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Abstract 
 It has been well documented that phosphorus pollution has been one of the most 

significant factors inhibiting aquatic health on Lake Simcoe. However, reports on the impacts of 

microbial contribution to phosphorus levels are sparse. Phosphate solubilizing bacteria (PSB), 

are a group of bacteria that are known to release inorganic phosphate from sediments into a 

bioavailable form of phosphorus under specific conditions and are the focus of the present 

study.  Sediment samples were collected once monthly from June-September 2017 from three 

nearshore locations along the northwestern shore of Lake Simcoe and compared to three 

nearshore locations along Sparrow Lake, ON. The phosphate solubilizing bacteria were isolated 

from the sediment, and the abundances between each lake were compared to see if 

anthropogenic influence was a factor on their abundance and distribution. After the bacterial 

isolates were counted, they were subjected to a series of laboratory tests in order to find out 

which of the isolates were the most efficient ones at utilizing inorganic phosphate. This test was 

first completed on Pikovskaya’s agar plates, and then the isolates that had the best results were 

tested again in Pikovskaya’s broth. The ten isolates that utilized the most inorganic phosphate 

were further classified on their abilities to grow at various temperatures, pH levels, and 

inorganic phosphate concentrations. Results indicated that there were significant differences 

on the abundance of PSBs based on their lake of origin (three-factor ANOVA, p<0.05). However, 

the higher abundance was observed in Sparrow Lake, which did not agree with the hypothesis 

that PSBs would be more abundant in areas that had high nutrient concentrations. Results from 

a laboratory screening test showed that the isolate incubation period had a significant impact 

on how efficient the isolates were at utilizing inorganic phosphate on the Pikovskaya’s agar 

plates (repeated measures ANOVA, p<0.05). They also showed that some of the isolates were 

significantly better at utilizing the inorganic phosphate in the broth than others (1-factor 

ANOVA, p<0.05), and that of the ten isolates that were characterized, only three were 

significantly different from each other (discriminant function analysis, p<0.001). The phosphate 

solubilizing bacteria were found to be most abundant and grew the best when they originated 

from areas that had water total phosphorus concentrations of less than 2mg/L. Thus, indicating 

that this group of microorganisms may not be useful as indicators of phosphorus pollution. 
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Lay Summary  
 The mission statement of Lakehead University’s Biology Department is "Faculty and 

students in the Department of Biology are bound together by a common interest in explaining 

the diversity of life, the fit between form and function, and the distribution and abundance of 

organisms." This study focuses on the isolation and characterization of phosphate solubilizing 

bacteria within the northern portion of Lake Simcoe, and as such it contributes to two of the 

central themes identified in the Department’s mission statement. Those being the fit between 

organisms and their ecological functions and the distribution and abundance of organisms. This 

study advances our understanding of phosphate solubilizing bacteria in nearshore freshwater 

environments by identifying some of the abiotic factors that influence their growth rates and 

abundance. Understanding the habitat conditions that phosphate solubilizing bacteria find 

preferable could help to understand further how these microorganisms contribute to internal 

phosphorus loading in lakes. The primary research questions that were investigated in this 

study were: 1. Are phosphate solubilizing bacteria more prevalent in freshwater environments 

that have an excess amount of phosphorus is present? 2. What are some of the growth 

conditions needed for these organisms to thrive? 3. Can phosphate solubilizing bacteria be used 

as an indicator of phosphorus pollution? Results showed higher abundances of phosphate 

solubilizing bacteria in locations that did not have an excess amount of nutrients present. These 

results suggest that phosphate solubilizing bacteria may not be an indicator of phosphorus 

pollution if used alone. However, phosphate solubilizing bacteria could potentially be used as 

an additional indicator of aquatic health.  This study provides a preliminary step for classifying 

phosphate solubilizing bacteria within nearshore sites along the northwestern part of Lake 

Simcoe and could be expanded upon in future studies.  
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Chapter 1: Introduction and Review of Pertinent Literature 
1.1 Introduction  

It has been well documented that phosphorus is a limiting factor in freshwater systems   

(Winter et al., 2007; Nürnberg et al., 2013; Dodds & Whiles, 2010). This is so well known that 

the concentration of phosphorus is commonly one of the first problems addressed when 

freshwater water bodies, such as inland lakes, are under environmental duress (Winter et al., 

2007; Young & Jarjanazi, 2015).  When studying phosphorus pollution in lakes, the emphasis is 

primarily put on the anthropogenic factors that may be the cause of the pollution (this usually is 

defined as point source and non-point source pollution) (Dodds & Whiles, 2010). While some 

studies may elude to internal phosphorus loading, there has yet to be extensive research done 

on the internal processes that may contribute to it. Often, it is merely stated that ‘microbial 

processes’ contribute to internal phosphorus loading, but specifics as to what these processes 

are is often lacking (Winter et al., 2007). The following study is focused on phosphate 

solubilizing bacteria, a group of microorganisms that can externally secrete various organic 

acids which can help unbind phosphate from the compounds to which it was previously bound 

to (Mohammadi, 2012). This study aims not only to isolate these microorganisms from a local 

water source but to characterize these microbes as well because they have been understudied 

in freshwater environments until fairly recently (Paul & Sinha, 2017). These microorganisms will 

provide insights into the water quality and phosphorus pollution levels of their respective 

habitats. Determining if these microorganisms could be a suitable indicator of phosphorus 

pollution in a particular location was one of the research goals of this study.  

1.2 Freshwater Environments  

 It is common knowledge that freshwater is a valuable resource. So much so that 

economists have included water resources in ecosystem goods and services reports since at 

least the mid-1990s (Dodds & Whiles, 2010). A report published in 2004 states that ecosystem 

services provided by “open freshwater ” had an estimated annual value of $66 million U.S. 

dollars in New Jersey alone (Costanza et al., 1997). Around the same time, it was reported that 

on a global scale, “open freshwater” later defined as rivers and lakes, had an estimated annual 

value of nearly $1.7 trillion U.S. dollars (Dodds & Whiles, 2010). These dollar values would likely 
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be much higher today, due to inflation and due to how sensitive these ecosystems are to 

anthropogenic pollution (Dodds & Whiles, 2010).  

 Nutrient levels in freshwater ecosystems are known to impact primary production 

(Schindler, 1971; Carpenter, 2008). Phosphorus, in particular, has been proven to be correlated 

with chlorophyll a amounts (Schindler, 1977). Studies have proven that total phosphorus levels 

are the leading contributor to eutrophication. However, the lack of other nutrients such as 

nitrogen and carbon, amplify the effect of eutrophication (Carpenter, 2008; Schindler, 1977; 

Schindler, 1971; Elser et al., 2007). These excess concentrations of phosphorous enter 

freshwater ecosystems naturally through rock weathering. However mining, agricultural runoff, 

industrial, and municipal waste discharges cause for phosphorus to be found more frequently 

(Carpenter, 2008).  In 2000, the global influx in phosphorus increased from ~10-15 tonnes/year 

in pre-industrial times to ~33-39 tonnes/year (Carpenter, 2008). Carpenter’s study goes on to 

discuss the impacts of phosphorus pollution on a global scale, heavily implying that phosphorus 

levels are so high because of anthropogenic stress.  

A study by Winter et al. (2007) observed phosphorus inputs to Lake Simcoe from 1990-

2003. This study looked at the statistical relationships between total phosphorus levels and 

chlorophyll a, as well as chlorophyll a and dissolved oxygen depletion rates; indicating that by 

way through photosynthetic processes, total phosphorus levels impact dissolved oxygen 

concentrations (Winter et al., 2007). In their 2014 Lake Simcoe monitoring report, the Ontario 

Ministry of the Environment and Climate Change (now the Ontario Ministry of the 

Environment, Conservation and Parks) identified that phytoplankton biomass was most 

abundant in Cook’s Bay. This also happens to be where the highest total phosphorus 

concentrations were found during the same monitoring period which could be significant as a  

study completed by Dillon and Rigler (1974) infers that there is a relationship between 

chlorophyll a and total phosphorus concentrations. There was enough evidence to support this 

hypothesis that they were able to create a model that would estimate the summer chlorophyll 

a concentrations based on total phosphorus concentrations collected from the spring (Dillon & 

Rigler, 1974).  
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 Dodds and Whiles (2010) define eutrophication as “an increase in nutritive factor or 

factors that lead to greater rates of whole-system heterotrophic or autotrophic metabolism” 

(Dodds & Whiles, 2010). The causes of eutrophication were not widely understood until 

Schindler et al. (1977) who completed a five-year study on the impacts that nutrient levels on a 

lake-wide scale in the Experimental Lakes system in Ontario. During these studies, it was 

documented that controlling the addition of other nutrients (carbon and nitrogen) did not 

remedy the eutrophication issue. Schindler found that reducing the ratios of total nitrogen to 

total phosphorus simply changed the most prominent algal composition to nitrogen-fixing 

cyanobacteria of the genus Anabaena (Schindler, 1977).  It was concluded that this was not an 

appropriate solution to the eutrophication issue from a water quality standpoint and that the 

most efficient way to combat eutrophication was to limit the amount of total phosphorus that 

was in the waterbody.  

 Researchers tend to agree that preventing eutrophication from occurring is a better 

action plan than remediating eutrophic lakes once they have become eutrophic. A lake is 

typically classified as eutrophic once its phytoplankton population has shifted to being 

predominately cyanobacteria (Smith, et al., 1999).    

Phosphorus is the key limiting factor for primary production in freshwater habitats 

(Dodds & Whiles, 2010). It is usually found in its inorganic state, phosphate. Phosphate is 

known to precipitate with some metals, including calcium (commonly found in calcareous soils 

and substrates) and ferric iron (in more acidic soils and substrates) in the presence of oxygen 

(Correll, 1998). This leads to the phosphate settling into the sediment when the surface water is 

oxygenated (Dodds & Whiles, 2010). Anoxic zones cause the inorganic phosphates to 

disassociate due to the absence of oxygen, and processes such as eddy diffusion (the process of 

moving particles from one place to another in a circular motion) then move the now 

disassociated phosphate (Dodds & Whiles, 2010). This process explains how phosphorus is 

brought back to the surface, which commonly occurs in the autumn when seasonal mixing is 

known to break down the anoxic hypolimnion (Dodds & Whiles, 2010). That being said, 

temperature, redox reactions, pH, dissolved oxygen concentrations, nitrates, sulfates, and 

bacterial activity have all been suggested as of major factors that affect phosphate release from 
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sediments as well (Kim, et al., 2003; Jin, et al., 2006; Ribeiro, et al., 2008).These factors can 

impact what substances the phosphate binds to (e.g., phosphate will bind with calcium in 

alkaline conditions (Dodds & Whiles, 2010)), as well as contribute to how the phosphate will 

disassociate (e.g., phosphate will disassociate from ferric iron when oxygen levels are depleted 

(Dodds & Whiles, 2010)).  The process of phosphate re-entering the water column from 

sediments is called ‘internal phosphorus loading’ (Qian et al., 2010; Nürnberg et al., 2013).   

1.3 Microbial Communities 

 A few of the most dominant culturable bacteria include the following genera: 

Arthrobacter, Pseudomonas, and Bacillus. These microbes thrive in aerobic conditions and are 

heterotrophic. Arthrobacter spp. are gram-variable bacteria that may comprise up to 40% of the 

culturable bacteria with their primary functions being nutrient cycling and biodegradation 

(Pepper, et al., 2014). Members of the Pseudomonas genus comprise 10-20% of culturable 

bacteria, possess multiple enzyme systems and are gram-negative. They too assist with nutrient 

cycling and biodegradation, some Pseudomonas spp. can also be used as a biocontrol agent 

(Pepper, et al., 2014). The Bacillaceae family is comprised of rod-shaped, spore-forming and 

gram-positive bacteria. This family only makes up 2-10% of culturable bacteria. The functions of 

Bacillus include carbon cycling, biodegradation, and can be used as a biocontrol agent (Bacillus 

thuringiensis) (Pepper, et al., 2014). Due to the frequency at which phosphate solubilizing 

bacteria have been tested in terrestrial environments, it is important to note that the bacteria 

previously mentioned are commonly found in terrestrial environments. Often in literature, 

these are the genera of phosphate solubilizing bacteria that are discussed (see phosphate 

solubilizing bacteria section for a list of commonly found phosphate solubilizing bacteria in 

terrestrial environments).   

 As algae and cyanobacteria are the most abundant microbes in the planktonic 

community in the littoral zone, primary production levels in this zone of a lake are typically 

quite high (Pepper, et al., 2014).  However, due to the availability of nutrients in the benthic 

zone, the bacterial community is often much more abundant in this portion of the lake than 

throughout the rest of the water column (Pepper, et al., 2014). In a review completed by 

Capone and Kiene (1988), it was identified that the density of viable bacteria in shallow 
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sediments typically ranged between 109 and 1010 cells cc-1 of sediment regardless if the 

waterbody was marine or freshwater. Their findings were in contrast to the viable cells found 

throughout the water column in the same area which they determined was typically around 106 

cells cc-1 (Capone & Kiene, 1988). Due to these previous studies, it is expected to find the 

highest abundance of bacteria within the first few centimetres of sediment.   

 Cyanobacteria, commonly referred to as blue-green algae, are the commonly known 

side effect of eutrophication. These algae blooms have been listed as one of the main concerns 

with water quality on Lake Simcoe (Young & Jarjanazi, 2015). Factors that impact cyanobacterial 

bloom formation, density, and genus include light intensity, temperature, nutrient 

concentrations, and presence/ absence of gas vesicles in cyanobacteria cells (Martins, et al., 

2011). “They can produce different metabolites which include alkaloids, lipopolysaccharides, 

polyketides, and peptides that may act as toxins on other bacteria, and eukaryotes” (Huisman, 

et al., 2005).  

Phosphate solubilizing bacteria are a group of bacteria that are known to be one of the 

most significant contributing sources of microbes that release inorganic phosphate from 

sediment (Sanjotha &  Manawadi, 2016).  This group of microorganisms has been well studied 

in terrestrial environments as they have been proven to have symbiotic relationships with 

various flora. Phosphate solubilizing bacteria are used in industry as a biofertilizer in sustainable 

agriculture practices as their presence can eliminate the need for chemical fertilizers to be used 

on crops (Correll, 1998). In terrestrial environments, some common bacterial genera that have 

phosphate solubilizing capabilities include Pseudomonas, Bacillus, Rhizobium, Burkholderia, 

Achromobacter, Agrobacterium, Microccocus, Aerobacter, Flavobacterium and Erwinia. 

(Rodríguez & Fraga, 1999).  

Prior studies have determined that phosphate solubilizing bacteria are commonly found 

to have both aerobic and anaerobic strains (Sanjotha G &  Manawadi, 2016; Qian, et al., 2010; 

Rodríguez & Fraga, 1999), while aerobic phosphate solubilizing bacteria have been found most 

prevalently in submerged soil (Rodríguez & Fraga, 1999).  



6 
 

These bacteria produce organic acids which are generally described by Qian et al. (2010) 

as “...low molecular weight organic acids which are produced in the periplasmic space of some 

Gram-negative bacteria through a direct glucose oxidation pathway”.  It is these inorganic acids 

that convert inorganic phosphate compounds into a bioavailable form of phosphorus 

(Ponmurugan & Gopi, 2006). Some of these organic acids include monocarboxylic acid (acetic, 

formic), monocarboxylic hydroxy (lactic, glucenic, glycolic), monocarboxylic, ketoglucenic, 

decarboxylic (oxalic, succinic), dicarboxylic hydroxy (malic, maleic) and tricarboxylic hydroxy 

(citric) acids (Ponmurugan & Gopi, 2006).  The organic acids allow for the solubilization of 

inorganic phosphate by either directly dissolving rock phosphate or chelating (binding to) 

calcium ions (Kucey, 1983).   

1.4 Lake Simcoe 

Lake Simcoe (44°25'N, 79°20'W), the largest inland lake in central southern Ontario 

other than the Great Lakes, has a surface area of 722km², a mean depth of 14m, a maximum 

depth of 42m, and a shoreline perimeter of 303km (Palmer, et al., 2011). Lake Simcoe has a 

residence time of 7.5 years due to its single outflow by way of the Trent Severn Waterway into 

Lake Couchiching (Crossman, 2013). When discussed in various other scientific papers, Lake 

Simcoe is generally broken up into three different parts- the Main Basin, Kempenfelt Bay, and 

Cook’s Bay (Figure 1.1). The Main Basin, which includes the largest, northern portion of the lake 

has an area of 643km2, a mean depth of 14m, and a maximum depth of 33m. Kempenfelt Bay, 

which is the deepest part of the lake, located to the west, has the city of Barrie located along its 

shoreline; it has an area of 34km2, mean depth of 20m and a maximum depth of 42m. Finally, 

Cook’s Bay, the southernmost part of the lake, which is quite shallow when compared to the 

rest of the lake, has an area of 44km2, a mean depth of 13m, and a maximum depth of 15m 

(Young & Jarjanazi, 2015; Palmer et al., 2011).  The Lake Simcoe Watershed has 35 tributary 

rivers (the majority of which are in the southern region of the watershed) and consumes a total 

area of 2899km² (Palmer, et al., 2011). Over 450,000 people are living around the watershed 

with most of the population situated around the cities of Newmarket, Aurora, Barrie, Orillia and 

Keswick (LSRCA, 2016).      
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Figure 1.1. Bathymetric chart of Lake Simcoe with the depth contours labelled in meters. The three main 

parts of the lake (Main Basin, Kempenfelt Bay, and Cook’s Bay) are labelled as well (Young & Jarjanazi, 

2015). 

Presently, the Lake Simcoe watershed is made up of 45% agricultural land, 7% urban 

areas, and 35% natural cover (Young & Jarjanazi, 2015). This is below the Lake Simcoe 

Protection Plan’s target of 40% natural cover (Young & Jarjanazi, 2015). The Lake Simcoe 

Protection Plan (LSPP) identifies natural cover as “woodlands, swamps, non-treed wetlands, 

grasslands, alvars, prairie grasslands, sand barrens, and savannah” (Young & Jarjanazi, 2015). As 

of 2008/2009, only the Maskinonge River, Hewitts Creek, and Barrie Creek subwatersheds were 

reported to have less than 20% natural cover (Young & Jarjanazi, 2015).  At this time, only the 

Hawkstone and Ramara Creeks, Black and Talbot River, and Georgina, Snake, and Thorah Island 

sub-watersheds met the minimum standard of having 10% interior forest cover (Young & 

Jarjanazi, 2015). The subwatersheds that were more heavily agricultural based (Hewitts Creek, 

West and East Holland Rivers, and Beaver River) all had less than 5% interior forest cover while 

Barrie Creeks subwatershed had none (Young & Jarjanazi, 2015).   
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In 1993, it was reported that 523km2  of land in the watershed was cultivated while 

739km2 of land was used as pasture (LSRCA, 1995). At this time, the most common crops 

planted within the watershed were grain, maize, hay, and soy while there was a decline in 

livestock production throughout the watershed (LSRCA, 1995). The Holland River system is the 

largest cultivated polder in Ontario and contributes a substantial portion of the market for 

lettuce, carrots, onions, and celery in the province (LSRCA, 1995). At this time, large areas of 

land were being set aside for industrial, commercial, and residential use. In 1993, the City of 

Barrie added 663ha of the commercial, industrial area while Newmarket added 597ha (LSRCA, 

1995). The town of Aurora’s residential land use doubled from 450 to 1074ha, while Bradford’s 

residential quadrupled from 150ha in 1981 to 665ha in 1991 (LSRCA, 1995).   

The impacts that both agriculture and urbanization have on Lake Simcoe have been the 

base of many studies. The most notable results of both the deforestation and agriculturalization 

have had on Lake Simcoe include an increase in phosphorus loading and an increased mass 

sedimentation rate of soil particles (Evans, et al., 1996). The inputs of nutrients and organic 

matter likely caused by sewage increased along Lake Simcoe in proportion to the increase in 

urbanization and permanent residents to the watershed (Evans, et al., 1996). In 2015, it was 

reported that there were nearly 3700 septic systems all within 100 metres of Lake Simcoe 

(MOECC, 2015).  These adverse impacts imposed on the lake by anthropogenic practices are the 

reason behind the movement to improve the water quality of Lake Simcoe.   

While there are many areas of concern surrounding the health of this lake and its 

watershed, one area of concern for Lake Simcoe that is discussed frequently is the cold-water 

fishery. There has been much study on the decline of Salvelinus namaycush (lake trout), 

Coregonus clupeaformis (lake whitefish), and Coregonus artedi (lake herring) due to their 

economic significance. It has been hypothesized that the decline of these fishes may be due to 

the lower than necessary dissolved oxygen levels that are present primarily due to 

eutrophication (Winter et al., 2007). As recreational fishing on Lake Simcoe contributes over 

$200 million yearly to the local economy, any adverse impacts seen on these fish species need 

to be thoroughly investigated (LSRCA, 2016).  
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 The Lake Simcoe Protection Plan was put in place by the province to “protect, improve 

or restore the elements that contribute to the ecological health of the Lake Simcoe watershed, 

including, water quality,[and] hydrology…..”(Ontario Ministry of the Environment, 2009). This 

plan was to provide legislation for the provincial government, municipalities, and other 

stakeholders such as the Lake Simcoe Regional Conservation Authority to complete more 

research on the lake. This raises the importance of perhaps the most critical problem that Lake 

Simcoe has been facing, which is phosphorus pollution. Figure 1.2 shows which areas on Lake 

Simcoe have the highest concentrations of total phosphorus (Young & Jarjanazi, 2015).  

Figure 1.2. This map of Lake Simcoe and the tributary rivers shows the locations within the lake that had 

the highest concentrations of total phosphorus in 2014 when the most recent monitoring report on the 

lake was completed  (Young & Jarjanazi, 2015). 
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 The Lake Simcoe Protection plan created in 2009, identifies phosphorus pollution as 

one of the most significant factors impacting the water quality of Lake Simcoe. The average 

phosphorus loading from 2002-2007 was 72 tonnes/year, while the average from 2005-2009 

increased to 86 tonnes/ year (MOECC, 2009; Young & Jarjanazi, 2015). Meanwhile, the average 

from 2010-2015 remained quite similar to the previous five years at 85.5 tonnes/year (LSRCA, 

2017). The Lake Simcoe Protection Plan aimed to limit external sources of phosphorus from 

entering the lake by limiting phosphorus discharges from sewage treatment plants, preventing 

new sewage treatment plants from discharging effluent into the lake, and updating stormwater 

drainage systems. Figure 1.3 shows the five leading causes of phosphorus pollution in Lake 

Simcoe as well as which of these causes contribute the most to phosphorus pollution. 

Figure 1.3. This pie graph from the Lake Simcoe Protection Plan identifies the most common phosphorus 

sources that are entering Lake Simcoe (MOECC, 2009). STP was the short form used for sewage 

treatment plants within the Lake Simcoe Protection Plan.   

 

The lake is mesotrophic and has been monitored for external phosphorous input since 

the 1970s due to the multitude of impacts that nutrient loading would have on the lake 

(Nürnberg et al., 2013).  The impacts that nutrient loading has had on Lake Simcoe have been 

the subject of much study and efforts to attempt to lessen these adverse impacts have been 

underway since the 1970s (Winter et al., 2007). In 2010, the Lake Simcoe phosphorus reduction 

strategy was created by the Ministry of the Environment and Climate Change in conjunction 
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with the Lake Simcoe Region Conservation Authority to aid in the remediation of Lake Simcoe 

and its surrounding watershed. This was in response to the Clean Water Act that was 

announced in 2006 which promoted pursuing solutions across an entire watershed (OMECC, 

2010).  The goals of the reduction strategy are to bring dissolved oxygen levels up to 7mg/L or 

an annual phosphorus load of 44 T/year (OMECC, 2010).  

The Lake Simcoe Phosphorus reduction strategy proposes some ways that the involved 

stakeholders plan to try to remove some of the phosphorus pollution in the lake. One of these 

methods is a product called Phoslock. This product is composed of lanthanum modified clay and 

was found to significantly reduce the amount of phosphorus when compared to the control 

tank in a laboratory experiment conducted by Reitzel et al. (2013). Reitzel et al. (2013) also 

found that the addition of Phoslock did not have any negative impacts on the burrowing 

benthic invertebrates that they tested. The company claims that Phoslock has no impacts on 

the pH or alkalinity concentrations within the lake  (Reitzel et al. 2013). This product was 

already being tested on some locations throughout Lake Simcoe when the phosphorus 

reduction strategy was published in 2010 (OMECC, 2010). 

Other methods used to try to combat external phosphorus loading within Lake Simcoe 

include using red sand filtration chambers on urban stormwater runoff and reusing treated 

wastewater effluent and stormwater within the watershed (new systems in homes, businesses, 

and industries, and public facilities to re-use water for non-potable water usages; and irrigation 

for golf courses, lawns, and sod farms) (OMECC, 2010).  

 The City of Orillia is located on the western side of the northern end of Lake Simcoe. 

This area, where Lake Simcoe meets Lake Couchiching is commonly referred to as the Atherley 

Narrows and is recorded having the lowest concentrations of phosphorus within the entire lake 

(Young & Jarjanazi, 2015). When the Lake Simcoe Phosphorus Reduction Strategy was 

published, the Orillia Wastewater treatment plant had an annual phosphorus load of roughly 

1,274 kg/year, which was not in compliance with their baseline phosphorus load of 996 kg/year 

(OMECC, 2010).  However, since 2009, the Orillia wastewater treatment plant managed to stay 

under that the phosphorus limit. The Minister of the Environment’s 5-year report on Lake 
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Simcoe reported that the WWTP in Orillia reported annual phosphorus loads of 600 kg/yr., 504 

kg/yr., 501 kg/yr., 471 kg/yr., and 510 kg/yr. In the years 2010, 2011, 2012, 2013, and 2014, 

respectively (MOECC, 2015).  

The wastewater treatment facility is currently in the process of installing a $4 million 

tertiary filtration system as they currently operate a conventional secondary system using 

activated sludge (OMECC, 2010).  

1.5 Sparrow Lake 

Sparrow Lake (N 44°60’46.4”, W 079°28’47.8”), indirectly receives the outflow of Lake 

Simcoe by way of the Trent-Severn Waterway via the Severn River and a man-made canal 

travelling from Lake Couchiching to Sparrow Lake (Charron, et al., 2013). This small lake has a 

surface area of 11.4km2, a mean depth of 16m, and a watershed area of 145.28km2 (The District 

Municipality of Muskoka, 2016). This lake is part of the quaternary watershed of the Severn 

River watershed and the communities of Severn Bridge, Killworthy, and Port Stanton surround 

the lake (The District Municipality of Muskoka, 2016). Approximately 7% of the area of this lake 

can be classified as a provincially significant wetland. The Sparrow Lake wetland is 224ha with 

86% of the wetland residing on crown land. This wetland includes both the Ellison Bay wetland 

(75ha), and McLean Bay wetland (65ha) (The District Municipality of Muskoka, 2004).  

 A wetland is considered provincially significant if it scores highly in the four principal 

components that the Ontario Ministry of Natural Resources and Forestry has deemed 

important. These components are biological, social, hydrological, and special features(Schulte-

Hostedde, et al., 2007). The Sparrow Lake wetland received this status because the McLean Bay 

wetland is a neutral mesotrophic shallow open water community, which is not common 

elsewhere in Muskoka. The only other wetland which is classified the same is the Ellison Bay 

wetland which is also located within Sparrow Lake; this wetland also contains the largest wild 

rice community within Muskoka (The District Municipality of Muskoka, 2004).  The McLean Bay 

wetland also provides habitat for Carpinus caroliniana (Blue Beech), Platanthera flava (pale 

green orchis), Scripus fluviatilis (river bulrush), and Scripus heterochaetus (slender bulrush); all 

of which are rare vascular plant species, with an additional 15 species of regionally-uncommon 
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plants being identified (The District Municipality of Muskoka, 2004) . Both of these wetlands are 

recognized as migratory staging areas in the spring and fall for waterfowl and are considered 

important spawning and nursery habitat for sport fish (The District Municipality of Muskoka, 

2004).  The wild rice beds in Ellison Bay are noted for their intactness, and 15 species of 

Potamogeton spp. (pondweed) have been identified in this bay (The District Municipality of 

Muskoka, 2004). Also, as the entirety of the lake is classified as part of the Severn River system, 

which has been identified as a corridor of high scenic value. Due to these factors, the Sparrow 

Lake wetland in all of its parts currently is recommended to become a heritage area, and as a 

result, McLean Bay has been labelled a provincially significant wetland (The District Municipality 

of Muskoka, 2004).  

The protected wetlands and relatively low permanent human population are the main 

contributing factors as to why this lake was chosen in comparison to Lake Simcoe. The sites 

along Lake Simcoe Atherley Narrows form a gradient from the inlet of Mills Creek to the outlet 

of Lake Simcoe, encompassing effluent from the Orillia wastewater treatment plant and landfill 

as well as runoff from the City of Orillia. The sites along Sparrow Lake follow a similar pattern 

(forming a gradient from an inlet to an outlet). However, there are no known sources of 

pollution into this system. This has allowed for the comparison of phosphate solubilizing 

bacteria abundance between areas of point source and non-point source pollution. 

Unpublished water quality data was provided by the District of Muskoka. This raw data allowed 

for a preliminary analysis of the quality of Sparrow Lake and how it may have changed over 

time. Chemical data has been completed by the District of Muskoka sporadically over the past 

20 years. Some water quality parameters have been tested more frequently and for a longer 

period than some others. Due to this provided data, the averaged annual total phosphorus 

trends (µg/L) for Sparrow Lake from 2002 onwards can be viewed in Figure 1.4. This data also 

shows that Sparrow Lake has always remained under that provincial total phosphorus standard 

of 2.0mg/L (20µg/L) (MOECC, 2003).        
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Figure 1.4. Sparrow Lake mean total phosphorus (µg/L) levels by year. There was not a significant 

correlation between the amount of phosphorus collected and the year it was collected in (r=-0.244, n=7, 

p=0.598). However, a negative trend can be seen, and the amount of total phosphorus observed has 

remained stagnant.  

 

1.6 Study Significance 

 Studies on phosphate solubilizing bacteria in freshwater systems are relatively new; only 

a few investigations have been completed. Previous studies on phosphate solubilizing bacteria 

have heavily focused on their presence in terrestrial habitats. Specific strains of Pseudomonas, 

Bacillus, Rhizobium, and Enterobacter have been found to be the most ‘powerful’ phosphate 

solubilizers (Mohammadi, 2012). Studies on phosphate solubilizing bacteria that have been 

completed so far in freshwater environments have focused heavily on the phosphorus uptake 

by aquatic plants (Qian, et al., 2010). The identification of the phosphate solubilizing bacteria in 

freshwater habitats has yet to be studied in detail, although there are recent studies focused on 

the phosphate solubilizing abilities of specific strains of phosphate solubilizing bacteria that 

originated from freshwater habitats (Paul & Sinha, 2017; Sanjotha & Manawadi, 2016). 

However, these current studies typically only have one sampling event to collect phosphate 

solubilizing bacteria. This has eliminated the potential to study any seasonal variation that may 

impact the density of phosphate solubilizing bacteria in a given location.  

With all of the work put in place to reduce the phosphorus concentrations entering Lake 

Simcoe, and to return dissolved oxygen concentrations back to averaging around 7mg/L (which 
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is needed in order to support a self sustaining cold water fishery (Young & Jarjanazi, 2015)), 

more resources should be put into studying internal phosphorus loading and the factors that 

may contribute to it (eg. Phosphate solubilizing bacteria).  

The following parts of this thesis are divided into four additional chapters. Chapter 2 

focuses on the collection, extraction, and isolation of the phosphate solubilizing bacteria 

collected from the Lake Simcoe and Sparrow Lake sites. Chapter 3 explains the two main tests 

that were completed to screen out some of the collected isolates by testing the abilities that 

the phosphate solubilizing bacteria had to utilize inorganic phosphate on both a solid media 

and in a broth. Chapter 4 examines some of the different growing conditions (temperature, pH, 

and inorganic phosphate concentrations) in controlled settings in order to try to characterize 

some of the phosphate solubilizing bacteria. Finally, chapter 5 consists of general discussions, 

suggestions for future research, and conclusions.   
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Chapter 2: A comparison study of the phosphate solubilizing 

bacterial abundances between the littoral zones of a lake that is 

subject to anthropogenic stress and a less disturbed lake 
Chapter 2 Abstract 

This study is the first to monitor phosphate solubilizing bacteria (PSB) in the Lake Simcoe 

watershed. Thus, the objective was to determine if this group of bacteria could be used as an 

indicator of phosphorus pollution based on their abundance. Sediment and water samples were 

collected from three locations in Sparrow Lake and along the northwestern shoreline of Lake 

Simcoe (Atherley Narrows) once a month from June- September 2017. Bacterial strains were 

isolated from these samples and plated onto Pikovskaya’s agar to determine if any of the 

bacterial isolates had phosphate solubilizing capabilities. A three-factor ANOVA and a nested 

ANOVA were completed to determine whether any statistically significant (p> 0.05) differences 

existed in the PSB abundances between the two lakes. A Pearson’s correlation analysis was 

completed to see if there was a relationship between the amount of total phosphorus in the 

water column and the abundance of PSB present. Negative correlations were observed. The 

southern portion of Lake Simcoe, Cook’s Bay, was sampled in September 2017 for abundances 

of PSB. It was hypothesized that there would be a higher abundance in Cook’s Bay opposed to 

the Atherley Narrows as there have consistently been higher concentrations of total 

phosphorus in Cook’s Bay. A one-way ANOVA found that there was a statistically significant 

(p<0.05) difference between the abundances of PSB in Cook’s Bay and the Atherley Narrows 

locations.  Another preliminary study was carried out to determine how the abundance of 

phosphate solubilizing bacteria varied with the amount of total reactive phosphorus in the 

sediment was completed simultaneously. A regression analysis showed that there was not a 

significant relationship between PSB abundance and the amount of total reactive phosphorus in 

the sediment. However, this experiment should be completed again with more replicates to 

confirm this result. Overall, these field studies suggest that higher abundances of phosphate 

solubilizing bacteria are found when there are lower concentrations of total phosphorus 

present. This could imply that phosphate solubilizing bacteria abundance would be better 

suited as an additional measurement of aquatic health. 
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2.1: Introduction 

Phosphorus pollution has been a cause for concern in Lake Simcoe since the 1970s 

(Nürnberg et al., 2013) and is still considered one of the most significant factors that impact 

water quality on that (LSRCA, 2017). As phosphorus is the limiting factor in most freshwater 

ecosystems, phosphorus pollution is one of the most frequently studied types of pollution that 

greatly impact lake health. Many of these studies have identified anthropogenic sources to be 

the greatest cause of pollution (Young & Jarjanazi, 2015; Nürnberg et al., 2013; Dodds & Whiles, 

2010). However, reports on the impacts of microbial contribution to phosphorus levels are 

sparse.   

As of 2015, general microbial tests were not included in the yearly monitoring programs 

that the Ontario Ministry of Environment and Climate Change, the Ontario Ministry of Natural 

Resources and Forestry, or the Lake Simcoe Region Conservation Authority completes. When 

these groups conduct their yearly programs the aquatic life that is assessed includes aquatic 

plants and algae, phytoplankton, zooplankton, benthic invertebrates, and fish populations 

(Young & Jarjanazi, 2015). The Simcoe Muskoka District Health Unit screens for various strains 

of E. coli at all of the public beaches throughout the region once weekly during the summer 

months (Simcoe Muskoka District Regional Health Unit, 2017). While the results are made 

public when E. coli concentrations are too high for public health, if any long-term data has been 

analyzed, it has not been made available to the public.  

 A few different studies looking at various ways that microorganisms can be used as 

ecological health indicators of Lake Simcoe have been completed by faculty members and other 

graduate students at Lakehead University-Orillia Campus. Using algal biofilms as water quality 

indicators (Kanavillil, et al.,2012), comparing total coliforms and caffeine concentrations as 

suitable indicators of anthropogenic waste (Kurissery, et al., 2012), and using periphyton as a 

potential indicator of water quality (Kanavillil & Kurissery, 2013) have been some of the main 

topics covered by Dr. Kurissery, Dr. Kanavillil, and their students since 2012.  

A preliminary study on phosphate solubilizing bacteria in Lake St. John was completed 

by Dr. Kurissery and Gzi Chow in 2017. This study followed the methods of Pérez, et al., (2007) 
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and served as a pilot project for this study. Besides the current study, phosphate solubilizing 

bacteria have not previously been studied in Lake Simcoe or the Lake Simcoe watershed. 

The phosphate solubilizing bacteria used for this study were collected from an area in 

Lake Simcoe that is suspected to be anthropogenically stressed and then compared to an area 

in a different lake (Sparrow Lake) that does not have nearly the same level of anthropogenic 

influence. The phosphate solubilizing bacteria studied were collected from three sites along the 

northwestern shore of Lake Simcoe once monthly from June-September 2017. These sites 

represented a gradient between an effluent outlet from a wastewater treatment plant in Orillia 

and Lake Simcoe.  They were then compared to bacteria abundances collected from three sites 

along the eastern shore of Sparrow Lake, ON. Sparrow Lake is surrounded by privately owned 

lots and crown land that contains provincially significant wetlands (The District Municipality of 

Muskoka, 2004). The communities that are surrounding this lake are small and without a sewer 

system. Figure 2.1 is a map of the sampling locations for each lake. 

Figure 2.1. A map showing the sampling locations for Lake Simcoe (Atherley Narrows) and            
Sparrow Lake. 
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The objectives of this study were to estimate and isolate the phosphate solubilizing 

bacteria that were present in the sediment and water column in nearshore sites on the 

northwestern part of Lake Simcoe (where the city of Orillia is located) and Sparrow Lake. The 

addition of Sparrow Lake was to assess the impact that the presence of anthropogenic stressors 

would have on the abundance of phosphate solubilizing bacteria. Both lakes were sampled 

once monthly throughout the growing season (June-September) to determine if seasonality 

should be studied in future to characterize further the phosphate solubilizing bacteria that may 

be present in near-shore environments. It was hypothesized that a greater abundance of 

phosphate solubilizing bacteria would be found at locations that were under a great deal of 

anthropogenic stress resulting in higher concentrations of total phosphorus in those locations.  

2.2 Materials and Methods 

2.2-1 Sampling Site Descriptions 

The sampling sites in Lake Simcoe (Atherley Narrows) were chosen based on their 

proximity to anthropogenic stressors. The sites in Lake Simcoe were centred around the 

effluent site from Orillia’s wastewater treatment plant (WWTP). The opposite can be said for 

the sites selected on Sparrow Lake. The Sparrow Lake sites canvased the eastern shore of this 

lake, travelling from near one of the primary inlets towards the lake’s outlet, the northernmost 

site (site 1) on this lake was along the protected wetlands on the lake. All the sites sampled 

were nearshore sites, and samples were collected at a depth of approximately 0.5m.  
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                                    Figure 2.2. The Sparrow Lake Sampling locations. 

 

Figure2.3. The Lake Simcoe sampling locations were all along the northwestern shoreline, where 

the City of Orillia is located. 
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Site 1(LS-1). Kitchener Park  

 Mills Creek runs right next to Orillia’s WWTP and municipal landfill and then discharges 

into Lake Simcoe directly. The outflow point of this creek was selected for Lake Simcoe-Atherley 

Narrows site 1 (LS-1). This site was located at N 44°35’21.1”, W 079°28’86.1” (Figure 2-4). This 

site was considered to be the most polluted site and therefore might contain the largest 

abundance of phosphate solubilizing bacteria. 

Figure 2.4. LS-1 in Kitchener Park. This photo was taken from shore looking towards the mouth of Mill’s 

Creek. This picture was taken on September 26th, 2017. 

Site 2 (LS-2) Gill Street 

This site was located approximately 500m downstream from LS-1.  Lake Simcoe-Atherley 

Narrows site 2 (LS-2) was located N 44°35’87.8”, W 079°28’40.8” at the end of Gill Street, 

Orillia, ON (Figure 2-5).  

 

Figure 2.5. LS-2 was located alongside Gill Street in Orillia. This photo was taken from 

the side of the street facing the lake and was also taken on September 26th, 2017. 
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Site 3 (LS-3) Tudhope Launch 

Site 3 (LS-3) was located as close to the Atherley Narrows as one could safely wade in on 

the Lake Simcoe side of the Narrows at N 44°35’20.7”, W 079°28’07.9” (Figure 2-6). This area 

was located next to a boat launch that saw high levels of boat traffic in the summer months.  

 

 

Site 4 (SPL-1) McLean Bay 

Site 4 (SPL-1) was located at the northern end of Sparrow Lake in McLean Bay (N 

44°51’10.1”, W 079°23’35.9”).  This site was located adjacent to the wetland area which is a 

known area of significance as it is a neutral mesotrophic shallow open water community (Figure 

2-7). Rare vascular plant species have been recorded here, and the bay is recommended to 

become a protected heritage site of Municipality of Muskoka (The District Municipality of 

Muskoka, 2016). 

Figure 2.6. LS-3. This site was located next to the public boat launch at Tudhope park. 

This was approximately 500m away from the Atherley Narrows that connect Lake 

Simcoe and Lake Couchiching. 
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Site 5 (SPL-2) Franklin Park 

 Site 5 (SPL-2) was located at a public boat launch at Franklin Park (N 44°49’59.4”, W 

079°22’48.8”) (Figure 2-8). This park was located downstream from a local resort and 

restaurant and was one of the most anthropogenically stressed sites on Sparrow Lake.   

 

 

 

Figure 2.7. SPL-1. This was part of McLean Bay looking across the bay rather than 

down to the rest of the lake. 

Figure 2.8. Site 2 on Sparrow Lake, this site had the most obvious source of anthropogenic 

impact on this lake. 
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Site 6 (SPL-3) Wenona Lodge Rd 

Site 6 (SPL-3) was located at a bay alongside Wenona Lodge Rd (N 44° 48’05.6”, W 

079°22’49.2”) (Figure 2-9). This bay is one of the first bays after the lake’s inlet from both the 

man-made canal that connects Lake Couchiching directly to Sparrow Lake and the Severn River 

which travels north, before returning to Sparrow Lake after leaving Kahshe Lake (Charron, et al., 

2013).  

2.1-2 Core Experiment 

A preliminary experiment was conducted to explore the possibility of occurrence of 

phosphate solubilizing bacteria in anaerobic conditions. A sediment core was collected at the 

site on each lake (Lake Simcoe-Atherley Narrows and Sparrow Lake) that appeared to be the 

most anthropogenically impacted locations. These sites were LS-1 (N 44°35’21.1”, W 

079°28’86.1”) and SPL-2 (N 44°49’59.4”, W 079°22’48.8”). Both cores were collected on 

September 26th/17, and each core of 25cm deep. The sediment cores were then compared to 

see how far into the sediment phosphate solubilizing bacteria would be found and whether 

their abundance varies with sediment depth. Subsamples of each core were sent to Lakehead 

University’s Environmental Laboratory for nutrient analysis. Total reactive phosphorus and 

Figure 2.9. Site 3 on Sparrow Lake was the closest to the lake’s inlet, this bay located next to 

Wenona Lodge road is the most southern site sampled on this lake. 
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nitrogen levels were analyzed and then compared to the abundance of phosphate solubilizing 

bacteria.   

2.1-3 Cook’s Bay Experiment 

 In 2014, the Ministry of the Environment and Climate Change, partnered with the 

Ministry of Natural Resources and Forestry and the Lake Simcoe Regional Conservation 

Authority, published a water quality monitoring report on Lake Simcoe. They identified total 

phosphorus as still being one of the most prominent factors affecting water quality in the Lake 

Simcoe watershed. Agricultural runoff was reported as one of the main sources of phosphorus 

pollution. According to Young and Jarjanazi (2015), the southern end of Lake Simcoe, especially 

the Holland River area, still has the highest concentrations of total phosphorus within Lake 

Simcoe. Sampling was conducted here to compare the abundances of phosphate solubilizing 

bacteria at a highly polluted (regarding total phosphorus µg/L) area with the other parts of Lake 

Simcoe and Sparrow Lake.   

The phosphate solubilizing bacteria sampling took place on September 27th/17, and 

three sites at Cook’s Bay, Lake Simcoe, were sampled: site 1 (CB 1) (N 44°14’88.6”, W 

079°29’28.4) was located on the eastern side of the bay, site 2 (CB 2) (N 44°12’00.9”, W 

079°28’49.0”) on the southern side of the bay near the Holland River, and site 3 (CB 3)  (N 

44°18’48.5”, W 079°81’48.8”) was on the western side of the bay. Figure 2.10 is a map showing 

the location of each site. 
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                 Figure 2.10. The sampling locations in Cook’s Bay. Cook’s Bay is the southernmost portion of        

Lake Simcoe and is heavily impacted by the farming that occurs around the Holland Marsh (Young  & 

Jarjanazi, 2015). 

 

2.2-1 Hydrological Parameters  

2.2-1.1 Field Collection 

The following hydrolab units; HACH HQ40D, VWR SympHony SB90M5, and VWR 

SympHony SB70P, were used to gather water temperature (°C), dissolved oxygen (mg/L), pH, 

and conductivity(µS/cm) readings on site. All hydrolab units were calibrated prior to use on 

each sampling day.  

The ambient temperature was taken upon arrival at each site, and each site was 

scanned visually to determine if algae were present prior to sampling. 1L water samples were 

collected in triplicate and brought back to the laboratory for chlorophyll a analysis. The same 

was completed for a total suspended solids measurement. 500ml samples were collected in 

triplicate and brought back for nutrient analyses.  
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2.2-1.2 Laboratory Analyses 

Chlorophyll a Analysis  

Chlorophyll a analysis was completed immediately upon return to the laboratory after 

field sampling. The method used was adapted from Aminot and Rey’s (2002) spectroscopic 

method. One thousand ml of the sample was filtered through glass fibre filters (47 mm, 0.1µ 

pore size). After the filtration, the filter paper was placed in a darkened conical tube containing 

12ml of 90% acetone and the contents were mechanically mulched, then placed in the dark for 

16 hours at 4°C. After 16 hours, the samples were centrifuged at 4200 RPM for 15 minutes. 

Three ml of the supernatant from each sample was transferred into separate cuvettes, and the 

absorbance of the sample was measured in the spectrophotometer at 750, 664, 647, and 

630nm against the 90% acetone blank. The concentration of chlorophyll a was calculated using 

the following equation: 

(11.85*(E664-E750)-1.54*(E647-E750)-0.08(E630-E750))*Ve/L*Vf 

Where: 

 L= Cuvette light-path in centimetres 

Ve=Extraction volume in millilitres 

Vf= filtered volume in litres 

Concentrations are in unit mg m-3 (Aminot & Rey, 2002). 

 

Total Suspended Solids Analysis 

The total suspended solids were determined by first weighing dry glass fibre filters 

(47mm) followed by filtering 1000ml of water sample through the filter. Once the filtration was 

done, the filters were kept in an oven at 60°C for 48 hours to remove all the moisture from the 

sample. The dried filters were then weighed. The original weight of the filter paper was then 

subtracted from the dried weight to get the total suspended solids in milligrams per litre.  

Total Phosphorus Analysis 

Most of the total phosphorus samples were analyzed at Lakehead University’s 

Environmental Laboratory in Thunder Bay, ON. However, 14 of the 81 total phosphorous 

samples were analyzed in Lakehead University’s Orillia Laboratory. The total phosphorus 

procedure used was adapted from the American Public Health Association’s (1995) standard 
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methods for the examination of water and wastewater. All glassware was acid washed using 10 

% HCl and allowed to air dry for 24 hours prior to use. The procedure began by digesting the 

orthophosphate. All analyses were completed in duplicate. One drop of phenolphthalein was 

added to 50ml of each sample and blank sample (deionized water). This was followed by the 

addition of 1ml of 30% sulfuric acid (H2SO4) and 0.4g of ammonium persulfate ((NH4)2S2O8). 

Once the samples had been reduced to 10ml each by heating on a hot plate, distilled water was 

added to make it to 30ml. As per the APHA methodology, an additional drop of phenolphthalein 

was added to the digested sample to confirm that the samples were at the proper pH. Ten ml of 

the final digested sample was pipetted into acid washed 25ml test tubes. One Hach Phos-Ver 3 

pillow was added to each sample and shook for 15 seconds after which time 3ml was pipetted 

into a clean; acid washed cuvette. The absorbance of each sample was measured in the 

spectrophotometer at 880nm. A standard curve was prepared by following the same 

procedure, and the unknown samples were plotted along this curve to get the total phosphorus 

amount in milligrams per litre (Appendix I) (APHA, 1995).  A few samples were tested for total 

phosphorus both by the above method and by an auto analyzer at Lakehead University’s 

Environmental Laboratory to verify the accuracy. Both analyses did yield very similar and 

comparable results.  

Nitrate Analysis 

Sixty-seven out of the 81 samples collected throughout the sampling period were 

analyzed for total nitrogen at Lakehead University’s Environmental Laboratory in Thunder Bay, 

ON in an autoanalyzer.  

Fourteen samples for nitrate concentration were analyzed at Lakehead University’s 

Orillia laboratory. The procedure outlined by the American Public Health Association’s (1995) 

standard methods for the examination of water and wastewater was used for this analysis. The 

samples were analyzed in duplicate, and the blank was prepared by using distilled water. 15ml 

of the sample was transferred into an acid washed (10% HCI) test tube followed by the addition 

of the contents from one Hach Nitra-Ver 6 pillow. The samples were shaken for 3 minutes and 

kept idle for 2-minutes. After this, 10ml of the supernatant was transferred into a new test 

tube, and the contents of a Hach Nitri-Ver 3 pillow were added. The samples were shaken for 
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30 seconds and then allowed to stand for 15 minutes to complete the reaction. Finally, 3ml of 

the sample was transferred into a cuvette, and the absorbance was measured in a 

spectrophotometer at a wavelength of 507nm. A standard curve was made by following the 

same procedure and used to calculate the nitrate concentrations of the unknown samples in 

milligrams per litre (Appendix I) (APHA, 1995).  

2.2-2 Collection of Microbial Samples 

Sediment samples were collected in triplicate randomly from the littoral zone (water 

depth was approximately 0.5m) from three different sites along the northwestern shore of Lake 

Simcoe and the eastern shore of Sparrow Lake. Three water samples were collected from each 

of the sites at the same time at a depth of approximately 25cm above the benthic layer. These 

samples were collected by opening a sterile, 50ml conical tube at the desired depth. Sediment 

samples were collected via a Russian peat borer that was sterilized with 75% ethanol before 

each use. Samples were aseptically transported back to the laboratory in sterile conical tubes 

and kept at a temperature of ~4°C until they were analyzed, which occurred within 8 hours of 

collection. 

2.2-3 Isolation of Microbes 

 The isolation of the phosphate solubilizing bacteria was completed by following the 

method described by Sanjotha and Manawadi (2016). A subsample (0.1g) of the sediment 

sample was suspended in 10ml of distilled water. An aliquot (1ml) from the serially diluted 

samples was inoculated onto a Pikovskaya’s agar plates (yeast extract 0.5g/L, dextrose 10g/L, 

Ca3(PO4)2 5g/L, (NH4)2SO4 0.5g/L, KCl 0.2g/L, MgSO4 0.1g/L, MnSO4 0.0001g/L, FeSO4 0.0001g/L, 

and agar 15g/L) by way of the pour plate method and incubated at 30°C (±2°C) for seven days. 

Each of the serially diluted samples was analyzed in triplicate. As the samples were collected 

from the top 5cm of the sediment, the bacteria were grown in aerobic conditions, as per the 

methodology described by Sanjotha and Manawadi (2016).  

 Once the plates were incubated for seven days, all the viable bacteria were counted and 

expressed as colony forming units. The average colony forming units (CFUs) per site were 

calculated using the following formula:  
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𝐶𝐹𝑈 = 2 (
𝑎 + 𝐵 + 𝑐

𝑀𝑢
∗ 10−𝑛) 

Where: 

a= replicate 1                                                                                                                                                      

B=replicate 2                                                                                                                                                                       

c= replicate 3                                                                                                                                                                

Mµ=mean of replicates                                                                                                                                                    

10-n= dilution factor  

The number of microbes that had a phosphate solubilizing zone was also calculated using the 

same formula. The microbes that had a phosphate solubilizing zone around them were purified 

by transferring them to other Pikovskaya’s agar plates by streak plate method and incubated at 

30°C (±2°C) for another seven days. After this point, the isolates were transferred onto 

Pikovskaya’s agar slants and stored for further study.  

2.2-4 Core Experiment 

The sediment core samples were collected using a sterilized Russian peat borer. The 

30cm cores were aseptically transported back to the lab where they were divided into 5cm 

sections. After different sections were made, 0.5mg from each section was used for microbial 

isolation, and the procedure above was completed to calculate CFU/g. An additional 5g 

sediment from each section was dried and sent to Lakehead University Environmental 

Laboratory for total phosphorus analysis.  

2.2-5 Statistical Analysis  

2.2-5.1 Hydrological Parameters  

 Total suspended solids, chlorophyll a, total phosphorus, and total nitrogen data were all 

collected in triplicate. Conductivity, pH, dissolved oxygen, ambient and water temperature 

were all collected in situ at each site once per sampling period.  

Data were analyzed using the statistical program R version 3.4.3 (R Core Team, 2017) 

with the packages ‘nortest’ (Gross & Ligges, 2015), ‘car’ (Fox & Weisberg, 2011), ‘lattice’ (Sarkar 

& Deepayan,2008), and ‘scatterplot 3D’ (Ligges & Mächler,2003) to complete a multiple 
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regression.   This type of analysis was completed to determine if any of the following 

parameters: chlorophyll a, total suspended solids, dissolved oxygen, conductivity, pH, water 

temperature, or total heterotrophic bacteria, had any statistical impact on the abundance of 

phosphate solubilizing bacteria. The algebraic model used to this analysis is:  

𝑦𝑖 =  𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑗𝑋𝑖𝑗 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 

Where:  

β0= value of y when all other x equal zero                                                                                                               
p= 11 (the number of parameters being analyzed)                                                                                                                                                                   
x1= predictor 1 (example chlorophyll α)                                                                                            
x2=predictor 2 (example total phosphorus)                                                                                                
…                                                                                                                                                                    
ε=random error  (Quinn & Keough, 2002). 

Initial analyses showed that the raw data did not meet the assumptions of normality and 

homogeneity, so all the parameters (except site pH levels which were already in logarithmic 

form) were log10 transformed. The null hypotheses tested was that the abundance of 

phosphate solubilizing bacteria not related to any of the hydrological parameters. While the 

alternative hypothesis tested was that at least one of the hydrological parameters tested had a 

significant relationship with the abundance of phosphate solubilizing bacteria.  

2.2-5.2 Comparison Study 

 Microbial data was collected from the field in triplicate. The serial dilutions of each 

sample were also completed in triplicate. From these values the means of the plates that 

showed viable total heterotrophic cell counts between 30-300 were recorded.  

Three-Factor ANOVA 

The statistical program R version 3.4.3 (R Core Team, 2017) with the packages ‘nortest’ 

(Gross & Ligges, 2015) and ‘car’ (Fox & Weisberg, 2011) were used to perform a three-factor 

analysis of variance (ANOVA) to compare the means of the phosphate solubilizing bacteria 

abundances that were isolated from sediment samples. The lake, month, and site sampled were 

modelled as fixed effects as those variables were orthogonal contrasts. This was completed to 

determine if either the lake, months or sites sampled impacted the total abundance of the 
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phosphate solubilizing bacteria or if any interactions between the fixed effects would impact 

the abundance of phosphate solubilizing bacteria. The algebraic model that was used for the 

three-factor ANOVA was: 

Yijkl = μ +αi + βj+ γk+ (αβ)ij + (αγ)ik+(βγ)jk+(αβγ)ijk +εijkl 

Where:                                                                                                                                                                  

α= the lake sampled                                                                                                                                            

β= the site sampled                                                                                                                                          

γ= the month sampled                                                                                                                                 

ε= random error  (Quinn & Keough, 2002). 

The statistical hypotheses tested were: H01: no statistically significant difference in PSB 

abundance between lakes, site, and months exists. HA1: there is a significant difference in PSB 

abundance between lakes, the abundance of PSBs, site, and months. H02: no interaction 

between lake and site, lake and month, or site and month on the abundance of PSBs occurred. 

HA2: interactions between lake and site, lake and month, or site and month on the abundance 

of PSBs do exist.  

 Initial inspection of diagnostic plots showed that the data deviated from 

homoscedasticity and normality.  Exploding variance was observed on the residuals vs. fitted 

plot, and the residuals deviated drastically from the normal q-q plot (Figure 2.11). After the 

data transformation to log10 values, the visual inspection of the diagnostic plots revealed that 

the data met the assumptions of normality and homoscedasticity. While some exploding 

variance was observed on the residuals vs. fitted plot, the residuals were much straighter on 

the normal q-q plot (Figure 2.12). After the diagnostic plots were inspected a series of post hoc 

tests were completed to ensure that the results obtained from the three-factor ANOVA were 

statistically correct. The A posteriori (Tukey HSD) test was completed to verify the significance 

between the factors (lake, month, site) that were tested, while an Anderson Darling Normality 

test was completed to ensure the data is normally distributed, and a Levene’s test was 

completed to test for homogeneity of variance.   
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Figure 2.11. Diagnostic plots of the original data. Plot A demonstrates that the data is not normally 

distributed, and Plot B has an exploding variance pattern, which indicates that there is too much 

variance between the residual data points for there to be a significant result. 
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Figure 2.12. These diagnostic plots are visually illustrating that the log10 transformation corrected the 

issues observed with normality and homoscedasticity. Plot A shows that the data are closer to being 

normally distributed and plot B show that the exploding variance has been resolved due to the 

transformation. This was also confirmed by the non-significant results obtained by the Anderson Darling 

(A=0.585, p= 0.123) and Levene’s tests (F23,48=0.628, p=0.885). 

 

Nested ANOVA 

The statistical program R version 3.4.3 (R Core Team, 2017) with the packages ‘nortest’ 

(Gross & Ligges, 2015) and ‘car’ (Fox & Weisberg, 2011) were used to perform a nested analysis 

of variance (ANOVA) to compare the means of the phosphate solubilizing bacteria abundances 

that were isolated from sediment samples for each lake. Time, or the months sampled, was 

used as the repeated measure while the sites were nested within the lake sampled which was 

used as the fixed effect. The algebraic model used for the nested ANOVA was:  
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𝑌𝑖𝑗𝑘 = µ + 𝛼𝑖 + 𝛽𝑗 + [(𝛼𝛽)]𝑖𝑗 + 𝜀𝑖𝑗𝑘 

Where:                                                                                                                                                            

Yijk = PSB Abundance                                                                                                                                               

µ= the population mean                                                                                                                                              

αi = the lake sampled                                                                                                                                                   

βj = time or months sampled                                                                                                                                         

[αβ]= the random interaction between month and lake (it is assumed to be zero)                                    

εijk = random error (Quinn & Keough, 2002). 

The statistical hypotheses tested were H0: phosphate solubilizing bacteria abundance 

for each lake did not change monthly. HA: monthly variability was observed for at least one of 

the lakes for each month sampled. Preliminary analysis showed that the data deviated from 

normality and homoscedasticity. This was confirmed by the significant Anderson Darling 

normality test (A= 4.2391, p= 1.218x1010) and Bartlett’s test for homogeneity of variance (K2= 

33.444, df = 1, p= 7.335x109). The data underwent a log10 transformation, and upon further 

inspection, it became apparent that this transformation resolved the deviations from normality 

and homoscedasticity.  

Correlation of PSBs and Total Phosphorus  

The statistical program R version 3.4.3 (R Core Team, 2017) was used once again to test 

for any possible correlations that may exist between the abundance of phosphate solubilizing 

bacteria and total phosphorus within both Lake Simcoe (Atherley Narrows) and Sparrow Lake. 

As neither the phosphate solubilizing bacteria nor the total phosphorus data were normally 

distributed for either lake, all the data were log10 transformed. Due to the data being normally 

distributed after transformation a Pearson’s correlation was performed. The algebraic formula 

used to calculate the Pearson’s correlation coefficient was:  

𝑟𝑌1𝑌2 =  
∑ (𝑦𝑖1 − 𝑦̅1)(𝑦𝑖2 − 𝑦̅2)𝑛

𝑖=1

√∑ (𝑦𝑖1 − 𝑦̅1)2𝑛
𝑖=1  ∑ (𝑦𝑖2 − 𝑦̅2)2𝑛

𝑖=1
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Where: 

Y1= Phosphate Solubilizing Bacteria (PSB) Abundance (CFU/g)                                                           

Y2= Total Phosphorus concentration (mg/L) (Quinn & Keough, 2002). 

The following statistical hypotheses were tested by this analysis: H0: There was no correlation 

between PSB abundance and total phosphorus concentrations in either the lake. HA: A 

significant correlation between PSB abundance and total phosphorus concentrations exists in at 

least one of the lakes. 

2.2-5.3 Core Experiment 

 The statistical program R version 3.4.3 (R Core Team, 2017) with the package ‘boot’ 

(Canty & Ripley (2017), Davison & Hinkley (1997)) was used to complete the non-parametric 

bootstrap test. This data was bootstrapped due to the sparse number of total reactive 

phosphorus (TRP) replicates that were collected from each core. Bootstrapping allows for the 

random drawing of numbers from a portion of a data set with replication in order to simulate 

repeated sampling of the same variables (Quinn & Keough, 2002).  The sediment core and PSB 

data from each lake underwent bootstrapping, and then a regression was completed to 

determine if a relationship between phosphate solubilizing bacteria abundance and total 

reactive phosphorus existed.  The following were the hypotheses that were tested: H0: no 

relationship between total reactive phosphorus and phosphate solubilizing bacteria exists for 

either lake. HA: there is a relationship between total reactive phosphorus and phosphate 

solubilizing bacteria exists for either lake. 

2.2-5.4 Cook’s Bay Study 

The statistical program R version 3.4.3 (R Core Team, 2017) with the packages ‘nortest’ 

(Gross & Ligges, 2015) and ‘car’ (Fox & Weisberg, 2011) were used to complete a single factor 

analysis of variance (ANOVA). This test was completed in order to compare the means of the 

phosphate solubilizing bacteria abundances that were collected from the Atherley Narrows and 

Cook’s Bay sites that were sampled on Lake Simcoe in September 2017. The statistical 

hypotheses tested were: H0: There was not a significant difference in the abundance of 

phosphate solubilizing bacteria between the northern and southern ends of Lake Simcoe. HA: A 

significant difference was observed within the abundance of phosphate solubilizing bacteria 
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found in the northern and southern ends of Lake Simcoe. The algebraic model used for the 

single factor ANOVA was:  

𝑦𝑖𝑗=µ + 𝛼𝑖 + ε𝑖𝑗  

Where: 

µ= portion of lake sampled                                                                                                                                              

α= the site sampled                                                                                                                                                    

ε= random error (Quinn & Keough, 2002). 

Initial inspection of diagnostic plots showed that the data deviated from 

homoscedasticity and normality.  After the data underwent a log10 transformation, visual 

inspection of the diagnostic plots, along with an Anderson-Darling Normality test and a 

Levene’s test revealed that the data met the assumptions of normality and homoscedasticity. 

No patterns were observed on the residuals vs. fitted plot, and the residuals were much 

straighter on normal q-q plot (Figure 2.13). The A posteriori (Tukey HSD) test was completed to 

verify significance between the Atherley Narrows and Cook’s Bay sites.  
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Figure 2.13. Diagnostic plots of the log10 transformed data providing a visual representation to the 

results obtained by the Anderson Darling, Bartlett’s and Levene’s tests all confirming that the data meet 

the assumptions of normality and homoscedasticity after the transformation occurred. Plot A shows 

that the data is reasonably close to being normally distributed while plot B shows that there are no 

patterns to the residuals plot. 

 

2.3 Results 

2.3-1 Hydrological Parameters  

 While significant variations in water temperature were not observed between the 

Sparrow Lake sites (F3,8= 2.599, p=0.1245), significant variations could be seen in the water 

temperature between the Lake Simcoe Atherley Narrows sites (F3,8=6.433, p=0.015). The 

highest recorded temperature was 26.7°C in both Atherley Narrows sites 2 and 3 in September, 

and the lowest recorded temperature was 18.3°C in Atherley Narrows site 1 in June. The lowest 

recorded temperature in the Sparrow Lake sites was 19.5°C which was recorded at site 1 in 

August while the highest recorded water temperature was 23.4°C, which was recorded at site 1 

in September. 

 Significant variations in dissolved oxygen were not observed for either lake (SPL: 

F3,8=2.877, p=0.103; LS: F3,8=1.396, p=0.3129). The lowest dissolved oxygen (DO) concentration 

for Sparrow Lake was recorded at site 1 in July (6.83 mg/L) while the highest DO concentration 

in the lake was at site 1 in August (10.42 mg/L). In the Atherley Narrows sites, the lowest DO 
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concentration was at site 1 in June (6.18 mg/L), and the highest DO concentration was at the 

same site in September (16.81 mg/L).   

 There was significant variation observed between the pH levels in the Sparrow lake sites 

(F3,8= 12.1408, p=0.0023), but not with the Atherley Narrows sites (F3,8= 0.7643, p=0.5418). The 

lowest pH concertation in Sparrow Lake was recorded at site 3 in September (6.88) while the 

highest concentration was recorded at the same site in June (8.17). For the Atherley Narrows 

sites, the lowest pH was recorded at site 1 in June (7.35) while the highest concentration was 

recorded at site 2 in September (8.71).   

 Even though statistically significant variation did not observe between sites and months 

for the conductivity, much variation was observed between months for each lake. In Sparrow 

Lake, conductivity ranged from 88.2µS/cm in site 1 in July to 391 µS/cm in site 3 in September. 

For the Atherley Narrows sites, conductivity ranged from 421 µS/cm in site 3 in August, to 1030 

in site 1 in June.  

 Chlorophyll a concentrations in Sparrow Lake varied from below detectable limits (BDL) 

in site 1 in September, to 6.68µg/L (SD ±12.238) in site 2 in June. In the Atherley Narrows sites 

chlorophyll a concentrations ranged from 47.84 µg/L (SD ±3.23) in site 1 in July to 1.05 µg/L (SD 

±2.33) in site 2 in September. For the Atherley Narrows sites, site 1 consistently had the highest 

chlorophyll a concentration except for in September when site 3 had the highest concentration 

of chlorophyll a. Sparrow Lake site 1 consistently had the lowest concentrations of chlorophyll a 

out of the Sparrow Lake sites.  

 Total suspended solids in the Atherley Narrows sites was highest in site 1 in September 

(127.33mg/L, SD ±107.353) and lowest at site 2 in July (6.9mg/L, SD ±4.357). The highest 

concentration for Sparrow Lake was at site 3 in September (69.4mg/L, SD ±71.963), while the 

lowest concentration in site 2 also in September (1.033mg/L, SD ±1.429). Total Nitrogen 

concentration in the Atherley Narrows sites was highest at site 1 in June (4.24 mg/L, SD ±0.69) 

and lowest at site 2 in July (0.12 mg/L, SD ±0.079).  Nitrate concentration in August was highest 

at site 1 (0.139mg/L, SD±0.025), and lowest at site 3 (0.008 mg/L, SD ±0.00). In Sparrow Lake, 
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the lowest total nitrogen concentration was at site 3 in June (0.143, SD ± 0.08), and highest at 

site 2 in July (0.713, SD ± 0.343).   

 

Table 2.1. Monthly Total Nitrogen concentrations (mg/L) for the Sparrow Lake (SPL) and Lake Simcoe- 

Atherley Narrows (LS) sites. The standard deviation is given in parenthesis.  
 

June July Aug Sept 

SPL 1 0.19 (0.075) 0.50 (0.059) 0.37 (0.035) 0.31 (0.016) 

SPL 2 0.33 (0.113) 0.71 (0.343) 0.43 (0.031) 0.35 (0.07) 

SPL 3 0.14 (0.08) 0.41 (0.013) 0.51 (0.041) 0.39 (0.057) 

 

 
June July Aug Sept  

LS 1 4.24 (0.269) 0.73 (0.075) NO3 NO3 

LS 2 0.29 (0.263) 0.12 (0.079) NO3 0.62(0.285) 

LS 3 0.19 (0.108) 0.19 (0.145) NO3 0.50(0.044) 

     

 

Table 2.2. Nitrate concentrations (mg/L) for the Lake Simcoe-Atherley Narrows sites. The standard 

deviation is given in parenthesis.  

 

 

 

Total phosphorus concentrations at the Atherley Narrow sites was highest at site 1 in 

September (0.086mg/L, SD ±0.118), and lowest at site 3 in June (0.013mg/L, SD±0.0072). While 

the lowest total phosphorus concentration in Sparrow Lake was found at site 3 in June 

(0.018mg/L, SD ± 0.0056) and the highest was found at site 2, also in June (0.095mg/L, SD 

±0.133). The total phosphorus results that were collected from the sites in the north part of 

Lake Simcoe were all higher than the 9µg/L that was reported in the OMECC’s 2014 monitoring 

report (Young & Jarjanazi, 2015). Between the three sites on Lake Simcoe that were 

continuously sampled, June had the lowest amount of TP (15.4µg/L, SD ±0.0018) while the 

highest concentration of total phosphorus was recorded in September (52.11. 4µg/L, SD 

 
Aug Sept 

LS 1 0.14 (0.025) 0.38 (0.093) 

LS 2 0.01 (0.002) TN 

LS 3 0.008 (0.00) TN 
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±0.0297). Site 1 consistently had the highest concentrations of total phosphorus and only met 

the provincial standard of 2µg/L or less (Ontario Ministry of the Environment, 2013) in June and 

July. The average monthly total phosphorus concentrations are given in Table 2.3. 

 

 Table 2.3. Monthly mean total phosphorus concentrations for all sites on Atherley Narrows and 

Sparrow Lake. The standard deviations are given in parentheses. 

Month Atherley 

Narrows (µg/L) 

Sparrow Lake 

(µg/L) 

June 15.4 (±0.001) 48.5 (±0.053) 

July 28.1 (±0.01) 51.8 (±0.012) 

August 45.2 (±0.014) 43.2 (±0.014) 

September 52.1 (±0.029) 36.2 (±0.014) 

 The highest abundance of total heterotrophic bacteria was recorded in the sediment 

from Sparrow Lake site1 in July (2.96x105, SD±159904.1). The lowest total heterotrophic 

bacteria abundance in Sparrow Lake was collected from site 2 in September (1.96x102, 

SD±90.42). The highest abundance of total heterotrophic bacteria collected from the Lake 

Simcoe Atherley Narrows sites was in site 1 in June (7.35x103, SD±11135.24). Meanwhile, the 

lowest total heterotrophic bacteria abundance was also recorded in site 1, but in September 

(2.12x102, SD±151.26).   

 The highest abundance of phosphate solubilizing bacteria in Sparrow Lake was recorded 

from site 2 in July (5.22x102, SD±429.94). Meanwhile, the lowest phosphate solubilizing bacteria 

abundance in Sparrow Lake was observed in site 2 in September (2.2x101, SD ±12.7). The 

highest abundance of phosphate solubilizing bacteria from the Lake Simcoe Atherley Narrows 

sites was found in site 2 in June (1.57x102, SD± 210.39), and the lowest abundance was found in 

site 1 in August (5x100, SD ±1.73). The number of bacterial colonies counted at each site for 

each of the sampling months can be seen in Table 2.4.  
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Table 2.4. The number of phosphate solubilizing bacteria colonies counted each month at Atherley 

Narrows Site 1 and Sparrow Lake Site 1. The standard deviations are given in parenthesis. 

Month Atherley 

Narrows Site 1 

(CFU/g) 

Sparrow Lake 

Site 1 (CFU/g) 

June 1.2x101 (±7.21) 3.94x102 (±416.3) 

July 4.6x101 (±48.07) 2.04x102 (±227.2) 

August 5x100 (±1.73) 3.1x101 (±7.0) 

September 2.1x101 (±9.504) 8.2x101 (±87.35) 

 

2.3-1.1 Hydrological Parameters Statistical Testing Results 

  Quinn and Keough (2002), define multiple regression as “the impact of correlated 

predictor variables on the estimates of parameters and hypotheses tests.” As per the guidelines 

set out by Zuur, Leno, and Elphick (2010), all of the hydrological parameters that had a variance 

inflation factor (VIF) greater than two were removed from the model in order to avoid results 

that may have been skewed by multicollinearity. As dissolved oxygen (VIF= 4.548), pH 

(VIF=4.509), and conductivity (VIF= 2.059) all had variance inflation factors that were higher 

than the recommended amount, they were not included in the final analysis and were 

sequentially removed from the equation.  As chlorophyll a (VIF= 1.098), total suspended solids 

(VIF=1.609), water temperature (VIF= 1.272), and total heterotrophic bacteria (VIF=1.314), all 

had low VIFs, they were included in the final analysis and graphs showing the distribution of 

these parameters can be seen in Figure 2.14. 

The final model was statistically significant (F4,19=4.96, p=0.0065), with chlorophyll a, 

total suspended solids, water temperature, and total heterotrophic bacteria abundance 

explaining 51.08% of the variance in phosphate solubilizing bacteria abundance. Due to this the 

null hypothesis stating that none of the hydrological parameters would explain any of the 

variance observed in the abundance of phosphate solubilizing bacteria was rejected.  
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Figure 2.14. These bar graphs are showing the mean average results for the significant hydrological 

parameters that were included in the multiple regression. 

  Plot A showed the Chlorophyll a concentrations at the Sparrow Lake and Lake Simcoe sites each month 

they were sampled. 

 Plot B shows the mean amounts of total heterotrophic bacteria (CFU/g) at each site for each month. 

 Plot C shows the water temperatures for each site for every sampling event. 

 Plot D shows the mean total suspended solids for the Sparrow Lake and Lake Simcoe sites for each 

month they were sampled.  
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2.3-2 Comparison Study  

Three-Factor ANOVA  

Significance was found with the interactions between lake and site (F2,48=4.068, 

p=0.023) and with the interaction between site and month (F6,48=2.783, p=0.021) but not 

between any of the other factors or interactions. Due to the results expressed above, the first 

null hypothesis (H01) stating that there is no significant difference between lakes is accepted. 

However, the second null hypothesis is rejected, and the second alternative hypothesis stating 

that at least one interaction exists between lake and site, lake and month, or site and month on 

the abundance of PSBs is accepted. 

  Interaction plots showed no evidence of interactions occurring between Sparrow Lake 

and Lake Simcoe (Atherley Narrows) (Figure 2.15).  Boxplots of the raw data showed some 

evidence of skewness, particularly in Sparrow Lake where high abundances of the phosphate 

solubilizing bacteria were found in June and July (Figure 2.16). The Anderson-Darling normality 

test that was performed on this data provides evidence that transforming the data did fix the 

distribution problems that were seen with the original data set. The Anderson-Darling test 

proved to be insignificant (A=0.585, p= 0.123). Levene’s test for homogeneity of variance also 

Figure 2.15. Interaction plot showing that no interactions occurred between Sparrow Lake 

and Lake Simcoe Atherley Narrows during the sampling period. SPL is the short form used 

for the Sparrow Lake sites while LS was used for the Lake Simcoe Atherley Narrows sites.?? 
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indicated that the variance within the transformed data was manageable since Levene’s test 

also had an insignificant result (F23,48=0.628, p=0.885). 

 Tukey’s HSD test identified that the significant interaction between lake and site 

occurred between Sparrow Lake site 1 and Atherley Narrows site 1 (p=0.031). The only 

significant interaction that Tukey’s test identified between the site and month interaction was 

between site 2 in July and site 3 in June (p=0.003), there was an almost significant difference 

between site 1 in August and site 2 in July (p=0.066).   

Figure2.16. Boxplots of the raw PSB abundance for both Atherley Narrows (Plot A) and Sparrow Lake 

(Plot B). Plot A shows that the amount of PSBs stayed relatively consistent throughout the sampling 

events. Plot B showed that a much higher abundance of PSBs in June and July. Note that the dark line in 

the center of each plot represents the median of the data while the upper and lower lines show the 95% 

confidence intervals. 

 

Nested ANOVA 

 Significant differences were not found between the abundance of phosphate solubilizing 

bacteria and the month sampled (F3,19= 1.062, p=0.389), As the data met the assumptions of normality 

(A=0.3691, p=0.3991) and homoscedasticity (K2=2.6437, df=1, p=0.104), the null hypothesis is accepted, 
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and no further testing was completed. No interactions were observed between lakes, which is clearly 

observed in Figure 2.17.  

Figure 2.17. This interaction plot is showing the phosphate solubilizing bacteria abundances on both 

Sparrow Lake and Lake Simcoe Atherley Narrows.  

Correlation between PSBs and Total Phosphorus 

A significant correlation between phosphate solubilizing bacteria abundance and total 

phosphorus concentration was observed on Sparrow Lake (r = -0.362, t33 = -2.231, p = 0.032) 

but not on Lake Simcoe (Atherley Narrows) (r = 0.053, t34= 0.312, p= 0.75). As a significant 

correlation was observed in Sparrow Lake, the null hypothesis is rejected, and the alternative 

hypothesis is accepted.  

2.3-3 Core Experiment 

 The water temperature at the Sparrow Lake core site (site 2) was 21.8°C when the core 

was collected. Atherley Narrows, site 1 was 20.3°C when the core was collected. Algae was 

present at both locations, the water pH for Sparrow Lake was 7.44 while it was 7.48 for the 

Lake Simcoe Core. The conductivity was 385µS/cm at the Sparrow Lake site while it was 

1127µS/cm at the Lake Simcoe site. There was 9.8mg/L of dissolved oxygen at the Sparrow Lake 

site, while there was 11.59mg/L at the Lake Simcoe site. At the Sparrow Lake site, the 

chlorophyll a concentration was 1.19µg/L (SD ±0.377), while the chlorophyll a concentration 

was 66.24µg/L (SD ± 19.39) at the Lake Simcoe site. While the amount of total suspended solids 

averaged 4.66g/L (SD ±5.35) at the Sparrow Lake site and averaged 120.06mg/L (SD ±73.92) at 
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the Lake Simcoe site, the nutrients and abundance of bacteria found at each core site are 

expressed in Table 2.5 and Table 2.6.  

Core 

Depth 

Total 

Reactive 

Phosphorus 

(mg/g) 

Percent 

Nitrogen 

Phosphate 

Solubilizing 

Bacteria 

(CFU/g) 

Total 

Heterotrophic 

Bacteria 

(CFU/g) 

50mm 0.19 0.02 2x101 1.62x102 

100mm 0.36 2.86 3x101 3.8x101 

150mm 0.46 2.04 1.1x101 3x102 

200mm 0.44 2.83 1.1x101 8.1x101 

 

 

                                Table 2.6. Sparrow Lake core data collected September 26th, 2017. 

Core 

Depth 

Total 

Reactive 

Phosphorus 

(mg/g) 

Percent 

Nitrogen 

Phosphate 

Solubilizing 

Bacteria 

(CFU/g) 

Total 

Heterotrophic 

Bacteria 

(CFU/g) 

50mm 0.21 0.02 2.8x101 3x102 

100mm 0.24 0.02 3x101 1.52x102 

150mm 0.31 0.02 8x100 2.52x102 

200mm 0.39 0.01 4x100 1.52x102 

 

Table 2.5. Lake Simcoe Atherley Narrows core data collected September 26th, 2017.  
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 As the bootstrapped estimate of the relationship between total reactive phosphorus 

and phosphate solubilizing bacteria for the Sparrow Lake core was 169.28, with a 95% 

confidence interval of 50-314.28, there is a significant positive relationship between total 

reactive phosphorus and phosphate solubilizing bacteria for Sparrow Lake.  However, the linear 

regression that was completed to complement the bootstrapped design was not significant 

(r2=0.803, F1,2= 13.29, p=0.067). 

 Figure 2.18. Histogram showing the bootstrapped result for PSB abundance for the Sparrow Lake core.  

 

 The bootstrapped estimate of the relationship between total reactive phosphorus and 

phosphate solubilizing bacteria for the Atherley Narrows core was 96.03, with 95% confidence 

intervals of 0-237.5. This result indicates that there was also a significant relationship between 

total reactive phosphorus and phosphate solubilizing bacteria for Atherley Narrows. Once 

again, the accompanying linear regression that was completed did not produce significant 

results (r2=0.229, F1,2=0.596, p=0.5206).  
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 Figure 2.19. Histogram showing bootstrapped result for PSB abundance for the Atherley Narrows core. 

The bootstrapped data still appears to be binomial, even after bootstrapping. 

 

2.3-4 Cook’s Bay Study 

The water temperatures at the Cook’s Bay sites were 23.4°C, 24.4°C, and 22.5°C for sites 

one, two, and three respectively. The dissolved oxygen concentrations were 8.65mg/L at site 

one, 8.46mg/L at site two, and 8.49mg/L at site three. The pH levels at the sites were 7.65, 7.69, 

and 7.52 at sites one, two, and three respectively. The conductivity was 477µS/cm at site one, 

506 µS/cm at site two, and 463 µS/cm at site three. The chlorophyll a concentrations were 

1.19µg/L (SD ±0.617) at site one, 2.85µg/L (SD ±1.023) at site two, and 0.79µg/L (SD ±0.31) at 

site three. The concentration of total suspended solids was 1.53 mg/L (SD ±0.61) at site one, 

7.93 (SD ±1.87) at site two, and 35.00 (SD ±21.94) at site three. There was 0.033mg/L (SD 

±0.022) of total phosphorus at site one, 0.038mg/L (SD ±0.017) of total phosphorus at site two, 

and 0.03mg/L (SD ±0.014) at site three. Cook’s Bay site one had a nitrate average of 0.017mg/L 

(SD ±0.011). These results are compared to the total phosphorus results from the Atherley 

Narrows sites in September in Table 2.7.  Cook’s Bay sites two and three had average total 

nitrogen concentrations of 0.49 (SD ±0.012), and 0.33mg/L (SD ±0.025) respectively. 
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 Table 2.7. Total Phosphorus concentrations (mg/L) for Atherley Narrows and Cook’s Bay, collected Sept 

26th and 27th, 2017. Standard deviations are in parenthesis. 

Site Atherley 

Narrows 

(mg/L) 

Cook’s 

Bay 

(mg/L) 

1 0.086 

(±0.118) 

0.033 

(±0.033) 

2 0.037 

(±0.008) 

0.037 

(±0.017) 

3 0.032 

(±0.032) 

0.03 

(±0.014) 

 

Cook’s Bay site one had a mean total heterotrophic bacteria count of 8.08x103 CFU/g 

(SD ±5826.56), site two had a mean heterotrophic bacteria count of 1.22x103CFU/g (SD 

±273.65), and site three had a mean heterotrophic bacteria count of 1.42x103CFU/g (SD 

±311.12). The Cook’s Bay sites had a mean phosphate solubilizing bacteria count of 1.6x102 

CFU/g (SD ±141.42), 9.5x101 CFU/g (SD ±20.5), and 7.1x101 CFU/g (SD ±26.16) for sites one, 

two, and three respectively. The Cook’s Bay and Atherley Narrows PSB abundances per site are 

listed in Table 2.8.  

Table 2.8. Phosphate solubilizing Bacteria abundance (CFU/g) for Atherley Narrows and Cook’s 

Bay. Collected Sept 26th and 27th, 2017. The standard deviations are in parenthesis. 

Site Atherley 

Narrows 

(CFU/g) 

Cook’s Bay 

(CFU/g) 

1 2.1x101 (±9.5) 1.6x102 (±141.42) 

2 1.2x101 (±1.07) 9.5x101 (±20.5) 

3 3.5x101 (±15.58) 7.1x101 (±26.16) 
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2.3-4.1 Cook’s Bay Statistical Analysis 

A significant difference in PSB abundance was found between the Atherley Narrows and 

Cook’s Bay sites (F1,16=19.12, p=0.000473). Due to this, the null hypothesis is rejected, and the 

alternative hypothesis that there is a significant difference between the abundance of 

phosphate solubilizing bacteria between the northern and southern parts of Lake Simcoe is 

accepted. The boxplot of the raw data provides a visual representation of the distribution of the 

phosphate solubilizing bacteria and depicts which sites had the highest abundances (Figure 

2.20).   

Figure 2.20. Boxplot graph showing the abundance of PSBs found in Lake Simcoe Atherley Narrows (AN 

1, 2, &3) and in Cook’s Bay (CB 1, 2, & 3) in September 2017. Note that the dark line in the center of 

each plot represents the median of the data while the upper and lower lines show the 95% confidence 

intervals. 

The Anderson-Darling Normality test that was performed on the transformed data 

provides evidence that the log10 transformation did make the data normally distributed as the 

residual test had an insignificant result (A=0.4245, p= 0.2834). The Levene’s test for 

homogeneity of variance also indicated that the variance between the sites was within an 

acceptable limit as well, as this residual test also had an insignificant result (F5,12=0.8529, 

p=0.5388). These tests served the purpose to confirm that the data collected followed the 

assumptions of normality after the data was transformed.   
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Tukey’s HSD test showed that there were statistically significant differences occurring 

between Atherley Narrows site 1 and Cook’s Bay site 1 (p=0.001), Atherley Narrows site 1 and 

Cook’s Bay site 2 (p=0.0054), Atherley Narrows site 1 and Cook’s Bay site 3 (0.023), Atherley 

Narrows site 2 and Cook’s Bay site 1 (p=0.00016), Atherley Narrows site 2, and Cook’s Bay site 2 

(p=0.00071), Atherley Narrows site 2 and Cook’s Bay site 3 (p=0.0027), and Atherley Narrows 

site 3 and Cook’s Bay site 1 (p=0.0148). These results are visually displayed in Figure 2.21.  

Figure 2.21. The results of the Tukey HSD test between all the sites sampled in September. 1= Atherley 

Narrows Site 1, 2= AN 2, 3=AN 3, 4= Cook’s Bay 1, 5=Cook’s Bay 2, 6= Cook’s Bay 3. This graph shows 

that Atherley Narrows sites 1 and 2 are statistically different from all of the Cook’s Bay sites. 

2.4 Discussion  

2.4-1 Hydrological Parameters 

   The significant relationships between the abundance of phosphate solubilizing bacteria 

and total heterotrophic bacteria, total suspended solids, and chlorophyll a that were observed 

in this study were similar to results observed in other studies (Gholizadeh, et al., 2016; Dodds & 

Whiles, 2010). Relationships between the previously mentioned hydrological parameters and 

phosphate solubilizing bacteria could indicate that these microbes thrive in similar conditions to 

microalgae and other heterotrophic microbes in the littoral zone of a lake. This theory is 

supported by various studies that also imply that temperature, redox reactions, pH, dissolved 

oxygen concentrations, nitrates, and sulphates have all been suggested as controlling factors 

that affect phosphorus release from sediments (Kim, et.al, 2003; Jin, et.al, 2006; Ribeiro, et.al, 
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2008). All of these factors also contribute to the density and species richness of microalgae 

(Pepper, et al., 2014).  

 It was observed that the highest abundance of bacteria that demonstrated phosphate 

solubilizing capabilities were collected from both sampling locations in July. As the water 

temperature was above 20°C at every site, this result correlates with those of previous studies. 

Mohammadi (2012) demonstrated that temperature was a growth limiting factor for phosphate 

solubilizing bacteria in terrestrial environments. As other studies (Qian et al., 2010;  Manawadi, 

et al., 2016; and Paul & Sinha, 2017) used higher temperatures (30oC)  to grow PSBs in 

incubators, one would expect to see this group of mesophilic organisms to thrive at 

temperatures between 20-40°C.  The laboratory component of this study explored further the 

role of temperature as a growth limiting factor of phosphate solubilizing bacteria.  

2.4-2 Comparison Study   

 The low numbers of phosphate solubilizing bacteria that were found throughout this 

study were similar to the results of Sanjotha and Manawadi (2016). They collected 35 different 

phosphate solubilizing bacterial isolates between 15 sediment samples that were all collected 

at the same time from a coastal region (Sanjotha and Manawadi, 2016).  

Both the three-factor ANOVA and the nested ANOVA were completed in this study in 

order to understand the abundance of phosphate solubilizing bacteria in the study area and 

their variability. Previous studies on phosphate solubilizing bacteria in freshwater systems did 

not involve compassion of two waterbodies differing in water quality and exposure to 

anthropogenic activities. The three-factor ANOVA analyzed the differences among sampling 

locations on each lake while the nested ANOVA tested any significance that might have existed 

between Sparrow Lake and Lake Simcoe (Quinn & Keough, 2002).  

 The significance observed in the Tukey’s HSD test in the three-factor ANOVA between 

Atherley Narrows site 1, and Sparrow Lake site 1 was initially thought to support the hypothesis 

that phosphate solubilizing bacteria would be more abundant in areas that had obvious signs of 

anthropogenic stress. In Atherley Narrows site 1, filamentous algae and anthropogenically 

produced trash were present (there was a tire, plastic bags, plastic water bottles, and other 



55 
 

particles of trash in the sediment). Sparrow Lake site 1 was located within McLean Bay, which is 

a part of the protected wetland within Sparrow Lake (The District Municipality of Muskoka, 

2016).  However, there was a higher abundance of phosphate solubilizing bacteria at Sparrow 

Lake site 1 as opposed to Atherley Narrows site 1. This disproves the hypothesis that the 

opposite would be true due to the impact that the Orillia wastewater treatment facility and the 

Orillia landfill may have had on that location. The insignificant result observed in the nested 

ANOVA suggests that the differences observed between the two lakes was random, and more 

testing would have to be completed to make any significant conclusions. 

 The high abundance of phosphate solubilizing bacteria in Sparrow Lake in June 2017 

could potentially be explained by the weather that occurred the week preceding June 25th 

when sampling took place. According to the historical weather data collected at the Muskoka 

Airport, 19.1mm of precipitation accumulated in the region between June 19th-June 25th, 2017; 

while 22mm of precipitation accumulated in the region between July 16th -23rd (Pelmorex 

Weather Networks,2017). The historical data collected in Orillia has no precipitation recorded 

between June 18th-24th, 2017, nor between July 15th-22nd (Pelmorex Weather Networks,2017). 

As the water temperature ranged between sites (in both lakes) from 18.8-22.3°C in June, and 

20.6-24.4°C in July, the amount of precipitation could be one of the explanations for the 

increased phosphate solubilizing bacteria abundances in those months. As previously 

mentioned, the study completed by Mohammadi (2012) goes into detail about how 

temperature is a key growth factor for the presence and abundance of phosphate solubilizing 

bacteria.  

 The variation in precipitation could have also played an impact on the slightly negative 

correlation that was observed between total phosphorus (mg/L) and the abundance of 

phosphate solubilizing bacteria in Sparrow Lake. Both total phosphorus concentrations and 

phosphate solubilizing bacteria abundance saw a decreasing trend with time. The precipitation 

in June and July could have impacted the total phosphorus concentrations in the lake as well 

(Dodds & Whiles, 2010). While there were no studies explicitly discussing the impact that 

precipitation has on the presence of phosphate solubilizing bacteria, it is well documented that 
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runoff caused by lots of precipitation can lead to higher levels of nutrients in freshwater 

systems and the higher amount of available nutrients can contribute to an increase in 

microorganism populations (Dodds & Whiles, 2010 ; Pepper et al., 2014; Conley et al., 2009; 

Dillon & Rigler, 1974).   

2.4-3 Core Experiment 

 The results that were obtained in this study were similar to those of Sanjotha and 

Manawadi (2016).  Sanjotha and Manawadi (2016), had a low abundance of phosphate 

solubilizing bacteria and collected their samples randomly from sediment depths between 5-

17cm. This current study tried to enumerate the phosphate solubilizing bacteria in sediment 

cores of similar depth range (5-20cm).  However, raw results obtained from this quick 

experiment support the insignificant result obtained from the bootstrapped test. It can be seen 

in tables 2.5 and 2.6, that the mean amount of phosphate solubilizing bacteria did not change 

much within the first 20cm of sediment. If this study was expanded upon in future, it would be 

useful to collect larger sediment cores to assess the abundance of bacteria well into the 

sediment; more sediment core replicates would be needed as well as to get a better 

assessment of the results. 

2.4-4 Cook’s Bay Comparison  

 The comparison between the Cooks Bay and Atherley Narrows sites on Lake Simcoe was 

completed as another experiment designed to try to determine if the abundance of phosphate 

solubilizing bacteria could be correlated with the amount of total phosphorus that was present 

in the water column at the sampling site. The intent was to complement the study that 

compared the abundance of phosphate solubilizing bacteria between Lake Simcoe-Atherley 

Narrows and Sparrow Lake. Atherley Narrows recorded the lowest levels of total phosphorus 

within the entire lake while Cook’s Bay recorded the highest (Young & Jarjanazi, 2015). Knowing 

that historically Cook’s Bay had the highest levels of total phosphorus, it was hypothesized that 

Cook’s Bay would have a higher abundance of phosphate solubilizing bacteria and that these 

microorganisms contributed to the elevated levels of total phosphorus in the area (Nürnberg et 

al., 2013). During the week prior to sampling, no precipitation was recorded in Orillia, ON, while 

only 0.1mm of precipitation was recorded in Newmarket, ON (Pelmorex Weather 
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Networks,2017) which indicated that precipitation might not have had a significant influence 

over the phosphate solubilizing bacteria abundance that was observed.  

 However, during the Atherley Narrows sampling period, there was a northward wind 

stirring up the sediment along the shoreline where the sampling sites were located, this would 

explain why the total suspended solids, and chlorophyll a results were higher during the 

September sampling event than they were throughout the rest of the sampling events in this 

location. Due to this anomaly, these results were omitted from statistical analysis due to their 

high levels of variance (Quinn & Keough, 2002).   It is plausible that the differences caused by 

these meteorological conditions could be one of the contributing factors that resulted in the 

difference in phosphate solubilizing bacteria abundances between the Cook’s Bay and Atherley 

Narrows sites. 

A higher abundance of phosphate solubilizing bacteria was observed in Cook’s Bay than 

in Atherley Narrows while total phosphorus levels remained relatively consistent. The total 

phosphorus levels were consistent apart from Atherley Narrows Site 1 which was located 

closest to the Orillia wastewater treatment plant. This site had the lowest levels of total 

phosphorus in September (0.019 mg/L) and was just below the provincial limit of < 0.02mg/L of 

total phosphorus in the wastewater effluent (LSRCA, 2017).  

The isolates were collected following the same procedure as Sanjotha and Manawadi, 

(2016), and Qian et al., (2010), and although the results were similar to those observed in 

previous studies, many specific questions relating to Lake Simcoe were left unanswered. A 

more intense study on Lake Simcoe would need to be done to determine if phosphate 

solubilizing bacteria contribute to the internal phosphorus loading in this lake. As only aerobic, 

heterotrophic bacteria were isolated in this study it is likely that a significant number of 

microbes were missed in the collection process. Species richness was not calculated at this time 

as various heterotrophic microbes grew on the Pikovskaya’s agar that were not phosphate 

solubilizing bacteria. 
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2.5 Conclusion 

 In general, higher abundances of phosphate solubilizing bacteria were observed after 

weather events, and this could be the response this group of microbes have to the land runoff. 

This requires further study. Generally, phosphate solubilizing bacteria were found more 

abundant in warm water when there was not an excessive amount of total phosphorus in the 

water column. This could imply that the locations that had lower amounts of total phosphorus 

are better suited for phosphate solubilizing bacteria. Due to the inorganic acids that this group 

of microorganisms possess, it does make sense that they would thrive in locations that did not 

have a bioavailable form of phosphorus (Qian et al., 2010).  

The results obtained by the multiple regression analysis support the alternative 

hypothesis that at least one of the hydrological parameters observed throughout the sampling 

period had a significant influence on the abundance of phosphate solubilizing bacteria in both 

Sparrow Lake and Lake Simcoe. Total suspended solids (TSS), chlorophyll a, water temperature 

and total heterotrophic bacteria (THB) abundance were statistically proven to have the lowest 

variance inflation factors, and due to this, had the most substantial impact on the abundance of 

the phosphate solubilizing bacteria. A more in-depth study would be needed to determine the 

impacts that seasonality may have had on the abundance of phosphate solubilizing bacteria in 

the studied sites. More vigorous sampling for an extended period will help to limit the sources 

of error that occurred due to precipitation would be needed to omit some of the sources of 

error that were observed during this study. 

The results obtained in the comparison study lead to the rejection of the hypothesis that 

a higher abundance of phosphate solubilizing bacteria would be found in the Atherley Narrows 

rather than in Sparrow Lake. While a significant difference was observed between Atherley 

Narrows site 1 and Sparrow Lake site 1, Sparrow Lake site 1 had the higher abundance of PSBs, 

which is not what was hypothesized. Due to the proximity to the Orillia Wastewater Treatment 

Plant, and Orillia Landfill, it was expected that Atherley Narrows Site 1 would have the highest 

abundance of PSBs, this was not what was observed. Sparrow Lake site 1 was found to have a 

significantly higher abundance of phosphate solubilizing bacteria when compared to Lake 

Simcoe Atherley Narrows Site 1.  
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 More sampling would be required in the core experiment in order to determine if the 

insignificant relationship in the linear regression that was performed had enough statistical 

power to be a viable result. There was little difference in the abundance of phosphate 

solubilizing bacteria and the total reactive phosphorus between the sections of the cores. There 

did not seem to be much difference between the cores collected at each lake. However, a more 

robust data set would be needed in order to determine if this was significant or not.  

 Cook’s Bay was found to have a significantly higher abundance of phosphate solubilizing 

bacteria than the Atherley Narrows sites when they were both sampled in September. 

However, only Atherley Narrows sites 1 and 2 had a statistically significantly lower abundance 

of phosphate solubilizing bacteria than the three Cook’s Bay sites. The total phosphorus 

concentrations were reasonably consistent between the six sites that were sampled on Lake 

Simcoe in September.  
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Chapter 3: Testing the phosphate solubilizing capabilities and 

efficiencies of bacterial isolates from two lakes.  
Chapter 3 Abstract 

Measuring a bacterial isolate’s ability to solubilize inorganic phosphate is a common way 

to characterize different phosphate solubilizing bacteria (PSB). The most common test 

completed to estimate the phosphate solubilization efficiencies are the solubilization index 

measurements. The tests were completed on the bacterial strains (435 isolates) that showed 

phosphate solubilizing capabilities that were isolated from the water and sediment samples 

from Lake Simcoe and Sparrow Lake.  Of those 435 isolates, only 394 grew once they were 

transferred to Pikovskaya’s agar slants. These were the isolates that were used for the 

phosphate solubilization index test. The average colony and halo diameter were measured 

every 24hrs for 9 days, and the solubilization index was calculated by using the Edi-Premono 

et.al (1996) formula. A total of 98 isolates showed halo development throughout this test. The 

60 isolates that had the highest solubilization index numbers were used in the inorganic 

phosphate test. The isolates were grown in Pikovskaya’s broth in triplicate for 72 hours with 

sterilized uninoculated broth serving as the control. The cultured broth was sterilized and 

filtered, and the phosphate concentration was measured using the spectrophotometric 

method. Only 20 of the tested isolates showed phosphate reducing capabilities during this 

experiment. Of these isolates, statistically significant (p<0.05) differences between the 

phosphate reducing capabilities of each isolate were observed, specifically between isolates 

196 and 198, both of which originated from Lake Simcoe.  

 

3.1 Introduction  

 The methods used to screen phosphate solubilizing bacteria from soil were applied to 

aquatic environments. Studies completed by Zhou et al. (2011), and Paul & Sinha (2017) both 

focused on the isolation, characterization, and identification of phosphate solubilizing bacteria 

in freshwater environments. Both of these studies collected water and sediment samples from 

their respective locations. After the isolates had been transported back to the lab, they were 

screened on Pikovskaya’s agar plates which uses tri-calcium phosphate as the inorganic 
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phosphate source. Paul and Sinha (2017) then used a solubilization index test and an inorganic 

phosphate test in order to quantitatively estimate the phosphate solubilizing capabilities of 

each isolate that exhibited the ability to use inorganic phosphate (this was noted by the visual 

presence of a halo or clear zone around the colony on the Pikovskaya’s media).  

Water and sediment samples were collected from two sampling locations from June to 

September 2017 (a third location (Cook’s Bay) was only sampled in September). Three replicate 

samples were collected from each sampling site (Sparrow Lake, Atherley Narrows (Lake 

Simcoe), and Cook’s Bay (Lake Simcoe)) during each sampling event. Five representative 

colonies were isolated from each replicate, leading to a total of 15 isolates from each site every 

time a site was sampled. Thus, altogether 480 representative colonies were isolated from the 

sediment and water samples between June and September 2017. A colony was considered to 

be a representative if two or more morphologically similar ones were present on the 

Pikovskaya’s agar plates when grown for seven days at 30oC. The presence of a clear zone 

surrounding the microbial colony was another mandatory criterion followed, as this was the 

indication of the phosphate solubilizing capability of the microorganism (Chen et al., 2006). In 

instances where there were fewer than five different types of colonies that had a clear zone or 

halo, a duplicate of the most common type was isolated. The rationale behind this was to 

continue to have equal sample sizes for statistical analysis.   

 The phosphate solubilization test was followed by a test which measured the 

concentration of total phosphorus that was left in Pikovskaya’s broth after the phosphate 

solubilizing bacteria had grown in the broth for 72 hours (Mehta & Nautiyal, 2001).  The 60 

bacterial isolates that had the highest average solubilization index number were selected for 

this test (the solubilization index for each of the isolates was calculated using the Edi-Premono 

et al. (1996) formula). The rationale behind phosphate solubilization and inorganic phosphate 

tests was to screen the phosphate solubilizing bacteria that were collected from the three 

sampling locations. These tests were completed in an attempt to determine which of the 

isolates were the most efficient ones at reducing the inorganic phosphate that was found in the 

Pikovskaya’s media (yeast extract 0.5g/L, dextrose 10g/L, Ca3(PO4)2 5g/L, (NH4)2SO4 0.5g/L, KCl 

0.2g/L, MgSO4 0.1g/L, MnSO4 0.0001g/L, and FeSO4 0.0001g/L and 15 g/L agar).  
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 The objectives of these tests were to monitor the rate of phosphate solubilization of the 

phosphate solubilizing bacteria as well as to test them to see which of the phosphate 

solubilizing bacteria are the most efficient at releasing phosphorus. It was hypothesized that 

the isolates collected from the Lake Simcoe Atherley Narrows sites would be the most efficient 

at phosphate solubilization in the media as there were typically higher concentrations of total 

phosphorus in the water column in those locations.  

3.2 Materials and Methods 

3.2-1 Phosphate Solubilization Index Test  

 The methodology for the phosphate solubilization index test was taken from Sanjotha 

and Manawadi (2016), and  Paul and Sinha (2017). This test was used as it is a straightforward 

way to estimate the abilities of the phosphate solubilizing bacteria. Of the 480 isolates, the first 

45 isolates were isolated from Lake Couchiching, but since that lake was not able to be tested 

after June due to time restraints, those isolates were omitted from testing. Out of the 435 

isolates, 394 isolates that were healthy and growing well in the Pikovskaya’s agar slants were 

finally used for the phosphate solubilization index test. 

 Individual Pikovskaya’s agar plates were made for each isolate. A circle with a diameter 

of 6mm was drawn in the center of each Pikovskaya’s agar plate to ensure that the inoculation 

site was the same for each bacterium. The inoculated plates were inverted and incubated at 

30°C (±2°C) for 216 hours (Paul & Sinha, 2017). After the bacteria had been in the incubator for 

48 hours, the average diameter of the colony and any halo formation was measured daily 

(every 24 hrs) up to 216 hrs (9 days) using the Edi-Premono et al. (1996) formula:   

𝑆𝐼 =
(𝐶𝐷 + 𝐻𝐷)

𝐶𝐷
 

Where:SI= Phosphate Solubilization Index                                                                                                                         

CD= Colony Diameter (mm)                                                                                                                                        

HD= Halo Diameter (mm) (Paul & Sinha, 2017).  
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Figure 3.1. Example of the measurements taken to get the SI number for each isolate. The culture was 

inoculated inside the 6mm circle while the lines going to the edge of the colony and the halo indicate 

where the measurements were taken for the colony and halo. 

 

 Each bacterial colony and halo were measured twice, and an average was taken to 

determine both the colony diameter and the halo diameter.  Sixty-one isolates (29 from Lake 

Simcoe-Atherley Narrows, 29 from Sparrow Lake, and 3 from Lake Simcoe-Cook’s Bay) that had 

the largest average solubilization index number during the phosphate solubilization index test 

were selected to continue with the next screening test. The isolates were selected based on 

how quickly they began to solubilize the calcium phosphate, and how high their solubilization 

index number was after the 216-hour timeframe. This was determined by the measurements 

that were taken once every 24 hours during the testing period (when the isolates were 

between 48 and 216 hours old).   

3.2-2 Inorganic Phosphate Test  

The sixty isolates that showed the highest solubilization index (28 from Atherley 

Narrows - the 23 isolates that formed halos from this lake plus 5 isolates that had a clear ring 

around the isolate that was too small to measure; 29 from Sparrow Lake; and 3 isolates from 

Cook’s Bay) were selected for the second screening test. Eight of the isolates were from June (2 

from Lake Simcoe, and 6 from Sparrow Lake), 15 from the July isolates (8 from Lake Simcoe, 7 

from Sparrow Lake), 16 from the August isolates (10 from Lake Simcoe, 6 from Sparrow Lake), 

and 22 from the isolates collected in September (9 from Lake Simcoe-Atherley Narrows, 10 

from Sparrow Lake, and 3 from Cook’s Bay). All isolates were grown in Pikovskaya’s broth (yeast 

extract 0.5g/L, dextrose 10g/L, Ca3(PO4)2 5g/L, (NH4)2SO4 0.5g/L, KCl 0.2g/L, MgSO4 0.1g/L, 
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MnSO4 0.0001g/L, and FeSO4 0.0001g/L)  for 24 hours as mentioned in Mehta and Nautiyal 

(2001). After this time, the test tubes were vortexed for 10seconds, and 50µl of inoculum of the 

young culture was transferred into 10ml of sterile Pikovskaya’s broth in triplicate. Autoclaved 

uninoculated broth was used as control (Mehta & Nautiyal, 2001; Islam et al., 2007). The 

cultures were incubated for 72 hours at 30°C on a shaker plate set at 180rpm as per Mehta and 

Nautiyal (2001). After this time, the colonies were destroyed (autoclaved at 121°C for 90 

minutes), and then filtered through a 47mm (0.45µm pore size) membrane filter under vacuum 

(Islam et al., 2007).  

The filtered, sterile broth was used to measure the phosphate concentration by 

spectrophotometric method (Mehta & Nautiyal, 2001). Sterile deionized water was added to 

any samples that had less than 10ml of broth to complete this assay. One Hach Phos Ver 3 

pillow was added to each sample. The samples were then shaken for 15 seconds (APHA, 1995).   

3ml of this solution was pipetted into an acid washed cuvette, and the absorbance was 

measured in the spectrophotometer at 880nm. The samples were compared to the previously 

made standard curve via linear regression to get the amount of total phosphorus in micrograms 

per millilitre (APHA, 1995).  This method is still efficient at measuring the inorganic phosphate 

that was present in the broth media as tri-calcium phosphate is the only source of phosphorus 

in the Pikovskaya’s broth.   

3.2-3 Statistical Analyses 

3.2-3.1 Phosphate Solubilization Index Test 

The statistical program R version 3.4.3 (R Core Team, 2017) with the packages ‘nortest’ 

(Gross & Ligges, 2015) and ‘car’ (Fox & Weisberg, 2011) was used to perform a repeated 

measures analysis of variance (ANOVA) to statistically compare the solubilization index from all 

of the representative isolates that visibly utilized the calcium phosphate that was in the 

Pikovskaya’s agar. Time, in hours (observation time, i.e., from 48 hrs to 210 hrs at every 24-hr 

interval), was used as the repeated measure while the isolates sampled were used as the fixed 

effect. The algebraic model used for the repeated measures ANOVA was:  

𝑌𝑖𝑗𝑘 = µ + 𝛼𝑖 + 𝛽𝑗 + [(𝛼𝛽)]𝑖𝑗 + 𝜀𝑖𝑗𝑘 
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Where:                                                                                                                                                            

µ= the solubilization index                                                                                                                                       

αi = the bacterial isolate                                                                                                                                  

βj = time (hours)                                                                                                                                                                   

[αβ]= the random interaction between the isolates and time in hours (it is assumed to be zero)                                    

εijk = random error (Quinn & Keough, 2002).  

An Anderson Darling Normality Test conducted on the data revealed the Solubilization Index 

test data was not normally distributed (A= 2.7608, p= 5.87x107). Transforming the data did not 

resolve this issue, and therefore Friedman’s non-parametric test was used.  The algebraic 

model used for the Friedman’s test was:  

                                         𝐹𝑟 =
12

𝑏𝑎(𝑎+1)
∑ 𝑅𝑖

2 − 3𝑏(𝑎 + 1) 

Where: 

a=no. of treatments                                                                                                                                                                    

b=no. of blocks(time(hours))                                                                                                                        

∑ 𝑅𝑖
2= group rank sum over all isolates(Quinn & Keough, 2002). 

The following hypotheses were tested: H0: Time (hours) did not have a significant impact on the 

solubilization index of the tested isolates. HA: Time (hours) did have a statistically significant 

impact on the tested isolates.   

3.2-3.2 Inorganic Phosphate Test  

The statistical program R version 3.4.3 (R Core Team, 2017) with the packages ‘nortest’ 

(Gross & Ligges, 2015), ‘car’ (Fox & Weisberg, 2011), and ‘agricolae’ (De Mendiburu, 2017) was 

used to perform a one-way analysis of variance (ANOVA) in order to determine if statistically 

significantly different results were observed between the isolates that showed reductions in the 

amount of phosphate present in the broth after the experiment compared to the control (initial 

concentration of phosphate). The isolates were the independent variable, while total 

phosphorus (µg/L) readings were used as the dependent variable. The algebraic model used for 

the one-way ANOVA was:        
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                                                         𝑌𝑖𝑗 = µ + 𝛼𝑖 + 𝜀𝑖𝑗                                                                                                                                    

Where:                                                                                                                                                                          

µ= Total Phosphorus concentration (µg/L)                                                                                                           

αi = the bacterial isolate                                                                                                                                           

ε= random error (Quinn &Keough, 2002).              

Figure 3.2. Diagnostic plots illustrating that the raw data meet assumptions of normality. Plot A shows how 

normally distributed the data is while Plot B shows that there are no patterns to the residual data plots. 

 

 The statistical hypotheses tested were Ho: the means of the total phosphorus values for 

the tested isolates were not significantly different. HA: At least two isolate means were 
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significantly different from each other. The Anderson Darling normality test and Levene’s test 

for homogeneity of variance were conducted on the data used for the one-way ANOVA. These 

tests revealed that the data met the assumptions of normality and homoscedasticity. No 

transformations were needed in order to interpret the results. Fisher’s least significant 

difference (LSD) test was completed as the post-hoc test as this test allowed for the comparison 

between isolates, highlighting which isolates were significantly different from each other.    

3.3 Results 

3.3-1 Phosphate Solubilization Index Test  

 As the solubilization index was a rank-based test performed on every isolate that 

appeared to develop an area of solubilization upon extraction from the sediment, and not every 

isolate that was screened developed a zone of inhibition, not every isolate was given a 

solubilization index (SI) number.  These isolates, along with some of the isolates that had a 

solubilization index of 1.5 or less after 216 hours were eliminated from statistical analysis. This 

parameter allowed for a slightly smaller sample size and a more robust data set, leading to 

more impactful results. The data was further split according to which sampling location the 

isolates originated from in an attempt to remove variance that may have occurred due to 

differences in habitat conditions. The complete data set from the 480 isolates that underwent 

the solubilization index test is given in Appendix II. However, Table 3.1 shows the colony and 

halo averages and standard deviations that were used to calculate the solubilization index for 

the halo forming isolates. 

Table 3.1. Colony and halo diameter measurements for each halo forming isolate in millimetres with 

standard deviations. The measurements were completed in duplicate, and the average was used to 

calculate the solubilization index.  These were the measurements for all of the halo forming isolates that 

had been growing for 216 hours. 

ISOLATE 
NUMBER 

COLONY 
AVG. 
(MM) 

COLONY 
S.D. 

HALO 
AVG. 
(MM)  

HALO 
S.D. 

S.I.  

49 16.5 0.71 31.5 0.71 2.90 

51 15.5 0.71 28.5 0.71 2.84 

52 9.5 0.71 12 1.41 2.26 

55 15.5 3.53 27 1.41 2.74 

57 15 1.41 22.5 0.71 2.5 
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59 12 2.83 19 1.41 2.58 

75 29.5 20.50 46.5 12.02 2.58 

77 18 0 24.5 0.71 2.36 

86 15.5 4.95 22.5 3.53 2.45 

93 12.5 0.71 17.5 0.71 2.4 

121 11.5 0.71 28 0 3.43 

122 31 24.04 34.5 20.51 2.11 

123 15 2.83 22 1.41 2.47 

124 9 1.41 16.5 0.71 2.83 

126 11 1.41 35.5 4.95 4.23 

128 12 2.83 16.5 2.12 2.37 

129 11 0 25.5 0.71 3.32 

143 10 2.83 12.5 0.71 2.25 

149 7.5 2.12 12.5 2.12 2.77 

156 15 1.41 17 1.41 2.13 

160 10.5 0.71 17.5 0.71 2.77 

161 15.5 7.78 16 5.66 2.03 

178 13 1.41 16.5 0.71 2.37 

179 9 0 12.5 0.71 2.39 

189 17 2.83 30.5 2.12 2.79 

191 15.5 2.12 24 1.41 2.54 

196 3 0 14.5 0.71 5.83 

198 6 1.41 18.5 0.71 4.08 

216 15 0 19.5 0.71 2.3 

217 14 0 20.5 0.71 2.46 

219 6.5 0.71 15.5 2.12 3.38 

220 7.5 2.12 16 0 3.13 

243 10.5 4.95 17.5 0.71 2.66 

244 10.5 0.71 15.5 0.71 2.47 

250 9.5 2.12 19 1.41 3.00 

255 13 2.83 20.5 2.12 2.58 

256 11 1.41 20 2.83 2.81 

277 7.5 0.71 11 0 2.47 

283 6.5 0.71 10.5 0.71 2.61 

285 16.5 0.71 18 1.41 2.09 

287 11 0 16 1.41 2.45 

288 14.5 0.71 16.5 0.71 2.14 

289 15.5 3.53 17 2.83 2.09 

302 27 24.04 41 18.381 2.52 

303 13.5 2.12 19.5 0.71 2.44 

304 9.5 0.71 25 0 3.63 

305 8.5 0.71 21.5 0.71 3.53 

307 8 2.83 13.5 0.71 2.69 

307 21.5 6.36 24 0 2.12 
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308 13.5 0.71 19 1.41 2.41 

312 9.5 0.71 16.5 0.71 2.74 

316 14.5 2.12 19.5 0.71 2.34 

318 17 1.41 20 0 2.18 

325 16.5 3.53 21.5 4.95 2.30 

328 12 4.24 15 2.83 2.25 

332 9 1.41 13.5 0.711 2.5 

335 15 2.83 19.5 2.12 2.3 

337 13.5 0.71 26.5 3.53 2.96 

338 17 0 35.5 0.71 3.08 

343 11 0 13.5 0.71 2.23 

345 15 2.83 19 1.41 2.26 

348 13.5 3.54 18 2.83 2.33 

363 12 1.41 14 2.83 2.16 

364 12 1.41 15 1.41 2.25 

366 14 1.41 16.5 0.71 2.17 

374 14 4.24 16.5 2.12 2.17 

376 16 2.83 18.5 2.12 2.15 

377 11 1.41 14 2.83 2.27 

381 11.5 0.71 15 0 2.31 

386 9.5 0.71 12.5 0.71 2.31 

390 10.5 2.12 11 1.41 2.04 

391 13 1.41 14 0 2.08 

398 8 2.83 10 0 2.25 

399 7 0 10.5 0.71 2.5 

400 8 2.83 11.5 0.71 2.44 

403 11 1.41 15.5 2.12 2.41 

408 7.5 2.12 21.5 0.71 3.86 

410 12.5 2.12 37 0 3.96 

411 8.5 2.12 31.5 2.12 4.71 

412 16.5 0.71 34.5 2.12 3.09 

414 11.5 0.71 28 1.41 3.43 

415 15.5 7.78 27 5.66 2.74 

417 14 2.83 30 2.83 3.14 

422 24 1.41 25.5 0.71 2.06 

423 16.5 2.12 19 1.41 2.15 

425 23 2.83 23.5 0.71 2.02 

426 14.5 7.78 20.5 0.71 2.41 

427 15.5 0.71 17.5 2.12 2.12 

429 15.5 2.12 37.5 0.71 3.42 

430 21.5 2.12 24.5 2.12 2.14 

432 10.5 0.71 13.5 0.71 2.28 

436 9 1.41 11 1.41 2.22 

440 9 0 10.5 0.71 2.16 
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441 9 4.24 12.5 3.53 2.38 

443 10 1.41 14.5 0.71 2.45 

444 13.5 0.71 16 0 2.18 

445 14.5 0.71 16 0 2.10 

446 16.5 0.71 16.5 0.71 2 

451 17 2.83 19 4.24 2.12 

452 7.5 2.12 17 1.41 3.26 

453 12 2.83 14.5 3.53 2.21 

454 16 0 17 0 2.06 

456 15 0 16.5 0.71 2.1 

459 13 4.24 17 2.83 2.31 

461 12.5 3.53 13.5 2.12 2.08 

462 14 1.41 15 0 2.07 

464 15 1.41 18 1.41 2.20 

466 17.5 2.12 21.5 0.71 2.23 

467 19.5 0.71 16.5 2.12 1.85 

470 9 0 13.5 0.71 2.5 

473 10 0 11 0 2.1 

475 11.5 2.12 17.5 2.12 2.52 

477 10.5 0.71 12.5 2.12 2.19 

478 14 1.414 17 0 2.21 

481 14.5 3.53 16.5 4.95 2.14 

483 11.5 2.12 14.5 0.71 2.26 

486 11.5 0.71 13.5 0.71 2.17 

 

It was observed that the largest number of bacterial isolates that were capable of 

solubilizing the inorganic phosphate in the Pikovskaya’s agar plates were collected from 

Sparrow Lake with 68 halo-forming isolates. Only 23 isolates formed halos during the 

solubilization index test from Atherley Narrows while Cook’s Bay had 7 halo-forming isolates 

when it was sampled in September. The five isolates that had the largest solubilization index 

number at the end of 216 hours were 196, 411, 126, 198, 410 with the respective solubilization 

index numbers being 5.833, 4.705, 4.227, 4.083, and 3.96. The rest of the isolates can be found 

in Appendix II.  Isolate 196 came from the water sample from Atherley Narrows site 1 in July, 

isolate 411 came from Sparrow Lake site 1 in September, isolate 126 came from Sparrow Lake 

site 1 in July, isolate 198 came from the water sample from Atherley Narrows site 1 in July, and 

isolate 410 came from Sparrow Lake site 1 in September. Meanwhile, isolate 467 which came 
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from Atherley Narrows site 1 in September, had the lowest solubilization index number out of 

the isolates that were included in the statistical analysis (1.846).  

 The null hypothesis was rejected for the Atherley Narrows isolates as the Friedman rank 

sums test determined that time of observation did have a significant impact of the 

solubilization index of the isolates (χ2
6 =62.756, p =1.238x1011). The non-parametric post-hoc 

Nemenyi’s rank sums test was completed to determine which time frames showed significant 

differences. Significant observations were made between measurements taken at 48 hours and 

120 hours (p=0.00026), 48 hours and 144 hours (p= 4.3x1005), 48 hours and 168 hours (p = 

1.5x1005), 48 hours and 216 hours (p =2.7x1007), 72 hours and 120 hours (p =0.00683), 72 hours 

and 144 hours (p= 0.00156), 72 hours and 168 hours (p =0.00065), 72 hours and 216 hours (p = 

2.1x1005), and 96 hours and 216 hours (p = 0.00775). Nemenyi’s rank sum test results can be 

seen in Table 3.2. Growth rate trends between the isolates from Atherley Narrows that had the 

highest SI numbers can be seen in Figure 3.3. 

 

Table 3.2. Pairwise comparisons of each timeframe tested on the Atherley Narrows isolates using 

Nemenyi rank sums test with q approximation for un-replicated blocked data. There was no p-value 

adjustment method. The significant results are mentioned in the text.  

 48 hrs 72 hrs 96 hrs 120 hrs 144 hrs 168 hrs 
72 

hrs 

0.98 n/a n/a n/a n/a n/a 

96 
hrs 

0.32 0.82 n/a n/a n/a n/a 

120 
hrs 

0.01 0.01 0.29 n/a n/a n/a 

144 
hrs 

4.305 0.01 0.13 0.99 n/a n/a 

168 
hrs 

1.505 0.01 0.07 0.99 0.99 n/a 

216 
hrs 

2.707 2.105 0.01 0.84 0.96 0.99 
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Figure 3.3. This interaction plot is showing the growth rates of the 11 isolates from the Atherley Narrows 

that had the highest solubilization Index after 216 hours.  

 

 The null hypothesis was also rejected for the Sparrow Lake isolates as the Friedman rank 

sums test determined that observation time also had a significant impact on the solubilization 

index of these isolates (χ2
6 =111.4, p =2.2x1016). Nemenyi’s rank sums test was used once again 

as the post-hoc test. Significant differences were once again seen between measurements 

taken at 48 hours and 120 hours (p=0.00351), 48 hours and 144 hours (p= 1.8x1005), 48 hours 

and 168 hours (p = 4.8x1010), 48 hours and 216 hours (p =6.8x10013), 72 hours and 120 hours (p 

=0.01611), 72 hours and 144 hours (p= 0.00014), 72 hours and 168 hours (p =8x1009), 72 hours 

and 216 hours (p = 1.6x1011), 96 hours and 168 hours (p= 0.00193), 96 hours and 216 hours (p = 

3.2x1005), and 120 hours and 216 hours (p=0.00218). Table 3.3 shows the Nemenyi’s rank sums 
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test results. Figure 3.4 shows these trends observed between eight representative isolates from 

Sparrow Lake.  

Figure 3.4. The interaction plot is showing the growth rates of eight representative halo forming isolates 

from Sparrow Lake. This plot allows for the comparison of how the isolates grew compared with each 

other over the same timeframe. Isolates 411 and 410 had the highest Solubilization Index after 216 

hours.  

 

 

Table 3.3 Pairwise comparisons of each timeframe tested on the Sparrow Lake isolates using Nemenyi 

rank sums test with q approximation for un-replicated blocked data. There was no p-value adjustment 

method. The significant results are mentioned in the text.  

 48 
Hrs 

72 
Hrs 

96 
Hrs 

120 
Hrs 

144 
Hrs 

168 
Hrs 

72 
Hrs 

0.99 n/a n/a n/a n/a n/a 

96 
Hrs 

0.07 0.21 n/a n/a n/a n/a 

120 
Hrs 

0.01 0.02 0.96 n/a n/a n/a 

144 
Hrs 

1.805 0.01 0.33 0.89 n/a n/a 

168 
Hrs 

4.810 8.009 0.01 0.05 0.57 n/a 

216 
Hrs 

6.813 1.611 3.205 0.01 0.11 0.97 
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3.3-2 Inorganic Phosphate Test 

At the end of the experiment, isolates such as 244, 196, 198, 243, and 149 all had lower 

concentrations compared to the control (Table 3.4). The difference in phosphate concentration 

between the control and the above isolates were 1.46, 1.12, 1.02, 0.49, and 0.36 mg/L 

respectively. Isolate 149 originated from Sparrow Lake site 2 in July, isolates 196 and 198 

originated from the water sample collected at Atherley Narrows site 1 in July and isolates 243 

and 244 originated from Atherley Narrows site 1 in August. All results from the insoluble 

phosphate test can be seen in Table 3.4.  

The alternative hypothesis was accepted for the one-way ANOVA conducted for the 

inorganic phosphate test. This indicates that significant differences were obtained between the 

total phosphorus concentrations among the sixty-one isolates that were tested (F26,54= 4.421, 

p=2.02x106). As the data met the assumptions of normality (A= 0.44548, p= 0.2764) and 

homogeneity of variance (F26,54=0.4627, p=0.9826), this analysis was accepted as being 

statistically significant (Figure 3.5, Table 3.5).    

Table 3.4. Phosphate concentrations (mg/L) for the experimental control and 60 isolates that were 

tested are expressed in this chart. The average total phosphorus concentration with standard deviation 

was used to determine the differences in concentrations between the sterile control and the isolate. NR 

was used to indicate which isolates showed no reduction in the phosphate concentration after the 

experiment. 

Isolate 
Number 

Avg PO43- SD Diff from 
Control 

Control 1.47 0.21 
 

49 1.33 0.28 -0.13 

51 NR  
 

55 1.41 0.09 -0.06 

57 NR  
 

59 1.41 0.23 -0.25 

75 NR  
 

86 1.39 0.08 -0.08 

93 1.39 0.07 -0.07 

121 1.45 0.26 -0.02 

123 1.24 0.05 -0.23 

124 NR  
 

126 1.21 0.36 -0.26 
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129 NR  
 

149 1.11 0.06 -0.36 

160 NR  
 

189 1.31 0.26 -0.15 

191 NR  
 

196 0.35 0.41 -1.12 

198 0.45 0.31 -1.02 

216 1.29 0.36 -0.17 

217 1.46 0.25 -0.01 

219 NR  
 

220 NR  
 

243 0.99 0.19 -0.48 

244 0.01 0 -1.46 

250 1.17 0.07 -0.30 

255 1.30 0.14 -0.17 

256 1.25 0.14 -0.22 

277 1.33 0.06 -0.14 

283 NR  
 

285 1.33 0.29 -0.14 

287 1.31 0.18 -0.17 

289 1.40 0.24 -0.07 

302 NR  
 

304 NR  
 

305 NR  
 

307 NR  
 

312 NR  
 

332 NR  
 

337 1.42 0.09 -0.05 

338 NR  
 

366 1.31 0.22 -0.15 

374 1.27 0.21 -0.18 

377 1.25 0.12 -0.22 

408 NR  
 

410 NR  
 

411 NR  
 

412 NR  
 

414 NR  
 

415 NR  
 

417 NR  
 

429 NR  
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443 NR  
 

452 NR  
 

464 1.11 0.14 -0.36 

466 NR  
 

470 NR  
 

475 1.13 0.19 -0.33 

483 1.21 0.18 -0.26 

486 1.31 0.05 -0.17 

  

Figure 3.5. The boxplot is illustrating the distribution of the total phosphorus concentrations that were 

measured for each of the isolates that had viable results. Note that the dark line in the center of each 

plot represents the median of the data while the upper and lower lines show the 95% confidence 

intervals. 

 

Table 3.5. Results of a one-way ANOVA on the reduction in total phosphorus concentrations between 26 

isolates when compared to control. This was measured to determine if the qualitative trends observed 

during the inorganic phosphate test had any statistical significance. 

 

 

 

Fisher’s Least Significant Difference (LSD) test was completed to determine precisely 

which available phosphate concentrations (mg/L)  of the sixty isolates were significantly 

 DF SS MS F Value P 
value 

Isolates 26 5.46 0.21 4.42 < 206 

Residuals 54 2.57 0.04   
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different from each other (Williams & Abdi, 2010). The Fisher’s least significant difference t-test 

showed the mean available phosphate concentration for all of the sixty isolates and had 

statistically significant results (α=0.05, DF error=54, t=2.01, LSD= 0.356). Isolates 198 and 196 

were statistically different from every other isolate. The detailed results are presented in 

Appendix III.    

The isolates were separated according to sampling location and analyzed separately to 

see if the lake that the isolate originated from had an impact on the results from the previous 

one-way ANOVA. Statistically significant changes between the remaining amount of available 

phosphate in the media were not observed between the six from Sparrow Lake that had a 

viable result to the inorganic phosphate test (F6,14=0.932, p=0.502).  The ANOVA results can be 

seen in Table 3. 6. The Sparrow Lake isolates did meet assumptions of normality (A= 0.57492, 

p=0.118) and homogeneity of variance (F6,14=0.5791, p=0.7412). A scatterplot illustrating how 

the available phosphate concentrations were distributed between these isolates is given in 

Figure (3.6).   

 

Table 3.6. Results of a one-way ANOVA analyzing the reduction of total phosphorus between the 

isolates from Sparrow Lake and the sterile control sample. 

 DF SS MS F 
value 

P 
value 

Isolates  6 0.2841 0.04735 0.932 0.502 

Residuals 14 0.7116 0.05083   
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Figure 3.6. Boxplot showing the amounts of total phosphorus that were observed in the Sparrow Lake 

Isolates that had viable results in the inorganic phosphate test.  

 

 Fisher’s least significant difference test was also used to compare the means of the 

Sparrow Lake isolates. The following test statistics were used to compare the means of 

available phosphate concentration between isolates: α=0.05, DFerror=14, t= 2.145, LSD=0.3948. 

None of these Sparrow Lake isolates had significantly different amounts of total phosphorus 

remaining in the Pikovskaya’s broth after the experiment concluded.      

Figure 3.7. Fisher’s Least Significant Difference test results for the isolates from Sparrow Lake. It is 

important to note that isolates that have the same letter are not significantly different. 

 

Significant results were also obtained for the one-way ANOVA that was completed on 

the 28 isolates that came from Lake Simcoe-Atherley Narrows (F19,40=5.69, p= 1.93x1006). The 

Atherley Narrows isolates also met the assumptions of normality (A=0.24914, p=0.7367) and 

homogeneity of variance (F19,40=0.4476, p=0.9688). Figure 3.8 is a boxplot illustrating how the 

available phosphate concentrations were distributed between the Atherley Narrows Isolates. 

Fisher’s Least Significant Difference test was once again used to compare the means of the 

Atherley Narrows isolates. The following test statistics were used to compare the means of 

available phosphate concentration between isolates: α=0.05, DFerror=40, t= 2.021075, 

LSD=0.3554178. While isolates 198 and 196 were not different from each other, they were 
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different from the rest of the tested isolates. Figure 3.9 depicts the Fisher’s LSD test results for 

the Atherley Narrows isolates. 

Figure 3.8. Boxplot of the Atherley Narrows isolates that had viable results in the inorganic phosphate 

test. This plot shows the variation in the amount of total phosphorus that was recorded for each of the 

isolates. Note that the dark line in the center of each plot represents the median of the data while the 

upper and lower lines show the 95% confidence intervals. 

Table 3.7. The results of a one-way ANOVA between the reduction of total phosphorus among the 

isolates from Atherley Narrows and the sterile control sample. 

 DF SS MS F Value P Value 
Isolates 19 5.016 0.26399 5.691 1.9306 

Residuals 40 1.856 0.04639   

 

Figure 3.9. Fisher’s Least Significant Difference test results for the isolates from Atherley Narrows. It is 

important to note that isolates that have the same letter are not significantly different. 
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3.4 Discussion 

3.4-1 Phosphate Solubilization Index Test 

The solubilization index results for this test appeared to be consistent with those found 

in the literature. Paul and Sinha (2017) tested the phosphate solubilizing capabilities of a known 

Pseudomonas sp. which had a solubilization index of 2.85 after 48 hours (Paul & Sinha, 2017). 

Sanjotha and Manawadi (2016) had five microbial isolates that had a solubilization index 

ranging from 2-2.63 after 15 days (360 hours) of incubation (Sanjotha & Manawadi, 2016). The 

halo zone formed on the Pikovskaya’s agar plates is because of the microorganism’s ability to 

produce phosphatase enzymes, or organic acid production (Paul & Sinha, 2017). This research 

helps to confirm that metabolic processes were occurring during the incubation process and 

the presence of a halo was not random error. 95 of the halo forming isolates that were tested 

had a solubilization index within the range of 2-2.96 while 19 isolates had a solubilization index 

that was higher than 3.0. Just under half (8) of these isolates with higher than normal 

solubilization index numbers came from Sparrow Lake site 1 in September. Correll (1998), 

found that repeated sub-culturing of phosphate solubilizing bacteria caused the microbes to 

lose their ability to solubilize inorganic phosphate. Correll’s findings could help explain why so 

many isolates collected in September had high solubilization index numbers. The isolates 

collected in September had been sub-cultured four times and were only stored for two months 

prior to this test.  

June had the lowest number of isolates that produced a halo during the solubilization 

index test between the Atherley Narrows and Sparrow lake sites (10 isolates) while July, August, 

and September all had 27 isolates that produced a halo during this test. This could have been 

due to the cooler temperatures that were observed in June, or as June is at the beginning of the 

growing season, it is possible the phosphate solubilizing bacteria were not as numerous as they 

would be during the peak of the growing season. This could have been part of the reason, so 

few bacterial isolates from June formed a visible halo (these isolates had been regrown and 

transferred onto slants in order to test all isolates at the same time).  This could also explain 

why only 98 isolates formed a halo out of the 395 isolates that were tested for the 

solubilization index test. As there was no previous literature comparing the growth of various 
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phosphate solubilizing bacteria collected from the same location throughout a growing season, 

the above speculations are based solely upon the results that were collected for this 

experiment. Typically, the phosphate solubilization index test is used as a preliminary test to 

ensure that the bacterial isolates moving forward have the capabilities to utilize inorganic 

phosphate in some capacity and this test is used along with others in order to characterize the 

bacterial isolates (Paul & Sinha, 2017; Sanjotha & Manawadi, 2016; Mehta & Nautiyal, 2001). 

Mehta and Nautiyal (2001) discuss the shortcomings of this particular test. They found 

that while the solubilization indices can be quantified, it is qualitative by nature in the sense 

that in order to determine that the bacterium is utilizing the inorganic phosphate a visual 

change in the media must be observed (the formation of a clear zone around the bacterial 

isolate). During their study, Mehta and Nautiyal (2001) discovered that many isolates that did 

not have a halo on the agar plates still showed reduced rates of phosphate in the broth assay. 

They suggest that microbes should be screened using a Pikovskaya’s or NBRIP broth assay to 

quantitatively identify the isolates that are the most efficient phosphate solubilizers. This was 

why it was accepted that the phosphate solubilization index test was used as a preliminary test 

to screen all of the isolates saved from the field study and the inorganic phosphate test was 

used to screen further the isolates that were collected from Atherley Narrows, Sparrow Lake, 

and Cook’s Bay.  

The results from this test further disprove the hypothesis that the majority of the 

phosphate solubilizing bacteria would be collected from the Atherley Narrows sites and as such 

may be able to use as an indicator species of phosphorus pollution. Instead, the opposite 

appears to be true. The largest number of these bacteria were not only observed in Sparrow 

Lake, but those bacteria were also able to utilize the most inorganic phosphorus within the 216-

hour timeframe.  

3.4-2 Inorganic Phosphate Test 

 While the one-way ANOVA indicated that there was significant variation between the 

phosphate concentrations remaining in the media that the viable isolates that were tested grew 

on, however, the Fisher’s least significant difference results indicated that only a few of the 



82 
 

isolates were significantly different from each other. This can be seen in Appendix III. Paul and 

Sinha (2007) found that their Pseudomonas spp. had 219 µg/ml of available phosphate in the 

broth after the isolate had been incubated for 96 hours. Islam et al. (2007) found that after 48 

hours Acinetobacter spp. had 387 µg/ml, Klebsiella spp had 395 µg/ml, Enterobacter spp. had 

206 µg/ml, Pseudomonas spp. had 132 µg/ml, Microbacterium spp had 97 µg/ml, and their 

unknown isolates ranged from 2-94 µg/ml concentrations of available phosphate. While Paul 

and Sinha (2007) did not explicitly state what their control concentration was, they also used 

Pikovskaya’s broth, which was the same media used for this study.   Meanwhile, the isolates 

that showed phosphate reduction capabilities for this study had available phosphate 

concentrations ranging from -1.464-0.003mg/L (-1464-3 µg/mL). This variability could be due to 

a few different scenarios as Rodríguez and Fraga (1999), discussed in their article which was 

about how phosphate solubilizing bacteria can help promote plant growth.   

“Changes in P concentration could be a consequence of P precipitation of organic 

metabolites and/or the formation of organo-P compounds with secreted organic 

acids, which are subsequently used as an energy or nutrient source, this event being 

repeated several times in the culture. An alternative explanation could be the 

difference in the rate of P release and uptake. When the rate of uptake is higher than 

that of solubilization, a decrease of P concentration in the medium could be observed, 

when the uptake rate decreases (for instance as a consequence of decreasing growth 

or entry into stationary phase), the P level in the medium increases again. More 

probably, a combination of two or more phenomena could be involved in this 

behaviour” (Rodríguez & Fraga, 1999). 

Rodríguez and Fraga conclude by saying that the explanations as mentioned earlier are the 

often-found limitations to studying the phosphate solubilizing capability using a liquid medium. 

Either of these actions may have affected the bacterial isolates that were tested and could 

potentially contribute to why so many of the isolates did not show any reduction capabilities. 

The results from the inorganic phosphate test were compared to the experimental time when 

halos started to form during the solubilization index test for each of the sixty isolates to see if 

the unexpected inorganic phosphate test results could hypothetically be due to the growth 

phase that the isolate may have been in during the end of this study. In Table 3.8 it can be seen 

that 17 of the 29 isolates that showed no phosphate reduction activity first began to show a 
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visible halo by the time that the isolate was 72 hours old during the solubilization index test. 

Isolates 196, 198, didn’t form a halo until after they had been growing for 96 hours, isolate 243 

only began to form a halo once it had reached 72 hours, and 283 did not form a halo until it had 

been incubating for 144 hours. Meanwhile, isolates 408 and 410 had their first recorded halo 

once they reached 72 hours and isolate 411 had a halo with a solubilization index of 2.22 when 

it was first measured at 48 hours.  

This theory is supported by the research of Mehta and Nautiyal (2001). They stated that 

the only reason a halo or clear zone would form on a Pikovskaya’s plate was due to the organic 

acids that contribute to the microorganism’s ability to solubilize inorganic phosphate. Mehta 

and Nautiyal (2001) used Bromophenol blue as a pH indicator. This allowed them to 

qualitatively see if organic acids had been released from the microorganisms to help them to 

interpret their results. However, this is a source of error for this study as the pH indicator was 

not included as part of the experiment.  

Table 3.8. This table compares the amount of available phosphate present in the supernatant of the 

Pikovskaya’s broth after 72 hours to the time that the first halo was recorded for the isolate during the 

phosphate solubilization index test. 

Isolate Available 
Phosphate(mg/L) 

Incubation 
time at 1st 
visible halo  

49 -0.14              48hrs 

51 NR            168hrs 

55 -0.06              72hrs 

57 NR              72hrs 

59 -0.25              48hrs 

75 NR              48hrs 

86 -0.08            120hrs 

93 -0.07              96hrs 

121 -0.02 96hrs 

123 -0.23 120hrs 

124 NR 144hrs 

126 -0.26 96hrs 

129 NR 96hrs 

149 -0.36 96hrs 
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160 NR 168hrs 

189 -0.15 96hrs 

191 NR 168hrs 

196 -1.12 96hrs 

198 -1.02 96hrs 

216 -0.17 96hrs 

217 -0.01 48hrs 

219 NR 48hrs 

220 NR 48hrs 

243 -0.48 72hrs 

244 -1.46 120hrs 

250 -0.30 72hrs 

255 -0.17 96hrs 

256 -0.22 96hrs 

277 -0.14 96hrs 

283 NR 144hrs 

285 -0.13 72hrs 

287 -0.17 72hrs 

289 -0.07 72hrs 

302 NR 48hrs 

304 NR 48hrs 

305 NR 48hrs 

307 NR 120hrs 

312 NR 96hrs 

332 NR 216hrs 

337 -0.05 96hrs 

338 NR 72hrs 

366 -0.16 72hrs 

374 -0.19 48hrs 

377 -0.212 72hrs 

408 NR 72hrs 

410 NR 72hrs 

411 NR 48hrs 

412 NR 96hrs 

414 NR 72hrs 

415 NR  72hrs 

417 NR 72hrs 

429 NR 72hrs 

443 NR 96hrs 

452 NR 72hrs 
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464 -0.36 120hrs 

466 NR 48hrs 

470 NR 120hrs 

475 -0.33 72hrs 

483 -0.26 120hrs 

486 -0.16 72hrs 

  

 It is interesting to note that most of the isolates that did not show any phosphate 

reduction capabilities in this experiment were collected from Sparrow Lake in September. 

Meanwhile, the isolates that did show phosphate reduction capabilities all originated from the 

Atherley Narrows sites, two of which were from July, with the third being from August. This 

could be due to how many times the isolate had been sub-cultured as Correll (1998) suggests, 

or it could potentially have something to do with seasonal variation. However, the latter claim 

is harder to justify as there are no previous studies completed on the seasonal variability of 

phosphate solubilizing bacteria within a benthic environment of a lotic system.  

If the inorganic phosphate tests were to be completed again, it should be completed by 

following the methods of Mehta and Nautiyal (2001) exactly. This would include having a larger 

amount of Pikovskaya’s broth to start with and by taking aliquots of the isolate sample once 

daily, similar to the timeframe of the solubilization index test, along with using a pH indicator 

and allowing the isolates to grow in the broth for an extended period. If the inorganic 

phosphate test included these small changes, further explanations as to why roughly half of the 

tested isolates did not show phosphate reduction abilities could potentially be made.  

Due to the variability observed in the inorganic phosphate test, five isolates from Lake 

Simcoe Atherley Narrows and Sparrow Lake were selected to be characterized and potentially 

identified. These isolates were selected based on having an average solubilization index of over 

2.0. The concentration of available phosphate at the end of the inorganic phosphate test 

became a selection factor for the selection of isolates for further study. As the reason for the 

variability seen in the phosphate solubilization test was unknown at the time, five the isolates 

with the highest amount of available phosphate and five the isolates with the lowest amount of 
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available phosphate were selected, as long as their solubilization index was over 2.  These 

isolates along with their test results and lake and month of origin can be seen in Table 3.9. 

Isolate Avg 
SI 

TP(µg/L) Lake Month 

126 4.22 NR SPL (Site 1) July 

149 2.66 -0.36 SPL (Site 2) July 

196 5.83 -1.12 LS (Site 1) July 

198 4.08 -1.02 LS (Site 1) July 

243 2.66 -0.48 LS (Site 1) August 

256 2.81 -0.22 LS (Site 1) August 

283 2.61 NR LS (Site 3) August 

408 3.86 NR SPL (Site 1) September 

410 3.96 NR SPL (Site 1) September 

411 4.71 NR SPL (Site 1) September 

Table 3.9. This table shows the ten isolates that were chosen for characterization studies based on their 

avg SI number. SPL is the short form assigned to the isolates that originated from Sparrow Lake while LS 

was the short form assigned to the isolates that were from Lake Simcoe-Atherley Narrows.  

3.5 Conclusion 

The phosphate solubilization index test and the inorganic phosphate test were found to 

be successful screening tests for the phosphate solubilizing bacteria that were collected from 

Lake Simcoe- Atherley Narrows, Lake Simcoe- Cook’s Bay, and Sparrow Lake. Of the 480 isolates 

that were saved and screened from the various sites on Lake Simcoe and Sparrow Lake, a total 

of 98 isolates had a clear zone develop during the solubilization index test.  More isolates that 

rated higher than 1 on the solubilization index came from the Sparrow Lake sites rather than 

from the Lake Simcoe sites, which disproved the hypothesis that phosphate solubilizing bacteria 

originating from Lake Simcoe would be more efficient at reducing inorganic phosphate. 

However, this result supports the conclusion found in chapter 2 which suggests that phosphate 

solubilizing bacteria are more prevalent when they originate from locations that could have had 

more inorganic phosphate in the sediment rather than from locations that had higher amounts 

of total phosphorus in the water column. 
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 General trends seen among the various isolates help confirm that time is a significant 

factor in relation to how high upon the solubilization index an isolate will end up. The present 

study showed that generally, the solubilization index of an isolate tended to grow larger the 

longer the isolate was incubated.  The inorganic phosphate test aided in further reducing the 

number of isolates by examining exactly how much inorganic phosphate was present in the 

broth media. This test found that differences in the amount of total phosphate remaining in the 

broth after the isolate had been growing for 72 hours did vary slightly between isolates. The 

results were variable between some of the isolates. A number of the isolates showed no 

phosphate reduction capabilities even though they produced halos during the phosphate 

solubilization index study.  

This study showed that the phosphate solubilizing bacteria collected were relatively 

slow-growing microorganisms. The solubilization index test showed great success as a method 

of screening through multiple isolates to determine which isolates were capable of utilizing 

inorganic phosphate and how quickly each isolate was capable of doing so. The inorganic 

phosphate test was not as conclusive however it was a relatively straightforward method for 

quantitatively determining how much inorganic phosphate was used by each isolate. As such, 

both of these tests provided useful information for preliminary testing of the collected 

phosphate solubilizing bacteria.  
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Chapter 4: Characterizing ten phosphate solubilizing bacterial 

isolates 
Chapter 4 Abstract 

In this study, phosphate solubilizing bacteria from freshwater environments are tested 

on their ability to solubilize inorganic phosphate. Few studies have been completed on 

characterizing the different strains of them. After both the solubilization index measurements 

and the inorganic phosphate solubilization tests, 10 isolates were chosen to be characterized 

based on their growth at various temperatures, pH concentrations, and inorganic phosphate 

concentrations. The results from the solubilization index test were compared with the results of 

the inorganic phosphate solubilization test in order to select 5 isolates that showed high 

phosphate reducing potential. Previous research indicates that phosphate solubilizing bacteria 

as a group would be more mesophilic as all of the isolates screened for this test thrived when 

they were incubated at 30° C (Sanjotha & Manawadi, 2016). The isolates also grew best when 

they were in media that varied from neutral to only slightly alkaline pH levels although the 

isolates grew when they were in more acidic media as well. The isolates also grew best when 

only 5g/L of tri-calcium phosphate was present in the media. A discriminant function analysis 

was completed on the results of these tests, and the overall model indicated that ultimately 

these isolates were not statistically significantly different from each other. However, the 

discriminant function analysis showed that isolates 126, 283, and 256 were different from the 

others. A simple gram stain confirmed that these isolates were different from the other seven. 

Isolate 126 originated from Sparrow Lake site 1 in July. Isolate 283 originated from Atherley 

Narrows site 3 in August, and isolate 256 originated from Atherley Narrows site 1, also in 

August. 

 

4.1 Introduction  

Phosphate solubilizing bacteria have been commonly studied in terrestrial 

environments, with an intent to use them in sustainable agriculture as a potential bio-fertilizer 

(Correll, 1998; Kucey, 1983;  Mohammadi, 2012;  Rodríguez & Fraga, 1999). However, the 

impact they may pose on aquatic freshwater systems has been understudied until quite 
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recently (Sanjotha G & Sudheer Manawadi, 2016; Paul & Sinha, 2017; Pérez, et al., 2007). Of the 

few studies that have isolated and characterized phosphate solubilizing bacteria, very few 

characterized these isolates in varying growing conditions that these isolates thrive in.  This 

chapter aims to further classify ten bacterial isolates from Sparrow Lake and Lake Simcoe-

Atherley Narrows that were deemed to be the strains that utilize inorganic phosphate most 

efficiently. This selection for these ten isolates was made considering the solubilization index 

result for each of the isolates as well as from the inorganic phosphate test results. These tests 

were compared in order for these ten isolates to be selected. Some of the selected isolates did 

not show any phosphate reduction in the inorganic phosphate test and were characterized 

because they had promising results when tested on Pikovskaya’s agar plates. The primary 

objective of this study was to characterize the phosphate solubilizing bacteria based their ability 

to grow at various temperatures, pH concentrations, and various tri-calcium phosphate 

concentrations. One of the secondary objectives of this study was to determine if it could be 

explained why some of the isolates did not show any phosphate reduction during the inorganic 

phosphate test, which is why the 10 isolates were grown in media that had varying 

concentrations of inorganic phosphate.  

4.2 Materials and Methods 

4.2-1 Temperature Range Test 

 The ten isolates were grown at various temperatures to try to determine at which 

temperature these bacteria would thrive the best. As previous studies reported (Pérez et al., 

2007; Paul & Sinha, 2017) phosphate solubilizing bacteria are known to be mesophilic in 

terrestrial environments (Mohammadi, 2012), and it was hypothesized that these isolates 

would grow best around 24°C.  

Each isolate was plated on the center of a Pikovskaya’s agar plate, once again a 6mm 

diameter circle was drawn on the center of each plate in order to ensure the cells were only 

transferred into the desired location. The isolates in triplicate were incubated in controlled 

environments at the following temperatures: 4°C, 15°C, 24°C, 30°C, 37°C, and 47°C. The isolates 

were left at these temperatures for seven days, and after this time Edi-Premono, et al. (1996) 

formula was used to calculate the solubilization index of each isolate.  
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4.2-2 pH Range Test 

 Mehta and Nautiyal, (2001) used pH as an indicator for an isolate’s ability to solubilize 

inorganic phosphate. Thus, pH was used as another way to classify the collected isolates. 1M 

NaOH and 1M HCl were used to change the pH of the Pikovskaya’s agar before the medium 

being sterilized in the autoclave. The VWR SympHony SP70P probe was calibrated and used to 

read the pH concentrations of the liquid agar. Before the addition of any NaOH or HCl, the pH 

of the Pikovskaya’s agar was 6.66. No more than 0.5ml of either the HCL or NaOH was added to 

the agar at any time, and slowly brought to one of the following concentrations: 3, 5, 7, 9, 11, 

and 13. After each of the 1L agar flasks at the various concentrations had been autoclaved, they 

were poured into plates.  

 Each isolate had plated in triplicate on individual Pikovskaya’s agar plates at each pH 

concentration and were all incubated at 30°C (±2°C, the temperature was selected after 

studying the growth rate at various temperatures as described above) for seven days. After the 

seven days had passed, the  (Edi-Premono et al., 1996) formula was used to calculate the 

solubilization index for each of the isolates. 

4.2-3 Calcium Phosphate Range Test  

 The top isolates were also tested on their ability to solubilize inorganic phosphate at 

various concentrations. This test was completed due to the unexpected results from the 

inorganic phosphate test (Chapter 3). As some of the isolates appeared better at solubilizing 

inorganic phosphate within a short amount of time, this test was completed to see how much 

each of the isolates could solubilize Calcium phosphate within seven days. Pikovskaya’s agar has 

a Ca3(PO4)2 concentration of 5g/L, this was used as the mid-point in the calcium phosphate 

range. Nutrient agar (peptones from meat 5g/L, meat extract 3g/L, and agar 12g/L) with 

calcium phosphate tribasic powder was used to create the low concentrations of this range 

while additional calcium phosphate tribasic powder was added to the Pikovskaya’s agar to 

increase the concentration of calcium phosphate in this range. This allowed for the creation of a 

range of plates that had 0, 3, 5, 8, 10, and 20g of calcium phosphate per litre.  
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Each isolate had three replicates plated on individual Pikovskaya’s agar plates at each 

calcium phosphate concentration and were all incubated at 30°C (±2°C) for seven days. After 

the seven days had passed, the  Edi-Premono, et al. (1996) formula was used to calculate the 

solubilization index for each of the isolates. 

4.2-4 Gram Stain  

 The ten isolates were Gram stained following the procedure set out by Claus ( 1992) 

using BD BBL Gram crystal violet (crystal violet 3g/L, isopropanol 50ml/L, ethanol/methanol, 

50ml/L, distilled water, 900ml/L), stabilized Gram iodine(iodine crystals, 3.3g/L, potassium 

iodide 6.6 g/L, and distilled water, 1L), Gram decolorizer (acetone, 250ml/L, and isopropanol 

750ml/L), and Gram safranin (safranin O powder 4g/L, ethanol/methanol 200ml/L, and distilled 

water 800ml/L). 

 The ten bacterial isolates were streaked onto new Pikovskaya’s agar plates and grown 

for 24 hours at 30°C (±2°C). A few cells from each isolate were smeared onto individual sterile 

glass slides and fixed in place by being passed over the flame from a Bunsen burner three times 

(Claus, 1992). After the cells had cooled, they were flooded with Gram crystal violet for 60 

seconds then rinsed with water. Next, the stained isolate was flooded with stabilized Gram 

iodine for 60 seconds then rinsed. Immediately following this, the isolate was flooded with 

Gram decolourizer which was only allowed to sit on the isolate for 10 seconds (Claus, 1992). 

Finally, the isolate was flooded with Gram safranin for 60 seconds and then rinsed. After the 

slides had air dried, they were placed under a microscope and identified as either Gram-

positive or negative (Claus, 1992).    

4.2-5 Statistical Analysis 

 IBM SPSS statistics version 20 was used to complete a discriminant function analysis to 

determine which of the ten tested isolates are statistically different from each other based on 

how they grew at the various temperatures, pH, and calcium phosphate concentrations (Manly, 

et al., 2002). A Canonical analysis was completed as part of the discriminant function analysis so 

that the temperature, pH, and the calcium phosphate tests would not have to be combined into 

additional groups (Manly, et al., 2002). The null hypothesis that was tested was that there 
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would be no discriminating differences between the ten tested isolates, while the alternative 

hypothesis stated that there would be significant differences between some of the isolates 

based on the different growth quality parameters that were tested.  

 A Box’s M test was completed to determine if the covariance matrices between the 

results for the temperature, pH, and calcium phosphate tests were homogeneous 

(Lachenbruch, et al.,  1973). The alternative hypothesis that the observed covariance matrices 

for the variables would not be equal across all groups was accepted (Box’s M = 210.589, F48, 

34118= 4.070, p<0.01). Transforming the data did not resolve this issue.  However, due to the 

sensitivity of the Box’s M test the discriminant function analysis was still used for the following 

analysis as the deviations from normality and homogeneity of variance were accounted for by 

using the Pillai’s Trace statistic in place of the Wilks’ Lambda statistic (Lachenbruch, et al.,  

1973).  

4.3 Results 

4.3-1 Temperature Range Test 

 Isolate 196 had the largest solubilization index number after growing at 4°C for seven 

days (SI 2.849, SD ±0.2855), while isolates 283, and 126 did not grow at all at this temperature. 

Isolate 196 also had the largest solubilization index after growing at 15°C for seven days (SI 

2.944, SD ±0.2795), and while colonies grew for isolates 243, 411, and 408, these isolates did 

not form a halo during the seven-day incubation period and isolate 283 did not grow at all. 

Isolate 411 had the largest solubilization index after growing at 24°C for seven days (SI 3.293, 

SD ±0.22) and isolate with the lowest solubilization index was isolate 410 (SI 2.40, SD±0.229). 

After the isolates had been incubated at 30°C for seven days, isolate 196 had the highest 

solubilization index (SI 4.13, SD±0.367), and isolate 126 had the smallest solubilization index (SI 

0.757, SD±1.312). Isolate 198 had the highest solubilization index after the isolates had been 

incubated at 37°C for seven days (SI4.149, SD 0.4338), while isolates 283 and 126 were tied 

with the lowest solubilization index numbers (SI 0.333, SD ±0.577 for each). Finally, isolate 411 

had the highest solubilization index number after the isolates had been incubated for seven 

days at 47°C (SI 1.807, SD 0.699), while isolates 198 and 408 did not grow at this temperature.  
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Figure 4.1. The solubilization indices (SI) for the 10 isolates that grew at 4°C for 

seven days. This graph shows the solubilization index number for each isolate 

with standard deviations.  
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Figure 4.2. The solubilization indices (SI) for the 10 isolates that grew at 15°C for seven 

days. This graph shows the solubilization index number for each isolate with standard 

deviations. 
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Figure 4.3. The solubilization indices (SI) for the 10 isolates that grew at 24°C for 

seven days. This graph shows the solubilization index number for each isolate 

with standard deviations. 

 

Figure 4.4. The solubilization indices (SI) for the 10 isolates that grew at 30°C for 

seven days. This graph shows the solubilization index number for each isolate 

with standard deviations. 
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Figure 4.6. The solubilization indices (SI) for the 10 isolates that grew at 47°C for seven days. This graph 

shows the solubilization index number for each isolate with standard deviations. 

Figure 4.5. The solubilization indices (SI) for the 10 isolates that grew at 37°C 

for seven days. This graph shows the solubilization index number for each 

isolate with standard deviations. 
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4.3-2 pH Range Test 

 Isolate 198 had the largest solubilization index when grown on Pikovskaya’s medium 

that had a pH of 3 for seven days (SI 3.658, SD ±0.115), while isolate 256 had the lowest 

solubilization index at the same pH (SI 1.70, ±SD 0.606). When the isolates grew on Pikovskaya’s 

agar plates that were at a pH of 5 for seven days isolate 196 had the largest solubilization index 

(SI 4, SD ±1.309), and isolate 256 had the lowest solubilization index (SI 1.965, SD ±0.511). 

There was a much smaller range in numbers when the isolates were grown on the media that 

was at a pH of 7. Isolate 198 had the largest solubilization index (4.05, SD ±0.354) and isolate 

283 had the smallest solubilization index (2.09, SD ±0.046).  The isolates all grew well when the 

media became slightly basic as well. When the media’s pH was at 9 isolate 196 had the largest 

SI number with an index number of 4.4 (SD ±0.27) and isolate 283 had the lowest index number 

which was 2.23 (SD ±0.166). When the isolates were grown at a pH of 11 isolate 196 still had 

the largest index number (4.05, SD ±0.62), while isolate 283 remained with the smallest 

solubilization index (2.08, SD± 0.021).  When the isolates were grown at a pH of 13, only 

isolates 410, 408, 283, 126, 149, and 256 had colonies that grew, but none of the isolates 

developed a visible halo during the seven days that they were grown.  The tables below show 

how each of the isolates grew at the previously mentioned pH ranges.  
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Figure 4.7. The solubilization indices (SI) for the 10 isolates that were grown 

at a pH of 3. This graph shows the solubilization index number for each 

isolate with standard deviations. 
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Figure 4.8. The solubilization indices (SI) for the 10 isolates that were grown at a pH of 

5. This graph shows the solubilization index number for each isolate with standard 

deviations. 
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Figure 4.9. The solubilization indices (SI) for the 10 isolates that were grown at a pH of 

7. This graph shows the solubilization index number for each isolate with standard 

deviations. 
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Figure 4.10. The solubilization indices (SI) for the 10 isolates that were grown at a pH of 

9. This graph shows the solubilization index number for each isolate with standard 

deviations. 
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Figure 4.11. The solubilization indices (SI) for the 10 isolates that were grown at a pH of 

11. This graph shows the solubilization index number for each isolate with standard 

deviations. 
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Figure 4.12. The solubilization indices (SI) for the 10 isolates that were grown at a pH of 

13. This graph shows the solubilization index number for each isolate with standard 

deviations. 
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4.3-3 Calcium Phosphate Range Test 

 All of the isolates grew on the nutrient agar that did not have any tri-calcium phosphate 

added to it, but none of the isolates formed a visible halo. The same was true to the isolates 

that were grown on the nutrient agar that had 3g/L of calcium phosphate added to it except 

isolates 196 and 126 did not grow. The isolates grew and formed halos on the Pikovskaya’s agar 

which had 5g/L of tri-calcium phosphate. Isolate 196 had the largest solubilization index 

number (SI 5.16, SD ±1.22), while isolate 256 had the lowest solubilization index number (2.15, 

SD ±0.036). Only six of the isolates formed halos when there was 8g/L of calcium phosphate 

within the media. Isolate 198 had the largest solubilization index number (4.09, SD ±0.27), while 

isolates 243, 408, and 283 did not form halos at all. When there was 10g/L of tri-calcium 

phosphate in the media, isolate 198 still had the largest solubilization index number (4.18, SD 

±0.868) while isolates 410, 243, 408, 283, and 256 did not form visible halos during the seven 

days that the isolates were incubated. When 20g/L of tri-calcium phosphate was present only 

isolates 198 and 196 formed halos and had a solubilization index number, and they were 2.61 

(SD ±0.26), and 3.08 (SD ±0.22) respectively.  Isolates 410, 408, and 126 did not grow during the 

incubation period, and the others all had colonies that had an average diameter less than 

10mm. The tables below show how these ten isolates grew at each calcium phosphate 

concentration.  
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Figure 4.13. The solubilization indices (SI) for the 10 isolates that were grown 

with 0g/L of tri-calcium phosphate. This graph shows the solubilization index 

number for each isolate with standard deviations. 
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Figure 4.14. The solubilization indices (SI) for the 10 isolates that were grown 

with 3g/L of tri-calcium phosphate. This graph shows the solubilization index 

number for each isolate with standard deviations. 
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Figure 4.15. The solubilization indices (SI) for the 10 isolates that were grown 

with 5g/L of tri-calcium phosphate. This graph shows the solubilization index 

number for each isolate with standard deviations. 
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Figure 4.16. The solubilization indices (SI) for the 10 isolates that were grown 

with 8g/L of tri-calcium phosphate. This graph shows the solubilization index 

number for each isolate with standard deviations. 
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Figure 4.17. The solubilization indices (SI) for the 10 isolates that were grown 

with 10g/L of tri-calcium phosphate. This graph shows the solubilization index 

number for each isolate with standard deviations. 

 

Figure 4.18. The solubilization indices (SI) for the 10 isolates that were grown 

with 20g/L of tri-calcium phosphate. This graph shows the solubilization index 

number for each isolate with standard deviations. 
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4.3-4 Gram Stain  

 Isolate 126 had Gram-negative coccus cells. Isolates 149, 196, 198, 243, 408, 410, and 

411 all had Gram-positive rod-shaped cells. Isolate 283 had Gram-positive coccus cells and 

isolate 256 had Gram-negative rod-shaped cells. Table 4.19 summarizes these results. 

                              Table 4.19 Gram stain results for the 10 isolates that were tested. 

Isolate Gram 
Stain 

Morphology 

126 negative cocci 

149 positive rod 

196 positive rod 

198 positive rod 

243 positive rod 

283 positive cocci 

256 negative rod 

408 positive rod 

410 positive rod 

411 positive rod 

 

4.3-5 Statistical Analysis 

  A significant Pillai’s Trace statistic was observed (Pillai’s trace= 0.856, F27,510=7.542, 

p<0.001, observed power= 1.0) indicating that the null hypothesis that the isolates are not 

significantly different from each other should be accepted. However, the linear discriminant 

function analysis results were still used to analyze the growing conditions data further to see if 

some of the isolates may be significantly different. The three-function model that was used 

showed that functions 1 through 3 were significant (χ2= 194.49, p<0.001), along with functions 

2 through 3 (χ2= 62.57, p<0.001). Function 1 (discriminated between the temperature range 

test results and the combined pH and inorganic phosphate test results) accounted for 73.6% of 

the entire variance within the model; function 2 (discriminated between the pH and inorganic 

phosphate test results) accounted for 21.7% of the variance and function 3 (solely the inorganic 

phosphate test results) accounted for 4.7% of the variance within the model. The functions had 

canonical correlations of 0.731, 0.503, and 0.261 respectively.  Since 95.3% of the total variance 

was accounted for by the first two functions, these were the functions used to create the 
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canonical plot that is seen in Figure 4.1. Table 4.2 shows the correlations between the 

discriminating variables and the standardized discriminant functions while Table 4.3 shows the 

Fisher’s linear discriminant function coefficient for each isolate with each of the discriminating 

variables. Ultimately, the results from this test support the null hypothesis that most of these 

isolates are not significantly different from each other. However, isolates 126, 283, and 256 had 

negative Fisher’s linear discriminant function coefficients with one or more of the 

discriminating variables; this indicates that these three isolates are significantly different from 

the other isolates. These trends can be seen in Figure 4.19 as the group centroids for isolates 

126, 283, and 256 are separated from the remainder of the group centroids. 

Table 4.2. Pooled within-group correlations between the discriminating variables (Temperature, pH, and 

inorganic phosphate) and the standardized canonical discriminant functions. The variables were ordered 

by size of correlation within each function. 

 1 2 3 

Temp 0.925 -0.067 0.373 

Phosphate 0.466 0.882 -0.075 

pH 0.314 0.148 0.938 

 

 

Table 4.3. Fisher’s linear discriminant functions were used to classify the function coefficient of each 

isolate for each test that was completed. These are the numerical function coefficients for each of the 

10 isolates and were the values used to determine which isolates were statistically different from each 

other and during which tests these differences were observed. It can be seen that Isolate 126 was 

shown to have negative coefficients for both the phosphate and temperature tests while isolates 256 

and 283 both had negative coefficients for the temperature range test. 

Isolate 126 149 196 198 243 256 283 408 410 411 

pH 2.876 1.414 2.294 1.971 1.432 2.915 2.826 2.101 2.099 1.545 

Phosphate -0.157 0.924 1.733 1.629 0.447 1.361 1.145 0.397 0.659 0.828 

Temp. -1.177 0.684 0.554 0.807 0.799 -2.433 -2.186 0.298 0.362 1.046 
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Figure 4.19. Canonical discriminant function plot to differentiate the ten isolates that were classified as 

being the most effective at utilizing inorganic phosphate. This plot was based on a linear discriminant 

function analysis of the isolate’s responses the growth conditions that were tested. There are 18 

replicates for each isolate indicated by the colour coded circles. The group centroids are indicated by the 

solid squares that are labelled with the isolate number.  

  Another discriminant function analysis was completed. This time, the lake and site that 

these 10 isolates originated from were pooled together and used as the independent variable. 

The solubilization index results from the inorganic phosphate range test were removed from 

the model as they accounted for the least amount of variance from the original model. A 

significant Box’s M result was observed (Box’s M= 118.37, F18, 13455=6.23, p<0.001) which 

indicates that the covariance matrices were not homogenic, however once again, due to the 

robustness of the discriminant function analysis the results were used as is. This model showed 

that functions 1 through 3 were significant (χ2= 58.57, p<0.001), along with functions 2 through 

3 (χ2= 25.32, p<0.001), but function 3 was not (χ2= 3.85, p=0.05). In this model, Function 1 

(discriminated between the temperature test results and the combined pH test and inorganic 

phosphate test results ) accounted for 57.8% of the total variance within the model, function 2 

(discriminated between the pH range test results and the inorganic phosphate test results) 

accounted for 36.1% of the variance within the model,  while function 3 (solely the inorganic 

phosphate test results) accounted for 6.2% of the variance within the model. The functions had 

canonical correlations of 0.415, 0.339, and 0.147 respectively. Since Functions 1 and 2 

accounted for 93.8% of the variance within the entire model, they were used to create the axes 
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for the canonical plot seen in Figure 4.20. Table 4.4 shows the correlations between the 

discriminating variables and the standardized discriminant functions while Table 4.5 shows the 

Fisher’s linear discriminant function coefficient for each site with each of the discriminating 

variables. Ultimately the results for this analysis show that the location that the isolates 

originated from did impact how the isolates grew during the temperature, pH, and inorganic 

phosphate range tests.  

Table 4.4. Pooled within-group correlations between the discriminating variables (Temperature, pH, and 

inorganic phosphate) and the standardized canonical discriminant functions. The variables were ordered 

by size of correlation within each function. 

 1 2 3 

pH -0.37 -0.25 1.22 

Temperature 1.33 0.19 -0.44 

 Phosphate  -0.62 0.96 0.007 

Table 4.5. Fisher’s linear discriminant functions were used to classify the function coefficient of each site 

that each of the isolates tested originated. These are the numerical function coefficients for each of the 

sites and were the values used to determine which sites were statistically different from each other as 

we all as during which tests these differences were observed. For this table LS 1= Lake Simcoe (Atherley 

Narrows) Site 1, LS 3= Lake Simcoe (Atherley Narrows) site 3, SPL 1= Sparrow Lake site 1, and SPL 2= 

Sparrow Lake site 2. These are the same site locations that were used in Chapter 2. It can be seen in this 

table that temperature consistently had negative results with all of the sites except for Sparrow Lake site 

2. 

Site LS 1 LS 3 SPL 1 SPL 2 

pH 2.26 2.62 2.26 1.61 

Temperature -0.58 -1.82 -0.31 0.005 

phosphate 0.97 0.98 0.21 0.64 
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Figure 4.20. Canonical discriminant function plot to differentiate the different sites that the ten isolates 

that were classified as being the most effective at utilizing inorganic phosphate originated from. This 

plot was based on a linear discriminant function analysis of the isolate’s responses the growth 

conditions that were tested. There are 18 replicates for each isolate indicated by the colour coded 

circles. The group centroids are indicated by the solid squares that are labelled with the isolate number. 

4.4 Discussion 

 The results for the temperature range test appeared to be consistent with those found 

in the previous studies. Studies completed by Mohammadi (2012), Sanjotha and Manawadi 

(2016), and Paul and Sinha (2017), all indicate that phosphate solubilizing bacterial isolates 

should be grown ideally at 30°C. The highest solubilization index observed was when one of the 

isolates had grown at 37°C (isolate 198, SI= 4.15 SD ±0.433). However, when the isolates were 

grown at 30°C for seven days, six of the ten isolates had a solubilization index over 3.0, this is 

consistent with the results of the other studies. A study completed by Johri, et al. (1999), tested 

the ability of 856 phosphate solubilizing bacterial isolates from a root-free terrestrial 

environment to grow under conditions of varying temperature, pH and salts. The study 
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completed by Johri et al. (1999) also found that the phosphate solubilizing bacteria produced 

the largest halos when the isolates were grown at 30°C, once again confirming that the results 

obtained in this study were similar to those found in previous research.  

 The isolates grew well at every pH concentration except for when the agar was at pH 13 

before autoclaving. All of the isolates had a solubilization index over 2.0 when they grew on 

Pikovskaya’s agar plates that had pH concentrations of 7 and 9. This result was consistent with 

the results of studies completed by Mohammadi (2012), and  Sanjotha and Manawadi (2016). 

Both of those studies found that their phosphate solubilizing bacterial isolates grew best when 

they were grown on agar that was neutral or slightly alkaline pH. The study completed by Johri 

et al. (1999) also found that the phosphate solubilizing bacterial isolates that they tested grew 

best when the pH of the media was slightly alkaline.  

 The isolates had the most success growing on the regular Pikovskaya’s agar which had 

5g/L of tricalcium phosphate. Once again, this was consistent with the methods and results 

obtained by other studies (Mohammadi, 2012; Sanjotha and Manawadi, 2016; Paul and Sinha, 

2017). Typically, PSB isolates are not tested on media that contained anything other than 5g/L 

of tricalcium phosphate (Ca3(PO4)2) (Johri, et al., 1999; Mohammadi, 2012; Sanjotha and 

Manawadi, 2016; Paul and Sinha, 2017). The results of the study completed by Johri, et al. 

(1999) suggest that the addition of calcium salts compliments the solubilization efficiency of the 

phosphate solubilizing isolates that were isolated from the root-free soil.  

  Discriminant function analyses have been used in previous studies to confirm that 

differences between groups of microorganisms are significantly different from each other  

(Farr, et al., 1989; Jarvis & Goodacre, 2004; Leung, et al., 2004). The results from this study 

failed to do so as the bacterial isolates that were tested were too similar. That being said, the 

results from this discriminant function analysis were consistent with the results obtained from 

the Gram stain results that were completed on these ten isolates. Isolates 126, 283, and 256 

were proved to be different from the other isolates which were again indicated by the different 

results that were obtained by these isolates when they were Gram stained.  Isolate 283 was the 

only isolate that originated from Lake Simcoe (Atherley Narrows) site 3, and this bacterial 



110 
 

isolate was isolated from the sediment in August. Isolate 126 was collected from Sparrow Lake 

site 1 in July and isolate 256 was collected from Lake Simcoe (Atherley Narrows) site 1 in 

August. The second discriminant function analysis completed showed that the site that these 10 

isolates originated from did not provide any additional variation as to how the isolates 

performed during the temperature, pH, and inorganic phosphate range tests.  

The low variation in phosphate solubilizing bacteria could be due to a few factors. 

Firstly, as Correll (1998) demonstrated in his study, phosphate solubilizing bacteria tend to lose 

their phosphate solubilizing activity after repeated sub-culturing, with only a few exceptions. As 

the isolates were isolated from the sediment once and repeatedly sub-cultured since that time, 

it could be that only specific strains of phosphate solubilizing bacteria maintain phosphate 

solubilizing activity over time, and that is why seven out of the ten isolates that were tested 

here are not statistically different from each other, are all rod-shaped and were Gram-positive 

bacteria. Also, Sanjotha and Manawadi (2016) found that of the five-phosphate solubilizing 

bacterial isolates that they got genetically sequenced were all rod-shaped, and three of the five 

were Gram-negative. Paul and Sinha (2017) found that most of their bacterial isolates were 

Gram-negative rod-shaped bacteria as well. Meanwhile, in  Pal's (1998) study, it was found that 

there were more Gram-positive phosphate solubilizing bacteria than Gram-negative, but once 

again, the majority of the isolates were rod-shaped. Gaind and Gaur (1991), also tested ten 

phosphate solubilizing bacterial isolates in their study and found that 8 of the 10 isolates were 

Gram-positive. However, their study was a little more varied as only four of the ten isolates 

were rod-shaped. That being said, this study was completed on terrestrial phosphate 

solubilizing bacteria. These studies all indicate that while there may be some variation as to the 

Gram staining result of the phosphate solubilizing bacteria, it is quite common to find rod-

shaped isolates. This could be another factor explaining why the majority of these isolates were 

not statistically different from each other.  

4.5 Conclusion 

 The ten phosphate solubilizing bacterial isolates that were previously shown to be the 

most effective at solubilizing inorganic phosphate were characterized based on their ability to 
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grow at various temperatures, pH concentrations, tri-calcium phosphate concentrations, Gram 

stain, and cell morphology. The results observed by these isolates supported the work done by 

previous research.  The previous research indicates that phosphate solubilizing bacteria as a 

group would be more mesophilic as all of the isolates screened for this test thrived when they 

were incubated at 30° C (Sanjotha & Manawadi, 2016). The isolates also grew best when they 

were in media that varied from neutral to only slightly alkaline pH levels although the isolates 

did grow when they were in more acidic media as well. The isolates also grew best when only 

5g/L of tri-calcium phosphate was present in the media.  

 The discriminant function analysis supported the null hypothesis that the ten isolates 

were not statistically different from each other. Analyzing the 10 isolates with respect to their 

location of origin did not change this result. However, trends that were seen within the 

discriminant function analysis of the isolates and the Gram staining test showed that isolates 

126, 283, and 256 were the only three that were significantly different from the others. These 

isolates originated from Sparrow Lake site 1 in July, Lake Simcoe (Atherley Narrows) site 3 in 

August, and Lake Simcoe (Atherley Narrows) site 1 in August respectively. The other seven 

isolates were all Gram-positive, rods, and all had positive function coefficients(Table 4.3) with 

the temperature, pH, and calcium phosphate tests. These tests were good preliminary tests 

that could be used to classify phosphate solubilizing bacteria. In future work, other factors such 

as the time spent allowing the isolates to grow, the concentration of salts, and continued sub-

culturing of the phosphate solubilizing bacteria may be factors of interest that could be used 

along with other biochemical tests to classify the phosphate solubilizing bacteria.  
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Chapter 5: General Discussion and Conclusions. 

 Eutrophication and its associated consequences are some of the most detrimental 

factors that impact the health of freshwater lakes (Dodds & Whiles, 2010). Internal phosphorus 

loading has been identified as being an area of particular concern, especially on lakes where 

total phosphorus has been added to the system for decades, a local example of a lake like this is 

Lake Simcoe (Winter et al., 2007; Nürnberg et al., 2013; Palmer, et al. 2011).  Lake Simcoe is 

both an ecologically and economically important lake in central southern Ontario, and as such, 

many measures have been put in place to try to limit the amount of phosphorus that enters the 

lake. However, these strategies on Lake Simcoe fail to address how to mitigate the effects that 

internal phosphorus loading has on the Lake. This could be due to the lack of research that has 

been done on internal phosphorus loading. Phosphate solubilizing bacteria are known as a 

group of bacteria that contribute to internal phosphorus loading due to various metabolic 

processes (Ponmurugan & Gopi, 2006).  

 In this study, phosphate solubilizing bacteria were studied in an attempt to understand 

if these microorganisms could potentially be used as an indicator of phosphorus pollution. This 

study was completed on the northern part of Lake Simcoe to understand the microorganisms 

that potentially contribute to internal phosphorus loading in this lake, as well as to classify 

phosphate solubilizing bacteria in this freshwater system.  

In order to understand where phosphate solubilizing bacteria would be most abundantly 

present, three sites were selected along the northwestern shore of Lake Simcoe, and three sites 

along the shoreline of Sparrow Lake. The three sites along Lake Simcoe were within the City of 

Orillia, and as such, it was thought that these sites would be under lots of anthropogenic stress 

due to the presence of wastewater treatment plants, the presence of anthropogenic structures 

(i.e., waterfront housing and infrastructure), and fishing and water sporting activities. While 

there was some evidence of anthropogenic impact at the Sparrow Lake sites, one of the sites 

was along the edge of a protected wetland, and it was thought that these sites are far less 

impacted than their Lake Simcoe counterparts. The sampling was carried out four times to see 
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if the abundances of the phosphate solubilizing bacteria would change with the season. 

Representative bacterial isolates were tested in the lab to assess their abilities to solubilize 

inorganic phosphate on solid agar and in a liquid broth. The isolates that appeared to utilize 

inorganic phosphate were characterized on their ability to grow at various temperatures, pH 

levels, and the amount of calcium phosphate present.  

The objectives of this study were to isolate and characterize the phosphate solubilizing 

bacteria that were present in the sediment and water column in the nearshore sites on Lake 

Simcoe and Sparrow Lake; along with monitoring the rate of phosphate solubilization of these 

bacteria; and test to see which isolates were the most efficient ones at utilizing inorganic 

phosphate. All of these objectives were addressed over three chapters; the field study (Chapter 

2), and laboratory experiments (Chapter 3 and Chapter 4).  

Firstly, the four-month field study was completed to compare any changes in the 

abundances of phosphate solubilizing bacteria between the two lakes and to see if seasonality 

should be studied on these microorganisms in the future. Ultimately, a more in-depth study 

would be needed to assess any changes in the abundance of phosphate solubilizing bacteria at 

any of the sampled locations as it was found that the abundance of these microorganisms could 

be correlated with weather events that took place a week or so before sampling. It was also 

found that positive relationships existed between the abundance of phosphate solubilizing 

bacteria and the water temperature, amount of total suspended solids, chlorophyll a, and 

abundance of total heterotrophic bacteria.  However, the results that were obtained during this 

study reject the hypothesis that a higher abundance of phosphate solubilizing bacteria at the 

anthropogenically stressed sites. Throughout the four-month sampling period, it was found that 

the site on Sparrow Lake that was adjacent to the protected wetland had the highest 

abundances of phosphate solubilizing bacteria.  

A preliminary study was completed on a sediment core that was collected from each 

lake to compare the amount of total reactive phosphorus in the sediment to the abundance of 

phosphate solubilizing bacteria. The results from this portion of this study indicated that there 

was little difference between the abundance of phosphate solubilizing bacteria in relation to 
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the amount of total reactive phosphorus that was in the sediment.  However, further study 

would be required in order to either reject or accept the hypothesis that more of these 

microbes would be present when there was a fair amount of phosphorus available in the 

sediment as the samples that were collected were too sparse to make any significant 

conclusions.  

In September 2017, phosphate solubilizing bacteria isolates were collected from the 

Lake Simcoe Atherley Narrows sites, as well as three additional sites from the most southern 

portion on the lake (Cook’s Bay).  When these different locations within Lake Simcoe were 

compared against each other, it was found that Cook’s Bay had a significantly higher abundance 

of phosphate solubilizing bacteria than others. However, this cannot be correlated with a higher 

amount of total phosphorus present in the water at this time as the total phosphorus amounts 

were reasonably consistent between the sites when they were sampled. A more in-depth study 

on Lake Simcoe would be useful to understand the reasons for the higher abundance of 

phosphate solubilizing bacteria in Cook’s Bay.  

Secondly, after the phosphate solubilizing bacteria had been isolated and purified, they 

were subjected to two laboratory experiments to assess their ability to utilize inorganic 

phosphate. The first experiment was a 216-hour growth test to create a phosphate 

solubilization index for each of the isolates. For this, each isolate was aseptically transferred to 

the center of a Pikovskaya’s agar plate and incubated at 30°C. After 48 hours, the colony and 

halo diameters of each isolate were measured daily. From these readings, phosphate 

solubilization index was calculated. An index number of zero indicated no growth of the isolate 

and any number higher than one indicated larger size of the halo than the size of the bacterial 

colony (Paul & Sinha, 2017). The 61 isolates that had the highest phosphate solubilization index 

were used for the inorganic phosphate test.  

The inorganic phosphate test was completed in 72 hours in Pikovskaya’s broth. After 

this time the isolates were destroyed, and the amount of total phosphorus that was in the 

broth for each isolate was measured. The results were more variable in this experiment than 

expected, but this could have been due to the timeframe of the experiment or due to how 
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many times the isolates were sub-cultured prior to this experiment (Correll, 1998). While there 

may have been a few errors in this test, it was still relatively straightforward to quantitatively 

determine how much inorganic phosphate was used by each isolate. Both the phosphate 

solubilization index and the inorganic phosphate test were efficient tools for preliminary 

screening on the bacterial isolates for their phosphate-solubilizing ability.  

The final series of laboratory tests that were completed were to characterize the ten 

isolates that recorded the highest solubilization index and showed promising results on the 

inorganic phosphate utilization test. These ten isolates were grown at various temperatures, 

pH, and inorganic phosphate concentrations to characterize the isolates with respect to varying 

growth conditions. The present study results supported the previous studies. The results 

obtained supported the theory that these microorganisms do contribute to internal phosphorus 

loading in this area as they grew reasonably well in cooler temperatures.  

 A discriminant function analysis compared the growth conditions (temperature, pH, 

inorganic phosphate) on these isolates. A second discriminant function analysis compared these 

isolates responses to varying growth conditions to the sites that these isolates originated from. 

The results of the first discriminant function analysis showed that three of the isolates were 

significantly different from the others. This result was further supported by the results of gram 

stain and cell morphology and helped to explain why Lake Simcoe (Atherley Narrows) site 3 was 

the only site that appeared different than the others on the second discriminant function 

analysis that was completed. These isolates originated from Isolate 126 originated from 

Sparrow Lake site 1 in July, isolate 283 originated  Lake Simcoe (Atherley Narrows) site 3 in 

August (it was also the only isolate out of the ten that were characterized that originated from 

that site), and  isolate 256 originated from Lake Simcoe (Atherley Narrows) site 1 in August.  

The next step in this research would be to get these ten isolates genetically sequenced in order 

to determine which species they belong.  

 Generally, the highest abundances of these bacteria were observed in the locations that 

had the lowest total phosphorus concentrations. This could be indicative of there being higher 

amounts of inorganic phosphate in the sediment at those locations rather than higher 
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abundances of soluble phosphate, which may have contributed to the lower abundances of 

phosphate solubilizing bacteria at the Lake Simcoe Atherley Narrows sites. If this experiment 

were to be completed again in the future, it might be a good idea to look at the amount of 

inorganic phosphate in the sediment at the site locations as opposed to the total phosphorus 

concentrations that were in the water column. The results observed suggest that phosphate 

solubilizing bacteria could potentially be used as an additional indicator of aquatic health. 

However, this study suggests that phosphate solubilizing bacteria would not be a useful 

indicator of phosphorus pollution in the water column if used alone. The data collected in this 

study contributes to the understanding of phosphate solubilizing bacteria in these aquatic 

habitats. Further study into these microorganisms would be needed to confirm these 

observations.  
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Appendix I  
The total phosphorus standard curve was created using the methodology from the American 

Public Health Association (1995). The stock solutions that were used were 0, 40,80,100, 400, 

800, and 1000mg/L. 

 

 

The nitrate standard curve was created using the methodology from the American 

Public Health Association (1995). The stock solutions that were used were 0, 100,200,300, 400, 

and 500mg/L. 
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Appendix II 
The Solubilization Index for each isolate that underwent the solubilization index test. The month, lake, and site that each isolate was 

collected from is also indicated on the following chart. The solubilization index indicates the isolate’s ability to use the inorganic 

phosphate if the SI number is larger than 1. The codes for the lakes are LS=Lake Simcoe-Atherley Narrows, SPL= Sparrow Lake, and 

CB= Lake Simcoe- Cook’s Bay. The letter accompanying the site number indicates from which replicate the isolate came from.  

Isolate Month Lake  Site  48hrs 72hrs 96hrs 120hrs 144hrs 168hrs 216 hrs 

46 June SPL 1A 0 0 0 0 0 0 0 

47 June SPL 1A 0 0 0 0 0 0 0 

48 June SPL 1A 0 0 0 0 0 0 0 

49 June SPL 1A 2.1 2.045455 2.083333 2.08111 2.07333 2.066667 2.071429 

50 June SPL 1A 0 0 0 0 0 0 0 

51 June SPL 1B 1 1 1 1 1 2.076923 2.153846 

52 June SPL 1B 1 1 1 1 1 2.181818 2.3 

53 June SPL 1B 0 0 0 0 0 0 0 

54 June SPL 1B 0 0 0 0 0 0 0 

55 June SPL 1B 1 2.357143 2.4 2.433331 2.5555 2.647059 2.352941 

56 June SPL 1C 0 0 0 0 0 0 0 

57 June SPL 1C 1 2.055556 2.055556 2.080808 2.166666 2.230769 2.2 

58 June SPL 1C 0 0 0 0 0 0 0 

59 June SPL 2A 2.1 2.090909 2.090909 2.181818 2.211111 2.25 2.142857 

60 June SPL 2A 0 0 0 0 0 0 0 

61 June SPL 2A 0 0 0 0 0 0 0 

62 June SPL 2A 1 1 1 1 1 1 1 

63 June SPL 2C 1 1 1 1 1 1 1 

64 June SPL 2C 1 1 1 1 1 1 1 

65 June SPL 2C 1 1 1 1 1 1 1 

66 June SPL 2C 1 1 1 1 1 1 1 

67 June SPL 2C 1 1 1 1 1 1 1 

69 June SPL 3A 1 1 1 1 1 1 1 
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70 June SPL 3A 1 1 1 1 1 1 1 

71 June SPL 3B 1 1 1 1 1 1 1 

72 June SPL 3B 1 1 1 1 1 1 1 

73 June SPL 3B 0 0 0 0 0 0 0 

74 June SPL 3B 0 0 0 0 0 0 0 

75 June SPL 3C 2.181818 2.307692 2.428571 2.818181 3.090909 3.214286 3.428571 

76 June SPL 3C 0 0 0 0 0 0 0 

77 June SPL 3C 1 1 3 3.181818 3.818181 3.666667 3 

78 June SPL 3C 0 0 0 0 0 0 0 

80 June LS 1A 0 0 0 0 0 0 0 

81 June LS 1A 1 1 1 1 1 1 1 

82 June LS 1A 1 1 1 1 1 1 1 

83 June LS 1A 1 1 1 1 1 1 1 

84 June LS 1A 1 1 1 1 1 1 1 

85 June LS 1B 0 0 0 0 0 0 0 

86 June LS 1B 1 1 1 2.1 2.3 2.272727 2.166667 

87 June LS 1B 0 0 0 0 0 0 0 

88 June LS 1B 0 0 0 0 0 0 0 

89 June LS 1C 1 1 1 1 1 1 1 

90 June LS 1C 0 0 0 0 0 0 0 

91 June LS 1C 1 1 1 1 1 1 1 

93 June LS 1C 1 1 2.571429 2.444444 2.555556 2.6 2.6 

94 June LS 2A 1 1 1 1 1 1 1 

95 June LS 2A 1 1 1 1 1 1 1 

96 June LS 2A 1 1 1 1 1 1 1 

97 June LS 2A 1 1 1 1 1 1 1 

98 June LS 2B 1 1 1 1 1 1 1 

99 June LS 2B 1 1 1 1 1 1 1 

100 June LS 2B 1 1 1 1 1 1 1 

101 June LS 2B 1 1 1 1 1 1 1 

102 June LS 2C 0 1 1 1 1 1 1 
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103 June LS 2C 0 1 1 1 1 1 1 

104 June LS 2C 0 1 1 1 1 1 1 

105 June LS 2C 0 1 1 1 1 1 1 

106 June LS 2C 0 1 1 1 1 1 1 

107 June LS 2C 0 1 1 1 1 1 1 

108 June LS 3A 0 1 1 1 1 1 1 

109 June LS 3A 0 1 1 1 1 1 1 

110 June LS 3A 0 1 1 1 1 1 1 

111 June LS 3A 0 0 0 0 0 0 0 

112 June LS 3A 0 0 0 0 0 0 0 

113 June LS 3B 0 0 0 0 0 0 0 

114 June LS 3B 1 1 1 1 1 1 1 

115 June LS 3B 1 1 1 1 1 1 1 

116 June LS 3B 1 1 1 1 1 1 1 

117 June LS 3B 1 1 1 1 1 1 1 

118 June LS 3C 0 0 0 0 0 0 0 

119 June LS 3C 1 1 1 1 1 1 1 

120 June LS 3C 0 0 0 0 0 0 0 

121 July SPL 1A 1 1 2.083333 2.25 2.230769 2.615385 2.714286 

122 July SPL 1A 0 1 1 1.222222 1.333333 1.377778 2.130435 

123 July SPL 1A 1 1 2.071429 2 2.133333 2.133333 2.176471 

124 July SPL 1A 0 0 1 1 2.222222 2.111111 2.333333 

125 July SPL 1A 0 0 0 0 1 1 1 

126 July SPL 1B 1 1 2.222222 2.333333 2.444444 2.3 2.5 

127 July SPL 1B 1 1 1 1 1 1 1 

128 July SPL 1B 0 0 1 1 1.769231 2.25 2.230769 

129 July SPL 1B 1 1 2.222222 2.4 2.8 2.818182 2.818182 

130 July SPL 1B 3.666667 3.515151 3.4 3.454545 3.818182 3.461538 4.083333 

131 July SPL 1C 2.666667 2.818181 3.3 3.7 3.727273 3.909091 4.090909 

132 July SPL 1C 2.9 2.9 3.416667 3.5 2.444444 3.571429 3.785714 

133 July SPL 1C 1 1 1 1 1 1 1 
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134 July SPL 1C 1 1 1 1 1 1 1 

135 July SPL 1C 2.7 2.7 3.454545 3.5 3.692308 3.571429 3.785714 

136 July SPL 2A 1 1 1 1 1 1 1 

137 July SPL 2A 1 1 1 1 1 1 1 

138 July SPL 2A 1 1 1 1 1 1 1.375 

139 July SPL 2A 1 1 1 1 1 1 1 

140 July SPL 2A 0 0 0 0 0 0 0 

141 July SPL 2B 0 0 0 0 0 0 0 

142 July SPL 2B 0 1 2.875 3.333333 3.5 4.1 3.909091 

143 July SPL 2B 1 1 1 1 2.142857 2.25 2.25 

144 July SPL 2B 0 0 0 0 0 0 0 

145 July SPL 2B 0 0 0 0 0 0 0 

146 July SPL 2C 0 0 0 0 0 0 0 

149 July SPL 2C 0 0 2.25 2.25 2.375 2.428571 2.5 

151 July SPL 3A 0 0 1 1 1 1 1 

152 July SPL 3A 0 0 0 0 0 0 0 

153 July SPL 3A 1 1 1 1 1 1 1 

154 July SPL 3A 1 1 1 1 1 1 1 

156 July SPL 3B 1 1 2.153846 2.153846 2.230769 2.333333 2.133333 

157 July SPL 3B 0 0 1 1 1 1 2.076923 

160 July SPL 3B 0 0 1 1 1 2.222222 2.222222 

161 July SPL 3C 1 1 1.588235 1.611111 2.05 2.1 2.1 

162 July SPL 3C 0 0 0 0 0 0 0 

163 July SPL 3C 0 0 0 0 0 0 0 

164 July SPL 3C 1 1 1 1 1 1 1 

165 July SPL 3C 0 0 0 0 0 0 0 

166 July SPL 1W 1 1 1 1 1 1 1 

167 July SPL 1W 0 0 0 0 0 0 0 

168 July SPL 1W 1 1 1 1 1 1 1 

171 July SPL 2W 0 0 0 0 0 0 0 

172 July SPL 2W 1 1 1 1 1 1 1 
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173 July SPL 2W 1 1 1 1 1 1 1 

174 July SPL 2W 1 1 1 1 1 1 1 

175 July SPL 2W 0 0 0 0 0 0 0 

176 July SPL 3W 1 1 1 1 1 1 1 

177 July SPL 3W 0 0 0 0 0 0 0 

178 July SPL 3W 1 1 2.2 2.181818 2.25 2.230769 2.142857 

179 July SPL 3W 1 1 2.2 2.4 2.5 2.428571 2.375 

180 July SPL 3W 0 0 0 0 0 0 0 

181 July LS 1A 0 0 0 0 0 0 0 

182 July LS 1A 1 1 1 1 1 1 1 

183 July LS 1A 1 1 1 1 1 1 1 

187 July LS 1B 0 0 0 0 0 0 0 

188 July LS 1B 1 1 1 1 1 1 1 

189 July LS 1B 1 1 2.083333 2.076923 2.066667 2.133333 2.2 

190 July LS 1B 0 0 1 1 1 1 1 

191 July LS 1C 0 0 1 1 1 2.176471 2.235294 

192 July LS 1C 0 0 0 0 0 0 0 

194 July LS 1C 1 1 1 1 1 1 1 

196 July LS 1W 0 1 3 4 3.5 3.666667 3.666667 

197 July LS 1W 0 0 0 0 0 0 0 

198 July LS 1W 0 0 2.571429 2.666667 2.75 3 3.285714 

199 July LS 1W 0 0 0 0 0 0 0 

200 July LS 1W 0 0 0 0 0 0 0 

201 July LS 2A 0 1 1 1 1 1 1 

202 July LS 2A 0 0 0 0 0 0 0 

203 July LS 2A 0 1 1 1 1 1 1 

204 July LS 2A 1 1 1 1 1 1 1 

205 July LS 2A 0 0 0 0 0 0 0 

206 July LS 2B 1 1 1 1 1 1 1 

207 July LS 2B 0 1 1 1 1 1 1 

208 July LS 2B 0 0 0 0 0 0 0 
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209 July LS 2B 1 1 1 1 1 1 1 

210 July LS 2B 1 1 1 1 1 1 1 

212 July LS 2C 0 0 0 0 0 0 0 

213 July LS 2C 1 1 1 1 1 1 1 

214 July LS 2C 1 1 1 1 1 1 1 

215 July LS 2C 0 0 0 0 0 0 0 

216 July LS 2W 1 1 2.083333 2.076923 2.142857 2.066667 2.133333 

217 July LS 2W 2.125 2.181818 2.333333 2.555556 2.5 2.454545 2.416667 

219 July LS 2W 4.25 3.333333 3.142857 3.285714 3.666667 3.666667 2.176471 

220 July LS 2W 2.714286 3 2.777778 3.125 3.125 2.888889 3 

221 July LS 3A 1 1 1 1 1 1 1 

222 July LS 3A 1 1 1 1 1 1 1 

223 July LS 3A 1 1 1 1 1 1 1 

224 July LS 3A 0 0 0 0 0 0 0 

225 July LS 3A 1 1 1 1 1 1 1 

226 July LS 3B 1 1 1 1 1 1 1 

229 July LS 3B 1 1 1 1 1 1 1 

230 July LS 3B 1 1 1 1 1 1 1 

231 July LS 3C 1 1 1 1 1 1 1 

232 July LS 3C 1 1 1 1 1 1 1 

233 July LS 3C 0 0 0 0 0 0 0 

234 July LS 3C 0 0 0 0 0 0 0 

235 July LS 3C 1 1 1 1 1 1 1 

236 July LS 3W 1 1 1 1 1 1 1 

237 July LS 3W 0 0 0 0 0 0 0 

238 July LS 3W 1 1 1 1 1 1 1 

241 AUG LS 1A 0 1 1 1 1 1 1 

242 AUG LS 1A 0 1 1 1 1 1 1 

243 AUG LS 1A 1 2.090909 2.166667 2.25 2.333333 2.307692 2.461538 

244 AUG LS 1A 1 1 1 1.625 1.705882 2.058824 2.176471 

245 AUG LS 1A 1 1 1 1 1 1 1 
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246 AUG LS 1B 1 1 1 1 1 1 1 

247 AUG LS 1B 1 1 1 1 1 1 1 

248 AUG LS 1B 1 1 1 1 1 1 1 

249 AUG LS 1B 1 1 1 1 1 1 1 

250 AUG LS 1B 1 1.9 2.363636 2.454545 2.545455 2.636364 2.818182 

253 AUG LS 1C 1 1 1 1 1 1 1 

254 AUG LS 1C 1 1 1 1 1 1 1 

255 AUG LS 1C 1 1 2.1 2.1 2.090909 2.181818 2.166667 

256 AUG LS 1W 1 1 2.285714 2.125 2.111111 2.111111 2.2 

257 AUG LS 1W 1 1 1 1 1 1 1 

258 AUG LS 1W 1 1 1 1 1 1 1 

259 AUG LS 1W 1 1 1 1 1 1 1 

260 AUG LS 1W 0 1 1 1 1 1 1 

265 AUG LS 2A 1 1 1 1 1 1 1 

269 AUG LS 2B 1 1 1 1 1 1 1 

270 AUG LS 2B 0 0 1 1 1 1 1 

271 AUG LS 2B 1 1 1 1 1 1 1 

272 AUG LS 2C 1 1 1 1 1 1 1 

273 AUG LS 2C 0 0 0 0 0 0 0 

274 AUG LS 2C 0 0 0 0 0 0 0 

275 AUG LS 2C 0 0 0 0 0 0 0 

276 AUG LS 2W 0 0 0 0 1 1 1 

277 AUG LS 2W 1 1 2 2 1.125 2.25 2.5 

278 AUG LS 2W 0 0 0 0 1 1 1 

279 AUG LS 2W 0 0 0 0 1 1 1 

280 AUG LS 2W 0 0 0 0 1 1 1 

281 AUG LS 3A 0 1 1 1 1 1 1 

282 AUG LS 3A 1 1 1 1 1 1 1 

283 AUG LS 3A 1 1 1 1 2.333333 2.333333 2.5 

284 AUG LS 3A 1 1 1 1 1 1 1 

285 AUG LS 3A 1 2.1 2.2 2.272727 2.363636 2.454545 2.333333 



133 
 

286 AUG LS 3B 0 0 0 0 0 0 0 

287 AUG LS 3B 1 2.111111 2.1 2.3 2.272727 2.363636 2.25 

288 AUG LS 3B 1 2.111111 2.1 2.2 2.363636 2.363636 2.25 

289 AUG LS 3B 1 2.1 2.181818 2.166667 2.153846 2.153846 2.142857 

291 AUG LS 3C 0 0 0 0 0 0 0 

292 AUG LS 3C 0 0 0 0 0 0 0 

293 AUG LS 3C 1 1 1 1 1 1 1 

294 AUG LS 3C 1 1 1 1 1 1 1 

295 AUG LS 3W 1 1 1 1 1 1 1 

296 AUG LS 3W 1 1 1 1 1 1 1 

297 AUG LS 3W 1 1 1 1 1 1 1 

298 AUG LS 3W 0 0 0 0 0 0 0 

299 AUG SPL 1A 0 0 0 0 0 0 0 

300 AUG SPL 1A 0 0 0 0 0 0 0 

301 AUG SPL 1A 1 1 1 1 1.56 1.538462 1.576923 

302 AUG SPL 1A 2.026316 2.090909 2.113636 2.155556 2.222222 2.195652 2.142857 

303 Aug SPL 1A 1 1 2.090909 2.083333 2.153846 2.142857 2.266667 

304 Aug SPL 1B 2.25 2.5 2.885 2.888889 2.3 3 3.1 

305 Aug SPL 1B 2.375 2.414141 2.5 2.5 2.7 2.7 2.9 

306 AUG SPL 1B 0 0 0 0 0 0 0 

307 AUG SPL 1B 1 1 1 2.222222 2.3 2.4 2.5 

308 AUG SPL 1B 1.1 2.1 2.181818 2.25 2.230769 18 2.058824 

309 AUG SPL 1C 0 0 0 0 0 0 0 

310 AUG SPL 1C 1 1 1 1 1 1 1 

311 AUG SPL 1C 1 1 1 1 1 1 1 

312 AUG SPL 1C 1 1 2.25 2.222222 2.444444 2.4 2.4 

315 AUG SPL 1W 1 1 1 1 1 1 1 

316 Aug SPL 1W 1 1 2.076923 2.071429 2.214286 2.2 2.25 

317 AUG SPL 1W 0 0 0 0 0 0 0 

318 AUG SPL 1W 1 1 2.333333 2.363636 2.363636 2.363636 2.333333 

323 AUG SPL 2A 1 1 1 1 1 1 1 
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324 AUG SPL 2A 1 1 1 1 1 1 1 

325 Aug SPL 2B 1 1 2.214286 2.2 2.333333 2.235294 2.235294 

326 AUG SPL 2B 1 1 1 1 1 1 1 

327 AUG SPL 2B 1 1 #DIV/0! 1 1 1 1 

328 AUG SPL 2B 1 1 1 1 1.846154 2.071429 2.133333 

331 AUG SPL 2C 0 0 1 1 1 1 1 

332 AUG SPL 2C 1 1 1 1 1 1 2.142857 

333 AUG SPL 2C 0 0 0 0 0 0 0 

334 AUG SPL 2W 0 0 0 1 1 1 1 

335 AUG SPL 2W 1 1 2.181818 2.076923 2.153846 2.071429 2.142857 

336 AUG SPL 2W 0 0 0 0 0 0 0 

337 AUG SPL 2W 1 1 2.285714 2.571429 2.625 2.75 2.454545 

338 AUG SPL 2W 1 2.25 2.25 2.444444 2.555556 2.4 2.333333 

339 AUG SPL 3A 1 1 1 1 1 1 1 

340 AUG SPL 3A 1 1 1 1 1 1 1 

341 AUG SPL 3A 0 0 0 0 0 0 0 

343 AUG SPL 3A 1 1 1 2.2 2.166667 2.125 2.111111 

344 AUG SPL 3B 0 0 0 0 0 0 0 

345 Aug SPL 3B 1 1 2.272727 2.166667 2.142857 2.2 2.2 

346 AUG SPL 3B 1 1 1 1 1 1 1 

347 AUG SPL 3B 1 1 1 1 1 1 1 

348 AUG SPL 3B 1 1 1 1 1.6875 2.133333 2.125 

349 AUG SPL 3C 1 1 1 1 1 1 1 

350 AUG SPL 3C 1 1 1 1 1 1 1 

351 AUG SPL 3C 0 0 0 0 0 0 0 

352 AUG SPL 3C 0 0 0 0 0 0 0 

353 AUG SPL 3C 0 0 0 0 0 0 0 

356 AUG SPL 3W 0 0 0 0 0 0 0 

357 AUG SPL 3W 1 1 1 1 1 1 1 

358 AUG SPL 3W 1 1 1 1 1 1 1 

359 AUG SPL 3W 1 1 1 1 1 1 1 
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360 AUG SPL 3W 1 1 1 1 1 1 1 

361 Sept LS 1W 1 1 1 1 1 1 1 

362 Sept LS 1W 1 1 1 1 1 1 1 

363 Sept LS 1W 1 1 1 1 2.181818 2.181818 2.166667 

364 Sept LS 1W 1 1 2.1 2.090909 2.166667 2.25 2.333333 

365 Sept LS 1W 1 1 0 1 1 1 1 

366 Sept LS 2A 1 2.111111 2.2 2.3 2.272727 2.363636 2.333333 

367 Sept LS 2A 1 1 1 1 1 1 1 

368 Sept LS 2A 1 1 1 1 1 1 1 

369 Sept LS 2A 1 1 1 1 1 1 1 

370 Sept LS 2A 1 1 1 1 1 1 1 

371 Sept LS 2B 1 1 1 1 1 1 1 

372 Sept LS 2B 0 0 0 0 0 0 0 

373 Sept LS 2B 1 1 1 1 1 1 1 

374 Sept LS 2B 1.909091 2 2.083333 2.166667 2.153846 2.142857 2.142857 

375 Sept LS 2B 1 1 1 1 1 1 1 

376 Sept LS 2C 1.75 2.428571 2.222222 2.2 2.4 2.181818 2.25 

377 Sept LS 2C 1 2.111111 2.1 2.090909 2.181818 2.090909 2.181818 

378 Sept LS 2C 1 1 1 1 1 1 1 

379 Sept LS 2C 1 1 1 1 1 1 1 

380 Sept LS 2C 0 0 0 0 0 0 0 

381 Sept LS 2w 1 2.166667 2.111111 2.1 2.181818 2.090909 2.272727 

382 Sept LS 2w 1 1 1 1 2.083333 2 2.066667 

383 Sept LS 2W 1 1 1 1 1 1 1 

384 Sept LS 2W 1 1 1 1 1 1 1 

385 Sept LS 2W 1 1 1 1 1 1 1 

386 Sept LS 3A 1 1 1 2.1 2.2 2.2 2.090909 

388 Sept LS 3A 0 0 0 0 0 0 0 

389 Sept LS 3A 1 1 1 1 1 1 1 

390 Sept LS 3A 0 1 1 1 2.2 2.090909 2.083333 

391 Sept LS 3B 1 1 1 1 2.272727 2.083333 2.272727 
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392 Sept LS 3B 0 0 0 0 0 0 0 

393 Sept LS 3B 0 0 0 0 0 0 0 

394 Sept LS 3B 0 0 0 0 0 0 0 

395 Sept LS 3B 0 0 0 0 0 0 0 

396 Sept LS 3C 0 0 0 0 0 0 0 

397 Sept LS 3C 1 1 1 1 1 1 1 

398 Sept LS 3C 1 2 2.125 2.125 2.222222 2.111111 2.2 

399 Sept LS 3C 2.222222 2.5 2.333333 2.428571 2.5 2.428571 2.571429 

400 Sept LS 3C 0 2.2 2.2 2.3 2.3 2.2 2.2 

401 Sept LS 3W 0 1 1 1 1 1 1 

403 Sept LS 3W 2.375 2.5 2.25 2.333333 2.333333 2.333333 2.333333 

404 Sept LS 3W 1 1 1 1 1 1 1 

405 Sept LS 3W 1 1 1 1 1 1 1 

407 Sept SPL 1A 1 1 1 1 1.333333 2.142857 2.25 

408 Sept SPL 1A 1 2.111111 2.222222 2.222222 2.3 2.444444 2.9 

410 Sept SPL 1A 1 1.928571 2.2 2.5 2.533333 2.785714 2.666667 

411 Sept SPL 1B 2.222222 2.555556 2.777778 2.7 2.7 3.333333 3.4 

412 Sept SPL 1B 1 1 2.363636 2.2 2.333333 2.4375 2.666667 

413 Sept SPL 1B 1 1 1 1 1 1 1 

414 Sept SPL 1B 1 2.083333 2.076923 2.230769 2.142857 2.214286 2.384615 

415 Sept SPL 1B 1 2.05 2.5 2.1 2.1 2.25 2.190476 

417 Sept SPL 1C 1 1.714286 2.142857 2.266667 2.333333 2.25 2.3125 

418 Sept SPL 1C 1 1 1 1 1 1 1 

420 Sept SPL 1C 1 2.1 2.090909 2.083333 2.166667 2.153846 2.071429 

421 Sept SPL 1W 1 2.125 2.111111 2.2 2.083333 2.166667 2.181818 

422 Sept SPL 1W 2.090909 2.181818 2.166667 2.166667 2.133333 2.2 2.1875 

423 Sept SPL 1W 1 1 1.909091 2.090909 2.090909 2.166667 2.076923 

424 Sept SPL 1W 1 1 1 2.1 2.2 2.181818 2.166667 

425 Sept SPL 1W 2.111111 2.2 2.076923 2.133333 2.133333 2.058824 2.055556 

426 Sept SPL 2W 1 2.166667 2.428571 2.333333 2.181818 2.076923 2.071429 

427 Sept SPL 2W 1 2.25 2.111111 2.1 2.090909 2.181818 2.181818 
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428 Sept SPL 2W 2.142857 2.2 2.076923 2.142857 2.0625 2.058824 2.052632 

429 Sept SPL 2W 1 2.111111 2.1 14 2.181818 2.272727 2.153846 

430 Sept SPL 2W 2.142857 2.111111 2.222222 2.181818 2.153846 2.142857 2.2 

431 Sept SPL 3A 1 1 1 1 1 1 1 

432 Sept SPL 3A 1 1 2.1 2.1 2.1 2.2 2.2 

433 Sept SPL 3A 1 1 1 1 1 1 1 

434 Sept SPL 3A 1 1 1 1 1 1 1 

435 Sept SPL 3A 1 1 1 1 1 1 1 

436 Sept SPL 3B 1 1 1 1 2.090909 2.181818 2.3 

437 Sept SPL 3B 0 1 1 1 1 1 1 

438 Sept SPL 3B 0 0 1 1 1 1 1 

439 Sept SPL 3B 1 1 1 1 1 1 1 

440 Sept SPL 3B 1 1 2 1 2.25 2.25 2.222222 

441 Sept SPL 3C 1 1 1.909091 1.818182 2.25 2.083333 2.272727 

442 Sept SPL 3C 1 1 1 1 1 1 1 

443 Sept SPL 3C 1 1 2.111111 2.1 2.3 2.3 2.454545 

444 Sept SPL 3C 1 1 1 1 1 1 2.083333 

445 Sept SPL 3C 0 1 2.083333 2.076923 2.071429 2.142857 2.0625 

446 Sept SPL 3W 1 1 2.090909 2.181818 2.090909 2.076923 2.142857 

447 Sept SPL 3W 1 2.142857 2.166667 1.9 2.1 2.090909 2.090909 

448 Sept SPL 3W 1 1 1 1 1.363636 1 1.5 

449 Sept SPL 3W 0 0 0 1 1 1 2.14287 

450 Sept SPL 3W 0 0 1 1 1 1 2.25 

451 Sept SPL 2A 1 1 1.733333 2.058824 2.058824 2.058824 2.111111 

452 Sept SPL 2A 1 2.142857 2.375 2.75 3 3 3 

453 Sept SPL 2A 1 1 2.111111 2.1 2.090909 2.166667 2.153846 

454 Sept SPL 2A 1 1 1 1 2.071429 2.071429 2.142857 

455 Sept SPL 2B 0 1 1 1 1 1 2 

456 Sept SPL 2B 1 1 1 1 2.0625 2.125 2.058824 

457 Sept SPL 2B 1 1 1 1 1 1 1 

458 Sept SPL 2B 0 0 0 0 0 0 0 
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459 Sept SPL 2C 1 1 1.692308 2.071429 2.133333 2.133333 2.25 

460 Sept SPL 2C 0 0 0 1 1 1 1 

461 Sept SPL 2C 1 1.083333 1 1 2.066667 2.066667 2.133333 

462 Sept SPL 2C 1 1 2.090909 2.076923 2.071429 2.071429 2.142857 

463 Sept LS 1A 0 1 1 1 1 1 1 

464 Sept LS 1A 1 1 1 2.076923 2.076923 2.066667 2.066667 

465 Sept LS 1A 0 0 0 0 0 0 0 

466 Sept LS 1B 2.071429 2.066667 1.928571 2.142857 2.066667 1.888889 2.055556 

467 Sept LS 1B 1 1 1 1.9375 1.941176 2.066667 2.052632 

468 Sept LS 1B 0 0 0 0 0 0 0 

469 Sept LS 1C 0 0 0 0 0 0 0 

470 Sept LS 1C 0 0 1 2.25 2.4 2.428571 2.444444 

471 Sept LS 1C 1 1 1 1 1 1 1 

472 Sept CB 1W 0 0 0 0 0 0 0 

473 Sept CB 1W 1 1 1 1 1 1 2.111111 

474 Sept CB 1W 1 1 1 1 1 1 1 

475 Sept CB 1A 1 2.1 2.181818 2.166667 2.166667 2.083333 2.076923 

476 Sept CB 1A 1 1 1 1 1 1 1 

477 Sept CB 2A 1 2.125 2 2.1 1 2.181818 2.272727 

478 Sept CB 2A 1 2.153846 2.076923 2.071429 2.066667 2.066667 2.125 

479 Sept CB 2W 1 1 1 1 1 1 1 

480 Sept CB 2W 1 1 1 1 1 1 1 

481 Sept CB 2W 1 1 2.090909 2.1 1.866667 2.066667 2.066667 

482 Sept CB 3A 0 0 0 1 1 1 1 

483 Sept CB 3A 1 1 1 2.083333 2.071429 2.153846 2.153846 

484 Sept CB 3A 0 1 1 1 1 1 1 

485 Sept CB 3W 0 1 1 1 1 1 1 

486 Sept CB 3W 1 2 2.125 2.2 2.2 2.083333 2.181818 

487 Sept CB 3W 0 0 0 0 0 0 0 
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Appendix III  
Fisher’s Least Significant Difference t-test results for the inorganic phosphate test, comparing 

the means of all 61 isolates that were tested in the inorganic phosphate test.  

Isolates, TP means and individual (95 %) Confidence Intervals for each isolate. LCL=lower confid
ence limit, UCL=upper confidence limit.  
 

Isolate T.P. std r LCL UCL Min Max 

121 1.45 0.27 3 1.20 1.70 1.27 1.75 
123 1.24 0.05 3 0.99 1.49 1.19 1.29 
126 1.21 0.36 3 0.95 1.46 0.94 1.63 
149 1.11 0.06 3 0.85 1.36 1.05 1.16 
189 1.31 0.26 3 1.06 1.57 1.14 1.62 
196 0.35 0.41 3 0.10 0.60 0.09 0.82 
198 0.44 0.30 3 0.19 0.69 0.13 0.73 
216 1.29 0.36 3 1.04 1.54 1.14 1.62 
217 1.46 0.24 3 1.21 1.72 1.20 1.68 
243 0.98 0.19 3 0.73 1.23 0.82 1.20 
250 1.17 0.73 3 0.91 1.42 1.09 1.24 
255 1.29 0.13 3 1.04 1.55 1.19 1.45 
256 1.25 0.13 3 0.99 1.50 1.15 1.40 
277 1.33 0.05 3 1.07 1.58 1.29 1.39 
285 1.33 0.29 3 1.08 1.58 1.10 1.45 
287 1.30 0.17 3 1.04 1.55 1.10 1.44 
289 1.40 0.24 3 1.14 1.65 1.12 1.58 
337 1.42 0.08 3 1.17 1.67 1.33 1.50 
366 1.30 0.22 3 1.05 1.56 1.06 1.49 
374 1.27 0.21 3 1.02 1.52 1.04 1.42 
377 1.27 0.12 3 1.01 1.21 1.18 1.39 
464 1.11 0.14 3 0.86 1.36 0.94 1.19 

49 1.33 0.28 3 1.08 1.58 1.06 1.62 
55 1.04 0.09 3 1.15 1.65 1.33 1.51 
59 1.41 0.24 3 1.15 1.65 1.33 1.51 
86 1.38 0.08 3 1.13 1.64 1.30 1.45 
93 1.39 0.07 3 1.14 1.65 1.31 1.46 
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This figure visually demonstrates that the data that is shown in the above table. It visually 

illustrates that isolates 198 and 196 are the only isolates that were significantly different from 

the rest. 


