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Abstract

DEVELOPMENT OF SIMULATION AND MACHINE LEARNING SOLUTIONS FOR

SOCIAL ISSUES

When developing solutions for social issues, it can be difficult to evaluate the impact they

may have without a real world implementation. This may not be possible for reasons such as

resource, time, and monetary constraints. To resolve these issues, simulation and machine

learning models can be used to mimic reality and provide a picture of how these solutions

would fare. In Chapters 3 and 4, a deep learning approach to simulating homelessness

populations in Canada is presented. This model would provide policy makers with a tool to

test different solutions for this societal problem without the need to wait for approvals or

funding from local officials. In addition to this solution, data enhancement techniques are

presented as a comprehensive dataset on homeless population transitions for such a model

to learn from does not exist. Lastly, Chapter 5 presents a transfer learning architecture to

detect tents in satellite images. The motivation for this work was that “tent camps” are

common for homeless populations to live in and by having a solution to detect these from

images, policy makers can easily see where to focus resources such as shelters for example.

Similar to the constraint present with the homelessness simulation, a comprehensive dataset

on tents in satellite images does not exists. Therefore, this chapter also presents a solution

to generate an comprehensive dataset for the architecture to learn from. The result of this

thesis is developed solutions to social issues that utilize the power of machine learning and

simulation models.
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Chapter 1

Introduction

This thesis mainly comprises of a collection of articles produced over the course of this degree.

The main focus throughout these works was to solve social related issues using simulation

and machine learning techniques. In Chapter 2, the thesis will provide a background on

relevant topics in this domain that are necessary to understand for the articles to follow.

The topics will include the basis of simulations (Chapter 2.1), discrete models (Chapter 2.2),

numerical methods (Chapter 2.3), and machine learning methods (Chapter 2.4).

In Chapter 3, this thesis will present an article published in IEEE Access about a deep

learning model created to simulate homeless populations [35]. It is estimated that over

235,000 Canadians experience homelessness at some point each year [19, 23, 78, 124, 125,

129]. With the emergence of smart cities, it would be beneficial to leverage the processing

power of deep learning to assist in the planning and testing of different policies to address

this issue. When examining a population of homeless individuals, one can view them as being

distributed, at any one point in time, among several possible states: for example, the street or

an emergency shelter. This chapter aims to provide a means of simulating across these states,

including no longer homeless, over time. The probability that an individual will transition
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from one state to another is called a transition probability. Thus, by creating a matrix of

transition probabilities between all of the states, one would have a transition probability

matrix. If the problem was simply approached by using a mathematical model such as

a Markov decision process, one would run into the issue of how to accurately adjust the

probabilities to produce realistic results. Ideally, there would be a model that can reasonably

modify them based on real-life data. To do this, the chapter introduces two modified deep

learning algorithms; modified deep q-learning (MDQL) and modified neural fitted q-iteration

(MNFQ). These algorithms dynamically produce a set of transition probability matrices

for each week of the year. The modifications made to these algorithms to adapt to the

homelessness problem are discussed that were necessary to create the simulation model.

After training it on high resolution, weekly data, the results will show that when running it

on a low resolution data set that spans 3 years, the model is able to achieve a relative percent

difference from the final population of 12.5%. Immediately following in Chapter 4, this thesis

will present an extension of this work that is currently being finalized for submission in a

journal.

Lastly, in Chapter 5, the thesis presents a deep learning algorithm published at IEEE

Systems, Man, and Cybernetics (SMC) that can be used detect whether or not a tent is in

a satellite image. The motivation for this work was to provide a novel contribution to the

problem of detecting tents in satellite images, to the authors’ knowledge, it has only seen

mathematical approaches in the past [131, 117]. Additionally, because homeless populations

often setup tents for shelters, an algorithm such as the one proposed would help policy

makers easily determine where appropriate services should be allocated. This approach uses

three deep learning methods that utilize transfer learning from the ResNetV2, InceptionV3,

and MobileNetV2 models, trained on ImageNet, attached to a unique architecture referred to

as “TentNet”. The performance of these models is first shown in detecting planes and ships
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within satellite imagery in previously defined datasets as a baseline. Then, a new dataset

is created from a compilation of tents from the xView project to use for testing, along with

another dataset of synthetic images from the generative adversarial networks StyleGAN2

and DCGAN for training. After training on a dataset containing only synthetic images for

the tents class, the ResNetV2 architecture achieved the highest accuracy of 73.68% when

testing on the real satellite imagery.
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Chapter 2

Background

All of this chapter will be submitted as the following peer-reviewed journal article:
• Fisher, A., Giabbanelli, P., & Mago, V. (2021). Impact of Machine Learning on

Simulation Systems.

Over the course of my degree, I researched topics related to simulation systems to
expand my knowledge in the field. As a result, I have created summarizations of many
related works that fit into the background section of this thesis. Using the text here and
more research to come, we plan to publish an extensive survey article.
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2.1 Simulations

A system can be defined as a collection of parts or processes that are organized for some

general purpose [20]. There are four main classes of systems [14, 17]:

(1) Natural systems: a system whose origins are that of the universe

(2) Designed physical systems: physical systems from human design

(3) Designed abstract systems: abstract systems from human design

(4) Human activity systems: an ordered system that consists of human activity

Improving a real-life operations system through experimentation can be a costly, time

consuming, and potentially unethical process. Indeed, a physical experiment can take time

to design, months to implement, and its effect may have to be measured after years. The

experiment can be expensive, for instance when conducting large randomized-controlled trials

or changing urban components in a city (e.g., creating new shelters as an experiment to

reduce homeless). Experiments may be straightforward: to understand the effect of missing

treatment onto viral load in a human body, the best observations would be obtained when

preventing subjects from getting treatment. However, denying treatment would be unethical,

thus such experiments are not feasible. Any one of the these three reasons can lead to the

use of simulated experiments (or ‘simulations ’) instead of physical experiments. Simulations

can be defined as a simplified imitation of a system, on a computing device, that can be

used to perform experimentation for the purpose of better understanding and/or improving

the system [108]. In the context of this thesis, there are two main types of simulation [25]:
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• Equation-based: where the population (structure) of the system can be described by a

variable (e.g., number). This is also know as a macro-level or (quantitative) aggregate

model. Typical techniques include Systems Dynamics or Fuzzy Cognitive Maps.

• Individual-based: where the entities in the simulation are either individuals (agents)

with decision-making capabilities or are simply objects (resources). This is also known

as a micro-level or individual-oriented model. Typical techniques include Agent-Based

Modelling, Cellular Automata, or Network models.

When considering a simulation approach in place of physical experimentation, one needs

to consider the overall goal of developing such a model. Reasons could include predicting

outputs, better understanding a system, discovery of new uncertainties, and so forth. The

valuable information received from a simulation model comes from the capture of qualitative

behaviors [29]. It provides a methodical approach to assist in understanding the key aspects

of a system and stimulate group communication about how the mechanisms of a system [4].

With the use of computational models, understanding, designing, managing and predicting

the workings of complex systems and processes is a simple feat once the model has been

created [14].

The process of developing a model and executing it for simulations is summarized in

Figure 2.1, based on the descriptions from [4, 5, 9]. Once the final step has been completed,

an operational phase takes place where the model is verified against the steps previously

stated then experimented with to fine tune the quality of the outputs. This verification

phase introduces a loop in the process since the fine tuning may involve a change in the

conceptual model, simulation model, or program.
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Figure 2.1: A process for creating a simulation program based on descriptions from [4, 5,
9].

2.2 Discrete Models

Network Model

A network model generalizes the notion of a cellular automaton as any arbitrary topology

can now be used instead of a regular tesselation such as a 2D grid. The entities (i.e.,

nodes) in a network model can also have a richer set of states, using variables such as age

and income, instead of carrying only one categorical state. An example of this discrete

model was presented in [45] where it aimed to “illuminate the core dynamics [29] of social

influences and binge drinking using an agent-based social network [47]”. In this work, they

ran simulations based on hypotheses regarding different ways individuals could be connected

based on independent variables. This was achieved using two consecutive rules applied to

the network [45]: selection rules specifying the types of persons that an individual would

befriend (e.g., using similarity between individual features to infer the existence of a social

tie); and influence rules to specify the effect of peers on an individual (e.g., following the

behavior of most peers in a ‘voting’ approach).

For selection rules, the authors described two different hypotheses: random (assumes that

an individual is equally likely to connect to any of the other peers in the population) and
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similarity (probability that two individuals will connect is based on the number of features

in common). For influence rules, they also compared two approaches: majority (individual

is assigned the state most taken on by their peers) and fractional (individual is assigned a

state taken on by a critical fraction of their peers) [45].

Regardless of the specific instantiation of rules, a network model can be conceptualized

as connecting (or ‘networking’) an individual to others in order to observe the impact that

peers will have.

Agent-Based Model

Agent-Based Models (ABMs) generalize the notion of network model: in addition to the use

of a social network to specify the patterns and function of social interactions, there can be

a physical network enabling interactions between agents and the environment. An example

of this discrete model was presented by Khademi et al. [70] where it looked to use an agent-

based model (ABM) to capture changes in social norms that affect eating behaviors. An

ABM can be defined as a predictive model that seeks to simulate what may happen in the

future. Each of the entities in the population of the model are explicitly represented such

that they interact with each other and/or their environment through discrete time steps [4,

70].

In the case of Khademi et al., they used a network model to generate the interaction

patterns between the agents [46]. The network was specifically small-world, which means

that (i) connections between individuals are, on average, only a short distance away from

each other; and (ii) individuals tend to form communities. To see how changes in social

norms affect the population, a virtual intervention is introduced to the model so that a

certain number of individuals are influenced to change their state. From this, the population



CHAPTER 2. BACKGROUND 9

is simulated to see how/if that changed population influences the neighboring individuals [70].

These types of models will be further explored in Chapters 3 and 4.

2.3 Numerical Methods

Overview of methods

The problem of interpolating irregularly-spaced data points has been studied for many

decades. Consider four methods that will be briefly introduced: Radial Basis Function

(RBF) [103], Inverse Distance Weighting (IDW) [116], Quadratic Polynomials (QP) [39], and

Least Squares (LS) [39]. As presented in [103], RBF represents the interpolating function

as a linear combination of basis functions, one for each training point. The basis functions,

in this case, only depend on the distance (or difference) from the prediction point to the

training point. In [116], IDW is described as an interpolating method where the unknown

points (test points) are calculated with the weighted average of the sampling points (training

points). For QP, as the name suggests, it is simply a quadratic polynomial function that best

fits the training data presented to it. Lastly, for LS, it fits a linear model with coefficients to

minimize the sum of squares between the training data in the dataset and the output from

the linear approximation.

A more modern and commonly used method is called kriging [112]. It is widely used

because it is fast to train and is generally more accurate than other types of surrogate

models. However, the prediction time of kriging increases with the size of the dataset, and

the training can fail if the dataset is too large or poorly spaced, which limits the accuracy

that is attainable” [60]. It is an interpolating method that combines a known function (such

as Gaussian correlation) with a stochastic process in a linear manner. This results in a
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function that uses linear regression coefficients to produce accurate outputs as it doesn’t

perfectly follow that of a smoothed spline along the data but rather, it follows the given

data points perfectly.

Variations of kriging have been introduced to further improve the results and resolve

some of the issues noted before. KPLSK [12] extends kriging to have a partial least squares

(PLS) regression approach. This is suitable for higher dimensional problems and uses fewer

hyper-parameters to still achieve a high accuracy. GE-KPLS [10] extends both kriging and

KPLSK models by adding gradient enhancing. This involves exploiting gradient information

via a slight increase in the size of the correlation matrix to result in a reduction of the

number of hyper-parameters. It typically produces a higher accuracy than kriging but is not

as computationally efficient. RMTS [60] is described as being effective on low-dimensional

problems with a large number of instances. It works by computing coefficients of splines

that are trying to fit the resulting output as best as possible. This model has two choices

when picking the spline:

(1) RMTB: This uses a B-spline and is a better choice when training time is an important

factor

(2) RMTC: This uses a cubic hermite and is a better choice when interpolation accuracy

is an important factor

A Guiding Example to Contrast Numerical Interpolation

Methods With the SUMO Toolbox

Consider a basic simulation model for forest fires that is represented as a grid of cells. Assume

that a cell in this model can be in one of three states at a given time: empty (0), tree (1),
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or fire (2). For each time stamp, each cell in the grid is examined. If it is a tree, it will see

if there is currently (before any other square was updated this time stamp) a fire to the left,

right, above, or below of it; that is, it considers a Von Neumann neighborhood configuration.

If any of those surrounding cells are indeed on fire, the tree being considered starts on fire

as well. However, if the cell is a fire, it simply becomes an empty square. The grid these

cells are in has a closed boundary where the edges are the end of the forest. The forest is

initialized with the parameters grid size N and tree probability (percent chance a tree will

spawn in each grid square) P These are used in the following process:

(1) Create a grid of size N ×N

(2) Cycle through each square in the grid and with a probability of P, populate it with a

tree

(3) For each tree in the first column of the grid, start it on fire

The simulation is complete when there are either no trees left or no fires left. This model

was with n ∈ {100, 500, 700, 1000} and p ∈ [20, 69], p ∈ N, replicated 5 times. In total, there

are 3 × 50 × 5 = 1000. For each run, the total percentile of the forest burned once the

simulation completed was recorded as the class.

With this data, the goal is to apply a surrogate model to it that can accurately predict

the total percentile of the forest burned, based on (1) grid size and (2) tree probability.

To achieve this, the surrogate Modeling Toolbox (SMT) [11] was used to try the following

models: least squares (LS), inverse distance weighing (IDW), quadratic polynomials (QP),

radial basis function (RBF), Regularized Minimal-energy Tensor-product B-splines (RMTB),

and Regularized Minimal-energy Tensor-product Cubic hermite splines (RMTC). Models not

used from this library include: Kriging, KPLSK, and GEKPLS.
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Consider Figure 2.2 which shows how each of the used models performed on this dataset.

A perfect model would have all of the red points along to line to show that it was accurately

able to predict the class (ie. percentage of trees burned). To further visualize these results,

consider Figure 2.3. It first shows the Root-Mean-Squared-Error (RMSE) of the model on

the given data set (ie. how it performed when testing). Then, it shows the predicted values

for three, larger [grid size, percentage] combinations.
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Figure 2.2: SMT models’ results when attempting to predict the number of trees burned in
a basic forest fire simulation model.
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Figure 2.3: A prediction visualization from the trained models in Figure 2.2 that shows how
they did when extrapolating.

The code shown in Box 1 would be used to validate a model where the training and test-

ing values are pulled from the dataset noted before. The outcome of experimenting with this

library was that these models are more for interpolation rather than extrapolation. This is

seen from the low RMSE and, for a majority of the models, an inaccurate prediction respec-

tively. Indeed, in the original paper [11], the models used were described as “interpolating

method(s)”; the best interpolating model for this simulation was RBF.

For the predictions, these particular points were ran to retrieve the results but the models

were not trained on them to see how close they were. The creation of figure 2.3 did show

that the LS model did follow the closest to the Ideal plot for extrapolation but it was still,

however, quite off.
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2.4 Machine Learning Methods

Process Overview

When using a machine learning algorithm, one must consider how the input data is selected

and processed. Consider the simplified set of steps in Figure 2.4.

Obtaining the data
Gathering or generating

data for the problem

Cleaning the data
Incomplete, incorrect, or

noisy instances are dealt
with appropriately

Extracting features

Present the relevant data

that the algorithm will
learn from

Figure 2.4: Simplified steps for data processing in machine learning to ensure that the
algorithm has a clean dataset to work with.

Once these generalized steps have been completed, the data is ready to be presented to

the algorithm. Consider the following basic steps:

(1) Select an algorithm to work with

– These can include, but are not limited to, the discrete models discussed in section

2.2

(2) Experiment with different parameters

– For example, the “learning rate” for neural networks in section 2.4 could be

changed to see how it affects the results

(3) If applicable, simplify the data set or present different features to the algorithm

– Similar to the previous step, the goal here is to see how this affects the output
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Once the model has been fine tuned, the next process is to evaluate the outputs. A

common approach is a method called “10-fold cross-validation” and is described in Figure

2.5. This process will be used in Chapter 5 to fairly evaluate the different models.

Divide the data
Split into 10 equal, non-

overlapping subsets (folds)
ofthe data

Train and test
For each fold, use the other

folds to train the algorithm
then the current one to test

Average the results
For the final accuracy of

the algorithm, average the
results of the previous step

Figure 2.5: An overview of the process for 10-fold cross-validation which is an accurate and
fair way to evaluate machine learning models on a given dataset.

Surface Temperature (Co) Atmosphere Habitable
14.9 Thin True
-63 Very Thin False
-20 Thick True
11 Thin True
-145 Very Thick False

Table 2.1: Example dataset with two features and one binary class that an algorithm could
learn to attempt to interpolate or extrapolate new datapoints.

OneR

Consider the sample data in Table 2.1 that describes different planets. In this set, it provides

two features (surface temperature and atmosphere) and a classification (whether or not it’s

habitable). If one were to add another planet to this list but didn’t know whether or not

it was habitable, they may look at the previous data in the set to determine it. One way
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to do this could be to generate a set of rules and see which one the new data follows. For

example, consider the following rule:

i f ( Atmosphere == Thin or Atmosphere == Thick ) then

Habitable = True

This rule is filtering based on one feature- which is exactly what the OneR algorithm

sets out to do. It simply generates a rule on a single feature that classifies a majority of the

data.

Decision Tree

The rule generated by OneR could be further refined by using the surface temperature feature

to get the following rule:

i f ( Atmosphere == Thin or Atmosphere == Thick ) and

( Surface Temperature >= −20) then Habitable = True

This forms the basis of the concept of decision trees [56]. In the context of a rule, an

instance of data would start at the beginning of each if-statement (root of the decision tree),

see which of the first conditions it met (which branch in the tree from the root node) then, if

applicable, see which of the second condition(s) it met (after travelling down the first branch,

which of the next branches does it satisfy), and so forth until it reaches the classification

(the leaf or bottom-most node in the tree). The data set, however, may not always perfectly
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satisfy the rules. In this case, the classification that gives the smallest error is chosen for the

rule in question [83].

Random Forest

For a random forest, as the name implies, it creates a set of decision trees by looking at the

data set randomly. That is, random instances (rows) of the data set and random features

(columns) to build the trees within that. Once a specified number of trees have been built,

the ones with the lowest errors are combined into a resulting output tree that consists of

many sub-trees [56]. The advantage with this method as opposed to simply creating decision

trees is that it helps avoid over-fitting the data [83]. This becomes a problem when new data

is introduced as it may not fit the patterns present in the initial data set.

Support Vector Machines

Consider the sample data set in Table 2.1 as represented in Figure 2.6.

Atmosphere

Very Thick

Thick

Thin

Very Thin

-150 150-75 75-25 25

Surface Temperature (Co)

Figure 2.6: Table 2.1 represented as a graph to visually see how it would be plotted.
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Where green is a habitable planet (true) and red is not (false). If one were to try and

determine if a new data point on the graph is habitable or not based on the given data,

imagine a line in Figure 2.6 that best separates the green points from the red ones. Then,

for the new data, one would see which side of the line it fell on (ie. habitable or not) and

classify it that way. This is the core concept of support vector machines [16] [114]. The

way that this algorithm determines the best “separation line” (or hyper-plane [53]) for the

data is based on each of the closest data points’ distance from the line. These points are

known as support vectors and the goal is to produce the minimal distance for each one of

them [53] [114].

This example shows a two-dimensional plane as that’s how many features the sample

data set in Table 2.1 has. However, it is possible to produce a graph on a higher dimensional

plane (more features) that generating a hyper-plane for may be beneficial [53]. The same

concept applies here but for a very high dimensionality of features the use of neural networks

is a common approach [53]. In the context of section 2.4, the features for each instance in

the data set would be used as inputs to the network, with the resulting output being the

distance from the hyper plane. As the network is trained with more data, the output is fine

tuned to fit the optimal solution [53].

Neural Networks

This framework for machine learning, more commonly referred to as Artificial Neural Net-

works (ANNs), is an attempt to closely mimic that of one’s cerebral cortex [53]. Figure 2.7

is a visual representation of a basic neural network.
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Figure 2.7: A basic example neural network where the blue neurons are the inputs, red are
part of the hidden layer, and green are the outputs.

Each circle in Figure 2.7 represents a neuron in the network while each line represents a

connection between the neurons. The blue neurons represent the input layer, the red neurons

represent the hidden layer, and the green neurons represent the output layer. There can be

more than one hidden layer, and the output layer does not necessarily need to have the

same number of neurons as the input layer; Figure 2.7 is just a basic representation. Each

connection has a parameter known as the weight of the connection and each hidden neuron,

as well as output neuron, has a parameter known as its bias [53].

When values are presented to the input layer, each neuron has its own input value that

is passed along each of its connections to the hidden layer. This value is affected by the

weight of the connection it is travelling down. The output of the hidden neuron is affected

by all of these values travelling to it, as well as its own bias. This is defined by the following

equation:
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Oi =
∑
j

wijOj + θi (2.1)

where Oi is the output of the ith hidden node, wij is the weight from the jth input node

to the ith hidden node, Oj is the output of the jth input node, and θi is the bias of the ith

hidden node. The resulting output is then typically modified by an activation function. One

that is commonly used is called the sigmoid function:

f(Oi) =
1

1 + e(−Oi)
(2.2)

if the network had multiple hidden layers, this process would still apply as the values travel

through the network. For the example network in Figure 2.7, these outputs would then be

passed to the output layer where the same process would occur to get the final output values.

To “train” the network (ie. minimize the error) a typical process known as back propa-

gation is performed. Once the output layer has been calculated, the error for each neuron is

calculated as follows:

δi = (yi − y′i) (2.3)

where δi is the error of the ith output neuron, yi is the expected output, and y′i is the actual

output of the neuron in question. From this, the algorithm works backwards to update the

weights to the output layer as follows:

∆wij = η δi y
′
i × f(Oj) (2.4)

where η is the learning rate for the network; a value used to slow (smaller value) or increase

(larger value) the learning of the algorithm. This value is then added to the weight it is

being calculated for. For the hidden layer’s error, consider the following equation:
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δj =
∑
i

δi y
′
i wij (2.5)

for Figure 2.7, the same equation as 2.4 is then used to update each weight from the input

layer to the hidden layer.

Q-Learning

Q-learning is a form of reinforcement learning where the model (or agent) is trying to de-

termine an optimal action to perform while in a certain state [133]. The way it learns is by

receiving a reward, positive or negative, for performing said action based on how optimal it

is for an overarching goal. Consider a simple example known as the cart-pole problem [107].

The environment is initialized with a cart that can move left or right and an upright pole

attached to it that is slightly offset such that it will fall over if the cart is not moved. The

goal of the agent is to keep the pole as upright as possible. If it falls past a certain threshold

(such as 15 degrees from the center for example) the agent fails, and the environment is

re-initialized. The rewards given in this problem are based on how well the agent corrects

the falling of the pole, that is, how close the pole stays to 0 degrees from the center [107].

In deep q-learning, the algorithm aims to learn an optimal rule or policy for a Markov

decision process. It does not require a model to process the data; it simply takes a starting

state, performs an action, and observes the new state reached. The learning here also comes

from a reward given for reaching the new state, which the algorithm aims to maximize.

When implementing this approach in a neural network, it could be defined as the distance

from the desired output that it wants to reach.

This algorithm uses a target network and a prediction network to determine the loss of

the system where the output of the prediction is trying to converge with the target. Every
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c number of epochs, the architecture of the target network is updated with that of the

prediction network being trained during this process. In order to maximize the reward, the

algorithm modifies its q-values, which are used when deciding which action to perform as

noted before. Given a sufficient amount of time, the algorithm can get close to converging

on the desired output [28, 62, 133].

NFQ-Learning

In Neural Fitted Q-learning (NFQ), the main concept is to update the q-values in q-learning

using an off-line approach where all previous experiences are considered [107]. These experi-

ences are defined as the original state, action taken, and the resulting state. The reasoning

for this is because when a q-value is updated it could, inadvertently, affect somewhere else

in the table and require an update there as well.

Since this is using an off-line approach (that is, all previous experiences are considered

instead of just the current experience), it will determine the best course of action for the

current q-value being updated in an attempt to avoid this. This results in fast training times

with a minimal amount of input [107] [139]. In addition to this, the algorithm also does not

require a model to process data. It does, however, need a task to be defined which can be

broken down into three points [107]:

• Avoidance control

– A definition to keep the system (neural network) somewhere within the ‘valid’

region of the state space (output)

• The goal
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– As soon as the system reaches a certain area in the state space (the goal) the task

is finished

• Regulator

– Once the system reaches a certain area in the state space, a controller actively

works to keep it there

This algorithm, as well as the previous two sections, are important to understand for the

work presented in Chapters 3 and 4.

Transfer Learning

The learning of these metamodels is achieved through the observation of previous exper-

iments performed where these predictive values were recorded. Once the model has been

trained, it can then be used to predict the outcome of other runs simply based on the input

parameters. But what happens when the experiments are too costly to perform in real life?

Or when there simply isn’t a significant amount of experiments for a range of input param-

eters to train the model? Without proper techniques, the result can be an untrustworthy

model with unrealistic predictions.

To resolve this, consider the concept of transfer learning and the inertial confinement

fusion (ICF) experiments as presented in [75] as an example. To summarize, these exper-

iments required an expensive laser that was costly to run for long periods of time but did

have cheaper experiments that could be done instead. The result was a simulation model for

the cheap experiments and a few instances for the expensive experiments [75]. With the sim-

ulation model, the authors created a dataset containing 1,000 instances. Since the cheaper

experiments were ran so much that an accurate simulation could be created, there’s no desire
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to create a surrogate model that can predict these outputs nor resource requirements. But

the knowledge from these runs is useful as the outputs may contain a pattern that the model

can learn from [63, 87, 89]. The issue, then, is how well the model can predict the expensive

experiments since it lacks a large amount of training data to try and model a pattern from.

It would almost become an extrapolation problem at that point due to this – which is much

more difficult than interpolation [14, 87].

With transfer learning, the goal is to combine the respective knowledge of the expensive

and cheap datasets to create a final model that does well with “expensive” predictions.

Consider a concept referred to as PerfNet Architecture [89] which has three neural networks

(as described in section 2.4): source, target, and final. The first step is to train the source

network on the “cheap” dataset so that it nearly perfectly fits (overfits) the data. Then, the

target network (which is untrained at this point) is appended onto the source network such

that the output(s) of the source network act as inputs to the target network. In addition

to this, the parameters of the source network (ie. biases and weights) are frozen so that

they can’t be updated any further [75, 89]. Then, the “expensive” dataset is input to this

resulting network and trained until the outputs reach an accuracy threshold set by the user.

The result is the final network that can then be used for predictions. In the case of the

ICF experiments [75], they only used 20 “expensive” instances to train the network with a

handful left to test the model.

The resulting model preserves the knowledge gained from the “cheap” dataset while

appending the small amount of knowledge gained from the “expensive” dataset. This is

better than simply making a surrogate model for the entire dataset as that will introduce

uncertainties when it comes to the “expensive” predictions that are more desirable [75, 87,

89]. Similarly, if a neural network was simply trained on the entire dataset, it would lose

knowledge gained from the “cheap” dataset as the “expensive” dataset would introduce noise
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that the network would try to accommodate for [87]. Experiments performed in [89] showed

the latter to be true by testing it on a particle physics simulation known as Kripke [74].

They found that, for this problem, random forests (as described in section 2.4) performed

the best out of the models they tested but that a network created with transfer learning

performed significantly better than that [74]. This technique will be used in Chapter 5.

In the chapters to follow, articles that use machine learning to resolve social and health

issues that are either published, in proceedings, or in progress, will be presented. The next

two chapters (3 and 4) will describe a deep-learning model for agent-based populations, with

a specific focus on homeless individuals. The motivation for this work was to provide policy

makers with a deep learning solution to test different approaches at assisting this population.
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Chapter 3

Simulating the Evolution of Homeless

Populations in Canada Using MDQL

and MNFQ Algorithms

All of this chapter was published in the following peer-reviewed journal article [35]:
• Fisher, A., Mago, V., & Latimer, E. (2020). Simulating the Evolution of Homeless
Populations in Canada Using Modified Deep Q-Learning (MDQL) and Modified Neural
Fitted Q-Iteration (MNFQ) Algorithms. IEEE Access, 8, 92954-92968.

This publication captures my contribution to a larger research initiative that applies ar-
tificial intelligence techniques to modeling/predicting variables in a population of home-
less people assisting a Canadian city in distributing support. I modified pre-existing
artificial intelligence techniques to create a novel approach in simulating homeless in-
dividuals as the core of a platform used by policy makers. The main changes to these
algorithms were as follows: removing the “action” step in q-learning, modifying q-
learning’s concept of “rewards” to utilize a training dataset, and updating the q-values
in a way that reflects a transition probability matrix. I took the lead on developing
this publication with the support and guidance of my thesis supervisors. We elected to
publish in IEEE Access because of its peer-review process and open-access policy which
was beneficial for my first publication at the university.



CHAPTER 3. SIMULATING THE EVOLUTION OF HOMELESS POPULATIONS IN
CANADA USING MDQL AND MNFQ ALGORITHMS 28

3.1 Introduction

The Problem of Homelessness

Homelessness is a source of growing concern across Canada as well as in most developed

countries [123], with numbers increasing in most Canadian cities [19, 23, 78, 124, 125, 129]

and internationally [27, 85, 31]. It is estimated that on any given night, about 567,715 people

are homeless in the United States [27], and 35,000 in Canada [40]. Homelessness is associated

with worse physical and mental health [33, 61], increased mortality [109], greater criminal

behavior and victimization [110], and high health and criminal-justice-related costs [79].

The causes of the rise in homelessness are not completely understood but certainly include

rising income inequality [76] together with rising rents in many areas [48]- leading to a

growing shortage of affordable housing. At an individual level, many factors predispose

a person towards homelessness, including low educational attainment, joblessness or low

income, poverty, mental illness, and substance abuse [100, 130]. In between these macro-

and micro-level factors are institutional arrangements such as lack of adequate supports for

people who were previously homeless or who are at risk of homelessness who leave the youth

protection system, prisons, and hospitals [100]. These factors interact with each other in a

complex manner [100].

In recognition of the complexity of the phenomenon, numerous policies and programs,

operating at different levels, have been put in place to address homelessness. These have

included increasing the availability of affordable housing (whether through building new af-

fordable housing units or providing low-income individuals with rent supplements); helping

individuals who have become homeless regain permanent housing, through a variety of more

or less intensive and short- or long-term supports, notably Housing First, which offers in-
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dividuals a combination of a rent subsidy and the long-term support of a mobile clinical

team [64, 127]; and an array of primary, secondary and tertiary prevention measures [41].

The complexity of the phenomenon, together with the wide range of possible remedial and

preventive measures, means that addressing homelessness effectively is challenging, and ex-

perts disagree on many aspects of the policies that should be pursued in a given city or

geographical area.

Computer Simulation Modeling to Help Address Homelessness

Computer simulation modeling offers a possible decision support tool to address homeless-

ness. This approach has often been used to try to gain deeper insight into complex problems

of many kinds [120]. Limited attempts in this direction have been made until now with

regards to homelessness, however. These attempts can be classified, to date, into 4 groups:

(a) economic models calibrated to individual cities [88]; (b) entirely mathematical models

that do not incorporate any city- or area-specific empirical data; (c) mathematical models

based on a survey of empirical results found in the literature [86]; (d) statistical models

that relate the number of homeless individuals in an area to a number of other area-specific

variables. Among these, only the first has the potential to simulate the effects of alternative

specific policies on the number and composition of homeless individuals in an area. The

one study of this type that the authors have identified is, however, entirely focused on the

housing market and the effects of alternative housing subsidy mechanisms; It does not take

into account programs to help homeless individuals access housing, such as Housing First;

nor does it distinguish among the different states that homeless people can find themselves

in, such who experienced a one-time, brief episode in a homeless shelter, or someone who

has been alternating for years between sleeping in street locations and in shelters. This was
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the main objective of this project.

Research Challenges

Constructing such a fine-grained model poses two main challenges: how to structure the

model, and where to get the data to calibrate it. The authors chose to structure it as a

Markov model, with a cycle length of one week, in which individuals can be located in

any one of 8 states: street location, shelter, transitional housing, substance abuse treatment

center, hospital, prison, not homeless (but previously so), or deceased. Individuals transition

from one state to the next on the basis of a set of transition probabilities. The capacity of

shelters and transitional housing in a city, by age group (25 and under or over 25) and gender,

is input into the system, and occupancy of these resources cannot exceed 100%. (The other

types of institutions mostly serve non-homeless individuals and their capacities can thus, for

this chapter’s purposes, be considered unconstrained.)

To derive the transition probabilities, this work used data from the Montreal site of a

large Canadian study, the At Home/Chez Soi trial. This site followed 463 initially homeless

individuals up to two years at a time, reconstructing their day-by-day housing trajectories.

Thus it provides data at a resolution sufficient to enable simulation of each individual in

a cohort separately. This is necessary given the work’s desire to incorporate shelter and

transitional housing capacity constraints. Recruitment for this study took place, however,

between 2009 and 2011, and the sample was not designed to be representative of the homeless

population as a whole. Furthermore, the service system in Montreal has evolved since the

early 2010s, notably with the progressive addition of Housing First programs with a combined

capacity of several hundred.

In order to calibrate the model, the authors had access to data from Montréal’s March
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24 2015 and April 24 2018 point-in-time homelessness counts, which provide not only the

number of homeless individuals at those dates, but detailed data on their locations and de-

mographic characteristics. The authors wanted, therefore, to base the work on the transition

probabilities to reproduce the evolution of the number and composition of the homeless pop-

ulation from the first count to the second. A method is needed for adjusting the transition

probabilities so that they fit the point-in-time data. As some individuals left the system (due

to death or exiting homelessness), others also enter it, becoming homeless for the first time

and, in some cases, remaining homeless for the long term. This also needs to be represented

in the model. To this end, some data were available from another survey of homeless indi-

viduals conducted in Montreal five months after the first point-in-time count. These data

provided information, for individuals who were homeless on August 24, 2015, on whether

they were homeless on March 24, 2015, and if so, in what type of location. This work’s basic

approach was to use two modified q-learning algorithms to adjust the transition probabilities

so as to be able to reproduce, as closely as possible, the 2018 count data starting with those

from 2015. These counts are described and explored further in the next chapter.

Summary of the Algorithms and Contributions

The proposed simulation model works with two, modified deep-learning algorithms; the orig-

inals being deep q-learning[28] and neural fitted q-iteration[107]. Originally, the algorithm

would start in an initial state, perform an action, and observe the new state it transitioned

to [28], to determine a reward [62]. Instead, with the proposed simulation, the action per-

formed is simply determining which new state to transition to; the algorithm is picking the

new state based on the transition probability matrix. The reward for the algorithm is deter-

mined by what the current populations in the simulation are and what the final populations
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should be (from the training data) after the simulation has ended.

For neural fitted q-iteration, the original algorithm worked with deep q-learning by per-

forming an offline update to determine the best action to perform in the algorithm’s current

state. It is offline in a sense that all previous changes are considered when doing it [107]. The

main modification the authors made here was that, instead of determining the best action,

the algorithm calculates an offset to modify the new q-values by, based on previous changes.

This offset helps lower or increase the q-values, which are later interpreted as the transition

probability matrices for each state transition pair. In a sense, the result is the best action

that the algorithm determines to ensure realistic transitions between states.

To summarize, this work made the following modifications to both the deep q-learning

and neural fitted q-iteration algorithms:

• Removed the “action” step

• Modified the purpose of the reward term

• Modified the neural fitted q-iteration to make it more versatile for other applications

Organization of the Chapter

In the next section, this chapter examines related work to the proposed model. The authors

discuss recent papers on homelessness issues, modelling approaches, and machine learning

in social sciences to show how this family of algorithms has been beneficial in other imple-

mentations. In the subsequent section, the authors look at the methodology of the proposed

approach and describe each modified algorithm in detail. Lastly, the authors provide a dis-

cussion of the results and propose future work to improve the model. This section will also

include results when the model was applied to Montreal’s 2015 and 2018 homelessness count
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data, using transition probabilities derived from the Montreal site of the At Home/Chez Soi

project [3, 119].

3.2 Related Work

Previous Efforts to Model the Phenomenon of Homelessness

As mentioned earlier, previous efforts to model the phenomenon of homelessness can be

classified into 4 groups: (a) economic models calibrated to individual cities [88]; (b) entirely

mathematical models that do not incorporate any city- or area-specific empirical data; (c)

mathematical models based on a survey of empirical results found in the literature; (d)

statistical models that relate the number of homeless individuals in an area to a number of

other area-specific variables.

Authors of [88] provide, to the authors’ knowledge, the only example of the first group

of efforts. This chapter describes it in more detail as it is the only one that in some ways

approximates what this work is trying to do. The authors used a general equilibrium model of

the housing market to examine policies to reduce homelessness, calibrated for four California

cities. Theirs is a model of the housing market, in which “dwelling units filter through a

quality hierarchy... and in which households of various income levels choose among these

discrete types.” Households may choose to opt out of the housing market and thus become

homeless. They are more likely to do so if available housing is unaffordable to them. Thus,

increases in homelessness are driven by changes in rents. They concluded that “a very

large fraction of homelessness can be eliminated through increased reliance upon well-known

housing subsidy policies”, in particular, rent subsidies [88].

Authors of [38, 96] provide examples of the second type of model. As these models do
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not incorporate any empirical data, they are of limited value as a decision-support tool for

a particular city. Alone to the authors’ knowledge in the third group, [86] applied a well-

established technique called fuzzy cognitive maps to analyze the impact of social factors on

homelessness. Their macro-level model, which was calibrated using information extracted

from the literature, was able to reasonably represent reality for a range of scenarios. The

direction and strengths of the relationships between concepts included in the map approxi-

mated their action in reality. Education emerged as having the greatest force in the model.

Again, however, the model remains general, and not useful as a decision-support tool for a

particular city [86].

Finally, the fourth group is comprised, again, of a single effort. [58] led the development

of the “Homelessness analytics initiative”1. This web site compiles a large amount of data

on homeless counts in the many US areas where these are now regularly carried out, and

social (e.g., crime) and health (e.g., county-level life expectancy) indicators as well as other

contextual factors (e.g., fair market rents). The web site also provides access to a set of

forecasting models. These models are based on regression analyses of homeless counts against

social indicators and other predictor variables. However, once again, these statistical models,

being based on commonly available social and economic indicators, are of limited usefulness

in estimating the effects and costs of alternative policies in a particular city or area.

Mathematical Modelling

A mathematical modeling presented by Zhang, T. et al at the Winter Simulation Confer-

ence in 2018 where the main issue they addressed was that previous attempts at automating

batching in job shops were falling short of their goals in real-life environments. The batching,

1http://homelessnessanalytics.org/

http://homelessnessanalytics.org/
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here, is done when several jobs are processed simultaneously [139]. The approach was due to

the fact that the typical job was too complex in nature and not fit for a stochastic environ-

ment; that is, the jobs lacked a linear pattern that could be easily modelled. Practitioners

also preferred real-time batching where the scheduling was considered as more of a decision-

making problem. To solve this problem, this chapter introduces a sequential decision-making

process using Markov decision processes.

Another mathematical model by Batata, O. et al focused on optimizing care resources by

predicting the burnout in a caregiver to admit them to respite services before hospitalization

is needed [6]. The main issue was that previous attempts fell short when it came to actually

predict the number of patients needing to be admitted. Respite care is a new service that

aims to help decrease the burnout risk in caregivers. When this is not taken care of in time,

the caretaker eventually needs hospitalization, which is costly. This chapter talks about the

need to be able to predict burnout in a caregiver and admit them to respite services before

hospitalization is needed.

Authors of [6] attempted to use the addition of machine learning as well as Markov chain

transition matrices to create a dynamic burnout model with two states for the caregivers:

emergency and normal. By having the ability to see what a caregiver’s next state will be, the

system could efficiently decide whether or not they should be admitted into respite services.

From their experiments, Batata et al’s model performed best using a neural network ; the

objective was to minimize the number of hospitalized individuals. One major shortcoming

of this work, however, was that the Markov chain was strictly built using only burnout data

without considering attributes specific to the caregiver and their patient.
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Machine Learning and Simulation

Authors of [62] introduced a new approach using machine learning and simulation to optimize

the dose calculation for radiotherapy. This approach involved two steps: an agent-based

simulation of vascular tumor growth and a q-learning algorithm to optimize the radiation

dosages. The optimal outcome when combining these two steps is to achieve a cure for tumor

with minimal side effects. The researchers noted that many studies had been done in the

area of radiotherapy simulation, and optimization but not in optimizing radiotherapy based

on simulation. Due to a lack of real data, the agent-based simulations noted before were

ran to help the generation of synthetic data needed for the optimization. The outputs allow

interfering in the simulations to examine different scenarios. Since this area has not been

researched much, it is hard to note any shortcomings. Two points of consideration: there

was no real-life experiment, and this approach uses a process they called inverse planning.

This process is aided by a computer to test (simulate) different treatment plans before any

physical experimentation is done [62].

An important theme amongst recent papers in this area involved q-learning. More pre-

cisely, neural fitted q iteration (NFQ) [107]. The main issue that this algorithm addressed

was an issue that arose with multi-layer perceptrons when training them. During the training

process, when modifying a parameter change in one area of the network, the algorithm has

the potential to influence other values later on in the network. The approach inadvertently

destroys the effort done so far in other regions and leads to long learning times or, worst case,

not learning at all. In order to solve this limitation, when updating the q-value functions,

the algorithm offers previous knowledge explicitly as well by storing all previous experiences

in terms of state-action transitions in memory.

To implement their approach, the algorithm uses what’s called an off-line update rule.
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In other words, the algorithm considers an entire set of transition experiences- contrary to

traditional q-learning, which uses an on-line update rule. This strategy gives the advantage

of applying advanced supervised learning methods to the network. For example, [107] uses

Rprop, which is very efficient and very insensitive to the learning parameters. NFQ falls

under the fitted q-iteration family of algorithms; it is a memory-based method used to

train q-value functions based on multi-layer perceptrons. By exploiting generalization, the

algorithm is able to achieve a high level of data efficient learning. This chapter provides three

real-life scenarios that are quite diverse in specifications. This shows that the algorithm is

applicable to a wide variety of tasks and can work well with real-life scenarios.

3.3 Methodology

Data Source

The work in this chapter uses data from the At Home/Chez Soi project [3, 119] to train the

proposed algorithm. Researchers gathered the data of individuals who entered and exited

different states (street, shelter, etc.) at different points in time over a year. Interviewers

tracked these movements using retrospective questionnaires administered every 3 months.

This method of data collection makes it possible to generate transition matrices on a week-

to-week basis. Since each person will be simulated individually, this work can accommodate

the exact information of data available to us. In the chapter to follow, this dataset will be

further described as the intricacies present were not considered for this work at the time.
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Data Pre-processing

Transition probabilities were estimated from data collected at the Montreal site of the At

Home/Chez Soi project [81]. This was a large (n=2,148) randomized controlled trial of Hous-

ing First for homeless individuals with mental illness, compared to usual services, conducted

in five Canadian cities: Vancouver, Winnipeg, Toronto, Montreal, and Moncton. Housing

First offers individuals experiencing homelessness immediate access to a choice of subsidized,

rental market apartments, together with the support of a mobile team of mental health and

other professionals [119]. Study participants were all people with mental illness, who had

been homeless for varying lengths of time and who expressed an interest in being housed.

They were recruited between October 9, 2009 and May 31, 2011. They were interviewed at

3-month intervals for up to 2 years. A questionnaire was used to reconstruct places they had

been each night since the previous interview [51].

Machine Learning Based Algorithms

At a basic level, this approach can model the simulation using a Markov decision process

with a transitional probability matrix. This matrix is calculated by looking at the number

of individuals who go from one state to another, then calculating the probability that this

will occur based on the total population in that initial state. An example set of transition

probabilities can be seen in Table 3.1. Using such a model would essentially be a simpli-

fied, mathematical representation of reinforcement learning [139]- a common approach when

training machine learning models.

By using a mathematical model, such an approach would need to monitor the outputs

and see if any changes are needed for the model. This process can become cumbersome when

working with large datasets, such as a population of people, as the values would, initially,
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need to be updated constantly to produce accurate results. To address this problem, the

authors create a machine learning model that, although requiring a small amount of rein-

forcement learning, will mostly be unsupervised when training on real-life data. The small

amount of reinforcement learning here is from the value of an offset and if it is minimizing

from previous iterations. An example visualization of these probabilities and how they may

change from one time period to the next can be seen in Figure 3.1, which shows the values

of a basic set of transition probabilities from one time period to the next. The arrows in

this diagram represent the transition from one state to another, with their probability noted

as the p value. The authors demonstrate the model on data from the At Home/Chez Soi

project [3, 119] to show how it learns and modifies the transition probability matrices over

time.

Figure 3.1: A simplified example set of transition probabilities between states and how
they may change in a machine learning model. Note that this is not showing all possible
transitions [36].

Furthermore, one shouldn’t assume that a single transitional probability matrix will
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Table 3.1: Another example of a simplified set of transition probabilities [36] that is repre-
sented in a tabular form.

work when simulating on a higher resolution scale such as week-to-week. To address this

assumption, the model will, instead, generate a probability matrix for each week of the

year. Although the goal of this model when training is to accurately predict the known

final populations, the authors are also wanting to use it to predict realistic results for future

populations where the end population is unknown.

Homelessness Simulation

Over time, homeless individuals can transition between many different states of homeless-

ness. For the proposed simulation, these states include street, shelter, hidden homeless, not

homeless (but previously were), transitional housing, hospital, rehabilitation (drug/alcohol),

and prison.2 The prediction that an individual in an initial state si will transition to a new

state sn can be defined as a conditional probability P (sn|si) as given in Equation 3.1:

P (sn|si) =
N(si, sn)

N(si)
(3.1)

where N(si, sn) is the number of people transitioning from si to sn and N(si) is the

2Adapted from the At Home/Chez Soi project [3, 119]
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number of individuals in si. An individual can transition from their initial state to their

initial state (no change) or from one state to another state (by the end of week), for instance,

street to shelter. Therefore, for the states defined before, one would have 72 probabilities

(a matrix of 8 initial states and 9 new states) for each state-to-state transition–excluding

death to another state. However, from just analyzing the data alone, the proposed approach

would only take into account the change in populations. Other outside factors can also affect

this probability. Consider the following graphs where the authors analyzed the cumulative

population of six males (Figure 3.2) and seven female (Figure 3.3) shelter populations in

Montréal,3 respectively, over the course of a year as well as the temperature (Figure 3.4)4

over that time period. Here, one can clearly see an impact on the shelter population of

temperature. This is an example of how simply calculating the transition probability matrices

for two points in time will not suffice to create an accurate simulation. This chapter proposes

a model where the transition matrix probabilities are dynamically updated based on the

current state of the system and what the end result should be when training.

MDQ-Learning

The proposed approach will be interpreting the q-values from q-learning (Chapter 2.4) as

transition probabilities for each state-to-state transition. One of the algorithm’s main dif-

ference from deep q-learning is that it only uses one neural network ; loss will be calculated

by looking at the previous output to see how it is converging. Another difference is how this

work will process the state transitions. Unlike deep q-learning, the data being used does not

necessarily have an action that leads to a new state; it is a direct transition.

In order to simulate each member of the population accurately, the authors introduce a

3Data provided by the city of Montréal
4Data retrieved from https://montreal.weatherstats.ca/metrics/temperature.html
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Figure 3.2: The change in Montréal men’s shelters’ population over time.

sub-epoch that occurs on every epoch in the algorithm. This sub-epoch will run each mem-

ber, through the network, with their state and action, producing an ideal q-value for them

individually. To get the reward for this new q-value, consider the following in Equation 3.2:

Rs(si, sn) = 1− Qe(si, sn)

Q(si, sn) +Qe(si, sn)
(3.2)

where Qe(si, sn) is the calculated q-value at the current epoch and Q(si, sn) is the q-

value for that state-action pair as of the previous epoch. The actual q-values– Q(si, sn)– are

derived from the actual data as per Equation 3.1.

In deep q-learning, the goal is to maximize this reward. Since the goal is, instead, to

produce the best q-value for this transition, one can see an obvious problem with this formula.

If the network needs to lower the value of a probability, it would be difficult with this reward
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Figure 3.3: The change in Montréal women’s shelters’ population over time.

formula as it only produces positive values. This topic is addressed in the MNFQ-Learning

section.

The authors introduce a simple approach in determining the new states in a population

commonly known as a roulette wheel. Consider the following in Equation 3.3:

Q(si, sn) >
x∑
j=1

Q(si, snj) (3.3)

where x is the total number of new states and i is the current state the individual is in.

This definition assumes that the q-values have been normalized between 0 and 1. To select

the new state, one can simply generate a random number between 0 and 1 then see where it

falls in the range (denoted by the > symbol).

For example, if you had three probabilities 0.25, 0.35, and 0.4, the wheel would look like
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Figure 3.4: Montréal’s temperature over time from mid 2018 to mid 2019.

the following in Equation 3.4:

Wheel = 0.25 > 0.60 > 1.00 (3.4)

Then, the model would generate a random number, for example 0.55. Next, the model

would identify if it falls between 0 and 0.25. If it does not, it would go to the next range

which is 0.25 and 0.60; which would be a match. So, the selected action would be action 2.

Once all of the sub-epochs have ran, the approach can calculate the new q-values for the

algorithm. The reason for this process is to ensure that all datapoints from every individual

is accounted for when training as an epoch covers the entirety of the dataset while a sub-
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epoch covers each dataset for each individual. Consider the following in Equation 3.5:

Q′(si, sn) = Q(si, sn) + [1−
∑N

j=1Rj(si, sn)

N
]η (3.5)

where Q′(si, sn) is the new q-value, Q(si, sn) is the previous q-value; N is the size of

the population; Rj is the reward for each member of the population in that transitioned

from state si to state sn, and η is the learning rate. This equation essentially takes the

average of the rewards from the maximum reward, multiplied by the learning rate, as the

value to update the q-value by. After all of the updates have occurred, the approach will

then normalize the results to ensure they still fall in between 0 and 1.

The last consideration is how the network is trained. Consider the following in Equa-

tion 3.6 for the error:

Eout =

∑x
j=1[Q

′
j(si, sn)−

∑N
k=1Qek (si,sn)

N
]

x
(3.6)

where x is the number of q-values in the table and Qek is the outputted q-value for

each member of the population that transitioned from state si to state sn. This aspect is

calculating the average difference between each new q-value and the average q-value that the

population outputted. This error will then be applied to the output neuron of the network

so that back-propagation can be performed.

In deep q-learning, the goal is for the prediction network and target network to converge.

Since the implementation only uses one network, this work will simply look at how the

q-values are converging from one epoch to the next. Consider the following definition in

Equation 3.7:

Loss =

∑x
j=1[

∑y
k=1[Q

′(sij ,ank )−Q(sij ,ank )]
2

y
]

x
(3.7)
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Here, it is getting the average of the average of the differences between the new q-values

and the old q-values squared where x is the number of states and y is the number of actions.

To input into the states to the network, the approach will simply create an array of them

and assign their index in the array as their value to the network. Therefore, the network

takes two inputs: the index of the state of the person and the index of the state to which

they are transitioning. The output is an optimal q-value based on the current state of the

model for the current member of the population. The proposed model has a network with

four hidden layers having 4, 8, 16, and 24 nodes respectively. The authors do give the option

of modifying the size and count of the hidden layers here, but this is the authors’ suggestion

from testing the model. For example, if one had the states street, shelter, and hospital,

street would be recognized as state 0, shelter as state 1, and hospital as state 2 to this

neural network. As for an initial transition matrix, the authors suggest manually analyzing

the input data first and calculating a matrix to speed up the algorithm’s training. These

probabilities can be calculated using Equation 3.1 in the homelessness simulation section.

MNFQ-Learning

In order to determine an accurate q-value (or transition probability for this work’s purposes)

for the next epoch, this algorithm will calculate an offset to add onto the calculated q-value

from MDQL. Consider the following in Equation 3.8:

Q′(si, sn) = Q(si, sn) + [1−
∑N

j=1Rj(si, sn)

N
]η

+δQ(si, sn)η

(3.8)

This is the same equation as the new q-value in the MDQL algorithm but with the offset,

δQ(s, a), that MNFQL will calculate. The probability (or q-value) is accurate based on

whether or not it is realistic for the training data.
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The way this offset will be calculated for each Q(si, sn) is by considering all of the

previous q-values outputted by the MDQL algorithm for that state-action pair, the current

population in the new state, the known end population for new state, and the weeks left

in the simulation. To increase accuracy with the q-values, the approach will use a separate

neural network for each state-new state pair. Each network is individually trained with the

data for its respective state-new state pair, before training the primary MDQL algorithm as

a result. For example, if this problem was applied to the probability set in Table 3.1, the

result would be 5× 6 = 30 networks.

Each network will take the following inputs: each q-value previously calculated for that

pair individually, the population in the new state, weeks left in the simulation, and the

current q-value. The output of the network will be the end population for the new state.

The q-value that gives the lowest error will be defined as α, and the output error from that

will be used for back propagation in the network. This error, E, is simply the difference

between what the network outputs and the known end population. For the offset, consider

the following in Equation 3.9:

δQ(s, a) =
α∑x

j=1Q(si, sn)

(
−E
Nsn

)
(3.9)

where Nsn is the known end population size for the new state. Since the network is

taking the total population in the new state, it will need to times by the best q-value divided

by the sum of all states with this new state (the summation would exclude the state-new

state pair that α is a part of and add α on instead) to get an estimated percentage that this

state transition will contribute to the final population. This equation will then give us the

relative, percent difference in the end population, multiplied by this.

For the rewards in MDQL, the authors propose the following modification to the formula
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as shown in Equation 3.10:

Rs(si, sn) = σQ(si, sn) (3.10)

where σQ(si, sn) is the immediate value from δQ(s, a). This uses the same formula for

δQ(s, a), but α (previously the q-value that gives the lowest error) is, instead, the q-value

calculated for the current individual. If the error from this is less than 20%, back propagation

is performed on the state, new state network.

3.4 An Example

Consider a set of ten (10) individuals that can only be in one of three of the following

homelessness states: shelter, street, and hospital. These individuals are divided up as shown

in Figure 3.5.

Figure 3.5: An example homeless population that consists of 10 individuals across 3 states.

For each of the states, the algorithm “sees” the following: shelter as 0, street as 1, and

hospital as 2. Therefore, for the population in figure 3.5, the algorithm would “see” it as an

array as follows: {0, 0, 0, 0, 0, 1, 1, 1, 2, 2}.
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Initialization

Consider the population in the previous section and, for the sake of simplicity, say that a

year has 4 weeks (or quarters). This example will have two (2) years of data as shown in

Figure 3.6.

Figure 3.6: An example dataset of a homeless population over time.

The algorithm would “see” the data in Figure 3.6 as follows:

YearOne = {0, 0, 0, 0, 0, 1, 1, 1, 2, 2}, {0, 0, 0, 0, 1, 1, 1, 1, 2, 2}, {0, 0, 0, 0, 1, 1, 2, 2,

2, 2}, {0, 0, 0, 1, 1, 1, 1, 1, 2, 2}

YearTwo = {0, 0, 0, 0, 0, 0, 1, 1, 1, 2}, {0, 0, 0, 0, 0, 1, 1, 1, 1, 2}, {0, 0, 0, 0, 0, 1, 2, 2,

2, 2}, {0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2}

Since the algorithm is presented with three (3) states (shelter, street, and hospital) and

four (4) quarters in a year, it will initialize the transitional probabilities for each quarter

(4 sets in total) as shown in Figure 3.7 (these were randomly generated with the highest

probability given to stay in the same state).

The next step of the initialization is to create one (1) neural network for MDQ-Learning
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Figure 3.7: An example transition probability matrix for a homeless population across 3
states.

(used to simulate) and P (number of probabilities) individual neural networks for MNFQ-

Learning (used to train the model).

Training: Initial Loop

The algorithm starts by cycling through the data for each week of each year. Let’s follow

the first week of year one:

Input population = {0, 0, 0, 0, 0, 1, 1, 1, 2, 2}

This population is passed to the MDQ-Learning algorithm to simulate each person in-

dividually. Let’s follow the first person who is in the shelter state; consider an example

transitional probability matrix for this week of the year (week 1) in Figure 3.8.

Since the individual being followed is in the shelter state, the approach is only concerned

with the probabilities that they will transition to other states from their initial state. There-

fore, transitioning to the shelter has a 72% probability of occurring, street a 22% probability,

and hospital a 6% probability. With that in mind, the new state for this individual is deter-
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Figure 3.8: An example of what the first week’s transition probability matrix looks like in
this section’s example.

mined using a weighted roulette wheel based on these probabilities as shown in Figure 3.9.

Figure 3.9: A sample, weighted roulette wheel that follows the transition probability matrix
for this section’s example.

The wheel is “spun” (a random number is generated) to determine which state to transi-

tion this individual to. The new state is recorded (for the individual being followed, street),

and input into the MDQ neural network with the previous state (for the individual being

followed, shelter) to get a recommended transition probability for the individual. This out-

put will be defined as Qe(si, sn), where si is the initial state, sn is the new state, and Qe is
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the output. Consider Figure 3.10 which shows a sample MDQ network.

Figure 3.10: An example MDQ network that takes the previous and current state of an
individual as an input and outputs an optimal transition probability.

Next, with the MNFQ neural network for the current individual’s transition (in this case,

the shelter → street network), it takes the following inputs:

(1) The transition probability calculated for the current individual, normalized with the

current value (from Figure 3.10, 0.48)

(2) The current population in this new state (in this case, after the transition, there’s now

4)

(3) The weeks/epochs left to the next population (in this case, the next set of available

data is 1 quarter away)

The goal is to see the output’s error from the end population (start of next week) in this

new state (for street, 4). This error will be referred to as E.

The error is used to determine an immediate reward for choosing this transition for this

individual with the previously described formula:
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δQ(s, a) =
α∑x

i=1Q(si, sn)

(
−E
Nsn

)
(3.11)

Where α is the calculated transition probability (from the previous output, 0.48), Nsn is

the end population (for street, 4), and the summation is of all the transition probabilities

for each state → street probability. Since the goal of the network is to output the total

population in the new state, it will calculate the current individual’s calculated transition

probability divided by the sum of all transitional probabilities to this new state (state →

street) to get an estimated percentage that the current state transition (shelter → street)

will contribute to the overall, relative percent error of the final population (in this example,

street population). The goal of the algorithm is to minimize this value.

This “reward” as well as the calculated transition probability is recorded for each indi-

vidual. If the error from before, E, is less than 20%, the MNFQ neural network (in this

case, the shelter → street network) is trained by performing back-propagation. Once all

individuals have been processed, the algorithm uses each MNFQ network to determine an

offset to add to each transition probability in order to better fit the data.

Consider the same equation described for the “reward” value previously but this time,

however, α is instead the calculated transition probability, from each individual, that gives

the lowest error for this transition. The rest of the equation variables are identical. This

value is then used in the previously described equation:

Q′(si, sn) = Q(si, sn) + [1−
∑N

j=1Rj(si, sn)

N
]η (3.12)

where Q′(si, sn) is the new transition probability, Q(si, sn) is the previous transition prob-

ability, N is the size of the population in the new state sn, Rj is the “reward” for each

member of the population in that transitioned from state si to state sn, and η is the learning
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Figure 3.11: A sample transition probability normalization after a training epoch has fin-
ished.

rate. Once all transition probabilities for the current week have been updated accordingly,

each row is normalized such that it adds up to one (1). An example of this can be seen in

Figure 3.11.

3.5 Performance Evaluation

As discussed in the research challenges, the authors are faced with a lack of data. Using the

At Home/Chez Soi project [3, 119] this work created a data set that showed the state for

each individual in Montréal at 117 different time-points (or weeks). It should not be assumed

that every individual had a state recorded for every time-point; however, this issue did not

introduce any complications as the proposed model trains on a week-to-week basis. The

authors first trained the model with this data to produce transition probability matrices for

each week of the year. This process required us experimenting with the number of epochs and

learning rate to determine the best combination for an optimal output. The three learning

rates the authors tested with were 0.1, 0.01, and 0.001. After numerous rounds of testing,

the lowest relative percent differences from the final population the model achieved were

12.9%, 12.5%, and 66.5% respectively.
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(a) A graph showing the overall processing time for training the proposed model after 450 epochs.
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(b) A graph showing the relative percent difference of the proposed model after 50, 150, 250, 350,
and 450 epochs.

Figure 3.12: Figures showing the performance of MDQL with MNFQ that were trained with
a learning rate of 0.01.
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Consider Figure 3.12a that shows the total processing time for the maximum run of 450

epochs at a learning rate of 0.01. It should be noted that for the other two learning rates,

the processing time was very similar to this graph. One can see that the time increases

exponentially as the epochs are increased. It should be noted that the model is currently

using the CPU as the hardware accelerator5. Once the model was trained, it produced 52

unique transition probability matrices for each week of the year.

Next, the authors tested the model with 2015 to 2018 homeless state counts from the

city of Montréal. Since the model transitions the population on each epoch, the authors

consider one epoch to be equal to one week. Therefore, this work ran the populations in

2015 through the trained model for 156 epochs. Consider Figures 3.12b and 3.13 that show

the relative percent difference of the final output (i.e., the percent difference from the actual

values across all states) for this learning rate, after 50, 150, 250, 350, and 450 epochs.

It shows that the relative percent difference of the proposed model followed an almost

sinusoidal form. This observation is interesting as lower epochs may be suffice to produce an

accurate output. In this instance, at 50 epochs, the model had an relative percent difference

of 31.39%. Consider figure 3.14, which shows the best results for each learning rate’s best

run. At a learning rate of 0.1, one can see that the not homeless and transition housing

states were very closely predicted. For the other states, however, there are some differences

that need to be improved. The authors discuss implementing a Markov model in the future

works section to compensate for this.

To evaluate the model further, the authors created an experiment to generate synthetic

data based on an input transition probability set. This step was implemented because of lack

of real data available to us at this current time. Consider the simple transition probability

matrix for three states in Table 3.2.

5The time results in this graph were from an Intel Core i7-7700K processor
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(a) When MDQL with MNFQ was trained with a learning rate of 0.001.
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(b) When MDQL with MNFQ was trained with a learning rate of 0.1.

Figure 3.13: Figures for the relative percent difference with training learning rates 0.001 and
0.1.
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(a) Best results with a learning rate of 0.001.

(b) Best prediction results with a training learning rate of 0.01.

(c) Best prediction results with a training learning rate of 0.1.

Figure 3.14: Figures for the prediction results of MDQL with MNFQ for each learning rate
used in this evaluation.

Table 3.2: A simple transition probability matrix used in the generated homelessness dataset.
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This experiment assumes that this matrix is valid for all 52 weeks in the year. This

probability matrix forces the population to eventually transition to state S3 and be unable

to transition out of it. The weekly data generated from the experiment follows the matrix

perfectly. For example, if 100 individuals are in S1 , the next week will place 25 in S1

and 75 in S2. To lengthen the time that the resulting simulation will take to converge, the

experiment initially places more people in the state that is less likely to be reached. For the

transition probability table in Table 3.2, with a total population of 100, this resulted in S1

starting with 59 individuals, S2 with 33, and S3 with 8. From Table 3.3, one can see that

this dataset (containing 52 weeks in total) converges quite quickly. Furthermore, consider

Figure 3.15 that shows the state populations over each week.

Table 3.3: A simple dataset generated from Table 3.2 probabilities to help further verify the
model.

With the proposed model, a perfect result would be a graph that looks like Figure 3.15

after having been trained with the synthetic dataset then asked to simulate a starting pop-

ulation equal to week 0 in Table 3.3 for one year (52 weeks). In Figures 3.16 and 3.17, the

model was run for 75 epochs with randomly initialized and provided transition probabilities
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Figure 3.15: A graph of the state populations over weeks from the dataset shown in Table 3.3.

respectively. These figures also include the loss over epochs as well to show how the prob-

ability set converged as the model was trained (i.e., a lower loss means a smaller difference

between transition matrices from the previous epoch).

To compare the results with the previous testing, the model was ran again but with the

transition probability provided to it; consider Figure 3.17. The resulting graph is very close to

Figure 3.15 but has an interesting curve in the loss over epochs, which could be attributed to

the fact that the model knew the exact transition probabilities (the loss dropped significantly

at the start) and started to overfit the model as seen with the lack of curves and sharp lines

in Figure 3.15.
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(a) The state population over time prediction of MDQL with MNFQ after initializing with random
transition probabilities.
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(b) The loss over epochs of the model when training on the generated dataset.

Figure 3.16: The results of a model using a learning rate of 0.01 and with initially random
transition probabilities.



CHAPTER 3. SIMULATING THE EVOLUTION OF HOMELESS POPULATIONS IN
CANADA USING MDQL AND MNFQ ALGORITHMS 62

P
o

p
u

la
ti

o
n

Week

(a) The state population over time prediction of MDQL with MNFQ after initializing with the
transition probability matrix.
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(b) The loss over epochs of the model when training on the generated dataset.

Figure 3.17: The results of a model using a learning rate of 0.01 and with the transition
probabilities provided to it.
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3.6 Discussion and Future Works

As this work has shown, the proposed model is able to learn very quickly with a relatively

small amount of data to produce accurate results. Although the test data was very low

resolution, the authors are confident in the simulation as it learned from real data and was

able to produce a simulation that ended with a low error to the desired results. One of the

aspects that can improve here is the overall processing time. Although using CPU as the

hardware accelerator was shown to be considerably quick, processing with a GPU would only

speed up the algorithm even more.

One may argue that reinforcement learning may be too complex for this problem. This

method is applicable where there’s the need to learn simultaneously (1) the dynamics of

the system, and (2) a control policy suitable for achieving some externally-imposed goals.

Because the purpose of this research is to provide policy makers and planners with a means

of predicting the future populations of each homelessness state, the authors feel that it is

necessarily complex. It can be argued that the algorithm could indeed be used to achieve

externally imposed goals based on how it is used. For example, a planner may add or

remove shelters based on the output, which the algorithm will then adapt to in order to

provide realistic outputs based on the real-word data on which it was trained.

Therefore, the authors disagree that using a simpler, modelling strategy (such as a MLP

classification network using multi-class cross-entropy loss) would be better for this problem.

Although the initial training could be considered as such, the end result is a model that will

predict the population distributions over time. This could, again, be argued as classifying

individuals into different population groups as a function of time but a problem arises when

determining a proper function of the current state and any desired auxiliary information.

By using the deep learning methods as proposed in this chapter, the algorithm is, instead,
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learning this function on its own and removing that complexity which would be difficult to

accurately create otherwise.

Another aspect to improve on with the model is the process of transitioning individuals

to new states. For the shelter state, for example, an individual wouldn’t be able to transition

to it if the city they are in has no availability in their shelters. To implement this feature, the

authors would suggest looking into adding a Markov decision process to replace the roulette

wheel approach. By using real data from shelters in the city the user is targeting, one would

get realistic populations in this example state.

As noted previously, the MDQ network takes the index of an individual’s current state, as

well as the individual’s new state. An interesting approach would be to convert these indices

to onehot encoding instead as they may be considered as being ranked or ordered otherwise.

Consider the example shown previously where Shelter was 0, Street was 1, and Hospital was

2. For this example, these would be converted to 100, 010, and 001 respectively. From the

authors’ testing with the synthetic dataset described previously, the differences were quite

subtle. However, to see how it would affect extreme cases, consider a model that has a high

learning rate (0.1) and trains for 100 epochs. As shown in Figure 3.18, the differences are

not substantial but one can see that without onehot encoding, the result is indeed closer to

the exact result shown in Figure 3.15.

3.7 Conclusion

By creating a model to simulate a population of homeless individuals accurately, this work

can provide policy makers and planners with a means of predicting the future populations

of each homelessness state. If one were to simply use a mathematical model, it would be

a difficult task to create as they would constantly need to revise the model manually to
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produce realistic results for each transition probability.

Instead, the authors propose a model that leverages the processing power of deep learning

to achieve this result. With this model, one can input known homelessness data and have

the probabilities revised dynamically to produce more accurate results. The two algorithms,

modified deep q-learning and modified neural fitted q-learning, work together to achieve the

same effect and input the resulting probabilities into a Markov decision process to transition

the population between states.

The main challenge of this research was the lack of high resolution homelessness data,

which is important as the proposed model needs to train on and produce realistic results.

One way the authors accommodated this consideration was by simulating each member of

the population individually. From the performance analysis, the authors were able to see

the approach produce an accurate model with a relative percent difference of 12.5% on a

low resolution data set that was entirely different from the training data set. Furthermore,

with a synthetic dataset, the authors applied the algorithm to a higher quality source and

confirmed that it indeed produces accurate results.
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(a) The model trained on the generated dataset without onehot encoding.

P
o

p
u

la
ti

o
n

Week

(b) The model trained on the generated dataset with onehot encoding.

Figure 3.18: Models trained using a learning rate of 0.1 for 100 epochs with and without
onehot encoding.
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Chapter 4

BEAUT: An ExplainaBle Deep

LEarning Model for Agent-Based

PopUlations With Poor DaTa

All of this chapter will be submitted as the following peer-reviewed journal article:
• Fisher, A., Gajderowicz, B., Latimer, E., Aubry, T., & Mago, V. (2021). BEAUT:

An ExplainaBle Deep LEarning Model for Agent-Based PopUlations With Poor
DaTa.

This work extends the previous chapter by improving the deep learning algorithm as
well as the datasets that were used. Specifically, the following improvements were im-
plemented: training enhancements such as “random restarts” and “decaying learning
rates”, a neural network referred to as “adaptable parameters” which learns the popu-
lation fluctuations over time, and grouping of individuals in the training dataset based
on personal attributes so that the transition probability matrices being generated can
take this into account. In addition to this, other “black box” models are evaluated to
see how this explainable approach places. The text in this chapter will be used in a
journal article that is currently being finalized.
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4.1 Introduction

Time-series forecasting is an important tool for predicting the future state of a system. In

many social sciences, predicting the future size of a population, its distribution, or the state

of its individuals is required to create policies that can respond to changes in such population

characteristics [102]. Time-series data that captures different events and trends that change

population size has been a keen interest of researchers. Recent analysis into population

dynamics includes extreme events [26], population viability [68], and a correlation between

multiple factors like housing cost and homelessness [49]. A transition matrix is one such

analysis tool as it can generate estimates of deterministic parameters such as population

growth rate, sensitivities and elasticity, equilibrium population structure, and reproductive

values [68]. A transition matrix is a mathematical formulation that captures the rates of

change of a system from one state to another. In many social sciences, information relevant

to such parameters is missing or must be adjusted when a transition matrix was trained on a

population differing from the target populations to be predicted. This chapter proposes and

evaluates an extension of the method presented in Chapter 3 for forecasting a population

using various social services. Additionally, this method is generalized by introducing adapt-

able parameters to automatically accommodate different reporting and exit rates between

the training and target populations.

Motivation

With the advancements in data analysis for policy evaluation, models predicting service usage

and success rates in the social services domain can benefit greatly by extending data collection

methods for studies addressing homelessness. The field could gain invaluable insights from

evaluating the effectiveness of alternative programs before their implementation as a policy.
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Data-driven policy has been successfully instrumented in recent years but is limited to certain

sectors which are able to collect sufficiently detailed data, and for which suitable algorithms

exist. Suitable algorithms are those that can take available data as input, and reliably

produce actionable outputs that inform policymakers. For social data about vulnerable

populations, a set of strict requirements must be met for data and algorithms to be actionable

[42].

A primary requirement is adherence to standards governing the collection, evaluation, and

deriving of policy based on data about vulnerable populations including transparency, ethics,

accountability, and data-ownership [82]. A consequence of such strict requirements is the

lack of available data about the individuals who use social services, especially those service

clients who are experiencing homelessness. The lack of data, however, is not unique to the

social service domain, but applies to any domain that includes hard to reach populations.

In fact, it is detrimental to study outcomes if such populations are excluded from their

analysis, as the results are less accurate when compared to studies that include hard to

reach populations [97]. Several methods have been used successfully to address such issues,

as discussed in section 4.1. Finally, any machine learning model producing actionable results

must be explainable meaning that they must provide enough transparency to explain why a

decision was made and how to adjust it for the target populations in an ethical manner. The

model presented here can learn population-specific adaptable parameters during the training

phase, and such weights can be easily adjusted manually to reflect the drop-off rates of a

population the model was not trained on as it produces transition probability matrices. The

next subsection introduces the definition of comprehensive data-driven policy and its impact

on social services.
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Data-Driven Homeless Policy Lacks Data

Several key issues regarding the quality of homelessness data have been identified, making

it challenging to perform comprehensive data-driven policy-making in the homeless domain.

Firstly, certain information is under-reported by people experiencing homelessness, especially

those living with mental illness or substance abuse [98]. This is especially true for self-

reported symptoms due to memory loss or social desirability bias [15, 136]. Secondly, due to

the dynamic and transient nature of this population, it is difficult to track individual clients

that use social services or participate in an intervention program [91, 137]. Some causes

include frequent changes in address or phone numbers or an unconventional social network

structure [132, 32]. Not being able to track individuals makes it challenging to capture their

unique lived experiences, as well as the systemic and symptomatic factors that influence their

lives. These include structural factors, coping strategies, history of physical and mental

health, and spending habits [135, 22, 18]. Thirdly, many participants leave the program

before completion [118], reducing the quality of longitudinal studies that need to capture

complex factors over time. Many studies rely on a qualitative analysis where data can be

captured as interviews, providing more depth of information about those clients that remain

[13, 43, 95, 104]. However, without a considerable amount of thematic analysis to evaluate

and code the data, date-driven methods lack the structure to interpret such results [94].

Finally, point-in-time counts are a popular methodology for collecting data about homeless

populations [49]. They provide a snapshot of the count of different demographics, as well as

their geographical and seasonal distribution [92]. This method provides descriptive analysis,

giving insights into trends over time such as housing availability, and capture information

about the hardest to reach- mainly chronically homeless.

Several outreach strategies have been used to increase enrolment and retention rates, but
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these methods are difficult to transfer between target populations [37, 59, 91]. Some success

has been observed with tracking transient population through web-based methods like social

networks, on-line telephone and address directories, as well as public record resources such as

judicial and death records [134]. Some strategies address data reliability by actively working

towards increasing participation and retention. For example, participation was increased in

a longitudinal study by providing participants experiencing homelessness access to computer

facilities during the study [30].

4.2 Related Work

Data-Driven Policymaking

In an era of smart homes and smart cities, Bibri highlights three points of focus for data-

driven policies that impact urban centres of the future [8]. These include the use of techno-

logical advancement towards sustainable development through optimal processes, the poten-

tial of big-data technology, and describes a novel architecture for data-driven smart cities.

Big-data especially provides an opportunity for policymakers to evaluate alternative policies

based on empirical evidence and prediction models trained on available data [106]. These

policies are particularly challenging in a social context due to the complex nature of social

systems. Tsoukias et al. present an architecture that outlines analytics performed within

a policy cycle of design, testing, implementation, evaluation, and review of public policies

[128].

Given any such algorithmic approach as a viable solution, policymaking will raise ethi-

cal questions that must be addressed, including moral consequences, stakeholder rights and

responsibilities, decision delegation, and accountability [90, 121]. Bertsimas and Kallus suc-
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cessfully combine machine learning with operations research and managerial science methods

to infer optimal policy decisions from data [7]. While work by Bertsimas and Kallus demon-

strates the potential to perform prescriptive analysis, the application domain, namely the

inventory management problem, does not face the types of ethical issues presented in this

chapter. Aziz et al. demonstrate optimal polices in an ethically sensitive domain, prioritiz-

ing homeless youth for housing resources by allowing a policymaker to configure a fairness

index [24]. Relying on mixed-integer optimization, this work claims to produce fair, efficient,

and explainable policies according to this index. Piscopo et al. rely on machine learning to

identify dimensions required to implement a policy targeted at a given community success-

fully [101]. Here, the random forest algorithm is used to identify optimal levels of sense of

community and participation following the implementation of a given policy.

Time-Series Forecasting

Many forecasting methods have been developed that rely on the perceived dependency of

observed time-series data to predict future data. Thse include Autoregressive Integrated

Moving Average (ARIMA) [93], Gated Recurrent Unit (GRU) [93], Long-Short Term Mem-

ory (LSTM) [57], and Recurrent Neural Networks (RNN) [99]. Traditional regression-based

classification methods have also been observed to successfully forecast time-series data, in-

cluding Random Forest and network Multi-Layer Perceptrons (MLP) [1, 65]. A comparison

of various machine learning methods shows that a simple regression based MLP has the best

results overall [1]. In fact, a simple neural network still performed as well as time-series

specific methods such as ARIMA [115]. Time-series data can exhibit a number of charac-

teristics which require a customized modelling methods. For example, Ding et al. evaluate

extreme events captured by time-series data, and propose a new loss function along with
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a memory-based neural network [26]. Unlike GRU and LSTM models that use memory to

remember the sequence of data points, the memory module developed by Ding et al. re-

members extreme events and incorporates them into forecasting future events. Based on the

analysis of existing methods, it is clear that regression-based methods are one of the most

appropriate to perform time-series forecasting. The model presented in this chapter takes

advantage of regression with simulation of individual agents.

4.3 Preliminaries

Evaluation Data

The algorithm is evaluated using real-life time-series data capturing the state of ∼ 937 indi-

viduals from 2009 - 2013 [80], where the state is one of the following: street, shelter, hidden

homeless, not homeless, transitional housing, and institution (i.e., hospital, rehabilitation,

and prison). The data was collected as part of the AHCS study, a multi-site randomized

controlled trial of the Housing First intervention program [50]. The population selection fo-

cused on people living with mental illness who were homeless or had recently been homeless

but were precariously housed at the time of recruitment. Of the 2,866 people assessed for

eligibility across five Canadian sites between 2009 and 2013, 2,225 were accepted into the

study. Of these, 1,265 were placed in the main AHCS experimental group (Housing First or

“HF”) and 990 in the Treatment-As-Usual (TAU) control group.

The algorithm presented in this chapter is evaluated using additional data collected for

this control group from a questionnaire administered to these 990 participants called the

Residential Follow-Back Timeline (RTLFB) [126]. Out of these response, 937 participants

provided usable answers (94.6%). The purpose of the RTLFB questionnaire is to collect
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detailed information about participants, including their housing situation, the number of

changes between states in a given period, the reason for moves, and the type of residence.

The format of the RTLFB questionnaire administered as part of the AHCS study under-

went minor adaptations for the Canadian context [80]. RTLFB was a self-reported study,

administered every 3-months, asking participants to recount their situation each day after

the last time RTLFB was administered. The evaluation presented here is based on the us-

able RTLFB answers for 937 participants, aggregated at weekly intervals. Furthermore, the

individuals are spanned across the 2 groups (TAU or HF) within 12 subgroups based on age,

homelessness history, and gender for a total of 24 sub-populations as follows:

• Age: Under 30, Between 30 to 50, or Greater than 50

• Homelessness History: Homeless less than 1 year or homeless more than 1 year

• Gender: Male or female

Forecasting Populations

In this subsection, notation for forecasting future populations that use various services in a

community or are in a specific housing situation will be presented. Let S be a set of possible

states an individual can be in and the length of this set be I = |S| where I ε R. A state

within the set S is defined as si where the index i ε [0, I). For example, when simulating

homeless individuals, the set of states may be S = [street, shelter, hospital] which would

mean that I = 3 and s0 = street, s1 = shelter, s2 = hospital. The total number of time

periods in a simulation is defined as T where T ε R and a specific time period is defined

as t where t ε [0, T ). For example, the time period may be in weeks where T = 52 which

would mean that the first week would be t = 0. For a specific time period t, the total
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number of individuals in a certain state i in the real dataset is defined as ni,t and the total

number of individuals overall is defined as Nt. These values as predicted by the algorithm

is defined as n̂i,t where n̂i,t ε R and N̂t =
∑I

i=0 n̂i,t respectively. To refer to each individual

in this population at time period t, let ap,t be an individual with a unique index number

p. The set of all individuals in a simulation is defined as At. Additionally, an individual’s

state at time period t is defined as sp,t and the set of individuals in state i is defined as

ci,t = {ap,t : sp,t == i} where |ci,t| = ni,t. To recap, Table 4.1 shows a list of notation

discussed so far.

Symbol Definition

S A set of states

I The total number of possible states which is equal to |S| where I ε R

si State i in the set S where i ε [0, I)

T The total number of time periods in the simulation where T ε R

t The current time period in the simulation where t ε [0, T )

n̂i,t The predicted number of individuals in state i at time period t where

n̂i,t ε R

ni,t The actual population in state i at time period t from the dataset

N̂t The predicted total number of individuals at time period t which is equal

to
∑I

i=0 n̂i,t

Nt The actual total number of individuals at time period t in the dataset

At A set of the individuals at time period t where |At| = N̂t

ap,t An individual a, indexed by their unique ID p ε N0, at time period t, in

the set At. This contains characteristics of the individual including current

state (state(ap,t)) and length of stay (length(ap,t)) in their current state
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sp,t An individual p’s state at time t which is equal to state(ap,t)

ci,t The set of the individuals in state i at time t which is defined by {ap,t :

state(ap,t) == i}. Additionally |ci,t| = ni,t

Table 4.1: A recap of the notation discussed in section 4.3

Time-Series Forecasting: An Explainability Problem

One of the drawbacks of traditional machine learning methods applied to time-series fore-

casting is that they are essentially a black box– an opaque model that can not clearly– or in

domain-specific terms, explain why it has made the predictions it has [106]. Explainability is

especially important when applying forecasting methods to data-driven policymaking where

decisions must be transparent, ethical, and allow for accountability [82], or when indicators

show unexpected results [69] or shifts in data that seem random [2]. A popular method for

revealing the algorithm’s decisions is to model the underlying factors producing time-series

data as a set of discrete, identifiable, and explainable events. A sequence of such events,

when chained together in some configuration, will then produce the observed time-series

data. To generalize such events, a transition matrix can be derived with which to simulate

the transition from one event to another over time. A method such as Markov decision

process [139, 6] can then be used to simulate the transition from one state at time t to

another state at time t+ 1.

In the BEAUT algorithm, transition probability matrices are created that define the

probability an individual will transition from one state to another. These are defined for

each time period t as Qt and allow for the condition t ε [0, T ) to be flexible based on the

implementation. For example, in the case of T being a number of weeks, it may be desired
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that there be a matrix for each week of the year. In this case, the appropriate matrix would

be defined as t = t % 52. Therefore, if t = 52, the simulation would be referring to the

first week of the second year so the first week’s matrix would be selected1. Within this

matrix, there is a probability for each pair of states in S such that the matrix Qt is of size

I × I. An individual probability for time period t within matrix Qt is defined as Qi,j,t when

transitioning from state i to state j where j ε [0, I).

4.4 Forecasting Time-Series with BEAUT

Methodology

Algorithm 1 presents a basic overview of the homelessness forecasting, and Figure 4.1 is

a visual representation. First, the overall population A and the current week in the year

t are passed to the model. The population is simply an array of individuals indexed by

p, t ∈ A that each represent an individual as denoted by ap,t at time period t. Next, the

appropriate transition probability matrix for this week in the year is retrieved (tr mat on line

2), and three empty arrays (lines 3 - 5) are initialized to keep track of the total transitions

between states (tr counts), the best transition probabilities the modified deep Q-learning

(MDQL) network outputs (mdq probs), and the total rewards from the modified neural

fitted q-iteration (MNFQ) networks for each transition respectively (mnfq rewards).

Next, the model starts by cycling through each individual p in the population (line 6).

First, their current state is recorded (si = sp,t on line 7), then a new state for the individual

is determined (sn on line 8) from the roulette wheel (Wheel) approach using the transition

probabilities from their current state (tr mat[si]) as defined in Algorithm 2. The new state

1t = 52 % 52 = 0
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s0

s1

si

Matrix
t s0 s1 si

Figure 4.1: An overview of BEAUT’s layout which shows, from left to right, the MDQL
network, a transition probability matrix, and a MNFQ network for an individual transition
probability.

for the individual is then stored (sp,t+1 = sn on line 9). Next, the current and new states are

processed through the MDQL network (mdq nn.process(si, sn) on line 10) to get the output

probability (qp,t) for individual p. This is then processed through the MNFQ network for

the new state sn (line 11), along with total population count in the new state (line 12) to

get the reward (n̂j,p,t used on line 13) and whether or not the curr mdq prob produces the

lowest error. If this is true (line 14), then the curr mdq prob is stored in the mdq probs

matrix for this transition (line 15).

After all individuals in the population have been processed, the mnfq rewards are aver-

aged for each state-to-state transition based on the tr counts (line 19). Then, the new tr mat

is calculated by updating the current tr mat based on themdq probs andmnfq rewards (line

20). Next, the loss is determined by getting the mean difference between the new tr mat

and the current tr mat (line 21). Lastly, the current transition matrix is updated to the new

one (line 22) and the loss is returned from the algorithm.
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MDQL

As discussed in previous chapters, when training modified deep q-learning (MDQL) as a

standalone algorithm, for each time period t, each individual ap,t is simulated by a neural

network by considering their previous state sp,t−1 and new state sp,t to output a transition

probability qp,t for this individual and their transition. This value is considered an “ideal”

probability in the sense that, based on all previous transitions that have went through this

network, this probability makes the most sense for this particular transition.

To provide a detailed overview of this extended approach, notation will be defined for

every step of the algorithm and may overlap with Chapter 3 in some aspects. Once an indi-

vidual has passed through this network, their output is compared with the actual transition

probability for Qsp,s′p,t where sp = sp,t−1 and s′p = sp,t to determine a “reward” for the

network. This is defined as follows:

rp,t = qp,t −Qsp,s′p,t (4.1)

Once all individuals in At have been processed, sets of individuals that transitioned from

state i (ci,t) to state j (cj,t+1) are created by taking their intersection defined as c∩i,j,t =

ci,t ∩ cj,t+1. The size of each of these sets |c∩i,j,t| is then used in the formulae to update each

transition probability Qi,j,t as follows:

Qi,j,t = Qi,j,t + [1 +

∑
pεc∩i,j,t

rp,t

|c∩i,j,t|
]η (4.2)

After each probability has been updated, the following error is calculated to be used for

back-propagation on the MDQL network:
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Et =

∑I
i=0

∑I
j=0[Qi,j,t −

∑
pεc∩

i,j,t
qp,t

|c∩i,j,t|
]

I2
(4.3)

To recap, Table 4.2 shows the notation discussed in this section.

Symbol Definition

Qt The transition probability matrix for time t

Qi,j,t A transition probability in the current matrix Qt for going from state

i to state j where i, j ε [0, I)

qp,t The output of the MDQL network for person p at time period t. This

is based on the individual’s previous state sp,t−1 and their current

state sp,t.

rp,t The reward for individual p at time period t when just using MDQL.

c∩i,j,t A set of the individuals that transitioned from state i to state j at

time t. This is equal to the intersection ci,t ∩ cj,t+1 and the size is

equal to |c∩i,j,t|

Et The loss measure for MDQL at time t

Table 4.2: A recap of the notation discussed in section 4.4

Combining MDQL+MNFQ

When using modified neural fitted q-learning (MNFQ) with MDQL, for each time period t,

each individual ap,t is processed through the MDQL network as defined before. However,

before the reward is calculated, each individual is processed through an MNFQ network for



CHAPTER 4. BEAUT: AN EXPLAINABLE DEEP LEARNING MODEL FOR
AGENT-BASED POPULATIONS WITH POOR DATA 81

this state i to state j transition defined as the MNFQi,j network. These networks consider

the individual’s output from the MDQL network qp,t, the current population in state j at

time t as of the individual’s transition ñj,t, and the number of time periods until the next

data instance τ to output what the end population in state j will be once the time period τ

has elapsed; this output is defined as n̂i,j,p,t.

Once an individual has been processed through the MNFQ network for their transition,

the error formula defined before is re-purposed as follows:

E∗j,p,t = nj,t − n̂i,j,p,t (4.4)

This error is then used in a re-purposed rewards formula defined as follows:

r∗p,t = (
qp,t∑I

i=0Qi,j,t

)(
E∗i,j,p,t
nj,t

) (4.5)

The training for MNFQ networks comes from individuals that give a low error E∗j,p,t as

defined in Equation 4.4- if it is 20% or less, back-propagation is performed. Furthermore, for

each transition from state i to state j, the individual p that gives the lowest error is stored

as individual m. Once all individuals have been processed, an “offset” for each transition

probability Qi,j,t is calculated using individual m as follows:

∆Qi,j,t =
qm,t∑I

k=0Qk,j,t

(
E∗i,j,m,t

nj,t
) (4.6)

With this offset, the probability update formula defined before is re-purposed as follows:

Qi,j,t = Qi,j,t + [

∑
pεc∩i,j,t

r∗p,t

|c∩i,j,t|
]η + ∆Qi,j,tη (4.7)

Once all probabilities have been updated, the error of the output neuron on the MDQL

network is set to the average difference in the updated transition probabilities to that of the
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original ones to perform back propagation with. This process is repeated for all time periods

t in the set [0, T ) to train the algorithm on a given dataset. When the training process has

completed, a set of populations for each state in S can be input along with the desired time

period T to simulate the population using the generated transition probability matrices. To

recap, the notation discussed in this section can be seen in Table 4.3.

Symbol Definition

n̂i,j,p,t The output of the MNFQ network for the transition from state i to

j (MNFQi,j) for individual p at time t. This is based on individual

p’s output from the MDQL network (qp,t), the current population in

state j at time t as of this transition (ñj,t), and the number of time

periods until the next data instance (τ).

τ The number of time periods until the next instance in the dataset

E∗i,j,p,t The error used in MNFQ’s rewards and updates formulae.

r∗p,t The rewards formula used by MNFQ for individual p at time period

t.

m The p of the individual that produced the lowest error E∗i,j,p,t when

transitioning from state i to j.

∆Qi,j,t The offset for Qi,j,t calculated from the individuals that transitioned

from state i to j through the MNFQi,j network.

Table 4.3: A recap of the notation discussed in section 4.4



CHAPTER 4. BEAUT: AN EXPLAINABLE DEEP LEARNING MODEL FOR
AGENT-BASED POPULATIONS WITH POOR DATA 83

Adaptable Parameters

To further refine the algorithm so it closely follows the dataset, this chapter introduces adapt-

able parameters. These are neural networks that consider a set of inputs and output a value

between 0 and 1. For the purposes of simulating a population of individuals, the two most

important applications of this are for exiting and spawning individuals to the simulation.

Since the algorithm defined before just simulates each individual in the population, these

changes cannot be done otherwise.

For exiting individuals, the adaptable parameter will be referred to as APx. First, the

training process described in Algorithm 1 is completed for a time period t. Then, before

beginning the process for time period t + 1, it calculate the percentage of individuals that

would need to exit the simulation in order to equal the total population in the real dataset

as follows:

xt =
N̂t −Nt

N̂t

(4.8)

The adaptable parameter APx tries to produce this result by taking the simulated popu-

lation size N̂t and time period t as inputs to produce a percentage to exit x̂t. The difference

between x̂t and xt is then used to perform back propagation on the network. Once the

training has completed, this parameter is used at the end of each time period t to remove a

percentage of the population from each state population n̂i,t proportionately before beginning

the next time period t+ 1.

For spawning individuals, this parameter will be referred to as APz. An identical process

is followed as described for APx but the percentage of individuals that would need to spawn

into the simulation in order to equal the total population in the real dataset is defined as

follows:
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zt =
Nt − N̂t

Nt

(4.9)

This is then compared against the output of APz, defined as ẑt, to perform back-

propagation on similar to APx. Again, once training has completed, this parameter is used

after each time period t but this time to spawn individuals into each state proportionately.

A recap of the notation discussed in this section can be seen in Table 4.4.

Symbol Definition

APx The adaptable parameter for exiting individuals. The output of this

is x̂t where x̂t ε [0, 1] and it is based off of the size of the total number

of individuals at time t (N̂t) and the current time period t.

xt The percentage of individuals that need to exit from the simulation

to equal the actual Nt population at time t. The difference between

xt − x̂t is used to train the adaptable parameter APx

APz The adaptable parameter for spawning individuals. The output of

this is ẑt where ẑt ε [0, 1] and it is based off of the size of the total

number of individuals at time t (N̂t) and the current time period t.

zt The percentage of individuals that need to spawn into the simulation

to equal the actual population Nt at time t. The difference between

zt − ẑt is used to train the adaptable parameter APz

Table 4.4: A recap of the notation discussed in section 4.4

Assume the simulation will have 100 individuals across three states as follows [60, 10, 30].

Assume that the xt parameter determined that, for the current simulation week, 1% (0.1) of
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the population should exit. The first step is to normalize the state populations; this example

would appear as [0.6, 0.1, 0.3]. Next, the total number of individuals that need to exit are

determined by simply multiplying xt by the total population (100∗0.1 = 10). Next, for each

state population, their normalized value is multiplied by the total number of individuals that

need to exit in order to determine how many to remove from that state; this example would

appear as [0.6 × 10, 0.1 × 10, 0.3 × 10] = [6, 1, 3]. Therefore, the final populations for this

example would be [60− 6, 10− 1, 30− 3] = [54, 9, 27]. The layout of this process can be seen

in Figure 4.2.

Figure 4.2: An overview of adaptable parameters’ training process layout.

Evaluation Process

To evaluate BEAUT’s ability to forecast homelessness populations, 2 models (i.e., one each

for TAU and HF) are first trained on the At Home/Chez Soi project as described in sec-

tion 4.3. Then, with this trained model, a 2015 Point-In-Time (PIT) count from the region

done on March 24, 2015 is used as an input (spanned across all 24 sub-populations as defined

previously and further described in section 4.5) and simulated for roughly 3 years to reach

another count (further described in section 4.5) conducted on April 24, 2018 (i.e., T = 159)

which only has populations for each 12 subgroups for age, homelessness history, and gender

(i.e., they are not split across TAU nor HF). Therefore, with these final 24 sub-populations
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from BEAUT, the 12 subgroups in both the TAU and HF outputs are first combined then,

to protect confidentiality of the datasets but still provide results, all male subgroups and

female subgroups are combined to finally get 2 sub-populations. These counts are shown in

Tables 4.5 and 4.6, respectively, where one can note that the “Hidden Homeless” and “Not

Homeless” counts are not defined. This is due to the fact that it is hard to get an accurate

count for these two states but it is still one that is present in the training dataset. So, when

the model is simulating from 2015 to 2018, it will still transition individuals in and out of

these states but when looking at the final result, the individuals in these populations will

not be considered.

Male Female
Street 400 30

Shelter 927 139
Hidden Homeless - -

Not Homeless - -
Transitional Housing 478 562

Institution 225 56
2030 787

Table 4.5: A summarization of the 2015 PIT count.

Male Female
Street 610 67

Shelter 791 120
Hidden Homeless - -

Not Homeless - -
Transitional Housing 810 455

Institution 282 12
2493 654

Table 4.6: A summarization of the 2018 PIT count.
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15

Example Predicted Output (Values)

M
al

e 
(M

)

Street (S0) Shelter (S1)

30

Institution (S2)

10

Fe
m

al
e 

(F
)

10 50 15

Table 4.7: An example predicted forecast from BEAUT.

Example Actual Output (Values)

M
al

e 
(M

)

Street (S0)

10

Shelter (S1)

35

Institution (S2)

5

Fe
m

al
e 

(F
)

5 40 20

Table 4.8: An example of the actual data BEAUT was to forecast.

To evaluate this final result, consider the simplified example predictions and actual values

in Tables 4.7 and 4.8 where this combination has already been done. These populations will

first be expressed as percentage distributions using the following formula:
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Pr,c =
vr,c∑c
i vr,i

× 100 (4.10)

where r is a row (i.e., Male or Female), c is a column (i.e., S0, S1, or S2), and vr,c is the

value in the table at row r column c. For the formulae to follow, distinguishing between

the actual value and the predicted value will be denoted with a and p respectively. After

applying this to the datasets in Tables 4.7 and 4.8, it would result in distributions as shown

in Tables 4.9 and 4.10.

27.28%

Example Predicted Output (Percentage)

M
al

e 
(M

)

Street (S0) Shelter (S1)

54.55%

Institution (S2)

18.18%

Fe
m

al
e 

(F
)

13.33% 66.67% 20.00%

Table 4.9: An example predicted percentage distribution from BEAUT.

With the final results– values and percentages– the Weighted Mean Absolute Error

(WMAE) between the predicted results and actual results, for each gender, will be calculated

using the formula shown in Equation 4.11:

WMAE =

∑S−1
s=0 |as − ps| × as∑S−1

s=0 as
(4.11)

where S is the total number of states indexed by s. Finally, for the percentage distributions’

genders’ WMAE only, the results are further weighted by multiplying them by how many



CHAPTER 4. BEAUT: AN EXPLAINABLE DEEP LEARNING MODEL FOR
AGENT-BASED POPULATIONS WITH POOR DATA 89

Example Actual Counts (Percentage)

M
al

e 
(M

)

Street (S0)

20.00%

Shelter (S1)

70.00%

Institution (S2)

10.00%

Fe
m

al
e 

(F
)

7.69% 61.54% 30.77%

Table 4.10: An example of the actual percentage distribution BEAUT was to forecast.

individuals are in the actual output as shown in Table 4.8 where there are 50 males and

65 females for a total of 115 individuals. Therefore, the weight for males (wM) would be

(50/115)× 100 = 43.5% and for females (wF ) would be (65/115)× 100 = 56.5%. With these

final WMAEs, the process will present two plots to show (1) the total WMAE for values

(i.e., the summation of the WMAE for Male and Female values) and (2) the total WMAE

for percentage.

4.5 Data Enhancements

As stated in the evaluation process, the 2015 PIT count is split amongst TAU and HF

to get a total of 24 sub-populations. However, the data was not originally like this and

was, instead, only split amongst the 12 sub-populations based on age, homeless history,

and gender. Since the training data from the AHCS study does include data points for all

24 sub-populations, it would be beneficial to be able to accurately apply this learning when
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evaluating the performance of the model’s ability to forecast homeless populations from 2015

to 2018. In addition to this, although the implementation of adaptable parameters is present

to account for fluctuations in the population, this is only accurate to those present in the

training dataset which was the result of a study following sets of individuals. When look at

the PIT counts from 2015 to 2018, the population steadily increases simply as result of the

change in time periods. Therefore, the ability to logically add individuals into the population

as the simulation progresses would be desirable.

2015 PIT Count Enhancement

In order to further spread this dataset amongst the TAU and HF populations, reports from

the Mouvement pour mettre fin à l’itinérance (MMFIM or “Movement to end homelessness”)

were requested to get an estimate of how many individuals entered housing first programs

between the two PIT counts in question. Due to confidentiality reasons, the full report

cannot be disclosed but rather summary statistics retrieved from it that are relevant to this

work will be shown.

In total, relevant to the count, there were 369 males and 207 females that entered hous-

ing first between these two time periods. Table 4.11 shows the age distribution of these

individuals and Table 4.12 shows the distribution of each individual’s length of homelessness

before entering the program. As stated in the introduction, the three age ranges are (1)

under 30, (2) between 30 to 50, and (3) greater than 50. For the homelessness history, that

is split amongst two conditions being (1) homeless less than 1 year and (2) homeless more

than 1 year. From the age distribution in Table 4.11, since the range “30 to 54 Years” does

not fall perfectly into the training dataset’s “between 30 to 50”, one could simply split the

percentage stated there amongst the 24 year range to get 53%/24 Y ears = 2.2% per year
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Under 18 Years 18 to 29 Years 30 to 54 Years 55 to 64 Years Over 65 Years
Men 0% 10% 53% 28% 9%
Women 0% 10% 57% 22% 11%

Table 4.11: The age distribution of individuals that entered housing first between the 2015
to 2018 PIT counts in Montréal.

so that 4 years× 2.2% = 8.8% could be subtracted from this distribution and added to the

next distribution (i.e., greater than 50) to more closely follow the subgroups in the training

population. With these statistics, the 2015 PIT count can then be split into either TAU and

HF to get the resulting 24 sub-populations.

6-12 Months 12 - 24 Months 2 to 5 Years 5 to 10 Years Over 10 Years
Men 38% 15% 24% 18% 5%
Women 41% 14% 33% 9% 4%

Table 4.12: The homelessness history distribution of individuals that entered housing first
between the 2015 to 2018 PIT counts in Montréal.

2015 to 2018 Population Increases

As the model simulates from 2015 to 2018, it would be desirable to provide a means of

entering individuals into the population to emulate the real-world population change over

time. To get an estimate of how to do this, questionnaires done by homeless individuals

during the 2018 PIT count who had been homeless for no more than 1 year were analyzed.

As a result, an estimated distribution for both the TAU and HF populations were derived to

add into the overall population at the end of every month. This information is confidential

and cannot be fully shared in this chapter but summary statistics will still be presented.



CHAPTER 4. BEAUT: AN EXPLAINABLE DEEP LEARNING MODEL FOR
AGENT-BASED POPULATIONS WITH POOR DATA 92

Table 4.13 shows the estimated distribution for monthly increases in the TAU population

for both male and female, while Table 4.14 shows this information for the HF population.

From further analysis on the both the PIT counts and questionnaires, the resulting popu-

lations that were split up amongst this distribution, per month, was 50 for TAU and 32

for HF. Overall, this means that the model will enter 82 new individuals, per month, while

simulating from 2015 to 2018.

Hidden Homeless Institution Shelter Transitional Housing Street TOTAL
Male

Less than 30 5.89% 0% 5.89% 11.76% 2.94% 26.48%
30 to 50 2.94% 2.94% 14.71% 17.65% 5.88% 44.12%
51+ 2.94% 0% 11.76% 11.76% 2.94% 29.40%

Female
Less than 30 6.25% 6.25% 6.25% 31.25% 0% 50.00%
30 to 50 6.25% 12.50% 0% 18.75% 0% 37.50%
51+ 0% 0% 6.25% 6.25% 0% 12.50%

Table 4.13: An estimated distribution for monthly increases in the TAU population from
2015 to 2018.

Hidden Homeless Institution Shelter Transitional Housing Street TOTAL
Male

Less than 30 4.35% 0% 4.35% 13.04% 4.35% 26.09%
30 to 50 4.35% 4.35% 13.04% 17.39% 4.35% 43.48%
51+ 4.35% 0% 8.69% 13.04% 4.35% 30.43%

Female
Less than 30 11.11% 11.11% 0% 33.33% 0% 55.55%
30 to 50 0% 11.11% 0% 22.22% 0% 33.33%
51+ 0% 0% 0% 11.11% 0% 11.11%

Table 4.14: An estimated distribution for monthly increases in the HF population from 2015
to 2018.
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4.6 Results

Grid Search

To determine the best parameter configuration for BEAUT, a horizon error was introduced

by excluding the last 10 weeks of training data to see how the model would forecast the end

of the dataset. This resulted in a total of 1,675 configurations being tested where it looked at

the percent accuracy in this error over the epochs. To provide insight into the most influential

parameters, consider Figure 4.3. The poorer line was configured with the highest MDQL

learning rate out of all configurations of 0.1, as well as the lowest MNFQ back-propagation

error threshold of 20%. Similarily, the constant line was configured with the same MNFQ

threshold but the smallest learning rate of 0.0001. To demonstrate the sensitivity of these

parameters over epoch iterations, the sensitive line was configured with a MDQL learning

rate of 0.1 but the MNFQ error threshold was instead set to 50%. Compared to the poorer

line which had the same MDQL learning rate, an observation can be made showing that the

runs started at the same error but, around epoch 10, began to vary drastically. Lastly, the

best performing model was configured with the same MNFQ error threshold as the senstive

run (50%) but as for the MDQL learning rate, it was set to 0.01 and resulted in a ∼ 9.8%

error very quickly before going up to a ∼ 10.5% error towards the end.

Performance

To properly evaluate the performance of BEAUT, the following three models were also eval-

uated by following the same process previously described for training and testing: (1) neural

network, (2) random forest, and (3) random forest regressor. Across these three models,

a total of 2,040 different configurations were ran that first trained on the AHCS dataset
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Figure 4.3: Example performance measures of varying configurations of BEAUT

then, with the initial 2015 PIT count, simulated the population for 3 years while adding

82 individuals per month as per the distribution defined before. With these predictions,

their WMAEs were also calculated to fairly compare against BEAUT. Consider Table 4.15

as BEAUT’s forecast for the 2018 PIT count while noting that the “Hidden Homeless” and

“Not Homeless” states are ultimately not compared when evaluating. Additionally, in the

discussion section, the poorer predictions will be analyzed by looking at how those states

transpired in the training dataset to provide further insight.

The performance of the percentage distribution will first be presented. Figure 4.4 shows

the weighted performance, in the form of a stacked bar, where BEAUT was amongst the

majority of the comparison models but fell slightly more towards the best ones. Note that

the y-axis represents how many configurations for the three comparison models only that fell

under the covered area of the bar chart on the x-axis, whereas only the best configuration’s

forecast is shown for BEAUT in the form of a line. Next, the value performance of these
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Male Female
Street 418 128

Shelter 367 184
Hidden Homeless* - - 385 144

Not Homeless* - - 1437 536
Transitional Housing 962 432

Institution 461 243
2208 987

Table 4.15: BEAUT’s forecast for the 2018 PIT count. *Note that hidden homeless and not
homeless were only projected as these states were learned from the training data.

models will be presented. Figure 4.5 shows the weighted difference in individuals from the

expected output where BEAUT greatly outperforms the top performing comparison model.

4.7 Discussion

When comparing the forecasted 2018 PIT count in Table 4.15 to that of the actual data

in Table 4.6, one can see shortcomings in the predictions of (1) institution and (2) males

in shelter. For (1), consider the plot in Figure 4.6 as the number of males and females

in institution, over time, from the AHCS dataset. It can be seen that BEAUT would be

expected to learn that this state mostly increases in population size and from this, it would’ve

applied that to the forecast from 2015 to 2018. For (2), consider another plot from the AHCS

dataset in Figure 4.7 that shows the male shelter population over time. It can be seen that

BEAUT would’ve learned an initial increase then a significant decrease in the population

over time that it would then apply to the 2018 forecast.

When exploring other applications of the proposed “BEAUT” model, a few key-points

regarding the specific implementation presented in this chapter need to be taken into account.

There are a total of 95,580 data points in the training dataset (AHCS)- that is, every state
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Figure 4.4: The result of the weighted percentage performance metric showing how BEAUT
performed in comparison to black box models.

recording, for each individual, for each time period. In the original dataset, researchers on

the project looked at the weekly transitions between states and used Equation 3.1 to get the

actual probabilities. That approach, however, averaged all of the probabilities to produce

a single transition probability matrix whereas our approach only averages for each week of

the year (i.e., 52 matrices in total). Therefore, this would be generalizable for any agent-

based population performing state transitions as the probabilities are simply the percent
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Figure 4.5: The result of the weighted value performance metric showing how BEAUT
performed in comparison to black box models.

chance that an agent in a given state will transition to another state at a given time period.

An “agent” in this context could be generalized even further by describing it as a dataset

of individual transitions over time. However, in this particular application using AHCS,

the dataset is from Montreál which means that the trained model is specific to the patterns

learned from that and therefore not generalizable; rather, the process to produce this trained

model is completely generalizable.
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Figure 4.6: The total institute population in the AHCS dataset over time.

4.8 Conclusion

This chapter extended the work shown previously (Chapter 3) to introduce improvements

in both the model and dataset. Before, the entire AHCS population was grouped into one

cohort which resulted in key information about each individual being lost and the model

was unable to account for fluctuations in the population. In addition to this, the previous

approach did not demonstrate its ability to forecast future numbers which is important for

policy makers to trust its results. The work presented here made use of the limited data

available by grouping individuals into 24 sub-populations based on attributes specific to them

so that very fine-tuned transition probabilities could be derived. To do this, 24 instances of

the previously named MDQL with MNFQ algorithm work indepently on each sub-population
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Figure 4.7: The male shelter population in the AHCS dataset over time.

as an overall model named BEAUT. As a solution to the fluctuating populations, adaptable

parameters were introduced to specifically learn these changes and modify the population

over time. These resulted in BEAUT obtaining a ∼ 9.8% horizon error, overall, when

predicting the last 10 weeks of the training dataset.

With this set of improvements implemented, the model was then demonstrated on PIT

counts done in the region, 3 years apart, after the AHCS dataset’s timeline to get a true

evaluation of its forecasting ability. To get an idea of how its performance fared, 2,040

configurations of 3 different black-box models were evaluated as well. The results showed

that BEAUT was amongst the majority of configurations when looking at how the forecasted

population was distributed amongst each of the homelessness states with an cummulative

weighted error of ∼ 12.47%. When looking at the errors for the actual number of individuals
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predicted across each state, however, BEAUT greatly outperformed the other models with a

cumulative weighted error of ∼ 289 individuals. This shows BEAUT’s forecasting ability and

highlights its importance for policy makers as it also provides them with a set of transition

probabilities to fully understand how these predictions were made.
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Chapter 5

TentNet: Deep Learning Tent

Detection Algorithm Using A

Synthetic Training Approach

All of this chapter was published in the following peer-reviewed conference article [34]:
• Fisher, A., Mohammed, E., & Mago, V. (2020). TentNet: Deep Learning Tent

Detection Algorithm Using A Synthetic Training Approach. In 2020 IEEE Systems,
Man, & Cybernetics (SMC). IEEE.

To continue research efforts on the homelessness domain, I produced this work in a
deep learning course that presents a novel approach at using artificial intelligence to
detect tents in satellite images with the purpose of contributing to this important so-
cial domain. The two main contributions here are as follows: an architecture called
“TentNet” that reduces the output of deep convolutional neural networks to a binary
output and a data enhancement technique referred to as “synthetic training” that uti-
lizes generative adversarial networks to create a training dataset when the number of
real data-points is limited. My role in this publication covered all aspects of the work
from research and development to implementation and writeup of the article. We chose
IEEE SMC because of its relevance to our work and best student paper award opportu-
nity.
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5.1 Introduction

Satellite imagery shows that in some urban parks of Canada, homeless individuals have setup

tents to live [44]. Recent attempts have been made by this team [35, 71] to use machine

learning and optimization techniques to solve some of the problems faced by homeless indi-

viduals. However, there has been no previous study that tried to find the dwelling status of

this vulnerable group. One of the main reasons for the lack of such studies is the unavailabil-

ity of data. As an example, there are approximately 1,600 parks in Toronto, and creating a

dataset of these images manually would be a tedious and unreliable process.

Recent tent-detection implementations [131, 117] use mathematical techniques that make

a number of assumptions about the characteristics of the tents and only focus on a handful

of images. This results in a problem-specific implementation that would have difficulty

handling variation in a larger dataset. To resolve this issue, deep learning techniques such

as convolutional neural networks (CNNs) could be used as they aim to learn the features

of these images rather than making assumptions beforehand. The main limitation with this

approach, however, is that a smaller dataset results in a smaller number of features available

for the algorithm to learn- which is indeed the case with datasets of tents in satellite images.

To address this problem, data from an existing project where objects in satellite imagery

were classified (such as xView [77]) can first be used to build a small dataset of tents. Then,

a generative adversarial network (GAN) can be trained on this dataset with the goal of

producing synthetic satellite images of tents to increase the overall size of the dataset. The

result would provide a significant number of features for the deep learning model to learn.

The objective of the proposed work can be simplified to training a deep learning technique

to detect small objects in satellite images. So, these methods will also be evaluated on real
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satellite-image-datasets that have been created for detecting ships1 and planes2. This is to

provide a proof-of-concept to lead up to the desired problem of detecting tents in satellite

images. The motivation for this is to provide more machine learning solutions in the area of

homelessness and, if the work were to be implemented in a real life scenario, to help policy

makers know the dwelling situation of homeless individuals so they can effectively provide

necessary services.

This chapter begins with a background section to describe important aspects (for this

work) of both convolutional neural networks and generative adversarial networks. Then,

previous implementations to detect tents in satellite images [131, 117] will be discussed–

along with their shortcomings– to understand how they approached this problem. Next, the

models used in this work will be introduced along with the procedure taken to train and test

them. Finally, the results of each model will be shown along with a discussion that explains

each outcome.

5.2 Background

Convolutional Neural Network (CNN)

Applying a CNN to this problem will allow for automatic feature extraction and eliminate the

necessity of making any assumptions about the features beforehand. The types of layers in

these networks that are relevant for this work are as follows: activation function, dense layer,

dropout layer, batch normalization, and convolution layer [73]. The activation function is a

mathematical definition that describes how a given input will be transformed to the output

of that layer. For this work, the authors used three activation functions:

1https://www.kaggle.com/rhammell/ships-in-satellite-imagery
2https://www.kaggle.com/rhammell/planesnet

https://www.kaggle.com/rhammell/ships-in-satellite-imagery
https://www.kaggle.com/rhammell/planesnet
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1. ReLU [138]: outputs the maximum of [0, input]

2. Softmax [84]: outputs a value between [0, 1]

3. LeakyReLU [138]: if input < 0 it outputs α× input where the model uses α = 0.3 else

it outputs input

These functions help reduce the overall linearity as it proceeds into the following layers.

Next, the dense layer is a densely-connected neural network that has a defined output size

(in this chapter the authors denote this as how many “nodes” it has) while the dropout

layer randomly disables a fraction of the nodes (in this chapter the authors denote this

as the “percentage”) in these layers as a means of preventing over-fitting. Next, batch

normalization makes the mean of the inputs as close to zero as possible while maintaining

a standard deviation of 1. This is useful in keeping the data propagating through within

a small range so that any outlying data, for example, doesn’t have a large impact on the

network when training. Lastly, the convolution layers have a defined number of filters that,

for this work’s purposes, are used to process images as they propagate through the network.

These filters contain an array of numbers that apply spatial convolutions to the values of

each pixel in the image as a means of extracting features from it [73].

Generative Adversarial Network (GAN)

This work will use two different implementations of generative adversarial networks [52] that

will be further described in the model section 5.4. The reasoning for this is to see how the

outputs differ between a complex (StyleGAN2 [67]) and a simplistic (DCGAN [105]) network.

The general setup for a GAN includes two models: (1) a generator for creating synthetic

outputs and (2) a discriminator to compare the generator’s outputs to the real dataset. By
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working together, these two models challenge each other with the goal of generating an image

that can’t be discriminated from the real ones. Lastly, another layer that is important to

understand is a variance of the convolution layer referred to as a transposed convolution

layer (or “deconvolutional” layer) [52]. For the generator, the convolution layers are these

transposed variations that process inputs in a reverse way to that of a convolution layer;

instead of extracting features from an image, it combines features together to create an

image.

5.3 Related Work

To the best of the authors’ knowledge, there are two relevant works where satellite data is

used for (1) identifying tents from “displaced populations” due to disasters or conflicts [131]

and (2) “dwelling detection” in refugee camps [117]. In [131], the main motivation for the

work was to provide a means of getting accurate population counts for displaced refugees.

Their novel technique used a chain of mathematical morphology operators which the au-

thors state are “useful in detecting objects which have a clear shape, size, and spectral

contrast” [131].

In [117], the main motivation for the work was to provide an automated method to detect

“different dwelling types in a refugee camp”. Their approach involved creating an algorithmic

process that first processes the input image(s) with labeled objects in a “semi-automated”

manner to determine characteristics about them such as typical brightness, size, and contrast.

Then, they used this knowledge with multiple types of image processing approaches such as

image segmentation and edge detection to create three distinct methods: (1) optical analysis,

(2) synthetic aperture radar (SAR)-based analysis, and (3) feature-based data fusion [117].

In both works, the main shortcomings are that their methods made many assumptions
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about the tents themselves, as well as the quality of the images being presented. Both articles

described using high resolution satellite imagery which, although ideal, may not always be

an achievable assumption and would likely have a great impact on their performance. In

this chapter, the models will be shown to achieve accurate results on a low quality, small

quantity dataset through the use of deep learning with CNNs and synthetic images from

GANs. The models presented don’t require any pre-defined assumptions as they learn the

features within the dataset that are important for identifying tents in satellite images.

5.4 Methodology

TentNetwork

This chapter uses three deep network CNN models via transfer learning with weights from

training on ImageNet [111]. The first model builds on ResNetV2 [55] (an improved version

of ResNet [54]) that, while very complex and deep in nature, utilizes skip connections to

maintain a high performance while avoiding the vanishing gradient problem. The second

model builds on InceptionV3 [122] which, although is another complex model, utilizes feature

concatenation to reduce the overall number of parameters required for training to prevent

overfitting. Lastly, the third model builds on MobileNetV2 [113] which is much less complex

in nature than the previous two models. The reasoning for these selections was to try

methods that are very complex (ResNetV2 [55]), complex (InceptionV3 [122]), and less

complex (MobileNetV2 [113]) in terms of the networks’ architecture. For each model, this

work removed the top-most layer, froze the remainder of the parameters from updating, and

attached “TentNet” (as described in Figure 5.1) to begin training on the selected datasets.

Since each of the models being used were initially trained on ImageNet, their outputs
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Figure 5.1: An overview of the proposed TentNet architecture.

were designed for 1,000 classes [111]. With each of the datasets used in this chapter, there

are only two classes to denote whether or not the desired feature (plane, ship, or tent) is

present in the given image. To account for this, the proposed architecture first passes the

model’s output through an activation function before inputting to a 256 node dense layer.

Afterwards, a dropout layer is implemented to reduce the number of nodes used in the

dense layer, before passing the output through a batch normalization layer. This process

(activation function→ dense layer→ dropout layer→ batch normalization layer) is repeated

two more times until the last 64 node layer is reached. Then, the output from this network

goes through a batch normalization layer then activation function before finally inputting to

the output layer for the final classification. The intuition for this architecture is to slowly

reduce the complexity of the CNN model’s output to a binary decision, while at the same

time trying not to lose any important information along the way.
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StyleGAN2

This model was created by NVIDIA labs in late 2019 [67] to further improve the results of

the original StyleGAN model [66]. The code-base available to the public3 includes multiple

configurations to run the network in. However, this work will focus on the two main imple-

mentations: config-a which is the baseline, original model (StyleGAN) and config-f which is

the improved model (StyleGAN2).

DCGAN

The deep convolutional generative adversarial network (DCGAN) [105] extends the baseline

GAN [52] model (as described in section 5.2) with unsupervised learning by using learned

features in both the generator and discriminator of the model. The authors modified an

architecutre of this from TensorFlow4 for the purposes of running a grid search (as described

in section 5.4) where the goal was to minimize the summation of the generator and discrim-

inator losses; Figure 5.2 shows the architecture used.

The generator first takes a seed as the input to a dense layer which, for this work’s pur-

poses, is simply some random data. Then, the outputs of this layer are normalized before

being processed by a pre-defined activation function that inputs to a 128-filter convolution

layer. The outputs from here are also normalized and ran through the activation function

before being input to a 64-filter convolution layer. Lastly, this layer’s output is again normal-

ized and processed by the activation function before going to the output convolution layer

to generate the resulting image.

The discriminator first takes an image as the input to a 64-filter convolution layer. Then,

the output from this is processed by the activation function before having some of the results

3https://github.com/NVlabs/stylegan2
4https://github.com/tensorflow/docs

https://github.com/NVlabs/stylegan2
https://github.com/tensorflow/docs
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dropped by a dropout layer. Next, the values left are input to a 128-filter convolution layer

then processed by the activation function again. Lastly, these values go through another

dropout layer before inputting to the output dense layer that provides a probability as to

whether or not this is a real image.

Figure 5.2: An overview of the layout that the DCGAN in this chapter uses.

Dataset Processing

Planes and Ships

These are two datasets that are publicly available under the CC BY-SA 4.0 license on

Kaggle.com. The author of both used data from Planet.com imagery to create 32,000

20px×20px RGB images for the planes dataset and 4,000 80px×80px RGB images for the

ships. The 32,000 in the planes dataset consists of 8,000 positive images (contains a plane)

and 24,000 negative images (does not contain a plane), while the 4,000 in the ships dataset

Kaggle.com
Planet.com
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consists of 1,000 positive images and 3,000 negative images. Once the datasets were retrieved,

each image was converted to a numeric array (three dimensional for RGB), along with their

label of being a positive or negative image.

xView Dataset

To achieve the end goal of producing an accurate means of detecting tents in satellite imagery,

the authors used a subset of data from the xView dataset [77]. This project classified millions

of features in thousands of satellite images with one of the categories being “Hut/Tent”. This

entire dataset isn’t openly available to the public but a subset is that consists of ∼18.2GB of

images. After parsing this data, the authors found that there were 50 images in the subset

containing a total of 245 features classified as “Hut/Tent”. The first step was to analyze

these features and determine their dimensions as individual images to create a dataset for

these models. The authors found that the largest width in this feature set was 260px while

the largest height was 308px, but that the averages were only 32px and 35px respectively.

Therefore, the authors decided on choosing 64px×64px as the maximum size for the real-

tents-dataset which produced 218 “Hut/Tent” images that met this constraint- or roughly

89% of the images available to us. Figure 5.3 shows three images from this resulting dataset.

CNN Model Fine-Tuning

For each of the three models described in section 5.4, a grid search was ran on the attached

TentNet architecture that differed in both the optimization method and activation layers to

find an optimal configuration. Namely, this search used the activation methods ReLU [138]

and Softmax [84], along with optimization methods Adagrad [72] and Adam [72] where each

combination (2 × 2 = 4) was 3 cross-fold-validated for a total of 12 fits on all datasets for
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Figure 5.3: Three examples of “Hut/Tent” images that the authors extracted from the xView
dataset [77].

each model. Using the best parameters from this process, on the planes and ships datasets,

10 cross-fold-validation was ran on the configuration to produce an accurate performance

measure to compare the three models. When running the cross fold validation, the authors

used a stratified fold to ensure the class distribution (positive and negative) was as even as

possible and, additionally, provided the model with a weight for each class that was based on

the number of images present for it in the dataset where a high weight meant that the class

was more important to learn (i.e., it was under-represented in the class distribution). This

was particularly important for the planes and ships datasets as the number of images with

the desired feature in it couldn’t be assumed to be balanced with that of images without the

feature.

As for the tents dataset, since the authors only had 218 real images of “Huts/Tents”,

this work kept them exclusively for the positive (i.e., tent) images in the testing dataset

along with 200 randomly selected features in the xView dataset [77] classified as “Shed” or

“Building” for the negative (i.e., no tent) images. Then, the authors used 1,000 generated

positive images (process described in section 5.4) along with 1,000 “Shed” or “Building”

images for the training dataset. The evaluation on this dataset was simply based on the
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testing accuracy achieved by each model.

The best parameter configuration from the grid search for each model is shown in Ta-

ble 5.1 for the planes and ships datasets. For the tents dataset, these configurations are

shown in Table 5.2 for both StyleGAN2 and DCGAN when they were respectively used to

create the positive class synthetic images (i.e., satellite images with tents). In all datasets,

the model trained on very small batch sizes of 8 images which is important to consider when

working with the small dataset of tents.

Model Planes Activation Ships Activation Planes Optimization Ships Optimization
ResNetV2 ReLU Softmax Adam Adam
InceptionV3 Softmax Softmax Adagrad Adam
MobileNetV2 ReLU Softmax Adam Adam

Table 5.1: The best configurations for each model on the planes and ships datasets.

Model StyleGAN2 Activation DCGAN Activation StyleGAN2 Optimization DCGAN Optimization
ResNetV2 ReLU Softmax Adagrad Adagrad
InceptionV3 ReLU ReLU Adagrad Adagrad
MobileNetV2 Softmax ReLU Adagrad Adam

Table 5.2: The best configurations for each model on the tents datasets with synthetic images
from StyleGAN2 and DCGAN.

GAN Model Design and Fine-Tuning

StyleGAN2

When the authors used StyleGAN2, both config-a and config-f were ran on the real dataset

of “Hut/Tent” images as described in section 5.4. The training method in this code-base

provides an option called “mirror augmentation” that was used, which simply rotates the
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input images to produce a larger dataset for the model to learn. The output of these models

as shown in Figure 5.4 appear to be abstract and indistinguishable. The authors attribute

this to the small resolution of the input images as well as the overall small size of the dataset

and the fact that StyleGAN is quite complex in architecture. However, the authors noted

that config-f produced the more distinguishable output so an analysis of how the features

present in these generated images impact the models when training will be shown.

(a) Output of config-a from StyleGAN2. (b) Output of config-f from StyleGAN2.

Figure 5.4: An example output from config-a (a) and config-f (b) of StyleGAN2 [67].

DCGAN

To create an optimal configuration, a grid search was ran on an implementation of this model

that was modified (as described in section 5.4). The parameters that differed in both the

generator and discriminator include activation functions Softmax [84] and LeakyReLU [138],

as well as optimization functions Adagrad [72] and Adam [72]. A description of how these

models were initialized can be found in Algorithm 3 for the generator and Algorithm 4 for

the discriminator. For the generator only, the authors also differed whether or not biases

were used in the convolutional layers as these act as an offset to the outputs of each node

in the network. For the discriminator only, the authors also changed the percentage of the
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dropout layers to either 0.3 or 0.4 as the default value in the original impelmentation was

0.3.

For each possible combination of the generator parameters, they were paired with each

of the possible combination of discriminator parameters for a total of 64 DCGAN models to

run a grid search on. The result of this is shown in Table 5.3, along with an example output

in Figure 5.5. A visual comparison between the outputs from DCGAN (Figure 5.5) and

StyleGAN2 (Figure 5.4) shows that DCGAN produces the more “realistic” results in this

context when compared to the actual dataset as shown in Figure 5.3. The authors attribute

this observation to the fact that DCGAN has a much more simplistic architecture than that

of StyleGAN2 and as a result, is able to process the small dataset with a better output.

Parameter Generator Discriminator
Activation Leaky ReLU Leaky ReLU
Optimization Adagrad Adam
Use Bias True N/A
Dropout N/A 0.4

Table 5.3: The best configurations for the DCGAN [105] generator and discriminator on the
tents dataset.

(a) Example 1 from DCGAN. (b) Example 2 from DCGAN.

Figure 5.5: Example outputs from the optimized DCGAN model [105].
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5.5 Results

Planes Dataset

With all three of the pre-trained models, the minimum input size allowed was 75px×75px.

Since the planes dataset contains images of size 20px×20px, this work simply added padding

around the images to reach this requirement. As the results will show, compared to the

ships dataset, this likely had an impact on the performance for the planes dataset but,

nevertheless, provides a useful observation to show how impactful the pre-processing steps

are when evaluating these models. Using the best configurations as shown in Table 5.1,

the authors evaluated TentNet on ResNetV2 (using the “ReLU” activation function and

“Adam” optimization function), InceptionV3 (using the “Softmax” activation function and

“Adagrad” optimization function), and MobileNetV2 (using the “ReLU” activation function

and “Adam” optimization function). The results were retrieved after ten epochs across each

of the ten folds created in the dataset as shown in Figure 5.6. An observation can be made

that, for MobileNetV2’s results, it appears to be over-fitting on the 5th fold despite the

author’s efforts to balance the datasets and provide weights for the classes when training.

Since this dataset is entirely composed of real images, one would expect the training and

testing accuracy to be close to one another to show that there isn’t over/under-fitting.

Additionally, a high testing accuracy would show that the model performs well on this

dataset while taking into consideration that the images needed to be padded.

A tabulated version of these of the results is shown in Table 5.4 which include the average

training and testing accuracy across the 10 folds for each model. As this chapter has described

before and will see when analyzing the ships dataset results, the padding of these images

appears to have caused a hit in the accuracy of these models. Nevertheless, in terms of
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Figure 5.6: The results of the three models with the proposed TentNet architecture across
10 folds of the planes dataset.

training and testing accuracies, ResNetV2 performed the best with a training accuracy of

88.68% and a testing accuracy of 84.44%.
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Model Training Testing
ResNetV2 88.68% 84.44%
InceptionV3 84.77% 75.00%
MobileNetV2 91.41% 78.41%

Table 5.4: The average training and testing accuracy for each model across the 10 folds of
the planes dataset.

Ships

Using the configurations shown in Table 5.1 (all three models used the “Softmax” activation

function and “Adam” optimization function), the authors retrieved the results of ResNetV2,

InceptionV3, and MobileNetV2 after 10 epochs across each of the ten folds created in the

dataset. These are shown in Figure 5.7. In MobileNetV2’s results, another instance of over-

fitting can be observed in the 1st fold. However, the model appears to level out for the

remainder of the evaluation and provides a good performance in terms of not over/under-

fitting the data. This improvement for MobileNetV2 over the planes dataset’s results could

be attributed to not needing to pad the images.

The tabulated version of the results for this dataset are shown Table 5.5 which include the

average training and testing accuracy across the 10 folds for each model. The performance

on this dataset shows improvement over that of the planes dataset’s results for all models.

However, MobileNetV2 was performed the best with a training accuracy of 96.91% and a

testing accuracy of 94.90%.

Tents

As with the plane’s dataset images, this work needed to pad the tent’s dataset images to meet

the 75px×75px minimum requirement. However, since these images were already 64px×64px,
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Figure 5.7: The results of the three models with the proposed TentNet architecture across
10 folds of the ships dataset.

the padding was minimal in comparison to that of the planes. To summarize the results of the

models for both the StyleGAN2 and DCGAN datasets, consider Table 5.6. When comparing

the two, one can see that using the DCGAN’s outputs for training on the synthetic images

resulted in higher training accuracies for all models. This could be attributed to the visual
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Model Training Testing
ResNetV2 90.50% 86.30%
InceptionV3 90.36% 82.34%
MobileNetV2 96.91% 94.90%

Table 5.5: The average training and testing accuracy for each model across the 10 folds of
the ships dataset.

comparison of the outputs from StyleGAN2 in Figure 5.4 and DCGAN in Figure 5.5 to that

of the real dataset as shown in Figure 5.3.

Model StyleGAN2 Synthetic Training DCGAN Synthetic Training StyleGAN2 Real Testing DCGAN Real Testing

ResNetV2 89.65% 95.85% 47.85% 73.68%

InceptionV3 96.50% 81.75% 35.17% 48.80%

MobileNetV2 99.45% 98.55% 47.85% 47.85%

Table 5.6: The results of these models on the tent dataset with training accuracies on
synthetic images from StyleGAN2 running the config-f configuration as well as from the
optimized DCGAN, then testing accuracies on the real images.

Looking at the results in Table 5.6, it may appear that the data is being over-fitted.

However, the layout of the dataset used needs to be taken into consideration. Each model

learned the positive (tent) feature strictly from synthetic images which resulted in a higher

training accuracy. Then, when testing, the positive class was represented using only real

images to provide a fair evaluation of their performance from the synthetic training. The

best performing model was ResNetV2 which demonstrated a testing accuracy of 73.68%

when training on synthetic images from the DCGAN. An example of how the process for

this particular configuration was performed can be observed in Figure 5.8 but please note

that the synthetic dataset was only generated via DCGAN once then used for InceptionV3

and MobileNetV2 also; the figure shows this process simply to provide more clarification.
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The proposed approach helps overcome the challenge of having a small dataset by gen-

erating a large synthetic dataset that contains features learned from the originals using a

GAN. This is then used along with a sample of non-tent images to train TentNet so that the

parameters within the model can be adjusted accordingly when classifying whether or not

a tent is present. Finally, the model is then evaluated on the small, real dataset to see how

well it learned the features that the GAN originally learned.

Figure 5.8: The process performed to evaluate the accuracy of TentNet on the tents dataset.

5.6 Discussion and Conclusion

This chapter presented three CNN models that used transfer learning from ResNetV2, In-

ceptionV3, and MobileNetV2 with the goal of identifying whether or not a tent is present

in satellite imagery. As a baseline performance measure, these models were evaluated on

two datasets made for detecting (1) planes and (2) ships within satellite imagery. For the

planes dataset, the ResNetV2 model performed the best with a average testing accuracy,
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over 10 folds, of 84.44%. For the ships dataset, the MobileNetV2 model performed the best

with an average testing accuracy, over 10 folds, of 94.90%. When comparing the results

between these two datasets, it should be noted that each model required a minimum input

size of 75px×75px. The planes dataset didn’t meet this requirement (20px×20px) so they

were simply padded to demonstrate how much the pre-processing steps impact these models’

performances.

For the tents aspect, since it is a very unique feature, the authors needed to come up with

a solution to provide a sufficient amount of data to these deep learning models. By utilizing

the xView dataset [77], this work created the testing dataset with 218 64px×64px RGB

images of features classified as “Hut/Tent” for the positive class images, and 200 “Building”

or “Shed” features from this dataset for the negative class images. For the training dataset,

the authors presented two GAN implementations that were used to create 1,000 synthetic

positive images, and retrieved 1,000 “Building” or “Shed” features from the xView dataset

for the negative images. Similar to the planes dataset, these images did need to be padded

as well to meet the 75px×75px requirement.

When using the StyleGAN2 implementation to train the best performing model on this

dataset, ResNetV2 achieved a testing accuracy of 47.85%. This could be attributed to the

abstract synthetic image outputs that were produced as seen in Figure 5.4. When using

DCGAN, however, ResNetV2 was the best performing model again but this time with an

accuracy of 73.68%. This improvement can be attributed to the output quality from the

simplistic architecture in the DCGAN being much more distinguishable than that of the

output from StyleGAN2’s much more complex architecture when visually compared to the

very small real dataset.

With the methods provided in this chapter, the authors have improved the approaches

previously defined for tent-detection algorithms. In other works, many assumptions needed



CHAPTER 5. TENTNET: DEEP LEARNING TENT DETECTION ALGORITHM
USING A SYNTHETIC TRAINING APPROACH 122

to be made and defined about the characteristics of the tents before it could process the

image. Using deep learning, the authors eliminated this requirement as these models instead

learn the features of the images through training on a given dataset. Additionally, in previous

works the models processed only a handful of high resolution images while the proposed

approach uses synthetic images from a GAN to learn, then approximately 218 real images

to test from the xView dataset [77].

5.7 Future Work

An interesting application of this work could be to determine how many tents are in the

satellite image rather than whether or not there is one. Some modifications to the mod-

els presented in this chapter would be needed such as region-of-interest (RoI) pooling [21]

to adapt the output from strictly being a positive/negative classification. Based on the

uniqueness of this problem and the assumptions made in current implementations [131, 117]

designed for counting tents in a satellite image, this could certainly be a beneficial extension.

Additionally, the use of other images sources– such as ones from drones– could be explored

as an alternative to satellite images but the problem arises as to whether or not a large

enough dataset exists with such features. To the best of the authors’ knowledge, this is not

the case but the synthetic approach used in this chapter could be a possible solution.

Another area of this work that could be extended would be running larger grid searches

to explore more activation and optimization functions with these models, as well as different

parameters such as kernel sizes and the number of nodes. Since the architectures this work

transferred learning from were very complex and large in nature, the computational overhead

required was immense- for example, a single fold in Figure 5.6 took upwards of 5 hours in

some instances. Similarly, training the discriminator in the DCGAN with all datasets (planes,
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ships, and tents) would also be an interesting extension of this work. This would provide

more satellite-imagery-features for it to learn and, in turn, provide a greater challenge to the

generator when trying to produce realistic tent outputs.
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Chapter 6

Conclusion

In this thesis, a number of solutions to social and health issues were presented that use simu-

lation and machine learning approaches. The first theme was based on an agent-based model

using deep learning to simulate homelessness populations as presented in Chapters 3 and 4.

This was done by modifying two pre-existing algorithms– deep q-learning and neural fitted

q-iteration– to work together to produce an explainable artificial intelligence through the

use of transition probability matrices. This is important to researchers in this social do-

main as they can easily understand how the model is simulating these populations with this

crucial piece of information. As a result, these chapters provided a way of testing different

approaches to reducing homelessness without a real world implementation.

In the last chapter of this thesis (Chapter 5), a transfer learning architecture was pre-

sented to detect tents in satellite images for applications such as determining where homeless

individuals may be living. As such a dataset does not exist, a method was also shown that

involved using generative adversarial networks to generate a set of synthetic images to be

used to train the model. This resulted in the best performing model obtaining a 73.68%

accuracy on real images after only being trained on synthetic ones.
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The work presented here was motivated by the desire to encourage more collaboration to

be done between computer and social sciences. This is an important connection to make as

simulation and machine learning methods have the ability to process information in greater

quantities and speeds, while still learning more about the patterns of such data than we can

easily comprehend. The issues posed throughout each chapter can affect each and every one

of us so having a solution to alleviate or resolve those problems is of great benefit.
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le 24 mars 2015/I Count Montreal: Count and Survey of Montreal’s Homeless Popu-

lation on March 24, 2015. 2015.

[79] Eric A Latimer et al. “Costs of services for homeless people with mental illness in

5 Canadian cities: a large prospective follow-up study”. In: CMAJ open 5.3 (2017),

E576.

[80] Eric A Latimer et al. “Costs of services for homeless people with mental illness in

5 Canadian cities: a large prospective follow-up study”. In: CMAJ open 5.3 (2017),

E576.
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def c f e r r o r ( surrogate , s p l i t s e t , x data , y data , p r e d i c t o r s ) :

p r e d i c t i o n s = [ 0 . 0 ] ∗ len ( p r e d i c t o r s )

rmse = 0 .0

count = 0

for t r a in index , t e s t i n d e x in s p l i t s e t :

# Sp l i t the data

X train , X tes t = x data [ t r a i n i nd ex ] , x data [ t e s t i n d e x ]

Y train , Y tes t = y data [ t r a i n i nd ex ] , y data [ t e s t i n d e x ]

# Train the model

temp = copy model ( su r roga t e )

temp . s e t t r a i n i n g v a l u e s ( X train , Y tra in )

temp . t r a i n ( )

# Get the RMSE

cur rmse = f loat ( compute rms error ( temp , X test , Y tes t ) )

rmse += cur rmse

count += 1

# Get p r ed i c t i on s

yp = l i s t ( temp . p r e d i c t v a l u e s ( p r e d i c t o r s ) )

for i in range (0 , len ( yp ) ) :

p r e d i c t i o n s [ i ] += yp [ i ]

# Average the p r e d i c t i on s

for i in range (0 , len ( p r e d i c t i o n s ) ) :

p r e d i c t i o n s [ i ] /= f loat ( count )

return ( rmse / f loat ( count ) ) , p r e d i c t i o n s

Box 1. Python code to validate a machine learning model on a dataset using 10-cross

fold validation.
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Algorithm 1 Homelessness Forecasting.

Input: A = the overall population, t = the current week in the simulation
Output: The loss of this epoch- that is, how much the transition probabilities were
changed.

1: procedure Simulation(A, t)
2: tr mat← Qt

3: tr counts← copy structure(tr mat)
4: mdq probs← copy structure(tr mat)
5: mnfq rewards← copy structure(tr mat)
6: for each p ∈ At do
7: si = sp,t State of individual p at time t
8: sn ← Wheel(tr mat[si])
9: sp,t+1 = sn State of individual p at next time step

10: qp,t ← mdq nn.process(si, sn)
11: mnfq nn← mnfq nns[si][sn]
12: n̂j,p,t, lowest error ←

mnfq nn.process(curr mdq prob, N̂t, sn, 1)
13: mnfq rewards[si][sn] += curr mnfq reward
14: if lowest error == True then
15: mdq prob[si][sn] = curr mdq prob
16: end if
17: tr counts[si][sn] += 1
18: end for
19: mnfq rewards = mean(mnfq rewards, tr counts)
20: new tr mat =

update prob(mdq prob,mnfq rewards, tr mat)
21: loss = mean difference(new tr mat, tr mat)
22: accuracy = difference(At+1)
23: transition matrices[t] = new tr mat
24: return loss, accuracy
25: end procedure
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Algorithm 2 Roulette Wheel.

Input: possible transitions = the possible transitional probabilities to consider
Output: sn = the new state to transition to

1: procedure Wheel(possible transitions)
2: sn ← 0
3: random state = random[0, 1]
4: sum← next(possible transitions)
5: while random state ≥ sum do
6: sum += next(possible transitions)
7: sn += 1
8: end while
9: return sn

10: end procedure

Algorithm 3 DCGAN Generator Initialization Method.

1: model = SequentialModel()
2: layers = array()
3:

4: layers.add(Dense(use bias parameter))
5: layers.add(BatchNormalization())
6: layers.add(Activation Function())
7:

8: layers.add(Convolution Transpose(128, use bias parameter))
9: layers.add(Batch Normalization())

10: layers.add(Activation Function())
11:

12: layers.add(Convolution Transpose(64, use bias parameter))
13: layers.add(Batch Normalization())
14: layers.add(Activation Function())
15:

16: layers.add(Convolution Transpose(use bias parameter))
17:

18: optimizer = Optimizer()
19: model.create(layers, optimizer)
20: return model, optimizer
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Algorithm 4 DCGAN Discriminator Initialization Method.

1: model = SequentialModel()
2: layers = array()
3:

4: layers.add(Convolution(64))
5: layers.add(Activation Function())
6: layers.add(Dropout Layer(dropout percentage))
7:

8: layers.add(Convolution(128))
9: layers.add(Activation Function())

10: layers.add(Dropout Layer(dropout percentage))
11:

12: layers.add(Dense(64))
13:

14: optimizer = Optimizer()
15: model.create(layers, optimizer)
16: return model, optimizer
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Abbreviation Description

MDQL Modified Deep Q-Learning

MNFQ Modified Neural Fitted Q-Iteration

SIR Susceptible Infectious Recovered

ICU Intensive Care Unit

SUS System Usability Scale

ABM Agent-Based Model

IDW Inverse Distance Weighting

RBF Radial Basis Function

QP Quadratic Polynomials

LS Least Squares

SMT Surrogate Modeling Toolbox

RMTB

Regularized Minimal-energy Tensor-product

B-splines

RMTC

Regularized Minimal-energy Tensor-product

Cubic hermite splines

RMSE Root-Mean-Squared-Error

ANN Artificial Neural Networks

HF Housing First

TAU Treatment As Usual

PIT Point-In-Time

ARIMA AutoRegressive Integrated Moving Average

GRU Gated Recurrent Unit
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LSTM Long-Short Term Memory

RNN Recurrent Neural Network

MLP MultiLayer Perceptron

WMAE Weighted Mean Absolute Error

CA Cellular Automata

CNN Convolutional Neural Network

GAN Generative Adversarial Network
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Description Link

A demonstration of the first iteration

of the homelessness simulation platform

for a presentation at the fourth annual

Canadian Homeless Data Sharing initiative

“Data That Makes a Difference” in 2019

https://www.youtube.com/watch?v=

dqHiug0OUpA

A tutorial on how to develop an API using

the Python library “Flask” which was used

in development of the homelessness

simulation platform

https://www.youtube.com/watch?v=

opKls658yUU

A tutorial on how to use the HPC at

Lakehead University which was an integral

part in providing computational power

during my studies

https://www.youtube.com/watch?v=

KLwfrzYjdM0

A presentation of TentNet at IEEE SMC

in 2020

https://vimeo.com/showcase/

7648425/video/466038898

A repository of the codebase used in

Chapter 3

https://github.com/andrfish/

MDQL-with-MNFQ

https://www.youtube.com/watch?v=dqHiug0OUpA
https://www.youtube.com/watch?v=dqHiug0OUpA
https://www.youtube.com/watch?v=opKls658yUU
https://www.youtube.com/watch?v=opKls658yUU
https://www.youtube.com/watch?v=KLwfrzYjdM0
https://www.youtube.com/watch?v=KLwfrzYjdM0
https://vimeo.com/showcase/7648425/video/466038898
https://vimeo.com/showcase/7648425/video/466038898
https://github.com/andrfish/MDQL-with-MNFQ
https://github.com/andrfish/MDQL-with-MNFQ
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