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Abstract

Soil liquefaction is a phenomenon caused by seismic activity in the
ground which may result in surface settlement, the formation of sand
boils, lateral spreading that ultimately damages the super-structure and
loss of lives. This kind of natural disasters has been reported vastly from
last few decades in different regions of the world. Soil Liquefaction
triggering occurs in silty and sandy soils. The huge damage due to
liquefaction at Niigata, Japan, and Alaska due to the earthquake that
occurred in 1964, extensively grabbed the attention of many geotechnical
researchers. SPT based empirical relationship is usually used to evaluate
soil liquefaction. However, a few parameters involved in the analysis are
associated with a great extent of uncertainties. A reliability-based
analysis provides an approach to consider various uncertainties and
provides the probability for the failure of the structure. Due to site
conditions and other reasons, it is difficult to obtain complete information
about a random variable. Therefore, very often we come across censored
samples. It is important that we design an reliable engineering structure
based on censored samples.

The primary objective of the research is to perform a reliability
analysis based on censored samples. The research focuses on developing
the deterministic, probabilistic and reliability-based models to calculate
soil liquefaction resistance using historical liquefaction database based
on the SPT. The principle of maximum entropy is incorporated to develop
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probability density function that includes various uncertainties associated
with soil and site parameters.

With the development of computing techniques like artificial
intelligence, it is possible to frame the empirical relationship between the
seismic load and resistance offered by the soil. Standard penetration test
based database of soil liquefaction is used in the artificial neural network
to predict the liquefaction index. Further, the developed liquefaction
index model is utilized for modeling the empirical relationship between
clean sand equivalence corrected standard penetration test-N count and
cyclic resistance ratio. The deterministic model is developed, and the
relationship for estimating the resistance offered by soil to liquefaction is
established by identifying the best fit curve. Bayesian mapping theory is
used for determining the function for liquefaction probability. With the
knowledge about the expected values from the database, maximum
entropy distributions are plotted for seismic, site and soil parameters.
The developed probability density function of the random variables are
utilized for performing the first order reliability analysis. Using
sensitivity analysis, the degree of conservatism is identified and
eliminated from performance function. Finally, the calibrated
performance function is framed which can be used for performing
reliability analysis on truncated samples.

The truncated normal and log-normal probability density
function are developed using the information available on censored
samples. The parameters of the truncated normal distribution are
estimated using maximum likelihood method and Newton-Raphson’s
iterative procedure. When dealing with censored samples, the flow of
iteration points has a limitation in reliability analysis. For this reason, a
new algorithm is proposed to identify the reliability index for liquefaction
potential based on global search.
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Chapter 1

Introduction

Every year the earth experiences a large number of natural disasters like
earthquake, tsunami, landslide, floods, cyclone, etc. which occurs around
the world. They result in a devastating situations with massive loss of
lives and properties, and adverse impact on the environment and economy.
On the other hand, due to an increase in demands, shrinking of financial,
natural and human resources, it is a more challenging job to maintain
and rehabilitate the infrastructure.

According to the 2016 Annual Disaster Statistical report of
Centre for Research on the Epidemiology by Guha-Sapir et al. (2016),
there were 342 disasters registered in the year 2016, and about 8,733
people lost their lives, whereas 569.4 million people were affected. The
estimated economic losses due to these natural disasters in the same year
were US$ 153.9 billion, and the total financial loss in North America
alone was about US$ 48.08 billion. For the period 2006-2015, the annual
average 376.4 of natural disasters was recorded with an average human
loss of 69,827 per year. The earthquake in Haiti during the year 2010 took
away the life of 222,570 people.

It is crucially important to take effective measures to prevent the
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hazard and loss caused by such natural disasters. Reliable engineering
approaches can support to reduce the damages to the structure. Reliability-
based design aspects can help society to build safe structures that could
resist the stress produced by the natural disaster.

1.1 Soil Liquefaction

The phenomenon of soil liquefaction was first investigated by
Terzaghi et al. (1996) to know the reason behind a sudden decrease in the
strength of the loose sand. Soil liquefaction is a phenomenon in which the
pore pressure of the soil increases rapidly than the effective pressure due
to high ground acceleration at the time of seismic action leading to
softening of the granular soil. Earthquake induces liquefaction by
imposing dynamic loads on the saturated sandy soils. The shearing action
that takes place in the soil layer tends the soil strata to lose its stiffness
and strength because of transformation from solid medium to liquid
consistency. i.e., due to the seismic shaking of the ground at a high rate,
certain saturated soils transform from firm soil to suspended soil particle
with water whose performance is similar to a viscous fluid. Hence it is
easy for soil now to deform or flow laterally. In such a situation, the soil
fails to support the overlying structure. The ground might displace
vertically or horizontally, prevailing the possibilities for the occurrence of
landslides or cracks in the ground. It results in a devastating disaster
and causing damage to numerous structures.

Usually, the water particles present in the pores of the sandy or
silt soil particles will resist the action of soil to consolidate. But at the
time of shaking, the ground tends to change its volume by draining out the
water from the pores, and therefore the pore pressure raises. The rising
action of the water through the small gaps of the soil particle splits them
apart. This makes the soil to lose its contact, that weakens the strength
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of it. When the same action continues for a number of times, liquefaction
starts. This is known as triggering of liquefaction. Effectively, identifying
the triggering point for the occurrence of the soil liquefaction will partially
solve the problem. If the triggering depth is located, then the engineering
designs will support to avoid soil liquefaction.

Liquefiable soils are mostly frictional. They lose their strength
when the contact force between the particles dissipates. The resistance
to the deformation depends on how tight the soil particles placed. The
bearing capacity of the soil is primarily governed by the effective pressure,
which is equal to the total external stress less than the internal porewater
pressure. The effective stress of the soil is related to the contact force
between the internal particles of the soil. Usually, soils with high effective
stress are stiff and strong, whereas the soils with low effective stress
are soft and weak. Initially, soil resists the load acting on it, and the
soil particles are in contact with each other. Therefore the density of
the soil is high and the particles contract (decrease in volume, the soil
profile is denser). The load action is being taken by the contact forces
between the soil particles. It provides strength and stiffness. Shearing
loads can modify the volume of soil depending upon the density, confining
pressure and shear strain. At the time of high seismic loading (shearing),
the load is carried by the granular particles to the pore water filling voids
in individual soil particle.

On continuous shearing, the soil particles dilute (increase in
volume, soil profile will be loose). With the cyclic increase in the load,
the saturated particles cannot come in contract with each other due to
the increase in pressure of water in pores. Because of it, the contact
force decreases and increase the pore-water pressure. At this stage, the
particles start suspending. Soil liquefaction is governed by the degree of
saturation. For soil to liquefy, the degree of saturation should be equal
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Figure 1.1: Soil liquefaction at Niigata (Vukobratovic and Ladjinovic,
2013)

to 100%. With continuous shearing of the saturated loose soil results in
the following effects. They can cause serious damage like landslides, slope
failure, structural collapse, the formation of sand buns, etc. The effects of
soil liquefaction are as following,

• Strain softening

• Loss of bearing capacity of the soil

• Lateral spreading

• Ground settlement

• Ground oscillation

Soil Liquefaction created catastrophic failure due to the
earthquake in Alaska and Niigata, Japan in 1964 (Fig. 1.1). Later in the
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Figure 1.2: Building collapse at California due to soil liquefaction in 1989
(National Academies of Sciences et al., 2016)

year 1971, the large settlement of the land took place due to liquefaction
that caused the over-topping of a dam. Hyogo-ken Nanbu earthquake in
the year 1995 in Japan, damaged the citys port at the city Kobe by the
action of soil liquefaction. Liquefaction was experienced at New Zealand
by the people of Christchurch in the year 2010-2011 due to the
earthquake of magnitude 6.2 (Fig. 1.3). The city had faced the loss of
15,000 single-family homes and hundreds of buildings in the highly
commercial region [Guha-Sapir et al. (2016)].

It is important to know about the soil that is susceptible to soil
liquefaction. Liquefaction is believed to occur in the loose sands and
silts. But with experience of ground failure due to soil liquefaction in
low plasticity silt and clay, reported by Chu et al. (2004) and Martin
et al. (2006), it indicates that the high seismic loading can trigger the
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Figure 1.3: Road damaged due to soil liquefaction at Christchurch, New
Zealand (2011) (National Academies of Sciences et al., 2016)

development of strains with the loss in the strength in different kind
of soils in wide range from sand to clay. Hence it is evident that the
large magnitude earthquake can create liquefaction less prone clay to
liquefaction. Based on their research, it is necessary to understand the
plasticity behaviour of the fine gained saturated soils.

Before carrying out liquefaction potential evaluation of a region,
it is significant to understand the liquefaction susceptibility criteria for
silts and clay. Clay will undergo cyclic softening due to the large cyclic
stress during ground shaking.

Conventionally, the criteria for the susceptibility of the soil to
liquefy includes Chinese criteria which have been developed based on
studying the behaviour of the site in China during high seismic action
(Wang, 1979). Criteria were developed using Atterberg limits by
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differentiated soil type based on United Soil Classification System to
determine the ability to liquefy. According to the findings of Seed and
Idriss (1982), clayey soils which are less than 15% finer than 5µm with
Liquid Limit (LL) < 35 and water content (wc) > 90% of LL are
vulnerable to liquefaction. Findings of the Andrews and Martin (2000)
showed that the soil is susceptible to liquefy if they are 10% finer than
2µm and LL less than 32, whereas the soil which is ≥ 10% finer than
2µm and LL ≥ 32 is not susceptible to liquefaction.

According to Boulanger and Idriss (2006), the potential to
liquefy of fine-grained soils can be identified with the help of Atterberg
limits, grain size characteristics, and natural water content. They can be
used in correlations to determine the soil characteristics such as shear
strength. This analysis can let us know whether the soil exhibits clay-like
or sand-like behaviour. On relating the value of natural water content,
the potential for strength loss can be analyzed. But the relation should
not be taken as the ratio of wc to LL.

1.2 Evaluation of Soil Liquefaction Potential

Liquefaction potential of saturated cohesion-less soils is mainly
governed by four factors. They are intensity, duration of ground shaking,
density and confining pressure of the soil. Evaluation of liquefaction
potential of a soil can be performed by the cyclic stress-based approach.

1.2.1 Cyclic Stress Approach

The cyclic stress-based approach for measuring the liquefaction
potential of soils was developed by Seed and Idriss (1967). Cyclic Stress
Ratio (CSR) induced by the earthquake is compared with the Cyclic
Resistance ratio offered by the soil strata at interested depth considered
for evaluating the liquefaction potential. The earthquake loading of
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shearing force on soil strata can be analyzed using the time-history
ground response or using the cyclic stress ratio. The actual method to
determine the earthquake-induced cyclic shear stress in soil strata is to
perform dynamic response analysis at the site. But this way of estimating
is expensive and requires a lot of resources, and hence an effective
solution for this problem is "simplified procedure."

The simplified procedure for the determination of uniform cyclic
stress ratio was proposed by Seed and Idriss (1971). All the components
that influence the cyclic shear stress in the soil induced by earthquake
ground motions are analyzes to frame a relationship. The cyclic shear
stress ratio at a particular depth with the soil profile is expressed as

CSR = 0.65τmax (1.1)

where τmax = maximum earthquake-induced shear stress.

The uniform equivalent cyclic stress ratio is equal to 65% of the
maximum cyclic stress ratio. The term τmax is usually estimated from
analysis of dynamic ground response. This method of calculating τmax is
not generally used because of the following reasons i) it is not economical
and requires huge efforts ii) hard to obtain full ground response analyzed
data and iii) not compatible to use with an empirical relationship with
the in-situ methods. Eventually, simplified empirical relationships are
necessary for engineering analysis and design as well as complete field
evaluation of earthquake performance for case history analysis.

Vertical cyclic shear waves dominate the horizontal cyclic shear
waves in the soil strata, shear stress induced by the earthquake at a
particular depth is illustrated in Fig. 1.4. A soil element of the height h
behaving as a rigid body is accelerated by the peak horizontal ground
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motion amax, then the maximum shear stress of a rigid body is given by

(τmax)rigidbod y = γh
amax

g
(1.2)

where γ is the unit weight of the soil, and g represents acceleration due
to gravity.

Thus by using eq. (1.2), one can calculate the peak shear stress
acted upon a rigid body. But of course, the behaviour of the soil is not going
to be like a perfectly rigid body because of deformation in soil particles
on shearing. Hence for this purpose, it is important to consider the actual
mass of the soil which lesser than the theoretical rigid body mass, and this
is also one of the reasons for the non-linear behaviour of the complete soil
profile. To solve this issue, it is predominate for adjustment to be made in
eq. (1.2) that will lead to estimating the actual shear stress acting on the
soil profile. The actual shear stress can be represented as

(τmax)def ormablesoil = rd(τmax)rigidbod y (1.3)

where the term rd is known as the stress reduction factor or nonlinear
shear mass participation factor, and the concept is explained in Fig. 1.4 .

It is a function of site stratigraphy, soil properties and the
characteristics of ground excitation. On the ground surface, the value of
rd is 1. A increase in depth, its value decreases, and the decrease in the
value is not linear and smooth. For differing stiffness, the values of rd

have a vigorous jump. In short, the shear mass participation factor is a
function of non-linear system response and harmonics. On establishing
eq. (1.3) in terms of stress reduction factor, we get

rd = (τmax)def ormable soil

(τmax)rigid body
(1.4)
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Figure 1.4: Schematic illustration of calculating maximum cyclic shear
stress [reproduced based on the idea of Seed and Idriss (1971)]

The maximum shear stress in the soil strata can be written as

τmax = amax

g
γhrd (1.5)

The equivalent uniform cyclic shear stress can be re-framed as

CSR = 0.65γh
amax

g
rd (1.6)

The cyclic shear stress of the soil strata can be determined at the
laboratory using triaxial test techniques like cyclic triaxial shear, cyclic
direct, simple shear, cyclic hollow cylinder torsional shear test, etc. These
techniques can provide information about the factors that can cause
liquefaction in the site. They are useful in determining the relationships
for pore-pressure development before liquefaction and the
post-liquefaction behaviour of the soil. In spite of many advantages, these
techniques are less practiced by engineers. The following reasons will
help in understanding the limitation of the laboratory test.

• It is practically difficult to collect the cohesion-less liquefiable soil
samples that could represent the exact field condition.
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• These techniques are sometimes time-consuming, and the results cannot
be obtained easily.

• The soil samples recovered with thin-walled tubes should have enough
plastic fines. In case of soils like fine sand and gravel, they do not
have fine content in it. Therefore, they need techniques like ground
freezing for sampling.

• The technique of ground freezing is based on the assumption that the
unidirectional freezing of the soil pushes the porewater that expands
on freezing without disturbing the soil sample, thus preventing
the soil from damage and retaining the properties. On continuous
freezing for a long time will cause the ice to expand in volume which
in turns will cause the soil particles to expand. Therefore, this will
require additional aging correction arrangements to be included, to
determine the exact cyclic shear stress.

• Collecting the samples using ground freezing or other special techniques
and laboratory test requires more funds. Therefore, the laboratory
approach is limited to high-value projects.

The limitation of using laboratory procedures can be eliminated
by using an in-situ technique like the Standard Penetration Test (SPT).
The in-situ procedure for the evaluation of liquefaction potential of the
soil proposed by Seed and Idriss (1971) is based on the limit state curve
which represents the soil that can undergo liquefaction lie above the
curve, and the non-liquefaction soil is found below the curve. The limit
state concept provides an effective means for developing the relationship
between the Cyclic shear Stress Ratio induced by the earthquake and the
Cyclic Resistance Ratio (CRR) offered by the soil.
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The resistance offered by the soil reflects the density and pore
pressure parameters of the soil. The standard penetration test is the most
common in-situ test used for evaluating the consistency of soil in many
parts of the world. The idea for using the SPT test as a tool to determine
the liquefaction potential of the soil can be seen in the histories right from
1971. Whitman (1971) framed the concept to determine the liquefaction
potential of the soil by considering the following parameters: peak ground
acceleration, depth of the groundwater table, depth of the critical layer,
SPT-N count and the duration of the strong earthquake shaking of 13
different cases from 8 major earthquakes. Seed and Idriss (1971) came
up with the simplified procedure based on 35 historical post-liquefaction
cases in which 23 cases belongs to liquefied condition and 12 represents
the non-liquefied state, for developing the limit state function that isolates
the liquefied cases from non-liquefied cases.

Seed et al. (1983) made a modification by using CSR (τav/σ′
v)

instead of maximum shear stress (τmax) for measuring the seismic
intensity and normalized SPT value (N1) based on overburden pressure
instead of relative density (Dr). The average cyclic shear stress is
developed on the horizontal surface concerning the propagation of vertical
shear waves is normalized by initial effective vertical stress σ′

v. Perhaps,
geotechnical experts addressed that the different kinds of SPT equipment
are being used across the world and hence the efficiency of the model
would be varying. Seed et al. (1985) measured the resistance offered by
the soil against soil liquefaction in terms of corrected and normalized
standard penetration count (N1,60). The driving energy in the drill rod is
considered to be 60% of the free fall energy and normalization for
overburden effect is applied. Liquefaction resistance curves for sands
with different fines contents are proposed, which is considered to be more
reliable than the previous curves expressed regarding mean grain size.
Youd et al. (2001) presented a widely accepted procedure for evaluation of
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soil liquefaction potential. Valid recommendations and correlations were
developed based on the proposed method of Seed et al. (1985) with slight
modification concerning the low cyclic stress ratio. The proposed cyclic
stress ratio normalized with respect to vertical effective stress σ′

vis
expressed as

CSRσ′
v = 0.65

σv

σ′
v

amax

g
rd (1.7)

(N1)60 = NCNCRCSCBCE (1.8)

where N denotes the SPT-N count, CR represents correction factor for
rod length, CS resembles for correction factor for sampling technique,
CB stands for Borehole correction factor,CE denotes correction for energy
ratio. The values of the correction factors can be found in Table. 1.1. The
values of CR can be determined from the Fig. 1.5. The term CN denotes
normalization factor. Normalization of the SPT counts are made with
respect to the effective initial overburden pressure. From eq. (1.8), the
normalized and corrected SPT-N count (N1)60 can be calculated.

The CSR value of the soil is adjusted to equivalent CSR for
an earthquake magnitude, M = 7.5 and the effect of overburden stress.
Therefore, the CSR equaion is expressed as

CSRM=7.5,σ′
v=1atm = 0.65

σv

σ′
v

amax

g
rd

1
MSF

1
Kσ

(1.9)

where MSF stands for Magnitude Scaling Factor and Kσ denotes the
overburden stress correction factor. According to Idriss and Boulanger
(2006), the relation for determining MSF is given as

MSF = 6.9exp
−M

4
−0.058 (1.10)

where M means earthquake’s magnitude and the overburden stress
correction factor is estimated by

Kσ = 1−Cσln
σ′

vo

Pa
≤ 1.0 (1.11)
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Table 1.1: Corrections for SPT (Çetin et al., 2004)

Factor Equipment Variable Term Correction

Overburden pressure - CN (Pa/σ′
vo)

0.5

Overburden pressure - CN lim CN ≤ 1.6

Energy Ratio Donut Hammer CE 1.1-1.4

Energy Ratio Donut Hammer CE 0.3-1.0

Energy Ratio Safety Hammer CE 0.7-1.2

Energy Ratio Automatic-trip
Donut-type Hammer

CE 0.8-1.4

Borehole Diameter 65-115 mm CB 1.0

Borehole Diameter 150 mm CB 1.05

Borehole Diameter 200 mm CB 1.15

Sampling Method Standard sampler CS 1.0

Sampling Method Sampler without liners CS 1.1-1.3

where
Cσ = 1

18.9−2.55
√

(N1)60
(1.12)

Pa represents the reference pressure of 100 kN/m2. Robertson and Wride
(1998) and Youd et al. (2001) have proven the importance of considering
the "clean-sand" equivalence SPT-N count ((N1)60cs) instead of (N1)60 and
fineness content. Since the liquefaction occurrence depends on the
presence of fineness content as discussed above, the SPT-N count can be
converted into clean-sand equivalence SPT-N values. The (N1)60cs is
calculated from the recommended relationship of Youd and Noble (1997),
and it is given as

(N1)60 =α+η(N1)60 (1.13)

where α and η are the coefficients and can be determined using following
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Figure 1.5: Correction for rod length CR (Çetin et al., 2004).

equation
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α= 0 for FC ≤ 5%, (1.14)

α= exp[1.76− 190
FC2 ] for 5< FC < 35%, (1.15)

α= 5.0 for FC ≥ 35%, (1.16)

η= 1.0 for FC ≤ 5%, (1.17)

η= [0.99+ (
FC1.5

1000
)] for 5< FC < 35%, (1.18)

η= 1.2 for 5< FC < 35%. (1.19)

The thesis focus on developing soil liquefaction potential model
using cyclic stress approach using SPT based on the latest historical
database.

1.2.2 Role of ANN in Evaluation of Soil Liquefaction

The Artificial Neural Network (ANN) has been used as a tool to
model a cause-effect relationship in geotechnical engineering by many
researchers. Functioning of the ANN model is similar to the neuron in the
human brain. The neurons are trained to identify the pattern through
which it can make classification among the data types. The classification
of data type is possible because of the development of the interlinked
relationship between the neurons. ANN provides the advantage over the
traditional analysis using the statistical tools that require prior
knowledge on the cause-effect relationship. From the works of Deng et al.
(2005), and Deng (2006), the implicit performance function developed
using ANN can be used for reliability analysis. Goh (1994) implemented
the ANN technique for developing the predicting model for liquefaction
using the earthquake data from 1891 to 1980. Agrawal et al. (1997)
developed ANN models to investigate the susceptibility of the soil
towards liquefaction based on the penetration test. Juang and Chen
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(1999) developed a model to predict the occurrence of liquefaction with
the help of the CPT database based on ANN technique using "C-like"
programming language. The authors recommended that the
Levenberg-Marquardt algorithm is highly efficient in the training of the
neurons. Juang et al. (2000b) established the limit state boundary curve
using the relationship developed with the help of ANN based on the
SPT-database of post-performance liquefaction cases, In their model, the
input parameters are normalized between the value 0 and 1 so that the
input data would fit for the operation of log-sigmoid function whose limit
is between 0 to 1. Samui and Sitharam (2011) investigated the soil
susceptibility of the soil for liquefaction using the ANN technique but
they recommended to use the tan-sigmoid function whose limit is -1 to 1.

With the help of the ANN technique, the relationship for
resistance offered by the soil against soil liquefaction can be developed.
ANN provides better results for the normalized data than the original
data. Juang and Chen (2000) explained that the normalization of the
training set to values between 0 and 1 could provide good results. The
normalization procedure is as following

xnorm = (x+a)
b

(1.20)

where

a = (xmax −9xmin)
8

b = xmax − xmin

0.8

x is the input parameter, xmax and xmin are the maximum and minimum
value of the input parameter, respectively.

Hence from the work of the above authors, it can be concluded
that the ANN technique can be adopted for developing the limit state curve
based on historical post-liquefaction database. On further optimization
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Figure 1.6: Deterministic approach for liquefaction potential evaluation

of the ANN relationship, the empirical relationship for Cyclic Resistance
Ratio (CRR) can be developed.

1.2.3 Factor of Safety for Soil Liquefaction

The factor of Safety (Fs) against soil liquefaction is defined as the
ratio of CRR to CSR. If Fs ≤ 1, it refers to liquefaction state and apparently
if Fs > 1, reflects to non-liquefaction condition. A single value for Fs is
calculated based on the mean values of the CSR and CRR. This approach
is known as the deterministic approach, and it is based on the assumption
that there is 100% probability of occurrence of calculated CRR and CSR.
Fig. 1.6 represents the idea of the deterministic approach in the evaluation
of soil liquefaction.

Even though, this approach does not provide adequate
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information about the behaviour of various random variables that causes
liquefaction, it is still much practiced by many geo-technicians due to its
simple mathematical approach with the minimum requirement of time
and resources. Deterministic method for the evaluation of liquefaction
potential is the "Simplified procedure" developed by Seed and Idriss
(1971), which was later modified for improving the usage of in-situ test by
Seed et al. (1983), Seed et al. (1985), Robertson and Campanella (1985),
Robertson and Wride (1998). National Center for Earthquake
Engineering Research (NCEER) workshop, 1998, has addressed reviews
and recommendations for an in-situ test-based deterministic approach for
determination of liquefaction potential. The factor of safety based on the
idea of a deterministic approach has very less efficiency and does not
truly represent the behaviour of the soil during liquefaction. The
limitation of the deterministic approach is that it solely uses only the
expected mean value and neglects the true nature of soil variable in the
site.

1.3 Probabilistic Approach

There is an existence of the high degree of uncertainty present in
the soil variables. When analyzing the behaviour of the soil strata for any
engineering system, it is necessary to consider the uncertainty in every
aspect. Instead of just mean values, set of all possible expected values
should be considered, and the Probability Density Function (PDF) should
be developed based on expected values. It is required to select the best
PDF based on a certain goodness-fit test.

1.3.1 Uncertainty in Soil Parameters

It is the measure of imperfect knowledge, or probable error
arises in the data collection process, modeling and analysis of engineering
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system or prediction of a process. Natural uncertainties like climate,
seismic, geologic, hydrologic and structural can be grouped as intrinsic
variability of a system. Therefore, the performance indicators of the
system can vary based on the different set of the input sequence.
Uncertainty is central for the decision making and risk assessment of the
system. The main question of safety or reliability in any engineering
arises because of the presence of uncertainty, and so it cannot be
eliminated. For limiting the uncertainty in the system, huge resources
are required. This is practically not feasible and hence modeling and
analyzing by considering the uncertainty is a better idea than ignoring it.
Uncertainty analysis is a measure of statistical properties of the output
concerning the statistical input parameters. This helps in the
determination of the contribution of each input parameter to the overall
uncertainty of the model output. Uncertainty in a system can be classified
into two categories

• Intrinsic - results due to the presence of randomness in nature.

• Epistemic - prevails due to lack of knowledge of the system.

1.3.2 Quantification of Randomness in Soil Variables

Moments of distribution are developed from set of expectation.
They explain the characteristics of the distribution. Let us consider g(x)
be any function for a continuous random variable x; the expected value
can be defined as

E[g(x)]=
∫

R
g(x) f (x)dx (1.21)

where f (x) represents probability density function and R is the domain
for existence of continuous random variable. E[g(x)] represents function
for set of expected value based on the constraint function. In order to
determine a number of expected values for a range of continuous random
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variable, the series of moments can be estimated by evaluating following
equation

m i = E(xi)=
∫

R
xi f (x)dx i = 0,1,2, ...,n (1.22)

where i represents the order of moments and m i is known as the ith

moment of the sample. The moments of the distribution can be estimated
from the observed range of the random variable (x1, x2, x3, . . . , xn). The
moments which are defined concerning the mean are known as central
moments. Mean, and variance provides information on the location and
variability (spread, dispersion) of a set of numbers, and they give
information on the appearance of the distribution of the random variable.
They are known as the first two statistical moments of the distribution.
Variance is incorporated in the distribution as the standard deviation. Fig.
1.7 illustrates the probability distribution considering the first two
statistical moments about the central moments. The third moment about
the mean is called as ’skewness’ that speaks about the symmetry of the
density function. The fourth moment about mean is called as ’kurtosis’
which explains the flatness (peakness) in the distribution. Third and
fourth moments about the mean are incorporated in the distribution as
the coefficient of skewness and coefficient of kurtosis, respectively. The
first central moment or mean (µ) of the sample can be determined by

µ= 1
n

n∑
k=1

xk (1.23)

Whereas the second central moment or variance can be calculated by

σ2 = 1
n−1

n∑
k=1

(xk −µ)2 (1.24)

In order to acquire more information about the distribution, higher order
of the central moments can be estimated using the following expression

c j = 1
n

n∑
k=1

(xk −µ) j (1.25)
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Figure 1.7: Probability distribution based on moments about the expected
mean

where c j represents the higher order of central moment whereas j is
greater than 2.

The general definition for central moments for a continuous
random variable x can be given as

c i = E[(x−µ)i]=
∫

R
(x−µ)i f (x)dx (1.26)

The coefficient of skewness can be related to the third moment and it be
expressed as

α1 = c3

σ3 (1.27)

Similarly coefficient of kurtosis can written as

α2 = c4

σ4 (1.28)

The moments of the distribution can also be calculated about the origin.
The mean of the distribution lies at the origin (zero). Standard normal
distribution whose mean is zero, and the standard deviation is one is the
best example for probability distribution based on moments at the origin.
Fig. 1.8 illustrates the distribution based on the moments about the origin.
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The moments about the origin for a continuous random variable x can be
estimated by

m i =
∫

R
xi f (x)dx (1.29)

where i represents ith order. For the discrete range n of random variable
x, the moments at the origin can be calculated by

m j = 1
n

n∑
k=1

x j
k (1.30)

The zeroth general moment is the integration of the PDF of the random

Figure 1.8: Probability distribution based on the moment about the origin

variable. Therefore, the zeroth moment is one (m0 = 1). With the help of
the binomial theorem, the relationship between the moments about the
central and origin can be developed. It can be used for the transformation
of moments and domains between the central and origin. The relationship
is as following

E[(x−µ)i]=
i∑

j=0
(−1) j i!

j!(i− j)!
µiE(xi− j) (1.31)

Therefore,

c i =
i∑

j=0
(−1) j i!

j!(i− j)!
µim i− j (1.32)
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where c i represents central moments, m denotes moment about origin
and i represents the order of moment.

The moments of a distribution can be related with the moments
of its transform based on the domains from the original upper bound u
and lower bound l to 0 and 1. Let the transformed variable be x′, the
transformed moments be c′i, the transformed density function be denoted
as f ′(x′) and the original limit be R. The variable transformation is given
by

x′ = (x− l)/R (1.33)

The first moment of the transformation is given by

c′1 = (c1− l)/R (1.34)

The density function transformation is given by

f ′(x′)= f (x)/R (1.35)

By definition,

c′i =
∫ 1

0
(xi − c′1) f ′(x′)dx′ (1.36)

By the substituting eq. (1.33) and eq. (1.34) in above equation, we be get

c′i = c i/R i (1.37)

The domain about origin λ′ can be transformed to domains about the
original limits λ as

λ0 = ln R+λ′
0−

m∑
i=1

(
l
m

)iλ′
i (1.38)

λi =
m∑
j=i

(−1)(i+1)
j!l j=1

i!( j− i)!R j λ
′
j i = 1,2, ...,m (1.39)

With the help of the moments, the PDF for any soil variable
can be generated. Commonly used PDF for soil variables are normal and
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lognormal distribution. Once the PDF is developed, it is highly important
to check the hypothesis. This can be done using a statistical test like K-S
test.

K-S test examines the relationship between the observed
cumulative frequency and the CDF of the statistical distribution selected
for the random variable. The test begins with sorting the values of the
random variable, undrained shear strength in the present case in
ascending order. Later, the maximum difference between the two
cumulative distribution functions of the ordered data is estimated using
the expression,

Dn = max|Fx(xi)−Sn(xi)| (1.40)

where n stands for number of sample count of the random variable, Fx(xi)
represents the CDF of the statistical distribution of the ith sample of the
sorted collection space xi and the term Sn(xi) denotes the CDF of the
observed ordered sample. Sn(xi) can be estimated by,

Sn(xi)=


0, x < x1

m
n , xm ≥ x ≥ xm+1

1, x ≤ xn

(1.41)

The significance level is related with the CDF of the random variable Dn

as
P(Dn ≥ Dα

n)= 1−α (1.42)

Dα
n values for various significance levels α can be determined using K-S

test table. If the maximum difference Dn is less than or equal to the
value of Dα

n, then the statistical distribution is accepted at that particular
significance level α.
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1.3.3 Principle of Maximum Entropy

One of the major issues in probabilistic design is the generation
of the probability distribution from the set of information available.
Conventionally, engineers would deal with a particular type of
distribution for certain parameters with the assumption that the
distribution would be the best fit for the engineering data.

An alternative method for determination of potential
distributions comes from the method of maximum entropy. According to
Jaynes principle, entropy was defined as the minimally prejudiced
probability distribution is that which maximizes the entropy subject to
constraints supplied by the given information(Jaynes, 1957).The entropy
for continuous random variable as

S =−
∫

R
f (x)∗Ln[ f (x)]dx (1.43)

where f (x) stands for PDF of continuous random and R is the domain
for the existence of continuous random variable. The distribution for the
random variable can be generated using available engineering information.
The concept of entropy can be explained mathematically by considering
the Shannon principle for maximum entropy or informational entropy as

Maximize H =−
∫ ∞

0
f (x)Ln( f (x))dx (1.44)

subjected to

G =
∫ ∞

0
xi f (x)=µi i = 0,1,2, ...,m (1.45)

Here xi is the moment at the origin, µi is the set of expectations and i
stands for moment order from 0 to m. Thus, entropy is a measure of the
amount of uncertainty represented by the probability distribution and is
a measure of the amount of chaos or the lack of information about the soil
characteristics values. To develop an appropriate probability distribution
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for any random variable, the entropy of itself should be maximized. The
nature of eq. (1.44) is to maximize the probability of the random variable.
For particular data of a random variable, there might be many
distributions suitable, but the distribution that has the highest entropy is
considered to be a consistent distribution.

1.3.4 Probabilistic Approach in Soil Liquefaction

In the deterministic approach, when Fs ≥ 1 does not completely
represent the non-liquefaction condition, there are possibilities for the
occurrence of liquefaction in the site. Similarly, in case of Fs < 1 there
are possibilities for no liquefaction. This is because of not considering the
variability associated with the loading CSR and resisting CRR parameter.

The idea behind the probabilistic approach can be demonstrated
using Fig. 1.9. If Fs > 1, it resembles to be non-liquefaction condition. But
on observing the same figure, the red shaded region shows that the load
is greater than the resistance, and hence there are chances for the
occurrence of liquefaction in the site. The statistical analysis based on the
SPT-based limit state curve proposed by Seed and Idriss (1971) was
utilized by Haldar and Tang (1979) to determining the probability of
liquefaction (PL). Fardis and Veneziano (1981) developed a model to
determine the liquefaction potential in the sand using the idea Bayesian
regression technique for 192 cyclic simple shear tests considering the
uncertainties caused by the effect of sample preparation, the effect of
system compliance, and stress non-uniformities. Liao et al. (1988) framed
maximum likelihood estimation probabilistic regression-based models
using post-liquefaction field performance database of Seed et al. (1984) for
determining relationship for probability of liquefaction with respect to
parameters like distance to earthquake, peak horizontal acceleration at
the ground surface, normalized CSR, depth of ground water table, total
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Figure 1.9: Probabilistic approach in evaluation of liquefaction potential
[modified from Baecher and Christian (2005)]

vertical pressure, effective vertical pressure, corrected SPT N-count,
fineness content and other soil size characteristics. Hwang and Lee (1991)
developed a procedure to evaluate liquefaction potential with the help of
the probability matrix and a fragility curve developed using moment
magnitude by including uncertainties for the site as well as seismic
parameters. The approach gives the probability of liquefaction based on
significance. Youd and Noble (1997) followed up with the similar
techniques of practicing the probability based logistic regression of Liao
et al. (1988) with limiting the historical cases which hard to provide
clarification for questionable cases. The relationship is proposed for
general soil like silt and sand, but not based on the "clean" sand.

Toprak et al. (1999) also used binary-logistic regression analyses
for post-liquefaction field performance data from Liao et al. (1988) to
develop empirical equations for assessing PL. Weighting factors
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techniques were practiced for certain parameters before using the logistic
regression. Juang et al. (2000b) used about 243 liquefaction field
performance cases to develop a Bayesian mapping function that
establishes a relationship between Fs and PL. Using 141 cases out of 243,
the soft-intelligence technique was utilized to develop the relationship for
the deterministic method. Juang et al. (2002) suggested that the idea of
implementing Bayesian mapping function approach for PL evaluation is
an appropriate technique compared to probabilistic (binary-logistic)
regression-based approach. The reason behind it is that developing
expression for PL based on logistic regression approach has the least
dependency on the deterministic models developed using the performance
databases whereas PL developed using Bayesian mapping function
technique depends on the characteristics of considered deterministic
model. Çetin et al. (2002) developed a likelihood function based on
probabilistic methodology, for predicting the PL by considering both
aleatory and epistemic uncertainties. Çetin et al. (2004) used the similar
idea of Toprak et al. (1999) of the probabilistic regression model for SPT
database of 201 field performance data which were categorized into
different classes based on the quality of data available. Boulanger and
Idriss (2012) made use of the maximum likelihood function with the limit
state developed by Çetin et al. (2002) along with biasing and sensitivity
screening techniques for the developing liquefaction potential evaluation
for probabilistic approaches. The empirical relationship is based on the
performance field database of Idriss and Boulanger (2010) and Boulanger
et al. (2011).

Out of the above-mentioned models, Bayesian mapping function
makes more sense in developing the probabilistic relationship due to its
strong dependence on the deterministic model. Thus, it provides with an
effective approach for an easy transition of deterministic to probabilistic
design.
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1.4 Reliability Approach

The probabilistic approach includes the uncertainties of the soil
parameters as a whole that is present on the site. Another limitation of
the probabilistic approach is that the parametric and the modeling
uncertainties are not dealt with for the estimation of PL, and therefore,
the resultant PL leads to an erroneous prediction. Reliability approach
includes the uncertainty present in the soil parameter in individual
strata and analyses individual soil strata separately. Hence the system is
analyzed more accurately, and results are much reliable. The reliability
analysis can be done using the following method

• First Order Second Moment Reliability Method [FOSM],

• First Order Reliability Method [FORM],

• Second Order Reliability Method [SORM],

• Monte Carlo Simulation Method [MCSM].

The results of FOSM purely depends on the structure of
performance function. Any changes made in the structure of performance
function reflects the results of the analysis in high extend. SORM
requires information on second-order derivatives of the random variable
ion the performance function which increases the complexity of analysis.
Jha and Suzuki (2009) made comparative studies on reliability methods
for evaluation of liquefaction potential using the FOSM method,
Hasofer-Lind’s FORM, point estimate method and Monte Carlo
simulation method. It was reported that the Monte-Carlo simulation is
not commonly used for determining the probabilities of liquefaction and
hence generally not preferred due to its complexities. From the works of
Low and Tang (1997), Çetin (2000), Muduli and Das (2015) and
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Bagheripour et al. (2012), it is understood that the FORM produces good
results and hence principle ideas of FORM is implemented in present
study of soil liquefaction potential.

1.4.1 Hasofer-Lind’s First Order Reliability Analysis

Once the consistent distributions for random variables are
identified, the system can undergo reliability analysis. In reliability
analysis, both the CSR and CRR are taken to be uncertain, and the
interaction between the uncertainties is analyzed. Reliability
performance of a system is expressed regarding the reliability index (β),
through which the probability of liquefaction can be estimated. The
liquefaction state in the reliability analysis does not resemble true
catastrophic failure, but it reflects expected failure. Hasofer-Lind’s FORM
is a stochastic approach in which random values for CSR and CSR are
used to locate the minimum distance of the limit state curve from the
origin. It is one of the most popular and efficient reliability analysis
method (Liu and Der Kiureghian (1991), Haldar and Mahadevan (2000),
Baecher and Christian (2005)). FOSM is inconsistent with the variability
of the performance function relationship and does not include the
performance of variance in the analysis due to which FORM method is
preferred vastly. The conceptual description of FORM is presented below.

The factor of safety for soil liquefaction is given as
Fs = CRR/CSR. If CRR/CSR > 1, the site is meant to be safe from
liquefaction but eventually when CRR/CSR < 1, it is unsafe. Taking CRR
as R and CSR as S, the marginal difference is given as

Z = R−S (1.46)

If Z > 0, it indicates that liquefaction will not occur and if Z < 0, then it
hints for the occurrence of liquefaction and hence to be unsafe. Therefore,
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the performance of the boundary surface is defined at Z = 0. Eq. (1.46) can
be also be written as

µZ =µR −µS (1.47)

where µR and µS are the mean values of resistance and load, respectively.
Considering the load and the resistance to be normal variables. On
treating the variables R and S to be uncertain and correlated, then the
reliability index is given as,

β= µZ

σZ

= µR −µS√
σ2

R +σ2
S −2ρRSσRσs

(1.48)

Here ρRS is the correlation coefficient between R and S. The term σ2
R and

σ2
s are the variance of R and S, respectively that can be calculated using

the corresponding standard deviation σR and σs. If the variable R and S
are not having any correlation, then the β is expressed as,

β= µZ

σZ

= µR −µS√
σ2

R +σ2
S

(1.49)

The definition of the reliability index from eqs. (1.48) and (1.49) is similar
to the reliability index of FOSM. Therefore, the probability of failure (i.e.,
probability for occurrence of soil liquefaction, PL) can be calculated using

p f = PL =Φ(−β)= 1−Φ(β) (1.50)

where Φ denotes the cumulative density function of the standard normal
variable. In the event, if the load and resistance are following non-normal
distribution, they can be transformed to standard normal variable using
the technique developed by Rackwitz and Fiessler (1978)

σ′ = φ[Φ−1F(x∗)]
f (x∗)

(1.51)
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µ′ = x∗−σ′Φ−1F(x∗) (1.52)

where µ′and σ′ means the equivalent standard mean and standard
deviation, f (x∗) and F(x∗) represents the probability and cumulative
frequency of the non-normal random variable x∗, respectively. The term φ

denotes the cumulative density function of the non-normal random
variable. According to Shinozuka (1983), the accuracy and consistency of
reliability index are better with Hasofer-Lind reliability analysis for
dealing with the safety of quantities. To avoid the complexity in the
analysis, the variables are transformed into standard space with zero
mean and unit standard deviation. The analytical procedure to calculate
the standard space variable is expressed as

R′ = R−µR

σR

S′ = S−µS

σR

(1.53)

The performance function for the uncorrelated variables can be written
as

Z = R−Q = R′σR −S′σS +µR −µS (1.54)

The origin is the point at which both R and S equal to their mean value
and the distance d between the origin and the limit state curve is given as

d = µR −µS√
(σ2

R +σ2
S)

(1.55)

Eqs. (1.49) and (1.55) appear to be similar, and hence the reliability
index of a system can be interpreted geomerically as the shortest distance
between the point defined by the expected values of the various random
variable involved in the liquefaction potential evaluation and the limit
state boundary curve. Fig. 1.10 represents the PDF of the performance
function with linear failure criterion denoted by a dark plane, whose
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Figure 1.10: Joint PDF of the random variables with Linear failure
criterion

contour map along with linear failure criterion is shown in the Fig. 1.11.
Using the hypotenuses theorem and stochastic approach, the distance
between the origin and the nearest point to it on limit state surface can
be found. Fig. 1.12 shows the marginal distribution of the performance
function that represents the safe and unsafe region which In the event
of n random variable involved in the system, firstly they are reduced to
standard space using the general reduction technique

X ′ = X −µn

σn
(1.56)

where the term X ′ is the reduced variable in the standard space, µn

denotes the standard normal mean of the random variable (X ) and σn

represents standard deviation of standard normal distribution of that
random variable (X ). Using eq. (1.56), the reduced variables can be found
for all n random variables involved in the system whose performance
function is g(X ). The minimum distance from the origin to the limit state
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Figure 1.11: Plot of Resistance (R) & Load (S) on reduced standard space
with minimum distance (d)

curve is determined using the following equation,

d = min
√

X ′
1

2+ X ′
2

2+ ...+ X ′
n

2

= min
√

X ′T X ′
(1.57)

subjected to
g(X )= 0 (1.58)

According to the potential of reliability studies for Eurocodes
by Low et al. (2017), if the random variables X are correlated, then the
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Figure 1.12: Marginal distribution of the performance function (Z)

reduced variable to the standard space should be non-correlated and this
can be achieved using Cholesky decomposition technique.

u = L−1X ′ (1.59)

d = min
√

uT u (1.60)

subjected to
g(X )= 0 (1.61)

where L denotes low triangle of Cholesky factors, and X represents
the reduced standard normal variable in standard space. Low (2014)
has explained that if the value of the performance function is negative by
substituting the mean values of the random variables, the reliability index
is negative of d. Similarly, if the performance function value is positive,
then the reliability index is negative of d. This can also be explained well
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with the help of the R −S case and eq. (1.47), if the value of the µZ is
negative, then β = −d. If the value of the µZ is equal to positive, then
β= d. This can be mathematically explained as

β=−d, For µZ < 0

β= d, For µZ > 0
(1.62)

1.4.2 Reliability Analysis in Soil Liquefaction

The probabilistic models include the statistical analysis of field
performance post-liquefaction database. Thus, the expected mean of each
input variable for every historical case is considered, through which
statistical parameters for PL distribution is estimated. The limitation of
the above described probabilistic approach is that the parametric and the
modeling uncertainties are not dealt with for the estimation of PL, and
the resultant PL leads to an erroneous prediction. This problem can be
overcome by performing a special approach to deal with the probabilistic
approach. i.e., reliability-based probabilistic analysis of liquefaction
considers the various uncertainties associated with the input variables
and the model. Juang et al. (1999) implemented the idea of FORM for
performing reliability analysis, considering 225 field performance
post-liquefaction database based on CPT-test. An empirical relationship
was framed between β and PL with the help of Bayesian mapping
function technique.

Juang et al. (2000a) performed reliability analysis using the
Monte Carlo simulation technique considering 225 CPT-based liquefied
and non-liquefied cases and came up with PL −Fs relationship based on
Bayesian mapping function technique. But the approach failed to include
modeling uncertainty. Çetin (2000) used the FORM along with the
updated Bayesian mapping technique as tools for developing SPT-based
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probabilistic models for evaluation of liquefaction potential. Juang et al.
(2006) performed extensive sensitivity analyses for characterizing
uncertainties associated with input variables in evaluating liquefaction
potential of the soil for developing CRR model, later used FORM to
determine the modeling uncertainty for the probabilistic model developed
using the Bayesian mapping function approach. Jha and Suzuki (2009)
made comparative studies on reliability methods for evaluation of
liquefaction potential using FOSM, Hasofer-Lind’s FORM, point estimate
method and Monte Carlo simulation method. It was reported that the
Monte-Carlo simulation is not commonly used for determining the
probabilities of liquefaction and hence it is not preferred due to its
complexities.

Using the empirical relationship for evaluation of liquefaction
potential of soil developed by Youd et al. (2001), Bagheripour et al. (2012)
determined FORM based reliability index and used genetic algorithm for
minimization of β. Similar work was performed by Muduli and Das (2015).
The CRR model was developed using 198 post-liquefaction cases based on
SPT test. The research suggests that it is important for global minimizing
of β rather than local minimization. Hence, for this reason, the genetic
algorithm is recommended in FORM based reliability analysis. Thus using
FORM, the robustness of the deterministic model can be increased, and
high-efficiency results can be obtained.

1.5 Research Objective

It is important to understand that accurate and effective
assessment of liquefaction potential is essential to avoid a seismic hazard
in a cost-effective approach. It is necessary to take required measures for
post-earthquake recovery. Soil parameters are associated with great
characteristics uncertainty. The existing relationship for determining the
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resistance offered by the soil in the evaluation of soil liquefaction has
been developed based on the historical liquefaction cases. Using biased
and expected values of the parameter can limit the effect of the
uncertainties. Predominantly, it is challenging to find an alternative
approach that could consider the maximum of uncertainties in an
unbiased form to analyze the soil profile for engineering designing of the
structures. It is significant that the approach essentially provides the
probability of failure. Reliability analysis can satisfy the requirement of
the above-mentioned problems. The scope of this thesis is as follows:

• To develop an empirical relationship for CRR based on the latest post-
performance liquefaction historical database.

• To develop a first-order reliability method for truncated distributions.

• To develop a the probabilistic and reliability-based models using
maximum entropy distributions that can analyze the occurrence of
soil liquefaction in the site.

• To carry out the reliability analysis of soil liquefaction using truncated
distributions developed based on censored samples.

1.6 Thesis Outline

Chapter 2: The procedure to develop truncated normal and log-
normal distribution based censored samples using maximum likelihood
estimator for different truncation conditions are developed.

Chapter 3: A new algorithm is proposed to carry out reliability analysis
particularly when dealing with the random variable having truncated
distribution.
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Chapter 4: Based on the post-performance SPT historical database of soil
liquefaction, a performance function of soil liquefaction is developed using
neural network, regression analysis, Bayesian mapping and reliability
analysis. The empirical relationship is being developed for deterministic,
probabilistic and reliability based method for soil liquefaction.

Chapter 5: Reliability analysis of the soil liquefaction is performed on
two liquefaction cases which involves a random variable to have truncated
distribution. The truncated PDF of the random variable is developed and
later used for performing reliability analysis.

Chapter 6: It summarizes the contributions of the present study and
recommendations for future research work.
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Chapter 2

Probability Distribution for
Censored Samples

For connecting the statistical data obtained from experiments with the
probability of occurrence, we need probability distributions of the sample
spaces. When the data obtained from the experiment which has got a
partial sampling, it is known as censored data. In this chapter, developing
of truncated probability distributions for censored data is discussed.

2.1 Truncated Distributions

In engineering practice, it is not always possible to get complete
information about soil variables. In such a situation, the truncated
probability density function can be constructed. Truncated distribution
refers to the probability distribution for a specific range, beyond which
there is no interest or possibility to deal with data. Censored samples
reflect the inclusion of partial data of the random variable in the
experiment. Based on the availability of the censored data, truncated
distributions can be developed.
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2.1.1 Probability Distributions for Uncensored Samples

Normal distribution is the most commonly used to represent the
continuous probability distribution of the sample space. The probability
density function (PDF) of the normal distribution with mean µ and
standard deviation σ is given as

f (x)= 1p
2πσ2

exp
−1
2 ( x−µ

σ )2, −∞< x <∞ (2.1)

where µ and σ are the mean and standard deviation. The standard normal
distribution can be written as

f (x)= 1p
2πσ2

exp
−1
2 x2

, −∞< x <∞ (2.2)

In engineering problems, most of the random variable cannot have
negative value due to the physical aspects. During such situations, it is
appropriate to consider log-normal distribution instead of normal
distribution. The PDF of the log-normal distribution can be written as

f (x)= 1

ζxx
p

2π
exp

[
− lnx−λx

ζx

]2

, 0≤ x <∞ (2.3)

where λx and ζx are the parameters of the log-normal distribution.

2.1.2 Probability Distributions for Censored Samples

Sometimes it is not possible to investigate the complete sample
space in the real field study because of physical environmental challenges
and availability of resources. In such conditions, it is recommended to
enforce huge efforts in collecting a large number of quality samples
within the possible range. Better truncated PDF can be developed using
the models of Muñoz-Cobo et al. (2017), Cohen (2016) and Lee and Lee
(2002). All these model uses different estimators like maximum
likelihood, methods of moments, L-moment method, etc. to determine the
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statistical parameters for truncated probability distributions based on
censored samples.

The PDF based on the censored sample can be lower bound
truncated, upper bound truncated or doubly truncated. The PDF of the
doubly truncated normal distribution is given as

f (x)=
1
σ
φ( x−µ

σ
)

Φ(b−µ

σ
)−Φ(a−µ

σ
)
, a ≤ x ≤ b (2.4)

where φ refers to the standard normal distribution and Φ denotes CDF of
the normal distribution. Let us assume α= a−µ

σ
, ζ= b−µ

σ
and ξ= x−µ

σ
. Then

PDF of the truncated distribution can be written as

f (x)= φ(ξ)
σZ

, a ≤ x ≤ b (2.5)

where Z =Φ(ζ)−Φ(α). In case, the sample space has single truncated point
i.e, lower truncated point then Z = 1−Φ(α). Similarly, for upper truncated
point, Z =Φ(ζ), PDF of the doubly truncated log-normal distribution can
be written as

f (x)=
1
ζx
φ( lnx−λx

ζx
)

Φ( lnb−λx
ζx

)−Φ( lna−λx
ζx

)
, a ≤ x ≤ b (2.6)

where φ refers to the standard normal distribution and Φ denotes CDF
of the standard normal distribution. Let us assume α1 = lna−λx

σ
, ζ1 = lnb−λx

ζx

and ξ1 = lnx−λx
ζx

. Then PDF of the truncated distribution can be written as

f (x)= φ(ξ1)
ζxZ1

, a ≤ x ≤ b (2.7)

where Z1 =Φ(ζ1)−Φ(α1). In case, the sample space has single truncated
point i.e, lower truncated point then Z1 = 1−Φ(α1). Similarly, for upper
truncated point, Z1 =Φ(ζ1).

2.1.3 Estimation of Parameters

For developing the truncated PDF from censored samples, it is
required to estimate the statistical parameters of the distribution.
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Different estimators can be judged by their properties, such as
unbiasedness, mean square error (MSE), consistency and asymptotic
distribution. The bias of an estimator is the difference between this
estimator’s expected value and the true value of the parameter being
estimated. Thus, bias of an estimator W of a parameter θ is defined by

Biasθ(W)= Eθ(W −θ)= Eθ(W)−θ (2.8)

where E(.) denotes expected value over the continuous distribution f (x|θ)
and is defined by,

E(x)=
∫ ∞

−∞
xf (x)dx (2.9)

MSE is the function of θ defined by Eθ(W−θ)2. MSE measures the average
squared difference between the estimator W and the parameter θ. When
its value goes to zero, it will be better.

Maximum likelihood estimation (MLE) is the most popular
method to derive estimators. This technique is based on the idea to find
the values of the distribution parameter that maximizes the likelihood
function form θ from the density function. MLE is one of the effective
estimators, since it is based on the total analytic maximization procedure.

Consider X1, X2, . . . , Xn are independent and identically
distributed sample from a population with pdf f (x|θ1, . . . ,θk). The
likelihood function is a function of the parameters of a statistical model
given data and defined by (Cohen, 2016)

L(θ|x)= L(θ1, . . . ,θk|X1, . . . , Xn)=
n∏

i=1
f (X i|θ1, . . . ,θk) (2.10)

Note that θ will be the function’s variable and consider the observed
values X1, . . . , Xn to be fixed "parameters" of this function. Practically, it is
easier to use the log-likelihood which is defined as

lnL(θ|x)= L(θ1, . . . ,θk|X1, . . . , Xn)=
n∏

i=1
lnf (X i|θ1, . . . ,θk) (2.11)
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Let us estimate the parameters of the truncated normal distribution
using the MLE. The likelihood for the truncated normal distribution is
given as

L(µ,σ2)=
n∏

i=1
f (X i)= (z)−n

(√
2πσ2

)
exp

[
−∑n

i=1(X i −µ)2

2σ2

]
(2.12)

The log-likelihood of the above function can be written as

l = lnL(µ,σ2)=−nln(z)−nln(
√

2πσ2 )−
∑n

i=1(X i −µ)2

2σ2 (2.13)

Considering the doubly truncated normal distribution case, the
probability function can be written as,

Ψ(µ,σ)=
∫ b

a

1p
2πσ2

exp
[−(X −µ)

2σ2

]
dX (2.14)

Ψµ(µ,σ)= ∂Ψ

∂µ
=

∫ b

a
exp

[−(X −µ)
2σ2

]
X −µ

σ3
p

2π
dX (2.15)

Ψσ(µ,σ)= ∂Ψ

∂σ
=

∫ b

a
exp

[−(X −µ)
2σ2

][
(X −µ)2

σ4
p

2π
− 1

σ2
p

2π

]
dX (2.16)

Therefore, the gradient vector of the log-likelihood function with respect
to the parameter µ and σ can be given as

G =
[

∂l
∂µ
∂l
∂σ

]
=

−nΨµ

Ψ
− 1

σ2 (nµ−∑n
i=1 X i)

−nΨσ

Ψ
− n

σ
+ (

∑n
i=1(X i−µ)2

σ3 )

 (2.17)

The solution for the system of equations can be obtained using Newton
Raphson’s method. The procedure for singly truncated normal distribution
would be the same; only the limits of the sample space will vary.

The likelihood for truncated log-normal distribution is given as

L(λx,ζ2
x)=

n∏
i=1

f (X i)= (z1)−n
(√

2π2ζ2
x

)
exp

[
−∑n

i=1(ln(X i −a)−λx)2

2ζ2
x

]
(2.18)
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The log-likelihood function of eq. (2.18) can be written as

l = lnL(λx,ζ2
x)=−nln(z1)−nln(

√
2πζ2

x )−
∑n

i=1(ln(X i −a)−λx)2

2ζ2
x

(2.19)

Considering Yi = X i −a. Eq. (2.3) for doubly truncated distribution can be
written as

f (x)= 1

ζxx
p

2π
exp

[
−Y −λx

ζx

]2

, a <Y < b (2.20)

The above equation can be written as a function of Ψ,

Ψ(λx,ζx)=
∫ b

a

1√
2πζ2

x

exp
[−(Y −λx)

2ζ2
x

]
dY (2.21)

Ψλx(λx,ζx)= ∂Ψ

∂λx
=

∫ b

a
exp

[−(Y −λx)
2ζ2

x

]
Y −λx

ζ3
x
p

2π
dY (2.22)

Ψζx(λx,ζx)= ∂Ψ

∂ζx
=

∫ b

a
exp

[−(Y −λx)
2ζ2

x

][
(Y −λx)2

ζ4
x
p

2π
− 1

ζ2
x
p

2π

]
dY (2.23)

Hence, the gradient vector of the log-likelihood function can be obtained
as

G =
[

∂l
∂λx
∂l
∂ζx

]
=

−nΨλx
Ψ

− 1
ζ2

x
(nλx −∑n

i=1 Yi)

−nΨζx
Ψ

− n
ζx
+ (

∑n
i=1(Yi−λx)2

ζ3
x

)

 (2.24)

The solution for the system of equations can be obtained using Newton
Raphson’s method. Once the statistical parameter λx and ζX are
calculated, they can be substituted into eq. (2.6) to construct the
truncated log-normal distribution.

2.2 Comparative Studies of Truncated Distributions based on
Censored Samples

With the help of MLE technique explained in the previous section,
the parameters of the truncated distribution for different condition can be
calculated. Normal and log-normal truncated distributions are developed

46



for the undrained shear strength (su) of the soil present on the bank of
Nipigon river, Nipigon, Ontario, Canada collected using vane shear test.
The data is presented in Table 2.1.

Table 2.1: su of the soil in kN/m2 present at the bank of Nipigon river,
calculated using vane shear test by Singh (2018).

55 35 47 39 38 56 57 52 69 68 52 35 102 42
35 42 40 40 62 60 70 72 35 44 59 42 100 32
72 85 70 47 75 82 69 72 68 40 42 71 55

Let us develop the truncated normal and log-normal distributions
for different condition like doubly truncated, lower truncated and upper
bound truncated distribution based on the data present in Table 2.1 and
check for the best fit among the two distribution types for each case. K-S
test for good fitness investigation with 1% significance is carried out on the
undrained shear strength data presented in Table 2.1 whose true mean
and standard deviation of the is 56.8kN/m2 and 17.9kN/m2, respectively.

2.2.1 Methodology

Since, there are only 41 entries of su in Table 2.1, the entries
of the sample space can be increased by generating random numbers
which represents the same true mean and standard deviation. Table
2.2 shows the different size of the sample that is generated and the
one with least MSE value is chosen. The sample size of 5000 has got
the least error of 0.0006 and hence, it is selected to generate samples.
Initially, the truncation point is fixed and the sample space is reduced.
Therefore, censored sample space is obtained. The truncated normal mean
and standard deviation is calculated by equating eq. (2.17) to zero and
solving it using Newton Raphson technique. Similarly, for truncated log-
normal mean and standard deviation is determined solving eq. (2.24).
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Table 2.2: Undrained shear strength of different sample size generated on
true mean and standard deviation

Sample Size Mean Standard deviation MSE
500 56.4096 18.5770 0.2949
1000 56.8353 18.1288 0.0266
5000 57.1493 17.9762 0.0706
10000 56.8334 18.0021 0.0061
50000 56.7473 17.9194 0.0006
100000 56.8158 17.9236 0.0008

2.2.2 Results and Discussions

• In the case of Lower bound truncated probability distribution, the
lower bound truncation point is fixed at 32kN/m2. The normal and
log-normal truncated distributions are shown in Figs. 2.1 and 2.2,
respectively, and the K-S investigation for the best-fit is shown in
Tables 2.3 and 2.4, respectively. From K-S test table, D0.01

n = 0.25
and it is found that both distributions pass the test.

• In the case of the doubly truncated probability distribution, the lower
bound is fixed at 32kN/m2 and the upper bound is maintained at
102kN/m2. The normal and log-normal truncated distributions are
shown in Figs. 2.3 and 2.4, respectively and the K-S investigation for
the best-fit are shown in Tables 2.5 and 2.6, respectively. From K-S
test table, D0.01

n = 0.25 and it is found that the truncated log-normal
distribution passes the test but the truncated normal distribution
fails.

• To develop upper truncated normal distribution, the truncation point is
fixed as 102kN/m2. The normal and log-normal truncated
distributions are shown in Figs. 2.5 and 2.6, respectively and the
K-S investigation for the best-fit are shown in Tables 2.7 and 2.8,
respectively. From K-S test table, D0.01

n = 0.25 and the maximum
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Figure 2.1: Lower bound truncated normal distribution of censored sample

values lies to be 0.239 for both distributions. It is found that both
distributions pass the test.

The statistical parameters µ and σ of truncated normal
distribution for all the three different conditions are estimated by solving
eq. (2.17). Table 2.9 shows the estimated values of µ and σ for different
truncated normal distributions. Truncated normal distributions are
constructed by using the estimated values of µ and σ in eq. (2.4) and they
are shown in Figs. 2.2, 2.4 and 2.6. Similarly, the statistical parameters
λx and ζx of truncated log-normal distribution for all the three different
conditions are estimated by solving Eq. (2.24) and they are presented in
Table 2.10. Using these estimated statistical values, truncated log-normal
distributions are constructed and shown in Figs. 2.2, 2.4 and 2.6.
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Figure 2.2: Lower bound truncated log-normal distribution of censored
sample

Table 2.3: K-S test for lower truncated normal
distribution of su

m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
1 32 0.02 0.00 0.024
2 35 0.05 0.07 0.020
3 35 0.07 0.07 0.005
4 35 0.10 0.07 0.029
5 35 0.12 0.07 0.053
6 38 0.15 0.14 0.007
7 39 0.17 0.16 0.008
8 40 0.20 0.19 0.009
9 40 0.22 0.19 0.033
10 40 0.24 0.19 0.057

Continued on next page
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Table 2.3 – continued from previous page
m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
11 42 0.27 0.23 0.034
12 42 0.29 0.23 0.059
13 42 0.32 0.23 0.083
14 42 0.34 0.23 0.239
15 44 0.37 0.28 0.084
16 47 0.39 0.35 0.039
17 47 0.41 0.35 0.063
18 52 0.44 0.46 0.025
19 52 0.46 0.46 0.001
20 55 0.49 0.53 0.040
21 55 0.51 0.53 0.016
22 56 0.54 0.55 0.012
23 57 0.56 0.57 0.008
24 59 0.59 0.61 0.022
25 60 0.61 0.63 0.016
26 62 0.63 0.66 0.027
27 68 0.66 0.76 0.098
28 68 0.68 0.76 0.073
29 69 0.71 0.77 0.063
30 69 0.73 0.77 0.038
31 70 0.76 0.78 0.027
32 70 0.78 0.78 0.003
33 71 0.80 0.80 0.009
34 72 0.83 0.81 0.021
35 72 0.85 0.81 0.045
36 72 0.88 0.81 0.070
37 75 0.90 0.84 0.060

Continued on next page
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Table 2.3 – continued from previous page
m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
38 82 0.93 0.90 0.023
39 85 0.95 0.92 0.028
40 100 0.98 0.98 0.004
41 102 1.00 0.98 0.017

Table 2.4: K-S test for lower truncated log-
normal distribution of su

m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
1 32 0.02 0.00 0.024
2 35 0.05 0.12 0.066
3 35 0.07 0.12 0.042
4 35 0.10 0.12 0.018
5 35 0.12 0.12 0.007
6 38 0.15 0.22 0.076
7 39 0.17 0.26 0.086
8 40 0.20 0.29 0.094
9 40 0.22 0.29 0.069
10 40 0.24 0.29 0.045
11 42 0.27 0.35 0.083
12 42 0.29 0.35 0.058
13 42 0.32 0.35 0.034
14 42 0.34 0.35 0.239
15 44 0.37 0.41 0.043
16 47 0.39 0.49 0.097
17 47 0.41 0.49 0.073

Continued on next page

52



Table 2.4 – continued from previous page
m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
18 52 0.44 0.60 0.159
19 52 0.46 0.60 0.135
20 55 0.49 0.65 0.166
21 55 0.51 0.65 0.141
22 56 0.54 0.67 0.134
23 57 0.56 0.69 0.125
24 59 0.59 0.72 0.131
25 60 0.61 0.73 0.120
26 62 0.63 0.76 0.121
27 68 0.66 0.82 0.160
28 68 0.68 0.82 0.136
29 69 0.71 0.83 0.120
30 69 0.73 0.83 0.096
31 70 0.76 0.84 0.080
32 70 0.78 0.84 0.056
33 71 0.80 0.84 0.039
34 72 0.83 0.85 0.022
35 72 0.85 0.85 0.002
36 72 0.88 0.85 0.027
37 75 0.90 0.87 0.030
38 82 0.93 0.91 0.017
39 85 0.95 0.92 0.029
40 100 0.98 0.96 0.014
41 102 1.00 0.97 0.035
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Figure 2.3: Doubly truncated normal distribution of censored sample

Figure 2.4: Doubly truncated log-normal distribution of censored sample
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Table 2.5: K-S test for doubly truncated normal
distribution of su

m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
1 32 0.02 0.00 0.024
2 35 0.05 0.03 0.020
3 35 0.07 0.03 0.044
4 35 0.10 0.03 0.069
5 35 0.12 0.03 0.093
6 38 0.15 0.06 0.090
7 39 0.17 0.07 0.105
8 40 0.20 0.07 0.120
9 40 0.22 0.07 0.145
10 40 0.24 0.07 0.169
11 42 0.27 0.09 0.176
12 42 0.29 0.09 0.200
13 42 0.32 0.09 0.225
14 42 0.34 0.09 0.239
15 44 0.37 0.11 0.256
16 47 0.39 0.13 0.256
17 47 0.41 0.13 0.280
18 52 0.44 0.17 0.266
19 52 0.46 0.17 0.291
20 55 0.49 0.19 0.294
21 55 0.51 0.19 0.318
22 56 0.54 0.20 0.336
23 57 0.56 0.21 0.353
24 59 0.59 0.22 0.365
25 60 0.61 0.23 0.383
26 62 0.63 0.24 0.395

Continued on next page
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Table 2.5 – continued from previous page
m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
27 68 0.66 0.27 0.387
28 68 0.68 0.27 0.412
29 69 0.71 0.28 0.431
30 69 0.73 0.28 0.456
31 70 0.76 0.28 0.475
32 70 0.78 0.28 0.500
33 71 0.80 0.29 0.520
34 72 0.83 0.29 0.540
35 72 0.85 0.29 0.564
36 72 0.88 0.29 0.588
37 75 0.90 0.30 0.600
38 82 0.93 0.33 0.600
39 85 0.95 0.34 0.616
40 100 0.98 0.37 0.611
41 102 1.00 0.37 0.632

Table 2.6: K-S test for doubly truncated log-
normal distribution of su

m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
1 32 0.02 0.00 0.024
2 35 0.05 0.07 0.026
3 35 0.07 0.07 0.002
4 35 0.10 0.07 0.023
5 35 0.12 0.07 0.047
6 38 0.15 0.15 0.004

Continued on next page
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Table 2.6 – continued from previous page
m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
7 39 0.17 0.18 0.005
8 40 0.20 0.20 0.006
9 40 0.22 0.20 0.019
10 40 0.24 0.20 0.043
11 42 0.27 0.25 0.018
12 42 0.29 0.25 0.042
13 42 0.32 0.25 0.067
14 42 0.34 0.25 0.239
15 44 0.37 0.30 0.067
16 47 0.39 0.37 0.022
17 47 0.41 0.37 0.046
18 52 0.44 0.48 0.037
19 52 0.46 0.48 0.012
20 55 0.49 0.53 0.046
21 55 0.51 0.53 0.022
22 56 0.54 0.55 0.016
23 57 0.56 0.57 0.010
24 59 0.59 0.61 , 0.020
25 60 0.61 0.62 0.013
26 62 0.63 0.65 0.020
27 68 0.66 0.74 0.081
28 68 0.68 0.74 0.056
29 69 0.71 0.75 0.045
30 69 0.73 0.75 0.020
31 70 0.76 0.76 0.008
32 70 0.78 0.76 0.016
33 71 0.80 0.78 0.029

Continued on next page
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Figure 2.5: Upper bound truncated normal distribution of censored sample

Table 2.6 – continued from previous page
m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
34 72 0.83 0.79 0.042
35 72 0.85 0.79 0.066
36 72 0.88 0.79 0.091
37 75 0.90 0.82 0.083
38 82 0.93 0.88 0.043
39 85 0.95 0.91 0.045
40 100 0.98 0.99 0.016
41 102 1.00 1.00 0.000
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Figure 2.6: Upper bound truncated log-normal distribution of censored
sample

Table 2.7: K-S test for Upper truncated normal
distribution of su

m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
1 32 0.02 0.08 0.058
2 35 0.05 0.11 0.062
3 35 0.07 0.11 0.038
4 35 0.10 0.11 0.013
5 35 0.12 0.11 0.011
6 38 0.15 0.15 0.001
7 39 0.17 0.16 0.012
8 40 0.20 0.17 0.022
9 40 0.22 0.17 0.047
10 40 0.24 0.17 0.071

Continued on next page
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Table 2.7 – continued from previous page
m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
11 42 0.27 0.20 0.066
12 42 0.29 0.20 0.090
13 42 0.32 0.20 0.115
14 42 0.34 0.20 0.239
15 44 0.37 0.24 0.131
16 47 0.39 0.29 0.101
17 47 0.41 0.29 0.125
18 52 0.44 0.39 0.049
19 52 0.46 0.39 0.073
20 55 0.49 0.46 0.032
21 55 0.51 0.46 0.057
22 56 0.54 0.48 0.059
23 57 0.56 0.50 0.061
24 59 0.59 0.54 0.041
25 60 0.61 0.57 0.044
26 62 0.63 0.61 0.025
27 68 0.66 0.73 0.072
28 68 0.68 0.73 0.047
29 69 0.71 0.75 0.041
30 69 0.73 0.75 0.017
31 70 0.76 0.77 0.010
32 70 0.78 0.77 0.015
33 71 0.80 0.78 0.022
34 72 0.83 0.80 0.030
35 72 0.85 0.80 0.055
36 72 0.88 0.80 0.079
37 75 0.90 0.84 0.059

Continued on next page
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Table 2.7 – continued from previous page
m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
38 82 0.93 0.92 0.006
39 85 0.95 0.94 0.008
40 100 0.98 1.00 0.021
41 102 1.00 1.00 0.001

Table 2.8: K-S test for Upper truncated log-
normal distribution of su

m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
1 32 0.02 0.05 0.026
2 35 0.05 0.09 0.036
3 35 0.07 0.09 0.012
4 35 0.10 0.09 0.013
5 35 0.12 0.09 0.037
6 38 0.15 0.13 0.015
7 39 0.17 0.15 0.022
8 40 0.20 0.17 0.028
9 40 0.22 0.17 0.053
10 40 0.24 0.17 0.077
11 42 0.27 0.21 0.062
12 42 0.29 0.21 0.086
13 42 0.32 0.21 0.110
14 42 0.34 0.21 0.239
15 44 0.37 0.25 0.116
16 47 0.39 0.32 0.072
17 47 0.41 0.32 0.097

Continued on next page
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Table 2.8 – continued from previous page
m su Sn = m/n Fe Dn = max|Fx(xi)−Sn(xi)|
18 52 0.44 0.44 0.004
19 52 0.46 0.44 0.028
20 55 0.49 0.50 0.017
21 55 0.51 0.50 0.008
22 56 0.54 0.53 0.010
23 57 0.56 0.55 0.012
24 59 0.59 0.59 0.006
25 60 0.61 0.61 0.002
26 62 0.63 0.65 0.017
27 68 0.66 0.75 0.095
28 68 0.68 0.75 0.071
29 69 0.71 0.77 0.061
30 69 0.73 0.77 0.037
31 70 0.76 0.78 0.026
32 70 0.78 0.78 0.002
33 71 0.80 0.80 0.009
34 72 0.83 0.81 0.020
35 72 0.85 0.81 0.044
36 72 0.88 0.81 0.069
37 75 0.90 0.84 0.058
38 82 0.93 0.91 0.017
39 85 0.95 0.93 0.020
40 100 0.98 1.00 0.019
41 102 1.00 1.00 0.000
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Table 2.9: Statistical parameters of the truncated normal distribution
calculated using MLE

Truncated Distribution Type µ (kN/m2) σ (kN/m2)
Lower bound trun. normal 40.8749 26.5877

Doubly trun. normal 19.7879 40.1499
Upper bound trun. normal 57.1179 18.1112

Table 2.10: Statistical parameters of the truncated log-normal distribution
calculated using MLE

Truncated Distribution Type λx (kN/m2) ζx (kN/m2)
Lower bound trun. log-normal 3.9119 0.3691

Doubly trun. log-normal 3.8831 0.5374
Upper bound trun. log-normal 4.0179 0.3326

2.3 Summary

In this chapter, the procedure for developing truncated normal
and log-normal distribution using information available from censored
samples has been explained. MLE method has been used for determining
the parameters of PDF based on censored samples for different truncation
conditions. On generating the truncated PDF, a comparative study is made
to judge the best-fit distribution for censored data of sample space.

63



Chapter 3

Reliability Analysis using Truncated
Distributions

The minimum distance between the origin and the limit state boundary,
i.e., the reliability index β should be globally minimum when performing
reliability analysis on an engineering system. This chapter presents a new
algorithm to search for the global minimum distance between the origin
and the limit state curve using the interior point method.

3.1 Global Search Technique

According to Liu and Der Kiureghian (1991), the distance
between the origin and the point on the limit state function should be
globally minimum because the minimization optimization in the
reliability depends on the initial guess. There might be several local
minimum distances between the origin and the limit state boundary
surface. With different initial guess, the value of β can vary. This distance
does not reflect the actual reliability index. It is essential in
Hasofer-Lind’s reliability analysis to locate the very nearest and globally
minimum distance of the origin to the limit state boundary. The global
search process of the minimum distance is very crucial in reliability
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analysis, and hence it should be highly accurate for large tolerance level.

A new algorithm is incorporated in this thesis by using global
search-fmincon function available in MATLAB programming. The function
uses the interior point method to perform minimum optimization. The
function fmincon can optimize a non-linear equation that is subjected to
a set of constraints. The solution obtained using fmincon is going to be
the local minimum distance. The result of this function depends highly
on the initial guess which was provided to start iteration. It identifies the
minimum value which is near to the start point for the search algorithm.
Neither-less judging the result as the local nor global minimum, and the
function throws the value of β. The results obtained by these functions
are meant to be less accurate.

In the global search algorithm, the function will undergo
multiple directions in search of minimum distance. It is similar to
multi-start fmincon. From the set of local minimum identified by the
fmincon function, the one which is least of all the values is returned by
the global-search function. The function takes the initial guesses as the
center point and starts to search for the minimum value in one direction.
Once the function locates a minimum value, the search is carried out in
another direction. The function will search in all possible directions until
it finds the minimum value ending up in Not-A-Number (NAN) which
means infinity or obtains the maximum tolerance level. The advantage of
this algorithm is that the search time is less, the function calculates the
first-order derivatives by itself which is the part of the interior point
method, and the search distance is globally minimum. This algorithm
provides the advantage of performing reliability analysis for any
complicated performance function for which first-order derivatives are
difficult to obtain.
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3.2 FORM for Truncated Distribution

In the reliability analysis of an engineering model that consists
of the truncated distribution, there will be a set of limitation for the flow
of search design points beyond the truncated point. Hence, this also forms
a constraint in the reliability analysis besides performance function Z = 0
in eq. (1.54). In the Z = R −S system, if the random variable S has a
truncated distribution, the optimization for search of the design points is
not supposed to be carried out beyond the truncated point of S. Therefore,
the model will have two constraints, i.e. Z = 0 and S should be greater
or less than the truncated point depending on the truncation condition.
Inspired by the idea of Melchers et al. (2003), the following algorithm
is proposed. The conceptual ideas of the interior point method is being
well explained by Wächter and Biegler (2006). The algorithm of reliability
optimization is explained below.

Let us consider the system for reliability analysis consisting of
normal independent random variable X1, X2, . . . , Xn involved in the
performance function g(X ), and X ′ represents the reduced space variable
which can be calculated using the procedure explained in eq. (1.53).
Consider p(X ) as a function of eq. (1.57) used for determining the
minimum distance between the origin and limit state curve which reflects
β. The term X is lower bound truncated at a.

p(X )= d = min
√

X ′
1

2+ X ′
2

2+·· ·+ X ′
n

2

= min
√

X ′T X ′
(3.1)

subjected to

g(X )= 0

X ≥ a
(3.2)
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Step 1: Transformation of the problem statement to standard form.

p(X )= min
√

X ′T X ′ (3.3)

subjected to

c(X )= 0

S ≥ a
(3.4)

where

c(X )=
g(X )= 0

X −a−S = 0
(3.5)

where S is the stack variable which functions to set the inequality
constraint equation to zero. c(X ) is the function that includes both
equality and inequality constraints.

Step 2: Use the barrier function for the inequality constraints, i.e., X ≥ a
by including the parameter ν.

X ∈ Rn, p(X )−νln
n∑

i=1
(X )= 0 (3.6)

subjected to
c(X )= 0 (3.7)

Step 3: Apply Karush-KuHn-Tucker (KKT) conditions (Wächter and
Biegler, 2006) for the barrier problem with respect to X = 0.

∆p(X )+λ∆c(X )−ν
n∑

i=1

1
X i

= 0

c(X )= 0
(3.8)

where λ is the coefficient for equality constraint.
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Step 4: Define zi = ν
X i

. Since a new term zi is included, the modified
version of KKT condition can be wriiten as

∆p(X )+λ∆c(X )− z = 0

c(X )= 0

(X z−ν)e = 0

(3.9)

where e is a singular matrix.

Step 5: Establish the modified set of KKT condition using Newton
Raphson’s method for search direction concerning to X.

w ∆c(Xk) −I
∆c(Xk)T 0 0

zk 0 Xk




dX
k

dλ
k

dz
k

=−


∆p(Xk)+λ∆c(Xk)− zk

c(Xk)
Xkzke−ν je

 (3.10)

where w = ∆2
X X L(X ,λ, z) = ∆2

X X (p(Xk)+λc(Xk)T − z), zk and Xk have
diagonal matrix structure. The term k represents iteration count and ν j

represents the fixed value of barrier function.

Step 6: Make initial guess of Xk and λk. Fixed the value of ν j. Rearrange
the Newton Raphson’s into symmetric linear system.[

w+E ∆c(X )
∆c(X )T 0

][
dX
dλ

]
=−

[
∆p(X )+λ∆c(X )

c(x)

]
(3.11)

where
E = X−1∗ z (3.12)

dz = νX−1e− z−∑
dX (3.13)

Solve the system of equations by the iterative procedure of K + 1
equations in Newton Raphson’s technique until KKT conditions and
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tolerance level are satisfied. Revise the initial guess so that the complete
model is analyzed.

xk+1 = xk +αx ∗dx
k

λk+1 =λk +αλ∗dλ
k

(3.14)

The value of α ranges from 0 and 1. Once the required X values satisfying
the above-mentioned criteria are determined, they are substituted in
the function p(X ) to determine β. The generalized idea of the proposed
algorithm is shown in Fig. 3.1.

Example 1: Consider the limit state function shown in eq. (3.15). The
random variable x1 is truncated at lower bound value of 9. The mean
and standard deviation of the random variable x1 is 10.29 and 0.794,
respectively. Random variable x2 is normally distributed with mean of
12.0 and standard deviation equal to 1.5. This problem is extracted from
Melchers et al. (2003).

z = 5x1+3x1x2−240 (3.15)

Based on the proposed algorithm, a sample iteration procedure is shown
below. The problem statement for truncated based FORM can be written
as

p(x)= min

√[
xi −µi

σi

]
∗

[
xi −µi

σi

]T

, i = 1,2 (3.16)

subjected to

g(x)= 5x1+3x1x2−240

x1 ≥ 9
(3.17)

Step 1: Converting the problem statement into standard form.

p(x)= min

√[
xi −µi

σi

]
∗

[
xi −µi

σi

]T

, i = 1,2 (3.18)
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Define the performance function g(X) and truncation criteria

Convert the set of constraints to standard form c(X)

Set up the barrier function with the help of parameter ν

Apply the KKT conditions and modify the form

Assign initial values for X 0,λ0 and z0

Assign new values
for X ,λ and z

If random variable
are correlated ?

If random variable
is non-normal ?

Cholesky decomposition

Perform Newton
Raphson’s method

for eq. (3.11)

Rackwitz-Fisseler
Transformation

Global search ? Substitute global solution in p(X )

Calculate β.

NO Yes

No

Yes

No
Yes

Figure 3.1: Algorithm for FORM based on truncated distribution
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subjected to

c(x)= 0

S ≥ 0
(3.19)

where

c(x)=
5x1+3x1x2−240

x1−9−S
(3.20)

The function p(x) can be written as

p(x)=
√[

xi −µi

σi

]
∗

[
xi −µi

σi

]T

, i = 1,2

=
√[

xi −µi

σi

]2

=
2∑

i=1

xi −µi

σi

(3.21)

Step 2: Setting up the barrier function ν for inequality constraint.

p(x)−ν
2∑

i=1
lnxi = 0 (3.22)

subjected to
c(x)= 0 (3.23)

Step 3: Applying KKT conditions for above problem statement with
equating to zeros.

∆p(x)+λ∆(x)−ν
2∑

i=1

1
xi

= 0

c(x)= 0
(3.24)

Step 4: Defining the z matrix and the modified version of KKT condition
can be written as

∆p(x)+λ∆(x)− z = 0

c(x)= 0

xze−νe = 0

(3.25)
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where e is singular matrix and z is diagonal matrix which can be written
as

z =
[

z1 0
0 z2

]
z1 & z2 are equal to ν

x1
and ν

x2
, respectively.

Step 5: Establishing the modified set of KKT condition feasible to Newton
Raphson’s method.

∆xc(x)=
[

5+3x2 −1
3x1 0

]

∆x p(x)=
[

1
σ1
1
σ2

]
For constructing the hessian matrix w,

w =∆2
xxL(x,λ, z)=∆2

xx(p(x)+λ1c1(x)T +λ2c2(x)T − z) (3.26)

By taking the second order partial derivatives, we get

∆2
xx p(x)= 0 ,

∆2
xxc1(x)=

[
0 3
3 0

]
∆2

xxc2(x)= 0

Therefore,

w =λ1∗∆2
xxc1(x)

=λ1∗
[

0 3
3 0

]
(3.27)
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
w ∆c1(xk) ∆c2(xk) −I

∆c1(xk)T ∆c2(xk)T 0 0
z 0 0 xk





dx1
k

dx2
k

dλ1
k

dλ2
k

dz1
k

dz2
k


=

−


∆p(xk)+λ1k∆c1(xk)T +λ2k∆c2(xk)T − zk

c(xk)
xkzke−νe



(3.28)

Step 6: Transforming the system of equation into symmetrically linear.
The value of barrier function is fixed as ν j = 1 and alpha values in eq. 3.14
is taken as 1. Let the initial guesses for x1k = 10.29 , x2K = 12.0, λ1K = 0,
λ2K = 0.
From eq. (3.20),

S = 10.29−9

= 1.29
(3.29)

From eq. (3.12),

E =
[

0.0972 0
0 0.0833

]
∗

[
1

10.29 0
0 1

12

]

=
[

0.0094 0
0 0.0069

] (3.30)

Therefore, the linear system of eq. (3.28) can be written as
0.0094 0 41 1

0 0.0069 30.87 0
41 30.87 0 0
1 0 0 0

∗


dx1

k

dx2
k

dλ1
k

dλ2
k

=


1.26
0.67
−240

9

 (3.31)
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The above equation is in the form of AX = B. Therefore, X = A−1B.
dx1

k

dx2
k

dλ1
k

dλ2
k

=


9.0000

−19.7279
0.0261
0.1047

 (3.32)

The new iterative values using eq. (3.14) are found to be x1 = 19.29,
x2 =−7.73, λ1 = 0.0261 and λ2 = 0.1047. Therefore, the iterative procedure
carries for different values of ν j till the KKT conditions are satisfied.

On performing the truncated based FORM using MATLAB, β

is found to be 3.5756 and probability of failure was 1.7470∗10−4. This
solution matches approximately with the results of Melchers et al. (2003)
(β= 3.61, the probability of failure = 1.55∗10−4). The analysis is carried
out using MATLAB programming, and the sample output is presented in
appendix A.

3.3 Truncated based Reliability Analysis of Bearing Capacity
of Strip Footing

The probability of failure of a shallow strip footing is being
investigated whose width is 1.2m, and the surcharge load on the footing
is 18 kPa. The load at the base of the footing is 200 KN/m, and the unit
weight of the soil is about 20 KN/m2. The cohesion and the frictional
angle are considered to be a normal random variable whose mean and
standard deviation are 20,5 KN/m2 and 15,2°, respectively. It was found
that the correlation coefficient between the variables is -0.5.

Let’s determine the probability of failure with a condition that
the designing of the footing is done based on the inference that the upper
bound of the cohesion is limited at 30KN/m2 and the upper bound
truncated point of the frictional angle is 18°. The performance function of
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the model is shown in eq. (3.33). The problem statement is taken from
Low (2014).

PerFn = qu − q (3.33)

where

qu = cNc + p0Nq + B
2
γNγ

Nq = eπtanφtan2(45+ φ

2
)

Nc = (Nq −1)cotφ

Nγ = 2(Nq −1)tanφ

(3.34)

c is the cohesion, φ denotes frictional angle, p0 is the surcharge load,
and γ is the unit weight of the soil. The estimated truncated normal
distribution statistical parameters using MLE for cohesion and frictional
angle is (19.8,4.95)KN/m2 and (14.9,1.97)°, respectively. The truncated
normal probability distribution of cohesion and the frictional angle is
shown in Figs. 3.2 and 3.3, respectively. The probability of failure is found
to be 0.8884, corresponding to β=-1.2182.

3.3.1 Truncated based Reliability Analysis of Bearing Capacity of
Strip Footing at Nipigon

The reliability analysis can be performed on truncated log-normal
distribution developed based on censored samples. Let us consider the
log-normal probability distribution of undrained shear strength which
is being illustrated in chapter 2 (Figs. 2.2, 2.4, & 2.6). Eq. (3.33) is used
as performance function. The depth of the footing is taken as 1.2m, and
the load at the base of the footing is taken as 200 KN/m. Since the soil is
clay, the parameter φ becomes zero. The density of the soil is considered
as a random variable which follows log-normal distribution, and the
statistical parameter is taken as (19,3.8) (Singh, 2018). By making the
limitation for the flow of design point as explained in section 3.2. β and
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Figure 3.2: Upper bound truncated normal probability distribution of
cohesion

Figure 3.3: Upper bound truncated normal probability distribution of
frictional angle
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the probability of failure for the strip footing are determined for various
truncation conditions and shown in Table 3.1.

Table 3.1: Reliability analysis of strip footing based on censored samples

Truncated Distribution Condition β Probability of Failure
Doubly truncated 1.5029 0.0664

Lower bound truncated 1.2692 0.1022
Upper bound truncated 1.4064 1.4064

3.4 Summary

In current chapter, determining the Hasofer-Lind’s reliability
index using interior point method available in fmincon function has been
discussed. The proposed algorithm produced acceptable results. Later,
truncated based FORM for soil bearing capacity of strip footing of two
different problem statements are carried out. From the results obtained,
it is concluded that the proposed algorithm can be used to determine the
probability of failure using FORM based on truncated distributions.
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Chapter 4

Soil Liquefaction Potential

Triggering of soil liquefaction arises due to the increase in the
pore-pressure which is a function of the ground motion induced by the
earthquake. In-situ test makes it feasible to determine the soil
liquefaction resistance offered by the soil. An empirical relationship can
be developed using artificial intelligence and regression analysis based on
historical post-liquefaction cases. This chapter presents the procedure to
evaluate the liquefaction potential of the soil using deterministic,
probabilistic and reliability approach.

4.1 Methodolgy

For evaluating the liquefaction potential of soil strata, it is
important to investigate the relationship between the Cyclic Stress Ratio
(CSR) and Cyclic Resistance Ratio (CRR) from past historical cases. With
this aspect about 213 post-liquefaction cases from Çetin et al. (2004) and
Çetin et al. (2016) are taken. The database is presented in Table B.1. The
table complies of 117 liquefied cases and 96 non-liquefied cases. The
details include the mean and standard deviation of the soil, site and
seismic parameters. For the analysis of the soil liquefaction potential,
parameters of seismic, soil and site like total pressure and effective
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pressure at the critical depth, horizontal peak ground acceleration, stress
reduction factor, SPT-N value, fineness content of the soil and magnitude
of the earthquake must be considered. The significance of these
parameters has been already discussed in the chapter 1. For the
reliability analysis of soil liquefaction potential, the coefficient of
correlations are taken from the Juang et al. (2008).

In the present study, the prediction for the occurrence of soil
liquefaction is being done using Liquefaction Index (LI) function which is
developed using ANN. LI is a function that is framed using liquefaction
parameters which separates the liquefaction cases from non-liquefaction
cases. With the help of LI function and the search algorithm, critical
CSR values are determined. The neural network model for LI function is
developed based on the guidelines provided by Beale et al. (2012). On the
other hand, the clean-sand equivalent SPT-N count (N1)60cs is determined
using eqs. 1.13-1.19. The boundary curve reflecting the "limit state curve"
is determined using regression analysis between the critical cyclic stress
ratio (CRR) and (N1)60cs. Using the limit state curve, liquefaction potential
is evaluated for 213 cases, and the maximum entropy distribution is
developed for both liquefaction and non-liquefaction cases. The Bayesian
function is used for developing the probability of liquefaction (PL).

For quantifying the uncertainty present and including them in
the model, reliability-based analysis associated with the Bayesian
function approach is used. The Bayesian theory of conditional probability
is used to relate factor of safety (Fs) with PL. Hasofer-Lind FORM is used
to carry out a reliability-based analysis of liquefaction potential. The
model which uses the global search option involved with f mincon
function with interior point method available in MATLAB programming
is used for determining the global minimum distance or reliability index
in the reduced space of Hasofer-Lind’s ellipsoid. Sensitivity analysis is
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Collection of Database

Preparation of data-set for ANN modelling

Development of Liquefaction Indicator function using ANN

Optimization of empirical relationship between CRR and (N1)60cs

Developing of PL −Fs function using the Bayesian mapping technique

Reliability Analysis of soil liquefaction on each case in the data-set

Sensitivity Analysis to identify the modelling uncertainty

Figure 4.1: Flowchart of the proposed research for developing relationships
to estimate the liquefaction potential

performed for determining the modeling uncertainty. MATLAB programs
are developed for the neural network model, the maximum entropy
probability distribution and reliability-based analysis. Rackwitz and
Fiessler (1978) method is used for the transformation of the maximum
entropy variables to the equivalent standard normal variables. Fig. 4.1
describes the sequential stages of research for developing soil liquefaction
potential relationships.
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4.2 Developing Relationship Between CRR and SPT-N

The preliminary step in framing the limit state curve is to
separate the liquefaction cases and non-liquefaction cases. The LI can
predict, the occurrence of liquefaction in the site. LI function can be
developed with the help of ANN by representing one as liquefied case and
zero as the non-liquefied case. Liquefaction indicator is expressed as

LI = f (CSR, (N1)60,FCI,σ′
v) (4.1)

where LI stands for Liquefaction index, CSR is the cyclic stress ratio
that can be calculated using eq. 1.9 developed by Idriss and Boulanger
(2006), (N1)60 stands for the corrected SPT-N count, FCI denotes the Fines
Content Indicator, σ′

v stands for effective pressure at the critical depth.
The value of FCI is obtained based on the fineness content of the soil,
and presented in Table 4.1. FCI is classified into three categories, i.e.,
FC ≤ 5,5< FC < 35,FC ≥ 35, where FC stands for fineness content.

Triggering of the soil liquefaction is associated with the fineness
content of the soil, and hence based on the fineness content; adjustments
are made to SPT-N values. FCI is used for the transformation of the
corrected SPT-N values to clean sand equivalent SPT-N values. Therefore,
(N1)60 and FCI are the important parameters in calculating of soil
resistance to liquefaction (CRR).

Table 4.1: Fines content indicator Juang et al. (2000b)

Fineness content FC (%) Fines content indicator, FCI
FC ≤ 5 1

5 < FC < 35 2
FC ≥ 35 3

LI function has a high rate of non-linearity with the associated
parameters, and hence it is a complicated task to determine the exact
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relationship. By using appropriate ANN functions and number of neurons,
the effective model for LI function can be developed. Hence, an ANN model
for LI function is created using a three-layer feedforward back-propagation
network with four neurons in the hidden layer and one neuron in the
output layer. The number of neurons in the hidden layer is decided based
on the trial and error technique. The transformation function for each
neuron in both the layers is taken as Log-sigmoid. The function has the
limit from 0 to 1, which suits best for our case as 0 denotes non-liquefaction
and 1 indicates as liquefaction case. The feed forward back-propagation
neural network view for liquefaction indicator function is shown in Fig.
4.2 and the skeleton diagram is demonstrated in Fig. 4.3. Initially the
inputs have equal weighs. By gradually reducing the root mean square
of prediction errors during network training to an acceptable level, the
weights and biases are determined.

The mathematical expression of the described feed forward back-
propagation neural network can be written as

LI = fT

{
B0+

n∑
k=1

[
Wk fT

(
BHk +

m∑
i=1

WikPi

)]}
(4.2)

where B0 is the bias for the output layer which contains one neuron in
it; Wk is the weight of the connection between neuron k of the hidden
layer and the single output layer neuron; BHk is the bias at neuron k of
the hidden layer (k = 1,n); Wik is the weight of the connection between
input variable (i = 1,m) and neuron k of the hidden layer; Pi is the input
parameter. For LI function, the number of inputs are 4 as per eq. 4.1.

The definition of the log-sigmoid transformation function is given
as

fT(x)= 1
(1+ e−x)

(4.3)

The neurons have to be trained first using a set of data to identify the
type of case and to have better functionality. This is similar to the human
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Figure 4.2: Neural Network for LI function

Figure 4.3: Skeleton diagram of the neural network

brain. The learning of the neurons is later examined by using testing data.
The neurons are trained until the goals are being achieved. Levenberg-
Marquardt back-propagation is used as the training function since it
provides high computational efficiency (Juang and Chen, 1999).

A total of 163 cases are used for the training of ANN model, and
the rest of the 50 cases are used for the validation of the model. The
training set consits of 95 liquefaction cases and 68 non-liquefaction cases.
The testing set has 34 number of liquefaction cases and 16 number of
non-liquefaction cases. The input parameters CSR, (N1)60,FCI and σ′

v are
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normalized to value between 0 and 1. It is clear that the output set or the
targets describe liquefaction or non-liquefaction which is represented by 0
and 1, hence normalization is not required for these targets. Normalization
of the data is done using eq. 1.20. With the help of generalization ideas,
the issue of over-fitting or over-training of neurons that arises in the
neural network can be avoided. With generalization, the efficiency of
predicting the liquefaction condition improves. The ideology of taking
multiple numbers of neural networks as a tool of generalization is utilized
for modeling.

Once the training of multiple networks is over, based on the mean
square root (mse) value, the coefficient of determination (R2) and accurate
prediction of the soil liquefaction condition, the best network is selected.
Ten number of neural networks were used for generalization and the 3rd

network was found to satisfy above-mentioned criteria and hence it is
considered to be the best model. The output of the MATLAB programming
for the neural network modeling is shown in appendix C. The training
state of a network is shown in Fig. 4.4 and the training performance of
the best model is shown in Fig. 4.5.

The accuracy of the neural network model is calculated based
on the success rate. The success rate is explained by Juang and Chen
(2000), which is one of the appropriate approaches for measuring the
efficiency of the trained model. The success rate of the selected best model
is defined as the accurate prediction of the occurrence of liquefaction or
not. In order words, the prediction is awarded to be successful for the
case CRR>CSR provided that non-liquefaction was observed at the site.
This success can be even related to liquefaction in the same way, i.e., the
prediction is successful for CRR<CSR and liquefaction was experienced in
the site. The success rate of the best model was 93.89%. The correlation of
determination (R2) for the training set, validation set, and complete data
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Figure 4.4: Training state of neural network model

was found to be 0.95,0.71 and 0.89, respectively, and they are shown in
Figs. 4.6, 4.7 and 4.8. The details about the weight and bias of the best
model are presented in Table 4.2.

Using the developed best ANN model for LI function, the
unknown points that form boundary curve should be identified. For this
purpose, the searching algorithm for the unknown points developed by
Juang et al. (2000b) is used and the critical CSR value is calculated. The
searching algorithm for the critical CSR is shown in Fig. 4.9. Liquefied
and non-liquefied cases in the database can be represented as a point in
the limit state surface. The optimization procedure in the searching
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Figure 4.5: Training performance of ANN model

Table 4.2: Details about the weighs and bias of best model

Hidden Weight Bias

neuron Wik Wk Bk B0

(k) Input 1 Input 2 Input 3 Input 4 Output Hidden
layer

Output
layer

k=1 -2.02 -0.75 21.93 0.97 -2553.43 -8.41 -1625
k=2 188.25 52.67 64.85 54.02 419.16 -88.67
k=3 44.36 -7.08 -33.14 8.87 1962.74 1.03
K=4 -89.14 18.71 112.41 -20.78 1237.46 -12.88
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Figure 4.6: Comparison of target and ANN model prediction for training
set

Figure 4.7: Comparison of target and ANN model prediction for testing
set
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Figure 4.8: Comparison of target and ANN model prediction for complete
data-set

algorithm can be well understood by using the flowchart shown in Fig.
4.10. The liquefied cases can be located above the limit state curve, and
the non-liquefied case can be located below the limit state curve. This can
be explained by using performance function CRR−CSR.

When the CRR−CSR is equal to zero, the point lies on the limit
state boundary. If CRR −CSR > 1, liquefaction will not occur, and the
point lies below the limit state boundary. When CRR − CSR < 1,
liquefaction occurs, and the point lies above the boundary. The blue
square in Fig. 4.9 represents the non-liquefied case whereas the red circle
represents the liquefied case. The liquefied case follows path A and the
non-liquefied case follows path B. When dealing with the red circle that
lies above the limit state curve (liquefied case), the cyclic stress induced
by the earthquake is reduced following path A, and it is then evaluated in
the LI function obtained from the best ANN model (Eq. 4.2).
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Figure 4.9: Searching for points on the limit state boundary, modified from
Juang et al. (2000b)

This process of continuity in the decrease of CSR value carries
out till the red circle falls on the limit state curve, i.e., the value of the
LI changes from 1 to 0 and thus liquefaction condition changes from
liquefaction to non-liquefaction. Similar procedure was carried out for
the non-liquefaction state. The blue square follows the path along B, and
the cyclic stress induced by the earthquake is increased by a small value,
and each time the values are evaluated in the ANN-based developed LI
function (eq. 4.2). By doing so, the blue square follows path B, and once it
reaches the limit state boundary, the process of increasing the CSR value
comes to an end. The value of LI changes from 0 to 1 and therefore, the
liquefaction condition eventually changes from non-liquefied to liquefied
state. The updated CSR values are the critical cyclic stress (critical CSR or
CRR) values for the particular soil condition. The optimization of the CSR
values based on the above concept is carried out using a code developed,
with the help of MATLAB programming.
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Input data of case history σ′
v,CSR, (N1)60,FCI

Normalization of the input parameters for ANN model

LIQ?

CSR = CSR - ∆CSR CSR = CSR + ∆CSR

Calculate LI
from eq. 4.2

Calculate LI
from eq. 4.2

LIQ? LIQ?

Critical CSR

YES (PATH A) NO (PATH B)

NO YES

YES NO

Figure 4.10: Searching algorithm for critical CSR, modified from Juang
et al. (2000b)

Sometimes for a few cases, the optimization of the CSR values
may not be successful. This is well explained by Seed et al. (1984) and
Juang et al. (2000b). The critical CSR for such cases requires searching
beyond the upper and lower bound limit beyond the range of the database.
Using the search algorithm, a total of 187 data points have been identified.
These data points of critical CSR define the limit state surface. Critical
CSR is referred as CRR and it is a function of three parameters, (N1)60,
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FCI and σ′
v. It can be mathematically represented as

CRR = f ((N1)60,FCI,σ′
v) (4.4)

Based on eq. (4.4), the limit state equation can be established. The
relationship among the above parameters is highly non-linear. The clean
sand equivalent SPT-N count ((N1)60cs) can be calculated using eq. (1.13).
With the help of non-linear regression analysis, the relationship between
the critical CSR and (N1)60cs is determined. The best fit of the regression
model is found for reduced 187 data points, and shown in the Fig 4.11.
The best fit curve defines the limit state boundary for the liquefaction
potential. The empirical equation from regression analysis is

CRR7.5 =
[

(N1)60cs

82.3

]2

+
[

(N1)60cs

973.7

]
+

[
1

11.4

]
(4.5)

Empirical relationship of CRR7.5 found using regression analysis

Based on the above equation, potential of strong liquefaction
resistance offered by the soil can be determined. Observing Fig.4.11, it
can be commented that the relationship will have good performance for
(N1)60cs ≤ 35. Beyond this, the curve is defined with fewer points, and it
is hard to accurately predict the CRR7.5 using the obtained relationship.
Therefore, the application of eq. (4.5) is limited to 35, and beyond this
point, the effectiveness of prediction would be less. (N1)60cs ≥ 35 sense for
inter-medium soil type and hence there are less chance for soil liquefaction
to occur. Eq. (4.5) covers almost all the soil that can undergo liquefaction.
Fs against the soil liquefaction is defined as the ratio of CRR7.5 to CSR.
It is important to know that the probability of liquefaction occurrence
can be calculated using Fs. The relationship between the probability of
liquefaction and factor of safety can be developed using the Bayesian
mapping function technique. Initially, Fs is calculated for all the post-
liquefaction cases. Using the calculated values of Fs for both liquefaction
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Figure 4.11: Relationship between (N1)60cs and critical CSR7.5

and non-liquefaction cases, the histogram was plotted individually. From
the histogram, probabilities for liquefaction or non-liquefaction can be
determined.

The maximum entropy distribution of different orders are
developed for both the liquefaction categories. Using the calculated values
of Fs and Bayesian mapping function, the conditional probability of
liquefaction for the soil can be evaluated. According to Juang et al. (1999),
the probability of liquefaction based on the condition of Fs can be written
as

P(
L
Fs

)= P(Fs
L )P(L)

P(Fs
L )P(L)+P( Fs

NL )P(NL)
(4.6)

where P( L
Fs

) represents the probability of liquefaction for a particular Fs.
The term P(Fs

L ) is the probability distribution for liquefaction occurring at
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Fs. Similarly, P( Fs
NL ) is the probability distribution for non-liquefaction at

Fs. The terms P(L) and P(NL) represents prior probabilities of
liquefaction and non-liquefaction, respectively.

Eq. (4.6) can be further reduced by considering the term P( L
Fs

)
and P( Fs

NL )

P(
Fs

L
)=

∫ Fs+∆Fs

Fs

fL(x)dx (4.7)

P(
Fs

NL
)=

∫ Fs+∆Fs

Fs

fNL(x)dx (4.8)

where fL(x) and fNL(x) are the relative frequencies of Fs and can be
obtained from the PDF of liquefaction and non-liquefaction cases,
respectively. The change in the Fs is very less, ∆Fs −→ 0. Therefore, eq.
(4.6) can be rewritten as

P(
L
Fs

)= fL(Fs)P(L)
fL(Fs)P(L)+ fNL(Fs)P(NL)

(4.9)

Juang et al. (1999) has approximated the above equation with the help
of the maximum entropy principle. The entropy for liquefaction and non-
liquefaction is identical. Based on the concept explained on entropy in
chapter 1, it is clear that P(L)= P(NL).

PL = fL(Fs)
fL(Fs)+ fNL(Fs)

(4.10)

The 3rd order maximum entropy distribution was found to be the best fit
for liquefied cases as shown in Fig. 4.12. Whereas, the 5th order
maximum entropy distribution fits best for the non-liquefaction cases as
represented in Fig. 4.13. Now, the PDF for the liquefied and non-liquefied
cases is available. By using the Bayesian mapping technique eq. (4.10),
the function for PL −Fs is developed. The approximation of best fit for all
the liquefaction cases in PL −Fs is done using logistic regression and
shown in Fig. 4.14. The mapping equation is given as
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Figure 4.12: Probability distribution along with histogram for liquefied
cases

Figure 4.13: Probability distribution along with histogram for non-
liquefied cases
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Figure 4.14: PL −Fs along with the best fit mapping function

PL = 1

1+ (Fs
A )B

(4.11)

where A and B are the coefficients and were found to be 0.8922 and
4.085, respectively with a coefficient of correlation 0.98. On observing
Fig.4.14, it can be noticed that at Fs = 1, the probability of liquefaction is
0.377. Apparently, when Fs = 1, PL should be equal to 0.5. This rule is not
following in our case. Hence, it is due to the existence of modeling
uncertainty in the developed limit state empirical relationship. The
problem can be overcome by identifying the model uncertainty in the
system.

4.3 Investigating the Model Uncertainty using Reliability
Analysis

Often the limit state curve needs to be biased so that it can
separate the liquefaction cases from non-liquefaction cases. The term bias
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refers to the constant that is included in the model so that Fs = 1 and
PL = 0.5. The revised equation can be written as

g(Z)= c∗CRR−CSR (4.12)

where c represents the modeling uncertainty of the developed model.

The position of c can also be located with CSR or can be two
constants positioned CRR and CSR. Juang et al. (2006) conducted
sensitivity analysis and found that the results obtained with different
positioning of the constant will not have variation. The model uncertainty
can be identified by dealing with the parametric uncertainty in the model.
There are six parameters in the model which makes a large impact on the
performance of the model. The uncertainty in the performance function is
written as

g(Z)= c∗CRR−CSR

= f (c, (N1)60,FCσv,σ′
v,amax, M)

(4.13)

Concerning on the second part of the above equation, there are seven
uncertainties in the model. The first uncertainty c is the model uncertainty
whose mean µc and COV (ratio of standard deviation to mean) have to
be identified. The next six terms represent the uncertainties associated
with the individual parameters of soil liquefaction that mainly govern
the performance of the limit state function. With the inspiration of work
by Juang et al. (2008), (N1)60,FC,σv,σ′

v,amax, M are taken as random
variables. (N1)60 and FC are used for the calculation of the CRR. MSF is
the function of M, and Kσ is function of σ′

v, CSR7.5 additionally requires
σv, amax and rd. Stress reduction factor is the function of depth and
hence in our case, the critical depth is taken to be constant. Even though,
uncertainties do exists in the depth, due to lack of information, it is
considered as constants.
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Table 4.3: Coefficient of correlation among the random variables from
Juang et al. (2008)

Random
Variables (N1)60 FC σv σ′

v amax M

(N1)60 1 0 0.3 0.3 0 0
FC 0 1 0 0 0 0
σv 0.3 0 1 0.9 0 0
σ′

v 0.3 0 0.9 1 0 0
amax 0 0 0 0 1 0.9
M 0 0 0 0 0.9 1

To perform reliability analysis on the liquefaction cases, it is
required to know the mean and COV of the random variables. From
the mean and standard deviation for all the random variables except
that M is presented in appendix A. Moss (2003) has approximated the
relation to estimate the standard deviation for M based on the liquefaction
earthquake year, which includes most of the earthquake year present in
the data-set considered in the present study. Hence the relation can be
used to determine the standard deviation of the earthquake’s magnitude.

σM = 0.5−0.45log(M) (4.14)

It is essential to check the correlation between the random variables
considered for reliability analysis. Juang et al. (2008) have determined the
correlation between the random variables using sensitivity analysis, which
deliberately indicates the presence of correlation between the random
input variables.

The coefficient of correlation between the random variables is
shown in Table 4.3. According to Phoon and Kulhawy (2005), there would
be a weak correlation between the model uncertainty c and the input
random variable and hence the correlation of the model uncertainty with
other input variables can be considered as 0. The value of reliability index
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for the post-performance liquefaction cases is obtained using the global
search fmincon algorithm as described in chapter 3 and lets represent this
reliability index as β1.

The PDF of reliability index for the liquefied and non-liquefied
cases along with the histograms is shown in Figs. 4.15 and 4.16,
respectively. The reliability index β1 has the model uncertainty of µc as 1
and COV as 0. Using the Bayesian mapping function technique, the
relationship between the PL −β can be estimated and showed in Fig. 4.17.
The Bayesian mapping function for PL −β can be expressed as

(PL)= fL(β)
fL(β)+ fNL(β)

(4.15)

where fL(β) and fNL(β) denotes the relative frequency of liquefied and
non-liquefied cases which can be obtained from Figs. 4.15 and 4.16,
respectively.

On observing Fig. 4.17, it can be seen at β= 0, the probability of
the liquefaction is 0.49. But based on the standard normal distribution,
the probability of a random variable at 0 is 0.5. Hence the obtained
relationship PL −β needs to be biased. The biasing procedure similar to
Juang et al. (2006) is implemented. By varying the values of µc and COV
of c, the model uncertainty can be identified. The PL for corresponding β,
obtained from the first order reliability method (FORM) method is taken
as the standard for biasing the PL −β relationship developed using eq.
(4.15).

As mentioned above at β= 0, the probability of liquefaction PL

should be equal to 0. But this criteria is found not to be satisfied from Fig.
4.17. The curve should be biased so that the issue of conservatism can
be removed. This is done by sensitivity analysis in which the µc and its
COV are changed for each trail of reliability analysis on 186 liquefaction
cases. The values for µc is varied from 0.1-1.15 with an increment of 0.05.
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Figure 4.15: β for liquefied cases

Figure 4.16: β for non-liquefied cases
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Figure 4.17: Relationship between the PL −β for liquefaction cases

The present results are compared with the results of reliability index β1.
The value of µc which has the least error (RMSE) is selected for the model.
Initially, the value of µc is considered as 1 and three values of COV (0,0.1
& 0.2) have been taken.

The reliability analysis is carried out on 186 cases followed by
Bayesian mapping technique, and the result is shown in Fig. 4.18. It can
be seen that the curve with COV=0.1 and COV=0, is near to desired target
point, i.e., PL = 0.5 at β= 0. The values of PL recorded for the same curves
at β = 0 are 0.47 and 0.49, respectively. But the RMSE value of curves
with COV=0.1 and COV=0 was found to be 0.12 and 0.14, respectively.
Next, the mean of the model uncertainty is changed from 1 to 1.15 with
an increment of 0.05 with maintaining COV=0.1.

The PL − β mapping function for this condition is shown in
Fig.4.19. It can be seen that for the curve, µc=1.05 and µc=1.1 are near to
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Figure 4.18: PL −β mapping functions using µc = 1 and varying COV

the target point. PL = 0.498 at β= 0 was found for the curve with µc=1.05
and COV=0.1. Similarly, it was found for the curve with µc=1.1 and
COV=0.1, PL = 0.5004 at β = 0. The RMSE value of curve µc=1.1 and
COV=0.1 from Fig. 4.19 when compared with reliability index β1 was
found to be 0.07 whereas the RMSE value of curve µc=1.05 and COV=0.1
was found to be 0.11. Therefore, the curve with µc=1.1 and COV=0.1 is
chosen.

4.4 Case study 1: 1978 Miyagiken-oki Earthquake at
Ishinomakai-2

Liquefaction potential of the soil is investigated to determine PL.
The soil and seismic parameters at the critical depth are as following,
(N1)60 = 3.7, FC = 10%, σv = 58.8kPa, σ′

v = 36.9kPa, amax = 0.2g, Mw =
7.4 and the standard deviation of these parameters are 0.7, 2%, 12.8
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Figure 4.19: PL −β mapping functions using COV = 0.1 and varying µc

kPa, 5.9 kPa,0.2 and 0.74, respectively. The stress reduction factor at the
critical depth is 0.9. In FORM analysis, eq. 1.60 is optimized, eq. 4.13
acts as constraint. The mean and COV of model uncertainty is taken as
1.1 and 0.1, respectively. The probability of liquefaction was found to be
0.8947 which is almost equivalent to the value of 0.91 from the findings of
Juang et al. (2008). Therefore, this conforms that there are good number
of chances for soil liquefaction occurrence at the site.

4.5 Case study 2: 1977 Argentina Earthquake at San Juan B-5

From the records of Çetin et al. (2004), non-liquefaction was
observed at the site. The mean values of the soil and the site parameters
are as following: (N1)60 = 15.2, FC = 3%, σv = 45.6kPa, σ′

v = 38.1kPa,
amax = 0.2g, Mw = 7.4 and the standard deviation of the parameters are
0.4, 0.1%, 4.9 kPa, 3.24 kPa, 0.015 and 0.74, respectively. Eq. 4.13 acts as
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constraint in FORM analysis. The mean and COV of model uncertainty is
taken as 1.1 and 0.1, respectively. On performing the FORM analysis, the
probability of liquefaction was found as 0.49 which is in tally with PL =
0.49 of Muduli and Das (2015). There is a good consistency in the results,
the CRR empirical relationship and the value of modeling uncertainty
is acceptable. Therefore, the performance function is developed and it
can be further used for the carrying out reliability analysis of truncated
distribution.

4.6 Summary

A three-layer ANN model has been developed using the post-
performance liquefaction data-set. This model predicts the occurrence of
liquefaction or not, in the site. With the help of the developed model, the
limit state boundary points is determined. The search algorithm includes
the procedure to increase the CSR value for non-liquefaction condition
and decrease the value of CSR for liquefaction condition. From the search
algorithm, the critical CSR values are determined. The data points are
used along with the ’clean’ sand equivalent SPT-N count to establish a
relationship for limit state boundary curve.

Using the Bayesian mapping techniques, Fs −PL is plotted, and
the relationship is approximated by regression analysis. It was found the
limit state equation had model uncertainty present in it. By performing
FORM and sensitivity analysis, model uncertainty is determined. Next,
soil liquefaction potential evaluation was carried out on two different cases
which have completely different properties. The results are in acceptable
range with the models developed by other researchers. This confirms
the consistency in the results obtained from the model developed in the
present study. Hence, the entropy distribution along with the global search
fmincon based FORM can be used for evaluation of liquefaction potential.
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Chapter 5

Evaluation of Soil Liquefaction using
Truncated Distribution

In this chapter, evaluation of soil liquefaction potential is carried out by
considering a random variable having truncated distribution. Two case
studies are made, i.e., liquefied condition and non-liquefaction condition.
In the present study, the truncation is done for PDF of SPT-N variable
since it reflects resistance offered by the soil.

5.1 Case study 1: 1978 Miyagiken-oki Earthquake at
Ishinomakai-2

Liquefaction potential of the soil is investigated to determine
probability of liquefaction (PL). The soil and seismic parameters at the
critical depth are as following, (N1)60 = 3.7, FC = 10%, σv = 58.8kPa,
σ′

v = 36.3kPa, amax = 0.2g, Mw = 7.4 and the standard deviation of the
parameters are 0.7, 2%, 12.8 kPa, 5.9 kPa,0.02g and 0.7, respectively.
The stress reduction factor at the critical depth is 0.9. The mean of model
uncertainty is 1.1 and its COV is 0.1. Eq. (4.12) is taken as the performance
function. (N1)60 is taken as a log-normal truncated variable with at the
lower bound at 3, the statistical parameters estimation using MLE are
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Figure 5.1: Lower bound truncated log-normal distribution of SPT-N value

(1.29,0.19). The truncated PDF is shown in Fig. 5.1. Eq. 4.13 acts as
constraint in the FORM analysis. FORM analysis is carried out as per the
procedure explained in section 3.2. Therefore, on performing reliability
analysis, β=−1.66 & PL = 0.98.

5.2 Case study 2: 1977 Argentina Earthquake at San Juan B-5

From the records of Çetin et al. (2004), non-liquefaction was
observed at the site. The mean values of the soil and the site parameters
are as following: (N1)60 = 15.2, FC = 3%, σv = 45.6kPa, σ′

v = 38.1kPa,
amax = 0.2g, Mw = 7.4 and the standard deviation of these parameters
are 0.4, 0.1%, 4.9 kPa, 3.24 kPa, 0.015g and 0.7, respectively. The model
uncertainty is 1.1 and the corresponding COV is 0.1. The performance
function can be written using eq. (4.12). (N1)60 is taken as a truncated
upper bound normal variable with the cut off point at 18. The upper bound
truncated normal distribution of SPT-N for present case is shown in Fig.
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Figure 5.2: Upper bound truncated normal distribution of SPT-N value

5.2 and the statistical parameters calculated using MLE are (15.20,0.4).
Eq. 4.13 acts as constraint in FORM analysis. FORM analysis is carried
out as per the procedure explained in section 3.2. Therefore, on performing
reliability analysis, it was found that PL = 0.022.

5.3 Summary

In this chapter, reliability analysis of the soil liquefaction is
carried out using the truncated normal and log-normal distributions.
Using the truncated normal and log-normal distributions, the reliability
analysis of the soil liquefaction based on censored samples is carried
out. The proposed approach takes an advantage of varying the limiting
conditions of the soil variables to study the performance of the soil strata
towards soil liquefaction.
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Chapter 6

Conclusions

The study focuses on evaluating liquefaction potential of the soil based
on the post-performance SPT test data-set which can be later used for
performing reliability analysis based on censored samples. Novel methods
have been developed for investigating soil liquefaction potential. The
contribution and findings of the thesis are summarized as follows.

6.1 Contribution

The soil whose fineness content greater than 7% is likely to
susceptible to soil liquefaction irrespective of soil type. The novel models
developed in this thesis provides significance for in-situ determination of
liquefaction potential of soil. The contributions are as following,

6.1.1 Developing Truncated Distribution based on Censored
Samples

There is a great extent of uncertainty present in soils and site
characteristics. Accurate representation and effective use of the random
variables are very crucial in investigation and designing of structures.
The normal and log-normal distributions are widely used in the
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engineering practice for representing the statistical variation of the
random variable. For censored samples, the statistical parameters of
truncated normal and log-normal distribution are obtained using MLE
technique. The parameters of the distribution vary depending upon the
truncation conditions. Based on the determined parameters and
truncation conditions, various truncated probability distributions are
plotted.

6.1.2 Hasofer-Lind’s FORM Using Global Optimum Function for
Truncated Distributions

Evaluation of soil liquefaction of soils must consider all the
uncertainties in soil strata. Hasofer-Lind’s FORM is a stochastic based
approach in which the probability of failure can be determined
conveniently. β is the minimum distance between the origin of the joint
PDF of random variable involved in the system and the limit state
boundary curve. The distance should be globally minimum, and this can
be achieved with the help of fmincon function that uses interior point
technique and on the whole, defined along with the global search option.
When dealing with the truncated distributions, there is limitation in the
flow of iteration points. The proposed algorithm allows to define the range
for search of design points. The function makes multiple direction
searches for the minimum distance. It also gives the advantage of
calculating the gradient function by the program and hence it is not
required to know information about the partial derivatives of the random
variables involved in the system. Therefore, any complex engineering
structures can be potentially analyzed.
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6.1.3 Limit State Performance Function for Soil Liquefaction
Potential Evaluation

About 213 post-performance liquefaction data-set based on the
SPT-test is collected from Çetin et al. (2004) and Çetin et al. (2016). A
three-layer ANN model was built with 4 neurons in the hidden layer.
About 163 cases are used for training of the ANN model, and the rest
of 50 cases have been used for validation of the ANN. The success rate
was about 93.89%. The developed ANN model helps in the prediction
of the liquefaction condition at the site. With the help of the developed
model and search algorithm described by Juang et al. (2000b), the CRR
was determined. On processing the CRR values for both liquefaction
condition and equivalent ’clean’ sand corrected normalized SPT-N count
(N1)60cs for regression analysis, the limit state curve is developed. The
developed empirical relationship needed to be biased and hence for this
reason techniques like reliability analysis and Bayesian mapping were
used. It is recommended to make use of the reliability model instead of
the deterministic and probabilistic model because it effectually involves
the modeling uncertainty and therefore, good results have been obtained.

6.1.4 Reliability Analysis of Soil Liquefaction using Truncated
Distributions

Using the developed limit state curve and determined modeling
uncertainty, the performance of the soil strata under various limiting
conditions was evaluated. The reliability analysis was carried out for any
bound conditions. Two case studies have been conducted for different
soil conditions. Reliability analysis of soil liquefaction using truncated
distributions has been carried out, and the probability of failure and
reliability index have been successfully obtained.
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6.2 Recommendations for Further Research

• The soil liquefaction hazard analysis efforts can be extended to develop
a probabilistic model for estimation of liquefaction-induced ground
deformation.

• The similar innovative ideas can be used in the development of soil
liquefaction potential relationship for CPT and shear wave velocity
(Vs) based on in-situ approaches.

• A comparative studies can be carried out between the global search
using fmincon with interior point method and genetic algorithm, to
check the efficiency.

• The SORM can be used for reliability analysis of soil liquefaction
potential to achieve more accuracy in finding β and PL.
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Appendix A

Truncated based FORM Sample
Output

The MATLAB programming script for reliability analysis based on
truncated distribution is presented below

clc;
clear all;
close all;
global mu sigmaX;
mu=[10.29,12.0]; % Define the mean of the distribution
sigmaX=[ 0.794,1.5]; % Define the standard deviation of the distribution
rng default % For reproducibility
gs = GlobalSearch; %defining of global problem
[f,g]=constraint(mu);

options = optimoptions(@fmincon,’Algorithm’,’interior-point’,’Display’,....

’iter-detailed’,...

’ScaleProblem’,’obj-and-constr’,...
’MaxIterations’,1500,’MaxFunctionEvaluations’,2000);

options.ConstraintTolerance = 1.000000e-4;
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%Tolerance level of the constraint can be increased here

options.OptimalityTolerance = 1.000000e-4;
%Tolerance level of the objective finction can be increased here

problem = createOptimProblem(’fmincon’,’x0’,mu,...
’objective’,@object,’lb’,[9,0],’nonlcon’,@constraint ,’options’,options);
%lb stands for lower bound, assign the truncation conditions here.

xopt = run(gs,problem);
r_index=object(xopt);
if g>0

reliability_index=r_index
else

reliability_index=-r_index
end
probability_of_failure=normcdf(-reliability_index)
% probability of failure is calculated
G=g % prints the value of performance function at the design points
%% OBJECTIVE
function d=object(x)
X=transformation_of_variables(x);
d=sqrt(X*X’);
end
%% CONSTRAINT
function [c,ceq]=constraint(x)
ceq =performancefunc1(x);
c=[];
end
%% Performance function
function z = performancefunc1(x)
z=5*x(1)+3*x(1)*x(2)-240;
end
function X1= transformation_of_variables(x)
global mu sigmaX;
SigmaX1=sigmaX;
muX1=mu;
X1=(x-muX1)./SigmaX1;
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end

%%
% In case the random variables are correlated
function d=object(x)
X=transformation_of_variables(x);
R=[1 0.5

0.5 1]; % R is the correlation matrix
L=chol(R,’lower’); % cholesky decomposition
Z=L\X.’;
d=sqrt(Z.’*Z);
end
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                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    0.000000e+00    1.819e+02    1.481e-01
    1       6    1.736951e+00    1.035e+02    1.019e+00    1.599e+00
    2       9    3.642112e+00    2.442e+00    6.730e-01    4.115e+00
    3      12    3.589166e+00    3.553e-03    5.640e-02    7.508e-02
    4      15    3.588111e+00    3.192e-04    2.066e-02    1.461e-02
    5      18    3.579706e+00    3.809e-02    5.238e-03    1.595e-01
    6      21    3.576779e+00    7.951e-03    1.387e-03    7.280e-02
    7      24    3.576001e+00    1.584e-03    4.345e-04    3.250e-02
    8      27    3.575812e+00    1.697e-04    2.249e-04    1.064e-02
    9      30    3.575678e+00    1.695e-04    6.505e-05    1.063e-02
 
Optimization completed: The relative first-order optimality measure, 6.504818e-05,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 9.317344e-07, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   6.50e-05       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   9.32e-07    ConstraintTolerance =   1e-04 
(selected)
 
Your initial point x0 is not between bounds lb and ub; FMINCON
shifted x0 to strictly satisfy the bounds.
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    2.994766e+00    3.604e+01    1.578e-01
    1       6    3.570360e+00    1.167e+00    1.617e-01    8.967e-01
    2       9    3.604641e+00    1.492e-02    1.022e-01    1.068e-01
    3      13    3.590742e+00    2.677e-04    2.258e-02    1.370e-01
    4      17    3.579297e+00    6.710e-04    5.976e-03    1.831e-01
    5      21    3.576995e+00    3.245e-05    2.017e-03    6.677e-02
    6      25    3.576434e+00    1.352e-06    1.121e-03    2.317e-02
    7      28    3.575946e+00    1.149e-03    3.716e-04    2.768e-02
    8      31    3.575691e+00    4.745e-04    7.196e-05    1.779e-02
 
Optimization completed: The relative first-order optimality measure, 7.196141e-05,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.316797e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   7.20e-05       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.32e-05    ConstraintTolerance =   1e-04 
(selected)
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                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    3.621046e+00    6.422e-01    7.671e-02
    1       6    3.630088e+00    3.831e-05    7.290e-02    2.477e-02
    2       9    3.607349e+00    4.269e-02    5.345e-02    1.693e-01
    3      12    3.582576e+00    1.920e-01    4.077e-03    3.584e-01
    4      15    3.576817e+00    5.085e-03    2.327e-03    5.852e-02
    5      18    3.576394e+00    2.999e-04    1.046e-03    1.414e-02
    6      21    3.575930e+00    1.041e-03    3.539e-04    2.635e-02
    7      24    3.575800e+00    8.580e-05    2.126e-04    7.563e-03
    8      27    3.575652e+00    2.279e-04    3.569e-05    1.233e-02
    9      30    3.575617e+00    1.270e-05    3.858e-06    2.909e-03
 
Optimization completed: The relative first-order optimality measure, 3.858002e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.269583e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   3.86e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.27e-05    ConstraintTolerance =   1e-04 
(selected)
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    3.625167e+00    4.930e-01    7.742e-02
    1       6    3.631008e+00    2.835e-04    7.372e-02    2.425e-02
    2       9    3.603611e+00    6.671e-02    4.935e-02    2.116e-01
    3      12    3.582100e+00    1.392e-01    5.272e-03    3.051e-01
    4      15    3.577034e+00    6.908e-03    2.292e-03    6.795e-02
    5      18    3.576428e+00    5.957e-04    1.090e-03    1.993e-02
    6      21    3.575939e+00    1.107e-03    3.642e-04    2.717e-02
    7      24    3.575801e+00    9.554e-05    2.140e-04    7.981e-03
    8      27    3.575653e+00    2.300e-04    3.600e-05    1.238e-02
    9      30    3.575617e+00    1.290e-05    3.889e-06    2.933e-03
 
Optimization completed: The relative first-order optimality measure, 3.888646e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.290471e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   3.89e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.29e-05    ConstraintTolerance =   1e-04 
(selected)
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
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    0       3    3.635407e+00    1.948e-01    8.054e-02
    1       6    3.634103e+00    1.182e-03    7.660e-02    2.972e-02
    2       9    3.595272e+00    1.683e-01    4.365e-02    3.362e-01
    3      12    3.580980e+00    4.927e-02    6.993e-03    1.812e-01
    4      15    3.577337e+00    8.733e-03    2.261e-03    7.630e-02
    5      18    3.576489e+00    1.130e-03    1.168e-03    2.745e-02
    6      21    3.576359e+00    3.704e-05    1.005e-03    4.969e-03
    7      24    3.575922e+00    9.694e-04    3.447e-04    2.542e-02
    8      27    3.575799e+00    7.744e-05    2.113e-04    7.185e-03
    9      30    3.575652e+00    2.260e-04    3.576e-05    1.228e-02
   10      33    3.575617e+00    1.252e-05    6.044e-06    2.889e-03
 
Optimization completed: The relative first-order optimality measure, 6.044410e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.251583e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   6.04e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.25e-05    ConstraintTolerance =   1e-04 
(selected)
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    3.623836e+00    7.106e-01    8.052e-02
    1       6    3.632521e+00    3.904e-04    7.545e-02    3.285e-02
    2       9    3.605229e+00    6.318e-02    5.150e-02    2.059e-01
    3      12    3.582329e+00    1.566e-01    4.992e-03    3.235e-01
    4      15    3.576984e+00    6.545e-03    2.423e-03    6.619e-02
    5      18    3.576419e+00    5.195e-04    1.079e-03    1.861e-02
    6      21    3.575937e+00    1.091e-03    3.615e-04    2.697e-02
    7      24    3.575801e+00    9.301e-05    2.136e-04    7.875e-03
    8      27    3.575653e+00    2.294e-04    3.592e-05    1.237e-02
    9      30    3.575617e+00    1.285e-05    3.881e-06    2.927e-03
 
Optimization completed: The relative first-order optimality measure, 3.880673e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.284994e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   3.88e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.28e-05    ConstraintTolerance =   1e-04 
(selected)
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    3.644595e+00    3.177e-01    9.021e-02
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    1       6    3.641127e+00    3.679e-03    8.316e-02    5.223e-02
    2      10    3.591758e+00    3.759e-03    4.990e-02    3.793e-01
    3      14    3.579907e+00    6.243e-04    7.023e-03    1.801e-01
    4      18    3.577150e+00    4.575e-05    2.270e-03    7.523e-02
    5      22    3.576465e+00    2.221e-06    1.169e-03    2.739e-02
    6      25    3.575955e+00    1.224e-03    3.828e-04    2.857e-02
    7      28    3.575804e+00    1.140e-04    2.167e-04    8.719e-03
    8      31    3.575653e+00    2.340e-04    3.659e-05    1.249e-02
    9      34    3.575617e+00    1.331e-05    6.045e-06    2.978e-03
 
Optimization completed: The relative first-order optimality measure, 6.044801e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.330600e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   6.04e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.33e-05    ConstraintTolerance =   1e-04 
(selected)
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    3.623640e+00    1.043e+00    3.811e-02
    1       6    3.613717e+00    9.315e-03    4.827e-02    9.023e-02
    2      10    3.592755e+00    3.595e-04    3.115e-02    1.879e-01
    3      14    3.579829e+00    7.868e-04    6.812e-03    1.942e-01
    4      18    3.577117e+00    4.462e-05    2.216e-03    7.460e-02
    5      22    3.576458e+00    2.013e-06    1.159e-03    2.650e-02
    6      25    3.575953e+00    1.207e-03    3.803e-04    2.837e-02
    7      28    3.575804e+00    1.115e-04    2.163e-04    8.624e-03
    8      31    3.575653e+00    2.334e-04    3.651e-05    1.248e-02
    9      34    3.575617e+00    1.325e-05    5.304e-06    2.972e-03
 
Optimization completed: The relative first-order optimality measure, 5.303948e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.270190e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   5.30e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.27e-05    ConstraintTolerance =   1e-04 
(selected)
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    3.588584e+00    5.334e-01    3.818e-02
    1       6    3.610260e+00    1.324e-02    4.552e-02    9.508e-02
    2      10    3.591249e+00    7.035e-04    2.550e-02    1.780e-01
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    3      14    3.579716e+00    6.317e-04    6.777e-03    1.792e-01
    4      18    3.577115e+00    4.066e-05    2.213e-03    7.217e-02
    5      22    3.576458e+00    2.009e-06    1.158e-03    2.647e-02
    6      25    3.575953e+00    1.207e-03    3.802e-04    2.837e-02
    7      28    3.575804e+00    1.114e-04    2.163e-04    8.619e-03
    8      31    3.575653e+00    2.334e-04    3.651e-05    1.248e-02
    9      34    3.575617e+00    1.325e-05    3.939e-06    2.972e-03
 
Optimization completed: The relative first-order optimality measure, 3.939058e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.324966e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   3.94e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.32e-05    ConstraintTolerance =   1e-04 
(selected)
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    3.608391e+00    2.918e-01    4.010e-02
    1       6    3.612804e+00    9.884e-03    4.839e-02    8.267e-02
    2      10    3.590322e+00    8.845e-04    2.660e-02    2.094e-01
    3      14    3.579953e+00    4.685e-04    7.135e-03    1.627e-01
    4      18    3.577168e+00    4.666e-05    2.298e-03    7.571e-02
    5      22    3.576469e+00    2.332e-06    1.175e-03    2.784e-02
    6      25    3.575957e+00    1.232e-03    3.841e-04    2.867e-02
    7      28    3.575804e+00    1.153e-04    2.169e-04    8.769e-03
    8      31    3.575653e+00    2.343e-04    3.664e-05    1.250e-02
    9      34    3.575617e+00    1.333e-05    5.751e-06    2.982e-03
 
Optimization completed: The relative first-order optimality measure, 5.750813e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.333480e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   5.75e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.33e-05    ConstraintTolerance =   1e-04 
(selected)
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    3.606152e+00    1.891e-01    4.016e-02
    1       6    3.612599e+00    1.006e-02    4.825e-02    8.276e-02
    2      10    3.590156e+00    9.508e-04    2.661e-02    2.098e-01
    3      14    3.579949e+00    4.527e-04    7.142e-03    1.607e-01
    4      18    3.577169e+00    4.646e-05    2.300e-03    7.559e-02
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    5      22    3.576469e+00    2.342e-06    1.175e-03    2.788e-02
    6      25    3.575957e+00    1.233e-03    3.842e-04    2.867e-02
    7      28    3.575804e+00    1.155e-04    2.169e-04    8.773e-03
    8      31    3.575653e+00    2.343e-04    3.664e-05    1.250e-02
    9      34    3.575617e+00    1.334e-05    5.562e-06    2.982e-03
 
Optimization completed: The relative first-order optimality measure, 5.562345e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.333701e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   5.56e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.33e-05    ConstraintTolerance =   1e-04 
(selected)
 
                                            First-order      Norm of
 Iter F-count            f(x)  Feasibility   optimality         step
    0       3    3.582569e+00    8.636e-01    3.996e-02
    1       6    3.610179e+00    1.152e-02    4.621e-02    9.173e-02
    2      10    3.592351e+00    5.535e-04    3.086e-02    1.648e-01
    3      14    3.579476e+00    8.451e-04    6.357e-03    1.976e-01
    4      18    3.577053e+00    3.532e-05    2.111e-03    6.881e-02
    5      22    3.576445e+00    1.649e-06    1.139e-03    2.477e-02
    6      25    3.575949e+00    1.176e-03    3.757e-04    2.801e-02
    7      28    3.575803e+00    1.069e-04    2.157e-04    8.441e-03
    8      31    3.575653e+00    2.324e-04    3.636e-05    1.245e-02
    9      34    3.575617e+00    1.315e-05    3.925e-06    2.961e-03
 
Optimization completed: The relative first-order optimality measure, 3.924602e-06,
is less than options.OptimalityTolerance = 1.000000e-04, and the relative maximum 
constraint
violation, 1.314976e-05, is less than options.ConstraintTolerance = 1.000000e-04.
 
Optimization Metric                                            Options
relative first-order optimality =   3.92e-06       OptimalityTolerance =   1e-04 
(selected)
relative max(constraint violation) =   1.31e-05    ConstraintTolerance =   1e-04 
(selected)
 
 
GlobalSearch stopped because it analyzed all the trial points.
 
All 12 local solver runs converged with a positive local solver exit flag.
 
reliability_index =
 
    3.5756
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probability_of_failure =
 
   1.7470e-04
 
>> 
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Appendix B

Data Collection

The field performance post-liquefaction SPT-N database is extracted from
the published works of Çetin et al. (2004) and Çetin et al. (2016). In spite
of several SPT-based databases available, these databases are considered
because of the availability of standard deviation values for various input
variables. Also, the historical cases are well categorized based on the
quality of the available information. The database compiles details of 213
post-liquefaction historical cases out of which, there are 117 liquefaction
cases and 96 non-liquefaction cases shown in Table B.1. It includes the
earthquake events of Tohnankai, Fukui, Niigata, San Fernando,
Haicheng, Guatemala, Tangshan, Argentina, Miyagiken, Imperial Valley,
Mid-chba, West Morland, Nihonkai-Chhubu, Loma Prieta, Elmore Ranch,
Superstition Hills, Luzon, Kushiro-Oki, Northridge and
Hyogoken-Nambu, etc. The details include the year of earthquake took
place, name of the earthquake event, name of the site where the sampling
was taken, magnitude of the earthquake, the total pressure, effective
pressure, peak ground motion, stress reduction factor, fineness content of
the soil and corrected and normalized SPT-N count with respect to the
critical depth. The units for total pressure and effective pressure are
converted from psf to kN/m2 for convenient calculation and

130



representation.

131



1
2

Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

1
19

44
Ye

s
65

.1
2

10
.0

0
47

.1
9

5.
36

0.
2

0.
06

0.
83

0.
06

8
8

25
3

2.
2

0.
8

2
19

44
Ye

s
53

.0
6

8.
32

38
.2

0
4.

69
0.

2
0.

06
0.

93
0.

05
7

8
13

1
9.

4
2.

9
3

19
44

Ye
s

30
.9

3
7.

95
16

.2
8

4.
16

0.
2

0.
06

0.
89

0.
03

6
8

27
3

3.
6

1.
6

4
19

48
Ye

s
53

.1
7

11
.9

2
32

.2
1

5.
63

0.
4

0.
12

0.
95

0.
05

5
7.

3
0

0
6.

6
2.

2
5

19
48

Ye
s

13
2.

21
25

.9
9

90
.8

3
12

.9
5

0.
35

0.
10

5
0.

79
0.

11
5

7.
3

4
1

21
.5

3.
5

6
19

64
Ye

s
13

0.
52

17
.8

2
61

.0
6

9.
82

0.
16

0.
02

4
0.

65
0.

11
6

7.
5

8
2

12
3.

1
7

19
64

N
o

13
5.

64
16

.1
8

80
.0

4
8.

66
0.

18
0.

02
7

0.
75

0.
11

7.
5

8
2

22
.7

0.
7

8
19

64
N

o
21

1.
04

11
.3

1
11

6.
23

7.
93

0.
18

0.
02

7
0.

55
0.

15
8

7.
5

8
2

27
.1

3.
3

9
19

64
Ye

s
12

2.
27

15
.1

2
57

.7
1

8.
76

0.
16

0.
02

4
0.

78
0.

11
7.

5
8

2
13

1.
6

10
19

64
N

o
17

1.
36

10
.3

7
82

.3
0

9.
30

0.
16

0.
02

4
0.

65
0.

14
7.

5
2

2
18

.8
2.

5
11

19
64

Ye
s

13
9.

26
25

.2
5

61
.8

2
11

.4
9

0.
16

0.
02

4
0.

6
0.

12
2

7.
5

0
0

11
.1

4.
3

12
19

64
N

o
10

6.
43

15
.0

9
67

.2
2

7.
98

0.
18

0.
02

7
0.

78
0.

09
7

7.
5

0
0

15
.1

3.
9

13
19

64
Ye

s
61

.5
9

13
.2

0
24

.9
9

5.
77

0.
16

0.
02

4
0.

86
0.

06
1

7.
5

10
3

7.
5

0.
6

14
19

64
N

o
10

8.
31

7.
16

61
.4

5
4.

76
0.

18
0.

02
7

0.
87

0.
91

7.
5

0
0

43
3.

4
15

19
68

N
o

10
4.

38
16

.1
7

71
.5

1
8.

76
0.

23
0.

02
5

0.
93

0.
08

4
7.

9
5

2
37

.4
2.

8
16

19
68

N
o

41
.9

0
9.

36
26

.9
6

5.
06

0.
23

0.
02

5
0.

96
0.

04
2

7.
9

5
2

26
2.

6
17

19
68

Ye
s

65
.9

1
12

.0
6

32
.1

5
6.

79
0.

23
0.

02
5

0.
89

0.
06

5
7.

9
5

2
7.

6
0.

9
18

19
68

Ye
s

45
.7

4
10

.9
1

25
.7

1
5.

31
0.

2
0.

04
0.

95
0.

05
7.

9
20

3
10

.4
1.

4
19

19
71

Ye
s

81
.5

4
5.

99
70

.9
3

6.
11

0.
45

0.
04

5
0.

81
0.

08
2

6.
6

55
5

4.
1

1
20

19
71

Ye
s

94
.9

2
6.

81
84

.4
7

6.
47

0.
45

0.
04

5
0.

86
0.

09
4

6.
6

50
5

8.
2

2.
8

1
liq

.d
en

ot
es

liq
ue

fie
d

2
*

de
no

te
s

st
an

da
rd

de
vi

at
io

n
of

pa
rt

ic
ul

ar
in

pu
t

va
ri

ab
le

132



Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

21
19

75
Ye

s
12

9.
56

25
.1

0
66

.0
5

11
.1

6
0.

13
0.

02
6

0.
79

0.
11

6
7.

3
67

7
8.

2
1.

2
22

19
75

Ye
s

13
7.

81
14

.4
7

69
.3

9
7.

58
0.

1
0.

02
0.

77
0.

12
2

7.
3

5
2

11
.1

1.
8

23
19

75
Ye

s
11

7.
37

12
.6

8
63

.6
6

7.
59

0.
2

0.
04

0.
83

0.
10

3
7.

3
48

5
14

.9
1.

1
24

19
75

Ye
s

12
1.

32
16

.9
6

62
.7

0
8.

13
0.

2
0.

04
0.

74
0.

11
7.

3
5

2
12

.5
4

25
19

76
Ye

s
12

2.
09

28
.9

9
47

.4
0

9.
65

0.
14

0.
01

5
0.

46
0.

11
7

7.
5

3
1

4.
6

1.
5

26
19

76
N

o
53

.1
5

7.
43

32
.2

3
2.

98
0.

14
0.

01
5

0.
75

0.
06

5
7.

5
3

1
8.

5
1.

1
27

19
76

N
o

12
4.

25
18

.4
7

60
.0

1
7.

12
0.

14
0.

01
5

0.
47

0.
12

5
7.

5
3

1
14

.1
1.

8
28

19
76

Ye
s

72
.3

1
8.

55
40

.1
6

4.
73

0.
13

0.
02

6
0.

92
0.

06
4

8
12

3
13

.2
3.

2
29

19
76

Ye
s

83
.3

0
7.

93
47

.1
9

4.
77

0.
2

0.
04

0.
94

0.
06

7
8

12
3

12
.8

2.
6

30
19

76
Ye

s
97

.2
4

6.
74

52
.1

5
4.

63
0.

35
0.

07
0.

92
0.

07
6

8
20

3
23

.2
2.

6
31

19
76

N
o

75
.4

0
6.

70
60

.7
0

4.
20

0.
5

0.
1

0.
96

0.
06

4
8

10
2

33
.7

5.
8

32
19

76
Ye

s
71

.8
7

4.
85

40
.0

1
3.

79
0.

2
0.

04
0.

92
0.

06
1

8
5

3
11

.9
5.

3
33

19
77

Ye
s

13
1.

43
4.

14
95

.5
8

4.
39

0.
2

0.
01

5
0.

78
0.

10
7

7.
4

20
3

6.
7

1.
5

34
19

77
Ye

s
18

1.
77

9.
54

13
3.

22
6.

65
0.

2
0.

01
5

0.
56

0.
14

4
7.

4
20

3
7.

3
1

35
19

77
N

o
39

.2
6

7.
14

27
.3

1
3.

95
0.

2
0.

01
5

0.
97

0.
03

8
7.

4
4

1.
5

14
.8

0.
6

36
19

77
N

o
45

.6
1

4.
90

38
.1

4
3.

25
0.

2
0.

01
5

0.
98

0.
04

4
7.

4
3

1
14

.5
0.

1
37

19
77

Ye
s

73
.2

6
5.

74
46

.3
7

3.
69

0.
2

0.
01

5
0.

94
0.

06
5

7.
4

50
5

5.
7

0.
2

38
19

78
N

o
84

.9
6

17
.4

9
44

.9
1

8.
31

0.
1

0.
02

0.
91

0.
07

6.
7

0
0

14
.1

2.
7

39
19

78
N

o
52

.3
3

4.
67

44
.3

7
3.

57
0.

14
0.

02
8

0.
96

0.
04

8
6.

7
20

3
12

.5
2.

5
40

19
78

N
o

58
.8

3
12

.7
6

36
.2

8
5.

96
0.

12
0.

02
4

0.
89

0.
05

4
6.

7
10

2
6.

2
0.

5
41

19
78

N
o

53
.4

1
3.

49
48

.5
1

2.
57

0.
14

0.
02

8
0.

85
0.

05
2

6.
7

5
2

13
.5

2.
5

42
19

78
N

o
71

.3
4

11
.2

8
53

.4
2

5.
99

0.
14

0.
02

8
0.

92
0.

06
1

6.
7

3
1

12
.6

5.
3

43
19

78
Ye

s
65

.1
9

5.
95

30
.8

8
4.

03
0.

12
0.

02
4

0.
97

0.
05

8
6.

7
5

1
8.

7
0.

7

133



Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

44
19

78
N

o
53

.5
7

3.
81

33
.2

6
3.

26
0.

12
0.

02
4

0.
96

0.
05

6.
7

4
1

10
.3

2
45

19
78

N
o

91
.3

3
10

.9
1

74
.9

0
8.

51
0.

14
0.

02
4

0.
73

0.
08

1
6.

7
5

3
9.

8
1.

8
46

19
78

N
o

73
.9

3
9.

00
53

.7
2

5.
14

0.
14

0.
02

4
0.

92
0.

06
4

6.
7

10
2

9.
7

2.
3

47
19

78
N

o
54

.8
9

3.
21

37
.3

5
3.

16
0.

12
0.

02
4

0.
94

0.
05

1
6.

7
5

1
4.

1
1.

8
48

19
78

N
o

38
.1

7
3.

56
27

.0
2

3.
05

0.
12

0.
02

4
0.

98
0.

03
8

6.
7

7
1

19
.7

2.
8

49
19

78
N

o
49

.0
7

5.
77

22
.2

2
3.

09
0.

12
0.

02
4

0.
96

0.
04

5
6.

7
12

2
12

2.
1

50
19

78
N

o
57

.3
7

10
.3

1
39

.2
4

5.
09

0.
12

0.
02

4
0.

92
0.

05
3

6.
7

60
5

2.
8

1.
2

51
19

78
N

o
60

.5
2

9.
82

32
.0

9
5.

01
0.

12
0.

02
4

0.
95

0.
05

5
6.

7
0

0
13

.3
5.

2
52

19
78

Ye
s

71
.3

4
11

.2
8

53
.4

2
5.

99
0.

24
0.

04
8

0.
92

0.
06

1
7.

4
3

1
12

.6
5.

3
53

19
78

Ye
s

84
.9

6
17

.4
9

44
.9

1
8.

31
0.

2
0.

04
0.

91
0.

07
7.

4
0

0
13

.1
3.

6
54

19
78

Ye
s

52
.3

3
4.

67
44

.3
7

3.
57

0.
24

0.
04

8
0.

97
0.

04
8

7.
4

20
3

12
.5

2.
7

55
19

78
Ye

s
58

.8
3

12
.7

6
36

.2
8

5.
96

0.
2

0.
04

0.
89

0.
05

4
7.

4
10

2
6

0.
7

56
19

78
N

o
13

3.
39

16
.2

6
10

5.
94

7.
67

0.
2

0.
04

0.
95

0.
06

7.
4

10
2

25
.2

2.
4

57
19

78
Ye

s
53

.4
1

3.
49

48
.5

1
2.

57
0.

28
0.

05
6

0.
85

0.
05

2
7.

4
5

2
13

.5
2.

9
58

19
78

N
o

66
.6

7
7.

67
54

.6
6

7.
74

0.
28

0.
05

6
0.

96
0.

06
1

7.
4

0
0

18
.9

7.
3

59
19

78
N

o
76

.8
5

9.
55

55
.9

3
5.

40
0.

24
0.

04
8

0.
93

0.
06

5
7.

4
26

5
15

.4
3.

1
60

19
78

N
o

49
.7

2
5.

98
29

.1
4

3.
66

0.
32

0.
06

4
0.

98
0.

04
5

7.
4

4
1

26
.8

7.
2

61
19

78
Ye

s
65

.1
9

5.
95

30
.8

8
4.

03
0.

32
0.

06
4

0.
97

0.
05

8
7.

4
5

1
8.

7
0.

7
62

19
78

Ye
s

53
.5

7
3.

81
33

.2
6

3.
26

0.
32

0.
06

4
0.

96
0.

05
7.

4
7

2
10

.3
2

63
19

78
Ye

s
91

.3
3

10
.9

1
74

.9
0

8.
51

0.
24

0.
04

8
0.

74
0.

08
1

7.
4

5
3

9.
8

2.
2

64
19

78
Ye

s
73

.9
3

9.
00

53
.7

2
5.

14
0.

24
0.

04
8

0.
92

0.
06

4
7.

4
10

2
9.

7
2.

3
65

19
78

Ye
s

54
.8

9
3.

21
37

.3
5

3.
16

0.
24

0.
04

8
0.

95
0.

05
1

7.
4

5
1

4.
1

1.
8

66
19

78
Ye

s
38

.1
7

3.
56

27
.0

2
3.

05
0.

24
0.

04
8

0.
98

0.
03

8
7.

4
7

1
19

.7
2.

8

134



Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

67
19

78
Ye

s
49

.0
7

5.
77

22
.2

2
3.

09
0.

24
0.

04
8

0.
96

0.
04

5
7.

4
12

2
12

2.
1

68
19

78
N

o
13

1.
40

10
.8

3
70

.6
3

7.
48

0.
24

0.
04

8
0.

86
0.

09
9

7.
4

17
3

26
.3

8.
6

69
19

78
Ye

s
57

.3
7

10
.3

1
39

.2
4

5.
09

0.
24

0.
04

8
0.

92
0.

05
3

7.
4

60
5

2.
8

1.
2

70
19

78
Ye

s
60

.5
2

9.
82

32
.0

9
5.

01
0.

24
0.

04
8

0.
95

0.
05

5
7.

4
0

0
13

.3
5.

2
71

19
78

N
o

10
1.

64
9.

49
63

.9
0

5.
37

0.
24

0.
04

8
0.

91
0.

08
2

7.
4

0
0

27
.3

2.
5

72
19

79
N

o
35

.7
4

2.
82

30
.8

3
3.

16
0.

16
0.

01
9

0.
99

0.
02

6.
5

30
5

17
2.

8
73

19
79

N
o

59
.6

9
11

.1
8

44
.0

1
7.

66
0.

47
0.

05
0.

82
0.

01
6.

5
25

4
45

.2
3.

6
74

19
79

Ye
s

46
.6

4
7.

05
32

.7
2

8.
70

0.
47

0.
05

0.
78

0.
02

6.
5

29
4.

5
3.

8
2.

4
75

19
79

N
o

52
.4

3
8.

77
37

.2
4

8.
42

0.
47

0.
05

0.
75

0.
02

5
6.

5
37

5
19

.5
6.

1
76

19
79

N
o

59
.7

9
7.

38
48

.5
9

4.
26

0.
13

0.
01

0.
83

0.
03

6.
5

92
10

7.
2

3.
5

77
19

79
Ye

s
41

.9
0

6.
51

29
.9

4
3.

85
0.

51
0.

05
0.

95
0.

04
2

6.
4

31
3

8.
5

4.
2

78
19

79
Ye

s
61

.8
5

6.
50

39
.8

0
3.

96
0.

18
0.

01
9

0.
97

0.
03

6.
5

75
10

6.
8

5.
2

79
19

79
Ye

s
15

.4
7

3.
75

8.
14

1.
94

0.
16

0.
04

5
0.

99
0.

01
5

6.
5

80
10

4
3.

4
80

19
79

N
o

72
.7

8
11

.4
5

35
.4

3
6.

69
0.

17
0.

04
5

0.
67

0.
03

5
6.

5
40

3
12

.8
5.

7
81

19
80

N
o

90
.0

0
8.

57
45

.0
5

4.
92

0.
1

0.
00

1
0.

75
0.

07
6

6.
1

13
1

6.
3

0.
6

82
19

80
N

o
23

8.
45

10
.4

8
10

5.
28

7.
78

0.
1

0.
00

1
0.

33
0.

14
9

6.
1

27
1

3.
7

0.
6

83
19

81
Ye

s
59

.7
9

7.
38

48
.5

9
4.

26
0.

19
0.

02
5

0.
83

0.
01

2
5.

9
92

10
7.

2
3.

5
84

19
81

Ye
s

61
.8

5
6.

45
39

.8
0

3.
87

0.
17

0.
02

0.
89

0.
01

2
5.

9
75

10
6.

8
5.

2
85

19
81

N
o

35
.7

4
2.

69
30

.8
3

3.
05

0.
16

0.
02

0.
98

0.
01

5.
9

30
5

17
2.

8
86

19
81

N
o

15
.4

7
3.

75
8.

14
1.

94
0.

17
0.

02
0.

99
0.

00
3

5.
9

80
10

4
3.

4
87

19
81

N
o

72
.7

8
5.

85
33

.9
4

3.
53

0.
17

0.
02

0.
97

0.
01

5.
9

18
3

20
.2

7.
7

88
19

81
Ye

s
72

.7
8

10
.6

7
35

.4
3

5.
25

0.
23

0.
02

0.
89

0.
01

3
5.

9
40

3
12

.8
5.

7
89

19
81

N
o

41
.9

0
1.

72
29

.9
4

3.
85

0.
09

0.
02

3
0.

93
0.

01
5.

9
31

3
8.

5
4.

2

135



Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

90
19

64
Ye

s
52

.8
2

7.
05

30
.7

7
4.

21
0.

09
0.

01
8

0.
9

0.
05

4
7.

5
5

2
4.

8
2.

6
91

19
64

Ye
s

85
.1

6
10

.5
0

42
.6

6
6.

24
0.

16
0.

02
4

0.
78

0.
08

1
7.

5
8

2
12

2.
1

92
19

68
Ye

s
94

.8
4

10
.2

9
38

.4
8

5.
88

0.
21

0.
03

0.
8

0.
08

7
7.

8
3

1
16

.3
1.

6
93

19
76

N
o

61
.6

6
12

.7
3

38
.1

3
6.

51
0.

22
0.

04
4

0.
96

0.
05

2
8

5
3

26
.5

3.
6

94
19

76
Ye

s
56

.0
0

11
.1

3
32

.4
8

5.
38

0.
22

0.
04

4
0.

96
0.

05
2

8
3

2
8.

8
0.

9
95

19
83

N
o

69
.3

2
18

.0
0

37
.4

6
8.

04
0.

15
0.

03
0.

84
0.

06
1

7.
1

15
4

8.
9

4.
9

96
19

83
N

o
15

8.
26

8.
91

77
.4

0
6.

58
0.

15
0.

03
0.

63
0.

11
8

7.
1

0
1

17
.7

4.
5

97
19

83
Ye

s
73

.9
5

11
.3

0
33

.2
7

5.
86

0.
12

0.
02

2
0.

8
0.

06
4

7.
1

0
1

14
.6

1.
6

98
19

83
Ye

s
94

.8
4

10
.2

9
38

.4
8

5.
88

0.
12

0.
01

8
0.

8
0.

07
9

7.
7

3
1

16
.3

1.
6

99
19

83
Ye

s
69

.3
2

18
.0

0
37

.4
6

8.
04

0.
2

0.
04

0.
85

0.
06

1
7.

7
15

4
8.

9
4.

9
10

0
19

83
Ye

s
12

3.
10

27
.8

6
53

.4
0

12
.2

8
0.

23
0.

03
5

0.
74

0.
09

9
7.

7
1

1
12

.3
2.

9
10

1
19

83
Ye

s
54

.9
8

8.
41

37
.8

3
4.

46
0.

25
0.

05
5

0.
93

0.
05

2
7.

7
1

1
16

.4
3.

6
10

2
19

83
Ye

s
73

.9
5

11
.3

0
33

.2
7

5.
86

0.
28

0.
04

0.
81

0.
06

4
7.

7
0

1
14

.6
1.

6
10

3
19

83
N

o
56

.5
5

6.
36

44
.3

0
9.

51
0.

20
4

0.
01

0.
99

9
0.

04
5

7.
7

2.
7

1.
5

16
2.

8
10

4
19

83
Ye

s
19

5.
62

47
.3

2
10

7.
11

23
.0

4
0.

22
14

0.
03

2
0.

62
2

0.
13

1
7.

7
5.

5
6.

9
6.

9
2.

1
10

5
19

83
N

o
98

.9
6

17
.3

8
63

.1
9

12
.3

6
0.

05
1

0.
00

3
0.

91
7

0.
07

3
7.

7
66

45
.3

5.
2

2.
1

10
6

19
83

Ye
s

13
8.

61
35

.5
4

82
.3

5
16

.8
4

0.
20

8
0.

03
1

0.
79

0.
09

9
7.

7
14

.6
17

.4
8.

7
3

10
7

19
83

Ye
s

10
6.

86
23

.0
0

67
.1

6
11

.6
8

0.
20

7
0.

03
1

0.
90

4
0.

07
6

7.
7

2
1

6.
6

2
10

8
19

83
Ye

s
72

.5
7

11
.7

0
49

.5
4

5.
80

0.
20

3
0.

03
0.

96
1

0.
05

6
7.

7
8

5.
7

9
6.

2
10

9
19

83
Ye

s
38

.9
9

8.
11

30
.9

5
3.

67
0.

20
7

0.
03

1
0.

95
2

0.
03

7
7.

7
3

2
5.

4
0.

2
11

0
19

83
Ye

s
11

9.
94

29
.6

3
72

.3
9

14
.4

0
0.

20
2

0.
03

0.
85

7
0.

08
7

7.
7

7.
8

3
10

.8
4.

2
11

1
19

83
Ye

s
11

5.
51

26
.3

6
56

.4
0

11
.7

2
0.

20
4

0.
03

1
0.

72
8

0.
09

7.
7

1.
1

0.
5

7.
3

4.
6

11
2

19
83

N
o

10
7.

78
13

.3
3

67
.6

2
10

.7
5

0.
17

4
0.

02
6

0.
97

3
0.

07
6

7.
7

3
1

24
2.

9

136



Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

11
3

19
89

Ye
s

88
.5

8
7.

16
58

.7
0

3.
87

0.
25

0.
07

5
0.

99
0.

00
7

6.
93

3
1.

4
19

.8
6.

7
11

4
19

89
N

o
97

.6
3

17
.4

3
67

.2
9

9.
89

0.
25

0.
07

5
0.

98
0.

00
7

6.
93

5
2

25
.8

6
11

5
19

89
N

o
35

.8
6

3.
39

32
.3

8
1.

85
0.

25
0.

07
5

0.
99

0.
00

7
6.

93
5

2
15

.1
3

11
6

19
87

N
o

61
.8

5
6.

45
39

.8
0

3.
87

0.
09

0.
02

5
0.

97
0.

03
2

6.
2

75
10

6.
8

5.
2

11
7

19
87

N
o

72
.7

8
10

.6
7

35
.4

3
5.

25
0.

09
0.

00
5

0.
75

0.
03

5
6.

2
40

3
12

.8
5.

7
11

8
19

87
N

o
61

.8
5

6.
45

39
.8

0
3.

87
0.

2
0.

04
0.

94
0.

03
2

6.
6

75
10

6.
8

5.
2

11
9

19
87

Ye
s

72
.7

8
10

.6
7

35
.4

3
5.

25
0.

18
0.

00
5

0.
84

0.
03

5
6.

6
40

3
12

.8
5.

7
12

0
19

87
N

o
59

.6
9

11
.1

8
44

.0
1

7.
66

0.
16

0.
02

0.
82

0.
02

2
6.

7
25

4
44

3.
6

12
1

19
87

N
o

46
.6

4
7.

48
32

.7
2

9.
04

0.
15

0.
02

0.
78

0.
02

4
6.

7
29

4.
5

3.
8

2.
4

12
2

19
87

N
o

52
.4

3
8.

77
37

.2
4

8.
42

0.
13

0.
02

0.
75

0.
02

5
6.

7
37

5
19

.5
6.

1
12

3
19

87
N

o
59

.7
9

7.
38

48
.5

9
4.

26
0.

17
0.

02
0.

83
0.

03
6.

7
92

10
7.

2
3.

5
12

4
19

87
N

o
41

.9
0

6.
51

29
.9

4
3.

85
0.

16
0.

02
0.

95
0.

02
5

6.
7

31
3

8.
5

4.
2

12
5

19
87

N
o

35
.7

4
3.

19
30

.8
3

3.
50

0.
18

0.
02

0.
99

0.
02

6.
7

30
5

17
2.

8
12

6
19

87
N

o
15

.4
7

3.
76

8.
14

3.
07

0.
19

0.
02

0.
99

0.
01

6.
7

80
10

4
3.

4
12

7
19

87
N

o
72

.7
8

5.
85

33
.9

4
3.

53
0.

19
0.

02
0.

97
0.

02
5

6.
7

18
3

20
.2

7.
7

12
8

19
89

N
o

12
5.

28
4.

43
90

.9
7

8.
89

0.
24

0.
02

4
0.

95
0.

08
7

7
7

2
42

.6
1.

8
12

9
19

89
Ye

s
86

.0
1

7.
79

71
.3

0
10

.3
2

0.
37

0.
05

0.
9

0.
02

7
8

2
10

.9
2.

5
13

0
19

89
N

o
68

.0
4

6.
76

57
.0

1
5.

68
0.

14
0.

01
3

0.
72

0.
01

3
7

30
7

5.
3

3.
7

13
1

19
89

Ye
s

61
.3

8
8.

82
46

.1
9

8.
47

0.
24

0.
02

5
0.

99
0.

01
1

7
3

1
12

.5
0.

9
13

2
19

89
N

o
39

.2
7

3.
60

34
.3

7
2.

68
0.

24
0.

02
5

0.
99

0.
00

7
7

1
2

23
.9

3.
5

13
3

19
89

N
o

68
.4

1
14

.0
0

45
.8

6
6.

90
0.

27
0.

02
5

0.
99

0.
00

7
7

1
2

18
.7

3.
5

13
4

19
89

Ye
s

42
.3

7
5.

28
32

.0
6

3.
49

0.
26

0.
02

5
0.

99
0.

00
8

7
2

2
16

.1
1

13
5

19
89

Ye
s

86
.4

0
10

.3
4

66
.7

9
5.

20
0.

42
0.

05
0.

84
0.

01
7

7
22

3
10

4.
4

137



Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

13
6

19
89

Ye
s

12
4.

49
8.

44
70

.5
8

5.
44

0.
41

0.
05

0.
88

0.
02

4
7

20
3

24
3.

5
13

7
19

89
Ye

s
96

.5
7

6.
84

87
.5

0
7.

42
0.

46
0.

05
0.

83
0.

01
9

7
27

5
11

.6
4.

1
13

8
19

89
Ye

s
11

5.
38

9.
64

92
.8

4
5.

75
0.

41
0.

05
0.

9
0.

01
6

7
13

2
21

.9
3.

5
13

9
19

89
Ye

s
98

.2
6

8.
50

82
.5

7
5.

18
0.

46
0.

05
0.

73
0.

01
3

7
15

2
10

.3
1

14
0

19
89

Ye
s

41
.4

5
5.

03
32

.3
5

3.
54

0.
29

0.
02

5
0.

95
0.

01
7

2
2

8.
5

1.
6

14
1

19
89

Ye
s

75
.7

7
11

.1
0

56
.3

5
5.

62
0.

24
0.

02
5

0.
99

0.
01

3
7

1
2

19
2.

5
14

2
19

89
Ye

s
11

1.
10

4.
77

80
.2

2
6.

81
0.

22
0.

01
0.

95
0.

01
8

7
3

1
13

3.
1

14
3

19
89

Ye
s

11
7.

42
4.

18
83

.1
2

4.
38

0.
22

0.
01

0.
83

0.
01

8
7

5
1

13
.2

4.
1

14
4

19
89

Ye
s

66
.4

6
4.

85
52

.7
8

3.
85

0.
15

0.
01

3
0.

71
0.

01
7

7
50

5
3.

8
1.

2
14

5
19

89
Ye

s
11

7.
81

5.
65

85
.9

6
4.

87
0.

27
0.

01
0.

77
0.

01
3

7
8

3
8.

1
2.

2
14

6
19

89
Ye

s
26

.7
0

4.
01

19
.3

5
3.

22
0.

25
0.

02
5

0.
99

0.
00

5
7

35
5

9.
7

0.
3

14
7

19
89

Ye
s

53
.8

9
3.

07
44

.0
4

3.
19

0.
26

0.
02

5
0.

99
0.

00
8

7
3

1
15

.9
3.

5
14

8
19

89
Ye

s
85

.4
2

20
.7

8
48

.6
6

10
.3

3
0.

18
0.

01
0.

88
0.

01
2

7
20

4
7.

6
4.

6
14

9
19

90
N

o
85

.8
1

15
.5

2
59

.8
3

7.
78

0.
25

0.
02

5
0.

91
0.

06
9

7.
6

19
2

26
.2

5.
3

15
0

19
90

Ye
s

12
7.

36
19

.8
8

78
.8

4
9.

91
0.

25
0.

02
5

0.
82

0.
09

6
7.

6
19

2
14

2.
8

15
1

19
93

Ye
s

38
3.

92
15

.2
0

19
8.

66
12

.9
9

0.
4

0.
04

0.
47

0.
14

9
8

10
3

7.
2

1.
9

15
2

19
93

Ye
s

89
.1

5
7.

59
57

.2
9

4.
80

0.
4

0.
04

0.
94

0.
07

3
8

2
1

17
.1

4.
2

15
3

19
93

N
o

20
0.

13
21

.2
4

11
0.

44
11

.6
8

0.
4

0.
04

0.
79

0.
13

4
8

0
1

30
.3

3.
6

15
4

19
94

Ye
s

15
9.

76
6.

92
14

2.
11

6.
96

0.
69

0.
06

0.
71

0.
00

5
6.

7
43

13
18

.5
4

15
5

19
94

Ye
s

17
2.

44
7.

79
12

0.
00

5.
76

0.
51

0.
06

0.
7

0.
00

6
6.

7
25

5
24

.4
2.

7
15

6
19

94
Ye

s
11

9.
86

4.
42

88
.4

9
4.

02
0.

4
0.

04
0.

72
0.

08
7

6.
7

37
5

10
.5

0.
7

15
7

19
94

Ye
s

11
2.

59
4.

48
93

.4
8

4.
08

0.
54

0.
04

0.
86

0.
04

6.
7

38
23

11
1.

6
15

8
19

95
N

o
14

1.
62

7.
53

98
.0

0
5.

28
0.

4
0.

05
0.

82
0.

10
4

6.
9

2
1

31
.3

5.
9

138



Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

15
9

19
95

N
o

88
.4

4
10

.5
3

71
.7

8
5.

85
0.

4
0.

05
0.

89
0.

07
2

6.
9

18
4

21
.6

7.
1

16
0

19
95

Ye
s

15
2.

57
8.

52
10

1.
11

5.
82

0.
4

0.
05

0.
64

0.
11

3
6.

9
2

1
12

.9
3.

1
16

1
19

95
Ye

s
24

0.
19

10
.7

9
14

1.
18

8.
14

0.
4

0.
05

0.
41

0.
14

9
6.

9
18

4
5.

8
2.

8
16

2
19

95
Ye

s
14

6.
52

35
.2

2
94

.0
8

18
.0

6
0.

34
0.

01
0.

71
0.

10
1

6.
9

20
5

6.
9

1.
7

16
3

19
95

N
o

15
5.

12
23

.2
4

12
0.

82
12

.3
1

0.
4

0.
04

0.
8

0.
11

6.
9

20
5

21
.9

4.
1

16
4

19
95

N
o

18
4.

58
33

.0
3

13
5.

57
17

.1
3

0.
4

0.
04

0.
73

0.
12

6
6.

9
20

5
18

.6
3.

3
16

5
19

95
N

o
17

4.
76

29
.7

6
13

0.
65

15
.5

1
0.

4
0.

04
0.

84
0.

12
1

6.
9

20
5

32
.2

7
16

6
19

95
Ye

s
18

3.
79

25
.5

9
11

5.
18

13
.2

2
0.

34
0.

04
0.

67
0.

12
6

6.
9

20
5

10
.8

1.
8

16
7

19
95

Ye
s

13
7.

84
23

.1
6

10
3.

54
12

.1
6

0.
4

0.
05

0.
89

0.
09

9
6.

9
25

5
17

.1
6.

9
16

8
19

95
Ye

s
21

0.
50

47
.4

3
13

6.
98

23
.3

8
0.

34
0.

04
0.

59
0.

14
2

6.
9

20
5

12
.2

3.
5

16
9

19
95

Ye
s

82
.0

8
10

.5
2

35
.5

2
5.

85
0.

25
0.

04
0.

87
0.

06
7

6.
9

20
7

15
.5

3.
5

17
0

19
95

N
o

10
4.

70
6.

63
68

.9
2

4.
62

0.
4

0.
06

0.
93

0.
08

2
6.

9
4

1.
5

57
.7

3.
2

17
1

19
95

N
o

14
9.

01
21

.4
5

94
.0

2
10

.7
2

0.
4

0.
06

0.
83

0.
11

6.
9

15
5

42
.7

9.
6

17
2

19
95

N
o

95
.4

3
12

.3
0

66
.0

2
6.

53
0.

4
0.

06
0.

91
0.

07
6

6.
9

4
1

54
.2

7.
2

17
3

19
95

N
o

76
.7

4
9.

86
50

.2
7

5.
23

0.
4

0.
06

0.
9

0.
06

7
6.

9
4

1
43

.5
5.

3
17

4
19

95
Ye

s
15

5.
70

14
.1

5
99

.5
3

7.
91

0.
35

0.
04

5
0.

71
0.

11
3

6.
9

2
1

6.
9

1.
6

17
5

19
95

Ye
s

10
2.

97
9.

41
68

.6
7

5.
62

0.
4

0.
06

0.
84

0.
07

9
6.

9
25

3
22

.7
3.

9
17

6
19

95
Ye

s
11

1.
33

12
.3

7
80

.5
5

6.
76

0.
4

0.
06

0.
81

0.
08

5
6.

9
0

0
27

.3
1.

7
17

7
19

95
Ye

s
80

.1
5

5.
95

60
.0

6
4.

20
0.

5
0.

07
5

0.
89

0.
07

6.
9

0
0

24
.5

2.
9

17
8

19
95

Ye
s

73
.3

3
6.

36
58

.3
3

4.
22

0.
5

0.
07

5
0.

89
0.

06
1

6.
9

3
1

12
.1

5.
3

17
9

19
95

N
o

12
6.

09
9.

28
96

.3
0

5.
75

0.
6

0.
09

0.
75

0.
09

9
6.

9
9

1
27

.7
4.

2
18

0
19

95
Ye

s
11

0.
20

16
.8

5
58

.2
5

8.
02

0.
5

0.
07

5
0.

7
0.

09
6.

9
5

1
8.

3
2.

3
18

1
19

95
N

o
84

.9
1

6.
00

64
.3

2
4.

28
0.

5
0.

07
5

0.
83

0.
07

3
6.

9
13

3
26

.7
1.

3

139



Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

18
2

19
95

Ye
s

10
5.

40
8.

78
64

.2
4

5.
27

0.
5

0.
07

5
0.

81
0.

08
7

6.
9

18
3

13
.3

1.
5

18
3

19
95

N
o

76
.7

4
3.

54
60

.0
8

3.
71

0.
5

0.
07

5
0.

84
0.

06
8

6.
9

18
3

22
.5

2.
3

18
4

19
95

Ye
s

92
.3

8
6.

74
71

.5
6

4.
57

0.
5

0.
07

5
0.

76
0.

07
9

6.
9

5
2

19
.9

4.
4

18
5

19
95

N
o

72
.3

0
3.

41
52

.2
0

3.
58

0.
6

0.
09

0.
93

0.
06

4
6.

9
5

1
26

.1
1.

5
18

6
19

95
Ye

s
73

.6
4

8.
59

36
.8

8
4.

95
0.

5
0.

07
5

0.
93

0.
06

4
6.

9
5

1
23

.2
7.

9
18

7
19

95
N

o
18

3.
67

10
.3

9
15

5.
74

7.
14

0.
7

0.
10

5
0.

62
0.

13
1

6.
9

0
0

38
.6

4.
1

18
8

19
95

N
o

12
5.

91
4.

97
11

2.
18

4.
86

0.
6

0.
09

0.
86

0.
09

9
6.

9
10

1
21

.7
1

18
9

19
95

N
o

10
5.

25
12

.3
8

66
.0

4
6.

67
0.

55
0.

09
0.

93
0.

08
2

6.
9

0
0

64
.3

2
19

0
19

95
N

o
60

.6
4

3.
42

42
.5

0
3.

26
0.

6
0.

09
0.

96
0.

05
2

6.
9

0
0

36
.4

3.
2

19
1

19
95

N
o

10
4.

62
12

.3
6

69
.3

3
6.

64
0.

6
0.

09
0.

86
0.

08
2

6.
9

6
2

40
.8

12
.2

19
2

19
95

N
o

85
.6

1
6.

45
66

.0
1

4.
36

0.
6

0.
09

0.
89

0.
07

6.
9

8
2

24
.3

1
19

3
19

95
Ye

s
59

.5
3

3.
46

48
.2

6
3.

30
0.

5
0.

07
5

0.
96

0.
05

2
6.

9
0

0
25

.3
1.

4
19

4
19

95
N

o
59

.8
5

3.
44

46
.6

2
3.

28
0.

7
0.

10
5

0.
96

0.
05

2
6.

9
4

1
39

.4
1.

2
19

5
19

95
N

o
59

.7
7

3.
37

34
.2

9
3.

48
0.

6
0.

09
0.

97
0.

05
2

6.
9

0
0

43
.1

6.
8

19
6

19
95

N
o

40
.4

1
2.

98
26

.2
0

3.
17

0.
6

0.
09

0.
98

0.
03

9
6.

9
10

2
52

.2
5.

7
19

7
19

95
Ye

s
72

.8
5

3.
44

45
.8

9
3.

61
0.

4
0.

06
0.

93
0.

06
4

6.
9

10
2

26
.3

4
19

8
19

95
Ye

s
61

.6
6

4.
65

44
.5

0
3.

55
0.

4
0.

06
0.

94
0.

05
5

6.
9

0
0

18
.8

3.
4

19
9

19
95

N
o

13
9.

02
9.

40
70

.4
1

6.
24

0.
6

0.
09

0.
73

0.
11

6.
9

10
1

43
.4

6.
6

20
0

19
95

N
o

67
.2

3
6.

09
39

.7
9

4.
02

0.
6

0.
09

0.
94

0.
05

8
6.

9
0

0
59

.8
6.

3
20

1
19

95
N

o
53

.8
8

8.
02

33
.3

0
4.

33
0.

5
0.

09
0.

94
0.

05
2

6.
9

6
2

32
.2

3.
5

20
2

19
95

N
o

13
0.

38
6.

79
71

.5
7

5.
32

0.
5

0.
07

5
0.

74
0.

10
4

6.
9

50
5

30
.3

2.
1

20
3

19
95

Ye
s

11
4.

05
16

.8
5

63
.0

7
8.

02
0.

4
0.

06
0.

73
0.

09
3

6.
9

9
1

25
.8

3.
7

20
4

19
95

Ye
s

72
.6

2
8.

49
48

.6
0

4.
77

0.
5

0.
07

5
0.

86
0.

06
4

6.
9

8
2

19
2.

6

140



Ta
bl

e
B

.1
:F

ie
ld

pe
rf

or
m

an
ce

po
st

liq
ue

fa
ct

io
n

da
ta

ba
se

C
as

e
N

o.
Ye

ar
L

iq
.

σ
v

σ
v∗

σ
′ v

σ
′ v∗

am
ax g

am
ax g
∗

r d
r d

∗
M

F
.C

F
.C

∗
(N

1)
60

(N
1)

60
∗

20
5

19
95

N
o

56
.9

9
3.

25
31

.9
0

3.
42

0.
6

0.
09

0.
93

0.
05

2
6.

9
3

1
36

.6
1.

5
20

6
19

95
Ye

s
62

.8
3

11
.2

8
62

.8
3

5.
81

0.
35

0.
05

0.
92

0.
05

8
6.

9
0

0
22

.3
3.

1
20

7
19

95
Ye

s
12

9.
60

11
.5

9
80

.5
9

6.
39

0.
5

0.
07

5
0.

73
0.

10
4

6.
9

5
1

20
.1

2.
8

20
8

19
95

N
o

77
.2

1
3.

66
58

.5
9

3.
50

0.
6

0.
09

0.
96

0.
06

4
6.

9
0

0
66

.1
4.

4
20

9
19

95
N

o
61

.0
3

3.
52

54
.1

7
3.

57
0.

6
0.

09
0.

97
0.

05
2

6.
9

0
0

43
.6

10
.8

21
0

19
95

Ye
s

69
.7

1
10

.9
6

48
.8

8
5.

72
0.

4
0.

06
0.

93
0.

05
9

6.
9

0
0

14
.7

2.
9

21
1

19
95

Ye
s

77
.6

4
5.

82
39

.9
0

4.
22

0.
4

0.
06

0.
81

0.
07

6.
9

10
1

12
.2

0.
5

21
2

19
95

Ye
s

75
.0

1
3.

45
50

.5
0

3.
62

0.
35

0.
05

0.
91

0.
06

6
6.

9
20

2
15

.2
0.

3
21

3
19

95
Ye

s
61

.6
2

5.
55

37
.6

0
3.

84
0.

4
0.

06
0.

87
0.

05
8

6.
9

5
1

8
2

141



Appendix C

MATLAB Output for Neural Network
Modelling

The MATLAB programming script for neural network modelling of LI
function is presented below

clc;
clear all;
close all;
trainset=importdata(’data set/trainingset.txt’);
testset=importdata(’data set/testset.txt’);
traininput=trainset(:,1:4);
trainoutput=trainset(:,5);
testinput=testset(:,1:4);
testoutput=testset(:,5);
traininput=traininput’;
trainoutput=trainoutput’;
testinput=testinput’;
testoutput=testoutput’;
xr=minmax(traininput); b=ones(4,1);
for i=2:4

a(i,1)=((xr(i,2))-(9*xr(i,1)))/8;
b(i,1)=((xr(i,2))-(xr(i,1)))/0.8;

end
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for i=1:163
traininput(:,i)=((traininput(:,i)+a))./b;

end
xr=minmax(testinput);
for i=2:4

a(i,1)=((xr(i,2))-(9*xr(i,1)))/8;
b(i,1)=((xr(i,2))-(xr(i,1)))/0.8;

end
for i=1:50

testinput(:,i)=((testinput(:,i)+a))./b;
end
net=newff(traininput,trainoutput,4);
numNN = 10;
NN = cell(1, numNN);
perfs = zeros(1, numNN);
for i = 1:numNN

fprintf(’Training %d/%d\n’, i, numNN);
net=configure(net,traininput,trainoutput);

net.layers{1}.transferFcn = ’logsig’;
net.layers{2}.transferFcn = ’logsig’;
net.divideFcn= ’divideind’;
net.divideParam.trainInd=1:163;
net.trainFcn = ’trainlm’;
net.inputs{1}.processFcns= {};
net.outputs{2}.processFcns={};
net.inputWeights{1,1}.learnParam.lr = 0.1;
net.biases{1,1}.learnParam.lr = 0.1;
net.trainParam.min_grad=1e-4;
net.trainParam.max_fail=100;
net.trainParam.goal=1e-3;
net.trainParam.epochs=1000;

[NN{i}, tr(i)] = train(net,traininput,trainoutput);
y1 = NN{i}(testinput);
perfs(i) = mse(net,testoutput,y1)

end
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MATLAB Command Window Page 1

>> perfs
 
perfs =
 
    0.1980    0.2132    0.1605    0.2400    0.2303    0.1906    0.2423    0.2200    
0.2057    0.1558
 
>> [r,m,b]=regression(y1,testoutput)
 
r =
 
    0.6477
 
 
m =
 
    0.7983
 
 
b =
 
    0.0529
 
>> y1 = NN{10}(testinput);
>> [r,m,b]=regression(y1,testoutput)
 
r =
 
    0.6477
 
 
m =
 
    0.7983
 
 
b =
 
    0.0529
 
>> NN{3}(testinput)'
 
ans =
 
    1.0000
    1.0000
    1.0000
         0
    1.0000
    1.0000
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MATLAB Command Window Page 2

    1.0000
    1.0000
    0.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
         0
    1.0000
    1.0000
    1.0000
    1.0000
         0
         0
         0
         0
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    0.1518
    1.0000
    0.0000
    1.0000
         0
    0.0000
         0
    1.0000
    1.0000
    0.0000
    0.0000
         0
    1.0000
    1.0000
         0
 
>> y1 = NN{3}(testinput);
>> plotregression(testoutput,y1)
>> y2 = NN{3}(traininput);
>> plotregression(trainoutput,y2)
>> completeinput=traininput;
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MATLAB Command Window Page 3

>> completeoutput=trainoutput;
>> for i=164:213   completeinput(:,i)=testinput(:,i-163) end
 for i=164:213   completeinput(:,i)=testinput(:,i-163) end
                                                        
Error: Illegal use of reserved keyword "end". 
  
>> for i=164:213   completeinput(:,i)=testinput(:,i-163); end
>> for i=164:213   completeoutput(:,i)=testoutput(:,i-163); end
>> y2 = NN{3}(completeinput);
>> [r,m,b]=regression(y2,completeoutput)
 
r =
 
    0.8906
 
 
m =
 
    0.9085
 
 
b =
 
   -0.0016
 
>> plotregression(y2,completeoutput)
>> tr(3)
 
ans = 
 
  struct with fields:
 
        trainFcn: 'trainlm'
      trainParam: [1×1 struct]
      performFcn: 'mse'
    performParam: [1×1 struct]
        derivFcn: 'defaultderiv'
       divideFcn: 'divideind'
      divideMode: 'sample'
     divideParam: [1×1 struct]
        trainInd: [1×163 double]
          valInd: [0×1 double]
         testInd: [0×1 double]
            stop: 'Minimum gradient reached.'
      num_epochs: 228
       trainMask: {[1×163 double]}
         valMask: {[1×163 double]}
        testMask: {[1×163 double]}
      best_epoch: 228
            goal: 1.0000e-03
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          states: {'epoch'  'time'  'perf'  'vperf'  'tperf'  'mu'  'gradient'  
'val_fail'}
           epoch: [1×229 double]
            time: [1×229 double]
            perf: [1×229 double]
           vperf: [1×229 double]
           tperf: [1×229 double]
              mu: [1×229 double]
        gradient: [1×229 double]
        val_fail: [1×229 double]
       best_perf: 0.0245
      best_vperf: NaN
      best_tperf: NaN
 
>> plotperform(tr(3))
>> plottrainstate(tr(3))
>> genFunction(NN{3},'LI')
 
MATLAB function generated: LI.m
To view generated function code: edit LI
For examples of using function: help LI
 
>> NN{3}.IW
 
ans =
 
  2×1 cell array
 
    [4×4 double]
    []
 
>> NN{3}.IW{1}
 
ans =
 
   -2.0249   -0.7516   21.9303    0.9669
  188.2523   52.6672   64.8545   54.0202
   44.3555   -7.0789  -33.1357    8.8690
  -89.1416   18.7082  112.4106  -20.7840
 
>> NN{3}.LW{2}
 
ans =
 
   1.0e+03 *
 
   -2.5534    0.4192    1.9627    1.2375
 
>> NN{3}.b{1}
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ans =
 
   -8.4126
  -88.6730
    1.0270
  -12.8847
 
>> NN{3}.b{2}
 
ans =
 
  -1.6250e+03
 
>> 

148


	Abstract
	Acknowledgements
	List of Tables
	List of Equations
	List of Figures
	Nomenclature
	Introduction
	Soil Liquefaction
	Evaluation of Soil Liquefaction Potential
	Cyclic Stress Approach
	Role of ANN in Evaluation of Soil Liquefaction
	Factor of Safety for Soil Liquefaction

	Probabilistic Approach
	Uncertainty in Soil Parameters
	Quantification of Randomness in Soil Variables
	Principle of Maximum Entropy
	Probabilistic Approach in Soil Liquefaction

	Reliability Approach
	Hasofer-Lind's First Order Reliability Analysis
	Reliability Analysis in Soil Liquefaction

	Research Objective
	Thesis Outline

	Probability Distribution for Censored Samples
	Truncated Distributions
	Probability Distributions for Uncensored Samples
	Probability Distributions for Censored Samples
	Estimation of Parameters

	Comparative Studies of Truncated Distributions based on Censored Samples
	Methodology
	Results and Discussions

	Summary

	Reliability Analysis using Truncated Distributions
	Global Search Technique
	FORM for Truncated Distribution
	Truncated based Reliability Analysis of Bearing Capacity of Strip Footing
	Truncated based Reliability Analysis of Bearing Capacity of Strip Footing at Nipigon

	Summary

	Soil Liquefaction Potential
	Methodolgy
	Developing Relationship Between CRR and SPT-N
	Investigating the Model Uncertainty using Reliability Analysis
	Case study 1: 1978 Miyagiken-oki Earthquake at Ishinomakai-2
	Case study 2: 1977 Argentina Earthquake at San Juan B-5
	Summary

	Evaluation of Soil Liquefaction using Truncated Distribution
	Case study 1: 1978 Miyagiken-oki Earthquake at Ishinomakai-2
	Case study 2: 1977 Argentina Earthquake at San Juan B-5
	Summary

	Conclusions
	Contribution
	Developing Truncated Distribution based on Censored Samples
	Hasofer-Lind's FORM Using Global Optimum Function for Truncated Distributions
	Limit State Performance Function for Soil Liquefaction Potential Evaluation
	Reliability Analysis of Soil Liquefaction using Truncated Distributions

	Recommendations for Further Research

	Bibliography
	Truncated based FORM Sample Output
	Data Collection
	MATLAB Output for Neural Network Modelling

