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Abstract

Over the years, the controller design for an unmanned aerial vehicle has been attracting
considerable amount of attentions and interests. In this thesis, a quadcopter has been studied
intensively, and an adaptive backstepping nonlinear controller, along with altitude control
using sonar sensor, has been proposed to ensure the stable flight of a quadcopter.

A quadcopter consists of four motors acting as its control means. The proper thrust and
air drags produced by the propellers completes the tasks to stabilize the quadcopter in the
pitch, roll and yaw directions. An attitude estimation technique, the Mahony filter, was
firstly implemented to yield the accurate Euler angles for the quadrotor. To understand
such a complex system, the Euler-Lagrangian equations has been introduced to develop a
dynamic model. Following such a mathematical model, using backstepping design technique,
an adaptive nonlinear controller is designed for and implemented onto a real quadcopter.
The derived mathematical model has its own uncertainties, such as changes in mass and the
location of the center of the mass. Due to such a nature, an adaptive controller based on the
neural network has been proposed to estimate certain nonlinear terms in the mathematical
model. Successfully design and implementation of such a controller can improve the accuracy
of the dynamic model.

The unit quaternion representations was also used to eliminate the Gimbal Lock of the Eular
angles. A different mathematical model based on Newton equations was also used to further
consider the air drag effect of a quadrotor while flying in the air.

Proceeding to the attitude controller design, an altitude controller is also designed to lock
the flying height of the quadcopter. The design concepts are based on a traditional nonlinear
backstepping method.

Matlab simulation results suggest a possible implementation of the proposed controller for
the quadcopter’s altitude and attitude control. A couple of real time experiments have been
conducted. The results was recorded and analysed.



Contents

1 Introduction 1

1.1 Brief Discussion on UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Attitude Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Attitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Experimental Platform 7

2.1 Platform Overview and Electronics . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 APM 2.6 Pilot Module . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Digital Compass and GPS Unit . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 MB1240 XL-MaxSonar Sensor . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 RC Control and Wireless Data Transfer . . . . . . . . . . . . . . . . . 11

2.1.5 The Actuation System . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Quadrotor Aerodynamics and Preliminary Calculations . . . . . . . . . . . 22

3 Attitude Estimation 25

iii



Contents iv

3.1 The Attitude Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Rotational Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Euler Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Unit Quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Sensor Fusion Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Quadrotor Dynamics 34

4.1 Euler Lagrangian Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Dynamic Model Using Newton Equations . . . . . . . . . . . . . . . . . . . 36

5 Controller Design and Experiments 38

5.1 Backstepping Design with Euler Angle Representation . . . . . . . . . . . . 38

5.1.1 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Integral Backstepping Design with Euler Angle Representation . . . . . . . . 41

5.2.1 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Backstepping Controller with Unit Quaternion Representation . . . . . . . 49

5.3.1 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Integral Backstepping with Neural Network . . . . . . . . . . . . . . . . . . 54

5.4.1 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Altitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.1 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents v

6 Conclusion 66

A C Language Flow Chart 68

B Digital Compass Calibration 69



List of Figures

1.1 RQ-4 Global Hawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 DJI Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Quadrotor Expiremental Platform . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Quadrotor Major Components Layout . . . . . . . . . . . . . . . . . . . . . 8

2.3 (a) APM 2.6 External Physical Structure; (b) APM 2.6 Circuit Board . . . 9

2.4 (a) MS5611-01BA Pressure Sensor; (b) MPU-6050 . . . . . . . . . . . . . . 9

2.5 (a) HMC5883L Digital Compass; (b) U-blox GPS Unit with Compass;(c) 3DR
GPS and Compass Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 MB1240 XL-MaxSonar Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 (a) JR XGB Remote Control; (b) RG831B with DMSS RA01T Receiver . . . 11

2.8 2.4 Ghz Wireless Data Transfer Radio . . . . . . . . . . . . . . . . . . . . . 12

2.9 (a)The Core of a TPM; (b)The Concept of a TPM . . . . . . . . . . . . . . 12

2.10 880KV TPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.11 10x4.7 Propeller both CCW and CW . . . . . . . . . . . . . . . . . . . . . . 13

2.12 Afro ESC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.13 Turnigy Nano-tech 2.65 LiPo Battery . . . . . . . . . . . . . . . . . . . . . . 15

2.14 Illustration on Assembled Quadcopter . . . . . . . . . . . . . . . . . . . . . 15

2.15 Moment of Inertia Experiment Setup for Roll or Pitch Direction . . . . . . 18

2.16 Moment of Inertia Experiment Setup for Yaw Direction . . . . . . . . . . . 19

vi



List of Figures vii

2.17 Oscillation around x Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.18 Oscillation around y Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.19 Oscillation around z Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.20 Natural Frequency with Respect to x Axis . . . . . . . . . . . . . . . . . . . 20

2.21 Natural Frequency with Respect to y Axis . . . . . . . . . . . . . . . . . . . 20

2.22 Natural Frequency with Respect to z Axis . . . . . . . . . . . . . . . . . . . . 21

2.23 Operating Principle of a Quadrotor . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Unit Quaternion Graphical Representation . . . . . . . . . . . . . . . . . . 28

3.2 HMC-5883 Digital Compass Calibration Results . . . . . . . . . . . . . . . . . 31

3.3 Filter Testing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Block Diagram for Backstepping Control . . . . . . . . . . . . . . . . . . . . . 41

5.2 Backstepping Control with Euler Representation in φ Direction . . . . . . . 42

5.3 Backstepping Control with Euler Representation in θ Direction . . . . . . . 42

5.4 Backstepping Control with Euler Representation in ψ Direction . . . . . . . 42

5.5 Block Diagram for Integral Backstepping Control . . . . . . . . . . . . . . . 47

5.6 Integral Backstepping with Euler Representation in φ Direction . . . . . . . 48

5.7 Integral Backstepping with Euler Representation in θ Direction . . . . . . . 48

5.8 Integral Backstepping with Euler Representation in ψ Direction . . . . . . . 49

5.9 Block Diagram for Quaternion Backstepping Control . . . . . . . . . . . . 52

5.10 Quaternion Tracking Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.11 Euler Angle of the Quadrotor . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12 Angular Velocity of the Quadrotor . . . . . . . . . . . . . . . . . . . . . . . 54

5.13 Neural Network in φ Direction . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.14 Neural Network in θ Direction . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.15 Neural Network in ψ Direction . . . . . . . . . . . . . . . . . . . . . . . . . 56



List of Figures viii

5.16 Block Diagram for Integral Backstepping with Neural Network Control . . . . 61

5.17 Neural Cells Outputs for φ̇ input and ψ̇ input . . . . . . . . . . . . . . . . . 62

5.18 Integral Backstepping with Neural Network in φ Direction . . . . . . . . . . 62

5.19 Integral Backstepping with Neural Network in θ Direction . . . . . . . . . . 63

5.20 Integral Backstepping with Neural Network in ψ Direction . . . . . . . . . . 63

5.21 Block Diagram for Altitude Control with Integral Backstepping Controller . 65

5.22 Altitude Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



List of Tables

2.1 880KV Motor Electrical and Mechanical Parameters . . . . . . . . . . . . . 13

2.2 Propeller Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Afro ESC Electrical and Physical Specs. . . . . . . . . . . . . . . . . . . . . 14

2.4 The Turnigy Nano-Tech 2650 mAh LiPo Battery. . . . . . . . . . . . . . . . 15

2.5 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Propeller Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Rotational Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 HMC 5883 Digital Compass Calibration Results . . . . . . . . . . . . . . . . . 31

ix



List of Tables x

List of Abbreviations

UAV – Unmanned Aerial Vehicle.

PID – Proportional Integral Derivative.

PD – Proportional Derivative.

KF – Kalman Filter.

EKF – Extended Kalman Filter.

AEKF – Additive Extended Kalman Filter.

PWM – Pulse Width Modulation.

LQR – Linear Quadratic Regulator.

SMC – Sliding Mode Control.

GPS – Global Positioning System.

FIR – Finite Impulse Response.

APM – Arduino Pilot Module.

ESC – Electronics Speed Control.

DMP – Digital Motion Processing.

I2C – Inter-Integrated Circuit.

SPI – Serial Peripheral Interface.

IMU – Inertial Measurement Unit.

UART – Universal Asynchronous Receive and Transmit.

CPU – Central Processing Unit.

DMSS – Dual Modulation Spectrum System.

DSSS – Direct Sequence Spread Spectrum.

FHSS – Frequency Hopping Spread Spectrum.

PPM – Pulse Position Modulation.

TPM – Three Phase Motor.

LiPo – Lithium Polymer.

SPI – Serial Peripheral Interface.

LBT – Listen Before Talk.

TDM – Time Division Multiplexing.

FFT – Fast Fourier Transform.



Chapter 1

Introduction

1.1 Brief Discussion on UAVs

The definition of the Unmanned Aerial Vehicle (UAV) is a rigid body flying in the air without
any onboard human interference. They can be built in many different format. It could be a
helicopter, or a fixed-wing aircraft, and of course a quadrotor.

Fig. 1.1 shows a fixed wing type drone designed by U.S. military. It is called RQ-4 Global
Hawk, which has a wingspan of 39.9 meters and is 14 meters in length. It has a cruising speed
of 575km/h and can reach up to a top speed of 629km/h. The service ceiling altitude is at
60,000 ft. It can fly up to 32 hours without any re-adjustment. It successfully accomplished
many surveillance and reconnaissance mission for the U.S. military [1].

Figure 1.1: RQ-4 Global Hawk

This thesis research, however, is based on a quadrotor, which is shown in Fig. 1.2. It is
a DJI phantom quadrotor designed and manufactured by a Chinese company located in
southern China. It weighs about 1200 grams and has a diagonal size of 350mm. It can reach

1
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a vertical take off speed of 5m/s and maximum horizontal translational speed of 16m/s.

Figure 1.2: DJI Phantom

A quadrotor has many different advantages in terms of the high maneuverability, hovering
capability, vertical take off and landing. Comparing with standard helicopters, or a fixed
wing aircraft, the quadrotors are more agile, efficient, safe and of course can be designed in
a fairly small dimension [2, 3].

Due to all these unique characteristics of the quadrotors, they have been used in many
different applications, such as military services, surveillance, rescue, remote inspection,
photography, aviation enthusiastic, and research projects conducted by different companies
and universities.

1.2 Attitude Estimation

To be able to successfully control the attitude of a quadrotor, an accurate attitude estimation
is vital to ensure the proper function of any possible control strategy. Before jumping onto
different methods of yielding the attitude of a quadrotor, we need to gain considerable
amount of understanding about three different types of attitude representation, which are
the rotational matrix, the Euler angle, and the quaternion, respectively [4]. These three
different types of attitude representation techniques will be discussed in details later on. For
now, we will be using Euler angles for a simpler and more intuitive illustration purposes.

Three different types of sensors, gyroscope, accelerometer, and magnetometer, are commonly
used to measure the Euler angles. There are quite a few algorithms have been studies
intensively to estimate the attitude of a quadrotor. The basic trigonometry may be used to
produce the pitch, roll, and yaw angles directly from the accelerometer readings. However,
the accelerometer is extremely prone to the vibration, so the jitters and the noises will have
a huge negative impact on the results. To perform an integration on the angular velocity
from the gyroscope reading is another alternative to produce the pitch, roll, and yaw angles.
However, the error accumulation from the integration will cause a drift on the final results,
hence this method is not appropriate for our applications.

Along with the advancement of the mathematics, a couple more complex attitude estimation
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algorithms have entered the horizon. Dr. Robert Mahony, along with his research team, has
made a great contribution in attitude estimation [5]. The filter is quite powerful by employing
the nonlinear observer. The proposed estimation scheme is able to be implemented onto a
low cost and compact micro-controller, such as the ATMAGE 2560. In [5], the filter with the
unit quaternion representation was being experimented. On the other hand, in [6], the filter
went under the similar experiments with rotational matrix representation. The paper [5]
proposed a strategy to decouple the roll and pitch from the yaw. Through the anti-windup
nonlinear integrator, the designed filter was able to produce accurate estimations with fast
responses by adding the gyro-bias compensation.

The Kalman Filter(KF) is another efficient method for attitude estimation, Instead of having
a nonlinear observer stated in [5,6], the KF is firstly predicting the current state variables
from the previous, and then update the estimated state variables with the scaled predicted
state and measurement noises. The KF is originally designed for linear systems, however, in
order to predict a nonlinear attitude dynamics, the Extended Kalman Filter (EKF) is then
introduced [7, 8]. The EKF is quite computational complex and its linerization may lead to
the divergence. A more advanced filter, such as Additive Extended Kalman Filter(AEKF) [9],
should be implemented to correct such an issue. However, considering the computational
power of the microprocessor ATMEGA 2560 used in this thesis work, to ensure a reliable
performance, the Mahony filter is applied to estimate the attitude of the quadcopter.

1.3 Attitude Control

Many different types of control schemes have been proposed over the years [10–15]. In [10],
the author was using the mathematical model derived by Euler Lagrangian method. Based
on such a dynamic model, a backstepping control algorithm is developed to ensure the
asymptotically stability in the pitch, roll, and yaw directions, as well as the translational
movement along the x, y and z directions. Under the goal of achieving a better practical
engineering implementation, a nonlinear relationship between the input Pulse Width Modu-
lation (PWM) signal and the motor rotational speed was studied, a polynomial function
was constructed and implemented as part of the final design.

A backstepping method similar to [13] is used to ensure the attitude stabilization of the
quadrotor, as well as the trajectory tracking. The designed control scheme is based on a
dynamic model, which is viewed under three different sub-categories: under-actuated system,
actuated system, and fully propelled system.

The widely used Proportional Integral Derivative (PID) controller was studied and im-
plemented in [11, 14, 15]. Linear Quadratic Regulator (LQR) controller [11, 14] and PID
controller [15] all exhibit few disadvantages in the response to the aggressive maneuver,
since the linear controller can only perform well in a constrained domain. Such a problem is
especially escalated in [11], where the PID and LQR controllers were firstly being used. It
was then discovered that the strong disturbances were poorly rejected as in the presence of
the wind. Therefore, a nonlinear backstepping controller is used and implemented onto the
quadrotor.



1.4. Neural Network 4

Various other controllers are proposed, such as robust control, H∞ and Sliding Mode Control
(SMC) stated in literature [16–19]. The theory development and computer simulation are
suggesting the good control outcomes, though there are no signs of real experimental results.
In [19], a nonlinear control law is considered using the unit quaternion and measured angular
velocities to provide the asymptotic stability. The proposed control scheme does not require
the values of the system parameters, hence it is robust to the modeling errors. The controller
is taking the full advantage of a nonlinear design, where a large angle maneuverability is
achievable.

Further more in [18], an SMC is presented to provide a high maneuverability and robustness
to the surrounding disturbances. The position controller is yielding the desired tracking
of the pitch and roll attitude. The designed controller, based on a robust compensation
technique, is capable of automatic taking off, hovering, and the position tracking. Another
controller design approch [17] is using a high order sliding mode observer design to model the
external disturbances, such as wind and noises. The numerical simulation results prove the
proposed functionality of the designed controller. Another control law, based on total energy
of a rigid body and Lyapunov design technique, is constructed [20]. In the comparison to
the PD controller, the proposed control scheme has a PD like structure with a feedforward
compensation.

In [12], a PD2 structured quaternion-based feedback controller is designed to achieve
exponential attitude stabilization. The dynamical model is improved by using Newton
equations and taking the aerodynamics effects into the consideration. In [21], a passive
control scheme without the angular velocity measurements was announced. To create a
passivity property, an auxiliary system is introduced to estimate the angular velocities. The
controller is designed by using the output of the auxiliary system and the unit quaternion
attitude tracking error. Such a control scheme ensures the almost global asymptotic stability.

1.4 Neural Network

The majority control scheme design and development are heavily based on the dynamic model.
The errors in the model parameter measurements, the external disturbances, and the proper
assumptions on neglecting certain model parameters can all be the factors to deteriorate
the performance of the designed controller. A robust control scheme mentioned in [22,23]
earlier can be used to solve the problems caused by certain external disturbances and model
uncertainties. However, a possible better approach has always being studied. Because neural
networks can be used to estimate unknown parameters, nonlinearities, and dynamics, etc. It
has then been applied to control nonlinear systems with unknown parameters, nonlinearities,
and dynamics [24]. In [24], the neural network is applied to estimate an unknown system.
The neural model for the unknown nonlinear system is learnt by the backpropagation training
algorithm. A predictive controller is designed by minimizing the errors between the reference
signal and the predicted output from the neural model. The proposed controller guarantees
that the output of the real system can be made close to the reference signal. Such a design
method has been applied to the flow rate control and temperature control systems.
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In [25–28], different controller design approaches are used with neural network to control
quadrotors. In [25], the controller network works in conjunction with the sensory and motor
network. The classical concepts of the neural network are used, where the information is
being passed through the linkages among the neural cells. The sensory and the navigation
networks are utilized to generate the signal for the motor network. The design is capable
with the proof of computer simulations.

Another insight is reported in [27], where the outside control loop is used to generate the
desired angular velocity for the faster inner loop which regulates the velocity. Along with
Lyapunov function, the neural network acts as the estimator for all the uncertainties, which
may caused by the inaccuracy of model parameters, unwanted surrounding noises, and the
external disturbances. A Finite Impulse Response (FIR) assisted with neural network control
strategy [28] ensures a promising result on the control output. A fractional order PIλDµ is
deployed in this article.

1.5 Research Motivation

Under the influential theory development in [10,12,14,23], along with the close observation on
the aerodynamics reaction of the quadrotor, a clear and well plotted backstepping technique
will be utilized to develop a controller design scheme. Different from [10], an integrator will
be added to eliminate the steady state error. To ensure the robustness of the quadrotor,
two different dynamic modeling methods, Euler Lagragian and Newton, will be adopted.

The control scheme will firstly be based on the Euler angle representation, though as
mentioned earlier, the Euler angle singularity problem also known as gimbal lock will cause
the problem of the controller’s performance. A more sophisticated quaternion representation
will be adopted later on.

With more enlightening ideas coming from [25,26] and [24], a neural network will be included
into this thesis research. Implementing the neural networks may enhance the tolerance of the
error in the model parameters measurements. The system may also handle the disturbances
in a better fashion, which may increase the robustness of the system. Because the added
complex calculation for the neural network will be lengthening the sampling period for
the practical implementation, triangular activation functions and fairly simple network are
chosen for the initial set up for the neural network.

1.6 Thesis Contribution

• By collecting the oscillation data, and applying the Fast Fourier Transformation, the
natural frequency of the quadrotor is found in Chapter 2. Hence, the moment of inertia
is computed.

• A sensor fusion technique in Chapter 3 is implemented to estimate the attitude of the
quadrotor in the three dimensional space. The algorithm is based on the published
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work in [5]. The experimental results will be posted in Chapter 3. To cope with the
different types of the sensory noise, an average filter is applied onto the sensor readings
to seek out the noise bias. A necessary digital compass is also performed to ensure the
proper heading of the quadrotor.

• The actual flight experiments of attitude control using the various different control
schemes discussed in Chapter 5 will be conducted. The nonlinear controllers are
derived based on the backstepping technique. A neural network is also added to the
controller design.

• An altitude control will be implemented by using a sonar sensor in Section 5.5. A
second order butterworth filter is applied to eliminate the noise of the feedback signal.

1.7 Thesis Outline

In this thesis work, Chapter 1 provides the background information of the quadrotor and
literature reviewed during the research. Chapter 2 elaborates the details on the hardware
selection, aerodynamics of the quadrotor system as well as the method of measuring the
moment of inertia. Chapter 3 briefly discusses the sensor usage, which includes the sensor
fusion technique, calibration issues for the different sensory unit. Chapter 4 introduces
different type of dynamic models. Chapter 5 devotes to controller design with the experiments
and simulation results. Chapter 6 gives a summary of this thesis work and suggests the
possible future work.



Chapter 2

Experimental Platform

The design of the physical frames for quadrotor is a vital step prior in selecting the appropriate
actuation systems and other electronics systems onboard. Many companies and individuals
are delicate in the research and development of the quadrotor frames suitable for various
applications. Many different types of the quadrotor UAVs are being publicly displayed
in [29–32]. A fairly large scale of quadrotor UAV has been designed and tested in [33].
Without a suitable electronics brain, a well developed quadrotor frame is not nearly good
enough for a complete quadrotor design. Paparazzi, Pixhawk, Mikrokopter, Arduino Pilot
Module(APM) etc. are all the famous brand names of micro-controllers. The control
algorithm is coded into these micro-controllers.

2.1 Platform Overview and Electronics

Fig.2.1 is the complete physical build for the experimental quadrotor. The frame was directly
purchased from [34], so were majority of other components. The quadrotor consists 4 three
phase motors with properly pitched propellers installed on each motor and one APM 2.6
arduino pilot module, which is responsible for running the flight control algorithm. The
Electronics Speed Control (ESC) module will eventually convert PWM signals into three
phase voltage signals which rotate the motors. Fig.2.2 is showing the general layout for the
major components of the quadrotor.

2.1.1 APM 2.6 Pilot Module

The APM 2.6 pilot module is responsible for implementing the nonlinear control algorithm
while the quadrotor flying in the air. A 16 MHz ATMEGA 2560 micro-controller is used in
this device. There are various different electronics and sensing units onboard. An Inertial
Measurement Unit (IMU) MPU 6050 is used to provide the motion tracking. A MS5611-01BA
baro metric pressure sensor offers the air pressure readings within different altitude. It is
compatible with 3DR Ublox GPS and the embedded digital compass. The 8 channels digital

7
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Figure 2.1: Quadrotor Expiremental Platform

input and output is versatile and convenient for possible do-it-yourself (DIY) projects, and
expanding more functionalities on the quadrotor. 12 analogue inputs allow communications
with various sensors, such as sonar, laser, radar, etc. For transferring data back and forth
with a ground computer, a telemetry port is utilized for the Universal Asynchronous Receive
and Transmit (UART) communications.

Figure 2.2: Quadrotor Major Components Layout

∗ ATMEGA 2560 Micro-Controller

The ATMEGA 2560 in Fig.2.3 is designed and manufactured by Atmel Limited which
is one of the technological companies interested in researching and developing compact
and low cost micro-controllers. It has a 8-bit AVR Central Processing Unit (CPU) and
operates at 16 MHz maximum operating frequency. It has 86 General Purpose Input
and Output (GPIO) pins. The flash memory is 256 kilo bytes. The controller also has
the capability of power-on reset and programmable brown-out detection, which ensures
the safe operations of the system when the possible damage may occur due to the
power surges. The ATMEGA 2560 is not as powerful as many other micro-controllers
available on the market, such as TI controller C2000 32 bits micro-processors [35].
However, it is cheaper, smaller, and simpler in term of programming, so it was chosen
by many university research projects and hobbyists.

∗ MPU6050 Inertial Measurement Unit

The MPU-6050 in Fig.2.4(b) is an IMU, which is used to constantly measure the
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(a) (b)

Figure 2.3: (a) APM 2.6 External Physical Structure; (b) APM 2.6 Circuit Board

acceleration and angular velocity of a rigid body. It is the world’s first 6 axis motion
tracking devices, which have a 3 axis accelerometer and gyroscope, as well as a Digital
Motion Processing (DMP) unit. For the measurement capability, a 3 axis accelerometer
has a full scale of ±2g,±4g,±8g,±16g, on the other hand, a 3 axis gyroscope can
measure a full scale of ±250◦/s,±500◦/s,±1000◦/s,±2000◦/s. The data transfer is
done with a 400KHz Inter-Integrated Circuit (I2C) or a 1 MHz Serial Peripheral
Interface (SPI).

(a) (b)

Figure 2.4: (a) MS5611-01BA Pressure Sensor; (b) MPU-6050

∗ MS5611-01BA Pressure Sensor

The APM 2.6 system is also equipped with a barometric pressure sensing unit MS5611-
01BA, shown in Fig. 2.4(a). It works under an operating pressure of 0.15 PSI -
17.4 Psi, which is equivalent to 1 kPa to 120 kPa. It can measure up to 10 cm in
distance with the high resolution module. For the altitude control of the UAVs, a
barometric pressure sensor is extremely important to provide the altitude feedback
signals. However, the sensor may not function properly in the closed ground proximity,
since the ambient pressure is roughly the same within 100 meters range above the
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sea level. Hence, around the lower altitude, a sonar sensor is used to achieve a better
result.

2.1.2 Digital Compass and GPS Unit

(a) (b) (c)

Figure 2.5: (a) HMC5883L Digital Compass; (b) U-blox GPS Unit with Compass;(c) 3DR
GPS and Compass Module

A digital compass, known as a magnetometer, measures the earth magnetic field, which
provides the important correctional information for the filter fusion techniques mentioned
in [5,6]. A 3 axis digital compass HMC5883L, as shown in the Fig.2.5(a), has a typical supply
voltage of 2.5V and an average current draw of 100µA. It can measure a magnetic field
ranging from ±0.88 to ±8.1 Gauss. It is a low cost surface-mount, multi-chip module with
the options of I2C and SPI digital interfaces. A GPS ublox LEA-6H module is responsible
for updating the latitude and longitude information at 5 Hz sampling rate. As shown in
Fig.2.5(c), the digital compass and the GPS unit are integrated into the same printed circuit
board. In order to eliminate the electrical and mechanical noises coming from the quadrotor,
both sensors are being installed couple inches above the platform. Fig.2.5(b) shows the
internal structure for the 3DR GPS and compass module.

2.1.3 MB1240 XL-MaxSonar Sensor

The MB1240 XL-MaxSonar Sensor in Fig.2.6 is a reliable sensing unit with a real-time
calibration for the changing conditions, which include temperature, electrical and acoustic
noises. The power requirements can be as low as 3.3V, which is suitable for the APM 2.6
flight control module. The detection range is from 20 cm to 1068 cm (0.65 to 35 feet). The
sensor has a high resistance against the electrical and acoustic noises. It operates with
digital as well as analogue output. Hence, it is ideal to use for the quadrotor and other
robotics projects, where the rejection of the noise is vital for the successful testing and
implementation.
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Figure 2.6: MB1240 XL-MaxSonar Sensor

2.1.4 RC Control and Wireless Data Transfer

∗ RC Control

The JR XBG remote control, shown in Fig.2.7(a), generates the Pulse Position
Modulation (PPM) signals, which have a Dual Modulation Spectrum System (DMSS)
with 2.4Ghz bandwidth. Prior to the development of the DMSS, JR was widely
known for its high response Direct Sequence Spread Spectrum (DSSS) and great
ability of interference avoidance Frequency Hopping Spread Spectrum (FHSS). The
DMSS antenna in Fig.2.7(b) is simply the combination of the Frequency Hopping
(FH) and Spread Spectrum (SS), which provides significantly improved remote control
user’s experience. The XBG controller has 8 different channels and is user friendly for
programming the function of the switches. Different alarm system is equipped, hence
any abnormal flying activities will be notified and warned instantaneously without
looking at the LCD display on the remote.

(a) (b)

Figure 2.7: (a) JR XGB Remote Control; (b) RG831B with DMSS RA01T Receiver

∗ Wireless Data Transfer

A 3DR 915Mhz radio telemetry in Fig.2.8 is used for data transmitting and receiving.
The maximum power consumption is up to the 100mW with a data transfer rate of 250
kbps. It supports the Listen Before Talk (LBT) with a fairly small physical dimensions.
Without the antenna installed, the electronics components only weigh 4 grams. The
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Figure 2.8: 2.4 Ghz Wireless Data Transfer Radio

antenna weighs only 1.5g. The FHSS as well as the Time Division Multiplexing (TDM)
are also supported in this device. The communications are effective within 3 to 4 Km
range, depending on the surrounding interferences and obstacles.

2.1.5 The Actuation System

A proper selection of the motors and propellers is based on the knowledge of the physical
characteristics of a quadrotor, such as the total mass of the drone, the diagonal length, the
moment of inertia, etc. The propulsion system of a quadcopter is basically composed of
3 major components, the motors, the propellers and the ESC. In [36–39], an introductive
guidance on how to form the body of the quadrotor was discussed, which includes the
topic on how to pick the right size of motors and propeller blades. In [37,39], the working
principles of many quadcopter related electronics are being explained. In this short section,
the functionality and the fundamental working principles of the electronics and mechanical
propel system will be elaborated.

∗ Three Phase Brushless Motors (TPM)

(a) (b)

Figure 2.9: (a)The Core of a TPM; (b)The Concept of a TPM

The three phase brushless motors are the popular choices for the quadrotor applications.
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The motor works in a very similar fashion in compare with a simple DC motor, where
the brush is intermittently making contacts with the commutator at a fairly high
frequency, the induced magnetic field from the current flowing in the coil will generate
a torque. However, neither a brush nor the commutator will be seen in a three phase
motor.

Figure 2.10: 880KV TPM

As shown in Fig.2.9(b), with the constant magnetic field, the three different coils are
being charged with three phase currents which are 120 electrical degrees lagging from
one another. This causes a constant shifting of a magnetic field on the coil, hence the
rotor will spin in order to catch up with the changing in the magnetic field. In this
thesis work, a 880KV motor, shown in Fig.2.10, is chosen. Table 2.1 illustrates some
basic electrical and mechanical specifications chosen for the quadrotor.

KV(RPM/V) Voltage Max Power Weight Dimensions

880KV 7.4-14.8V 302.4W 55.3g 27.8x40.5mm

Table 2.1: 880KV Motor Electrical and Mechanical Parameters

∗ Propeller

By considering the total mass of the quadrotor, the motor and the battery, four 10x4.7
propeller blades, as shown in Fig.2.11, are used for the experimental platform.

Figure 2.11: 10x4.7 Propeller both CCW and CW
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The different pitch angles determine the direction of spinning (i.e. the Counter Clock
Wise (CCW) and Clock Wise (CW) spinning). The thrust and power coefficient can
be found in [40]. The propeller aerodynamics effect and thrust calculations will be
introduced later on in this thesis. Table 2.2 gives some basic parameters for the
propellers.

Symbols Value Units

Radius r 0.124 m

Thurst coefficient CT 0.1225 n/a

Power coefficient CP 0.051 n/a

Table 2.2: Propeller Characteristics

∗ Electronic Speed Control

Figure 2.12: Afro ESC

The ESC module is responsible for converting the PWM signals into a three phase
current signal for driving the brushless motors. For the quadrotor applications, the
ESC should support high enough PWM signal frequency, i.e., around 300Hz with at
least 10 amps current handling capability, since the each selected motor draws 18 Amps.
An Afro ESC, shown in Fig.2.12, is selected for the experimental quadrotor, which
is able to handle 1 KHz PWM input frequency and outputs 30 Amps maximum. A
2-4S lipo battery is required for the proper function of the device. A couple important
parameters of the chosen ESC is given in Table 2.3.

Current Draw Voltage Range Input Freq. Weight Dimensions

30A Continous 2-4s LiPo 1Khz 26.5g 50x25x11mm

Table 2.3: Afro ESC Electrical and Physical Specs.

∗ Power Module

A Turnigy nano-tech 2650 mAh high discharge Lithium Polymer (LiPo) battery, shown
in Fig.2.13, is used for the quadrotor to provide the necessary power on board.

The LiPo battery can provide compelling advantages in comparison to the traditional
batteries. The LiPo battery cell can be easily formed into different shapes, which can
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Figure 2.13: Turnigy Nano-tech 2.65 LiPo Battery

be used in many mobile devices, laptops, cellular phones, etc. Most of the quadrotors
use the LiPo batteries due to its light weight, high charge capacities, and fairly high
discharge rates. Table 2.4 describes the related parameters for the battery used.

Capacity Voltage Discharge Weight Dimensions

2650mAh 4 cell 14.8V 35C constant 291g 145x45x22mm

Table 2.4: The Turnigy Nano-Tech 2650 mAh LiPo Battery.

∗ The Assembled System Overview

An assembled quadrotor is shown in Fig. 2.14. All the components are being positioned
and installed under the rule of thumb of maintaining the center of the gravity around
the center point of the quadrotor. Since the noises are introduced by the motors and
other electrical modules on board the quadrotor, such as the power converter, the
battery, ESC, etc, and since these components will distort the magnetic field, a digital
compass post is installed to elevate the compass mounting position to reduce the noise
interferences. To counter the weight of the GPS module, a wireless data transmit and
receive antenna is positioned roughly in the opposite direction from the GPS module.
For more details of the assembled quadrotor, one can refer to Fig. 2.14.

Figure 2.14: Illustration on Assembled Quadcopter
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2.2 Moment of Inertia

The moment of inertia is an extremely important parameter for the accuracy of the dynamic
model. Before designing the mathematical model, the value of the moment of inertia needs
to be identified. There are several methods to complete such a task. The quadrotor can be
disassembled and the moment of inertia can be measured for each individual component.
The moment of inertia for the system can be calculated by the summation of the all.
However, it is quite a complex task to disassembling the quadrotor, as well as measuring
them individually may have a considerable amount of inaccuracy due to the human error
and the instrumentation mis-calibration. Hence, the moment of inertia is measured for the
whole quadrotor system using the Euler Lagrangian model.

With the inspiration of [41, 42], an Euler Lagrangian method is deployed for calculating the
moment of inertia respecting to the x, y and z axis. The total kinetic energy on a rigid body
is the rotational kinetic energy neglecting the small amount of energy on the suspension
wire. It can then be expressed by the following equation

Ktotal =
1

2
IβΘ̇2 +

1

2
m(Θ̇l)2 (2.1)

where Iβ represents the moment of inertia, β is the x, y or z excitation axis. Θ represents
angle with respected to the roll, pitch or the yaw direction. m describes the total mass of
the quadrotor. Notice here the mass of the suspension wire has been neglected. Θ̇ is the
angular velocity respected to the roll, pitch or the yaw direction. l denotes the length from
the suspending point to the center of the quadrotor. The potential energy is given in (2.2)

V = mg(l − l cos(Θ)) (2.2)

where g is the gravitational constant, V is the potential energy. Under the theoretical
guidance from Euler Lagrangian equation, the Lagrangian can then be found by subtracting
the total potential energy V from the total kinetic energy K. Substituting (2.1) and (2.2)
into (2.3) produces the following

L = K − V =
1

2
IβΘ̇2 +

1

2
m(Θ̇l)2 −mg(l − l cos(Θ)) (2.3)

which satisfies the following equation

d

dt
(
∂L

∂Θ̇
)− ∂L

∂Θ
= 0 (2.4)

Substituting (2.3) into (2.4) yields the conclusion in (2.5)

(Iβ +ml2)Θ̈ +mgl sin Θ = 0 (2.5)

Since Θ is a very small angle, which is less than ±10◦, sin(Θ) ≈ Θ. Then, (2.6) can be easily
verified

(Iβ +ml2)Θ̈ +mglΘ = 0 (2.6)

By applying the Laplace transform to (2.6) with zero initial conditions, we then get

(Iβ +ml2)s2 +mgl = 0 (2.7)
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Writing (2.7) into the standard form gives (2.8).

s2 +
mgl

Iβ +ml2
= 0 (2.8)

Comparing (2.8) with the characteristic polynomial of a standard 2nd order system s2 +
2ζωn,β + ω2

n,β , it follows that ωn,β can be calculated by (2.9)

ωn,β =

√
mgl

Iβ +ml2
(2.9)

which implies that the moment of inertia can be determined by (2.10)

Iβ =
mgl

ω2
n,β

−ml2 (2.10)

The natural frequency can be calculated based on the date collected from the swing experi-
ments, which is done by hanging the quadrotor system with thin wires, releasing it on a small
initial angle, and recording the oscillation of the quadrotor. When taking the measurements
for the pitch and roll direction, a thin fish wire is used to tie on the quadrotor’s ends onto
a hanging post (tie the different ends depending on wether the roll or pitch is measured).
When taking the measurements in the yaw direction, the diagonal two ends of the quadrotor
are tied to the hanging post, so the system can rotate back and forth around its center. The
experimental setup can be seen in Fig. 2.15 and Fig. 2.16 By reading the oscillations of the
pitch, roll, and yaw angles, the oscillation graphs, as shown in Fig. 2.17, 2.18 and 2.19, were
recorded
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Figure 2.15: Moment of Inertia Experiment Setup for Roll or Pitch Direction
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Figure 2.16: Moment of Inertia Experiment Setup for Yaw Direction

Figure 2.17: Oscillation around x Axis

By using MATLAB Fast Fourier Transform (FFT), we can then obtain the natural frequency
in hertz. The results can be seen in Figs. 2.20-2.22, for the roll, pitch and yaw direction,
respectively.
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Figure 2.18: Oscillation around y Axis

Figure 2.19: Oscillation around z Axis

Figure 2.20: Natural Frequency with Respect to x Axis

Figure 2.21: Natural Frequency with Respect to y Axis

Once the natural frequencies are calculated, one can simply substitute them into (2.10),
along with other known constants, to calculate the moment of inertia. Table 2.5 shows the
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Figure 2.22: Natural Frequency with Respect to z Axis

results and certain important system parameters. While conducting the experiments, a
great effort has been made to reduce the oscillation coupling among the x, y and z axes to
the minimum, though completely diminishing such a phenomenon is quite impossible. The
oscillation coupling among the x, y and z axes are neglected when the moments of inertia
are calculated.

Parameter Description Value

ωn,x Natural Frequency in x direction 5.6944 rad/s

ωn,y Natural Frequency in y direction 5.7027rad/s

ωn,z Natural Frequency in z direction 5.3208 rad/s

Ix x direction moment of interia 0.0124 kg ·m2

Iy y direction moment of interia 0.01204 kg ·m2

Iz z direction moment of interia 0.02982 kg ·m2

m Total mass of the quadrotor 1.279 kg

g Gravitational Contstant 9.81m/s2

l Distance from the center to the suspension point 0.29m

Table 2.5: Model Parameters
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2.3 Quadrotor Aerodynamics and Preliminary Calculations

∗ Quadrotor Aerodynamics

As showing in Fig.2.23, the motors m1, m2, m3 and m4 are spinning simultaneously
to generate the total trust in the summation of T1, T2, T3 and T4. The motors m1
and m4 are rotating in the CCW direction, where the air drag creates a CW torque
on the center body of the drone. In the complete opposite side, the motors m2 and
m4 are rotating in the CW direction, hence the air drag generates a CCW torque on
the center body of the drone. At the equilibrium point, the torque, generated by these
opposite rotating pair of the propellers, is cancelled out. Therefore, the quadrotor is
able to maintain a fixed heading.

In the pitch direction, if motor m1 is rotating faster than motor m2, then the difference
in the vertical thrust forces between T2 and T3 will induce a tilting angle, which will
change the attitude of the quadrotor in the pitch direction. Similar behaviour applies
to the roll direction, where a roll tilting angle will appear if the difference in the thrust
forces is generated between m2 and m3.

Figure 2.23: Operating Principle of a Quadrotor

∗ The Propeller Aerodynamics

The aerodynamics of the propeller has been researched and tested intensively over the
years, and many authors have advocated their results in [43,44]. In this thesis work,
the thrust moment is considered for the propeller aerodynamics effect, where

Ti = bω̄2
i (2.11)

where b is the thrust factor, ω̄i expresses the motor speed, i ∈ (1, 2, 3, 4). By the
momentum theory in [44], (2.11) can then be expressed as:

b =
4CTρr

4

π2
(2.12)

where CT is the thrust coefficient, which can be found from [45] or [46], r is the radius
of the circular area while the propeller is spinning, and ρ is the air density. CT heavily
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Parameters Description Units

CT 0.1225 -

Cp 0.051 -

ρ 1.225 kg/m3

A 0.04676 m2

r 0.122 m

b 1.347323e-5 -

d 2.1783e-7 -

Table 2.6: Propeller Specifications

depends on the shape of the propeller blades. The momentum and blade theory can
be used to calculate such a coefficient, for more details, please see [44]. With (2.11)
and (2.12), one can rewrite the thrust moment by

Ti =
4CTρA

2ω̄2
i

π4
(2.13)

where A is the circular area while the propeller is spinning.

The rotating of the propeller not only creates the thrust, but also introduces a drag
moment on the quadrotor, which, in turns, controls the stability of the yaw direction.
This quantity can be defined as:

d =
4Cpρr

5

π3
(2.14)

Cp is the power factor of the propeller, the same as for the thrust coefficient. Cp can be
found in the manufacture’s website in [45], or in [46] where many different characteristic
parameters of the various types of the propellers manufactured by different companies
can be found. Table 2.6 is a quick summarization on the coefficients used for the
propeller as well as the calculated drag factor d and the thrust factor b. Recalling
(2.11), along with the observation we made in Fig. 2.23, the torque can be rewritten as τφ

τθ
τψ

 =

 bl(ω̄2
1 − ω̄2

4)
bl(ω̄2

2 − ω̄2
3)

d(ω̄2
1 + ω̄2

4 − ω̄2
2 − ω̄2

3)

 (2.15)

The total vertical thrust can be written as

Ttotal = U1 = b(ω̄2
1 + ω̄2

2 + ω̄2
3 + ω̄2

4) (2.16)

Combining both (2.15) and (2.16), one can derive the following:
U1

τφ
τθ
τψ

 =


b b b b
0 −bl 0 bl
−bl 0 bl 0
d −d d −d



ω̄2

1

ω̄2
2

ω̄2
3

ω̄2
4

 (2.17)

Now, we have the relationship between the torque and the angular speeds of the
propellers. We can then easily convert the desired torque to the rotational speeds for
the propellers.
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∗ Thrust Calculation

The total possible thrust is directly related to (2.11), where the maximum rotational
speed of the propeller will be substituted into (2.11). During the prior discussion in
Section 2.1.5, a 880KV TPM motor and a 2650 mAh 14.8V LiPo battery are used
for the quadrotor actuation system. The rotor maximum rotational speed is directly
related to the battery used and the motor performance specifications. Therefore, ω̄max

can be calculated with the following equation:

ω̄max = 14.8V × 880KV × 2π

60s
= 1363.81rad/s (2.18)

By using (2.11) once more, the maximum total thrust can be determined by

Ttotal = 4bω̄2
max = 4× 1.09986× 10−5 × (1363.81)2 = 81.83N = 8.341kg (2.19)

which means that the maximum thrust is able to pull a total weight of 8.341kg up
in the air. The total weight of the drone is 1.279kg, hence the drone will lift off the
ground when the throttle reaches approximately 15%.



Chapter 3

Attitude Estimation

Due to the lack of the attitude measurements from the sensory technology, a robust and
reliable attitude estimation is a vital step in order to achieve optimal control results on a
system. This area of research can be traced all the way back to the 60s. Since then, different
contributions have been made in [47–50]. Due to the sensor noise and gyroscope bias, to
retrieve an attitude of a rigid body becomes uncertain by using the basic trigonometry
on the acceleration measurements and performing the integration on the angular velocity
measurements. A fairly reliable and well established EFK was extensively discussed in [7, 8],
where the current state variables are predicted based on the previous quantities with additive
noise.

In this thesis work, a very same filtering concept coming from [5] is implemented. A nonlinear
attitude estimator is introduced, which allows the decoupling of the pitch and roll from the
yaw estimation. On the other hand, in order to improve the integrator wind-up issue, the
dynamics of the gyroscope bias estimation has been modified. Before embarking onto the
discussion of such a sensor fusion technique, a brief attitude representation of a rigid body
need to be discussed in the following sections.

3.1 The Attitude Representations

A well established and designed rigid body representation is extremely important for the
control scheme design and implementation. The attitude representation is describing how a
rigid body is placed in the three dimensional space. There are quite a few different methods
developed to represent the attitude of a rigid body over the years, such as Euler angles,
Tait-Bryan angles, orientation vector, rotational matrix, and quaternion representations. A
very detailed illustrations can be found in [4]. The Euler angle, rotational matrix and the
unit quaternion representation will be elaborated in this thesis work. Later on, the Euler
angle and the unit quaternion representations are used for the controller design.

When describing the attitude representation, two different coordinate systems are used,

25
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which are the inertial frame denoted as I and the body frame denoted as B. The inertial
frame I is usually attached to the earth, while the zB of the body frame is perpendicular to
the surface of the ground, xB is defined as the front of the quadrotor, and yB is perpendicular
to the vertical cross section of the quadrotor.

3.1.1 Rotational Matrix

The rotational matrix is also known as the direct cosine matrix, which is able to exchange the
coordinate systems between the inertial frame I and the body frame B. It is one of the most
popular representation methods being used, due to its intuitive understanding and straight
forward calculation. However, such an algorithm is quite cumbersome to calculate, hence it
may not be suitable for the practical implementations. Since the body frame attitude need
to be projected onto the inertial frame, we can then perform a dot product which is defined
as follow:

â · b̂ = ||a|| ||b|| cos θ (3.1)

where the two unit vectors â ∈ (x̂B, ŷB, ẑB) and b̂ ∈ (x̂I , ŷI , ẑI) are used. A full rotation of
a rigid body can be dissected into three different rotations respect to the x, y,and z axis.
Representing them in the three dimensional space by using the right hand rules, one can
consider the following matrices:

Rx =

 1 0 0
0 cosφ − sinφ
0 cosφ cosφ

 Ry =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 Rz =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1


(3.2)

The rotational matrix from the body to the inertial frame can be obtained from the
multiplication of the three rotational matrices defined in (3.2), as shown below.

R = Rz Ry Rx

=

 cos θ cosψ cosφ cosψ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ
cos θ sinψ cosφ cosψ + cosφ sin θ sinψ cosφ sin θ sinψ − cosψ sinφ
− sin θ cos θ cosφ cos θ cosφ

(3.3)

The direct cosine matrix is a convenient tool to use when transferring between the inertial
and body frames. A couple important characteristics of the rotational matrix need to be
mentioned:

RTR = RRT = I3, det(R) = 1 (3.4)

where I3 is the identity matrix.

3.1.2 Euler Angle

The Euler angle representation is discovered and developed by Leonhard Euler, which is
to describe the attitude of a rigid body respect to the inertial frame. The Euler angle has
a very clear physical understanding, one can easily picture the attitude of the rigid body
in the three dimensional space by using the Euler angle system. In most of the cases, the
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Euler angles are defined as φ, θ,and ψ which are named as the roll, pitch and yaw. They
are the rotations respect to the x, y and z axis. The singularity problem or the gimbal
lock is the major disadvantages for the Euler angle representation, where one degree of the
freedom is lost from such phenomenon. For example, if the pitch gimbal and the yaw gimbal
overlaps, then changes in the roll and the yaw is describing the same rotation of a rigid
body. The problem can be resolved by adding one extra gimbal, or using a different attitude
representation, such as the unit quaternion representation. From the rotational matrix (3.3),
a rotational sequence of the yaw-pitch-roll performed is shown in Table 3.1.

1.rotation respect to the z axis with angle ψ, x y z ⇒ x′ y′ z′

2.rotation respect to the y axis with angle θ, x′ y′ z′ ⇒ x′′ y′′ z′′

3.rotation respect to the z axis with angle φ, x′′ y′′ z′′ ⇒ x′′′ y′′′ z′′′

Table 3.1: Rotational Sequence

Another 12 possible rotational sequences including the above example are as following:

x− y − z, z − y − x
y − z − x, x− z − y
z − x− y, y − x− z
z − x− z, x− z − x
x− y − x, y − x− y
y − z − y, z − y − z

3.1.3 Unit Quaternion

With the inspiration of the Euler’s rotation theorem, where it was stated that any rotations
of a rigid body respect to a fixed point is equivalent to the rotation around a axis which is
through that fixed point by a given angle θ. It can be seen in Fig. 3.1. The unit quaternion
is represented by four different components, which are expressed as follow:

Q =

[
q0

q

]
=


q0

q1

q2

q3

 =


cos θ2
k̂x sin θ

2

k̂y sin θ
2

k̂z sin θ
2

 (3.5)

As shown in (3.5), the unit quaternion only has four parameters. In the comparison with the
rotational matrix, where nine different parameters are involved in calculating the attitude of
the quadrotor, the unit quaternion representation dramatically reduces the computational
complexity without singularity problem.
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Figure 3.1: Unit Quaternion Graphical Representation

The mathematical properties of the quaternion representation are introduced below, which
will be used as part of the controller design. The length of the unit quaternion is one, that is

q2
0 + qT q = 1 (3.6)

The multiplication of the two quaternion are given by:

Q � P =

[
q0p0 − qT p

q0p+ p0q + q × p

]
(3.7)

where � denotes the quaternion multiplication. The inverse of a quaternion is defined by:

Q−1 =

[
q0

−q

]
(3.8)

To calculate the discrepancies between the two different quaternion, one can have the
following expressions:

E = Q−1 � P =

[
q0p0 + qT p

q0p− p0q − q × p

]
=


q0p0 + qT p

p1q0 − p0q1 + p2q3 − p3q2

p2q0 − p0q2 − p1q3 + p3q1

p1q2 − p0q3 − p2q1 + q0p3

 (3.9)

3.2 Sensor Calibration

The onboard sensors, such as accelerometer, gyroscope and magnetometer, are all affected by
the different biases. These noise should be modeled mathematically before the implementation
of the proposed controller for the quadrotor. A detailed calibration method is discussed in
this subsection.
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∗ Gyroscope and Accelerometer Calibration

The gyroscope readings are modeled as follows:

ωB = ωB−actual + bgyro (3.10)

where ωB−actual denotes the angular velocity without the noise interferences with
respect to the actual body frame and bgyro describes the bias of the gyroscope. A
straightforward averaging method is applied to calculate the bias. It can then be
expressed by

bgyro =
1

samples

samples∑
k=1

bgyro(k) (3.11)

Before the quadrotor taking off, 1500 samples are summed and averaged. The gyro
bias is then calculated. The accelerometer calibration is quite necessary due to its
high sensitivity to the vibration noises. The noise model can be described by

aB = RTaaccl + baccl (3.12)

where aaccl is the measured linear acceleration in the inertial frame, RT is the rotational
matrix transferring from the inertial frame to the body frame, and baccl denotes the
measurement bias which can be defined by

baccl =
1

samples

samples∑
k=1

aB(k) (3.13)

Again, 1500 samples are recorded and processed with equation (3.13) before taking off.

∗ Magnetometer Calibration

There are five different sources of errors involved in the magnetometer measurements.
At the physical level, these errors can be broken into two categories, those inherent
by the sensors and those from the measurements of the magnetic fields. The scale
factor errors denoted by Escale and null shift errors denoted by Eshift are a trait of
each individual sensing element, where the null shift error is a DC offset coming from
the sensor itself. The physical misalignment errors denoted by Emis are caused by
manufacturing tolerances in the construction of the sensor sets. The hard iron and the
soft iron errors denoted by Eiron, on the other hand, are side effects when measuring a
magnetic field. As a result, if there is a strong magnetic material or a couple spinning
motors around the sensors, the magnetic field will then be distorted, hence the accuracy
of the readings will be negatively impacted.

The errors can be expressed mathematically in (3.14)

B̂ = EmisEironEscale(1 + δ)Bearth + Eshift (3.14)

where the B̂ is the measured value from the sensor. To calibrate the digital compass,
[41,51,52] provides the in-depth theory and precise procedure to follow. The calibration
procedure is completely based on the published work [51]. Many references are taken



3.2. Sensor Calibration 30

from [41]. A well calibrated magnetic field can be represented by a sphere geometrically.
The whole calibration procedure can be started by defining the x axis as the reference,
hence this axis does not have any misaligned error. Then, the magnetic measurements
B̂x−b along the x axis, including errors, can be modeled by

B̂x−b = aBx−b + xo (3.15)

where x0 is the total offset error, a is the total scale error on the x direction of the
sensor, and Bx−b is the ideal measurements without any errors. Since the x direction
is chosen as the reference for the misalignment error, the magnetic measurements in
the y direction can be described by

B̂y−b = b(By−b cos(ρ) +Bx−b sin(ρ)) + y0 (3.16)

In (3.16), B̂y−b is the actual measurements from the sensor, b is the total scale error in
the y direction, By−b is the ideal measurements without errors, ρ is the total angular
misalignment error between the y direction and the y sensor, and y0 is then the total
offest error in the y direction. By the similar concepts, one can derive the math model
for the digital compass z axis measurement B̂z−b as

B̂z−b = c(Bz−b cos(φ) cos(θ) +Bb−x sin(φ) cos(θ) +Bb−y sin(θ)) + z0 (3.17)

where B̂z−b is the actual measurements from the sensor, c is the total scale error in
the z direction, Bz−b is the ideal measurements without errors, θ is the total angular
misalignment error between the z direction and the z sensor, and z0 is then the total
offest error in the z direction.

Without any error interferences, an ideal magnetic field takes a shape of sphere with a
radius of B, which can be described in the following equation.

B2 = B2
x−b +B2

y−b +B2
z−b (3.18)

The procedure for solving the Bx−b, By−b, and Bz−b from (3.15), (3.16), and (3.17)
can be found in Appendix B. By substituting the results Bx−b, By−b, and Bz−b from
(3.15), (3.16), and (3.17) into (3.18), the following equation is obtained.

AB̂2
x−b +BB̂x−bB̂y−b + CB̂x−bB̂z−b +DB̂2

y−b + EB̂y−bB̂z−b

+ FB̂2
z−b +GB̂x−b +HB̂y−b + IB̂z−b + J = 0

(3.19)

where the A, B, C, D, E, F , G, H, I, and J are the function of a, b, c, x0, y0, z0, ρ,
θ, and φ. The sphere equation (3.18) turns into an off centered and distorted ellipsoid
(3.19).

The strength of earth magnetic field varies on the different geographic locations at
the mean sea level. The decomposition of the earth magnetic field is found to be
mearth = (0.15578,−0.001027, 0.54279) [53, 54]. More details on these calibration
algorithm will be introduced later on in Appendix B. For the sakes of demonstrations,
the results are posted into Table 3.2.

Fig. 3.2 shows the graphical results before and after the calibration of the magnetometer.



3.3. Sensor Fusion Technique 31

Parameter Name Description value

x0 offset error x 0.0165

y0 offset error y -0.0803

z0 offset error z -0.1482

ρ misalignment x 0.04363

θ misalignment y -0.0237

φ misalignment z 0.05445

a scale error x 0.4532

b scale error y 0.5781

c scale error z 0.5845

Table 3.2: HMC 5883 Digital Compass Calibration Results

Figure 3.2: HMC-5883 Digital Compass Calibration Results

3.3 Sensor Fusion Technique

The development of a reliable and robust attitude estimation technique is quite important
for controller design and implementations. The sensor fusion technique used in this thesis
work is taken from [5,6]. The theoretical derivation and proof will not be discussed in details,
however the more practical implementations will be elaborated in this thesis.
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Some definitions are explained in the following equations.

uB = −aB
g

uI = [ 0 0 1 ]T

vB =
πuBmB

||πuImI ||

vI =
ππImB

||πuImI ||
(3.20)

where uB is the real measurements from the accelerometer, mB is the real measurements
from the magnetometer, mI is the magnetic field of the earth, and πx = ||x||2I3 − xxT . The
observer is composed of the estimation R̂ of the rotational matrix R from the body frame
to the inertial frame, and the estimation of the bias b̂. Define ûB = R̂TuI and v̂B = R̂T vI .
Then, the complete observer with the bias estimation can be written by

˙̂
R = R̂(Ωy − b̂+ σR)

˙̂
b = −kbb̂+ kbsat∆(b̂) + σb (3.21)

where the estimations of the unknown bias σb and the innovation term σR are given by.

σR = k1uB × ûB + k2ûBû
T
B(vB × v̂B)

σb = −k3uB × ûB − k4vB × v̂B (3.22)

with Ωy being the measured angular velocity with the bias error and the saturation function

sat∆(b̂) being defined by sat∆(b̂) = b̂min(1,∆/||b̂||). All the coefficients from k1 to k4, kb,
and ∆ are the positive real numbers. By using the quaternion representation, (3.21) can be
written as

˙̂q =
1

2
A(Ω̂)q̂ (3.23)

˙̂
b = −kb + kbsat∆(b̂) + σb (3.24)

where Ω̂ is given by

Ω̂ = Ωy − b̂+ σR (3.25)

and the A(Ω̂) is defined by

A(Ω̂) :=

[
0 −Ω̂T

Ω̂ −Ω̂×

]
(3.26)

with

Ω̂× =

 0 −Ω̂3 Ω̂2

Ω̂3 0 −Ω̂1

−Ω̂2 Ω̂1 0

 (3.27)

where Ω̂ = [Ω̂1, Ω̂2, Ω̂3]T . Considering the limited computational power of the microcontroller,
a discrete version of the attitude estimation is applied. Hence, integrating (3.23) and (3.24)
yields

q̂k+1 = exp

(
T

2
A(Ω̂)

)
q̂k (3.28)
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and
b̂k+1 = T (−kbb̂k + kbsat∆(b̂k) + σb) + b̂k (3.29)

Applying the Taylor series expansion to (3.28) gives

q̂k+1 =

(
cos

(
T

2
|Ω̂k|

)
I4 +

T

2
sinc

(
T

2
|Ω̂k|

)
A(Ω̂k)

)
q̂k (3.30)

The sampling time T is set to be 0.01s, and the values of the k are chosen as follows:

k1 = 1.2, k2 = 0.5, k3 =
k1

32
, k4 =

k2

32

Fig. 3.3 shows the actual experimental results, which suggest a successful implementation of
the filtering technique. During the experiment, the initial conditions for the filter are given
by ±45 degrees for both pitch and roll angles, respectively, and −80 degrees for the yaw
angle. The experimental results are obtained by placing the quadrotor on a flat surface (i.e.
the pitch and roll angles are both zero) and pointing to the north which implies that the
yaw is zero degrees.

Figure 3.3: Filter Testing Results



Chapter 4

Quadrotor Dynamics

The controller design in this thesis work is inspired by the work done in [10] [11], as well
as [21]. Since an integrator has the effect of eliminating the steady state error, an integration
term is also added to the backstepping technique to further enhance the performance of the
nonlinear controller. It is well known that the uncertainties of the model parameters will
affect the performance of the system. In order to reduce the impact of the uncertainties, an
intelligent controller using the neural network is applied to estimate the nonlinear terms of
the dynamic model.

The backstepping technique is heavily based on the math model, hence a fairly well developed
dynamic model need to be addressed first before any kind of elaboration on the controller
design. In this thesis, an Euler Lagrangian equation is used to establish the dynamic model
of the quadrotor first, and then in order to avoid the singularity of the Euler angles, the
quaternion based dynamics is utilized based on the Newton equations.

4.1 Euler Lagrangian Dynamic Model

The quadrotor has six degrees of the freedom, which can be represented as pitch φ, roll θ
and yaw ψ rotational movements respect to the x, y and z axes of the inertial frame, and
the translational movements along the x, y and z directions of the inertial frame. Define
µ = (φ, θ, ψ) ∈ R3 and ζ = (x, y, z) ∈ R3. It is assumed that (φ, θ) ∈ [−π

2 ,
π
2 ] and ψ ∈ [−π, π).

The translational and rotational kinetic energy can be described by the following equations

Ttrans =
1

2
mζ̇T ζ̇ (4.1)

Trot =
1

2
µ̇T Iµ̇

where m is the mass of the quadrotor, I = RIB is the inertia matrix in the inertial frame

with IB =

 Ix 0 0
0 Iy 0
0 0 Iz

 being the inertia matrix in the body frame which was measured

34
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by the experiments discussed in Chapter 2. The total potential energy is calculated by
U = mgz with g being the gravitational constant. By the Lagrangian modelling method,
the following function is defined first.

L(q, q̇) = Ttrans + Trot − U =
1

2
mζ̇T ζ̇ +

1

2
µ̇T Iµ̇−mgz (4.2)

Then, applying the Euler Lagrangian equation to (4.2) yields

d

dt

∂L

∂q̇
− ∂L

∂q
= (Fζ , τ) (4.3)

where τ represents the torque applied on the center of the quadrotor and Fζ is the translational

force defined as Fζ = RFB with FB =
[

0 0 U1

]T
and R being the rotational matrix

from the body frame to the inertial frame. U1 is the total thrust moment generated by four
motors, which can be determined by

U1 = T1 + T2 + T3 + T4 (4.4)

The Euler Lagrangian dynamic model is derived as follows: ẍ
ÿ
z̈

 =

 cosφ sin θ cosψ + sinφ sinψ
cosφ sin θ sinψ − sinφ cosψ

cosφ cos θ

 U1

m
+

 0
0
−g

 (4.5)

 φ̈

θ̈

ψ̈

 =


θ̇ψ̇
(
Iy−Iz
Ix

)
− Jr

Ix
θ̇ω̄

φ̇ψ̇
(
Iz−Ix
Iy

)
+ Jr

Iy
φ̇ω̄

φ̇θ̇
(
Ix−Iy
Iz

)
+


l
Ix

0 0

0 l
Iy

0

0 0 1
Iz


 τφ
τθ
τψ

 (4.6)

where g is the gravitational constant, m is the mass of the quadrotor, Jr is the moment of
inertia of the motor, Ix is the moment of inertia of the quadrotor respect to x axis in the
body frame, Iy is the moment of inertia of the quadrotor respect to y axis in the body frame,
Iz is the moment of inertia of the quadrotor respect to z axis in the body frame, τφ is the
rotational torque around the body center in φ direction with respect to body frame, τθ is
the rotational torque around the body center in θ direction with respect to body frame, τψ
is the rotational torque around the body center in ψ direction with respect to body frame,
$ denotes the rotor speed difference, which can be determined by

ω̄ =
4∑

k=1

(−1)κ+1(ω × e3)ω̄k (4.7)

with ω ∈ R3 being the angular velocity of the quadrotor with respect to the body frame. ω̄k
represents the rotational speed of motor k ∈ (1, 2, 3, 4)
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All the other related constants can be found in Chapter 2, where many different parameters
are measured and discussed. A quick observation from the mathematical model confirms
that the quadrotor is an under-actuated system, which contains six outputs with only four
inputs.

4.2 Dynamic Model Using Newton Equations

As mentioned in Chapter 3, a singularity problem can demolish the performance of the
controller, since one degree of freedom is lost when the gimbal lock occurs. In order to solve
such a problem, another dynamic model using Newton equations of motion [41] [55] with
unit quaternion representation is also used in this thesis work, which can be mathematically
modeled by:

ζ̇ = v (4.8)

v̇ = ge3 −
1

m
U1Re3 (4.9)

Ṙ = RS(ω) (4.10)

IBω̇ = −ω × IBω −Ga + τ (4.11)

Jr
·
ω̄i = τi −Qi (4.12)

where ζ ∈ R3 is the displacement of the center of mass of the body frame with respect to
the inertial frame, v ∈ R3 is the translational velocity of the quadrotor with respect to the
inertial frame, g ∈ R is the gravitational constant, e3 = [0, 0, 1]T ∈ R3 is the unit vector
representing the z axis of the inertial frame, m ∈ R is the mass of the quadrotor, U1 ∈ R is
the total thrust generated by the motors, IB ∈ R3 is the inertia matrix of the quadrotor
with respect to the body frame, ω ∈ R3 is the angular velocity of the quadrotor with respect
to the body frame, Ga ∈ R is the gyroscopic torque, τ ∈ R3 is the input torque on the x, y
and z directions, Jr ∈ R is the moment of inertia of the motor i, i = 1, 2, 3, 4, ω̄i ∈ R is the
angular velocity of the motor i, i = 1, 2, 3, 4, τi ∈ R is the torque generated by the motor i,
i = 1, 2, 3, 4, S(·) is the skew symmetric matrix defined by

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (4.13)

In (4.12), Qi is the reactive torque influenced by air drag, which is defined by

Qi = dω̄2
i , i ∈ (1, 2, 3, 4) (4.14)

with d being the rotor air drag factor, which is explained in more details in Section 2.3. In
(4.11), the gyroscopic torque Ga is closely related to the rate of the rotation of the motors
as well as the angular velocities respect to the x and y axes, which can be determined by

Ga =

 ωyJr (ω̄1 − ω̄2 − ω̄3 + ω̄4)
−ωxJr (ω̄1 − ω̄2 − ω̄3 + ω̄4)

0

 (4.15)
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The principle for the equation (4.15) can be seen in an intuitive way from Fig. 2.23.
ω̄1 + ω̄4 − ω̄2 − ω̄3 is the difference in the speeds of the motors. Along with the body
rotational effect as well as the moment of inertia from the motors, one can then yield the
gyroscopic torque Ga.

If the unit quaternion representation is used, (4.9) and (4.10) should be replaced with

v̇ = ge3 −
1

m
U1< (Q) e3 (4.16)

Q̇ =
1

2
Q�Qω =

1

2

[
−qT

q0I3 + S(q)

]
ω (4.17)

where Q = [q0, q1, q2, q3]T and

< (Q) =

 1− 2
(
q2

2 + q2
3

)
2 (−q0q3 + q1q2) 2 (q0q2 + q1q3)

2 (q0q3 + q1q2) 1− 2
(
q2

1 + q2
3

)
2 (−q0q1 + q2q3)

2 (−q0q2 + q1q3) 2 (q0q1 + q2q3) 1− 2
(
q2

1 + q2
2

)
 (4.18)

By taking (4.15) into consideration, the above mentioned dynamics (4.10) and (4.11) can
also be rewritten in the following Euler angles representations:

φ̇ = ωx + ωy sinφ tan θ + ωz cosφ tan θ (4.19)

θ̇ = ωy cosφ− ωz sinφ (4.20)

ψ̇ = ωy sinφ sec θ + ωz cosφ sec θ (4.21)

ω̇x =
Iy − Iz
Ix

ωyωz + ωyJr (ω̄1 − ω̄2 − ω̄3 + ω̄4) +
1

Ix
τφ (4.22)

ω̇y =
Iz − Ix
Iy

ωxωz − ωxJr (ω̄1 − ω̄2 − ω̄3 + ω̄4) +
1

Iy
τθ (4.23)

ω̇z =
Ix − Iy
Iz

ωxωy +
1

Iz
τψ (4.24)



Chapter 5

Controller Design and Experiments

This chapter is devoted to the nonlinear controller theoretical development, and its experi-
mental outcomes. Various control schemes are discussed using the backstepping method.
Under the inspiration of the [10]- [12], [20], the controller is mathematically derived, and
then it is put into a real quadcopter for the actual flight test. Later on, a neural network is
added to the control scheme as the estimation techniques for imitating certain nonlinear
terms in the mathematical model. The results are being reviewed at end of the each section
and a brief observation and discussion on the results are provided.

5.1 Backstepping Design with Euler Angle Representation

5.1.1 Controller Design

This section aims to design an attitude controller by using Euler angle representation. The
backstepping design method is used to construct an attitude stabilization controller. Let φd,
θd, ψd denote the desired Euler angles and φ̇d, θ̇d, ψ̇d represent their derivatives. Define the
errors as follows:

e1 = φ− φd (5.1)

e2 = φ̇− φ̇d (5.2)

e3 = θ − θd (5.3)

e4 = θ̇ − θ̇d (5.4)

e5 = ψ − ψd (5.5)

e6 = ψ̇ − ψ̇d (5.6)

The following positive definite function is introduced:

V1 =
1

2
e2

1 +
1

2
e2

3 +
1

2
e2

5 (5.7)
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Differentiating it with respect to time gives

V̇1 = e1ė1 + e3ė3 + e5ė5

= e1e2 + e3e4 + e5e6

= −k1e
2
1 + k1e

2
1 + e1e2 − k3e

2
3 + k3e

2
3 + e3e4 − k5e

2
5 + k5e

2
5 + e5e6

= −k1e
2
1 − k3e

2
3 − k5e

2
5 + e1(e2 + k1e1) + e3(e4 + k3e3) + e5(e6 + k5e5)

= −k1e
2
1 − k3e

2
3 − k5e

2
5 + e1ē2 + e3ē4 + e5ē6 (5.8)

where k1, k3, and k5 are the positive gains and

ē2 = e2 + k1e1

ē4 = e4 + k3e3

ē6 = e6 + k5e5 (5.9)

with −k1e1, −k3e3, and −k5e5 are known as virtual control. It can be seen that V̇1 is
negative definite when e2, e4, and e6 are equal to their virtual control. The derivative of ē2,
ē4, and ē6 will be used later, which by using (4.6), can be determined by

·
ē2 = ė2 + k1ė1

= φ̈− φ̈d + k1e2

= θ̇ψ̇

(
Iy − Iz
Ix

)
− Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + k1e2 (5.10)

·
ē4 = ė4 + k3ė3

= θ̈ − θ̈d + k3e4

= φ̇ψ̇

(
Iz − Ix
Iy

)
+
Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + k3e4 (5.11)

·
ē6 = ė6 + k5ė5

= ψ̈ − ψ̈d + k5e6

= φ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
τψ − ψ̈d + k5e6 (5.12)

Now, the positive definite function V2 is defined by

V2 = V1 +
1

2
ē2

2 +
1

2
ē2

4 +
1

2
ē2

6 (5.13)

By using (5.8), the derivative of V2 can be derived as follows:

V̇2 = V̇1 + ē2

·
ē2 + ē4

·
ē4 + ē6

·
ē6

= −k1e
2
1 − k3e

2
3 − k5e

2
5 + e1ē2 + e3ē4 + e5ē6

−k2ē
2
2 − k4ē

2
4 − k6ē

2
6 + ē2

( ·
ē2 + k2ē2

)
+ ē4

( ·
ē4 + k4ē4

)
+ ē6

( ·
ē6 + k6ē6

)
= −k1e

2
1 − k3e

2
3 − k5e

2
5 − k2ē

2
2 − k4ē

2
4 − k6ē

2
6

+ē2

( ·
ē2 + k2ē2 + e1

)
+ ē4

( ·
ē4 + k4ē4 + e3

)
+ ē6

( ·
ē6 + k6ē6 + e5

)
(5.14)
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where k2, k4, and k6 are the positive gains. Substituting (5.10)-(5.12) into (5.14) yields:

V̇2 = −k1e
2
1 − k3e

2
3 − k5e

2
5 − k2ē

2
2 − k4ē

2
4 − k6ē

2
6

+ē2

[
θ̇ψ̇

(
Iy − Iz
Ix

)
− Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + k1e2 + k2ē2 + e1

]
+ē4

[
φ̇ψ̇

(
Iz − Ix
Iy

)
+
Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + k3e4 + k4ē4 + e3

]
+ē6

[
φ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
τψ − ψ̈d + k5e6 + k6ē6 + e5

]
(5.15)

Setting the last three terms in (5.15) to zero gives:

τφ =
Ix
l

[
−θ̇ψ̇

(
Iy − Iz
Ix

)
+
Jr
Ix
θ̇ω̄ + φ̈d − k1e2 − k2ē2 − e1

]
τθ =

Iy
l

[
−φ̇ψ̇

(
Iz − Ix
Iy

)
− Jr
Iy
φ̇ω̄ + θ̈d − k3e4 − k4ē4 − e3

]
τψ = Iz

[
−φ̇θ̇

(
Ix − Iy
Iz

)
+ ψ̈d − k5e6 − k6ē6 − e5

]
(5.16)

which makes V̇2 negative definite. By substituting (5.9) into (5.16), (5.16) can be rewritten
as:

τφ =
Ix
l

[
−θ̇ψ̇

(
Iy − Iz
Ix

)
+
Jr
Ix
θ̇ω̄ − (k1k2 + 1)e1 − (k1 + k2)e2

]
(5.17)

τθ =
Iy
l

[
−φ̇ψ̇

(
Iz − Ix
Iy

)
− Jr
Iy
φ̇ω̄ − (k3k4 + 1)e3 − (k3 + k4)e4

]
(5.18)

τψ = Iz

[
−φ̇θ̇

(
Ix − Iy
Iz

)
− (k5k6 + 1)e5 − (k5 + k6)e6

]
(5.19)

Using the aerodynamic equation in (2.15), (5.17), (5.18), and (5.19) can be changed to the
following:

bl(ω̄2
1 − ω̄2

4)− Jr
l
θ̇ω̄ =

Ix
l

[
−θ̇ψ̇

(
Iy − Iz
Ix

)
− (k1k2 + 1)e1 − (k1 + k2)e2

]
(5.20)

bl(ω̄2
2 − ω̄2

3) +
Jr
l
φ̇ω̄ =

Iy
l

[
−φ̇ψ̇

(
Iz − Ix
Iy

)
− (k3k4 + 1)e3 − (k3 + k4)e4

]
(5.21)

d(ω̄2
1 + ω̄2

4 − ω̄2
2 − ω̄2

3) = Iz

[
−φ̇θ̇

(
Ix − Iy
Iz

)
− (k5k6 + 1)e5 − (k5 + k6)e6

]
(5.22)
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where ω̄ = ω̄1 − ω̄2 − ω̄3 + ω̄4. The motor speeds ω̄1, ω̄2, ω̄3, ω̄4 can be determined from
(5.20), (5.21), (5.22) and (2.16), that is,

b(ω̄2
1 + ω̄2

4 + ω̄2
2 + ω̄2

3) = U1 (5.23)

where U1 is the vertical lifting power given by the RC controller, later on, this lifting force
will be generated by the backstepping altitude controller. By applying the gradient descent
method, the motor angular velocities can be solved from (5.20)-(5.23), which are able to
stabilize the quadrotor at the desired attitude. The block diagram of the closed-loop system
for the attitude control is shown in Fig. 5.1.

Figure 5.1: Block Diagram for Backstepping Control

5.1.2 Experimental Results

The experimental data are recorded while the quadrotor is flying in the air. The drone
was first vertically taken off by a human operator, and it was then maintained in a stable
flight. The gain coefficients are k1 = 13.5, k2 = 3, k3 = 15, k4 = 4.5, k5 = 420, k6 = 0.5. As
shown in Figs. 5.2-5.4, the proposed controller performs well without any strong external
disturbances. By observing the graphs, the quadrotor movement are well within ±10◦ with
relatively small angular velocity during the flight.

5.2 Integral Backstepping Design with Euler Angle Repre-
sentation

5.2.1 Controller Design

In order to further eliminate the steady state error for the system, one can introduce an
integration term to incorporate with the controller design. Such a methodology is quite
similar to the backstepping derivation in Section 5.1.1. Again, let φd, θd, ψd denote the
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Figure 5.2: Backstepping Control with Euler Representation in φ Direction

Figure 5.3: Backstepping Control with Euler Representation in θ Direction

Figure 5.4: Backstepping Control with Euler Representation in ψ Direction

desired Euler angles and φ̇d, θ̇d, ψ̇d represent their derivative. One can define the following
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error terms:

ei1 =

∫
φ− φd (5.24)

e1 = φ− φd (5.25)

e2 = φ̇− φ̇d (5.26)

ei2 =

∫
θ − θd (5.27)

e3 = θ − θd (5.28)

e4 = θ̇ − θ̇d (5.29)

ei3 =

∫
ψ − ψd (5.30)

e5 = ψ − ψd (5.31)

e6 = ψ̇ − ψ̇d (5.32)

Introduce the positive definite Lyapunov function:

V1 =
1

2
e2
i1 +

1

2
e2
i2 +

1

2
e2
i3 (5.33)

The time derivative of the equation (5.33) can then be expressed as:

V̇1 = ei1ėi1 + ei2ėi2 + ei3ėi3

= ei1e1 + ei2e3 + ei3e5

= −ki1e2
i1 + ki1e

2
i1 + ei1e1 − ki2e2

i2 + ki2e
2
i2 + ei2e3 − ki3e2

i3 + ki3e
2
i3 + ei3e5

= −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 + ei1 (e1 + ki1ei1) + ei2 (e3 + ki2ei2) + ei3 (e5 + ki3ei3)

= −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 + ei1ē1 + ei2ē3 + ei3ē5 (5.34)

where ki1, ki2, and ki3 are the positive gains and the following relationships are used:

ē1 = e1 + ki1ei1

ē3 = e3 + ki2ei2

ē5 = e5 + ki3ei3 (5.35)

Differentiating the above respect to time gives the following:

·
ē1 = e2 + ki1e1 (5.36)
·
ē3 = e4 + ki2e3
·
ē5 = e6 + ki3e5
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V̇1 is negative definite when e1, e3 and e5 equals to the virtual controller −ki1ei1,−ki2ei2
and −ki3ei3. Construct a second Lyapunov function, which includes V1, as follows:

V2 = V1 +
1

2
ē2

1 +
1

2
ē2

3 +
1

2
ē2

5 (5.37)

Applying the time derivative onto (5.37), we can then get the following:

V̇2 = V̇1 + ē1

·
ē1 + ē3

·
ē3 + ē5

·
ē5

= −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 + ei1ē1 + ei2ē3 + ei3ē5

+ē1

·
ē1 + ē3

·
ē3 + ē5

·
ē5

= −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 − k1ē

2
1 − k3ē

2
3 − k5ē

2
5

+k1ē
2
1 + k3ē

2
3 + k5ē

2
5 + ē1

( ·
ē1 + ei1

)
+ ē3

( ·
ē3 + ei2

)
+ ē5

( ·
ē5 + ei3

)
= −ki1e2

i1 − ki2e2
i2 − ki3e2

i3 − k1ē
2
1 − k3ē

2
3 − k5ē

2
5

+ē1

(
k1ē1 +

·
ē1 + ei1

)
+ ē3

(
k3ē3 +

·
ē3 + ei2

)
+ ē5

(
k5ē5 +

·
ē5 + ei3

)
= −ki1e2

i1 − ki2e2
i2 − ki3e2

i3 − k1ē
2
1 − k3ē

2
3 − k5ē

2
5

+ē1 (k1ē1 + e2 + ki1e1 + ei1) + ē3 (k3ē3 + e4 + ki2e3 + ei2)

+ē5 (k5ē5 + e6 + ki3e5 + ei3)

= −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 − k1ē

2
1 − k3ē

2
3 − k5ē

2
5 + ē1ē2 + ē3ē4 + ē5ē6 (5.38)

ē2 = k1ē1 + e2 + ki1e1 + ei1 (5.39)

ē4 = k3ē3 + e4 + ki2e3 + ei2 (5.40)

ē6 = k5ē5 + e6 + ki3e5 + ei3 (5.41)

Once again, one can construct the third Lyapunov function in the following:

V3 = V2 +
1

2
ē2

2 +
1

2
ē2

4 +
1

2
ē2

6 (5.42)

Differentiating the above respect to the time yields:

V̇3 = V̇2 + ē2

·
ē2 + ē4

·
ē4 + ē6

·
ē6 (5.43)

where
·
ē2,
·
ē4 and

·
ē6can be found as:

·
ē2 = k1

·
ē1 + ė2 + ki1ė1 + ėi1 = k1

·
ē1 + φ̈− φ̈d + ki1ė1 + e1 (5.44)

·
ē4 = k3

·
ē3 + ė4 + ki2ė3 + ėi2 = k3

·
ē3 + θ̈ − θ̈d + ki2ė3 + e3 (5.45)

·
ē6 = k5

·
ē5 + ė6 + ki3ė5 + ėi3 = k5

·
ē5 + ψ̈ − ψ̈d + ki3ė5 + e5 (5.46)
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Introducing (4.6),
·
ē2,
·
ē5and

·
ē8 can then be evaluated as:

·
ē2 = k1

·
ē1 + θ̇ψ̇

(
Iy − Iz
Ix

)
− Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1 (5.47)

·
ē4 = k3

·
ē3 + φ̇ψ̇

(
Iz − Ix
Iy

)
+
Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3 (5.48)

·
ē6 = k5

·
ē5 + φ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
τψ − ψ̈d + ki3ė5 + e5 (5.49)

Substituting the above three equations and V̇2 into (5.43), we then get the following:

V̇3 = V̇2 + ē2

(
k1

·
ē1 + θ̇ψ̇

(
Iy − Iz
Ix

)
− Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1

)
+ē4

(
k3

·
ē3 + φ̇ψ̇

(
Iz − Ix
Iy

)
+
Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3

)
+ē6

(
k5

·
ē5 + φ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
τψ − ψ̈d + ki3ė5 + e5

)
= −ki1e2

i1 − ki2e2
i2 − ki3e2

i3 − k1ē
2
1 − k3ē

2
3 − k5ē

2
5

+ē2

(
ē1 + k1

·
ē1 + θ̇ψ̇

(
Iy − Iz
Ix

)
− Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1

)
+ē4

(
ē3 + k3

·
ē3 + φ̇ψ̇

(
Iz − Ix
Iy

)
+
Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3

)
+ē6

(
ē5 + k5

·
ē5 + φ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
τψ − ψ̈d + ki3ė5 + e5

)
(5.50)

Make the following, so that V̇3 is negative definite:

−k2ē2 = ē1 + k1

·
ē1 + θ̇ψ̇

(
Iy − Iz
Ix

)
− Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1 (5.51)

−k4ē4 = ē3 + k3

·
ē3 + φ̇ψ̇

(
Iz − Ix
Iy

)
+
Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3 (5.52)

−k6ē6 = ē5 + k5

·
ē5 + φ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
τψ − ψ̈d + ki3ė5 + e5 (5.53)

(5.51),(5.52),(5.53) can then be rewritten as:
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τφ =
Ix
l

(
−k2ē2 − ē1 − k1

·
ē1 − θ̇ψ̇

(
Iy − Iz
Ix

)
+
Jr
Ix
θ̇ω̄ + φ̈d − ki1ė1 − e1

)
=

Ix
l

(−k2 (k1 (e1 + ki1ei1) + e2 + ki1e1 + ei1)− (e1 + ki1ei1)

−k1 (e2 + ki1e1)− θ̇ψ̇
(
Iy − Iz
Ix

)
+
Jr
Ix
θ̇ω̄ + φ̈d − ki1e2 − e1

)
=

Ix
l

(−k1k2e1 − k1ki1k2ei1 − k2e2 − ki1k2e1 − k2ei1 − e1 − ki1ei1

−k1e2 − k1ki1e1 − θ̇ψ̇
(
Iy − Iz
Ix

)
+
Jr
Ix
θ̇ω̄ + φ̈d − ki1e2 − e1

)
=

Ix
l

(− (k1k2 + k1ki1 + ki1k2 + 2) e1 − (k1ki1k2 + ki1 + k2) ei1

− (k2 + k1 + ki1) e2 − θ̇ψ̇
(
Iy − Iz
Ix

)
+
Jr
Ix
θ̇ω̄ + φ̈d

)
(5.54)

τθ =
Iy
l

(
−k4ē4 − ē3 − k3

·
ē3 − φ̇ψ̇

(
Iz − Ix
Iy

)
− Jr
Iy
φ̇ω̄ + θ̈d − ki2ė3 − e3

)
=

Iy
l

(−k4 (k3 (e3 + ki2ei2) + e4 + ki2e3 + ei2)− (e3 + ki2ei2)

−k3 (e4 + ki2e3)− φ̇ψ̇
(
Iz − Ix
Iy

)
− Jr
Iy
φ̇ω̄ + θ̈d − ki2e4 − e3

)
=

Iy
l

(− (k3k4 + k3ki2 + ki2k4 + 2) e3 − (k3ki2k4 + ki2 + k4) ei2

− (k4 + k3 + ki2) e4 − φ̇ψ̇
(
Iz − Ix
Iy

)
− Jr
Iy
φ̇ω̄ + θ̈d

)
(5.55)

τψ = Iz

(
−k6ē6 − ē5 − k5

·
ē5 − φ̇θ̇

(
Ix − Iy
Iz

)
− 1

Iz
τψ + ψ̈d − ki3ė5 − e5

)
= Iz (−k6 (k5 (e5 + ki3ei3) + e6 + ki3e5 + ei3)− (e5 + ki3ei3)

−k5 (e6 + ki3e5)− φ̇θ̇
(
Ix − Iy
Iz

)
− 1

Iz
τψ + ψ̈d − ki3e6 − e5

)
= Iz (− (k5k6 + k5ki3 + ki3k6 + 2) e5 − (k5ki3k6 + ki3 + k6) ei3

− (k6 + k5 + ki3) e6 − φ̇θ̇
(
Ix − Iy
Iz

)
− 1

Iz
τψ + ψ̈d

)
(5.56)
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Once the above control law is obtained, one can have the following relationships:

bl(ω̄2
1 − ω̄2

4)− Jr
l
θ̇ω̄ =

Ix
l

(− (k1k2 + k1ki1 + ki1k2 + 2) e1 − (k1ki1k2 + ki1 + k2) ei1

− (k2 + k1 + ki1) e2 − θ̇ψ̇
(
Iy − Iz
Ix

)
+ φ̈d

)
(5.57)

bl(ω̄2
2 − ω̄2

3) +
Jr
l
φ̇ω̄ =

Iy
l

(− (k3k4 + k3ki2 + ki2k4 + 2) e3 − (k3ki2k4 + ki2 + k4) ei2

− (k4 + k3 + ki2) e4 − φ̇ψ̇
(
Iz − Ix
Iy

)
+ θ̈d

)
(5.58)

d(ω̄2
1 + ω̄2

4 − ω̄2
2 − ω̄2

3) = Iz (− (k5k6 + k5ki3 + ki3k6 + 2) e5 − (k5ki3k6 + ki3 + k6) ei3

− (k6 + k5 + ki3) e6 − φ̇θ̇
(
Ix − Iy
Iz

)
+ ψ̈d

)
(5.59)

b(ω̄2
1 + ω̄2

4 + ω̄2
2 + ω̄2

3) = U1 (5.60)

where (2.15) is used for τφ, τθ, and τψ, (5.60) comes from (2.16), U1 is the vertical lifting power
given by the RC controller, which will be generated by the backstepping altitude controller
in the later sections, and ω̄ = ω̄1 − ω̄2 − ω̄3 + ω̄4 is the differences in the rotational speeds
of the diagonal propeller pair. The desired rotational speeds of the propellers ω̄1, ω̄2, ω̄3, ω̄4

can then be calculated by applying the gradient decent method to (5.57)-(5.60). Fig. 5.5
shows the block diagram for the closed-loop system with the attitude controller using the
integral backstepping method.

Figure 5.5: Block Diagram for Integral Backstepping Control



5.2. Integral Backstepping Design with Euler Angle Representation 48

5.2.2 Experimental Results

The experimental results shown in Figs. (5.6)-(5.8) prove a functional control scheme
for the quadrotor. The added integrator control reduced the steady state error and it
also adds robustness during the flight. Comparing with only backstepping controller, the
integral backstepping controller is way much less fragile. From the graphs, the pitch,
roll and yaw movements are controlled within ±10◦ and the angular velocity is fairly
small. The gain coefficients are ki1 = 0.6, k1 = 16, k2 = 2, ki2 = 1, k3 = 17, k4 = 2, ki3 =
0.7, k4 = 1.0, k5 = 350. The gain coefficients are similar in the roll and pitch direction (i.e.
ki1 = 0.6, k1 = 16, k2 = 2 for the φ direction, ki2 = 1, k3 = 17, k4 = 2 for the θ direction).
The slight difference in the gain coefficients are coming from the slight unsymmetrical shape
of the quadrotor. The lower air drag factors cause a slower reaction in the yaw direction, to
control the heading of the quadrotor, a much higher gain is needed to provide the quick and
more air drag force.

Figure 5.6: Integral Backstepping with Euler Representation in φ Direction

Figure 5.7: Integral Backstepping with Euler Representation in θ Direction
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Figure 5.8: Integral Backstepping with Euler Representation in ψ Direction

5.3 Backstepping Controller with Unit Quaternion Represen-
tation

5.3.1 Controller Design

The unit quaternion representation is employed for this section to derive the controller of the
quadrotor. The main goal is to maintain the stability of the vector part of the quatenrion

(i.e. q =
[
q1 q2 q3

]T
). q0 will be constrained by the unique characteristics of the unit

quaternion in (3.6), which shows that the length of a unit quaternion is always equal to
one. The main disadvantages of unit quaternion is the non-uniqueness, where each attitude
can be represented by both ±Q. It is worth mentioning that the negligence of such a major
drawback may lead to a quaternion unwinding problem [56].

By deploying a very similar method when deriving the backstepping controller using the
Euler angle representation, one can approach the controller design problem using the unit
quaternion representation.

Let qd ∈ R3 and ωd ∈ R3 be the desired attitude and angular velocities of the quadrotor

with respect to the body frame. Then, the desired quaternion Qd =
[
q0d, q

T
d

]T
satisfies the

following differential equation:

Q̇d =
1

2
Qd �Qωd =

1

2

[
−qTd

q0dI3 + S (qd)

]
ωd (5.61)

The tracking error, that is, the difference between the desired quaternion Qd and the actual

quaternion denoted as Q =
[
q0, q

T
]T

, can be calculated by

Qe =

[
q0e

qe

]
= Q−1

d �Q =

[
q0dq0 + qT qd

q0dq − q0qd − qd × q

]
(5.62)

It follows from [41] that, with ωd = 0 and ωe = ω − ωd = ω, Qe satisfies the following
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differential equation

Q̇e =

[
q̇0e

q̇e

]
=

1

2

[
−qTe ω

q0eω + S (qe)ω

]
(5.63)

which is equivalent to

Q̇e =
1

2

[
−qTe ω

ωq0e − S (ω) qe

]
(5.64)

Using the backstepping technique, a Lyapunov function can then be chosen as:

V1 = qTe qe + (q0e − 1)2 (5.65)

The first order derivative of V1 can be expressed as:

V̇1 = 2qTe q̇e + 2(q0e − 1)q̇0e (5.66)

Substituting (5.64) into (5.66) yields:

V̇1 = qTe [ωq0e + S (ω) qe]− (q0e − 1)qTe ω

= q0eq
T
e ω + qTe S (ω) qe − q0eq

T
e ω + qTe ω

= qTe S (ω) qe + qTe ω

= qTe ω + qTe ω
∗ − qTe ω∗

= qTe ω
∗ + (ω − ω∗)T qe (5.67)

The virtual controller ω∗ will be designed first by setting the following:

ω∗ =

 ω∗x
ω∗y
ω∗z

 = Υ1qe =

 −k1q1e

−k2q2e

−k3q3e

 (5.68)

where Υ1 =

 k1 0 0
0 k2 0
0 0 k3

 > 0 with the positive gains k1, k2, and k3. Hence, it follows

from (5.64) that the following is true:

ω̇∗ =

 ω̇∗x
ω̇∗y
ω̇∗z

 = Υ1q̇e = Υ1 (ωq0e − S (ω) qe) (5.69)

Then, (5.67) can be rewritten as

V̇1 = −qTe Υ1qe + (ω − ω∗)T qe (5.70)

We can now define the second Lyapunov function as below:

V2 = V1 +
1

2
(ω − ω∗)T (ω − ω∗) (5.71)
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The first order derivative of (5.71) is:

V̇2 = V̇1 + (ω − ω∗)T (ω̇ − ω̇∗)
= −qTe Υ1qe + (ω − ω∗)T qe + (ω − ω∗)T (ω̇ − ω̇∗)
= −qTe Υ1qe + (ω − ω∗)T (qe + ω̇ − ω̇∗)
= −qTe Υ1qe − (ω − ω∗)T Υ2 (ω − ω∗) + (ω − ω∗)T Υ2 (ω − ω∗)

+ (ω − ω∗)T (qe + ω̇ − ω̇∗)
= −qTe Υ1qe − (ω − ω∗)T Υ2 (ω − ω∗)

+ (ω − ω∗)T [Υ2 (ω − ω∗) + qe + ω̇ − ω̇∗] (5.72)

where Υ2 =

 k4 0 0
0 k5 0
0 0 k6

 > 0 with the positive gains k4, k5, and k6. To determine the

final control law of the system, one has to make the following:

Υ2 (ω − ω∗) + qe + ω̇ − ω̇∗ = 0 (5.73)

According to the dynamic model from (4.11), we can now have the following:

ω̇ =

 ω̇x
ω̇y
ω̇z

 =


1
Ix

(τφ + ωyωzIy − ωyωzIz − ωyJr (ω̄1 − ω̄2 − ω̄3 + ω̄4))
1
Iy

(τθ − ωxωzIx + ωxωzIz + ωxJr (ω̄1 − ω̄2 − ω̄3 + ω̄4))
1
Iz

(τψ + ωxωyIx − ωxωyIy)

 (5.74)

where (4.15) is used.

In order to yield the final format of the controller, we can now substitute the above equation
into (5.73). The control law can then be derived as following:

1
Ix

(τφ + ωyωzIy − ωyωzIz − ωyJr (ω̄1 − ω̄2 − ω̄3 + ω̄4))
1
Iy

(τθ − ωxωzIx + ωxωzIz + ωxJr (ω̄1 − ω̄2 − ω̄3 + ω̄4))
1
Iz

(τψ + ωxωyIx − ωxωyIy)


= −

 k4 0 0
0 k5 0
0 0 k6

 (ωx − ω∗x)
(ωy − ω∗y)
(ωz − ω∗z)

−
 q1e

q2e

q3e

+

 ω̇∗x
ω̇∗y
ω̇∗z

 (5.75)

which can be rewritten as τφ − ωyJr (ω̄1 − ω̄2 − ω̄3 + ω̄4)
τθ + ωxJr (ω̄1 − ω̄2 − ω̄3 + ω̄4)

τψ


=

 Ix
l (−k4(ωx − ω∗x)− q1e + ω̇∗x)− ωyωzIy + ωyωzIz
Iy
l

(
−k5(ωy − ω∗y)− q2e + ω̇∗y

)
+ ωxωzIx − ωxωzIz

Iz (−k6(ωz − ω∗z)− q3e + ω̇∗z)− ωxωyIx + ωxωyIy

 (5.76)
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Hence, the control law can be expressed as: τφ
τθ
τψ


=

 Ix
l (−k4(ωx − ω∗x)− q1e + ω̇∗x)− ωyωzIy + ωyωzIz + ωyJr (ω̄1 − ω̄2 − ω̄3 + ω̄4)
Iy
l

(
−k5(ωy − ω∗y)− q2e + ω̇∗y

)
+ ωxωzIx − ωxωzIz − ωxJr (ω̄1 − ω̄2 − ω̄3 + ω̄4)

Iz (−k6(ωz − ω∗z)− q3e + ω̇∗z)− ωxωyIx + ωxωyIy


(5.77)

Substituting the aerodynamic equation (2.15) into (5.75)-(5.77), taking (2.15) into consider-
ation, it follows that 

bl(ω̄2
1 − ω̄2

4)− ωyJr (ω̄1 − ω̄2 − ω̄3 + ω̄4)
bl(ω̄2

2 − ω̄2
3) + ωxJr (ω̄1 − ω̄2 − ω̄3 + ω̄4)
d(ω̄2

1 + ω̄2
4 − ω̄2

2 − ω̄2
3)

b(ω̄2
1 + ω̄2

4 + ω̄2
2 + ω̄2

3)



=


Ix
l (−k4(ωx − ω∗x)− q1e + ω̇∗x)− ωyωzIy + ωyωzIz
Iy
l

(
−k5(ωy − ω∗y)− q2e + ω̇∗y

)
+ ωxωzIx − ωxωzIz

Iz (−k6(ωz − ω∗z)− q3e + ω̇∗z)− ωxωyIx + ωxωyIy
U1

 (5.78)

where U1 is the vertical lifting power given by the RC controller, later on, this lifting force
will be generated by the backstepping altitude controller. Then, the desired rotational speeds
of the propellers ω̄1, ω̄2, ω̄3, ω̄4 can then be calculated by utilizing the gradient decent method.
The block diagram for the closed-loop system with the backstepping attitude control using
the quaternion representation is shown in Fig. 5.9.

Figure 5.9: Block Diagram for Quaternion Backstepping Control
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5.3.2 Experimental Results

The experimental results in Figs. 5.10-5.12 shows a promising outcome for the quaternion
based backstepping control scheme. The flying behaviour is quite similar to the Euler
angle based backstepping controller. The movements regarding to the pitch, roll and yaw
directions are controlled within ±10◦, with relatively small angular velocity changes. The
gain coefficients are, k1 = 140, k2 = 300, k3 = 0.5, k4 = 2.0, k5 = 2.2, k6 = 190. The selecting
of these coefficients are based on try and error method.

Figure 5.10: Quaternion Tracking Error

Figure 5.11: Euler Angle of the Quadrotor
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Figure 5.12: Angular Velocity of the Quadrotor

5.4 Integral Backstepping with Neural Network

5.4.1 Controller Design

Following by the integral backstepping derivation, an intelligent controller design method
using the neural network is deployed as part of the controller design. A neural network
imitates the function of a human brain, where the information is stored and processed in each
neural cell. The information will then be passed onto different neural cells through various
linkages. An unsupervised learning scheme is implemented into the controller design. Ideally,
the designed adaptation rate %̂ will ultimately approach the desired %. Such a property
will be ensured by implementing the adaptation rate onto the Lyapunov function. Similar
controller design approach can be found in [57–60].

Figs. 5.13-5.15 show a detailed working principle of the neural network, which consists of
three different layers, input layer, hidden layer and output layer, respectively. The nonlinear

term fθ = θ̇ψ̇
(
Iy−Iz
Ix

)
, fφ = φ̇ψ̇( Iz−IxIy

) and fψ = φ̇θ̇(
Ix−Iy
Iz

) are estimated with the neural

network. Nine different neural cells are implemented as shown in Figs. 5.13-5.15. One of
the key components for a well performing network is to select an appropriate embedded
nonlinear function within each neural cell. In this thesis work, a triangular function is chosen
for each neural cell.
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Figure 5.13: Neural Network in φ Direction

Figure 5.14: Neural Network in θ Direction

The theoretical development for the steps involving integral errors and tracking errors can
be referred to Section 5.2.1. Starting from the equation (5.42), adding the estimation errors
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Figure 5.15: Neural Network in ψ Direction

to the Lyapunov function V3 gives:

V3 = V2 +
1

2
ē2

2 +
1

2
ē2

4 +
1

2
ē2

6

+
1

2
(%θ − %̂θ)T Γθ (%θ − %̂θ)

+
1

2
(%φ − %̂φ)T Γφ (%φ − %̂φ)

+
1

2
(%ψ − %̂ψ)T Γψ (%ψ − %̂ψ) (5.79)

where %̂φ, %̂θ, %̂ψ are the ideal estimations of the nonlinear terms and Γθ,Γφ,Γψ are positive
definite symmetric matrices. Applying the time derivative onto (5.79), we then get the
following:
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V̇3 = V̇2 + ē2

·
ē2 + ē4

·
ē4 + ē6

·
ē6

+ (%θ − %̂θ)T Γθ

(
− ˙̂%θ

)
+ (%φ − %̂φ)T Γφ

(
− ˙̂%φ

)
+ (%ψ − %̂ψ)T Γψ

(
− ˙̂%ψ

)
= −ki1e2

i1 − ki2e2
i2 − ki3e2

i3 − k1ē
2
1 − k3ē

2
3 − k5ē

2
5

+ē1ē2 + ē3ē4 + ē5ē6 + ē2

·
ē2 + ē4

·
ē4 + ē6

·
ē6

+ (%θ − %̂θ)T Γθ

(
− ˙̂%θ

)
+ (%φ − %̂φ)T Γφ

(
− ˙̂%φ

)
+ (%ψ − %̂ψ)T Γψ

(
− ˙̂%ψ

)
= −ki1e2

i1 − ki2e2
i2 − ki3e2

i3 − k1ē
2
1 − k3ē

2
3 − k5ē

2
5

+ē2

(
ē1 + k1

·
ē1 + θ̇ψ̇

(
Iy − Iz
Ix

)
− Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1

)
+ē4

(
ē3 + k3

·
ē3 + φ̇ψ̇

(
Iz − Ix
Iy

)
+
Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3

)
+ē6

(
ē5 + k5

·
ē5 + φ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
τψ − ψ̈d + ki3ė5 + e5

)
+ (%θ − %̂θ)T Γθ

(
− ˙̂%θ

)
+ (%φ − %̂φ)T Γφ

(
− ˙̂%φ

)
+ (%ψ − %̂ψ)T Γψ

(
− ˙̂%ψ

)
(5.80)

The nonlinear terms can then be estimated by the following neural networks

fθ = θ̇ψ̇

(
Iy − Iz
Ix

)
= %θξθ + εθ (5.81)

fφ = φ̇ψ̇

(
Iz − Ix
Iy

)
= %φξφ + ε

φ
(5.82)

fψ = φ̇θ̇

(
Ix − Iy
Iz

)
= %ψξψ + ε

ψ
(5.83)

According to the universal approximation theorem, the absolute values of the approximation
error εθ, εφ, εψ can be made arbitrarily small, which is considered to be bounded [61].
Substituting (5.81), (5.82), (5.83) into (5.80), it follows that

V̇3 = −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 − k1ē

2
1 − k3ē

2
3 − k5ē

2
5

+ē2

(
ē1 + k1

·
ē1 + %θξθ + εθ −

Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1

)
+ē4

(
ē3 + k3

·
ē3 + %φξφ + ε

φ
+
Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3

)
+ē6

(
ē5 + k5

·
ē5 + %ψξψ + ε

ψ
+

1

Iz
τψ − ψ̈d + ki3ė5 + e5

)
+ (%θ − %̂θ)T Γθ

(
− ˙̂%θ

)
+ (%φ − %̂φ)T Γφ

(
− ˙̂%φ

)
+ (%ψ − %̂ψ)T Γψ

(
− ˙̂%ψ

)
(5.84)
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V̇3 = −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 − k1ē

2
1 − k3ē

2
3 − k5ē

2
5

+ē2

(
ē1 + k1

·
ē1 + %̂θξθ + εθ −

Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1

)
+ē4

(
ē3 + k3

·
ē3 + %̂φξφ + ε

φ
+
Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3

)
+ē6

(
ē5 + k5

·
ē5 + %̂ψξψ + ε

ψ
+

1

Iz
τψ − ψ̈d + ki3ė5 + e5

)
+ (%θ − %̂θ)T Γθ

(
Γ−1
θ ē2ξθ − ˙̂%θ

)
+ (%φ − %̂φ)T Γφ

(
Γ−1
φ ē4ξφ − ˙̂%φ

)
+ (%ψ − %̂ψ)T Γψ

(
Γ−1
ψ ē6ξψ − ˙̂%ψ

)
(5.85)

Introduce the following adaptation laws for %̂φ, %̂θ, %̂ψ

˙̂%θ = Γ−1
θ ē2ξθ − σθ%̂θ (5.86)

˙̂%φ = Γ−1
φ ē4ξφ − σφ%̂φ

˙̂%ψ = Γ−1
ψ ē6ξψ − σψ%̂ψ

Then, V̇3 becomes

V̇3 = −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 − k1ē

2
1 − k3ē

2
3 − k5ē

2
5

+ē2

(
ē1 + k1

·
ē1 + %̂θξθ −

Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1

)
+ē4

(
ē3 + k3

·
ē3 + %̂φξφ +

Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3

)
+ē6

(
ē5 + k5

·
ē5 + %̂ψξψ +

1

Iz
τψ − ψ̈d + ki3ė5 + e5

)
+ē2εθ + ē4εφ + ē6εψ

+σθ (%θ − %̂θ)T Γθ%̂θ + σφ (%φ − %̂φ)T Γφ%̂φ + σψ (%ψ − %̂ψ)T Γψ%̂ψ (5.87)

By using Young’s inequality xy ≤ 1
2x

2+ 1
2y

2, it follows that ē2εθ ≤ 1
2 ē

2
2+ 1

2ε
2
θ, ē4εφ ≤ 1

2 ē
2
4+ 1

2ε
2
φ
,

ē6εψ ≤ 1
2 ē

2
6 + 1

2ε
2
ψ

. Therefore, (5.87) can be expressed as:



5.4. Integral Backstepping with Neural Network 59

V̇3 ≤ −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 − k1ē

2
1 − k3ē

2
3 − k5ē

2
5

+ē2

(
ē1 + k1

·
ē1 + %̂θξθ −

Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1

)
+ē4

(
ē3 + k3

·
ē3 + %̂φξφ +

Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3

)
+ē6

(
ē5 + k5

·
ē5 + %̂ψξψ +

1

Iz
τψ − ψ̈d + ki3ė5 + e5

)
+

1

2
ē2

2 +
1

2
ε2
θ +

1

2
ē2

4 +
1

2
ε2
φ

+
1

2
ē2

6 +
1

2
ε2
ψ

+σθ (%θ − %̂θ)T Γθ%θ + σφ (%φ − %̂φ)T Γφ%φ + σψ (%ψ − %̂ψ)T Γψ%ψ

−σθ (%θ − %̂θ)T Γθ (%θ − %̂θ)− σφ (%φ − %̂φ)T Γφ (%φ − %̂φ)

−σψ (%ψ − %̂ψ)T Γψ (%ψ − %̂ψ) (5.88)

By using Young’s inequality xTΓy ≤ 1
2x

TΓx+ 1
2y

TΓy, it can be verified that

(%θ − %̂θ)T Γθ%θ ≤
1

2
(%θ − %̂θ)T Γθ (%θ − %̂θ) +

1

2
%Tθ Γθ%θ

(%φ − %̂φ)T Γφ%φ ≤ 1

2
(%φ − %̂φ)T Γφ (%φ − %̂φ) +

1

2
%TφΓφ%φ

(%ψ − %̂ψ)T Γψ%ψ ≤ 1

2
(%ψ − %̂ψ)T Γψ (%ψ − %̂ψ) +

1

2
%TψΓψ%ψ (5.89)

With (5.89), (5.88) can be rewritten as:

V̇3 ≤ −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 − k1ē

2
1 − k3ē

2
3 − k5ē

2
5

+ē2

(
1

2
ē2 + ē1 + k1

·
ē1 + %̂θξθ −

Jr
Ix
θ̇ω̄ +

l

Ix
τφ − φ̈d + ki1ė1 + e1

)
+ē4

(
1

2
ē4 + ē3 + k3

·
ē3 + %̂φξφ +

Jr
Iy
φ̇ω̄ +

l

Iy
τθ − θ̈d + ki2ė3 + e3

)
+ē6

(
1

2
ē6 + ē5 + k5

·
ē5 + %̂ψξψ +

1

Iz
τψ − ψ̈d + ki3ė5 + e5

)
−1

2
σθ (%θ − %̂θ)T Γθ (%θ − %̂θ)−

1

2
σφ (%φ − %̂φ)T Γφ (%φ − %̂φ)

−1

2
σψ (%ψ − %̂ψ)T Γψ (%ψ − %̂ψ)

+
1

2
ε2
θ +

1

2
ε2
φ

+
1

2
ε2
ψ

+
1

2
%Tθ Γθ%θ +

1

2
%TφΓφ%φ +

1

2
%TψΓψ%ψ (5.90)

Set the following to yield the control law in (5.92).
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 −k2ē2

−k4ē4

−k6ē6

 =


1
2 ē2 + ē1 + k1

·
ē1 + %̂θξθ − Jr

Ix
θ̇ω̄ + l

Ix
τφ − φ̈d + ki1ė1 + e1

1
2 ē4 + ē3 + k3

·
ē3 + %̂φξφ + Jr

Iy
φ̇ω̄ + l

Iy
τθ − θ̈d + ki2ė3 + e3

1
2 ē6 + ē5 + k5

·
ē5 + %̂ψξψ + 1

Iz
τψ − ψ̈d + ki3ė5 + e5

 (5.91)

 τφ
τθ
τψ

 =


Ix
l

(
−k2ē2 − 1

2 ē2 − ē1 − k1

·
ē1 − %̂θξθ + Jr

Ix
θ̇ω̄ + φ̈d − ki1ė1 − e1

)
Iy
l

(
−k4ē4 − 1

2 ē4 − ē3 − k3

·
ē3 − %̂φξφ − Jr

Iy
φ̇ω̄ + θ̈d − ki2ė3 − e3

)
Iz

(
−k6ē6 − 1

2 ē6 − ē5 − k5

·
ē5 − %̂ψξψ + ψ̈d − ki3ė5 − e5

)


(5.92)

With (5.92), (5.90) can be rewritten as follows:

V̇3 ≤ −ki1e2
i1 − ki2e2

i2 − ki3e2
i3 − k1ē

2
1 − k3ē

2
3 − k5ē

2
5 − k2ē

2
2 − k4ē

2
4 − k6ē

2
6

−1

2
σθ (%θ − %̂θ)T Γθ (%θ − %̂θ)−

1

2
σφ (%φ − %̂φ)T Γφ (%φ − %̂φ)− 1

2
σψ (%ψ − %̂ψ)T Γψ (%ψ − %̂ψ)

+
1

2
ε2
θ +

1

2
ε2
φ

+
1

2
ε2
ψ

+
1

2
%Tθ Γθ%θ +

1

2
%TφΓφ%φ +

1

2
%TψΓψ%ψ (5.93)

≤ −aV3 + b

where a = 2 min{ki1, ki2, ki3, k1, k3, k5, k2, k4, k6,
1
2σθ,

1
2σφ,

1
2σψ} and b = 1

2ε
2
θ + 1

2ε
2
φ

+ 1
2ε

2
ψ

+
1
2%

T
θ Γθ%θ + 1

2%
T
φΓφ%φ + 1

2%
T
ψΓψ%ψ. It can be verified that b is bounded, because the absolute

values of εφ, εθ, εψ are arbitrarily small, and the last three terms in b are constant. It follows
from Halanay inequality [62] that all the error terms in V3 are bounded.

Again, using the aerodynamic equations in (2.15) and (2.16), the angular velocities of the
motors can be calculated by solving


b(ω̄2

1 + ω̄2
4 + ω̄2

2 + ω̄2
3)

bl(ω̄2
1 − ω̄2

4)− Jr
l θ̇ω̄

bl(ω̄2
2 − ω̄2

3) + Jr
l φ̇ω̄

d(ω̄2
1 + ω̄2

4 − ω̄2
2 − ω̄2

3)

 =


U1

Ix
l

(
−k2ē2 − 1

2 ē2 − ē1 − k1

·
ē1 − %̂θξθ + φ̈d − ki1ė1 − e1

)
Iy
l

(
−k4ē4 − 1

2 ē4 − ē3 − k3

·
ē3 − %̂φξφ + θ̈d − ki2ė3 − e3

)
Iz

(
−k6ē6 − 1

2 ē6 − ē5 − k5

·
ē5 − %̂ψξψ + ψ̈d − ki3ė5 − e5

)


(5.94)

with the gradient decent method, where U1 is the vertical lifting power given by the RC
controller, later on, this lifting force will be generated by the backstepping altitude controller.
Fig. 5.16 shows the block diagram for the closed-loop system using the integral backstepping
controller.



5.5. Altitude Control 61

Figure 5.16: Block Diagram for Integral Backstepping with Neural Network Control

5.4.2 Experimental Results

A neural network mechanism is implemented into the controller design, where all the possible
outputs from each neural cells are displayed in Fig. 5.17. By observing the actual experiment
results for the pitch, roll and yaw movements in Figs. (5.18)-(5.20), the fluctuation is
within the ±10◦ range, with acceptable amount of changes in the angular velocity. The gain
coefficients are ki1 = 1, k1 = 11, k2 = 2, ki2 = 1, k3 = 17, k4 = 2, ki3 = 0.7, k4 = 1.0, k5 = 300.
Notice the gain factors are slightly different in comparison with the integral backstepping
controller. This is due to the introducing of the nonlinear estimations terms from neural
network, hence the controller responses varies in order to cancel out the estimation terms.

For the demonstration purposes, the neural cells output shown in Fig. 5.17 only describes
the estimation nonlinear term of fθ(θ̇, ψ̇). However, in the practical implementation, fφ(φ̇, ψ̇)
and fψ(θ̇, φ̇) are also involved in the calculations.

5.5 Altitude Control

5.5.1 Controller Design

The altitude controller design is strictly followed by the backstepping method. Define the
errors by

e9 = z − zd (5.95)

e10 = ż − żd (5.96)
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Figure 5.17: Neural Cells Outputs for φ̇ input and ψ̇ input

Figure 5.18: Integral Backstepping with Neural Network in φ Direction

The Lyapunov function can then be chosen as follows:

V1 =
1

2
e2

9 (5.97)

By differentiating (5.97), one can yield the equation below:
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Figure 5.19: Integral Backstepping with Neural Network in θ Direction

Figure 5.20: Integral Backstepping with Neural Network in ψ Direction

V̇1 = e9ė9

= e9e10

= −k9e
2
9 + k9e

2
9 + e9e10

= −k9e
2
9 + e9 (k9e9 + e10)

= −k9e
2
9 + e9ē10 (5.98)

where k9 is a positive gain and

ē10 = k9e9 + e10 (5.99)

The time derivative of (5.99) can be expressed as:
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·
ē10 = k9ė9 + ė10

= k9e10 + ė10 (5.100)

The Lyapunov function V2 can then be defined as:

V2 = V1 +
1

2
ē2

10 (5.101)

Again, applying the time derivative onto (5.101), one can have the following:

V̇2 = V̇1 + ē10

·
ē10

= −k9e
2
9 + e9ē10 + ē10 (k9e10 + ė10)

= −k9e
2
9 + ē10 (e9 + k9e10 + ė10) (5.102)

Set the following:

−k10ē10 = e9 + k9e10 + ė10

= e9 + k9e10 + z̈ − z̈d (5.103)

where k10 is a positive gain.

Then, one can introduce the dynamic model (4.5) into (5.103), which results in the following
equation.

−k10ē10 = e9 + k9e10 + cosφ cos θ
U1

m
− g − z̈d (5.104)

Solving it for U1 produces

U1 = m

(
−k10ē10 − e9 − k9e10 + g + z̈d

cosφ cos θ

)
= m

(
− (k9k10 + 1) e9 − (k9 + k10) e10 + g + z̈d

cosφ cos θ

)
(5.105)

which makes V̇2 = −k9e
2
9 − k10ē

2
10, a negative definite function.

(5.105), together with the attitude controllers discussed in Section 5.1.1, Section 5.2.1,
and Section 5.4.1, is able to achieve the altitude control while maintaining the attitude
stabilization. The structure of the controller can be clearly seen from the block diagram
shown in Fig. 5.21.
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Figure 5.21: Block Diagram for Altitude Control with Integral Backstepping Controller

5.5.2 Experimental Results

The altitude control experiment results are shown in Fig. 5.22, where a step function jumping
from 0.7 meters to 1.2 meters is given to the system. While maintaining a stable attitude
control of the quadrotor by a human operator, an increasing and later on a decreasing
command is send out from a ground computer. Notice in (5.105), the controller outputs an
infinite value when the Euler angle φ or θ reaches 90◦. This can be avoided by using the
quaternion representations, and it will be considered for the future work. The performance
of the controller is quite stable with an overshoot of 8.3%.

The gain coefficients are k9 = 15.8, k10 = 3.8. While performing the altitude tracking
experiments, the integral backstepping controller is used for the attitude control of the
quadrotor, hence the gain coefficients can be referred to Section 5.2.

Figure 5.22: Altitude Tracking



Chapter 6

Conclusion

In this thesis work, various nonlinear controllers based on the backstepping technique have
been discussed and implemented to stabilize a quadrotor. Prior to the design of the nonlinear
controller, an attitude estimation method has been introduced. Later on, two different
dynamic models based on the Euler Lagrangian and the Newton motion of equations have
been discussed. The theory development for the backstepping nonlinear controller design
has been provided and the experiments on the quadrotor have been successfully conducted
to verify the backstepping nonlinear controller, which is followed by an integral backstepping
controller design. The above two nonlinear controllers are based on the Euler angle as a
way of representing the attitude of the quadrotor. The major drawback of such an attitude
representation is the singularity problem, which is also known as the gimbal lock. In order
to solve such a problem, the quaternion representation has been used for the backstepping
controller. To cope with the environment changes and the model parameters uncertainties, a
neural network mechanism has been adopted for the controller design. The neural network
used in this thesis work consists of three layers, the input layer, the output layer and the
hidden layer. To reach the better estimation outcomes and reduce the computation stress,
nine neural cells have been embedded into the hidden layer. Within each neural cell, a
triangular function is applied to imitate the nonlinear characteristics.

The theory development for the altitude control scheme strictly follows the backstepping
technique. The Euler angle representation exhibits its disadvantage when observing the
final control law in (5.105), at the instantaneous time when the Euler angle reaches 90◦, U1

becomes infinity.

The future work is quite extensive for this thesis work. Based on the theory development
and the experimental try outs, it is concluded that many different improvements need to be
made for a better performance of the quadrotor.

Firstly, the quaternion representation should be implemented for all the proposed controller
designs. At this point of the research, only the backstepping controller was tested with the
unit quaternion representation. In comparison with the rotational matrix representation,
the quaternion representation has its unique mathematical characteristics, no singularity
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problem, and is less complex in comparison with the rotational matrix.

Secondly, the PWM output is directly fed into the ESC module to generate a final mechanical
rotation on the motors. A nonlinear relationship may exist in between the PWM signal and
the RPM output. To find such a relationship, one should collect different testing points of
PWM values under different motor speeds. By using these experimental data, a polynomial
function can be constructed to model the nonlinear relationship between the PWM and
RPM. The final mechanical RPM can then be compensated with this computed nonlinear
characteristics.

Thirdly, one should consider to embed a more complex and extensive nonlinear function into
each neural cell. Due to the limitation of the computational power, a triangular function is
used at this point of the research. To improve the accuracy of the estimations, more neural
cells can also be added, and a possible fuzzy set can be implemented.

The altitude control uses a sonar sensor to give the feedback signals. Though it is only
effective at a lower altitude. A barometric pressure sensor may be used for a higher altitude
applications. If a pressure sensor is employed, a possible sensor approximation algorithm
might be used, since the sensor readings are drastically affected by the air pressure, humidity,
and the vibrations.
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C Language Flow Chart
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Appendix B

Digital Compass Calibration

The digital compass is affected by different sources of errors. The error properties are
discussed in details [41] [51] for their physical meanings and electrical characteristics. This
appendix is to further clarify the procedure for calibrating the digital compass. The digital
compass used in this thesis work is HMC5883L. For more detailed technical specifications,
one can refer to Section 2.1.2.

For an ideal magnetic field without any interferences, the measured data taken from rotating
the sensor in all directions in the three dimensional space should show a perfect sphere.
Depending on the geographic location, the following equation should be true.

B2
x−b +B2

y−b +B2
z−b = B2

H (B.1)

where Bx−b, By−b, Bz−b are the magnetic field without any errors in the body frame. In
Section 3.2, the following relationships are provided:

B̂x−b = aBx−b + xo (B.2)

B̂y−b = b(By−b cos(ρ) +Bx−b sin(ρ)) + y0 (B.3)

B̂z−b = c(Bz−b cos(φ) cos(θ) +Bb−x sin(φ) cos(θ) +Bb−y sin(θ)) + z0 (B.4)

As mentioned earlier in Section 3.2, x0, y0, z0, a, b, c, ρ, φ, θ. are the unknown sources of errors.
B̂x−b, B̂y−b, B̂z−b are the actual measurements from the digital compass in the body frame.
Bx−b, By−b, Bz−b are the real magnetic field strength without any errors. By rewriting
(B.2),(B.3),(B.4), one can derive the following:

Bx−b =
1

a

(
B̂x−b − xo

)
(B.5)

By−b =
1

cos(ρ)

(
1

b

(
B̂y−b − y0

)
− 1

a

(
B̂x−b − xo

)
sin(ρ)

)
(B.6)

Bz−b =
1

cos(φ) cos(θ)

(
1

c

(
B̂z−b − z0

)
−Bb−x sin(φ) cos(θ)−Bb−y sin(θ)

)
(B.7)
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Substituting (B.5),(B.6),(B.7) into (B.1) produces

B2
H =

(
1

a

(
B̂x−b − xo

))2

+

(
1

cos(ρ)

(
1

b

(
B̂y−b − y0

)
− 1

a

(
B̂x−b − xo

)
sin(ρ)

))2

+

 1
c

(
B̂z−b − z0

)
− 1

a

(
B̂x−b − xo

)
sin(φ) cos(θ)

cos(φ) cos(θ)

−
sin(θ)

(
1
b

(
B̂y−b − y0

)
− 1

a

(
B̂x−b − xo

)
sin(ρ)

)
cos(ρ) cos(φ) cos(θ)

2

(B.8)

which can then be rewritten as

AB̂2
x−b +BB̂x−bB̂y−b + CB̂x−bB̂z−b +DB̂2

y−b

+ EB̂y−bB̂z−b + FB̂2
z−bF +GB̂x−b +HB̂y−b + IB̂z−b + J = 0

(B.9)

where A,B,C,D,E, F,G,H, I, J are the functions containing the x0, y0, z0, a, b, c, ρ, φ, θ.
(B.9) can then be further elaborated into:

− H

D

1

B̂y−b
− J

D

1

B̂2
y−b
− F

D

B̂2
z−b

B̂2
y−b
− A

D

B̂x−b

B̂2
y−b
− B

D

B̂x−b

B̂y−b

− G

D

B̂x−b

B̂2
y−b
− E

D

B̂z−b

B̂y−b
− I

D

B̂z−b

B̂2
y−b
− C

D

B̂x−bB̂z−b

B̂2
y−b

= 1

(B.10)

which can then be put into the matrix form as follows:

B̂x−b
B̂2
y−b

B̂x−b
B̂y−b

B̂x−bB̂z−b
B̂2
y−b

B̂z−b
B̂y−b

B̂2
z−b

B̂2
y−b

B̂x−b
B̂2
y−b
1

B̂y−b

B̂z−b
B̂2
y−b
1

B̂2
y−b



T 

−A
D

−B
D

−C
D

−E
D

−F
D

−G
D

−H
D

− I
D

− J
D



= 1 (B.11)
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where A,B,C,D,E, F,G,H, I, J are determined by

A =
1

a2
+

sin2(ρ)

a2 cos2(ρ)
+

sin2(φ)

a2 cos2(φ)
− 2 sin(ρ) sin(θ) sin(φ) cos(θ)

a2 cos(ρ) cos2(φ) cos2(θ)
(B.12)

B =
2 sin(θ) sin(φ) cos(θ)

ab cos(ρ) cos2(φ) cos2(θ)
− 2 sin(ρ)

ab cos2(ρ)
− 2 sin(ρ) sin2(θ)

ab cos2(φ) cos2(θ) cos2(ρ)
(B.13)

C =
2 sin(ρ) sin(θ)

ac cos(ρ) cos2(φ) cos2(θ)
− 2 sin(φ) cos(θ)

ac cos2(φ) cos2(θ)
(B.14)

D =
1

cos2(ρ)b2
+

sin2(θ)

cos2(ρ) cos2(φ) cos2(θ)b2
(B.15)

E = − 2 sin(θ)

bc cos(ρ) cos2(φ) cos2(θ)
(B.16)

F =
1

c2 cos2(φ) cos2(θ)
(B.17)

(B.18)

G =
2y0 sin(ρ)

ab cos2(ρ)
− 2xo

a2
− 2xo sin2(ρ)

a2 cos2(ρ)
− 2xo sin2(φ)

a2 cos2(φ)
+

2 sin(ρ) sin2(θ)y0

ab cos2(φ) cos2(θ) cos2(ρ)
− 2xo sin2(θ) sin2(ρ)

a2 cos2(φ) cos2(θ) cos2(ρ)

+
2z0 sin(φ) cos(θ)

ac cos2(φ) cos2(θ)
− 2y0 sin(θ) sin(φ) cos(θ)

ab cos(ρ) cos2(φ) cos2(θ)

− 2 sin(ρ) sin(θ)z0

ac cos(ρ) cos2(φ) cos2(θ)
+

2xo sin(ρ) sin(θ) sin(φ) cos(θ)

a2 cos(ρ) cos2(φ) cos2(θ)
(B.19)

H = − 2y0

cos2(ρ)b2
+

2xo sin(ρ)

ab cos2(ρ)

− 2 sin2(θ)y0

cos2(ρ) cos2(φ) cos2(θ)b2
+

2 sin(ρ) sin2(θ)xo
ab cos2(φ) cos2(θ) cos2(ρ)

− 2xo sin(θ) sin(φ) cos(θ)

ab cos(ρ) cos2(φ) cos2(θ)
− 2 sin(θ)z0

bc cos(ρ) cos2(φ) cos2(θ)
(B.20)

I = − 2z0

c2 cos2(φ) cos2(θ)
+

2xo sin(φ) cos(θ)

ac cos2(φ) cos2(θ)

+
2y0 sin(θ)

bc cos(ρ) cos2(φ) cos2(θ)
− 2 sin(ρ)xo sin(θ)

ac cos(ρ) cos2(φ) cos2(θ)
(B.21)

(B.22)
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J =
z2

0

c2 cos2(φ) cos2(θ)
+
x2
o sin2(φ)

a2 cos2(φ)
+

y2
0 sin2(θ)

cos2(ρ) cos2(φ) cos2(θ)b2

− 2 sin(ρ) sin2(θ)xoy0

ab cos2(φ) cos2(θ) cos2(ρ)
+

x2
o sin2(θ) sin2(ρ)

a2 cos2(φ) cos2(θ) cos2(ρ)

−2xoz0 sin(φ) cos(θ)

ac cos2(φ) cos2(θ)
+

2xoy0 sin(θ) sin(φ) cos(θ)

ab cos(ρ) cos2(φ) cos2(θ)

−2x2
o sin(ρ) sin(θ) sin(φ) cos(θ)

a2 cos(ρ) cos2(φ) cos2(θ)
− 2y0 sin(θ)z0

bc cos(ρ) cos2(φ) cos2(θ)

− 2 sin(ρ)xo sin(θ)z0

ac cos(ρ) cos2(φ) cos2(θ)
+B2

H (B.23)

where BH is the earth magnetic field, which is 0.5648 Guass. Define the following matrices

P =



−A
D

−B
D

−C
D

−E
D

−F
D

−G
D

−H
D

− I
D

− J
D



T

W =



1
1
1
1
.
.
.
.

1k


(B.24)

ℵ =

B̂x1−b
B̂2
y1−b

B̂x1−bB̂y1−b
B̂2
y1−b

B̂x1−bB̂z1−b
B̂2
y1−b

B̂y1−bB̂z1−b
B̂2
y1−b

B̂2
z1−b

B̂2
y1−b

B̂x1−b
B̂2
y1−b

B̂y1−b
B̂2
y1−b

B̂z1−b
B̂2
y1−b

1
B̂2
y1−b

B̂x2−b
B̂2
y2−b

B̂x2−bB̂y2−b
B̂2
y2−b

B̂x2−bB̂z2−b
B̂2
y2−b

B̂y2−bB̂z2−b
B̂2
y2−b

B̂2
z2−b

B̂2
y2−b

B̂x2−b
B̂2
y2−b

B̂y2−b
B̂2
y2−b

B̂z2−b
B̂2
y2−b

1
B̂2
y2−b

B̂x3−b
B̂2
y3−b

B̂x3−bB̂y3−b
B̂2
y3−b

B̂x3−bB̂z3−b
B̂2
y3−b

B̂y3−bB̂z3−b
B̂2
y3−b

B̂2
z3−b

B̂2
y3−b

B̂x3−b
B̂2
y3−b

B̂y3−b
B̂2
y3−b

B̂z3−b
B̂2
y3−b

1
B̂2
y3−b

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
B̂xk−b
B̂2
yk−b

B̂xk−bB̂yk−b
B̂2
yk−b

B̂xk−bB̂zk−b
B̂2
yk−b

B̂yk−bB̂zk−b
B̂2
yk−b

B̂2
zk−b

B̂2
yk−b

B̂xk−b
B̂2
yk−b

B̂yk−b
B̂2
yk−b

B̂zk−b
B̂2
yk−b

1
B̂2
yk−b


(B.25)

Taking k numbers of data points to construct the matrix ℵ, one can then apply the linear
regreassion method to estimate P .

P = (ℵTℵ)−1ℵ (B.26)
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With P determined, all the sources of errors x0, y0, z0, a, b, c, ρ, φ, θ can be then computed
by using the result of the P matrix, along with (B.12-B.23). This can be done in the matlab,
using the gradient decent method.
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