
Placements of Virtual Network Functions for
Effective Network Functions Virtualization

by

Karanbir Singh Ghai

Lakehead University

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTERS

in the Department of Computer Science

Lakehead University

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Placements of Virtual Network Functions for
Effective Network Functions Virtualization

by

Karanbir Singh Ghai

Lakehead University

Supervisory Committee

Dr. Salimur Choudhury, Supervisor

(Department of Computer Science, Lakehead University, Canada)

Dr. Zubair Fadlullah, Departmental Member

(Department of Computer Science, Lakehead University, Canada)

Dr. Waleed Ejaz, External Member

(Department of Applied Science and Engineering, Thompson Rivers University, Kam-

loops, BC, Canada)

iii

ABSTRACT

In the future wireless networks, network function virtualization will lay the foun-

dation for establishing a new resource management framework to efficiently utilize

network resources. The first part of this thesis deals in the minimization of the to-

tal latency for a network and how to solve it efficiently. A model of users, Virtual

Network Functions (vNFs) and hosting devices have been considered and was used

to find the minimum latency using Integer Linear Programming (ILP). The problem

is NP-hard and takes exponential time to solve in the worst case. A Stable Matching

based heuristic has been proposed to solve the problem in polynomial time and then

the local search is utilized to improve the efficiency of the result.

The second part of this thesis proposes the problem of fair allocation of the vNFs to

hosting devices. A mathematical programming based model (ILP) has been designed

to solve the problem which takes exponential time to solve in the worst case, due

to its NP-hard nature. Thus an heuristic approach has been provided to solve the

problem in polynomial time.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements x

Dedication xi

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 7

1.3 Problem Description . 8

1.4 Contribution . 9

1.5 Organization of Thesis . 10

2 Background and Related Work 11

2.1 Background . 11

2.1.1 Mathematical Modelling . 11

2.1.2 Stable Matching . 13

2.1.3 Local Search . 14

2.2 Related Works . 15

2.2.1 Network Function Virtualization (NFV) 15

2.2.2 Stable Matching . 19

2.2.3 Local Search . 22

v

2.3 Conclusion . 23

3 System Model, Modification and Proposed Heuristic 25

3.1 Introduction . 26

3.2 System Model . 26

3.2.1 Overview . 26

3.2.2 Parameters Used . 26

3.2.3 ILP Model . 27

3.2.4 Simulation Environments . 28

3.3 Initial ILP Model Modification . 29

3.3.1 Generalization for Failures . 31

3.3.2 Proposed Modification . 32

3.4 Greedy Approach . 34

3.4.1 Algorithm . 35

3.4.2 Results . 36

3.4.3 Result Analysis . 36

3.5 Stable Matching Algorithm . 37

3.5.1 Algorithm . 37

3.5.2 Flowchart for Algorithm . 38

3.5.3 Simulation Results . 40

3.6 Conclusion . 47

3.6.1 Scope of Improvement . 48

4 Extending SMA using Local Search 50

4.1 Overview . 50

4.2 Algorithm . 51

4.3 Simulation Results . 52

4.4 Conclusion . 62

5 Fair Allocation Problem for Allocating the vNFs 63

5.1 Overview . 63

5.2 ILP Formulation . 64

5.2.1 Parameters Used . 64

5.2.2 ILP Model . 64

5.3 Fairness Measure . 65

5.4 Proposed Heuristic . 66

vi

5.4.1 Local Search Algorithm . 66

5.5 Results . 67

5.6 Conclusion . 69

6 Conclusion & Future Work 71

6.1 Overview . 71

6.2 Main Contributions . 71

6.3 Conclusion . 72

6.4 Future Work . 73

A List of Abbreviations 74

Bibliography 77

vii

List of Tables

Table 3.1 Parameters . 26

Table 3.2 System Properties 29

Table 3.3 Latency Comparison between Optimal and Greedy

Approach . 36

Table 3.4 Working Time Comparison for Different vNFs

(Seconds) . 47

Table 4.1 Working Time Comparison (Seconds) & Latency

Comparisons . 61

Table 5.1 Parameters . 64

Table 5.2 Comparison between the Results given by VA

Model and FM Model 68

Table 5.3 Comparison between the Results given by FM

Model and SM & LS 69

viii

List of Figures

Figure 1.1 Example of Edge Network 3

Figure 1.2 Example of IoT Network 7

Figure 2.1 Stable Matching Example 14

Figure 2.2 NFV service chain allocation approaches. (a)-

Services can be allocated on physical devices (b)- Ser-

vices offered using virtualized instances. 16

Figure 2.3 Architecture of the System for the vNF placement 18

Figure 2.4 NFV Environment 18

Figure 2.5 Sketch Map of Data Request and Accusation

Process . 21

Figure 3.1 Fail Case Scenario for 2 vNFs 30

Figure 3.2 Fail Case Scenario for 5 vNFs 31

Figure 3.3 Flowchart for SMA 39

Figure 3.4 Resulting Latencies for 50 vNFs using ILP and

Stable Matching for different number of Host-

ing Devices . 41

Figure 3.5 Resulting Latencies for 100 vNFs 42

Figure 3.6 Resulting Latencies for 500 vNFs 43

Figure 3.7 Resulting Latencies for 1000 vNFs 44

Figure 3.8 Resulting Latencies for 2000 vNFs using ILP

and Stable Matching 45

Figure 3.9 Resulting Latencies for 15 Hosting Devices us-

ing ILP and Stable Matching 46

Figure 3.10 Example to Show that Improvement can be Done 49

ix

Figure 4.1 Latency Result Comparisons Between Optimal

(ILP), Stable Matching and Stable Match with

Local Search for 50 vNFs. 53

Figure 4.2 Latency Result Comparisons Between Optimal

(ILP), Stable Matching and Stable Match with

Local Search for 100 vNFs. 54

Figure 4.3 Latency Result Comparisons Between Optimal

(ILP), Stable Matching and Stable Match with

Local Search for 500 vNFs. 55

Figure 4.4 Latency Result Comparisons Between Optimal

(ILP), Stable Matching and Stable Match with

Local Search for 1000 vNFs. 56

Figure 4.5 Latency Result Comparisons Between Optimal

(ILP), Stable Matching and Stable Match with

Local Search for 2000 vNFs. 57

Figure 4.6 Latency Result Comparisons Between Optimal

(ILP), Stable Matching and Stable Match with

Local Search for 3000 vNFs. 58

Figure 4.7 Time (Min) Comparison Between Optimal (ILP),

Stable Matching and Stable Match with Local

Search for 500 & 1000 vNFs. 59

Figure 4.8 Time (Min) Comparison Between Optimal (ILP),

Stable Matching and Stable Match with Local

Search for 2000 & 3000 vNFs. 60

x

ACKNOWLEDGEMENTS

I would like to thank:

First of all Dr. Salimur Choudhury, for providing me with the opportunity to work

under his supervision and for supporting me through all the tough times. It was not

an easy journey, but I have been very fortunate to have a supervisor who cared this

much about my work. His guidance, constructive suggestions, and encouragementare

the reason I was able to learn and grow as a researcher. It was an absolute privilege

to work with him on this research.

Dr. Zubair Fadlullah, for his patience and support in overcoming numerous ob-

stacles in my thesis writing.

Dr. Waleed Ejaz, for his constructive suggestions that helped me in polishing my

thesis.

Faculty of Graduate Studies & Faculty of Science and Environmental stud-

ies for their financial support. This research would not have been possible without

it.

xi

DEDICATION

“What we find changes who we become.”

- Peter Morville

I would like to dedicate this thesis to,

My parents, who gave me the foundation of something they always enjoyed, edu-

cation. For inspiring me and always believing in my ability to accomplish anything I

set my mind to. For making sure I had access to all the resources I need to succeed

no matter the circumstances. My sister, she always took care of my chores when I

was busy studying, and my cousins, they all made me laugh whenever I would feel

low and all the other family members who were there to guide and support me at

each step of my life. They are my driving force, which keeps me going.

My friends who became family, when my family was far away from me, and they

wholeheartedly supported me in all my decisions. They were significant support to

me in all my ups & downs and helped me focus on my goal that I was trying to

achieve. I thank each of you for your efforts and support towards me.

I would also like to dedicate this thesis to all the teachers and mentors who

inspired, empowered, taught, and shaped me into the person I am today.

Chapter 1

Introduction

1.1 Overview . 1

1.2 Motivation . 7

1.3 Problem Description . 8

1.4 Contribution . 9

1.5 Organization of Thesis . 10

1.1 Overview

This thesis revolves around the technologies and techniques used to enhance working

of a network. So, we start with the question: What is a network? A network is

defined as the connection between two or more devices that can be communication

devices, Internet of Things (IoT) devices and other smart devices. The connection

can be made over various media, either wired such as cable connections, fibre optics

or can be wireless such as Wireless Local Area Network (WLAN commonly refereed

to as WiFi), satellite connections, sensors and others. In today’s time, we require an

efficient and advanced network model that can support the growing load of the users

[3]. Different models used for network computing are Centralized Network Com-

puting and Distributed Network Computing. In the initial phases of networking

the centralized network model was used with central devices supporting the whole

network but with change in trends, we are now using more of distributed networking

2

model. The main reason behind this is, in centralized networks the complete load

of the network system falls on a single (central) machine which increases the risk of

network failure but in distributed networks, the network relies on various nodes or

network devices which makes it more efficient and thus more reliable [51].

After discussing the centralized networking computing and distributed network

computing, we will now discuss the different types of distributed network technologies

as our research revolves mainly around them. The first one is Cloud Networks.

Cloud Networks is a network model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction [70]. It relies on sharing of

resources to achieve coherence and economies of scale, similar to a public utility. The

availability of high-capacity networks, low-cost computers and storage devices as well

as the widespread adoption of hardware virtualization, service-oriented architecture,

and autonomic and utility computing has led to growth in cloud computing. As

mentioned in [3], Cloud computing is a conglomerate of several different computing

technologies and concepts like grid computing, virtualization, autonomic computing

[63], Service Oriented Architecture (SOA) [64], Peer-to-Peer (P2P) computing [65],

and ubiquitous computing [66]. The main characteristics of cloud computing are, first,

it is a large-scale environment consisting of many physical hosts and virtual machines

(VMs). Second, the configuration of a cloud computing environment is complicated.

So in order to manage it, we should consider a large number of diverse, networked

physical/virtual machines. Third, it is dynamic as the services in cloud computing

can run on-demand [54].

The second distributed network technology that is now emerging and plays an

essential role in this research is Edge Network.

Edge Network as the name suggests, is a distributed computing paradigm in which

computation is wholly or mostly performed on distributed device nodes known as

smart devices or edge devices as opposed to primarily taking place in a centralized

cloud environment. Here “edge” is defined as any computing and network resources

along the path between data sources and cloud data centers [67]. For example, a smart

phone is the edge between body things and cloud, a gateway in a smart home is the

edge between home things and cloud. Edge computing is related to the concepts of

wireless sensor networks, intelligent and context-aware networks and smart objects in

the context of human-computer interaction [55]. Edge computing is more concerned

3

with computation performed at the edge of networks and systems whereas the Internet

of Things (IoT) implies a stronger focus on data collection and communication over

networks. Figure 1.1 illustrates an Edge network in which the core supplies the data

to the various edges, which further connects the users.

Figure 1.1: Example of Edge Network

In this thesis, our primary focus will be on the Distributed Networks. One of

the significant factors which leads to increase in the load on the network, is the

exponential increase in the number of mobile users, the Machine to Machine (M2M)

communication methods and the IoT as they increase data overhead thus increasing

the data rate, capacity demands and increase in the need for coverage. So, due to the

growth mentioned above, the large volume of raw data is continuously generated by

4

devices, consequently making cloud computing inadequate to efficiently and securely

handle the data [68]. Thus, the current trend is shifting from centralized computing

to distributed computing as the load in distributed computing is distributed and does

not fall on the shoulders of one central device.

According to the report of Cisco [5], mobile data traffic will grow at a compound

annual growth rate (CAGR) of 47 percent from 2016 to 2021, reaching 49 exabytes

per month by 2021. Meanwhile, M2M connections are calculated to grow from 780

million in 2016 to 3.3 billion by 2021. The modern networks require more hardware

base to work efficiently, but this makes the network more complicated and costly.

To overcome these challenges, a newly designed technique called Network Func-

tions Virtualization (NFV), is being used in which network functions of traditional

networks have been converted into software appliances called virtual network func-

tions (vNFs) [1]. This technique was first introduced by a group of researchers from

various communication companies in 2012. The objective for introduction of this tech-

nique was to counter multiple factors that come into play to launch a new network

service mainly including increasing costs of energy, capital investments, the rarity

of skills necessary to design, integrate and operate increasingly complex hardware-

based appliances. This concept virtualizes entire classes of network node functions

into building blocks that may connect, or chain together, to create communication

or network services. One of the essential and principal uses of this technology is that

network functions do not need any sophisticated or high-end hardware; instead, it

can be run on general-purpose hardware that are available easily.

NFV replaces traditional, custom-designed network equipment (black boxes) that

continue to dominate the installed base of networks. It is an emerging network ar-

chitecture to increase flexibility and agility within the operator’s networks by placing

virtualized services on demand in the data center. Figure 1.1 also demonstrates the

edges of the network where vNFs can be placed to make it more efficient and reliable.

One of the main challenges for the NFV environment is how to efficiently allocate

vNFs to Virtual Machines (VMs) [52] and get the best out of the whole network with

the minimum workload on the network. NFV technique can be implemented without

an Software Defined Networking (SDN), but if both methods are used together, more

efficient results are obtained [1].

NFV has a dynamic and loosely-coupled nature, which makes it vulnerable to

threats; thus, reliability measures should be included in it from the start as a basic

need. When a physical network device is introduced into an operational network,

5

there is established the trust of that device as everything related to it can be trusted

like configuring, installing and manufacturing. But for vNFs, the chain of trust re-

lationships needs to be created and maintained in an NFV environment throughout

its lifecycle. Various security infrastructures that have been developed and matured

in cloud computing space are being adopted in NFV technology, few examples of

these are in identity services, role-based access control (RBAC) [4]. Security, re-

lated regulations and even mobile health-care services can be integrated seamlessly

by software on top of a shared operator infrastructure based on NFV. The tech-

nique mentioned above will be beneficial for the medical institutions like hospital and

other care providers who do not wish to spend the time and money to deal with IT

systems, communication systems, and security and patient privacy law compliance.

Next-generation networks are expected to support low-latency, context-aware and

user-specific services in a highly flexible and efficient manner [8]. Proposed appli-

cations include high-definition, low-latency video streaming, remote surgery, as well

as requests for the tactile Internet, virtual reality that demands network-side data

processing (such as image recognition, transformation).

Mobile networks are the latest and most used type of networks nowadays. The

latest in this domain is the 5G network which is on the verge of being deployed for

mobile devices. With the arrival of 5G, the mobile networks have increased the de-

mand of the novel, more evolved and scalable network technologies [2] to support this

network. 5G will succeed 4G (LTE) which is currently in use, and it will target high

data rate, reduced latency, energy saving, cost reduction, higher system capacity, and

massive device connectivity [57]. It is said to be capable of supporting 20Gbit/s data

rate, 1ms of latency and mainly it can support up to 106 devices per km2. Using both

SDN and NFV techniques, the 5G network can be made more efficient and easier to

manage [4].

A distributed and on-demand deployment of network functions, service guaranteed

network slicing, flexible orchestration of network functions and optimal workload allo-

cation can be achieved using both the SDN and NFV techniques [6]. In management

proposed by L. Ma et al. [6] 5G Service Portal acts as the entrance of network

functions to provide different services for users. The Service Management Layer is re-

sponsible for orchestrating and configuring of Network Function (NF) modules based

on the policy made by the Operation Support System (OSS) and Business Support

System (BSS). The 5G Infrastructure Management Layer manages the infrastructure

of the 5G core, including flow scheduling, NF deployment, network slicing, etc. Core

6

SDN Controller and Flow SDN Controller are the two types of controllers that are

present in this layer. The first one is in charge of NF management and coordination

and the other one in charge of efficient traffic dispatch in the backhaul network. Con-

trolled by SDN controller, the 5G core user plane (UP) and some applications can

be deployed on the edge servers as mobile edge core (MEC), while the control plane

(CP) is deployed in the cloud data center as mobile cloud core (MCC).

3rd Generation Partnership Project (3GPP) is a standards organization which

develops protocols for mobile telephony, and they have seven primary members. An

integration of NFV into the 3GPP- 5G system including distributed NFVs, MEC and

NFV integration, and Manamgement and Orchestration (MANO) support in 3GPP

management system have been done which helps in virtualizing and managing 3GPP

5G NFVs on top of NFV platform [7]. Here M. Shin et al. [7] show the transformation

of networks from 4G to 5G, according to them a lot of new network functions that

have been created for a 5G system such as Access and Mobility Management Function

(AMF), Session Management Function (SMF), User Plane Function (UPF), Network

Repository Function (NRF), Network Exposure Function (NEF), etc. AMF and SMF

are well-known Control Plane (CP) functions for mobility and session management

of 5G systems. To support low latency services and access to local data networks,

UPFs have been created that enable distribution and flexible location.

In today’s time most of the devices used are smart device, they can be a light

bulb, any appliance or even a medical equipment. As all of these type of devices are

connected to the Internet, they also contribute towards the usage of NFV technology.

Hence they are an integral part of this thesis. These devices are called IoT devices.

IoT defined as the Internet of Things (IoT) is an emerging technology which was

first proposed to study RFID by Ashton, Professor of the MIT Auto-ID Center in

1999[56]. IoT is defined as the network of devices such as vehicles, smart devices, and

home appliances that contain electronics, software and connectivity, which allows

these things to connect, interact and exchange data. The definition of the IoT has

evolved due to the convergence of multiple technologies, real-time analytics, machine

learning, commodity sensors, and embedded systems [55]. A massive increase in the

number of devices in IoT is being predicted (expected to reach 50 billion by 2020).

Figure 1.2 shows us an example of a simple IoT network that can be found in an

average household.

7

Figure 1.2: Example of IoT Network

1.2 Motivation

As discussed earlier the number of IoT devices are said to increase soon which leads

to growth in the load on the network. The load can be of different types such as the

cost of maintenance, bandwidth requirements and latency which is the most dominant

factor in the working of the network efficiently. Latency is defined as the delay or the

interruption in a connection; it can depend on various factors distance, weather, the

8

material used and hardware configurations of hosting devices and users [69]. If the

latency exceeds a certain threshold the whole network could fail.

In this thesis, the research is performed considering a network which includes

hosting devices, vNFs and users and anyone of these can be an IoT device. NFV

technique can convert these devices to a vNF and thus these can be used to make

the network more efficient. But as the IoT devices are increasing resulting in more

choices for creating a NFV network, they also increase the load and latency of the

network. So, efficient and advanced techniques are required to maintain the efficiency

of the network, which can include modelling the network in such a way that all the

users get connected while maintaining the requirements for the network properties.

Other types of techniques include the use of the network resources in such a way that

we get more efficient solution (better latency) while maintaining the minimal cost and

load for the network. This research also handles the management of the resources

and optimal modelling of the network to achieve the minimum latency.

Though we can maintain the latency generated by a network with help of mod-

elling a network, sometimes it also leads to another problem, dealing with the unfair

distribution or utilization of the resources for some devices. Even if a network is

generating less latency does not assure that it will have fair distribution of resources.

On deeply analyzing the solutions given by the allocation model, we can observe that

in some of the cases, the latency difference in the selected vNFs is vast, which leads

to varying difference in the utilization of the resources. It is impartial to the vNF

that has to use more of its resources when there is a way in which they both can get

connected in an arrangement that both of them employ fewer resources thus no vNF

gets partial treatment. Thus, we propose a vNF fair allocation problem to deal with

this scenario.

1.3 Problem Description

In this thesis, we are dealing with a problem in which we need to minimize the latency

generated by the newly made connections in a topology. This is done by assigning

the vNFs to that hosting devices which gives minimum latency for the topology. This

problem can be categorized under the assignment problem in which we need to find

that appropriate assignment of all vNFs to hosting devices that minimizes the total

latency generated by the network. The allocation of the vNFs to hosting devices

depends on various factors like the requirement of vNFs, the capacity of host devices

9

and mainly on the latency between the hosting device and the vNFs. The allocation

is complete when all of the vNFs are allocated, or when the capacity of all the hosting

devices gets exhausted.

The problem of allocating the vNFs to hosting devices is to find the minimum

latency that is generated by the network has been dealt in the first part of thesis. Now

if the allocation of the vNFs is not fair that will lead to another problem as it leads to

the inefficient utilization of the resources. Second part of this thesis introduces and

gives a solution for a fair vNF allocation problem which is based on the predefined

vNF placement problem, which while dealing in the optimal placement of the vNFs

to hosting devices will maintain the fairness of the allocation. This problem deals

mainly with the fair allocation of the vNFs, maintaining the equal resource allocation

for connection. This will lead to the removal of the unfair allocation of vNFs, which

leads to inefficient utilization of the resources.

1.4 Contribution

In this thesis we are dealing with two main problems related to the NFV technology,

the first one being vNF placement problem and second is fair placement of vNF to

hosting device problem.R. Cziva et al. [8] proposed the vNF placement problem, they

propose a mathematical (Integer Linear Programming) model to solve the problem.

The mathematical model mentioned is NP-hard in nature which means that it will

take exponential time to solve the problem in worst case scenario and on analyzing it

is found that the mathematical model is having drawbacks and will lead to failures if

the problem persists. No heuristic has been proposed by R. Cziva et al. [8] to solve the

problem in polynomial time. First part of this thesis modifies the mathematical model

to remove the anomaly and to make it more efficient. The modified model also takes

exponential time to solve the problem in the worst case scenario. Then we propose

an heuristic based on the Stable Matching (SM) algorithm to solve the modified

problem in a polynomial time. The solutions given by the model are then compared

to the solutions given by the proposed heuristic (Stable Matching Algorithm) for the

allocation of vNFs to hosting devices.We also find that there is a scope of improving

the final solution. We design a local search technique to improve the solution.

The second part of this thesis deals with the problem for fair allocation of the vNFs

to hosting devices. We propose a problem to solve the issue of allocating the vNFs

to hosting devices in a fair manner such that no device over-utilizes its resources and

10

there is an even distribution of latency among the connected pairs. Then we propose

a mathematical (ILP) model to solve the above explained problem. The proposed

mathematical model is NP-hard in nature and will take exponential time to solve the

problem in worst case. So, we provide a heuristic that uses both Local Search and

Stable Matching techniques to solve the problem in polynomial time. The solutions

given by the ILP model (optimal) have been compared to the solutions given by the

heuristic approach (Local Search after SMA) proposed in this research.

The research problem that we have considered in this thesis can be applied in

Facility Location research [77].

1.5 Organization of Thesis

This section was all about introduction and rest of the thesis proceeds as follows,

Chapter II gives detailed insight about the background for the various techniques

used in this thesis and then discussing the different research works being performed

in the field of Function Virtulization and the techniques that are used to perform the

researches.

Chapter III, includes the details about the initial considered problem [8] and then

further explains its parameters and the constraints that are used in the ILP model

given for the problem. Then, the initial modification done to the given [8] model to

make it more efficient has been explained. It also explains the proposed algorithms

which are based on the Greedy Approach and Stable Matching techniques to

solve the problem defined in the previous chapter in polynomial time.

Chapter IV explains the second proposed algorithm which works using the solu-

tions provided by the Stable Matching Algorithm to make it more efficient. It uses

the technique of Local Search.

Chapter V explains the newly proposed fair vNF allocation problem which deals in

the problem of fair allocation and efficient resource utilization of the vNFs. Fur-

thermore, the chapter explains the heuristic given to solve this problem in polynomial

time. The algorithm uses the Local search algorithm after the solution provided by

Stable Matching Algorithm and minimizes the maximum selected latency and in-

creases the fairness measure.

Chapter VI is the last chapter in this thesis, which concludes the whole work done

in this thesis and further explaining the future prospects of the research done.

11

Chapter 2

Background and Related Work

2.1 Background . 11

2.1.1 Mathematical Modelling . 11

2.1.2 Stable Matching . 13

2.1.3 Local Search . 14

2.2 Related Works . 15

2.2.1 Network Function Virtualization (NFV) 15

2.2.2 Stable Matching . 19

2.2.3 Local Search . 22

2.3 Conclusion . 23

2.1 Background

2.1.1 Mathematical Modelling

Linear Programming (LP) is the field of mathematical optimization in which the

best outcome (such as max profit or low latency) is achieved using the mathematical

model whose requirements are represented by linear relationships. It is one of the

simplest ways to perform optimization. Integer Linear Programming (ILP) is an

optimization technique in which the variables are restricted to be integers; these can

either be some variables or all of them.

12

The standard form of LP problem as defined in [59] is:

maximize cx̂

Subject To -

Ax̂ ≤ b

x̂ ≥ 0

The above LP is a maximizing problem in which cx̂ is objective function with c and

x̂ as vectors and x̂ represents a decision variable. Here A is a matrix of known coef-

ficients and b is another vector. Similarly, we can also model a minimizing problem

as follows:

minimize cx̂

Subject To -

Ax̂ ≤ b

x̂ ≥ 0

Simplex Algorithm is the most used algorithm to solve the LP problems [58]; the only

drawback of this algorithm is that it takes exponential time to solve the problem in

the worst case scenario.

The ILP problems are typically solved using branch-and-bound and cutting plane

algorithms [59]. Branch-and-bound is an algorithmic technique to find the optimal

solution by keeping the best solution found so far and uses it to prune the search space.

It typically enumerates all the possible candidate solutions for a problem implicitly.

Integer Linear Programming is mainly used to obtain a solution for NP-hard

problems. These problems are first converted to ILP models, and then the ILP

solvers give the solution that satisfies all the required conditions and completes the

task required. The solution provided by the ILP solvers is the optimal solution that

we can get for that problem. ILP models can be solved using many solvers like Gurobi

[71], IBM CPLEX [72], etc. In this research, I have created and solved the ILP model

using IBM CPLEX.

13

2.1.2 Stable Matching

Stable Matching or Stable Marriage Problem is a problem in which we have to

find a stable matching between two equal sized sets of elements given an ordering of

preferences for each item. Matching can be defined as the mapping from the elements

of one set to the elements of the other set. Matching can be defined as not stable if:

• The element of A of first matched set which prefers some given element B of

the second matched set over the element to which A is already matched.

• B also prefers A over the element to which B is already matched.

Algorithm 1 shows the pseudo-code for the Stable matching algorithm.

Algorithm 1 Stable Matching Pseudo-code

1: procedure Matching men to women until a stability is achieved

2: Initialize all men and women as free

3: while For every man (m) who has women (w) to propose to, where w is first woman on list

of m whom m has no yet proposed do

4: if (w is free) then

5: (m,w) become connected

6: elseSome pair (m′ , w) already exists

7: if (w prefers m to m′) then

8: m′ becomes free and (m, w) become engaged

9: else(m′, w) remain engaged

10: end if

11: end if

12: end while

13: end procedure

David Gale and Lloyd Shapley [34] proved that for any number of men and women

it is possible to solve the stable matching problem and make all the marriages stable

and they also presented an algorithm for solving the problem. Figure 2.1 shows us a

simple example of the stable match problem in which three vNFs want to get engaged

with three hosting devices. It shows us all the engagements that can be done (all lines)

and the only stable engagement (green lines). Stable Match has lots of application in

real-world scenarios, including allocation of resources to users, allocating nodes to a

network and medical student allotment to the medical schools.

14

Figure 2.1: Stable Matching Example

2.1.3 Local Search

In the field of Computer Science, Local Search is a heuristic method solving computa-

tionally hard optimization problems [73]. Local search can be used on issues that can

be formulated as finding a solution maximizing (or minimizing) a criterion among

several candidate solutions. The algorithms in this category move from solution to

solution in the space of solutions by applying local changes, until an optimal solution

is found. These algorithms have broad applications in hard computational problems,

including problems from computer science (particularly artificial intelligence), mathe-

matics, operations research, engineering, and bioinformatics [73]. The only drawback

of local search is that for some cases it gives us the solutions in lesser time than the

15

other algorithms but the solutions are not efficient.

Algorithm 2 shows the pseudo-code for the local search using random selection.

Algorithm 2 Local Search Pseudo-code

1: procedure Local Search Using Random Selection

2: Find initial solution x

3: Select a neighbour

4: while Stop criteria is not met do

5: Find neighbourhood Ax

6: Find best solution xbest in Ax

7: x← xbest

8: end while

9: end procedure

The local search starts with selecting a local feasible solution and then moving

forward trying to find a better solution. The initial solution that we need to start

the process can be selected by various techniques namely random selection, random

walk, greedy search, hill climbing and genetic algorithm etc.

2.2 Related Works

2.2.1 Network Function Virtualization (NFV)

Network Function Virtualization (NFV) is an emerging network architecture and is

an efficient technology in the networking area. Current researches are going-on to

design or implement new techniques to make this emerging technology more efficient.

During the literature review, we can find several studies trying the different scope of

vNF technology including scaling, allocation, task scheduling, placement, edge-based

models, cloud-based models, and latency optimization. Moving intelligence from tra-

ditional servers at the center of the network to the network edge is gaining significant

attention from both the research and the industrial communities, as discussed in [10].

A similar case for the trend mentioned above can also be found in [11].

Orchestrating and managing vNFs in different NFV infrastructures has been a

popular research topic, and it is often related to traditional Virtual Machine (VM)

placement problem, as mentioned in [12]. In this research, authors have presented

vNF-P, a generic model for efficient placement of virtualized network functions.

16

Figure 2.2 shows us the different approaches that are explained in the research paper

[12] to allocate NFV chains.

(a)

(b)

Figure 2.2: NFV service chain allocation approaches.
(a)- Services can be allocated on physical devices
(b)- Services offered using virtualized instances.

Simultaneous placement of vNFs is used to form a Service Function Chain (SFC),

a chain of vNFs, and then uses admission control (AC) to reach the maximum per-

17

formance state. The main issues of this research are to present a system model that

formulates the desired resource allocation problem for different types of SFCs and to

tackle the computational complexity of the problem [13]. They have used relaxation,

reformulation, and successive convex approximation methods to solve the problems.

In modern data-centers, user network traffic uses a set of vNFs as a service chain

to process traffic demands [14]. Sometimes traffic fluctuations in Large-scale Data-

centers (LDCs) could result in overload and under-load phenomena in service chains.

In this research paper, a distributed approach based on Alternating Direction Method

Multipliers (ADMM) is used to balance the traffic as well as horizontally scale up

and down vNFs in LDCs with minimum deployment and forwarding costs.

The deployment of vNF service chains (vNF-SCs) and task scheduling for bulk-

data transfers in inter-datacenter (inter-DC) elastic optical networks (EONs) [15] is

the main aim of their study. They propose a DP-based vNF-SC deployment and task

scheduling algorithm, which can find the solution with a minimum service completion

time (SCT). For multi-branch data-intensive vNF-SC requests, a correlation-aware

vNF-SC deployment and task scheduling algorithm (which minimizes the average

SCT) is proposed as the approach to solving the above problem.

Virtualized network function (vNF) service chaining in optical data center net-

works (DCN) is a more complex problem than in packet-switched networks, as it

introduces additional constraints related to the optical network [18]. The most com-

mon example of this is in an optical DCN one needs to make sure that visual network

resources are efficiently utilized, which requires multiplexing of several vNF chains to

fill the optical pipes. In [18] authors propose a novel and flexible DCN architecture

based on optical circuit switching technology and supporting service chaining in the

optical domain. The problem has been formulated using ILP and heuristic methods.

One of the main challenges for the NFV environment is how to efficiently allocate

Virtual Network Functions (vNF) to Virtual Machines (VMs) [19]. In this research,

a more comprehensive model based on real measurements to capture network latency

among vNFs with more granularity to optimize placement of vNFs in CDCs. Figure

2.3 shows the proposed arrangement of the vNFs by the above research authors.

vNF placement is a phase to allocate vNFs in a network infrastructure [20] opti-

mally. Figure 2.4 shows the NFV environment in which the transformation is being

performed using the consolidation of different vNF types in standard general pur-

pose computers (servers, storage devices, etc.). This may be located in data centers,

network nodes and close to end user premises.

18

Figure 2.3: Architecture of the System for the vNF placement

Figure 2.4: NFV Environment

Several approaches are already proposed to model the vNF placement for efficient

resource allocation. Moen and Turck [21] presented a formal vNF-Placement (vNF-P)

19

for resource allocation in hybrid network environments in which network functions

can be allocated on both physical hardware and virtualized instances. With the rise

of 5G networks, ultra-low and predictable end-to-end latency is becoming increasingly

important as the critical enabler for many new and visionary applications. Achieving

ultra-low latency has been attempted at various points of the networking stack, from

OS kernel [22] to 5G millimetre-wave cellular networks [23].

2.2.2 Stable Matching

Stable Match algorithm has been used frequently to solve many problems in various

research areas in computer science and other fields of study too. A stable matching-

based virtual machine (VM) allocation mechanism for Cloud data centers has been

proposed by [24]. In this paper, the authors have used a different approach using

Stable Match as in this research both involving party groups matching process have

a mutual objective, which is to reduce the total energy consumption of a Cloud

Data centre while giving a high Quality of Service. They have compared their result

with Local Regression Robust (LRR) algorithm as it performs exceptionally well

than other algorithms. The comparison has been made using four different metrics:

energy consumption, Service Level Agreement (SLA) violations, migration number,

and Energy & SLA violations (ESV).

McVitie and Wilson [35] pointed out that the algorithm by Gale and Shapley [34]

in which men propose to women, generates a male-optimal solution in which every

man gets the best partner he can in any stable matching and every woman gets the

worst partner she can in any stable matching. They suggested an equal measure of

optimality under which the sum of the ranks of partners for all men and women was

to be minimized. An efficient algorithm was provided by Irving et al. [36] to find a

stable matching satisfying the optimality criterion of McVitie and Wilson.

In the normal many-to-many matching problem, a person may have preferences

defined over subsets of the members of the other set. Two approaches have been

defined based on the assumptions placed on the preference function of a person over

the members of the other set. The first approach comes from economics area, in

which they assume that each person (or a firm) specifies a strict preference ordering

on all possible subsets of the set of acceptable partners (or workers). In this matching

approach workers and firms regard each other as substitutes, that is, if a worker is a

desirable employee to a firm amongst a subset of workers, then he continues to be so

20

even amongst a less desirable subset of workers. Many solutions were developed using

this assumption for the one-to-one stable matching have their counterparts for one-to-

many (Roth and Sotomayor [37]) and many-to-many situations (Roth [38], Sotomayor

[39], Martinez et al. [40] and Alkan [41], [42]). The above-defined approach has a

computational limitation due to the exponential nature of the preference function,

which puts a lower bound on what any algorithm can achieve.

The second approach comes from the computer science domain which is

closely related to the original stable marriage problem of Gale and Shapley. This

approach states that each man and woman has an upper limit on the number of

partners and specifies a preference ordering on acceptable individuals of the opposite

sex (and not on combinations of them). Bansal et al. [33] uses the above approach to

the many-to-many stable matching problem and generalize the notion of optimality

proposed for one-to-one matching by McVitie and Wilson [35]. They show that the

optimality criterion makes sense provided that we include a no-complementarities

condition for preferences on combinations of partners.

Another research has been done in vehicular network technology in which Stable

Matching has been used to replicate content in the given networks [25]. Vehicular

networks are ad-hoc networks composed of mobile vehicular nodes and fixed roadside

units. They propose a content replication scheme using Stable Matching, naming

it RSM. RSM constructs an initial bipartite graph (a graph whose vertices can be

divided into two disjoint and independent sets such that all edges connect a vertex

of both sets) with the contents as the left vertices and the storage cells of roadside

units as the right vertices as the first step. They found that RSM has a small storage

consumption and a high access ratio with adequate access latency. Figure 2.5 shows

the process in which a roadside unit u1 obtains a request from a vehicle v1 at time t,

and forwards this request to the Internet. Then the online control centre computes

a content replication solution and allocates the data to another roadside unit u2

accordingly. Thereafter, u2 responds to v1 at a later time (t+ ∆t).

21

Figure 2.5: Sketch Map of Data Request and Accusation Process

Stable Matching Algorithm has also been used in scheduling of both computing

and storage resources in data centres [26]. In the research mentioned above paper,

authors first define a preference list for each side and stability of their matching,

then they propose a useful Stable Matching Based Algorithm (SMB) scheme. This

algorithm has given them a stable matching for computing and storage resources as

well as applications (Virtual Machines) for all the performed experimental cases.

This research paper [30] proposes a fast iteration algorithm for Kansei Matching,

which is further used as an algorithm to solve the Stable Matching Problem. This

is also easy and more transparent than the conventional (extended) Gale-Shapley

(GS) algorithm in the sense of programming and debugging. The research shows that

the proposed algorithm executes more than six times faster than the Gale-Shapley,

22

while it requires the same memory storage as the GS algorithm. They also present

a version of the iteration algorithm that is more efficient and describes the result of

comparative experimentation in execution time.

Another research that is recently done using the Stable Matching theory in which

the SM has been used to analyze vehicle stowage problem and establish the matching

model [32]. The method they proposed was helpful to the logistics parks and websites

to improve the vehicle stowage service. As stated by them, this research can be

beneficial to real businesses, and it can avoid the supply side into a crisis of survival

and prevent market imbalance.

Content Delivery Network [43] is defined as an extensive distributed system con-

sisting of multiple servers deployed in much geographical location that delivers the

content to end user with high performance and high availability. Due to the increase

in the load of the content delivery server and network degrades the quality of service

as 70% of unintentional failures are Single link failure, so it creates potential failure

along the delivery chains. To solve the above problem, Gupta et al. [43] targeted the

stability of network reliability by providing hop length stability and network connec-

tivity. They use the stable matching approach on the network to find the vital link

to be protected so that users can access the server within a small hop count even

if the non-essential links fails. They also found that the problem can be solved in

polynomial time when the hop count is determined to be one.

2.2.3 Local Search

Local Search is a technique in which the algorithm tries to find the solution to a

problem locally that satisfies the conditions required by the given problem. When

the algorithm is done with a state or node, it moves to the next node or state by

applying the local changes until it finds an optimal solution.

Local search based genetic algorithm has been used to design the reliable networks

optimally [27]. The research mentioned above paper proposes a Genetic Algorithm

(GA) with specialized encoding, initialization, and local search operators to optimize

the design of communication network topologies. The problem taken by the authors

is NP-hard and often generates infeasible networks using random initialization and

standard genetic operators as it is highly constrained. They found that special pur-

pose GA is more efficient than an enumerative based method on NP-hard problems

of realistic size.

23

Travelling Salesman Problem (TSP) is one of the significant problems that are

NP-complete. TSP requires that starting from place “A” the salesman should travel

to each city once before returning home. There are many algorithms used to solve

this problem, namely k-opt algorithm, Christofides algorithm, pairwise exchange and

ant colony optimization. A traditional ant colony algorithm (ACA) for solving TSP

easily gets stuck into a locally optimal solution and slow convergence, also the quality

of the solution is not ideal [28]. Authors propose a Dynamic Local Search based Ant

Colony Algorithm (DLACA) in which each and has the ability of local search and it

can use this ability according to the real-time condition which enhances the search

quality of algorithm and stabilizes the solution. They use Matlab for solving TSP

using ACA and DLACA, and the solutions obtained by them show that the DLACA

achieves the known optimal solution within the stipulated time and the stabilization

of solution is also better.

Given a graph or hypergraph, the graph or hypergraph Max-k-Cut problem is to

partition the vertices into k nonempty sets such that the sum of weights of edges

across different sets is maximized. Wenxing Zhu et al. [49] proposed determinis-

tic local search algorithm for the problem, which has a performance ratio 1 - 1/k for

Max-k-Cut of the graph, and has a similar result for Max-k-Cut of hypergraph. Safaa

Alqallaf et al. [50] new hybrid local search approximation algorithm for solving the

capacitated Max-k-cut problem and contrast its performance with two local search

approximation algorithms. The first algorithm uses swapping neighbourhood search

technique, whereas the second algorithm uses a vertex movement method. They

analyze the behaviour of the three algorithms concerning running time complexity,

several iterations performed and the total weight sum of the cut edges where algo-

rithms are “Vertex swapping local search algorithm”, “Vertex Movement Local Search

Algorithm” and “Hybrid Local Search Algorithm” respectively. It is clear from their

performed research that the time required to solve each problem is almost the same

for the three algorithms for small values of n where n is the number of vertices. As n

increases, the running times of the three algorithms differ noticeably.

2.3 Conclusion

We found that there is currently no heuristic can solve the problem proposed by R.

Cziva et al. [8] in a polynomial time. So, we are the first ones to propose the heuristic

to solve this problem in a polynomial time. Thus, it is not possible to compare our

24

obtained solutions with any other heuristic but they will only be compared with the

optimal solution given by the mathematical model.

25

Chapter 3

System Model, Modification and

Proposed Heuristic

3.1 Introduction . 26

3.2 System Model . 26

3.2.1 Overview . 26

3.2.2 Parameters Used . 26

3.2.3 ILP Model . 27

3.2.4 Simulation Environments . 28

3.3 Initial ILP Model Modification . 29

3.3.1 Generalization for Failures . 31

3.3.2 Proposed Modification . 32

3.4 Greedy Approach . 34

3.4.1 Algorithm . 35

3.4.2 Results . 36

3.4.3 Result Analysis . 36

3.5 Stable Matching Algorithm . 37

3.5.1 Algorithm . 37

3.5.2 Flowchart for Algorithm . 38

3.5.3 Simulation Results . 40

3.6 Conclusion . 47

3.6.1 Scope of Improvement . 48

26

3.1 Introduction

In this chapter we discuss the system model, parameters and the modification pro-

posed in the system model. We also discuss the two approaches that were used to

solve the vNF allocation problem. Greedy Approach and the Stable Matching

based approach have been used to match the vNFs and hosting devices. The results

obtained have been compared to optimal result obtained by the mathematical model

and are then analyzed.

3.2 System Model

3.2.1 Overview

In this research, we are using the same model as used by [8]. Here we consider that

vNFs are to be connected to host devices, and further users are connected to vNFs

to use the network. The goal of this research problem is to allocate vNFs to different

hosting devices to minimize the latency caused.

3.2.2 Parameters Used

Variable Description

N Set of all vNFs

H Set of all hosting devices

Cj Maximum capacity of a hosting device j.

Ri Requirement of vNF i.

MLi Maximum latency a vNF i can tolerate.

lij
Latency between the user of the ni vNF in case that vNF

is located at hj.

Table 3.1: Parameters

We consider a system with vNFs and hosting devices, where N = {n1, n2, n3, ..., ni}
is the set of all vNFs in the network. For each ni we can define memory, CPU and

IO requirements (Ri), as well as Maxlatency (MLi) that denotes the maximum

27

latency which vNF ni can tolerate. Similarly H = {h1, h2, h3, ..., hj} is the set of vNF

hosting devices (that represent either a cloud or an edge server). Similar to vNF’s

requirements, each hj has capacity (Cj) on its properties, for example; CPU, memory,

IO etc. lij gives the latency between the user of the ni vNF in case ni is located at

hj.

xij is a binary decision variable that denotes allocation of vNFs to hosts; where

xij =

1 if ni is allocated to hj

0 otherwise

3.2.3 ILP Model

The objective of our model is to minimize the Total-Latency value which is given

by equation (3.1).

Minimize
∑
ni∈N

∑
hj∈H

xijlij (3.1)

Subject To-∑
ni∈N

xij ∗Ri ≤ Cj, ∀hj ∈ H (3.2)∑
hj∈H

xijlij ≤ MLi, ∀ni ∈ N (3.3)∑
hj∈H

xij = 1, ∀ni ∈ N (3.4)

• First constraint (3.2) ensures that vNFs are placed to hosting devices with

sufficient capacity. This constraint also defines that vNFs can not be allocated

to the hosting device if its capacity gets filled that is the total of the requirements

of the vNFs connected to a hosting devices should be less than the capacity of

that hosting device.

• Second Constraint (3.3), ensures that latency-sensitive vNFs are placed sub-

ject to not violating the max latency requirement from their users. The latency

of the selected pair should always be less than the Maxlatency for the vNF.

28

• Third constraint (3.4), constraint ensures that all vNFs are allocated to

hosting devices exactly once. A single vNF can not be connected to two hosting

devices, but one hosting device can connect to two vNFs.

The above-mentioned ILP problem is a minimizing problem in which our ob-

jective is to minimize the total latency obtained by the allocation of the vNFs to

the hosting devices. It can be noted that the above ILP is also an NP-hard problem

[8] and can be solved by optimally by an ILP solver, for example, IBM CPLEX or

Gurobi. For our simulations, we used IBM CPLEX to solve it optimally.

3.2.4 Simulation Environments

The ILP models used in this thesis are implemented in IBM CPLEX, and our proposed

algorithms have been implemented in C++. In this process, we do not use a network

simulator as we are not solving any network research problem but computational

problem.

For input, the data taken includes the number of vNFs, hosting devices, users.

The other values taken as input are capacity of hosting devices, requirement and a

maximum latency of vNFs and latency between the vNF and hosting device. For

latency between the vNFs and the hosting devices, we take random values between

15 to 40 as it depends on various factors such as distance, the material used, and

the performance of hosting devices and vNFs. Similarly, the random values of the

capacity of the hosting devices are taken between 10 to 75. Requirements and a

maximum latency of vNFs have also been taken randomly between 1 to 15 and 20 to

50 respectively.

Since we are just solving a computational problem considering latency as the input

of our problem, unit for latency can be any time unit (for example, milliseconds,

microseconds etc.)

Similarly we are considering the system to be reliable as we will not be considering

the factors effecting reliability like overloading, physical damages, software anomalies,

power failures, device failures and others.

The properties for the system used for performing all the simulations have been

illustrated in Table 3.2.

29

System Properties Value

Windows Version Windows 10 Home Version

Processor Intel i5-5200U

Random Access

Memory (RAM)
8 GB

System Type
64-bit OS,

x64-based processor

GPU NVIDIA GeForce 830M

Graphic Memory 2 GB

Table 3.2: System Properties

3.3 Initial ILP Model Modification

It can be observed that only one constraint gives in-feasible solutions under many

scenarios. The allocation constraint Eq. 3.4 states that every vNF should be con-

nected to at most one hosting device. If this constraint fails in any circumstance, the

whole model fails. Some of the example cases are given next.

30

Figure 3.1: Fail Case Scenario for 2 vNFs

Let us consider a case in which we have two vNFs that want to connect to a hosting

device, as shown in Figure 3.1. The vNFs have 2 and 3 as requirements respectively,

and the hosting device had a capacity of 2. In the above case, the hosting device can

not connect to the second vNF as it does not have the required capacity to connect

with both the vNFs as a result due to constraint Eq. 3.4, the model will fail.

31

Figure 3.2: Fail Case Scenario for 5 vNFs

Let us consider another scenario with five vNFs that want to connect to three

different hosting devices as represented in Figure 3.2. It can be seen that all the

devices want to connect with the hosting devices, but due to the insufficient capacity

of the hosting devices, all of the vNFs would not be connected and the connections in

green will only be connected. Though it does not have much problem but according

to the allocation constraint Eq. 3.4 the model will fail and will give an infeasible

solution.

3.3.1 Generalization for Failures

Theorem 1: For any network with any number of vNFs and hosting devices the

network model will fail when the total capacity of the hosting devices is less than the

total requirements of the vNFs.

Proof: From the above two cases, we can say there can be many more cases that can

lead to failure of the network model. To generalize the above cases, let us consider a

model with a total number of vNFs (G) and the total number of hosting devices (H).

Rn is the requirement for the vNF “n” and Cm is the capacity of the hosing device

“m”. Let us consider the case given in Figure 3.2 here we can see that the total of

32

requirement for the vNFs is 16 but the total capacity of the hosting devices is 15

so even if the hosting devices exhaust their whole capacity they cannot pair with all

the hosting devices. Hence proved that the network model will fail when the total

capacity of the hosting devices is less than the total requirements of the vNFs.

Theorem 2: For any network with any number of vNFs and hosting devices the

network model will fail when the maximum latency tolerance of any of the vNF is

less than the latencies in the lmn matrix.

Proof: To generalize the above cases, let us consider a model with a total number

of vNFs (G) and the total number of hosting devices (H). MLn is maximum latency

vNF “n” can tolerate and lmn which is the matrix having the latencies between the

user of vNF “n” in case that vNF is located at “m”. Now let us consider a case

in which the maximum latency tolerance of a vNF is lesser than the latency that it

transmits when connecting to various hosting devices. Due to constraint 3.3 it would

not be able to connect to any of the hosting devices and the model will fail. Hence

proved that the network model will fail when the maximum latency tolerance of any

of the vNF is less than the latencies in the lmn matrix.

So, we can generalize that if:

1. The total capacity of the hosting devices is less than the total requirements

of the vNFs. This ensures that all the vNFs would not be connected and the

model will fail.

2. The maximum latency tolerance of any of the vNF is lesser than the latencies in

the lmn matrix. This will also lead to the rejection of that vNF and the model

will fail.

3.3.2 Proposed Modification

Thus, to fix the above problem, we used another Mixed Integer Linear Programming

(MILP) problem model to find the maximum number of vNFs that can be connected

optimally to the hosting devices. The allocation constraint (3.4) is replaced by:

∑
ni∈N

∑
hb∈H

xij = M (3.5)∑
hb∈H

xij <= 1, ∀ni ∈ N (3.6)

33

where ’M’ is the total number of vNFs that can be connected optimally and an-

other constraint (3.6) is added, which ensures that one vNF connects to a maximum

of one Hosting Device. M is calculated using another ILP formulation which is as

follows:

Maximize M =
∑

ni∈N

∑
hj∈H

xij (3.7)

Subject To−∑
i∈Bj

xij ∗Rj <= Cj, ∀j ∈ H (3.8)∑
j∈Ai

xij <= 1, ∀i ∈ N (3.9)

where,

xij =

1 if ni is allocated to hj

0 otherwise

For each vNF i ∈ N, Ai ⊆ H is a set of hosting devices that can hold vNF i

(satisfying constraint 3.3).

Ai =

1 if ni can be accommodated by hj

0 otherwise

Similarly Bj ⊆ N be the set of vNFs that can be assigned to hosting devices j.

vNF i is connectable to hosting device j, it satisfies constraint 3.3.

Bj =

1 if hj can accommodate ni

0 otherwise

34

Cj is capacity of hosting devices and Ri are the requirements for vNFs. Further

the constraint 3.8 is similar to constraint 3.2 but with different input. Constraint 3.9

states that one vNF can not be connected to more than one hosting device.

The problem model used to find the “M” is also an NP-hard problem and it can be de-

fined as Multiple Knapsack Problem with Assignment Restrictions (MKAR)

[9]. The model can be solved optimally by an ILP solver, such as IBM CPLEX or by

a A1
2

Approximation Algorithm as proposed in [9].

The complete new model with modification becomes:

Minimize
∑
ni∈N

∑
hj∈H

xijlij (3.10)

Subject To-∑
ni∈N

xij ∗Ri ≤ Cj, ∀hj ∈ H (3.11)∑
hj∈H

xijlij ≤ MLi, ∀ni ∈ N (3.12)∑
ni∈N

∑
hb∈H

xij = M (3.13)∑
hb∈H

xij <= 1, ∀ni ∈ N (3.14)

From hereon this model has been taken as the mathematical model to solve the

problem proposed by [8] and it is refereed wherever the vNF allocation model has

been mentioned.

3.4 Greedy Approach

In this approach we start by selecting the pair that has lowest latency value and

then move on to select the next pair with minimum latency. This process is repeated

till either all the vNFs are connected or the capacity of the hosting devices gets

exhausted. This is the simplest way to find a solution satisfying the requirements of

the problem.

35

3.4.1 Algorithm

Algorithm 3 Greedy Approach

1: procedure Matching vNFs to Hosting Devices using a greedy approach

2: Initialize xij as 0 for all vNFs and hosting devices.

3: Initialize both totalLatency and count as 0

4: vNFs have requirements and maximum latency and Hosting Devices have capacity

5: while (Count < Number of vNFs) do

6: for (All number of vNFs) do

7: for (All number of Hosting Devices) do

8: Selecting the pair with minimum latency from latency matrix and satisfying con-

straints 3.11 and 3.12.

9: Update the xij as 1 where i is selected vNF j is selected hosting device

10: Update the capacity

11: Remove selected pair for next iteration

12: end for

13: end for

14: Increment Count by 1.

15: end while

16: if (All vNFs are connected) then

17: Print totalLatency

18: else

19: Print “Infeasible Model”.

20: end if

21: end procedure

In the above algorithm 3 we try to give a greedy approach heuristic for problem

proposed by R. Cziva et al. [8] in this approach we find that pair first, which has

minimum latency in latency matrix and it satisfies the constraints, capacity (3.11)

and latency (3.12), we then update the allocation matrix and capacity of the hosting

device. Then we remove that pair and start the process again; it continues until the

count is less than the total number of vNFs. Then we calculate the total latency

using the allocation matrix (xij) and latency matrix, then solution is provided.

For the modified model proposed by us (3.10) the If condition at line 16 will change to

if “M” devices are connected only then it will give a solution, where “M” is calculated

by 3.7.

36

3.4.2 Results

The different cases that were used are 20 and 30 for vNFs. 10, 15, 20 are a dif-

ferent number of host devices which are then used to form different cases and use

them to compare solutions for both CPLEX and proposed greedy approach. All of

the simulation results illustrated are an average of 10 different runs for a particular

scenario.

Table 3.3 shows the solutions obtained by the Greedy Approach (GrA) and

their comparison with the Optimal (Opt) solution given by the ILP model.

vNFs
Hosting

Devices
Opt GrA % Diff

20 vNFs

10 HD 389.66 550.33 41.23338

15 HD 335.67 505.13 50.48411

20 HD 309.33 513.66 66.05567

30 vNFs

10 HD 313.33 497.33 58.72403

15 HD 526.66 643.5 22.18509

20 HD 503.67 639.33 26.9343

Table 3.3: Latency Comparison between Optimal and Greedy Approach

3.4.3 Result Analysis

This technique was used initially to solve the vNF allocation problem in polynomial

time. But it is clear from the results illustrated by the Table 3.3 that the technique is

not good to solve this problem. Another approach (Stable Matching) was then tried

and on comparison the solutions given by stable matching heuristic were far better

than the solutions given by greedy approach. Thus, greedy approach was rejected,

and we we went on with the Stable Matching approach which is explained in detail

in the coming section.

37

3.5 Stable Matching Algorithm

Stable Matching is initiated by creating two priority matrices for the two groups that

we want to match. These matrices are created on the basis of the latencies in which

the lesser latencies are given the more priority for both the groups that are vNFs

and hosting devices. Then the matching is done according to the priority matrix,

where the vNF wants to connect to the hosting device that is first on its priority list.

The same case exists for hosting devices as they want to connect to the vNF that is

first on their priority list. The algorithm runs for all the vNFs and matches them to

hosting devices until a stable matching is achieved.

3.5.1 Algorithm

Algorithm 4 Stable Matching

1: procedure Matching vNFs to Hosting Devices until a stability is achieved

2: All vNFs and Hosting devices are free.

3: Initialize both totalLatency and count as 0.

4: while (There Exist a Free vNF (n) who has not proposed to hosting device (h) and count

is less than M) do

5: h→ is the first preferred Hosting Device

6: if (h is free and Constraints 3.11 and 3.12 are satisfied) then

7: (n, h) become engaged

8: Update count = count + 1

9: Update capacity = capacity of h - requirement of n

10: Update totalLatency = totalLatency + latency between the n and h

11: else(Some pair (n′, h) already exists)

12: if (h prefers n to n′) then

13: (n, h) become engaged

14: n′ becomes free

15: Count remains same

16: Update capacity and totalLatency

17: else

18: (n′, h) remain engaged

19: end if

20: end if

21: end while

22: Print totalLatency

23: Print matched pairs

24: end procedure

38

In the above algorithm 4, we start with all the vNFs and hosting devices as free, and

take Total latency and Count as 0. The algorithm will run until maximum number

of devices that can be connected (M) are connected, as shown in line 4, where M is

calculated in the modified model using 3.7. Then a vNF, n proposes to the hosting

device h that has the highest priority for vNF if the conditions as specified in line 6

are met then the vNF and hosting device is engaged. The count, capacity, and total

latency are then updated. The other aspect is that if the hosting device is connected

to another vNF n′, as shown in line 11. Then from line 12, if the hosting device prefers

the selected vNF n over the currently engaged n′, the hosting device will be engaged

with n and n′ will become free. In this case the count remains same but capacity and

total latency are updated. If the hosting device does not prefer the selected vNF, n

over the currently engaged n′, then the pair remains engaged.

The proposed algorithm has a complexity of O(n ∗m) in the worst case where n

is the number of vNFs, and m is the number of host devices (while n >> m). So,

generalizing we can say that the complexity of the algorithm is O(n2)

3.5.2 Flowchart for Algorithm

The Figure 3.3 shows the flow chart for working of our Stable Matching Algorithm.

The algorithm is implemented in C++ language.

Stable Matching

Initialize all vNFS (n) in N and
hosting device (h) in H to free

Initialize totalLatency and count = 0

There Exist a Free vNF (n)
who has not proposed
to hosting device (h)

and count is less than M

h is free and
capacity and latency

constraints are satisfied

True

Print totalLatency
Print matched pairs

False

(n, h) become engaged

True

some pair (n', h) already exists

False

Update Count = Count+1
Update capacity

Update totalLatency
h prefers n to n'

n' becomes free
(n, h) become engaged

True

(n', h) remain engaged

False

Count remains same
Update capacity

Update totalLatency

End Stable Matching

h = first hosting device
on n’s list to whom n has

not yet proposed

39

Figure 3.3: Flowchart for SMA

40

3.5.3 Simulation Results

Scenario used for calculating these solutions is similar to that used in Greedy Ap-

proach but with more instances. The different instances that are used in this scenario

are 50, 100, 500, 1000, 2000 and 3000 for vNFs. 5, 10, 15, 20, 50, 100, 150, 200,

250 and 300 are the different number of host devices which are then used to form

different cases and use them to compare solutions for both CPLEX and stable match.

In the solutions provided, Opt is defined as Optimal (ILP Model Result) and SMA

is defined as Stable Match Algorithm. All of the simulation solutions presented in

this section are an average of 10 different runs for a particular scenario.

The figures ahead illustrate us the solution comparison between the ILP solu-

tion given by IBM Cplex (Optimal) and solution given by our proposed heuristic

approach(Stable Matching) on basis of TL (Total Latency) for different cases.

41

Figure 3.4: Resulting Latencies for 50 vNFs using ILP and Stable Matching
for different number of Hosting Devices

42

Figure 3.4 shows the graphical comparison between the ILP and Stable Matching

algorithm for 50 vNFs when we have a different number of hosting devices.

Figure 3.5: Resulting Latencies for 100 vNFs

Figure 3.5 shows 100 the comparisons between the ILP and Stable Matching al-

43

gorithm for 30 vNFs when we have different number of hosting devices.

Figure 3.6: Resulting Latencies for 500 vNFs

Figure 3.6 shows the comparisons between the ILP and Stable Matching algorithm

for 500 vNFs when we have different number of hosting devices.

44

Figure 3.7: Resulting Latencies for 1000 vNFs

Figure 3.7 shows the comparisons between the ILP and Stable Matching algorithm

for 1000 vNFs when we have different number of hosting devices.

45

Figure 3.8: Resulting Latencies for 2000 vNFs using ILP and Stable Match-
ing

Figure 3.8 depicts the comparison between the ILP model solutions and the solu-

tions obtained by the stable matching algorithm when we have 2000 vNFs and various

46

number of hosting devices.

Figure 3.9: Resulting Latencies for 15 Hosting Devices using ILP and Stable
Matching

Figure 3.9 depicts the comparison between the ILP model solutions and the results

obtained by the stable matching algorithm when we have 15 hosting devices and

various number of vNFs.

47

vNFs
Hosting

Devices
Opt SM

% Decrease

(Time)

20 vNFs

5 HD 4.47 3.53 21.03

10 HD 6.17 4.44 28.04

15 HD 7.63 5.76 24.51

20 HD 8.51 7.31 14.10

30 vNFs

10 HD 3.14 2.12 32.48

15 HD 2.93 2.03 30.72

20 HD 5.97 4.63 22.45

50 vNFs

10 HD 5.45 4.32 20.73

15 HD 7.03 6.20 11.81

20 HD 8.23 7.37 10.45

100 vNFs

10 HD 7.89 7.23 8.37

15 HD 7.21 6.27 13.04

20 HD 7.45 6.57 11.81

Table 3.4: Working Time Comparison for Different vNFs (Seconds)

Table 3.4 depicts the comparison between the time complexity of optimal and the

time taken by the stable matching algorithm when we have 20, 30, 50 and 100 vNFs

respectively and a various number of host devices.

3.6 Conclusion

The anomaly in the initial ILP was critical as even if there is a small case that one

vNF does not get connected can lead to the failure of the whole network. Thus the

model has been modified to make it more efficient. The modified problem is still an

NP-hard problem which takes exponential time in worst case scenario. No heuristic

has been proposed by R.Cziva et al. [8] for solving the vNF allocation problem in

polynomial time. In the next chapter we discuss the heuristic approach proposed by

us to solve the vNF allocation problem in polynomial time.

48

The problem proposed by R. Cziva et al. [8] can be categorized as an assignment

problem. In this type of problem we want to find an efficient assignment of the vNF

to the hosting devices to reduce the totalLatency generated by the network model.

Many heuristic approaches were tried to solve it efficiently in polynomial time namely

Hungarian Approach, Greedy approach and Stable matching approach.

This chapter has also provided a structured methodology and systematic evalu-

ation of our proposed heuristics based on Stable Matching Algorithm and Greedy

Algorithm. From all the above experimental solutions and working time comparisons

it is clear that Greedy Search based algorithm was not suitable for this problem and

our Stable Matching based algorithm is operating efficiently and performs close to

the optimal (8% − 9% more than the optimal latency). Though all the approaches

gave feasible solutions but the best and most efficient (nearest to optimal) solution

was provided by the Stable Matching Technique.

This part of the thesis has been selected in The 10th International Conference

on Ambient Systems, Networks and Technologies and published in Procedia

Computer Science journal [76].

3.6.1 Scope of Improvement

Let us take a case in which all the vNFs have been allocated to the hosting devices,

but we can find that if the allocated connection can either be swapped or moved to

get even better solutions.

49

Figure 3.10: Example to Show that Improvement can be Done

Figure. 3.10 shows an example in which vNFs 1 & 5 have been allocated to hosting

device 1 and vNFs 3 & 4 have been allocated to hosting device 2. The total latency

for the above configuration is 12 (2 + 2 + 3 + 5).

Now using local search, first hosting device is picked and we check for connection

(1,2) that is if the second vNF is allocated to first hosting device if it satisfies the ca-

pacity and latency constraints before allocation. This will be moving the connection,

and the total latency will become 17(7 + 2 + 3 + 5). Thus this pair will be discarded,

and we move on to the next pair. We would not consider (1,3) & (1,4) as those

vNFs are connected to second hosting device and we will check them with (1,1) once

they are selected. (1,5) also would not be considered as it is already connected to

first hosting device and it would not change total latency. Now we select connection

(2,1), that is if the first vNF is allocated to the second hosting device if it satisfies

the capacity and latency constraints before allocation. This again will be moving the

connection, and the new total latency would be 11(1 + 2 + 3 + 5) thus first vNF will

now be an allocation to the second hosting device. This process will go on until all

the pairs are checked for either swapping or moving.

Thus Local Search technique can be used to enhance the solutions, and the

process is thoroughly explained in the next chapter.

50

Chapter 4

Extending SMA using Local Search

4.1 Overview . 50

4.2 Algorithm . 51

4.3 Simulation Results . 52

4.4 Conclusion . 62

4.1 Overview

Though the algorithm discussed in the previous chapter was working efficiently, but as

shown in the end of the previous chapter the solutions can be enhanced by extending

Stable Match technique using the Local Search technique to make it more efficient.

In this procedure, we start with an initial feasible solution that is provided by the

Stable Match algorithm and then tries to improve the solution iteratively. The local

search begins by picking a random connected pair and then checking it with other

pairs and devices for finding even lower total latency if possible and then completes

the process for all other pairs. Local search algorithm stops when there is no chance

left for further improvement.

51

4.2 Algorithm

Algorithm 5 Local Search (Swapping\Moving)

1: procedure Swap or Move the current matched pairs to find more efficient solu-

tion.

2: Using initial feasible solution from Algorithm 4.

3: Initialize improvement = true.

4: while (improvement) do

5: improvement = false.

6: Checking for all connected pairs (i, j) and (i′, j′), where “i” vNF is connected to

“j” hosting device and “i′” vNF is connected to “j′” hosting device. . Case I

7: if (lij + li′j′ > lij′ + li′j and Constraints 3.11 and 3.12 are satisfied) then . Swapping

8: Assign vNF i to hosting device j′ and vNF i′ to hosting device j.

9: Update Capacity for hosting devices.

10: improvement = true.

11: end if

12: Check for other unconnected vNFs (i′′). . Case II

13: if (lij > li′′j and Constraints 3.11 and 3.12 are satisfied) then . Moving

14: Assign vNF i′′ to hosting device j and vNF i will get free.

15: Update Capacity for hosting devices.

16: improvement = true.

17: end if

18: Check for other unconnected hosting devices (j′′). . Case III

19: if (lij > lij′′ and Constraints 3.11 and 3.12 are satisfied) then . Moving

20: Assign vNF i to hosting device j′′.

21: Update Capacity for hosting devices.

22: improvement = true.

23: end if

24: end while

25: Print New minimum totalLatency using current allocation.

26: end procedure

In this local search algorithm (5) we start with a feasible solution provided by the

Stable Match algorithm. All the connected pairs (i, j) are checked from the provided

solution by comparing them (7) with all the other connected pairs (i′, j′). We even

compare the selected pair with all the unpaired vNFs (13) and hosting devices (19).

IF the comparison leads to improvement (reduction) in the total latency and they

satisfy the constraints 3.11 and 3.12, then the connection is either swapped or moved.

The whole procedure is performed while there is still a chance of improvement. At

52

the end the solution is provided using the updated allocations. The improvement is

calculated as follows:

• For Case I (Swapping), we calculate and compare the sum of the latencies for

the connected pairs and for the swapped connections. If the sum of latency for

the swapped pair is lesser, it can be said that there is improvement in solution.

This way we don’t have to calculate the whole total latency each time.

• For Case II (Moving for free vNF), we just check that if the latency of the new

connection is lesser than the selected connection then there is an improvement

in solution.

• For Case II (Moving for free hosting device), we just check that if the latency

of the new connection is lesser than the selected connection then there is an

improvement in solution.

Complexity of above algorithm is O(n ∗m ∗W) in the worst case where n is the

number of vNFs, m is the number of hosting devices (where n >> m) and “W” is

the latency given by the stable matching solution (taken as initial feasible solution).

So, generalizing we can say that the complexity of the algorithm is O(n2 ∗W).

4.3 Simulation Results

Scenario used for calculating these solutions is similar to that used in Greedy Ap-

proach but with more instances. The different instances that are used in this scenario

are 50, 100, 500, 1000, 2000 and 3000 for vNFs. 5, 10, 15, 20, 50, 100, 150, 200, 250

and 300 are the different number of host devices which are then used to form different

cases and use them to compare solutions for Opt (mathematical model), SMA and LS

algorithms. In the solutions provided Opt is defined as Optimal (ILP Model Result),

SMA is defined as Stable Match Algorithm and LS which is Local Search on top of

Stable Match Algorithm. All of the simulation solutions presented in this section are

an average of 10 different runs for a particular scenario.

The figures ahead illustrate us the comparison between the optimal solution pre-

sented as Opt by the mathematical (ILP) model, SMA (Stable Match) and LS (SMA

with Local Search) on basis of TL (Total Latency) for different cases.

53

Figure 4.1: Latency Result Comparisons Between Optimal (ILP), Stable
Matching and Stable Match with Local Search for 50 vNFs.

Figure 4.1 shows the graphical comparison between the Optimal (ILP), Stable

Matching algorithm and SMA with Local Search for 50 vNFs when we have a different

number of hosting devices.

54

Figure 4.2: Latency Result Comparisons Between Optimal (ILP), Stable
Matching and Stable Match with Local Search for 100 vNFs.

Figure 4.2 shows the graphical comparison between the Optimal (ILP), Stable

Matching algorithm and SMA with Local Search for 100 vNFs when we have a dif-

ferent number of hosting devices.

55

Figure 4.3: Latency Result Comparisons Between Optimal (ILP), Stable
Matching and Stable Match with Local Search for 500 vNFs.

Figure 4.3 shows the graphical comparison between the Optimal (ILP), Stable

Matching algorithm and SMA with Local Search for 500 vNFs when we have a dif-

ferent number of hosting devices.

56

Figure 4.4: Latency Result Comparisons Between Optimal (ILP), Stable
Matching and Stable Match with Local Search for 1000 vNFs.

Figure 4.4 shows the graphical comparison between the Optimal (ILP), Stable

Matching algorithm and SMA with Local Search for 1000 vNFs when we have a

different number of hosting devices.

57

Figure 4.5: Latency Result Comparisons Between Optimal (ILP), Stable
Matching and Stable Match with Local Search for 2000 vNFs.

Figure 4.5 depicts the comparison between the Optimal (ILP), Stable Matching

algorithm and SMA with Local Search when we have 2000 vNFs and various number

of hosting devices.

58

Figure 4.6: Latency Result Comparisons Between Optimal (ILP), Stable
Matching and Stable Match with Local Search for 3000 vNFs.

Figure 4.6 depicts the comparison between the Optimal (ILP), Stable Matching

algorithm and SMA with Local Search when we have 3000 vNFs and various number

of hosting devices.

59

Figure 4.7: Time (Min) Comparison Between Optimal (ILP), Stable Match-
ing and Stable Match with Local Search for 500 & 1000 vNFs.

From the above figure it is clear that the time taken by the model (Opt) to solve

the problem increases exponentially with the increase in the number of vNFs and

hosting devices. But the proposed algorithms do not illustrate the similar kind of

behaviour.

60

Figure 4.8: Time (Min) Comparison Between Optimal (ILP), Stable Match-
ing and Stable Match with Local Search for 2000 & 3000 vNFs.

From the above figure it is clear that the time taken by the model (Opt) to solve

the problem increases exponentially with the increase in the number of vNFs and

hosting devices.

61

vNFs
Hosting

Devices
Opt LS

% Decrease

(Time)

% Increase

(Latency)

50 vNFs

10 HD 0.090 0.076 20.00 6.76

15 HD 0.117 0.108 11.97 8.19

20 HD 0.137 0.129 10.95 7.62

100 vNFs

10 HD 0.131 0.125 8.40 5.31

15 HD 0.120 0.110 13.33 5.42

20 HD 0.124 0.116 12.10 5.86

500 vNFs

50 HD 10.300 7.180 30.29 7.15

100 HD 10.146 6.880 32.19 7.83

150 HD 10.183 6.950 31.75 7.08

1000 vNFs

100 HD 83.216 45.540 45.27 6.77

150 HD 85.413 47.213 44.72 6.48

200 HD 82.514 46.923 43.13 6.79

2000 vNFs

150 HD 190.310 87.519 54.01 6.36

200 HD 185.546 86.217 53.53 6.87

250 Hd 188.571 88.651 52.99 6.88

3000 vNFs
250 HD 413.241 153.416 62.87 6.43

300 HD 415.317 151.871 63.43 6.24

Table 4.1: Working Time Comparison (Seconds) & Latency Comparisons

Table 4.1 shows the comparisons between the time taken by both optimal and

stable match with the local search for different number of vNFs and varied number of

host devices. It shows that the local search takes 20 to 30 percent less time compared

to the optimal. The table also represents the comparisons in terms of latency. It is

found that local search solution costs around 7 to 8 % more latency compared to the

optimal solutions.

62

4.4 Conclusion

Local Search technique works by starting with an initial feasible solution and then

tends to improve it with each iteration. The analysis of the solutions provided by the

Stable Matching algorithm illustrated a scope of improvement and thus an extension

based on local search technique was tried to obtain even more efficient solutions.

This chapter has provided a structured methodology and systematic evaluation

of our proposed extension based on Local Search after finding a solution by Stable

Matching Algorithm. The solution comparison done is between the minimum latencies

and time taken by the optimal solution, stable match, and stable match with the local

search for 50, 100, 500, 1000, 2000 and 3000 vNFs (different number of host devices

(10, 15, 20, 50, 100, 150, 200, 250, 300)). Considering all experimental solutions, it is

clear that the stable match algorithm performs very close to the optimal (8% − 9%

more than the optimal latency). However, when the local search is added, an even

better solution is achieved (6%− 7% more than the optimal latency).

It can be mentioned here that the best solution for the problem can only be given

by the mathematical (ILP) model and the aim of our research is to go as close as

to the optimal solution as possible. Lesser the difference (%) between the heuristic

approach solution and the optimal solution, better is the performance or efficiency of

the heuristic.

63

Chapter 5

Fair Allocation Problem for

Allocating the vNFs

5.1 Overview . 63

5.2 ILP Formulation . 64

5.2.1 Parameters Used . 64

5.2.2 ILP Model . 64

5.3 Fairness Measure . 65

5.4 Proposed Heuristic . 66

5.4.1 Local Search Algorithm . 66

5.5 Results . 67

5.6 Conclusion . 69

5.1 Overview

In this chapter, we introduce a new problem in which we try to balance the latencies

for each connection in which vNFs connect to the hosting devices. In the previous

chapters, we gave the algorithms just to minimize the total latency, but they don’t care

about the fair allocation of the vNFs or the hosting devices. The main reason being

that they only minimize the latency without considering any latency imbalance that

can be there. Fairness is one of the main issues in networking domain [60] that needs

to be checked before moving forward with any of the networking implementations.

64

This is the main reason behind this chapter, and in this chapter, we propose an

ILP model for the fair allocation of the vNFs to hosting devices. Then we propose

an algorithmic solution to increase the fairness for the connections using the Local

Search technique on top of the solutions obtained by the Stable Matching algorithm.

5.2 ILP Formulation

5.2.1 Parameters Used

Variable Description

N Total number of vNFs

H Total number of vNF hosting devices

U Total number of users

Cj Maximum capacity of a hosting device j.

Ri Requirement of vNF i.

MaxLi Maximum latency a vNF i can tolerate.

lij
Latency b/w the user of the ni vNF in case that vNF

is located at hj.

Table 5.1: Parameters

We consider a system with vNFs and hosting devices, where N = {n1, n2, n3, ..., ni}
is the set of all vNFs in the network. For each ni we can define memory, CPU and

IO requirements (Ri), as well as Maxlatency (MaxLi) that denotes the maximum

latency which vNF ni can tolerate. Similarly H = {h1, h2, h3, ..., hj} is the set of vNF

hosting devices (that represent either a cloud or an edge server). Similar to vNF‘s

requirements, each hj has its own capacity (Cj) properties CPU, memory, IO. lij gives

the latency between the user of the ni vNF in case the vNF is located at hj.

5.2.2 ILP Model

We propose an ILP model to solve the above mentioned problem. The objective of

the model will be to minimize the maximum selected latency, this will be an min max

65

model.

Minimize (Max (xij ∗ lij)) (5.1)

Subject To-∑
ni∈N

xij ∗Ri ≤ Cj, ∀hj ∈ H (5.2)∑
hj∈H

xijlij ≤ MaxLi, ∀ni ∈ N (5.3)∑
ni∈N

∑
hj∈H

xij = M (5.4)∑
hj∈H

xij ≤ 1, ∀ni ∈ N (5.5)

where “M” is the total number of devices which can be connected and it is calculated

in similar fashion as done in vNF allocation model using 3.7.

To formulate this problem we use the same constraints (Eq 3.1, Eq 3.2, Eq 3.3, Eq

3.4 & Eq 3.5) as used in the previous problem as we want the same conditions for the

allocation of the vNFs to hosting devices but with finding lesser maximum selected

latency as objective of the model. Thus only the objective function is changed, which

minimize the maximum of the latency. The main work of the objective function is

first to maximize the selected latency for the allocated vNFs to hosting devices and

then minimizing that latency value. Then we calculate the fairness measure for the

outcome generated by the model.

5.3 Fairness Measure

Fairness Measure is the metric which is used in network engineering to check the

fairness of the resource sharing of a network model. It is calculated using Raj Jain’s

equation [62] which is as follows:

J(x1, x2,, xn) =
(
∑n

i=1 xi)
2

n ∗
∑n

i=1 x
2
i

(5.6)

It rates the fairness of a set of values where there are n users (vNFs), xi is the

throughput (latency) for the ith connection. The result ranges from 1
n

(worst case)

to 1 (best case), and it is maximum when all users receive the same allocation.

We are using fairness measure as only a metric to compare fairness for the math-

ematical model and the heuristic approach. The model discussed in the previous

66

section is only minimizing the maximum selected latency not maximizing fairness.

If we want to maximize the fairness using fairness measure we need to modify the

mathematical model to make a multi-optimization model which will minimize the

maximum selected latency and maximize the fairness simultaneously.

5.4 Proposed Heuristic

5.4.1 Local Search Algorithm

Algorithm 6 Using Local Search after SMA to minimize ML and increase FM

1: procedure Swapping or moving matched pairs to minimize ML and increase FM

2: Using initial solution obtained by SMA.

3: Initialize improvement = true.

4: while (improvement) do

5: improvement = false

6: Pick connected pair (i, j) with maximum latency, where “i” vNF is connected to “j”

hosting device.

7: Check for all other connected pairs (i′, j′). . Case I

8: if (Max(lij & li′j′) > Max(li′j & lij′) and Constraints 3.11 and 3.12 are satisfied) then

. Swapping

9: Assign vNF i to hosting device j′ and vNF i′ to hosting device j.

10: Update Capacity for hosting devices.

11: improvement = true

12: end if

13: Checking for other unconnected vNFs (i′′). . Case II

14: if (lij > li′′j and Constraints 3.11 and 3.12 are satisfied) then . Moving

15: Assign vNF i′′ to hosting device j and vNF i will get free.

16: Update Capacity for hosting devices.

17: improvement = true

18: end if

19: Checking for other unconnected hosting devices (j′′). . Case III

20: if (lij > lij′′ and Constraints 3.11 and 3.12 are satisfied) then . Moving

21: Assign vNF i to hosting device j′′.

22: Update Capacity for hosting devices and improvement = true.

23: end if

24: end while

25: Print New maximum latency.

26: Calculate and printFairness Measure for new allocations.

27: end procedure

67

In the above algorithm (6), we use the solution given by Stable Matching algorithm

similar to algorithm 4 as the initial feasible solution for this algorithm, where ML is

maximum latency and FM is Fairness Measure. The algorithm picks the connected

pair with maximum latency value and then it is compared (8) with all the other

connected pairs. We even compare the selected pair with all the unpaired vNFs (14)

and hosting devices (20). IF the comparison leads to improvement (reduction) in the

total latency and they satisfy the constraints 3.11 and 3.12, then the connection is

either swapped or moved. The improvement is calculated as follows:

• For Case I (Swapping), we find the largest value of latency between the

selected pair and pair to be checked. It is compared to the largest value of

latency between the swapped pairs. If the value of latency (maximum latency)

for the swapped pairs is lesser, it can be said that there is an improvement in

solution.

• For Case II (Moving for free vNF), we just check that if the latency of the new

connection is lesser than the selected connection then there is an improvement

in solution.

• For Case II (Moving for free hosting device), we just check that if the latency

of the new connection is lesser than the selected connection then there is an

improvement in solution.

This process is done until there is no scope of the improvement. New maximum

latency for the updated allocations is supplied as a solution. Fairness Measure is

calculated for the updated allocations and is also supplied as a result.

5.5 Results

The scenario used for calculating these solutions is similar to that used in Greedy

Approach but with more instances. The different instances that are used in this

scenario are 20, 30, 50, 100 and 200 for vNFs. 5, 10, 15, 20 and 50 are a different

number of host devices which are then used to form different cases and use them

to compare solutions for VA Model (vNF Allocation Model), FA Model (Fair

Allocation Model) and SMA & LS Algorithm (Stable Matching along with

Local Search Algorithm). All of the simulation solutions presented in this section

are an average of 10 different runs for a particular scenario.

68

vNFs
Hosting

Devices

Maximum Latency (ML) Fairness Measure (FM)

VA Model FM Model VA Model FM Model

50 vNFs

10 HD 24 22 0.935 0.985

15 HD 23 23 0.897 0.946

20 HD 23 21 0.921 0.974

100 vNFs

10 HD 25 23 0.981 0.983

15 HD 22 22 0.987 0.989

20 HD 22 21 0.965 0.976

200 vNFs
20 HD 21 21 0.969 0.976

50 HD 23 21 0.973 0.978

500 vNFs

50 HD 24 22 0.989 0.994

100 HD 22 21 0.951 0.977

150 HD 23 22 0.987 0.991

Table 5.2: Comparison between the Results given by VA Model and FM
Model

Table 5.2 shows the solution comparison between VA Model and SMA & LS

Algorithm on basis of Maximum Latency and Fairness Measure. Where VA is

vNF Allocation Model and FA is Fair Allocation Model.

69

vNFs
Hosting

Devices

Maximum Latency (ML) Fairness Measure (FM)

FM Model SM & LS FM Model SM & LS

50 vNFs

10 HD 22 23 0.985 0.932

15 HD 23 24 0.946 0.913

20 HD 21 25 0.974 0.916

100 vNFs

10 HD 23 24 0.983 0.976

15 HD 22 23 0.989 0.961

20 HD 21 24 0.976 0.954

200 vNFs
20 HD 21 23 0.976 0.953

50 HD 21 25 0.978 0.969

500 vNFs

50 HD 22 23 0.994 0.976

100 HD 21 22 0.977 0.949

150 HD 22 24 0.991 0.979

Table 5.3: Comparison between the Results given by FM Model and SM &
LS

Table 5.3 shows the solution comparison between VA Model and SMA & LS

Algorithm on basis of Maximum Latency and Fairness Measure.

5.6 Conclusion

In this chapter, we define a new problem based on vNF allocation problem proposed

in [8]. The main reason behind doing this was that, the vNF allocation problem

only dealt with minimizing the total latency for a network model without worrying

about the fair allocation of the resources. From the solutions, it is clear that the

mathematical model created for the newly proposed fair allocation problem is working

fine and giving desired solutions.

The newly defined problem is also NP-hard and takes exponential time in worst

case scenario. Then a heuristic is provided to solve the problem in polynomial time.

As the optimal (ILP Model) solution given by newly defined fair allocation problem

70

are either similar or better in some cases than the ones given by the predefined vNF

allocation problem. We decided to try the stable match approach to solve the problem

in polynomial time as done in chapter 3, the solutions were good but not that close

to the optimal provided by the FA Model and thus the Local Search was tried as an

extension to make the solutions more efficient.

From the table 5.2 of solutions, it is clear that the ILP model proposed for the

problem is working well and giving efficient solutions. The model is improving the

maximum latency and fairness measure. It is also clear from solutions that as the

size of the network increases, both the models proceed towards similar solutions.

According to this information, we can state that at some point both the models

would give the same solution.

For our proposed algorithm the solutions show that it is working fine and gives

better solutions than the VA Model for initial cases and when the size of the network

increases the algorithm proceeds towards giving equivalent solutions though they are

a bit less than the ILP models.

71

Chapter 6

Conclusion & Future Work

6.1 Overview . 71

6.2 Main Contributions . 71

6.3 Conclusion . 72

6.4 Future Work . 73

6.1 Overview

The approaches proposed in this thesis has shown good overall accuracy with room for

improvement. The findings of this research can be used in future for solving similar

problems in polynomial time.

6.2 Main Contributions

This research addresses the question of minimizing the total latency of a given network

or model when the vNFs are assigned to the hosting devices. In this research, we

assign vNFs to hosting devices in such a way that we can get minimum network

latency. This problem was initially defined by R. Cziva et al. [8]; they proposed

an mathematical (ILP) model to solve the problem. This is an assignment problem

which can be solved using various approaches.

There are three key contributions of this thesis:

72

• First a problem proposed by [8] is analyzed, as there are some anomalies in the

problem formulation. So, it is modified to make it more efficient; this is done

using another problem which is categorized as multiple knapsack problem with

assignment restriction problem [9]. The mathematical model for this problem is

an Integer Linear Programming (ILP) model, and it is implemented in CPLEX.

• Second as both the given problem and modified one are NP-hard problems

and they take exponential time in the worst case. No heuristic has been provided

till now to solve them in polynomial time. A heuristic approach based on

Stable Match technique has been provided in this thesis to solve the problem

polynomially. Further Local Search has been used to enhance the solution given

by SMA and make the proposed heuristic more efficient.

• Third we define a new problem (Fair Allocation Problem) to deal with the fair

allocation of the vNFs in the vNF allocation problem but it is also a NP-hard

problem. A mathematical model has been proposed and then a heuristic has

been provided to solve the newly defined problem in polynomial time.

6.3 Conclusion

In this research, we gave algorithmic approaches to solve an assignment problem to

minimize the end-to-end latency of edge NFV. The problem is an NP-hard one. The

original problem statement defined in the research paper [8] had some technical draw-

backs. Thus it was further enhanced to overcome those difficulties and make it more

general. Our proposed algorithm is based on stable matching and then increasing ef-

ficiency using a local search technique. The solutions for optimal latency and working

times are used for comparison between the techniques proposed.

The IBM CPLEX Solver is used for solving the ILP model. According to the

experimental results, it is clear that our proposed heuristic approach is working effi-

ciently as it is giving us solutions which are approximately 8% − 9% more for only

stable matching and 6%− 7% more when the local search is used on top of the stable

match algorithm than the optimal latency. Therefore, we can state that our proposed

algorithmic approach can be used to solve the given problem efficiently (close to the

optimal) in polynomial time.

73

6.4 Future Work

There can be many prospects using the research done in this thesis. One of which

can be to design an algorithm to do the assignment of vNFs to hosting devices dy-

namically. This algorithm will automatically start re-assigning the vNFs when there

is a change in scenario and change in latency (goes beyond a specified limit). The

change can be the result of various scenarios, mainly:

1. If a new vNF is introduced in the topology.

2. If a vNF leaves the topology or gets wrecked.

A similar type of problem has been defined in [61]; in this problem, the authors give

an ILP model first to allocate vNFs to a distributed edge infrastructure, minimizing

end-to-end latency. Then they dynamically re-schedule the optimal placement of

vNFs based on temporal network-wide latency fluctuations using optimal stopping

theory.

The paper mentioned above though, gives an ILP model to solve the problem.

Designing an efficient heuristic is an interesting research topic.

Another future work related to the second part of the thesis can be designing a

mathematical multi-optimization model to minimize the maximum selected latency

and maximize the fairness simultaneously.

74

Appendix A

List of Abbreviations

• vNF Virtual Network Function

• M2M Machine to Machine

• SOA Service Oriented Architecture

• P2P Peer-to-Peer

• IT Information Technology

• IaaS Information as a Service

• PaaS Platform as a Service

• SaaS Software as a Service

• IoT Internet-of-Things

• NFV Network Functions Virtualization

• VM Virtual Machines

• SDN Software Defined Networking

• RBAC Role-based Access Control

• ILP Integer Linear Programming

• NP-hard Non-Deterministic Polynomial-Time Hardness

• SMP Stable Matching Problem

75

• LS Local Search

• ML Maximum Latency

• TL Total Latency

• Opt Optimal Solution

• GA Genetic Algorithm

• GrA Greedy Approach

• VM Virtual Machine

• SFC Service Function Chain

• AC Admission Control

• LDCs Large-scale Data Centres

• ADMM Alternating Direction Method Multipliers

• vNF-SCs vNF Service Chains

• EONs Elastic Optical Networks

• DCN Data Center Networks

• vNF-P vNF-Placement

• LRR Local Regression Robust

• RSM Replication Stable Matching

• TSP Traveling Salesman Problem

• ACA Ant Colony Algorithm

• DLACA Dynamic Local Search based Ant Colony Algorithm

• MILP Mixed Integer Linear Programming

• HD Hosting Device

• SM Stable Match

76

• SMA Stable Matching Algorithm

• FM Fairness Measure

• SOCP Second-Order Cone Programming

• OPL Optimization Programming Language

• IDE Integrated Development Environment

• CSV Comma Separated Value

• GS Gale-Shapley Algorithm

• AG Auxilary Graph

• DP Dynamic Programming

• WSN Wireless Sensor Network

77

Bibliography

[1] Network Functions Virtualisation - Introductory White Paper,

doi:http://portal.etsi.org/NFV/NFV White Paper.pdf

[2] C. Bouras, A. Kollia and A. Papazois, “SDN & NFV in 5G: Advancements and

challenges,” 2017 20th Conference on Innovations in Clouds, Internet and Networks

(ICIN), Paris, 2017, pp. 107-111. doi: 10.1109/ICIN.2017.7899398

[3] F. Hu, M. Qiu, J. Li, T. Grant, D. Tylor, S. McCaleb, L. Butler, R. Hamner,“A

Review on Cloud Computing: Design Challenges in Architecture and Security”,

Journal of Computing and Information Technology - CIT 19, pp. 25-55, 2011. doi:

https://doi.org/10.2498/cit.1001864

[4] W. Chu, “NFV and NFV-based security services,” 2018. doi:

10.1002/9781119293071.ch15

[5] Cisco, “Cisco visual networking index: Global mobile data traffic forecast update,

2016-2021, Cisco White Paper, 2017.

[6] L. Ma, X. Wen, L. Wang, Z. Lu and R. Knopp, “An SDN/NFV based framework

for management and deployment of service based 5G core network,” in China Com-

munications, vol. 15, no. 10, pp. 86-98, Oct. 2018. doi: 10.1109/CC.2018.8485472

[7] M. Shin, S. Lee, S. Lee and D. Kim, “A way forward for accommodating

NFV in 3GPP 5G systems,“ 2017 International Conference on Information and

Communication Technology Convergence (ICTC), Jeju, 2017, pp. 114-116. doi:

10.1109/ICTC.2017.8190953

[8] R. Cziva and D. P. Pezaros, “On the Latency Benefits of Edge NFV,” 2017

ACM/IEEE Symposium on Architectures for Networking and Communications

Systems (ANCS), Beijing, 2017, pp. 105-106. doi: 10.1109/ANCS.2017.23

78

[9] M. Dawande, J. Kalagnanam, P. Keskinocak, F.S. Salman, R. Ravi, “Approxima-

tion Algorithms for the Multiple Knapsack Problem with Assignment Restrictions”

in Journal of Combinatorial Optimization, vol. 4, no. 2, pp. 171-186, June 2000.

doi: 10.1023/A:1009894503716

[10] A. Manzalini and R. Saracco, “Software Networks at the Edge: A Shift of

Paradigm,” 2013 IEEE SDN for Future Networks and Services (SDN4FNS), Trento,

2013, pp. 1-6.doi: 10.1109/SDN4FNS.2013.6702555

[11] R. Cziva and D. P. Pezaros, “Container Network Functions: Bringing NFV to

the Network Edge,” in IEEE Communications Magazine, vol. 55, no. 6, pp. 24-31,

2017.doi: 10.1109/MCOM.2017.1601039

[12] H. Moens and F. D. Turck, “vNF-P: A model for efficient placement of virtu-

alized network functions,” 10th International Conference on Network and Service

Management (CNSM) and Workshop, Rio de Janeiro, 2014, pp. 418-423.

[13] M. A. Tahmasbi Nejad, S. Parsaeefard, M. A. Maddah-Ali, T. Mahmoodi and

B. H. Khalaj, “vSPACE: vNF Simultaneous Placement, Admission Control and

Embedding,” in IEEE Journal on Selected Areas in Communications, vol. 36, no.

3, pp. 542-557, March 2018. doi: 10.1109/JSAC.2018.2815318

[14] F. Tashtarian, A. Varasteh, A. Montazerolghaem and W. Kellerer, “Distributed

vNF scaling in large-scale datacenters: An ADMM-based approach,” 2017 IEEE

17th International Conference on Communication Technology (ICCT), Chengdu,

China, 2017, pp. 471-480. doi: 10.1109/ICCT.2017.8359682

[15] W. Lu, L. Liang and Z. Zhu, “On vNF-SC deployment and task scheduling for

bulk-data transfers in inter-DC EONs,” 2017 IEEE/CIC International Conference

on Communications in China (ICCC), Qingdao, 2017, pp. 1-4. doi: 10.1109/IC-

CChina.2017.8330366

[16] H. Zhu and C. Iluang, “vNF-B&B: Enabling edge-based NFV with CPE resource

sharing,” 2017 IEEE 28th Annual International Symposium on Personal, Indoor,

and Mobile Radio Communications (PIMRC), Montreal, QC, 2017, pp. 1-5. doi:

10.1109/PIMRC.2017.8292421

[17] J. Kong et al., “Guaranteed-Availability Network Function Virtualization with

Network Protection and vNF Replication,” GLOBECOM 2017 - 2017 IEEE

79

Global Communications Conference, Singapore, 2017, pp. 1-6. doi: 10.1109/GLO-

COM.2017.8254730

[18] V. Nikam, J. Gross and A. Rostami, “vNF service chaining in optical data center

networks,” 2017 IEEE Conference on Network Function Virtualization and Soft-

ware Defined Networks (NFV-SDN), Berlin, 2017, pp. 1-7. doi: 10.1109/NFV-

SDN.2017.8169845

[19] D. Cho, J. Taheri, A. Y. Zomaya and L. Wang, “Virtual Network Function Place-

ment: Towards Minimizing Network Latency and Lead Time,” 2017 IEEE Inter-

national Conference on Cloud Computing Technology and Science (CloudCom),

Hong Kong, 2017, pp. 90-97. doi: 10.1109/CloudCom.2017.12

[20] J. Gil Herrera and J. F. Botero, “Resource Allocation in NFV: A Comprehensive

Survey,” in IEEE Transactions on Network and Service Management, vol. 13, no.

3, pp. 518-532, Sept. 2016. doi: 10.1109/TNSM.2016.2598420

[21] H. Moens and F. D. Turck, “vNF-P: A model for efficient placement of vir-

tualized network functions,” 10th International Conference on Network and Ser-

vice Management (CNSM) and Workshop, Rio de Janeiro, 2014, pp. 418-423. doi:

10.1109/CNSM.2014.7014205

[22] S. Luz, M. Masoodian, D. McKenzie and W. V. Broeck, “Chronos: A Tool for

Interactive Scheduling and Visualisation of Task Hierarchies,” 2009 13th Interna-

tional Conference Information Visualisation, Barcelona, 2009, pp. 241-246. doi:

10.1109/IV.2009.88

[23] R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan and M. Zorzi, “Achiev-

ing Ultra-Low Latency in 5G Millimeter Wave Cellular Networks,” in IEEE Com-

munications Magazine, vol. 55, no. 3, pp. 196-203, March 2017. doi: 10.1109/M-

COM.2017.1600407CM

[24] J. V. Wang, K. Fok, C. Cheng and C. K. Tse, “A Stable Matching-Based Vir-

tual Machine Allocation Mechanism for Cloud Data Centers,” 2016 IEEE World

Congress on Services (SERVICES), San Francisco, CA, 2016, pp. 103-106. doi:

10.1109/SERVICES.2016.21

[25] X. Tang, D. Hong and W. Chen, “Content Replication Scheme Using Stable

Matching in Vehicular Networks,” 2016 International Conference on Identification,

80

Information and Knowledge in the Internet of Things (IIKI), Beijing, 2016, pp.

351-356. doi: 10.1109/IIKI.2016.18

[26] Q. Chu, L. Cui and Y. Zhang, “Joint Computing and Storage Resource Allo-

cation Based on Stable Matching in Data Centers,” 2017 ieee 3rd international

conference on big data security on cloud (bigdatasecurity), ieee international con-

ference on high performance and smart computing (hpsc), and ieee international

conference on intelligent data and security (ids), Beijing, 2017, pp. 207-212. doi:

10.1109/BigDataSecurity.2017.36

[27] B. Dengiz, F. Altiparmak and A. E. Smith, “Local search genetic algorithm

for optimal design of reliable networks,” in IEEE Transactions on Evolutionary

Computation, vol. 1, no. 3, pp. 179-188, Sept. 1997. doi: 10.1109/4235.661548

[28] H. Qin, S. Zhou, L. Huo and J. Luo, “A New Ant Colony Algorithm Based

on Dynamic Local Search for TSP,” 2015 Fifth International Conference on Com-

munication Systems and Network Technologies, Gwalior, 2015, pp. 913-917. doi:

10.1109/CSNT.2015.241

[29] Laborie P, Rogerie J, Shaw P, Vilim P (2018). “IBM ILOG CP optimizer for

scheduling”. Constraints. 23 (2): 210250. doi:10.1007/s10601-018-9281-x.

[30] S. Sugimoto, T. Hattori, T. Izumi and H. Kawano, “Fast Kansei Matching

Method as an Algorithm for the Solution of Extended Stable Marriage Problem,”

2009 International Conference on Biometrics and Kansei Engineering, Cieszyn,

2009, pp. 209-214. doi: 10.1109/ICBAKE.2009.55

[31] T. Pino, S. Choudhury and F. Al-Turjman, “Dominating Set Algorithms for

Wireless Sensor Networks Survivability,” in IEEE Access, vol. 6, pp. 17527-17532,

2018. doi: 10.1109/ACCESS.2018.2819083

[32] Y. Yong and H. Guang, “Research on the Vehicle Stowage Problem Based on

Stable Matching Theory,” 2013 International Conference on Computer Sciences

and Applications, Wuhan, 2013, pp. 442-445. doi: 10.1109/CSA.2013.110

[33] V. Bansal, A. Agrawal, V.S. Malhotra, “Stable Marriages with Multiple Partners:

Efficient Search for an Optimal Solution”, in Baeten J.C.M., Lenstra J.K., Parrow

J., Woeginger G.J. (eds) Automata, Languages and Programming. ICALP 2003.

doi: 10.1007/3-540-45061

81

[34] D. Gale, L. S. Shapley (1962), “College Admissions and the Stabil-

ity of Marriage,” The American Mathematical Monthly, 69:1, 9-15. doi:

10.1080/00029890.1962.11989827

[35] D.G. McVitie, L.B. Wilson, “The Stable Marriage Problem”. Commucations of

the ACM, Vol 114, (1971) 486492. doi: 10.1145/362619.362631

[36] R.W. Irving, P. Leather, D. Gusfield, “An Efficient Algorithm for the “Opti-

mal Stable Marriage”. Journal of the ACM, Vol 34(3), (Jul 1987) 532543. doi:

10.1145/28869.28871

[37] A. Roth and M. Sotomayor, “Two-sided Matching: A Study in Game-Theoretic

Modeling and Analysis”, Econometrica Society Monographs, Vol. 18, Cambridge

University Press, 1990.

[38] A. Roth, “Stability and Polarization of Interests in Job Matching”, Economet-

rica, Vol 52, (1984) 4757

[39] M. Sotomayor, “The Lattice Structure of the Set of Stable Outcomes of the

Multiple Partners Assignment Game,” International Journal of Game Theory, Vol

28, (1999) 567583.

[40] R. Martinez, J. Masso, A. Neme, J. Oviedo, “An Algorithm to Compute the Set

of Many-to-many Stable Matchings,” Mathematical Social Sciences, 2001.

[41] A. Alkan, “On Preferences over Subsets and the Lattice Structure of Stable

Matchings”, Review of Economic Design, Vol 6, (2001) 99111.

[42] A. Alkan, “A class of Multipartner Matching Markets with a Strong Lattice

Structure”, Economic Theory, Vol 19(4), (2002) 737746.

[43] E. Gupta and N. Nitin, “Stable match approach to determine vital link to pre-

serve shortest path length,” International Conference on Computing, Communica-

tion & Automation, Noida, 2015, pp. 408-413. doi: 10.1109/CCAA.2015.7148410

[44] H.W. Kuhn, “The Hungarian method for the assignment problem,” Naval Re-

search Logistics, 2: 83-97, 1955. doi: 10.1002/nav.3800020109

[45] J. Munkres, “Algorithms for the Assignment and Transportation Problems”,

Journal of the Society for Industrial and Applied Mathematics, 5(1):3238, 1957

March. doi: 10.1137/0105003

82

[46] H.W. Kuhn, “Variants of the Hungarian method for assignment problems”, Naval

Research Logistics Quarterly,” 3: 253258, 1956.

[47] “Finding perfect matchings in bipartite hypergraphs”,

https://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch126

[48] R. Su & L. Zhou, & J. Tang, “Locomotive Schedule Optimization for Da-qin

Heavy Haul Railway,” Mathematical Problems in Engineering, 2015, 1-14, doi:

10.1155/2015/607376.

[49] W. Zhu and C. Guo, “A Local Search Approximation Algorithm for Max-k-

Cut of Graph and Hypergraph,” 2011 Fourth International Symposium on Paral-

lel Architectures, Algorithms and Programming, Tianjin, 2011, pp. 236-240. doi:

10.1109/PAAP.2011.35

[50] S. Alqallaf, M. Almulla, L. Niepel and M. Newborn, “Hybrid local search ap-

proximation algorithm for solving the capacitated Max-K-cut problem,” 2015 2nd

World Symposium on Web Applications and Networking (WSWAN), Sousse, 2015,

pp. 1-5. doi: 10.1109/WSWAN.2015.7210302

[51] P. Baran, “On Distributed Communications Networks,” in IEEE Transactions

on Communications Systems, vol. 12, no. 1, pp. 1-9, March 1964. doi: 10.1109/T-

COM.1964.1088883

[52] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos and L. P. Gas-

pary, “Piecing together the NFV provisioning puzzle: Efficient placement and

chaining of virtual network functions,” 2015 IFIP/IEEE International Symposium

on Integrated Network Management (IM), Ottawa, ON, 2015, pp. 98-106. doi:

10.1109/INM.2015.7140281

[53] University of Queensland Article

https://people.smp.uq.edu.au/Infinity/Infinity%2014/Random Walks.html

[54] S. Shin and G. Gu, “CloudWatcher: Network security monitoring using Open-

Flow in dynamic cloud networks (or: How to provide security monitoring as a

service in clouds?),” 2012 20th IEEE International Conference on Network Proto-

cols (ICNP), Austin, TX, 2012, pp. 1-6. doi: 10.1109/ICNP.2012.6459946

[55] M. Satyanarayanan, “The Emergence of Edge Computing,” in Computer, vol.

50, no. 1, pp. 30-39, Jan. 2017. doi: 10.1109/MC.2017.9

83

[56] S. Wang, Y. Hou, F. Gao and X. Ji, “A novel IoT access architecture for vehicle

monitoring system,” 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT),

Reston, VA, 2016, pp. 639-642. doi: 10.1109/WF-IoT.2016.7845396

[57] J. G. Andrews et al., “What Will 5G Be?,” in IEEE Journal on Selected

Areas in Communications, vol. 32, no. 6, pp. 1065-1082, June 2014. doi:

10.1109/JSAC.2014.2328098

[58] G. Dantzig., “Linear programming and extensions”. Princeton University Press,

1963.

[59] C. H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization - Algorithms

and Complexity”. Prentice Hall, 1982.

[60] D. Raz, H. Levy, B. Itzhak, “A resource-allocation queueing fairness mea-

sure,” SIGMETRICS Perform. Eval. Rev. 32, 1 (June 2004), 130-141. doi:

https://doi.org/10.1145/1012888.1005704

[61] R. Cziva, C. Anagnostopoulos and D. P. Pezaros, “Dynamic, Latency-Optimal

vNF Placement at the Network Edge,” IEEE INFOCOM 2018 - IEEE Conference

on Computer Communications, Honolulu, HI, 2018, pp. 693-701. doi: 10.1109/IN-

FOCOM.2018.8486021

[62] R. Jain., D.M. Chiu, W. Hawe,“A Quantitative Measure Of Fairness And

Discrimination For Resource Allocation In Shared Computer Systems,” CoRR.

cs.NI/9809099.

[63] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” in Com-

puter, vol. 36, no. 1, pp. 41-50, Jan. 2003. doi: 10.1109/MC.2003.1160055

[64] L.-J. ZHANG, “EIC Editorial: Introduction to the Body of Knowledge Areas of

Services Computing,” IEEE Transactions on Services Computing, pp. 6274, June

2008.

[65] M. Milenkovic et al., “Toward Internet distributed computing,” in Computer,

vol. 36, no. 5, pp. 38-46, May 2003. doi: 10.1109/MC.2003.1198235

[66] L. KLEINROCK, “A vision for the internet,” ST Journal of Research, pp. 45,

Nov. 2005.

84

[67] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge Computing: Vision and

Challenges,” in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, Oct.

2016. doi: 10.1109/JIOT.2016.2579198

[68] W. Shi and S. Dustdar, “The Promise of Edge Computing,” in Computer, vol.

49, no. 5, pp. 78-81, May 2016. doi: 10.1109/MC.2016.145

[69] S. Pandi, S. Wunderlich and F. H. P. Fitzek, “Reliable low latency wireless mesh

networks From Myth to reality,” 2018 15th IEEE Annual Consumer Communi-

cations & Networking Conference (CCNC), Las Vegas, NV, 2018, pp. 1-2. doi:

10.1109/CCNC.2018.8319326

[70] P. Mell, and T. Grance, “The NIST definition of cloud computing,” 2011.

[71] https://www.gurobi.com/

[72] https://www.ibm.com/analytics/cplex-optimizer

[73] T. Sttzle and H. Hoos, “Stochastic Local Search-Foundations and Applications,”

2005. doi: 10.1016/B978-155860872-6/50021-4.

[74] J. Edmonds, R,M, Karp, “Theoretical improvements in algorithmic efficiency for

network flow problems,” Journal of the ACM19, 248264 (1972).

[75] N. Tomizawa, “On some techniques useful for solution of transportation network

problems,” Networks, 1: 173-194, 1971. doi:10.1002/net.3230010206

[76] K. S. Ghai, S. Choudhury, A. Yassine, “A Stable Matching Based

Algorithm to Minimize the End-to-End Latency of Edge NFV,” Proce-

dia Computer Science, Volume 151, 2019, Pages 377-384, ISSN 1877-0509,

https://doi.org/10.1016/j.procs.2019.04.052.

[77] J. Kleinberg, E. Tardos, “Algorithm Design,” ISBN- 0321295358.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Overview
	Motivation
	Problem Description
	Contribution
	Organization of Thesis

	Background and Related Work
	Background
	Mathematical Modelling
	Stable Matching
	Local Search

	Related Works
	Network Function Virtualization (NFV)
	Stable Matching
	Local Search

	Conclusion

	System Model, Modification and Proposed Heuristic
	Introduction
	System Model
	Overview
	Parameters Used
	ILP Model
	Simulation Environments

	Initial ILP Model Modification
	Generalization for Failures
	Proposed Modification

	Greedy Approach
	Algorithm
	Results
	Result Analysis

	Stable Matching Algorithm
	Algorithm
	Flowchart for Algorithm
	Simulation Results

	Conclusion
	Scope of Improvement

	Extending SMA using Local Search
	Overview
	Algorithm
	Simulation Results
	Conclusion

	Fair Allocation Problem for Allocating the vNFs
	Overview
	ILP Formulation
	Parameters Used
	ILP Model

	Fairness Measure
	Proposed Heuristic
	Local Search Algorithm

	Results
	Conclusion

	Conclusion & Future Work
	Overview
	Main Contributions
	Conclusion
	Future Work

	List of Abbreviations
	Bibliography

