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ABSTRACT 
 
 
 

Goodman, J.C. 2019. Economic feasibility of ground-based steep slope logging using 
 winch-assist technologies. 64 pp. 
 
 
Keywords: winch-assist, steep slope logging, sensitivity analysis, break-even analysis, 
forwarder, harvester, cable yarding, mechanized harvesting, British Columbia  
 
 
 
 This thesis examines the use of winch-assist technologies in logging operations 
in the interior of British Columbia. The data used for this thesis is from a contractor’s 
(located in Central B.C.) professional judgment as well as from other studies that took 
place near this area. The objective of this thesis was to determine the economic 
feasibility of winch-assist logging systems and compare the cost ($/m3) to cable yarding 
systems. Comparisons between systems were made using a costing model that 
determined the total cost of wood to roadside for three different systems including; 
winch-assist, cable yarding with manual falling and cable yarding with mechanized 
felling. In addition, a sensitivity analysis was used to determine how sensitive cost was 
to a variety of variables. The analysis done is within the reasonable scope of the 
requirements of an undergraduate thesis.The results found that cost ($/m3) was most 
sensitive to productivity and machine utilization. A key finding of this thesis was cable 
yarding systems with mechanized felling had the lowest overall cost. The implications of 
the results and the applications of winch-assist logging systems are discussed further 
throughout the thesis.  
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1. INTRODUCTION 
 

  

 

New technology in ground-based steep slope logging has sparked increasing 

interest in western Canada. Winch-assist logging equipment has been developed to 

increase the safe operating range of equipment on steep slopes (>35%) by increasing the 

traction between the drive wheels and the ground (Amishev 2016). The winch can either 

be attached to the chassis of the primary machine and secured to an anchor point or a 

secondary machine can be used to house and operate the winch (Visser and Stampfer 

2015). There are currently 800 winch assist-units available worldwide and expected to 

be more on the way as interest grows (Dyson 2017). Mechanization of steep slope 

harvesting provides an attractive solution to reduce accidents to manual workers and 

adapt to new harvesting terrain. The introduction of winch-assist technology may also 

increase the amount of economically accessible timber on steep slopes. This is of 

particular importance for B.C. because of recent reductions in the annual allowable cut 

(AAC) for many timber supply areas (TSA).  

Accessing fibre on steep terrain generally poses the problem of increased operating and 

capital costs. For the licensee, logging on steep slopes will result in higher fibre costs as 

well as harvesting different species mixtures (Stirling 2017). In addition, logging 

contractors may not be able to afford the high capital cost of new equipment and will be 

slow to start up due to the steep learning curve for operators. The problems presented all 
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question the economic feasibility of ground-based steep slope logging in interior British 

Columbia.  

The logging contractor providing input for this study is located in the interior of 

B.C. and is an integrated logging and road construction company. They annually deliver 

900 000m3 of fibre from stump to the mill. Recently, they updated their logging fleet to 

include winch-assist equipment in order to access timber on steep terrain. The key 

machines in the contractor’s steep slope arsenal are a wheeled John Deer 1910E cut-to-

length forwarder and a Tigercat 1185 wheeled harvester tethered to a T-winch. The 

steep-slope ground targeted for the operation ranges from 40-80%, however, the terrain 

in the region is inconsistent, containing steep pitches and flat sections. 

The goals of this study are outlined in the objective section of the report and will 

be used to guide the direction of the research. Using the data collected, an assessment on 

the economic feasibility of the contractor’s steep slope operation can be made. A break-

even analysis is used to compare two cable yarding (grapple) systems to a ground-based 

winch-assist system. The analysis done is within a reasonable scope of an undergraduate 

thesis.  A description of how data was collected and analyzed for this study are 

explained in detail in the materials and methods. This section also describes the costing 

model and sensitivity analysis used to determine the results. The literature review 

describes the current technology in ground-based steep slope logging and its 

development in western Canada. Additionally, a variety of logging systems and purpose-

built machines for steep terrain are compared. In the results section, the sensitivity 

analysis shows how sensitive the cost ($/m3) is to changing various inputs. The findings 

of the break-even analysis are also presented. The discussion examines the implications 

of the sensitivity analysis and break-even analysis. From the findings of this study, 
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recommendations are made on where winch-assist logging systems are best suited and 

the threshold for using ground-based logging technologies over cable yarding systems. 

In addition, recommendations are made on where research for future studies should 

focus to further improve the economic feasibility of winch-assist operations. 

 

1.1. OBJECTIVE 

 
 

The objective of this thesis is to determine the productivity and costs of a winch-

assist steep slope logging operation and examine its economic feasibility. Using a break-

even analysis with the input from an operation, a comparison can be made between a 

winch-assist system and a cable yarding (grapple) system with and without mechanized 

felling. The implications of using winch-assist technology in terms of productivity and 

cost are of particular interest in this study. The findings of this thesis will provide insight 

into the application of ground-based steep slope logging with the use of winch-assist 

technology in interior British Columbia. 

 

1.2. LITERATURE REVIEW  

 

Steep slope harvesting has been an ongoing challenge in forest operations due to 

high costs and safety implications. Conventional mechanized ground-based systems are 

constrained to terrain factors such as slope, soil strength and roughness (Visser and 

Stampfer 2015). Mechanized harvesting equipment is typically restricted to 35% slope 

for rubber-tired skidders and forwarders, 40% for tracked machines and 50% for any 
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purpose-built equipment designed for steep slopes (Visser and Stampfer 2015). Steep 

slopes will be defined as greater than 35% for the duration of this report. 

Accessing fibre on steep slopes has in the past been limited to harvesting systems 

such as helicopter logging, cable yarding and manual felling; however, these options 

have associated high costs and risks to workers relative to mechanized ground-based 

operations (Amishev 2016). Therefore, expensive steep slope logging operations are 

generally preferred for high-value, large diameter stems. Technology involving the use 

of a winch to assist machinery on steep slopes has provided a viable option to increase 

the mechanization of steep slope logging. The terms winch-assist, cable-assist, traction-

assist and tethering all refer to technology that allows ground-based equipment to 

operate on steep slopes (Amishev 2016). Winch-assist technologies can be used on both 

tracked or wheeled machines and work by increasing the traction between the drive 

wheels or tracks and the ground (Dyson 2016). This technology may benefit the forest 

industry by increasing productivity, improving quality and environmental management 

and improving health and safety standards to workers (Amishev 2011; Strimbu and 

Boswell 2018). The use of winch-assist in forestry is gaining popularity with over 800 

commercial units in use worldwide (Dyson 2017).  

 
1.2.1. Types of winch-assist systems 

 
There are a variety of winch assist technologies currently available for the forest 

industry. These systems have evolved and diversified with advancements in technology 

and feedback from users in the field. Winch-assist systems have been commercially 

available since the early nineties in Europe where they were primarily used on 
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forwarders (Visser and Stampfer 2018). These systems are now highly versatile and can 

be used on most forestry equipment. There are two main types of winch-assist systems. 

These include integrated winch systems and anchor machine winch systems (Amishev 

2016).  

The most common winch-assist design is the integrated winch system, where the 

winch unit is mounted on the chassis of the primary machine (Visser and Stampfer 

2015). The winch can be permanently attached to the machine or bolted on for easier 

removal and transfer of the winch between machines. The tether line is attached to a 

deadman, stump or mechanical anchor (Sessions et al. 2017). The cable used ranges 

from 14mm to 28mm in diameter, depending on the size of the equipment (Holzleitner et 

al. 2018). A radio input is required for the anchor monitoring device to ensure the anchor 

is stable (Amishev 2016). Typically, when using an integrated winch system, the 

winched machine starts at the top of the slope and works its way down. For a tethered 

harvester or feller buncher, cutting on the downslope prevents interference with the 

cable and facilitates trees for uphill extraction (Sessions et al. 2017). Once the cable is 

spooled and secured to an anchor point, the machine works its way down the felling 

corridor. Alternatively, when the top of the harvest block is inaccessible, the winched 

machine may work up from the base of the slope using intermediate anchor along the 

slope or a “strawline” could be used to rig the primary cable (Amishev 2016). Moving 

the cable between anchor points when moving across the harvesting profile can take 

between 10 and 15 minutes depending on the terrain and weather conditions (Amishev 

2016). The integrated winch system can be advantageous because only one machine is 

required compared to the anchor machine winch system (described below). This results 

in lower capital costs, operating costs and transportation costs. However, adding the 
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winch unit onto a machine increases the overall weight and power requirements (Visser 

and Stampfer 2015). Modification to the machine includes a monitoring system and a 

fairlead to ensure the cable doesn’t move along the ground (Visser and Stampfer 2015). 

Manufactures of the integrated winch system includes all European winch-assist systems 

and the New Zealand made ClimbMAX (Amishev 2016). John Deere and Ponsse have 

teamed up with manufacturers Haas and Herzog respectively to develop integrated 

winch systems specifically designed for their machines (Amishev 2016).   

Anchored machine winch-assist systems involve the use of a secondary machine 

to house and power the winch, which is tethered to the primary harvesting machine 

(Amishev 2016). The winch can be remotely powered, allowing the operator to work 

from the safety of his cab. This system is gaining interest as various new purpose-built 

machine are being designed specifically for the role of operating the winch as well as 

design options to mount winch units on existing equipment. In comparison to using 

machines with an integrated winch, this system can be advantageous because there are 

reduced weight and power requirements for the machine working on the slope (Visser 

and Stampfer 2015). This system provides flexibility as both the anchor machine and 

assisted machine can be detached and perform separate tasks when the winch is not 

required (Amishev 2016). The external winch system may also be used where there are 

no suitable anchor trees and the base machines ability to rotate and tilt may result in 

better alignment with the assisted machine (Boswell 2018). The type of anchor machine 

used can vary depending on factors such as the contractors budget, equipment available 

and type of assisted machines being used. The types of anchors primarily used include, 

bulldozers, excavators and purpose-built machines (Amishev 2016).   
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Bulldozers are used as anchor machines due to their low centre of gravity, 

hydrostatic drive and the large blade ensures a secure anchor point (ROB 2018).  

Using excavators as anchor machines can be beneficial because of their versatility. This 

allows them to be used for multiple tasks as well as increased maneuverability to pull 

themselves up steep slopes (Amishev 2016). Purpose-built machines are designed and 

operated specifically to house and power traction aid winches. Unmanned machines can 

be advantageous because there are reduced safety risks for operators and their relatively 

small size allows for easier transport and repositioning (Amishev 2016). There are 

currently two fully remote-controlled winch-assist anchor machines. These include the 

Austrian EcoForst T-Winch and the Canadian T-Mar Rhino (Amishev 2016). 

 
1.2.2. Environmental considerations 

 
The use of mechanized equipment on steep terrain has been until recent years relatively 

uncommon and thus there are gaps in knowledge on how this introduction will affect the 

environment. Using mechanized equipment in many cases has adverse effects on soil 

properties and these effects often become amplified as slope increases. Risk of damage 

to the soil is generally higher on steep terrain due to loss of traction and increased 

shallow soil disturbance (Thompson and Hunt 2016). The effects of harvesting upslope 

may have negative consequences for downslope areas such as alteration of drainage 

pathways and mass wasting events. The British Columbia Ministry of Forests have made 

soil conservation a priority in the province and are particularly concerned with 

disturbances linked to natural hydrology and soil productivity (Curran 1999). The forest 

practice code allows up to 5 or 10 percent net disturbance within a cut block, excluding 
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permanent roads (Curran 1999). There is concern that the allowable soil disturbance 

levels may not be achievable with the increased mechanization of steep slope logging. 

Sologi and Najafi (2014) listed a variety of studies that showed increases in soil 

disturbance were positively related to increasing slopes. Logging on steep slopes 

increased the bulk density which in turn decreased the total porosity and moisture 

content (Sologi and Najafi 2014). Soil disturbance can be limited by using residual 

biomass on high traffic areas within a harvest block (Sessions et al. 2017; Dyson 2016). 

In addition, limiting the ground pressure of machines by using high floatation tires 

(Visser and Stampfer 2015) and a flexible suspension to spread the pressure distribution 

minimizes soil disturbance (Sessions et al. 2017). 

 Winch-assist systems are designed to minimize some of the negative impacts of 

steep slope harvesting by preventing the loss of traction and subsequent soil damage. 

Winch-assisted machines move straight up and down slopes with increased traction, 

fewer turns and better ground contact relative to untethered machines (Thompson and 

Hunt 2016). The use of winch-assist equipment can extend the harvesting season 

because of the greater ability to operate in adverse ground conditions with additional 

traction. Winch-assist systems can also reduce the required amount of haul road 

construction because of increased forwarding distance and the ability of feller bunchers 

to move trees short distances to avoid deflection obstacles (Thompson and Hunt 2016).  

          Visual quality management is a major management objective in B.C. that is 

primarily in place to ensure scenic quality expectations of the public and tourism 

industry are met (B.C. MFLNRO 2018). Harvest blocks on steep slopes are most 

confined by visual quality guidelines because they are most visible to the public. The 

B.C. ministry classifies harvest intensity into 5 categories (Preservation Retention, 
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Partial Retention, Modification, and Maximum modification) (B.C. MFLNRO 2013). 

The sensitivity of the landscape being harvested is determined by the district manager 

based on consultation with stakeholder, First Nations and the public (B.C. MFLNRO 

2018). A final determination of the amount of modification to the landscape is 

determined based on the results of the consultation. Restrictions on steep-slope 

harvesting can further increase costs and potentially lower profit margins. 

There are two main types of soil disturbances from mechanized steep slope 

logging that may result in visual quality concerns. The first is exposed mineral soil from 

felling and skidding /forwarding activities which are expected to have a short-term 

visual quality impacts (Thompson and Hunt 2016). The second is disturbance from 

purpose-built skid trails which may restrict revegetation and have a longer visual quality 

impact (Thompson and Hunt 2016). In order for mechanized steep slope logging to 

operate in visually sensitive areas, management strategies must be in place to minimize 

ground disturbance and view of area harvested.  

 
1.2.3. Safety factors 

 
 Steep slope logging is generally considered a high-risk activity due to the 

increased requirement of manual workers. WorkSafeBC’s statistics from 2012 showed 

that injury rates are more than 10 times greater than mechanical felling operations 

(Gingras et al. 2015). Safety issues from conventional steep-slope logging arise from 

activities requiring the use of manual and motor manual workers, including hand felling 

and using choker setters in the extraction phase of cable yarding (Visser and Stampfer 

2015). A large priority of increasing the mechanization of steep slope harvesting using 
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winch-assist technology is to reduce the risk to manual workers. With advancements in 

winch assist technology, this goal is becoming increasingly achievable as the operability 

of machines is extended to steeper slopes. Operating logging equipment on steep slopes 

has a number of associated risks. The primary risk is a loss of machine stability and 

traction, resulting in a rollover. The basic principle when working on steep slopes is that 

the gravitational force pulling the machine down should not exceed the traction force the 

machine is able to generate on the ground (Visser and Stampfer 2015). Sessions et al. 

(2014), found that maximum gradeability was affected by tether tension, track slip, soil 

strength, grouser depth, hitch height, boom position, and grapple load. A risk assessment 

should be completed before operations on steep-slopes begin to evaluate the hazards and 

prescribe controls to minimize risks (BC Forest Safety 2015). In general, to avoid the 

risk of rollovers, machines should work straight up and down the hill and give extra 

caution when working in wet sites or broken terrain (Amishev and Hunt 2018). The 

owner’s manual should be referenced for machine specific guidelines on slope 

limitations. If the maximum slope is not stated operators should follow Work Safe BC’s 

regulations on slope limitations for rubber-tired skidders (35%), tracked machines (40%) 

and forestry equipment designed for steep slopes (50%) (Visser and Stampfer 2015). 

These regulations are in place to ensure the stability of equipment and safety of 

operators when working on steep terrain. Logging equipment may be operated beyond 

these slope limits if a qualified person conducts a risk assessment and written work safe 

practices are developed and implemented (Visser and Stampfer 2015).  

Winch-assisted equipment mitigates the risk of rollovers by preventing a loss of 

traction when working on steep slopes. To ensure safety during operation, the 

overarching principle of winch-assist systems is that machines are not suspended from 
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the cables and the assisted machine should be able to stop in full control without reliance 

on the cable (Amishev 2016; Fullerton 2016). There is an increased risk to workers 

when using winch-assisted equipment due to the risk of high tension cables snapping. To 

mitigate this risk, it is recommended that cable tension is limited to 33 percent of its 

breaking load at all times and the cable should be inspected for damage regularly (Visser 

and Stampfer 2015). In addition, operators and workers should establish a safe working 

zone when winch-assisted equipment is working (Amishev and Hunt 2018). To ensure 

the security of anchors, monitoring devices are also used to inform operators if the 

anchor moves. FP Innovations has recently produced a best practice manual for winch-

assisted harvesters. This document provides many valuable recommendations and 

should be referenced by operators to ensure safe work practices when working on steep 

slopes (Amishev and Hunt 2018) 

 
1.2.4. Impacts on productivity 

 
 The productivity of winch-assisted machines can vary greatly depending on a 

variety of factors. The contractor proving input for this study suggested snow, terrain, 

and slope all impacted productivity. These factors affecting productivity were also 

mentioned in other studies, for example, Dyson and Strimbru (2017), reported a decrease 

in productivity where slopes exceeded 60%, in deep snow (> 1.5m) and where exposed 

rock was prevalent. Operator skill level and comfort have a large impact on productivity, 

however, it is difficult to quantify its direct influence (Dyson and Mologni 2018). The 

productivity of winch-assisted harvesters and forwarders are negatively affected by 

decreasing average piece size and increasing number of log sorts (Dyson and Mologni 
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2018). Corridor length is another important factor that influences the productivity of 

winch-assist operations (Dyson and Mologni 2018). Short corridors result in more 

unproductive time spent on rigging and lower utilization. 

 
1.2.5. Timber supply in B.C. 

 
 The annual allowable cut (AAC) is the maximum level of harvesting permitted in 

order to balance social, economic and environmental objectives. Areas regulated by 

government-set AAC’s account for 90% of the total harvest in B.C. (B.C. MFLNRO 

2018). Generally, the AAC for a given timber supply area (TSA) provides a sufficient 

amount of fibre for sawmills in the area. In the past 10 years, the average annual 

allowable cut was 83 million cubic metres per year and the average harvest was 67 

million cubic metres (B.C. MFLNRO 2018). However, AAC’s throughout the province 

have been decreased due to forecasted declines in timber supply as a result of wildfires 

and mountain pine beetle attacks. The provinces timber supply is expected to decrease 

from 70 million cubic metres per years to 58 million cubic metres per year (B.C. 

MFLNRO 2018). In 2017 the AAC in the Prince George TSA has been reduced by 33 

percent from 12.5 million cubic metres set in 2011 to 8.3 million cubic metres in the first 

five years to 7.3 million cubic metres in the following five years (Maureen 2017). 

Reductions in AAC’S are likely to have negative effects for many sawmills. As supply is 

constrained, timber prices are likely to increase, and this will put more pressure on 

sawmill profit margins (Swantson 2017).  
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1.2.6. Break-even analysis 

 
A break-even analysis is a valuable tool commonly used to aid in the decision-

making process for any business. It is concerned with predicting costs, volume and profit 

as the level of activity changes (Hussey 1989).  The break-even point is determined 

where total income generated is equal to the total expenses including fixed and variable 

costs (Tsorakidis 2014). This value is important when deciding to invest in new products 

or bid on a job because it indicates how sensitive the profit is to changes in production 

and costs (Tsorakidis 2014). The break-even point will provide financial managers with 

a minimum level of production required to make a profit based on total costs. A break-

even analysis can be done by using the graphical method or algebraic method (Goyal 

2012).  

Wegner (1984) demonstrated how to algebraically calculate the break-even 

volume of producing seedlings in a nursery. The following equation was used to 

determine the level of production required to break-even on the operation. This equation 

is referred to as the contribution margin approach (Goyal 2012).  

 

Break − even	volume	 =
fixed	costs

(selling	price	per	unit) − (variable	cost	per	unit) 

 

The break-even point may also be calculated using the Margin of Safety ratio. 

The ratio is the proportion by which actual sales may fall before they become less than 

the break-even revenue (Goyal 2012). This is essentially the amount of buffer before 

losses will occur.  
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𝑀𝑎𝑟𝑔𝑖𝑛	𝑜𝑓	𝑆𝑎𝑓𝑒𝑡𝑦 = 	
Actual	sales − B. E. P.
Selling	price	per	unit 

 

A break-even analysis can be solved graphically by plotting the variable costs, 

fixed costs and revenue on a graph where the x-axis represents production and the y-axis 

represents revenue generated. The break-even point is found at the intersection of the 

total cost and total revenue line (Tsorakidis 2014). The angle between the total costs and 

total revenue lines is defined as the angle of incidence. The angle of incidence provides 

a measure of the degree of safety of the profit (Goyal 2012). A high angle of incidence 

represents high-profit increases while a low angle of incidence represents slow increases 

in profit after costs are recovered (Goyal 2012).  

A break-even analysis may also be used when choosing between different 

alternatives on a total-cost basis when the revenue generated from each alternative is the 

same (Wegner 1984). Amishev (2011) used a break-even analysis to compare the costs 

of steep slope harvesting using a winch-assisted harvester and using manual felling. In 

the study, the harvester’s required percentage to break even with the manual felling 

system was determined based on different capital costs and productivity ranges. 

Financial decision makers can determine if it is economically feasible to invest in new 

equipment based on the break-even productivity usage compared to their current 

equipment.  

 
1.2.7. Cable yarding 
 

 
Cable yarding involves the use of cables to transport wood from a cut-block onto 

a landing. Various types of cable yarding systems remain the mainstream way to access 
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fibre on steep terrain (Visser and Stampfer 2015). The yarding cycle involves four 

phases: i.e. the outhaul, hooking, inhaul and unhooking (Conway 1982). The outhaul is 

when the carriage is sent to the location of the logs. Hooking involves securing the logs 

either with chokers or a grapple. The logs are pulled to the landing during the inhaul. 

Lastly, the logs are placed at the landing by chasers or the grapple releases the logs. A 

yarder is the central element of any yarding operation. They are generally diesel 

powered and have one to four drums that are used to store line and transfer power 

(Conway 1982). Spars, in addition to the natural terrain, are used to provide the vertical 

lift essential to cable yarding (Conway 1982). If a skyline system is being used the 

skyline will be suspended from the headspar (spar closest to the yarder) to the tailspar 

(spar furthest from the yarder) (Conway 1982). The distance between these spars is 

referred to as a span(s) (Conway 1982). In order for any skyline system to work, there 

must be deflection (Conway 1982). Deflection refers to the amount of sag in the line 

often expressed as a percentage for the span (WorkSafeBC 2006). Deflection is limited 

by the length of the span, line size, slope of ground and spar and support heights 

(Conway 1982).  

There are 3 main types of cable yarding. These include; single drum and 

mainline system, high-lead system and skyline systems (WorkSafeBC 2006). For the 

purpose of this report, skyline systems will be the primary focus. There are 3 main types 

of skyline systems that are classified by their movement. These include; standing 

skyline, running skyline (scab) and a live skyline (Conway 1982). A standing skyline is 

secured and anchored at both ends, so the line cannot move (Conway 1982). A live 

skyline or “slackline” can be raised and lowered, generally with the use of a fourth drum 

(Conway 1982). In a running skyline system, the skyline runs through a block at the 
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tailspar and back to the carriage, so that it acts effectively as both the haulback and the 

skyline (USDA Forest Service n.d.). This system works with three drums (mainline, 

skyline and slack pulling line) when operating a mechanical slack pulling carriage and 

two drums (skyline and mainline) with other carriages (USDA Forest Service n.d.).  

To transport the logs, a carriage configuration holding either a series of chokers 

or a grapple can be used. Types of carriages include: motor-driven radio controlled self-

clamping carriage, mechanical accumulator carriage, motor-driven self-propelled 

carriage, mechanical slack-pulling carriage, and north bend and south bend-rigged 

skyline carriage (WorkSafeBC 2006). Chokers are cables with a bell connector that are 

wrapped around a log and tighten as yarding is initiated. Grapple heads can be 

mechanical, hydraulic, remote controlled and stochastic (Conway 1982). A mechanical 

grapple can be used with the running skyline system and works best with shorter yarding 

distances along with larger timber (Conway 1982). The grapple rides on a carriage 

supported by the haulback line and is opened with the use of the slack pulling line 

(Conway 1982). The grapple yarder operator is guided by a spotter or the use of video 

cameras to aid in picking up bundles or individual trees (Visser and Harrill 2017).  

 
1.2.8. Mechanical vs Manual felling in Cable yarding systems 

 
With the introduction of winch-assist technologies, there are more opportunities 

to use mechanized felling in cable yarding systems. A variety of studies have compared 

the cost and productivity of cable yarding systems with mechanical and manual felling. 

Mechanized felling can be more productive and have a lower cost than hand felling, 

especially in stands with a lower average piece size (Amishev and Dyson 2016). When 
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using a grapple yarder in second-growth stands with a smaller average piece size, 

yarding bunched stems can be advantageous because of an increase in the average 

number of stems per turn (Dyson 2016).  Studies by Dyson (2016) and Chung and 

Garrelts (2019) both found a significant decrease in unit production cost ($/m3) when 

using mechanized felling compared to manual felling. The processing phase of the 

production phase may also be improved because bunched stems produce neat decks and 

well aligned (Dyson 2016). Wood and quality utilization may be high because of 

decreased stem breakage (Amishev and Dyson 2016; Dyson 2016)
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2. MATERIALS AND METHODS 

 

 

2.1. MACHINES STUDIED 

 

On December 3, 2018 I flew to Prince George B.C. to tour a winch-assist steep 

slope logging operation. I observed two John Deere 1910E winch-assisted forwarders 

with Haas traction aid winches (Figure 1) working on steep terrain.  The forwarder has 

249 horsepower with a load rating of 19t and a maximum boom reach of 8.5m (John 

Deere 2019). The integrated Haas winch, shown in Figure 2, contains between 300 to 

500m of 13 or 14mm in diameter steel cable and provides a tractive force of 225kN 

(John Deere 2019). 
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Figure 1. John Deere 1910E forwarder with Haas traction winch.
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Figure 2. Inside housing of Haas traction winch 

 
I also observed a Tigercat 1185 wheeled harvester (Figure 3) working on flat ground and 

an Ecoforst T-winch (Figure 4) that was not in operation. The 34t, eight-wheel drive 

harvester is designed for operating on steep terrain (Tigercat 2019). The contractor used 

the harvester, tethered to the t-winch. The Ecoforst T-winch 10.1 a is fully remote 

controlled, purpose-built machine designed to provide tractive assistance to machinery 

working on steep terrain. The t-winch weighs 6.9t and has one drum containing 500m of 

18.5mm cable (Amishev 2011).  
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Figure 3. Tigercat 1185 wheeled harvester 

      Source: Tigercat 2019 
 

 

 

Figure 4. Ecoforst t-winch 10.1 
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2.2. DATA COLLECTION 

 

I used a Nikon video camera to record the forwarder traveling, loaded (Figure 5) 

and unloaded in addition to loading and unloading the bunk. Further information 

on machine specifications, and operational challenges were gathered from talking with 

operators and supervisors from the winch-assisted logging operation visited. While at 

the logging site, the forwarders were not running at normal production levels due to wet 

ground conditions and high stumps left from harvesting; this prevented accurate data 

collection. The data used for my study is from a collection of literature and input from 

contractors and equipment dealers who specialize in winch-assist along with cable-

yarding logging systems. The data from the contractor and equipment dealers is from 

professional judgment and not empirical data, therefore it should be used with caution. 

 
 

Figure 5. John Deere 1910E forwarder traveling loaded down a slope. 
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2.3. EQUIPMENT COSTING MODEL 

 
An equipment costing model was used to determine the cost per cubic metre 

($/m3) of each piece of equipment used in a harvesting system. The variables used are 

listed in (Table 1. Variables included in equipment costing model. with the 

corresponding values inputted for the John Deere 1910E forwarder and Tigercat 1185 

harvester. The values used in the costing model were collected from the logging 

contractor providing input for the study, equipment dealers in B.C. and various pieces of 

literature on the subject. 

Table 1. Variables included in equipment costing model.  

Machine/system name:   Forwarder    Harvester    T-Winch  
 No. of working days/year:              210                 210            210  
 No. of scheduled hour/shift (SMH/shift):               12                  12              12  
 No. of shifts/day                 1                    1                1  
 No. of SMH/day               12                  12              12  
 Machine utilization (%):               85                  65              65  
 Productivity, m3/SMH           12.75              14.30              -    
 Installed or purchase price (P) ($):        840,000        1,020,000      250,000  
 Future salvage (% of P)           10.00              10.00          10.00  
 Future salvage value ($):         84,000           102,000        25,000  
 Expected economic life (years):                 8                    5                8  
 Interest rate (%):             5.00                5.00           5.00  
 Fuel consumption L/PMH):           18.50              30.00          20.00  
 Fuel cost ($/L):             1.00                1.00           1.00  
 Engine Oil Consumption (L/PMH)             0.10                0.10   N/A  
 Oil Cost ($/L)             7.00                7.00   N/A  
 Hydraulic oils and/or lubes (L/PMH)             0.96                1.20   N/A  
 Hydraulic oils and/or lubes cost ($/L)             2.50                2.50   N/A  
 Annual repair & maint. cost (% of P)           20.00              24.00          10.00  
 Operator wage ($/SMH):           30.00              30.00              -    
 Fringe benefits & employment expense (% of op. wage):           35.00              35.00              -    
 Number of operators required per shift:                 1                    1              -    
 Insurance cost per year (% of P):             3.00                3.00           3.00  

 
Source: (Pers. Comm. March 4, 2019) 

        (Dyson 2016) 
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The values shown in Table 1 were combined and summarized into system costs, fixed 

costs, variable costs, labour costs, total cost and production. The cost per cubic metre 

($/m3) was calculated by dividing the hourly operating cost ($/SMH) by the hourly 

production (m3/SMH).  

 

2.4. SENSITIVITY ANALYSIS 

 

A sensitivity analysis was formatted in Microsoft excel using the same costing 

model as described above. Various inputs from the model were increased and decreased 

by five, ten and twenty percent to assess the cost per cubic metre ($/m3) sensitivity to 

change. The input variables included; machine utilization (%), productivity (m3/SMH), 

instilled or purchase price ($), interest rate ($), operator wage ($/SMH) and number of 

scheduled hour/shift (SMH/shift). The resulting change in cost per cubic metre for each 

change in input variable was recorded to determine the sensitivity of each input variable. 

Table 2. Sensitivity analysis for machine utilization of Tigercat 1185 harvesterdisplays 

an example of how the sensitivity of machine utilization was calculated for the Tigercat 

1185 harvester. 

 

Table 2. Sensitivity analysis for machine utilization of Tigercat 1185 harvester 

Percent change (%) -20 -10 -5 0 5 10 20 
Machine utilization (%) 52.00 58.50 61.75 65.00 68.25 71.50 78.00 
cost/cubic metre ($/m3) 22.30 19.99 19.02 18.14 17.35 16.63 15.37 
                

 
        Source: (Appendix II) 
 
 



 25 

2.5. BREAK-EVEN ANALYSIS 

 

A break-even analysis was used to compare three types of steep slope logging 

operations. These included winch-assist, cable yarding (grapple) with manual felling and 

cable yarding (grapple) with mechanical felling. The information for the machine 

costing models came from studies by Dyson (2016), Dyson and Boswell (2016), 

Strandgard et al. 2015, equipment dealers as well as from the logging contractor 

providing input for the study. The analysis assumed a 10% decrease in productivity for 

every 10% increase in slope for the forwarder, harvester, buncher and manual fallers. 

This estimate was based on personal communications with the logging contractor 

providing input for the study. The productivity for the cable yarder and roadside 

processor remained constant. An additional break-even analysis was made using the 

productivity for a winch-assist harvester and forwarder from a study by Dyson and 

Mologni (2018) to show the achievable range in production unit costs ($/m3) using a 

winch-assist system.  
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3. RESULTS 

 

 

3.1. SENSITIVITY ANALYSIS 

 

The results for the forwarder and harvester showed a similar trend in terms of 

which variables were most sensitive to change. Table 3 and table 4 display the results 

from the sensitivity analysis for the harvester and forwarder respectively. The tables 

show the percent increase or decrease in production unit cost ($/m3) based on the percent 

change in input variable. Production unit cost ($/m3) cost was most sensitive to changing 

machine utilization (%) and productivity (m3/SMH) for both the harvester and 

forwarder. Changing interest rates (%) and operator wages ($/SMH) had the smallest 

effect on production costs. 

 
Table 3. Percent change in production unit cost ($/m3) of Tigercat 1185 harvester from 
sensitivity analysis. 

Input variable 
% Change of input Variable 

-20 -10 -5 5 10 20 
         

 Machine Utilization (%):   22.9 10.2 4.8 -4.4 -8.3 -15.3 
 Productivity (m3/SMH):   25.0 11.1 5.3 -4.8 -9.1 -16.7 
 Instilled or Purchase Price (P) ($):   -15.2 -7.6 -3.8 3.8 7.6 15.2 
 Interest Rate (%):   -1.1 -0.6 -0.3 0.3 0.6 1.1 
 Operator Wage ($/SMH):   -3.1 -1.6 -0.8 0.8 1.6 3.1 
 No. of scheduled hour/shift 
(SMH/shift): 19.0 8.4 4.0 -3.6 -6.9 -12.7 
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Table 4. Percent change in production unit cost ($/m3) of John Deere 1910E forwarder 
from sensitivity analysis. 

Input variable 
% Change of input Variable 

-20 -10 -5 5 10 20 
         

 Machine Utilization (%):   22.5 10.0 4.7 -4.3 -8.2 -13.5 
 Productivity (m3/SMH):   25.0 11.1 5.3 -4.8 -9.1 -16.7 
 Instilled or Purchase Price (P) ($):   -13.6 -6.8 -3.4 3.4 6.8 13.6 
 Interest Rate (%):   -1.3 -0.6 -0.3 0.3 0.6 1.3 
 Operator Wage ($/SMH):   -4.4 -2.2 -1.1 1.1 2.2 4.4 
 No. of scheduled hour/shift 
(SMH/shift): 17.0 7.6 3.6 -3.2 -6.2 -11.4 
              

 
 
 

The percent change of production unit cost based on a 10% increase and decrease 

for each input variable is illustrated in Figure 6 and Figure 7 for the harvester and 

forwarder respectively. The production cost increased by approximately 10% with a 

decrease in machine utilization and decreased by approximately 8% with an increase in 

machine utilization for both machines. The production costs were slightly more sensitive 

to productivity for both machines. The production cost increased by approximately 11% 

with a decrease in productivity and decreased by approximately 9% with an increase in 

productivity for both machines. Number of scheduled hours/shift and purchase price 

were slightly more sensitive for the harvester production cost and operator wage was 

more sensitive for the forwarder production cost. Interest rate had an identical effect on 

production costs for both machines.
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Figure 6. Percent change in production unit cost ($/m3) based on a 10% increase and 
decrease of the specified variable for the Tigercat 1185 harvester. 

 
 

 
 

Figure 7. Percent change in production unit cost ($/m3) based on a 10% increase and 
decrease of the specified variable for the John Deere 1910E forwarder. 
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3.2. BREAK-EVEN ANALYSIS 

 

 The results from the break-even analysis using the data from the contractor 

providing input for this study resulted in no break-even point occurring. The winch-

assist system was most costly, followed by the cable yarding system with manual felling 

and the cable yarding system with mechanized felling. The cost of the winch-assist 

system ranged from $29.56/m3 at a 30% slope to $50.67/m3 at an 80% slope. The cost of 

the cable yarding system with manual falling ranged from $25.84/m3 to $28.52/m3 and 

the cost of the cable yarding system with mechanized felling ranged from $18.06/m3 to 

$22.67/m3 at the same slopes as the winch-assist system.  The winch-assist system had a 

higher increase in cost ($/m3) as slope increased while both cable yarding systems had a 

more gradual increase. These results are visually displayed in Figure 8. 

 
 

 
 

Figure 8. Break-even analysis comparing the cost ($/m3) between winch-assist, cable 
yarding with manual felling and cable yarding with mechanized felling operations. 
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The results from the alternate break-even analysis using the productivity data 

from Dyson and Mologni (2018) drastically reduced the cost ($/m3) of the winch-assist 

system. The winch-assist system had the lowest cost until approximately 50% slope, 

where it broke even with the cable yarding system with mechanized felling and it 

reached the break-even point with the cable yarding system with manual felling at 

approximately 80% slope. The cost of the winch-assist system ranged from $16.49/m3 at 

30% slope to $28.27/m3 at 80% slope. The break-even points and cost of the logging 

systems based on slope is shown in Figure 9. 

 

 
 

Figure 9. Alternate break-even analysis comparing the cost ($/m3) between winch-assist, 
cable yarding with manual felling and cable yarding with mechanized felling operations. 
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4. DISCUSSION 
 

 

  
This study incorporated data from the literature, personal communications and 

the contractor providing direct input for the study. A new perspective on winch-assisted 

logging was formed from examining the results and reading literature on the topic. The 

results showed that the cost of the winch-assist logging system was comparable to 

traditional cable logging systems, i.e. grapple yarder with manual felling and costlier 

than a grapple yarder with mechanized felling (Figure 8). The sensitivity analysis 

yielded predictable results, as productivity and utilization had the greatest influence on 

overall cost ($/m3). These results have a variety of implications to both contractors and 

licensees who are involved in steep slope logging and already have or are looking into 

winch-assisted logging equipment.  

The data collected for this thesis is based on the contractor’s professional 

estimates of production and costs. The results should be viewed with caution. Field data 

collection was not possible due to the machines of interest not performing their usual 

tasks when visiting the logging sites. This is the reality of having a narrow window to 

collect data in an industry where a variety of variables can influence production on any 

given day. Nonetheless, the experience of visiting a winch-assisted logging operation 

and talking first hand with operational supervisors and operators was valuable for 

providing input into this thesis and for my future professional career. 
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This section will examine the implications of the results and how they may affect the 

parties involved. The future of winch-assisted logging in western Canada and the main 

drivers and constraints are discussed. Comparisons are made between winch-assist 

systems and cable yarding systems. Recommendations are made on where winch-assist 

logging systems are best suited, where yarding systems are best suited and where the 

two systems may be combined to optimize results. Lastly, recommendations are made 

on where future work should concentrate their efforts to further improve the economic 

and operational efficiency of winch-assist logging systems.  

 

4.1. IMPLICATIONS OF SENSITIVITY ANALYSIS 

 

A sensitivity analysis is a valuable tool for a contractor or licensee to determine 

what variable have the greatest impact on overall cost. The variables chosen for the 

sensitivity analysis were used because they have a certain degree of flexibility to be 

lowered or increased by a logging contractor. A ten percent change in the variables used 

in the analysis was used because it is a realistic target that can be reached by a logging 

contractor through operational and financial improvements. The results from the 

sensitivity analysis of this study showed a similar trend for the harvester and forwarder. 

The total cost was most sensitive to changes in productivity (m3/SMH) and changes in 

utilization. These results were expected because productivity and utilization directly 

influence the amount of volume that can be processed in a scheduled machine hour and 

help offset the cost of production. Productivity can be influenced by factors such as 

operator skill level, terrain, average slope and number of log sorts. Utilization can be 

influenced by factors such as anchor changeover time and block layout. Productivity and
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utilization generally improve over time due to improvements in technology, 

increased operator skill level and improved operational organization and efficiency. 

Logging contractors should strive to find ways to continually improve their production 

and utilization in order to lower their overall cost. The number of scheduled machine 

hours/shift and purchase price had the third and fourth most impact on cost respectively. 

The number of scheduled machine hours/shift can be increased in some situations. 

However, the contractor in this study does not run night shifts when using the winch- 

assist system because of safety concerns which limit the number of available hours to 

work per day. The purchase price may be influenced depending on the contractor’s 

relationship with a dealership and if machinery is bought new or used. Used equipment 

are good options to be used for anchor machines because they have limited required use 

and function. The purchase price of winch-assisted equipment may also decrease with 

time as technology improves and new manufactures enter into the market. Leasing 

equipment is another potential option; however, it was not examined in this study. 

Operator wage had a relatively small impact on the overall cost. Operators of winch-

assisted machines must be compensated fairly because of the high degree of skill level 

required and associated risk of operating on steep terrain. Interest rate had the lowest 

impact on overall cost and the rates set are largely dependent on the financial institute 

being used.  
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4.2. IMPLICATIONS OF THE BREAK-EVEN ANALYSIS  

 

The findings of the break-even analysis showed that the winch-assist logging system had 

the highest cost for all slopes followed by cable yarding with manual felling and cable 

yarding with mechanizing felling. No break-even point occurred between any of the 

systems examined as each system remained either more or less expensive relative to 

each other. To find the range of production costs ($/m3) achievable using winch-assist 

logging systems, other studies were examined, and their results were used in another 

break-even analysis. Using the productivity values from a winch-assist harvester and 

forwarder in a study by Dyson and Mologni (2018) drastically reduced the cost of the 

winch-assist system and it became the cheapest system on slopes less than 50%. These 

results show that in optimal conditions winch-assist systems can be economically 

comparable to cable yarding systems.  

 The results from the break-even analysis show that cable yarding systems with 

mechanized felling provide the lowest cost for steep slope logging. Mechanized felling 

results in a large increase in yarder productivity and a subsequent lower cost per cubic 

metre. Despite the winch-assist system being the most expensive system, it still has 

many applications where it is preferred to cable yarding systems which will be discussed 

in detail in later sections of the discussion. 

 
4.3. ECONOMIC FEASIBILITY OF WINCH-ASSSISTED LOGGING 

 

 One of the main findings of this thesis is that winch-assist logging systems are 

not the ultimate solution to drastically reduce the costs of steep slope logging. The total 
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cost of the system examined in the study was slightly over $30/m3. This cost is highly 

variable depending on the type of block being harvested, i.e. terrain, piece size, average 

slope, etc. and the season of harvest. New contractors will generally have a high cost due 

to the learning curve in both the tactical and operational stages of harvest development.  

 
4.3.1. Investment cost 

 
 A factor that may discourage logging contractors from purchasing winch-assist 

logging equipment is the high upfront investment cost. The combined purchase price of 

the harvester, forwarder, and t-winch examined in this study was over 2 million dollars. 

This is a massive amount of money to spend especially for newer contractors entering 

the business. In order for contractors to invest in winch-assisted logging equipment, 

licensees must provide a contract guaranteeing a sufficient amount of annual wood to be 

harvested on steep ground. Lending institutions generally require such a contract in 

order to provide a loan. 

  
4.3.2. Logging rates 

 
 Due to the higher cost of wood to roadside, logging rates should fairly 

compensate contractors. Since this type of logging system is relatively new, rates should 

be generated from previous studies on winch-assist systems on similar logging sites as 

well as information from contractors currently equipped with winch-assisted equipment. 

Rates may be adjusted accordingly depending on the specific circumstances of the 

contractor involved, number of log sorts, terrain, the season of harvest, etc. The higher 

degree of risk associated with steep slope logging and dealing with cables under high 



 36 

tension should also be incorporated into the logging rate. The appraisal manual in British 

Columbia currently appraises winch-assisted logging the same as cable yarding, which 

may help provide some additional savings on stumpage if lower margins are realized 

(B.C. MFLNRO 2018). 

 
4.3.3. Costs from other studies 

 
 A variety of other studies have examined the cost and productivity of winch-

assisted logging operations. Looking at the cost of other contractors using the same 

system is a valuable way to determine the potential range of cost reduction and ways to 

improve a logging system. A study by Dyson and Mologni (2018) found the productivity 

of a winch-assisted harvester to be 35.5 m3/PMH and the productivity of a winch-

assisted forwarder to be 32.0 m3/PMH. These values were converted to m3/SMH and 

entered into the machine costing model which reduced the total logging cost by 

approximately $15/m3. However, it was mentioned in the study that conditions were 

better than normal during the study period and on average lower productivity is 

expected. Nonetheless, this study shows there is potential for improvement in terms of 

lowering the roadside logging cost of winch-assist systems to increase their 

competitiveness compared to cable yarding systems. Another study by Dyson and 

Strimbu (2017), found very similar productivity results for a John Deere harvester and 

forwarder compared to the results in this study. This shows that the contractor in the 

study operates at a similar production compared to other winch-assist contractors in B.C. 
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4.4. WINCH-ASSIST SYSTEMS VS CABLE YARDING SYSTEMS 

 

 Cable yarding has been the dominant method of logging steep ground in western 

Canada, however, the introduction of winch-assist technology has been gaining traction. 

At the beginning of the study, I predicted that winch-assist systems would offer large 

cost savings over cable yarding systems. The results showed that there were little 

savings in harvesting costs from using a winch-assist system. However, it is important to 

note that winch-assist systems may offer savings from reduced set-up times and reduced 

road construction costs. Strimbu and Boswell (2018) stated that road construction efforts 

could be reduced by half compared to the road network required for conventional cable 

yarding systems, which is related to the increased flexibility in road locations because of 

the ability to move wood in areas with or without adequate deflection. These results 

began to make more sense after further reading into the literature and talking with the 

contractor providing input for the thesis. Winch-assist logging systems are best suited 

for areas with variable terrain containing smaller steep patches or areas with bad 

deflection (pers. comm., February 20, 2018). A cable yarding system should be used for 

large steep patches with good deflection because it will be the most cost-effective way to 

move large volumes of wood.  

 
4.4.1. Combining cable yarding and winch-assist systems 

 
The results from the cost analysis for this study showed that a cable yarding 

system, using a winch-assisted feller buncher and a roadside processor was the most 

cost-effective steep slope logging method (Figure 8). A variety of studies (Dyson 2016; 
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Amishev and Dyson 2018) have found that mechanized felling drastically reduces the 

cost of cable yarding systems because of increased yarder productivity when yarding 

bunched stems rather than individual stems. In this sense, the use of winch-assist 

technologies is likely to continue to increase in cable yarding systems and replace 

manual felling where terrain and piece size is suitable for machines. In addition to 

productivity advantages, increased mechanization reduces the need for manual workers 

and increases the overall safety of an operation. 

 
4.4.2. Benefits of winch-assist systems 

 
 The versatility of winch-assist logging systems is one of its main advantages 

over cable yarding systems, especially in highly variable terrain. Machines that are 

equipped with cable-assist winches can easily change over to work on flat ground 

whereas cable yarding operations are restricted to steep areas with good deflection. 

Cable-assist winches are compatible with almost all forestry equipment, including 

grapple skidders, feller bunchers, processors and hoe chucker in addition to harvesters 

and forwarders. This versatility allows a variety of harvesting systems to utilize winch-

assist technologies in their operation without completely overhauling their current 

equipment which helps minimize costs and training on new equipment. Contractors who 

work in variable terrain are able to obtain greater utilization from their capital 

investment in equipment (Fullerton 2016). Winch-assist logging operations have lower 

mobilization and demobilization costs (pers. comm., February 20, 2018), which make 

operations better suited for smaller blocks where moving may occur more frequently. 

Gingras et al. (2015), estimated a potential savings of 90 million per year to the forest 



 39 

industry in B.C. through increased profit margins as a result of integrating winch-assist 

technologies into steep slope logging operations. A cut-to-length system with a harvester 

and forwarder provides several other advantages including; no landings required for 

decking and processing, no harvesting debris at landings and only two pieces of 

equipment are required (Dyson and Strimbru 2017). Lastly, cable-assist winches help 

reduce wear on machines, reduce fuel consumption and reduce stress on operators 

(Fullerton 2016).  

 
4.4.3. Disadvantages of winch-assist systems 

 
Winch-assist systems have some disadvantages compared to cable yarding 

operations which are partially related to the fact that winch-assist logging systems are 

relatively new to western Canada and learning is continually taking place on the tactical 

and operational scales. Operating mechanized equipment on steep terrain requires highly 

skilled operators and longer periods of additional training is likely required. Compared 

to flat-ground operations there are added risks including the risk of rollover and chance 

of cables breaking.  Winch-assist operations are impractical and inefficient when 

operating in deep snow (>1.5m) and in stands with heavy brush or understory (Dyson 

and Strimbru 2017). The contractor providing input for this study limits their winch-

assist equipment to slopes under 50% in the winter due to deep snow conditions. This 

limitation will put added pressure on contractors during summer months to harvest slope 

profiles over 50% that will be inaccessible during the winter. Another possible 

disadvantage of using a cut-to-length system is a forwarder is only able to forward short 

logs (<8m) (Dyson and Strimbru 2017), whereas a grapple skidder or grapple yarder can 
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skid full trees if desired. Compared to manual felling, mechanized equipment will 

increase the level of soil disturbance on harvest blocks, however, the additional traction 

assist provided from winches reduces the amount of track slippage and spinning and 

helps minimize rutting.  

 
4.4.4. Safety  

 
 An important factor that is often cited as an incentive to use winch-assist 

technologies in steep slope logging operations is to improve safety standards (Visser and 

Stampfer 2015; Amishev 2016; Hudson 2017; Girvan 2017). Cable-assist winches allow 

for the increase in the mechanization of logging operations on steep slopes and reduce 

the need for manual workers to perform dangerous tasks associated with the felling and 

extraction phases of harvesting. Gingras et al. (2015), estimated the increased 

mechanization of steep slope logging can reduce the number of injuries by 50%. The 

highest risk associated with using winch-assist systems is the chance of a cable breaking, 

resulting in machine rollovers. As mentioned previously in the literature review, the 

underlying rule to ensure safety, is the assisted machine should be stable at all times 

with or without a cable attached. The highest risk occurs when operators work on slopes 

too steep where they would rollover if the cable was not attached. Winch-assist 

contractors and licensees should become familiar with the following publication by 

FPInnovations, “Winch-assist harvester: Best Practice Manual”. This manual is a 

valuable resource that provides many recommendations to ensure the safe working 

conditions of winch-assist operations. The improved safety of steep slope logging 
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operations with winch-assist systems is likely to be an important driver for the continued 

use of the system in the future.    

     

4.5. TIMBER SUPPLY CONSTRAINTS 

 

Timber supply constraints resulting in AAC reductions are expected to be an 

important area of concern for may licensees in B.C. As a result of AAC reductions, 

sawmills must find new and innovative ways to access available fibre. The economic 

viability and robustness of the forest industry will depend on being able to harvest the 

complete terrain profile in order to sustain the AAC (Gingras et al. 2015). A possible 

solution is to increases harvesting on steep slopes. Steep slopes (>35%) make up 24 

percent of the total AAC in B.C., this makes up 56% of the costal AAC and 14% of the 

interior AAC (Hunt 2016). The introduction of winch-assist technologies may increase 

the amount of economically available fibre on steep terrain, providing relief during 

supply constraints. Gingras et al (2015), estimated that harvesting on steep slopes using 

innovated harvesting technology has the potential to generate an additional 2 million m3 

of fibre per year. The versatility of winch-assist logging systems will help increase the 

variety of terrain that is accessible and extend the logging season. Constraints in timber 

supply may be a large driver for licensees to incentivize contractors into upgrading their 

equipment fleet with winch-assist technologies in order to increase the range of timber 

accessible. This point will be especially applicable to licensees with TSA’s that contain 

a high content of variable terrain with inconsistent slope profiles.  
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4.6. FUTURE WORK 

 

In the future, as winch-assist logging systems continue to develop there are likely 

to be further studies done to examine ways to lower costs and increase productivity. 

Ultimately to verify the results of this thesis, there is a need for real data generated from 

multiple site visits with varying conditions. From examining the literature on the subject, 

I found a lack of quantitative data on the impact slope had on productivity. An operator 

from a study by Dyson and Strimbu (2017) felt that productivity was not affected on 

slopes between 30% and 60% and on slopes greater than 80% a different system should 

be used. The contractor providing input for this study felt slope significantly influenced 

productivity and estimated a 20% decrease in productivity from a 40% to 60% slope. 

Further research should focus on quantifying the impact slope has on productivity, so 

contractors are better able to predict costs and determine the economic feasibility of 

harvesting a specific block. In addition, licensees would be able to have a more accurate 

estimate on fair logging rates. 

As discussed previously, winch-assist logging systems work best in variable 

terrain that may contain both flat and steep patches. They work better than cable yarding 

systems in smaller steep patches because of lower mobilization and demobilization 

costs. In large steep patches with good deflection, cable yarding systems will generally 

be more productive than winch-assist systems and have a lower overall cost. In the 

future, break-even analyses can be used to determine the amount of volume required in 

one steep patch to use either a cable yarding system or winch-assist system. This type of 

analysis may apply to an individual harvest block or to a specified area with multiple 
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steep slope blocks. This type of analysis would be important for contractors who are 

looking into determining which type of system would be better to use based on the 

harvesting profile and the subsequent type of equipment that makes the most economic 

sense to purchase.  
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5. CONCLUSION 

 

 

The finding of this thesis showed that winch-assist logging systems with a 

harvester and forwarder may be costlier than cable yarding systems with mechanized 

felling. Cable yarding systems should be the preferred logging systems when large 

volumes of timber are available on relatively consistent steep slopes with good 

deflection. Winch-assist technologies are valuable in cable yarding systems to increase 

mechanization resulting in both productivity and safety improvements.  

Winch-assist logging systems are best suited in areas with variable terrain 

containing a mixture of flat and steep sections. They are advantageous over cable 

yarding systems because of their versatility, lower set up costs and mobilization and 

demobilization costs. The main drivers that will increase the abundance of winch-assist 

logging systems in B.C. include; reduce the need for high-cost grapple yarding, improve 

safe working conditions and increase the economic availability of timber. I believe that 

winch-assist technologies are a valuable way to improve logging operations in B.C. and 

will continue to increase in abundance in the future.  
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APPENDIX I: MACHINE COSTING MODELS 
 

EQUIPMENT COSTING MODEL   Cable-Assist System   
    

 Machine/system name:   Forwarder    Harvester    T-Winch  
    

 No. of working days/year:                     210.00                     210.00                     210.00  
 No. of scheduled hour/shift (SMH/shift):                       12.00                       12.00                       12.00  
 No. of shifts/day                         1.00                         1.00                         1.00  
 No. of SMH/day                       12.00                       12.00                       12.00  
 Machine utilization (%):                       85.00                       65.00                       65.00  
 Productivity, m3/SMH                       12.75                       14.30                            -    
 Installed or purchase price (P) ($):                   840,000                1,020,000                   250,000  
 Future salvage (% of P)                       10.00                       10.00                       10.00  
 Future salvage value ($):                     84,000                   102,000                     25,000  
 Expected economic life (years):                         8.00                         5.00                         8.00  
 Interest rate (%):                         5.00                         5.00                         5.00  
 Fuel consumption L/PMH):                       18.50                       30.00                       20.00  
 Fuel cost ($/L):                         1.00                         1.00                         1.00  
 Engine Oil Consumption (L/PMH)                         0.10                         0.10   N/A  
 Oil Cost ($/L)                         7.00                         7.00   N/A  
 Hydraulic oils and/or lubes (L/PMH)                         0.96                         1.20   N/A  
 Hydraulic oils and/or lubes cost ($/L)                       2.500                       2.500   N/A  
 Annual repair & maint. cost (% of P)                       20.00                       24.00                       10.00  
 Operator wage ($/SMH):                       30.00                       30.00                            -    
 Fringe benefits & employment expense (% of op. 
wage):  

                     35.00                       35.00                            -    

 Number of operators required per shift:                         1.00                         1.00                            -    
 Insurance cost per year (% of P):                         3.00                         3.00                         3.00  
Wire rope ( $/SMH)  N/A   N/A   N/A  
Rigging & radio ($/SMH)  N/A   N/A   N/A  
Lube & oil ($/SMH)  N/A   N/A   N/A  
Track & undercarriage ($/SMH)  N/A   N/A   N/A  
Operating supplies ($/SMH)  N/A   N/A   N/A  
Repair & maintenance ($/SMH)  N/A   N/A   N/A  
 System Cost Summary     
 Interest rate (decimal)                         0.05                         0.05                         1.05  
 PV of salvage value ($):                56,854.51                79,919.67                16,920.98  
 Scheduled machine hours per year (SMH/a)                  2,520.00                  2,520.00                  2,520.00  
 Productive machine hours per year (PMH/a)                  2,142.00                  1,638.00                  1,638.00  
 Fixed Costs     
 Annual capital cost ($/a)              124,012.42              221,130.85                36,908.46  
 Capital cost ($/SMH)                       49.21                       87.75                       14.65  
 License and insurance cost ($/a)                25,200.00                30,600.00                  7,500.00  
 Variable Costs     
 Energy, oil and lube cost ($/PMH)                       21.60                       33.70                       20.00  
 Repair and maintenance cost ($/a)              168,000.00              244,800.00                25,000.00  
 Labour Costs     
 Operator Cost ($/SMH)                       40.50                       40.50                            -    
 Total Cost     
 Annual operating cost ($/a)              465,539.62              653,791.45              102,168.46  
 Hourly operating cost ($/SMH)                     184.74                     259.44                       40.54  
 Sum of Hourly operating cost ($/SMH)   299.98  
 Production     
 Annual Production (m3/a)                32,130.00                36,036.00                            -    
 m3 produced per SMH (m3/SMH)                       12.75                       14.30                            -    
 m3 produced per PMH (m3/PMH)                       15.00                       22.00                            -    
    
 Cost per m3 ($/m3)                       14.49                       20.98   
 Total cost                       35.47    

          
      Source: (Pers. Comm. March 4, 2019) 

  (Dyson 2016) 
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EQUIPMENT COSTING MODEL  Cable yarding system w/manual felling 

     
 Machine/system name:   Cable yarder   Back spar   Manual faller   Processor  

     
 No. of working days/year:                 210.00               210.00                    210.00               210.00  
 No. of scheduled hour/shift (SMH/shift):                     8.00                   8.00                        6.00                   8.00  
 No. of shifts/day                     1.00                   1.00                        1.00                   1.00  
 No. of SMH/day                     8.00                   8.00  6.00 8.00 
 Machine utilization (%):                   80.00                 80.00                           -                   83.00  
 Productivity, m3/SMH                   17.00   -                      15.00                 40.00  
 Installed or purchase price (P) ($):            1,300,000               80,000                           -               600,000  
 Future salvage (% of P)                   30.00                 10.00                           -                   15.00  
 Future salvage value ($):               390,000                 8,000                           -                 90,000  
 Expected economic life (years):                   12.00                   5.00                           -                     7.00  
 Interest rate (%):                     5.00                   5.00                           -                     5.00  
 Fuel consumption L/PMH):                   36.00                   2.00                           -                   25.00  
 Fuel cost ($/L):                     1.00                   1.00                           -                     1.00  
 Engine Oil Consumption (L/PMH)   N/A   N/A                           -     N/A  
 Oil Cost ($/L)   N/A   N/A                           -     N/A  
 Hydraulic oils and/or lubes (L/PMH)   N/A   N/A                           -     N/A  
 Hydraulic oils and/or lubes cost ($/L)   N/A   N/A                           -     N/A  
 Annual repair & maint. cost (% of P)   N/A   N/A                           -     N/A  
 Operator wage ($/SMH):                   33.00   N/A                      50.00                 30.00  
 Fringe benefits & employment expense (% of 
op. wage):  

                 35.00   N/A                      35.00                 35.00  

 Number of operators required per shift:                     2.00   N/A  1                  1.00  
 Insurance cost per year (% of P):                     3.00                   3.00                           -                     3.10  
Wire rope ( $/SMH)                  29.16   N/A                           -                        -    
Rigging & radio ($/SMH)                  11.11   N/A                           -                        -    
Lube & oil ($/SMH)                    3.60  0.2                          -                     1.88  
Track & undercarriage ($/SMH)                    6.88   N/A                           -                        -    
Operating supplies ($/SMH) 5.75 0.3                          -                        -    
Repair & maintenance ($/SMH) 57.5 7.5                          -    32.33 
 System Cost Summary      
 Interest rate (decimal)                     0.05                   0.05                           -                     0.05  
 PV of salvage value ($):          217,166.59            6,268.21                           -            63,961.32  
 Scheduled machine hours per year (SMH/a)              1,680.00            1,680.00                 1,260.00            1,680.00  
 Productive machine hours per year (PMH/a)              1,344.00  1344.00                          -              1,394.40  
 Fixed Costs      
 Annual capital cost ($/a)          133,029.45          17,343.60                           -    95836.17 
 Capital cost ($/SMH)                   79.18                 10.32                           -                   57.05  
 License and insurance cost ($/a)            39,000.00            2,400.00                           -            18,600.00  
 Variable Costs      
 Energy, oil and lube cost ($/PMH)                   39.60                   2.20                           -                   26.88  
 Repair and maintenance cost ($/a)            96,600.00          12,600.00                           -            54,314.40  
 Labour Costs      
 Operator Cost ($/SMH)                   92.70   N/A                      67.50                 42.38  
 Total Cost      
 Annual operating cost ($/a)          477,587.85          35,300.40               85,050.00        277,430.45  
 Hourly operating cost ($/SMH)                 284.28                 21.01                      67.50               165.14  
 Sum of Hourly operating cost ($/SMH)  305.29  N/A N/A 
 Production      
 Annual Production (m3/a)            28,560.00                       -                 18,900.00          67,200.00  
 m3 produced per SMH (m3/SMH)                   17.00                       -                        15.00                 40.00  
 m3 produced per PMH (m3/PMH)                   21.25                       -                             -                   48.19  
     
 Cost per m3 ($/m3)                   17.96                         4.50                   4.13  
 Total cost                   26.59     

 
 
          Source: (Dyson 2016) 
                       (Pers. Comm. Jan 29, 2019) 

     (Strandgard et al. 2015) 
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EQUIPMENT COSTING MODEL  Cable Yarding system w/ buncher  

      
 Machine/system name:   Cable yarder   Back spar   Feller 

buncher   
 Anchor 
machine  

 Processor  

      
 No. of working days/year:             210.00            210.00           210.00            210.00           210.00  
 No. of scheduled hour/shift (SMH/shift):                 8.00                8.00               8.00                8.00               8.00  
 No. of shifts/day                 1.00                1.00               1.00                1.00               1.00  
 No. of SMH/day                 8.00                8.00               8.00                8.00  8.00 
 Machine utilization (%):               80.00              80.00             65.00              65.00             83.00  
 Productivity, m3/SMH               41.60   -             45.00   -             40.00  
 Installed or purchase price (P) ($):        1,300,000            80,000         700,000          465,000         600,000  
 Future salvage (% of P)               10.00              10.00             30.00              10.00             15.00  
 Future salvage value ($):           130,000              8,000         210,000            46,500           90,000  
 Expected economic life (years):               12.00                5.00               5.00                8.00               7.00  
 Interest rate (%):                 5.00                5.00               5.00                5.00               5.00  
 Fuel consumption L/PMH):               36.00                2.00             38.00              10.00             25.00  
 Fuel cost ($/L):                 1.00                1.00               1.00                1.00               1.00  
 Engine Oil Consumption (L/PMH)   N/A   N/A   N/A   N/A   N/A  
 Oil Cost ($/L)   N/A   N/A   N/A   N/A   N/A  
 Hydraulic oils and/or lubes (L/PMH)   N/A   N/A   N/A   N/A   N/A  
 Hydraulic oils and/or lubes cost ($/L)   N/A   N/A   N/A   N/A   N/A  
 Annual repair & maint. cost (% of P)   N/A   N/A   N/A   N/A   N/A  
 Operator wage ($/SMH):               33.00   N/A             30.00              25.00             30.00  
 Fringe benefits & employment expense (% 
of op. wage):  

             35.00   N/A             35.00              35.00             35.00  

 Number of operators required per shift:                 2.00   N/A               1.00                1.00               1.00  
 Insurance cost per year (% of P):                 3.00                3.00               3.00                3.00               3.10  
Wire rope ( $/SMH)              29.16   N/A                   -                  3.56                   -    
Rigging & radio ($/SMH)              11.11   N/A                   -                      -                     -    
Lube & oil ($/SMH)                3.60  0.2              3.80                1.00               1.88  
Track & undercarriage ($/SMH)                6.88   N/A               8.00                0.89                   -    
Operating supplies ($/SMH) 5.75 0.3              0.30                0.25                   -    
Repair & maintenance ($/SMH) 57.5 7.5            67.50              32.50  32.33 
 System Cost Summary       
 Interest rate (decimal)                 0.05                0.05               0.05                1.05               0.05  
 PV of salvage value ($):        72,388.86         6,268.21    164,540.49       31,473.03      63,961.32  
 Scheduled machine hours per year (SMH/a)          1,680.00         1,680.00        1,680.00         1,680.00        1,680.00  
 Productive machine hours per year (PMH/a)          1,344.00  1344.00       1,092.00         1,092.00        1,394.40  
 Fixed Costs       
 Annual capital cost ($/a)      142,125.17       17,343.60    131,904.68       68,649.73  95836.17 
 Capital cost ($/SMH)               84.60              10.32             78.51              40.86             57.05  
 License and insurance cost ($/a)        39,000.00         2,400.00      21,000.00       13,950.00      18,600.00  
 Variable Costs       
 Energy, oil and lube cost ($/PMH)               39.60                2.20             41.80              11.00             26.88  
 Repair and maintenance cost ($/a)        96,600.00       12,600.00    113,400.00       54,600.00      54,314.40  
 Labour Costs       
 Operator Cost ($/SMH)               92.70   N/A  40.5 33.75            42.38  
 Total Cost       
 Annual operating cost ($/a)      486,683.57       35,300.40    379,990.28     205,911.73    277,430.45  
 Hourly operating cost ($/SMH)             289.69              21.01           226.18            122.57           165.14  
 Sum of Hourly operating cost ($/SMH)  310.70  348.75  N/A 
 Production       
 Annual Production (m3/a)        69,888.00       75,600.00       67,200.00  
 m3 produced per SMH (m3/SMH)               41.60              45.00              40.00  
 m3 produced per PMH (m3/PMH)               52.00              69.23              48.19  

      
 Cost per m3 ($/m3)                 7.47                7.75                4.13  
 Total cost               19.35      

 
 
           Source: (Dyson 2016) 
             (Dyson and Boswell 2016) 
             (Pers. Comm. March 4, 2019) 

      (Strandgard et al. 2015) 
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APPENDIX II: SENSITIVITY ANALYSIS 
 
 
 
Tigercat 1185 Harvester cost ($/m3) with % change of input variable 
 
  Input Variable    % Change of input Variable    
   -20 -10 -5 0 5 10 20 

          
 Machine Utilization (%):    22.30 19.99 19.02 18.14 17.35 16.63 15.37 
 Productivity (m3/SMH):    22.68 20.16 19.10 18.14 17.28 16.49 15.12 
 Instilled or Purchase Price (P) ($):   15.39 16.76 17.45 18.14 18.83 19.52 20.90 
 Interest Rate (%):    17.93 18.04 18.09 18.14 18.19 18.25 18.35 
 Operator Wage ($/SMH):    17.58 17.86 18.00 18.14 18.28 18.43 18.71 
 No. of scheduled hour/shift 
(SMH/shift): 

21.59 19.67 18.87 18.14 17.49 16.89 15.85 

          

 
 
 
 
 
 
 
John Deere 1910E forwarder cost ($/m3) with % change of input variable 
 
  Input Variable    % Change of input Variable    
   -20 -10 -5 0 5 10 20 

          
 Machine Utilization (%):    17.75 15.94 15.18 14.49 13.87 13.30 12.53 
 Productivity (m3/SMH):    18.11 16.10 15.25 14.49 13.80 13.17 12.07 
 Instilled or Purchase Price (P) ($):   12.51 13.50 14.00 14.49 14.98 15.48 16.46 
 Interest Rate (%):    14.31 14.40 14.44 14.49 14.54 14.58 14.67 
 Operator Wage ($/SMH):    13.85 14.17 14.33 14.49 14.65 14.81 15.12 
 No. of scheduled hour/shift 
(SMH/shift): 

16.96 15.59 15.01 14.49 14.02 13.59 12.84 
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APPENDIX II: BREAK-EVEN ANALYSIS 
 
 
 
Logging costs used in break-even analysis based on 10% decrease in productivity per 
10% increase in slope. 
 

Cost ($/m3) 
Slope 

30% 40% 50% 60% 70% 80% 

       
Cable assist  29.56   32.24    35.47   39.41    44.33   50.67  
Cable yarder w/ manual   25.84   26.18    26.59   27.09    27.71   28.52  
Cable yarder w/ mechanical  18.06   18.64    19.35   20.21    21.28   22.67  

 
 
 
 
 
Logging cost ($/m3) used in break-even analysis based on adjusted productivity values 
from (Dyson and Mologni 2018). 
 

Cost ($/m3) 
Slope 

30% 40% 50% 60% 70% 80% 

       
Cable assist  16.49   17.99    19.79   21.99    24.74   28.27  
Cable yarder w/ manual   25.84   26.18    26.59   27.09    27.71   28.52  
Cable yarder w/ mechanical  18.06   18.64    19.35   20.21    21.28   22.67  

 




