDL 0.022 BDL

5A-4 0.311 BDL EXC. BDL EXC. BDL 0.530 1.94 0.012 0.039 BDL 0.041 BDL

6B-4 0.330 BDL EXC. BDL EXC. BDL 0.500 2.31 0.009 0.037 BDL 0.053 BDL

7A-4 0.127 BDL EXC. BDL EXC. BDL 0.433 1.12 0.014 0.019 BDL 0.027 BDL

8B-4 0.268 BDL EXC. BDL EXC. BDL 0.243 2.21 BDL 0.038 BDL 0.022 BDL

15-4 0.369 BDL EXC. BDL EXC. BDL 0.225 1.97 0.019 0.028 BDL 0.075 BDL

26-4 0.439 BDL EXC. BDL EXC. BDL 0.202 2.17 0.007 0.022 BDL 0.078 BDL

37-4 0.428 BDL EXC. BDL EXC. BDL 0.304 2.30 0.028 0.034 BDL 0.078 BDL

48-4 0.197 BDL EXC. BDL EXC. BDL 0.292 2.29 BDL 0.037 BDL 0.020 BDL

BL-5 BDL BDL EXC. BDL EXC. BDL 1.33 BDL BDL BDL BDL BDL BDL

1A-5 0.252 BDL EXC. BDL EXC. BDL 1.72 1.50 0.03 0.01 BDL 0.040 BDL

2B-5 0.288 BDL EXC. BDL EXC. BDL 1.59 2.25 0.01 0.01 BDL 0.035 BDL

3A-5 0.047 BDL EXC. BDL EXC. BDL 1.50 0.86 0.01 0.01 BDL 0.024 BDL

3C-5 0.535 BDL EXC. BDL EXC. BDL 1.70 2.88 0.06 0.03 BDL 0.056 BDL

4A-5 0.143 BDL EXC. BDL EXC. BDL 1.50 1.48 0.01 0.02 BDL 0.017 BDL

5A-5 0.275 BDL EXC. BDL EXC. BDL 1.65 1.97 0.02 0.01 BDL 0.031 BDL

6B-5 0.272 BDL EXC. BDL EXC. BDL 1.70 2.11 0.02 0.01 BDL 0.038 BDL

7A-5 0.189 BDL EXC. BDL EXC. BDL 1.62 1.19 0.03 0.01 BDL 0.030 BDL

8B-5 0.142 BDL EXC. BDL EXC. BDL 1.62 1.25 BDL 0.01 BDL 0.015 BDL

15-5 0.198 BDL EXC. BDL EXC. BDL 1.45 1.37 0.01 0.01 BDL 0.029 BDL

26-5 0.124 BDL EXC. BDL EXC. BDL 1.38 1.43 0.01 0.01 BDL 0.026 BDL

37-5 0.257 BDL EXC. BDL EXC. BDL 1.50 1.88 0.03 0.01 BDL 0.037 BDL

48-5 0.091 BDL EXC. BDL EXC. BDL 1.54 1.28 BDL 0.01 BDL 0.012 BDL

BL-6 BDL BDL EXC. BDL 0.603 BDL BDL 0.072 BDL BDL BDL 0.005 BDL

1A-6 3.84 BDL EXC. 0.081 18.49 0.143 1.243 61.86 0.046 1.222 BDL 0.604 BDL

2B-6 4.64 BDL EXC. 0.095 20.21 0.187 1.004 78.66 0.058 1.337 BDL 0.706 BDL

3A-6 1.10 BDL EXC. 0.066 12.72 0.078 2.596 31.94 0.027 0.591 BDL 0.297 BDL

3C-6 5.94 BDL EXC. 0.121 28.87 0.226 2.012 84.33 0.071 1.761 BDL 0.883 BDL

4A-6 3.14 BDL EXC. 0.082 10.81 0.129 1.651 63.15 0.044 1.180 BDL 0.517 BDL

5A-6 4.27 BDL EXC. 0.098 18.68 0.162 3.012 74.60 0.057 1.392 BDL 0.686 BDL

6B-6 4.57 BDL EXC. 0.103 22.07 0.196 1.138 80.47 0.057 1.469 BDL 0.772 BDL

7A-6 2.80 BDL EXC. 0.071 21.82 0.178 3.342 58.20 0.044 1.083 BDL 0.540 BDL

8B-6 2.54 BDL EXC. 0.076 8.18 0.111 1.033 61.35 0.038 1.140 BDL 0.487 BDL

15-6 2.49 BDL EXC. 0.064 8.36 0.102 0.383 59.04 0.036 0.980 BDL 0.480 BDL

26-6 2.22 BDL EXC. 0.066 8.69 0.101 0.516 60.35 0.034 0.988 BDL 0.532 BDL

37-6 2.98 BDL EXC. 0.081 10.98 0.113 1.662 69.33 0.046 1.230 BDL 0.587 BDL

48-6 2.05 BDL EXC. 0.066 8.99 0.105 2.311 60.89 0.038 1.056 BDL 0.471 BDL
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Carbon, Nitrogen, Sulphur Combustion Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample N% C% S% Sample N% C% S%
1A 0.190 3.330 0.831 6A 0.270 4.770 1.068
1B 0.220 3.880 0.656 6B 0.320 5.370 1.074
1C 0.140 2.560 0.335 6C 0.310 5.510 0.756
1D 0.040 0.840 0.134 6D 0.180 3.100 0.376
2A 0.200 3.700 1.105 7A 0.150 3.110 0.967
2B 0.260 4.850 0.826 7B 0.190 3.600 1.229
2C 0.310 5.810 0.997 7C 0.210 3.620 1.128
2D 0.250 4.550 0.759 7D 0.150 3.010 0.967
3A 0.120 2.330 0.865 8A 0.070 1.420 0.143
3B 0.160 2.730 1.253 8B 0.060 1.060 0.087
3C 0.200 3.660 0.946 8C 0.040 0.760 0.047
3D 0.240 4.080 1.208 8D 0.050 1.020 0.095
4A 0.060 1.350 0.266 15A 0.27 3.66 0.084
4B 0.070 1.160 0.108 15B 0.27 3.60 0.077
4C 0.040 0.820 0.082 26A 0.44 7.35 0.097
4D 0.040 0.800 0.080 26B 0.46 7.85 0.100
5A 0.140 2.570 0.531 37A 0.36 7.32 0.118
5B 0.120 2.060 0.348 37B 0.40 8.06 0.132
5C 0.190 3.390 0.403 48A 0.06 1.15 0.076
5D 0.150 2.610 0.317 48B 0.06 1.10 0.038
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SEM Compositional Results 

Note: Data is semi-quantitative and intended for comparative purposes only. 

 

 

 

 

 

Sample - Site

Si Fe S Ca Al Mg P Na K

1B-1 2.39 28.08 6.13 3.47

1B-2 20.74 5.19 10.78

1B-3 27.29 7.18 4.78

1B-4 11.99 7.11 3.22 4.32 5.49 3.16 1.77 1.38

1B-5 12.89 7.27 3.79 1.48 6.07 5.55 0.69

1B-6 17.09 1.68 1.23 11.90 3.74 0.30 1.85

1B-7 17.98 3.41 2.44 1.16 6.32 1.97 0.29 0.47 3.82

1B-11 14.10 4.56 7.61 1.44 4.20 1.39 1.30

1B-12 1.43 3.89 1.03 1.49 23.09

1B-13 0.56 6.88 1.18 23.49

1B-14 14.31 11.24 5.77 3.02 1.03 0.54

1B-15 2.54 6.54 5.45 11.42 0.53 2.97 7.82

2C-1 28.29 0.67 1.19 0.38 2.15 0.87 0.56 0.22

2C-4 14.70 4.42 4.04 1.56 6.78 4.04 0.45 0.79

2C-5 30.08 1.37 0.32 1.05 0.51

2C-6 15.36 2.13 3.41 0.67 8.62 4.29 0.85 2.19

2C-7 21.43 0.46 2.00 6.86 3.76 1.40

2C-8 3.46 1.57 16.28 2.79 1.19 5.28 0.63

3A-10 3.84 14.09 12.30 2.26 0.88 2.18

3A-11 14.21 8.42 6.79 1.98 2.27 1.86

3A-12 1.39 8.85 12.67 7.08 4.55 1.20

3A-13 2.03 7.07 13.62 6.47 3.14 1.65

3A-14 1.29 6.02 11.94 12.59 2.49 1.76

3A-15 1.34 8.62 15.97 3.89 2.44 0.63

5D-2 16.89 5.21 0.40 9.13 6.18 1.42

5D-3 23.14 0.54 7.39 7.36

5D-4 22.97 0.57 7.60 0.56 6.56

5D-5 12.23 13.14 3.09 3.31 4.38 1.13 2.08

5D-8 17.13 1.38 0.47 14.64 1.16 0.74 2.63

5D-9 19.23 4.33 0.74 0.43 7.02 3.10 2.98 1.09

5D-10 22.76 2.15 1.58 5.68 2.43 1.38

Composition By %

Oxides
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Sample - Site

Si Fe S Ca Al Mg P Na K

6B-9 0.92 1.42 42.58 3.65

6B-10 2.76 5.00 16.65 1.56 6.00

6B-11 2.74 5.23 16.76 1.77 5.37

6B-12 7.11 6.48 12.45 5.00 2.96

6B-13 4.56 18.50 3.66 2.73

6B-14 1.18 6.37 13.98 3.05 10.85

6B-15 0.67 48.65

6B-16 0.50 9.83 14.75 1.47 8.45

6B-17 7.18 5.71 14.21 0.49 2.02 1.68 0.24

6B-18 3.79 8.43 16.48 1.77 1.17

6B-19 8.67 5.84 12.83 1.20 2.12 1.64

7A-3 2.25 16.50 11.74 3.43 3.22

7A-6 2.54 13.16 14.64 1.39 2.35

7A-7 4.66 15.76 11.19 1.67 3.19

7A-8 3.27 8.57 15.82 2.54 2.33

7A-9 4.86 8.34 13.90 3.71 2.87

7A-10 3.15 11.56 13.44 3.64 3.20

7D-1 18.38 0.21 4.29 12.16 3.36

7D-2 22.78 0.30 2.89 7.82 2.16

7D-3 25.57 5.99 4.53

7D-5 10.22 3.26 7.52 4.22 6.46 4.08

8D-12 20.09 4.14 0.80 1.29 7.39 2.56 0.94 0.45

8D-13 24.74 2.15 0.33 0.78 4.84 2.04 0.99 0.65

8D-14 17.30 4.15 1.10 0.89 7.63 6.29 1.31

8D-15 18.81 9.97 5.19 1.61

8D-17 18.06 4.83 1.04 2.59 7.07 2.60 0.57 1.27

8D-20 18.84 4.08 11.96 3.63

Composition By %

Oxides
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SEM Images 
 
 

 

 

A: Sample 1B; sites 1-3. Iron oxide spheres. 

B: Sample 1B; sites 4-7. Mineral crystal from creek sediment, probably biotite. 

C: Sample 1B; sites 9-11. Organic matter surrounded by silicates. 

D: Sample 1B; sites 12-15. Phosphate minerals surrounded by silicates. 

 

 

 

 

 

C A 
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A: Sample 2C; sites 1-4, quartz and silicate grains of silica sand and creek sediment. 

B: Sample 2C; sites 5-8, quartz and silicate grains of silica sand and creek sediment. 

C: Sample 3A; sites 10-11, iron rich material on leaf compost. 

D: Sample 3A; sites 12-15, iron and sulphur rich material. 

E: Sample 5D; sites 2-5, silicate material. 

F: Sample 5D; sites 9-10, aluminum-silicate minerals. 

A C E 
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A: Sample 6B; sites 9-12, sulphur and silicate bearing materials. 

B: Sample 6B; sites 13-16, sulphur and silicate bearing materials. 

C: Sample 6B; sites 17-19, sulphur-rich precipitates. 

D: Sample 7A; sites 2-5, organic matter in upper left, silicates in lower right. 

E: Sample 7A; sites 6-8, sulphur-rich precipitates. 

F: Sample 7A; sites 9-10, iron- and sulphur-rich precipitates. 

A C 



160 
 

 
 

 
 

A: Sample 7D; sites 1-3, 5, quartz and aluminum silicates. 

B: Sample 8B; sites 12-14, silicate materials. 

C: Sample 8B; sites 15, 17, 20, silicate materials. 
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XRD Results 
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Saturation Index Calculated Values 
 

 

Week 5 Week 10 Week 15

Mineral Value Mineral Value Mineral Value

Reactor 1

Aragonite 3.18 Aragonite 3.34 Aragonite 3.56

Calcite 3.33 Calcite 3.49 Calcite 3.71

Dolomite 6.68 Dolomite 6.88 Dolomite 7.38

Goethite 8.81 Goethite 9.41 Goethite 8.98

Ferrihydrite 3.02 Ferrihydrite 3.62 Ferrihydrite 3.08

Hematite 19.62 Hematite 20.84 Hematite 19.97

Hydroxyapatite 11.49 Hydroxyapatite 13.46 Hydroxyapatite 13.59

Jarosite 4.51 Jarosite 6.46 Jarosite 3.63

Rhodochrosite 3.14 Rhodochrosite 3.06 Pyrite -109.02

Pyrite -98.82 Pyrite -101.86 Mackinawite -66.68

Mackinawite -60.79 Mackinawite -62.49 Gypsum 1.36

Gypsum 0.69 Gypsum 1.51 Vivianite -2.85

Barite 3.27 Barite 3.5

Reactor 2

Aragonite 3.16 Aragonite 3.92

Calcite 3.3 Calcite 4.06

Dolomite 6.71 Dolomite 8.16

Goethite 9 Goethite 9.81 No

Ferrihydrite 3.21 Ferrihydrite 4.02 Effluent 

Hematite 20.01 Hematite 21.63 Water

Hydroxyapatite 8.47 Hydroxyapatite 14.47 Sample

Jarosite 3.16 Jarosite 4.65

Pyrite -101.06 Pyrite -114.8

Mackinawite -61.88 Mackinawite -69.66

Gypsum -0.26 Gypsum 1.01

Barite 2.14

Reactor 3

Calcite 3.04 Aragonite 3.9 Aragonite 3.9

Dolomite 6.63 Calcite 4.05 Calcite 4.05

Goethite 9.28 Dolomite 8.56 Dolomite 8.5

Ferrihydrite 3.49 Goethite 9.7 Goethite 9.32

Hematite 20.56 Ferrihydrite 3.91 Ferrihydrite 3.43

Hydroxyapatite 6.98 Hematite 21.41 Hematite 20.66

Jarosite 4.64 Hydroxyapatite 13.86 Hydroxyapatite 13.85

Pyrite -102.71 Pyrite -125.38 Jarosite 1.48

Mackinawite -62.8 Mackinawite -75.74 Pyrite -124

Gypsum -0.07 Gypsum -0.18 Mackinawite -75

Barite 2.22 Gypsum 0.4

Barite 2.67

Reactor 4

Dolomite 5.59 Aragonite 3.42 Aragonite 3.32

Goethite 8.82 Calcite 3.57 Calcite 3.46

Ferrihydrite 3.03 Dolomite 7.09 Dolomite 6.92

Hematite 19.63 Goethite 9.43 Goethite 9.21

Hydroxyapatite 7.29 Ferrihydrite 3.64 Ferrihydrite 3.32

Jarosite 4.99 Hematite 20.86 Hematite 20.44

Pyrite -95.57 Hydroxyapatite 10.93 Hydroxyapatite 10.68

Mackinawite -58.98 Jarosite 3.95 Jarosite 3.36

Gypsum 1.41 Rhodochrosite 3.01 Pyrite -114.2

Barite 3.74 Pyrite -114.13 Mackinawite -69.57

Mackinawite -69.48 Gypsum 1.45

Gypsum 1.53 Vivianite -7.26

Barite 3.73
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Week 5 Week 10 Week 15

Mineral Value Mineral Value Mineral Value

Reactor 5

Aragonite 3.23 Aragonite 3.65 Aragonite 3.8

Calcite 3.38 Calcite 3.8 Calcite 3.95

Dolomite 6.77 Dolomite 7.54 Dolomite 7.87

Goethite 9.06 Goethite 9.22 Goethite 8.73

Ferrihydrite 3.27 Ferrihydrite 3.42 Ferrihydrite 2.83

Hematite 20.12 Hematite 20.44 Hematite 19.48

Hydroxyapatite 12.36 Hydroxyapatite 14.37 Hydroxyapatite 14.12

Jarosite 5.37 Jarosite 4.76 Jarosite 2.28

Pyrite -99.45 Pyrite -108.54 Pyrite -114.92

Mackinawite -61.09 Mackinawite -66.36 Mackinawite -70.23

Gypsum 0.94 Gypsum 1.43 Gypsum 1.43

Barite 3.32 Barite 3.51

Reactor 6

Aragonite 3.55 Aragonite 3.58

Calcite 3.69 Calcite 3.72

Dolomite 7.63 Dolomite 7.98 No

Goethite 10.1 Goethite 9.42 Effluent 

Ferrihydrite 4.31 Ferrihydrite 3.63 Water

Hematite 22.2 Hematite 20.83 Sample

Hydroxyapatite 12 Hydroxyapatite 11.9

Jarosite 5.51 Pyrite -122.32

Pyrite -110.34 Mackinawite -74.19

Mackinawite -66.84 Gypsum 0.54

Gypsum -0.07

Barite 1.91

Reactor 7

Aragonite 3.13 Aragonite 3.51 Aragonite 3.58

Calcite 3.28 Calcite 3.66 Calcite 3.72

Dolomite 6.64 Dolomite 7.32 Dolomite 7.49

Goethite 8.33 Goethite 10.01 Goethite 9.64

Hemetite 18.66 Ferrihydrite 4.22 Ferrihydrite 3.74

Hydroxyapatite 5.98 Hematite 22.03 Hematite 21.29

Rhodochrosite 3.11 Hydroxyapatite 13.34 Hydroxyapatite 14.22

Pyrite -97.55 Jarosite 6.85 Jarosite 5.5

Mackinawite -60.2 Vivianite 3.77 Pyrite -104.46

Gypsum 0.15 Pyrite -102.34 Mackinawite -63.68

Barite 2.45 Mackinawite -62.34 Gypsum 0.82

Gypsum 0.75 Vivianite 2.25

Barite 3.2

Reactor 8

Dolomite 3.86 Dolomite 5.03 Aragonite 2.63

Goethite 8.35 Ferrihydrite 3.84 Calcite 2.78

Hematite 18.7 Goethite 9.63 Dolomite 5.53

Hydroxyapatite 4.48 Hematite 21.26 Goethite 9.53

Jarosite 5.64 Hydroxyapatite 6.84 Ferrihydrite 3.63

Pyrite -83.34 Jarosite 8.12 Hematite 21.07

Mackinawite -52.1 Pyrite -91.3 Hydroxyapatite 7.52

Gypsum 1.49 Mackinawite -56.18 Jarosite 7.07

Barite 3.6 Gypsum 1.56 Pyrite -96.14

Mackinawite -58.93

Gypsum 1.45

Vivianite 0.57

Barite 3.64

Stock Water

Aragonite 2.57 Aragonite 2.62

Calcite 2.72 Calcite 2.77

Dolomite 5.37 Dolomite 5.5

Ferrihydrite 2.89 Goethite 8.2

Goethite 8.68 Ferrihydrite 2.3

Hematite 19.36 Hematite 18.41

Hydroxyapatite 9.44 Hydroxyapatite 9.65

Jarosite 3.21 Jarosite 1.55

Pyrite -105.46 Pyrite -107.86

Mackinawite -64.78 Mackinawite -66.33

Gypsum 1.57 Gypsum 1.54

Barite 1.97 Vivianite -7.44

Barite 2.12


